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Abstract

The use of passive 1 18-GHz 02 spectral observations of rain cells for precipitation cell-top
altitude estimation is demonstrated using a multilayer feedforward neural network retrieval
system. Data was derived from a collection of 118-GHz rain cell observations along with
estimates of the cell-top altitude obtained by optical stereoscopy. The observations were
made using the millimeter-wave temperature sounder (MTS) scanning spectrometer aboard
the NASA ER-2 research aircraft, flying near 20 km altitude, during the Genesis-of-Atlantic-
Lows-Experiment (GALE) and the Cooperative-Huntsville-Meteorological-Experiment
(COHMEX), 1986. The neural network estimator applied to MTS spectral differences
between clouds and nearby clear air yielded an RMS discrepancy of 1.76 km for a combined
cumulus, mature and dissipating cell set and 1.44 km for the cumulus-only set. An
additional improvement in RMS discrepancy to 1.36 km was achieved by including
additional MTS information on the absolute atmospheric temperature profile. An incremental
method for training neural networks was developed which yielded robust results despite the
use of as few as 56 training spectra. Comparison of these results with a nonlinear statistical
estimator shows that superior results can be obtained with a neural network retrieval system.
The neural network estimator was then used to create imagery of cell-top altitudes estimated
from 118-GHz CAMEX spectral imagery gathered from September through October, 1993,
and from spectral imagery gathered from cyclone Oliver on February 7, 1993.
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Chapter 1

Introduction

Cloud and precipitation properties can be remotely sensed from brightness temperature

measurements made at millimeter wavelengths. In particular, the estimation of rainfall rate

would provide a means for monitoring the hydrologic cycle over inaccessible regions as well

as providing advanced warning of foul weather to highly populated regions. The potential of

passive remote sensing of rainfall rate has been discussed [1] and retrievals of rainfall rate

have been demonstrated from 19.35-GHz passive data [2] and from 18- and 37-GHz passive

data [3]. Frequencies within 2.5-GHz of the 118.750-GHz 02 line have been shown to

support retrievals of precipitation parameters, in particular, cell-top altitude. It has been

shown that thunderstorm cloud height is statistically related to rainfall rate, although the

relationship is strongly influenced by climatological region [4]. In addition, correlations

between the maximum cell top altitude and both the total rainfall volume and the maximum

rainfall volume rate have been revealed [5]. Information provided by independent cell-top

altitude estimates would be beneficial over highly glaciated cells, where rainfall-rate retrievals

using only 19- and 37-GHz frequencies is compromised by a layer of strongly scattering ice.

Cell-top altitude retrievals have been demonstrated using passive measurements of the

infrared radiance emitted at the cloud top [6]. However, because of scattering and absorption



of infrared radiation, passive infrared observations cannot probe beneath non-precipitating

cloud canopies. At microwave frequencies there is significantly less extinction of the

radiation, allowing for the direct probing of precipitation particles located directly beneath

non-precipitating cloud canopies.

This thesis evaluates retrievals of cell-top altitude using multilayer, feedforward neural

networks and high-resolution, passive 118-GHz multichannel precipitation cell imagery.

The high performance of these networks as function approximators has been shown in the

literature [7],[8]. The use of neural networks for precipitating cell-top altitude estimation

from 1 18-GHz spectral data addresses both the complex statistical nature of the spectral data

and the unknown, non-linear relationship that exists between the 118-GHz data and cell-top

altitude. An optimal mapping of 118-GHz spectral data to cell-top altitude is accomplished

by training a multilayer, feedforward neural network using a set of training exemplars which

characterize the statistical complexity of the estimation problem. The cell-top altitude estimate

produced by the neural network is optimized with respect to mean-squared-error criterion.

This is done using the backpropagation algorithm to adjust the parameters of the neural

network.

This thesis is organized as follows. Chapter 2 gives a basic introduction to the physics of

passive remote sensing of cell-top altitude, a description of the data used to develop a

retrieval system, and a discussion of previous retrieval systems developed for the estimation

of cell-top altitude from 118-GHz imagery. Chapter 3 introduces artificial neural network

topologies and training strategies. Chapter 4 describes the development of the neural

network based retrieval system and presents a comparison of results with previously used

systems. Chapter 5 presents conclusions and suggestions for further work.



Chapter 2

Passive Microwave Remote Sensing of Cell-Top
Altitude

2.1 Physics of Downlooking Sensors

The field of remote sensing deals with the acquisition of information about an object without

being in direct contact with it. Information is generally acquired by measuring perturbations

that an object makes on a surrounding field. Remote sensing techniques have been

instrumental in providing us with information about the Earth's atmosphere. In particular,

passive microwave remote sensing allows us to determine a number of atmospheric

parameters from measurable atmospheric thermal emission data.

Microwave sensors are used to measure the radiation emitted from molecules present in the

atmosphere. The radiation emitted by an object is directly related to its physical temperature.

An ideal body whose emitted radiation is dependent only on its physical temperature is

referred to as a black body. The radiation emitted by a black body at temperature T (degrees

Kelvin) and frequencyf (Hz) is described by Plank's Law:

I = 2hf 3  W m-2 ster-' -Hz-' (2.1)
C2 (ehf k - 1)



where h (J -s) is Plank's constant, k (J / K) is Boltzmann's constant, and c (m / s) is

the speed of light. At microwave frequencies (hf << kT), Plank's Law can be simplified by

the Raleigh-Jeans approximation:

I - WT m-2* ster-  • Hz- (2.2)
c

The radiation emitted by a real body is typically described by the temperature of a black body

emitting the equivalent amount of radiation. This is referred to as the brightness temperature

( T) of the real body. The equation of radiative transfer relates the brightness temperature

(TB) of a slab of the atmosphere to the atmospheric composition and temperature T(z) as

follows [9]:

Z -

-- 2 •(0)z2 )rrT,(f) - fT(z)a(f,z)e- )[1 + re-2(z) ]dz + ( - r)e- •zT, +re 'r(o, )TCb (2.3)
0

where T(z) is the temperature (K) at height z, a(f, z) describes the absorptivity of the

atmosphere (m- 1) at frequency f and height z, r and T, are the reflectivity and temperature

of the surface, r(x,y) is the total opacity of the atmosphere between levels x,y and is given
y

by r(x,y)=fa(f, z)dz, and TCb is the cosmic background temperature. Equation (2.3)

illustrates that the measured brightness temperature is the sum of the background radiation

and the radiation emitted at each point along the trajectory of the sensor, with each

component attenuated by the atmosphere above it. Figure 2-1 illustrates the various

measured components described by Equation (2.3).
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Figure 2-1. Illustration ofdownlooking sensor measurements.

By measuring the emitted radiation at a number of frequencies, it is possible to determine a

temperature profile of the atmosphere. This can be explained as follows. The density of the

Earth's atmosphere is very low at high altitudes. Therefore, the contribution of the measured

radiation from these altitudes is low. Lower in the atmosphere the density increases. This

causes an increase in the contribution to the measured radiance from this layer of the

atmosphere. Atmospheric layers very near the surface of the earth have the highest density.

However, as the radiation from these layers propagates up through the atmosphere toward

the sensor, it is absorbed. Therefore, the contribution to the measured radiance from these

layers is low. There exists a layer of the atmosphere for which the combination of

atmospheric density and absorption above it are such that it contributes the most to the

measured radiance. The altitude of this optimum atmospheric layer is a function of

observation frequency. As we make measurements at a number of neighboring frequencies,

sensor



we can determine temperature profiles of the atmosphere. This can also be seen by

simplifying Equation (2.3) as follows:

T,(f) T(z)( dz- r)o T, +re-2(ZT"(f) fT(z)W(fz)dz + (I - r)e ,T + re "cb

where W(f,z) = a(f,z)[l + re-2'r("z)e - ' 'L u , known as the temperature weighting

function, shows the contribution to the measured brightness temperature from each layer in

the atmosphere at frequency f. Figure 2-2 illustrates the set of weighting functions for the

frequencies about 118-GHz. As illustrated by Figure 2-2, as the offset frequency increases,

the atmosphere appears more transparent and the peak of the weighting function occurs lower

in the atmosphere.

(2.4)
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Figure 2-1: Temperature weighting functions.



