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ABSTRACT

Oligosaccharyl transferase (OT) plays a central role in the biosynthesis of asparagine-

linked glycoproteins in eukaryotic systems. The glycosylation step catalyzed by OT involves the

co-translational transfer of a tetradecasaccharide from a dolichyl-pyrophosphate carrier to an

asparagine side-chain within the Asn-Xaa-Ser/Thr sequence of a nascent polypeptide. Chitinases,

which was emerged as a therapeutic target in combating asthma, are 13-1,4-N-
acetylglucosaminidases that hydrolyze chitin to generate the disaccharide chitobiose

Although the reactions catalyzed by the two enzymes follow different pathways, they are

believed to share similar transition states involving an oxocarbenium ion. To understand the

mechanism of OT and discover potent and selective inhibitors against different chitinases, our

intent was to utilize the common transition state analogue for both enzymes and systematically

introduce additional binding determinants. The pseudo-disaccharides containing an imino sugar

were designed to target the oxocarbenium ion like transition state.

The pseudo-disaccharides containing imino sugar were synthesized and evaluated at

inhibitors for OT and chitinases. Highlights and supporting studies from this work include : (1)

the use of the Amadori rearrangement to generate the acyclic substrate; (2) the glycosylation of 3-

hydroxy ketone; (3) the intramolecular reductive amination between the in-situ generated amine

from azido and ketone moieties; (4) the determination of the stereo-chemical outcome by NOE

difference experiments.

The pseudo-disaccharides containing imino sugars exhibited IC0s in the low

micromolar range versus chitinase, yet significant inhibitory activity against OT was not

observed.

Thesis Advisor: Barbara Imperiali
Title: Class of 1922 Professor of Chemistry and Professor of Biology
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Chapter 1- Overview of glycosidase and glycosyltransferases

1-1 Introduction

Carbohydrates are some of the most widely distributed biopolymers in nature,

accounting for as much as two-thirds of the carbon found in the biosphere.' Traditionally,

carbohydrates have been known as a unit for energy storage or as inert polymers that

provide structural support in the cellular environment. However, in the past 30 years,

with the advent of glycobiology and synthetic carbohydrate chemistry, 2-9 carbohydrates

have been found to play important roles in many biological processes such as

intercellular communication, cell growth, cell adhesion, immune defense, viral

replication, and inflammation."" 2 Most of the carbohydrates in cells exist as

oligosaccharides of complex homo- or hetero-polymers linked to proteins (glycoproteins)

or lipid (glycolipids). The assembly of complex glycans is facilitated by carbohydrate

processing enzymes including glycosidases (glycosyl hydrolases) and

glycosyltransferases.

1-2 Glycosidases

Glycosidases catalyze the hydrolysis of a glycosidic bond by facilitating the

attack of a water molecule at the anomeric carbon of a sugar. A glycosidic bond is very

stable against hydrolysis, with an estimated half-life of spontaneous hydrolysis of

approximately 5 million years." Glycosidases are one of the most efficient and

sophisticated catalysts, increasing the reaction rate by a factor of 10"7. To achieve such a



rate-acceleration, glycosidases are expected to have very high transition state affinities,

on the order of 10-22 M. 10 To date more than 6,300 different glycosidase genes have been

found and, on the basis of primary sequence homology, these have been classified into

more than 100 families.' 4 Based on the stereochemistry of the anomeric center in the

sugar substrate, glycosidases are termed as a-glycosidases or P3-glycosidases.

Additionally, the enzymes are classified as retaining or inverting glycosidases according

to the stereo chemical outcome of hydrolysis at the anomeric center.

The mechanisms of hydrolysis by both retaining and inverting glycosidases have

been well characterized on a structural and biochemical level. 15' 6 The majority of

glycosidases follow one of these two mechanisms. 17

For inverting glycosidases, the glycosidic bonds are hydrolyzed via single direct

displacement, facilitated by two carboxylic acids in the side chains of aspartic acid and/or

glutamic acid located in the active site (Figure 1-1). One carboxylic acid acts as a general

acid activating the leaving group by protonation of the exocyclic oxygen. The other acts

as a general base, facilitating the attack of a water molecule on the anomeric carbon by

the partial deprotonation.
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Figure 1-1. The proposed mechanism of the inverting glycosidases in the active site of enzyme.

For retaining glycosidases, the reaction proceeds via a double displacement

mechanism (Figure 1-2). In the first step, a general acid partially protonates the

exocyclic oxygen, while the nucleophile carboxylate on the opposite side attacks the

anomeric center to displace the leaving group, forming a covalently bonded glycosyl-

enzyme intermediate. In the second step, the acidic residue near the active site acts as a

general base, facilitating the hydrolysis of the glycosyl-enzyme intermediate, resulting in

overall retention. The presence of the glyco-enzyme intermediate has been confirmed by

mass spectrometry and protein crystallography.18' 19
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Figure 1-2. The proposed mechanism of the retaining glycosidases in the active site of enzyme.

Reactions catalyzed by both inverting and retaining glycosidases are believed to

proceed through an oxocarbenium-ion-like transition state.20 The degree of concertedness

of bond breaking and bond making is not clear. Data from kinetic experiments suggest

that the sp3-hybridized anomeric carbon is converted to an sp2 carbon, such that cleavage

of the glycosidic bond precedes the formation of the new bond.21,22 In the transition state,

the carbohydrate in the active site is believed to adopt a non-chair conformation. 23

Especially for P(-glycosidases, the distortion of the carbohydrate substrate from the chair

conformation to a boat,24 skew boat,25 or half-chair form has been observed in protein

crystal structures. The distortion of the carbohydrate directs the departing glycosidic bond



to a pseudo-axial orientation, which is antiperiplanar to the lone pair of the ring oxygen

or the nucleophile (Figure 1-3).26

RO
OH

OH OH

Figure 1-3. The proposed ring distortion in the active site of enzyme.

1-3 Inhibition studies of glycosidases

Since hydrolysis of the glycosidic bond is a ubiquitous biological process,

glycosidase inhibitors have many potential applications, including use as agrochemicals

and therapeutic agents (Figure 1-4).27,2 a-Glucosidases play an essential role in the

control of blood glucose levels in humans, and in the transport of glucose in insects and

fungi. 29 Several glucosidase inhibitors are being marketed to treat type II diabetes, 30 -3 2 and

others are being developed as powerful insecticides."'34 Glycosidases are also involved in

the trimming of cell and viral surface complex glycans. Inhibition of these glycosidases

can disrupt the biosynthesis of carbohydrates, and hence the cell-cell 35 or the cell-virus

recognition process.36 This principle is the basis for the anti-influenza neuraminidase

inhibitors37 that have recently been marketed as well as the basis for potential HIV

inhibitors.383 9 Genetic disorders,40'4 1 hepatitis C,42 and cancer43 are other promising targets

for glycosidase inhibition.
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Type 1 Gaucher disease phase III clinical trial

Figure 1-4. The examples of glycosidase inhibitors.

In addition to the practical applications, understanding the mechanism of

glycosidase catalyzed reactions has been another motive for the design and synthesis of

transition state analogues. A substrate fits into the enzyme's active site, a pocket or

groove on its surface. Upon binding, the shape and charge of the active site induce a

conformational change of the substrate into its transition-state configuration. Thus,

enzymes bind and stabilize the transition state, lowering the activation energy to allow

the reaction to proceed at higher rates.44 In principle, a transition state analogue should

bind more tightly than the substrate to the enzyme, resulting in the enzyme inhibition.45

When considering the design of an enzyme inhibitor, much focus has been placed on

mimicking the geometry and charge of the assumed transition state. The relative

importance of mimicking the shape and charge of the transition state has been the subject

of much debate.46 It is also noteworthy that shape and charge are interdependent in most

cases. 47

The design of glycosidase inhibitors has focused on mimicking the charge and

shape of the oxocarbenium-ion-like transition state (Figure 1-5). 48 Natural and synthetic

polyhydroxy alkaloids have shown potent and specific inhibitory activity against



glycosidases.49'5 The ring nitrogen would be protonated under physiological conditions to

form a cation. Thus, these compounds are also referred to as imino sugars or aza sugars

(Figure 1-5a, b, c, d).51 ~54 The five-membered ring is assumed to mimic the half-chair

structure involved in the transition state, whereas the six-membered ring closely

resembles the ground state.55 Incorporation of amidine (Figure 1-5e)56 and imidazole

(Figure 1-5f) 5758 functionality into the sugar ring has been used to mimic the positive

charge. To mimic the distorted structure involved in the transition state, a double bond or

epoxide group59 has been introduced into the ring (Figure 1-5g). Alternatively, a bicyclic

system 6 has been utilized (Figure 1-5e, h).

Varying the position of the nitrogen often results in a change in inhibitory

activity and selectivity.53"' These observations, in conjunction with analysis of a

glycosidase crystal structure in the presence of these inhibitors, aided in understanding

the mode of inhibition and mechanism for glycosidase catalytic activity.6
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Figure 1-5. The selected examples of the transition state analogues of glycosidases.

1-4 Chitinases

Chitinases (EC 3.2.1.14) are P-1,4-N-acetylglucosaminidases that hydrolyze

chitin, a homopolymer of 3-1,4-linked N-acetylglucosamine to generate the disaccharide

chitobiose (Figure 1-6).

OH OH OH
HO 0 o O OQ OH

HO HO HO
AcHN AcHN AcHN

chitin

OH OH OH
HO HO H~-O OH

AcHN AcHN AcHN

chitin
+OH + OH

chitinase HO- O OH

AcHN AcHN

chitoblose

Figure 1-6. The scheme of the reaction catalyzed by chitinase.



Through classification based on amino acid sequence, most chitinases belong to

family 18. According to the stereo-chemical outcome of hydrolysis at the anomeric

carbon, chitinases are classified as retaining glycosidases. However, chitinases and other

glycosidases in family 18 adopt a pathway for enzyme catalysis that differs from the

double-displacement mechanism through the glycosyl-enzyme intermediate adopted by

other retaining glycosidases.

The mechanism of chitinase-mediated hydrolysis has been extensively studied

and is well understood (Figure 1-7). All family 18 chitinases contain a conserved

DXDXE sequence (Asp-Xaa-Asp-Xaa-Glu) in the active site, which is essential for the

enzyme activity.5 5 By convention, the core sugar substrates at the binding site are termed

as -2, -1, +1, and +2, and chitinases cleave between -1 and +1. Upon chitin binding to

chitinase, the -1 sugar adopts a boat conformation to place the leaving group (chitobiose)

in the pseudo-axial position, and Asp175 changes its orientation to interact with

Glul77.6 -67 Aspl75 activates the amide proton of the C2 acetamido group in the -1

sugar. Anchimeric assistance by the neighboring C2 acetamido group produces an

oxazoline ion intermediate, liberating chitobiose.6 Structural and theoretical

investigations strongly support the presence of oxazoline ion intermediates. 69' 70 The

reorientation of Asp175 and Glu177 is believed to play an important role in the

stabilization of the high-energy transition state. The hydrolysis of the oxazoline ion

intermediate regenerates the N-acetyl group, resulting in overall retention of the anomeric

configuration.
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Figure 1-7. The proposed mechanism of family 18 chitinases

1-5 Inhibition studies of chitinases

Family 18 chitinases include enzymes from mammals, insects, plants, nematodes,

fungi, and bacteria. Chitinase is implicated in pathogenic fungal cell division,71 ecdysis of

insects7 and malaria transmission.73"74 Its involvement in those processes makes

chitinases attractive targets for use in the development of fungicides, insecticides and

antimalarials.2 4 However, chitinases may function in a beneficial role as well. Chitin is

one of the main components in the cell walls of fungi, the exoskeletons of insects and

other arthropods. 75'" Since these chitin coats provide protection for pathogens inside the

host and chitinases inhibit the growth of chitin containing organisms, a variety of life

forms, including plants, insects, and fish, use chitinases as a weapon against chitin-

expressing pathogens.7

Until a few years ago it was generally assumed that humans lack the ability to

produce chitinase. However, a mammalian chitinase has recently been identified.7 8

Interestingly, the enzyme substrate, chitin, and chitin syntase have yet to be discovered in

mammals. Though the role of chitinase remains to be defined, it was hypothesized that

_· · A·



mammalian chitinase contributes to the immune response on the basis of their functions

in other species. The implication of mammalian chitinase in allergic airway responses

was reported.55 The expression of mammalian chitinase by airway epithelia and

pulmonary macrophages is dramatically increased with developments of asthma in mice

and humans."79 Moreover, the enzyme activity is critical to disease manifestation in an

experimental model of asthma. Inhibition of the chitinase with a natural product,

allosamidin, decreases airway inflammation and airway hyperresponsiveness. The

detailed mechanisms by which chitinase regulates allergic responses remain unclear.

Considering that inhibition of chitinase ameliorates physiological maladies, its regulation

is likely to be important. The development of therapeutics that targets mammalian

chitinase has been suggested in combating allergic asthma.8 0

To date several natural chitinase inhibitors have been isolated,"8 including the

pseudo-trisaccharide allosamidin and its derivatives,82 the cyclic pentapeptides argifine

and argadin, 83 amino acid-derived compounds," and the complex alkaloid

styloguanidine.8
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Figure 1-8. Natural product chitinase inhibitors.

Allosamidin, first isolated from mycelial extracts of Streptomyces sp. 1713,82 has

been extensively studied due to both its potent inhibitory activity and similarity of the

corresponding molecular structure to the proposed transition state. 9"' As shown in Figure

1-8, allosamidin consists of a di N-acetylallosamine residue and an aminocyclitol

aglycone, allosamizoline. Allosamidin strongly inhibits chitinases from human and the

silkworm Bombyx mori, with IC5 values of 40 nM and 48 nM, while it inhibits the yeast

chitinases from Saccharomyces cerevisiae 500-fold less potently.81 Interestingly, the

pseudo-disaccharide derivative inhibits chitinase from Bombyx mori as efficiently as

allosamidin. However, allosamizoline showed very little inhibitory activity against

chitinases.

f. 85



OH OOH OH OHOH OH

HO_ 0 0 0 &-7 HO 0HO HO37_O

O HAc HO -N H HA HO NcK
OH O H NKN OHNH N

allosamidin glucoallosamidin Ainepseudo-disaccharide allosaizollne

IC50 = 40 nM Bombys mori IC50= 60 nM Bombyx mori Very weak inhibition
IC50 = 54 pM Saccharomyces cerevisiae Not active against Saccharomyces cerevisiaes

Figure 1-9. The biological activity of allosamine and its analogues.

1-6 Glycosyltransferases

Glycosyltransferases catalyze the transfer of a sugar moiety from an activated

sugar donor onto saccharide or nonsaccharide acceptors such as proteins and lipids.

Nucleotide pyrophosphate sugars, nucleotide monophosphate sugars, lipid pyrophosphate

sugars, and lipid monophosphate sugars are all utilized as donors. To date 12,000 known

and putative glycosyltransferases have been identified, and by amino acid sequence

similarities divided into 78 families.92 Similar to glycosidases, glycosyltransferases are

classified as either retaining or inverting, depending on the stereo chemical outcome of

reaction at the anomeric center. Glycosyltransferases are believed to follow an analogous

mechanistic pathway to that of glycosidases due to the similarity of their catalyzed

reactions."" Unfortunately, a detailed structural and mechanistic understanding of

glycosyltransferases is lacking due to difficulties with protein overexpression,

purification and crystallization.

The reaction of inverting glycosyltransferases is thought to proceed through single

direct displacement, similar to that proposed for the inverting glycosidase reaction. The

protein crystal structure of rabbit N-acetylglucosaminyltransferase I (GnT 1) determined

to 1.5 A resolution in the presence of uridine 5'-diphospho-N-acetyl-a-D-glucosamine



(UDP-GlcNAc) and Mn2+, provided insight into the reaction mechanism (Figure 1-10).96

GnT 1 catalyzes the transfer of GlcNAc from UDP-GlcNAc to a mannose residue on a

complex N-linked glycoprotein. The general base, Asp291, which is positioned 4.7 A

from Cl of GIcNAc, deprotonates the incoming nucleophile (sugar acceptor), facilitating

attack on the anomeric center of UDP-GlcNAc. The Mn2+ activates the leaving group

(pyrophosphate-nucleotide) by coordination to the pyrophosphate moiety. The structure

also revealed the interaction between Mn 2+ and the metal binding residues. The relative

positions of the catalytic base, the metal binding motif and the metal ion show that an in-

line attack of the acceptor would lead to inversion of stereochemistry at the Cl position

of the donor sugar. Additionally, other structural and kinetic evidence for inverting

glycosyltransferases support a direct displacement involving an oxocarbenium ion-like

transition state.""9
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Figure 1-10. The proposed mechanism of GnT I based on the protein crystal structure.
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The mechanism of retaining glycosyltransferases remains elusive. A double-

displacement mechanism via a covalently bound glycosyl-enzyme intermediate has been

postulated based on analogy with retaining glycosidases. However, numerous efforts to

trap the glycosyl-enzyme intermediate in the active site have been unsuccessful.?'" To

date, X-ray crystal structures of retaining glycosyltransferases in six families have been

solved." In some of protein crystal structures, no nucleophile candidates, which are

required to form glycosyl-enzyme intermediates, were observed in the active site.l o•0' 02

Alternatively, a substitution nucleophilic internal (SNi)-like mechanism has been

proposed, in which the acceptor attaches on the same side as leaving group.9 To

understand the mechanism of retaining glycosyltransferase, more structural and kinetic

experimental evidence is necessary.

1-7 Inhibition studies of glycosyltransferases

In contrast to the many potent inhibitors found for glycosidases, only limited

success has been achieved in developing inhibitors of glycosyltransferases.'o 3 The

challenges in the design of glycosyltransferase inhibitors are 1) low binding affinity (Kn)

of the enzyme to the reaction substrate and 2) difficulties with rational design due to

complex reaction partners, such as sugar donor, sugar acceptor, metal ion and nucleotide;

and 3) limited structural information.'" However, a few natural and synthetic inhibitors

have been found or synthesized."'5 They can be divided into one of two categories:

nucleotide analogues and transition state analogues.



Construction of inhibitors starting with the nucleotide (or pyrophosphate-

nucleotide portion) has become a widely adopted strategy (Figure 1-11). The natural

product tunicamycin falls into this category of nucleotide analogues. i"', 7 Although no

clear sequence homology has been found for the nucleotide-binding site, homology in

conformation at the binding site has been observed. Since the nucleotide portion is

identical to the native substrate, it has a basal binding affinity to the enzyme. Addition of

sugar analogues or other functional groups to the nucleotide portion may therefore

increase the inhibition and selectivity against other enzymes. 6', '8-0'1

OH 0 NH2

HO 0[NH AcHN O PO3 N H

H HO H AcHN 3 OAcHN OH HO OOO

n = 8-11
8-11 GcNAc phophotransferase rat a 2,6-sialytransferase

IC = 7 nM Ki = 40 nM

Ho NH

H- o0 -H O

Hd bH

rat 0 1,4-galactosyltransferase pig a 1,3-galactosyltransferase
Ki = 62 M C1050 = 5 1iM

Figure 1-11. Selected inhibitors of glycosyltransferses based on the nucleotide analogue.

As glycosyltransferases are believed to catalyze the reaction via similar

mechanism, involving an oxocarbenium-ion-like transition state, it is rational to attempt

the use of glycosidase inhibitors as glycosyltransferase inhibitors.'111 13 A few synthetic

glycosidase inhibitors show micromolar inhibitory activity against glycosyltransferases



(Figure 1-12). Similar to glycosidases, the biological activity is very sensitive to changes

in the structure of the inhibitor, and addition of functional groups to the core inhibitor has

shown to increase the binding affinity. 14

OHOH

P-1,4-galactosyltransferase IC 50 22 [iM

cx-1,3-galatcosyltransferase IC so no inhibition

OH OH

HOO NH

no inhibition

15 [tM

OH OH

OH

no inhibition

no inhibition

Figure 1-12. Selected inhibitors of glycosyltransferses based on the transition state analogue.

Studies of human a-1,3-fucosyltransferase (Fuc-T) inhibition represent both

approaches. Fuc-T catalyzes the transfer of L-fucose from guanosine 5'-diphosphate 1-L-

fucose (GDP-Fuc) to the C3 hydroxyl of GlcNAc in the glycoconjugate acceptor (Figure

1-13). The fucosylation is the elaboration step in the biosynthesis of sialyl Lewis x (sLex)

and sialyl Lewis a (sLea), which play essential roles in inflammation and the immune

response.' 15

R'OO OO ROOH OH-NHA o 0
NNH

.0 -P O H 0 0 Ný N ' NH2

OH, O O

OOH

ZH NHAc

a-1,3-Fuc-T OHOH + O

O 0N
a 0 0 HNNH

Figure 1-13. The scheme of reaction catalyzed by a-1,3-Fuc-T.



One approach was to generate a GDP analogue library in a combinatorial fashion

to increase inhibitory activity (Figure 1-14).116 The synthesis of 85 GDP analogues was

achieved by copper-catalyzed cycloaddition between a GDP-alkyne and various azides

having different functional groups. The GDP analogue having a hydrophobic biaryl

turned out to be the most potent inhibitor (Figure 1-14c). Inhibitory activity was

increased by 500-fold over GDP. It also showed high selectivity against other

fucosyltransferases.
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Figure 1-14. the inhibition study of a-1,3-Fuc-T VI with GDP analogues.

The other approach utilized a glycosidase inhibitor as the scaffold (Figure 1-15).

The compound L-fuco-nojirimycin (Figure 1-15a) was known as a potent inhibitor

against a-L-fucosidase (Ki = 1 nM)," 7 but showed very little inhibitory activity against

fucosyltransferase. Based on the structure of this transition state analogue, bisubstrate



analogue inhibitors, in which the sugar acceptor and sugar donor were connected by a

linker, were synthesized. Addition of the sugar acceptor moiety showed an increase of

inhibitory activity. By varying the length and geometry of the linker, the optimal

orientation was found (Figure 1-15d)."8 Interestingly, the trisaccharide derivative

showed poor inhibitory activity, probably due to an unfavorable orientation, despite its

close resemblance to the proposed transition state (Figure 1-15e).

O 1- ,-| ... ,

HO
OH

OH OH HOH OH

HOO 0 O HO O 0
OH OH NHAc

_OH OH ZoH
OOH %,OH

a b c d e

IC 50 3.5 mM > 500 piM 233 [M 81 [M 5.7 mM

Figure 1-15. The inhibition study of a-1,3-Fuc-T with transition state analogues.

1-9 Oligosaccharyl transferase (OT)

Oligosaccharyl transferase (OT, EC 2.4.1.119) plays a central role in the

biosynthesis of asparagine-linked glycoproteins in eukaryotic systems. The glycosylation

step catalyzed by OT involves the co-translational transfer of a tetradecasaccharide from

a dolichyl-pyrophosphate carrier to an asparagine side-chain within the Asn-Xaa-Ser/Thr

sequence of a nascent polypeptide, where Xaa can be any amino acid except proline

(Figure 1-16.)."9 This is the first step in N-linked glycosylation and the resulting

glycoprotein is further processed by various glycosidases and glycosyltransferases.'20
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Figure 1-16. N-Linked glycosylation catalyzed by oligosaccharyl transferase.

OT is a membrane-associated multimeric protein localized in the lumen of the

endoplasmic reticulum (ER). Eight subunits (Ostlp, Ost2p, Ost3p, Ost4p, Ostp5p,

Wbplp, Swplp, Stt3) are assembled into a hetero-octameric OT complex in yeast

(Saccharomyces cerevisiae).12' Recent evidence indicates that Stt3 is the catalytic subunit

of the eukaryotic OT.' 22 '24 Stt3 family proteins are responsible for the catalytic activity of

N-linked glycosylation in eukaryotes, archaebacteria and in selected eubacteria.12 5"126 In

spite of its essential role in N-linked glycosylation, only limited structural or mechanistic

information for Stt3 is available. The highly membrane-associated nature of Stt3, which

is predicted to have 11 or 13 transmembrane domains, has hampered the investigation of

this subunit. 127,128 Even the topology of the Stt3 protein is hard to predict. Therefore,

studies that have focused on substrate specificity in vivo and in vitro have contributed to

our understanding of catalysis.



1-10 Peptide substrate specificity studies of OT

The source of enhanced nucleophilicity of the amide nitrogen of asparagine is a

prevailing mechanistic question in N-linked glycosylation, and several mechanisms have

been proposed. 2 9-131 The general agreement is that intramolecular hydrogen bonding

activates the carboximide of asparagine.'3 2

In addition, the Asx-turn motif is believed to be an important element to activate

the peptide substrate (Figure 1-17). A peptide having this recognition sequence can adopt

two conformations: an Asx-turn or a P3-turn. The major difference is the intramolecular

hydrogen bonding site of the backbone amide. In the Asx-turn, the backbone amide

interacts with the side-chain amide of the asparagine. In contrast, the p-turn is

characterized by the hydrogen bonding between backbone amide groups.'33 The

hydrogen-bonding network in the Asx-turn facilitates deprotonation of the amide to

provide the neutral imidol species. The intermediate could react with the dolichyl-

pyrophosphate-linked sugar donor to generate the glycopeptide. Using NMR studies, it

was demonstrated that an unglycosylated peptide, based on a short sequence of

hemagglutinin, adopts an Asx-turn conformation. Upon glycosylation, the structure

changes to induce a type-I-P-turn conformation. 134,135 The fact that proline is not accepted

at the Xaa site within Asn-Xaa-Ser/Thr sequence, and that 10-30% of recognition sites

are not glycosylated, supports that local conformation plays an important role.' 136
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Figure 1-17. The proposed mechanism of OT using Asx turn.

The mechanistic studies of peptide substrates guided the development of

inhibitors against OT with low-nanomolar affinity. The establishment of backbone

constraint and replacement of the carbonyl of asparagine with methylene unit, gave a

tight binding inhibitor with a K, of 37 nM (Figure 1-18.).'37
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Figure 1-18. The potent OT peptide inhibtior with Asx turn.

1-11 Carbohydrate substrate specificity studies of OT

A tetradecasaccharide linked to dolichyl-pyrophosphate by an a-linkage is the

preferred substrate for OT both in vivo and in vitro (Figure 1-19a). Due to the difficulty

of obtaining the full substrate, most in vitro studies have been carried out using

chitobiose linked to a dolichyl-pyrophosphate as the substrate (Figure 1-19b). The Km

values for the full substrate (Figure 1-19a) and the truncated substrate (Figure 1-19b)

were determined to be 33 [tM and 65 [tM respectively.'3 8 Interestingly, the synthetic

substrate Dol-PP-GlcNAc-Glc (Figure 1-19c) showed 2.5 fold improvement in binding

with a Km of 26 pM.'39 The replacement of the C2 acetamido group with

trifluroacetamide (Figure 1-19d) or ethyl ether (Figure 1-19e) of the proximal GlcNAc

residue leads to total loss of enzyme catalytic activity.'3 9 These analogues (Figure 1-19d,

e) were further analyzed as inhibitors of OT, which suggested that OT recognized these

synthetic substrates without a C2 acetamide group, but OT could not transfer them to the

peptide substrate. In contrast, Dol-PP-GlcNAc (Figure 1-19f) was found to be very poor

substrate for OT.
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Figure 1-19. The sugar substrate specificity study for OT.

Since OT is classified as an inverting glycosyltransferase, the reaction pathway of

OT is believed to proceed via single direct displacement involving an oxocarbenium ion-

like transition state. Activated asparagine attacks the anomeric center of the GlcNAc in

the proximal (P) site, generating a 13-linked glycopeptide. Although no metal binding

motif has been found in OT, it has been reported that divalent ions such as Mn 2
, or Mg2

+

are essential for the catalytic activity.'" The results of a carbohydrate substrate study

suggested that the C2 acetamide group plays an important role in enzyme catalysis, either

directly or indirectly. 139 A substrate specificity study of bacterial OT also supports the

role of the C2 acetamide group in enzyme activity.'41 Based on these substrate study

results, a reaction pathway via an oxazoline ion intermediate was proposed. 14 ' A high-

energy oxocarbenium ion might be stabilized by the delocalization of positive charge

through the participation of the C2 acetamido group. However, to establish the exact



function of the C2 acetamido related to the mechanism of OT, a detailed structural and

kinetic study of OT is required.
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Figure 1-20. The possible transition state of sugar substrate.

Based on the similarity of the proposed transition states of chitinase and OT, the

potent chitinase inhibitor glucoallosamdin A pseudo-disaccharide was considered as a

potential inhibitor for OT (Figure 1-21a). Unfortunately, no inhibitory activity was

observed up to 5 mM. Other chitobiose derivatives (Figure 1-21b, c) showed no

inhibitory activity against OT up to 500 tM concentration.142
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Figure 1-21. The compounds tested in an OT inhibition study.



11 Design of an inhibitor candidate for chitinase and OT

The goal of this study was to design, synthesize, and evaluate potential inhibitors

against OT from Saccharomyces cerevisiae and chitinase from Streptomyces grises.

Although the reactions catalyzed by the two enzymes follow different pathways, they are

believed to share similar transition states involving an oxocarbenium ion. Our intent was

to utilize the common transition state analogue for both enzymes and systematically

introduce additional binding determinants.

From the substrate and inhibitor studies and mechanistic considerations of

chitinase and OT, common transition state analogues were designed.

Polyhydroxypyrrolidine 1, also known as 2,5-dideoxy-2,5-imino-D-mannitol

(DMDP),54" 43 is one of the most prevalent sugar mimics. 49 "'" Five-membered imino

sugars show potent inhibitory activity against the a broad range of retaining and inverting

glycosidases and glycosyltransferases (Figure 1-22).145,146
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0-1,4-galactosyltransferase
IC 50 

= 22 iM

Figure 1-22. Selected examples of five-member imino sugars and their biological activities.



Among imino sugar pyrrolidine analogues, we chose 3 as the target transition

state analogue. In addition to its ability to mimic the charge and shape of the

oxocarbenium ion, there were several attractive features of iminocyclitol 3. In chitinase

and OT, the C2 N-Ac group of the proximal GIcNAc residue plays an important role in

the enzyme catalysis either directly or indirectly. The Cl N-Ac group in the imino sugar

could interact with the same key residues in the active site that bind to the C2 N-Ac

group in the sugar substrate. The two pseudo-equatorial secondary alcohols have a

similar configuration to that of N-acetylglucosamine. Moreover, functionalization of Cl

amine or secondary ring amine by acylation or reductive amination have been reported,

efficiently generating the corresponding derivatives.' 47

The inhibition study of chitinase and the carbohydrate substrate study of OT

suggest that the disaccharide unit is the minimal binding motif for OT and chitinase. To

fulfill this requirement, we decided to synthesize a pseudo-disaccharide motif containing

the transition state analogue (Figure 1-23). To mimic the glycosyl linkage in chitobiose,

we planned to add glucose and N-acteylglucosamine to the C4 hydroxyl group of the

imino sugar via a n-linkage.

Chitinase has emerged as a therapeutic target in combating asthma. To validate

the exact role of mammalian chitinase in the allergic response, the effect of exogenous

chitinases (from insect or fungi, for example) must be investigated. Although many

natural product inhibitors have been discovered, the synthesis of derivatives based on a

common motif has proven effective in the discovery of an inhibitor and in improvements

to its biological activity. 47"48 To discover potent and selective inhibitors against different



chitinases, the synthesis of pseudo-disaccharide derivatives will be useful. We were

particularly interested in exploration of different groups such as aliphatic chains, aromatic

and heterocyclic groups on the Cl amine of the imino sugar. These compounds will be

valuable tools to elucidate the function of chitinases from various species in allergic

response.

