
Fast Incremental Unit Propagation
by Unifying Watched-literals and Local Repair

by

Shen Qu

B.S. Aeronautics and Astronautics
Massachusetts Institute of Technology, 2004

SUBMIITED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SEPTEMBER 2006

02006 Massachusetts Institute of Technology
All Rights Reserved

MASSACHUSETTS INST1TJIE
OF TECHNOLOGY

NOV 0 2 2006

LIBRARIES

Signature of Author:

Certified by:

iepartment of Aeronautics and Astronautics
August 25, 2006

Brian C. Williams
Associate Professor of Aeronautics and Astronautics

Thesis Supervisor

Accepted by:
Jaime Peraire

Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

AERO

2

Fast Incremental Unit Propagation
by Unifying Watched-literals and Local Repair

by

Shen Qu

Submitted to the Department of Aeronautics and Astronautics on August 25, 2006 in
Partial Fulfillment of the Requirements of the Degree of Master of Science in Aeronautics

and Astronautics

ABSTRACT

The propositional satisfiability problem has been studied extensively due to its theoretical
significance and applicability to a variety of fields including diagnosis, autonomous
control, circuit testing, and software verification. In these applications, satisfiability
problem solvers are often used to solve a large number of problems that are essentially the
same and only differ from each other by incremental alterations. Furthermore, unit
propagation is a common component of satisfiability problem solvers that accounts for a
considerable amount of the solvers' computation time. Given this knowledge, it is
desirable to develop incremental unit propagation algorithms that can efficiently perform
changes between similar theories. This thesis introduces two new incremental unit
propagation algorithms, called Logic-based Truth Maintenance System with Watched-
literals and Incremental Truth Maintenance System with Watched-literals. These
algorithms combine the strengths of the Logic-based and Incremental Truth Maintenance
Systems designed for generic problem solvers with a state-of-the-art satisfiability solver
data structure called watched literals. Emperical results show that the use of the watched-
literals data structure significantly decreases workload of the LTMS and the ITMS without
adversely affecting the incremental performance of these truth maintenance systems.

Thesis Supervisor: Brian C. Williams
Title: Associate Professor of Aeronautics and Astronautics

3

4

Acknowledgements

I dedicate this work to my parents. Mom, you are my guiding light and my source of
strength. I cannot ask for a better role model, and I know we will continue to be the closest
of friends for many years to come. Daddy, thank you for all your sacrifices so that I may
have the best life possible. And thank you for spoiling me with all your delicious cooking.
I would not be who I am today without the two of you. I love you both.

I would also like to express my deepest thanks to my advisor Brian Williams for his
guidance and support through all my ups and downs, Paul Robertson for his patience and
understanding especially during the final stretches of the writing processing, Paul Elliot and
Seung Chung for tirelessly answering all of my questions and helping me through the worst
of debugging, and Lars Blackmore for his conversation, his humor, and for lending an ear
whenever I needed someone to talk to. I truly appreciate what all of you have done for me.
This thesis would not be possible without you.

5

6

Table of Contents

CHAPTER I INTRODUCTION ... 12

CHAPTER 2 THE BOOLEAN SATISFIABILITY PROBLEM AND SOLUTION... 16

2.1 SA T Problem .. 16

2.2 SA T Solver...17
2.2.1 Preprocessing .. 18
2.2.2 D ecision... 19
2.2.3 Deduction .. 21
2.2.4 Conflict Analysis...22
2.2.5 Backtracking.. 23

CHAPTER 3 UNIT PROPAGATION ALGORITHMS.. 27

3.1 Data Structures for Unit Propagation... 28
3.1.1 Counter-based Approach... 29
3.1.2 Head/Tail Lists .. 31
3.1.3 W atched-literals... 33

3.2 Retracting Assignm ents m ade by Unit Propagation .. 37
3.2.1 Stack-based Backtracking .. 38
3.2.2 Logic-based Truth M aintenance System .. 40

3.2.2.1 W ell-founded Support.. 40
3.2.2.2 Resupport... 41
3.2.2.3 Incremental Unit Propagation with Conservative Resupport... 43

3.3 Increm ental Truth M aintenance System ... 45
3.3.1 Propagation Num bering... 47
3.3.2 Conflict Repair .. ,........... 48
3.3.3 Aggressive Resupport.. 51

3.4 Root A ntecedent ITM S..53
3.4.1 Root Antecedents .. 56
3.4.2 Conflict Repair .. 56
3.4.3 Aggressive Resupport.. 59

3.5 Sum m ary...60

CHAPTER 4 TRUTH MAINTENANCE WITH WATCHED LITERALS........ 64

4.1 LTM S with w atched-literals... 65
4.1.1 LTM S-W L for Chronological Backtracking .. 67
4.1.2 LTM S-W L for Preprocessing.. 69

4.2 ITM S w ith w atched literals .. 71
4.2.1 Conflict Repair .. 71
4.2.2 Aggressive Resupport..76

7

4.3 Sum m ary...78

CHAPTER 5 SAT SOLVERS WITH INCREMENTAL UNIT PROPAGATION ... 81

5.1 ISAT .. 81
5.1.1 Preprocessing .. 82
5.1.2 Decision and Conflict Analysis ... 82
5.1.3 Deduction and Backtracking ... 83

5.2 zCH AFF .. 83
5.2.1 Preprocessing .. 83
5.2.2 Decision...84
5.2.3 Conflict Analysis..84
5.2.4 Deduction and Backtracking ... 85

CHAPTER 6 RESULTS AND ANALYSIS...88

6.1 Evaluation Setup .. 88

6.2 ISA T Perform ance Results.. 90

6.3 zCH A FF Perform ance Results... 93

CHAPTER 7 CONCLUSION AND FUTURE WORK.. 97

8

List of Figures

Figure 1: D PLL Pseudo-code.. 18
Figure 2: Simple SAT Example - Preprocessing .. 19
Figure 3: Simple SAT Example - Decision.. 20
Figure 4: Simple SAT Example - Deduction ... 21
Figure 5: Simple SAT Example - Conflict Analysis.. 22
Figure 6: Simple SAT Example - Bactracking... 23
Figure 7: Simple SAT Example - Decision 2... 24
Figure 8: Simple SAT Example - Deduction 2.. 25
Figure 9: Unit Propagation Pseudo-code .. 28
Figure 10: Counter-based Approach Pseudo-code .. 30
Figure 11: Head/Tail Lists Pseudo-code.. 32
Figure 12: Watched Literals Pseudo-code .. 35
Figure 13: Stack-based Backtracking Unit Propagation Pseudo-code 38
Figure 14: Stack-based Backtracking Pseudo-code.. 39
Figure 15: Loop Support and Conservative Resupport Example 42
Figure 16: LTMS Unit Propagation Pseudo-code .. 43
Figure 17: LTMS Unassign Pseudo-code .. 44
Figure 18: Conservative vs Aggressive Resupport Example.. 46
Figure 19: Mutual Inconsistency Example ... 48
Figure 20: ITMS Propagation Pseudo-code.. 49
Figure 21: ITMS Conflict Repair Pseudo-code .. 50
Figure 22: ITMS Unassign Pseudo-code .. 52
Figure 23: ITMS Aggressive Resupport Pseudo-code.. 52
Figure 24: Propagation Numbering vs. Root Antecedent example 53
Figure 25: RA-ITMS Propagation Psedo-code... 58
Figure 26: RA-ITMS Conflict Repair Pseudo-code .. 58
Figure 27: RA-ITMS Aggressive Resupport Pseudo-code.. 59
Figure 28: LTMS-WL Unit Propagation Pseudo-code.. 66
Figure 29: LTMS-WL Unassign Pseudo-code for Chronological Backtracking 68
Figure 30: LTMS-WL Unassign Pseudo-code for Preprocessing 70
Figure 31: ITMS-WL Propagation Pseudo-code ... 74
Figure 32: ITMS-WL Conflict Repair Pseudo-code... 75
Figure 33: ITMS-WL Unassign Pseudo-code... 77
Figure 34: ITMS-WL Aggressive Resupport Pseudo-code ... 78
Figure 35: ISAT Results Summary - Propositional Assignments................................... 91
Figure 36: ISAT Results Summary - Clauses Visited.. 92
Figure 37: zCHAFF Results Summary - Propositional Assignments 94
Figure 38: zCHAFF Results Summary - Clauses Visited.. 95

9

List of Tables

Table 1: PCCA M odel Properties .. 89
Table 2: ISAT Data.. 90
Table 3: zCHAFF Preprocessing Data.. 93

10

11

Chapter 1

Introduction

Boolean satisfiability (SAT) is the problem of determining whether there exists a satisfying

assignment of variables for a propositional theory. It is a famous NP-complete problem

that has been widely studied due to its theoretical significance and practical applicability.

From a theoretical standpoint, SAT is viewed as the cannon NP-complete problem used to

determine the sameness or difference between deterministic and nondeterministic

polynomial time classes [1]. While no polynomial time SAT algorithm has been or may

ever be constructed, extensive research within the SAT community produced an assortment

of SAT algorithms capable of solving many interesting, real word instances.

SAT problems can be found in a variety of fields [8] including diagnosis [18, 22], planning

[13], circuit testing [25], and verification [24, 12]. In many of these applications, an upper

level program reduces its problem into a series of SAT theories and uses a SAT problem

solver to determine their satisfiability. For example, to perform model-based diagnosis, the

conflict-directed A* algorithm solves an optimal constraint satisfaction problem by testing

a sequence of candidate diagnoses in decreasing order of likelihood [26]. This process is

formulated as a series of tests on SAT theories denoting each candidate solution. These

theories have much in common and only differ in the specific candidate solution

assignments. Therefore, for these types of problems, the SAT solver must not only be able

to efficiently solve a SAT problem but also efficiently perform incremental changes

between similar problems.

Unit propagation is a deduction mechanism commonly used within SAT solvers to reduce

computation time by pruning search spaces. It is arguably the most important component

of a SAT solver that consumes over 90% of the solver's run time in most instances [20].

When dealing with a large amount of SAT theories with only small variations between

12

them, a SAT solver can waste a considerable amount of computation time by throwing

away previous results and starting unit propagation from scratch. Thus, it is desirable to

utilize incremental unit propagation algorithms to increase the efficiency of a SAT solver.

A family of algorithms called truth maintenance system (TMS) can be used for this purpose

[4, 19]. A TMS avoids throwing away useful results and wasting effort rediscovering the

same conclusions between varying problems by maintaining justifications to variable

assignments. When a change is made to the problem, the TMS algorithm uses these

justifications to adjust only those variables affected by the change while leaving the rest in

place.

The logic-based truth maintenance system (LTMS) is a standard TMS algorithm

traditionally applied to Boolean formulas [6]. The incremental truth maintenance system

(ITMS), on the other hand, increases the efficiency of the LTMS by taking a more

aggressive approach during theory alterations [22]. Both algorithms have the advantage

over non-incremental schemes. However, since TMS was originally designed for generic

problem solvers, neither the LTMS nor the ITMS have fully exploited SAT specific

properties in their design.

This thesis introduces two new algorithms called LTMS with watch-literals (LTMS-WL)

and ITMS with watched-literals (ITMS-WL). These algorithms incorporate into the LTMS

and the ITMS a state-of-the-art SAT data structure, called watched-literals [20]. The

combined algorithms retain TMS's ability to minimize unnecessary variable unassignments

during incremental updates to a theory. At the same time, the added watched-literals

scheme reduces the workload of the combined algorithms by decreasing the number of

clauses and variables visited during unit propagation. Empirical results show that the

LTMS-WL and ITMS-WL achieve significant performance gains over an LTMS and an

ITMS without watched-literals. However, when compared with a non-incremental unit

propagation algorithm using watched-literals, the LTMS-WL and ITMS-WL encounters a

performance tradeoff where decreasing the number of unnecessary assignments changes

increases the overall workload.

13

For the remainder of this thesis, first Chapter 2 introduces the SAT problem, the upper

level components of a SAT solver, and the basic concept behind unit propagation. The

functionality of a simple SAT solver is also demonstrated through an example. Chapter 3

reviews and compares existing unit propagation data structures and unit propagation

algorithms and explains why the LTMS and the ITMS along with the watched-literals data

structure are chosen as the building blocks of the new algorithms. Chapter 4 details the

LTMS-WL and ITMS-WL, challenges in constructing these algorithms, and their potential

gains. Chapter 5 describes two SAT solvers, ISAT and zCHAFF, used for the empirical

evaluation of LTMS-WL and ITMS-WL. Chapter 6 presents the testing results and

analyzes the performance of LTMS-WL and ITMS-WL. And finally, Chapter 7 concludes

the thesis with a discussion on potential future areas of research.

14

15

Chapter 2

The Boolean Satisfiability Problem

and Solution

This chapter defines the Boolean satisfiability problem, components of a SAT Solver, and

some common terminology used throughout the rest of this thesis.

2.1 SAT Problem

A propositional satisfiability problem is specified as a set of clauses in conjunctive normal

form (CNF). A variable, also called a proposition, has Boolean domain and can be

assigned values TRUE or FALSE. Given a set of propositions P1.. .P, a literal is an

instance of Pi, called a positive literal, or -,Pi, called a negative literal, for 1 i n. A

clause, C, is a disjunction of one or more literals, C = (La1 v Li2 ... Li,), from the set of all

literals Li ... Lk; and a SAT theory T is defined as C1 A C2 A ... A CM, where m is the

number of clauses. Each literal only appears once in T, but a proposition may appear

multiple times. For example, T1 = C1 AC 2 AC 3 = (L1) A (L 2 v L3 v L4) A (L5 v L6)=

(-,P 1) (PI v P2 v P3) A (P3 v -- P4) is a SAT theory where m=- 3, k = 6, and n = 4. L1 and

L2 are both instances of PI, and L4 and L5 are instances of P3. We say that propositions and

their literals are associated with each other-L 1 is associated with P1 and vice versa.

Incremental changes to a theory will be indicated by operators "+" and "-". For example,

given T1 from above and some clause C4, T1 + C4 - C2 = C1 A C3 AC 4 . A context switch is

the simultaneous addition and deletion of clauses the theory.

16

2.2 SAT Solver

A theory is satisfiable if there exists at least one truth assignment to its propositions such

that the theory evaluates to true; such a truth assignment is called a satisfying assignment.

A SAT solver searches for a satisfying assignment by extending partial assignments to full

assignments. Unit propagation is a common deduction mechanism used to lighten the

workload of SAT's search process. By using propositional logic to deduce variable

assignments after each search step, unit propagation helps a SAT solver prune large areas

of the search space with relatively little effort compared to brute force search and other

deduction mechanisms.

The intuition behind unit propagation is that a theory evaluates to true if all of its clauses

are true; this condition holds only if at least one literal in each clause is true. Therefore, if

all but one literal in a clause evaluate to FALSE and the remaining literal is unassigned,

then the proposition associated with the remaining literal should be assigned such that the

literal evaluates to TRUE. For example, with clauses C1 = (LI v L2) = (-,PI v -,P 2) and C2

= (L3 v L4) = (P2 v -,P 3) in a theory, C1 is a unit clause if Pi = TRUE and P2 is unassigned.

Unit propagation of C1 will assign P2 to FALSE so that L2 evaluates to TRUE. At this

point, C2 becomes a unit clause, and unit propagation will assign P3 to FALSE so that L4

evaluates to TRUE After P2 and P3 are assigned, C1 and C2 becomes unit propagated. A

clause is satisfied if at least one of its literals evaluates to true. However, if all literals

within a clause evaluate to FALSE then the clause becomes violated. A set of variable

assignments that leads to a violated clause is called a conflict.

Complete SAT solvers are generally based on the DPLL algorithm [3] and can be broken

into five major components: preprocessing, decision, deduction, conflict analysis, and

backtracking. Figure 1 shows the upper level pseudo-code for this algorithm, and the

details of each component are presented in sections 2.2.1 to 2.2.5 below.

17

SAT-SOLVER(theory-T)
1 if not preprocesso
2 then return unsatisfiable
3 while true
4 do if not decideO
5 then return satisfiable
6 while not deduce()
7 do if analyzeConflicto
8 then backtrackO
9 else return unsatisfiable
Figure 1: DPLL Pseudo-code

2.2.1 Preprocessing

Preprocessing-preprocesso-includes the addition and/or deletion of clauses, data

initialization, and an initial propagation. If no theory is in place, a new one is created; else

changes are made to the current theory. Preprocesso returns false if the initial unit

propagation step leads to a conflict. Within the search process conflicts can be resolved by

altering the value of one or more decision variables within the conflicting partial

assignment. However, conflicts encountered prior to search cannot be resolved; therefore,

the theory would be unsatisfiable.

Figure 2 shows a simple example where SAT theory T2 is propagated during preprocessing.

Changes between successive steps are highlighted in bold; and unit and violated clauses are

italicized. In step 1 of this example, T2 is initialized. Initially, all variables are unassigned,

and C1 is identified as a unit clause. In step 2, P1 is assigned to TRUE by unit propagation

of C1, and C2 is identified as a unit clause. Finally, in step 3, P 2 is assigned to TRUE by

unit propagation of C2 , and there are no more unit clauses. At this point unit propagation

terminates and preprocessing is complete. Since Pi and P 2 are assigned during

preprocessing, any complete satisfying assignment to T2 must contain the partial

assignment {P1 = TRUE; P2 = TRUE}.

