
An Enhanced Reality System for the Great

Outdoors

by

Ona Wu

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science

and

Master of Science in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

© Ona Wu, MCMXCIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to grant

others the right to do so.

Author..................-.-.- •.

Department of Electrical Engineering and Computer Science
^ A May 16, 1994

C ertified by

Alex P. Pentland
Associate Professor of Media Arts and Sciences

1 n Thesis Supervisor

Certified by., z..............
Michael Potmesil

Member of Technical Staff, AT&T Bell Laboratories
' 1n A Thesis Supervisor

A ccepted by •. ,..
Frederic R. Morgenthaler

Chair nL~)?nt Committee on Graduate Students

MASSACHU' J)OWfITUTE
pr - •l•uRAR ES

MIT LIBRARIES
- JIIB._- 94•"a2 J

An Enhanced Reality System for the Great Outdoors
by

Ona Wu

Submitted to the Department of Electrical Engineering and Computer Science
on May 16, 1994, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science

and
Master of Science in Electrical Engineering

Abstract

Computers and communication technology can be very effective in enhancing our
ability to visualize 3D environments where we live and work. This thesis proposes
a prototype system that not only allows viewing but also real-time interaction with
various 2D and 3D models of our environs. Implementing such a system required
the development of hardware that tracks a user's spatial position and orientation
anywhere on the planet and software utilizing this information. Towards this end, a
navigation unit was designed which outputs the user's 3D location (in Earth-Centered
Earth-Fixed coordinates) as well as 3D orientation (azimuth, elevation, and roll an-
gles) with respect to the earth's magnetic North Pole and local gravity vector. This
unit was interfaced to a portable computer which reads the navigation information
and provides the user's position via a server to various client graphics programs which
were developed to demonstrate the potential of a portable enhanced-reality system.

Thesis Supervisor: Alex P. Pentland
Title: Associate Professor of Media Arts and Sciences

Thesis Supervisor: Michael Potmesil
Title: Member of Technical Staff, AT&T Bell Laboratories

Acknowledgements

I would like to thank David Doyle and Dr. Dennis Milbert of NOAA for giving me
advice on where to start my research on GPS. My thanks also go to Mike Slavin and
Paul Braisted at Trimble Navigation for technical support. I would also like to thank
Boris Pevzner for his advice, and especially for the use of his personal computer in
generating many of the figures.

I would like to thank my faculty advisor at MIT, Sandy Pentland, for his patience
and words of advice.Finally, I would like to express my gratitude to everyone in the
Machine Perception Department at AT&T Bell Laboratories for their help, advice
and especially camaraderie. My especial heartfelt thanks goes to my advisor, Michael
Potmesil, for his support and guidance all these years. Most of all, I must thank my
parents for their unmitigated support of their daughter and her dreams.

Contents

1 Introduction
1.1 Virtual Reality

1.1.1 System Overview

2 Global Positioning System
2.1 GPS Segments
2.2 GPS Satellite Signals

2.2.1 Navigation Message
2.2.2 Parity Check

2.3 Navigation Solution
2.3.1 Dilution of Precision

2.4 Errors in Solution
2.5 Differential GPS

2.5.1 RTCM-104 Standard-Version 2.0
2.5.2 RTCM SC-104 Version 1.0
2.5.3 Equipment Interface

2.6 G eoids

The Navigation Unit
3.1 Computing Platform
3.2 GPS Receiver
3.3 Compass and Tilt Sensors . .

3.3.1 Compass
3.3.2 Tilt Sensors

3.4 Microcontroller and Associated
3.4.1 Compass Interface
3.4.2 Tilt Sensor Interface

S Mrirrnrnnfrnllor iP;rrnvxmTrn

Hardware
. ,. ,. . .

.

.i
3.5.1 Computer to Microcontroller Communication .
3.5.2 GPS to Microcontroller Communication
3.5.3 Compass to Microcontroller Communication .
3.5.4 MCU to Computing Engine Communication

3.6 Navigation Box
3.6.1 Power Considerations

3

4 Enhanced-Reality API
4.1 Network Communication
4.2 Interprocess Communication
4.3 Reference Server
4.4 Navigation Server

4.4.1 Time Service
4.4.2 Position Service
4.4.3 Demand Service
4.4.4 View Service
4.4.5 Control Service
4.4.6 DGPS client

4.5 Interfacing Mobile Navigation Units to the

5 Display Software
5.1 SPOTlib Graphics Library...............

5.1.1 Problems in Displaying Full Color Images on
plays .

5.1.2 Colorm ap
5.1.3 Halftoning

5.2 SCULPT

Frame Buffer

.......

6 Experimental Results
6.1 Data Analysis
6.2 Differential GPS
6.3 Kinematic GPS

7 Enhanced-Reality in the Great Outdoors
7.1 Somebody Is Watching You
7.2 Satellites and Other Heavenly Bodies . . .

7.2.1 Satellites
7.2.2 Heavenly Bodies

7.3 SCULPT
7.4 AutoCAD

7.4.1
7.4.2

Determining the Transformation
3D AutoCAD

atrix

8 Conclusion

A Dithering Array

.°...

.....

.....

... °.

.....

.....

Network

Dis-

. .. •

. . .•

. . ..

87
87

88
89
89
91

92
92

104
107

116
116
123
123
126
130
133
133
142

146

148

- I - - - I :

M

. .

List of Figures

2-1 GPS Satellite Constellation 14
2-2 Navigation Message Data Format 18
2-3 Geometry for GPS Measurement 25
2-4 Two-Word Header for All RTCM SC-104 Messages 31
2-5 Type 1 Message Format 34
2-6 Type 2 Message Format 36
2-7 Relationship between ECEF and Geodetic Coordinates 40

3-1 The Navigation Unit 44
3-2 Six Parameters of Freedom 48
3-3 Timing Diagram for Compass Output 49
3-4 Compass Configuration 50
3-5 Seven Parameters of the Magnetic Field 52
3-6 The Tilt-Sensor Layout 54
3-7 Gravity Vector 55
3-8 Memory Map of Microcontroller Unit 57
3-9 DACIA External Clock Timing - Receive Data 59
3-10 Circuitry Generating Compass Clock Signal 59
3-11 Timing Diagram for RxC Signal 60
3-12 NRZ Data Format 61
3-13 Checksum Example 65
3-14 Algorithm to Transmit Tilt and Compass Information 67
3-15 The Effect of GPS Data on Unpacketized Compass Messages 68
3-16 The Effect of Compass Messages on Unpacketized GPS Messages. .. 69
3-17 Navigation Box Front Panel 71

4-1 Basic Multi-Service Multithreaded Server Model 77
4-2 Networked Mobile Navigation Units 86

6-1 Non-corrected GPS Measurements Taken at the Holmdel Building Roof 93
6-2 Effects of Number of Satellites on the Navigation Solution 95
6-3 Number of Satellites Used for Positioning 96
6-4 Position Fixes with Samples Taken with 3 Satellites Removed 97
6-5 Effects of Number of Visible Satellites on Position Precision 98
6-6 Effects of Number of Visible Satellites on PDOP 99
6-7 Subset of GPS Measurements Used to Calculate Position of Base Station100

6-8 Smoothed Subset of GPS Measurements 101
6-9 Weights of GPS Measurements 103
6-10 Satellite Visibility Plot for GPS Week 667 104
6-11 Satellite Visibility Plot for GPS Week 679 105
6-12 Satellite Visibility Plot for GPS Week 748 105
6-13 GPS Measurements taken May 1994 106
6-14 Differentially-Corrected GPS Measurements 108
6-15 Smoothed Differentially-Corrected GPS Measurements 109
6-16 Weights of Differentially-Corrected GPS Measurements 110
6-17 Differentially-Corrected GPS measurements GPS Week 748 111
6-18 Travelling on the Garden State Parkway 113
6-19 Holmdel Site High-Dynamics Measurements 113
6-20 Kinematic Measurements Around the Holmdel Site 114
6-21 DGPS Kinematic Measurements Around the Holmdel Site 114

7-1 Monmouth County, NJ 118
7-2 Zoomed Region of Holmdel, NJ 118
7-3 Roads on AT&T Holmdel Site 120
7-4 Drift on Holmdel Roof 120
7-5 Updating a User's Azimuth Angle 121
7-6 Tracking a Mobile Unit's User 122
7-7 Overhead Satellite Trajectories on May 13, 1994 124
7-8 Overhead Satellites without Trajectories on May 13, 1994 125
7-9 el-az-gps Rotated 127
7-10 Sun and M oon 128
7-11 Simulated May 10, 1994 Eclipse Sun and Moon Positions 129
7-12 New Moon that Has Set in the South Pole 131
7-13 BSPT Representation of Lower Manhattan 132
7-14 Data Collected in Corner 1 of Holmdel Building 136
7-15 Data Collected in Corner 2 of Holmdel Building 137
7-16 Data Collected in Corner 3 of Holmdel Building 138
7-17 Data Collected in Corner 4 of Holmdel Building 139
7-18 Measured Corners in Holmdel Building Coordinate System 140
7-19 Measured Corners in Geodetic Coordinate System 141
7-20 Measured Corners in Geodetic Coordinate System 143
7-21 GPS Data Superimposed on the Holmdel Site Plans 144
7-22 GPS Data Superimposed on the Holmdel Building Plans 144

List of Tables

2.1 Received Minimum RF Signal Strength 16
2.2 Ephemeris Parameterization of the Navigation Message 20
2.3 UTC Param eters 21
2.4 Six Kepler Elements 22
2.5 Ephemeris Algorithm 23
2.6 The GPS System Range Error Budget 29
2.7 RTCM SC-104 Version 2.0 Message Types 32
2.8 Content of First and Second Words of RTCM-104 Message Frames . . 32
2.9 Contents of Type 1 Message 33
2.10 Satellite Health and UDRE for Version 1.0 37

4.1 The OSI 7-Layer Network Model 75
4.2 TSIP Format of RTCM Corrections 82

7.1 Coordinates of the Four Corners of the Holmdel Building 136

Chapter 1

Introduction

Taking advantage of improved computer and communications technology, we designed
and implemented a portable system which not only viewed but also interacted with
2D and 3D models of the world as a precursor to what can lead ultimately to a
portable "virtual reality" system.

1.1 Virtual Reality

In the words of Jaron Lanier [17], the coiner of the term "Virtual Reality", "Virtual
reality is a technique for creating simulated experience, or rather an experience of a
simulated external world." Previously confined to research labs, virtual reality has
found popularity in recent years due to media hype, movies such as "Lawnmower
Man" and "Virtuality" centers pervasively found in shopping malls across America.1

Although virtual reality has gained popular recognition, it is not yet ready for con-
sumer use primarily due to the necessity of users donning embarrassing and restrictive
body attachments. One of the more burdensome equipment a would-be virtual real-
ity user are sometimes forced to wear is an eye-phone consisting of two Sony NTSC
television sets mounted on a helmet placed over the user's eyes with stereoscopic im-
ages displayed on the screens. Some other systems require the user to wear a Data
Glove, a glove with many wires and cables connected to a processor which tracks
the hand's movement and motion. Other systems use a joystick which tracks the
hand's movement and allows commands to be executed by pressing a button or a
series of buttons. With all of these body-mounted and expensive electronics, the po-
tential consumer could be put off. However, due to improving technology some of the
aforementioned difficulties could be overcome.

One of the essential components in virtual reality (VR) systems is the necessity
of tracking a user's position in 3D space. In many of the existing VR systems,
the user is forced to stay in a restricted area where electromagnetic sensors can

tThese centers consist of video games in which the user is immersed in a computer generated
playing ground. In one game, the person is driving a car through a computer generated road. In
another game, "Dactyl Nightmare", the user shoots at enemies and dodges pterodactyls. These
centers are discussed in [17].

track her location and motion. To create a truly portable virtual reality system,
a method of tracking the user's six degrees of freedom (x, y, z location and azimuth,
elevation and roll orientation) without relegating the person to a restricted area must
be utilized. Thanks to the research of the United States Department of Defense, we
have available to us a system known as the Global Positioning System (GPS) which
has the capability of pinpointing a person's location under normal operation, to an
accuracy within ten to twenty meters.2 Through the use of a series of compasses
and tilt sensors, the user's local orientation can be determined. Combining these two
technologies, portable virtual reality can become a physical reality.

There are many potential applications for a portable VR system besides the ob-
vious entertainment ones such as video games. One can look up at the sky and see
an annotated map of stars and planets based on one's current location and time.
Another application would be for maintenance engineers who could look down and
view the underground infrastructure of a particular site and view its tunnels, pipes
and cables and locate accurately the area where repairs were needed, eliminating the
need for costly excavations. For architects, who already use virtual reality as a de-
sign aid, one can look at a future construction site and see its finished version.3 For
history students, by turning towards the site of an ancient civilization, the ruins of
past civilizations could be reconstructed to their previous glory before the students'
eyes. Nature lovers could use such a system when hiking or bicycling to zoom in on
a potential hiking site or to avoid getting lost. One can also use such systems to help
him navigate through a shopping center or around town. These are just some of the
possible applications that a portable VR system will open up to society.

The examples just mentioned could also be applications of "Enhanced Reality"
Systems in addition to Virtual Reality systems. "Enhanced Reality" Systems would
enable the user to retain control of her senses by allowing the user to retain the
ability to interact with real reality. Instead of an eye-phone, the user could use the
Virtual Vision Sport from Virtual Vision, Inc. (a heads-up head-mounted display that
projects a TV image in front of a user's eyes but does not completely cover them).
We implemented a portable "enhanced reality" system rather than a portable VR
system since we felt that because we are developing a portable system, it would be
extremely dangerous for a user be submerged in another reality while walking about
in real reality. We rely on our senses to protect ourselves from foolhardily endangering
ourselves and if they were blocked off, as what true virtual reality systems would do,
we would be susceptible to tripping, bumping and falling into things that exist in
natural surroundings.

2GPS will be discussed in more detail in the second chapter.
3This is much like Matsushita's Electric Works in Tokyo where consumers go to a special area,

don the heavy equipment and design their own kitchen by viewing how the kitchen would look. This
is describe in [17] and [46].

1.1.1 System Overview

The implementation of our enhanced-reality system can essentially be divided into
two components: hardware and software. The hardware part of the system consisted
of the design and implementation of a "navigation unit" that outputs one's spatial
information to a computer interface. The unit contains a GPS receiver, two com-
passes, nine tilt sensors and an interface module. The hardware implementation will
be discussed in Chapter 3.

The application software interface involved developing a multithreaded server
which provides data from the navigation unit to numerous client application pro-
grams that utilized the data to render position dependent graphics. The server/client
software aspect of the project will be discussed in Chapter 4. The graphics software
package is discussed in Chapter 5.

Once the system was designed, we developed a few demonstration programs to
exhibit the capabilities of such a system. Before we could use the navigation box,
we conducted experiments to determine the reliability of the system, concentrating
especially on the GPS receiver. The outcome of the experiments is discussed in
Chapter 6. Chapter 7 discusses a few proof-of-concept demonstrations. Finally, the
concluding chapter explores future upgrades and areas of research to make the system
more robust and truly portable.

Chapter 2

Global Positioning System

Portable enhanced reality can exist only if there exists a capability to track the user's
position with respect to some global coordinate system. The system that we have
developed has been designed for only terrestrial use, that is for use only on this
planet. With this in mind, the user's position anywhere on the planet will suffice as
the user's translational (x, y, z) location with his orientation (azimuth, elevation and
roll) angles calculated with respect to his horizon. The Global Positioning System
(GPS), developed and maintained by the United States Department of Defense (DOD)
provides us with the capability to track the user's translational position. Compasses
and tilt sensors, to be discussed in the next chapter, provide the local orientation
information.

The Global Positioning System, an all-weather 3D radionavigation system, oper-
ates on the principle of triangulation. Using a constellation of satellites, GPS receivers
can pinpoint their 3D position to within a few meters in single receiver mode, and to
within centimeters if using a network of receivers. In addition, the GPS system pro-
vides 3D velocity and precise time information. The system was designed to serve an
unlimited number of users on a global basis. Currently, there is no user fee for using
the system, however, this situation may change in the near future. GPS technology
has already come into use in a wide variety of applications ranging from the obvious
military ones to less obvious ones such as ambulance tracking or AT&T network syn-
chronization [8]. Because of its world-wide coverage, GPS applications are popular
globally, as was exhibited by the formation of the Japan GPS Council (JGPSC) in
November 1992, a Japanese counterpart to the United States GPS Industry Council
[29].

The Global Positioning System was developed in response to DOD request for
an improved navigation and timing system in 1973 [27]. In 1978, the first satellite
was launched. By 1983, the DOD announced the NAVSTAR (Navigation Satellite
Timing and Ranging) GPS policy for non-military users. This was detailed in the
first Federal Radionavigation Plan (FRP) in 1986. The FRP continues to be updated
and published every two years. GPS positioning capabilities are provided at two
levels of service - Standard Positioning Service (SPS) and Precise Positioning Service
(PPS). SPS is the service provided to civilians worldwide at no cost with a horizontal

positioning accuracy of less than 100 meters [7] and a UTC' (Universal Coordinate
Time) time transfer accuracy of 337 nanoseconds with a 95% probability. This is
the equivalent of 156 meters 3D positioning accuracy. SPS velocity accuracy is 0.2
m/s. The velocity accuracy in degraded service mode is classified [27, p. 1-13]. The
Precise Positioning Service, on the other hand, is for military applications. It provides
extremely accurate position, velocity and time information. It is specified to provide
16 meters Spherical Error Probability (SEP) (3D, 50%) positioning accuracy and
100 nanoseconds (one sigma) UTC time transfer accuracy. This is equivalent to 30
meters of accuracy and 197 nanoseconds time accuracy. In terms of velocity, it has
an accuracy of 0.2 m/s [27, p. 1-13]. This service is restricted to the United States
government and its allies.

2.1 GPS Segments

The Global Positioning System can essentially be divided into three basic components
- the User Segment, the Space Segment and the Control Segment. The User Segment
is composed of the receivers and antennas used to determine position, velocity and
precise time. There are many vendors of GPS equipment, some who claim various
wondrous things about their equipment, which may or may not be believed. The
particular choice of a receiver depends on the user's requirements, i. e., expense,
accuracy, data format, and so forth.

The Space Segment consists of a constellation consisting of a minimum of 21
operational satellites vehicles (SV) and three spare vehicles. With this combination,
8 satellites or less will be in view more than 99% of the time [34, p. 3-1]. Currently, the
satellite constellation is a combination of Block I and Block II satellites. Eleven Block
I satellites and 28 Block II satellites were commissioned.to be built by by Rockwell
International. Their life-spans are approximately 7.5 years. Block I satellites are older
satellites used for developmental purposes. When full GPS Operational Capability
(FOC) GPS is reached, worldwide 3D coverage will be available 24 hours daily and
the constellation will consist of only Block II satellites. This is not expected to
occur until sometime in 1995. Currently, GPS is only in Intermittent Operational
Capability (IOC) mode due to the fact only 23 of the 24 Block II satellites have been
launched. In addition, three of the orbiting satellites are Block I satellites, resulting
in a total constellation of 26 satellites. The final constellation will at a minimum
consist of six (ABCDEF) planes with four Block II satellites in each plane at an
inclination angle of 55 degrees from one another [Figure 2-1]. Eighteen of the Block
II satellites are designated as Block IIA. They have the feature that they can operate
without contact with the Control Segment for 180 days. In 1989, General Electric
was awarded a contract to build twenty Block IIR satellites with option of six more.
These satellites can also operate for up to 180 days without contact with the Control
Segment using cross-link ranging techniques [27, p. 1-7]. The orbital altitude of each

1UTC time or broadcast time is the time used for civilian applications. It is considered a hybrid
time scale that relates highly stable atomic time to the Earth's rotational time [15].

From NAVSTAR GPS User Equipment Introduction [27, p. 1-3]

Figure 2-1: GPS Satellite Constellation

satellite is approximately 20,200 km or 10,900 nautical miles (nm), the equivalent
of approximately 3 Earth diameters. It should be noted that the satellites are not
geosynchronous but rather that they complete an orbit every 12 sidereal hours. In
terms of UTC time, they appear twice a day four minutes earlier than the previous
day.

The Control Segment involves monitoring and updating the satellites of the GPS
Space Segment. It consists of five monitor stations, three ground antennas and the
Master Control Station (MCS). The five monitor stations, located at Hawaii, Kwa-
jalein, Ascension Island, Diego Garcia and Colorado Springs, track the SV positions
as they traverse their respective orbits. The MCS, operated by the USAF 2nd Satel-
lite Control Squadron (2SCS) at the Falcon Air Force base in Colorado, processes
information from the monitor stations to predict the satellites' ephemerides and up-
date the SVs' navigation message. The ground antennas at Ascension Island, Diego

Garcia and Kwajalein transmit the updated information back to the satellites [7].
Although our project primarily involves the User Segment, in order to fully under-

stand the limitations on GPS positioning capabilities, one should understand roughly
the makeup of the system. Therefore, before proceeding to the implementation of an
enhanced reality system utilizing GPS receivers, we will first discuss the basic theory
behind GPS, its limitations and solutions to try to overcome them. The majority
of the information in this chapter regarding the Global Positioning System is based
upon information from the government, primarily the Institute of Navigation papers,
GPS specification sheets and from on-line information available from the U.S. Naval
Observatory and daily updates from the CANSPACEQUNBVM1. BITNET newsgroup.

2.2 GPS Satellite Signals

As mentioned previously, the Global Positioning System operates on the principle
of triangulation. By measuring the distance between the receiver and at least three
satellites, the user can calculate the 3-D position (U., Uy, Uz) of the receiver. To
calculate the distance between a satellite and a receiver, the travel time of a signal
between the two is measured and multiplied by the speed of light c = 2, 979, 258 m/s.
Because an error in the synchronization between the clocks on the SV and on the
receiver as little as one nanosecond can lead to an error of about 0.3 meters, very
accurate timing systems are required. Very stable atomic clocks are used on-board the
satellites with a predictable offset from GPS time. 2 Clock correction parameters are
periodically transmitted to the satellites. However, if such accuracies were demanded
on the users' clocks, it would make receivers inordinately expensive. To offset the
cost, measurements from at least 4 satellites are required where the fourth unknown
is the receiver clock bias. The measured ranges to the satellites are therefore called
pseudo ranges since each measurement contains a clock bias contribution in addition
to range information.

Two radiofrequency (RF) right-handed circularly polarized signals at carrier fre-
quencies of L1=1575.42 MHz and L2=1227.6 MHz are transmitted by the satellites.
The L1 signal is bi-phase shift key modulated (BPSK) by two pseudo-random noise
(PRN) codes - precision P-code and C/A coarse/acquisition code. The L2 signal is
modulated only by one code, either P-code or C/A code - which one being deter-
mined by the Control Segment. Typically, L2 is modulated by the P-code. C/A code
has a chipping rate of 1.023 MHz while the P-code is at 10.23 MHz. In addition,
both signals are also modulated by a 50 baud navigation message. Both transmitted
signals are derived from the fundamental frequency of 10.23 MHz. Due to relativistic
effects, the on-board SV oscillator is offset to 10.22999999543 MHz. All signals are
synchronized with the P-code. The minimum power level requirements for the signals

2GPS time is not the same as UTC time due to the need for UTC to be adjusted by leap seconds.
To avoid disruptions that continual adjustments would cause in GPS, the difference between GPS
and UTC to within 100 ps is maintained and published regularly for users for are interested in
accurate timing [25, p. 5]. The difference in integer leap seconds between GPS and UTC is provided
by the satellite navigation messages.

Channel Signal
P(Y) C/A

L1 -163.0 dBW -160.0 dBW
L2 -166.0 dBW -166.0 dBW

Table 2.1: Received Minimum RF Signal Strength

at a GPS receiver is specified by Table 2.1 [13, p. 13]. PPS users can use P-code or
C/A code or both. SPS users are relegated to using only C/A once GPS becomes
FOC. Although SPS users currently have access to the P-code, once GPS becomes
FOC, the anti-spoofing (A-S) feature will be activated which will encrypt the P-code
to Y-code. PPS users will have access to the encryption key while SPS users will not.
Therefore, civilians should limit their applications to relying on a purely C/A code
solution.

Each satellite transmits its own unique PRN codes which allows all 24 satellites
to broadcast at the same frequencies. The period of the P-code is 37 weeks. This
allows the assignment of unique one week length segments to each satellite. The PRN
number that typically identify satellites, is determined by which segment of the PRN
code which it broadcasts. Because the code length is seven days, the code is reset
once a week at Saturday-to-Sunday midnight. The GPS week, which serves as the
basic unit of time, begins at the start of the code cycle. GPS zero time, week zero
is at midnight of January 5, 1980 to January 6, 1980 [13, p. 32]. The P-code is the
modulo-2 sum of two subsequences known as X1 of length 15,345,000 chips and X2 of
length 15,345,037 chips. A shifted X2 is combined with X1 to generate the 37 unique
codes. For more details on the generation of the P-code, see the Interface Control
Document [13, pp. 16-26].

The C/A code, which is synchronized with P-code, has a period of only 1 mil-
lisecond (ms). Each satellite also broadcasts its own unique C/A code. The C/A
code is the exclusive-or of two Gold codes, GI and G2, of length of 1023 chips. The
G2 sequence is delayed by from 5 to 950 chips resulting in 36 unique C/A codes [13,
p. 7]. The C/A code is used by PPS users to synchronize onto the P-code since the
7-day period P-code is quite difficult to lock onto, while the 1 ms C/A code is not as
long a search interval. Through the use of the handover word (HOW) in the naviga-
tion message, once lock onto C/A code has occurred, the receiver can then switch to
P-code. There will be difficulty in locking onto the C/A code if the receiver's clock
offset is greater than 1 ms.

On board GPS receivers is a copy of the PRN codes. Once the receiver has
successfully locked onto the L1 signal, which will be different from the specified carrier
frequency due to a Doppler shift dependent on receiver dynamics and positioning, the
receiver enters a code tracking loop which tries to match up the received signal with
the internally generated signal. The phase difference between the received code and
the generated code is approximately the travel time. The signal is then demodulated
using a BPSK demodulator leaving the navigation message and noise on the carrier.

The message is recovered using bit synchronization and a data detection filter. See
Spilker [36] for more details.

2.2.1 Navigation Message

The navigation message contains the broadcasting satellite's almanac and ephemeris
information, timing characteristics, operational status and clock behavior. All of this
information is necessary for position determination. The message is maintained and
updated by the Control Segment. In this section, we will briefly discuss the contents
of the navigation message. For more details see the Interface Control Document [13].

The navigation message is a 1500-bit long data stream subdivided into 5 sub-
frames. Each subframe is made up of 30 10-bit length words. The first subframe
consists of clock correction parameters. Subframes 2 and 3 consist of the ephemeris
parameters of the broadcasting satellite. Subframe 4 and 5 rotate among 25 different
versions called pages. Subframe 4 contains ionospheric correction terms for single
frequency users, conversion from GPS to UTC time parameters and special messages.
Subframe 5 consists of the health data and almanac information of all 24 satellites.
The almanac information contains the less precise ephemerides for the satellites. It
shortens the user time-to-first fix (TTFF) by helping the receiver acquire signals from
the other satellites once it has received 25 full frames from one satellite since it now
has a rough estimate of the position of the other satellites. The message is trans-
mitted at 50 baud, resulting in a total transmission time of 30 seconds for one frame
of data resulting in a total of 750 seconds to receive 25 full frames. After 25 full
frames have been received the message repeats itself. Figure 2-2 shows the navigation
message structure [13, pp. 60-61].

Each subframe begins with the same two words - the telemetry word (TLM) and
the handover word (HOW). The 30-bit TLM word has the first 8 bits as a preamble
that is used for subframe synchronization, 14 bits of TLM message, 2 bits reserved
and the remaining 6 bits for parity check. The first 17 bits of the 30-bit HOW are
the 17 most significant bits (MSB) of the time of week (TOW) count. The TOW
is the 19 least significant bits of the 29 bit Z-count which counts the number of X1
epochs (the length of an X1 epoch is 1.5 seconds) that have passed. The TOW count
ranges from 0 to 403,199 and is reset to zero at the start of a GPS week. The 10
MSB of the Z-count is the GPS week (modulo 1024) which ranges from 0 to 1023
and is referenced to January 5, 1980 [13, p. 33]. Bit 18 has a dual purpose - it is
the roll momentum dump flag or an alert flag warning unauthorized users that the
system may be degraded. Bit 19 also has two purposes - it is either a synchronization
flag or an indicator of whether AS has been invoked. The purpose of bits 18 and 19
depends on the state of the configuration code in page 25 of subframe 4 [13, p. 65].
The remaining 3 bits, not counting parity bits, are used for subframe identification
and have values from 1 to 5. The last 6 bits of every 30-bit word are used for parity
checking using a (32,26) Hamming Code [45, p. 57].