2.2 Retrieval of Cell-Top Altitude from 118.75-GHz Spectra

The presence of precipitating clouds in the atmosphere will perturb the microwave spectrum

and therefore the retrieved atmospheric temperature profiles. This occurs for two reasons. If

the clouds are below the freezing level, their presence causes increased absorption of the

propagating radiation, and therefore a decrease in brightness temperature. Conversely, if the

clouds are above the freezing level, the layer of ice that is formed near the cloud top causes

strong reflection of the cold cosmic background radiation. This also causes large negative

perturbations in the brightness temperature. Referring to the temperature weighting functions

shown in Figure 2-2, the clouds at height z will absorb radiation from layers of the

atmosphere at heights below height z. In effect, the weighting functions have been chopped

off at the height of the cloud. It has been successfully demonstrated by Gasiewski et al. [10]

that cloud and precipitation properties can be remotely sensed from brightness temperature

measurements made at frequencies within 2.5-GHz of the 1 18.75-GHz 02 resonance.

To develop a cell-top altitude retrieval system a collection of 279 independent near-nadir

brightness temperature spectra of precipitation cell cores was compiled. The collection

consists of spectra produced by the MIT millimeter wave temperature sounder (MTS)

scanning spectrometer aboard the NASA ER-2 aircraft during the Genesis of Atlantic Lows

Experiment (GALE), in which nineteen spectra were collected, and the Cooperative

Huntsville Meteorological Experiment (COHMEX), in which 260 spectra were collected.

These observations represent precipitation observed during seven winter and fourteen

summer aircraft flights. The observed precipitation cells were located in the southeastern

United States, with most of the cells located over the Huntsville, Alabama area. The

instrument consists of a scanhead housing two radiometers and a video camera. The 118-

GHz scanning spectrometer has a 7.5* spot bandwidth and is band-pass filtered to yield eight

non-overlapping probing channels. A rotating mirror allows for a planar scan of the antenna



beam over a ±47* field of view, and 14 spots are used to sample the 94" scan sector. The

plane of scan is transverse to the flight path. A CCD television camera is mounted in the

scanhead and has a 99* transverse field of view. In addition, the instrument houses a

time/data video overlay generator and a VHS videocassette recorder. A thorough description

of the instrument, aircraft flights, and data calibration is given in Gasiewski et al. [ 1 ].

The measured spectrum for a precipitating cell is denoted by an eight-dimensional vector of

brightness temperature observations;

TB( I18750.50i

IT I
B(1 187&O.61i

B(I187to.84i I
- BI Bll875l.04iT =

SB(I1 87S1.24iQ

TB(I175L1.4-i I
B(1 1875tl.67)i

B(I 118 751l.9 I

where the subscripts indicate the channel center and sideband frequencies (GHz) for the

MTS, arranged in order of decreasing opacity. For each rain cell spectrum (TB) a

corresponding clear-air reference spectrum (TB,.) was estimated from MTS observations in

the vicinity of the cell. A delta brightness spectrum (AT,) was determined as the difference

between the cell spectrum and clear-air reference spectrum;

AT& -= TB - TBr, (2.5)

Delta brightness spectra were used in this retrieval system rather than the absolute brightness

spectra to ensure that any fluctuations in the baseline brightness spectra among cell



observations due to fluctuations in the ambient atmospheric temperature profile were

removed. Typical delta brightness spectra and clear-air reference spectra are plotted in Figure

2-3.
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Figure 2-3: Collection of 118.75-GHz delta brightness temperature spectra and clear-air

reference spectra observed by the MTS over rain cells during GALE and COHMEX.
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The altitude of each cell-top was estimated by stereoscopy, using MTS video images (VHS

color images through a 99-degree wide-angle lens) and the known altitude and speed of the

aircraft. The visually estimated cell-top altitude has an associated rms error of ~1 km due to

uncertainty in aircraft speed (±10%), aircraft altitude (±500m), and time of passage of a

particular feature of a cell-top through the video field of view (± 2sec).

The size of each cell was estimated using the MTS spectral imagery. The size of each cell

was taken to be the distance along the aircraft flight track over which the MTS transparent

channel brightness perturbation decreased to half its maximum value. The geometric mean of

the major and minor horizontal dimensions was used for elongated rain cells.

In addition to the collection of brightness temperature spectra and cell-top altitudes, observed

cells used in this retrieval were classified as one of two types. Cells that appeared to be in

their early stages of convection were designated "cumulus-type", while those exhibiting

anvils were designated "mature-type". The cells were visually classified using the MTS

video imagery. A scatter plot of optically estimated cell-top altitudes versus cell-size is

shown in Figure 2-4. The collection of cells range in cell-top altitude and cell-size from

~2km- 17km and -5km-200km, respectively. As shown by Figure 2-4, the logarithm of cell

size is linearly related to the cell-top altitude. This apparent relationship will be exploited in

the development of the neural network retrieval system.
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Figure 2-4: Scatter plot ofthe optical cell-top altitude versus cell size

for the 118-GHz rain cell observations.

2.3 Discussion of Previous Methods

To determine the relationship between I 18-GHz spectral data and cell-top altitude, a function

approximation system must be developed. In addition to delta brightness temperature, clear-

air reference temperature and cell size may contain information about the cell-top altitude.

Figure 2-5 illustrates the three possible estimation approaches to the cell-top altitude retrieval

problem.
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Figure 2-5: Illustration ofcell-top altitude estimation problem.

To estimate cell-top altitude from 1 18-GHz spectral data, the unknown function f(*) must be

approximated. Approximation theory deals with approximating or interpolating a

continuous, multivariate function (f(*)) with an approximation function, f(W,*), that has a

fixed number of parameters W [12]. To solve this approximation problem the approximation

system to use, as well as the algorithm to use to solve for the unknown parameters (W),

must be determined. The determination of the approximation system to use will determine

the form of the approximation function (f(W,*)). To rate the performance of different

approximation functions ( f(W,*)) and parameters ( W ), a measure of the uncertainty of the

estimate must be established. Generally this is quantified as the mean-squared error between

the actual and estimated output value.

2.3.1 Linear Regression

A simple approach to this problem is to perform linear regression to solve for the unknown

parameters W. In this case, the general form of the approximate function is a linear

combination of the 1 18-GHz spectra;

Estimation Approaches

* f(ATb)

* f(ATb, Tbr)

* f(ATb, Tbr In(cell size))



al=C+ ATB D

, = C + AT*• D
(2.6)

S=C + ATBn 'D

where i, is the cell-top altitude estimate, AT,, is the ith brightness temperature perturbation

spectra, and C and D are the unknown parameters to be determined. Equations (2.6) can be

rewritten in matrix form as E= T- W, where J is the vector of actual cell-top altitudes,
[1 A T B ,i -

T = 1 I, and W j. The vector W which will minimize the mean-square error

is calculated by;

W= (T T)-'T i (2.7)

where (') is the transpose operator, and (-1) is the inverse operator [13]. This approach

assumes a linear relationship between the 118-GHz spectra and cell-top altitude, which may

not be a valid assumption. This approach can be made more complicated by adding known

or suspected non-linear terms into the regression analysis.

2.3.2 Non-Linear Statistical Estimator

A non-linear statistical estimator operating on the perturbation spectra (ATB) was developed

by Gasiewski and Staelin [14] to estimate cell-top altitude. The estimator consisted of an

orthogonal Karhunen-Lobve Transformation (KLT) [15] followed by a rank reduction

operation, a non-linear operator and a linear-statistical estimator. The KLT and rank

reduction operations were used to reduce the complexity of the perturbation spectra by

removing any redundancy that may exist between channels. The non-linear operator



linearized the reduced spectra with respect to altitude, after which a linear estimator was

applied.

The complexity reduction operation consists of a KLT which rotates the eight-dimensional

perturbation spectra space into an orthogonal, eight-dimensional KL space. This is followed

by a rank reduction operator which retains the statistically significant KLT modes. The

details of this operation are as follows. The KLT is performed by diagonalizing the

covariance matrix of the perturbation spectra;

rA, 01

- = I 2 iE (2.8)

where , is the covariance matrix, E is the row-matrix consisting of the eigenvectors

of R A' A• are the associated eigenvalues and also a measure of the variance of the ith

component of the decomposed spectra, and (') is the transpose operator. The KL

transformation is performed by; k, = EAT,.

Figure 2-6 is a plot of the eigenvalues A,, and illustrates that only the first and second KLT

modes contain any statistically relevant information.
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The two most dominant KLT coefficients were then linearized with respect to the cell-top

altitude. A linear statistical estimator was then used to minimize the mean-squared error

between the estimated and actual cell-top altitude.