18

Step 1 Step 2

Cj: (PI) A C1 : (Pi=TRUE) A

C2 : (-,P 1 v P2) A C2 : (-P 1 = FALSE vP 2)A

T2 = C3 : (-P1v --IP3 v P4) A C3 : (-,P 1 = FALSE v -P 3 v P4) A
C4 : (-,P 2 v -P 3 v -P 5) A C4 : (-,P 2 v -,P 3 v -IP 5) A

C5 : (-,P4 v Ps) C5 : (-P 4 v P)

Step 3

C1 : (Pi= TRUE) A

C2 : (-,Pi = FALSE v P2 = TRUE) A

C3 : (-,P 1 = FALSE v ,P3 v P4) A

C4 : (-,P 2 = FALSE v ,P3 v ,Ps) A

Cs : (-,P 4 v P)

Figure 2: Simple SAT Example - Preprocessing

Had T2 contained an additional clause C6 - (-P 1 v -P 2), C6 would become violated by the

end of step 3. In such an event, the partial assignment {P1 = TRUE; P2 = TRUE} would be

a conflict. Since conflicts encountered during preprocessing cannot be resolved, a SAT

solver would find that T2 is unsatisfiable.

2.2.2 Decision

The search decision algorithm-decide()-chooses the next variable for the search to

branch on and the value it takes; this may involve any number of heuristics including

random selection [15, 10], conflict analysis of previous results [21], and dynamic updates

of current states [15, 10]. A proposition, P, assigned by the decision algorithm, and not

through unit propagation, is called a decision variable. If the decision algorithm is called

when no unassigned variables remain, decideo returns false. This only happens when all

variables are assigned, and there are no violated clauses; thus the theory is satisfiable.

19

Figure 3 shows the decision step following preprocessing of the simple SAT example

introduced in Figure 2. This example uses a very simple decision algorithm that works in

the following ways:

1. Decision variables are always assigned to TRUE before FALSE.

2. When called at the end of a deduction step where no clauses are violated, decideO

selects an unassigned variable P and assigns P to TRUE.

3. When called after conflict analysis and backtracking, decideo takes the decision

variable P selected by analyzeConflicto and assigns P to FALSE. The conflict

analysis algorithm for this example is presented in section 2.2.4.

Step 3

Ci : (PI= TRUE)A

C2 : (-P1 = FALSE v P2 = TRUE) A

T 2 = C3 : (-,P = FALSE v-,P 3 v P4) A

C4 : (,P2= FALSE vP3 V -,P5) A
C5 : (P 4 v P5)

Step 4

C1 : (P1= TRUE) A

C2 :(,Pi FALSE v P2 = TRUE) A

C3 (- 7Pi FALSE v ,Ps= FALSE vP 4) A

C4 : (,-P2= FALSE v -,P3 = FALSE v -P 5) A

C5 : (-,P 4 v P5)

Figure 3: Simple SAT Example - Decision

Step 3 in Figure 3 is the same as Figure 2 where preprocessing is complete and no clauses

are violated. In Step 4, the algorithm selects an unassigned proposition-in this case P 3-

and assigns P3 to TRUE. C3 and C 4 are both identified as unit clauses.

20

2.2.3 Deduction

The deduction algorithm-deduce(-is invoked after the decision step. Unit propagation

is the most commonly used deduction mechanism; but other techniques such as the pure

literal rule exist [31]. If deduction terminates without encountering a violated clause, the

algorithm proceeds for another decision step. DeduceO returns false if it encounters a

violated clause, at which point the conflict analysis and resolution algorithm-

analyzeConflicto-is invoked. Figure 4 continues the simple SAT example with a

deduction step. For this example, deduction consists of only unit propagation.

Step 4

C1 : (P = TRUE) A

C2 (-,Pi FALSE v P2 = TRUE) A

T 2 C 3 : (-P= FALSE v -P 3 = FALSEvP4) A
C4 : (-P2= FALSE v -P 3 = FALSE v -Ps) A

C5 : (,P 4 v Ps)

Step 5

C1 : (P1 TRUE) A

C2 :(,P1= FALSE v P2 = TRUE) A

C3 (,P1= FALSE v ,P 3 FALSE v P4 = TRUE) A

C4 : (-P 2 = FALSE v -P 3 FALSE v -Ps) A

Cs: (-P 4 = FALSE vPs)

Stev 6

C1 : (Pi= TRUE) A

C2 (,P 1 = FALSE v P2 TRUE) A

C3 (,Pi = FALSE v ,P 3 = FALSE v P4 = TRUE) A

C4 : (,P 2 = FALSE v ,P 3 = FALSE v ,P 5 = TRUE) A

C5 (-P 4 = FALSE vPs = FALSE)

Figure 4: Simple SAT Example - Deduction

By the end of step 4, C3 and C4 had both been identified as unit clauses. In step 5, P4 is

assigned to TRUE by unit propagation of C3, and Cs is identified as a unit clause. In step 6,

21

P5 is assigned to TRUE by unit propagation, and C5 becomes violated. At this point,

deduction terminates and the conflict analysis algorithm is called.

2.2.4 Conflict Analysis

As stated earlier, a conflict can be resolved by altering the value of one or more search

variables within the conflicting partial assignment. In the simplest case, analyzeConflicto

looks for the latest decision variable whose entire domain (TRUE or FALSE) has not been

searched over and passes this information on to the backtracking and decision algorithms.

A more advanced conflict analysis algorithm will identify and prune search space that

generates the conflict so that the same conflict will not be encountered again [16, 30]. If

the entire domain of all search variables within the conflicting partial assignment has been

searched over, then the conflict cannot be resolved. In these situations, analyzeConflicto

returns false and the theory is unsatisfiable.

Step 6

C1 : (P1=jTRUE) A

C2 : (-,P1 = FALSE v P2 = TRUE) A

T 2 = C3 : (,P1 = FALSE v ,P 3 = FALSE v P4 = TRUE) A

C 4 : (-P 2 = FALSE v -,P 3 = FALSE v -P 5 = TRUE) A

Cs : (-,P 4 = FALSE vP 5 = FALSE)

Stev 7

C 1 : (P1=TRUE) A

C2 : (-,P = FALSE v P2 = TRUE) A

C3 : (-,P 1 = FALSE v -7P3 = FALSE v P4 TRUE) A

C4 : (-,P 2 = FALSE v -P 3 = FALSE v -,P5 = TRUE) A

C5 (-7P4= FALSE v Ps= FALSE)

Figure 5: Simple SAT Example - Conflict Analysis

Figure 5 extends the simple SAT example with a conflict analysis step. This example uses

a simple conflict analysis algorithm that looks for the most recently assigned decision

variable of value TRUE. Recall the decision algorithm used for this example (see section

22

2.2.2) always assigns a decision variable to TRUE before FALSE. Therefore, decision

variables of value TRUE have not been assigned FALSE, while decision variables of value

FALSE have had their entire domain searched over. This conflict analysis algorithm

simply identifies a decision variable assigned to TRUE but does not alter the assignment of

any variables.

C 5 was identified as a violated clause in step 6. The conflict responsible for violating C5 is

{P1 = TRUE; P2 = TRUE; P 3 = TRUE; P 4 = TRUE; P5 = FALSE}. In step 7, P3 is

identified as latest decision variable assigned TRUE, and conflict analysis terminates.

Since P 3 is also the only decision variable in this case, had it's value been FALSE, the

conflict would not be resolvable, and T2 would be unsatisfiable.

2.2.5 Backtracking

Once analyzeConflicto identifies a decision variable, PD, that can resolve the conflict, the

backtracking algorithm-backtrack()-unassigns PD and all propositions assigned after PD.

Backtracking, as we define it, has no control over which point in the search tree SAT

returns to during conflict analysis-that task is left up to analyzeConflicto.

Step 7

C1 : (P1= TRUE) A

C2 (-Pi = FALSE v P2 = TRUE) A

T2= C3 : (-,Pi = FALSE v -P 3 = FALSE v P4 = TRUE) A
C4 : (-,P 2 =FALSE v -P 3 = FALSE v -,P 5 =TRUE) A

Cs : (-,P 4 = FALSE v P5 = FALSE)

Step 8

C1 : (P 1 = TRUE) A

C2 : (-,P1 = FALSE v P2 = TRUE) A

C3 : (-,P 1 = FALSE v -P 3 v P4) A
C4 : (-,P 2 = FALSE v P3 v -,P5) A

Cs : (P4 v P5)
Figure 6: Simple SAT Example - Bactracking

23

Step 8

C1 : (P1 = TRUE) A

C2 : (,P1 = FALSE v P2 = TRUE) A

T 2 = C3 : (-,P = FALSE v -- P 3 v P4) A

C4 : (,P2 = FALSE v P3 v -P 5) A
C5 : (-,P 4 v P)

Step 9

C1 : (P1 = TRUE) A

C2 : (,P1 = FALSE v P2 = TRUE) A

C3 : (-,P = FALSE v ,P3= TRUE v P4) A

C4 : (-P 2 = FALSE v ,P3= TRUE v -IP 5)A

Cs : (-,P 4 v P5)

Step 10

C1 : (Pi= TRUE) A

C2 : (-,P1 = FALSE v P2 = TRUE) A

C3 : (,P1 FALSE v -,P3 = TRUE v P4 = TRUE) A

C4 : (-,P 2 FALSE v -,P 3 = TRUE v -,P5) A
C5 . (-7P4 = FALSE vPs)

Figure 7: Simple SAT Example - Decision 2

Figure 6 demonstrates backtracking in the simple SAT example. In step 8, P3, P4 , and P5

are unassigned, and backtracking terminates.

In Figure 7, the simple SAT example returns to the decision algorithm. Recall that when

called after conflict analysis and backtracking, the decision algorithm takes the decision

variable selected by analyzeConflict(-in this case P3-and assigns P3 to FALSE. In step

9, no unit clauses are generated after P3 is assigned FALSE; therefore, the decision

algorithm selects another unassigned proposition, P4 . In step 10, P4 is assigned to TRUE,

and C5 becomes a unit clause.

Figure 8 presents the final deduction step in the simple SAT example:

24

Step 10

CI: (PI= TRUE) A

C2 (,P1 FALSE v P2 = TRUE) A

T2= C3 : (-,P1 FALSE v -IP 3 = TRUE v P4 = TRUE) A

C4 : (,P 2 = FALSE V ,P3 = TRUE v -P 5) A

Cs : (-P 4 = FALSE vPs)

Step 11

CI : (PI= TRUE) A

C2 :(,P = FALSE v P2 = TRUE) A

C3 :(,P = FALSE v ,P 3 = TRUE v P4 = TRUE) A

C4 : (,P 2 = FALSE v ,P 3 = TRUE v ,P 5 = FALSE) A

CS : (,P 4 = FALSE v P5 = TRUE)

Figure 8: Simple SAT Example - Deduction 2

Step 11 assigns P5 to TRUE. At this point, all variables are assigned, and no conflicts are

found. Therefore, the SAT theory T2 is satisfiable with satisfying assignment {Pi = TRUE;

P2 = TRUE; P3 = FALSE; P4 = TRUE; P5 = TRUE}, though other satisfying assignments

may exist.

25

26

Chapter 3

Unit Propagation Algorithms

Vast amounts of research efforts have been committed to the study of the Boolean

satisfiability (SAT) problem and to the optimization of its solution approach. Chapter 2

provided an overview of the SAT problem and the typical structure of a SAT solver. A

comprehensive study of all aspects of the SAT solution is beyond the scope of our work.

Instead, for the remainder of this thesis, we will focus on the unit propagation algorithm

used by a SAT solver during preprocessing, deduction, and backtracking.

Unit propagation is an effective deduction mechanism that has been widely adapted by

SAT solvers. Although the basic concept behind unit propagation is simple, there are many

variations to its implementation that can lead to vastly different performance results. This

chapter reviews some existing unit propagation algorithms and their relative strengths and

weaknesses. Section 3.1 introduces three different data structures used for unit

propagation: counter-based approach [14], head/tail lists [28, 29], and watched-literals [20],

[31]. A difference in data structures affects the number of clauses a unit propagation

algorithm visits after each variable assignment, and how the algorithm determines whether

or not a clause is unit. Section 3.2 presents two different unit propagation backtracking

algorithms used to retract variable assignments made during unit propagation: stacked-

based backtracking [20] and logic-based truth maintenance system (LTMS) [6, 27]. The

former is a non-incremental algorithm often used with backtrack search. The later is an

incremental algorithm adapted from traditional truth maintenance schemes to handle

propositional clauses used in SAT theories. Sections 3.3 and 3.4 present two incremental

truth maintenance systems, called ITMS [22] and Root Antecedent ITMS [27] respectively.

An ITMS takes a more aggressive incremental approach than the LTMS in order to achieve

higher efficiency by reducing the number of unnecessary variable unassignments. Finally,

27

section 3.5 summarizes these algorithms and why LTMS, ITMS, and watched-literals are

used as the building blocks for the new algorithms presented in Chapter 4.

3.1 Data Structures for Unit Propagation

The logic behind unit propagation was described in the previous section. Figure 9 below

presents the pseudo-code for unit propagation. After a variable assignment, the algorithm

checks each clause containing a literal associated with the variable and propagates if a

clause is unit. Recall that a unit clause contains one unassigned literal, while all remaining

literals evaluate to FALSE. Therefore, if proposition P in Figure 9 is assigned TRUE then

only clauses with negative literals associated with P may become unit (or violated)-the

opposite holds for P = FALSE. Unit propagation terminates when there are no more unit

clauses or when a clause is violated.

propagate(P)
1 if P = TRUE
2 then Cp <- list of clauses with negative literals associated with P
3 else Cp <- list of clauses with positive literals associated with P
4 for i <- 1 to length(Cp)
5 do if Cp[i] is a unit clause
6 then P1 <- proposition in Cp[i] with value UNKNOWN
7 if literal associated with Pi is POSITIVE
8 then P1 < TRUE
9 else P1 - FALSE
10 if propagate(PI)= false
11 then return false
12 if Cp[i] is violated
13 then return false
14 return true
Figure 9: Unit Propagation Pseudo-code

The forward, propagation phase of unit propagation algorithms differ primarily in the

number of clauses searched per propositional assignment (Figure 9 lines 1 to 3) and how a

clause is identified as unit or violated (Figure 9 line 5). The number of clauses searched, in

particular, can greatly affect the performance of the algorithm. An adjacency list data

28

structure [14] such as the counter-based approach looks at all clauses containing literals

associated with a newly assigned proposition. Lazy data structures such as head/tail lists

and watched-literals, on the other hand, conserve computation time by only looking at a

subset of those clauses. The details of these algorithms are presented in sections 3.1.1

through 3.1.3 below.

3.1.1 Counter-based Approach

The counter-based approach [14] is one of the earlier data methods used to identify unit and

violated clauses and is a good benchmark algorithm to compare the more recent lazy data

structures against. While the earliest algorithms simply recheck every literal in a clause to

determine if the clause is unit, the counter-based method stores with each clause its current

number of TRUE literals and its current number of FALSE literals; the number of

unassigned literals in the clause can be deduced from this information.

Figure 10 contains pseudo-code for the counter-based approach. When a proposition P is

assigned, all clauses with literals associated with P update their number-of-FALSE-literals,

N F, or number-of-TRUE-literals, NT, depending on whether the associated literal is positive

or negative (Figure 10 lines 8 and 22). For example, consider clauses C = (-,P 1 v P2 v P3)

and C2 = (-P 1 v P2), where C1 and C2 are part of some larger theory. The total number of

literals in C1 and C2 are N1 = 3 and N2 = 2 respectively. Initially, P1, P2, and P3 are all

unassigned; therefore, counters N T = NT2 = NF1 = NF2 0. Now, assume unit propagation

of some other clause in the theory led to the assignment P1 = FALSE. Since, C1 and C2
Feach contain a positive instance of P1, which evaluates to FALSE after the assignment, N 1

and NF2 become 1. Next, if P2 is assigned TRUE due to unit propagation of another clause
F Fin the theory, then NF1 = N2= 2 because C1 and C2 each contain a negative instance of P2

which evaluates to FALSE after the assignment; the other counters N T1 and NT2 remains 0.

A clause is unit if the number-of-TRUE-literals equals 0 and the number-of-FALSE-literals

is one less than the total number of literals in the clause (line 12). A clause is violated if

29

the number-of-TRUE-literals is 0 and the number-of-FALSE-literals equals the total

number of literals in the clause (line 19). For the example above, after the assignments Pi

= FALSE and P2 = TRUE, counters for C1 and C2 took on the values NT1 = NT2 0 and NF1

= N2 = 2. Since, NT1 = 0 and NF1 = 2 is one less than Ni = 3, C1 is a unit clause. C2 on the

other hand is violated because NT2 = 0 and NF2 = N2 = 2.

propagate(P)
1 ifP=TRUE
2 then CpT E list of all clauses with positive literals associated with P
3 CPF - list of all clauses with negative literals associated with P
4 else Cpl T list of all clauses with negative literals associated with P
5 CpF 4 list of all clauses with positive literals associated with P
6 noConflict 4- true
7 for i <- 1 to length(CpF)
8 do increment number-of-FALSE-literals in CpF[i] by 1
9 NTi k- number-of-TRUE-literals in CpF[i]
10 NFi < number-of-FALSE-literals in CpF[i]
11 Ni <- total-number-of-literals in CPF[i]
12 if NTi = 0 and NFi =Ni- 1
13 then P1 <- proposition in CpF[i] with value UNKNOWN
14 if literal associated with P1 is POSITIVE
15 then P1 <- TRUE
16 else P1 4- FALSE
17 if propagate(PI) - false
18 then noConflict <- false
19 if NTi = 0 and NFi = Ni
20 then noConflict <- false
21 for j4- 1 to length(CpT)
22 do increment number-of-TRUE-literals in CpF[i] by 1
23 return noConflict
Figure 10: Counter-based Approach Pseudo-code

When a proposition gets unassigned due to search backtrack or clause deletion, all clauses

containing associated literals must update their counters. For example, if Pi and P2 are

unassigned, C1 and C2 must reset their counters so that N F1 = N F2 = 0. Maintaining the

counter values during variable unassignment requires roughly the same work as variable

assignment [31].