DIRUCTIOF 0 0DATA 1PLOWfRVO Iv - MOSTSIGNFICANITB1T TNAI8Mlr FIRST

4 WORDI 4-..-WORD. 2-.Wf.. WORD 3 i.-610- soma -- of.-wos -efo-- w c woo-.o-0 WORD I --+ wo-wsoa-o4 .-- to 8-+-sw-omt
sue-

00III Is.l ,31,Ol U j3 Jll ITSj pin l3 jfIrv, Jim
1
wJm IrvINIA·

N''n -I , - I -w - -
If J S0J.

6-lo tTW #I ZJJ Is UTS "
031330I01

is,1f, l le *8 211, "' 1.90 # 09 fIllf Ing f13.0ll sfu

P

P)

11311 101 to,. ITTrn p1 Iis,1 on 11" 117I mIT"30 13In

TO or$ so aft 3.013

3J2o Po .sPo IY3 a 10191 s on 1 1 1 -:-7-

l11A m m K13
n T11.0111 .11 j1 ll

ltIIII low Il 1 1 11 l. 0l 11 - I

21 U[11 3 321 .I , on I30 a. "02-1PAA.. TO3 a

Is, 177 Im 17" J,"o

.1sov on.Tom. m wra
on0 221 1 n 0 o 3 - ' III P I I;, I I T

2o I 01110 R . 2 Irn * 303.03 . 33.3033,21
DM8.0.

l,

L13 I 3113 338011.31 r.11 .~I'210113 1,330313 j3 1331 1301031133. jlfl
010I 'a3 itsJ I", 1--

B.T I gll.. .- a.- I.v ll

j11 Il P 13 1 " 1.01 I pill8 Jl1inI31 .'3311

in.. I 111" 1 1" a,"31 I

I, I ssm , wo w I TT o It".wwhITS Is ja. I?" M oo 1 W lr lP , r s I I I
no- l .41.-- m 2f. 71IN 131:1 "DATA M. 7 or$ em-1 t. F

w
3

.Alkali le. m
111
.

3
JA.... J

13 14. 111 11, 111 - - - 1.1 333

I4 IS. 17 Ino I3
7, :f NDICATD POR10 901A00I0 wtql Iowmn r13, I 00PARES *01 WHILE33 3331.11130OF PGE1700ARE£03RESERED F OR SPSCLMeSSAo. 1PL03 Ull 53*31211PER*3PARAGRAPH.I

ITwo womiNORKeATH530.wOAeIwo BIT$ LIND ORvow P0011COFWUVTATIO3O 130 PARAGRAPH 51.

It - PAGES 2.14. S.2. 0.8 10 ANlMOO UP 3310101030AVS&E 311FORMAT AMFF.OSIS THROUGH.034F03URP1UANS0L
P 030 PARITYS0171

C LO0 ·22i3243IO·~ll AgO 3130031

From ICD-GPS-200 113, pp. 60-61].

Figure 2-2: Navigation Message Data Format

L-

sus.
NO *

2.2.2 Parity Check

To check the parity of the received data, one must first recover the raw data bits.
This is done by checking if the last parity bit of the previous word of the subframe
is set to 1. If it is, then the first 24 received bits, D1 .. D24 are complemented to
obtain the raw bits di ... d24. Parity bits D 25 through D30 are then computed using
the following algorithm and compared to the received parity bits:

= D*9 E dl

d12 (d13

= D*oed 2

d13 f d14
= D9 E di

d13 e d14

= D Eo d2

d14 e d15

= Doe di

d14 (d15

SD 9 e d3

d13 (d15

(d2 & d3 D ds E d6 e dio E dl e
a d14 e d17 a d18s d20o d23

@ d3 D d4 ® d6 e d7 ® di @ d12 d
(d15 E d18s d19 (d21 E d24

E d3 E d4 E d5 E dr e ds @ d12 (
e d15 E d16 o d19 e d20 f d22

$ d4 (ds E d6 @ d8 e dg @ d13 e
E d16 a d17E d20 e d21 c d23

e d3 ® ds e d6 e d7 e de dlo ED
E d16 e d17 E d1s 8 d21 E d22 E d2 4

D d5 e d6 e ds D d9 e dio o dii @
D d19 (d22 @ d23 e d24

(2.1)

where D*9 and D*o are the last 2 bits of the previous word of the subframe.
the computed parity equals the received parity, the data passes the
otherwise, it fails.

parity check,

2.2.2.1 Contents of Navigation Message Subframes

The third word of Subframe 1 consists of the 10 MSB's of the Z-count, also known
as the GPS week. The remaining bits indicate which code is being used on the L2
channel, the user range accuracy (URA), and SV health. The remaining words contain
the ionospheric and clock correction parameters. The Issue of Data, Clock (IODC)
indicates the time of last upload and signals the user to changes in the correction
parameters. The remaining bits are the clock correction parameters toc, a 2,7 a11, ao0
and TGD. TGD is the estimated group delay differential for use by single frequency
users. The TGD is the difference in propagation time between L1 and L2 through the
SV processing hardware prior to transmission. Dual frequency users do not need this
term since af, was calculated assuming the user uses two frequencies. For the actual
algorithm used to correct the time received from the SV for clock errors, relativistic
effects and group delay differential, see ICD [13, pp. 72-76].

Subframe 2 and 3 contain the ephemeris information of the transmitting SV. The
parameters are only Keplerian in appearance but are actually the predicted ephemeris
parameters using a least-squares curve fit over a period of time as indicated by the
"fit interval" flag which indicates whether the curve fit interval was less than 4 hours
or greater than 4 hours. In addition, there is an issue of ephemeris data (IODE) term

D 25

D 26

D 27

D28

that indicates if there is a change in the ephemeris parameters. The receiver can then
calculate the position of the satellite with respect to the center of the Earth using
modified Kepler formulas. The parameter definitions are given in Table 2.2 [15, p.
61]. The scale factor for each parameter is in [13, pp. 80-81]. The calculation of

Table 2.2: Ephemeris Parameterization of the Navigation Message

satellite positions using these parameters will be discussed in more detail later in this
chapter in the section covering Kepler's formula.

Subframes 4 and 5 are subcommutated to 25 pages. Pages 1, 6, 11, 12, 16, 19, 20,
21, 22, 23, and 24 are reserved. Pages 2, 3, 4, 5, 7, 8, 9 and 10 contain almanac data
for SV 25 through SV 32 with an option to be used for other information which is
indicated by a satellite health code of all ones in the last page of subframe 4. Pages
13, 14 and 15 are spares. Page 17 is used for special messages. Page 18 contains
ionospheric and UTC data. Page 25 contains AS flags, SV configuration code for
the 32 SVs and SV health for SV 25 through 32. Pages 1 through 24 of Subframe 5
contain almanac data for SV 1 through 24. Page 25 contains the SV health code for
SV 1 through 24, almanac reference time and almanac reference week number.

The pages containing almanac information in Subframe 4 and 5 follow the same

" 20

Mo Mean Anomaly at Reference Time
An Mean Motion Difference from Computer Value

e Eccentricity
1-- Square Root of the Semi-Major Axis

£20 Longitude of Ascending Node of Orbit Plane at Weekly Epoch
io Inclination Angle at Reference Time
w Argument of perigee
1 Rate of Right Ascension

IDOT Rate of Inclination Angle
C,, Amplitude of the Cosine Harmonic Correction Term to the

Argument of Latitude
C,, Amplitude of the Sine Harmonic Correction Term to the

Argument of Latitude
Crc Amplitude of the Cosine Harmonic Correction Term to the

Orbit Radius
Crs Amplitude of the Sine Harmonic Correction Term to the

Orbit Radius
Ci, Amplitude of the Cosine Harmonic Correction Term to the

Angle of Inclination
Cis Amplitude of the Sine Harmonic Correction Term to the

Angle of Inclination
toe Ephemeris Reference Time

IODE Issue of Data (Ephemeris)

format. The first 6 bits, starting at the third word is the SV identification number
(SV ID) which is equal to the PRN signal code being used for SV ID 1 through
32. SV ID 0 indicates a dummy SV. SV ID 51 through 63 indicate that pages
are not being used for almanac information. The remaining codes are currently
unassigned. The almanac data contains a rough estimate of the clock and ephemeris
data for a satellite. It is valid for up to 180 days and is used to aid the user in
estimating satellite visibility and pseudorange to satellite [27, p. 3-7]. The parameters
received are e, almanac reference time toa, inclination perturbation bS, Sl, v/A, 9o,
w, Mo, and clock correction parameters af0 and afl. The calculation of the estimated
orbit position is simplified by assuming all parameters, except the seven Keplerian
parameters Mo, toa, e, V/Ai, Qo, io + bi, w to be zero with a nominal inclination io of
60 degrees. The almanac time parameters are used to calculate the time from the
reference epoch which is used in the calculation of the satellite orbital position. The
algorithm is similar to the one used to adjust the time using parameters from Subframe
1 with the exception that the second order term, af, is set to zero and relativistic
effects are ignored. GPS time, t, for the almanac can be calculated as follows:

t = t,- At,, (2.2)
AtS, = afo + af (t - toa) (2.3)

In Equation 2.3, t is the time calculated from Subframe 1 clock correction parameters.
The calculation of the orbit paths will then be the same as for the ephemeris. This
will be discussed in a later section.

In addition to almanac information, Subframe 4 also contains UTC Parameters
and ionospheric models. The UTC parameters relate UTC time with GPS time.
They are given in Table 2.3. The algorithm to relate UTC to GPS time is given by
ICD [13, pp. 104-106a]. The ionospheric parameters in Subframe 4 is meant to aid

Ao Constant term of polynomial
A1 First order term of polynomial
AtLs Delta time due to leap seconds
tot Reference time for UTC data
WNt UTC Reference Week Number
AtLSF Scheduled future of recent past value of

delta time due to leap seconds
WNLSF Week number leap second becomes effective
DN Day number leap second becomes effective

Table 2.3: UTC Parameters

single frequency users to effectively model the propagation delay of the signal.3 The
parameters ao are coefficients of the cubic equation representing the vertical delay

3 Dual frequency users, i.e. those that track both the L1 and L2 frequency, can calculate the

and p, are coefficients of a cubic equation representing the period of the model where
n = 0, 1,2, 3. The algorithm is given in ICD [13, pp. 107-108b].

Under normal operations, Block I satellites transmit Subframes 1, 2, and 3 for
periods of one hour with a curve-fit interval of four hours. Block I SV's can only
retain 3-4 days of upload data from the Control Segment. Under normal operation,
Block II satellites transmit Subframes 1, 2, and 3 for periods of two hours with a
curve-fit interval of two hours. Block II SV's can retain up to 182 days of upload data
[13, p. 110a]. For the ephemeris information, the data is valid for approximately two
hours. The almanac information is valid for about 3.5 days but can be extended by
considering crossovers in time in the calculation of the orbit path.

2.2.2.2 Kepler's Law

To solve for the orbital position of a satellite, one needs to use Kepler's Formula to
calculate the satellite position. Six Keplerian elements {f, w, i, a, e, f} can be used
to characterize the orbit of the satellite. The parameters are given in Table 2.4.
Alternate sets of Kepler Elements are {f, w, i, a, e, M} or {f, w, i, a, e, E} where M

Q Right Ascension of ascending node
w Argument of perigee
i Inclination Angle
a Semi-Major Axis
e Eccentricity
f True anomaly

Table 2.4: Six Kepler Elements

is the Mean Anomaly and E is the eccentric anomaly. The first five parameters are
constant for normal orbits with the anomalies functions of time. Normal orbits are
specified by treating the Earth as a point mass with no other external forces acting
upon the satellite. Unfortunately, satellites in real orbits undergo various external
disturbances such as variations in the Earth's gravity potential, gravitational force of
the sun and moon and solar radiation pressure. Therefore, all Keplerian elements are
functions of time for real satellites. See Leick [15, pp. 32-51] for more details.

The transmitted ephemeris information is only Keplerian in appearance since it
contains correction factors for the Earth's gravitational potential and is a least-squares
curve fit of the predicted orbit. The algorithm for calculating the ephemeris, shown
in Table 2.5, is specified by the ICD [13, pp. 84-84b]. The algorithm to calculate the
orbit position using almanac information is the same as for ephemeris information
except that parameters not specified in the almanac data should be set to zero.

propagation delay due to the fact that the delay experienced by a signal going through the ionosphere
is inversely proportional to the frequency of the signal squared. Therefore, the delay can be calculated
by measuring the time delay differential in receiving the two signals. See [13, p. 75] for more details.

p = 3.986005 * 1014 meter"/sec2

e = 7.2921151467 10- 5

A = (V/)2

no =
tk = t - te
n = no + An

Mk = Mo + ntk
Mk = Ek - e sin Ek

vk = arctan(CO)
sin vk = v sinEk1- e cosEk

cos E--e
cos V k 1-e cos Ek

Ek = arccos e cos vk
l+ecosvk

uk = Vk + W

6uk = C,, sin 24k +Cu cos 24k
rk Crc cos 2k + C,, sin 2)k

bi£k = Cicos 24 + Ci, sin 2Dk
bUk, 6rk, 6bik

Uk = k + bUk
rk = A(1 - e cos Ek)+ rk
ik= i + bik + (IDOT)tk

xk rk cos Uk
y, = rk sin uk

k 0= + +(f - o)tk4 -t
Xk xk COS k - Y cos ik sin k
Yk = x2sink +A COS ik cos£ k
zk = y sinik

WGS84 value of the Earth's Universal
Gravitational Parameter
WGS84 value of the Earth's rotation rate
Semi-major axis

Computed mean motion in radians/sec

Time from ephemeris reference epoch
Corrected mean motion
Mean anomaly
Kepler's equation for eccentric anomaly
(Solved by iteration)
True anomaly

Eccentric Anomaly
Argument of latitude
Argument of latitude correction
Radius correction
Inclination Correction
Second harmonic perturbations
Corrected argument of latitude
Corrected radius
Corrected inclination
Position in orbital plane
Position in orbital plane
Corrected longitude of ascending node
Earth-fixed X coordinate
Earth-fixed Y coordinate
Earth-fixed Z coordinate

where t is GPS system time at time of transmission corrected for transit
time (range/speed of light). Furthermore, t k shall be the actual total time
difference between the time t and the epoch time toe, and must account for
beginning or end of week crossovers. That is, if tk is greater than 302,400
seconds, subtract 604,800 seconds from tk. If tk is less than 302,400 seconds,
add 604,800 seconds to tk.

Table 2.5: Ephemeris Algorithm

2.3 Navigation Solution

Once 25 complete frames of the navigation message have been decoded, the user can
use the almanac information to start searching for other visible satellites to use in
computing the position. As mentioned earlier, to do point positioning, the receiver
requires the range information for at least four satellites as shown in Figure 2-3. The
four equations resulting from these four measurements are:

PRi = [(SX, - UX) 2 + (SY, - Uy) 2 + (Sz, - Uz)2] ½ + b, (2.4)

where:

PR. = measured pseudorange to the ith satellite
S.i, Sy,, Si = position coordinates of the ith satellite, computed

from the navigation message
U,, Uy, Uz = three coordinates of the user position to be solved

b, = contribution to the pseudorange caused by the user clock
offset error to be solved

However, besides the constant clock offset error, there exist independent errors in
each range measurement. Even after correcting for the SV clock drifts for ionospheric
delays, using information from the navigation message, there exist independent errors
in the range measurement that cannot effectively be modeled. As a result, we cannot
solve the two sets of four equations as deterministic equations, but rather, need to
model them as noisy probabilistic signals. To solve for the four unknowns, we use a
linear least squares solution. From Figure 2-3, we see that:

Ri = S,- U (2.5)

for the ith satellite and Ri = (Si - Ux, Sy - U,, Sz1 - Uz). The magnitude of the
range Ri is equal to:

Ri = e- - Ri (2.6)

where e' = Ri Ri/Ri. Therefore, PRi, can be represented as:

PRi = e- - Ri + b, + Bi (2.7)

where b, and Bi represents the range equivalent of the user and satellite clock biases.
Taking the dot product of Equation 2.5 with e' and substituting Equation 2.7, we
get:

PRi - bu - Bi = 7 - [S# - U] (2.8)

Rearranging terms we get:

e . U - bu = e-C. Si - PRi + Bi (2.9)

To solve for n equations where n > 4, we represent Equation 2.9 in matrix represen-
tation as:

B = AX (2.10)

PR3

PR4

Figure 2-3: Geometry for GPS Measurement

where A is an n x 4 matrix of the form:

r2
A= 1 3 (2.11)

rn

ri = [exi, e;i, eiz, 1]T (2.12)

and X is an 4 x 1 vector of the form [U,, Uy, Uz, -b,]. B is an n x 1 vector, whose
ith element is

BA = e-S - PRi + Bi (2.13)

Therefore, B can be represented as:

B = HS-PR (2.14)

O -4 - 0S0 0 ...

H = 0 6 F 1 ... 6 (2.15)

0 0 ... 0 rT

S= [Slx, S2x, S 3x, B1 ... (2.16)
... Ss ,I , s,, Snz, Bn]

and PR is the vector of pseudorange measurements. From the above equations,
one notices that A and H are both dependent on knowledge of the direction cosines
between the user and the satellites. Unless, the receiver is initialized with its position,
an iterative solution, refining the direction cosines, and therefore matrices A and B,
is used to determine the position. One method is to use a Kalman filter, a recursive
estimator that minimizes the covariance matrix. In addition to the position of the
receiver, the velocity can be calculated in a similar fashion using relative velocities
rather than pseudoranges. The relative velocities can be calculated by measuring
the Doppler shift in the carrier frequencies of the signals from the four satellites.
This can be done in the carrier tracking loop. The three unknowns, (V,, Vy, Vz) plus
the receiver clock frequency error, f, can be solved. The the state variables of the
Kalman filter can then be 't = {U,, U,, Uz, b,, VX, V,, V,, f"}. The observation vector
is represented by zi = (PRj, RR1) where RRj is the observed relative velocities or
range rates. For more detailed explanations of the navigation solution, see [27, pp.
8-1 to 8-7] and Milliken & Zoller [25].

2.3.1 Dilution of Precision

Since the navigation solution provides the user only with an estimate of the receiver's
position, the answers are not exact. A measurement of the accuracy of the calculated
position is given in the covariance matrix minimized by the Kalman filter:

2 2 a2 02 I

SYY z Yt (2.17)
zz zy zz zt

02 C2 0.2 0.
tzx

0
ty tz tt

Typical indications of the accuracy are the dilution of precision (DOP) factors which
are derived from the diagonal terms of the covariance matrix. The Geometric Dilution
of Precision (GDOP) indicates the effect of geometry on user position error which
includes the 3-D positioning error plus time error. PDOP is the dilution of precision
in 3-D. The HDOP is the dilution of precision in the horizontal plane. VDOP is the
DOP in the vertical dimension. TDOP is the DOP in the range equivalent of the
receiver clock offset. They are related to the terms in the covariance matrix by the
following formulae:

GDOP = + + + (2.18)

PDOP = .2X + U2 + ar± (2.19)

HDOP + (2.20)
VDOP = azz (2.21)

TDOP = 'tt (2.22)

Some literature gives the HDOP and VDOP in terms of geodetic coordinates, that
is northings, eastings and height [15]. In this case, using a transformation matrix,
one can convert the covariance matrix from xyz coordinates to geodetic coordinates
and HDOP = + and DOP = ahh. By multiplying the DOP's by the user
equivalent range error (UERE), the positioning error is calculated:

PDOP x UERE = Radial error in position in 3-D
HDOP x UERE = Radial error in position in the horizontal plane
VDOP x UERE = Vertical error in position
TDOP x UERE = Error in range equivalent of user clock offset

The determination of the UERE will be discussed in the next section discussing
sources of error. In normal operation, UERE is about 10.8 to 13.9 meter la. Typical
DOP errors are PDOP < 6, HDOP < 4, VDOP < 4.5 and TDOP < 2 [27, pp. 3-3
to 3-5]. In selecting the four satellites to use for the navigation solution, the receiver
picks the four satellites that will minimize the PDOP. The PDOP is approximately
equal to the inverse of the volume of the tetrahedron formed by connecting the user
position to each of the four satellites. By choosing the 4 satellites which generates
the tetrahedron with the maximum value, the receiver will select the best 4 satellites.

The configuration that will maximize volume is one satellite at zenith (90 degrees
elevation angle) and the other three satellites 120 degrees apart at a low elevation
angle. See Spilker [36] for more details.

2.4 Errors in Solution

Sources of error in the navigation solution can arise due to numerous factors. However,
this can be overcome since the propagation of the signal through the ionosphere can
typically be modeled. The ionospheric delay is dependent upon the elevation angle of
the satellite - the lower the elevation angle the larger the delay. It is also dependent
upon atmospheric conditions resulting in less delay at nighttime. When there are
large atmospheric disturbances, however, difficulty can arise in generating suitable
modeling parameters. If one was using a dual carrier receiver, the propagation delay
can be computed as mentioned in the last section. Otherwise, single frequency users
can use the ionospheric correction parameters to correct for the delay. In addition to
the ionosphere, the carrier signal also experiences a delay in propagation through the
troposphere which increases as elevation angle decreases but is independent of fre-
quencies. The delay can be modeled as a function of elevation angle and, if available,
as a function of local weather conditions. Therefore, although DOP measurements
favor very low elevation angles, lower angles result in longer propagation delays. The
signal can be interfered with as well by blocking structures which reflect the GPS
signal resulting in a longer travel time and a longer pseudorange measurement. This
error is commonly referred to as multipath error which is a major problem in cities,
woody areas and over water.

Another source of error is due to ephemeris errors. Due to the nonidealities in the
satellite orbits previously mentioned, the broadcast ephemeris parameters are only
least-squares curve fit and therefore inherently has some errors. Also, there may be
some perturbations in the satellite orbit due to unmodeled occurrences. There are
also some SV clock errors that have not been modeled by the correction parameters,
but these are very slight. In addition to errors arising on the SV, there can be some
errors in the receiver hardware due to noise and inaccuracies. Table 2.6, from [27, p.
3-3] lists the UERE budget.

In addition to physical errors, there are ones that are man made. Errors can arise
inadvertently from receiver or satellite hardware failure. However, the greatest error
in the Navigation Solution, is an artificial one introduced by the control stations. By
the FRP, Selective Availability (SA) was activated. As of this date, there are no
plans to turn it off. SA degrades GPS position determination capabilities by altering
navigation message data and by dithering the SV's clock frequency. Most of the
error is due to clock dither since the noise varies more greatly and therefore is not
as systematic and predictable. After FOC, AS will be implemented on all Block II
Satellites. SA and AS are not implemented on Block I satellites. However, since
Block I satellites are being phased out, any potential benefits from avoiding AS/SA
from the remaining Block I satellites are inconsequential. With S/A degradation,
GPS performance is reduced to only within 100 meters (95%). This is the equivalent

Segment Error P-code C/A-code
Source Source Pseudo Range Pseudo Range

Error Error
lo, [meters] la [meters]

Clock and Navigation 3.0 3.0
Space Sub-system Stability

Predictability of Satellite 1.0 1.0
Perturbations

Other 0.5 0.5
Control Ephemeris Prediction 4.2 4.2

Model Implementation
Other 0.9 0.9

Ionospheric Delay 2.3 5.0 - 10.0
Tropospheric Delay 2.0 2.0

Compensation
User Receiver Noise and 1.5 7.5

Resolution
Multipath 1.2 1.2

Other 0.5 0.5
System UERE Total (RSS) 6.6 10.8 - 13.9

lcr [meters]

Table 2.6: The GPS System Range Error Budget

of 31.3 meters UERE, or equivalently 104 ns TDOP [27, p. 12-17]. The velocity
degradation due to S/A is classified. Requests for "SA/A-S free vehicles" have been
denied by the U.S. Coast Guard which administers the civilian interface to GPS
service for the Department of Transportation[7].

2.5 Differential GPS

To overcome the errors introduced by Selective Availability, C/A users who need
better than 100 meters of accuracy can use differential GPS to correct for the errors.
Differential GPS (DGPS) uses a stationary reference receiver which precisely knows its
position at a pre-surveyed site. This receiver calculates the errors in the pseudorange
measurements and their rate of change for each visible satellite and broadcasts the
information to differentially-capable receivers in the area. Besides correcting for S/A
errors, differential GPS can also compensate for common error sources such as that
from the Space and Control Segment. Also, if the receivers are in the same area as the
differential base station, atmospheric and ionospheric errors can also be removed. The
further the users are from the reference station, the less accurate will the differentially-
corrected positions be. When DGPS starts to degrade, the difference is about 250
km between the reference station and the DGPS receivers, but corrections can still
be used effectively by receivers as far as 800 km [27, pp. 11-1 to 11-7]. It has
been recommended that the data format for the broadcasted corrections follow a
standard data format in order to allow compatibility between receivers and different
manufacturers of differential reference stations.

2.5.1 RTCM-104 Standard-Version 2.0

The recommended data format for differential corrections, RTCM SC-104 was set by
the Radio Technical Commission for Maritime Services Special Committee-104. It was
designed to follow the same format as the GPS satellite navigation messages. It has
the same 50-baud rate, parity algorithms, 30-bit word size and word format. However,
unlike the GPS messages of fixed 10-word subframe message sizes, RTCM SC-104
allow for variable subframe length. This is due to the fact that the length of the
correction message depends on the number of currently visible satellites.

There are two versions of RTCM SC-104 standards, the second version providing
some slight improvements over the first release. The following paragraphs describe
version 2.0 of RTCM SC-104. At the end of this section, the differences between the
two versions will be described briefly. For more details regarding the standard refer
to [34] and Kalafus, Van Dierendonck, Pealer[14].

There are a total of 64 possible message types generated by a differential reference
receiver. However, only 21 are currently defined. They are listed in Table 2.7 [34, p.
4-5]. The first two words in each message are used for synchronization and message
identification. The format of the two words is shown in Figure 2-4 [34]. The first
8 bits, the preamble, serve the same synchronization purpose that they did in the
header of GPS navigation messages. However, for differential corrections the 8-bit

IMS LSD MSB LSO
PREMBLE STII 0NID ST PAWrV

11110101 t' 110 I II !11111 III I I

1 2 3 4 5 6 7 8 9 10 11t 213 U 15 161718 19 20212223 2426 2722930

CRMCER M I3 J" MESSAGE
MSB LSB SB LSB

1 2 3 4 5 6 7 8 9 10 112 13 14 15 1 7 18 19 20 2 222324 2S 2 27 28 29 30

From RTCM Recommended Standards [34, p. 4-3].

Figure 2-4: Two-Word Header for All RTCM SC-104 Messages

preamble is set to be 0x66. The next 6 bits are used for identifying the type of message
in the subframe. The next 10 bits are station identification bits so that in case the
corrections are being broadcast at the same frequencies as other differential base
stations in the area are broadcasting on, receivers have some way of discriminating
between base stations. The last 6 bits of the first word is, as in the navigation
message, parity bits. The first 13 bits of the second word is the modified Z-count,
which indicates the time of the start of the next frame of data as in the navigation
message, and serves as a reference time for the time the corrections were generated.
There is a difference between the Z-count in the RTCM-104 message and that of
the GPS navigation message in that the scale factor for the former is 0.6 seconds as
opposed to 6 seconds for the GPS navigation message to compensate for the variable
frame length. Its range is also only one hour in order to conserve bits since the Z-
count. The next 3 bits represent a sequence number between 0 and 7. The sequence
number is used for synchronization when the differential receiver is not transmitting
corrections in pseudolite mode. The sequence number for each message should be in
numerical order. Therefore, if the first message has a sequence number of one the
next message should follow sequentially with the number two. If not, it means the
data was somehow corrupted. The next five bits represent the length of the frame
N + 2 where N represents the total number of words which follows. The next 3 bits
represent the station health. (See RTCM SC-104 Recommended Standards [34] for
states.) The last 6 bits serve as parity bits. Table 2.8 (modified from [34]) summarizes
the contents of the first two words.