This estimator produces better results with respect to the mean-squared-error criterion than

the linear estimator for the cell-top altitude retrieval problem. However, the use of the KLT

to reduce the complexity of the spectra assumes that the information in the spectra can be

fully described by second-order statistics. This would completely capture the statistical

behavior of the spectra if the spectra also had a jointly Gaussian probability distribution. If

this were the case, an elliptical relationship would exist between the KLT mode 1 and KLT

mode 2 variables. As shown by Figure 2-7, the relationship between KLT mode 1 and KLT

mode 2 is not elliptical. This indicates that information may exist in higher-order statistics,

and improvement in cell-top altitude retrievals may be achieved with other methods that can

capture this information.
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2.4 Why Neural Networks

Classification of remote sensing data has traditionally been performed by Bayesian and other

statistically-based classifiers. The drawback to these methods is that the underlying

distribution of the data needs to be assumed, and that the classifier is optimal only if these

assumptions are correct. A neural network, however, does not require that a particular form

of the statistical distribution be assumed, nor does it require that the relationship between the

estimator inputs and outputs be known. The neural network system is able to draw its own

input-output relationships directly from the data Another important feature of neural

networks is their capability to perform function approximation. It has been shown in the

literature [16], [17], [18] that a neural network with a single hidden layer having non-linear

x - Mature Cells
o - Cumulus Cells

250

200-



activation functions is capable of approximating any real-valued continuous function.

Multilayer, feedforward neural networks therefore form a class of universal approximators.

The accuracy of the linear regression technique described in Section 2.3.1 is limited by two

factors; the noise in the data and the degree to which the relationship between the 118-GHz

spectral data and cell-top altitude is non-linear. The non-linear statistical estimator described

in Section 2.3.2 is limited by the noise in the data and the degree to which the 1 18-GHz data

can be described by second-order statistics. The accuracy of a neural network retrieval

system is limited simply by the noise in the data. The complexity of the input-output

relationship and the underlying statistics of the data do not impose additional limits on a

neural-network-based retrieval system's accuracy. This fact, combined with the function

approximation capabilities of neural networks, indicates that a neural network based retrieval

system will produce superior results when compared with linear regression and non-linear

statistical estimation systems.





Chapter 3

Introduction to Artificial Neural Networks

3.1 Artificial Neurons

Artificial neural networks, or simply neural nets, are mathematical models which attempt to

achieve good performance through interconnections of simple computational elements. In

this sense, neural nets are a model of our understanding of biological nervous systems. The

computation elements, or nodes, in neural networks perform typically nonlinear and analog

computations. The output value of each node is computed in two steps. First, a weighted

sum of the node inputs is computed, and a bias term is added. This yields the linear output

of the node:

N

s = kXk + 0  (3.1)
k-1

where sj is the linear output of the jth node in the network, xk is the kth input to node j and

can either be the actual input to the neural network system, or the output from other neurons

in preceding layers, wjk is the weight connecting the kth input and the jth node, wjo0 is the

bias term of node j, and N is the total number of inputs to node j. This output is then passed



through a nonlinear function, referred to as the activation function of the node. This quantity

can be expressed as:

hj = f(s.)= w xw +Wj.o (3.2)

The output of the activation function (hj) is referred to as the activation level of node j.

Figure 3-1 graphically illustrates a node.

+1

Xil Wj Wj

xi2 f(S)

xin

Figure 3-1: Representation of thejth node in a neural network.

The activation function (f(sj)) can have many forms. Three common types of nonlinearities

used for the activation function are illustrated in Figure 3-2, hard limiters, threshold logic

elements, and sigmoidal nonlinearities. Nonlinear activation functions used at the output

layer yield values in the range [-1,+ 1 ]. Since the desired output is generally not limited to

this range, linear activation functions are typically used at the output layer.



f (x)

LI
x

r
0 x

-1

Hard Limiter Threshold Logic

Figure 3-2: Three common activation function nonlinearities.

Most of the units in the cell-top altitude retrieval network have a sigmoidal shaped activation

function, specifically the hyperbolic tangent;

f(s) = tanh(s1) (3.3)

This function is monotonically increasing and differentiable;

dtanh(ssj)
d 1- tanh2(s1 )

dsi

(3.4)

This property of the activation function will be exploited in the gradient-based training

algorithm described in Section 3.3. Linear activation functions, f(s1) = sj, are used in the

output nodes for the cell-top retrieval network.
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3.2 Multilayer Feedforward Neural Networks

Neural network models are specified by the net topology, node characteristics, and the

training algorithm used to determine the network weights and biases. The networks used in

the cell-top altitude retrieval system are multilayer, feedforward neural networks. The

connections between the computational elements are strictly forward. That is, no element can

provide input to itself or to any other element that affects its input signals. A network is

comprised of layers of these simple computational elements operating in parallel. The output

of the nodes of the network make up three different types of layers in a multilayer network.

The system input variables comprise the input layer of the network. The output layer of the

network is comprised of nodes which compute the output variables. Hidden layers are

comprised of variables that are not directly accessible to the outside world (they are neither

system input nor output variables). Figure 3-3 illustrates a schematic of a fully connected

network. The shaded circles in Figure 3-3 represent a single node in the network. The solid

dots represent the output variables of each of the nodes.

Neural networks are able to represent a function by an interconnected set of neurons which

have learned the appropriate response to a set of inputs. During the training phase of a

network, patterns are sequentially presented to the network. After all patterns have been

presented, the interconnecting weights (wjk) of each neuron are adjusted so that the

functional approximation created by the network minimizes the squared-error between the

desired output and the output produced by the network. The neural network can be thought

of as a type of nonlinear, least-mean-square interpolation formula for the set of points in the

training set [19].
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Figure 3-3: A schematic of a multilayerfeedforward neural network.

3.3 Training of Neural Networks by Backpropagation

Given a neural network topology, the weights and biases must be determined to minimize the

mean-squared error between the desired and calculated output variables. The

backpropagation algorithm developed by Rumelhart et. al. [20] has proven to be very

successful in training multilayer, feedforward neural networks. This algorithm is a

generalization of the delta rule and involves the presentation of a set of pairs of input and

output patterns to the neural network. The system first uses the input vector to calculate its

own output vector, and then compares this with the desired, or target, vector. If the network

produces the correct output vector, no learning takes place. Otherwise, the weights and

biases are adjusted to reduce the error between the actual and desired output. The rule for



changing the weights following the presentation of input/output pair p, for the simple case

of a network with no hidden nodes, is given by;

Apwi = rl(tIj -op,)ipi = r76ip,, (3.5)

where tp, is the target output for thejth component of the output pattern for input pattern p,

oN is the jth component of the actual output produced by the network for input pattern p, i,,

is the ith component of the input pattern, 6, = tp - oj, -r is the learning rate, which

determines how large a change can be made to the weight, and Apw, is the change made to

the weight between the ith and jth unit following the presentation of pattern p.

The rule described by Equation (3.5) minimizes the squared error between the actual and

target output variables summed over the output units and all pairs of input/output vectors. To

prove this, it can be shown that the derivative of the error with respect to each weight is

proportional to the weight change dictated by the delta rule. This corresponds to performing

steepest descent on a surface in weight space where the height of the surface is equal to the

error. This will be shown by first dealing with linear activation functions. Specifically, let

Ep = (tPj - oP,) (3.6)

be the measure of the error of input/output pattern p and let E= Ep be the overall

measure of the error. To show that the delta rule implements gradient descent on E, it must

be shown that

dE
- - = 6,i , (3.7)

- w.U



which is proportional to AwY by the delta rule. When there are no hidden units in a network,

this derivative can be computed easily. The chain rule can be used to write the derivative as

the derivative of the error with respect to the output times the derivative of the output with

respect to the weight.

dE dE dow F_ P oPj
dwij dop dw,

(3.8)

From Equation (3.6);

dE_•= -(tpj - o ) = -6pdo
doP P

(3.9)

Therefore, the contribution of the jth unit to the error is simply proportional to 6,p. Also,

since we are dealing with linear units;

opj = wjip ioP1 j P (3.10)

Therefore;

(3.11)
do
dw.. p

q

Substituting into Equation (3.8), we get the desired result;

dE
- _ = bfipi
dwij

(3.12)



Given that - = we can conclude that the net change in wij is proportional to this
dwij P

derivative and the delta rule therefore implements gradient descent on the error surface E.