In spite of the importance of N-linked glycosylation, the structural and

mechanistic study of OT has been limited due to the membrane-associated nature of this

multimeric complex. Studies of the inhibition of OT are a more tractable approach to

providing insight into the mechanism of transferring an oligosaccharide from the dolichyl

lipid to protein. For the design of an OT inhibitor, the addition of a long aliphatic chain to

the transition state analogue is expected to increase the binding affinity to the enzyme.

The failure of glucoallosamdin A pseudo-disaccharide and chitobiose derivatives as OT

inhibitors could be explained based on the possibility that these transition state analogues

might not be accessible to the active site of OT. Considering the amphiphilic nature of the

dolichyl-pyrophosphate-linked tetradecasaccharide and the membrane-associated nature

OT, the active site of glycosylation may be at the interface between the membrane and

soluble domains of OT.

pseudo-disaccharide

SI transition state analogue

H OOOH -OH

HO o Ho
X = OH, NHAc H R = aliphatic, aromatic

target molecules

Figure 1-23. The design of inhibitors for chitinase and OT.



A modular approach based on the pseudo-disaccharide core will reveal the

critical binding determinants required for inhibition of chitinase and OT. A comparison

of biological properties will give insight into the mechanistic differences between OT and

chitinase in terms of inhibition.
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Chapter 2- The synthetic efforts toward the pseudo-disaccharide containing

an imino sugar by the convergent approach

2-1 Introduction

As discussed in Chapter 1-11, our target compounds for both OT and chitinase

inhibition studies were pseudo-disaccharide moieties containing the transition state

analogue. We were interested in functionalizing the Cl amine of the imino sugar to

generate its derivatives. Considering the amphiphilic nature of the dolichyl-

pyrophosphate-linked tetradecasaccharide and the membrane-associated nature of OT, we

anticipated that a potential OT inhibitor would require a long aliphatic chain to increase

the enzyme affinity.

From the outset, we planned to synthesize pseudo-disaccharides containing the

imino sugar by a convergent approach (Figure 2-1). Thus, the sugar acceptor 2-5 and

sugar donor would be synthesized separately. A glucose derivative or a glucosamine

derivative donor would be added to the C4 hydroxyl group of the imino sugar building

block. Neighboring-group participation of C2' group on the sugar donor would ensure P-

linked glycosidic bond formation.1,2 Imino sugar building block 2-5 would be constructed

from unprotected precursor 2-6, the synthesis of which has been reported.3 5 Considering

its compatibility with glycosylation and facile deprotection, the Cbz (benzyloxycarbonyl)

group was chosen as the protecting group for the primary amine and secondary amine.

This approach was expected to provide the desired pseudo-disaccharide convergently.

Then, inhibitor candidates would be prepared through the protecting group manipulations

and functionalization of the resulting primary amine.



OH OH OR' OPH0
HO 0 NHO H

N•R • -LNHCbz

2-1 :X = NHAc O 2-3: Z= NP'
2-2 :X = OH R = various groups R' = Ac, Bn 2-4: Z= OAc P' = protecting group

P = protecting group

OR' 4 OP

R'O y + HO NCbz
R Z BnOf- -NHCbz

Y= imidate, halide, 2-5
SPh

OH

HO NH

2-6

Figure 2-1. Strategy toward the synthesis of pseudo-disaccharides containing an imino sugar.

2-2 Synthesis of the imino sugar and biological evaluations

Among the various syntheses of 2-9, we decided to follow the one developed by

Sttitz (Scheme 2-1).4,6,7 This route utilizes the Amadori rearrangement6 and an

intramolecular reductive amination as key steps. The synthesis was straightforward and

the intermediate was efficiently modified to generate various C1-nitrogen imino sugar

derivatives. Beginning with D-glucurono-6,3-lactone, 2-7 was accessible in 5 steps.8 The

sequential removal of protecting groups on 2-7 gave the desired product 2-8. The

conversion of the a-hydroxy lactol to the P-amino ketal was achieved by the Amadori

rearrangement 6 of 2-8 with 1.0 equiv. of Bn 2NH in the presence of 1.0 equiv. of acetic

acid in methanol. An intramolecular reductive amination between the in-situ generated

amine from azide group and the ketone followed by concomitant debenzylation gave 2-9.
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The stereo-chemical outcome of the reductive amination was dictated by the approach of

hydrogen from the re face to avoid torsional strain, generating the trans-configuration

between C2-C3.3 ,4

OH

O ,H
0 OH

OH

D-Glucurono-6,3-lactone

5 steps rOTHP

2-7N3

OH
NHHO 2

HO3  NH2

2-6

2 steps OH
I N 3

HO 0 OH
OH

2-8

Amadori
rearrangement

SOHreductive amination OH

N3 OH
2-9

Scheme 2-1. The synthesis of imino sugar developed by Stiitz.

Following literature procedures,4 the diamine 2-6 was obtained in 9 steps.5

Although our target compounds were the pseudo-disaccharide derivatives containing the

imino sugar, the facile modification of the primary amine in 2-6 prompted us to

investigate the inhibitory activity of the imino sugars against OT and chitinase. The

selective acylation of the primary amine in 2-6 with acetic anhydride and dodecanoic

anhydride in methanol gave the desired compounds 2-10 and 2-11, respectively (Scheme

2-2).3



OH 
OH

HO NH a HO NH
HO NH2 HO NHAc

2-6 2-10
OH OH

HO NH b HO NHH
HO NH2  HO N

2-6 2-11

Reagents and conditions: (a) Ac2 0, MeOH, 0 OC, 50%; (b) dodecanoic anhydride, MeOH, 82%.

Scheme 2-2. The synthesis of imino sugar 2-10 and 2-11.

The inhibition assays of 2-10 and 2-11 against chitinase from Streptomyces

griseus were carried out, following literature procedures (Figure 2 -2 ).1o,1 4-

Methylumbelliferyl-p-D-N,N'-diacetylchitobiose, which is commercially available, was

used as a fluorogenic substrate to monitor enzyme activity. Cleavage of 4-

methylumbelliferyl- P-chitobiose by chitinase yields the fluorescent molecule 4-

methylumbelliferone that emits light at 460 nm when excited at 365 nm. Production of 4-

methylumbelliferone was linear with time for the assay incubation time (10 min.). Figure

2-3 shows the fluorescence data at 460 nm for enzyme activity without inhibitor (control

experiment) and with 2-10 and 2-11. The inhibition percentage relative to the control was

calculated on the basis of the fluorescence reading at 460 nm after 10 min. No inhibitory

activity of 2-10 and 2-11 was observed up to concentration 2 mM.
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Figure 2-2. The general scheme of the chitinase assay.
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Figure 2-3. The Inhibitory activity of 2-10 and 2-11 toward chitinase.

Next, 2-11 was evaluated as an inhibitor for yeast OT from Saccharomyces

cerevisiae using radiolabeled Dol-PP-GIcNAc-(3H-GlcNAc) as the donor and the

consensus sequence tripeptide, Bz-Asn-Leu-TI.r-NHMe, as the acceptor (Figure 2-4).12,13

The radiolabeled dolichol-pyrophosphate-linked chitobiose was prepared from the

enzyme reaction of the synthetically made Dol-PP-GlcNAc and tritium labeled UDP-

(3H)-GlcNAc with Enzyme II from pig liver. The tripeptide was prepared using solution
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phase peptide chemistry. An OT activity assay involves monitoring the transfer of

radiolabeled chitobiose from the dolichly-pyrophosphate-linked chitobiose to the

tripeptide. The difference in partition coefficients of the organic-soluble lipid-linked

chitobiose and the aqueous-soluble glycopeptide product allows for separation by a

simple aqueous-organic extraction. The radioactivity of the aqueous phase was measured

using scintillation counting to determine the amount of radioactivity in the 3H-

glycopeptide. The disintegrations per minute (DPM) were plotted as a function of time

for the control (without inhibitor) and different inhibitor concentrations (Figure 2-5). The

percentage inhibition was determined from slope of plot. Compound 2-11 showed no

inhibitory activity against OT up to 2 mM.
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Figure 2-5. The activity assay of 2-11 toward OT

The poor biological activities of2-10 and 2-11 against chitinase and OT

respectively were confirmed our prediction. Considering previous inhibitor studies of

chitinases and substrate studies of OT, the disaccharide unit is necessary for the

recognition by these enzymes as discussed in Chapter 1-11.14"15 Therefore, we focused our

attention on the synthesis of pseudo-disaccharide containing the imino sugar.

2-3 Synthesis of the imino sugar building block

Compound 2-12 was prepared by treatment of 2-6 with 3.0 equiv. of

benzylchloroformate (CbzC1) in the presence of N,N-diisopropylethylamine (DIPEA)

(Scheme 2-3). Attempted trans-6,4 diol protection of 2-12 employing PhH(OMe)2 in the

presence of 0.1 equiv. of p-toluenesulfonic acid (p-TsOH) gave an inseparable mixture of
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reaction products. Modified reaction conditions, such as different solvents (DMF,

CH3CN), excess amounts of the protecting reagents, and increased temperatures did not

improve formation of the desired compound. The difficulty of installing this protecting

group might be a result of the structural rigidity of the diol, which has a trans

configuration in the five-membered ring.

Due to the complications with benzylidene acetal formation in 2-12, we decided

to use the disiloxane group,'6 which have been used for protection of a trans-3,5 diol in

the polyhydroxyfuranoside synthesis." Compound 2-12 was treated with 1.2 equiv. of

1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane in pyridine to provide 2-13 in 72% yield.

OH 6 0OH
HO NH. a 4 b

Ho-,_ HO NCbz IN b . Ph. NCbz
HO NH2  HO NHCbz HO- NHCbz

2-6 2-12 complex mixture

,Si-O
OSi-O NCbz

/ HO NHCbz
2-13

Reagents and conditions: (a) CbzCI, DIPEA, MeOH, 0 OC to RT, 88%; (b) PhH(OMe) 2, p-TsOH, CH3CN or DMF; (c) 1,3-
dichloro-1,1,3,3-tetraisopropyldisiloxane, pyridine, 0 OC to RT, 72%.

Scheme 2-3. The synthesis of 2-13.

In designing the sugar acceptor, the choice of hydroxyl protecting group adjacent

to the glycosylation site is often crucial for efficient glycosylation.18-2 0 In light of steric

and electronic effects, the benzyl group was most suitable for the secondary alcohol at the
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C3 position. Attempted benzylation on the secondary alcohol under the various

conditions failed to afford the desired product. By modifying a literature procedure, 17 ,'2

benzylation of furanoside 2-14 as a model compound which was synthesized following

the literature procedures, was optimized (Scheme 2-4). The best conditions were to treat

2-14 with 1.3 equiv. of benzyl bromide (BnBr) and 2.2 equiv. of NaH in DMF.

Subsequent deprotection of the disiloxane group using tetrabutyl-n-ammonium fluoride

(TBAF) in THF provided the desired product 2-15. Unfortunately, when applying the

same reaction conditions to 2-13, an unidentified complex mixture was obtained. TBAF-

mediated removal of the siloxane group did not help to separate the mixture. Changing

the amount of benzyl bromide or sodium hydride also led to similar results. Mass spectral

analysis indicated that the major constituent in the mixture was the dibenzylated product.

The linkage between the silicon and the secondary alcohol has been known to be unstable

under basic conditions.'6 One possible explanation is that cleavage of the protecting

group took place first resulting in non-selective benzyl ether formation.

These problems led us to investigate other benzylation conditions. The reaction

did not proceed when the solvent was changed to THF. Attempts at using a stronger base

such as BuLi, sodium hexamethyldisilazne (NaHMDS), and lithium hexamethyldisilazne

(LiHMDS) gave no improvement. Furthermore, no starting material was consumed at

low temperatures (-78 TC to 0 'C) and decomposition of the starting material was detected

at ambient temperature. Benzylation of 2-13 employing the different base in the solvent

mixture of THF and DMF also did not provide any desired product. Finally, benzylation

employing silver oxide and benzyl bromide under different solvents (Et20O or DMF)

failed to yield the desired product.
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Scheme 2-4. Attempted benzylation of 2-13.

Since our primary goal was to synthesize a potential OT inhibitor, the benzylation

of 2-17, prepared by Cbz protection of the secondary amine of 2-11 followed by a

subsequent disiloxane protection was attempted. In contrast to 2-13, the benzylation and

subsequent desilylation of 2-17 provided the desired compound 2-18 in 32% yield over 2

steps. It is difficult to rationalize the effect of the Cl amine protection group on

benzylation of the C3 alcohol. The TBDPS protection of the primary alcohol in the

presence of imidazole furnished 2-19, which was a substrate of glycosylation. Attempts

to improve the yield of benzylation by changing the reaction conditions such as the base

(BuLi, NaHMDS, LiHMDS), temperature and solvent (THF, THF/DMF mixture) were

not successful. Therefore, it was decided to focus on glycosylation of imino sugar

building block 2-19.
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Reagents and conditions: (a) CbzCI, DIPEA, MeOH, 0 OC to RT, 70 %; (b) 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane,
pyridine, 0 OC to RT, 75 %; (c) (i) BnBr, NaH, DMF, 0 OC to RT; (ii) TBAF, THF, 2 steps 32 %; (d) TBDPSCI, imidazole,
CH2CI2, 85%.

Scheme 2-5. The synthesis of building block 2-19.

2-4 Glycosylation studies of 2-19

With the sugar acceptor 2-19 in hand, we next turned to the construction of the

pseudo-disaccharide linked by a P-glycosidic bond. The selection of a protecting group at

the C2' position of the sugar donor was an important consideration to achieve the desired

glycosidic linkage.1,2 For the glycosylation of the glucose derivative, the sugar donor with

an acyl protecting group at the C2 alcohol has been used to obtain the p linkage. In

glycosylations with the glucosamine derivative as the donor, it is essential to use different

protecting groups for the amine at the C2' position rather than using the N-Ac group

directly 22 due to its rapid conversion to the corresponding oxazoline.23 Therefore, a

number of protecting groups were investigated, including the N-trichloroethyl carbamate

(N-Troc),' 26 N-trichloroacetimide (N-TCA), 19,2 7 N-phthalimide (N-Pth),28, 29 and azide.3 °



32 Neighboring group participation of the N-Troc, N-TCA, and N-Pth groups has been

reported to ensure highly selective formation of the glycosidic P-linkage.

The attempted glycosylation of 2-19 with 2-2027 in the presence of 0.2 equiv. of

BF 3*OEt2 as the promoter in CH 2Cl2 did not provide the desired product (Scheme 2-6).

Compound 2-19 remained unreacted, and most of the imidate 2-20 was converted into the

corresponding oxazoline. The attempted coupling reaction of 2-19 and 2-2133 also failed

to provide the desired product. The decomposition of the sugar donor was observed by

thin-layer chromatography (TLC) analysis. Excess amount of the donor did not help to

generate the desired product. Use of a different promoter, such as trimethylsilyl

trifluoromethanesulfonate (TMSOTf), tert-butyldimethylsilyl trifluoromethanesulfonate

(TBSOTf), silver trifluromethanesulfonate (AgOTf) and a change of solvent including

toluene and acetonitrile had no effect on the outcome of the glycosylation. Addition of

excessive amount of the promoter resulted in the decomposition of 2-19.

Peracetylated sugar donors have been considered to be weakly reactive reaction

partners in the glycosylation. The introduction of benzyl ethers as hydroxyl protection

groups is known to increase donor activity.34'35 The glycosylations of 2-19 with 2-2227 or

2-2336 was attempted. However, glycosylation of 2-19 with 2-22 employing 0.2 equiv. of

BF 3-OEt2 in CH2C12 did not afford the desired product and the glycosyl imidate 2-22 was

converted to the corresponding oxazoline immediately. Addition of excess imidate did

not help to provide the desired product, nor did use of a different promoter (TMSOTf,

AgOTf, TBSOTf), solvent (toluene, acetonitrile), or increased reaction time. The desired

product was not obtained by glycosylation of 2-19 with different glycosyl imidate donor

2-23. The imidate 2-23 rapidly decomposed even at - 50 TC.
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toluene, CH3CN), 0 OC for 2-20 and 2-21, -50 OC for 2-22 and 2-23.

Scheme 2-6. Attempted glycosylation of 2-19 with glycosyl imidates.

Although glycosyl imidates have been widely used as sugar donors,3 738 alternative

anomeric activating groups are often crucial for the addition of the carbohydrate to a

sterically hindered site in a complex sugar synthesis. 1839-44 Therefore, glycosylations of 2-

19 utilizing either thioglycosides or glycosyl halides were attempted (Scheme 2-7).

Treatment of 2-19 with 2-2445 in the presence of N-iodosuccinimide (NIS) and

trifluoromethanesulfonic acid (TfOH) or silver trifluromethanesulfonate (AgOTf) did not

provide the coupled product. Most of the sugar acceptor was recovered and the sugar

donor decomposed under reaction conditions. Use of the thioglycoside 2-2546 with the

NPth group as the glycosyl donor had no effect on the outcome of the glycosylation. The

reaction of 2-19 utilizing glycosyl bromide 2-2627 or 2-2747 using 0.2 equiv. of AgOTf in

CH,C12 did not give the desired product. The unreacted sugar acceptor 2-19 was

recovered and most of the sugar donor decomposed.
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CH2C12 or toluene, 0 OC.

Scheme 2-7. Attempted glycosylation of 2-19 with thioglycosides or glycosyl bromides.

Given the failure of glycosylations of 2-19 with glucosamine derivative donors

under various reaction conditions, the coupling reaction with a glucose derivative donor

was investigated (Scheme 2-8). The attempted glycosylations of 2-19 with glycosyl

imidates 2-2848 and 2-2949 or thioglycosides 2-3050 and 2-3151 using different promoters

were explored. However, the desired compound was not obtained under various

conditions.
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Scheme 2-8. Attempted glycosylation of 2-19 with glucose derivative donors.

Extensive glycosylation studies of 2-19 employing different glycosyl donors,

anomeric activating groups, reaction promoters, and solvents failed to give the desired

products. A few glycosylations of the pyrrolidine derivatives were reported. 52' 53 The

sterically congested glycosyl acceptor 2-19 appears unreactive toward glycosylation. This

conclusion prompted us to utilize 2-32 as the sugar acceptor, which was obtained by the

treatment of 2-12 with 1.1 equiv. of tert-butyldiphenylsilyl chloride (TBDPSC1) in the

presence of imidazole in CH 2C12 (Scheme 2-9). The sterically less hindered 2-32 would

potentially be a more reactive substrate toward the glycosylation. Given its structure, it

was not expected to afford the sole desired regioisomer from the glycosylation, but the

separation of the regioisomers would enable us to obtain the desired pseudo-disaccharide.

Therefore, success of this study depended on the ability to separate glycosylation

products. To find out the best separation conditions, the glycosylation of 2-32 and

glycosyl imidates 2-20, 2-21,2-22 and 2-23 was carried out employing 0.2 equiv. of

BF3*OEt2 in CH2CI 2. Unfortunately, all of these reactions provided a complex mixture of



products. Mass spectral analyses indicated that mono-glycosylated products were the

major components. However, the mixture could not be resolved by flash column

chromatography under a variety of different eluents. Further modifications of the crude

mixtures, such as removal of the silyl ether, acetate deprotection, and the benzoylation of

the remaining secondary alcohol did not facilitate separation.

OR

ROO

OH OTBDPS XYCC
HO NCbz a HoNb z  b NH

SNC HO NCbz b NH complex mixture
HO NHCbz HO NHCbz 2-20: R = Ac, X =NHTCA

2-21 : R = Ac, X =NPth2-12 2-32 2-22 : R = Bn, X = NHTCA
2-23: R = Bn, X = NPth

Reagents and conditions: (a) TBDPSCI, imidazole, CH 2C12, 81 %; (b) different sugar donor, BF3*OEt2, CH20C2, 0 OC.

Scheme 2-9. Attempted selective glycosylation of 2-32.

2-5 Conclusion

In conclusion, imino sugars 2-10 and 2-11 were synthesized. However, 2-10 and

2-11 showed no inhibitory activity against chitinase and OT. All attempts to construct a

pseudo-disaccharide were unsuccessful. Glycosylation studies of 2-19 did not provide

any desired products. Attempted selective glycosylations provided inseparable mixtures

of products. With these results, we decided to investigate an alternative route for the

construction of pseudo-disaccharides containing the imino sugar.



Experimental section

General Synthetic Procedures

Anhydrous dichloromethane (CH2Cl 2) and toluene were distilled from calcium hydride,
and anhydrous tetrahydrofuran, THF, was distilled from sodium/benzophenone.
Acetonitrile was pre-dried over anhydrous K2CO3 for 24 h, followed by further drying for
24 h over 3A molecular sieve, followed by distillation. Diethyl ether (Et20O) was distilled
from LiAlH4. DMF was distilled by the fractional distillation under high vaccum. All
chemicals were purchased from Sigma/Aldrich and used without further purification
unless otherwise noted. Analytical thin-layer chromatography (TLC) was carried out on
Merck 60 F254 250-[tm silica gel plates. All compounds were visualized on TLC by UV
irradiation or an aqueous solution of ceric ammonium molybdate (CAM) staining. Flash
column chromatography was carried out using forced flow of the indicated solvent on
AdTech Flash Silica Gel, 32-63 [tm particle size, 60 A pore size (Adedge technologies).
'H NMR spectra were acquired on a Bruker Avance (DPX) 400 MHz spectrometer,
Varian INOVA 500 MHz spectrometer and Bruker Avance (DPX) 600 MHz
spectrometer. 13C NMR spectra were acquired on a Bruker Avance (DPX) 400 MHz
spectrometer and Varian INOVA 500 MHz spectrometer. Chemical shifts (8) are reported
in parts per million (ppm) with chemical shifts referenced to internal standards: CDCl3
(7.27 ppm for 'H, 77.23 ppm for 13C), CD 30D (4.87 ppm for 'H 49.15 ppm for '3C), D20
(4.80 ppm for 'H). Coupling constants (J) are reported in Hertz (Hz) and multiplicities
are abbreviated as singlet (s), doublet (d), triplet (t), multiplet (m), broadened singlet (br)
and doublet of doublets (dd). The term "app d" is used to denote a triplet with two similar
coupling constants and "app t" is used to denote a doublet of doublets (dd) with similar
coupling constants. High resolution Mass Spectra (HRMS) were obtained at the Mass
Spectrometry Facility at MIT (Cambridge, MA).

(2R,3R,4R,5R)-2-(Acetamide-methyl)-3,4-dihydroxy-5-(hydroxy-methyl)-
pyrrolidine (2-10)

46 O5H TO a solution of 2-6 (120 mg, 0.74 mmol) in MeOH (15 mL),

HO _NH acetic anhydride (0.077 mL, 1.1 equiv.) was added at 0 oC. After 4h, the
2-0NHAc solvent was removed under reduced pressure, followed by purification

via flash column chromatography (CH2C12:MeOH = 5:1 with 5% of
NH4OH to CH 2C12:MeOH = 2:1 with 5% of NH 4OH) to afford 2-10 (76 mg, 50%) as a
colorless liquid.

'H NMR (D20, 600 MHz) 8 2.00 (s, 3H, acetyl), 3.05 (m, 1H, H5), 3.11 (m, 1H,
H2), 3.29 (ABx, 1H, J = 14.0 and 7.1 Hz, Hia), 3.41 (ABx, 1H, J =14.0 and J = 5.1 Hz,
Hlb), 3.60 (ABx, 1H, J = 11.9 and 6.3 Hz, H6a), 3.70 (ABx, 1H, J = 11.9 and J = 4.3 Hz,
H6b), 3.75 (app t, 1H, J = 6.4 Hz, H3), 3.82 (app t, IH, J = 6.4 Hz, H4);

'3C NMR (D20, 125 MHz) 8 22.4, 42.1, 60.1, 62.2,77.9, 79.6, 175.2;
HRMS (ESI-MS): Calcd for [C8H,6N204+H]÷(M+H): m/z = 205.1183; Found:

205.1189.



(2R,3R,4R,5R)-2-(Dodecanoic-acid-amide-methyl)-3,4-dihydroxy-5-(hydroxy-
methyl)- pyrrolidine (2-11)

4 6 OH To a solution of 2-6 (250 mg, 1.54 mmol) in
SOH" N H MeOH (15 mL), dodecanoic anhydride (693 mg,
2-11 1 N 1.2 equiv.) was added. After 4h, the solvent was

C removed under reduced pressure, followed by
purification via flash column chromatography (CH2Cl2:MeOH = 8:1 with 1% of NH 4OH
to CH 2CI2:MeOH = 5:1 with 1% of NH 4OH) to afford 2-11 (435 mg, 85%) as a colorless
liquid.

'H NMR (CD 3OD, 400 MHz) 8 0.92 (t, J = 7.0 Hz, 3H, -CH2CH3), 1.31-1.35 (m,
16H, aliphatic chain), 1.62-1.67 (t, 2H, -CH2CH3), 2.25 (t, 2H, J = 7.9 Hz, -COCH2CH2-),
3.05-3.09 (m, 1H, Hs), 3.10-4-14 (m, 1H, H2), 3.33 (ABx, 1H, J = 13.3 and 7.2 Hz, Ha),
3.41 (ABx, 1H, J =13.9 and 4.8 Hz, Hlb), 3.59 (ABx, 1H, J =11.3 and 6.3 Hz, Ha), 3.69
(ABx, 1H, J =11.3 and 4.0 Hz, H6b), 3.72 (app t, 1H, J = 6.3 Hz, H3), 3.79 (app t, 1H, J =
6.1 Hz, H4);

13C NMR (CD 3OD, 125 MHz) 8 14.6, 23.9, 27.0, 30.5, 30.6, 30.8, 30.9, 31.0,
33.2, 37.2, 42.4, 62.2, 63.8, 65.3, 78.6, 80.2, 177.6;

HRM'S: (ESI-MS): Calcd for [C, 8H3,N204+H]+(M+H): m/z = 345.2748; Found:
345.2737.

N-Benzyloxycarbonyl-[(2R,3R,4R,5R)-2-(benzyloxylcarbonylamino-methyl)-
3,4-dihydroxy-5-(hydroxy-methyl)]-pyrrolidine (2-12)

To a solution of 2-6 (520 mg, 3.21 mmol) and DIPEA
46 OH (2.24 mL, 4.0 equiv.) in methanol (20 mL), CbzCl (1.370 mL, 3.0

HO- ' NCbzb
HO 2 equiv.) was added at 0 'C and the reaction mixture was warmed to

NHCbz
31 room temperature for 2 h. The mixture was stirred for 8 h. at room

2-12 temperature. The solvent was removed under reduced pressure. Flash
column chromatography (CHC12:MeOH = 15:1 to 10:1) of the crude product gave 2-12
(1.21 g, 88%) as a colorless oil (a mixture of N-rotamers).

'H NMR (CD 3OD, 400 MHz) 6 3.27-3.66 (m, 4H, Hia, Hlb, H2 and Hs), 3.82-4.05
(m, 2H, H 6, and H6 b), 3.95-4.01(m, 1H), 4.37-4.40 (m, 1H), 4.87-5.11 (m, 4H, -
COOCH2Ph *"2), 7.26-7.39 (m, 1OH, -COOCH2Ph*2);

'3C NMR (CD30D, 100 MHz) 6 44.1, 46.2, 56.0, 56.9, 59.0, 60.2, 61.3, 64.0,
60.3, 63.0, 65.2, 66.1, 77.5, 78.2, 79.7, 80.0, 128.4, 129.4, 127.7, 128.1, 128.3, 128.4,
127.7, 127.7, 127.9, 133.2, 136.5, 135.2, 138.0, 155.7, 153.0, 170.1, 172.1.



N-Benzyloxycarbonyl-[(2R,3R,4R,5R)-2-(benzyloxylcarbonylamino-methyl)-3-
hydroxy-4,6-O-(tetraisopropyldisiloxane-1,3-diyl)]-pyrrolidine (2-13)

S1,3-dichloro- 1,1,3,3-tetraisopropyldisiloxane (1.08 mL, 1.2
6 equiv.) was added to the solution of 2-12 (1.21 g, 2.82 mmol) in

O 5•NCbz pyridine (20 mL) at 0 oC and the reaction mixture was warmed to
/ HO 2 NHCbz room temperature for 2 h. The reaction mixture was stirred 24 h.

2-13 1 Excess silylating agent was quenched by the addition of 1 mL of
methanol. The solvent was removed under reduced pressure and

the crude product was purified by flash column chromatography to give 2-13 (1.37 g,
72%) as a colorless oil (a mixture of N-rotamers). (hexane:ethyl acetate = 4:1 to
hexane:ethyl acetate = 2:1)

'H NMR (CDCl3, 400 MHz) 8 0.93-1.08 (m, 28H, 4 isopropyl), 3.27-3.66 (m,
3H, Hia, Hlb, H2 and Hs), 3.82-4.05 (m, 2H, H, and H6b), 3.95-4.01 (m, 1H, HA), 4.37-4.40
(m, 1H, H4), 4.87-5.11 (m, 4H, -COOCH2Ph*2), 7.26-7.39 (m, 10H, -COOCH2Ph*2);

N-Benzyloxy carbonyl-[(2R,3R,4R,5R)-2-(dodecanoicacidamide -methyl)-3,4-
dihydroxy-5-(hydroxy-methyl)]-pyrrolidine (2-16)

6 OH CbzCl (0.239 mL, 2.0 equiv.) was added to
HO 1 NCbz a solution of 2-11 (320 mg, 0.84 mmol) and DIPEA

HO 1 N (0.439 mL, 3.0 equiv.) in methanol (20 mL) at 0 oC
2-16 O and the reaction mixture was warmed to room

temperature for 2 h. The mixture was stirred for 8 h. at room temperature. The solvent
was removed under reduced pressure. Flash column chromatography (CH 2C12:MeOH =
20:1 to 15:1) of the crude product gave 2-16 (281 mg, 70%) as colorless oil (a mixture of
N-rotamers).

'H NMR (CD3OD, 400 MHz) 8 0.96 (t, J = 7.0 Hz, 3H, -CH2CH3), 1.32-1.38 (m,
16H, aliphatic chain), 1.62-1.67 (m, 2H, -CH2CH3), 2.17-2.25 (m, 2H, -COCH2CH2),
3.37-3.48 (m, 1H), 3.76-4.04 (m, 6H), 4.18-4.23 (m, 1H), 5.21-5.23 (m, 2H, -
COOCH2Ph), 7.35-7.50 (m, 5H, -OCH2Ph);

'3C NMR (CDC13, 100 MHz) 6 14.6, 23.9, 27.1, 27.2, 30.4, 30.6, 30.7, 30.9, 33.2,
37.4, 37.5, 41.5, 61.1, 67.8, 68.5, 69.5, 79.4, 79.8, 80.1, 129.3, 129.3, 129.7, 129.7, 138.0,
156.7, 156.8, 176.6, 176.7.