Synchronization is done in a similar manner as for the GPS navigation message.
The user searches the message until the preamble is located. To avoid a false positive
indication of the start of the frame, the user must verify parity with the first two

Table 2.7: RTCM SC-104 Version 2.0 Message Types

Word Content Bits Scale Factor Range
First Preamble 8 NA NA

Message Type 6 1 1-644
Station Id 10 1 0-1023
Parity 6 NA NA

Second Modified Z-count 13 0.6 seconds 0-3599.4 sec
Sequence Number 3 1 0-7
Frame Length (N+2) 5 1 word 2-33 words
Station Health 3 NA 8 states
Parity 6 NA NA

Table 2.8: Content of First and Second Words of RTCM-104 Message Frames

Message Type No. Current Status Title
1 Fixed Differential GPS Corrections
2 Fixed Delta Differential GPS Corrections
3 Fixed Reference Station Parameters
4 Tentative Surveying
5 Tentative Constellation Health
6 Fixed Null Frame
7 Tentative Beacon Almanacs
8 Tentative Pseudolite Almanacs
9 Fixed High Rate DGPS Corrections
10 Reserved P-code Differential Corrections
11 Reserved C/A-code L1, L2 Delta Corrections
12 Reserved Pseudolite Station Parameters
13 Tentative Ground Transmitter Parameters
14 Reserved Surveying Auxiliary Message
15 Reserved Ionosphere (Troposphere) Mesg
16 Fixed Special Message
17 Tentative Ephemeris Almanac

18-59 Undefined
60-63 Reserved Differential Loran-C Mesgs

words using the algorithm described in Section 2.2.2. Once parity has been verified,
the user decodes the sequence number and length of frame to determine the location
of the next frame for further verification. Once the frame data has been verified, the
receiver is ready to decode the message.

2.5.1.1 Message Types

As seen by Table 2.7, only six of these messages, types 1, 2, 3, 6, and 16, have
been defined in final fixed form and are the messages typically broadcast by reference
stations. Therefore, we will only examine these six message types. See RTCM SC-104
Recommended Standards document for a discussion of the other messages.

Message Type 1, shown in Figure 2-5, contain the differential GPS corrections
parameters PRC and RRC, where PRC(to) is the pseudorange correction and RRC
is the range rate correction. The total correction to be applied is:

PRC(t) = PRC(to) + RRC x (t - to) (2.23)

where to is the 13-bit modified Z-count of the second word. The pseudorange can
then be corrected as follows:

PR(t) = PRM(t) + PRC(t) (2.24)

where PRM(t) is the receiver's measured pseudorange, t is the time of the pseudorange
measurement, and PR(t) the corrected pseudorange. The PRC(to) value is a predicted
one whose validity decreases with time. The RRC is used to compensate for this. The
basic contents of the message are summarized in Table 2.9 [34]. These 40 bits are
repeated N times where N is the number of satellites ranges in the corrections. The
remaining bits are filler bits and the 6 bits of parity for each word.

Parameter No. of Bits J Code Scale Factor & Units
Scale Factor 1 0 0.02

1 0.32
UDRE 2 00 Error < 1 meter

01 Error < 4 meters
10 Error < 8 meters
11 Error > 8 meters

SV ID 5 1
PRC(to) 16 0.02 or 0.32 by above
RRC 8 0.002 or 0.032 by above
IODE 8 See ICD [13]

Table 2.9: Contents of Type 1 Message

Message Type 2 follows a similar format as in Message Type 1. (See Figure 2-6.)

fte?~~RAE ~T~ L ~ ~TA ARIT ~ L~O~f

PWJLOAWAC WTE~rCN
ILOWER SYMD

PR&"E*RA11 COM~rLM" CFDATA RI. PANfTY

8a" tA Q %APANIT"

'AS FcEN

$309-4- 2II8

From RTCM Recommended Standards [34, p. 4-6].

Figure 2-5: Type 1 Message Format

VO<As N 2
Fps. 1.4.7

FN -ZS2OR11

%Cam 7srit 17 OR 22Z
I

GSI.E •F DATARAMEA-ATE COMeCTCN PARrITY

This message contains the delta differential corrections which are used to maintain
high levels of accuracy when new satellite navigation data has become available.
It contains the difference in the calculated pseudorange corrections using the old
navigation message and the new message. For more details on how this is used in
adjusting the measured pseudorange in conjunction with Type 1 messages see [34]
since we are predominantly concerned about the makeup of the message and not the
implementation of it in the receivers. The contents of Type 2 message is similar to
that of Type 1, except that Delta PRC and Delta RRC data is transmitted in place
of PRC(to) and RRC data respectively.

Message Type 3 contains the reference station's Earth-Centered Earth-Fixed co-
ordinates. This message is of a fixed size of 4 words (not including the two word
header). 32 bits are used for each X,Y and Z coordinate with the remaining 24 bits
used for parity.

Message Type 6 is the null frame message containing no relevant information. It
is used as a filler. There is either 0 or 1 word containing an alternating sequence of
l's and O's (this is the filling pattern) following the two word header of this message
depending upon the type of fill required.

Message Type 9 is identical to Message Type 1 in format and content. It is used
when there is a high rate of change in corrections. Typically the number of satellite
ranges in this message is much less than that in Type 1, usually on the order of 1 or
2. It contains the corrections for the 1 or 2 satellites whose pseudorange is rapidly
changing.

Message Type 16 is used for transmitting ASCII messages. Fill bits are zero in this
case to avoid misinterpretation of the alternating sequence as an ASCII character.

2.5.2 RTCM SC-104 Version 1.0

Details of version 1.0 of RTCM SC-104 recommendations is given in Kalafus, et al.
[14]. Primarily we are concerned with the differences between the two versions. One
difference is that the number of possible messages was increased from 16 in Version
1.0 to 64 in Version 2.0 giving it more flexibility. The preamble was also changed
from Ox8B in Version 1.0 to 0x66 in Version 2.0.

In Message Type 1, in Version 1.0, there is no scale factor. Instead, the scaling
of the PRC(to) and RRC term was determined by the UDRE which consisted of
3 bits instead of 2 bits. The scale factor for the PRC(to) term is equal to 0.02 x
(2) UDRE when UDRE has a value from 0 to 5. The scale factor for the RRC term
is 0.002 x (2) UDRE. In addition, the UDRE codes changed due to the greater
range available to the UDRE. The new codings is shown in Table 2.10 from [14]. All
other terms perform the same function. Changes in Message Type 9 from Version
2.0 is the same as changes to Message Type 1 since Message Type 9 performs the
same function of providing additional pseudorange corrections when there is rapidly
changing pseudoranges.

Message Type 2 in Version 1.0 does not have a Scale Factor term, UDRE term
or the satellite id number. In addition, it does not have a delta range rate correction
term. The scale factor for the delta pseudorange correction used is from the UDRE

DELTADELTA
.SEC E TA E.ATE COEC'TIN

DELTA
RANGE-RATE CO:EC1TIN

LECF DATA

ISE CF•DATA

From RTCM Recommended Standards [34, p. 4-11].

Figure 2-6: Type 2 Message Format

YMDS 3.
.13 OR II

YAM4,
9. 14OR 19
9,14F051

SLE CF DATA

1 1 ·

PARrTY
WV,. 17.
IL 17 OR22

PARITY

8300-4.-3 /

IOWDS N* 2
FN. 1.4.7

ORD5t
-- 11

F•.ZS.O
PARITY

_ · _· T ·

1

I

Code Indication
000 Error < 0.5 meters
001 Error > 0.5 meters
010 Error > 1 meter
011 Error > 2 meters
100 Error > 4 meters
101 Error > 8 meters
110 See Kalufas, et al [14]
111 Do not use

Table 2.10: Satellite Health and UDRE for Version 1.0

term of the most recently received Message Type 1.
Message Type 3, 6, and 16 remain unchanged.

2.5.3 Equipment Interface

In addition to the message formats, the RTCM SC-104 recommended standard also
specifies the user equipment interface. One recommended interface involves utilizing
a data link to download differential corrections to the receivers. Messages are required
to be transmitted at a rate of 50 baud. However, this could be continuous or in burst
mode and therefore can be transmitted using Electrical Industry Association (EIA)
RS-232-C or RS-422-A/RS-449 standards at a serial baud rate rate from 300 to 9600
baud with an 8 bit character structure.

Because of the 30-bit word size of the message, it means that the message needs
to be reformatted before being transmitted over the serial communication line. Two
formats are available to the user. One is an "8 of 8" format. The "8 of 8" format is
not required of all equipment. It utilizes all 8 bits of data available. The other is an
"6 of 8" format which is required on all equipment. In this format, only the 6 least
significant bits (LSB) contains information leaving bit 7 set to "marking" or binary 1,
and bit 8 set to "space" or binary 0. In addition the data is sent MSB first while the
ANSI standard requires the LSB to be sent first. The data link can be a transmitter
which broadcasts corrections to mobile receivers equipped with another antenna to
pick up the corrections and extra hardware to do the processing.

An alternative method of downloading corrections is by using a pseudolite tech-
nique in which the reference base station behaves like a satellite. The reference station
will broadcast differential corrections at the same frequencies as the GPS carrier fre-
quencies. Its advantage is that no new hardware or antenna is needed since it is at the
same frequency as the GPS signals. However, this method has the disadvantage that
the receiver is limited to line of sight applications as if it was using a real satellite.
See [34] for more details.

Another method is through the use of cellular phones and modems. It is similar to
the data link method, except the means of transmission of the corrections is through

use of a cellular phone and modems. Corrections for a particular area will be available
on a computer. The user connects to the computer via a cellular phone that is
connected to a modem through a conversion box.5 Once connected, the user can then
download the corrections over the cellular phone link. The advantage of this system
is that no special broadcasting licenses are required for transmitting the corrections,
as it would be if one were to use a transmitter. The disadvantage is that the means
of communication, by cellular phone, is not available in all areas and occasionally
the carrier is dropped requiring the user to navigate without differential corrections.
In addition, it requires a computer and modem to be connected to the GPS receiver
for transferring the corrections. However, many applications are now integrating
GPS receivers with computers that this requirement does not pose too much of a
problem. Because of these reasons, we implemented our system by downloading
differential corrections using this method. By broadcasting the differential corrections
over the ethernet, a user, once logged on, accesses the corrections as a client program.
Ethernet is simulated over the serial line through the use of PPP from Morning
Star Technologies. Installation details are given in [26]. The differential corrections
interface will be discussed in more details in the software chapter.

2.6 Geoids

All of the previous calculations were performed assuming an ellipsoidal model of the
Earth which provided the user position in an Earth-Centered Earth-Fixed (ECEF)
coordinate system. Unfortunately, most applications use a physical rather than math-
ematical model of the Earth. The physical model is represented as a geoid as opposed
to the mathematically regular ellipsoid model and is based on the physical makeup of
the Earth. This model is closest to that measured utilizing the standard levelling rod
[24] which is based on local geographical variations which include topographic and
gravitational variations. Therefore, areas measured to be the same level essentially
lies on the same geopotential surface - that is where the gravitational field exerts the
same force. There are many geopotential surfaces about the Earth (the gravitational
force exerted is the gradient of the potential). However, the geoid is the equipoten-
tial surface having an average potential which approximates the mean global ocean
surface the best. The reason the geoid is not an ellipsoid and instead is an irregularly
shaped object is due to variations in the Earth's density (potential = k x m/d where
rn is a point mass, however the Earth is not a point mass and the potential at a par-
ticular point must be solved for by integrating over the volume) and the contributions
to the potential from centrifugal force due to the Earth's angular velocity. See [15]
for a more rigorous mathematical derivation of the geopotential equations.

The GPS, on the other hand, utilizes a mathematical representation of the Earth
as an ellipsoid or geodetic datum. A geodetic datum is specified by 8 parameters -
2 for ellipsoid, 3 for location of the origin and 3 for the orientation of the ellipsoid.

'The conversion box is necessary to convert cellular phone signals to the standard phone RJ11
signals.

The geodetic datum used is the World Geodetic System 1984 (WGS84) developed
by the U.S. Department of Defense as a global geodetic system as opposed to the
regional datums which are valid over only a small region.6 In the case of WGS-
84, the semimajor axis is specified as 6378.137 kilometers and 1/f=298.257223563
where f represents the flattening of the ellipsoid. There exists formulas for conversion
between the WGS-84 coordinate system and other geodetic datums. See [16] for more
detail. Fortunately for the U.S., the North American Datum 1983 is very close to
WGS84 model. The errors resulting in discrepancies between the two datums are very
small in comparison to other errors which tend to arise when using GPS. WGS84 is
approximately the same as the Geodetic Reference System 1980 (GRS80) adopted by
the International Union of Geodesy and Geophysics (IUGG) in 1979 as the closest
approximation to the Earth.

WGS-84 is centered at the Earth's center of mass and its z-axis is coincident with
the Conventional Terrestrial Pole (CTP), the Earth's average pole position7 , and
whose x-axis is orthogonal and passes through the Greenwich Meridian. Positions
in WGS84 coordinates can be given in terms of Earth-Centered Earth-Fixed (XYZ)
coordinates or in terms of geodetic coordinates - longitude, latitude, and geodetic or
ellipsoidal height (A, p, h). Ellipsoidal height is the position of the point above the
mathematically defined surface. Figure 2-7 shows how the two coordinate systems
relate to one another. The conversion from geodetic coordinate system to ECEF is
given by the following formulas from Leick [15, p. 184-185]:

X = (N + h) cos p cos A (2.25)

Y = (N+h)cosVsinA (2.26)

Z = (N(1 - e2) + h) sin p (2.27)

where:

Na (2.28)
1 -e2 sin 2

2 = 2f- f2 (2.29)

and a is the length of the semimajor axis.
The conversion from ECEF to geodetic coordinates is given by:

tan = Y/X (2.30)

(N + h) sin (2.31)
tan =+ (2.31)

As you can see, Equation 2.31 is nonlinear and must be solved iteratively. By substi-

6These datums were optimized for the area of interest such as NAD27, European 1950, South
American 1969, etc. [16] and were therefore only valid in these regions.

7The Earth's axis of rotation moves as a result of polar motion and therefore the average position
of the pole is used as the z-axis.

y

Figure 2-7: Relationship between ECEF and Geodetic Coordinates

tuting in Equation 2.27 and rearranging we get:

Z + e2 N sin (2.32)
tan p = 2 (2.32)

By initializing the height, h, to zero and substituting in Equation 2.27, we can rewrite
Equation 2.31 as:

1 Z
tan p =X 2 + (2.33)1 - e2 VX 2 -y2

and solve for p. Then the calculated value of p is substituted into and::

X 2 + y2h= -N (2.34)
cos 0

The computed value of V is then used in the sin p calculation in Equation 2.32 to
calculate a new value of p. With this new value, a new value of h is calculated. This
process is repeated until h converges and the difference between the old h value and
the new h value is less than some e value. In our calculations, we used e = 0.001.

The above formulas give the transformation from ECEF coordinates to geodetic
coordinates. However, the height that is calculated is the ellipsoidal height. Most
geographical databases use altitude above mean sea level or the orthometric height.
The orthometric height, H, of a point is the height measured along the normal from
a level or equipotential surface, in this case the geoid. The measurement depends
upon the topography and geological makeup of the region. The geoidal height or
undulation is the distance of the geoid from the ellipsoid. Therefore, to calculate
one's mean sea level altitude from GPS coordinates, assuming knowledge of the geoid
height:

H=h-N (2.35)
All that is required is to get an accurate model of the geoid height. An equipo-

tential model of the Earth was computed by Richard Rapp and Nikolaos Pavlis at
Ohio State University (OSU89A and OSU89B) from the geopotential Goddard Earth
Model (GEM-T2). Its resolution is 0.5 degrees or 50 kilometers which is not enough
resolution when dealing with GPS data. However, a high resolution model of geoid
heights for conterminous United States was developed by Dennis Milbert of the Na-
tional Geodetic Survey called GEOID90 by combining the high frequency components
of the OSU89B model with 1.5 million terrestrial and water gravity data. For de-
tailed explanation on the calculation of the GEOID90 model, see [23]. GEOID90 is
referenced to GRS80 which as mentioned previously is very similar to WGS-84. It
consists of three height grids:

Region Latitude Longitude
Range (N) Range (W)

Eastern 24- 50 66 - 90
Central 24 - 50 83 - 107
Western 24 - 50 101 - 125

The total dataset consists of 581 rows by 1281 columns. Its resolution is 3 minutes
by 3 minutes which is approximately 5 kilometers. For finer resolution, the program,
provided by NGS called GEOID, does interpolation on the bounding geoid heights to
calculate the geoid height at a particular geodetic longitude and latitude. One must be
careful when using these corrections since there still exists a systematic error often in
the corrections. Therefore, in calculations of orthometric height, the resulting height
will not be very accurate due to errors in OSU89B and biases in the measurements.
However, these errors are small and need not be considered since the accuracy that is
required for our application is on the order of meters as opposed to centimeters. The
interfacing of the geoid height corrections with our system will be discussed in detail
in the software chapter.

Chapter 3

The Navigation Unit

Our enhanced reality system consists of a network of portable and stationary com-
puters. The portable computers connected to navigation tracking devices compose
the mobile units. The stationary computer broadcasting differential GPS corrections
is referred to as the central computer. Implementing an enhanced reality system, as
mentioned earlier, can essentially be divided into two tasks - developing a navigation
unit and developing an application programming interface (API) to the system. In
this section, we are primarily concerned with the navigation unit (NAVunit). In the
next section, we will discuss the API to the hardware.

An overall system block diagram of the mobile unit is given in Figure 3-1. The
computing engine in the system is a portable computer. From the diagram, one can
see that the portable computer serves a variety of functions. It drives the graphical
display of information, provides means of communication with the navigation unit and
communicates over the network with other computers. The navigation unit provides
3D position information to the portable computer. The notebook computer, processes
this information and then, either displays it on the screen or broadcasts it to other
computers, acting as a filter of the information from the NAVunit.

It is, however the NAVunit that is the heart of the enhanced reality system. It is
the navigation unit that provides the user with the spatial information. The NAVunit
consists of basically four components:

* GPS Receiver to provide a user's global XYZ coordinates.

* Compasses to provide the user's azimuth orientation angle.

* Tilt Sensors to provide the user's local elevation and roll orientation angles.

* Microcontroller to control the flow of information from the other three compo-
nents to the computing platform

In designing the NAVunit, our prime design consideration was the issue of modu-
larity. That is, we wanted to be able to consider the navigation unit as a black box
that simply output the user's positional parameters. The computer only needs to
know the output format and input format. The advantage of this approach lies in
ease of upgradability. The computing platform and navigation unit can therefore be

graphical
display

a network
computer

computing
engine

-4

4'

Figure 3-1: The Navigation Unit

NAVunit

upgraded independently of one another. In addition, a single navigation unit could
also be easily swapped from one computing platform to another without changing the
NAVunit's firmware.

Another design criterion was I/O format. In deciding the NAVunit's output for-
mat, we could design the unit to broadcast only the user's six position parameters.
This would have the advantage of being more modular in design. However, this de-
sign has the major disadvantage of losing much of the information from the GPS
receiver which provides more than just the user's XYZ location, such as the satellites'
ephemerides. We decided the access to additional information was worth the loss
in modularity. Since we want more information from the unit than just the XYZ
location, we needed to be able to communicate to our unit in order to request the
additional information. In addition, we also needed to be able to download RTCM
SC-104 differential corrections to the GPS receiver in the unit.

We had two design considerations for the data controller. We could have used a
bus design to send the data from the compasses, tilt sensors and GPS receiver as it
is and leave the processing to the computing engine to format the information appro-
priately. Alternately, we could use a microcontroller which reformats the data first
and then transmits it to the processing unit. We decided to use the latter scheme
due to the fact that the computing platform is already involved in many other tasks
such as communicating with the central computer, running location based application
programs, communicating with the navigation unit, generating 3D graphics and/or
performing Text-to-Speech Synthesis. In addition, the ease of translating preformat-
ted data received from the navigation unit allows us to abstract the unit as a cohesive
whole and utilize the output as it is without additional dithering of the algorithms.
We decided to reformat our compass and tilt sensor information into TSIP format.
Thus, our unit will behave as though it merely has an extended library of TSIP
routines.

In the end, we decided that the best approach would be to make the navigation
unit behave as a "super" GPS receiver which not only "knows" its XYZ position,
but its local azimuth, elevation and roll angles as well. Communication between
the unit and the computing platform follow EIA Standard RS-232-C interface since
most computers have at least one RS-232-C compatible serial port. The sensors -
compasses, tilt sensors and antenna - are in a separate unit from the logic circuitry.
This is due to the fact that the logic circuitry at this stage is bulkier than the sensors.
Since eventually we want to head-mount the sensors, and therefore keep the heavier
logic circuitry separate such as in a backpack, we will separate the sensors from the
unit even in the prototype.

3.1 Computing Platform

The decision of which computing platform to use for our computing engine was based
primarily on code portability issues. All of the development software was developed
on a Sun workstation. For this reason, we chose to use a SPARCbook 2 as the portable
computer in the mobile unit. Because the SPARCbook 2 is binary compatible with

the workstation, we did not need to develop two sets of code for the stationary and
mobile units. In addition, the SPARCbook 2 also has several positive features such as
an 8-bit frame buffer and an active color LCD display for graphics, a built-in modem
and Ethernet interface for communication, and speaker output, and microphone input
for audio. There was one major disadvantage in using the SPARCbook 2 and that was
the fact that it only had one RS-232-C compatible serial port. This required that we
have the capability of sending RTCM SC-104 corrections and receiver configuration
commands over the same serial line. Another disadvantage is that the SPARCbook 2
has a very short battery life of only about two hours and weighs over 7 lbs. In future
implementations of the mobile units, we are considering using penpad and wearable
computers for our computing engine.

3.2 GPS Receiver

The basic theory behind GPS technology was described in the previous chapter.
Rather than expending resources in developing our own GPS receiver, we decided
to use a commercial one. Currently there is a multitude of receivers available on
the market, so much so that it prompted one person who deals with GPS to call
GPS salesmen the equivalent of used car salesmen who will promise you centimeter
resolution but neglect to tell you that it will take five minutes of post processing to
do so. We decided ultimately on utilizing the Trimble Advanced Navigation Systems
(TANS) 6-Channel family of receivers due to Trimble's reputation and the fact that
they provide one of the smallest receivers available on the market. Distinguishing
Trimble from many of the various receivers commercially available was their user
interface. Many of the other receivers provide the user only with the longitude,
latitude and altitude coordinates on an LCD display, the better ones providing an
RS-232-C compatible output port option. The Trimble receivers, on the other hand,
provided a convenient serial I/O line with the ability to communicate to the receiver.
In other words, other information, such as the contents of the navigation message,
could be requested. The receiver operation mode could also be customized. Other
features of the Trimble receivers are RTCM SC-104 differential operating modes,
access to satellite ephemeris information, 0.6 second update rate, and use of purely
C/A-code positioning algorithm.'

In the first stage in the development of the NAVunit, 6-Channel Trimble GPS
Sensor Boardset SPS receivers were used. The mobile units, however, consisted of
SVeeSix Core Module (CM) SPS receivers which were much smaller (46.5 mmx 82.5
mmx 17.7 mm) than the Boardsets (122 mm x 202mmx 22 mm). Because the CM
receivers follow the same communication protocol as the 6-Channel Boardset, we
were able to develop the test software on the more reliable and sturdy Boardset
receivers first and then later switch to the CM GPS receivers with minimal effort.

To communicate with the boardset and the CM receiver, we utilized the TANS
protocol or Trimble Standard Interface Protocol (TSIP).2 With the CM we could have

1Many companies cheat by using the soon to be obsolete P-code to get a more precise positioning.
2 They are identical protocols but since the CM is not considered a member of the TANS family,

also have used either an ASCII or NMEA-0183 interface. However, the TSIP interface
was chosen due to the discovery that the CM module could run in differential mode
while still allowing the user to retain input control only using this communication
protocol. In order to implement differential GPS on the CM receivers using only one
port, RTCM SC-104 corrections are downloaded to the receiver while the user would
be receiving position information over the transmit line of RS-232-C port. However,
since corrections are constantly being downloaded to the GPS, we would forsake any
control requests from the user to the receiver since raw RTCM SC-104 data cannot
be mixed with GPS command codes. Fortunately, we discovered an undocumented
feature in the TSIP protocol which enables a user to transmit differential corrections
along with control commands. This is done by reformatting the RTCM SC-104 cor-
rections into TSIP format. This method will be discussed more fully in the software
section since it was a software based solution.

The TSIP protocol is based on a binary packet protocol. Each message sent to
and by the receiver must be sent in a packet which starts with <DLE> (Oxl0) followed
by an 8-bit packet identification tag. Data is then transmitted over the serial line in
8-bit bytes, odd parity, one stop bit, LSB first. The end of the packet is marked by
the sequence of <DLE><ETX> where <ETX> is the hexadecimal number 0x03. In order
to allow the value Ox10 to be transmitted, it must be followed by a second OxlO. This
protocol is used for transmitting to and receiving from the receiver.

The previously described TSIP protocol is currently followed by both the CM
and Boardset receiver which enabled software development on the boardset. Data
is transmitted at a rate of 9600 baud at TTL levels. It outputs position datum in
WGS-84 Datum format at a rate of approximately once every 0.6 s. Running off 5V,
the CM dissipates 1.5 watts with the antenna connected. The CM board weighs 32
grams. The antenna weighs 60 grams.

3.3 Compass and Tilt Sensors

The GPS receiver only provides the user's global position in ECEF coordinates. How-
ever, to determine the user's viewing direction, need a means of extracting our local
orientation angles , (ý, 0, q), at a known translational position [Figure 3-2]. For the
first model of our system, we used combinations of digital compasses to extract one's
azimuth and combinations of tilt sensors to extract the elevation and roll angles.

3.3.1 Compass

The digital compasses, 1" x 1" x 0.5" flux-gate magnetometers designed by Interna-
tional Navigation Inc. (INI), output the N (numerator) and D (denominator) compo-
nents of the tangent of the azimuth angle at a given point with respect to the Earth's
magnetic pole. These components are proportional, respectively, to the magnitude
of the East and North components of the Earth's magnetic field at that point. The

Trimble renamed the TANS protocol to Trimble Standard Interface Protocol.

VP azimuth an
0 elevation a
0 roll angle

..

y

A

Figure 3-2: Six Parameters of Freedom

compass operates by driving periodic signals through two amorphous magnetostric-
tive cores arranged orthogonal to one another. Sensing circuits then measure the time
between reentrant induced pulses in each core. The time between these pulses is a
function of the magnitude of the Earth's magnetic field component. (See Farrell [4]
for more details on the operation of the compass.) These timing values, minus a bias
term, are then averaged and output as the N and D components over a serial line
at a rate of 20 kbaud with the most significant bit first (MSB). A total of five bytes
are sent 34 times/second. The first two bytes represent the N component in two's
complement integer format. The following two bytes consist of the two's complement
integerized D component. The last byte contains the status bits in the first four bits
and the checksum in the last four bits. In addition to the serial data line, the digital
compass generates a 34-Hz clock pulse output line whose rising edge is synchronized
with the start of a data message. Figure 3-3 shows the timing characteristics of the
serial line with respect to the pulse line.

One can calculate their azimuth position, the number of degrees that they are
tilted away from true north in a clockwise direction, by taking the arctangent of the
ratio of N to D. This is assuming that core axis #1 lies along the North axis and core
axis #2 along the East-axis components of the horizontal intensity component of the
Earth's magnetic field. This is because D is the filtered measured time value for core
axis #1 and N is the filtered measured time value for core axis #2. The calculated
angle will then be the number of degrees the Earth's horizontal field is away from
axis #1.

Pulse J

Data Message
kSt D71 D6I D5 D4 D3 D2 D1I DO jto

Figure 3-3: Timing Diagram for Compass Output

However, the measurement is accurate only if the compass axes lie in a horizontal
plane tangent to the Earth's surface. If the compass is tilted perpendicularly, it would
be unable to properly resolve the user's orientation due to the fact that one of its
primary coils would be perpendicular to the Earth's magnetic field and therefore the
measured magnitude would be close to zero. To overcome this difficulty, we utilized
a combination of 2 digital compasses orthogonally aligned [Figure 3-4]. The first
compass is aligned in the horizontal plane parallel to the keyboard of the notebook
computer since the primary mode of operation of the unit will be on a flat or on
a close to flat plane parallel to the Earth's surface. The second compass is placed
perpendicular to the first one such that if one were to orient the SPARCbook 2 in
a vertical position, the second compass would lie in the horizontal plane that was
expected to be the second primary mode of operation.

By using two compasses arranged as in Figure 3-4, one is able to resolve the mag-
nitude of the three components of the total magnetic field at a particular point since
we receive four measurements of N1 , D1 , No and Do, where one set of measurements,
No and N1 , are redundant. We can then resolve the magnetic force vector from this in-
formation. Knowing the magnetic force vector in addition to the tilt of the compasses
from the plane horizontal to the Earth from the tilt sensors, one can then project the
vector to the horizontal plane and then calculate the number of degrees the computer
is facing from true north. Therefore, only using the compasses in conjunction with
the tilt sensors can the user's azimuth angle be resolved.