30

The specific counters used for this approach may vary without affecting the performance of

the algorithm. For example, the number of false literals can be replaced by the number of

unknown literals. In this case, a clause would be unit if the number of true literals equals

zero and the number of unknown literals equals one; a clause would be violated if the

number of true literals equals zero and the number of unknown literals equals zero.

However, regardless of the specific counters used, this approach requires that an update be

performed to every clause associated with a newly assigned or unassigned proposition.

3.1.2 Head/Tail Lists

An alternative approach for efficiently detecting unit and violated clauses is to use head/tail

lists [28, 29, 31]. A key contribution of head/tail lists is the notion that a unit propagation

algorithm need not search through all clauses containing a newly assigned proposition to

identify all unit and violated clauses. This algorithm is not used in this thesis as a

benchmark or part of the new algorithms. However, its details are presented below because

it shares many common traits with the watched-literals approach in section 3.1.3.

A head/tail lists algorithm maintains pointers to two literals for each clause with two or

more literals. Initially, all literals are unassigned. The head literal is the first literal in a

clause, and the tail literal is the last literal. For example, given clause C1 = (P 1 v ,P2 v P3

v -P 4) that is part of some larger theory, P1 equals the head literal, and -,P 4 equals the tail

literal of C1 .

A clause cannot be unit or violated if it contains at least two unassigned literals. Therefore,

no matter what values are assigned to propositions P2 and P3, C1 can neither be unit nor

violated as long as its head literal, P 1, and its tail literal, -,P 4 , are unassigned. For this

reason, a clause will only need to be visited during unit propagation if a newly assigned

proposition is associated with the head or tail literals of the clause. Furthermore, only

instances where the head/tail literal evaluates to FALSE are considered, because if either P1

or ,P 4 evaluates to TRUE, then C1 cannot be unit or violated.

31

Figure 11 presents the pseudo code for unit propagation with head/tail lists. When a

proposition P is assigned, the algorithm only looks at the list of clauses, Cp, where each

Cp[i] contains a head or tail literal associated with P and that literal evaluates to FALSE

(lines 1 to 3). Cp is on average shorter than the list of all literals by a ratio of 1:average-

number-of-literals-per-clause.

propagate(P)
1 ifP=TRUE
2 then Cp <- list of clauses with negative head/tail literals associated with P
3 else Cp <- list of clauses with positive head/tail literals associated with P
4 noConflict <- true
5 for i <- 1 to length(Cp)
6 do LH <- head literal in Cp[i]
7 LT <- tail literal in Cp[i]
8 for each L between LH and L starting from LH LT
9 do if L = TRUE
10 then break
11 if L = UNKNOWN and L L/LH
12 then L is the new head/tail literal
13 insert Cp[i] into L's head/tail list
14 break
15 if L = L/L = UNKNOWN
16 then P1 <- proposition associated with L
17 if L is POSITIVE
18 then P1 4 TRUE
19 else Pi 4 FALSE
20 if propagate(Pi)= false
21 then noConflict <- false
22 ifL=LT/LH =FALSE
23 then noConflict 4- false
24 return noConflict
Figure 11: Head/Tail Lists Pseudo-code

For head literal LH in clause Cp[i] that is associated with P and evaluates to FALSE, the

algorithm searches for the first unknown literal in Cp[i] to be the new head literal (lines 11-

14). However, if the search first encounters a TRUE literal, then Cp[i] is satisfied and can

no longer be unit or violated, so a new head literal is not needed (lines 9-10). For example,

given C1 from above, assume that at some point P2 had been assigned to TRUE so that C1 =

(P1 v -,P 2 = FALSE v P3 v -,P 4). (Since -,P 2 is not a head/tail literal of C1, C1 was not

32

visited during P2's assignment.) If Pi is assigned FALSE, the head/tail lists algorithm will

search for another head literal starting from literal -,P 2. Since -,P 2 = FALSE, the search

moves on to P3. P3 UNKNOWN; therefore, P3 becomes the new head literal of C1 : C1 =

(P1=FALSE v -,P 2 FALSE v P3 v -,P 4). Had -,P 2 = TRUE, there would be no need to

find P3 .

Under this scheme Cp[i] is unit if the head literal equals the tail literal and the associated

proposition is unassigned (lines 15-21). Cp[i] is violated if the head literal equals the tail

literal and the associated proposition evaluates to FALSE (lines 22-23). For example, if

unit propagation of some other clause led to the assignment P4 = TRUE, then C1 =

(P1=FALSE v -,P 2 = FALSE v P3 v -P 4 = FALSE). Since -,P 4 is the tail literal in C1,

head/tail lists searches for another unassigned literal. In this case, the first literal

encountered is the head literal P3 . P3 is unassigned, and therefore, C1 is a unit clause. Had

unit propagation of another clause assigned P3 to FALSE, then C1 would be violated.

There is no need to search through literals P1 and -,P 2 because they are located before the

head literal. Since the head and tail literals are the first and last unassigned literals in a

clause and are not changed when assigned TRUE, all other literals not in-between the head

and tail must evaluate to FALSE.

Head/tail pointer must also be updated during variable unassignment. For example, if P1

through P5 are all unassigned, C1 = (P1 v -,P 2 v P3 v -P4). However, since Pi is

unassigned, P3 is no longer first unassigned literal in the clause. Therefore, the head

pointer must be reverted back to P1 so that C1 = (P1 v -,P 2 v P3 v -,P 4). The workload for

updating head/tail lists during variable unassignment is roughly the same as variable

assignment [31].

3.1.3 Watched-literals

The watched-literals scheme is one of the most recently developed SAT data structures [20,

31]. Like the head/tail lists, watched-literals is a lazy data structure that allows unit

33

propagation to only search through a subset of the clauses containing a newly assigned

proposition. And like the head/tail lists, the watched-literals scheme places special

emphasis on two literals per clause, called the watched literals. However, in this case the

watched literals can be any two non-false literals in the clause. Also, when a watched

literal is assigned FALSE, the algorithm may select any non-FALSE literal to replace the

watch. Due to this flexibility in placement, the watched literals need not be updated after

variable unassignments, an advantage over the head/tail lists. For example, recall C1 =

(P1=FALSE v -,P 2 = FALSE v P3 v -P 4 = FALSE) from section 3.1.2 where the head and

tail literals are in bold. When propositions P1 through P5 were unassigned, the head literal

must be reverted back to P1 . However, with the watched-literals scheme, P3 and -,P 4 can

remain as the watched literals even if all propositions are unassigned so that C1 = (P1 v ,P2

v P3 v ,P4).

Figure 12 presents the pseudo-code for the watched-literals algorithm. When a watched

literal is assigned FALSE, the algorithm attempts to shift the watch to any non-false,

unwatched literal in the clause if one exists by searching through all literals in the clause.

The watched literal remains FALSE only if no such unwatched literal can be found (line 8).

For example, C1 = (P1 v -P 2 v P3 v -,P 4), where all propositions are unassigned and

literals P 3 and -,P 4 are watched. If unit propagation of some other clause leads to the

assignment P4 = TRUE, then watched literal -,P 4 becomes FALSE. A watched-literals

scheme searches for any unwatched, non-false literal-in this case PI-to replace the

watch, so that C1 = (P 1 v -,P 2 v P 3 v -,P 4 = FALSE). Next, assume P 2 is assigned to

TRUE. Since, -P2 is not watched in C1, C1 is not visited after P2 's assignment. Finally,

assume P3 is assigned to FALSE. Again, the algorithm searches for any unwatched, non-

false literal in C1. Had P2 been assigned FALSE so that -,P 2 = TRUE, -,P 2 would have

been selected as the new watch. However, since all unwatched literals in C1 are FALSE, P 3

remains watched so that C 1 = (P 1 v -P 2 - FALSE v P3 = FALSE v -,P 4 = FALSE).

Locating a new watched literal generally takes more work then locating a new head/tail

literal because head/tail literals need not consider literals not between the head and tail

34

while watched literals must consider all literals in a clause each time a watch needs to be

replaced.

propagate(P)
1 if P = TRUE
2 then Cp <- list of clauses with negative watched literals associated with P
3 else Cp <- list of clauses with positive watched literals associated with P
4 noConflict <- true
5 for i <- 1 to length(Cp)
6 do W1 <- watched literal in Cp[i] associated with P
7 W2 <- other wathed literal in Cp[i]
8 replace W1 with non-FALSE, unwatched literal if possible
9 if W1 cannot be replaced and W2 = UNKNOWN
10 then P1 - proposition associated with W2

11 if W2 is POSITIVE
12 then P1 (TRUE
13 else Pi * FALSE
14 if propagate(PI)= false
15 then noConflict - false
16 if W1 cannot be replaced and W2 = FALSE
17 then noConflict <- false
18 return noConflict
Figure 12: Watched Literals Pseudo-code

Under the watched literals scheme, a clause is unit if one watched literal is FALSE and the

other unassigned (line 9). A clause is a violated if both watched literals are FALSE (line

16). Therefore, after P3's assignment, C1 = (P1 v -,P 2 = FALSE v P3 = FALSE v ,P4 =

FALSE) became a unit clause. If unit propagation of some other clause leads to the

assignment P1 = FALSE, then C1 would be violated.

As stated earlier, watched-literals has the advantage over head/tail lists in that the watched

literals need not be updated during backtracking. However, this is dependent on the

condition that the last literals assigned during propagation must be the first unassigned

during backtracking. If this condition is violated then there might be clauses where the

watched literals are FALSE while some non-watched literals are unassigned. For example,

C1 = (P1 = FALSE v -,P 2 = FALSE v P3 = FALSE v -,P 4 FALSE). Recall that the

variables were assigned in the following order: P4 = TRUE, P2 TRUE, P3 = FALSE, and

P1 = FALSE; so P1 is the proposition last assigned. If we unassign the propositions P1, P3,

35

and P4 in order, then C1 becomes (P1 v -P2 = FALSE v P3 v -,P 4); in this case, the

conditions for watched literals are met because the watched literals P1 and P3 are both

unassigned. However, if P3 and P4 are unassigned without unassigning P1 then C1 becomes

(P1 = FALSE v -,P 2 = FALSE v P3 v -,P 4); in this case, the watched-literals rules are

violated because Pi = FALSE is watched while there exists unassigned literal -,P 4 in the

same clause.

Backtracking in reverse order eliminates the need to update watched literals during

backtracking for the following reasons:

1. If a watched literal was originally TRUE or unassigned, then it cannot become

FALSE during backtracking, and thus need not be updated;

2. If a watched literal was originally FALSE, then it must be assigned AFTER all

unwatched literals in the same clause, because a FALSE literal can remain watched

only if all unwatched literals in the clause are already FALSE. Therefore, as long

as backtracking unassigns variables in reverse order, FALSE watched literals will

become unassigned before the unwatched literals, and therefore, need not be

updated.

In summary, a watched-literals scheme has the advantage over a counter-based based

approach because the former only looks at a subset of clauses associated with a newly

assigned proposition while the latter must update all clauses containing that proposition. It

also has the edge over head/tail lists because, unlike head/tail literals, the watched literals'

pointers do not need to be update during backtracking. One disadvantage of the watched-

literals is that updating watched literals pointers requires more work than updating head/tail

literals because watched literals may be replaced with any unwatched literal in a clause

while head/tail literals could only be replaced with literals in-between the head and tail

literals. However, empirical results show that despite this drawback, a watched-literals

scheme still out performs both the head/tail lists and the counter-based approach across a

variety of SAT problems [14].

36

3.2 Retracting Assignments made by Unit

Propagation

Within a SAT solver, assignments previously asserted by a unit propagation algorithm may

latter be retracted due to one of two situations:

1. A clause that supports a proposition is deleted from the theory. A clause C supports

a proposition P if the value of P resulted from unit propagation of C. If C1 = (P 1)

supports P 1 = TRUE, and C1 is deleted from the theory, then P1 must be unassigned.

As a result, all propositions dependent on Pi must also be unassigned. We say that

a proposition P' is dependent on P if P' is assigned through unit propagation of a

clause containing P; propositions dependent on P are also dependent on P. For

example, if Pi = TRUE and C2 = (,P1 = FALSE v P2), then unit propagation of C2

will assign P 2 to TRUE. Hence, the assignment P 2 = TRUE is dependent on P1 =

TRUE. When P1 is unassigned, C1 (-P 1 = UNKNOWN v P2 = TRUE) will no

longer be able to support P 2, and P2 must be unassigned. And when P2 is

unassigned, all variables dependent on P2 must be unassigned as well.

2. A decision variable PD is unassigned. (Recall, a decision variable is a variable

whose truth-value was decided explicitly by the search and not through unit

propagation.) When this happens, all propositions dependent on PD must be

unassigned.

Section 3.2 provides two algorithms used to retract unit propagation: stack-based

backtracking and LTMS. The former is a non-incremental algorithm that will be used as a

baseline benchmark for our new algorithms; and the latter is an incremental algorithm used

as a component of the new LTMS with watched-literals algorithm introduced in section

4.1.

37

3.2.1 Stack-based Backtracking

The stacked-based backtracking algorithm is used by SAT solvers to retract unit

propagation assignments during tree search when the search algorithm removes

assignments to decision variables [20]. The key to stack-based backtracking is the level

within the search tree that we call the decision level. All propositions assigned during

preprocessing belong to decision level zero; propositions assigned during and after the first

search decision, including the decision variable, belong to decision level one and so on.

All assignments made after a new decision PD and before the next decision PD' are the

result of unit propagation of PD. Therefore, if PD is the decision variable at decision level

DL, then all other assignments made at DL must be dependent on PD and should be

unassigned when the value of PD changes.

propagate(P)
1 if P = TRUE
2 then Cp <- list of clauses with negative literals associated with P
3 else Cp k- list of clauses with positive literals associated with P
4 for i k- 1 to length(Cp)
5 do if Cr[i] is a unit clause
6 then P1 k- proposition in Cp[i] with value UNKNOWN
7 if literal associated with P1 is POSITIVE
8 then Pi <- TRUE
9 else Pi k- FALSE
10 DL <-current decision level
11 push(PI, assignmentStackList[DL])
12 if propagate(Pi)= false
13 then return false
14 if Cp[i] is violated
15 then return false
16 return true
Figure 13: Stack-based Backtracking Unit Propagation Pseudo-code

Figure 13 provides the unit propagation pseudo-code modified to accommodate stack-

based backtracking. The only difference between this algorithm and the one presented in

Figure 9 are lines 10-11, where a newly assigned proposition P1 is pushed onto the

assignment stack corresponding to the decision level at which P1 is assigned.

38

Figure 14 presents the pseudo-code for stack-based backtracking. After some conflict

resolution algorithm decides the decision level, DL, to retract to, backtrack(DL) simply

unassigns all propositions assigned during a search level greater than or equal to DL.

backtrack(DL)
1 l> assignmentStackList[i] is the stack of all assignments at decision level i
2 for i E- length(assignmentStackList) to DL
3 do while not empty(assignmentStack[i])
4 do P *-top(assignmentStack[i])
5 P - UNKNOWN
6 pop(assignmentStack[i])
7 remove(assignmentStackList[i], assignmentStackList)
Figure 14: Stack-based Backtracking Pseudo-code

This algorithm can only be used for chronological backtracking. Since there is no way to

identify the relationship between propositions and supports, decision levels must be

backtracked in sequence to maintain soundness. For example, clause C1 = (-,P 1 v P2 v P 3)

is part of some larger theory. Assume Pi is assigned TRUE by unit propagation of some

other clause at DL 3. At DL 4, P2 is assigned FALSE, and C1 = (-,P1 = FALSE v P2 =

FALSE v P3) becomes a unit clause. Unit propagation of C1 at DL 4 will assign P3 to

TRUE. Therefore, P1 is on the assignment stack for DL 3, and P2 and P 3 are on the

assignment stack for DL 4. If the search is backtracking chronologically, unassigning

variables at DL 4 will revert C1 to (-,P = FALSE v P 2 v P 3). However, if backtracking

takes place out of order, and DL 3 is backtracking while DL 4 is not, then C1 becomes (-,P 1

v P 2 = FALSE v P 3 = TRUE), even though, without Pi = TRUE, C1 cannot support P3

TRUE.

As mentioned earlier, stack-based backtracking is a non-incremental algorithm. When a

clause is deleted from the theory, the stack-based method has no way of isolating the

dependents of this clause; therefore, the entire assignment stack must be backtracked. For

example, clauses C2 = (1 P1), C3 = (P 1 v P2), and C 4 = (P3) are part of a theory. Initially

unit propagation during preprocessing assigns Pi = FALSE, P 3 = TRUE, and P2 = TRUE.