N-Benzyloxycarbonyl-[(2R,3R,4R,5R)-2-(dodecanoicacidamide -methyl)- 4,6-0-
(tetraisopropyldisiloxane-1,3-diyl)]-pyrrolidine (2-17)

T'r th ,-~ ,i 2 61 2')Q11 . 5 +. "
. r , 3IlU Llll V L'IV \0 1 111 , a. 7

mmol) in pyridine (10 mL), 1,3-dichloro-
1,1,3,3-tetraisopropyldisiloxane (0.226 mL, 1.2
equiv.) was added at 0 'C and the reaction
mixture was warmed to room temperature for 2



h. The reaction mixture was stirred for 24 h. Excess silylating agent was quenched by the
addition of I mL of methanol. The solvent was removed under reduced pressure and the
crude product was purified by flash column chromatography (hexane:ethyl acetate = 3:1
to hexane:ethyl acetate = 1:1) to give 2-17 (319 mg, 75%) as colorless oil (a mixture of
N-rotamers).

'H NMR (CD3OD, 400 MHz) 8 0.85-0.92 (m, 3H, -CH2CH3), 0.93-1.15 (m, 28 H,
4 isopropy), 1.22-1.33 (m, 16H, aliphatic chain), 1.51-1.63 (m, 2H, -CH2CH3), 2.08-2.20
(m, 2H, -COCH2CH2-), 3.48-4.05 (m, 6H, Hia, Hlb, H2, H5, H6a, and H6b), 4.15-4.49 (m,
2H, H3 and H4), 5.02-5-15 (m, 2H, -COOCH2Ph), 7.21-7.48 (m, 5H, -COOCH2Ph).

N-Benzyloxycarbonyl-[(2R,3R,4R,5R)-3-O-benzyl-2-(dodecanoicacidamide -methyl)-
4-hydroxy-5-(hydroxy-methyl)]-pyrrolidine (2-18)

6 OH To a solution of 2-17 (319 mg, 0.56 mmol)
HO 5 NCbz in dry DMF (10 mL) were added BnBr (0.086mL,

BnO N 1.3 equiv.) and then NaH (60% in dispersion in oil,
2-118 O 50 mg, 2.2 equiv.) at 0 TC. After stirring at 0 oC for

2h, CH3OH (3 mL) was added and the solvent was
evaporated. The resulting residue was dissolved into EtOAc (100 mL), and this organic
solution was washed with water and brine and then dried over MgSO4 . The solvent was
evaporated, the residue was dissolved in THF (20 ml) and TBAF (1.0 M solution in THF,
1.12 ml, 2.0 equiv based on 2-17) was added. After stirring overnight, the solvent was
removed under reduced pressure and the crude product was purified by flash column
chromatography (hexane:ethyl acetate = 4:1 to 1:2) to yield 2-18 (81 mg, 32%) as a
yellow oil (a mixture of N-rotamers).

'H NMR (CD3OD, 400 MHz) 6 0.93 (t, J = 7.0 Hz, 3H, -CH2CH3), 1.23-1.36 (m,
16H, aliphatic chain), 1.42-1.59 (m, 2H, -CH2CH3), 2.06-2.14 (m, 2H, -COCH2CH2-),
3.40-3.52 (m, 1H), 3.58-3.64 (m, 1H), 3,72-4.05 (m, 5H), 4.54-4.59 (m, 1H), 4.54-4.80
(m, 2H, -OCH2Ph), 5.02-5-18 (m, 2H, -COOCH2Ph), 7.29-7.73 (m, 10H, -OCH2Ph, -
COOCH2Ph).

N-Benzyloxycarbonyl-[(2R,3R,4R,5R)- 3-O-benzyl-2-(dodecanoicacidamide-methyl)-
-4-hydroxy-5-(tert-butyl-diphenyl-silyloxy-methyl)]-pyrrolidine (2-19)

TBDPSC1 (0.406 mL, 1.2 equiv.)
6 OTBPSNCbz  was added to the solution of 2-18 (74 mg, 0. 130

BnO ~ H mmol) and imidazole (117.7 mg, 2.0 equiv.) in
BnO 1 CH2C12 (10 mL) at 0 TC and the reaction mixture
2-19 0 was warmed to room temperature for 2 h. The

mixture was stirring until no starting material remained. The reaction mixture was poured
into satd. NaHCO 3 (20 mL). The mixture was extracted with CH2C12 (3 x 20 mL) and the
combined organic layers were washed with satd. brine, dried over MgSO 4 and
concentrated in vacuo. Flash column chromatography (hexane:ethyl acetate = 6:1 to
hexane:ethyl acetate = 4:1) of the crude product gave the desired compound 2-19 (82 mg,
78%) as a colorless oil (a mixture of N-rotamers).



'H NMR (CD30OD, 400 MHz) selected peaks 8 0.96 (t, J = 7.0 Hz, 3H, -CH2CH3),
1.07-1.33 (m, 9H, Me3CPh2Si-), 1.32-1.38 (m, 16H, aliphatic chain), 1.62-1.64 (m, 2H, -
CH2CH3), 2.15-2.23 (m, 2H, -COCH2CH2), 3.45-3.54 (m, 1H), 3.77-4.13 (m, 6H), 4.40-
4.52 (m, 1H), 4.53-4.56 (m, 2H, -OCH2Ph), 5.02-5.10 (m, 2H, -COOCH2Ph), 7.25-7.42
(m, 20H, -OCH2Ph, -COOCH2Ph, Me3CPh2Si-);

'3C NMR (CDC13, 100 MHz) 8 12.3, 13.7, 14.1, 14.7, 18.0, 18.6, 22.3, 22.6, 23.3,
26.6, 29.2, 29.8, 30.0, 32.4, 36.9, 37.6, 39.8, 42.4, 44.3, 44.8, 47.9, 48.3, 51.5, 58.6, 62.4,
63.2, 67.7, 67.9, 68.4, 68.8, 69.1, 69.5, 79.2, 80.3, 92.1, 93.4, 97.0, 97.2, 100.5, 101,9,
118.2, 118.9, 128.8, 129.4, 128.1, 128.8, 135.9, 135.2, 137.8, 154.8, 159.0, 160.3, 163.3,
176.4,177.4.

N-Benzyloxycarbonyl-[(2R,3R,4R,5R)-2-(benzyloxylcarbonylamino-methyl)-3,4-
dihydroxy-5-(tert-butyl-diphenyl-silyloxy-methyl)]-pyrrolidine (2-32)

6 OTBDPS To the solution of 2-12 (74 mg, 0.130 mmol) and
HO •. NCbz imidazole (118 mg, 2.0 eq.) in CH 2C12 (10 mL), TBDPSCl (0.406 mL,

HO • NHCbz 1.2 eq.) was added to at 0 'C and the reaction mixture was warmed to
2-32 room temperature for 2 h. The mixture was stirring until no starting

material remained. The reaction mixture was poured into satd.
NaHCO3 (20 mL). The mixture was extracted with CH2CI2 (3 x 20 mL) and the combined
organic layers were washed with satd. brine, dried over MgSO 4 and concentrated in
vacuo. Flash column chromatography (hexane:ethyl acetate = 6:1 to hexane:ethyl acetate
= 4:1) of the crude product gave the desired compound 2-32 (82 mg, 78%) as a colorless
oil (a mixture of N-rotamers).

'H NMR (CD3OD, 400 MHz) 8 1.07-1.33 (m, 9H, Me3CPh2Si), 3.25-3.66 (m, 4H,
Ha,, Hlb, H 2 and Hs), 3,85-4.07 ( m, 2H, Ha and H6b), 4.40-4.62 (m, 2H, H3 and H4), 4.87-
5.11 (m, 4H, 2"*COOCH2Ph), 7.29-7.75 (m, 20H, 2*COOCH2Ph, Me3CPh2Si-).



The chitinase assay

Inhibition studies of chitinase from Streptomyces griseus which was purchased
from Sigma-Aldrich were carried out using the literature procedures. 1011 In a final volume
of 50 [ 1, 6 nmol (0.00005 unit) of enzyme was incubated with 6 [LM of 4-
methylumbelliferyl-13-D-N,N'-diacetylchitobiose, which is commercially available, in
McIlvain buffer (100 mM citric acid, 200 mM sodium phosphate, pH 5.5) containing 0.1
mg/mL BSA, for 10 min at 37 C in the presence of different concentrations of the
inhibitor. After 10 min, the reaction was quenched by the addition of 1.5 mL of 0.2 M
Na2 CO3. A 100 p1 aliquot was transferred to a cuvette. The fluorescence of the liberated
4-methylumbelliferone was quantified using excitation and emission wavelengths of 360
nm and 460 nm by Fluoromax 3 from Jobin Yvon. Experiments were performed in
triplicate.

OT assay

Preparation of solubilized yeast microsomes
Yeast OT was purified to the solubilzed membrane stage according to the

literature procedures"4 with the following modification. Sucrose was eliminated from the
final solubilzing buffer due to the potential competition of binding sites. The final buffer
solution contains 50 mM HEPES, pH 7.5, 10 mM MgCl2, 10% glycerol and protease
inhibitor 0.1 mM AEBSF, 0.5 [tg/mL pepstain A and 0.5 [tg/mL leupetin.

OT Inhibition Assays
The assay buffer consisted of 50 mM HEPES, pH 7.5, 1.2% Triton X-100, 15 mM

MnCI2, and 0.5 mg/mL phosphatidylcholine. The radiolabeled sugar substrate (50,000
dpm, 60 Ci/mmol) was aliquoted from a chloroform/methanol stock solution into an
eppendorf tube, and the solvent was evaporated under a gentle stream of nitrogen. The
peptide substrate Bz-Asn-Leu-Thr-NHMe (5 mM, 10 RL in DMSO, final concentration
of 0.25 mM) was mixed well with the sugar substrate in assay buffer (100 [LM total
volume).

The inhibitor candidate (in 10 RLM DMSO) was preincubated with a constant
amount of OT in assay buffer (150 jpL total volume) for 30 minutes over an ice-water
bath. The reaction was initiated by the addition of preincubated inhibitor/OT mixture
(100 ptL) into the premixed substrates (100 [tL). Aliquots (40 ptL) of the reaction mixture
were quenched into 1.2 mL of chloroform/methanol/4 mM MgCl2 (3:2:1 v/v) after 2,4,6,
and 8 min.

The aqueous phase containing N-glycosylated peptide was transferred to 7-mL
scintillation vials. A 600-mL aliquot of theoretical upper layer or TUP (2.75%
chloroform, 44% methanol, 53.25 % aqueous magnesium chloride (1.55 mM)) was added
to the organic layer and the aqueous layer was removed and added to the previously
removed aqueous layer. After two extractions, the combined aqueous phases were mixed
with Ecolite (5.5 mL) and counted on a Beckman LS-5000TD scintillation counter to
give the amount of radioactivity (in units of dpm, disintegrations per minute) for the 3H-
glycopeptide.
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Chapter 3- The synthesis of pseudo-disaccharide containing an imino sugar

by the linear approach

3-1 Introduction

In Chapter 2, synthetic efforts toward the pseudo-disaccharide were described.

Extensive attempts at glycosylation of the imino sugar building block were unsuccessful

in generating the desired product. This failure of glycosylation led us to revise our

synthetic route. The new strategy toward the construction of a pseudo-disaccharide

containing an imino sugar is shown Figure 3-1. To avoid the previous problems regarding

the imino sugar in glycosylation, we decided to conduct the glycosylation step prior to its

formation. We chose P-hydroxy ketone 3-5 having an azide group at the C4 position, as

the glycosyl acceptor. Toward the synthesis of 3-5, we planned to use a synthetic

procedure modified from the one discussed in Chapter 2. We envisioned utilization of an

Amadori rearrangement of lactol 3-6 to generate the acyclic compound 3-5. 12 The

glucose and glucosamine derivatives would be added to the C4 hydroxyl group of 3-5,

which was masked as the ring oxygen of the furanoside derivative, to generate 3-3 and 3-

4. The neighboring group participation of the C2' group in the glycosyl donor would

ensure high P-selectivity of glycosidic bond formation.3 After glycosylation, construction

of the imino sugar would be achieved by intramolecular reductive amination between in-

situ generated amine from azide and ketone moieties.

As an initial study, two pseudo-disaccharides 3-1 and 3-2 having N-Ac groups on

the Cl positions of the imino sugars were chosen as target compounds.
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Figure 3-1. The revised route toward the synthesis of the pseudo-disaccharide containing an imino sugar.

3-2 Synthesis of the substrate for glycosylation studies

The synthesis began with 2-7, which was described in Chapter 2 (Scheme 3-1). 4

Benzylation of the secondary alcohol using 1.2 equiv. of benzyl bromide (BnBr) and 1.1

equiv. of NaH in tetrahydrofuran (THF) in the presence of 0.2 equiv. of tetra-n-

butylammonium iodide (TBAI), followed by the deprotection of the tetrahydropyranyl

(THP) group employing 0.2 equiv. of p-toluenesulfonic acid (p-TsOH) in methanol,

provided compound 3-7 in 95% yield over 2 steps. Deprotection of the acetonide utilizing

80% trifluoroacetic acid (TFA) in water gave lactol 3-6 as an a/lf mixture. The Amadori

rearrangement of 3-6 with 1.0 equiv. of p-methoxybenzylamine (PMBNH2) in the

presence of 1.0 equiv. of acetic acid in methanol at 40 TC provided the desired ketal 3-8

in 85% yield.' 2 The subsequent secondary amine protection of 3-8 with 1.2 equiv. of



acetic anhydride in the presence of 2.0 equiv. of N,N-diisopropylethylamine (DIPEA)

smoothly afforded desired product 3-9 in 76% yield.

OTHP OH OH
N3  a N3  b N3

HO 0  Bn O0  0 BnO 0  H

2-7 3-7 3-6 OH

C

OH Ac OH
O NPMB d N NHPMB

OBn d3OBn
OH N3 OH
3-9 3-8

Reagents and conditions: (a) (i) BnBr, NaH, TBAI, THF, 0 OC to RT; (ii) p-TsOH, MeOH, 95 % over 2 steps;
(b) TFA:H 20 = 8:2, 0 OC to RT, 82 %; (c) PMBNH 2, AcOH, MeOH, 40 OC, 85 %; (d) Ac20, DIPEA, MeOH, 76 %.

Scheme 3-1.The synthesis of n-amino ketal 3-9.

From the 13C-NMR spectrum of 3-9, the predominant structure in solution is the

closed form, but this closed form is in equilibrium with the open form. Compound 3-9 in

CH2C12 was treated with 2.0 equiv. of tert-butyldiphenylsilyl chloride (TBDPSC1) in the

presence of 3.0 equiv. of imidazole to generate acyclic compound 3-5 in 78% yield

(Scheme 3-2). TBDPSC1 reacted selectively with the primary alcohol of the open form to

generate the acyclic product 3-5. Since 3-5 exists as a mixture of N-rotamers, 3-10 was

synthesized by the cleavage of the N-PMB using 4.0 equiv. of ceric ammonium nitrate

(CAN) in a 10:1 mixture of acetonitrile and water at low temperature, 5 to facilitate



spectroscopic characterization. With glycosylation acceptor 3-5 in hand, we turned our

attention to the glycosylation.

OH Ac N3 OBn N3 OBn
No PMB a TBDPSO b TBDPSO

N OBn - . NAc J\NHAc

N3OH OH O PMB OH O
3-9 3-5 3-10

Reagents and conditions: (a) TBDPSCI, imidazole, CH2C12, 78 %; (b) CAN, MeCN:H 20 = 10:1, -20 OC to 0 OC, 63 %.

Scheme 3-2. The synthesis of P-hydroxy ketone 3-10.

3-3 Glycosylation of the l-hydroxy ketone with a glucose derivative

P-Hydroxy ketones are known to be poor substrates for glycosylation. It has been

reported that the intramolecular hydrogen bonding of the P-hydroxy ketone resulted in

weak reactivity towards glycosylation.6 Moreover, the glycosylation of P-hydroxy

ketones is sensitive to small changes in reaction conditions.7 Therefore different

glycosyl donors and promoters were screened to determine the best coupling partner

(Scheme 3-3). In the initial screen for glycosylation, 1.0 equiv. of glycosyl donor was

used in each reaction.

Glycosidation reaction of 3-5 with glycosyl fluoride 3-111o in the presence of 1.2

equiv. of AgCIO 4 and 1.2 equiv. of SnCI4 in Et20O or CH2C12 did not provide the coupled

compound.""6 Both acceptor and donor starting materials remained without providing the

desired product. The coupling reaction between 3-5 and thioglycoside 2-3012 employing

1.2 equiv. of N-iodosuccinimide (NIS) and 0.2 equiv. of trifluoromethanesulfonic acid

(TfOH) in CH 2C12 led only to decomposition of the thioglycoside. Modification of



reaction conditions employing 1.2 equiv. of NIS and 0.2 equiv. of silver

trifluromethanesulfonate (AgOTf) did not facilitate production of the desired product

either. The glycosylation of 3-5 with glycosyl bromide 2-31 in the presence of 0.2 equiv.

of AgOTf provided only trace amounts of the desired product 3-12 (less than 5% yield).

The coupling reaction of 3-5 with glycosyl imidate 2-2813 employing 0.2 equiv. of

BF3*OEt2 as the promoter in CH 2Cl2 at 0 oC gave the desired product 3-12 in 35% yield

with 50% yield of 3-5 recovered. Decomposition of glycosyl imidate 2-28 was also

detected by the thin-layer chromatography (TLC) analysis.

Studies have shown that glycosyl donor reactivity can be controlled by the

choice of protecting groups.' 4 16 The replacement of acetates with benzyl ethers increases

reactivity of the glycosyl donor. For this reason, glycosylation between 3-5 and glycosyl

imidate 2-29"7 in the presence of 0.2 equiv. of BF 3*OEt2 was attempted. Unfortunately, no

coupled product was obtained and rapid decomposition of 2-29 was observed by TLC

analysis. In the glycosylation of 3-5, the glycosyl imidate 2-28 was demonstrated to be

the best coupling partner in terms of both reactivity and stability. A weak but stable donor

seems critical for this reaction to proceed. With these promising results from the initial

glycosylation studies, we turned our attention to improving yield.
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-50 OC; (c) 2-31, AgOTf,CH2CI2, 0 OC; (d) 2-28, BF3 oOEt 2, CH2CI 2, 35%; (e) 2-29, BF3*OEt2,CH2CI2, -50 OC.

Scheme 3-3. The initial glycosylation studies of 1-hydroxy ketone.

To optimize the glycosylation of 3-5 (Scheme 3-4), we focused on other variables

such as promoter and promoter concentration. Glycosylation utilizing promoters other

than BF 3*OEt2 did not afford the desired product (Table 3-1, rows 2 and 3). Employing



1.0 equiv. of BF 3*OEt2 improved the yield slightly (Table 3-1, row 4), however, using

more than one equivalent of BF 3*OEt2 provided a complex mixture, probably due to the

decomposition of both the starting material and product. Since decomposition of imidate

2-28 was observed, the addition of excess glycosyl donor was tested to drive the reaction

to complete conversion. The best result was obtained with 3.0 equiv. of glycosyl imidate

2-28, providing product 3-12 in 65% yield (Table 3-2, row 6).

N3 OBn In all of these reactions, more than 10% yield of a side
TBDPSOI
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. ,

compound. Since mass spectral analysis of this side product

ni dicated an identical mass to the desired roduct 3-12 and

mild acid hydrolysis employing p-TsOH in CH2CI2 afforded 3-5 and the corresponding

lactol of 2-28, the side product has been speculated to be the enol adduct. To suppress the

formation of the enol adduct, different solvents (diethyl ether, acetonitrile and toluene)

and solvent mixtures were tested. A longer reaction time was required in toluene (8 h)

and 5.0 equiv. of glycosyl imidate was necessary for complete conversion. However, the

desired product was obtained in 85% yield without any side product formation (Table 3-

1, row 7). These reaction conditions were highly reproducible and applicable to large-

scale synthesis.

Full assignment of the proton NMR spectrum of 3-12 was difficult due to a

mixture of N-rotamers. However, we were able to confirm the anomeric (-linkage from

the coupling constant (J = 8.1 Hz) between the anomeric proton and the adjacent proton

nol aIddl,



at C2'. The oxidative cleavage of the N-PMB group using 4.0 equiv. of CAN gave 3-13

in 83% yield.

c ~r
AcO 0 TBDPSO N3 OBn

ANO AcOO -,, NA
3 , O uC 3TBDPSO,. 2-28

NAc a NH
OH O PMB

3-5

PMB

b

3-12 3-13

Reagents and conditions: (a) 2-28, BF3OEt2, toluene, 0 OC to RT, 85%; (b) CAN, MeCN:H 20 = 10:1, -20 oC to 0 OC,
83%.

Scheme 3-4. The optimization of glycosylation of p-hydroxyl ketone.

Equiv. of imidate 2-28 Promoter Solvent Isolated yield of 3-12

1 1.0 equiv. 0.2 equiv. BF3*OEt2 CH2Cl 2  35%

2 1.0 equiv. 0.2 equiv. TMSOTf CH 2Cl2  NR

3 1.0 equiv. 0.2 equiv. TBSOTf CH 2CI2  NR

4 1.0 equiv. 1.0 equiv. BF 3*OEt2 CH 2CI2  45%

5 2.0 equiv. 0.2 equiv. BF3*OEt2 CH2 Cl 55%

6 3.0 equiv. 0.2 equiv. BF3*OEt2 CH2CI2  65%

7 5.0 equiv. 0.2 equiv. BF 3*OEt2 toluene 85%

Table 3-1. The optimization of glycosylation.

In order to streamline synthesis, we attempted a selective glycosylation on 3-9.

Ketal 3-9 has three possible glycosylation sites: the primary alcohol in the open form, the



secondary alcohol, and the tertiary alcohol. In the previous study, the primary alcohol in

the open form selectively reacted with TBDPSC1 to generate the acyclic substrate.

However, considering its preferential closed form in solution, the sugar might be added

selectively to the secondary alcohol of the closed form of 3-9 with appropriate

modulation of the activity of the glycosyl donor, as well as other reaction conditions such

as temperature and solvent. It was evident that success of this attempted reaction

depended on the reactivity of the electrophile toward the secondary alcohol relative to

other competing sites. This route would minimize the number of synthetic

transformations toward the target compound.

Unfortunately, selective glycosylation of 3-9 under a variety of conditions such as

varied amounts (0.5-2.0 equiv.) of sugar donors 2-28 or 2-29, as well as promoters (BF 3

*OEt2, TMSOTf), solvents (CH 2C12, toluene) and reaction temperature always provided

inseparable mixture of reaction products (Scheme 3-5). The isolated compounds were

difficult to identify due to their complex proton NMR spectra. The outcome of

glycosylation was highly sensitive to variation of the reaction conditions. Exposure of the

crude mixture, which was obtained from the coupling reaction between 3-9 and 0.8 equiv.

of 2-28 employing 0.2 equiv. of BF 3*OEt2 in CH2C12, to TBDPSCl in the presence of

imidazole in CH 2C12 provided trace amounts of the desired product 3-12. These low

yields and complex mixtures led us to abandon the selective glycosylation approach. We

then shifted focus to the construction of the pyrrolidine ring by intramolecular reductive

amination.
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Scheme 3-5. Attempted selective glycosylation of 3-9.

3-4 Construction of the imino sugar by intramolecular reductive amination

Initial attempts at the cyclization of 3-13 between in-situ generated amine from

azide and ketone moieties using palladium hydroxide in the presence of hydrogen at

ambient pressure generated various intermediates (Scheme 3-6). Mass spectral analysis

indicated that most of the material was an uncyclized compound where the azide group

had been reduced to the corresponding amine. Addition of AcOH or HCI to the reaction

mixture did not facilitate clean conversion to the desired product. Under a high pressure

of H2 (1500 psi), intramolecular reductive amination of 3-13 employing palladium

hydroxide in methanol gave the cyclized product 3-14. However, the isolated product was

a mixture of diastereomers, which could not be separated during purification.



Modification of conditions to decrease hydrogen pressure (500 psi or 100 psi) led to no

apparent change in results.

N3 OBn
TBDPSONHAc 

OAc OTBDPS
0 0 a A O 0 NH

AcO O OAc AcO BnO NHAc

3-14

AcO OAc Inseparable mixture
3-13

Reagents and conditions: (a) H2 (50-1500 psi),Pd(OH)2, MeOH, < 34% .

Scheme 3-6. Attempted intramolecular reductive amination of 3-13.

The poor diastereoselectivity in the cyclization of 3-13 prompted us to investigate

the intramolecular reductive amination in the absence of the large silyl protecting group

(Scheme 3-7). The silyl ether was cleaved using 1.0 equiv. of tetrabutyl-n-ammonium

fluoride (TBAF) in the presence of 1.0 equiv. of AcOH in THF, producing the

corresponding ketal 3-15 in 90% yield. The cyclization of 3-15 utilizing palladium

hydroxide under H2 (1500 psi) in methanol gave 3-16 as the predominant product (>12:1

NMR ratio). Under these conditions, only trace amounts of 3-17 in which the benzyl

ether was cleaved were isolated. 3-17 was obtained by the treatment of 3-16 with

Pd(OH) 2 in acetic acid under hydrogen at ambient pressure. The specific details regarding

the stereochemistry of structure of 3-17 were confirmed by nuclear Overhauser effect

(NOE) difference experiments (see Chapter 3-6).

The attempted direct conversion of 3-15 to 3-17 was unsuccessful under various

reaction conditions employing higher pressures of H2 (2000 psi or 2500 psi) or the use of

acetic acid as the solvent. Attempted debenzylation of the crude product during the



reductive amination provided only trace amounts of the desired product. The best results

were obtained by sequential deprotection using purified compound as a substrate.

Deprotection of the acetyl groups under Zamp61 conditions gave the target molecule 3-1.
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Reagents and conditions: (a) TBAF, AcOH, THF, 0 OC to RT, 90 %; (b) H2 (1500 psi), Pd(OH)2 , MeOH, 70 %; (c) H2
(balloon), Pd(OH) 2, AcOH, 65 %; (d) NaOMe, MeOH, Quant.

Scheme 3-7. Reductive amination and synthesis of pseudo-disaccharide 3-1.

3-5 Synthesis of the imino sugar linked to N-acetylglucosamine

Our focus next turned to the construction of 3-2, in which the imino sugar was

linked to N-acetylglucosamine (GlcNAc). In addition to the stereo-chemical outcome of

glycosylation, as discussed in Chapter 2, the choice of amine protecting group was

critical for the overall strategy in the complex carbohydrate synthesis. Selection of the

proper amine protecting group turned out to be crucial to the completion of this synthesis.



Initially, the coupling between 3-5 and glycosyl imidate 3-1818 utilized an N-

trichloroethylene carbamate (N-Troc) at the C2' position (Scheme 3-8). Glycosylation of

3-5 with 3.0 equiv. of glycosyl imidate 3-18 utilizing 0.2 equiv. of BF 3*OEt2 in toluene

provided the desired product 3-19 in 69% yield. The salient conditions used in the

glycosylation of 3-5 with the glucose derivative still proved optimal. Attempted

glycosylation of 3-5 with thioglycoside or glycosyl halide provided only a small amount

of the desired product or no product at all. Use of a different promoter failed to give the

coupled product, as seen for in synthesis of 3-1. The oxidative removal of the PMB group

was achieved by using 4.0 equiv. of CAN at low temperature, affording 3-20 in 65%

yield. Initial attempts to convert the N-Troc to an N-Ac before a reductive amination

were unsuccessful. Metal-assisted removal of the N-Troc group' 9,20 failed to provide the

desired compound. These deprotection conditions led to reduction of the azide group and

generated a mixture of products.
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Scheme 3-8. Attempted conversion of N-Troc to N-Ac group of 3-20.

The incompatibility of the azide group with deprotection of the N-Troc group led

us to conduct the reductive amination in the presence of the N-Troc group (Scheme 3-9).

The removal of the silyl ether using 1.0 equiv. of TBAF in the presence of 1.0 equiv. of

acetic acid provided the desired product 3-21. Unfortunately, reductive amination of 3-21

employing Pd(OH)2 under a high pressure of H2 (1500 psi) failed to give the desired

product. Mass spectral analysis indicated that the carbon-chloride bonds on the N-Troc

group were reduced to generate various products. Attempted cyclizations under lower

pressures of H2 (50 psi or 100 psi) were not successful in preventing the reduction of

chlorides on the N-Troc group.
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Reagents and conditions: (a) TBAF, AcOH, THF, 0 OC to RT, 83 %; (b) H2 (50-1500 psi), Pd(OH)2, MeOH.

Scheme 3-9. The attempted intramolecular reductive amination of 3-21.

The problematic chloride reduction during reductive amination prompted us to

use the glycosyl imidate having a N-trichloroacetimide (N-TCA) at C2' position. The

reduction of chlorides under radical conditions have been used for previously the

transformation of N-TCA group to N-Ac group.2 '22 In our synthetic route the radical-

mediated transformation could not be applied due to reduction of the azide group. The

conversion of N-TCA to N-Ac was accomplished by treatment with H2 and palladium on

carbon in the presence of triethylamine." Our intent was to execute the formation of a

pyrrolidine ring and the conversion of the N-TCA group to N-Ac group simultaneously.

Glycosylation of 3-5 with 5.0 equiv. of glycosyl imidate 2-2021 in the presence of

0.2 equiv. of BF3*OEt2, followed by the deprotection of N-PMB employing 4.0 equiv. of

CAN smoothly provided 3-23 (Scheme 3-10). The fluoride-mediated removal of the silyl

ether of 3-23 in the presence of AcOH provided the desired product 3-24. Unfortunately,

attempted intramolecular reductive amination under high pressures of H2 (2000-2500 psi)

resulted in the formation of only trace amounts of the desired product. A complex
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mixture of intermediates at different reduction states of the N-TCA group was generated

and the amount of isolated intermediates was very small. The use of increased amounts of

Pd(OH)2, PdCl2 or palladium black did not facilitate production of the desired compound

as the major product. The addition of triethyamine, DIPEA or ammonium hydroxide

similarly did not lead to an improvement in the outcome of the reaction.

N3 OBn
TBDPSO 

NAc
OH O PMB

3-5

OAc

AcO

AOTCAHN • CC13
2-20 a a NH

N3 OBn
TBDPSO NAc

O O PMB

A 0 NHTCA

AcO OAc
3-22

b

OBn

OAc OH
AcO ' O NH d

AcHN BnO NHAc A(

trace amount

c

3-24 3-23

Reagents and conditions: (a) 2-20, BF3*OEt 2, toluene, 0 OC to RT, 85%; (b) CAN, MeCN: H20 = 10:1, -20 OC to 0 oC,
67% ; (c) TBAF, AcOH, THF, 0 OC to RT, 85%; (d) H2 (1500-2000 psi), Pd(OH) 2, MeOH with or without triethylamine.

Scheme 3-10. Attempted intramolecular reductive amination of 3-24.

To avoid the reduction of chlorides during cyclization, a glycosyl imidate having

an N-phthalimide (N-Pth) was chosen as the sugar donor. Intramolecular reductive



amination in the presence of the N-Pth group, which was stable under the reducing

conditions, was expected to generate the desired pyrrolidine ring without complications.

Compound 3-26 was obtained by the glycosylation of 3-5 with 3.0 equiv. of glycosyl

imidate 2-2124 in the presence of 0.2 equiv. of BF3*OEt2, and subsequent deprotection of

the PMB group utilizing 4.0 equiv. of CAN (Scheme 3-11). Compound 3-27 was

prepared by the removal of silyl ether using 1.0 equiv. of TBAF in the presence of 1.0

equiv. of acetic acid. In the attempted intramolecular reductive amination of 3-27, only

unidentified products were isolated. The mass spectrum indicated that the major

component of the complex mixture was the uncyclized product. Modification of reaction

conditions such as higher pressures of H2 and increased amounts of Pd(OH)2 did not help

to obtain the desired product. One possible explanation is that the intermediate cyclic

imine adopts an unfavorable conformation due to the steric hindrance between the bulky

phthalimide group and other functional groups, and thereby fails to generate the desired

compound.
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Reagents and conditions: (a) 2-21, BFg3 OEt 2, toluene, 0 OC, 73 %; (b) CAN, MeCN: H20 = 10:1,-20 OC to 0 oC, 62 %;
(c) TBAF, AcOH, THF, 0 OC to RT, 87 %; (d) H2 (50-2000 psi), Pd(OH) 2, MeOH.