Letting F represent the magnetic force vector,

F= {No, Do, -D 1 } (3.1)

Using our elevation and roll angle information, we can generate two rotation matrices
and multiply F by the matrix to get the new F. Let's assume the following:

p = azimuth rotation angle about the z-axis
0 = elevation rotation angle about the y-axis
0 = roll rotation angle about the y-axis

We use Euler angles to describe our orientation with respect to the global reference
frame where rotation is done in the order where rotation about the z-axis is done

Up

t North

DO

N1

Compass 0 Compass 1

Figure 3-4: Compass Configuration

first, followed by rotation about the y-axis and then x-axis.
Assuming that 0 and q will be positive for counterclockwise rotation about

respective rotation axes, the transformation matrices needed to transform the
netic force vector into a coordinate system parallel to the horizontal plane are:

cos 0
0

sin 0

0 - sin 0
1 0
0 cos 0

their
mag-

(3.2)

where O represents the transformation matrix to compensate for the elevation angle
and:

0
cos
sin

01
- sin 0

cos q J
(3.3)

where b represents the matrix compensation for the roll angle. To calculate the
magnetic force vector in a coordinate system parallel to the horizontal plane, we
perform the following transformation:

F= O f (3.4)

1
Q = 0

0

resulting in:

cos 0 -sin sin -sin cos No
Fy = 0 cos 0 - sin D (3.5)

Fz _ sin 0 cos 0 sin € cos 0 cosq -D

Therefore, to calculate the azimuth angle from the magnetic force vector components,
we take:

9 = arctan (3.6)

The above equations only hold true if the N1 and No components were identical.
Unfortunately, this is not the case due to differences in the two compasses in both
physical composition and in their compensation which can lead to differences on the
order of 1000 out of a range of -32768 to 32767 which is about a 1.5% error margin.
To compensate for the discrepancies we use the average value of No and N1 for the
x-component of the magnetic field.

These equations provide the magnetic force vector at the user's location. There-
fore, the azimuth angle calculated from the ratio of the north-south component to
the east-west component is not the azimuth from true north celestial terrestrial pole
(CTP) but from the geomagnetic north which is not at the same point as true north.
Because the Earth's magnetic poles vary over time, a model of the magnetic field must
be used which reflects variations over time in addition to position. Corrections to the
magnetic force vector can be then obtained and applied to obtain the user's rotation
angle from true north. The corrections are calculated using routines in the program
GEOMAG provided by the National Geophysical Data Center which uses the Inter-
national Geomagnetic Reference Field (IGRF) model of the Earth's magnetic field.
These routines were extrapolated from GEOMAG and made into functions which
generated and applied corrections to the compass measurements.

Given geodetic coordinates, the GEOMAG routines return the seven parameters
of the Earth's magnetic field at that particular location. These consist of the dec-
lination, inclination, horizontal intensity, vertical intensity, total intensity and the
north and east components of the horizontal intensity [Figure 3-5] For our particular
application, we are particularly interested in the declination, the angle between the
horizontal intensity of the Earth's magnetic field and true north. To calculate the
user's orientation from true north, the declination is added to the calculated azimuth.
More details of the interfacing of the corrections to the compass measurements will
be discussed in the next chapter.

3.3.2 Tilt Sensors

The tilt sensors and their electrical interfaces were constructed by Robert W. Jebens
of AT&T Bell Laboratories. The nine tilt sensors consist of small glass bulbs filled
with electrolytic fluid with three output terminals. The tilt of the sensor is determined
by measuring the resistance across the terminals which is dependent upon the amount
of fluid between them. Effectively the three terminals behave like the three terminals

S

E

Zenith

Declination
Inclination (or dip)
Horizontal Intensity
Total Intensity

N

x North Component
y East Component
z Vertical Intensity

Figure 3-5: Seven Parameters of the Magnetic Field

S

of a balanced bridge. For example, if the sensor is leveled, the fluid is balanced and
therefore the resistance at the terminals is completely balanced. If the terminals
are tilted, the resistance between the terminals will be different. The tilt sensor is
connected to operational amplifiers which generate a voltage between 2.5 volts and
5.0 volts if the sensor is tilted in one direction and a voltage between 0 and 2.5
volts if the sensor is tilted the other way. The voltage response can be approximated
as a nonlinear cubic function of the tilt angle of the sensor. The analog circuitry
interface consists of an analog output line for each tilt sensor whose voltage roughly
corresponds to its tilt. To calculate the tilt of each sensor, an inverse cubic function of
the voltage reading is used. For our purposes, it is sufficient to model the tilt sensors
as a black box that outputs voltages that swing about 2.5 volts. Since the midrange
voltage reference point depends highly on the quality of the power supply, we have an
additional midrange voltage reference line from the tilt sensor circuitry that should
be 2.5 volts for a 5-volt power supply.

The range of the tilt sensors is from -70 to +70 degrees with respect to the gravity
vector. To resolve local orientation, 360 degrees range is needed in all directions.
Using a configuration of 3 orthogonal planes each with 3 sensors set 120 degrees
apart from one another for a total of 9 sensors, one should be able to measure 360
degrees of movement in 3D. Figure 3-6 displays the configuration of the tilt sensors
where the up arrows represent the upright position of an individual sensor. Each
sensor is labelled 1 through 9. Next to each plane of tilt sensors are the orientation
axes of the horizontal plane of the entire tilt sensor unit. The upright position of the
tilt sensors (0 = 0, 0 = 0) is considered to be when tilt sensor 7 is upright. When
tilt sensors 1 and 4 are upright, the board plane is orthogonal to its normal position
with the y-axis pointing down.

The algorithm to decode the nine tilt sensor readings is simplified due to the fact
that only two of the nine tilt sensors are relevant for any particular orientation, one
corresponding to the elevation and the other to the roll angle. Using an algorithm
developed by Robert P. Lyons of AT&T Bell Laboratories, the two relevant sensor
readings are extracted, the others discarded. Using these two values, the algorithm
produces the gravity vector components with respect to the tilt sensor plane. Assum-
ing 0 and q represent elevation and pitch angles respectively, we can use the same
matrices 0 and 4 that were given in Section 3.3.1 where the rotation angles are in the
opposite directions. When the tilt sensor plane is unrotated, as shown in Figure 3-7,
the gravity vector is G = (0, 0, -1). The values provided by Lyons' algorithm is then:

G' = D(-O) 0(-0) G (3.7)

Therefore, the vector components are:

G1 = -sinO (3.8)
G1 = -sin cosO (3.9)
G' = -sin coso (3.10)

Sz

x

Y

Z z x

x

y

z

1 1x

Position of Tilt Sensors Orientation of Sensor's Axes

Figure 3-6: The Tilt-Sensor Layout

2 3

8
11ý

tin sensor plane

-y

G(O, 0, -1)

Figure 3-7: Gravity Vector

To compute the elevation and roll angles, we solve:

0 = arcsin-G' (3.11)

-G'
< = arctan Y (3.12)

- G'

3.4 Microcontroller and Associated Hardware

Controlling the data flow between the GPS receiver, compasses and tilt sensors is a
microcontroller. We are using a NMIS-0021B CPU board based on an F68HC11E9
microcontroller running in expanded multiplexed mode. This particular microcon-
troller was chosen for its sophisticated on-chip peripherals and ease of adding external
peripheral devices. The microcontroller board was purchased from New Micros, Inc.
(NMIS) which manufactures peripherals specifically for the 68HC11 chip family on
Vertical Stacking boards of size 2" x 4" at a stacking height of 0.75" between adjacent
peripheral boards.

The F68HC11E9 is an 8-bit microcontroller with five 8-bit communication ports.
The ports are labelled ABCDE respectively. In expanded multiplexed mode, two
ports (BC) are not available for use as communication ports but are used instead
for addressing lines. Port A can be used for four input capture units and three
output compare units or four output compare units and three input compare units
with one pulse accumulator input or fifth output compare unit. In the design of
the navigation unit, the first mode of operation for Port A was utilized. Port D
provides the Serial Communications Interface (SCI) and serial peripheral interface
(SPI). The SCI was used for communications between a terminal and the board

•~ ~
_· y·•sno

ln1~11

during program development but was not used afterwards. We did not use the SPI.
Port E is used for static inputs and/or as 8 A/D channels. This port was also not
used. There are also 7 8-bit CPU registers and two 8-bit accumulator registers that
can be used in conjunction for 16-bit operations. In addition, there are 512 bytes
of on-chip EEPROM memory and 512 bytes of RAM memory. See Figure 3-8 for a
memory-map of the CPU.

The microcontroller was not the most user-friendly in terms of programmability.
The development of program code was straightforward due to the availability of the
on-chip SCI which enabled the use of one serial RS-232 tty line at 9600 baud rate to
download code into memory. The microcontroller could be programmed in either the
high-level language MAX-FORTH V3.5, provided by NMIS, or in machine language.3

In the navigation unit, the microcontroller was programmed in FORTH for non-time
critical subroutines. However, for the time critical routines, each routine had to
be machine coded by hand for optimal performance due to the inefficiencies in the
FORTH stack language.

In expanded multiplexed mode, the code to be executed by the microcontroller
is typically stored externally where more memory is usually available. The code was
developed first using an SRAM for external memory. Once the code is downloaded,
the execution of the program is started from another terminal using the SCI. However,
the SRAM eventually loses the data (in this case the data is the program) that is
stored in memory over time. Even if the memory was battery-backed, due to the
delay associated with the battery-backup device, the program would not be able to
autostart the desired code upon a power cycle or a reset. To overcome this problem,
two external data storage components - one an SRAM and the other an EEPROM -
were used. Storing the program on the EEPROM was the best way to insure that the
program would stay in memory over extended periods of time and be able to activate
fast enough for the microcontroller to enter autostarting mode.

The microcontroller (MCU) has two start-up operating modes - autostart and
interactive. Autostart mode causes the program upon the detection of a specific
sequence of bytes upon reset or power on to jump to the memory address in the next
byte and to start execution from there. If these bytes are not detected, the program
will default to its default start up state which is to be in interactive mode using
the SCI. The autostart bytes, OxA44A were set in address location 0x8000 which is
the starting address in the external EEPROM. Upon startup, when these bytes are
detected, the microcontroller resumes execution starting at the address stored in the
two bytes immediately following it. This was done by storing the address of the code
to be executed in memory location 0x8002. SRAM memory is also needed for the use
of fast-access memory since the EEPROM does not allow the storing of data during
real-time execution.

3 By machine language, we literally mean the hexadecimal representation of each instruction and
data since there was no assembly language interface to the microcontroller.

$0000

$01FF

$BO3F

$B600
$B7FF

$8CO0

$BEOO

$0000

E000

$FFCO

$FFFF

ON-CHIP RAM

REGISTER
SBLOCK

EEPROM

E XP AN SION
C ARDS

FLOATING POINT
ROM

MAX.FORTH
ROM

INTERRUI.P:T•. Yi.. v cr :x

Figure 3-8: Memory Map of Microcontroller Unit

3.4.1 Compass Interface

In order to read in the compass information, there existed two possible approaches
- serial and parallel. In a serial implementation, the compass information would be
read in by the CPU, preempting other operations from continuing until all 50 bits
have been sampled. By parallel, the data will be read by an external device that does
not require any CPU time but will signal the MCU that data has been read in. The
serial approach can be implemented by using a PIO port. Through a PIO port, the
34 Hz clock pulse would generate interrupt events to the MCU who would then enter
a loop sampling the lines. The problem with this design is that 2500 ps of processing
time would be consumed, most of it idling in a loop waiting for data bytes. Because
data are coming from many sources, this would not be an optimal design. The parallel
approach can be implemented utilizing a UART. The disadvantage to this approach is
that it involves external circuitry. However, the trade off in less software complexity
for the extra circuit complexity was considered to be worth the savings in CPU time.
Consequently, UART's were used to read data in from the compass data line.

Each data bit in the compass data line is 50 ius long resulting in the constraint that
the maximum total timing error that can be tolerated before losing synchronization
is ±25 pis. The total transmission time for the five bytes consisting of 10 bits each (8
bits of data plus one start and one stop bit) is 2500 ps. Thus, the crystal safety factor
is 2O = 0.01%. Therefore, effectively, in order to avoid loss of synchronization, the
rate of sampling the data can vary at most by 0.01% which means the sampling of
the data line can be off by at most 200 Hz leading a baud rate range between 19.8
kbaud and 20.2 kbaud.

For the serial to parallel data conversion, the NMI-5002 DACIA card which is
based on the Rockwell 65C52 Dual Asynchronous Communications Interface Adapter
(DACIA) was used. Unfortunately, the range of valid baudrates for the compass are
not within the range of standard baud rates. As a result, an external clock was used
to drive the external receive clock line RxC (pin 25) on the DACIA. Since the DACIA
does an internal divide by 16, a clocking frequency of 16 x 20 = 320 kbaud is needed
on RxC [Figure 3-9]. Using an 8 MHz crystal oscillator to clock the 74HC390 Dual
4 Bit Decade Counter in Bi-Quinary mode [Figure 3-10], a divide-by-25 counter was
generated. Figure 3-11 shows the clock signal generated. From the diagram, one
notices that RxC does not have a 50% duty cycle. This would not cause a problem in
our application since the DACIA is rising edge sensitive and the edges occur at 320
kHz. TxC (pin 15) was grounded since communication to the digital compasses was
not used.

In addition to problems as a result of the odd baud rate required to sample the
data, difficulties result from the fact that the serial data line does not really follow
any accepted protocol (i.e. NRZ or LSB). The DACIA assumes the incoming data is
NRZ format as shown in Figure 3-12, where the start bit is low and the stop bit(s)
are high. However, as was shown in Figure 3-3, the start bit is high and the stop bit is
low. In order to read in the signal, the data line from the compasses must be inverted
first. But this results in inverted data as well. Undoing the inversion of the incoming
data was accomplished by the microcontroller firmware. In addition, the bits need to

RxC

Internal Div 16
RxS

'I

RxD X X LATCH DATA
/I)

O TRANSFER DATA TO SHIFT REGISTER

Figure 3-9: DACIA External Clock Timing - Receive Data

Figure 3-10: Circuitry Generating Compass Clock Signal

]DCI)
• m I t

Y

> 8 MHz

/CLK

16 MHz

1· I I I If n
320 KHz

I [RxC

Figure 3-11: Timing Diagram for RxC Signal

Start DO 1 D2 D3 D4 D5 D61 D7 Itop

Figure 3-12: NRZ Data Format

be reversed since typically serial data is sent least significant bit first. The reversal of
bits was also accomplished through software. The preprocessing of the compass data
will be discussed in the next section on the microcontroller firmware.

3.4.2 Tilt Sensor Interface

The interface of the nine tilt sensors to the microcontroller is relatively straightfor-
ward. Taking the voltage outputs from each sensor, we connected the lines to two
NMIS-4004 12-bit 8-channel A/D boards using an HADC574Z A/D converter. The
converter had a maximum conversion time of 25 ps and power consumption of 150
mW. The outputs from the tilt sensors are in the range [OV, 5V]. However, the A/D
board accepts only ranges [OV, 10V], [-5V, +5V], or [-10V, 10V]. Therefore, for max-
imum resolution, we set the A/D operating mode for inputs in the range [0OV, 10V]
and amplified the incoming voltages by a gain factor of two. In addition, since we are
using 9 voltage readings, we need at least two A/D boards because each board can
only multiplex up to 8 analog lines. To account for the characteristics of the A/D
converters on each board, we connected the 2.5V reference voltage line to each and
scaled each voltage reading by ' for each board. The voltage reference lines are
read along with the tilt sensors.

All nine tilt sensors plus the two reference voltages are transmitted in the same
packet as the compass readings since the three orientation angles are coupled. How-
ever, since all eleven A/D conversions must be completed before the compass readings
can be transmitted, our update rate will be reduced. This can possibly be overcome
by having the A/D conversion done in parallel rather than multiplexed and serial-
ized. To do this in parallel one would need 9 A/D converters and 9 data registers to
store the digitized readings. The conversion cycle can be tied with the 34 Hz clock
from the compasses. Then, when the readings are needed one could cycle through
the registers rather than wait for the conversion of all 9 voltages. However, this is at
the expense of bulk and power consumption. As a compromise, only two A/D's were
used in parallel since we needed at a minimum 2 boards to begin with. We divided
the 11 signals into 6 lines on one board and 5 lines on the other board rather than
an 8 and 3 division in order to allow maximum parallel conversion.

3.5 Microcontroller Firmware

The microcontroller firmware was written in MAX-FORTH V3.5 provided by New Mi-
cros, Inc. In addition, much of the machine dependent code, such as setting interrupt
vectors was hand written in machine language. The main routine in the microcon-
troller is an infinite loop which is entered after a few initialization instructions. At
startup, the microcontroller enters a delay loop before the interrupt vectors can be set
due to the fact that the digital compasses has an initialization delay. The interrupt
vectors should only be set after the compasses are ready to generate interrupts to
the microcontroller. After the delay, the MCU resets all flags, variables and registers,
initializes the interrupt-vector lookup table, and initializes the RS-232 ports.

Once initialization is completed, the microcontroller cycles in an infinite loop
waiting for an interrupt to occur. The system was designed to be run on interrupt
basis, thereby, creating a pseudo multitasking operating system. Although there are
four basic tasks, there are only three interrupt routines - one to handle data from
the host to the MCU, one (actually two) to handle data from the compasses and one
to handle data from the GPS. The last task is the transmission of information to
the computing engine from the MCU. This is not an interrupt routine because it is a
routine in the infinite main loop. This allows data to be transmitted only when there
is no data waiting to be read in which allows the maximum amount of CPU time to
be spent trying to read in data which is arriving asynchronously from many sources.
This routine in the main loop will be discussed later in this section. All interrupt
routines were written in machine language.

3.5.1 Computer to Microcontroller Communication

A second NMI-5002 DACIA card was used with one port for communication between
the GPS CM module and the MCU and the other port for communication between
the computing engine and the MCU. In this section, the routines for transmitting
data from the computer to the MCU and for transmitting data to the GPS CM
receiver from the MCU will be discussed. The routine to transmit data from the
MCU to the computing engine will be discussed in the end of this section. Data
from the CM is received at 9600-baud rate, 8 data-bit words, odd parity and one
stop bit at TTL levels. Although RS-232 levels were available, they would dissipate
more energy since it requires data to be transmitted at levels of ±12V. Since data
transmission was over a distance of only a few centimeters, noise would not be much
of a concern and therefore 5V levels would provide us with enought reliability. Since
the NMI-5002 card was equipped already with level shifters, the card was modified to
conserve energy. The data format between the computing engine and the MCU was
set to be compatible with the data output of the GPS CM receiver. In this manner,
the software interface written for the navigation unit can be used directly with a CM
receiver. This assisted in the debugging of the software interface and also made the
system more flexible.

The interrupt routine handling the data transfer from the computing register is
invoked when the ACIA's /IRQ2 is asserted. In the initialization routine, along with

data format, the second DACIA was programmed to generate an interrupt when the
RDRF in the interrupt status register (ISR) is set, indicating that data is ready to
be read from the receive data register. The interrupt routine reads in the received
byte, and clears the interrupt flag. Any data from the host computer is meant only
for the GPS receiver because none of the other devices are commandable. Therefore,
any and all bytes are directly transmitted to the GPS receiver. In addition, because
there are no other devices communicating with the GPS receiver, there is no need
to worry about corruption of data from other devices. It should be noted that an
interrupt is also generated when the ACIA detects a framing or receive overrun error
(bit 1 in the ISR). By checking if bit 1 has been set in the ISR, we only transmit
data to the receiver if it has not been set. Otherwise, we clear the flag by reading the
receive data register (RDR) and then returning to the main routine.

3.5.2 GPS to Microcontroller Communication

The transfer of data from the GPS receiver to the MCU is similar as for transmitting
data from the computing engine to the MCU. An interrupt routine is invoked when
the ACIA /IRQ1 is asserted. As above, at initialization, the first ACIA in the DACIA
was programmed to generate an interrupt when the RDRF in the ISR is asserted.
The routine to handle transfer of GPS information to the host computer is entered
upon the signalling of RDRF on the GPS DACIA. Instead of transferring the data
directly to the computing engine, the data is stored in a memory buffer of 127 bytes.4

Ideally, the data should be transmitted directly to the computing engine as in the case
of above where data was transmitted directly to the GPS. However, the algorithm is
not as simple when transmitting to the computing engine due to the fact that the
compasses and tilt sensors are also trying to send data to the host. The difficulties
involved will be discussed later in the section dealing with the routine which transmits
data to the computing engine.

3.5.3 Compass to Microcontroller Communication

As mentioned previously, a NMI-5002 DACIA card was used for communicating be-
tween the compasses and the MCU. There are two interrupt routines to handle signals
from the two compasses but since they are identical, it is sufficient to discuss only one
routine. The compasses produce readings 34 times/sec. In the average operation of
the navigation box, the user will not require this much time resolution. In addition,
there may be timing difficulties in terms of the serial I/O port on the SPARCbook
2 in that if it is running very computationally intensive applications, the SIO port
on the SPARCbook 2 can become backlogged, creating SILO overflow errors. This
in turn will lead to losing bytes of data which would cause the entire data packet
to become corrupted and discarded. Therefore, sampling the compasses at a much
lower rate of about 3 or 4 times per second should solve the problem of data overflow

4127 bytes were chosen since the F68HC11E9 is an 8-bit processor and it is easiest to detect when
127 bytes have been stored.

without significantly reducing resolution. This was achieved through counting the
number of interrupts generated by the compasses and performing the actual parsing
of data on the ninth interrupt.

Interrupts are generated by a low-to-high transition on two of the input capture
lines on Port A which is connected to 34-Hz clock lines from the compasses. There
is approximately 39 ps between the rising edge of the signal and the first start bit of
the first start byte. When a byte is received the word is placed in a 5-byte buffer. At
initialization, one of the interrupt lines is disabled in order to avoid contention between
the two compasses and to prevent any one compass from dominating the other by
constantly generating interrupts a few microseconds before the other compass. As
a result, the two compasses are coupled. Once a compass's information has been
read, its interrupt line is disabled and the interrupt line of the other compass is
then enabled. When the other compass's information has been parsed, its interrupt
line is disabled and the tilt sensors are then sampled. The cycle of the compasses
then repeats upon reenabling of the first compass's interrupt line which is done on
completion of sampling the tilt sensors.

Parsing compass data is not as simple as for the data from the computing engine.
At initialization, the compass DACIA was programmed to have an external RxC
clock, 8 bits of data, 1 stop and 1 start bit with no parity bits. Once the compass
data has been read in from the RDR, the data must be inverted and then bit reversed.
The inversion of the 8 bits is done in a single command in the MCU. However, to
do the bit reversal, a lookup table was used in which the table address added to the
number to be reversed would contain the 8 bits reversed. The byte is then stored in
a buffer in SRAM memory. This process is repeated 5 times until all five bytes have
been read in and stored.

The five bytes are then passed through a checksum test. Figure 3-13 shows an
example checksum test. If the data has been read in properly, the last four bits of
the fifth byte should equal the exclusive or of the first four bits with the last four bits
of the exclusive or of the first four bytes with the status nibble (first four bits of the
fifth byte padded with four zeroes). If the checksum does not equal the transmitted
checksum the 5 bytes are discarded. If the checksums are equal, then the first compass
is disabled, the second compass enabled and the process repeated. A flag is set upon
completion of parsing the second compass line. This flag will notify the main routine
that compass data is has been read in and to start sampling the tilt sensors.

3.5.4 MCU to Computing Engine Communication

Once compass and GPS data information has been received and stored by the MCU,
the MCU must transmit the information back to the computing engine where the data
will be processed and distributed among several application clients. Because there
are asynchronous devices trying to communicate to a single port, the MCU needs
to maintain the data in a format in which the computing engine would be able to
translate the data back to its original sources. We decided that GPS data should be
given precedence in transmittal due to the fact that GPS data can be several bytes of
information, whereas compass and tilt sensor information is a set size of 30 bytes for

00001001

XOR 01110110

01111111

XOR 11111001

10000110

XOR 11111111

01111001

XOR 01010000

00101001

XOR 0010

1011

N High Byte

N Low Byte

D High Byte

D Low Byte

Status Nibble

Transfer High
Nibble

CHECKSUM

Figure 3-13: Checksum Example

the compass data and tilt readings. In addition, we have limited control over when
to sample the compass information, whereas the GPS data comes independently. For
these reasons, the main transmission routine loops infinitely checking to see if the
transmit-data register to the computing engine is empty [Figure 3-14].

Once the transmit data register is empty, the MCU checks to see if there is new
data to be read. This is done by maintaining pointers, one to the last data to be
stored, GPS_CNT and another to the next data to be transmitted, GPS_OUT. If GPSOUT
equals GPS_CNT, it means effectively that all the data in the memory buffer has been
transmitted. If they are not equal, the MCU then outputs the byte stored in the
address pointed to by GPS_OUT. In this manner data is transmitted as soon as it is
received by the MCU to the computing engine.

However, we run into problems if we try to output compass and tilt data in the
same fashion. This is due to the fact that the MCU may be engaged in transmitting
data from the GPS data memory buffer when the compass information is ready to be
transmitted. For example, if compass and tilt data were to be transmitted directly
to the computing engine, there is a risk that they would collide with GPS receiver
data that is currently being transmitted. If GPS data is currently being transmitted,
the compass information could become corrupted [Figure 3-15]. To prevent such a
collision from happening, the compass and tilt data is packetized into a single message
by waiting for all 10 bytes of compass data and all 22 bytes of tilt information to be
received before we transmit the data back to the computing engine.

When all 10 bytes of compass data have been read in, COMP_FLAG is set, signalling
the start of sampling of the tilt sensors. The nine tilt sensors plus two reference
voltage readings are sampled in the main loop. In order to optimize performance,
we effectively steal idle cycles from the MCU. While the MCU waits for the transmit
data register empty (TDRE) flag on the ACIA to the computing engine, we sample one
tilt sensor from each board. This is possible since the transmission of one byte of data
at 9600 baud takes approximately 1 ms whereas sampling of the tilt sensors requires
only 25 ps delay. Upon completion of sampling the sensors, we go back and check the
TDRE flag. As long as the TDRE flag is not true, we sample the tilt sensors, keeping
track of how many sensors have been read. When all sensors and voltage reference
lines have been read,5 a flag, TFLAG, is set indicating the completion of sampling.
When TFLAG is set, we loop infinitely until the transmit data register is empty.

In addition to the GPS data possibly corrupting the compass information, we also
have the possibility that an entire compass data packet will be broadcast in the middle
of a GPS data packet [Figure 3-16]. Thus, we must also packetize the GPS receiver's
information. The packetization of GPS data is done by preventing the transmission
of compass information while GPS data is currently being transmitted. However,
the GPS receiver data packets have variable length. Therefore, we need to check for
the end of a packet before allowing compass and tilt information to be transmitted.
This can be done by checking for the sequence <DLE> <ETX>. First, we check if the
previous byte was of value <DLE> by checking if the DLE_FLAG was asserted. If it

5 Since we have 11 analog lines to sample and we are sampling two at a time, the last voltage
reading for the second A/D board will contain garbage information and was therefore ignored.

Figure 3-14: Algorithm to Transmit Tilt and Compass Information

67

Output Byte
Stream

0

GPS Rcvr
Data

<DLE>

Compass
and

Tilt Sensor
Data

NO- High Byte

NO- Low Byte

<opcode>

DO - Low Byte

0
0
0

n <data>

n+1 <data>
Figure 315: The Effect of GPS Data on Unpacketized Compass Messages

Figure 3-15: The Effect of GPS Data on Unpacketized Compass Messages

Output Byte
Stream

GPS Rcvr
Data

Compass
and

Tilt Sensor
Data

<DLE>

<opcode>

<data>

NO -High Byte

NO - Low Byte

DO - Low Byte

Tilt 11 - High Byte

Tilt 12 - Low Byte

<data>

*

Figure 3-16: The Effect of Compass Messages on Unpacketized GPS Messages

has not been asserted, we check if the current byte's value is equal to <DLE>. If it is,
the DLEFLAG is asserted. Otherwise, it checks if the end of a packet had already been
detected. If the DLEFLAG had been already set and the current byte to be transmitted
was <ETX>, the MCU indicates that the end of a packet has been reached by asserting
the TAIL flag. Otherwise, the DLEFLAG is cleared and the MCU proceeds to check if
the end of a packet had already been reached. The TAIL flag is cleared as soon as a
byte from the GPS receiver has been transmitted [Figure 3-14].

After each byte is transmitted, the MCU checks to see if the end of a packet has
been set by determining if the TAIL flag has been set or not. If it has not, that
means a packet is in the process of being transmitted to the computing engine and so
returns to the main loop, first clearing TAIL flag. However, if the TAIL flag is set, it
means that a complete packet has been set. The MCU then checks to see if the TFLAG

5

n

n+1

n+2

0

*

is enabled which signifies that sampling of the tilt sensors have finished. If the flag
is set, the program proceeds to output the compass and tilt information. Otherwise,
the MCU checks if the COMPFLAG has been set indicating that new compass data
has been read in. If COMPFLAG is asserted, the program jumps to the A/D sampling
routines described above. If neither flag is set, indicating that the compass and tilt
data is old, the program loops back to the beginning [Figure 3-14].