39

P 2 = TRUE is dependent on Pi but P3 is not. However, with the stacked-based algorithm,

the stack at DL 0 simply contains the propositions P 1, P2, and P 3 without any information

on the dependency between these assignments. Therefore, if C2 (or any other clause) is

removed from the theory, all three propositions P 1, P2, and P 3 must be unassigned, even

though P 3 should still be assigned to TRUE without C2.

3.2.2 Logic-based Truth Maintenance System

LTMS is an incremental unit propagation algorithm that can selectively unassign a single

proposition and all its dependents, while leaving the rest of the assignments unchanged [6,

27]. Although LTMS refers to both the propagation and unassignment components of unit

propagation, its key innovation lies within the unassign element, which uses clausal

supports to identify dependents of a proposition.

The main ideas behind LTMS are detailed below. First, section 3.2.2.1 explains support in

more detail and defines a well-founded support which is crucial for all TMS algorithms.

Next, section 3.2.2.2 introduces the idea of how a proposition that has lost its supporting

clause can be resupported by another clause. Finally, section 3.2.2.3 details the LTMS

algorithm with unit propagation, variable unassignment, and resupport.

3.2.2.1 Well-founded Support

Supports are the backbone of truth maintenance systems and must be sound, i.e. well-

founded, at all times. In plain words, a support C is the reason why supported proposition

P holds its current assignment V. And it is important to ensure that this reason is valid

before assigning P and remains valid while P = V. If a support becomes invalid, the

supported proposition must be immediately unassigned.

C is a well-founded support for P =V if:

40

1. all other literals in C are FALSE,

2. the literal of P in C evaluates to TRUE, and

3. none of the other propositions in C depends on P.

The first two conditions are naturally satisfied by unit propagation, but may be violated

during variable unassignment when a proposition in C becomes unassigned. If this

happens, P will lose the reason for its assignment and must be unassigned as well. The

third condition is more subtle and is designed to prevent loops in the support. For example,

if C1 = (-P 1 v P2) supports P2 = TRUE and C2 = (-P 2 v P1) supports P1 = TRUE, then the

two clauses form a loop support where P1 depends on P2 and P 2 depends on P1 .

Loops supports do not appear during unit propagation when all variables are initially

unassigned. If P1 and P2 are unassigned, then neither C1 nor C2 could support either

variable. One of P1/P 2 must be assigned before C1 or C2 becomes unit, but then P1/P 2

would be supported by some clause other than C1 and C2, and therefore, a loop would not

be formed. However, if not careful, support loops can be introduced when resupporting a

proposition.

3.2.2.2 Resupport

Resupport is built upon the idea that there are potentially multiple clauses that can provide

well-founded support for proposition P. Therefore, if P's current support C is deleted from

the theory, some other clause C' may still be able to support P's assignment, which means P

does not need to be unassigned. However, this process of reassignment is complicated by

the possibility of loop supports.

For example, in Figure 15, theory T3 initially contains clauses C1 = (P 1) and C2 = (-,P v

P2). Unit propagation assigns P1 to TRUE with C1 as its support and P 2 to TRUE with C2

41

as its support. Next, an incremental change to T3 deletes Pi's support C1 and adds clauses

C3 = (-P2 v P1) and C 4 = (P2).

Unit propagation

T 3 = C1 : (P1) A -> C1 : (P1) 4 Pi = TRUE A

C2 : (,IPi V P2) ^ C2 : (-,P 1 v P2) 4 P2 = TRUE A

Context Switch
?? + P1 = TRUE

T3' = T3 -C1+ C3 + C4 = C2 : (-Pi v P2) + P2 TRUE A
C3 : (-,P 2 V P1) A
C4 : (P2) A

Unassign
C2 : (,P1 V P2) A
C3 : (P2 v P1) A
C4 : (P2) A

Resuport

C2 : (-,PI v P 2) A

C 3 : (,P2 v P 1) A P1 - TRUE

C4 : (P 2) A + P2 = TRUE

Figure 15: Loop Support and Conservative Resupport Example

At first glance C3 should be able to resupport P1 because its literal P1 evaluates to TRUE

while the other literal -,P 2 evaluates to FALSE. However, doing so will introduce a loop

support between C2 and C3 . Since the LTMS cannot identify loop supports, it employs a

conservative resupport strategy that first unassigns P1 and its dependent P2 before

resupporting P 2 with C4 and P1 with C3.

42

3.2.2.3 Incremental Unit Propagation with Conservative

Resupport

Figure 16 presents the pseudo-code for unit propagation with LTMS. It is identical to the

unit propagation pseudo-code presented in Figure 9 except for the addition of line 10 where

clause Cp[i] is recorded as the support for a newly assigned proposition P1 .

propagate(P)
1 if P=TRUE
2 then Cp <- list of clauses with negative literals associated with P
3 else Cp <- list of clauses with positive literals associated with P
4 for i <- 1 to length(Cp)
5 do if Cp[i] is a unit clause
6 then P1 <- proposition in Cp[i] with value UNKNOWN
7 if literal associated with P1 is POSITIVE
8 then P1 (TRUE
9 else Pi <- FALSE
10 record Cp[i] as the support for P1
11 if propagate(PI)= false
12 then return false
13 if Cr[i] is violated
14 then return false
15 return true
Figure 16: LTMS Unit Propagation Pseudo-code

Figure 17 presents the pseudo-code used by LTMS to unassign a proposition and its

dependents. The LTMS unassign algorithm is essentially the inverse of forward unit

propagation. When a proposition P is assigned, unit propagation searches through the list

of clauses containing P for unit or violated clauses. Likewise, when proposition P is

unassigned, LTMS searches the list of clauses Cp containing P for any clause Cp[i] that

supports some other proposition P1. Since P is unassigned, Cp[i] can no longer provide

support for P1; therefore, P1 must be unassigned (lines 5-6). For example, recall from

section 3.2.1 that clause C1 = (-,P 1 v P2 v P3) is part of some larger theory. P1 was

assigned TRUE by unit propagation of some other clause at DL 3, P2 was assigned FALSE

at DL 4, and P3 was assigned TRUE by unit propagation of C1 = (-,P 1 = FALSE v P2 =

FALSE v P3) at DL 4; thus C1 is the support for P3. If the search is backtracking

43

chronologically, unassigning the decision variable at DL 4 will lead to the unassignment of

P2, since P2 results from unit propagation of that decision variable. When P2 is unassigned,

LTMS searches through clauses containing P2 . Among those clauses is C1 which provides

the support for P3. Since P2 was unassigned, C1 can no longer support P3, so P3 is

unassigned as well, and C1 becomes (-P 1 = FALSE v P2 v P3).

unassign(P)
1 Cp <- list of clauses with literals associated with P
2 P <- UNKNOWN
3 for i <- 1 to length(Cp)
4 do if Cp[i] supports some proposition P1
5 then remove Cp[i] as Pi's support
6 unassign(PI)
7 if Cp[i] is a unit clause
8 then insert(Cp[i], unitClauseList)
9 while not empty(unitClauseList)
10 do Cu<-front(unitClauseList)
11 if C is a unit clause
12 P(-unassigned variable in Cu
13 assign P so it's literal in Cu is TRUE
14 propagate(P)
Figure 17: LTMS Unassign Pseudo-code

Furthermore, a LTMS can be used even if backtracking is not chronological. If the

decision variable at DL 3 is unassigned when the decision variable at DL 4 is not, then Pi

will be unassigned while P2 remains FALSE. However, when LTMS searches through

clauses containing P 1, C1 will still be identified as the support for P 3. Since, P1 was

unassigned, C1 will no longer be able to support P3, so P 3 will be unassigned and C1

becomes (-,Pi v P2 = FALSE v P3).

While searching through clauses containing P during unassign(P) (line 3), LTMS also

stores any unit clause C2 containing P into a list of unit clauses (lines 7-8); this unit clauses

list is used to perform conservative resupport (lines 9-14) of P after P and its dependents

are unassigned. Since P is unassigned, any unit clause Cu containing P must contain an

unassigned literal associated with P while all other literals are FALSE. After P and all its

44

dependents are unassigned, if C is still unit (line 11), then no other literal in Cu depends on

P, and Cu can safely resupport P without introducing loop supports.

LTMS can incrementally perform changes to a theory where clauses are added and deleted

in no specific order. Unlike the stacked-based approach that simply unassigns all

propositions at DL 0, the LTMS saves computational effort by only unassigning

propositions dependent on the deleted clauses. However, to do this a LTMS must search

through clauses containing an unassigned variable, while a stacked-based approach need

only unassign the value of a variable without worrying about its dependents. For example,

clauses C2 = (-P 1), C3 = (P1 v P2) are part of a theory. Initially, unit propagation during

preprocessing assigns P1 = FALSE with C2 as its support and then P2 = TRUE with C3 as

the support. When a clause C4 = (P3) is added to the theory, unit propagation will likewise

assign P3 = TRUE with C4 as its support. If C2 is deleted from the theory, P1 that is

supported by C2 will be unassigned. Next, LTMS looks at clauses containing Piand

identifies C3 as the support for P2. Since P1 is unassigned, P2 loses its support and must be

unassigned as well. C4 , on the other hand, does not contain P1 or P 2 and will not be visited

by unassign; therefore, P3 will retain its assignment after C2 is deleted.

3.3 Incremental Truth Maintenance System

As stated in section 3.2.2, the LTMS employs a conservative resupport strategy guaranteed

to prevent loop supports. However, conservative resupport is not efficient because it could

potentially unassign a large number of propositions that are soon reassigned the same

values. For example, in Figure 18, either clauses C1 and C2 or clauses C3 and C4 can be

propagated to support the assignment P1 = TRUE; and propagating Pi = TRUE leads to a

large number of variable assignments. Arrows 1, 2, and 3 are used to indicate the supports

and dependencies of variable assignments. Assume initially, clauses C1 and C2 are part of

some larger theory T4 and supports the assignments P 2 = TRUE and P1 = TRUE (arrow 1)

which leads to a large number of variable assignments (arrow 3). With conservative

resupport, if a context switch deletes C1 and C2 from the theory while adding clauses C3

45

and C4, an LTMS will first unassign P2, P1 (delete arrow 1), and all their dependents (delete

arrow 3), then propagate C3 to assign P3 to TRUE, propagate C4 to resupport P1 = TRUE

(insert arrow 2), and finally reassign Pi's former dependents (reinsert arrow 3).

T4 = T4'=T4-C1 -C2+C3 +C4=

C1 : (P2)^A C3 : (P3)^A

C2 : (-,P2 v Pi)A C4 : (-IP3 v PI)A

1/2

P1 = TRUE

3
[Large number of assignments dependent on P1]

Figure 18: Conservative vs Aggressive Resupport Example

In this example, the values of P1 and its dependents are the same before and after the

context switch. Therefore, it is desirable to avoid unassigning and reassigning them during

the context switch.

The ITMS [22] is a derivative of LTMS used to reduce these unnecessary changes to

variable assignments. We use this algorithm as a building block for the ITMS with watch-

literals algorithm used in Chapter 4.

Unlike the LTMS whose key innovation lies in its variable unassignment algorithm, an

ITMS makes significant alterations to both the forward propagation and backward

unassignment components of unit propagation. During a context switch, an ITMS first

propagates newly added clauses before unassigning propositions supported by the deleted

clauses; this increases the chance of resupporting a proposition. It also employs an

aggressive resupport strategy that immediately ressuports a variable assignment (if

possible) without unassigning its dependents. For the same example in Figure 18, during

the context switch, an ITMS will first propagate C3 to assign P3 to TRUE. At this point, C4

46

= (-P3 = FALSE v P1 = TRUE) could provide well-founded support for P1 = TRUE if

needed; however, since P1 is already supported by C2, propagation terminates. When C1

and C2 are removed from the theory, the algorithm removes C2 as P 1's support (delete

arrow 1) and searches for a new support. Since C4 can provide well-founded support for

P 1, it is set as Pi's new support (insert arrow 2). During this process, the values of P1 and

its dependents remain unchanged.

There are two difficulties faced by the propagate-before-unassign and aggressive resupport

algorithms: loop supports and mutual inconsistencies between added and deleted clauses.

Sections 3.3.1 and 3.3.2 detail these problems and their solutions, called propagation

numbering and conflict repair respectively; and section 3.3.3 contains the detailed

algorithm for aggressive resupport.

3.3.1 Propagation Numbering

Recall from section 3.2.2 that directly resupporting a proposition without unassigning its

dependents could lead to loop supports. In order to resolve this problem, the ITMS

introduces a depth-first numbering scheme for propagation assignments. Each proposition

has an associated propagation number, Np, whose value is determined by the following

rules:

1. For unassigned propositions, Np = 0,

2. For decision variables, N = 1,

3. And for propositions whose assignment is supported by a clause C, Nr > 1 +

max(propagation numbers of other propositions in C)

If the assignment of P2 is dependent on P1 then P2 's propagation number must be larger

then Pi's. Therefore, as long as these rules are observed, P2 can never provide support for

P1, thus avoiding the possibility of loop supports.

47

3.3.2 Conflict Repair

As stated earlier, in order to maximize the chances of resupporting a proposition, an ITMS

first propagates newly added clauses before unassigning propositions supported by deleted

clauses. However, if the new and deleted clauses are mutually inconsistent then

propagating the new clauses using unit propagation will lead to conflicts that would

normally terminate propagation. For example, T5 in Figure 19 is the same as T4 in Figure

18 except for the addition of C5 . Initially, unit propagation of C 1, C2, and C5 leads to the

assignments P2 = TRUE, P1 = TRUE, (arrow 1) and the assignment of its dependents

(arrow 3), and P3 = FALSE. Next, a context switch adds clauses C3 and C4 while removing

clauses C1, C2, and C5 so that T5' = T5 - C1 - C2 + C3 + C4 - Cs. Here, without unassigning

P3, C3 = (P3 FALSE) is violated thus terminating unit propagation. Since C4 = (,P3 =

TRUE v P1 TRUE) cannot provide well-founded support for P 1, when C2 is deleted, P1

and its dependents must be unassigned (delete arrows 1 and 3). When Cs is deleted and P3

is unassigned, C3 becomes a unit clause and is propagated to support P3 = TRUE. Next, C4

is propagated to support P1 = TRUE (insert arrow 2). At this point, unit propagation can

reassign all former dependents of P1 (reinsert arrow 3).

T5 = T5'=T 5 - C 1 - C 2 + C3 + C4 - C=

C1 : (P2)A C3 : (P3)A

C2 : (-,P 2 v PI)A C 4 : (-,P 3 v PI) A

Cs: (-P 2 V -P 3)A ...

1 2

Pi = TRUE

3
[Large number of assignments dependent on P1]

Figure 19: Mutual Inconsistency Example

48

In this example, the value of P, and its dependents are assigned the same values before and

after the context switch. However, due to the mutual inconsistency between C1, C5, and C3,

P1 could not be resupported aggressively leading to the unassignment and reassignment of a

large number of variables.

In order to circumvent this problem and fully propagate added clauses prior to deletion, the

ITMS introduces a conflict repair technique that allows for propagation of not only unit but

violated clauses as well. Figure 20 contains pseudo-code for propagation with ITMS, and

Figure 21 presents the pseudo-code for conflict repair.

propagate(P)
1 if P = TRUE
2 then CPT < list of clauses with positive literals associated with P
3 CpF k- list of clauses with negative literals associated with P
4 else CrF <- list of clauses with positive literals associated with P
5 CP T- list of clauses with negative literals associated with P
6 noConflict <- true
7 for i - I to lenth(CPF)
8 do if Cp [i] is a unit clause
9 then P1 <- proposition in Cp F[i] with value UNKNOWN
10 if literal associated with P1 is POSITIVE
11 then P1 <- TRUE
12 else P1 k- FALSE
13 record CPF[i] as the support for P 1
14 Nei <- 1 + max(propagation # of other propositions in CpF[i])
15 if propagate(PI)= false
16 then noConflict <- false
17 if CPF[i] is violated
18 then if not repairConflict(CpF[i])
19 then noConflict k- false
20 if (P has been flipped)
21 then for j <- 1 to length(CpT)
22 do if CP TU] supports a proposition
23 then P1 <- proposition supported by CpT[j]
24 unassign(PI)
25 return noConflict
Figure 20: ITMS Propagation Pseudo-code

When a violated clause C is encountered (Figure 20 line 17), the ITMS attempts to repair C

by flipping the truth assignment V of a proposition P in C so that P's literal evaluates to

49

TRUE after the assignment change (Figure 21 lines 3-5). After flipping P's value from V

to -,V, C becomes P's new support (Figure 21 line 7), and P's propagation number is

changed to 1 + max(propagation numbers of other propositions in C) (Figure 21 line 6).

Once P's assignment changes, propositions dependent on P = V are unassigned (Figure 20

lines 20-24) and the assignment P =-,V is propagated (Figure 20 lines 7-19).

repairConflict(C)
1 P <- proposition in C with largest propagation number
2 if P has not been flipped before
3 then if P = TRUE
4 then P k- FALSE
5 else P <- TRUE
6 N <- 1+ max(propagation # of other propositions in C)
7 record C as the support for P
8 if (propagate(P) = false)
9 then return false
10 return true
11 else return false
Figure 21: ITMS Conflict Repair Pseudo-code

P must meet the following conditions for conflict repair to take place:

1. P has the highest propagation number in C; ties are allowed (Figure 21 line 1);

2. P's value has not been flipped during this context switch (Figure 21 line 2).

The first condition ensures that supporting P with C does not introduce a loop support.