Scheme 3-11. The attempted reductive aminaton of 3-27.

The attempted conversions of the N-Troc group to an N-Ac group were

unsuccessful due to the incompatibility of other functional groups. The attempted

cyclizations in the presence of other nitrogen protecting groups failed to generate the

desired product due to the chloride reduction of the N-Troc and N-TCA groups, or the

large size of the N-Pth group. Considering the other functional groups in the substrate,

converting the amine protecting group to N-Ac group before the reductive amination

appeared challenging. Therefore, we decided to search for another C2 protecting group

suitable for reductive amination.



The glucosamine derivative donor with an N-trifluroacetimide (N-TFA) on the C2

amine was expected to show low reactivity toward glycosylation due to the strongly

electron-withdrawing substituent.2 5 To the best of our knowledge, there is only one

reported example in which an N-TFA group was used as a C2 amine protecting group for

a glucosamine derivative donor.25 However, with regard to its stability under reducing

conditions and its relatively small size, the N-TFA group seems to be compatible with a

reductive amination. The neighboring group participation of the N-TFA group would

ensure high 13-selectivity of glycosidic bond formation.

Glycosyl imidate3-29 was synthesized from known compound 3-28 in 2 steps

(Scheme 3-12-1). The deprotection of the anomeric acetate of 3-28 with 1.0 equiv. of

hydrazine acetate in DMF, followed by treatment with 10 equiv. of CC13CN in the

presence of 0.1 equiv. of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in CH2C12 provided

the desired 3-29 in 75% yield over 2 steps. As expected, the rate of glycosylation of 3-10

with glycosyl imidate 3-29 in the presence of BF3*OEt2 in toluene was much slower than

those of previous glycosylations (Scheme 3-12-II). For complete conversion, it took 2

days with 8.0 equiv. of glycosyl imidate 3-29, even when fresh promoter was added

every 8 hours. To our delight, however, the desired compound 3-30 was obtained in 90%

yield. The synthetic procedure was found to be efficient to a 1-gram scale. It is

noteworthy that changing the solvent to CH 2CI2 resulted in no desired compound being

obtained, as most of the glycosyl imidate was converted to the corresponding oxazoline.

Cleavage of the PMB group was achieved by treatment of 3-30 with 4.0 equiv. of CAN to

provide 3-31. The removal of the silyl ether using 1.0 equiv. of TBAF in the presence of

1.0 equiv. of acetic acid provided compound 3-32 in 87% yield.
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Reagents and conditions: (a) (i) NH2NH2*CH3CO2H,DMF, RT; (ii) CC13CN, DBU, CH2C12, 0 OC to RT, 2 steps 75 %; (b)
3-29, BF-OEt2, toluene, 0 OC, 90 %; (c) CAN, MeCN: H20 = 10:1,-20 OC to 0 OC, 62 %; (d) TBAF, AcOH, THF, 0 OC to
RT, 87 %.

Scheme 3-12. The synthesis of the ketal 3-32.

Reductive amination of 3-32 gave the desired compound! 3-33 as the major

product (> 8:1 NMR ratio). However, the yield for the reductive amination of 3-32 was

inconsistent (20-80% yield) under the reaction conditions applied (1200 psi of H2). In

contrast, the reductive amination of 3-18, the analogous glucose derivative, produced

reliable results under the same conditions. Under modified conditions employing H2 at



850 psi, the desired product 3-33 was obtained reproducibly (50-60% yield) (Scheme 3-

13). After deprotection of the benzyl group, specific details of the stereochemistry of 3-

34 were confirmed by NOE experiments (see Chapter 3-6).

OH

N3
0  

a AcO- NH b AcOO ýNHACO AcO--' 0 -- AcO,--BOTFH
NHTFA TFAHN O NHAc TFAHN H•HAc

3-33 3-34
AcO OAc > 8:1 mixture

3-32

Reagents and conditions: (a) H2 (850 psi), Pd(OH) 2, MeOH, 55%; (b) H2 (balloon), Pd(OH) 2, AcOH, 69 %.

Scheme 3-13. The synthesis of 3-33.

The addition of 1.6 equiv. of di-tert-butyl dicarbonate (Boc20O) to 3-33 in CH2C12

in the presence of 2.0 equiv. of DIPEA provided desired compound 3-35 (Scheme 3-14).

The benzyl ether was cleaved under H2 (50 psi) in the presence of Pd(OH) 2 using acetic

acid as the solvent to provide the desired compound 3-36. Removal of the N-

trifluroacetimide (N-TFA) group was achieved using ammonia in methanol and

subsequent N-acetylation provided the desired product 3-37 in 63% yield over 2 steps. 26

The Boc group was removed using TFA in CH 2C12 to afford the target compound 3-2.
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Reagents and conditions: (a) Boc20, DIPEA, CH2CI2, 0 OC to RT, 68%; (b) H2 (50 psi), Pd(OH) 2, AcOH, 80%; (c) (i)
NH3, MeOH; (ii) Ac20, DCM:MeOH = 1:1, 2 steps 63%; (d) TFA, CH2CI2, 70%.

Scheme 3-14. The synthesis of the target pseudo-disaccharide 3-2.

3-6 Determination of the stereo-chemical outcome of the reductive amination
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O t 3 nAc
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H2 ( 1500 psi) Pd(OH) 2

OAc OH

AcO O NHAc

>12:1 mixture
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3-16

Figure 3-2. The proposed stereo-outcome of reductive amination.

The stereo-chemical outcome of the reductive amination of 3-15 and 3-32 was expected

to be the trans-configuration between C2-C3 due to the approach of hydrogen from the re face

to avoid torsional strain (Figure 3-2). Other examples of the cyclization between the in-situ

generated amine from azide and the ketone moieties in similar structures have been confirmed
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by NMR spectroscopy utilizing NOE difference experiment.227-30 Unfortunately, an attempted

NOE difference experiment of 3-16 in CD 3OD solvent resulted in no noticeable NOE difference

between H2 and H4.and between H3 and H5. Extensive efforts to obtain an NOE signal, such as

the use of different solvents (C6D 6, DMF-d6, DMSO-d 6), or increased temperature, were

unsuccessful. The NOE experiment for 3-33 showed similar results. The efficiency of NOE

buildup depends on the distance between the nuclei involved and the tumbling rate of the

molecule.3' The lack of NOE signal for 3-16 and 3-33 might be explained by the unfavorable

spatial orientation between the pseudo-equatorial H2 and pseudo-axial H4 and the rigid structure

of 3-16 due to substituents on the secondary alcohols. This assumption led us to attempt the

NOE analysis on 3-17, which was obtained by the deprotection benzyl ether of 3-16.

The removal of the benzyl ether would give more flexibility and reduce the size

therefore increasing the molecular tumbling rate. In the NOE experiment of 3-17 in CD 3OD

solvent, NOE signals between H3 and H4 and between H2 and H5 were observed. Unfortunately,

the peaks for H3 and H4 in the proton NMR were not resolved. Thus, the configuration of C2

could not be determined. To find the optimal proton NMR spectrum for the NOE experiment,

different NMR solvents and solvent mixtures were tested. Using CDC13: CD 3OD (4:1), H3 and

H4 appeared in different regions (peaka = 3.81 ppm, peakb = 3.85 ppm) (Figure 3-3). Since the

resonance for H2 and H5 appeared at the same position (peak, = 3.06 ppm), the exact assignment

of peaka and peakb as H3 and H4 was impossible by COSY. However, the separation between H3

and H4 peaks was enough for the NOE experiment to establish the configuration.

In the NOE experiment, we wanted to confirm the configuration of C2 from an NOE

difference between H2 and H4 . On the other hand, an NOE between H2 and H4 would confirm
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the structure as the possible diastereomer. Since H2 and H5 appear in the same region of the

spectrum, the selective irradiation of H2 was difficult. However, the NOE between H3 and H5

would be common for both structures. Therefore, two NOE differences between H2 and H4 and

between H3 and H5 would prove the structure of 3-17, whereas one NOE among H2, H3 and H5

would confirm the other isomer. The control spectrum and three NOE difference spectra of 3-17

are shown in Figure 3-4. The irradiation of peak, (H2 and H5 ) induced the NOE signal of both

peaka and peakb (Figure 3-4b.). Upon the irradiation of peaka and peakb respectively, the NOE

signal of peak, (H2 and H5) was observed (Figure 3-4c, d.). These data showed that there are

NOE differences between H2 and H4 and between H3 and H5. Therefore, we concluded the 3-17

had the desired trans-configuration between C2-C3. The NOE analysis of 3-34 in

CDCI3:CD3OD = 8:1 mixture showed similar results as that of 3-17. (See the experimental

section for details)
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Figure 3-3. The expected structure of 3-17 and possible diastereomers at C2.
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3-7 The inhibition study of 3-1 and 3-2 against chitinase

Biological evaluation of the inhibitory effects 3-1 and 3-2 against chitinase from

Streptomyces griseus was conducted. As described in Chapter 2-1, 4-methylumbelliferyl-

13-D-N,N'-diacetylchitobiose was used as a fluorogenic substrate to monitor enzyme

activity. 32,33 Figure 3-5 shows the fluorescence intensity at 460 nm from control

experiment (without the inhibitor) and different concentrations of 3-1. Depending on the

concentration of compound 3-1, decreased enzyme activity was observed. Experiments

were performed in triplicate. The inhibition percentage relative to the control without

inhibitor was calculated on the basis of the fluorescence reading at 460 nm. All data

points represent the average of three measurements with standard deviations (Figure 3-

6). 3-1 and 3-2 showed inhibitory activity with IC, values of 3.1 [M and 2.6 [M

respectively.
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Inhibitory activities of 3-1 and 3-2 could be explained by the fact that the

compounds mimic the oxocarbenium-ion-like transition state, specifically the charge and

conformation. However, no inhibitory activity of 2-10 was observed up to 1 mM. This

trend is also seen when comparing the natural products allosamizoline and allosamidin,

which show that the additional carbohydrate moieties were essential for tight binding to

the enzyme (Figure 3-7).34 These observations confirmed our prediction that the

disaccharide unit is the minimal binding motif for chitinases.

OH OH OH OH OH
HO NH HO O k NH HO -NH
HO HO HO HOO HO

NHAc HO NHAc TFAHN NHAc
2-10 3-1 3-2

no inhibiton up to mM C1050 = 3.0 pM ICso = 2.6 piM

OH OH OH OH

HO OH NHA OHNHA H

allosamizoline allosamidin
no inhibiton up to 1mM IC50 = 3.7 RLM

Figure 3-7. The inhibitory actvity of 3-1, 3-2 and other natural products against chitinase from
Streptomyces grises.

3-8 Conclusion

In summary, imino sugar containing pseudo-disaccharides 3-1 and 3-2 were

synthesized utilizing an Amadori rearragement, glycosylation of a 1-hydroxyl ketone and

intramolecular reductive amination as key steps. These compounds displayed low

micromolar inhibitory activities against the glycosidase enzyme chitinase. Applying the

synthetic schemes described herein, further derivatives of these pseudo-disaccharide

compounds can be synthesized and evaluated for chitinase as well as OT.
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Experimental Section

General Synthetic Procedures

Anhydrous dichloromethane and toluene were distilled from calcium hydride, and
anhydrous tetrahydrofuran was distilled from sodium/benzophenone. All chemicals were
purchased from Sigma/Aldrich and used without further purification unless otherwise
noted. Analytical thin-layer chromatography (TLC) was carried out on Merck 60 F25
250-ptm silica gel plates. All compounds were visualized on TLC by UV irradiation or
an aqueous solution of ceric ammonium molybdate (CAM) staining. Flash column
chromatography was carried out using forced flow of the indicated solvent on AdTech
Flash Silica Gel, 32-63 ptm particle size, 60 A pore size (Adedge technologies). 'H NMR
spectra were acquired on a Bruker Avance (DPX) 400 MHz spectrometer, Varian
INOVA 500 MHz spectrometer and Bruker Avance (DPX) 600 MHz spectrometer. '3C
NMR spectra were acquired on a Bruker Avance (DPX) 400 MHz spectrometer and
Varian INOVA 500 MHz spectrometer. Chemical shifts (8) are reported in parts per
million (ppm) with chemical shifts referenced to internal standards: CDC13 (7.27 ppm
for 'H, 77.23 ppm for 1

3C), CD3OD (4.87 ppm for 'H, 49.15 ppm for 13C), D20 (4.80
ppm for 'H), C6D6 (7.16 ppm for 'H, 128.39 ppm for 13C). Coupling constants (J) are
reported in Hertz (Hz) and multiplicities are abbreviated as singlet (s), doublet (d),
triplet (t), multiplet (m), broadened siglet (br) and doublet of doublets (dd). The term
"app d" is used to denote a triplet with two similar coupling constants and "app t" is
used to denote a doublet of doublets (dd) with similar coupling constants. High
resolution Mass Spectra (HRMS) were obtained at the Mass Spectrometry Facility at
MIT (Cambridge, MA).

5-Azido-3-O-benzyl-5-deoxy-1,2,-O-isopropylidene-a-D-glucofuranose (3-7)

6 OH Sodium hydride (68.2 mg, 1.1 equiv. 60% in dispersion oil)
N3 s was added to a solution of 2-7 (509 mg, 1.55 mmol) in THF (15 mL)
Bno _ o at 0 TC. After the evolution of hydrogen gas ceased, benzyl bromide

3 o -- (0.221 mL, 1.2 equiv.) and TBAI (114 mg, 0.2 equiv.) were added to
the reaction mixture at 0 oC, and warmed to room temperature. The

reaction mixture was stirred overnight, and poured into water (20 mL). The mixture was
extracted with ethyl acetate (3 x 20 mL) and the combined organic layers were washed
with satd. NaHCO3 and satd. brine, dried over MgSO 4 and concentrated in vacuo.

Without further purification, the resulting mixture was dissolved in MeOH:
CH2C12 (10:1, 30 mL) and p-TsOH (59 mg, 0.2 equiv.) was added. The reaction was
stirred for 4 h at ambient temperature and quenched with triethylamine (0.5 mL). The
solvent was removed under reduced pressure, followed by purification via flash column
chromatography (hexane:ethyl acetate = 8:1 to 2:1) to afford 3-7 (492 mg, 95%) as a
colorless liquid.

'H NMR (CDC13, 400 MHz) 8 1.33 (s, 3H, H3CC-), 1.50 (s, 3H, H3CC-), 2.52
(brs, alcohol), 3.77 (ABx, 1H, J = 5.6 and 11.3 Hz, H6a), 3.89-3.98 (m, 1H, H5), 3.97
(ABx, 1H, J = 3.5 and 11.3 Hz, H6b), 4.08 (app d, 1H, J = 3.2 Hz, H3), 4.13 (dd, 1H, J =
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3.2 and 9.5 Hz, H4), 4.62 and 4.70 (ABq, 2H, J = 11.3 Hz, -OCH2Ph), 4.65 (app d, 1H, J
= 3.8 Hz, H2), 5.92 (d, 1H, J = 3.8 Hz, H,), 7.30-7.40 (m, 5H, -OCH2Ph);

'3C NMR (CDC13, 100 MHz) 6 26.6, 27.2, 60.9, 63.8, 72.4, 79.4, 81.9, 82.1,
105.7, 112.5, 128.4, 128.5, 128.9, 137.4;

HRMS(ESI-MS): Calcd for [CI6H21N3O 5+Na]+(M+Na): m/z = 358.1373; Found:
358.1378.

5-Azido-3-O-benzyl-5-deoxy-D-glucofuranose (3-6)

6 OH Aqueous trifluoroacetic acid (80%, 10 mL) was added to 3-7 (492
N3 s " mg, 1.47 mmol) at 0 oC. The reaction mixture was stirred at room
BnO H temperature for 3 h. The mixture was concentrated in vacuo and poured

OH into satd. NaHCO3 (20 mL). The mixture was extracted with ethyl acetate
(3 x 30 mL) and the combined organic layers were washed with satd.

brine, dried over MgSO 4 and concentrated in vacuo. Flash column chromatography
(hexane:ethyl acetate = 2:1 to ethyl acetate) of the crude oil gave the desired lactol 3-6
(356 mg, 82 %) as a yellow oil (a mixture of anomers).

'H NMR (CD3OD, 400 MHz) selected peaks 6 4.64-4.82 (m, 2H OCH2Ph), 5.18
(app s, 0.6H of anomeric mixture, H,), 5.36 (d, 0.4H of anomeric mixture, J = 3.8 Hz,
H,), 7.26-7.39 (m, 5H, -OCH2Ph);

13C NMR (CD30D, 100 MHz) 8 63.7, 63.9, 64.3, 64.4, 73.0, 75.1, 78.3, 79.3,
80.8, 84.3, 85.1, 99.0, 105.3, 128.9, 129.0, 129.2, 129.5, 129.6, 129.5, 139.2, 139.4;

HRMS(ESI-MS): Calcd for [C,3H, 7N3O5+Na]+(M+Na): m/z = 318.1066; Found:
318.1066.

5-azido-3-O-benzyl-1,5-dideoxy-4-hydroxy-1-(N-(4-methoxybenzyl)-amino)-D-
fructopyranose (3-8)

OH
6 NHPMB p-Methoxybenzylamine (0.160 mL, 1.0 equiv.) was added to

s OBn a solution of 3-6 (356 mg, 1.21 mmol) and acetic acid (0.139 mL, 1.0
N3 OFP equiv.) in MeOH (20 mL) at room temperature and the reaction3-8

mixture was warmed to 40 TC. The mixture was stirred for 2 h at 40
oC. The solvent was removed under reduced pressure. Flash column chromatography
(CH2CI2: MeOH = 20:1 to 15:1) of the crude product gave the desired product 3-8, as the
acetic acid salt form (402 mg, 70%) (a mixture of anomers).

'H NMR (CDC13, 600 MHz, ca. 3:2 a mixture of anomers) selected peaks 8 2.63
(d, 0.4H of anomeric mixture, J = 12.5 Hz, Hla), 2.77 (d, 0.6H of anomeric mixture, J =
12.1 Hz, H,,,), 2.87 (d, 0.6H of anomeric mixture, J = 12.1 Hz, Hlb), 3.06 (d, 0.4H of
anomeric mixture, J = 12.5 Hz, Hlb), 3.50 (d, 0.6H of anomeric mixture, J = 9.5 Hz, H3),
3.62 (app d, 0.6H of anomeric mixture, J = 12.5 Hz, H6a), 3.80 (s, 3H, -NHCH2PhOMe),
3.88 (s, 1.2H of anomeric mixture, -NHCH2PhOMe), 4.06 (app d, 0.6H of anomeric
mixture, J = 12.5 Hz, H6b), 4.34 (dd, 0.6H of anomeric mixture, J = 9.5 Hz, J = 3.8 Hz,
H4), 4.44 and 4.62 (ABq, 0.8H of anomeric mixture, J = 11.6 Hz, -OCH2Ph), 4.64 and
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4.86 (ABq, 1.2H of anomeric mixture, J = 11.6 Hz, -OCH2Ph), 6.58 (brs, alcohol), 6.85-
7.36 (m, 9H, -NHCH2PhOMe and -OCH2Ph);

'3C NMR (CD3OD, 100 MHz, ca. 3:2 a mixture of anomers) 6 50.8, 54.6, 61.3,
63.7, 70.7, 75.1, 77.5, 95.9, 114.2, 114.3, 114.4, 127.8, 128.2, 128.2, 128.4, 131.2,
131.5, 138.2, 160.6;

HRMS(ESI-MS): Calcd for [C21H26N40s+H]+(M+H): m/z = 415.1976; Found:
415.1986.

5-Azido-3-O-benzyl-1,5-dideoxy-4-hydroxy-1-(N-(4-methoxybenzyl)-acetaamide)-D-
fructopyranose (3-9)

Acetic anhydride (0.160 mL, 2.0 equiv.) was added to
OH Ac
• H Ao 8a solution of 3-8 (402 mg, 0.847 mmol) and DIPEA (0.237 mL, 2.0

5-•---OBn equiv.) in MeOH (20 mL) at 0 TC and the reaction mixture was
N3  warmed to room temperature for 2 h. The mixture was stirred for 1 h

3-9 at room temperature. The solvent was removed under reduced
pressure. Flash column chromatography (hexane:ethyl acetate = 2:1 to ethyl acetate) of
the crude product gave 3-9 (317 mg, 82%) as a yellow oil (a mixture of anomers and N-
rotamers).

1H NMR (CDC13, 400 MHz) selected peaks 8 2.16 (s, 2.25H of mixtures, acetyl),
2.21 (s, 0.75H of mixtures, acetyl), 2.67 (d, 0.75H of mixtures, J = 14.3 Hz, Hia), 3.35
(d, 0.25H of mixture, J =14.4 Hz, Hia), 3.42 (d, 0.75H of mixtures, J = 9.4 Hz, H3), 3.55
(d, 0.25H of mixture, J = 14.4 Hz, Hlb), 3.69 (app d, 0.75H of mixtures, J = 14.1 Hz,
H6a), 3.83 (s, 0.75H of mixtures, -NHCH 2PhOMe), 3.84 (s, 2.25H of mixture, -
NHCH2PhOMe), 3.88 (app d, 0. 75H of mixture, J = 3.8 Hz, H,), 4.12 (d, 0.75H of
mixture, J = 14.3 Hz, Hib), 4.20 (app d, 0.75H of mixture, J = 14.1 Hz, H6b), 4.28 (dd,
0.75H of mixtures, J = 9.4 and 3.8 Hz, H4), 4.37 and 4.63 (ABq, 1.5H of mixtures, J =
11.4 Hz, -NHCH2PhOMe), 4.70 and 4.82 (ABq, 1.5H of mixtures, J = 11.5 Hz, -
OCH2Ph), 6.87-7.80 (m, 9H, -NHCH 2PhOMe and -OCH2Ph);

'3C NMR (CD3OD, 100 MHz) 8 21.6, 22.7, 52.4, 54.0, 54.5, 54.6, 54.8, 55.6,
57.2, 61.1, 62.7, 68.6, 70.5, 72.7, 75.1, 76.0, 80.4, 98.6, 99.5, 114.6, 127.6, 127.7, 127.8,
128.1, 128.3, 128.4, 128.4, 128.6, 128.8, 137.0, 137.9, 159.4, 159.5, 175.2, 175.9;

HRMS(ESI-MS): Calcd for [C23H 28N40 6+Na](M+Na)] ÷ m/z = 479.1901; Found:
479.1921.

N-[(3R,4R,5R)-5-Azido-3-O-benzyl-6-0-(tert-butyldiphenylsilyl)-4-hydroxy-2-oxo-
hexyl]-N-(4-methoxybenzyl)-acetamide (3-5)

TBDPSCl (0.361 mL, 2.0 equiv.) was added to a
TBDPSO, N OBn solution of 3-9 (317 mg, 0. 694 mmol) and imidazole (142 mg,

6 32 -NAc 3.0 equiv.) in CH2CI2 (20 mL) at 0 oC and the reaction mixture
OH 0 PMB was warmed to room temperature for 2 h. The mixture was

stirred until no starting material remained (usually for 8 h). The
reaction mixture was poured into satd. NaHCO3 (20 mL). The mixture was extracted
with CH 2CI2 (3 x 20 mL) and the combined organic layers were washed with satd. brine,
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dried over MgSO, and concentrated in vacuo. Flash column chromatography
(hexane:ethyl acetate = 4:1 to hexane:ethyl acetate = 2:1) of the crude product gave the
desired compound 3-5 (376 mg, 78 %) as a colorless oil (a mixture of N-rotamers).

'H NMR (CDC13, 400 MHz) selected peaks 8 1.08 (s, 9H, Me3CPh2Si), 2.01 (s,
3H, acetyl), 3.49 (d, 1H, J = 18.0 Hz, Hla), 3.63-3.80 (m, 3H, H5, H6a, and H6b), 3.79 (s,
3H, -NHCH2PhOMe), 4.10 (dd, 1H, J = 8.2 and 2.3 Hz, H4), 4.12 and 4.33 (ABq, 2H, J
= 16.4 Hz, -NHCH2PhOMe), 4.37 and 4.54 (ABq, 2H, J = 18.2 Hz, -OCH2Ph), 4.51 (d,
1H J = 2.3 Hz, HA), 4.57 (d, 1H, J = 18.0 Hz, Hlb), 6.87 and 7.04 (2*d, 4 H, J = 8.7 Hz, -
NHCH 2PhOMe), 7.64-7.67 (m, 15H, -OCH2Ph and Me3CPh2Si-);

'3C NMR (CDCl3, 100 MHz) 6 19.3, 23.0, 26.9, 48.5, 63.2, 72.0, 74.6, 83.5,
128.0, 128.9, 129.0, 130.1, 132.8, 132.9, 135.8, 136.4, 170.9, 207.7;

HRMS(ESI-MS): Calcd for [C 39H46N 4O6Si+Na]J(M+Na): m/z = 717.3080;
Found: 717.3079.

N-[(3R,4R,5R)-5-Azido-3-O-benzyl-6-O-(tert-butyldiphenylsilyl)-4-hydroxy-2-oxo-
hexyl]acetamide (3-10)

A solution of CAN (185 mg, 3.0 equiv.) in H20 (1
N 3 OBn

TBDPSO\ mL) was added dropwise to a vigorously stirred solution of 3-
6 3 2 NHAc 5 (78 mg, 0.112 mmol) in MeCN (10 mL) at -20 TC and

OH 0 stirred for 3 h at -20 TC. The reaction mixture was treated3-10
with additional CAN (61.5 mg, 1.0 equiv.) at -20 'C, warmed

within 3 h to 0 oC and stirred for 2 h at 0 oC. The yellow-orange solution was poured into
water (20 mL). The mixture was extracted with ethyl acetate (3 x 20 mL) and the
combined organic layers were washed with 10 % sodium sulfite solution (30 mL), satd.
NaHCO 3 (20 mL) and satd. brine (20 mL), dried over MgSO4 and concentrated in vacuo.
Flash column chromatography (hexane:ethyl acetate = 3:1 to hexane;ethyl acetate = 1:1)
of the crude product gave the desired compound 3-10 (41 mg, 63 %) as a colorless oil.

'H NMR (CDC13, 400 MHz) 8 1.08 (s, 9H, MeCPh2Si-), 2.01 (s, 3H, acetyl),
3.14 (brs, alcohol), 3.54-3.59 (m, 1H, H,), 3.74-3.76 (m, 1H, H4), 3.97 (ABx, 1H, J = 6.6
and 10.9 Hz, H6), 4.03-4.10 (m, 2H, H6 and HIb), 4.22 (d, 1H, J = 1.3 Hz, H3), 4.32
(ABx, 1H, J = 4.7 and 19.9 Hz, Hlb), 4.57 and 4.75 (ABq, 2H, J = 11.3 Hz, -OCH2Ph),
6.15 (brs, amide), 7.27-7.69 (m, 15H, -OCH2Ph and Me3CPh2Si-);

'3C NMR (CDCl 3, 100 MHz) 8 19.3, 23.0, 26.9, 48.5, 63.2, 72.0, 74.6, 83.5,
128.0, 128.9, 129.0, 130.1, 132.8, 132.9, 135.8, 136.4, 170.9, 207.7;

HRMS(ESI-MS): Calcd for [C31H38N4O 5Si+H]+(M+H): m/z = 575.2684; Found:
575.2684.
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N-(4-Methoxybenzyl)-[(3R,4R,5R)-5-azido-3-O-benzyl-6-O-(tert-butyldiphenylsilyl)-
4-O-(2',3',4',6'-tetra-O-acetyl-p-D-glucopyranosyl)-2-oxo-hexyl]acetamide (3-12)

N3 OBn BF3*OEt2 (6.1 •l, 0.1 equiv.) was added to a solution of
TBDPSO .•42 c imidate 2-28 (1.19 mg, 5.0 equiv.) and 3-5 (335 mg, 0.482

0 O O NMB mmol) in toluene (30 mL) at 0 oC under argon. The mixture was
AcO allowed to warm to room temperature. After stirring for 3 h,

9 2 '  additional BF 3*OEt2 (6.1 [tl, 0.1 equiv.) was added at 0 oC. Then
6

4 3 the mixture was allowed to warm to room temperature again and
AcO OAc stirred until no starting material remained (usually for another 5

h at room temperature). The reaction mixture was poured into
water (20 mL). The mixture was extracted with CH2CI2 (3 x 40 mL) and the combined
organic layers were washed with satd. NaHCO3 and satd. brine, dried over MgSO4 and
concentrated in vacuo. Flash column chromatography (hexane:ethyl acetate = 3:1 to
hexane;ethyl acetate = 2:3) of the crude oil gave the desired compound 3-12 (445 mg, 85
%) as a colorless liquid (a mixture of N-rotamers).

'H NMR (C6D6, 400 MHz) selected peaks 6 1.20 (s, 9H, Me3CPh2 Si-), 1.48 (s,
3H, acetyl), 1.66 (s, 3H, acetyl), 1.85 (s, 3H, acetyl), 1.91 (s, 3H, acetyl), 1.97 (s, 3H,
acetyl), 3.04 (s, 3H, -NCH2PhOMe), 3.96-4.00 (m, 1H, H,,), 4.26 (d, 1H, J = 3.0 Hz, H3),
4.69 (d, 1H, J = 8.1 Hz, H,.), 5.01 (app t, 1H, J = 8.9 Hz, H2.), 4.83-4.89 (m, 2H, H3. and
H4.), 6.88-8.57 (m, 19H, -NHCH2PhOMe, -OCH2Ph and Me3CPh2Si-);

'3C NMR (C6D6, 100 MHz) 8 19.8, 20.4, 20.5, 20.6, 20.9, 21.4, 27.4, 52.8, 53.7,
55.2, 62.4, 63.3, 64.1, 69.2, 72.2, 72.9, 73.8, 74.1, 72.0, 77.0, 84.7, 100.3, 115.2, 128.1,
129.1, 130.6, 130.8, 130.9, 133.2, 133.6, 136.5, 137.9, 160.0, 168.8, 169.6, 170.3, 170.5,
171.1, 206.5;

HRMS(ESI-MS): Calcd for [CS3H64N 4O,5Si+H]+(M+Na): m/z = 1047.4030;
Found: 1047.4007.

N-[(3R,4R,5R)-5-azido-3-O-benzyl-6-O-(tert-butyldiphenylsily)-4-O-(2',3',4',6'-
tetra-O-acetyl-f-D-glucopyranosyl)-2-oxo-hexyl]acetamide 3-13

N3 OBn A solution of CAN (1.06 g, 3.0 equiv.) in H20 (2 mL)
TBDPSO • NHc was added dropwise to a vigorously stirred solution of 3-12

6 O o (660 mg, 0.654 mmol) in MeCN (20 mL) at -20 oC and stirred
o 0for 3 h. The reaction mixture was treated with additional CAN

AcO Ac (353 mg, 1.0 equiv.), warmed within 3 h to 0 oC and stirred for
2 h at 0 'C. The yellow-orange solution was poured into water.