To output the compass and tilt data, we transmit the information following TSIP
format in one packet where the first 4 bytes represent the N and D components of the
two axes of the compass lying in the horizontal plane, the next four bytes being the
N and D components of the second orthogonal compass and the remaining 22 bytes
being the voltage readings of the eleven lines for a total of 30 bytes being transmitted.
These 30 bytes are preceded with the heading of <DLE> <opcode>, where the opcode is
the hexadecimal number OxB0 6, and followed by the sequence <DLE> <ETX>, signifying
the end of a packet. Once transmission of a compass data has been completed, TFLAG
and COMPFLAG are cleared.

3.6 Navigation Box

Having developed the necessary circuitry and firmware, we need to put the entire
system into a portable unit. The unit is constructed from black acrylic material.
Figure 3-17 shows the front panel of the unit. It consists of an ON/OFF switch
and a reset button for a soft reset of the system. There are also two ports, one for
communicating with the SPARCbook 2 and the other to the the sensor unit containing
the compasses and tilt sensors. The GPS antenna can be placed on the knapsack and
does not need to be part of the sensor unit since a difference of a few inches between
the sensor unit and the circuitry unit would not make a significant difference in the
XYZ position since the resolution of the receiver is not that high to begin with. The
antenna, is connected to the GPS receiver antenna connection on the receiver board
through a hole in the side of the NAVunit.

The I/O port communicating to the SPARCbook 2 is a standard male DB-25
RS-232-C compatible connection. The Sensor Port has two lines for compass data
and two lines for the 34-Hz clocking signals from the two compasses, 9-tilt sensor
voltage lines, plus two reference voltage lines, one 5V power line, and three ground
lines. One ground line is connected to the tilt sensor board and the other two go to
the compasses. Although one ground line would have been sufficient, it never hurts
to have more than one ground line connection. The Sensor Port is a female DB-25
port connected through a ribbon cable to the sensor unit. The sensor unit consists of
one board that has mounted upon it the 9 tilt sensors with their electrical interface
and the two compasses.

6The opcode was arbitrarily chosen.

Figure 3-17: Navigation Box Front Panel

3.6.1 Power Considerations

In the design of the NAVunit, the power consumption of the unit was very important
since in the design of a portable system it determines how long the system can be used
without being recharged. The approximate power consumption of the components
used in the Navigation Unit is shown in the following chart:

Component Power
(mW)

GPS CM receiver 1500
Compasses (2) 500
MCU and Peripherals 500
A/D (2) 300
Tilt Sensors 100
Total Power Dissipation 2900

Since many of these are approximate ratings and measured when the system was
quiescent, a conservative estimate of the energy dissipation of the unit can be made
to be approximately 0.25 amps. As mentioned in the earlier section, because the
A/D converters require additional supply voltages of ±12V, a triple-output DC/DC
switching regulator is needed. This was the primary reason a 12V battery was chosen
to power the system since it is more efficient to step down in voltage than to step up
voltages. A DATEL TWR-5/1000-12/210-D12 DC/DC power converter was used to
provide 5V and ±12V at 81% efficiency resulting in a total draw of approximately
0.3 amps.

RESET OFF/ON

DB25 Female DB25 Male

SENSOR PORT I/O PORT

This amout of current is more than can safely be delivered by the SPARCbook 2
ethernet port, necessitating the need for a separate power source. Experience with the
SPARCbook 2 demonstrated that at best, the computer could only operate 2 hours off
its batteries. One could have included a separate power supply for the SPARCbook 2
in the Navigation Unit as well, however that would have violated abstraction barriers
and destroyed the modularity of the design. In the end, a separate battery only
for the Navigation Unit was decided upon. Using the very generous approximation
for energy dissipation from above, a 12V 1.2 Amp-hour battery was chosen on the
assumption that it should be able to power the system for about 4 hours reliably
before the necessitating a recharge. Considering that the lifespan of the SPARCbook
2 on battery power is typically only about 2 hours, this battery life for the navigation
unit is tolerable. The batteries are gel cel or sealed lead-acid batteries. These were
chosen instead of Nickel-Cadmium batteries due to the greater ease of recharging gel-
cel and lead-acid batteries. In addition, the interface of the digital circuitry to the
battery was much more simpler as well.

Chapter 4

Enhanced-Reality API

The hardware aspects of an enhanced-reality system was discussed in the previous
chapter. In this chapter, we will discuss the design and development of a software
interface to the system. In the design of the interface, two primary considerations
needed to be dealt with. First, we wanted an interface capable of simultaneously
distributing position and orientation information from the navigation unit to an un-
limited number of application programs. Second, each application program should
be able to run independently and asynchronously of all the others.

In dealing with the two questions, we need to take into consideration that the
computing engine has only one input port. As a result, the multiplexing of the infor-
mation from the unit to many processes must be performed in software. Since most
serial line drivers allow only one user to connect to it at a time, information is instead
stored in buffers accessible by other programs. Questions involving the distribution
of limited resources among several users are typically dealt with by multithreaded
servers. Multithreaded servers are programs or processes that service many clients
by creating new server instances or threads upon detection of connection requests. A
daemon process is responsible for handling client requests while the new threads are
responsible for actually servicing the clients. Multithreaded servers are different from
single threaded servers in that single threaded servers handle only one client request
at a time and in sequential order. Since one of our design constraints was the ability
to run clients asynchronously and independently, a single threaded server model was
ruled out.

Using a multithreaded server model, we were able to develop an interface which
distributed information received from the navigation unit to several client application
programs. In addition, a multithreaded server model is used for distributing differen-
tial corrections to local receivers. By using a multithreaded server as the data link,
we are able to distribute corrections to an unlimited number of differentially capable
GPS receivers, allowing greater positioning precision.

The basic algorithm for both servers follows essentially the same format. The
differences lie mainly in the type of processing the main parent programs does and
the type of services the client programs want performed. Both programs require
the distribution of information from limited resources: the navigation unit and the
reference base station. In addition, they both use the same techniques for shared-

memory allocation. For network information distribution, they spawn one or more
child processes that behave as daemon processes whose purpose is to detect connection
requests by hopeful clients. The number of processes that were forked off depends on
the number of different types of services that each server provides. Upon detection
of a client request, the daemon processes spawn other processes that are responsible
for servicing the client requests. Meanwhile, the original processes are independently
processing data that will eventually be used by the client programs. In the remainder
of the chapter, we will first discuss the algorithm used by both servers and then
we will go into details regarding the differences between the two programs. This
discussion will assume that the user has some familiarity with network systems and
the UNIX operating system. If the reader is unfamiliar with either one, see Stevens'
Unix Network Programming [40] for more information.

4.1 Network Communication

Before plunging into the hairy implementation details of the software interface for
the navigation unit and differential reference station, we will discuss briefly network
communication. By network, we are referring to a communication system which
connects two or more computers. This is essential to our server programs since these
networks provide the means that will enable us to broadcast differential corrections
from the reference base station that is connected to our central computer to the
navigation units that are connected to the portable computers. In addition, the
same protocols that enable two computers to communicate to one another enable two
processes to communicate to one another, whether the processes are on two separate
computers or on a single multitasking machine.

Networks are typically described by the International Standards Organization
(ISO) open systems interconnection (OSI) model. This model divides the network
protocol into seven layers to allow modular development as well as better abstraction
for each layer. The seven layers are shown in Table 4.1 [40, 3]. For most of our
applications, the first two layers, which constitute the hardware interface, will be
utilizing an ethernet interface. However, we will also be utilizing PPP, a protocol
using a serial line connection as the data link layer, when communicating to the
mobile units. The network layer protocol used is the Internet Protocol (IP) which
is responsible for routing datagrams from one machine to the other. However, it is
an unreliable and connectionless protocol. If there is an error in the delivery of a
datagram, the datagram is discarded, relying on the higher layers in the OSI model
to perform error recovery. It should be noted that IP is not the only protocol used
for the network layer, but in the implementation of our servers, this is the protocol
that is used.

IP is the network layer for protocols utilizing TCP and UDP as the transport
layers. Transmission Control Protocol (TCP) is a connection oriented protocol that
provides reliable ordered delivery of messages. User Datagram Protocol (UDP), on the
other hand, is connectionless and therefore less reliable than TCP. UDP is different
from IP in that it has port numbers and has an optional checksum verification of

Table 4.1: The OSI 7-Layer Network Model

the message. UDP is used when delivery speed of messages is more important than
having the data actually arrive. TCP is slightly slower than UDP due to the overhead
needed for keeping track of messages and for recovery from lost datagrams. TCP is
used for long lived network connections where ordered delivery of packets is required
while UDP is used for applications with repeated short operations [38, page 10]. Both
protocols utilize port numbers which allows more than one communication link to use
TCP or UDP at a time. The port numbers are essentially addresses which help the
protocols resolve where to deliver data, allowing more than one process to send data
at a time to different addresses.

The remaining three layers in the seven layer OSI model do not really concern us
here. They are used for standardizing session management, data presentation and
various application programs that should be able to run using the described network
protocol. We are more concerned with the actual transfer of data among different
processes using the transport layer. For our servers, we used TCP over UDP because
of TCP's more reliable system which guaranteed delivery of messages. UDP users, on
the other hand, have to check for themselves if the message arrives. Although UDP is
faster, we were concerned more with the reliable delivery of data packets than in the
speed of the delivery since data was typically only ready to be delivered once every
0.6 seconds due to the current GPS sampling rate. In addition, since we are using a
binary packet protocol in sending TSIP packets, if a few bytes were lost, the entire
message would become invalidated.

Although there are more than one application program interfaces to TCP/IP, we
used Berkeley sockets for the simple reason that the author is more familiar with them
than other API. Utilizing TCP/IP protocol, we implemented our servers. The main
procedure in both programs forks off child processes for each different type of service
we want to offer in each server. Each of the child services behaves as a daemon
process since it runs in the background listening to connections on sockets that it
opened. It is important to remember that the server must first initialize the socket
and be listening for requests before a client program can connect to it. Since we
are using TCP/IP protocol we must specify that we are using full-duplex connection
oriented streams. Once the sockets have been established, the daemon processes,
upon detection of a request, make new copies of the sockets that were being listened

Layer Name
7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

on, fork children processes that close the original sockets and then proceed to service
the client requests. (See Figure 4-1.) The original socket is closed in the child process
since its purpose is to listen for connections and therefore, the child process has no
need for it anymore. The child process will use the new socket created for data
transfer.

In some implementations, daemon processes block until a connection has been
made on the listening socket. However, we utilized a no-wait implementation in or-
der to prevent the creation of zombie processes. Zombie processes are processes that
have terminated but whose parents did not wait for them. Although the resources
associated with such processes have been released by the kernel, the exit status and
process ID's are still retained in order to inform the parent of the child's exit status.
If the daemon processes blocked until a client connection request was detected and
one of the child processes spawned to service a previous request had died, the ter-
minated process exit status will remain in kernel memory until a new client requests
a connection. Because we can have any number of clients', we can also have any
number of clients all terminating before another client requests service. The termi-
na.ted clients will then be consuming kernel memory. Therefore, to circumvent such
a problem from occurring, we utilized the select system call rather than do our own
polling of the socket which could waste resources. With the select system call, the
program waits until the socket's file descriptor is ready for reading which indicates
that a client connection request has been received by the system and returns setting
a bit that indicates the socket is ready to be read. After one second of waiting, the
select system call returns without setting any indicators.

4.2 Interprocess Communication

Sockets are a form of interprocess communication (IPC) that allow the exchange
of information between processes, whether the processes are on a single computer
system or on two or more computer systems. In order to implement our servers,
we needed to utilize other forms of IPC's to allow the sharing of information from
a single resource among several processes. For both the navigation unit and the
reference station, the single resource consists of data arriving over a single serial
line port. We need some means of distributing the data from this single source to
many users. Sockets provided us the means to transport the data from the daemon
processes to the client programs. However, the child programs, which actually service
the clients, need a means of obtaining the information from the main parent process
which has exclusive access to the serial line, first. One method would have the parent
process make a copy of the original data for each grandchild process. However, this is
rather slow and inefficient due to the extra copying time and extra memory involved.
We decided that the optimal method would be through the use of shared-memory
buffers. The information from the serial line is stored, either the raw data or after

1The number of clients is limited by TCP/IP protocol in how many unique addresses can be
generated for each client.

Figure 4-1: Basic Multi-Service Multithreaded Server Model

some reformatting, in a shared-memory buffer. Shared-memory allows more than one
process to access a common buffer if the processes have the proper shared-memory
keys. However, when more than one process share a common resource, we have to
deal with problems of synchronizing access to the memory buffers. We require some
means of preventing one process from writing, and possibly corrupting data, into a
buffer while other processes are reading from it. This synchronization can be done
on UNIX systems with semaphores.

Semaphores are synchronization primitives whose values are stored in the kernel.
Operations on the semaphore are atomic operations which perform several instruc-
tions as single operations, thereby avoiding race conditions which could arise if an
interrupt occurred between operations. Before storing data into a buffer, the writing
process waits until it receives a signal indicating that no client is currently reading
from the buffer. This is done by locking a read-in-progress semaphore. As soon as
the process that is trying to write detects the read-in-progress semaphore is unlocked,
it sets a write-in-progress semaphore, effectively locking other processes from reading
the possibly corrupted file. This operation must be done in the same system call oth-
erwise a race condition can occur. Such a condition would result if the reading lock
had released the lock and then locked the file again before the writing process detected
the second lock who would then proceed writing to the buffer. However, since the
detection of the release and the locking were done in one atomic operation, there is no
room for the reading process to possibly access data that is being written to. Once the
writing process is finished writing to the buffer, it decrements the write-in-progress
semaphore, effectively unlocking the memory. The reverse is true for the reading
process. Locking of semaphores is performed by incrementing the semaphore value.
Access would be denied to a buffer until the semaphore value is set to zero. Unlocking
would consist of decrementing the semaphore value. By using two semaphores, one
for reading and one for writing and locking/unlocking each respectively, we allow for
multiple processes to read simultaneously from the same buffer. Reads are allowed
once the write-in-progress semaphore has been decremented to zero. Writes, on the
other hand, are not allowed until all the reading processes, which had incremented the
read-in-progress semaphore once they detected the write-in-progress was released, are
done and have each decremented the read-in-progress semaphore once again. Each
reading client process use the same read-in-progress semaphore.

For accessing the shared memory buffers for both server programs, we only permit
one process, the master process, to write to the buffer. However, that is not to say
that every server can only allow one process to write. For our servers, only one process
can communicate from the navigation unit and reference station at a time. However,
for the navigation unit, we also would like the ability to have more than one process
communicating to the server in order to request client specific information. This is
done by using another semaphore which prevents writes until its value has reached
zero. Once a writing process detects that the semaphore has been released by another
process, it simultaneously increments the semaphore again to prevent other writing
processes from gaining control of the lock.

In addition to ensuring that data is delivered uncorrupted, another important
consideration in multithreaded servers is the avoidance of deadlock or a livelock con-

dition that may arise as a result of improperly locking and unlocking semaphores. In
cases where two processes are trying to access a resource whose access is controlled
by semaphores, deadlock can arise if both processes believe the resource is locked
resulting in both processes blocking and not proceeding and the resource never being
unlocked. In the case of livelock, one process monopolizes the resource never prop-
erly signalling the other process that it is done reading resulting in the other process
blocking. For more than two processes, deadlock and livelock can occur from the
same conditions as described above. In addition, one must make sure that each client
gets the data and that not only one process is consuming all the resources. However,
given our design constraints that each client process can run asynchronously from one
another and the master process and can connect and disconnect asynchronously, our
algorithm is further complicated.

The master process must ensure that each client process receives a copy of the
information in the buffer before it overwrites it.2 As a result, we need to keep track
of the total number of clients connected at any given time on the server side and
the currency of the data on the client side. This was done through the use of two
semaphores - one for keeping track of the clients and for keeping track of the data.

We must make sure each client reads the buffer only once otherwise one client
can utilize all the resources of a server or read the same information more than once.
Although this may not seem to be too much of a problem for clients using server
connected to the NAVunit, for clients of the reference station server this could cause
errors since many differentially capable GPS receivers perform a frame sequence check
on the RTCM SC-104 messages received (see Section 2.5.1.1). The current-data-stored
semaphore's value was incremented each time a new message was stored in the buffer.
The client programs kept track of the last message read's value and compare its value
with the current-data-stored semaphore value of the memory buffer when the write-
in-progress semaphore is released. Only if the two values are different will the client
process read the data.

To keep track of the current number of clients connected is a bit more complicated
since clients can connect and disconnect asynchronously. For a newly connected client
to lose some information on startup is tolerable. However, if a client disconnects while
the server were distributing information among its clients, the server could end up
hanging waiting for a client that is no longer connected to read the information. To
solve this problem, the server loops, keeping track of the number of clients connected
through a client-count semaphore which is incremented each time a client connects.
The semaphore was initialized so that when a client disconnects, which causes its
associated server on the other end of the socket (the grandchild process) to exit as well,
the semaphore value is automatically decremented. The server loops until the reading-
clients semaphore is unlocked by all its clients. At the end of writing, the server sets

2By client process, we mean the process spawned by the daemon child process of the master
program. This process actually services the client request by giving information to the client that
it had copied from the parent process. Rather than referring to it as the grandchild process, we will
refer to it as the client process, although the client programs are completely separate and do not
need any information regarding the implementation details of the servers.

the reading-clients semaphore to equal the number of clients currently attached. As
each client finishes reading only new data, reading-clients is decremented. However,
because of the possibility of a client disconnecting during this loop, and therefore
making the reading-clients semaphore invalid, in the loop, we keep track of the number
of clients connected. If the current number of clients connected differs from the
old number of clients connected, we change reading-clients semaphore value by the
difference whether positive (meaning new clients have added) or negative (a client
has died). In addition, during this loop, we must lock the reading-clients semaphore
from being changed by a client process. This is done by waiting until the read-
in-progress semaphore is unlocked and then setting the write-in-progress semaphore.
Even though no writes to the memory buffer is occurring, this effectively blocks client
programs from changing the reading-clients semaphore which is done after every read.
The write-in-progress semaphore is unlocked after the comparison in order to allow
clients still waiting to read the memory buffer to do so. At the end of the loop, the
server finally writes to memory after double checking that no reads are occurring and
the number of clients waiting for data is zero.

4.3 Reference Server

A Trimble 4000 RL II differential reference base station is connected to the central
computer. The 4000 RL II transmits RTCM SC-104 message types 1, 2, 3, 6, and
16, computing corrections using purely C/A code algorithm at an update rate of
approximately once every 0.6 seconds. The corrections are transmitted over an RS-
232-C serial line to the computer at 9600 baud. These corrections are distributed via
a multithreaded Reference Server that runs on a server computer, named alfalfa, in
our AT&T Holmdel lab. A DGPS reference station with an antenna on the roof of the
AT&T Holmdel building is connected to this computer via a tty line. provides a means
of distributing information from the differential reference base station to numerous
users, without the necessity of transmission of corrections over radio frequencies.

The Reference Server creates two children processes. The main parent process
receives RTCM SC-104 Version 2.0 corrections over a serial line and broadcasts the
information over the network as either raw data bytes following the "6 of 8" protocol
discussed earlier or as TSIP packets. This is done by using two shared memory buffers,
one for each service, and semaphores for resource synchronization. The parent process
is responsible for reading information from the receiver, processing it and then storing
them in the appropriate format in both shared memory buffers.

The processing of the information by the parent process is complicated due to
the "6 of 8" protocol mentioned earlier. It essentially involves taking the message,
and decoding it bit by bit. The bit by bit parsing involves reading in a byte of
information, taking the six LSB and then byte swapping. This was necessary due
to the fact the RTCM SC-104 corrections were transmitted MSB first while ANSI
standards expect LSB first, resulting in swapped bits. As described in Section 2.5.1.1,
frame synchronization is achieved by searching for the preamble bit pattern, 0x66 or
its complement 0x99. The complement preamble pattern is also searched for in case

the last parity bit of the previous word was 1, because then all the bits of the current
word, except the parity bits but including the preamble, were complemented before
transmission by the reference station. To recover the raw data, the bits have to be
complemented. Once the first two words of the frame are recovered, providing us with
message type, station identification, Z-count, sequence number, length of message and
health, a parity check is performed for verification. In addition, the sequence number
of the second word is also checked. Once verification has passed, the rest of the
bits in the frame are parsed depending on message type. If the message is of Type
1, 2 or 93, which all follow the same message format, we parse the data using the
same complement and swap technique just described, and parse in the data bit-by-bit
into a byte format, leaving the reformatting into TSIP protocol for the grandchild
processes. If the message is Type 3, the parsing is simpler, since the message is of fixed
size (see Section 2.5.1.1). For message Type 6, the following byte, if any, is read in and
nothing is done since this is a filler message. Message Type 16 is ignored since it is
an ASCII message. All of the messages are stored in the TSIP shared-memory buffer
with the first two words decoded and the rest in byte format. The processing for the
raw RTCM SC-104 data service merely copies whatever has been transmitted by the
4000 RL-II into its shared-memory buffer. The parsing of the reference receiver data
for both services is done at the same time by storing information into two different
buffers.

The child processes forked by the parent process are daemon processes that han-
dle all incoming connection requests from client programs. When the child process
detects such a request, it spawns a new child process that will service the request
and continues to listen for connection requests over a TCP/IP socket. Meanwhile,
the spawned-off process waits until the first process completed saving information.
Utilizing the IPC techniques described in the previous section, the spawned off pro-
cess locks the shared-memory buffer until it finishes copying the data. When done, it
unlocks the buffer and signals the main process that it has read the data. When the
grandchild process completes copying the data, it then processes the information to
prepare for transmission.

The processing of data to be broadcast as raw RTCM SC-104 Version 2.0 data is
relatively straightforward since no formatting is required. It simply sends all the data
that it has copied from the shared memory buffer over the socket. The processing
required for the service that broadcasts corrections in TSIP format is a bit more
complicated. It essentially involves taking the decoded RTCM SC-104 message, and
reformatting it to the TSIP packet format shown in Table 4.3. However, the real
difficulty is the result of the fact that the TSIP format is for RTCM SC-104 Version
1.0 while the differential reference station broadcasts Version 2.0. Since we know the
difference between the two messages as described in Section 2.5.2, we take that into
account in the reformatting of the data. Once the data has been reformatted, it is
transmitted to the client programs via sockets.

3 Our receiver does not broadcast Type 9 messages, but since it is identical to Type 1 messages
in format, it does not cost us anything in terms of code length.

ID (hex)
60

61

The next

4+(N*5)
5+(N*5)
7+(N*5)
8+(N*5)

0
2

UDRE & SV PRN
PRC
RRC
IODE
Modified Z-count
Station Health

Byte
Word
Byte
Byte
Word
Byte

repeated for each SV

SV PRN Byte
Delta range correction Word

Table 4.2: TSIP Format of RTCM Corrections

4.4 Navigation Server

The Navigation Server is configured in a similar manner as the Reference Server except
that it is connected to the NAVunit and provides six types of services. It spawns six
child daemon processes, rather than just two. The parent process is responsible for
obtaining information from the NAVunit via a tty line and then parsing it into various
formats that will be stored into different shared-memory segments to be accessed by
client programs. In one service, all packets received from the unit are saved into a
shared-memory segment with the TSIP header and trailer removed. If the packet is
position information, i.e. ECEF or LLA coordinates or compass or tilt sensor readings,
the packet is again saved in another shared-memory buffer. If the information is time
data, it is stored in another shared-memory segment. For the Navigation Server, we
therefore need a total of three discrete shared-memory segments.

The semaphore operations necessary to prevent race conditions or corruption of
data for the Position Server buffer and TSIP packet buffer were described in the
previous section on semaphore synchronization. However, the semaphore used for
the time service is handled differently. The parent process waits until it can get a
lock on the shared-memory segment, which it can't if another time client is currently
accessing the data. As soon as the semaphore is unlocked, the parent process saves
the data into shared memory and then signals the time client that it is done saving.
In addition, packets are only saved into the time service shared-memory buffer if a
client is currently connected. This is done to insure that the time returned is when

Description Byte Item Type
Message Type 1 and 9 0 Modified Z-count Word

2 Station Health Byte
3 Number of SV's in Packet Byte

The next 5 bytes are repeated for each SV

Message Type 2

the user requested the information as opposed to old time data that was still residing
in the time service buffer.

The child processes forked by the Navigation Server are intermediate daemon pro-
cesses set up in a similar manner as the Reference Server. In and of themselves they
do not do any processing. Their main function is to listen for connection requests and
fork processes to service the requests. Five different sockets are established: TIME-
socket, POSsocket, DEMANDsocket, VIEWsocket, and CONTROLsocket. The pur-
pose of these sockets is described later. The child processes of the daemon processes
then operate on the data in the shared-memory segments.

4.4.1 Time Service

The time server routine generates a request for time information to the NAVunit.
Meanwhile, it opens up and attaches shared-memory segments that had been created
by the grandparent process. The server signals the grandparent process through a
semaphore that a client is waiting for data. The routine blocks until the grandparent
process signals that time data has been stored in a buffer. When the time server
(the grandchild process) receives the semaphore signal, it locks the data so that the
grandparent process cannot alter the data in case another client attaches, requesting
the time information. After copying the information, it unlocks the semaphore and
detaches, but does not remove the shared-memory segment. The copied data is
then reformatted from TSIP packets to an ASCII character string containing time of
day of week, day, month, date and year. The ASCII string is transmitted over the
TIMEsocket to the client program.

4.4.2 Position Service

The next service spawned by Navigation Server is a position server that spawns child
processes to provide position information. As described above, the parent process
stores position related information into the Position Service shared-memory buffer.
The XYZ coordinates are all in LLA coordinate system. We decided to use an LLA
coordinate system since more databases use LLA than ECEF. If the data from the
NAVunit was received in ECEF coordinates, we converted the measurements to LLA
using the formulae given in Section 2.6. However, as discussed earlier, the altitude
measurement is ellipsoidal height and not the height above mean-sea level (MSL).
Since the majority of map databases deal with altitude as MSL, we adjusted the al-
titude measurement with the geodetic undulation at the measured longitude latitude
position using the modified GEOID90 program discussed in Section 2.6. The modifi-
cations involved taking the critical FORTRAN subroutine and calling with the LLA
position coordinates. The resulting correction is then subtracted from the geodetic
height and transmitted with the longitude and latitude coordinates as the altitude
information.

If the information was compass data, we calculate the angle from the transmitted
parameters as described in Section 3.3.1. However, this information is slightly skewed
due to the nature of the Earth's magnetic field. We correct this error by calculating

the magnetic declination at a given position and time of year using subroutines from
the GEOMAG program described in Section 3.3.1. The declination is then added
to the calculated azimuth. The elevation and roll angles are calculated according to
formulas given in Section 3.3.2. The user's LLA position and orientation angles are
transmitted to client programs over the POSsocket.

4.4.3 Demand Service

The Demand Service is a service which behaves the same as the Position Service.
However, the difference between the two services rests in the fact that demand service
only outputs information after receiving a request from the client program for data.
It also utilizes the Position Service shared-memory buffer. However, communication
is done over the DEMANDsocket.

4.4.4 View Service

The View Service broadcasts all the information that the navigation unit is currently
outputting over the VIEWsocket. It utilizes the TSIP shared-memory buffer and
follows the semaphore conventions required by it. Clients that connect to this port
do so on a purely voyeuristic basis. The clients reformat TSIP packets into user-
friendly ASCII messages. No communication from the client to the navigation unit
is possible through this service.

4.4.5 Control Service

The Control Service behaves in a similar fashion as the View Service with one impor-
tant exception; clients connected to the Control Service can communicate with the
navigation unit over the CONTROLsocket. Using as a client a modified version of
PKTMON, a program distributed by Trimble Navigation, Inc., to interface with their
equipment, we can send commands to the navigation unit, specifically the GPS re-
ceiver, since none of the other components in the unit can receive input. In addition,
clients have access to all the information that the View Service clients have access to
since it also utilizes the TSIP shared-memory buffer.

Clients connected to the Control Service have access to most of the information
that was described in Section 2. Besides position, velocity and time (PVT) informa-
tion, clients can access ephemeris, almanac, ionospheric correction coefficients, and
other data in the navigation message by request.

4.4.6 DGPS client

The last child process that is spawned off by the server is not a service, but is a
client to another server program. This process is a client to the Reference Server that
receives differential corrections over the DGPSsocket in TSIP format to the NAVunit.
The navigation unit in turn then transmits the information to the GPS receiver.