With the propagation numbering system, if P' is dependent on P, then its propagation

number must be larger than that of P's. Thus, if all other propositions in C have

propagation numbers less than or equal to P's, then none of those propositions are

dependent on P, thus eliminating the possibility of a loop support. Furthermore, a tie in

propagation numbers does not prevent C from supporting P because P's propagation

number is updated after its assignment change.

The second condition prevents the algorithm from falling into an infinite loop where the

same proposition is flipped back and forth. Since a proposition can only be repaired once

50

per context switch, C cannot be repaired if P has already been flipped. In this case conflict

repair returns false (Figure 21 lines 2, 11 and Figure 20 lines 17-18), and propagation

terminates.

For the example in Figure 19, initially P1 = TRUE with Np1 = 2, P2 = TRUE with NP2 = 1,

and P3 = FALSE with Np2= 2. When C3 - (P3 = FALSE) is identified as a violated clause

during the context switch, propagation with conflict repair will repair C3 by flipping the

value of P3 and reset NP2 to 1-since there are no other propositions in C3 and P3 has not

been flipped, the conditions for repair are satisfied. At this point, C4 = (-P 3 = FALSE v P1

= TRUE) could provide well-founded support for P1 = TRUE because Np1 > NP3; however,

since P1 is supported by C2, propagation terminates. When C1 is removed from the theory,

the aggressive resupport algorithm can then remove C2 as P1 's support (delete arrow 1) and

resupport P1 with C4 (insert arrow 2). During this process, the values of P1 and its

dependents remain unchanged.

3.3.3 Aggressive Resupport

Recall aggressive resupport is used by the ITMS during retraction of variable assignments

to minimize the number of unnecessary unassignments. When a proposition, P, losses its

support, the ITMS looks for an alternative support for P and only unassigns P if such a

support does not exist. A clause, C, can provide well-founded support for P if it meets the

following conditions:

1. All other literals in C evaluate to false.

2. P appears with the same polarity (positive or negative) in both C and its old support.

3. P has the single largest propagation number in C; no ties allowed.

The first condition simply checks that C is capable of supporting variable P, while the

second condition ensures that P's literal evaluates to TRUE in C and thus P's value will not

be changed with C as its new support. Recall, for both unit propagation and conflict repair,

51

if C supports P then P's literal is the single satisfying literal in C. Therefore, if P appears in

the same polarity in both C and its old support, then its literal must evaluate to TRUE in

both cases.

The third condition is enforced to prevent loops supports. In this case, a tie for the

maximum propagation number in C is not allowed because a series of such ties could lead

to a loop support. For example, proposition P1 = TRUE with Ni = 3, and proposition P 2 =

FALSE with NP3 = 3. If ties are allowed for the third condition of resupport, then when P1

losses its support, clause C1 = (P 2 = FALSE v P1 = TRUE) can be used as its new support.

And when P2 losses its support, clause C2 = (-,P 1 = FALSE v -P2 = TRUE) can likewise

be used to resupport P 2. However, when this happens, the supports are no longer well-

founded because clauses C1 and C2 form a loop support.

unassign(P)
1 CP <- list of clauses with literals associated with P
2 P <- UNKNOWN

3 Np - 0

4 for i <- 1 to length(Cp)
5 do if Cp[i] supports some proposition P1

6 then remove Cp[i] as Pi's support
7 if not resupport(PI)
8 then unassign(Pi)
Figure 22: ITMS Unassign Pseudo-code

resupport(P)
1 if P = TRUE
2 then Cr <- list of clauses with positive literals associated with P
3 else Cr <- list of clauses with negative literals associated with P
4 for j <- 1 to length(Cp)
5 do if all other literals in Cp[j] are FALSE and
6 Nr > propagation number of all other propositions in clause

7 then set Cp as P's new support
8 return true
9 return false
Figure 23: ITMS Aggressive Resupport Pseudo-code

52

Figure 22 and Figure 23 presents ITMS's unassign and aggressive resupport pseudo-codes.

Since both P's value and its propagation number Np remains unchanged during resupport,

propagation numbers and values of P's dependents also do not need to be altered.

3.4 Root Antecedent ITMS

The propagation numbering system is an effective way to ensure soundness of supports.

However, its conditions (defined in section 3.3.1) are sufficient but not necessary to avoid

loop supports. If P 2 's value depends on P1 then its propagation number must be larger than

P1 's; however, just because P2 has a larger propagation number does not mean it depends

on P 1. Therefore, although the propagation numbering system ensures soundness, it may

overlook valid repair and resupport opportunities.

T= T6' =T 6 -C 1 +C 3 +C 4 =

C1 : (P1) A C3 : (P3)^
... C4 : (-,P 3 V P 1) A

1>2

P1 = TRUE

3
[Large number of assignments dependent on P1]

Figure 24: Propagation Numbering vs. Root Antecedent example

For example, in Figure 24, C1 is part of some larger theory T6 and supports the assignment

Pi = TRUE with Nr1 = 1 (arrow 1), which leads to the assignment of a large number of

variables (arrow 3). When clauses C3 and C 4 are added to the theory while clause C1 is

deleted, an ITMS first propagates C3 to assign P 3 to TRUE with Ne3 1. However, C4 =

(,P3 = FALSE v Pi = TRUE) is not a valid support under the propagation numbering

53

system because NP3 is the same as Nr 1 not smaller, even though P3 does not depend on P 1.

Therefore, when C1 is deleted, P1 and all its dependents are unassigned. When this

happens, C 4 becomes unit and can be propagated to resupport P1 = TRUE (arrow 2),

finally, all of Pi's former dependents are reassigned (arrow 3).

Also, with the propagation numbering system, there are situations where a resupported

proposition P losses its support after clauses are deleted in a context switch. For example,

clause C1 (P 1) supports P1 = TRUE with Nr1 = 1, C2 = (-P 1 v P2) supports P 2 = TRUE

with NP2 2, and C3 = (P 3) supports P 3 = TRUE with Nr3 = 1. A context switch adds

clause C4 -(-,P 3 v P2) and deletes clauses C1 , C2, and C3 . Since C4 is not unit or violated,

propagation does not take place. When C1 and C2 are deleted, an ITMS using propagation

numbers will resupport P 2 with C4 = (-P 3 = FALSE v P 2 = TRUE). Since Nr3 < NP2, C4 is

a well-founded support for P2 . However, when C3 is deleted, P 3 becomes unassigned, and

C4 can no longer support P2. Therefore, P 2 must be unassigned. It is inefficient to

resupport P 2 only to have P2 immediately unassigned afterwards.

Root Antecedent ITMS (RA-ITMS) [27] introduces an alternative to propagation numbers

called root antecedents. Root antecedents allow the algorithm to determine dependencies

between propositions without any approximation, therefore increasing the chances of repair

and resupport. Under the propagation numbering system, all root antecedents would have

propagation numbers of 1. These are the propositions that do not depend on any other

proposition for their value: i.e. decision variables or propositions supported by single literal

clauses.

The root antecedent list Re for proposition P contains all root antecedents in the theory that

P depends on and can be used to determine the dependency between P and another

proposition P' in the following way:

1. P depends on P' if Rp D gR,,

2. P depends on P if Rp c Rp,

3. else P and P' does not depend on each other.

54

For the example in Figure 24, C1 supports P1 = TRUE with Ri= {P 1 } (arrow 1), which led

to the assignment of a large number of variables (arrow 3). When clauses C3 and C4 are

added to the theory, and clause C1 is deleted, RA-ITMS propagates C3 to assign P3 to

TRUE with RP3 = {P 3 }. However, unlike with propagation numbers, C4 = (-,P 3 = FALSE

v P1 = TRUE) can be used to resupport P1 using the root antecedent system because Rpi 7

RP3 indicating P3 does not depend on P1. But since P1 is supported by C1 , propagation

terminates. When C1 is deleted from the theory, P1 loses its support (delete arrow 1). RA-

ITMS resupports P1 with C4 and Rei becomes {P 3} (insert arrow 2). Since Pi is

resupported, the values of PI's dependents do not need to be altered. However, the root

antecedent system does require updates to the root antecedent lists of all dependents of P1

to reflect the change in Rp1 : i.e. remove P1 and insert P 3 from their root antecedent lists.

Also, root antecedents can be used to avoid repairing or resupporting with clauses

containing propositions dependent on deleted clauses. For example, clause C1 = (P 1)

supports P1 = TRUE with Np1 = 1, C2 = (-Pi v P 2) supports P2 = TRUE with Nr2 = 2, and

C3 = (P 3) supports P 3 = TRUE with Nr3 = 1. A context switch adds clause C 4 = (-,P 3 v P2)

and deletes clauses C1 , C2 , and C3. Since C4 is not a unit clause, propagation does not take

place. However, with RA-ITMS C4 is not a valid resupport for P 2 because RP3 = {P3 }, and

P3 is supported by deleted clause C3 . Therefore, when C1 and C2 are deleted, P2 cannot be

resupported and is directly unassigned.

Although root antecedent system can be used to more precisely determine dependencies

between propositions, it also has some major drawbacks compared to the propagation

numbering scheme. First of all, a roots antecedent list can potentially contain a large

number of propositions and, therefore, demands more memory than a single propagation

number: this memory must be allocated, released, and garbage collected dynamically.

Also, while conflict repair and aggressive resupport with propagation numbers are solely

based on the propagation depth of a variable, the root antecedent algorithm must identify

and reference specific propositions affected by the context switch. Finally, a key difference

between the two ITMS algorithms is that the RA-ITMS must update the root antecedent

55

lists of all propositions that depend on a resupported proposition P, while the original ITMS

requires no such changes to the propagation numbers.

Given these drawbacks and the lack of empirical results to support its performance, RA-

ITMS is not used in the new algorithms presented in section 4. However, its ideas are

similar to a decision-level ITMS with watched-literals algorithm (DL-ITMS-WL) that we

designed. Although we are unable to implement and test the DL-ITMS-WL in time for this

thesis, its main concepts are outlined in Chapter 7

The details of RA-ITMS are presented below. Section 3.4.1 lists the rules used to update a

root antecedent list; and sections 3.4.2 and 3.4.3 incorporate root antecedents into the

conflict repair and aggressive resupport algorithms, respectively.

3.4.1 Root Antecedents

As mentioned earlier, instead of propagation numbers, RA-ITMS associates with each

proposition a list of propositions called its root antecedents. The root antecedent list, Rp,

for a proposition, P, is updated by the following rules:

1. For unassigned propositions, Rp = {}.

2. For decision variables and propositions supported by a single literal clause, Rp

MP.

3. For propositions assigned through propagation of clause C, Rp = union(root

antecedents of all other propositions in the C).

3.4.2 Conflict Repair

Root antecedents can be used by the conflict repair algorithm to replace propagation

numbers, while leaving the rest of the algorithm unchanged. To do this, the algorithm must

56

not only consider the root antecedents of propositions in a violated clause but also the

propositions supported by the deleted clause(s). For example, a context switch includes the

addition of clause C1 = (P1) and deletion of clause C2 = (P2). If propagation of C2 leads to

the violation of clause C, then the assignment of a proposition P can be flipped to repair C

if P is the only proposition in C with P2 c Rp.

This condition ensures that:

1. the conflict leading to C's violation is caused by the context switch,

2. P will not lose C as its support after the context switch,

3. P does not depend on any other proposition in C, and

4. P has not been flipped during this context switch.

Assume C = (P' = FALSE v P = FALSE). If P2 is part of neither Rp nor Rp, then C's

violation is not due to mutual inconsistencies within the context switch and would remain

violated even after C2 is deleted; therefore, C should not be repaired. If P2 c Rp and P2 :

Rp and P is flipped with C as its new support, then when P2 is unassigned, P', whose value

is dependent on P2 will also be unassigned, causing P to lose its support. If P2 g Rp and P2

e RP, then P' is not dependent on P because Rp e Rp; therefore, C can provide well-

founded support for P = TRUE. After the value of P is flipped, C becomes P's support and

Rp = Re so P2 (Rp. Since P's new support cannot contain another proposition with P2 as a

root antecedent, P cannot depend on P2 after the assignment change. Inversely, if P

depends on P2, then its assignment has not been flipped during this context switch.

Figure 25 and Figure 26 contains the pseudo-code for the propagation and conflicts repair

algorithms in RA-ITMS. The only difference between them and the propagate and conflict

repair pseudo-codes for ITMS (see section 3.3.2) are in Figure 25 line 13 and Figure 26

lines 1 and 5.

57

propagate(P)
1 if P = TRUE
2 then Cp T < list of clauses with positive literals associated with P
3 CPF E list of clauses with negative literals associated with P
4 else CpF - list of clauses with positive literals associated with P
5 CpT <- list of clauses with negative literals associated with P
6 for i k- 1 to length(CpF)
7 do if CrFi] is a unit clause
8 then P1 <- proposition in CpF[i] with value UNKNOWN
9 if literal associated with Pi is POSITIVE
10 then P1 < TRUE
11 else P1 <- FALSE
12 record CpF [i] as the support for P1
13 Rp <- union (RA of other propositions in CpFIi])
14 if propagate(PI)= false
15 then return false
16 if CPF[i] is violated
17 then if not repairConflict(CpF[i])
18 then return false
19 if (P has been flipped)
20 then for j <- 1 to length(CpT)
21 do if CpTj] supports a proposition
22 then P1 < proposition supported by CpT
23 unassign(P1)
24 return true
Figure 25: RA-ITMS Propagation Psedo-code

repairConflict(C)
1 if C contains one and only one proposition P dependent on a deleted clause
2 then if P = TRUE
3 then P (FALSE
4 else P (TRUE
5 Rp < union(root antecedent of other propositions in clause)
6 if propagate(P)= false
7 then return false
8 return true
9 else return false
Figure 26: RA-ITMS Conflict Repair Pseudo-code

58

3.4.3 Aggressive Resupport

Root antecedents can also be used by the aggressive resupport algorithm to replace

propagation numbers. Like conflict repair, aggressive resupport with root antecedents must

consider root antecedents of propositions in the resupporting clause along with propositions

supported by the deleted clause(s). For example, a context switch includes the addition of

clause C1 = (P 1) and deletion of clause C2 - (P 2). If unassignment of P2 causes a

proposition P to lose its support, then a clause C can resupport P if it meets the following

conditions:

1. All other literals in C evaluate to false;

2. P appears with the same polarity (positive or negative) in both C and its old support;

3. P is the only proposition in C with P2 < Rp.

The first two conditions are the same as those in section 3.3.3 and simply ensure that C can

support P's current assignment. The third condition ensures that no other propositions in C

depend on P. Recall, P' depends on P if Rp _ Rp.; since P2 c Rp and P 2 is not in the root

antecedent lists of other propositions of C, those propositions cannot depend on P.

Therefore, C is a well-founded support for P.

resupport(P)
1 if P = TRUE
2 then Cr k- list of clauses with positive literals associated with P
3 else Cr k- list of clauses with negative literals associated with P
4 for j <- 1 to length(Cp)
5 do if all other literals in CpU] are FALSE and
6 P is only proposition in Cpj] dependent on a deleted clause
7 then set Cp as P's new support
8 Rp <- union(root antecedent of other propositions C)
9 Update root antecedents of all propositions dependent on P
10 return true
11 return false
Figure 27: RA-ITMS Aggressive Resupport Pseudo-code

59

Figure 27 presents the aggressive resupport pseudo-code for RA-ITMS. The RA-ITMS

unassign function is the same as ITMS (see section 3.3.3 Figure 22).

3.5 Summary

Although the concept of unit propagation is simple, there are many variations to its

implementation that can greatly affect its performance. Chapter 3 presented an overview of

these techniques, which can be broken into two categories. One focuses on the workload

required for a SAT solver to identify unit and violated clauses through the use of different

data structures. The other concentrates on the number of propositions assigned and

reassigned during clause addition, clause deletion, and backtrack search.

The three data structures discussed in this chapter are the counter-based approach, head/tail

lists, and watched-literals. Among these, the counter-based approach belongs to a group of

data structures called the adjacency list. Although their details may vary, adjacency list

data structures all require the unit propagation algorithm to search through the list of all

clauses associated with a newly assigned proposition. Lazy data structures, on the other

hand, allow the algorithm to only searches through a subset of these clauses. These data

structures, such as the head/tail lists and watched-literals, that place special emphasis on

two literals per clause, have an average saving of 1:average-number-of-literals-per-clause

over adjacency lists.

Within lazy data structures, head/tail lists is an earlier algorithm that requires updates to a

clause's head and tail literals during variable unassignment. In comparison, the watched-

literals scheme has the performance advantage because the two watched literals can remain

unchanged during chronological backtracking. Empirical results confirm that watched-

literals performs better than head/tail lists over a variety of SAT instances [14].

There are also two subtypes among those algorithms affecting of the number of

propositions assigned and unassigned during clause addition, deletion, and search. The

60

first subtype, which includes stack-based backtracking and the LTMS, is primarily used to

determine how variables are unassigned. Stack-based backtracking is a non-incremental

algorithm that unassigns entire decision levels during search backtracking and all

assignments when the theory is altered. The LTMS is an incremental algorithm that can

selectively unassign a proposition and its dependents; this approach avoids unassigning and

reassigning propositions whose supporting clauses are not affected by the change to the

theory.