Now, networks with nonlinear hidden units must be addressed. The output of a node can be

expressed as;

net, =. wop,, (3.13)

where o, = i,, if unit i is an input unit or opji fj(netpj)for other units. The

backpropagation algorithm requires that fo is differentiable and non decreasing. To

determine the generalized delta rule, we must set

Awij oc - -E (3.14)
dwij

where E is the same error function described by Equation (3.6). As done earlier, the

derivative in Equation (3.14) will be expressed as the product of two derivatives;

dE dE dnet
_ __ 0_ (3.15)

dwij net. dwjw

Using Equation (3.14) we can write the second partial derivative in Equation (3.15) can be

written as;

dnet -
PI- I Wopk = Op= (3.16)

dwi "Vk



dE
Now, if we define 6,j = - , we can write Equation (3.15) as;

dnet

p- p= 6,io (3.17)

Therefore, to perform gradient descent on E we should make the weight changes according

to;

Apw, = r/6PJoP, (3.18)

Now we must determine a way to calculate di for each unit in the network. We will again

dE
apply the chain rule to 6y = •

3netp

E -dE do .
6 - P n (3.19)

adnetp do, adnet (

Given that o,i = fj(netj ) , the second factor in the above derivative can be expressed as;

= f (netpi) (3.20)
fnetpj 

n

which is simply the derivative of the activation function of unit j evaluated at the network

input, net j, to that unit. To compute the first factor in Equation (3.19) two cases must be

considered. First, assume that the unit under consideration is an output unit. In this case,

from the definition of E, we can write;

dE
_f = -(t - °OP) (3.21)

dopi



Substituting Equations (3.21) and (3.20) into Equation (3.19);

6 =-- (tpj - op,)fj(netp) (3.22)

If the unit under consideration is not an output unit, we can again use the chain rule to obtain;

dE Inet E . =E

dnet pk k net apj dnetpk k
(3.23)

Using this result, we can substitute into Equation (3.19) to obtain;

(3.24)6, = fj(net,)C pk Wjk
k

These results can be summarized by the following three equations which specify how to

compute all of the 6 's in a network, which are then used to compute the weight changes in a

network. This procedure makes up the generalized delta rule for a feedforward neural

network.

APWi = 1 6PjOPi

6pj = (tpj - opj) fj(netpj)

6,. = f;(net,)Y 6wpkWjk
k

for output nodes

for non -output nodes

In summary, the application of the generalized delta rule involves two phases. First, the

input is presented and propagated through the network to determine the output value for each

unit (opj). This output is compared with the targets resulting in an error signal for each

output unit (6pj). Second, a backward pass is taken through the network to propagate the

error signal back to each unit in the network and appropriate weight changes are made.

(3.25)



Chapter 4

Development of the Neural Network Based Altitude

Retrieval System

4.1 Problem Description

The precipitation cell-top altitude retrieval system involves the estimation of altitude from

118-GHz spectral data. Due to the uncertainty of the relationship between cell-top altitude

and the 118-GHz data, the measurement noise present in the 118-GHz data, and the

unknown statistical distribution of the 118-GHz data, traditional Bayesian estimation

techniques are not very successful. The estimation system proposed in this thesis utilizes the

power of multilayer, feedforward neural networks to provide a more nearly optimal model of

the 118-GHz cell-top altitude relationship. Recent research has proven that these networks

are capable of such input-output mappings [21].

4.2 System Design

The development of a neural network retrieval system involves the selection of the neural

network attributes and the training algorithm. The attributes of the network that need to be



determined are the network model, network topology and training algorithm. This thesis

explores the use of multilayer, feedforward neural networks trained by the backpropagation

algorithm described in Section 3.3. Therefore, only network topology (how many hidden

layers, how many nodes in each layer) must be determined. There are no design rules that

indicate an optimal network topology for a specific application. The optimal topology must

be determined by experimentation. The performance of a number of different network

topologies will be explored in following sections. The performance criterion used is the

mean-squared error between the target and actual cell-top altitudes. The size of the network

will be limited by the size of the training set. A network with a large number of nodes will

require a large data set to satisfactorily constrain the parameters of the network. If a limited

data set is available for training, the network will overfit to the training data and have trouble

generalizing its results to data not used in training.

4.2.1 Description of Neural Network Model

The retrieval system developed in his thesis consists of a multilayer feedforward neural

network with one or more hidden layers. Each node in the network computes a weighted

sum of its inputs and adds a bias term. Hidden layer nodes pass this weighted sum through

a hyperbolic tangent activation function. Output layer nodes are linear. The network input is

processed to have zero-mean and is peak-to-peak normalized. The network output is the

estimate of cell-top altitude associated with the presented input vector.

The backpropagation algorithm was used to modify the weights and biases of the network.

To improve upon the backpropagation algorithm, momentum and an adaptive learning rate

were implemented. The use of momentum decreases the sensitivity to small details in the

error surface, and helps prevent the network from converging to a local rather than global

minimum. This is accomplished by allowing the network to respond not only to the local



gradient, but also to recent trends in the error surface. Momentum was added to the

backpropagation algorithm by making the weight changes equal to the sum of a fraction of

the last weight change and the new change suggested by the backpropagation rule described

in Section 3.3 by Equations (3.25). This can be expressed as;

Aw, = yA _,w, + (1 - )t)rl7,ii (4.1)

where AwY is the suggested current weight change, A_,w, is the previous weight change,

IA is the momentum coefficient and ribji, is the weight change suggested by the

backpropagation rule. The new weights and biases are rejected if they result in too large an

increase in mean-square error. This prevents the network from being pushed out of a deep

minimum in the error surface.

An adaptive learning rate was used to allow the network to train faster by determining an

optimal learning rate for the local terrain in the error surface. When a larger learning rate

results in stable learning the learning rate is increased. However, when the learning rate is

too high to guarantee a decrease in error it is decreased until stable learning resumes.

4.2.2 Description of Data Sets

The mapping from delta brightness spectra (ATB) to cell-top altitude is accomplished by

training a neural network with a subset of randomly shuffled ATB and associated cell-top

altitudes. This subset of spectra is called the training set. A test set, created from the

remaining subset of ATB spectra, was used to validate the network's performance on input-

output pairs not previously seen by the network. Four types of data sets were used to train

four different neural network cell-top altitude estimators. The data sets were derived from a

collection of 279 independent near-nadir brightness temperature spectra compiled during



GALE and COHMEX. The measurement instrument and flights are described in Section

2.2. The first data set consisted of 176 AT, spectra from the full collection of observed

cloud types (both cumulus and mature). It has been shown that the 1 18-GHz channels are

insensitive to some dense cirrus anvils [22]. However, the visible spectrum is highly

sensitive to the cirrus anvils, and therefore optical estimates of cell-top altitude are higher

than the retrieved 1 18-GHz cell-top altitudes. For this reason, the remaining data sets limit

the observations to only cumulus cloud types which typically do not display these cirrus

shields. This reduced the data set from 176 spectra to 84 spectra. Data set three consisted of

cumulus-only data with both AT, and clear-air reference spectra (TB,) as input. Data set

four incorporated the logarithm of cell-size in addition to Ad, and T., as input to the neural

network estimator. Table 4. 1 summarizes the data sets used in the development of the neural

network retrieval system.

Input Data # Patterns in # Patterns in

Training Set Test Patterns

1) All Cloud Types; 117 59

ATBnly Clouds; 56 28

2) Cumulus-Only Clouds; 56 28

ATB

4) Cumulus-Only Clouds; 56 28

AT,B T,,,log(cell-size)

Table 4.1: Summary of data sets used in development ofcell-top altitude retrieval system.



4.2.3 Topology Comparison

To determine the optimal neural network retrieval system, a number of network topologies

had to be investigated. It has been shown that networks with two hidden layers and a

sufficient number of nodes are capable of approximating any well behaved function. It has

also been shown that neural networks with one hidden layer and a sufficient number of

nodes are capable of universal function approximation [23],[24],[25]. Therefore, only

networks with one and two hidden layers needed to be investigated. Seven network

topologies were trained with a data set consisting of 117 AT, spectra from the combined

mature and cumulus cloud types. The performance of the networks was based on the

resulting rms error of the training and test sets. The test set consisted of 59 AT, spectra

taken from the same collection of data as the training set. Since the training and test sets are

mutually exclusive, the test set results show how well the network can generalize given

similar data that it has not been trained on.