AcO OAc The mixture was extracted with ethyl acetate (3 x 30 mL) and
3-13 the combined organic layers were washed with 10% sodium

sulfite solution, satd. NaHCO3 and satd. brine, dried over MgSO4 and concentrated in
vacuo. Flash column chromatography (hexane:ethyl acetate = 1:1 to hexane;ethyl acetate
= 3:1) of the crude oil gave the desired compound 3-13 as the white liquid (431 mg,
83%).
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'H NMR (CDC13, 400 MHz) 8 1.07 (s, 9H, Me 3CPh2Si-), 1.75 (s, 3H, acetyl),
1.99 (s, 3H, acetyl), 2.01 (s, 3H, acetyl), 2.09 (s, 3H, acetyl), 2.22 (s, 3H, acetyl), 3.44-
3.48 (m, 1H, Hs), 3.60-3.63 (m, 1H, Hs.), 3.80 (ABx, 1H, J = 12.2 and 1.7 Hz, H5a),

3.94-3.96 (m, 2H, Hia and HIb), 4.05 (dd, 1H, J = 1.6 and 9.3 Hz, H4 ), 4.16 (d, 1H, J =
1.6 Hz, H3), 4.18 (ABx, 1H, J = 3.4 and 20.8 Hz, H6'a), 4.41 (ABx, 1H, J = 12.2 and 7.2
Hz, H6b), 4.43 and 4.75 (ABq, 2H, J = 11.6 Hz, -OCH2Ph), 4.60 (ABx, 1H, J = 6.2 and
20.8 Hz, H6.b), 4.61 (d, 1H, J = 8.1 Hz, H,,), 4.83-4.89 (m, 2H, H2. and H4,), 4.98 (app t,
1H, J = 9.3 Hz, H3.), 6.40 (brs, 1H amide), 7.27-7.69 (m, 15H, -OCH2Ph and
Me3CPh2Si-);

13C NMR (CDCl3 , 100 MHz) 8 19.7, 20.8, 21.0, 21.0, 21.4, 23.3, 49.3, 61.8, 62.4,
62.7, 68.7, 71.8, 72.4, 73.3, 74.6, 77.7, 83.3, 100.3, 128.5, 128.6, 128.9, 129.0, 129.2,
130.6, 130.7, 132.4, 133.1, 135.9, 136.2, 136.7, 169.1, 169.9, 170.6, 170.9, 171.8, 207.9;

HRMS(ESI-MS): Calcd for [C45H5N 4O14Si+H]+(M+H): m/z = 905.3635; Found:
905.3629.

1-Acetaamide-4-O-(2',3',4',6'-tetra-O-acetyl- -D-glucopyranosyl)-5-azido-3-O-
benzyl-1,5-dideoxy--D-fructopyranose (3-15)

OH

5 ,OBn

N3 0 3

AcO 01
5$OAc

4 33

AcO OAc
3-15

TBAF (1.0 M solution in THF, 0.477 mL, 1.0 equiv.) was
added to a solution of 3-14 (431 mg, 0.477 mmol) and acetic acid
(0.028 mL, 1.0 equiv.) in THF (10 mL) at 0 oC. The mixture was
allowed to warm to room temperature and stirred overnight. The
solvent was removed under reduced pressure, followed by the
purification via flash column chromatography (hexane:ethyl acetate
= 4:1 to ethyl acetate following ethyl acetate:methanol = 10:1) to
afford 3-15 (286 mg, 90%) as a white oil (a mixtue of anomers).

'H NMR (CD 3OD, 400 MHz) 6 1.93 (s, 3H, acetyl), 1.97 (s, 3H, acetyl), 1.98 (s,
3H, acetyl), 2.00 (s, 3H, acetyl), 2.05 (s, 3H, acetyl), 3.09 (d, 1 H, J = 13.7 Hz, Hia), 3.58
(d, 1H, J = 9.7 Hz, H3), 3.70-3.78 (m, 1H, H6,), 3.75 (d, 1H, J = 13.7 Hz, Hlb), 3.86-3.90
(m, 1H, H5.), 4.01 (m, 3H, H6b, H6,a and H6.b), 4.32 (app dd, 1H, J = 4.2 and 9.7 Hz, H,),
4.41 (dd, 1H, J = 9.7 and 3.7 Hz, H4), 4.60 and 4.94 (ABq, 1H, J = 10.3 Hz, -OCH2Ph),
4.83-4.89 (m, 2H, H,. and H2'), 5.28 (app t, 1H, J = 9.3 Hz, H3.), 7.27-7.69 (m, 5H, -
OCHPh);

'3C NMR (CD30D, 100 MHz) 6 19.6, 19.7, 19.8, 19.9, 21.6, 44.8, 59.7, 60.9,
62.1, 68.7, 72.0, 72.1, 73.4, 74.9, 75.3, 77.7, 97.9, 98.1, 127.7, 128.2, 129.0, 139.0,
170.3, 170.4, 170.7, 171.4, 172.6;

HRMS(ESI-MS): Calcd for [C29H38N40 14+Na]+(M+Na): m/z = 689.2277; Found:
689.2285.

N-[((2R,3R,4R,5R)-3-O-benzyl-4-O-(2',3',4',6'-tetra-O-acetyl--D-glucopyranosyl)-
5-(hydroxymethyl)pyrrolidin-2-yl)methyl]acetamide (3-16)

. 6OAc OH
AcO' O- c NHAcO 

-
AcO1 Bn 3 NHAc

3-16

To a solution of 3-15 (70 mg, 0.105 mmol) in MeOH
(10 mL) was added Pd(OH)2 (35mg). The reaction mixture
was stirred under 850 psi hydrogen pressure for 12 h and
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filtered through celite. After the solvent was removed in vacuo, the residue was purified
by flash column chromatography (CHC13:MeOH = 10:1 (1 % of ammonium hydroxide)
to 8:1 (1 % of ammonium hydroxide)) to afford 3-16 (51 mg, 70%) as a colorless oil.

'H NMR (CD3OD, 600 MHz) 8 1.93 (s, 3H, acetyl), 1.96 (s, 3H, acetyl), 1.97 (s,
3H, acetyl), 2.00 (s, 3H, acetyl), 2.04 (s, 3H, acetyl), 3.08-3.15 (m, 1H, H5), 3.28-3.30
(m, 3H, H2, Hia and HJb), 3.57-3.59 (m, 2H, Ha and H6b), 3.88-3.89 (m, 1H, H3), 4.11
(ABx, 1H, J = 2.2 and 12.3 Hz, H6'a), 4.22 (ABx, 1H, J = 4.4 and 12.3 Hz, H6'b), 4.23 (m,
1H, H4), 4.57 and 4.73 (ABq, 2H, J = 11.7 Hz, -OCH2Ph), 4.88 (d, 1H, J = 8.0 Hz, HI.),
4.90 (dd, 1H, J = 8.0 and 9.5 Hz, H2.), 5.02 (app t, 1 H, J = 9.5 Hz, H4,), 5.25 (app t, 1H,
J = 9.5 Hz, H3.), 7.25-7.36 (m, 5H, -OCH 2Ph);

13C NMR (CD3OD, 100 MHz) 8 20.7, 20.8, 22.8, 42.8, 62.9, 63.0, 63.1, 65.8,
69.8, 72.8, 73.0, 73.1, 74.4, 87.3, 87.8, 101.7, 128.9, 129.1, 129.5, 139.8, 171.3, 171.4,
171.7, 172.4, 173.9;

HRMS(ESI-MS): Calcd for [C29H40N 20 13+H]+(M+H): m/z = 625.2603; Found:
625.2580.

N-{[(2R,3R,4R,5R)-4-O-(2',3',4',6'-tetra-O-acetyl-[-D-glucopyranosyl)-3-hydroxy-)-
5-(hydroxymethyl)pyrrolidin-2-yl]methy]}acetamide (3-17)

6 -OAc OH To a solution of 3-16 (30 mg, 0.048 mmol) in acetic
AcO 4 7 O4 • NH acid (5 mL) was added Pd(OH)2 (20 mg). The reaction

AcO 3 cO HO 3 NHAc mixture was stirred under hydrogen at atmosphere pressure
3-17 1 for 12 h and filtered through celite. After the solvent was

removed in vacuo, the residue was purified by column chromatography (CHCl 3:MeOH =
7:1 (1 % of ammonium hydroxide) to 5:1 (1 % of ammonium hydroxide)) to give 3-17
(17 mg, 65%) as a colorless oil.

'H NMR (CD3OD, 400 MHz) 8 1.92 (s, 3H, acetyl), 1.93 (s, 3H, acetyl), 1.98 (s,
3H, acetyl), 2.00 (s, 3H, acetyl), 2.03 (s, 3H, acetyl), 3.08-3.10 (m, 2H, H2 and Hs), 3.55-
3.57 (m, 2H, Ha, and H6b), 3.89-3.91 (m, 3H, H5., H6'a and H6.b), 4.20-4.21 (m, 2H, H4 and
H3), 4.75 (d, 1H, J = 8.1 Hz, Hi.), 4.98 (app t, 1H, J = 9.6 Hz, H3.), 5.23 (app t, 1H, J =
9.6 Hz, H4.);

'3C NMR (CD3OD, 100 MHz) 8 20.7 20.8, 22.7, 42.9, 63.3, 63.4, 63.7, 64.2,
70.0, 73.0, 73.1, 74.3, 80.1, 89.3, 101.7, 171.3, 171.4, 171.7, 172.5, 174.0;

HRMS(ESI-MS): Calcd for [C22H33N20, 3+H]+(M+H): m/z = 535.2134; Found:
535.2126.

N-{[(2R,3R,4R,5R)-3-hydoxy-4-O-(P-D-glucopyranosyl))-5-
(hydroxymethyl)pyrrolidin-2-yl]methyl}acetamide (3-1)

6 OH OH

HO ' 2' O 32NH
3 OH 1 HO 3  NHAc

3-1 1

To a stirred solution of 3-17 (8.0 mg, 0.0150 mmol)
in MeOH at room temperature was added the catalytic
amount of NaOMe. After 8h, cation exchange resin was
added until the solution was neutralized. The resin was
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filtered and washed with MeOH. Concentration of the solvent gave the desired product 1
(5.5 mg, quant) as a white liquid.

'H NMR (D20, 500 MHz) 8 1.98 (s, 3H, acetyl), 3.11-3.12 (m, 1H, H5), 3.19-
3.20 (m, 1H, H2), 3.26-3.33 (m, 2H, Hia and H2.), 3.34-3.40 (m, 2H, Hlb and H3.), 3.44-
3.49 (m, 2H, H4, and H5.), 3.64-3.69 (m, 3H, H6a, H6b and H6'a), 3.90-3.95 (m, 3H, H3, H4

and H6 'b), 4.48 (d, 1H, J = 8.0 Hz, H,,);
'3C HMR (D20, 75 MHz) 822.10, 22.17, 40.99, 61.04, 61.15, 61.31, 61.91,

70.14, 73.33, 75.83, 76.21, 78.30, 86.78, 102.54, 175.12;
HRMS(ESI-MS): Calcd for [Cl4H26N2O9+H]+(M+H): m/z = 367.1711; Found:

367.1718.

N-(4-Methoxybenzyl)-[(3R,4R,5R)-5-azido-3-0-benzyl-6-0-(tert-butyldiphenylsilyl)-
4-O-(3',4',6'-tri-O-acetyl-2'-deoxy-2'-trichloroethyloxycarbonylamine-P-D-
glucopyranosyl)-2-oxo-hexyl]acetamide (3-19)

N3 OBn
TBDPSO 43 -2,

o o PMB

AcOO 2 'NHTroc
6 2.

AcO OAc
3-19

chromatography (hexa
product gave the desir
N-rotamers).

BF 3*OEt 2 (11.7 [tl, 0.2 equiv.) was added to a solution of
imidate 3-18 (863 mg, 3.0 equiv.) and 3-5 (320 mg, 0.46 mmol)
in toluene (20 mL) at 0 oC under argon. The mixture was
allowed to warm to room temperature and stirred for 8 h. The
reaction mixture was poured to water (40 mL). The mixture was
extracted with CH 2CI2 (3 x 30 mL) and the combined organic
layers were washed with satd. NaHCO3 and satd. brine, dried
over MgSO 4 and concentrated in vacuo. Flash column

ne:ethyl acetate = 3:1 to hexane;ethyl acetate = 1:1) of the crude
ed compound 3-19 (351 mg, 69 %) as a colorless oil (a mixture of

'H NMR (C6D6, 400 MHz) selected peaks 6 1.20 (s, 9H, Me3CPh2Si-), 1.66 (s,
3H, acetyl), 1.67 (s, 3H, acetyl), 1.69 (s, 3H, acetyl), 2.05 (s, 3H, acetyl), 3.35 (s, 3H, -
NCH2PhOMe), 3.50-3.65 (m, 2H, H5 and H.,), 5.10 (app t, 1H, J = 9.3 Hz, H4.), 5.21
(app t, 1H, J = 9.3 Hz, H3.), 6.82-7.87 (m, 19H, -NHCH 2PhOMe, -OCH2Ph and
Me 3CPhSi-);

N-{(3R,4R,5R)-5-azido-3-O-benzyl-6-O-(tert-butyldiphenylsilyl)-2'-deoxy-4-O-
[3',4',6'-tri-O-acetyl-2'-trichloroethyloxycarbonylamino- -D-glucopyranosyl]-2-
oxo-hexyl}acetamide (3-20)

N3 OBn
TBDPSON" KA-3 O2

AO5 NHAc

AcO6 O 'NHTroc
6

AcO OA(c
3-20

A solution of CAN (665 mg, 3.0 equiv.) in H20 (3 mL)
was added dropwise to a vigorously stirred solution of 3-19
(351 mg, 0.30 mmol) in MeCN (30 mL) at - 20 OC and stirred
for 3 h. The reaction mixture was treated with additional CAN
(222 mg, 1.0 equiv.), warmed within 3 h to 0 oC and stirred for
2 h at 0 TC. The yellow-orange solution was poured into water.
The mixture was extracted with ethyl acetate (3 x 40 mL) and
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the combined organic layers were washed with 10 % sodium sulfite solution, satd.
NaHCO 3 and satd. brine, dried over MgSO4 and concentrated in vacuo. Flash column
chromatography (hexane:ethyl acetate = 2:1 to hexane;ethyl acetate = 1:2) of the crude
product gave the desired compound 3-20 as a white liquid (204 mg, 65 %).

1H NMR (CD3OD, 400 MHz) 6 1.09 (s, 9H, Me3CPh2Si-), 1.96 (s, 3H, acetyl),
1.99 (s, 3H, acetyl), 2.02 (s, 3H, acetyl), 2.08 (s, 3H, acetyl), 3.33-3.42 (m, 1H, H5),
3.52-3.63 (m, 1H, Hs.), 3.83-4.12 (m, 4H, H6a, H6b, H4, H2.), 4.23-4.35 (m, 2H, H6.a and
H 6 'b) 4.37 (d, 1H, J = 2.0 Hz, H3), 4.40-4.43 (m, 2H, Hia and Hlb), 4.37 and 4.52 (ABq,
2H, J = 10.5 Hz, -OCH2CCI3), 4.39 and 4.64 (ABq, 2H, J = 11.0 Hz, -OCH2Ph), 4.87 (d,
1H, J = 8.3 Hz, H,,), 4.77 (app t, 1H, J = 9.2 Hz, H4.), 5.27 (app t, 1H, J = 9.1 Hz, H3.),
7.69-7.76 (m, 15H, -OCH2Ph and Me3CPh2Si-);

13C NMR (CDCl 3, 100 MHz) 8 19.4, 20.8, 21.1, 21.2, 23.1, 27.2, 48.9, 55.1, 62.4,
63.1, 69.5, 72.0, 72.4, 74.6, 76.8, 78.9, 82.5, 89.0, 99.6, 128.1, 128.4, 128.5, 129.1,
130.5, 131.6, 132.8, 134.9, 136.5, 136.8, 136.9, 156.5, 169.5, 170.2, 171.4, 171.9, 206.9;

1-Acetamino-5-azido-3-0-benzyl-1,5-dideoxy-4-0-[3',4',6'-tri-O-acetyl-2'-deoxy-2'-
trichloroethyloxycarbonylamino-p-D-glucopyranosyl]-D-fructopyranose (3-21)

OH TBAF (1.0 M solution in THF, 0.130mL, 1.0 eq.) was

~ • " added to a solution of 3-20 (135 mg, 0.130 mmol) and acetic acid (8
4 - 0

Ac

Rl, 1.0 eq.) in ITFr ku mL) at u C. Ine mixture was allowed to
warm to room temperature and stirred overnight. The solvent was
removed under reduced pressure, followed by the purification via
flash column chromatography (hexane:ethyl acetate = 2:1 to ethyl

3-21 acetate, ethyl acetate:MeOH = 10:1) to afford 3-21 (86 mg, 83 %) as
a white oil.

'H NMR (CD3OD, 400 MHz) 8 2.00 (s, 3H, acetyl), 2.01 (s, 3H, acetyl), 2.02 (s,
3H, acetyl), 2.04 (s, 3H, acetyl), 3.05 (d, 1H, J = 12.8 Hz, Hia), 3.72 (d, 1H, J = 9.1 Hz,
H3), 3.83 (dd, 1H, J = 8.3 and 10.4 Hz, H2.), 3.68-3.83 (m, 5H, H b, H3, H5. H6'a, H6 'b),
4.31 (app dd, 1H, J = 10.8 and 4.3 Hz, H,), 4.44 (dd, 1H, J = 9.0 and 4.3 Hz, H4), 4.60-
4.90 (m, 4H, -OCH2Ph and -OCH2CCI3), 4.91 (d, 1H, J = 8.3 Hz, H,,) , 5.08 (app t, 1H, J
= 9.4 Hz, H4 .), 5.27 (app t, 1H, J = 9.3 Hz, H3.), 7.29-7.54 (m, 5H, -OCH2Ph);

'3C NMR (CD3OD, 100 MHz) 6 20.5, 20.7, 20.9, 22.8, 45.9, 56.4, 60.3, 61.7,
70.1, 73.2, 73.4, 76.0, 76.5, 78.9, 98.7, 99.0, 128.8, 129.3, 129.7, 129.8, 130.1, 140.1,
171.4, 171.8, 172.5, 173.8;
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N-(4-Methoxybenzyl)-{(3R,4R,5R)-5-azido-3-0-benzyl-6-O-(tert-butyldiphenylsilyl)-
4-O-[3',4',6'-tri-O-acetyl-2'-deoxy-2'-trichloroacetamide-5-D-glucopyranosyl]-2-
oxo-hexyl}acetamide (3-22)

TBDPSO\ N• OBn BF 3.OEt 2 (42.1 ptl, 0.3 equiv.) was added to a solution of
6 5 S 3 NAc imidate 2-20 (3.3 g, 4.0 equiv.) and 3-5 (720 mg, 1.11 mmol) in

o o PMB toluene (20 mL) at 0 oC under argon. The mixture was allowed to
A O'NHTCA warm to room temperature and stirred for 24 h. The reaction
S3 mixture was poured into water (40 mL). The mixture was

AcO Ac extracted with CH 2Cl2 (3 x 45 mL) and the combined organic
3-22 layers were washed with satd. NaHCO3 and satd. brine, dried

over MgSO 4 and concentrated in vacuo. Flash column chromatography (hexane:ethyl
acetate = 3:1 to hexane;ethyl acetate = 1:1) of the crude product gave the desired
compound 3-22 (1.06 g, 85 %) as a colorless oil (a mixture of N-rotamers).

'H NMR (C6D 6, 400 MHz) selected peaks 8 1.18 (s, 9H, Me3CPh2Si-), 1.63 (s,
3H, acetyl), 1.73 (s, 3H, acetyl), 1.74 (s, 3H, acetyl), 1.90 (s, 3H, acetyl), 3.34 (s, 3H, -
NCH2PhOMe), 3.45-3.50 (m, 1H, Hs), 3.80 (d, 1H, J = 13.2 Hz, Hia), 4.32 and 4.42
(ABq, 2H, J = 11.3 Hz, -OCH2Ph), 4.61 (dd, 1H, J =1.3 and 8.4 Hz, H4), 4.86 (d, 1H, J =
13.2 Hz, Hlb), 4.96 (d, 1H, J = 8.3 Hz, H,,.), 5.26 (app t, 1H, J = 9.3 Hz, H4.), 5.52 (app t,
1H, J = 9.3 Hz, H3 .), 6.80 and 6.91 (d, 4H, J = 8.6 Hz, -NHCH 2PhOMe), 7.08-7.87 (m,
15H, -OCHPh and Me3CPh2Si-);

N-{(3R,4R,5R)-5-azido-3-0-benzyl-6-O-(tert-butyldiphenylsilyl)-4-O-[3',4',6'-tri-O-
acetyl-2'-deoxy-2'-trichloroacetamide- -D-glucopyranosyl]-2-oxo-hexyl}acetamide
(3-23)

A solution of CAN (1.55 g, 3.0 equiv.) in H20 (5 mL)
N 3 OBn

TBDPSO , • was added dropwise to a vigorously stirred solution of 3-22
6 3 NHAc (1.06g, 0.94 mmol) in MeCN (50 mL) at - 20 OC and stirred for

oo
AcO .3 h. The reaction mixture was treated with additional CAN (517

S2NHTCA mg, 1.0 equiv.), warmed within 3 h to 0 oC and stirred for 2 h at
6 0 C. The yellow-orange solution was poured into water. The
AcO OAC mixture was extracted with ethyl acetate (3 x 50 mL) and the

3-23 combined organic layers were washed with 10 % sodium sulfite
solution, satd. NaHCO3 and satd. brine, dried over MgSO 4 and concentrated in vacuo.
Flash column chromatography (hexane:ethyl acetate = 1:1 to hexane;ethyl acetate = 1:2)
of the crude oil gave the desired compound 3-23 as the white liquid (634 mg, 67 %).

'H NMR (CDCl3, 400 MHz) 8 1.07 (s, 9H, Me3CPh2Si-), 1.97 (s, 3H, acetyl),
2.01 (s, 3H, acetyl), 2.05 (s, 3H, acetyl), 2.13 (s, 3H, acetyl), 3.45-3.56 (m, 1H, Hs),
3.57-3.58 (m, 1H, H-5.), 3.73-3.81 (m, 3H, H3, H6a and H2.), 3.99 (dd, 1H, J = 11.3 and
2.2 Hz, H4), 4.07 (d, IH, J = 2.2 Hz, H3), 4.10-4.39 (m, 4H, H6.a, H6'b, Hla and H1b), 4.35
and 4.63 (ABq, 2H, J = 11.0 Hz, -OCH2Ph), 4.51 (d, 1H, J = 8.3 Hz, H,,), 4.82 (app t,
1H, J = 9.3 Hz, H4.), 5.02 (app t, 1H, J = 9.3 Hz, HO3 ), 6.32 (brs, 1H, amide), 6.34 (brs,
IH, amide), 7.21-7.66 (m, 15H, -OCH2Ph and Me3CPh2Si-);
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'3C NMR (CDC13, 125MHz) 8 19.3, 20.7, 21.1, 23.1, 27.1, 48.8, 56.1, 62.2, 63.1,
62.2, 63.1, 68.7, 71.5, 72.1, 74.2, 76.8, 83.3, 99.6, 128.2, 128.4, 128.4, 128.8, 130.5, 130
.8, 132.5, 135.9, 136.0, 136.5, 161.8, 169.6, 170.6, 170.7, 171.4, 207.2;

HRMS(ESI-MS): Calcd for [C45HS4CI3N5013Si+Na]+(M+Na): m/z = 1030.2445;
Found: 1030.2427.

1-Acetamino-5-azido-3-0-benzyl-1,5-dideoxy-4-O-[3',4',6'-tri-O-acetyl-2'-deoxy-2'-
(trichloroacetamide)-p-D-glucopyranosyl)]-D-fructopyranose (3-24)

TBAF (1.0 M solution in THF, 0.630 mL, 1.0 equiv.) was
OH

added to a solution ot 3-23 (634 mg, 0.630 mmol) and acetic acid
(0.036 mL, 1.0 equiv.) in THF (10 mL) at 0 'C. The mixture was
allowed to warm to room temperature and stirred overnight. The
solvent was removed under reduced pressure, followed by the
purification via column chromatography (hexane: ethyl acetate = 1:1

AcO UAc to ethyl acetate, ethyl acetate:methanol = 10:1) to attord 3-24 (412
3-24 mg, 85 %) as a white oil.

'H NMR (CD3OD, 400 MHz) 8 1.84 (s, 3H, acetyl), 1.90 (s, 3H, acetyl), 1.91 (s,
3H, acetyl), 1.92 (s, 3H, acetyl), 1.99 (s, 3H, acetyl), 3.06 (d, 1H, J = 12.8 Hz, Hia), 3.54
(d, 1H, J = 9.1 Hz, H3), 3.67 (d, 1H, J = 12.8 Hz, Hlb), 3.79-3.82 (m, 2H, H6a and H5,.),
3.88-3.89 (m, 1H, -16b), 3.94 (dd, 1H, J = 8.1 and 10.5 Hz, H2.), 4.04-4.07 (m, 2H, H6'a
and H6'b), 4.32 (app dd, 1H, J = 12.4 and 4.1 Hz, H,), 4.38 (dd, 1H, J = 9.1 and 4.1 Hz,
H4), 4.61 and 4.96 (ABq, 2H, J = 10.3 Hz, -OCH2Ph), 4.97 (d, 1H, J = 8.4 Hz, HF.), 5.04
(app t, 1H, J = 9.3 Hz, H4.), 5.44 (dd, 1H, J = 10.5 and 9.3 Hz, HY.), 7.24-7.48 (m, 5H, -
OCH2Ph);

13CNMR (CD3OD, 125 MHz) 8 20.8, 20.9, 20.9, 22.8, 45.9, 57.7, 60.1, 61.6, 70.3
,73.2, 73.3, 76.1, 76.4, 78.8, 99.0, 99.1, 128.8, 129.3, 129.7, 130.1, 140. 1, 164. 4, 171.4
,171.8, 172. 5, 173.7;

HRMS: [Calcd for C29H35C13N5O 13+H]+(M+H): m/z = 790.12672; Found:
720.1233.

N-(4-Methoxybenzyl)-{(3R,4R,5R)-5-azido-3-0-benzyl-6-O-(tert-butyldiphenylsilyl)-
4-O-[3',4',6'-tri-O-acetyl-2'-deoxy-2'-phthalimide-p-D-glucopyranosyl]-2-oxo-
hexyl}acetamide (3-25)

N3 OBn BF 3*OEt2 (8.9 Cl, 0.2 equiv.) was added to a solution of
TBDPSO N, 1c imidate 2-21 (609 mg, 3.0 equiv.) and 3-5 (214 mg, 0.35 mmol)

6o o MAc in toluene (20 mL) at 0 TC under argon. The mixture was
AcO NPth allowed to warm to room temperature and stirred for 8h. The

AcOO2' reaction mixture was poured into water (40 mL). The mixture
3 * was extracted with CH2CI2 (3 x 45 mL) and the combined

AcO OAc organic layers were washed with satd. NaHCO3 and satd. brine,
3-25 dried over MgSO 4 and concentrated in vacuo. Flash column
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chromatography (hexane:ethyl acetate = 4:1 to hexane;ethyl acetate = 2:1) of the crude
oil gave the desired compound 3-25 (282 mg, 73%) as a colorless oil (a mixture of N-
rotamers).

'H NMR (C6D6, 400 MHz) selected peaks 6 1.23 (s, 9H, Me3CPh2Si), 1.58 (s, 3H,
acetyl), 1.70 (s, 3H, acetyl), 1.93 (s, 3H, acetyl), 1.95 (s, 3H, acetyl), 3.50 (s, 3H, -
NH2CH2PhOMe), 5.32 (app t, 1H, J = 9.3 Hz, H4.), 5.72 (d, 1H, J = 8.2 Hz, H,.), 5.63
(app t, 1H, J = 9.8 Hz, H3.,), 6.89 and 6.97 (d, 4H, J =8.7 Hz, -NHCH2PhOMe), 7.71-
8.15 (m, 15H, -OCH2Ph, Me3CPh2Si-);

N-{(3R,4R,5R)-5-azido-3-0-benzyl-6-0-(tert-butyldiphenylsilyl)-4-0-[3',4',6'-tri-0-
acetyl-2'-deoxy-2'-phthalimide-pI-D-glucopyranosyl]-2-oxo-hexyl}acetamide (3-26)

N3 OBn A solution of CAN (0.428 mg, 3.0 equiv.) in H20 (2
TBDPSO 2,, mL) was added dropwise to a vigorously stirred solution of 3-

O O 25 (290 mg, 0.26 mmol) compound in MeCN (20 mL) at - 20
AcO 'N.Pth OC and stirred for 3 h. The reaction mixture was treated with

S2 additional CAN (142 mg, 1.0 equiv.), warmed within 3 h to 0
4 'C and stirred 2 h at 0 oC. The yellow-orange solution was

AcO OAc poured into water. The mixture was extracted with ethyl acetate
3-26 (3 x 30 mL) and the combined organic layers were washed with

10 % sodium sulfite solution, satd. NaHCO 3 and satd. brine, dried over MgSO 4 and
concentrated in vacuo. Flash column chromatography (hexane:ethyl acetate = 2:1 to
hexane;ethyl acetate = 1:1) of the crude oil gave the desired compound 3-26 as a white
liquid (160 mg, 62 %).

'H NMR (CDCI3, 400 MHz) 8 0.95 (s, 9H, Me3CPh2Si-), 1.84 (s, 3H, acetyl),
1.96 (s, 3H, acetyl), 2.04 (s, 3H, acetyl), 2.14 (s, 3H, acetyl), 3.55-3.57 (m, 2H, Hs and
H5.), 3.73-3.81 (m, 2H, H3, H6, and H2'), 3.99 (dd, 1H, J = 11.3 and 1.9 Hz, H4), 4.07 (d,
1H, J = 2.2 Hz, H3), 4.10-4.39 (m, 4H, H 6'a, H6 'b, Hia and Hlb), 4.18 and 4.50 (ABq, 2H, J
= 12.0 Hz, -OCH2Ph), 4.99 (app t, 1H, J = 9.2 Hz, H4 '), 5.34 (d, 1H, J = 8.0 Hz, H,,),
5.78 (app t, 1H, J = 9.2 Hz, H3.), 6.25 (brs, 1H, amide), 7.09-7.76 (m, 19H, -OCH2Ph, -
NPth and Me3CPh2Si-);

1-Acetamino-5-azido-3-O-benzyl-1,5-dideoxy-4-O-[3',4',6'-tri-O-acetyl-2'-deoxy-2'-
phthalimide-o-D-glucopyranosyl]-D-fructopyranose (3-27)

OH
-6 0 INHAc

54 1.OBn

N3 O 3

AcO 0
ACO NPth

4 3

AcO OAc
3-27

TBAF (1.0 M solution in THF, 0.160 mL, 1.0 equiv.) was
added to a solution of 3-26 (160 mg, 0.161 mmol) and acetic acid
(9.2 [tl, 1.0 equiv.) in THF (10 mL) at 0 'C. The mixture was
allowed to warm to room temperature and stirred overnight. The
solvent was removed under reduced pressure, followed by the
purification via column chromatography (hexane: ethyl acetate =
1:1 to ethyl acetate, following ethyl acetate:MeOH = 10:1) to afford
3-27 (105 mg, 87%) as a colorless oil.
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'H NMR (CD3OD, 400 MHz) 8 1.84 (s, 3H, acetyl), 1.87 (s, 3H, acetyl), 2.03 (s,
3H, acetyl), 2.05 (s, 3H, acetyl), 3.06 (d, 1H, J = 11.7 Hz, Ha), 3.44 (d, 1H, J = 10.0 Hz,
H3), 3.57-65 (m, 2H, Hlb, and H6'a), 3.70-3.72 (m, 1H, H6a), 3.94 (dd, 1H, J = 8.1 and
10.5 Hz, H2.), 4.00-4.03 (m, 2H, Hs, and H6b), 4.04-4.07 (m, 2H, H6'a and H6'b), 4.32 (app
dd, 1H, J = 12.4 and 4.1 Hz, H,), 4.38 (dd, 1H, J = 9.6 and 4.1 Hz, H4), 4.59 and 4.94
(ABq, 2H, J = 10.3 Hz, -OCH2Ph), 5.17 (app t, 1H, J = 9.3 Hz, H4.), 5.68 (d, 1H, J = 8.1
Hz, H,.), 5.85 (app t, 1H, J = 9.3 Hz, H3,), 7.24-7.51 (m, 5H, -OCH2Ph), 7.81-7.92 (m,
5H, -NPth);

'3C NMR (CD30D, 100MHz) 8 20.47, 20.75, 20.92, 22.69, 45.82, 56.29,
60.26, 61.18, 63.31, 70.42, 72.15, 73.33, 75.79, 76.42, 78.15, 96.41, 98.88, 124.64, 128.
88, 129.31, 130. 29, 135.90, 140.03, 171.41, 171.81, 172.57, 173.69;

HRMS: [Calcd for C29H35CI3N5O, 3+H]+(M+H): m/z = 790.1267; Found:
790.1233.