The second subtype includes two ITMS algorithms. Although incremental, they are

different than the LTMS in that an ITMS is specifically designed to minimize variable

unassignments during context switches that involve both the addition and deletion of

clauses. The ITMS algorithms use the conflict repair technique to propagate added clause

before unassigning propositions supported by the deleted clauses. They also search for

alternative supports for propositions that lost their supports and only unassign variables that

cannot be resupported.

The key challenge to implementing aggressive resupport is the possibility of forming loops

in the supports. The ITMS uses depth-first numbering system called propagation numbers

prevent these loop supports. Empirical results show that the ITMS is more efficient than

the LTMS at minimizing variable unassignments and reassignments across a series of

context switches [22].

The RA-ITMS, on the other hand, uses root antecedent lists instead of propagation

numbers. Although more precise at identifying dependency between propositions, root

antecedents require more work than propagation numbers in the form of updates to

dependents of resupported propositions. And there lacks empirical evidence to support any

performance gain of an RA-ITMS over an ITMS.

Since the watched-literals scheme is the best performing SAT data structure to-date, and

the LTMS and the ITMS are two efficient incremental unit propagation algorithms with the

latter targeting specifically at context switches, it is desirable to implement the LTMS and

61

the ITMS with the watched-literals data structure in order to optimize SAT performance.

Chapter 4 details the challenge in using watched-literals with the TMS algorithms, our

solution approach, and the new LTMS with watched-literals and ITMS with watched-

literals algorithms.

62

63

Chapter 4

Truth Maintenance with watched

literals

In Chapter 4, we deliver two new incremental unit propagation algorithms called logic-

based truth maintenance system with watched-literals (LTMS-WL) and incremental truth

maintenance system with watched-literals (ITMS-WL). These algorithms combine the

strengths of the watched-literals data structure with the LTMS and ITMS algorithms in

order to improve the performance of unit propagation in SAT solvers.

There is one key challenge that arises from the use of watched-literals data structure with

the TMS algorithms. Recall, from section 3.1.3 that watched-literals is one of the most

efficient SAT data structures that allows for efficient unit propagation by visiting only a

subset of the clauses associated with a newly assigned proposition. One advantage of the

algorithm is that watched literals do not need to be updated when unassignment takes

places in reverse order of assignment. The logic-based and incremental truth maintenance

systems, on the other hand, improve unit propagation efficiency by reducing the number of

unnecessary variable unassignments and reassignments during context switches (see

sections 3.2.2 and 3.3). These algorithms selectively unassign a proposition and all its

dependents while leaving other assignments in place regardless of the order in which

propositions were assigned. Since the TMS algorithms do not necessarily unassign

variables in order, watched literals may need to be updated under certain situations.

Recall from section 3.1.3 that when variables are not unassigned in order, some clauses

may contain unknown literals even through one or both of its watched literals are FALSE.

For example, clause C1 = (P1 = FALSE v ,P2 = FALSE v P3 = FALSE v -,P 4 = FALSE).

64

If only P 4 is unassigned, then the value of unwatched literal -,P 4 in C1 will be unknown

while watched literals P1 and P 3 are FALSE. When this happens, the watched literals for

C1 must be updated so that -,P 4 is watched and either P1 or P 3 unwatched.

However, in order to identify C1 through unwatched literal -,P 4 during variable

unassignment, the algorithm must search through the list of all clauses containing literals

associated with P4, not just those containing watched literals. But since the list of watched

literals is a subset of all literals, we would like to use the watched literals list whenever

possible, and only consider the list of all literals when absolutely necessary. Therefore, our

solution approach associates with each proposition its lists of watch and all literals and

selectively uses these lists depending on the situation. Algorithmic details for LTMS-WL

and ITMS-WL are explored in the sections 4.1 and 4.2, respectively.

4.1 LTMS with watched-literals

This section applies the watched-literals data structure to the LTMS algorithm introduced

in section 3.2.2.

Using watched literals with the forward propagation component of LTMS is simple. The

LTMS-WL unit propagation pseudo-code in Figure 28 is just a merge of the watched-

literals and LTMS pseudo codes found in Figure 12 and Figure 16 in sections 3.1.3 and

3.2.2. Like in section 3.1.3, when a proposition P is assigned, propagate searches through

the list of clauses Cr containing either positive or negative watched literals associated with

P depending on P's value (Figure 28 lines 1-3). For each clause Cp[i], the algorithm

attempts to replace the FALSE watched literal, W1 , associated with P with a non-false,

unwatched literal if possible (Figure 28 line 8). Otherwise, Cp[i] is unit if its other watched

literal W2 is not assigned (Figure 28 line 9) or violated if W2 is FALSE (Figure 28 line 17).

If Cp[i] is unit, then the proposition Pi associated with W2 is assigned such that W 2

evaluates to TRUE (Figure 28 lines 11-13). And, like in section 3.2.2, Cp[i] is recorded as

65

Pi's support. Propagation terminates when there are no more unit clauses or when a

conflict is encountered.

propagate(P)
1 if P=TRUE
2 then Cp <- list of clauses with negative watched literals associated with P
3 else Cp <- list of clauses withpositive watched literals associated with P
4 noConflict <- true
5 for i <- 1 to length(Cp)
6 do Wi <- watched literal in Cp[i] associated with P
7 W2 <- other wathed literal in Cp[i]
8 replace W1 with non-FALSE, unwatched literal if possible
9 if Wi cannot be replaced and W2 = UNKNOWN
10 then P1 2- proposition associated with W2

11 if W2 is POSITIVE
12 then P1 <- TRUE
13 else P1 <- FALSE
14 record Cp[i] as the support for P1

15 if propagate(PI)= false
16 then noConflict <- false
17 if W1 cannot be replaced and W2 = FALSE
18 then noConflict <- false
19 return noConflict

Figure 28: LTMS-WL Unit Propagation Pseudo-code

Since there are only 2 watched literals per clause, watched literals lists are on average

2/avg-#-of-literals-per-clause shorter than adjacency lists containing all literals associated

with a proposition. Furthermore, during propagation of proposition P, clauses containing

TRUE literals of P do not need to be updated because TRUE literals can be watched

regardless of the values of the unwatched literals. Therefore, clauses visited by LTMS-

WL's propagation algorithm is l/avg-#-of-literals-per-clause less than an LTMS using

adjacency list data structures such as the counter-based method.

The LTMS-WL unassign algorithm is slightly more complicated and can be divided into

two versions. One is used within chronological backtrack search while the other is used

during preprocessing where unassignments are not necessarily in order. The details of these

algorithms are presented in sections 4.1.1 and 4.1.2 below.

66

4.1.1 LTMS-WL for Chronological Backtracking

The main purpose of the LTMS-WL unassign algorithm is twofold. One is to ensure that

the set of supports remain well-founded by identifying and unassigning all dependents of

unassigned propositions. The other is to maintain the integrity of the watched literals data

structure so that propagate can accurately identify unit and violated clauses. Within

chronological backtracking, these tasks can be accomplished by searching through clauses

containing only FALSE watched literals associated with an unassigned proposition. Like

with LTMS-WL's propagate algorithm, the use of watched literals in LTMS-WL unassign

for chronological backtracking reduces the number of clauses visited by a factor of l/avg-

#-of-literals-per-clause compared to adjacency lists.

For an example of how this algorithm works, consider clauses:

C1 = (,P1 = FALSE v P2 = TRUE),

C2 = (,P1 = FALSE v -,P 2 = FALSE v P3 = TRUE), and

C3 = (,P1 = FALSE v -,P 4 = FALSE v P5 = TRUE).

P1 = TRUE and P4 = TRUE are decision variables; and P 2 = TRUE, P 3 = TRUE, and P5

TRUE are supported by clauses C1 , C2, and C3 respectively. These propositions are

assigned in the order PI, P2, P 3, P4, and P5. Since chronological backtracking refers to the

chronological unassignment of decision variables, the algorithm first unassigns the last

assigned decision variable P4 . When searching through the list of clauses containing

FALSE watched literals of P4 , C3 is identified through watched literal -,P 4 . With P4

unassigned, C3 can no longer support P5 = TRUE; therefore, Ps is unassigned as well.

Next, decision variable P1 is unassigned. When searching through the list of clauses

containing FALSE watched literals of PI, C1 is identified through watched literal -,P 1 .

With P1 unassigned, C1 can no longer support P2 = TRUE; therefore, P2 is unassigned,

67

which then leads to the identification of clause C2 and the unassignment of proposition P3 ,

at which point all propositions are unassigned.

Since literal -,Pi is not watched in C2, C2 was not visited when Pi was unassigned even

though P3 = TRUE depended on P1 as well as P2 . However, unassignment of P1 led to the

unassignment of P2 which in turn led to the unassignment of P3. So the set of supports

remain well founded by the end of unassign.

unassign(P)
1 if P=TRUE
2 then Cp k- list of clauses with positive watched literals associated with P
3 else Cp <- list of clauses with negative watched literals associated with P
3 P <- UNKNOWN
4 for i <- 1 to length(Cp)
5 do if Cp[i] supports some proposition P1

6 then remove Cp[i] as Pi's support
7 unassign(P1)
8 if Cp[i] is a unit clause
9 then insert(Cp[i], unitClauseList)
10 while not empty(unitClauseList)
11 do CuE-front(unitClauseList)
12 if Cu is a unit clause
13 P*-unassigned variable in C2
14 assign P so it's literal in C2 is TRUE
15 propagate(P)
Figure 29: LTMS-WL Unassign Pseudo-code for Chronological Backtracking

In general, for clause C = (U1 = FALSE v W1 = FALSE v W 2 = TRUE) where C supports

proposition W 2 , U1 must have been assigned before WI and W 2 because supported literal

W 2 must be the last literal assigned and FALSE watched literal W1 can only remain

watched if other unwatched literals are already FALSE. Therefore, if U1 is dependent on

decision variable PD, then W1 and W2 must be dependent PD or some other decision

variable assigned after PD. Since decision variables are unassigned in order, if U1 becomes

unassigned, then W1 and thus W2 must be unassigned as well, even if that unassignment is

not directly triggered by U 1. This ensures the soundness of the set of supports. Also, since

any unassignment of unwatched literal UI will be followed by the unassignment of watched

68

literals W1 and W2, the watched literals do not need to be updated during chronological

backtracking.

Figure 29 presents the pseudo-code for LTMS-WL unassign. When a variable P needs to

be unassigned, LTMS-WL searches through the list of clauses Cp containing P's watched

literals that evaluates to FALSE (Figure 29 lines 1-3). Once P becomes unassigned (Figure

29 line 3), clauses containing P can no longer provide support for other propositions;

therefore, if clause Cp[i] supports some proposition P1, then Cp[i] must be removed as Pi's

support, and P1 must be unassigned (Figure 29 lines 5-7). LTMS-WL's conservative

resupport algorithm is the same as that of the LTMS; see section 3.2.2 for details.

4.1.2 LTMS-WL for Preprocessing

During preprocessing, where variable unassignments are not made in any predetermined

sequence, LTMS-WL's unassign component will encounter situations where an unwatched

literal is unassigned while some watched literal(s) in the same clause are FALSE.

For example, consider clauses:

Ci = (P1 = TRUE),

C2 = (-,P 1 = FALSE v P2 = TRUE),

C3 = (--,Pi FALSE v -,P 2 = FALSE v P3 = TRUE),

C4 = (P4 = TRUE), and

C5 = (-Pi = FALSE v ,P4 = FALSE v P5 = TRUE).

PI = TRUE, P2 = TRUE, P3 = TRUE, P4 = TRUE, and P5 = TRUE are supported by clauses

C1, C2, C3, C4, and Cs respectively. When C1 is deleted, P1 losses its support and is

unassigned. At this point, neither C2 nor C3 could continue to support propositions P2 and

P3. However, since literal -,Pi in C3 is not watchcd, C3 would not be visitcd if unassign

only looked at clauses containing watched literals of P1.

69

Therefore, during preprocessing, LTMS-WL's unassign algorithm must search through the

clauses containing both watched and unwatched literals associated with an unassigned

proposition P. However, if P's literal L evaluates to TRUE, then L's clause C could not

support a proposition; furthermore, the watched literals in C do not need to be updated: if L

is watched, then it could remain watched after the unassignment; if L is unwatched, then

the watched literals could not be FALSE since L's value was TRUE. So the algorithm

only needs to consider clauses where literals associated with P evaluate to FALSE. The

use of watched literals in LTMS-WL's unassign algorithm for preprocessing reduces the

number of clauses visited by a factor of /2 compared to adjacency lists.

unassign(P)
1 if P = TRUE
2 then Cp k- list of clauses with positive literals associated with P
3 else Cp <- list of clauses with negative literals associated with P
4 P - UNKNOWN
5 for i 4- 1 to length(Cp)
6 do if a watched literal, W, in Cp[i] is FALSE and
7 literal, L, associated with P is unwatched
8 then watch L and unwatched W
9 if Cr[i] supports some proposition Pi
10 then remove Cr[i] as Pi's support
11 unassign(Pi)
12 if Cp[i] is a unit clause
13 then insert(Cp[i], unitClauseList)
14 while not empty(unitClauseList)
15 do Cuf-front(unitClauseList)
16 if Cu is a unit clause
17 P<-unassigned variable in C2
18 assign P so it's literal in Cu is TRUE
19 propagate(P)
Figure 30: LTMS-WL Unassign Pseudo-code for Preprocessing

Figure 30 presents the pseudo-code for this algorithm. When a proposition P is unassigned,

the algorithm visits the list of all clauses Cp containing either positive or negative literals of

P (Figure 30 lines 1-3). If P's literal L in clause Cp[i] is unwatched while some watched

literal W is FALSE, then L replaces W as a watched literal in Cp[i]. If clause Cp[i]

supports some proposition P1, then Cp[i] must be removed as P1 's support, and P1 must be

70

unassigned (Figure 29 lines 5-7). LTMS-WL's conservative resupport algorithm is the

same as that of the LTMS; see section 3.2.2 for details.

4.2 ITMS with watched literals

Recall from section 3.3, that the three main concepts behind the ITMS are propagation

numbering, conflict repair during propagation, and aggressive resupport during variable

unassignment. Among them, the propagation numbering system is simply a set of rules

used to set the propagation number of a proposition after an assignment change. Applying

these rules does not require search through any list of clauses, nor are these rules affected

by watched literals within a supporting clause. Therefore, the propagation numbering

system acts independently of the data structure used by the ITMS and remains unchanged

in the ITMS-WL algorithm; see section 3.3.1 for details on propagation numbering.

Watched literals, however, could be applied to conflict repair and aggressive resupport to

improve the performance of these algorithms. Algorithmic details are presented in sections

4.2.1 and 4.2.2 below.

4.2.1 Conflict Repair

Recall that during a context switch, the ITMS's propagate and conflict repair algorithms

first propagates the newly added clauses before retracting dependents of the deleted

clauses. Likewise, when conflict repair flips the assignment of a proposition P, the

propagation algorithm first propagates P's new assignment V before retracting dependents

of the old assignment -,V. However, although designed to increase the chances of

aggressive resupport, this propagate-before-unassign procedure could introduces clauses

where some unwatched literals are unassigned while one or both of the watched literals are

FALSE.

71

An alternative way to think about this is that watched literals do not need to be updated

during variable unassignment if the most recently assigned propositions are the first

retracted. However, because conflict repair propagates new assignments before retracting

dependents of the old assignments, when the algorithm begins unassignment, dependents of

the old assignment are no longer the most recently assigned variable. Therefore, watched

literals must be updated during variable unassignment after conflict repair.

For example consider clauses:

C1 = (-,P= FALSE v P2 = TRUE),

C2 := (,P2 = FALSE v -,P 3 v P4), and

C3 = (P1 = TRUE v P3 v -Ps = FALSE).

P1 = TRUE and P5 = TRUE are supported by other clauses in the theory and are not

dependent on each other; P2 = TRUE is supported by C1. Assume that P1 's value is flipped

from TRUE to FALSE. If unassignment took place before propagation, then using the

watched literals lists would be sufficient for unassign and propagate. The algorithm will

first unassign P1. C1 is then identified through watched literal -,P 1 . Since Pi is unassigned,

C2 can no longer support P2; thus P2 is unassigned as well, and the clauses become:

C1 = (-,P1 v P 2),

C2 = (-,P 2 v -,P 3 v P4), and

C3 (P 1 v P3 v -,P5 = FALSE).

Next, the algorithm propagates the assignment P1 = FALSE. C1 is not visited because

watched literal -,P 1 evaluates to TRUE. C3, however, is identified as a unit clause through

FALSE watched literal Pi, and P3 is assigned to TRUE with C3 as its support. C2 is then

identified through watched literal -,P 3. Since -,P 3 equals FALSE while unwatched literal

-,P2 is unassigned, -,P 2 replaces -1 P3 as a watched literal in C2, and the clauses become:

72

C1 = (,P1= TRUE v P2),

C2 = (- 1P2 v -,P 3 = FALSE v P4), and

C3 = (P1 = FALSE v P3 = TRUE v -P 5 = FALSE).

However, if propagate takes place before unassign, then simply using the list of watched

literals would be insufficient to maintain the integrity of the watched-literals data structure.

For the same example above,

C1 = (-P 1 = FALSE v P2 = TRUE),

C2 = (-P 2 = FALSE v -P 3 v P4), and

C3 = (P 1 = TRUE v P3 v -P5 = FALSE).