First, networks with two hidden layers were investigated. A network with six nodes in the

first hidden layer and four nodes in the second hidden layer was tested first. The number of

nodes in each of the hidden layers was increased until the performance of the test set began to

degrade. A single hidden layer network with four hidden nodes was then evaluated. The

number of hidden layer nodes was again increased until the performance of the test set began

to degrade. The training of each network was stopped when the training error converged to a

minimum value. For each network topology, the resulting training and test set rms errors

were noted, as well as the number of presentations of the training set that was required for

the network to converge to a minimum rms error value. Table 4.2 summarizes the results

from the topology comparisons.



Table 4.2: Comparison of RMS errors (km)from different neural network topologies.

From these topology experiments, it was determined that a network with one hidden layer,

with five nodes, was the optimal network topology for this data set. This network topology

yields acceptable rms error results and performs as well on the test set as the training set.

Figure 4.1 illustrates the performance of the network on both the training and test sets as it

was training. Because the data sets available for training the networks were small, networks

with two hidden layers performed well on the training set, but did not generalize well to

independent test data sets. Generalization issues will be discussed in Section 4.2.4.

Description of Training Set Test Set # of Training

Neural Network RMS Error RMS Error Epochs Required

Topology

2 hidden layers: 1.81 1.78 3000

6 and 4 nodes

2 hidden layers: 1.70 1.79 3500

8 and 4 nodes

2 hidden layers: 1.71 1.79 4000

8 and 6 nodes

1 hidden layer: 1.77 1.80 2500

4 nodes

I hidden layer. 1.74 1.75 3500

5 nodes

1 hidden layer 1.71 1.76 5000

6 nodes

1 hidden layer: 1.72 1.75 5000

7 nodes
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Figure 4-1: Performance ofneural network retrieval system with one hidden layer

with five nodes on training and test set.

4.2.4 Development of the Incremental Neural Network

One typical problem encountered when developing neural network systems is that of

overfitting to the training data. This occurs when the network has too much power. We

want a network that has enough power to provide a good fit to the data, but not so much that

it overfits. The problem of overfitting occurred in the development of the neural network

estimator for the reduced data set consisting of cumulus only clouds. When the additional

inputs of Tr and log(cell-size) were added to the system, the network acquired 45 new

weights (8+1 new inputs x 5 hidden nodes). These additional weights provided enough

power to enable the network to easily fit very well to the training data. However, the

,,1



performance of the network on the test data was severely degraded. Figure 4-2 illustrates the

performance of a network with 17 inputs (8 AT, + 8 T,, + 1 log(cell-size)) and one hidden

layer containing 5 hidden nodes. While the performance of the training set is excellent, the

test set results quickly diverge as the network overfits to the training data. As we are most

interested in the network's performance on data that it has never seen before, a network

system that behaves as shown in Figure 4-2 is unacceptable.

101

LU

CC

I 0

C

RMS Error for Training and Test
I I I

Cumulus Only Clouds
Input = Delta Tb, Clear-Air Tb, log(size)
Net Architecture = 17-5-1

test=1.86

train=1.35

500 1000
Epochs

1500 2000

Figure 4-2: Performance ofneural network retrieval system

that is overfit to the training data.

There are a number of options available to overcome overfitting to the training data. Two

methods that are typically used are 1) limiting the number of hidden nodes, therefore limiting

the number of weights or 2) limiting the number of epochs of training. Both of these

, 

, 

,)



methods were investigated to try to prevent overfitting for data sets three and four. Although

both of these methods helped with the problem of overfitting, the resulting performance of

the network was not increased when compared to systems with only the perturbation

brightness temperature spectra (ATB) as input. To combat the overfitting problem while

increasing the performance of the neural network estimation system an "incremental neural

network" training algorithm was developed.

It was postulated that most of the cell-top altitude information was contained in the ATB

spectra. Therefore, when the clear-air reference spectra (TB,) and log(cell-size) were added

as input to the neural network, the minimum acceptable performance would be that given by

the network with only ATB as input. To accomplish this, a network using ATB as input was

initially trained using a network with one hidden layer with four nodes until the network rms

error converged to a minimum. The additional inputs ( TB,, log(cell-size)) were then added

to the network and connected to one additional hidden node, making a total of five hidden

nodes. Connections were made from the original ATB inputs to the new hidden node.

However, the new inputs were not connected to the original four nodes. The weights and

biases associated with the initially trained network were held constant, while the

backpropagation algorithm was used to train the new weights and biases. The incremental

neural network approach is illustrated graphically in Figure 4-3. The original weight matrix

is shown with a white background. The additional weight matrix is shown with a shaded

background.

The topology illustrated in Figure 4-3 has a total of 54 weights. If a fully connected network

with five hidden nodes was used, the network would have a total of 90 weights. By

dramatically decreasing the number of weights the network has to work with and by training

the network in this incremental fashion, the problem of overfitting is solved while increasing

the network performance.
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Figure 4-3: Illustration ofincremental neural network system.

4.3 Summary of Results

To rate the performance of the neural network estimator it was compared with the simple

linear regression analysis described in Section 2.3.1 and the non-linear statistical estimator

described in Section 2.3.2. The neural network estimator used the optimal architectures

determined in Sections 4.2.3 and 4.2.4. A single hidden layer network with five hidden

nodes was used for the data sets with AT, only as input. The incremental neural network

was used for the data sets with additional inputs. Table 4.3 shows the resulting rms altitude

errors (km) for the three methods. Additionally, the apriori variance in the altitude data is

listed. The error reported for the neural network estimator is the rms error associated with



the test set as described in Section 4.2.2. The error reported for the linear regression

estimator is the rms error associated with the entire data set. The non-linear statistical

estimator error shown was computed by Gasiewski et al. [26], and also is the rms error

associated with the entire data set.

Apriori Linear NonLinear Neural
Data Set Used Variance Regression Statistical Network

Estimator Estimator

1) All Cloud Types; 3.53 2.03 1.97 1.76

ATB

2) Cumulus Only Clouds; 3.53 1.82 1.63 1.44

ATB
3) Cumulus Only Clouds; 3.53 1.66 1.53 1.41

ATBT Br_

4) Cumulus Only Clouds; 3.53 1.58 1.50 1.36

ATB, TB, Jog(cell-size)

Table 4.3: Comparison ofrms errors (lkin)for cell-top altitude estimators.

As illustrated by Table 4.3, the neural network estimator outperforms

regression and nonlinear statistical estimators by -10.7-13.3% for data set

for data set 2, -7.8-15.1% for data set 3 and ~9.3-13.9% for data set 4.

both the linear

1, -11.7-20.9%

4.3.1 Images of Retrieved Cell-Top Altitude

Cell-top altitude imagery was created from the output of the neural network estimator. 118-

GHz CAMEX spectral data gathered September-October 1993 was evaluated by the neural

network cell-top estimator and the results were plotted. The altitudes produced by the

network show expected cell morphology. Figure 4-4 shows two samples of imagery of the

retrieved cell-top altitudes.



IMAGES OF PRECIPITATING CELL RETRIEVED ALTITUDES (km)
CAMEX 118-GHz data collected October 5, 1993
cloud 1: latitude: 27.25 longitude: -80.12
cloud 2: latitude: 26.21 longitude: -80.64

12
14·

Okm 20km 40km 60km 80km

Okm 20km 40km 60km

Figure 4-4: Images ofretrieved precipitating cell -top altitudes.

The accuracy of the images shown in Figure 4-4 was determined by optical estimation of

cell-top altitude from the video imagery. For near-nadir scan angles, the variance in the cell-

top altitude data that was optically estimated from the video imagery is 1.35 km. The

network produced an error of 0.84 kmrn which is an improvement of -37.8%. For off-nadir

scan angles, the variance in the optically estimated cell-top altitude data is 1.29 km. The

network produced an error of 1.19 km which is an improvement of -7.8%. Figure 4-5

shows the estimation error as a function of scan angle. The decrease in performance of the

neural network estimator for off-nadir scan angles can be explained in two ways. First, the

neural network was trained on near-nadir data. Therefore, it is expected that the network will

produce more accurate results with similar data. Second, the video imagery of the CAMEX

flight showed that the distinct cell-top peaks occurred at near-nadir scan angles, and the off-

nadir scan angles showed an increased amount of cirrus cover. Therefore, as explained in

Section 4.2.2, the off-nadir cell-top optical estimates may be higher than indicated by the

118-GHz spectra data.
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Figure 4-5: Cell-top altitude retrieval error versus scan angle.