3,4,6-tri-O-Acetyl-2-deoxy-2-trifluoroacetamide-.-D-glucopyranosyl
trichloroacetimidate (2-29)

AcO 6 A solution of 2-28 (3.2 g, 7.22 mmol) in DMF (25 mL) was
AcO oý' treated with hydrazine acetate (650 mg, 1.0 equiv.). After 8 h, the
TFA~N~ ~CCi3 reaction was diluted with 200 mL of ethyl acetate and washed with

NH satd. NaHCO3 , brine and water. The organic layer was dried over
MgSO4 and filtered, and the filtrate was concentrated to give 3,4,6-

tri-O-acetyl-2-deoxy-2-triflouroacetamide-1-D-glucopyranoside as a yellow foam, which
was used without further purification. 3,4,6-tri-O-Acetyl-2-deoxy-2-triflouroacetamide-
[3-D-glucopyranoside was azeotroped with toluene (3*10 mL) and then dried under
vacuum for 1 h. The residue was dissolved in CH 2CI2 and trichloroacetonitrile (7.24 mL,
10 equiv.) was added, followed by DBU (0.10 mL, 0.1 equiv.). After lh, the solution
was concentrated in vacuo and the crude residue was purified by flash column
chromatography (hexane:ethyl acetate = 4:1 to 2:1) to give 2-29 (3.0 g, 75%) as a white
liquid.

'H NMR (CDC13, 400 MHz) 6 2.07 (s, 3H, acetyl), 2.08 (s, 3H, acetyl), 2.09 (s,
3H, acetyl), 4.11-4.15 (m, 2H, H2 and HJa), 4.29 (ABx, 1H, J = 3.8 and 12.5 Hz, H6b),

5.29 (app t, 1H, J = 9.3 Hz, H4), 5.39 (app t, J = 1H, 9.3 Hz, H3), 6.46 (d, 1H, J = 3.6 Hz,
H,), 6,74 (br, 1H, amide), 8.88 (s, 1H, imidate);

'3CNMR (CDCl3, 100MHz) 6 20.7, 20.8, 20.9, 52.7, 61.4, 66.9, 70.5, 90.0, 93.8,
111.3, 112.8, 117.0, 119.8, 156.9, 157.3, 158.0, 160.2, 169.4, 170.8, 171.9.
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N-(4-Methoxybenzyl)-{(3R,4R,5R)-5-azido-3-O-benzyl-6-O-(tert-butyldiphenylsilyl)-
4-O-(3',4',6'-tri-O-acetyl-2'-deoxy-2'-triflouroacetamide-p-D-glucopyranosyl)-2-
oxo-hexyl]acetamide (3-30)

BF 3*OEt2 (6.6 tl1, 0.1 equiv.) was added to a solution
TBDPSO • OBn of imidate 3-29 (2.25 g, 8.0 equiv.) and 3-5 (335 mg, 0.52

-6 - 3 "NAc mmol) in toluene (30 mL) at 0 oC under argon. The mixture
O O• PMB was allowed to warm to room temperature and stirred. Every

AcO O NTFA 8 h, another BF 3*OEt2 (6.6 ld, 0.1 eq.) was added at 0 TC. Then
6 s the mixture was allowed to warm to room temperature again
AcOOAc and stirred until no starting material remained (usual total

3-30 reaction time 48 h). The reaction mixture was poured into
water (20 mL). The mixture was extracted with CH2C12 (3 x 40 mL) and the combined
organic layers were washed with satd. NaHCO3 and satd. brine, dried over MgSO4 and
concentrated in vacuo. Flash column chromatography (hexane:ethyl acetate = 3:1 to
hexane;ethyl acetate = 2:3) of the crude product gave the desired compound 3-30 (504
mg, 90 %) as the colorless liquid (a mixture of N-rotamers).

'H NMR (C6D6, 400 MHz) selected peaks 8 1.31 (s, 9H, Me3CPh2Si-), 1.69 (s,
3H, acetyl), 1.74 (s, 3H, acetyl), 1.85 (s, 3H, acetyl), 1.95 (s, 3H, acetyl), 3.42 (s, 3H, -
NH2CH2PhOMe), 3.73-3.81 (m, 2H, H5 and H5.), 3.99 (dd, 1H, J = 11.3 and 1.9 Hz, H4 ),
4.07 (d, 1H, J = 2.2 Hz, H3), 4.10-4.39 (m, 4H, H 6 a, H 6'b, Hia and Hlb), 4.18 and 4.50
(ABq, 2H, J = 12.0 Hz, -OCH2Ph), 5.10 (d, 1H, J = 8.3 Hz, H ,), 5.34 (app t, 1H, J = 9.8
Hz, H4.), 5.63 (app t, 1H, J = 9.8 Hz, H3.), 6.89 and 6.97 (2*d, 4H, J =8.7 Hz, -
NHCH2PhOMe), 7.71-8.15 (m, 15H, -OCH2Ph, Me3CPh2Si-);

'3C NMR (C6D6, 100MHz) 8 19.8, 20.4, 20.5, 20.7, 21.1, 27.3, 53.2, 53.6, 55.3,
62.0, 63.1, 64.4. 69.1, 64.4, 69.4, 69.4, 72.9, 73.2, 76.0, 77.1, 84.7, 99.3, 128.7, 128.2, 1

28.5, 128.7, 129.7, 128.8, 129.0, 129.0, 129.2, 130.7, 133.4, 133.7, 136.7, 137.5, 160.3,
169.5, 170.4, 170.6, 172.5, 204.4;

HRMS: [Calcd for C53H62F3NsOl4Si+Na]÷(M+Na): m/z = 1100.3918; Found:
1100.3907.

N-[(3R,4R,5R)-5-azido-3-0-benzyl-6-O-(tert-butyldiphenylsilyl)-4-O-(3',4',6'-tri-O-
acetyl-2'-deoxy-2'-triflouroacetamide- -D-glucopyranosyl)-2-oxo-hexyl]acetamide
(3-31)

N3 OBn A solution of CAN (1.33 g, 3.0 equiv.) in H20 (4 mL)
TBDPSO • ,,, was added dropwise to a vigorously stirred solution of 3-30

O o (890 mg, 0.809 mmol) in MeCN (40 mL) at - 20 oC and

AcO NTFA stirred for 3 h. The reaction mixture was treated with
cNTFA
,6 2. additional CAN (445 mg, 1.0 equiv.), warmed within 3h to 0
Ac Ac TC and stirred for 2 h at 0 'C. The yellow-orange solution was

3-31 poured into water. The mixture was extracted with ethyl
acetate (3 x 30 mL) and the combined organic layers were

washed with 10 % sodium sulfite solution, satd. NaHCO3 and satd. brine, dried over
MgSO 4 and concentrated in vacuo. Flash column chromatography (hexane:ethyl acetate
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= 3:1 to hexane;ethyl acetate = 1:1) of the crude product gave the desired compound 3-
31 as the white liquid (491 mg, 62 %).

'H NMR (CDCl3, 400 MHz) 6 1.11 (s, 9H, Me 3CPh2Si-), 2.00 (s, 3H, acetyl),
2.04 (s, 3H, acetyl), 2.07 (s, 3H, acetyl), 2.13 (s, 3H, acetyl), 3.44-3.48 (m, 1H, H,),
3.60-3.63 (m, 1H, Hs.), 3.69 (ABx, 1H, J = 11.4 and 4.3 Hz, H6), 3.82 (dd, 1H, J = 12.2
and 2.0 Hz, H4), 3.86 (dd, 1H, J = 8.4 and 9.3 Hz, H2.), 4.06 (ABx, 1H, J = 11.4 and 2.4
Hz, H6 b), 4.16 (d, 1H, J = 2.0 Hz, H3), 4.18-4.24 (m, 2H, H 6 'a and H6.b), 4.29-4.30 (m,
2H, Hia and HIb), 4.42 and 4.68 (ABq, 2H, J = 11.4 Hz, -OCH2Ph), 4.47 (d, 1H, J = 8.4
Hz, H.,), 4.81 (app t, 1H, J = 9.3 Hz, H4'), 4.98 (app t, 1H, J = 9.3 Hz, H3,), 6.06 (brs,
1H, amide), 6.31 (brs, 1H, amide), 7.24-7.49 (m, 15H, -OCH2Ph and Me3CPh2Si-);

13C NMR (CDCl3 , 100 MHz) 8 19.5, 20.8, 21.0, 21.3, 23.2, 27.2, 49.0, 54.9,
62.4, 62.8, 68.8, 71.8, 71.9, 72.3, 74.7, 77.0, 83.4, 99.6, 128.4, 128.7, 128.8, 129.0,
130.7, 131.1, 132.6, 133.1, 136.1, 136.2, 136.7, 169.8, 170.9, 171.1, 171.6, 207.2;

HRMS(ESI-MS): Calcd for [C45HS4F 3NsO13Si+Na]+(M+Na): m/z = 980.3332;
Found: 980.3331.

1-Acetamino-5-azido-3-O-benzyl-1,5-dideoxy-4-O-(3',4',6'-tri-O-acetyl-2'-deoxy-2'-
triflouroacetamide-o-D-glucopyranosyl))-D-fructopyranose (3-32)

OH
6 1 NHAc TBAF (1.0 M solution in THF, 0.501 mL, 1.0 equiv.) was

5 OBn added to a solution of 3-31 (491 mg, 0.501 mmol) and acetic acid
N3 

0  (0.029 mL, 1.0 equiv.) in THF (10 mL) at 0 oC. The mixture was
A•O 2NFA allowed to warm to room temperature and stirred overnight. The

4 A solvent was removed under reduced pressure, followed by the
AcO OAc purification via flash column chromatography (hexane:ethyl acetate =

3-32 4:1 to ethyl acetate, following ethyl acetate:MeOH = 10:1) to afford
3-32 (314 mg, 87%) as a white oil.

'H NMR (CD3OD, 400 MHz) 1.91 (s, 3H, acetyl), 1.96 (s, 3H, acetyl), 1.98 (s,
3H, acetyl), 2.22 (s, 3H, acetyl), 3.09 (d, 1H, J = 13.7 Hz, Hia), 3.59 (d, 1H, J = 9.6 Hz,
H3), 3.74 (d, 1H, J = 13.7 Hz, Hlb), 3.77-3.82 (m, 2H, H6a and Hs.), 3.88-3.89 (m, 1H,
H6b), 3.94 (dd, 1H, J = 8.1 and 10.5 Hz, H2.), 4.03-4.07 (m, 2H, H6,a and H 6',), 4.32 (app
dd, 1H, J = 12.4 and 4.1 Hz, Hs), 4.38 (dd, 1H, J = 9.6 and 4.1 Hz, H4), 4.61 and 4.96
(ABq, 2H, J = 10.3 Hz, -OCH2Ph), 4.97 (d, 1H, J = 8.4 Hz, HI,), 5.04 (app t, 1H, J = 9.3
Hz, H4.), 5.44 (dd, 1H, J = 10.5 and 9.3 Hz, H3,), 7.24-7.48 (m, 5H, -OCH2Ph);

'3C NMR (CD3OD, 100 MHz) 8 20.5, 20.7, 20.9, 22.8, 45.9, 56.4, 60.3, 61.7,
70.1, 73.2, 73.4, 76.0, 76.5, 78.9, 98.7, 99.0, 113.2, 116.1, 118.9, 121.8, 128.8, 129.3,
129.7, 129.7, 130.1, 140.1, 159.3, 159.7, 171.4, 171.8, 172.5, 173.8;

HRMS: [Calcd for C29H35F3N5O, 3+H]÷(M+H): m/z = 720.2334; Found: 720.2334.

N-{[(2R,3R,4R,5R)-3-0-benzyl-4-O-(3',4',6'-tri-O-acetyl-2'-deoxy-2'-
trifluroacetamido-p-D-glucopyranosyl)-5-(hydroxymethyl)pyrrolidin-2-
yl]methyl}acetamide (3-33)
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6 OAc OH
AcO o NH

AcO 2 2
TFAHN BnO 3 -NHAc

3-33

removed in vacuo, the
(CHCl3:MeOH = 8:1 (1
hydroxide)) to afford 3-33

To a solution of 3-32 (70 mg, 0.0973 mmol) in
MeOH (10 mL) was added Pd(OH)2(35 mg). The reaction
mixture was stirred under hydrogen pressure (850 psi) for
12 h and filtered through celite. After the solvent was

residue was purified by flash column chromatography
% of ammonium hydroxide) to 7:1 (1 % of ammonium
(36 mg, 55 %) as a colorless oil.

'H NMR (CD3OD, 400 MHz) 6 1.93 (s, 3H, acetyl), 1.95 (s, 3H, acetyl), 1.96 (s,
3H, acetyl), 1.99 (s, 3H, acetyl), 3.25-3.26 (m, 1H, Hs), 3.56-3.57 (m, 2H, H6), 3.73-3.77
(m, 1H, Hs-), 3.89-3.93 (m, 2H, H3 and H2.), 4.13 (ABx, 1H, J = 8.5 and 10.5 Hz, H2.),
4.01-4.03 (m, IH, H4), 4.13 (ABx, 1H, J = 2.2 and 12.4 Hz, H6,a), 4.21-4.24 (m, 2H, H3
and H6.b), 4.58 and 4.73 (ABq, 2H, J = 11.6 Hz, -OCH2Ph), 5.03 (app t, 1 H, J = 9.4 Hz,
H4'), 5.30 (dd, 1H, J = 9.4 and 10.5 Hz, H3.), 7.25-7.35 (m, 5H, -OCH2Ph);

'13C NMR (CD 3OD, 100 MHz) 8 20.52, 20.70, 20.80, 22.78, 42.64, 48.51, 56.18,
62.94, 63.14, 65.46, 69.97, 72.82, 73.26, 73.46, 87.39, 87.90, 101.24, 128.86, 129.03,
129.55, 139.85, 171.36, 171.76, 172.43, 173.8;

HRMS(ESI-MS): Calcd for [C29H37F3N3O12+H]+(M+H): m/z = 678.2480; Found:
678.2482.
N-{[(2R,3R,4R,5R)-4-0-(2',3',4',6'-tetra-O-acetyl-o-D-glucopyranosyl)-3-hydroxy-)-
5-(hydroxymethyl)pyrrolidin-2-yl]methy]}acetamide (3-33)

6 6 OAc OH To a solution of 3-16 (30 mg, 0.048 mmol) in acetic
AcO C) 4 5 NH acid (5 mL) was added Pd(OH)2 (20 mg). The reaction

AcO O ~c 1 -O 3 2NHAc mixture was stirred under hydrogen at atmosphere pressure
3-17 1 for 12 h and filtered through celite. After the solvent was

removed in ivacuo, the residue was purified by column chromatography (CHCl 3:MeOH =
7:1 (1 % of ammonium hydroxide) to 5:1 (1 % of ammonium hydroxide)) to give 3-34
(17 mg, 65%) as a colorless oil.

'H NMR (CD3OD, 400 MHz) 8 1.90 (s, 3H, acetyl), 1.93 (s, 3H, acetyl), 1.98 (s,
3H, acetyl), 2.05 (s, 3H, acetyl) 3.07-3.24 (m, 2H, H2 and Hs), 3.45-3.60 (m, 2H, H6a and
H6b), 3.84-3.90 (m, 4H, H2 , H5s, H 6,a and H6 .b), 4.20-4.22 (m, 2H, H3 and H4), 4.80 (d,
1H, J = 8.2 Hz, H,.), 4.98 (app t, 1H, J = 9.6 Hz, H3.), 5.27 (app t, 1H, J = 9.6 Hz, H4.);

HRMS(ESI-MS): Calcd for [C22H 32F3N3012+H]+(M+H): m/z = 588.2011; Found:
588.2021.

N-tert-Butyloxycarbonyl-[(2R,3R,4R,5R)-2-(acetamide-methyl)-3-O-benzyl-4-O-
(3',4',6'-tri-O-acetyl-2'-deoxy-2'-trifluroacetamido- -D-glucopyranosyl)-5-
(hydroxymethyl)l-pyrrolidine (3-35)

6 OAc OH
AcO 0 2NBoc

A c O O -0 4 ----
TFAHN 1 BnO 3 NHAc

3-35

To a solution of 3-33 (35 mg, 0.0517 mmol) in
CH 2C12 in the presence of DIPEA (18 tl, 2.0 eq.) was
added Boc20 (15.8 mg, 1.4 eq.) at 0 oC. The reaction
mixture was stirred at room temperature overnight. After
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the solvent was removed in vacuo, the residue was purified by flash column
chromatography (hexane:ethyl acetate = 1:1 to 1:4) to give the desired product 3-35 (27
mg, 68 %) as a white oil (a mixture of N-rotamers).

'H NMR (CD 3OD, 400 MHz) selected peaks 8 1.44-147 (s, 9H, Me3CCO-), 1.96-
2.03 (m, 12H, acetyl), 2.86-2.90 (m, 0.6H of N-rotamers), 3.16-3.24 (m, 0.4H of N-
rotamers), 3.50-3.96 (m, 6H), 4.01-4.03 (m, 1H), 4.08-4.16 (m, 1H) 4.25-4.30 (m, 1H,
H), 4.45-4.55 (m, 3H, H4 and -OCH2Ph), 4.59 (d, J = 8.2 Hz, 0.6H of N-rotamers, H,.),
5.01 (app t, I H, J = 9.6 Hz, H4'), 5.28 (app t, 0.6H of N-rotamers, J = 9.6 Hz, H3.), 5.37
(app t, 0.4H of N-rotamers, J = 9.6 Hz, H3.), 7.24-7.34 (m, 5H, -OCH2Ph);

13C HMR (CD3OD, 100 MHz) 6 20.5, 20.7, 20.9, 22.7, 22.8, 28.7, 28.8, 40.4,
40.6, 55.7, 56.2, 60.3, 61.7, 63.1, 63.2, 64.3, 64.8, 67.0, 67.1, 70.0, 70.1, 72.2, 72.3,
72,9, 73.2, 73.4, 81.8, 82.1, 82.2, 83.0, 84.4, 84.8, 100.0, 128.9, 129.0, 129.1, 129.7,
139.2, 139.3, 155.8, 155.9, 171.4, 171.7, 171.3, 172.4, 173.4, 173.6;

HRMS(ESI-MS): Calcd for IC34H46F3N3O 14+Na]+(M+Na): m/z = 800.2824;
Found: 800.2802.

N-tert-Butyloxycarbonyl-[(2R,3R,4R,5R)-2-(acetamide-methyl)-4--(('3',4',6'-tri-O-
acetyl-2'-deoxy-2'trifluroacetamido-[-D-glucopyranosyl)-3-hydroxy-5-
(hydroxymethyl)]-pyrrolidine (3-36)

S6- OAc OH To a solution of 3-35 (30 mg, 0.039mmol) in AcOH
AcOO o ,--,NB2c (10 ml) was added Pd(OH)2 (30 mg). The reaction mixtureAcO 2

TFAHN -3O 3 NHAc was stirred under 50 psi of hydrogen pressure for 24 h and3-36 1
filtered through celite. After solvent removed in vacuo, the

residue was purified by flash column chromatography (hexane:ethyl acetate = 1:4 to
ethyl acetate) to give the desired product 3-36 (21 mg, 80 %) as colorless oil (a mixture
of N-rotamer).

'H NMR (CD30OD, 400 MHz) selected peaks 6 1.41-147 (s, 9H, Me3 CCO-), 1.92-
2.05 (m, 12H, acetyl), 2.86-2.90 (m, 0.6H of N-rotamer), 3.16-3.24 (m, 0.4H of N-
rotamer), 3.68-3.96 (m, 6H), 4.13-4.32 (m, 4H), 4.77 (d, 0.6H of N-rotamer, J = 8.5 Hz,
H,.), 5.00 (app t, 1H, J = 9.6 Hz, H4'), 5.27 (app t, 0.6H of N-rotamer, J = 9.6 Hz, H3.),
5.37 (app t, 0.4H of N-rotamer, J = 9.6 Hz, H3.);

13C NMR (CD3OD, 100 MHz) 68 20.5, 20.7, 20.8, 22.7, 22.8, 28.7, 28.8, 40.5,
40.6, 55.8, 56.3, 60.7, 61.4, 63.1, 66.9, 67.4, 67.9, 70.0, 70.1, 72.9, 75.3, 77.1, 77.4,
81.7, 82.0, 85.7, 86.6, 99.8, 99.9, 155.9, 156.1, 171.4, 171.7, 172.5, 173.4, 173.5;

HRMS(ESI-MS): Calcd for [C27H40F3NO314+Na]+(M+Na): m/z = 710.2355;
Found: 710.2358.

N-tert-Butyloxycarbonyl-[(2R,3R,4R,5R)-2-(acetamide-methyl)-4-O-(2'-acetamido-
2'-deoxy-P-D-glucopyranosyl)- 3-hydroxy- 5-(hydroxymethyl)]-pyrrolidine (3-37)

6 6OH OH NH 3 gas was bubbled to a solution of 3-36 (15 mg,
HO1. 0 4 5 NBoc 0.044 mmol) in MeOH overnight. After the solvent was

AcHN 1 HO , NHAc
3-37
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removed in vacuo, the residue was dissolved in MeOH:CH2CI2 (1:1, 5 mL) mixture.
Acetic anhydride (20 [tL) was added to the reaction mixture at 0 TC. After solvent was
removed in vacuo, the residue was purified by flash column chromatography
(CH 2C12:MeOH = 6:1 to 3:1) to give the desired product 3-37 (8.0 mg, 72 %) as a
colorless oil (a mixture of N-rotamers).

'H NMR (CD3OD, 400 MHz) selected peaks 6 1.41-148 (s, 9H, Me3CCO), 1.91-
1.95 (m, 6H, acetyl), 2.97-3.00 (m, 0.6H of N-rotamers), 4.14-4.25 (m, 2H), 4.49 (d,
0.6H of N-rotamers, J = 8.4 Hz, HI,), 4.52 (d, 0.4H of N-rotamers, J = 8.2 Hz, HI.);

u3C NMR (CD3OD, 100 MHz) 8 22.7, 22.8, 23.1, 28.9, 40.3, 40.5, 57.5, 57.8,
61.0, 61.7, 62.9, 67.3, 67.4, 67.5, 67.7, 69.3, 72.3, 72.4, 75.6, 75.8, 76.5, 76.8, 78.4,
81.6, 81.9, 86.9, 87.8, 102. 2, 102.3, 155.9, 156.2, 173.6, 173.7, 173.9;

HRMS(ESI-MS): Calcd for [C21H37N30,,+Na]÷(M+Na): m/z = 530.2320; Found:
530.2333.

N-[{(2R,3R,4R,5R)- 4-O-(2'-Acetamido-2'-deoxy-3-D-glucopyranosyl)-3-hydoxy-5-
(hydroxymethyl)pyrrolidin-2-yl}methyl]acetamide (3-2)

6 OH OH To a solution of compound 3-37 (4.0 mg,
HO 0  NH 0.016mmol) in CH2CI2 (3 mL) was added TFA (1 mL) at 0

AcHN 1 HO 3 NHAc oC. The reaction mixture was warmed to room temperature.
The reaction mixture was stirred at room temperature for 4

h. After solvent was removed in vacuo, the residue was filter through Dowex 1X8 200-
400 chloride form resin and purified by short flash column chromatography to provide
3-2 (3.2 mg, quant.).

'H NMR (D20, 600 MHz) 8 2.01 (s, 3H, acetyl), 2.04 (s, 3H, acetyl), 3.17-3.19
(m, 2H, H5 and H 2 ), 3.35-3.37 (m, 2H, Hia and Hlb), 3.43 (dd, 1H, J = 10.0 and 8.9 Hz,
H3.), 3.48-3.50 (m, IH, H6a), 3.55 (dd, 1H, J = 8.6 and 10.0 Hz, H2-), 3.61-3.66 (m, 2H,
H6b and H5.), 3.72-3.74 (m, 2H, H4, and H6,a), 3.93-4.02 (m, 3H, H3, H4 and H6.b), 4.56 (d,
1H, J = 8.6 Hz, HI,);

'3C NMR (CD3OD, 125 MHz) 8 21.9, 22.2, 42.3, 56.8, 62.3, 62.3, 62.6, 62.9,
63.7, 71.9, 75.2, 77.2, 79.5, 88.7, 102.2, 173.1, 173.1;

HRMS(ESI-MS): Calcd for [C, 6H29N30 9+H]+(M+H): m/z = 408.1977; Found:
408.1993.
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Determination of the structural configuration of 3-34

Similar to NOE study of 3-17, we wanted to confirm the configuration of C2 from
NOE difference between H2 and H4. On the other hand, NOE between H2 and H4 would
confirm the structure as the possible diastereomer. Since H2 and H5 appear in the same
region, the selective irradiation of H2 was difficult. However, NOE between H 3 and H5
would be common for both structures. Therefore, two NOE differences between H2 and H4

and between H3 and H5 would prove the structure of 3-33, whereas one NOE among H2,
H 3 and H5 would confirm the other isomer. The control spectrum and three NOE
difference spectra of 3-34 are shown in Figure 3-10. The irradiation of peakc (H2 and Hs)
induced the NOE signal of both peakA and peakB (Figure 3-10b.). Upon the irradiation
peakA and peakB respectively, the NOE signal of peakc (H2 and H5) was observed (Figure
3-10c, d.). These data showed that there are NOE differences between H2 and H4 and
between H2 and H5 . Therefore, we concluded the 3-34 had the desired trans-configuration
between C2-C3.

expected structure
NOE

AcO 4H
AcO •-iO NHAcO..7 0 -
TFAHN HO H 2_

H3  NHAc
3-34 NOE

NOE

possible structure

AcO- 7  4HHO
AcO NH
TFAHN HO• "NHA

H3 H2
NOEJ

H2 and H5 = 3.08 ppm : peake

peaka = 3.83 ppm
peakb = 3.90 ppm

H3 is one of peaka and peakb
H4 is the other

Figure 3-9. The expected structure of 3-34 and possible diastereomers at C2.

peakc

L_1I
3.00

b) irradiation at peak,

c) irradiation at peak,

d) irradiation of peakb

Figure 3-10. The NOE difference spectrum of 3-34
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The assay of 3-1 and 3-2 against chitinase.

Biological evaluations of 3-1 and 3-2 against chitinase from Streptomyces griseus were
carried out, as described in the chapter 2. 3-1 and 3-2 showed inhibitory activity with
IC, values of 3.0 EiM and 2.6 [M

Inhibition of 3-2 toward chitinase

.2 40

30

20

10

y = 7.5556x + 29.978

1 3

concentration of 3-2 (mM)

Figure 3-11. Inhibition (%) of 3-2 toward chitinase.
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Chapter 4- Toward the library of a potential OT inhibitor: the synthesis of pseudo-

disaccharide derivatives

4-1 Introduction

With the successful synthesis of pseudo-disaccharides containing an imino sugar,

we turned our efforts to the synthesis derivatives. We were particularly interested in the

exploration of different groups on the Cl amine of the imino sugar. Preparation of

various pseudo-disaccharide derivatives would be valuable for the discovery of chitinase

inhibitors with better biological properties than 3-1 and 3-2. We also decided to

synthesize a pseudo-disaccharide derivative containing a long alkyl chain as a potential

OT inhibitor. As discussed in Chapter 1-11, the addition of a long aliphatic chain to the

transition state analogue is expected to increase the binding affinity to the membrane-

associated enzyme.

We planned to expand the synthetic strategy developed in Chapter 3 for the

synthesis of pseudo-disaccharide derivatives (Figure 4-1). Since chitinase and OT

recognize the chitobiose motif as the main structural determinant in the substrate, we

decided to synthesize the imino sugars linked to N-acetylglucosamine. Glycosylation of

4-5 with the glycosyl imidate having N-trifluroacetimide (N-TFA) on C'2 position would

provide 4-4. For the generation of its derivatives, the Cl amine of the imino sugar must

be masked until the last step. Given the previous problems regarding the protecting group

on C2' protecting group of glucosamine derivatives discussed in Chapter 3, a careful

protecting group strategy was required. In light of the functional-group tolerance during
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reductive amination, orthogonality to other protecting groups, and facile removal, the

tert-butyl carbonyl (Boc) group appeared to be the best choice as the protecting group for

the Cl primary amine. Therefore, it was imperative to have substrate 4-3 bearing the Boc

group on the amine before reductive amination.

Selective acylation of the primary amine in the presence of other functional

groups such as secondary amines and alcohols has been investigated by other groups and

by our laboratory as outlined in Chapter 2-2.1-5 This approach enabled us to obtain the

pseudo-disaccharide derivatives with various groups such as a long aliphatic chain,

aromatic groups, and heterocyclic groups.

OH

OH .-OH OH NHBoc

HOO O HH HO O OH NBn

AcHN H -N R TFAHN BnO H NHBoc A
AcO O

4-1- derivatves 0 4-2 NHTFA

AcO OAc
4-3

N3 OBn
TBDPSO

OH N3 OBn NHP

N NHPMB TBDPSO 0
OHOBn NHP A

OOHAcO j NHTFA
3-8 4-5

P = protecting group OAc
AcO OAc

4-4

Figure 4-1. The synthetic strategy toward derivatives of the pseudo-disaccharide.
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4-2 Synthesis of the pseudo-disaccharide precursor

Considering the glycosylation conditions of similar substrate 3-5 with 8.0 equiv.

of glycosyl imidate 3-29 employing 0.6 equiv. of BF 3 *OEt2 for 48 h, it appeared to be

quite difficult to execute the glycosylation of the substrate bearing the acid-labile Boc

group. Therefore, our efforts focused on the glycosylation of [3-hydroxy ketone with the

allyloxycarbonyl (Alloc) group on the C1 amine. After glycosylation of 4-7, the

transprotection of the Alloc group to the Boc group would provide the desired

intermediate. The protection of the secondary amine of 3-8, the synthesis of which was

described in the Chapter 3, used 1.5 equiv. of AllocCl in the presence of 2.0 equiv. of

N,N-diisopropylethylamine (DIPEA) in methanol to provide 4-6 (Scheme 4-1-I). The

treatment of 4-6 with 2.0 equiv. of tert-butyldiphenylsilyl chloride (TBDPSC1) in the

presence of 3.0 equiv. of imidazole in CHzC12 provided the substrate 4-7 for glycosylation

in 80% yield.