P1 = TRUE and P5 = TRUE are supported by other clauses in the theory and are not

dependent on each other; P 2 = TRUE is supported by C1. Also assume that P1's value is

flipped from TRUE to FALSE. When propagating P1 = FALSE, C3 is identified as a unit

clause through FALSE watched literal P1, and P 3 is assigned to TRUE with C3 as its

support. C2 is then identified as a unit clause through watched literal -,P 3, since P2 was not

unassigned. So P4 is assigned to TRUE with C2 as its support and the clauses becomes:

CI = (-,P= TRUE v P2 = TRUE),

C2 = (-P 2 = FALSE v -P 3 = FALSE v P4 = TRUE), and

C3 = (P1 = FALSE v P3 = TRUE v -,P5 = FALSE).

Next, when unassigning dependents of the assignment P1 = TRUE, C1 will be identified

through watched literal -,P 1; since ,Pi = TRUE, C1 can no longer support P 2 = TRUE, so

P 2 is unassigned. However, the algorithm cannot identify clause C2 through unwatched

literal P 2 if only clauses containing watched literals of P 2 are looked at. If this happens

then C2 becomes (-,P 2 v -P 3 = FALSE v P 3 = TRUE), where watched literal -,P 3 is

FALSE while unwatched literal -,P 2 is unassigned. Therefore, when retracting variable

73

assignments after propagation, the algorithm must search through the list of all FALSE

literals associated with an unassigned proposition, not just the watched literals

propagate(P)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Figure

if P = TRUE
then CpT < list of clauses with positive literals associated with P

CPF < list of clauses with negative watched literals associated with P
else Cp T- list of clauses with negative literals associated with P

CPF < list of clauses with positive watched literals associated with P
noConflict <- true
for i <- 1 to length(CpF)

do W1 <- watched literal in CPF[i] associated with P
W2 <- other watched literal in CPF[i]
replace W' with unwatched literal if possible
if W1 cannot be replaced and W 2 = UNKNOWN

then P1 < proposition associated with W 2

if W2 is POSITIVE
then Pi 4 TRUE
else P1 I FALSE

record CPF[i] as the support for P1

Npi <- 1+ max(propagation # of other propositions in clause)
if propagate(P1) = false

then noConflict <- false
if W1 cannot be replaced and W2 = FALSE

then if not repairConflict(CpF[i])
then noConflict 4- false

if (P has been flipped)
then for j <- 1 to length(CPT)

do if P's literal L is not watched and
a watched literal W is FALSE
then change the watch from W to L

if CPT[j] supports a proposition
then P2 E- proposition supported by CPTI]

unassign(P2)
return noConflict

31: ITMS-WL Propagation Pseudo-code

Figure 31 and Figure 32 contains the propagation and conflict repair algorithms for ITMS-

WL. These algorithms are the same as Figure 20 and Figure 21 in section 3.3.2 except for

the watched-literals specific details. During the forward assignment phase of a proposition

P (Figure 31 lines 7-22), only clauses, CpF, containing FALSE watched literals associated

with P require updates (Figure 31 lines 1, 3, 5). Wi is the watched literal in clause CPF[i]

74

that is associated with P, and W2 is the other watched literal. Since W1 evaluates to

FALSE, the algorithm attempts to replace W1 with a non-false, unwatched literal if possible

(Figure 31 line 10). If W1 cannot be replaced, then CpF[i] is unit if W2 is unassigned and

violated if W2 = FALSE (Figure 31 lines 11, 20); if W2 = TRUE, then CrFi] is satisfied, so

no propagation is necessary. If CpF[i] is unit, then the proposition P1 associated with W2 is

assigned such that W2 evaluates to TRUE (Figure 28 lines 11-13). And, like in section

3.2.2, CpF[i] is recorded as Pi's support. If CpF[i] is violated, then the conflict repair

algorithm is called upon to repair CprF[i] if possible.

If P was not formerly unassigned then the algorithm must also unassign dependents of P's

old assignment (Figure 31 lines 7-22). During this unassignment phase within propagate,

all clauses, C T, containing TRUE literals of P (watched and unwatched) must be updated

(Figure 31 lines 1, 2, 4). If P's literal L in clause CpT[i] is unwatched while one of the

watched literals, W, is FALSE, then L replaces W as a watched literal in CpT[i]. Also, any

proposition P2 supported by clause CpT[i] must be unassigned (Figure 31 lines 23-27).

repairConflict(C)
1 P <- Proposition in C with largest propagation number
2 if P has not been flipped before
3 then if P = TRUE
4 then P <- FALSE
5 else P <- TRUE
6 if literal of P not watched
7 then replace a watched literal with P's literal
8 Np <- 1+ max(propagation # of other propositions C)
9 record C as the support for P
10 if (propagate(P)= false)
11 then return false
12 return true
13 else return false
Figure 32: ITMS-WL Conflict Repair Pseudo-code

The conflict repair algorithm for the ITMS-WL is the same as that for the ITMS (see

section 3.3.2) except for lines 6-7 where an unwatched literal, L, of proposition P replaces a

watched literal in clause C. Recall, a clause C is violated if all of its literals, including the

watched literals, are FALSE. After C is repaired by flipping the value of proposition P, L

75

becomes TRUE. Thus, if L was not watched, then it should become watched in place of

one of the FALSE literals.

When propagate is used to assign an unassigned proposition P, the algorithm simply

searches through the list of clauses containing FALSE watched literals associated with P;

since P was unassigned, there are no assignments dependent on the former value of P, so

clauses containing TRUE literals of P do not need to be searched over. Therefore, the

number of clauses visited by ITMS-WL's propagation algorithm is 1/avg-#-of-literals-per-

clause less than an ITMS using the counter-based method. However, if propagate is used

to flip the truth assignment of P, then the algorithm must search through clauses containing

FALSE watched literals and all TRUE literals of P. In these situations, ITMS-WL's

propagation algorithm only has a saving of % *(1+ 1/avg-#-of-literals-per-clause) over

number of clauses visited by an ITMS using the counter-based method.

4.2.2 Aggressive Resupport

Section 4.2.1 showed that if unassignment of a proposition P is triggered by conflict repair,

then the algorithm must search through all clauses associated with FALSE literals of P.

The same is true if unassign is used after a context switch where newly added clauses are

propagated before dependents of the deleted clauses are retracted.

For example, consider clause C, = (,Pi = FALSE v vP2 V P3), where P1 = TRUE is

supported by some other clause in the theory. Assume that Pi loses its support while clause

C2 = (P2) added. If propagate takes place before unassign, then simply using the list of

watched literals would be insufficient to maintain the integrity of the watched-literals data

structure. The algorithm will assign P2 to TRUE with C2 as its support. Next C1 is

identified as a unit clause through watched literal -,P 2 and is propagated to support P3 =

TRUE; propagation terminates. However, when P1 is unassigned, C1 would not be

identified through unwatched literal -,P1 if the algorithm simply searches through the list of

watched literals associated with C1. If this happens then C1 becomes (-,P 1 v -P 2 =

76

FALSE v P3 = TRUE), where watched literal -,P 2 is FALSE while unwatched literal -,P 1

is unassigned. Therefore, when retracting variable assignments after propagation, the

unassign algorithm must always search through the list of all FALSE literals associated

with an unassigned proposition.

Figure 33 presents the pseudo-code of the ITMS-WL's unassign algorithm. It is similar to

the LTMS-WL's unassign algorithm for preprocessing (see Figure 30) but uses aggressive

resupport instead of conservative resupport (Figure 33 line 12). When a proposition P

needs to be unassigned, the algorithm must look through clauses, Cp, containing all FALSE

literals of P (Figure 33 lines 1-3). For each clause Cp[i], if its literal, L, associated with P is

not watched while a watched literal, W, is FALSE, then L replaces W as a watched literal

in Cp[i] (Figure 33 lines 7-9). Also, if Cp[i] supports some proposition Pi, then ITMS-WL

first attempts to resupport P 1, and only unassigns P1 if a resupport could not be found

(Figure 33 lines 10-13).

unassign(P)
1 if P = TRUE
2 then Cp (- list of clauses with positive literals associated with P
3 else Cp <- list of clauses with negative literals associated with P
4 P <- UNKNOWN
5 Np - 0
6 for i <- 1 to length(Cp)
7 do if a watched literal, W, in Cp[i] is FALSE and
8 literal, L, associated with P not watched
9 then watch L and unwatched W
10 if Cp[i] supports some proposition P1

11 then remove Cp[i] as Pi's support
12 if not resupport(PI)
13 then unassign(P1)
Figure 33: ITMS-WL Unassign Pseudo-code

The resupport algorithm for ITMS-WL benefits greatly from the use of watched literals.

When searching for a resupport for proposition P, a clause C is suitable only if its literal, L,

associated with P evaluates to TRUE while all other literals evaluates to FALSE. This

means that L must be one of the watched literals in C. Also, if at least one of the watched

literals in C is FALSE then all of the unwatched literals must also be FALSE. Thus, when

77

looking to resupport P, the algorithm only needs to consider the list of clauses containing

TRUE watched literals associated with P. For each clause containing such a literal, the

clause can provide resupport for P if its other watched literal evaluates to FALSE, and the

propagation numbers of all other literals are less than Nr. Figure 34 presents the pseudo-

code for this ITMS-WL aggressive resupport algorithm

resupport(P)
1 if P =TRUE
2 then Cp <- list of clauses with positive watched literals associated with P
3 else Cp <- list of clauses with negative watched literals associated with P
4 for j <- 1 to length(Cp)
5 do if other watched literals in CpU] is FALSE and
7 Nr > propagation number of all other propositions in clause
8 then set Cp as P's new support
9 return true
10 return false
Figure 34: ITMS-WL Aggressive Resupport Pseudo-code

During unassign, a counter-base approach must update the counters of clauses containing

both TRUE and FALSE literals of unassigned proposition P, while ITMS-WL only

considers clauses contain FALSE literals of P. Therefore, ITMS-WL's unassign algorithm

on average searches over only 1/2 as many clauses as a counter-based ITMS. The ITMS-

WL resupport algorithm, on the other hand, has a saving of 2/avg-#-of-literals-per-clause

over the number of clauses visited by an ITMS using adjacency lists.

4.3 Summary

Chapter 4 detailed the LTMS-WL and the ITMS-WL. These algorithms retained the

LTMS and ITMS's ability to perform incremental assignment changes to propositions

while reducing the number of clauses visited through the use of the watched-literals data

structure. The exact savings achieved by the combined algorithms vary from component to

component, but the use of watched literals never adversely affect the number of

propositional assignments retained or the number of clauses visited by these algorithms

78

For the remainder of this thesis, we first present two SAT solvers, ISAT and zCHAFF, that

we applied the LTMS-WL and the ITMS-WL algorithms to. Then empirical performance

results of these incremental unit propagation algorithms with watched literals are presented

and compared against their counter-based and non-incremental counterparts.

79

80

Chapter 5

SAT Solvers with Incremental Unit

Propagation

Two SAT solvers are used for the empirical evaluation of the logic-based truth

maintenance system with watched literals (LTMS-WL) and the incremental truth

maintenance system with watched literals (ITMS-WL) algorithms: ISAT and zCHAFF.

Both are DPLL based solvers that follow the upper level pseudo-code found in Chapter 2

Figure 1. ISAT is used to compare LTMS-WL and ITMS-WL's watched-literals data

structure against their counter-based counterparts; and zCHAFF is used to compare the

incremental algorithms, LTMS-WL and ITMS-WL, against a non-incremental unit

propagation algorithm using watched-literals and stack-based backtracking. The details of

these solvers are presented in sections 5.1 and 5.2.

5.1 ISAT

ISAT is a simple incremental SAT solver that uses truth maintenance within the basic

DPLL algorithm. We have developed four variants of ISAT each using a different TMS

algorithm for unit propagation and assignment retraction during the preprocessing,

decision, and backtracking components of the SAT solver. ISAT-LTMS-C and ISAT-

ITMS-C use a counter-based data structure with the LTMS and the ITMS algorithms found

in sections 3.2.2 and 3.3. ISAT-LTMS-WL and ISAT-ITMS-WL, on the other hand, use

the LTMS-WL and ITMS-WL algorithms described in Chapter 4. Other components of

ISAT remain the same across the different versions and work in the same way as the

algorithms used by the simple SAT example in Chapter 2.

81

5.1.1 Preprocessing

ISAT's preprocessing component allows for the addition of a new SAT theory or addition

and deletion of clauses from an existing theory. Since the addition of a new theory does

not include deleted clauses, incremental unit propagation is not necessary; therefore,

preprocessing performs a simple unit propagation step using either counters (see section

3.1.1) or watched literals (see section 3.1.3). After addition and deletion of clauses,

preprocessing performs incremental propagation and retraction of variable assignments

using one of counter-based LTMS, counter-based ITMS, LTMS-WL, or ITMS-WL.

Preprocessing returns UNSATISFIABLE if the initial propagation step encounters a

violated clause, SATISFIABLE if all propositions are assigned without violating any

clauses, or UNDETERMINED otherwise.

5.1.2 Decision and Conflict Analysis

If satisfiability of the theory cannot be determined during preprocessing, ISAT moves on to

the search process. During search, decision variables are selected from the list of

unassigned propositions with no special preferences. Decision variables are always

assigned to TRUE before FALSE. And after an assignment, the deduction component is

invoked.

If a violated clause is encountered during search, conflict analysis searches through the list

of decision variables starting with the one most recently assigned. If the variable is

FALSE, the algorithm unassigns it and moves on to the next most recently assigned

decision variable; the process repeats until a TRUE decision variable is encountered. Then,

that variable's assignment is flipped to FALSE and deduction and backtracking is invoked.

If a TRUE decision variable cannot be found, then the theory is UNSATIAFIABLE.

82

5.1.3 Deduction and Backtracking

The deduction and backtracking components use unit propagation and unassignment in the

same way as preprocessing. If deduction is called after a decision variable assignment with

no search backtracking, then a simple unit propagation step is performed using either

counters or watched literals. However, if called after conflict analysis, the algorithm

propagates the decision variable assignment and retracts the unassignment(s) using one of

counter-based LTMS, counter-based ITMS, LTMS-WL, or ITMS-WL. If a violated clause

is encountered during deduction, the conflict analysis is invoked. Else if all unit clauses are

propagated without encountering a violated clause, then the search continues with another

decision step. The theory is SATISFIABLE if all propositions are assigned without

violating any clauses.

5.2 zCHAFF

zCHAFF 2004.11.15 [20, 7] is a state-of-the-art SAT solver built by Princeton's Boolean

Satisfiability Research Group. It uses the watched-literals data structure with stack-based

backtracking (see sections 3.1.3 and 3.2.1} as its unit propagation algorithm within the

preprocessing, deduction, and backtracking components. zCHAFF also incorporates into

the basic DPLL structure other cutting edge SAT techniques including the Variable State

Independent Decaying Sum Decision Heuristic (VSIDS) [20, 31] and 1stUIP Shirking

conflict analysis [30, 31, 21].

5.2.1 Preprocessing

zCHAFF preprocessing allows clauses to be added and deleted in groups. Typically, all

original clauses in the initial theory belong to group 0, and the next set of incrementally

83

added clauses is assigned to group I and so on. Clause deletion is achieved by providing

the solver with a clause group ID number, and all clauses within that group will be deleted.

Since the unit propagation algorithm within zCHAFF uses a stack-based backtracking

scheme, when a group of clauses is deleted from the theory, all propositions in the theory

must be unassigned. (The original zCHAFF solver will hereon be referred to as zCHAFF-

stack.) We also created 2 modified zCHAFF solvers referred to as zCHAFF-LTMS and

zCHAFF-ITMS. These solvers incorporate into the preprocessing component of zCHAFF

the LTMS-WL and ITMS-WL algorithms, and perform variable assignments and

unassignments incrementally.

5.2.2 Decision

VSIDS keeps 2 counters with each proposition containing the number of positive and

negative literals of that proposition. During a decision step, the algorithm simply selects an

unassigned proposition and polarity with the highest counter value and assigns the

proposition such that the chosen polarity evaluates to TRUE. Ties are broken randomly,

and periodically, all counters are divided by a constant factor (1/2 in zCHAFF).

Higher counter values corresponds to a larger number of clauses satisfied by the

assignment; and the periodic reduction of the counter values places higher emphasis on

more recently added clauses. Within search, clauses can be added by the conflict analysis

algorithm described below. For more information on VSIDS, see [20, 31].

5.2.3 Conflict Analysis

When a clause C is violated, 1stUIP conflict analysis traces the cause of that violation

through supports of C's literals. For example, if C = (-,P 1 = FALSE v P2 = FALSE), and

C1 = (P1 = TRUE v P3 = FALSE) is the support of P1, then C and C1 is merged with P1

84

removed to create the new clause C2 = (P2 = FALSE v P3 = FALSE). Since C2 is also

violated, the same process is repeated until clause Ci is found such that literal L in Ci has

the single largest decision level (DL) in Ci (no ties), and L's proposition is a decision

variable. Thus, when Ci is added to the clause databases and the search backtracks to DL,

Ci becomes a unit clause with only L unassigned and can therefore be propagated so that L

evaluates to TRUE. The addition of Ci simultaneously prunes the search space leading to

Ci's violation, and brings the search to a new search space by flipping the value of L.

However, if the number of literals in Ci exceeds a certain limit, then the shrinking

technique is employed to shorten the length of future conflict clauses. Shrinking orders the

literals in Ci by their decision levels, backtracks to the highest decision level in Ci, and

reassigns Ci's literals to FALSE until a violated clause is encountered. This process

generally decreases the number of assigned variables and compacts the supporting clauses

derived. For more details on l'UIP conflict analysis with shrinking, see [30, 31, 21].