A second example of the utility of the neural network cell-top estimator is shown in Figure

4-6. Cell-top altitude retrievals of Cyclone Oliver (February 7, 1993) were created using the

neural network estimator developed for data set 1. Although the retrievals can not be verified

with the video imagery because the 1 18-GHz data was gathered at night, the retrieved images

are as expected. However, the retrievals from Cyclone Oliver will be less accurate than the

CAMEX retrievals because the training data did not consist of any flights over tropical areas.

These considerations aside, the retrieved images are still quite useful. The morphology of

the eyewall and the surrounding precipitating cells are clearly visible.

total rms error = 1.187
total variance = 1.288

nadir only rms error = 0.8419
nadir only variance = 1.351
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IMAGES OF RETRIEVED CELL TOP ALTITUDES (km)
FROM HURRICANE OLIVER (Feb. 7, 1993)

latitude: -17.50 longitude: 151.88
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19:55 - 20:07 GMT (E->W)
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Figure 4-6: Retrieved cell-top altitudes from Cyclone Oliver.
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Chapter 5

Conclusions / Suggestions for Further Research

Multilayer feedforward neural networks have proven to be a viable method for estimating

precipitating cell-top altitudes from 118-GHz imagery. When compared to linear and

nonlinear retrieval methods, the neural network yielded superior results. This may be

attributed to the fact that the neural network is able to capture not only the nonlinear

relationship that exists between the 1 18-GHz brightness temperatures and cell-top altitude,

but also the complex statistics of the 1 18-GHz data. In addition, the output of the cell-top

estimator can be used to produce imagery that displays cell morphology in a useful way.

Additional research can be done to build upon the neural network cell-top estimator

developed in this thesis. The use of an expanded training set would produce more robust

networks that would perform well on a number of different data sets. In addition, the error

results reported for the neural network estimator have been total rms error, and may contain a

bias produced by the estimator. If this bias was identified and removed, the neural network

system may be additionally improved.

The neural network retrieval system could be expanded to use the relationship that exists

between cell-top altitude and rainfall rate to predict not only the cell-top altitude, but also the



rainfall rate. Finally, to help discover why the neural network system outperforms the

nonlinear statistical estimator described in Section 2.3.2, experiments could be performed to

determine an optimal algorithm to compress the 118-GHz spectral data using a neural

network.



Appendix A

Development Code for the Neural Network Estimator

The neural network cell-top estimation system was developed on a 486-based PC using

MATLAB, version 4.0, and the MATLAB Neural Network Toolbox, version 1.0. The code

developed for the system is listed below.

GETINPUT.M

% load the data file containing the desired info and parse thru to gather input of interest

% This file needs only to be run ONCE for full data and ONCE for cumulus data - once set
up, keep the same shuffle....

% Use the following 2 lines for full data
load cloud.dat
clouddata = cloud;

% Use the following 2 lines for cumulus only data
%load cumulus.dat
%clouddata = cumulus;

[R,C] = size(clouddata);
altitude = clouddata(:, 1);
diameter = clouddata(: ,2);
deltat = clouddata(:,4: 11);
cleart = clouddata(:, 13:20);
clearclouddata;
clear cloud;

logdia = log(diameter);
index = 1: 1:R;
input = [index' deltat cleart logdia];



% Shuffle data
altitude = [index' altitude];
[input,altitude] = shuffle(input',altitude');

% Now, input contains delta Tb's, clear air Tb's
% and ln(diameter)'s

% In parsecld, strip off the input data you actually want to use and prepare for net...

parsecld;

SHUFFLE.M

function [newA,newB] = Shuffle(A,B)

[R,C] = size(A);

% index will tell which columns have already been shuffled
index= 1:C;
index = index*0;

newA = [];
newB = [];

i--0;
while i<C

x= floor(rand(l) * C + 1);
while (index(x) = 1)

x = floor(rand(l) * C + 1);
end
index(x) = index(x) + 1;
newA = [newA(:,:),A(:,x)];
newB = [newB(:,:),B(:,x)];
i= i+ 1;

end

PARSECLD.M

% Get the desired input patterns and prepare data sets for net

% Determine which inputs you want

% Delta Tb only
netinput = input(2:9,:);

% Delta Tb and Clear Tb
%netinput = input(2:17,:);

% Delta Tb, Clear Tb, In(diameter)
%netinput = input(2:18,:);



n=8;
P= netinput;

MeanOutVec = zeros( 1,1);
NormOutVec = ones(1,1);
MeanInVec = zeros(1,n);
NormlnVec = ones(1,n);

% Split set into test and training, and process data so zero mean and normalized

num = 4;
den = 5;

[R,C] = size(P);
[TrainPatterns,MeanInVec,NormlnVec] = meannorm(P(l:n,1: floor(num*C/den))');
Testln = P(1:n,(floor(num*C/den)+1):C);
[T,MeanOutVec,NormOutVec] = meannorm(altitude(2,1 :floor(num*C/den))');
TestOut = altitude(2,(floor(num*C/den)+ 1):C);

% Must compensate test vectors for mean and normalization procedures...

[row,col] = size(TestIn);
for i = 1:row
TestPatterns(i,:) = TestIn(i,:)-MeanInVec(i);
TestPatterns(i,:) = TestPatterns(i,:)/NormlnVec(i);

end

[row,col] = size(TestOut);
for i = 1:row
T2(i,:) = TestOut(i,:)-MeanOutVec(i);
T2(i,:) = T2(i,:)/NormOutVec(i);

end

clear row col i n Testln TestOut num den P R C;
disp('Done parsing cloud data')

MEANNORM.M

function [x,meanvec,normvec] = meannorm(A)

% This function subtracts the mean from the columns of A
% then p-p normalizes the columns

% Need to subtract the mean of each channel out

meanvec = mean(A);
[r,c] = size(A);
M = meanvec'*ones(1,r);
A = A-M';

% Let's try just p-p normalizing the data

for i = l:c



normvec(i) = max(abs(A(:,i)));
A(:,i) = A(:,i)./normvec(i);

end

x = A';

BEP2PLS.M

% This file trains a two layer network

P = TrainPatterns;

% Initialize RMS Error record

RMSTrainTotal= [];
RMSTestTotal= [];
tepoch = 0;

% INITIALIZE NETWORK ARCHITECTURE

% Set input vector size R, layer sizes Si & S2, batch size Q.
disp('Initializing Weight Matrix')
[R,Q] = size(P);[S2,Q] = size(T); S1 = 7;

% Initialize weights and biases.
[W1,B1] = nwtan(S 1,R);
W2 = rands(S2,S1)*0.5;
B2 = rands(S2,1)*0.5;

% TRAINING PARAMETERS
dispfreq = 50;
max_epoch = 6000;
err_goal = 0.02;
Ir = 0.001;
Ir_inc = 1.001;
Ir dec = 0.999;
momentum = 0.95;
err_ratio = 1.04;

fl = 'tansig';
f2 = 'purelin';

disp('Starting to train')
TP = [disp_freq max_epoch err_goal Ir Irinc Ir_dec momentum err_ratio];
[W 1 ,B ,W2,B2,epoch,TR,TRT]
trainbps(W 1,B 1,fl ,W2,B2,f2,P,T,TestPatterns,T2,MeanOutVec,NormOutVec,TP);

pack;

disp('Done Training')
tepoch = tepoch + epoch;
[row,col] = size(T);
RMSTrain = ((TR(1,:)./col)./row).^0.5;



[row,col] = size(T2);
RMSTest = ((TRT(1,:)./col)./row).^0.5;
RMSTrainTotal = [RMSTrainTotal RMSTrain];
RMSTestTotal = [RMSTestTotal RMSTest];

save bep.mat
clg;

% PLOT ERROR CURVE

semilogy( 1l:tepoch,RMSTrainTotal(1,1:tepoch),'r',1:tepoch,RMSTestTotal( 1,1:tepoch),'g--,)
title('RMS Error for Training and Test');
xlabel('Epochs');
ylabel('RMS Error');
pause

% PRESENTATION PHASE of Normalized vectors
[DesiredOut,NetOut] = present2(W 1,B 1,fl,W2,B2,f2,P,T,MeanOutVec,NormOutVec);

E= DesiredOut-NetOut;
disp('The RMS Error for Training Patterns is ');
SSE = sumsqr(E);
[row,col] = size(T);
RMS = ((SSE/col)/row)^0.5

% PLOT ERRORS ASSOCIATED WITH EACH OUTPUT VECTOR

barerr(NetOut,DesiredOut);
pause

% PRESENTATION PHASE of Test vectors

[T Des i redOut,T NetOut]
present2(W1 ,B 1,fl ,W2,B2,f2,TestPatterns,T2,MeanOutVec,NormOutVec);