4.5 Interfacing Mobile Navigation Units to the
Network

Therefore, our reference server, running on our server computer alfalfa and using
the GPS reference station and antenna on the Holmdel roof can broadcast differential-
corrections to mobile and stationary GPS receivers on the Internet network via the
navigation server. The applicability of the corrections is determined by the GPS
satellite orbit since the reference as well as the mobile solutions should be tracking
the same satellites for differential-corrections to be of use. In addition, the software
supporting programs on the mobile units is also written using server/client models
in which the server program continuously broadcasts position information from the
NAVunit over the network. Thus, the central computer and/or other mobile units
can obtain the spatial information of any other unit and track it as demonstrated in
Figure 4-2, where alfalfa is broadcasting corrections while simultaneously receiving
spatial information from amalfi and amadeus, two SPARCbooks each with its own
NAVunit.

The link supporting communications between the mobile unit and the central com-
puter is a cellular line over which Morning Star's PPP is installed. Using Motorola's
MicroTacLite and CellularConnection modem, we established a serial link with our
central computer over a modem. Once the connection has been established, we ini-
tialize PPP, which allows the transmission of data using IP protocols over serial lines.
This cellular connection is used not only for broadcasting differential corrections but
also for broadcasting the mobile unit's position. If there comes a time when civilian
GPS has achieved an accuracy such that differential corrections are no longer needed
to be broadcast, the cellular line can serve further uses such as for communicating
between units and possibly as a communication link for database access.

amalfi
Navigation Server

amadeus
Navigation Server

Ad

ETHERNET

alfalfa
console

4

Figure 4-2: Networked Mobile Navigation Units

hmmim/r611111111111110d

Chapter 5

Display Software

The enhanced-reality system's ability to display 3D spatial information as opposed
to merely two dimensional data based on longitude-latitude-altitude (LLA) coor-
dinates distinguishes this system from other "personal navigators" currently under
development'. To achieve this, two 3D graphics libraries were developed - one based
on the SPOTlight Graphics SPOTlib library [37] and the other using the SCULPT
modeling tools developed by Bruce Naylor of AT&T Bell Laboratories [28]. In ad-
dition to these two libraries, some programs were developed using the X Window
Systems Xlib drawing package for rendering line drawings. The programs developed
using these graphics libraries were clients to the navigation server discussed in the
previous chapter, and therefore utilized the six parameters from POSservice to update
the viewer's vantage point accordingly. Using the client/server abstraction discussed
previously, we were able to develop the graphical interface separate from the API
developed in the previous section. This chapter provides a brief overview of the
SPOTlib and SCULPT graphics libraries. For more information regarding Xlib, the
reader is referred to the O'Reilly and Associates manuals on X11 and X Windows
programming [30] and [31].

5.1 SPOTlib Graphics Library

The SPOTlib graphics library uses a z-buffer or depth-buffer algorithm for rendering
images. (See Foley, van Dam, Feiner, and Hughes[5][pages 668-672) for details on
this algorithm.) Given a list of objects, represented as a set of polygons, and their
locations in a scene, a photographic quality image of the desired scene is generated.
In addition to polygons, lines and points can also be rendered using the z-buffer
algorithm. Each pixel of the image is represented by 4 floating-point numbers where
the first 3 numbers are the intensities of the red, green and blue components of the

1AT&T, GO, PenStuff and Trimble Navigation recently announced the development of the Pen-
Point Global Positioning System [21]. CMU is extending its VuMan portable computing project to a
navigation project called Navigator that will use GPS positioning information to do some navigation
programs [35].

image and the last number represents the alpha channel.2 Images are updated by
performing a series of transformations on the original polygonal representation of the
objects in a scene, rendering the image representation and then displaying it. The
polygon representation of a scene was scene dependent and must be done beforehand.
The real-time rendering of the image was handled by SPOTlib graphics commands.
Once rendered, we now need to display the image.

5.1.1 Problems in Displaying Full Color Images on Frame
Buffer Displays

A difficulty encountered in displaying the images produced by the SPOTlib graphics
package was that the images were in full 24-bit color format. To display a raw full color
digitized image, typically 24 bits are used for each pixel where each color component
is quantized to 8 bits. Therefore, such an image has the potential of containing
2' x 28 x 28 unique colors or approximately 16 million colors. This high intensity
resolution results in the generation of realistic color images. However, the color
displays generally available on notebook computers utilize, at best, an 8-bit frame
buffer. Frame buffers can be considered lookup tables that contain the intensity levels
for the three color components of any 256 colors out of the possible combination of 16
million. Thus, in order to display full color images on 8-bit frame buffer displays, a
method to fairly map 16 million colors down to 256 in a manner that will still preserve
much of the information from the original image needed to be developed.

One solution that has been proposed and is quite popular was one based on an
image dependent colormap. Heckbert [11] presents a method which is based upon
the median cut algorithm, a modification of the popularity algorithm. The median
cut algorithm calculates the maximum and minimum color component values of the
image, and then divides the colormap along the median color component value creat-
ing two "sub-bins". This step is repeated for each sub-bin until the desired number
of colors are generated. However, in order to calculate this median color a histogram
of the color distribution must be made first. Although this method tends to produce
very good results, it is computationally expensive and, perhaps more seriously, im-
age dependent. Since the image generated for each frame does not necessarily have
the same color distributions, the histogram of color distributions would need to be
calculated at the start of each frame, thereby slowing the update rate considerably.
Therefore, we decided that better methods for dynamic full color reproduction of
images would be those that are image independent. This in turn led us to decide that
the best colormap to use would be one that is image independent such that if reading
in more than one full color image (as would be the case in generating a sequence
of video frames), one would not have to recompute the entire colormap for the new
image since allocating the colormap would add extra delays to our display system.
Thus, in order to do dynamic display of full color images, we felt that it would be
most efficient to use a static colormap that would be computed and loaded once at
runtime.

2For our application, we ignore the alpha channel.

5.1.2 Colormap

In deciding a colormap selection strategy, one of our main design criterion, besides
being image independent, was that it should be computationally simple to map a 24
bit color value to its equivalent frame buffer value. As a result, we implemented a
pseudostandard XStandardRGBColormap where the index to the frame buffer location
provided information about the color in the bin. Thus, since the values that are stored
in the color map are known a priori, we can generate the index based on the 24 bit
pixel value. In standard XStandardRGBColormap, typically the first 3 bits of the color
map index is the red component, the next 3 is the green component and the last 2
represent the blue component. Effectively, this will quantize 256 gradations of red
and green intensities down to 8 gradation levels and 256 levels of blue down to 4
levels. The blue channel was roughly quantized as compared to the red and green
components since the human eye is typically less sensitive to variations in the blue
channel spectrum. This choice of quantization levels leads to a total of 256 colors.

However, we are using a pseudostandard colormap because we are using less than
the full 256 available colors in order to enable users to run other color programs
simultaneously with our enhanced reality system application programs. Therefore, in
our implementation, we have the option of using only 2 bits/pixel for each channel
or 1 bit/pixel, leading to a total palette of 64 or 8 colors respectively for the graphics
library programs to utilize.

The formulae used for generating an index into the color map were:

00|rrlggjbb n = 2
color table index = 00rrjggjbb n = 2 (5.1)

0000Orjgb n = 1

where each position represents its bit location with MSB first.
We now have to set decision and quantization levels before generating the col-

ormap, i.e. we must decide what value a red component value quantized to 3 should
be reconstructed as. However, this in turn will depend heavily on which method we
implement to do our image reproduction since different techniques require different
quantization reconstruction values.

5.1.3 Halftoning

Dithering can improve the image quality by redistributing much of the low frequency
noise due to quantization error to the higher, less visually disturbing, frequencies.
After halftoning, the low frequency components of the quantization error are of much
lower amplitudes. The low frequency components also depend on the number of in-
tensity levels being used. Based on experiments with various halftoning techniques,
we decided that the optimal halftoning method for our particular application would
be one utilizing a dispersed dot ordered dither. This was based on two prime con-
siderations - ease of computation and perceived distortion. Although other methods
exist that provide better perceptual results, i.e. Heckbert's median cut algorithm
and Floyd-Steinberg Error Diffusion algorithm, they require a large amount of com-
putational time. There are also faster techniques than a dispersed-dot ordered dither,

such as uniform quantization and Robert's Pseudo Random Noise technique, however,
the halftoned images are not as perceptually pleasing due to the false contours and
graininess appearing in the new image. Since the dispersed-dot ordered dither tech-
nique was a pixel-by-pixel operation that distributed noise into the less perceptually
disturbing high frequencies, it was selected.

5.1.3.1 Dispersed-Dot Ordered Dither

For monochrome images, if the image value is less than the threshold array, a value of
0 is given to the pixel. If the value is greater than the pixel, a value of 1 (or the highest
representable intensity value) is displayed. A mathematical formulae describing this
mapping is:

f (ni,n 2) = intf(n, n 2) + D(ni, n 2)} (5.2)

where D(ni, n2) is the dither signal consisting of the threshold array values [41][pp.
340-341].

However, this is only true if the desired output format is for binary displays.
Suppose we wish to halftone an image onto an M-ary display where M represents the
number of levels we wish to represent. Ulichney [41] demonstrates that this could be
done by modifying Equation 5.2 to:

fM(ni, n2) = - i nt{(2M - 1)f(ni, n 2)+ D(ni, n 2)} (5.3)
2M - 1

for an M-bit display with 2M colors. This algorithm assumes that the the user's
output level contains 0 and 1, with 1 being the maximum value, and the remaining
2M - 1 levels equitably distributed in between. Because our displays map minimum
and maximum intensity values to integers between 0 and 255, while Equation 5.3
assumes that all values are between 0 and 1, input pixel values were first scaled down
by 255 before processing and then rescaled up by 255 after processing.

Having decided on the quantization and reconstruction levels, we needed to select
the order of the threshold array. Therefore, we also experimented with various orders
to see which would be optimal for the images we were displaying on our computing
platforms. If the order of the threshold array is too small, false contours occur. If
too large, texture patterns are generated in areas of slowly varying luminance. With
most images, a threshold array of order seven should be used. However, because
our system deals with synthetic images, consisting of many smooth polygon surfaces,
as opposed to digitized "real" ones, a threshold array of order seven generated too
much texture artifacts on surfaces that should appear smooth. For a threshold of
order three, too many false contours were now being generated. We selected odd
period orders since even order arrays produced horizontal and vertical artifacts to
which the human eye is sensitive [41][page 84]. Using a threshold array of order five
appeared to provide the least amount of distortion for synthesized images. Therefore,
each image generated by the SPOTlib graphics library was dithered with a fifth order
threshold array according to Equation 5.3 before being displayed since it provided a
perceptually pleasing image at a low computational cost. The threshold array used

was one specified in [41][p. 135] and is included in the Appendix A.

5.2 SCULPT

The ability to render 3D images in real-time was a feature desired by our system. In
SPOTlib, this performance criterion was not met due to the computational complex-
ity level of rendering a z-buffered image is quite high mostly due to overhead from the
scan-conversion of the polygons and a per pixel comparison operation for the sorting
[5][p. 671]. In addition, the need to dither every frame generated further reduced per-
formance by an additional O(n 2) operations for n x n images. To solve this problem,
for applications in which realism was not as an important consideration as rendering
speed, we utilized the sculpt graphics toolkit developed by Bruce Naylor of AT&T
Bell Laboratories.

sculpt is an interactive program that allows the user to interact with models of
3D objects in real-time. This is done using binary space partitioning (BSP) tree rep-
resentations of objects rather than the traditional boundary representation (BREP).
The BSP tree representation of an object is a continuous space representation that
is scene-independent. In the partitioning tree, regions (the faces of the object) are
segmented into areas of uniform texture. An algorithm described by Thibault and
Naylor [47] converts the BREP of an object to its BSP tree representation. The BSP
tree representation of the object is operated on when updating the user's viewport
and then displayed. By using bsp trees, we manipulate regions or faces rather than
individual points, allowing the manipulation of models of 3D objects in real-time.
Segmentation occurs a priori to the rendering and display of the object, thereby,
negating the overhead of converting BREP to BSP representations. For more details
on BSP trees see [47] or [5][pp. 675-680].

In order to use the sculpt package, the boundary representation of an object has
to have been processed previously to generate the BSP tree representation. The BSP
tree representation, that was stored as an ASCII file, is then loaded upon startup.
Once loaded, various manipulations on the object can be done. Since BSP trees can
be manipulated as sets, operations with other BSP tree objects are possible such as
merging and subtracting. The object created as a result of the operation can then be
saved as a new BSP tree object. Other operations that can be done to the object is
changing various attributes such as its color, how it was rendered and and how it was
shaded. However, for our purposes, the most important operation that can be done to
the object is the ability to alter an object's orientation in space. In Naylor's original
implementation, the object's position is controlled by tracking the mouse position to
control rotation and pressing the mouse buttons for zooming in and out. In addition,
the viewer's viewpoint and the object's translational position can be changed by using
menu options and the mouse. To work with our system, we altered the program to
also accept inputs from the navigation unit. The object's rotation angles were then
also controlled by the azimuth, elevation and roll angles of the NAVunit.

Chapter 6

Experimental Results

The first five chapters have discussed the implementation of the hardware and software
needed in an enhanced-reality system. Before our system can be used, a few details
still need to be considered. Primarily, we still need to measure the accuracy of our
GPS receiver to determine if its errors are within our error tolerances. To do this we
ran several experiments. The nature of these experiments are to take a large set of
samples from the receiver positioned at a fixed point. One set of our sample data is
shown in Figure 6-1 taken October 23-24, 1992 (GPS Week 667). From this data,
in which a stationary point was measured, the samples fluctuated more than three
hundred meters from its mean. This error was not tolerable for our prototype system
which required errors of standard deviation of less than ten meters. As a result of our
initial experiments at the start of the project, we realized that differential corrections
were needed to meet the accuracy requirements of our system.

As mentioned in Chapter 2, differential corrections are, at best, only as accurate
as the base station's reference position. If the reference position of the base station
is offset by any amount, the mobile receiver's differentially calculated positions will
also contain this systematic error regardless of the receiver's accuracy. As a result,
determining the initial position of the antenna of the reference station is critical to
the accuracy of the system. We had a choice of either paying a professional to survey
the site for us, using a topological map to estimate the receiver's position or relying
on data gathered from a GPS receiver to calculate the mean position. The latter
was decided upon since it seemed to be an economically feasible solution that would
provide fairly accurate results.

6.1 Data Analysis

Over a period of 7 weeks, approximately 1.25 million sample points were collected.
The sample sets were taken over periods of about 24 hours at a sampling rate of
approximately once per second. Position fixes were generated by the receiver at a
rate of once every 0.6 seconds. Samples obtained when less than 4 pseudorange
measurements were used for the navigation solution were excluded. Based on exper-
imental observation, using less than 4 satellites to calculate the user's 3D position

XYZ Coordinates Normalized by Means -- Week 667 Thurs-Fri

ci,
I.-
U

Start: 19:47:19.219 Stop: 21:15:5-3.6 104316 samples x 104

Figure 6-1: Non-corrected GPS Measurements Taken at the Holmdel Building Roof

rn~

resulted in data that fluctuated, on average, more than three standard deviations
from the expected values. Figure 6-2 displays raw data collected and normalized
by its means with all three ECEF coordinates superimposed. The data was taken
September 20, 1992. Figure 6-3 displays the number of satellites used for the posi-
tioning. One notices that there is a direct correlation between how noisy the data is
to the number of satellites used. Removing samples that were calculated using only
3 satellites in the solution resulted in cleaner data as shown in Figure 6-4.1

Figure 6-5 displays the number of visible overhead satellites during each fix for
a sample data set collected November 18-19, 1993. The number of satellites are
centered about 6 with the maximum number of satellites being 8 and the minimum
4.2 From Figure 6-5, one sees that the data fluctuated least when there were the
greatest number of satellites visible. Also, by examining the corresponding PDOPs,
we also notice that the PDOPs tend to be the lowest when there are the greatest
number of overhead satellites. Figure 6-6 displays the inverse PDOP as a function of
time. These observations are consistent with what we expected since a larger number
of visible satellites results in more of a choice for the receiver when selecting the four
satellite combination that will produce the lowest PDOP.

For determining the position of the reference station's antenna, we utilized a
6-Channel Boardset receiver since this was the only type of receiver that we had
available at the time. The raw data was collected using our program gather which
communicated directly to the receiver in TSIP, requesting position fixes in addition to
the calculated DOPs associated with each measurement, and the number of overhead
satellites during the fix. The receiver's operating parameters were configured before
each run to be in stationary mode producing only 3D3 double precision fixes in ECEF
coordinates. This data was converted from TSIP format and then written into three
output files compatible with MATLAB input format [19]. The first file consisted of
the three double precision position ECEF coordinates calculated by the receiver. The
next file is a list of the corresponding PDOPs for each measurement. The last file
contained the number of satellites that were visible for each fix. This file was used to
view the accuracy of the position fix as a function of the number of visible satellites
as was shown in Figure 6-5.

The three files were loaded into MATLAB for processing. The three position pa-
rameters were independently processed and averaged by the total number of samples.
An example data set is shown in Figure 6-7 taken during January 14-15, 1993 (GPS
Week 679) with a total of 138, 223 samples. The calculated mean positions were The
standard deviations were o,, = 23.7, aU = 45.6 and ao = 41.5. To smooth data, we
removed any outliers of sample points that were greater than three standard devia-
tions away from the calculated mean. Using the same sample set shown in Figure 6-7,
Figure 6-8 shows the same data with outliers removed leaving in 134, 507 samples.

Rather than using a simple average, a weighted average of the sample points

1This set of data was not used in the calculation of the final position due to the use of 3 satellites
in some of the fixes. The Trimble receivers have the capability of defaulting to 2-D position fixes if
the overhead satellite configuration does not allow for 3-D positioning.

2The receiver was configured to do Manual 3D fixes, that is, producing a solution only when

XYZ Coordinates Normalized by Means -- Week 663 Sunday

Cd

0 1 2 3 4 5 6 7 8 9
Start: 5:12:30.625 Stop: 21:32:18.305 90405 samples x 104

Figure 6-2: Effects of Number of Satellites on the Navigation Solution

Satellites Used for Positioning

0 1 2 3 4 5 6 7 8 9
Start: 5:12:30.625 Stop: 21:32:18.305 90405 samples x 104

Figure 6-3: Number of Satellites Used for Positioning

XYZ Coordinates Normalized by Means (4 Sats Only) -- Week 663 Sunday

0 1 2 3 4 5 6 7
Start: 5:12:30.625 Stop: 21:32:18.305 78621 samples x 104

Figure 6-4: Position Fixes with Samples Taken with 3 Satellites Removed

XYZ Coordinates Normalized by Means -- Week 671 Wed-Thurs

Cd,
1~

Start: 16:35:01.156 Stop: 19:12:12.719 110622 samples x 10o

Figure 6-5: Effects of Number of Visible Satellites on Position Precision

4

Original Weight Matrix -- Week 671 Wed-Thurs

Start: 16:35:01.156 Stop: 19:12:12.719 110622 samples

Weight Matrix (Outliers Removed) -- Week 671 Wed-Thurs

0 2 4 6 8
Start: 16:35:01.156 Stop: 19:12:12.719 107250 samples

Figure 6-6: Effects of Number of Visible Satellites on PDOP

x 104

10

x 104

0.

0.

0.

0.

C,,
I.

XYZ Coordinates Normalized by Means -- Week 679 Wed-Thurs

Start: 20:05:19.156 Stop: 23:24:29.375 138223 samples x 104

Figure 6-7: Subset of GPS Measurements Used to Calculate Position of Base Station

100

XYZ Coordinates Normalized by Means (Outliers Removed) -- Week 679 We d-Thurs

4
Start: 20:05:19.156 Stop: 23:24:29.375

10
134507 samples

Figure 6-8: Smoothed Subset of GPS Measurements

101

r I I I5 I r

II II ii i'!il

300

200

100

-100

200

-300

400

50n- 0vv
0

530

A

-

-

-

x 10
4

was used since each data does not have the same precision. This is due to the fact
that position precision greatly depends on time varying conditions as was discussed
in Section 2.4 regarding sources of errors. Ideally, we would use ar,, ay, and azz
as given by the calculated covariance matrix used in the navigation solution (see
Section 2.3.1) as the weights for each X,Y, and Z sample. However, only the DOPs
were available to us. In the end, the inverse of the PDOP of each measurement was
used as the sample's weighting function since, as noted earlier, the PDOPs, being
the dilution of precision in 3D space, provide an indication of the accuracy of each
measurement. The inverse of the PDOP was used as the weight since a smaller PDOP
implies greater precision in the calculated position. Figure 6-9 shows the weights for
both the raw and smoothed data shown in Figure 6-7 and Figure 6-8 respectively.
Using Equation 6.1, the weighted mean position was calculated for each coordinate.

= 1 Wi(6.1)

where M, represents the weighted mean of N elements in the sample set X and W
is the N x 1 weight matrix whose elements are the inverse of the PDOPs for each
sample point in X.

The above experiment was repeated several times resulting in a total sample set of
1,247,849 points. Each run consisted of roughly 100,000 sample points. The runs were
then summed together after multiplying the calculated weighted average of each set by
the number of sample points in the set. The sum was then divided by the total number
of samples resulting in the estimated coordinates of the 6-Channel Boardset receiver
antenna to be 1327631.29 m, -4681967.76 m, 4108988.50 m in ECEF coordinates.
This translates to a longitude of 400 21.9145' N, latitude of 740 10.1186' W at an
ellipsoidal height of 28.970 m. The geodetic undulation at this point was calculated
to be -32.464 m, resulting in an orthonormal height of 61.434 m or 201.60 ft. Since
the altitude measurement from the GPS is typically the noisiest of the three measured
LLA parameters (for reasons discussed in Chapter 2), the accuracy of the measured
altitude was compared to that given by the architectural plans and drawings of the
Holmdel building as an indication of the overall precision in the calculated position.
According the the plans, the MSL altitude of the building's roof is approximately
196 feet . Using a yard stick, the height of the antenna from the base of the roof
was measured to be roughly 37.5 inches or 3.1 feet. Therefore, summing the two,
the approximate mean altitude we expect to calculate was about 199.1 feet. Thus,
the calculated average position had an accuracy of approximately 2.6 feet out of
26,200 km!4

In our earliest experiments, the standard deviation of out sample data sets were
typically around sixty to eighty meters as shown in Figure 6-1. However, towards the
end of the experiment, the government had launched more satellites. As mentioned

there were at least 4 usable overhead satellites.
3 The receiver had the capability to default to 2D mode if not enough satellites were visible.
4 This is the approximate orbiting radius of the satellites from the Earth's center.

102

Original Weight Matrix -- Week 679 Wed-Thurs

Start: 20:05:19.156 Stop: 23:24:29.375 138223 samples x 104

Weight Matrix (Outliers Removed) -- Week 679 Wed-Thurs

Start: 20:05:19.156 Stop: 23:24:29.375 134507 samples x 10l

Figure 6-9: Weights of GPS Measurements

103

. ---- - -'-•-~- '~-•~-, • • ,, ",, '-- t ---- ,:

IFigure 6i-l()10: Sa,;tIllit e \Visibililty i'lot for (l'S \\CNV 'k (i(i6

I 'revio•.isl. ti l' •i1Il'her" of visible sat.cellitcs great'ly impiii l •,-v s itioll ing. At tlh sltar
of l t ldata at llerie irg ill October. 1992 th.liere \\w'(rl' l 1 8 I satcllite-s inl t-he conust.ella.tiot.I
piOVi(li IL.0 -ol) t, ilt.'lv oil \ ..) li ts of 31) Cve'ag' per' (li. 2ltOWecwhr. 1) V lie 't -1(

of 11e(' Xpelriilleit ii .Ljilliarv\ 993. there w'ere 21 sat ellite's li ' 1l colstellatiot0 . Pl-ots
of Iele e'lvation of" visible satellites witil re.spect t o Ilie 6-Channel Boardset ieceIiver

over a 2.1-hour periol Ifor the samiii lit•c period as the dlata slhown ii ligure (i-- 1 and
FIigure 6- 7 is shlowni ii FVigure 6-10 a.nd F'igurc (i-11 respect.ively. Flromn thI figures.
w\•' iot thllat l.i ' hourly coverage of' ihe satellites a,.plpears to Ihave improved greatlv
over th.e weeks Ill• exp)erimelits \\crce condtict.el. Figure 6-1"2 shows a more rece int
clevatlionl iplot. for t lhe ApIril 19, 1)991 constellat.ion consist.ing of 2(i sal.ellit.es. ()Our
final data sets showed a marked ilmprovement.. The stan.ldard d•eviat.ionl i11 hese last
'exl'iii'iAciid.scases was roughly only tlirt v to sixty n ctcrs. A tli ooughl significaa. it. I iis
ill rove•'liilt inI Iositioin••g was still not st•nfliicilent, to provide the' I)osi iOpioig aiccuracy
that is needed bv out1 system. This is fu ther shown bY Figure (i-13 which was taken
tel week of Mlayv 9. 1991 (C(,PS Week 718). As a result., dlilfre-'ntial cortrectio•is are
st1 i eede I to improve I le posit uing precision provided b. PS.

6.2 Differential GPS

S'Si 'u, t lie d a i •i to '. t'illl e\plcII-; S " I e Nixeld 1posit-iuii of l h l a-Iil('nlia •l1 uo t lil-
I1 (vA li al I se St at ion. I ri bll Ii 1)0(00 IL 11 ireceiver. was en(trered as (10" 21 .91 1." N.

It 1

T E, I E..

i•• .. , • .. N,; , .-• ,..f. , 4 . ,:• , - ,.:• ,, :- .'7,,,.": ,.,.:, '. ,:",. D •
•

-• • : -'

. - 1" "

-' :22 T1d MT d
re 6 12: Sale.lile \ vililIt I Plot I'r (I S k T 7 S

I (),)

r

.. 1.~
:i ::··u:

XYZ Coordinates Normalized by Means (Outliers Removed) -- Week 748 Th urs-Fri

V

U

0 1 2 3 4 5 6 7
Start: 16:50:21.969 Stop: 17:16:19.812 86784 samples

Figure 6-13: GPS Measurements taken May 1994

106

8

x 10

740 10.1186' W with the ellipsoidal height set to 29.0 meters.5 Although the loca-
tion of the antenna of the base station and the antenna of the 6-Channel Boardset
receiver used in the calculations were not physically the same, but rather, offset in
the horizontal plane by approximately one foot, we felt that since the precision of
the system even with differential corrections would not achieve higher than a feet of
resolution, we could tolerate this offset with negligible ill effects.

To test the system's performance in differential mode, we conducted several static
measurements using the 6-Channel Boardset again. However, this time the cal-
culations were performed using differential mode, receiving corrections from our
reference server. Not only would this test the accuracy of the differential GPS,
and thereby justify the costs of a reference base station to our department head, but
it would also test the server software described in Chapter 4. These experiments were
conducted over a period of seven non-consecutive days in order to insure that the
data was uncorrelated to any conditions arising during a particular week. The data
was then post-processed in the same manner as we did with the uncorrected samples.
However, the post-processing program, gather, was modified to communicate with
the GPS receiver in the unit through the navigation server. An example of the
differentially corrected data collected February 9-10, 1993 is shown in Figure 6-14.
Figure 6-15 shows the smoothed data with outliers removed. The weight matrix for
both the raw and smoothed data is shown in Figure 6-16. The calculated mean was
the same as the previously computed reference position, which is what we expected.
As you can see the variance is much less with differential corrections than without.
The standard deviation of our data was approximately 3 meters which is much im-
proved from data collected using regular GPS positioning. Figure 6-17 shows the
differentially corrected raw data collected on the week of May 9, 1994 (GPS Week
748).

6.3 Kinematic GPS

In our previous testing of our system, the conditions were quite different from what
they would be when operating in the field. The data was taken for one stationary
point allowing us the opportunity to average the sample points to produce improved
position fixes. However, under normal operating conditions, the user, and thus the
receiver, will be moving and data will have to be available in real time. The fact the
user will no longer be stationary will actually improve the positioning calculations
since at high velocities, the higher doppler shift in the signals can be used to provide
improved fixes. In addition, if the user is on the road, the line of sight of the antenna is
typically less obstructed than in a city environment and therefore, the signals freer of
multipath errors (unless the user is travelling under a tree-lined road). However, if the
user is travelling with very slow dynamics, any gain in precision by utilizing velocity is
lost. If the user moves slowly in a car or is walking, errors in GPS positioning become
more prominent. The real-time restriction relegates post-processing or smoothing of

5 The Trimble 4000 RL II has only one decimal place accuracy for the ellipsoidal height parameter.

107

50

40

30

20

10

-101

-20(

-30(

-40(

XYZ Coordinates Normalized by Means (DGPS) -- Week 683 Mon-Tue
)U

)0

0

10

0
0

0

0

0

0

2 3 4
Start: 19:06:51.297 Stop: 20:10:30.750

5 6
72866 samples

Figure 6-14: Differentially-Corrected GPS Measurements

108

PIO

o-
O 7

x 10

in

_S(If-50t

XYZ Coordinates Normalized by Means (Outliers Removed, DGPS) -- Week 683 Mon-Tue
<A

40

30

20

10

-20

-30

-40

50n
2

Start: 19:06:51.297
3 4
Stop: 20:10:30.750

5
71302 samples

Figure 6-15: Smoothed Differentially-Corrected GPS Measurements

109

i I I p

it . I II

I -

-Jv
0 7

x 104

I

-

-

-

Original Weight Matrix (DGPS) -- Week 683 Mon-Tue

0.