Under the reaction conditions reported for 3-5 employing 8.0 equiv. of the

glycosyl imidate 3-29 and 0.6 equiv. of BF 3*OEt2 in the toluene, glycosylation of 4-7

proceeded in less than 10 minutes (Scheme 4-1-II). In contrast, the glycosylation of 3-5

was fully completed only after 48 h. The difference in reactivity between two compounds

toward glycosylation cannot be explained and further studies need to be done to

sufficiently explain this experimental observation.
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OH OH AIIOC
NHPMB a NPMB b TBDPSO NNAlo c

OBn Or OH NAII

N3  NS OH O PMB
3-8 4-6 4-7

OAc N3 OBn
STBDPSO Alloc

.N 3 OBn TFAHN 0  CC13 0 PMB
N3 O2Bn 9cO O

TBDPSOAlloc 329 NH AcO NHTFA

OH O PMB <10 min.
4-7 AcO OAc

4-8
QOAc

AcO \O N3 OBn
AcO TBDPSOAc

TFAHN 0  CC 13 NAc

N3 OBn 3-29 0 0 PMB
TBDPSO\., d NH

NAc AcO O NHTFA
z I c48 h
OH O PMB

3-5 AcO OAc
3-30

Reagents and conditions: (a) AllocCI, DIPEA, MeOH, 75 %; (b) TBDPSCI, imidazole, CH2C12, 80 %; (c) 3-29, BF3.
OEt 2, toluene, 0 OC ; (d) 3-29, BF3-OEt 2, toluene, 0 OC to RT, 92 %.

Scheme 4-1. Comparison of the glycosylation results between 3-5 and 4-7.

The increased reactivity of 4-7 allowed for the optimal reaction conditions: 2.0

equiv. of the glycosyl imidate 3-29 and 0.05 equiv. of BF 3*OEt2 as the promoter in

toluene for 8 h (Scheme 4-2). The subsequent oxidative cleavage of the p-methoxybenzyl
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(PMB) group employing 4.0 equiv. of ceric ammonium nitrate (CAN), led to the desired

compound 4-9 in 85% yield over 2 steps.

OAc N3 OBn
N3AcOOBn\ TBDPSONHAlloc

N3 OBnAcO
TBDPSO Ilo TFAHN 0oCCl3 O O

NAlloc -2

OH O PMB 3-29a NH AcO 0NHTFA

4-7

AcO OAc

4-9

Reagents and conditions: (a) (i) 3-29, BF3,OEt2, toluene, 0 OC to RT; (ii) CAN, MeCN:H 20 = 10:1, - 20 OC to RT, two
steps 85 %.

Scheme 4-2. Optimization of the glycosylation of 4-7.

Although 4-9 was obtained successfully, large-scale purification proved to be

problematic. Rf values of 4-8 and 4-9 in TLC analysis with various solvents were

identical. Therefore, the progress of the reaction was difficult to monitor. Moreover, long

exposure of 4-8 to the reaction conditions to drive the complete conversion diminished

the yield dramatically (to less than 20%).

One way to circumvent this problem was to cleave the N-substituent prior to

glycosylation. To this effect, 2,4-dimethoxybenzylamine was used during the Amadori

rearrangement of 2-7 in the presence of 1.0 equiv. of acetic acid (Scheme 4-3).2,6 After

the protection of the secondary amine on 4-10 utilizing 1.5 equiv. of AllocCl and 2.0

equiv. of DIPEA, the 2,4-dimethoxybenzyl group was cleaved using trifluoroacetic acid

(TFA) to provide the 4-11 in 63% yield over 2 steps.7 The 3-hydroxy ketone 4-12 was

obtained by treatment of 4-11 with 2.0 equiv. of TBDPSCI and 3.0 equiv. of imidazole in
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CH2C12. The glycosylation of 4-12 with 2.0 equiv. of glycosyl imidate 3-29 employing

0.05 equiv. of BF 3*OEt2 in toluene provided 4-9 in 90% yield.

OMe

R= -

-OH OMe
OH OHN3  a I NHR b . NHAIIoc

BnO 0 OH NOBn OBn

OH N3  N3
2-7 4-10 4-11

OAc
AcO O0

N3 OBn AcO

TBDPSONHAlloc 3-29
O O d NH N3 OBn

TBDPSO\
AcO O NHTFA TBDPS ONHAlloc

OH O

AcO OAc 4-12

4-9

Reagents and conditions: (a) 2,4-Dimethoxybenzylamine, AcOH, MeOH, 40 OC, 85%; (b) AllocCI, DIPEA, MeOH, 0 OC
to RT; (ii) TFA, 0 OC to RT, 2 steps 63%; (c) TBDPSCI, imidazole, CH2C12, 72%; (d) 3-29, BF3-OEt 2, toluene, 0 OC to RT,
90%.

Scheme 4-3. A practical synthesis of 4-9.

The efficient glycosylation of 4-12 encouraged us to attempt the coupling

reaction between substrates with the Boc group on the Cl amine and the glycosyl imidate

3-29 minimizing the number of synthetic transformations en route to the target compound

Since most glycosylation conditions rely on Lewis acids promoters, glycosylation of the

substrate bearing a Boc group was challenging. Glycosylation in the presence of a Boc

group could be potentially achieved by utilization of a mild Lewis acid.

The substrate for the glycosylation was synthesized in a manner similar to the

route in described for 4-7 (Scheme 4-4). The Boc group was introduced by the treatment

of 3-8 with 1.2 equiv. of di-tert-butyl dicarbonate (Boc20) and 1.5 equiv. of DIPEA in

135



CHC12 in 72% yield. The primary alcohol protection of 4-13 employing 2.0 equiv. of

TBDPSCl and 3.0 equiv. of imidazole in CH 2Cl 2 gave the desired product 4-14.

OH OH Boc N3 OBn
0 NHPMB a 9 NPMB b TBDPSO NBoco",OBn OBn ---- NBOp

N OH N3 OH OH O PMB
3-8 4-13 4-14

Reagents and conditions: (a) Boc20, DIPEA, CH2C12, 72 %; (b) TBDPSCI, imidazole, CH2CI2, 75 %.

Scheme 4-4. The synthesis of f-hydroxy ketone 4-14 with Boc group.

However, the glycosylation of 4-14 with 3.0 equiv. of the glycosyl imidate 3-29

in the presence of 0.05 equiv. BF 3*OEt2 in toluene did not yield the desired product,

instead decomposed products of 4-14 were isolated (Scheme 4-5-1). Attempted coupling

reactions employing silver trifluromethanesulfonate (AgOTf) or solvent (CH2C12, Et2O)

failed with the same result. The use of excess sugar donor did not facilitate the formation

of glycosidic bond either. Most of 4-14 remained unreacted and the glycosyl imidate was

converted into the corresponding oxazoline.

In order to avoid strong Lewis-acids, the coupling reaction of 4-14 under milder

conditions utilizing a thioglycoside was also attempted. Thioglycoside 4-15 was prepared

by the treatment 3-288 with 1.0 equiv. of PhSH and 1.0 equiv. of BF 3*OEt2 in CH 2C12

(Scheme 4-5-II). Unfortunately, the glycosylation of 4-14 with 3.0 equiv. of

thioglycoside 4-15 using 3.0 equiv. of N-iodosuccinimide (NIS) and 0.1 equiv. AgCIO4

(or AgOTf) in toluene did not provide the desired product. Most of 4-14 remained

unreacted and the thioglycoside decomposed. Using CH 2C12 as the solvent,

decomposition of the both starting materials was detected by TLC analysis without
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generation of the coupled product. Under mild acidic conditions, the electron deficient

glycosyl donors having N-trifluroacetimide (N-TFA) on the C2' amine were not reactive

in the glycosylation. When more acidic conditions were applied, the N-Boc group was

cleaved during the reaction. This conclusion prompted us to focus on the conversion of

the N-Alloc to the N-Boc group only after the key glycosylation step.

OH OH Boc N3 OBn
NHPMB a NPMB b TBDPSON

OBn OBn NBoc

N3 OH N3 OH OH O PMB
3-18 4-13 4-14

Reagents and conditions: (a) Boc 20, DIPEA, CH2CI 2, 72 %; (b) TBDPSCI, imidazole, CH2C12, 75 %.

Scheme 4-4. The synthesis of 1-hydroxy ketone4-14 with N- Boc group.

AcO- '
AcO O.ý

TFAHN O CCi3
3-29 a NH N3 OBn

_ _ _ _ _ _ _ _ TBDPSO \ ,,N o
N3 OBn NBoc

TBDPSO NBoc OAc O O PMB
NBoc QOAc AOg

OH O PMB AcO SPh AcO ONHTFA

4-14 TFAHN
4-15 b AcO OAc

4-14 recovered or decomposed

II.
OAc OAc

AcO q c AcO
AcOO OAc A-, AcOSPh

TFAHN TFAHN

3-28 4-15

Reagents and conditions: (a) 3-29, BF3*OEt2 or AgOTf, CH2CI2 or toluene, 0 OC to RT; (b) 4-15, AgOTf or AgCIO 4,NIS, CH2C12 or toluene, -50 OC to RT; (c) PhSH, BF3oOEt 2, CH2C12, 98 %.

Scheme 4-5. Attempted glycosylation of 4-14.
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The Alloc protecting group is known to be readily cleaved by catalytic amounts of

palladium (0) with a nucleophile ("allyl acceptor" or "allyl scavenger") such as hydride,

amine, acid, and thiol.9 However, using 0.05 equiv. of Pd(PPh3)4 and PhSiH3 or Bu 3SnH

in CH 2C2,, only decomposition of substrate 4-9 was observed. The reaction did not

proceed with other nucleophiles such as acetic acid,"' formic acid," diethyl amine,' 2

morpholine,13 1,4-diazabicyclo[2.2.2]octane (DABCO), 14 and dimedone.'5 The attempted

transprotection to the N-Boc group employing catalytic Pd(PPh3)4 and Bu 3SnH'6 or

DABCO' 4 in the presence of 1.2 equiv. Boc20 in CH2C12 generated a mixture of products.

After removal of the silyl ether utilizing 1.0 equiv. of tetra-n-butylammonium fluoride

(TBAF) and 1.0 equiv. of acetic acid, palladium catalyzed transprotection of ketal 4-16

employing 1.1 equiv. of Bu 3SnH in the presence of 1.2 equiv. Boc20 in CH2C12 provided

the desired product 4-3 in 92 % yield (Scheme 4-6). 16

Compound 4-3 was then subjected to reductive amination using palladium

hydroxide under 850 psi of H2. The reaction went smoothly, giving rise to the desired 4-2

as the major product (>15:1, NMR ratio). To confirm configuration of 4-2, the N-Boc

group was removed by the treatment of 4-2 with trifluoroacetic acid in CH2C12, followed

by the acetylation of the primary amine with acetic anhydride in methanol. The obtained

compound showed identical spectroscopic properties ('H-NMR, 13C-NMR) as 3-33.

138



N3 OBn
TBDPSO 

NHAIIoc

AcO NHTFA a

AcO OAc

4-9

OH

NHAIIoc
/ý7PJ-OBn

b

4-16 4-3

C

OH OH OH OH

HO 0--O NOH d HO ~ NHHO0 )H
TFAHN BnO NHAc TFAHN NHBoc

3-33 4-2

Reagents and conditions: (a) TBAF, AcOH, THF, 0 OC to RT, 85 %; (b) Pd(PPh3)4, Bu 3SnH, Boc 20, CH 2CI 2, 92 %; (c) H2
(850 psi), Pd(OH) 2, MeOH, 55 %; (d) (i) TFA, CH2C12, 0 OC to RT; (ii) Ac 20, MeOH, 0 OC, 50 %

Scheme 4-6. The synthesis of 4-2.

Following the reaction sequence described in Scheme 3-12, protection of the

secondary amine was achieved employing Boc20 and DIPEA in CH,Cl2, followed by the

removal of the benzyl ether using palladium hydroxide under 50 psi of H2 , generating 4-

18 (Scheme 4-7). The deprotection of the acetates and conversion of the N-

trifluroacetimide (N-TFA) to an N-Ac group afforded 4-19 with 63% yield.
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OAc OH OAc OH

AcONH a AcO O Boc
TFAHN B NHBoc TFAHN BnO NHBoc

4-2 4-17

OH OH OAc OH
HONO NBoc c AcO OBoc

HO-"i" HO.-- AcO " V " 0--"
AcHN " NHBoc TFAHN 3 -- NHBoc

4-19 4-18

Reagents and conditions: (a) Boc20, DIPEA, CH2CI2, 0 oC to RT, 63 %; (b) H2 (50 psi), Pd(OH) 2, AcOH, 80 %; (c) (i)
NH3, MeOH; (ii) Ac20, DCM:MeOH = 1:1, 2 steps 63 %.

Scheme 4-7. The synthesis of 4-19.

4-3 Synthesis of pseudo-disaccharide derivatives and biological evaluations

We planned to generate pseudo-disaccharide derivatives with various groups on

the Cl nitrogen position based on amide formation (Scheme 4-8). After deprotection of

both Boc groups in 4-19 using TFA in CH2 CI2, the primary amine was reacted with 1.0

equiv. of different anhydrides (acetic anhydride, benzoic anhydride, dodecanoic

anhydride and Boc anhydride) at 0 oC in methanol to provide the initial library. Existence

of products was confirmed by mass spectral analysis. Based on 100 % conversion of

starting material in 2 steps, the final inhibitor concentration was 10 [iM. As is common

practice with library design, the biological activity of the crude mixture was tested."17 To

validate reaction results, the chitinase assays as described in Chapter 218 were carried out

with the crude reaction product of 4-1-1 and the product purified by flash column

chromatography. Crude and purified 4-1-1 showed inhibitory activity with ICs values of
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7.7 [tM and 8.3 [tM respectively, which demonstrated that the crude concentration

estimation was valid. The inhibitory activities were a slightly worse than 3-2 (IC0 = 2.6

[tM) which was synthesized in Chapter 3 by the different route. However, these results

showed that this approach was useful to identify chitinase inhibitor. At 8.0 [LM of

inhibitor concentration, 4-1-2, 4-1-3 and 4-1-4 showed 34 %, 12 % and 19 % inhibitory

activities toward chitinase from Streptomyces grises.

OH OH a OH OH
O---OH-O-•-o , NBoc -- "HOý- , NH

HO AcHN HO NHBoc HO AcHN HO N R
4-19 4-1-derivatives O

Reagents and conditions: (a) (i) TFA, CH2C12, 0 OC to RT; (ii) acid anhydride, MeOH, 0 OC.

OH OH OH OH
HO 0'0 NH H HO NH

HOO AcHN N R'AAcHNcHN N '

4-1-1 O 4-1-3 0
R'=CllH 25

OH OHO H ONH OH OH
HO 0 HHO" OO NH

HO HO H HO HAcHN - N Ph AcHN N -
4-1-2 4-1-4 0

Scheme 4-8. The synthesis of pseudo-disaccharide derivatives.

The pseudo-disaccharide derivative with a long alkyl cha•ned was synthesized as

the potential OT inhibitor. Compound 4-1-3 was obtained by treatment of 4-19 with TFA,

followed by acylation with dodecanoic anhydride. Unfortunately, no inhibitory activity of

4-1-3 was observed up to 200 iM.

4-4 Conclusion
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In summary, the pseudo-disaccharide derivatives including an imino sugar were

synthesized based on the expansion of synthetic route developed in Chapter 3, utilizing

an Amadori rearrangement, glycosylation of the 13-hydroxy ketone and intramolecular

reductive amination as key steps. We demonstrated that related derivatives could be

generated by the modification of Cl amine by acylation. Their inhibitory activities were

evaluated against chitinase and OT. Compound 4-1-2, 4-1-3 and 4-1-4 showed worse

biological activity than 3-2. Compound 4-1-4 with a long aliphatic chain showed no

inhibitory activity up to 200 [tM against OT.

4-5 Discussion and future directions

The two pseudo-disaccharides 3-1 and 3-2 exhibited low micromolar inhibitory

activity towards the chitinase from Streptomyces grises. These results showed the

polyhydroxy pyrrolidine moiety effectively mimics the transition state and the

carbohydrate linked C4 hydroxyl group of the pyrrolidine increases the binding energy to

the active site in the enzyme. In the inhibition study of other enzymes in family 18, the

presence of amide bond on the Cl primary amine also played a key role in increasing

binding affinity.' Therefore, the inhibitory activity of pseudo-disaccharide derivatives

against chitinases can be explained by its proper interactions with the key residues Asp

175 and Glu 177, which are essential for the enzyme activity (Figure 4-2a). The crystal

structure of allosamidin bound to the chitinase supports this mode of inhibition for 3-2."9

The reorientation of Asp175 and Glul77 is believed to play an important role in the

stabilization of the high-energy transition state of enzyme substrate. The low inhibitory

activities of 4-1-2 and 4-1-4 can be explained by a potential interference with the
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hydrogen bonding network by bulky groups on the primary amine (Figure 4-2b). For the

discovery of a potent inhibitor toward chitinase, the addition of functional groups to the

transition state analogue linked by the flexible chain will be explored.

OH )

H O 'HO +O Gu177

Aspl75 OH

a) the proposed transition state of substrate
in the active site of chitinase

OH OH
HO 0 N N-0

HOAHN HO N 0

H H

Asp1759 1 H

b) the proposed inhibition mode of 3-2
against chitinase

Figure 4-2. The proposed inhibiton mechanism of pseudo-disaccharide 3-2 against chitinase.

It has been reported that mammalian chitinase is related to allergic responses 20 as

discussed in Chapter 1, however, the exact mechanism of action remains unclear. In vivo

experiments have demonstrated decreased tissue inflammation upon addition of the

chitinase inhibitor allosamidin. These observations suggest that chitinase promotes on

allergic response in humans. However, several chitinases from insects and fungi also are

allergens, and allosamidin has been shown to inhibit chitinases from mammals, insects

and fungi. Therefore, the question of whether exogenous chitinases promote the allergic

reaction must still be addressed.21 A synthesis of pseudo-disaccharide derivatives would

be a useful strategy for discovering selective inhibitors against chitinases from different
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species. The effect of selective inhibitors in vivo would elucidate roles that specific

chitinases are involved for regulating the allergic responses

The pseudo-disaccharide derivatives showed low micromolar IC5 with chitinase

yet failed to inhibit OT. These observations can be explained by the mechanistic and

structural differences between glycosidases and glycosyltransferases.

A major difference in the mechanisms of glycosyltransferases and glycosidases is

that a metal ion plays the role of Lewis acid catalyst in glycosyltransferases, whereas an

acidic residue acts as the general acid in glycosidases.22 The presence of functional

groups in glycosidase inhibitors that can interact with the general acid have been shown

to be critical for the effective inhibition of glycosidases. 23 25 Therefore, it may be essential

to have functional groups that can bind to the active site metal ion, for a strong

interaction with OT.

Recently, it has been reported that the essential metal ion induces a

conformational change in glycosyltransferases.2 6 Upon binding of a sugar substrate to the

metal complex in the glycosyltransferase, the induced conformational change switches

the catalytic site from open (inactive) to a closed (active) state. A glycosyltransferase

with multiple binding sites for ligand moieties changes its structure dramatically to

position the anomeric carbon of the sugar donor for nucleophilic attack. The sugar donor-

binding site undergoes a marked conformational change to form the closed state. One

possible explanation for the lack of inhibition is that the pseudo-disaccharide derivative

failed to interact with the open state of OT to induce the conformational change.
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As a future study, the screening of functional groups within the inhibitor

candidates, which can effectively induce an enzyme into the active state conformation,

will be considered. Malonic and tartaric moieties have been incorporated into the design

of potential inhibitors to mimic a pyrophosphate group.27 Although, these attempts were

not successful in increasing binding affinity, we now believed that the investigation of

functional groups that can mimic the charge and shape of pyrophosphate is necessary for

the effective inhibition of OT and other glycosyltransferases. The synthesis and

evaluation of these compounds will provide insight into the mechanism of OT and will

serve to guide the design of inhibitors against other glycosyltransferases.
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Experimental Section

General Synthetic Procedures

Anhydrous dichloromethane and toluene were distilled from calcium hydride, and
anhydrous tetrahydrofuran (THF), was distilled from sodium/benzophenone. All
chemicals were purchased from Sigma/Aldrich and used without further purification
unless otherwise noted. Analytical thin-layer chromatography (TLC) was carried out on
Merck 60 F2,, 250-[tm silica gel plates. All compounds were visualized on TLC by UV
irradiation or an aqueous solution of ceric ammonium molybdate (CAM) staining. Flash
column chromatography was carried out using forced flow of the indicated solvent on
AdTech Flash Silica Gel, 32-63 [im particle size, 60 A pore size (Adedge technologies).
'H NMR spectra were acquired on a Bruker Avance (DPX) 400 MHz spectrometer,
Varian INOVA 500 MHz spectrometer and Bruker Avance (DPX) 600 MHz
spectrometer. 13 C NMR spectra were acquired on a Bruker Avance (DPX) 400 MHz
spectrometer and Varian INOVA 500 MHz spectrometer. Chemical shifts (6) are reported
in parts per million (ppm) with chemical shifts referenced to internal standards: CDCl3
(7.27 ppm for 1H, 77.23 ppm for 13C), CD3OD (4.87 ppm for 'H, 49.15 ppm for '3C), D20
(4.80 ppm for 'H), C6D6 (7.16 ppm for 'H, 128.39 ppm for '3C). Coupling constants (J)
are reported in Hertz (Hz) and multiplicities are abbreviated as singlet (s), doublet (d),
triplet (t), multiplet (m), broadened singlet (br) and doublet of doublets (dd). The term
"app d" is used to denote a triplet with two similar coupling constants and "app t" is used
to denote a doublet of doublets (dd) with similar coupling constants. High resolution
Mass Spectra (HRMS) were obtained at the Mass Spectrometry Facility at MIT
(Cambridge, MA).

5-Azido-3-0-benzyl-1,5-dideoxy-l-[N-(4-methoxybenzyl)-allyloxycarbonylamino]-D-
fructopyranose (4-8)

OH Alloc AllocCl (0.160 mL, 1.5 equiv.) was added to a
5 ,o NPMB solution of 3-8 (520 mg, 1.25 mmol) and DIPEA (0.435 mL, 2.0

N3  equiv.) in methanol (20 mL) at 0 oC and the reaction mixture was
4-8 warmed to room temperature for 2 h. The mixture was stirred for 1 h

at room temperature. The solvent was removed under reduced pressure. Flash column
chromatography (hexane: ethyl acetate = 2:1 to ethyl acetate) of the crude mixture gave
4-8 (467 mg, 75 %) as a colorless oil (a mixture of anomers and N-rotamers).

'H NMR (CDC13, 400 MHz) selected peaks 8 2.46 (br, 1H, alcohol), 3.35 (d, 1H,
J = 9.7 Hz, H,,a), 3.75-3.90 (m, 6H, H3, H6a, H6b, and NHCH2PhOMe), 3.84 (d, 1H, J = 9.7
Hz, HIb), 4.07-4.81 (m, 3H, NHCH2PhOMe, Hs), 4.61-4.81(m, 5H, H4, OCH2Ph and
OCH2CHCH2 ) 5.24-5.28 (m, 2H, OCHCHCH2), 5.85-5.96 (m, 1H, OCH2CHCH2), 6.87-
7.80 (m, 9H, NHCHPhOMe and OCH2Ph).

146



N-[(3R,4R,5R)-5-Azido-3-O-benzyly-6-O-(tert-butyldiphenylsily)-4-hydroxy-2-oxo-
hexyl]-N-(4-methoxybenzyl)-allyloxycarbonylamine (4-7)

N3 0 Bn TBDPSC1 (0.487 mL, 2.0 equiv.) was added to the
TBDPSO NAlloc solution of 4-6 (467 mg, 0. 937 mmol) and imidazole (192 mg,

OH O PMB 3.0 equiv.) in CH 2C12 (20 mL) at 0 oC and the reaction mixture
4-7 was warmed to room temperature for 2 h. The mixture was

stirred until starting material remained (usually for 8 h.). The reaction mixture was
poured into satd. NaHCO 3 (20 mL). The mixture was extracted with CH2 C12 (3 x 20 mL)
and the combined organic layers were washed with satd. brine, dried over MgSO 4 and
concentrated in vacuo. Flash column chromatography (hexane: ethyl acetate = 4:1 to
hexane: ethyl acetate = 2:1) of the crude oil gave the desired compound 4-7 (0.552 mg,
80%) as colorless oil (a mixture of N-rotamers).

'H NMR (C6D6 , 400 MHz) selected peaks 8 1.17 (s, 9H, Me3CPh2Si-), 3.27 (s, 3H,
-NHCH2PhOMe), 4.20 (d, 1H, J = 1.7 Hz, H3), 4.25 and 4.36 (ABq, 2H, J =12.2 Hz, -
OCH2Ph), 4.95 (app d, 1H, J = 10.4 Hz, -OCH2CHCH2), 5.13 (app d, J =14.9 Hz 1H)
5.62-5.78 (m, 1H, -OCH2CHCH 2) 6.72 and 7.00 (2*d, 4H, J = 8.2 Hz, -NHCH 2PhOMe),
7.15-7.80 (m, 15H, -OCH2Ph and Me 3CPh2Si-);

13C NMR (C6D6 , 125 MHz) 8 20.29, 20.33, 27.86, 27.90, 50.30, 52.56, 54.63,
55.68, 55.73, 64.81, 64.87, 65.72, 66.10, 67.39, 67.66, 72.63, 74.74, 75.05, 84.44, 85.68,
115.23, 118.29, 128.37, 129.54, 129.63, 129. 69, 129.78, 130.13, 130.52, 131.03, 131.16,
133.89, 134. 14, 134.34, 136.93, 136.98, 137.96, 157.83, 160.60, 207.01, 208.39.

N-[(2R,3R,5R)-5-Azido-3-O-benzyl-6-O-(tert-butyldiphenylsilyl)-4-O-(3',4',6'-
tri-O-acetyl-2'-deoxy-2'-trifluroacetamide-f-D-glucopyranosyl)-2-oxo-hexyl]-
allyloxycarbonylamine (4-9)

N3 OBn BF 3*OEt2 (1.8 ýtl, 0.05 equiv.) was added to a
TBDPS NHAIIoc solution of imidate 3-29 (0.300 mg, 2.0 equiv.) and 4-7 (205

o o mg, 0.28 mmol) in toluene (15 mL) at 0 oC under argon. The
AcO -)H.  mixture was allowed to warm to room temperature and

6• NHTFA stirred at room temperature until no starting material
OAc remained (usual total reaction time 8 h). The reaction

4-9 mixture was poured into water (20 mL). The mixture was
extracted with CH 2C12 (3 x 20mL) and the combined organic

layers were washed with satd. NaHCO 3 and satd. brine, dried over MgSO 4 and
concentrated in vacuo. Flash column chromatography (hexane: ethyl acetate = 4:1 to
hexane; ethyl acetate = 2:1) of the crude oil gave the desired compound 4-8 as the
colorless liquid.

A solution of CAN (452 mg, 3.0 equiv.) in H20 (1.0 mL) was added dropwise to
a vigorously stirred solution of 4-8 in MeCN (10 mL) at - 20 OC and stirred for 3 h at -
20 TC. The reaction mixture was treated with additional CAN (151 mg, 1.0 equiv.),
warmed within 3 h to 0 oC and stirred for 2 h at 0 oC. The yellow-orange solution was

147



poured into water. The mixture was extracted with ethyl acetate (3 x 30 mL) and the
combined organic layers were washed with 10 % sodium sulfite solution, satd. NaHCO3
and satd. brine, dried over MgSO 4 and concentrated in vacuo. Flash column
chromatography (hexane:ethyl acetate = 4:1 to hexane;ethyl acetate = 2:1) of the crude
oil gave the desired compound 3-31 as the white liquid (238 mg, 2 step 85%).

'H NMR (CDC13, 400 MHz) 8 1.06 (s, 9H, Me3CPhSi-), 1.94 (s, 3H, acetyl), 1.98
(s, 3H, acetyl), 2.00 (s, 3H, acetyl), 3.15-3.22 (m, 1H, H2), 3.58-3.61 (m, 1H, Hs,), 3.69
(ABx, 1H, J = 10.8 and 3.3 Hz, Ha,), 3.80-3.85 (m, 2H, H2, H4), 4.08-4.20 (m, 4H, HIb,
H3, H6,a and .H6'b), 4.32-4.40 (m, 3H, H,., -OCH2CHCH2) 4.54-4.55 (m, 2H, Hla and Hlb),
4.42 and 4.63 (ABq, 2H, J = 11.3 Hz, -OCH2Ph), 4.83-4.85 (m, 2H, H3. and H4.), 4.98
(app t, 1H, J = 9.3 Hz), 5.17 (app d, J = 10.4 Hz, -OCH2CHCH2) 5.25 (app d, J = 15.6
Hz, -OCHCHCH2), 5.27 (brs, 1H, amide), 5.75-5.89 (m, 1H, -OCH2CHCH2), 7.23-7.70
(m, 15H, -OCH2Ph and Me3CPh2Si-);

'3C NMR (CDC13 , 100 MHz) 8 20.73, 21.00, 21.25, 23.20, 27.22, 48.96, 54.92,
61.38, 62.80, 66.21, 68.84, 71.83, 71.93, 72.27, 74.68, 77.01, 83.43, 99.59, 116.54
128.41, 128.66, 128.79, 129.03, 130.68, 131.06, 132.61, 133.06, 136.10, 136.18, 136.68,
152.45, 169.78, 170.88, 171.12, 171.50, 207.24.

5-Azido-3-O-benzyl-1,5-dideoxy-l-N-(2,4-dimethoxybenzyl-amino)-D-
fructopyranose (4-10)

OH 2,4-Dimethoxybenzylamine (0.504 mL, 1.0 equiv.) was added
6 NHDMB to a solution of 3-6 (990 mg, 3.35 mmol) and acetic acid (0.192 mL,

5 h OBn 1.0 equiv.) in methanol (50 mL) at room temperature and the reaction
N3 41 mixture was warmed to 40 'C. The mixture was stirred for 2 h at 404-10

oC. The solvent was removed reduced pressure. Flash column
chromatography (CH2C12: MeOH = 20:1 to 15:1) of the crude oil gave the desired prodcut
4-10, as the acetic salt form (1.26 g, 85%) (a mixture of anomers).