E= TDesiredOut-TNetOut;
disp(The RMS Error for Test Patterns is ');
SSE = sumsqr(E);
[row,col] = size(T2);
RMS = ((SSE/col)/row)^0.5

% PLOT ERRORS ASSOCIATED WITH EACH OUTPUT VECTOR

barerr(TNetOut,TDesiredOut);
pause

cmptrai2;
pause
cmptest2;



MBEP2PLS.M

% This function continues to train a network with initial parameters as given in the file
% bep.mat

load bep.mat

% TRAINING PARAMETERS
dispfreq = 50;
max_epoch = 1000;
err_goal = 0.02;
Ir = 0.001;
Ir_inc = 1.001;
Ir_dec = 0.999;
momentum = 0.95;
err ratio= 1.04;

fl = 'tansig';
f2 = 'purelin';

disp('Starting to train')
TP = [dispfreq max_epoch err goal Ir Irinc Ir_dec momentum errratio];
[W 1,B 1,W2,B2,epoch,TR,TRT] =
trainbps(W 1,B 1 ,f 1,W2,B2,f2,P,T,TestPatterns,T2,MeanOutVec,NormOutVec,TP);
%[W 1,B 1,W2,B2,TR] = trainbpx(W1 ,B 1,f2,W2,B2,f2,P,T,TP);

disp('Done Training')

tepoch = tepoch+epoch;
[row,col] = size(T);
RMSTrain = ((TR(1,:)./col)/row).^0.5;
[row,col] = size(T2);
RMSTest = ((TRT(1,:)./col)/row).^0.5;
RMSTrainTotal= [RMSTrainTotal RMSTrain];
RMSTestTotal = [RMSTestTotal RMSTest];

pack;
save bep.mat

% PLOT LEARNING RATES

plotlr(TR(2,:));
pause

% PLOT ERROR CURVE

semilogy(1:tepoch,RMSTrainTotal( 1,1 :tepoch),'r', 1:tepoch,RMSTestTotal(1,1 :tepoch),'g--

title('RMS Error for Training and Test');
xlabel('Epochs');
ylabel('RMS Error');



% ploterr(TR(1,:));
pause

% PRESENTATION PHASE of Training vectors

[DesiredOut,NetOut] = present2(W 1,B 1,f 1,W2,B2,f2,P,T,MeanOutVec,NormOutVec);
E = DesiredOut-NetOut;
disp('The RMS Error for Training Patterns is ');
SSE = sumsqr(E);
[row,col] = size(T);
RMS = ((SSE/col)/row)AO.5

% PLOT ERRORS ASSOCIATED WITH EACH OUTPUT VECTOR

barerr(NetOut,DesiredOut);
pause

% PRESENTATION PHASE of Test vectors

[TDesiredOut,TNetOut] =
present2(W 1,B 1,f 1,W2,B2,f2,TestPatterns,T2,MeanOutVec,NormOutVec);

E = TDesiredOut-TNetOut;
disp('The RMS Error for Test Patterns is ');
SSE = sumsqr(E);
[row,col] = size(T2);
RMS = ((SSE/col)/row)AO.5

% PLOT ERRORS ASSOCIATED WITH EACH OUTPUT VECTOR

barerr(TNetOut,TDesiredOut);
pause

cmptrai2:
pause
cmptest2;

TRAINBPS.M

function[a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p]=
trainbps(i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,aa,bb,cc)
%TRAINBPX Trains a network with 1-3 layers with backpropagation
% with momentum and an adaptive learning rate until
% an error goal or a maximum training epoch is reached.
% (See TRAINBP, TRAINBPA, TRAINBPM)

% [NW1,NB 1,TE,TR] = TRAINBMA(W1,B 1,F1,P,T,TP)
% W1 - SlxR weight matrix.
% B1 - Slxl bias vector.
% Fl - the layer's transfer function.
% P - RxQ matrix of input vectors.



% T - S lxQ matrix of target vectors.
% TP - row vector of 8 training parameters:
% [dispfreq maxepoch err_goal Ir
% Ir_inc Ir_dec mom_const err_ratio]
% Returns:
% NW1 - a new weight matrix.
% NB 1 - a new bias vector.
% TE - the actual number of epochs trained.
% TR - training record: [row of errors;
% row of learning rates]
% TRT - test training error

% [NW 1,NB 1,NW2,NB2,TE,TR] = TRAINBPA(W 1,B 1,Fl,W2,B2,F2,P,T,TP)
% ...trains a 2-layer network.

% [NW1,NB1,NW2,NB2,NW3,NB3,TE,TR] =
% TRAINBPA(W 1,B1,F1,W2,B2,F2,W3,B3,F3,P,T,TP)
% ...trains a 3-layer network.
% M.H. Beale & H.B. Demuth, 1-31-92
% Copyright (c) 1992 by the MathWorks, Inc.

if nargin - 6
if length(n) - 8
error('Wrong number of training parameters.')
end
if nargout - 3
[a,b,c] = tbpxl(i,j,k,l,m,n);

else
[a,b,c,d] = tbpxl(i,j,k,l,m,n);

end

elseif nargin ý 13
if length(u) - 8
error('Wrong number of training parameters.')
end
if nargout - 5
[a,b,c,d,e,f] = tbps2(i,j,k,l,m,n,o,p,q,r,s,t,u);

else
[a,b,c,d,e,f,g] = tbps2(i,j,k,l,m,n,o,p,q,r,s,t,u);

end

elseif nargin -- 16
if length(x) -= 8
error('Wrong number of training parameters.')
end
if nargout - 7

[a,b,c,d,e,f,g,h] = tbps3(i,j,k,l,m,n,o,p,q,r,s,t,u,v ,w,x);
else

[a,b,c,d,e,f,g,h,i,j] = tbps3(i,j,k,l,m,n,o,p,q,r,s,t,u,v ,w,x);
end

elseif nargin 15
if length(w) -- 8
error('Wrong number of training parameters.')



end
if nargout == 9

[a,b,c,d,e,f,g,h,i] = tbps4(i,j,k,l,m,n,o,p,q,r,s,t,u,v,w);
else

[a,b,c,d,e,f,g,h,i,j,k] = tbps4(i,j,k,l,m,n,o,p,q,r,s,t,u,v,w);
end

elseif nargin - 21
if length(cc) = 8
error('Wrong number of training parameters.')
end

if nargout == 13
[a,b,c,d,e,f,g,h,i,j,k,l,m] = tbps6(i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,aa,bb,cc);

else
[a,b,c,d,e,f,g,h,i,j,k,l,m,n,o] = tbps6(i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,aa,bb,cc);

end
else
error('Wrong number of arguments.');
end

TBPS2.M

function [nw 1,nb 1,nw2,nb2,te,tr,trt] =
tbps2(w 1,b l,fl ,w2,b2,f2,p,t,tin,t2,m,n,tp)

%TBPX2 Trains a 2-layer network with backpropagation
% using momentum and an adaptive learning rate.
% (Called by TRAINBPX)

% [NW,NB,TE,TR]
% = TBPX2(W1,B1,F1 ,W2,B2,F2,P,T,TP)
% W 1 -SlxR layer-i weight matrix.
% B - Slxl layer-i bias vector.
% Fl -name of layer- I transfer function (string).
% W2 - S2xS1 layer-2 weight matrix.
% B2 - S2x l layer-2 bias vector.
% F2 - name of layer-2 transfer function (string).
% P - RxQ matrix of input vectors.
% T - S2xQ matrix of target vectors.
% TP - row vector of 8 training parameters:
% [dispjfreq max_epoch err_goal Ir
% lrinc lr_dec mom_const err_ratio]
% Returns:
% NW1,NB1 - new weights & biases for layer 1.
% N~W2,NB2 - new weights & biases for layer 2.
% TE - the actual number of epochs trained.
% TR - training record: [row of errors;
% row of learning rates]

% M.H. Beale & H.B. Demuth, 1-31-92
% Copyright (c) 1992-93 by the MathWorks, Inc.

disp('I am using the new tpbs2');



TestPatterns = tin;
T2 = t2;
MeanOutVec= m;
NormOutVec = n;

if nargin -= 13
error('Wrong number of arguments.');
end

% TRAINING PARAMETERS
df = tp(1);
me = tp(2);
eg = tp(3);
Ir = tp(4);
im = tp(5);
dm = tp(6);
mc = tp(7);
er = tp(8);