0.

0.

0.

0.

2 3 4 5 6 7

0 1 2 3 4 5 6
Start: 19:06:51.297 Stop: 20:10:30.750 71302 samples x

Figure 6-16: Weights of Differentially-Corrected GPS Measurements

Start: 19:06:51.297 Stop: 20:10:30.750 72866 samples x 104

Weight Matrix (Outliers Removed, DGPS) -- Week 683 Mon-Tue

7
10

4

110

XYZ Coordinates Normalized by Means (Outliers Removed) -- Week 748 Fr i-Sat

0

. 15 2 25 .

0 0.5 1 1.5 2 2.5 3 3.5 4
Start: 20:01:47.625 Stop: 21:07:13.625 42659 samples x 10

Figure 6-17: Differentially-Corrected GPS measurements GPS Week 748

111

4

data to a minimum, thereby requiring high precision in the raw position fixes.
For the following experiments, we did not use any quantitative measurements

to indicate the accuracy of the data gathered. This was primarily due to the lack
of accurate map information. For a quantitative error measurement, the sum of
the errors of each calculated position from the actual trajectory traveled should be
calculated. However, since the "real" trajectory traveled is not available to us, we
will rely on qualitative judgments of smoothness of the trajectory of the computed
positions to assess the system's kinematic performance.

An example of high dynamic kinematic positioning, Figure 6-18 is a recording of
Michael Potmesil's trip from AT&T Bell Laboratories' Holmdel site to the location of
our yearly lab picnic in July 1992. The data was recorded using a program that stored
TSIP data into an output file. The data was then processed and superimposed on
map data from the U. S. Census Bureau. Details of the implementation of the display
code is given in the next chapter.6 From the image, one notices that the receivers
appears to produce fairly accurate results. However, zooming in on the Holmdel site,
one notices significant errors (see Figure 6-19). The offset in the ovals are due to
errors in the census data.7 However, the drift was due to GPS errors since otherwise
the driver would have to have been driving on the lawns of the Bell Laboratories'
site. Other than the drift, the data was satisfactory.

Figure 6-20 is an example of data gather when the driver was driving rather slowly
in order to gather as much sample points as possible. From the figure, we notice wild
fluctuations in the trajectory. Believing the driver's assertions that he did not drive so
recklessly, as the recorded data suggests, we concluded that the errors were probably
GPS induced. We repeated the experiment several months later with differential
corrections. The corrections were transmitted to the receiver using Morning Star's
PPP as described in Section 4.5. The result is shown in Figure 6-21 As one can see,
this time it appears that the driver stayed on the road and returned to the same point
as he started on. The differentially-corrected data was much more stable around the
Holmdel building than the uncorrected error.

Even when the user is not moving, differentially-corrected data is much improved
over uncorrected data as was shown earlier in this chapter. Because the calculated
positions still contain errors, we decided that in operation it would be best to average
samples if time permitted between updates of the application program. However,
this option is left to the application client developer since we wanted the designer
to have as much flexibility as possible which implies access to as much information

6 Some of the images have been colormap modified and will be appear lighter than other images
generated from the same program. This is to provide higher contrast between the GPS data (the
darker lines) and the database information (the lighter lines).

7 At first, we had believed the errors to be GPS related. However, upon examining the Holmdel
architectural files, we discovered that the tilt of the oval matched closely to our GPS data rather
than the Census data. The Census data was then compared to a topological map from the Defense
Mapping Agency and the error in the Census data was discovered. Because the error was not
noticeable at a large scale, this leads one to suspect that this may have been due to digitization or
human operator error. It is errors such as these in the current available digital map databases that
makes GPS so attractive to those in the GIS industry.

112

A 2~OM

Road Nsmet
-J-

Garden State Pkwy

C u rrAnt Pos A ti on:

LoA: 74002'04.329' W
Lat: 40"16'O4.445"' N

Ai .t. .-104.077 mn

Date: Thu Jun 26, 1992
Tih•e: 19:37:09.875 UTC

M~(ode: Auto 3D - <Void>
i•.ed- 2 13 14 15

....

"

".

...

..........

" ' • . •·:; ; ...:/,. ":
k..." > .<. . ''.• .• , • . •,

.
.7.! :"'•:::• ' - ,-•!•-:.--: ; " <, / ?- ::... .< "' ".<.

............ •,+ • • . • .. • < ".., .•, . -..•i, r.- ,,.? -•,

.•

... ,....,......

.. :" ¢ '! •!, • •".> :• .: !- % ', •:•. t "'< ': "i:'< • "..........." •! "":'• -s·;••• '•::'"i<i > " :¢ '"...>:'.' ... ':":...... '···.·: S > ;.' ,. i :t.'••.•,.• .•':is-:.-'..@ ': ".'t.;""i •, •> .,,, •..•i .: .,. --• ,. , .-.:... " < ..,. ,. ,, <- , ,...
• • "..') .•" •.¢, ',•...'• :•: ": .'.. • >. " ',

=. ,• ·~~~x'........
.. ;...' :,, .,.-9~~~ ~ ~~ •:Z'.¢ . .." . : ; :"!:-.w i •il..i`;-..... ...'...- ; .. :::, :

:.~~~ ",. •'" '- % ..'•' '". .," , '...',

· ·... ~ ~~:, ...···-·.. .. •~ ,. : ,..< . /• •;

• .,, r• ., "•

Figure 6-18: Travelling on the Garden State Parkway

BCAfA

Strt). Stop) _Qit)

Road Names:

Fock Road. Al

C u.. rrent Pos tion:

CO l: 74002'04.329
'' d

I..P: 401.6'04,445" N

A•t: -104.077 m

-a t: Thu Jun 26, 1992
[iAe: 19:37:09.875 UTC

Mde,.: Auto 3D - <Void>
A, 1 4: 2 13 14 1.5

Figure 6-19: Holmdel Site High-Dynamics Measurements

113

..I
-X1111

/·.

Start Stop Quit

{.0: 74'10'10.139" W
.at 40'22'03.123" N
AI• -61,521 m

9i*,: Tue Jul 1, 1992
'l•e: 1:05:18.922 UT'C

Figure 6-20: Kinematic Measurements Around the Holmdel Site

Road Names:

Current Posittcn:

Lon. 74'10'14.466" W
~Lt, 40"22'00.586" N
Ait: --54.950 m

DfPa' Thu Jul 29, 1993
Time,: 1:57:03.438 UTC
Mode: Auto 3D - Auto GPS
Used•: 17 26 3 28

Figure 6-21: DGPS Kinematic Measurements Around the Holmdel Site

114

Fnode: Auto 3D - <VoidM>
Used: 3 16 20 24

U......
1

... I

8e%8~ /I

as possible. In the next chapter, we will describe a few sample programs that were
developed to exploit the functions provided by our enhanced-reality system.

115

Chapter 7

Enhanced-Reality in the Great
Outdoors

In the previous chapters, the implementation and testing of our enhanced-reality
system was discussed. In order to exhibit some of the potential applications and uses
of such a system, we developed a few proof-of-concept demonstrations that utilize
our system's portable tracking capabilities. To that effect, we developed two types of
programs that emphasize different aspects of our system. The first type of programs
emphasizes the GPS positioning and local orientation tracking capabilities of our
system. The second type of programs emphasizes the 3D graphics libraries described
in Chapter 5 utilizing the tracking capabilities of our system to update the viewing
perspective of the user. In these second type of programs, the programs either exploit
the system's GPS positioning capabilities or its orientation-tracking capabilities. The
following sections will provide a more detailed description of our testbed applications.

7.1 Somebody Is Watching You

To demonstrate the system's GPS positioning capabilities, a program called mapper
was developed to not only track a user's global position and azimuth angle but also
display the data graphically by overlaying a trajectory of the path traveled on a map
of the local area. mapper is a program that primarily tests our GPS and server al-
gorithms. It is a client to the navigation server described in Chapter 4. A program
developed using the Xlib graphics library routines, mapper utilizes position informa-
tion from the NAVunit and draws a line segment between the current LLA position
point and the last sample point superimposed on a map generated with information
from the U.S. Census Bureau's TIGER database. In our program, a modified TIGER
database for Monmouth County, New Jersey consisting of two files, one containing
the names of the roads and points and the second contains the actual latitude and
longitude coordinates for those points. The original data was a modification of the
original TIGER database into a format suitable for use with LISP machines. The
ordering, and therefore the rendering, of the line segments was not in any particular
sequence. Dave Weimer of AT&T Bell Laboratories was responsible for much of the

116

modifications to the database and the algorithm for accessing the information for
display. We modified some of the user interfaces and added the navigation server in-
terface to his code. The precursor to the mapper program was originally developed as
a diagnostic tool to examine the precision of our GPS system. It was a simple overlay
of connected GPS data points rendered in one color over the TIGER database map
information which was drawn in another color. With the modifications from Weimer's
code, we were able to improve access time of the data and also improve the aesthetics
of the user interface. Using this program, we were able to generate the plots shown in
the end of Chapter 6. Data from our runs was gathered first and then later overlaid
on a map of the local area. In newer data sets, the data was simultaneously being
gathered and displayed on mapper since in addition to displaying prerecorded data,
mapper has the capability to display data in real-time. It can also save data in a com-
pressed format consisting of only POSservice data packets. In addition, the choice
of map locale is also settable as command-line arguments, with the restriction that
the two designated input data files are in the appropriate modified TIGER database
format.

The basic strategy used by the mapper program in displaying the user's current
position was to keep the user's updated position displayed at all times. The user's
current position is represented by a red dot 16 pixels in diameter. As the user changed
her position, the dot's position was updated accordingly. In addition to the user's cur-
rent position, the user's old position is displayed as connected line segments beginning
at the point the user activates the mapper program up to her current position.

One feature of the mapper program is its ability to zoom in and to zoom out at
varying resolutions. The top level image is a map of the entire Monmouth County
centered in the viewport (see Figure 7-1). This is the maximum that a user can zoom
out. However, zooming in is controlled by clicking the left mouse button and dragging
the mouse to select the area of interest. The user is relegated to a selection window
with the same width to height ration that is the program's default. The user can
zoom in a maximum of 31 different levels. However, the resolution of the windows is
only limited by how small of a window the user can draw using a mouse. Figure 7-2
shows a zoomed in image centered around the region of the AT&T Holmdel site.

Having introduced the ability to zoom, a number of questions arising from this
feature must be dealt with. First, by zooming in on a particular area of the map image,
we will end up clipping part of the image. Fortunately, the Xlib drawing routines
handle clipping. However, in order to improve the computation time in rendering the
map, we reduced the number of points needed to be rendered by not drawing any line
segments whose endpoints rested outside the boundary of the image. In addition,
zooming complicates our strategy in displaying the user's current position. Before
zooming was introduced, the basic strategy used by the mapper program in displaying
the user's current position was to keep the user's updated position displayed at all
times. The user's current position was represented by a red dot 16 pixels in diameter.
The coordinate system was in terms of longitude and latitude where longitude was the
x-coordinate and latitude was the y-coordinate. 1 As the user changed her position,

1To be rigorous, we should have converted the longitude and latitude coordinates into a meters

117

Figure 7-1: Monmouth County, NJ

2

N:'Ki:

Figure 7-2: Zoomed Region of Holmdel, NJ

118

the dot's position was updated accordingly. In addition to the user's current position,
the user's old position is displayed as connected line segments beginning at the point
the user activates the mapper to her current position. However, the algorithm needs
to take into consideration the possibility that the user can now conceivably move out
of the area displayed by a zoomed in window.2 To account for a user's restlessness, the
algorithm was modified to update the section of the map displayed in the viewport
such that the user's new position is in the center of the map. Since the overhead in
redrawing the map is higher than the overhead in drawing the user, as represented by
a dot of 16 pixels3, we removed from consideration the option of having the underlying
map database scroll while the user position is stable, but opted instead to update the
user's cursor position. As the user changed her position, her cursor's position would be
updated appropriately as well. However, if the user moved, such that her position is
no longer visible on the displayed map, a new viewport into the map will be displayed
such that the user's new position is centered. The scale of the map remains the same.
The user's position is then updated as before, until she moves out of view, and then
the process of displaying a new map repeats. This process reduces the amount of
redraws that is necessary by a restless user while still providing the user updated
information about herself. Figure 7-3 displays the position of the stationary GPS
receiver's antenna on the Holmdel roof in conjunction with differential corrections.
Figure 7-4 displays the same information but at a higher resolution where the drift
inherent in GPS positioning is now evident..

A similar algorithm is used if the user's azimuth angle changes. In updating a
user's position due to a change in azimuth angle, the main criterion was to try to
maintain the user's heading to be toward the top of the window. Since the computa-
tion time required for rendering the map is quite high even with our improvements,
the image is not rotated until the user's azimuth angle has changed by more than
a threshold angle. The threshold angle was chosen arbitrarily to be thirty degrees.
If the user's azimuth angle changes by more than this threshold, the map and user
data are rotated accordingly. Equations 7.2 and 7.2 give the formulae that were used
to transform the [x, y] coordinates or the longitude, latitude respectively to the new
coordinates [xv, y,] of both the map and user data.

2, = xcos ý-ysin c (7.1)

y, = x sinp + y cos p (7.2)

representation of distance from 00 longitude and latitude. However, since the distances that we are
dealing with are relatively small compared to the Earth's surface area, the differences in the results
from the two projections of data were negligible. Therefore, the extra per point calculation that
would have been required to convert from a longitude to latitude coordinate system was not worth
the gained precision.

2This can also happen if the user was in an unzoomed state as well. However, this would require
the user to move out of the loaded file, in this case Monmouth County database, which would make
the display of updated data difficult since a new database would have to be loaded in. In the current
implementation of mapper, a user is relegated to travelling within the database that was loaded in
at runtime.

3 The dot was a bitmap image of a red dot. Therefore, the cursor can also be represented by a
more complicated cursor, such as gumby, without any extra rendering overhead.

119

Figure 7-3: Roads on AT&T Holmdel Site

tart Stop) Quit

RoDmddHeoad

Current Position:: Ip 41

LLon: 774 10 7'1c4Lati ': 40021'54'850: N
Alt' 82_41: 7
Date:. Fri M4ay: 1 1R994
Time: 1!3:,:1V594 L4

Mode: Mac 3D Il utb DGPS
USed: 7?14 227

Figure 7-4: Drift on Holmdel Roof

120

:::::::.:
,,::'::'-

:::::r:j:

:::':

~,,x:·;l

i:iPil'j'::::::·;· ·:-::

.tS`~w;.
i:·i-::i:::::i::. -.:

:::::~·;;:'

:;iii:::::i;:.i·':

:·:I :

:::

i:ii~i-liiii·:ii
'::·:: : :::':' :

'::': : :::: i:: ':

Figure 7-5: Updating a User's Azimuth Angle

Due to the overhead in calculating the rotated positions, the ability to update the map
by the user's azimuth angle is left as a command-line option for the user. Figure 7-5
shows part of Monmouth County rotated by approximately 45 degrees.4

Another feature of the system is the ability to specify the hostname of the com-
puter on which the navigation server is currently running. Because of the manner in
which the navigation server was implemented (see Chapter 4), this feature allows a
user to track other users' position trajectories in addition to her own. For example,
with the mapper program running on a mobile and stationary system, both users
would be able to see the current position of the mobile user updated in real-time
on their respective displays. Although this feature can be construed as an invasion
of privacy, it should rather be considered as a benefit that will allow two or more
travelling parties to find and meet one another more easily. In addition, another use
of this feature would be to guide a user to a new location since the other party will
know where the mobile party is located without the necessity of the lost traveler hav-
ing to give detailed descriptions of her locale. The ability of tracking another user's
NAVunit can easily be extended to cases with more than two users.

Through text-to-speech synthesis routines that were developed by Mark Beutnagel
of the Linguistics Research Department at AT&T Bell Laboratories, mapper also has
the capability of announcing roads as a user approaches road intersections. The

4The angular rotation was simulated via a command line argument. However, rotation of the
image has been tested and proven to work in real-time.

121

Roa-d Niadp

L 74'10' 6.14" l

.. 40'21'45.05" N

41.6 m

Ti ,e: Thu 1:30:32.125

Figure 7-6: Tracking a Mobile Unit's User

criterion for intersection detection is a crude one based on the assumption that GPS
position information is not in general very accurate and therefore the calculated
position would lie off the actual road. Using a nearest road name algorithm which
had originally been implemented to retrieve the name of the road nearest to the
mouse pointer upon a mouse click, the program was altered to also pipe the string
output through the audio port on either alfalfa and/or amalfi. Because text-
to-speech synthesis requires a significant amount of computation and can also be a
possible irritant to some users, it was also made an option to the user. Figure 7-6
demonstrates mapper's ability with differential positioning enabled. The similarity to
the figures in the end of Chapter 6 is not simply a coincidence. Those figures were
generated using mapper and prerecorded data. They are also an example of time
travel since they display data that was gathered in another time and yet displays the
information as though it was being gathered in real-time. In Figure 7-6, which was
originally displayed in real-time, Michael Potmesil, using the mobile unit consisting
of the navigation unit and a SparcBook 2, which we affectionately termed amalfi,
reported his position to our in-door server alfalfa which tracked him as he drove
around the AT&T Bell Laboratories Holmdel site. One should notice the irregularities
in the trajectory curve as compared to Figure 6-21. This is due to the loss of data
over the cellular link. Hopefully, with improved cellular technology, our system's
performance will improve.

122

aa

i

7.2 Satellites and Other Heavenly Bodies

7.2.1 Satellites

Having demonstrated the global positioning capabilities of our system, a second pro-
gram, el-az-gps, was developed which emphasizes the system's ability to determine
local orientation and update its display graphics accordingly. Similar to mapper, the
el-az-gps program was originally developed as a diagnostic tool. The original code
from Trimble Navigation was used to generate the satellite visibility charts shown in
Chapter 6. The code was modified to display graphics in real-time and in a different
coordinate system. Therefore, in using el-az-gps, the user gains insight on which
satellites are visible to the GPS receiver's antenna at any particular time and can
visualize the relation of the satellites positions to one another which resulted in the
combination of 4 satellites that was used in the navigation solution. In addition, since
the satellites are not stationary with respect to the Earth, but instead make two revo-
lutions about the Earth daily, the ability of our system to display moving objects will
also be demonstrated. For el-az-gps, the display graphics was also written using
Xlib graphics library routines.

el-az-gps was a demonstration program which displays the principles of GPS and
the ability of our system to show local orientation. The trajectories of the satellites are
plotted by obtaining the overhead satellites' Keplerian elements. Since the almanac
and ephemeris information of all satellites are broadcast in the navigation message,
the trajectory of any satellite, even those not visible, can be plotted with respect
to any given point once the navigation message is received and decoded using the
formulae given in Table 2.5 in Chapter 2. For el-az-gps, although the ephemeris
information provides more accuracy in calculating a satellite's position, the almanac
information was used instead since it requires less acquisition time to obtain requiring
less bits to transmit as was discussed in Section 2.2.2.1. Because almanac information
is valid for approximately 24 hours (as opposed to ephemeris information which is
a least squares curve fit for a period of typically only two hours), we only need to
request almanac information once every twenty-four hours, thereby consuming very
little of the GPS receiver's resources.

Once the Keplerian elements of the satellites and the user's location have been
obtained, el-az-gps plots the flight paths of the overhead satellites. Each satellite is
a color coded bitmap. The trajectories are polar plots of the satellites elevation and
azimuth angles over time. The elevation angle is the angle from the horizon. The
azimuth angle determines the angle from the axis pointing North. The perspective
is that of a viewer centered in the origin and looking up. A satellite is considered
visible only if the elevation angle of the satellite is above the elevation mask of the
receiver. Using these criteria, el-az-gps plots the satellites trajectories into an X
window as shown in Figure 7-7. In addition, the user also has the option not to
draw the trajectories of the satellites but to draw only the satellites. This has the
advantage of using less memory and less time to refresh the image. Figure 7-8 is an
example of el-az-gps without the trajectories plotted.

Just as the mapper program has the capability to rotate the map image based on

123

Fri May 13 19:35:26.156 UTC 1994 Lon: 74 10'07.123" W
Lat: 40021'54.807" H

~yc

Man 3D -11 A
15 19 77

It63.201 m

ito DGPS

,r., 1_ ,

Figure 7-71: Overhelad Satellite Trajectories on Mayv 13, 1.994

,I

~

Ik

hhp' ;L1;··~-·_:---·· n: I · ·i -r·n-:·:·:·.. .:~.; .. :.. i-~i- ; --· ·1 :3· .·1- ·- r . rr- - ;--i ·. - . ;... ;. .

I

`e

'''

I,

i

r-·
-·,

I

. ~ k~
.. , .l. . W

7
' • 1 -.Aid. I W r ru

Fri May 13 19:38:11.469 UTC 1994 Lc
La

N Al

o1

~'*.*

III I

'N

xn: 74'10'07.155" W
mt: 40 021'54.908" H
t.: 57.921 m

U.

II

Mar 3D - Auto DGPS
15 7 14 27

-i - 4 5

.-, -

Figure 7-8: Overhead Salellites without Trajectories on May 13, 1994

125

~LI;~=-·R--·-~--~--~L--~--·~·~~a~i~~lc~o I

S I " . , ,• . .

_ i·

A

,,
c

the user's azimuth angles, the el-az-gps program can also rotate its image based on
the azimuth angle. As the user's azimuth angle changes, the picture is also rotated.
For example, if the mobile unit is rotated 20 degrees clockwise, the trajectory plots
will be rotated 20 degrees counterclockwise as shown in Figure 7-9. In addition,
even if the user is stationary, the paths displayed will be rotated to account for the
user's orientation with respect to magnetic north as determined by the compasses. If
the user moves her physical location, changing her GPS coordinates, the el-az-gps
image will be appropriately translated. If either rotation or translation of the mobile
unit is done rapidly, el-az-gps keeps up with the shifts and updates its display
accordingly. The latency involved with el-az-gps is not as high as for mapper since
it has significantly less number of lines to draw. Even if the user is stationary, if
one waits long enough, one can see the satellites move along their trajectories. The
satellite positions are updated at a rate specified by the user on the command-line.
If no rate is set, the system defaults to once per second.

Since the el-az-gps program is a client of the navigation server, many users can
see which satellites are above other users in the same manner as described previously
for mapper. This can provide a convenient method to test how far away a user can be
from another user before the overhead satellite configuration changes significantly.

7.2.2 Heavenly Bodies

Similar to the el-az-gps program, an astronomy program sun-moon-gps was devel-
oped, which displays the sun's and moon's positions at any given time of day from the
user's position. The display methodology is very similar to that used in el-az-gps.
Instead of satellite icons, a sun and a moon icon are used. The trajectories of the sun
and moon are plotted with respect to the user's centered position. Once the sun has
set, the icon changes color from a sunny yellow to a sunset red. The same holds true
for the moon. When the moon is above the horizon, the moon is white. When it is
below, it becomes blue. Thus, this program differs slightly from el-az-gps in that it
emphasizes timing capabilities of the GPS system in addition to positioning. There
is also a simulation version of the program which can simulate time passing quickly
and one can see how the sun's and moon's positions change over the course of a year.
As in el-az-gps, the sun and moon are plotted in polar coordinates in terms of their
elevations and azimuth. Figure 7-10 shows a snapshot of sun-moon-gps. Figure 7-11
shows results of the simulation version of the program, sun-moon-sim, displaying the
position of the sun and moon during the eclipse on May 10, 1994 from the vantage
point of the roof of the Holmdel building. Notice that the moon and the sun overlay
one another.

The implementation of sun-moon-gps was done using algorithms from Duffett-
Smith [3]. The algorithms, meant for calculators, were easily converted into library
routines to be used by programs. In dealing with astronomical questions, a primary
consideration is how to measure time. There are various timing systems in use such
as UTC, TAI, GMT, LST, GST, and so forth. The difference is often only a few
minutes or dependent on the user's longitude position. Another consideration is time
of year. Currently, the United States is using a Gregorian Calendar. However, the

126

I . .

-·~~ ~ -" -- 0;Ii . ,,,~T- · ~f ~
.;.~.p

Fri May 13 19:47:27.844 UTC 1994

//

rcrtr

se-U A

K'
000 G KhI

y/
Il·IC~r~/

.4.

Ix

Lon: 74010'07.152"
Lat: 40021'54.918 '

Alt: 56,046

Man 3D - Auto DGPS
15 7 14 27

1 2 4 _4 5

Figure 7-9: el-az-gps Rotated

127

--

T•,e: 7ue Aomv 30 1 :42:46 .734 I.TC 1993
Julan# Dat: 2449320.5714 84

... · · t

/
/·

-ap---c---

/1

t i

Man 3D - lut- DGPS
29 3 14 25

Lan: 7401t)')7.19" W
Lat: 4002'154.89" H
Alt: 60.04 N

U.'
"U

- I I -

I

Surn rise:
Sun set:
Moon rise:
Moon set:

Nov 29 12:02:11
Hov 29 21:26:51
Nov 29 21:11:00
Nov 29 11:19:21

Figure 7-10: Sun and Moon

128

-- Lr·~---~-·c-r~----~-~· -- ~---------rl------C-----

,, j
--- ~c~--

ir,,e: rue May 1 lb:5 :t.. UTL '1_v-4
.Jul.lar-n Day: 2449483 .2.:j76L-389
Elapsed fTroew: 12:59' 0

void -- Void

i&n: 74- 1I'.,118 N
_at: 40''21'54.774"' H
Alt : 30.797 r,,

Sun rise:
set:

Moon rise:
set :

I'igrlle T-I I: Si_ ulalted Ma 10. 199)1 ltcli)e Sm(alInd Niomin lPositic)lms

129

~t~t~-t~

r

calculations used in determining the sun's and moon's position is performed using
the Julian Calendar. Therefore, before calculating the sun's position, GPS time and
date needs to be converted to its equivalent Julian day (JD) where time of day is
converted to fractions of a JD.

In addition to varying time systems, there are also various coordinate systems to
express the position of celestial bodies. We are concerned primarily with ecliptic,
equatorial and horizontal coordinate systems. The ecliptic coordinate system is typi-
cally used when comparing positions of objects in the solar system. The ecliptic is the
Earth's orbital plane around the Sun. The coordinates are in terms of ecliptic lon-
gitude and ecliptic latitude. The equatorial coordinate system is given with respect
to the Earth's equatorial plane. The coordinates are in terms of right ascension and
declination angles. The declination angle is the number of degrees the object is away
from the equatorial plane. The right ascension angle is the angle away from the vernal
equinox or first point of Aries. The horizontal coordinate system is the elevation and
azimuth coordinates that we have been using all along. There are formulae to convert
from ecliptic to equatorial and equatorial to horizontal coordinates. As mentioned
previously, these were given by Duffett-Smith.

In order to calculate the sun's position, one only needs to know the Julian day.
From the JD, the sun's ecliptic and therefore equatorial position can be calculated.
However, the horizontal position of the sun can be calculated only if the user's latitude
is known. The plotted [x, y] coordinates can then be determined as follows:

x = rcos0sin ý (7.3)

y = rcos0cos c (7.4)

where 0 is the elevation angle and ý is the azimuth angle. A similar algorithm was
implemented to display the moon position. An additional feature in the moon display
was the ability to display. phases of the moon. This was done by calculating the moon
phase and displaying the appropriate bitmap for the moon icon. Only four phases
- new moon, first quarter, full moon and third quarter - are displayed. Figure 7-12
displays a new moon where the moon is represented by a hollow ring since the new
moon is invisible. The blue color of the moon indicates that it is below the horizon.
The viewpoint is from the perspective of an observer on the South Pole in Spring
1989. Because we can see moons even when they're new and we can visualize where
the sun and moon are with respect to our position, even when they are below the
horizon, sun-moon-gps is a prime example of enhanced reality which allows the user
to "see" things that otherwise is not visible to her. In addition, it demonstrates the
user's ability to simulate travel in time and space.

7.3 SCULPT

The two previous sections dealt primarily with rendering 2D line drawings of physical
models using Xlib library routines. However, 2D representations of information would
not be enough to justify the terming of our system as an enhanced reality system.