'H NMR (CDCl3 , 600 MHz) selected peaks 8 2.65-2.67 (m, 1H, Hia), 2.92 (d,
0.5H of anomeric mixture, J = 12.0 Hz, Hlb), 3.06 (d, 0.5H of anomeric mixture, J = 12.3
Hz, Hlb), 3.46 (d, 0.5H of anomeric mixture, J = 9.4 Hz, H3), 3.51-3.52 (m, 0.5H of
anomeric mixture, Hs), 3.53-3.54 (m, 0.5H of anomeric mixture, Hs), 3.75 (s, 3H, -
NHCH2Ph(OMe)2), 3.82 (s, 3H, -NHC H2Ph(OMe)2), 3.88-3.95 (m, 2H, -
NHCH2Ph(OMe) 2), 4.04 (app d, 0.5H of anomeric mixture, J = 12.4 Hz, H 6b), 4.10 (app
d, 0.5H of anomeric mixture, J = 12.5 Hz, H6b), 4.35 (dd, 1 of anomeric mixture, J = 9.4
Hz, J = 3.5 Hz, H4), 4.36 and 4.60 (ABq, 1H of anomeric mixture, J = 11.5 Hz, -
OCH2Ph), 4.66 and 4.83 (ABq, 12H of anomeric mixture, J = 11.5 Hz, -OCH2Ph), 5.61
(brs, alcohol), 6.44-6.46 (m, 2H, -NHCH2Ph(OMe) 2), 7.04-7.34 (m, 5H, -OCH2Ph);

HRMS(ESI-MS): Calcd for [C22H 28N40 6+H]+(M+H): m/z = 445.2082; Found:
446.2155.
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1-Allyloxycarbonylamino-5-azido-3-O-benzyl-1,5-dideoxy-D-fructopyranose (4-11)

OH
6• o NHAIIoc AllocCl (0.451 mL, 1.5 equiv.) was added to a solution

1 -OBn of 4-10 (1.26 g, 2.84 mmol) and DIPEA (0.989 mL, 2.0 equiv.) in
3 O1 methanol (40 mL) at 0 'C and the reaction mixture was warmed to room

temperature for 2 h. The mixture was stirred for 1 h at room
temperature. The solvent was removed under reduced pressure. Without further
purification, TFA (30 mL) was added to the crude mixture at 0 TC. The reaction mixture
was warmed to room temperature for 2 h. The mixture was stirred for 1 h at room
temperature. The solvent was removed under reduced pressure and poured into satd.
NaHCO 3 (40 mL). The mixture was extracted with ethyl acetate (3 x 50 mL) and the
combined organic layers were washed with satd. brine, dried over MgSO4 and
concentrated in vacuo. Flash column chromatography (hexane:ethyl acetate = 4:1 to ethyl
acetate) of the crude oil gave 4-11 (677 mg, 2 steps over 63%) as colorless oil (a mixture
of anomers).

'H NMR (CD3OD, 500 MHz) 3.09 (d, 1H, J = 13.6 Hz, Hia), 3.54-3.61 (m, 2H,
Hb and H3), 3.62 (app d, 1H, J = 12.6 Hz, H6a), 3.81 (d, 1H, J = 1.9 Hz, H,), 4.07 (app d,
IH, J = 12.6 Hz, H6b), 4.17 (dd, 1H, J = 9.6 Hz and J = 1.9 Hz, H4), 4.63 and 4.89 (ABq,
2H, J = 10.5 Hz, -OCH2Ph), 4.51-4.59 (m, 2H, -OCH2CHCH2), 5.15 (app d, 1H, J = 10.5
Hz, -OCHCHCH2), 5.28 (app d, 1H, J = 17.4 Hz, -OCH2CHCH2), 5.87-5.92 (m, 1H, -
OCH2CHCH,), 7.22-7.44 (m, 5H, -OCH2Ph);

'3C NMR (CD 3OD, 125 MHz) 8 47.64, 62.16, 61.26, 65.47, 66.67, 72.45, 76.66,
78.13, 99.00, 117.61, 128.84, 129.38, 129.84, 134.62, 140.08, 158.93;

HRMS(ESI-MS): Calcd for [C,,H 22N406+Na]+(M+Na): m/z = 401.1432; Found:
401.14232.

N-[(3R,4R,5R)-5-Azido-3-O-benzyl-6-O-(tert-butyldiphenylsilyl)-4-hydroxy-2-oxo-
hexyl]-allylcarbamate (4-12)

N3 OBn TBDPSC1 (0.930 mL, 2.0 equiv.) was added to the
TBDPSO - NHAl c solution of 4-11 (677 mg, 1.79 mmol) and imidazole (367

OH O mg, 3.0 equiv.) in CH 2C12 (50 mL) at 0 TC and the reaction
4-12 mixture was warmed to room temperature for 2 h. The

mixture was stirred until no starting material remained (usually for 24 h). The reaction
mixture was poured into satd. NaHCO 3 (20 mL). The mixture was extracted with CH2C12
(3 x 20 mL) and the combined organic layers were washed with satd. brine, dried over
MgSO4 and concentrated in vacuo. Flash column chromatography (hexane:ethyl acetate =
5:1 to hexane:ethyl acetate = 2:1) of the crude oil gave the desired compound 4-12 (795
mg, 72 %) as a colorless oil.

'H NMR (CDCl3, 400 MHz) 8 1.08 (s, 9H, Me3 CPh2Si), 2.68 (brs, alcohol), 3.52-
3.59 (m, 1H, H5), 3.76-3.80 (m, 1H, H4), 3.87 (ABx, 1H, J = 6.5 Hz and J = 10.9 Hz,
H,,), 4.03 (ABx, 1H, J = 3.0 Hz, J = 10.9 Hz, H 6b), 4.13 (d, 1H, J = 19.9 Hz, H,,), 4.22 (d,
IH, J = 1.3 Hz, H3), 4.32 (d, 1H, J = 19.9 Hz, Hb), 4.50-4.53 (m, 2H, -OCH2CHCH2),

149



4.51 and 4.70 (ABq, 2H, J =11.3 Hz, -OCH2Ph), 5.16 (app d, 1H, J = 10.5 Hz, -
OCH2CHCH,), 5.26 (app d, 1H, J = 17.0 Hz, -OCH2CHCH2), 5.49 (brs, amide), 5.80-
5.89 (m, 1H, -OCH2CHCH2), 7.27-7.69 (m, 15H, -OCH2Ph and Me3CPh2Si-);

13C NMR (CDC13, 125 MHz) 8 19.32, 26.91, 48.59, 63.17, 64.76, 66.19, 72.03,
74.58, 76.98, 77.23, 77.49, 83.31, 118.09, 128.01, 128.05, 128.06, 128.38, 128.82,
128.86, 128.89, 128.95, 130.10, 130.15, 130.17, 132.65, 132.80, 132.87, 135.78, 136.40,
156.56, 207.773.

N-[(2R,3R,5R)-5-Azido-3-0-benzyl-6-0-(tert-butyldiphenylsilyl)-4-0-(3',4',6'-tri-O-
acetyl-2'-deoxy-2'-trifluroacetamido-3-D-glucopyranosyl)-2-oxo-hexyl]-
allylcarbamate (4-9)

N3 OBn BF 3*OEt2 (7.0 tl, 0.05 equiv.) was added to a
TBDPSO ,. "2 ' solution of imidate 3-29 (1.20 g, 2.0 equiv.) and 4-12 (680S 3 NHAIIoc

6 O mg, 1.10 mmol) in toluene (50 mL) at 0 oC under argon. The
AO '  mixture was allowed to warm to room temperature and
A NHTFA stirred until no starting material remained. The reaction
W A4 mixture was poured into water (20 mL). The mixture was

AcO OAc extracted with CH 2Cl 2 (3 x 50mL) and the combined organic
layers were washed with satd. NaHCO 3 and satd. brine, dried

over MgSO 4 and concentrated in vacuo. Flash column chromatography (hexane:ethyl
acetate = 3:1 to hexane;ethyl acetate = 2:3) of the crude oil gave the desired compound 4-
9 (990 mg, 90 %) as the colorless liquid, which showed the identical spectroscopic
properties('H NMR and 13C NMR) from the obtained compound from 4-7.

5-Azido-3-O-benzyl-1,5-dideoxy-l-N-(4-methoxybenzyl-tert-
butyloxycarbonylamino)-D-fructopyranose (4-13)

OH PMB Boc20 (200 mg, 1.2 equiv.) was added to a solution of 3-
40 2 1 NBoc 18 (317 mg, 0.77 mmol) and DIPEA (0.267 mL, 2.0 equiv.) in CHC12
3 OBH3  (20 mL) at 0 TC and the reaction mixture was warmed to room
4-13 temperature for 2 h. The mixture was stirred for I h at room temperature.

The solvent was removed under reduced pressure. Flash column
chromatography (hexane:ethyl acetate = 2:1 to ethyl acetate) of the crude oil gave 4-13
(285 mg, 75 %) as colorless oil (mixture of anomers and N-rotamers).

'H NMR (CDC13, 400 MHz) selected peaks 8 1.36-1.40 (m, 9H, Me3CCO) 2.63 (
br, 1H, alcohol), 3.41 (d, 1H, J = 9.3 Hz, HIa), 3.72-3.82 (m, 6H, Hb, H3, H6a, H 6b, and -
NHCH2PhOMe), 4.07-4.81 (m, 3H, -NHCH2PhOMe, Hs), 4.57 and 4.85 (ABq, 2H, J =
115. Hz), 4.82-4.80 (m, 1H, H4), 6.87-7.80 (m, 9H, -NHCH 2PhOMe and -OCH2Ph).

N-[(3R,4R,5R)-5-Azido-3-O-benzyl-6-O-(tert-butyldiphenylsilyl)-4-hydroxy-2-oxo-
hexyl]-N-(4-methoxybenzyl)-tert-butylcarbamate (4-14)
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N3 OBn TBDPSC1 (0.192 mL, 2.0 equiv.) was added to the
TBP•SO NBoc solution of 4-13 (285 mg, 0. 554 mmol) and imidazole (113

OH O PMB mg, 3.0 equiv.) in CHzCl 2 (20 mL) at 0 'C and the reaction
4-14 mixture was warmed to room temperature for 2 h. The mixture

was stirred until no starting material remained (usually for 8 h.). The reaction mixture
was poured into satd. NaHCO3 (20 mL). The mixture was extracted with CH2C12 (3 x 20
mL) and the combined organic layers were washed with satd. brine, dried over MgSO 4
and concentrated in vacuo. Flash column chromatography (hexane: ethyl acetate = 4:1 to
hexane:ethyl acetate = 2:1) of the crude oil gave the desired compound 4-7 (315 mg, 80
%) as colorless oil (a mixture of N-rotamers).

'H NMR (C6D 6, 400 MHz) selected peaks 8 1.17-1.19 (m, 9H, Me3CPh2Si-), 1.35-
1.50 (m, 9H, MeCCO-), 3.29 (s, 3H, -NHCH2PhOMe), 3.71 (d, 1H, J = 18.5 Hz, Hla),
4.15 (dd, 1H, J = 2.2 and 11.3 Hz, H4), 4.21 (d, 1H, J = 2.2 Hz, H3), 4.25 and 4.47 (ABq,
J = 10.5 Hz, -OCH2Ph), 4.33 (d, 1H, J = 18.5 Hz, Hlb), 6.73 and 7.09 (2*d, 4 H, J = 8.5
Hz, -NHCH 2PhOMe), 7.15-7.80 (m, 15H, -OCH2Ph and Me3CPh2Si-);

'3C NMR (C6 D6 , 125 MHz) 8 19.80, 27.33, 28.63, 28.78, 51.13, 52.64, 54.65,
55.14, 55.18, 64.22, 64.32, 65.00, 65.60, 72.04, 72.32, 74.18, 74.51, 80.22, 81.19, 83.53,
85.35, 114.65, 128.68, 128.74, 129.10, 129.18, 129.59, 130.22, 130.44, 130.58, 133.83,
133.87, 136.38, 136.47, 137.82, 155.98, 159.97, 206.14, 208.14.

Phenyl-3',4',6'-tri-O-acetyl-2'-deoxy-2'-(triflouroacetamide) -P-D-1-thio-
glucopyranoside (4-15)

BF 3*OEt2 (0.148 ml, 1.0 equiv.) was added to 3-28 (519 mg,

,AcO 1.17 mmol) and PhSH (0.120 mL, 1.0 equiv) in CH2C12 (30 mL) at 0
Ac TFAHNSPh C under argon. The mixture was allowed to warm to room

temperature and stirred for 4 h. The reaction mixture was poured to
water (20 mL). The mixture was extracted with CH2C12 (3 x 40 mL)

and the combined organic layers were washed with satd. NaHCO3, dried over MgSO 4 and
concentrated in vacuo. Flash column chromatography (hexane:ethyl acetate = 8:1 to
hexane;ethyl acetate = 3:1) of the crude oil gave the desired compound 3-30 (565mg, 98
%) as a white liquid.

'H NMR (CDCI3, 400 MHz) 1.96 (s, 3H, acetyl), 2.07 (s, 3H, acetyl), 2.10 (s, 3H,
acetyl), 3.72-3.76 (m, 1H, Hs), 4.07 (dd, 1H, J = 10. 4 and 9.8 Hz, H2), 4.18-4.26 (m, 2H,
H6a and H 6b), 4.80 (d, 1H, J = 10. 4 Hz, HI), 5.05 (app t, 1H, J = 9.8 Hz, H4), 5.27 (app t,
1H, J = 9.8 Hz, H3), 6.81 (br, amide), 7.49-7.52 (m, 5H, -SPh);

13C NMR (CDCl3 , 100 MHz) 68 20.79, 20.88, 21.15, 22.04, 53.74, 60.83, 68.53,
70.62, 73.67, 80.82, 114.51, 117.38, 129.21, 129.50, 131.48, 133.88, 157.34, 158.71,
159.43, 169.50, 169.67, 171.71.

1-Allyloxycarbonylamino-5-azido-3-0-benzyl-1,5-dideoxy-4-O-(3',4',6'-tri-O-acetyl -
2'-deoxy-2'-trifluroacetamido-p-D-glucopyranosyl)-D-fructopyranose (4-16)
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OH TBAF (1.0 M solution in THF, 0.510 mL, 1.0 equiv.) was
-NHAIIoc added to a solution of 4-9 (515 mg, 0.51 mmol) and acetic acid

(0.029 mL, 1.0 equiv.) in THF (10 mL) at 0 TC. The mixture was
allowed to warm to room temperature and stirred overnight. The
solvent was removed under reduced pressure, followed by
purification via column chromatography (hexane:ethyl acetate =
1. L I 4 L ) U II 9 OI 7 Il AC dJIL 1 U Iil
:. 1 LU eL, lt iylactaitU) to iallUIU or-I. - 3U ( mg, O ) -/0a an, wil tlle oL .4-16

1H NMR 8 (CD 3OD, 400 MHz) 1.83 (s, 3H, acetyl), 1.87 (s, 3H, acetyl), 1.91 (s,
3H, acetyl), 2.99 (d, IH, J = 13.7 Hz, H,a), 3.44 (d, 1H, J = 13.7 Hz, Hib), 3.53 (d, 1H, J =
9.6 Hz, H3), 3.65 (app d, 1H, J = 12.5 Hz, H6,), 3.67-3.69 (m, 1H, Hs.), 3.83-3.96 (m, 4H,
H4, H6b, H6-a, and H 6 'b), 4.20 (app dd, 1H, J = 12.4 and 3.9 Hz, Hs), 4.28 (dd, 1H, J = 9.4
and 3.9 Hz, H,), 4.36-4.47 (m, 2H, -OCH2CHCH2), 4.51 and 5.23 (ABq, 2H, J = 10.7 Hz,
-OCH2Ph), 4.78-4.94 (m, 2H, H,. and H4.), 5.04 (app t, 1H, J = 9.4 Hz, H3.), 5.16-5.20 (m,
2H, -OCH 2CHCH2), 5.76-5.85 (m, 1H, -OCH 2CHCH 2), 7.12-7.37 (m, 5H, -OCH2Ph);

'3C NMR (CD3OD, 100 MHz) 8 20.53, 20.73, 20.88, 20.96, 47.35, 56.42, 60.29,
61.48, 63.22, 66.62, 70.07, 73.16, 73.34, 75.80, 76.37, 78.70, 98.68, 99.15, 117.56,
116.34, 117.56, 118.62, 128.83, 129.30, 129.64, 130.13, 134.58, 140.07, 158.91, 159.31,
159.65, 171.35, 171.78, 172.50;

HRM'S: [Calcd for C31H38F3N50 14+Na]+(M+Na): m/z = 784.2260; Found:
784.2279.

5-Azido-3-O-benzyl-1-tert-butyloxycarbonylamino-1,5-dideoxy-4-O-(3',4',6'-tri-O-
acetyl-2'-deoxy-2'-trifluroacetamido-S-D-glucopyranosyl))-D-fructopyranose (4-3)

OH Boc20 (48 mg, 1.3 equiv.) was added to a solution of 4-16

5 3OBn (130 mg, 0.17 mmol) in CH2C12. To this mixture a solution of
N3 O Pd(PPh3)4 (9.8 mg, 0.05 equiv.) in the same solvent was added,

AcO 0 immediately followed by the addition of Bu 3SnH (50 [l, 1.1 equiv.)
59' 2ý-NHTFA

at 0 TC. The mixture was allowed to warm to room temperature and

AcO OAc stirred for 4 h. The solvent was removed under reduced pressure,
4-3 followed by purification via column chromatography (hexane: ethyl

acetate = 4:1 to ethyl acetate) to afford 4-3 (122 mg, 92 %) as a
colorless oil.

'H NMR (CD 3OD, 500 MHz) 1.46 (s, 9H, Me3CCO-), 2.00 (s, 3H, acetyl), 2.02
(s, 3H, acetyl), 2.04 (s, 3H, acetyl), 3.06 (d, 1H, J = 13.8 Hz, Hia), 3.54 (d, 1H, J = 13.8
Hz, HIb), 3.67 (d, 1H, J = 9.6 Hz, H3), 3.80 (app d, 1H, J =13.1 Hz, HI-), 3.85-3.88 (m,
1H, Hs.), 3.95-4.09 (m, 4H, H4, H 6b, H6'a, and H 6 'b), 4.35 (app dd, 1H, J = 12.3 and 3.9 Hz,
Hs), 4.41 (dd, 1H, J = 9.6 and 3.9 Hz, H4), 4.64 and 4.98 (ABq, 2H, J = 10.3 Hz,
OCH2Ph), 5.00 (d, 1H, J = 8.3 Hz, H,.), 5.04 (app t, 1H, J = 9.6 Hz, H4.), 5.38 (app t, J =
9.6 Hz, H3.), 5.98 (br, 1H, amide), 7.29-7.52 (m, 5H, -OCH2Ph);

'3C NMR (CD3OD, 100 MHz) 8 20.52, 20.73, 20.87, 20.97, 22.59, 28.87, 29.42,
56.41, 60.22, 61.46, 63.20, 70.05, 73.15, 73.31, 75.84, 76.39, 78.68, 80.47, 98.64, 99.25,
115.05, 116.32, 118.60, 119.88 128.84, 129.30, 129.64, 130.14, 140.05, 158.44, 159.34,
159.64, 171.34, 171.76, 172.48;
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HRMS: [Calcd for C32H42F3N50,4+Na]+(M+Na): m/z = 800.257; Found: 800.258.

N-{[(2R,3R,4R,5R)-3-O-benzyl-4-O-(3',4',6'-tri-O-acetyl-2'-deoxy-2'-
trifluroacetamido- -D-glucopyranosyl)-5-(hydroxymethyl)pyrrolidin-2-yl]methyl}
tert-butylcarmate (4-2)

A HO To a solution of 4-3 (70 mg, 0.090 mmol) in methanol
AcO-O 6 NH (10 mL) was added Pd(OH) 2 (35 mg). The reaction mixtureAcO- 0 O
TFAHN 12 BnO was stirred under hydrogen pressure (850 psi) for 12 h. and

4-2 1 NHBoc filtered through celite. After solvent was removed in vacuo,
the residue was purified by flash column chromatography (chloroform: methanol = 8:1 (1
% of ammonium hydroxide) to 7:1 (1 % of ammonium hydroxide)) to afford 4-2 (36 mg,
55 %) as a colorless oil.

'H NMR (CD30OD, 500 MHz) 8 1.43 (s, 9H, Me3CCO-), 1.94 (s, 3H, acetyl), 1.96
(s, 3H, acetyl), 1.99 (s, 3H, acetyl), 3.15-3.20 (m, 2H, H2 and Hs), 3.60-3.63 (m, 2H, H6a
and H6b), 3.75-3.79 (m, 1H, H,.), 3.94 (dd, 1H, J = 8.5 and 9.8 Hz, H2.), 3.98-3.99 (m, 1H,
H3), 4.10 (ABx, 1H, J = 2.1 and 12.3 Hz, H6 a), 4.21-4.24 (m, 2H, H4 and H6'b), 4.60 and
4.71 (ABq, 2H, J = 11.7 Hz, -OCH2Ph), 4.89 (d, 1H, J = 8.5 Hz, H,.), 5.04 (app t, 1 H, J
= 9.8 Hz, H4.), 5.30 (app t, 1H, J = 9.8 Hz, H3,), 7.25-7.36 (m, 5H, -OCH2Ph);

HRMS(ESI-MS): Calcd for [C32H44F 3N3013+H]÷(M+H): m/z = 736.2899; Found:
736.2895.

N-{[(2R,3R,4R,5R)-3-O-benzyl-4-O-(3',4',6'-tri-O-acetyl-2'-deoxy-2'-
trifluroacetamido-p-D-glucopyranosyl)-5-(hydroxymethyl)pyrrolidin-2-
yl]methyl}acetamide (3-33)

.6 1OAc OH To a solution of compound 4-2 (40 mg, 0.074mmol) in
AcOO20. 0 • 5 NH CH 2C12 (3 mL) was added TFA (1 mL) at 0 0 C. The reaction

TFAHN 1 BnO 3 NHAc mixture was warmed to room temperature. The reaction
3-33

mixture was stirred at room temperature for 4 h. After the
solvent was removed in vacuo, the residue was filter through Dowex 1X8 200-400
chloride form resin and used for the next reaction step without further purification.

To a solution of diamine in MeOH at OoC was added acetic anhydrde at 0 TC. The
reaction mixture was stirred at 0 oC for 1 h. After the solvent removed in vacuo, the
residue was purified by flash column chromatography (CHCl3:MeOH = 8:1 (1 % of
ammonium hydroxide) to 7:1 (1 % of ammonium hydroxide)) to afford 3-33 (20 mg, 50
%) as a colorless oil, which showed the identical spectroscopic properties ('H NMR and
'3C NMR) from the obtained compound from 3-32

N-tert-Butyloxycarbonyl-[(2R,3R,4R,5R)- 3-O-benzyl-2-(N-tert-
butyloxycarbonylamino -methyl)-4-O-(3',4',6'-tri-O-acetyl-2'-deoxy-2'-
trifluroacetamido- -D-glucopyranosyl)-5-(hydroxymethyl)]-pyrrolidine (4-17)

To a solution of 4-2 (35 mg, 0.048 mmol) in CH2Cl2

AcOA O O -NBoc in the presence of DIPEA (16.7 tl, 2.0 eq.) was added
TFAIN i BnO -- NHBoc

4-17
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Boc20 (14.7 mg, 1.4 eq.) at 0 TC. The reaction mixture was stirred at room temperature
overnight. After the solvent was removed in vacuo, the residue was purified by column
chromatography (hexane:ethyl acetate = 3:1 to 1:1) to give the desired product 4-17 (34
mg, 85 %) as a colorless oil (a mixture of N-rotamers).

'H NMR (CD3OD, 500 MHz) selected peaks 8 1.43-160 (m, 18H, 2*Me3CCO),
2.01-2.08 (m, 9H, 3*acetyl), 2.87-2.91 (m, 0.6H of N-rotamers), 3.05-3.09 (m, 0.4H of
N-rotamers), 3.44-3.93 (m, 7H), 4.02-4.08 (m, 1H), 4,12 and 4.42 (ABq, 2H, J = 11.7 Hz,
OCH2Ph), 4.24-4.27 (m, 1H, H6 'b) 4.25-4.30 (m, 1H, H6'b), 4.52-4.58 (m, 2H, H3 and H4 ),
4.81 (d, J = 8.0 Hz, 0.6H of N-rotamers, H,,), 5.01 (m, 1H, H4.), 5.28 (app t, 0.6H of N-
rotamers, J = 9.6 Hz, H3.), 5.37 (app t, 0.4H of N-rotamers, J = 9.6 Hz, H3.), 7.34-7.41
(m, 5H, OCH2Ph);

'3C NMR (CD3OD, 125 MHz) 6 19.64, 19.66, 19.84, 20.04, 20.05, 27.88, 27.95,
28.12, 40.19, 40.69, 55.42, 59.45, 60.07, 62.05, 62.18, 63.83, 64.35, 66.15, 66.29, 68.15,
66.29, 68.97, 69.13, 71.47, 71.51, 71.97, 72.27, 72.44, 79.33, 79.40, 80.85, 81.26, 82.08,
82.61, 83.66, 99.13, 99.42, 113.130, 115.41, 117.69, 119.98, 128.10, 128.14, 128.18,
128.81, 128.84, 138.40, 138.45, 154.90, 155.10, 157.32, 157.45, 158.21, 158.34, 158.52,
158.63, 170.47, 170.83, 170.86, 171.46, 171.50;

HRMS(ESI-MS): Calcd for [C37H52F3N3O,s+Na]÷(M+Na): m/z = 858.3243;
Found: 858.3258.

N-tert-Butyloxycarbonyl-[(2R,3R,4R,5R)-2-(N-tert-butyloxycarbonyl amino-methyl)-
4-O-(3',4',6'-tri-O-acetyl-2'-deoxy-2'trifluroacetamido-fi-D-glucopyranosyl)-3-
hydroxy-5-(hydroxymethyl)]-pyrrolidine (4-18)

To a solution of 4-17 (45 mg, 0.039 mmol) in AcOH (10

AcO OA c  NBoc mL) was added Pd(OH) 2 (30 mg). The reaction mixture was
TFAGO ' HO 3 2 stirred under 50 psi hydrogen pressure for 24 h and filtered
TFAIN H , NHBoc

418 through celite. After the solvent was removed in vacuo, the
residue was purified by column chromatography

(hexane:ethyl acetate = 1:1 to ethyl acetate) to give the desired product 4-18 (25 mg, 85
%) (mixture of N-rotamers).

'H NMR (CD3OD, 600 MHz) 8 1.34-1.42 (m, 18H, 2*Me3CCO), 1.88-2.05 (m,
9H, 3*acetyl), 2.85-2.89 (m, 0.5H of rotamer), 3.05-3.08 (m, 0.5H of rotamer), 3.32-3.33
(m, 0.5H of rotamer), 3.46-3.47 (m, 0.5H of rotamer), 3.61-3.86 (m, 6H), 4.11-4.22 (m,
4H), 4.83 (d, 0.5H of rotamer, J = 8.3 Hz, HI.), 4.94 (app t, 1H, J = 9.6 Hz, H4.), 5.23
(app t, 0.5H of rotamer, J = 9.6 Hz, HO.), 5.31 (app t, 0.5H of rotamer, J = 9.6 Hz, H3.);

'3C NMR (CD3OD, 125 MHz) 8 20.48, 20.68, 20.83, 28.72, 28.79, 28.82, 41.27,
41.52, 55.93, 56.35, 60.70, 71.40, 63.07, 66.93, 67.08, 67.96, 68.38, 69.96, 70.06, 72.84,
73.16, 73.27, 76.94, 77.14, 80.09, 80.19, 81.65, 81.99, 86.26, 86.74, 99.77, 100.08,
113.89, 116.25, 118.54, 120.25,155.86, 155.07, 158.16, 158.03, 171.34, 171.68, 172.42,
172.45;

HRMS(ESI-MS): Calcd for [C30H4,F 3N3O, 5+Na]+(M+Na): m/z = 768.2773;
Found: 768.2760.

1 54



N-tert-Butyloxycarbonyl-[(2R,3R,4R,5R)-2-(N-tert-butyloxylcarbonylamino methyl)-
4-O-(2'-acetamido-2'-deoxy-o-D-glucopyranosyl)-3-hydroxy-5-(hydroxymethyl)]-
pyrrolidine (4-19)

OH 6 OH NH3 gas was bubbled to a solution of 4-18 (18 mg,
HO O O~5- 5 NBoc 0.024 mmol) in methanol overnight. After solvent removed

HAIN HO 2NHBoc in vacuo, the residue was dissolved into 1:1
4-19 1 methanol:CH2Cl2 (5 mL) mixture. Acetic anhydride (20 [tL)

was added to the reaction mixture at 0 oC. After the solvent removed in vacuo, the
residue was purified by column chromatography (MeOH:CH 2C12 = 5:1 to 3:1) to give the
desired product 4-19 (8.5 mg, 62 %) as a white oil (a mixture of N-rotamers).

'H NMR (CD3OD, 600 MHz) selected peaks 6 1.39-1.49 (m, 18H, 2*Me3CCO),
1.89 (s, 1.5H of N-rotamers, acetyl), 1.96 (s, 1.5H of N-rotamer, acetyl), 2.92-2.96 (m,
0.5H of N-rotamers), 4.14-4.25 (m, 2H), 4.49 (d, 0.6H of N-rotamers, J = 8.4 Hz, HI.),
4.52 (d, 0.4H of N-rotamers, J = 8.4 Hz, H,.);

'3C NMR (CD30OD, 100 MHz) 8 23.13, 23.26, 28.89, 28.94, 41.16, 41.49, 57.46,
57.76, 61.06, 61.67, 62.81, 67.28, 67.87, 68.19, 72.18, 75.55, 75.76, 76.63, 77.11, 78.28,
79.94, 81.11, 81.65, 81.89, 86.20, 87.16, 101.72, 155.95, 156.29, 158,44, 173.79, 173.90;

HRMS(ESI-MS): Calcd for [C24H 43N30 12+Na]+(M+Na): m/z = 588.2739; Found:
588.2736.

The synthesis of derivatives of pseudo-disaccharide

To a solution of compound 4-19 (8.5 mg, 0.016mmol) in CH 2Cl2 (3 mL) was
added TFA (1 mL) at 0 oC. The reaction mixture was warmed to room temperature. The
reaction mixture was stirred at room temperature for 4 h. After the solvent was removed
in vacuo, the residue was filter through Dowex 1X8 200-400 chloride form resin and
used for the next reaction step without further purification. The combined crude product
was dissolved in MeOH (2 mL) and divided into 20 different aliquots. The 1.0 equiv. of
different acid anhydrides were added to 0 'C to each aliquot. The presence of product was
confirmed by mass spectral analysis. The crude product was used as the inhibitor without
further purification. The chitinase assay was carried out where the final inhibitor
concentration was 8 [tM (based on 100 % conversion of 2 steps).

For the synthesis of compound 4-1-3, to a solution of compound 4-19 (4.2 mg,
0.016mmol) in CH2C12 (3 mL) was added TFA (1 mL) at 0 oC. The reaction mixture was
warmed to room temperature and the reaction mixture was stirred for 4 h. After solvent
was removed in vacuo, the residue was purified through Dowex 1X8 200-400 chloride
form resin and only pure fractions confirmed by mass spectral analysis were combined
and used for the next step. The combined product was dissolved in MeOH (2 mL).
Dodecanoic anhydride (1.0 equiv. based on 100 % conversion of the first step) was added
to the reaction mixture at 0 oC and stirred at room temperature for 4 h. The solvent was
removed under reduced pressure. The crude product was purified by flash column
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chromatography (CH3CN:MeOH =10:1 to 1:10). Only pure fractions confirmed by mass
spectral analysis were combined (0.5 mg, 0.0009 mmol). The OT assay was carried out as
described in Chapter 2, where the final concentration of inhibitor was 200 [iM.
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