% NETWORK PARAMETERS
W1 =wl;
BI= bl;
DF1 = getdelta(f 1);
W2 = w2;
B2 = b2;
DF2 = getdelta(f2);

dW1= W1*0;
dB1= B1*0;
dW2 = W2*0;
dB2 = B2*0;
MC = mc;

% PRESENTATION PHASE
Al = feval(fl,Wl*p,B1);
A2 = feval(f2,W2*A1,B2);

% compensate for subtraction of mean and normalization
[row,col] = size(A2);
for i = 1:row
NetOut(i,:) = A2(i,:)*NormOutVec(i);
NetOut(i,:) = NetOut(i,:)+MeanOutVec(i);
DesiredOut(i,:) = t(i,:)*NormOutVec(i);
DesiredOut(i,:) = DesiredOut(i,:)+MeanOutVec(i);

end

E = DesiredOut-NetOut;
SSE = sumsqr(E);

% TEST PRESENTATION PHASE
A T = feval(fl,W1*TestPatterns,B 1);
A2T = feval(f2,W2*A1T,B2);

% compensate for subtraction of mean and normalization



[row,col] = size(A2T);
for i = 1:row
TNetOut(i,:) = A2T(i,:)*NormOutVec(i);
TNetOut(i,:) =TNetOut(i,:)+MeanOutVec(i);
TDesiredOut(i,:) = T2(i,:)*NormOutVec(i);
TDesiredOut(i,:) = TDesiredOut(i,:)+MeanOutVec(i);

end

ET =TDesiredOut-TNetOut;
SSET = sumsqr(ET);

% TRAINING RECORD
TR = zeros(2,me);
TRT = zeros(1,me);
RMSTrain = zeros(2,me);
RMSTest = zeros(1,me);
SSEO = SSE;
SSEOT = SSET;
[row,col] = size(t);
RMSSSEO = ((SSEO/col)/row)AO.5;
[row,col] = size(T2);
RMSSSEOT = ((SSEOT/col)/row)^0.5;
IrO = Ir;

% BACKPROPAGATION PHASE
D2 = feval(DF2,A2,t-A2);
D1 = feval(DF1,A1,D2,W2);

for epoch= 1:me

% CHECK PHASE
if SSE < eg, epoch=epoch- 1; break, end

% LEARNING PHASE
[dW 1,dB 1] = learnbpm(p,D1 ,lr,MC,dW 1,dB 1);
[dW2,dB2] = learnbpm(A 1,D2,lr,MC,dW2,dB2);
MC = mc;
TWI = W1 +dW; TB1 = B1 + dB1;
TW2 = W2 + dW2; TB2 = B2 + dB2;

% PRESENTATION PHASE
TAl = feval(fl,TW1*p,TB 1);
TA2 = feval(f2,TW2*TA 1,TB2);

% compensate for subtraction of mean and normalization
[row,col] = size(TA2);
for i= 1:row
NetOut(i,:) = TA2(i,:)*NormOutVec(i);
NetOut(i,:) = NetOut(i,:)+MeanOutVec(i);
DesiredOut(i,:) = t(i,:)*NormOutVec(i);
DesiredOut(i,:) = DesiredOut(i,:)+MeanOutVec(i);

end

TE = DesiredOut-NetOut;



TSSE = sumsqr(TE);

% TEST PRESENTATION PHASE
TA 1T = feval(fl,TW 1 *TestPatterns,TB 1);
TA2T = feval(f2,TW2*TA1T,TB2);

% compensate for subtraction of mean and normalization
[row,col] = size(TA2T);
for i = 1:row
TNetOut(i,:) = TA2T(i,:)*NormOutVec(i);
TNetOut(i,:) = TNetOut(i,:)+MeanOutVec(i);
TDesiredOut(i,:) = T2(i,:)*NormOutVec(i);
TDesiredOut(i,:) = TDesiredOut(i,:)+MeanOutVec(i);
end

TET = TDesiredOut-TNetOut;
TSSET = sumsqr(TET);

% MOMENTUM & ADAPTIVE LEARNING RATE PHASE
if TSSE > SSE*er

Ir = Ir * dm;
MC = 0;

else
if TSSE < SSE

Ir = Ir * im;
end
W1=TW1; B =TB1; W2=TW2; B2=TB2;
A1=TA1; A2=TA2; E-=TE; SSE-TSSE; SSET = TSSET;

% BACKPROPAGATION PHASE
D2 = feval(DF2,A2,t-A2);
Dl = feval(DF1,A1,D2,W2);
end

% TRAINING RECORD
TR(1,epoch) = SSE;
[row,col] = size(t);
RMSTrain(1,epoch) = ((SSE/col)/row)^0.5;
TRT(1,epoch) = SSET;
[row,col] = size(T2);
RMSTest(1,epoch) = ((SSET/col)/row)^0.5;
TR(2,epoch) = Ir;
RMSTrain(2,epoch) = TR(2,epoch);

% DISPLAY RESULTS
if rem(epoch,df) == 0

plottrs([[RMSSSEO;h0] RMSTrain(:, 1 :epoch)],[[RM/ISSSEOT] RMSTest(:,l:epoch)])
end

end

if rem(epoch,df)
plottrs([[RMSSSEO;lrO] RMSTrain(:, 1:epoch)],[[RMSSSEOT] RMSTest(:, 1:epoch)])

end



% RETURN RESULTS
nwl = W1;
nbl =B1;
nw2 = W2;
nb2= B2;
te = epoch;
tr = [[SSEO; lr0] TR(:,1:epoch)];
trt = TRT(:,1:epoch);

PLOTTRS.M

function plottrs(tr,trt,t)
%PLOTTR Plots record of network error and (optionally)
% adaptive learning rate during training.
% (See BARERR, ERRSURF)

% PLOTTR(TR)
% TR - row of training network errors with OPTIONAL
% second row of learning rates.
% TRT - row of test network errors
% T - (Optional) String for graph title.
% Default is 'Network Training Record'.

% M.H. Beale & H.B. Demuth, 1-31-92
% Copyright (c) 1992-93 by the MathWorks, Inc.

if nargin > 3 1 nargin < 1
error('Wrong number of arguments.');
end

clfreset
[r,c] = size(tr);

if r >= 2
subplot(211)
end

semilogy(0: c- 1,tr( 1,:),'r',O: c- l,trt( 1,:),'g--');
xlabel('Epoch')
ylabel('RMS Error')
if nargin == 2
title('Network RMS Error - Training and Test')

else
title(t)
end

if r >= 2
subplot(212)
plot(0:c- 1,tr(2,:));
xlabel('Epoch')
ylabel('Learning Rate')
if nargin -- 2
title('Network Learning Rate')



else
title(t)
end

end
drawnow
set(gcf,'NextPlot','replace')

CMPTRAI2.M

% This code calculates the final rms error for the training set
% PRESENTATION PHASE of Normalized vectors
clg;
Al = feval(fl,W1*P,B 1);
A2 = feval(f2,W2*Al,B2);

% compensate for subtraction of mean and normalization
[row,col] = size(A2);
for i = 1:row
NetOut(i,:) = A2(i,:)*NormOutVec(i);
NetOut(i,:) = NetOut(i,:)+MeanOutVec(i);
DesiredOut(i,:) = T(i,:)*NormOutVec(i);
DesiredOut(i,:) = DesiredOut(i,:)+MeanOutVec(i);

end

E = DesiredOut-NetOut;

SSE = sumsqr(E);
subplot(211), plot(DesiredOut);
title('Train Targets');
v = axis;
subplot(212), plot(NetOut), axis(v);
title(Train Outputs');

CMPTEST2.M

% This code computes the final rms error for the test set
% PRESENTATION PHASE of Normalized vectors
%P = getnorm(TestPatterns')';
clg;
Al = feval(fl,W 1 *TestPatterns,B 1);
A2 = feval(f2,W2*A1,B2);

% compensate for subtraction of mean and normalization
[row,col] = size(A2);
for i = l:row
TNetOut(i,:) = A2(i,:)*NormOutVec(i);
TNetOut(i,:) = TNetOut(i,:)+MeanOutVec(i);
TDesiredOut(i,:) = T2(i,:)*NormOutVec(i);
TDesiredOut(i,:) = TDesiredOut(i,:)+MeanOutVec(i);

end

E=TDesiredOut-TNetOut;



SSE = sumsqr(E);
subplot(211), plot(TDesiredOut);
title('Test Targets');
v = axis;
subplot(212), plot(TNetOut), axis(v);
title(Test Outputs');
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