130

I te: 'at Mae 4:.. :U): U '... il L ':8
Jian Day: 24476.52.G6666667
El~pF-ed Time:]1l'C:.'Q0 r"

S-oun ri se:
set:

Moon rise:
Moon set :

L,,n: ('I. '; "u :" " EI ''. r,;- ~~~ ii~ '' F
Lat ,-9: "'"I:- 'I.' 05"
alt: 0.j

9·

Tue May 2 .:'.:: 0'

F:igure 7 12: N(l v Mloonl tlhatl, I l[•s Set in the Southi PoleI

131

- -- i 0 i ir__ · _T 1 · I I 1 i i I I ! I

-- --

• . d - V.o,,•id

Figure 7-13: BSPT Representation of Lower Manhattan

Towards adding more realism in our system, we made use of our 3D graphics libraries
previously described in Chapter 5. sculpt is an interactive program that lets the user
manipulate models of 3D objects rapidly in real-time. In our current implementation,
sculpt is used only to demonstrate the fast rotation of objects using the navigation
unit. It emphasizes the ability of our system to track the local orientation angles. In
the current implementation, sculpt has not been used to demonstrate the NAVunit's
GPS capabilities. This was somewhat due to the position independence of the BSP
tree representation. In addition, because all images displayed by sculpt need to be
objects initially represented by a BREP, all objects needed to be connected regions.
We were able to load in a BSP tree representation of an AutoCAD file of lower
Manhattan. However, the results looked very artificial, as shown in Figure 7-13, with
all of the entire Manhattan area buildings connected to a plane in order to create
a Manhattan BREP. In addition, the sense of one's position in the image was lost
although we were still able to rotate the object. Possibly in future upgrades of the
system, the sculpt tools can be used for greater effect.

132

7.4 AutoCAD

For the final demonstration, we developed a program, called Xdxfdraw which performs
in a similar fashion as mapper except that GPS information is overlaid on AutoCAD
files rather than a map of Monmouth County. A reason for the desirability of such a
feature is that it allows the user to view architectural information, such as underlying
roads and changes that have been done to the site, that is otherwise unavailable to the
viewer. In addition, site-specific maps often contain more detail and precision than
generic databases, such as the TIGER database, which contains little information on
a lot of topics. It was only by comparison of the AutoCAD files with the TIGER
database that the errors in the database was localized.

The nucleus of the Xdxfdraw program consists of a DXF parser which converts the
default format file for AutoCAD files into a more suitable format. Michael Potmesil
created a parser which converted DXF files into a format suitable for input by the
Pixel Machine. In writing Xdxfdraw, we cannibalized his parsing program while mod-
ifying his rendering routines to utilize Xlib drawing commands. The image consisted
primarily of line segments between two point, with curve fitting being required de-
pending on the image. The curve fitting, or handling of the bulge data type, was a
bit more complicated than connecting a line between two consecutive points in that
the bulge structure consisted of the enpoints of a curve and the angle subtended by a
chord connecting the two points. Rendering the bulge involved calculating the radius
and perpendicular distance to the subtending chord from the point that would be
the center of the circle that generated the arc segment. From these parameters, the
center of the circle used to draw the arc segment can be determined and therefore the
arc segment drawn.

The algorithm for displaying the user's current position is very similar to the one
utilized by mapper. However, for Xdxfdraw, we also need to concern ourselves with
transforming either the GPS data into the coordinates of the AutoCAD file or the
AutoCAD file into GPS coordinates since, unfortunately, most site plans are done
in a local coordinate system independent of geodetic longitude and latitude. For the
data to be useful, we must translate coordinate systems. To do this, a transformation
matrix needs to be calculated which will transform data from one coordinate system
into the other.

7.4.1 Determining the Transformation Matrix

In order to calculate a transformation matrix to adjust between the coordinate sys-
tem of the building and holmdel facilities and the geodetic longitude, and latitude
coordinates5 that we have been using, we want to solve a series of equations of the
form:

TonxLon + TltxaLat + Cx = x (7.5)

SThe altitude and height coordinates can be ignored since for this application we will be dealing
primarily with the 2D projection of data onto the horizontal plane.

133

TionLon + Ti~tyLat + Cy = y (7.6)

Equation 7.5 and Equation 7.6 can be represented in terms of matrix multiplication
as:

Y Trony Trat Cy Lat (7.7)
y Tjony Tiaty Cy

Since we have six unknowns, we need at least 3 points to solve the system of equations.
However, this is assuming that our measured data is precise which typically will not
be the case. Thus, by overdetermining our solution, a better estimate of the necessary
transformation matrix may be obtained by taking measurements m distinct points
where m > 3. The solution then becomes a linear least squares estimation problem.

To solve for the transformation matrix, let 'p = [lon, lat, 1]T be the position vector
representing the ith measurement's 2D coordinates. We then represent our samples
vector A as:

Pi
A = P2 (7.8)

where m > 3 and A is an m x 3 matrix. Letting r = [x, y]T represent the ith data
point in the Holmdel building coordinate system, B containing the set of data points
can then be represented as:

r1
B = 2 (7.9)

where m > 3 and B is an m x 2 matrix. If we represent the desired transformation
matrix to be the matrix X where:

Tlonz Tlony
XT= Tlatx Ttaty (7.10)

CX Cy

an equivalent solution for Equation 7.7 can be then be represented as:

B = AXT (7.11)

The transformation matrix can therefore be computed as follows:

XT = (ATA)-1ATB (7.12)

To calculate the transformation matrix, we need the geodetic latitude and longi-
tude coordinates of at least 3 points whose equivalent Holmdel building coordinates
are known. Although the AutoCAD files contain the coordinates of the points in
the Holmdel building coordinate system and the geodetic latitude and longitude co-

134

ordinates of all the same points in the Holmdel building is determinable, registering
these points to the precise position where the geodetic latitude and longitude co-
ordinates were measured is not easily done unless the measurements are done on a
marked building whose position in the Holmdel building is known. For these reasons,
four points - the four corners of the building - were used to calibrate the transfor-
mation matrix. These four points were selected due to the ease of calculating their
position in the Holmdel building coordinate system. Although more sample points
would have improved the precision of the transformation matrix coefficients, points
in building coordinates other than at the corners of the building would have been
would have been very difficult to calculate. This is due to the fact that we were
given explicitly only the Holmdel building coordinates of the center of the build-
ing ([x, y] = [-11826.777, -12069.407]) and the building's dimensions (length =
1031.583, width = 360.75). From this information, the coordinates of the four build-
ings in the Holmdel building coordinate system is readily calculable.

In order to obtain the geodetic coordinates of the four corners of the building, we
performed similar experiments as was done in Chapter 6 to determine the position of
the the GPS reference station's antenna. Utilizing amalfi and the MicroTacLite and
CellularConnection modem and the modified gather program described in Chapter 6,
differentially corrected data was collected over a period of approximately half an hour
for each of the corners. The data was collected on the roof of the Holmdel building
in order to improve the satellite visibility of our antenna. The results of the data
collection with outliers removed are shown in Figure 7-14, Figure 7-15, Figure 7-16
and Figure 7-17.

The data for each corner was then averaged in the same manner as described
in Section 6.1 and the answers converted to LLA representation. Because of safety
concerns, the GPS receiver's antenna could not be placed precisely on the corners
of the building without going over the guard rails on the roof. Instead, the antenna
was placed on the corner formed by the guard rails. To adjust for this offset, we
measured the distance of the antenna from the actual corner and adjusted the Holmdel
building coordinates accordingly. Table 7.1 summarizes the GPS measured positions
and Holmdel building coordinates for each corner. The data points in the building
coordinates and in the geodetic coordinates are shown respectively in Figure 7-18
and Figure 7-19. The coordinates shown in Table 7.1 were then substituted into
Equation 7.12 to obtain the transformation matrix. The matrix to transform from
geodetic coordinates to Holmdel building coordinates is:

= [-2.1893 x 10" 2.3352 x 105 -2.5675 x 107 (7.13)
-1.8362 x 105 -2.7704 x 105 -2.4478 x 106

Although the matrix to transform from Holmdel building to geodetic coordinates
can also be calculated, we opted not to do so since the matrix would not be used
in our application. This is because the computation overhead to convert all the
points in the DXF coordinates into geodetic coordinates would be too high. However,
another transformation needed to be derived as well since the architectural files of
the Holmdel facilities was stored in two different formats. In the format used above,

135

Comerl Coordinates Normalized by Means (Outliers Removed, DGPS) - W eek 707 Thur

60

40

20

/ '1 I-··· '
1I

t.
*1~ i. -. -

-

50 100 150
Start: 23:08:32.500 Stop: 23:24:14.625

200
257 samples

250

Figure 7-14: Data Collected in Corner 1 of Holmdel Building

Geodetic Building Plans
Corner Longitude Latitude X Y

(degrees) (degrees) (feet) (feet)
Corner 1 -74.1685 40.3663 -11321.777 -12240.240
Corner 2 -74.1658 40.3646 -12331.735 -12240.365
Corner 3 -74.1665 40.3638 -12331.652 -11898.553
Corner 4 -74.1693 40.3656 -11321.902 -11898.532

Table 7.1: Coordinates of the Four Corners of the Holmdel Building

136

A I W m

I1 ·

-

-

1-

Comer2 Coordinates Normalized by Means (Outliers Removed, DGPS) -- Week 707 Sat

C,,

0

010 5 00203

0 50 100 150 200 250 3
Start: 00:42:44.938 Stop: 00:59:49.656 321 samples

Figure 7-15: Data Collected in Corner 2 of Holmdel Building

00

137

Comer3 Coordinates Normalized by Means (Outliers Removed, DGPS) -- W eek 707 Fri

4(

2C

-20

-40

100
Start: 22:27:06.188

150
Stop: 22:41:26.656

200
265 samples

250

Figure 7-16: Data Collected in Corner 3 of Holmdel Building

138

"·. r,-..e j. ---- '..

J I m i

I I I I

-

-

Corner4 Coordinates Normalized by Means (Outliers Removed, DGPS) -- Week 707 Thur

60

40

20

I I
I,

-20

-40

-60

0 50 100 150 200 250 300 350
Start: 20:23:08.906 Stop: 20:44:53.906 388 samples

Figure 7-17: Data Collected in Corner 4 of Holmdel Building

139

o Corner 1

+ Corner 2

* Corner 3

x Corner 4

2
Feet

Figure 7-18: Measured Corners in Holmdel Building Coordinate System

140

x 104

LL

x 10
4

o Corner 1

+ Corner 2

* Corner 3

x Corner 4

40.366

40.3655

40.365

40.3645

40.364

695 -74.169 -74.1685 -74.168 -74.1675 -74.167
Longitude Degrees

-74.1665 -74.166 -74.1655

Figure 7-19: Measured Corners in Geodetic Coordinate System

141

0

x

+

+X*

Af -fi3 · · · · · L

In nrnr4U.366M

E0

-

-

-

-

"'r--•_.•l

the Holmdel building lies parallel to the Holmdel building coordinate system's axes as
shown in Figure 7-18. In the alternate representation used to display the entire site's
infrastructure information, the coordinate axes are rotated 232.525 degrees clockwise
from the x-axes of the original coordinate system. Therefore, to transform coordinates
in the Holmdel building coordinate system into the Holmdel site coordinate system,
one needs to translate the building coordinates origin to [0, 0], rotate by an angle
0 = 232.525 and then retranslate back to the origin. This can be represented as a
series of multiplications by three transformation matrices:

y = 0 1 yo sin 0 cos 0 0 0 1 -yo y (7.14)
10 0 1 0 0 1 0 0 1 1

If we represent the product of the three transformation matrices to be the single
matrix H, the transformation matrix to convert directly from geodetic coordinates
to Holmndel site coordinate system can be represented by the 3 x 3 matrix K as:

Tlonx Tlatx Cx 1
K = H - Tony Tity Cy (7.15)

0 0 1

The result of applying K on the measured longitude and latitude coordinates of the
four corners is shown in Figure 7-20.

Using these transformation matrices, we were able to successfully navigate around
the Holmdel facilities. Just as mapper was able to zoom in and increase the resolution
of a particular area on the map, so can Xdxfdraw. Unfortunately, Xdxfdraw, besides
a not very user friendly interface, does not have the ability to zoom in and out
more than once. However, probably the most important difference between mapper
and Xdxfdraw is the inability of Xdxfdraw to track the user once she moves out of
the viewing region nor when she alters her orientation angles. This is due to the
very high overhead of parsing the DXF files. Upon a change of rendering scale, the
entire DXF file is reparsed. Because of the latency from the time a user zooms in
and the program finishes drawing the change, the socket communicating with the
navigation server is shut down and reactivated once the program has finished parsing
the files. This problem can easily be alleviated by more intelligent data accessing
routines. However, since the priority of this program was to demonstrate a practical
application of our enhanced reality system, that is to be able to register points on
architectural plans with a common geodetic coordinate system, it was sufficient for our
purposes. Figure 7-21 shows the same differentially corrected data, already displayed
in Figure 6-21, but this time superimposed on AutoCAD files of the Holmdel site.
Figure 7-22 displays GPS data superimposed on the Holmdel building.

7.4.2 3D AutoCAD

In addition to the previously described 2D visualization of AutoCAD information,
we also developed a program that worked in 3D. This program utilizes the SPOTlib

142

o Corner 1

+ Corner 2

* Corner 3

x Corner 4

x 104
,. r I I I

-I

*

Feet x 104

Figure 7-20: Measured Corners in Geodetic Coordinate System

143

-1.1 4

a) -1.2
LL

-1.22

.24

2 A

1-

I I L I I I '
.

1S3 -1.22 -1.21 -1.2 -1.19 -1.18 -1.17 -1.

16 -1.15 -1.14 -1.13

S..

......

.., 7. 2: ,,. Data Superi m oe on the Holmdel...........

• d·· .3'- ·- . ,... ...~

S':· ' ",~\-:·- ·i:a. '·· · .:· .o f·.'•7 7
+ ..

.. "......... j~::~ " .. :i
"< ~~ i - -

•'":;' " i.." i..•~ ~~ ~ .:., ...::::.= '.

.... ,! ... ! . - 7 ~~.::i......r: ····- ··. ~

Fi gu.., 7 -.... 2.:•.:• .. S ;,'..:. Su e i .•se on 'h -,.,...ie P

..... ,

A ~~4----44-- 4 ~ ~ -

I
S...........

.. -......-"I ... : : r :-1·: f +-+ i -I·

... -i r- -t- -+- -- ·+- • 4 .. .+ + ± + --.............

I Jt · + + $-
S I· I I*-··-- 4

...... . .i .! . ,.
.... ,- . .- -. . i -----·tll.:/ -, + ÷ - -+

..... i -......... . .
i~ ~ ~~~~~~~~~~~~~~~~~~~~~•. i [•..:..;..: ..I * +

F~~~ + 1~~
.. ! "."........-i-

....44- .. . -. .. .• ? ;~ . ,i • • i.< - .-.. - 41...., ' - 1:,'. l. 4- 4

Figure 7-22: GPS Data Superimposed on the Holmdel Building Plans

144

: ·: i,
i

· i
i i ... :;s-

·*~:::;::···i '.

....
;·

~~~,....

i

~~ I
I i"··~ ... ' · ·..~~ :'i·



library routines which were discussed in Chapter 5 in order to do the 3D rendering.
We added some interfacing routines to SPOTlib and renamed the complete library
xartlib. A 3D model of an AutoCAD file of a building may be generated by pro-
jecting wall layers to the given height of the walls in a building.

A common demonstration in the Machine Perception Department at AT&T Bell
Laboratories, created by Michael Potmesil, involves the display of a virtual lab gen-
erated by the Pixel Machine. We transformed the commands suitable for the Pixel
Machine to that which were suitable for xartlib. It should be noted, however, that
we did not have to change any of the models for the lab since SPOTlib's input for-
mat is very similar to SIMlib's format for the Pixel Machine.' In addition, the input
consisted of a list of polygons that needed to be rendered and therefore the input
data did not need to be modified since the same objects will still need to be rendered
using either library.

Combining the lab model used in Potmesil's demonstration with the AutoCAD
files, we generated the view that one would see while looking down through the roof
into the lab area. Ideally, we would want to be able to take our system on the
roof of the Holmdel building and be able to rotate the unit and have the underlying
image change accordingly. Although this is all within the capabilities of our system,
unfortunately our software is not implemented efficiently enough to allow for fast
real-time display of 3D graphics. Not only is there the overhead from xartlib, we
also have to deal with the start-up delay resulting from the parsing of the AutoCAD
data files. There are problems that can be solved and can be possible additions in
future implementations of our system. In the next chapter we will discuss other areas
where our system can be improved upon.

6In fact, one of the developers of SPOTlib worked on the development the Pixel Machine.

145



Chapter 8

Conclusion

The first seven chapters have described the development and implementation of an
enhanced-reality system. Some potential applications of such a system have been
demonstrated. One must remember that the system, we have developed, is an en-
hanced reality system and not a virtual reality system. Although the difference be-
tween the two are slight, they are significant. An enhanced-reality system does not
attempt to replace reality for the user, as virtual reality does. Instead, it provides
the user with more information than is readily available to her from her senses. For
example, mapper and Xdxfdraw provide the user the ability to know where she is with
respect to a given area through a mixture of visual and audio feedback. el-az-gps
can display satellites that are currently overhead and visible to the GPS receiver but
are not visible to the human eye. sun-moon-gps can show us the position of the sun
and moon even when they are below the horizon.

Naturally, the aforementioned example programs are just glimpses of a whole
plethora of potential uses of a fully working enhanced reality system. "Fully work-
ing" is the key to the future popularity of the system. We have laid the basic, but
essential, foundations for future research and development in the area of enhanced-
reality. There exist many areas for improvements in our fledgling system. One aspect
that can be immediately improved is to custom-design the electronics used for inter-
facing the GPS receiver with the tilt sensors and compasses, thereby reducing the
bulk and power consumption. However, Trimble Navigation, Ltd. is now offering
GPS receivers that can communicate using the standard PCMCIA interface. In addi-
tion, Tadpole Technologies has also announced the release of a SPARCbook 3 which
will have a PCMCIA slot and two RS-232 compatible serial ports, thereby allowing
us to simplify our hardware which will in turn lead to a higher throughput.

Future models of our system should be hands free consisting of a head-mounted
display, a small head-mounted tilt sensor and compass unit, and a small wearable, but
powerful computing platform that has a low power consumption. There already exist
head-mounted displays such as the Private-Eye from Reddy Information Systems and
Virtual Vision Sport from Virtual Vision. A head-mounted tilt sensor unit has also
already been built consisting of only 3 sensors due to the expected reduced freedom
in movement of a head-mounted system. The azimuth orientation angle is tracked by
a single compass.

146



Our desire for a small compact yet powerful computing engine is the most difficult
component to obtain. A primary limitation of our system was that it is computation-
ally power hungry, as most graphics-intense applications are. For example, with the
power of an SGI Reality Engine, the application programs can be more sophisticated
with a much more realistic graphical interface. Unfortunately, SGI does not have any
immediate plans to make a portable Indigo, let alone a portable Onyx. Nonetheless,
the trend in manufacturing of mobile computers already consists of increased horse-
power, less power consumption and improved communication with external devices.
With this overall trend in mind, it is a matter of time before we will get the computing
power we desire.

Another area where our system was limited by technology was in the area of
wireless communications. In our examples, we were limited to databases stored on
our portable computer. Perhaps we can improve the range of data that we can
display by retrieving information from a CD-ROM player or pre-loading information
from an electronic bulletin board service or from the Home Shopping Network through
Interactive TV. Although this will give us access to more information, the user will still
be limited to data on CD-ROM's that she had thought a priori to her trip to bring with
her. The necessity of methodically planning one's movements removes spontaneity
from the user's actions. The answer can lie potentially in remotely accessing data
on a call by need basis. With improved cellular communication, the databases can
possibly be retrieved over a cellular line in real-time.

The last two upgrades depend on the improving technology in other areas of the
computing industry. While waiting for the hardware to improve, on the software side
many improvements can also be made. One particular region is in the generation of 3D
graphics. Although sculpt and xartlib provided some means of rendering objects
in 3D, their performance in displaying real areas in real-time was not satisfactory. A
possible alternative drawing package would be OpenGL. Another problem in software
is the manner in which data was being acquired. For the AutoCAD files, the structures
could be obtained and stored in a much more orderly fashion such that if only a small
region of the entire database was being displayed, only visible points will need to be
processed. Improvements in the database handling routines would then also improve
our rendering time since the majority of the computation time is absorbed searching
and retrieving the necessary points for rendering rather than in the rendering itself

(excluding programs using xartlib).
As one can see, there is much that remains to be done to make enhanced-reality

systems a potential consumer product. Our thesis demonstrated that such a system
is indeed viable with potential educational, in addition to practical, applications. The
foundations set, enhanced reality waits for technology to make it a common reality.

147



Appendix A

Dithering Array

The following is the threshold array used in the dithering of the images produced by
SPOTlib:

1 236 59 220 15 232 29 216 3 234 57 218 13 230 53 214
130 65 188 124 144 79 184 119 132 67 186 121 142 77 182 117
33 194 17 152 47 208 31 248 35 196 19 250 45 206 55 246
162 97 146 81 176 111 160 95 164 99 148 83 174 109 158 93
9 226 49 210 5 240 63 224 11 228 51 212 7 238 61 222
138 73 178 113 134 69 192 127 140 75 180 115 136 71 190 125
41 202 25 242 37 198 21 255 43 204 27 244 39 200 23 254
170 105 154 89 166 101 150 85 172 107 156 91 168 103 152 87
3 234 57 218 13 230 53 214 1 236 59 220 15 232 29 216
132 67 186 121 142 77 182 117 130 65 188 124 144 79 184 119
35 196 19 250 45 206 55 246 33 194 17 152 47 208 31 248
1.64 99 148 83 174 109 158 93 162 97 146 81 176 111 160 95
11 228 51 212 7 238 61 222 9 226 49 210 5 240 63 224
140 75 180 115 136 71 190 125 138 73 178 113 134 69 192 127
43 204 27 244 39 200 23 254 41 202 25 242 37 198 21 255
172 107 156 91 168 103 152 87 170 105 154 89 166 101 150 85

148



Bibliography

[1] Canadian GPS Associates, Guide to GPS Positioning. 2nd printing. New
Brunswick, Canada: Canadian GPS Associates, 1987.

[2] Department of Defense, World Geodetic System 1984 - Its Definition and Rela-
tionships with Local Geodetic Systems. DMA TR 8350.2. Second Printing. Re-
vised. Washington D.C., 1 March 1988.

[3] Duffett-Smith, P., Practical astronomy with your calculator. Second Edition. New
York: Cambridge University Press, 1981.

[4] Farrar, J. G., "Electronic Digital Compass." U.S. Patent 4,918,824. October,
1988.

[5] Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F., Computer Graphics:
Principles and Practice. Second Edition. New York: Addison-Wesley Publishing
Company, 1990.

[6] ftp://tycho.usno.navy.mil/pub/gps/gpsbl .txt

[7] ftp://tycho.usno.navy.mil/pub/gps/gpssy.txt

[8] "The First Annual GPS WORLD Applications Contest: Results." GPS World.
vol. 3. no. 5. pp. 21-39. May 1992.

[9] Getting, I. A., "The Global Positioning System." IEEE Spectrum. Decemer 1993.

[10] Goad, C. C., "Precise Positioning with the Global Positioning System: An
Overview". Workshop 13, ASPRS/ACSM/RT 92 Convention, Washington, D.C.,
10 August 1992.

[11] Heckbert, P. S., Color Image Quantization for Frame Buffer Display. Cambridge.
1980.

[12] Institute of Navigation, Global Positioning System Papers, vol. I-III. Washington,
D.C.: Institute of Navigation, 1980-1986.

[13] Interface Control Document, NA VSTAR GPS Interface Control Document. ICD-
GPS-200. 3 July 1991. Navstar GPS Space Segment/Navigation User Interfaces.
Public Release Version.

149



[14] Kalafus, R. M., Van Dierendonck, A. J., and Pealer, N. A., "Special Committee
104 Recommendations for Differential GPS Service." Global Positioning System
Papers. vol III. pp 101-116. Washington D.C.: Institute of Navigation, 1986.

[15] Leick, A., GPS Satellite Surveying. New York: John Wiley & Sons, 1990.

[16] Langley, R. B., "Basic Geodesy for GPS". GPS World. pp. 44-49. February 1992.

[17] Lanier, J., "A Brave New World: Virtual Reality Today." Virtual Reality Special
Report, pp. 11-17, July 1992.

[18] Lim, J. S., Two-Dimensional Signal and Image Processing. Englewood Cliffs:
Prentice Hall. 1990.

[19] The Math Works, Inc., MATLAB User's Guide for UNIX Workstations. Natick:
The Math Works Inc., 1992.

[20] McNamara, J. E., Technical Aspects of Data Communication. 2nd Edition. Bed-
ford,MA: Digitttal Equipment Corporation, 1982.

[21] Messmer, E., "API to give mobile devices access to positioning service." Network
World. vol 10. issue 30. p. 83. 26 July 1993.

[22] Milbert, D. G., "Computing GPS Derived Orthometric Heights with the
GEOID90 Geoid Height Model." Technical Papers of the 1991 ASPRS Fall Con-
vention. pp. A46-55. Atlanta, Georgia. 1991.

[23] Milbert, D. G., "GEOID90: A High-Resolution Geoid for the United States."
EOS, Transactions, American Geophysical Union. vol. 72. no. 49. December 3,
1991.

[24] Milbert, D. G., "GPS and GEOID90 - The New Level Rod". GPS World. pp.
38-43. February 1992.

[25] Milliken, R. J. and Zoller, C.J., "Principle of Operation of NAVSTAR and System
Characteristics." Global Positioning System Papers. vol I. pp 3-14. Washington
D.C.: Institute of Navigation, 1980.

[26] Morning Star Technologies, Inc., Morning Star PPP - Version 1.40. Revision
1.134. Columbus,Ohio: Morning Star Technologies, Inc., June 1993.

[27] NAVSTAR GPS User Equipment. Public Release Version, Los Angeles Air Force
Base: NAVSTAR-GPS Joint Program Office, February 1991.

[28] Naylor, Brucen "Interactive Solid Geometry Via Partitioning Trees." Graphics
Interface '92. pp. 11-18, May 1992.

[29] "Newsfront." GPS World. vol 4. no 1. p. 20. January 1993.

150



[30] Nye, Adrian, Xlib Programming Manual. Vol 1. Sebastopol: O'Reilly & Asso-
ciates, Inc., 1992.

[31] Nye, Adrian, Xlib Reference Manual. Vol 2. Sebastopol: O'Reilly & Associates,
Inc., 1992.

[32] Ohio State University, "The GPS/IMAGING/GIS Project - Application of the
Global Positioning System for Transportation Planning: A Multi-State Project".
1 December 1991.

[33] Polhemus Kaiser Aerospace & Electronics Company, 3SPA CE Digitizer/Tracker
User's Manual. July 1991.

[34] Radio Technical Commission for Maritime Services, RTCM Recommended Stan-
dard for Differential NAVSTAR GPS Service. Version 2.0. RTCM Special Com-
mittee No. 104. RTCM Paper 134-89/SC 104-68. 1 January 1990.

[35] Siewiorek, D. P., "Wearable Infostations," Electronic Engineering Times, March
8, 1993.

[36] Spilker, J.J., Jr., "GPS Signal Structure and Performance Characteristics."
Global Positioning System Papers. vol I. pp 29-54. Washington D.C.: Institute
of Navigation, 1980.

[37] Spotlight Graphics, Inc., SPOTlib User Manual. 1993.

[38] Stern, H., Managing NFS and NIS. Sebastopol: O'Reilly & Associates, Inc.,
1991.

[39] Trimble Navigation, Inc., "Guide to the Next Utility." 1992.

[40] Stevens, W. R., UNIX Network Programming. New Jersey: PTR Prentice Hall,
1990.

[41] Ulichney, R., Digital Halftoning. Cambridge: The MIT Press. 1990.

[42] U.S. Department of Commerce National Oceanic and Atmospheric Adminis-
tration, North American Datum of 1983. Rockville: National Geodetic Survey.
NOAA Professional Paper NOS 2. 1989.

[43] U.S. Department of Transportation, Global Positioning System Information Cen-
ter Users Manual. Washington D.C.: United States Coast Guard, September
1992.

[44] United States Geological Survey, "Sample Runs for GEOMAG Program." Na-
tional Geomagnetic Informaton Center. 1992.

[45] Van Dierendonck, A.J., Russell, S.S., Kopitzke, E.R., and Birnbaum, M., "The
GPS Navigation Message." Global Positioning System Papers. vol I. pp 55-73.
Washington D.C.: Institute of Navigation, 1980.

151



[46] Sheridan, T.B. and Zeltzer, D., "Virtual Reality Check." Technology Review. vol.
96, no. 7, pp. 20-28, October 1993.

[47] Thibault, W. and Naylor, B., "Set Operations on Polyhedra Using Binary Space
Partitioning Trees." Computer Graphics. vol. 21 no. 4. pp. 153-162. July 1987.

152