5.2.4 Deduction and Backtracking

zCHAFF's deduction and backtracking components uses unit propagation with watched-

literals and stack-based backtracking. And these components are unaltered for zCHAFF-

LTMS and zCHAFF-ITMS for the following reasons.

1. The VSIDS selects the new decision variables among the unassigned propositions.

Since an ITMS conserves assignments across context switches, it may alter the

variables selected by VSIDS.

2. The conflict analysis algorithm is very dependent on supporting clauses for

propositional assignments which may change with incremental variable assignment

and resupport.

85

Since, it is unclear if and how incorporating an TMS within the search may affect

zCHAFF's performance and vise versa, the decision and backtracking components of

zCHAFF are left unchanged.

86

87

Chapter 6

Results and Analysis

Chapter 6 contains the empirical results of the LTMS-WL and ITMS-WL algorithms

evaluated using the 4 ISAT and 3 zCHAFF solvers described in Chapter 5. Recall, TMS

algorithms improve performance gain by decreasing the number of unnecessary variable

assignment changes; and the watched-literals conserves computational effort by decreasing

the number of clauses visited during unit propagation. Thus, we use the following

parameters to evaluate performance of the TMS with watched-literals algorithms: the

number of variable assignments (PA), unassignments (PUA), and resupports (PR) and the

number of clauses visited after assignment (CA), unassignment (CUA), and resupport

(CR). Also, in order to test incremental unit propagation performance using real world

problems, we interfaced these SAT solvers to a Mode Estimation program, and tested their

performances through a series of estimation steps using models of space systems. Section

6.1 briefly describes mode estimation and the models that we used for testing. And section

6.2 and 6.3 present the performances of the ISAT and zCHAFF solvers.

6.1 Evaluation Setup

Mode Estimation [17, 18] monitors and diagnoses robotic system behavior using

declarative models of the system called Probabilistic Concurrent Constraint Automata

(PCCA). A mode estimator determines the most likely states that a system is in by

reasoning over the PCCA model of that system along with commands and sensory

observations. A SAT solver is used within the estimator to determine whether a certain set

of states is consistent with the given model, commands, and observations. As the estimator

88

searches over different possible states (called belief states), the SAT theory is incrementally

updated to reflect the different state assignments while the model information remains

constant.

Four PCCA models are used for testing:

1. The EOl model models the Hyperion Imager, Advanced Land Imager, WARP data

recording device, and other data transferring components launched aboard the Earth

Observing One satellite launched on November of 2000 [9].

2. The Mars EDL model contains critical propulsion and navigational components

required for a Mars entry, decent, and landing sequence [11].

3. The SPHERES model models the propulsion subsystem of the Synchronized

Position Hold, Engage, and Reorient Experimental Satellites (SPHERES)

developed by MIT's Space Systems Laboratory and Payload Systems, Inc. [23].

4. The ST7 model contains the communication subsystem of the Space Technology 7

concept study of NASA's New Millennium program [5].

These models use variables of non-binary domains, and must be converted into SAT

theories before they can be used by the SAT solvers. Table 1 contains the models'

properties after they are converted to binary CNF format.

Table 1: PCCA Model Properties

Model # Propositions # Clauses # Literals
EO1 233 725 1627
Mars EDL 141 646 1435
Spheres 242 4610 36012
ST7 90 353 782

Testing is performed by automatically generating a series of estimation steps for each of

these models. When an estimation step calculates the likelihood of future states, one or

more context switches are made to the SAT theory.

89

6.2 ISAT Performance Results

Recall that 4 different versions of ISAT were implemented each containing one of LTMS-

C, LTMS-WL, ITMS-C, and ITMS-WL algorithms. Table 2 contains the performance

results of these ISAT solvers using the EO1, Mars EDL, SPHERES, and ST7 models

described above. We ran a total of 1048 context switches using the EO1 model, 257

contest switches using the Mars EDL model, 100 context switches using the SPHERES

model each, and 100 context switches using the ST7 model.

Table 2: ISAT Data

Solver Model PA PUA PR CA CUA CR
EO1 62149 61916 0 549836 724764 0

ISAT- Mars EDL 3943 3802 0 35294 45000 0
LTMS-C SPHERES 24200 23958 0 2485400 4165946 0

ST7 9000 8910 0 78200 103803 0
Total 99,292 98,586 0 3,148,730 5,039,513 0
EO1 63270 63037 0 123839 179528 0

ISAT- Mars EDL 4041 3900 0 8924 11413 0
LTMS-WL SPHERES 34600 34358 0 790483 1738018 0

ST7 12248 12158 0 37004 35483 0
Total 114,159 113,453 0 960,250 1,964,442 0
EO1 3140 2702 5125 19794 16422 15362

ISAT- Mars EDL 470 250 4054 4854 2538 5250
ITMS-C SPHERES 28834 24531 3208 1780723 1012944 567290

ST7 9488 7961 1770 78249 63781 35671
Total 41,932 35,444 14,157 1,883,620 1,095,685 623,573
EO1 3164 2724 5128 7257 5705 9161

ISAT- Mars EDL 472 251 4053 2172 1130 4344
ITMS-WL SPHERES 28314 23947 2851 1277983 507781 356967

ST7 9473 7956 1690 37477 22443 9244
Total 41,423 34,878 13,722 1,324,889 537,059 379,716

PA = number of propositions assigned.
PUA = number of propositions unassigned.
PR = number of propositions aggressively resupported.
CA = number of clauses visited by propagation after an variable assignment.
CUA = number of clauses visited by unassign after an variable unassignment.
CR = number of clauses visited by resupport in order to resupport a propositional assignment.

Figure 35 plots the total number of propositions assigned, unassigned, and resupported for

each of the 4 ISAT solvers. The x-axis is divided into 3 groups: propositions assigned,

90

propositions unassigned, and propositions resupported. And the y-axis plots the total

number of assignments, unassignements, and resupports of the 4 models combined. First

observe that the number of propositions assigned, unassigned, and resupported are similar

for ISAT-LTMS-C and ISAT-LTMS-WL and for ISAT-ITMS-C and ISAT-ITMS-WL, but

are quite different between the LTMS and ITMS algorithms. This is expected because

assignment changes and resupports should not be affected by the data structure used. (The

resupport values for ISAT-LTMS-C and ISAT-LTMS-WL are zero because an LTMS does

not use aggressive resupport.)

ISAT Results Summary: Propositional Assignments

120,000

100,000

a =

C Ca 80,000

N ISAT-LTMS-C
E ISAT-LTMS-WL

0. C 60O,000
-I ISAT-ITMS-C

0 ISAT-ITMS-WL

E 7,40,000-

S20,000-

0

Assign Unassign Resupport

Figure 35: ISAT Results Summary - Propositional Assignments

However, there are some variations within these propositional assignment variables,

particularly between those of the LTMS-C and the LTMS-WL, which is also not surprising

given the decision algorithm used by ISAT. Recall that the decision algorithm selects a

decision variable from available propositions. However, due to the difference in the

variable ordering within counter-based adjacency lists and watched-literals lists,

propositions may not be unassigned in the same order. Thus for any particular decision

91

.:. - - - , - - I _

step, ISAT-LTMS-C and ISAT-LTMS-WL may select a different proposition as the new

decision variable, which could lead to a difference in exact number of propositions

assigned, unassigned, and resupport.

Figure 36: ISAT Results Summary - Clauses Visited

Next, Figure 36 plots the total number of clauses visited during propositional assignment,

unassignment, and resupport for each of the 4 ISAT solvers. The x-axis is divided into 4

groups: clauses visited during assign, clauses visited during unassign, clauses visited during

resupport, and clause visited during assign, unassign, and resupport. And the y-axis plots

the total number of clauses visited by the 4 models combined. Note that the number of

clauses visited by LTMS and ITMS dramatically decreases with the use of watched literals.

For these test cases, the number of clauses visited by the LTMS-WL algorithm during unit

propagation is 64% less then the number of clauses visited by ITMS-C. There is also a

37% saving in the number of clauses visited by the ITMS-WL algorithm compared to the

ITMS-C.

92

ISAT Results Summary: Clauses Visited

9,000,000

8,000,000

7,000,000

6,000,000

5 00A T
U ISAT-LTMS-C

5,0 ISAT-LTMS-WL
E3 ISAT-ITMs-C

S4,000,000 0 ISAT-ITMS-WL

3,000,000

2,000,000

1,000,000

0

...... - -- -- -------

Assign Unassign Resupport Total

6.3 zCHAFF Performance Results

Recall that 3 zCHAFF solvers are used to compare the performance of the incremental

TMS algorithms against the non-incremental stack-based algorithm. For each of these

solvers, we ran a total of 71 context switches using the EO1 model, 213 contest switches

using the Mars EDL model, 100 context switches using the SPHERES, and 100 context

switches using the ST7 model. Table 3 contains the performance data for these solvers

during the preprocessing step. Since the algorithm used for deduction and backtracking are

the same between the 3 versions of zCHAFF, performance data during search is not

analyzed.

Table 3: zCHAFF Preprocessing Data

Solver Model PA PUA PR CA CUA CR
EO1 3964 3858 0 6599 0 0

zCHAFF-stack Mars EDL 16783 16679 0 48478 0 0
SPHERES 13800 13662 0 733039 0 0
ST7 5752 5699 0 17676 0 0
Total 40,299 39,898 0 805,792 0 0
EO1 224 118 0 505 346 0

zCHAFF-LTMS Mars EDL 7021 6917 0 24111 26590 0
SPHERES 11204 11066 0 726337 1953180 0
ST7 4397 4344 0 15213 16370 0
Total 22,846 22,445 0 766,166 1,996,486 0
EOl 1589 1003 1189 7615 2908 10041

zCHAFF-ITMS Mars EDL 5871 3433 3222 38778 13358 26454
SPHERES 8519 6527 3440 708921 1656500 594126
ST7 3222 2061 1218 18143 7778 12735
Total 19,201 13,024 9,069 773,457 1,680,544 643,356

PA = number of propositions assigned.
PUA = number of propositions unassigned.
PR = number of propositions resupported.
CA = number of clauses visited by propagation after an variable assignment.
CUA = number of clauses visited by unassign after an variable unassignment.
CR = number of clauses visited by resupport in order to resupport a propositional assignment.

93

zCHAFF Results Summary: Propositional Assignments

45,000

40,000

35,000
0

E CI 30,000
00)

25,000 * zCHAFF-Stack
C CHF-LM

1 0,000

0

Fiur 37: zCHAFF Reut Sumar -PrpoitinaAsinmnt

di p i azCHAFF-LTMS
h zCHFL) AnOzCHAFF-ITMS

LCO

0c

3- 15,000

C
.2)

CO10,000

5,000

0

Assign Unassign Resupport

Figure 37: zCpAFF Results Summary - Propositional Assignments

Figure 37 plots the total number of propositions assigned, unassigned, and resupported for

each of the 3 zCHAFF solvers; and Figure 38 plots the total number of clauses visited

during propositional assignment, unassignment, and resupport. Note, the zCHAFF-LTMS

solver saves 43% in both the number of propositional assignments and unassignments over

the zCHAFF-stack. And zCHAFF-ITMS provides additional reductions in the number of

propositional assignments and unassignments by 16% and 42% over zCHAFF-LTMS.

However, since zCHAFF-stack is non-incremental, no clauses are visited during

unassignment. zCHAFF-LTMS and zCHAFF-ITMS, on the other hand, must search

through a considerable number of clauses in order to incrementally unassign dependents of

the deleted clauses. The number of clauses searched by zCHAFF-LTMS and zCHAFF-

ITMS during backtracking and resupport are around 73% of the total number of clauses

visited by these algorithms.

94

zCHAFF Results Summary: Clauses Visited

3,500,000

3,000,000

-o 2,500,000

0 2,000,000
0T EzCHAFF-Stack

:3

to 2 ,zCHAFF-LTMS

1500,000

c 1,000,000

50,0

Assign Unassign

Figure 38: zCHAFF Results Summary - Clauses Visited

95

Resupport Total

96

Chapter 7

Conclusion and Future Work

Two novel incremental unit propagation algorithms are developed within this thesis: Logic-

based Truth Maintenance System with watched-literals and Incremental Truth Maintenance

System with watched-literals. The LTMS-WL and ITMS-WL incorporate the watched-

literals data structure into the LTMS and the ITMS, respectively. Empirical results show

that these new algorithms decrease the number of clauses visited without affecting the

incremental property of the LTMS and the ITMS. However, when compared to non-

incremental unit propagation with stack-based backtracking, there is a performance tradeoff

where decreasing the number of propositional assignments through these incremental

algorithms increases the number of clauses visited by the SAT solver. Furthermore,

incremental unit propagation was not applied to the search component of zCHAFF due to

the presence of other, potentially conflicting, components of the solver.

For future work, we would like to determine if and how the LTMS-WL and the ITMS-WL

affect the performance of various decision and conflict analysis algorithms, and vise versa.

We have also conceived, but were unable to complete, an alternative incremental unit

propagation algorithm called decision-level (DL) ITMS that could be fitted to the frame

work of stack-based backtrack search. DL-ITMS is built upon the concept that the decision

levels within tree search can be used to replace the propagation numbering system within

the ITMS. Since decision levels are assigned and unassigned in order, a proposition P

assigned at decision level DL can find well-founded supported in any clause C when the

decision levels for C's other literals are less than DL. This ensures that P is assigned after

the other literals, and thus a loop support could not be formed if C supports P. Also, the

decision level of a proposition is already available within tree search and thus can be kept

and used at no extra cost to the algorithm. During unassignment, variables can still be

backtracked off of the assignment stack. However, an aggressive resupport strategy can be

97

employed such that resupported propositions are moved to a new assignment stack, while

those propositions that could not be resupported are unassigned.

98

99

Bibliography

[1] S. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd

Annual A CM Symposium on Theory of Computing, 1971.

[2] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, Cambridge, MA, 2001.

[3] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
In Communications of the ACM, 5: 394-397, 1962

[4] J. Doyle. A truth maintenance system. Artificial Intelligence, 12(3): 231-272, 1979.

[5] L. Fesq, M. Ingham, M. Pekala, J. Van Eepoel, D. Watson, and B. Williams. Model-
based autonomy for the next generation of robotic spacecraft. In Proceedings of the
53'd International Astronautical Congress, 2002.

[6] K. Forbus and J. Kleer. Building Problem Solvers. The MIT Press, Cambridge, MA,
1993.

[7] Z. Fu, Y. Mahajan, and S. Malik. SAT competition - solver description: new features
for the SAT'04 version of zChaff. In the 7' International Conference on Theory and
Applications of Satisfiability Testing, 2004.

[8] I. Gent and T. Walsh. The search for satisfaction. Internal Report, Department of
Computer Science, University of Strathclyde, 1999.

[9] S. Hayden, A. Sweet, and S. Christa. Livingstone model-based diagnosis of Earth
Observing One. In Proceedings of the AIAA Intelligent Systems, 2004.

[10] J. Hooker and V. Vinay. Branching rules for satisfiability. Journal of Automated
Reasoning, 1995.

[11] M. Ingham. Timed Model-based Programming: Executable Specifications for Robust
Mission-Critical Sequences. PhD thesis, MIT, 2003.

[12] D. Jackson and M. Vaziri. Finding bugs with a constraint solver. In Proceedings of
the International Symposium on Software Testing and Analysis, 2000.

[13] H. Kautz and B. Selman. Planning as satisfiability. In Proceedings of the 10'
European Conference on Artificial Intelligence, 1992.

[14] I. Lynce and J. Marques-Silva. Efficient data structures for backtrack search SAT
solvers. Annals of Mathematics and Artificial Intelligence, 43: 137-152, 2005.

100

[15] J. Marques-Silva. The impact of branching heuristics in propositional satisfiability
algorithms. In Proceedings of the 9th Portuguese Conference on Artificial
Intelligence, 1999.

[16] J. Marques-Silva and K. Sakallah. GRASP: a search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48: 506-521, 1999.

[17] 0. Martin. Accurate belief state update for probabilistic constraint automata.
Master's thesis, MIT, 2005.

[18] 0. Martin, B. Williams, and M. Ingham. Diagnosis as approximate belief state
enumeration for probabilistic concurrent constraint automata. In Proceedings of the

2 0 'h National Conference on Artificial Intelligence, 2005.

[19] D. McAllester. Truth maintenance. In Proceedings of the 8th National Conference on
Artificial Intelligence, 1990.

[20] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. CHAFF: engineering
an efficient SAT solver. In Proceedings of the 3 8 th Design Automation Conference,
2001.

[21] A. Nadel. Backtrack search algorithms for propositional logic satisfiability: review
and innovations. Master's Thesis, Hebrew University of Jerusalem, 2002.

[22] P. Nayak and B. Williams. Fast context switching in real time propositional
reasoning. In Proceedings of 1 4th National Conference on Artificial Intelligence,
1997.

[23] A. Otero. The SPHERES satellite formation flight testbed: design and initial control.
Master's Thesis, MIT, 2000.

[24] M. Prasad, A. Biere, and A. Gupta. A survey of recent advances in SAT-based formal
verification. The International Journal on Software Tools for Technology Transfer, 7:
156-173, 2005

[25] P. Stephan, R. Brayton, and A. Sangiovanni-Vencentelli. Combinational test
generation using satisfiability. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. 15: 1167-1176, 1996.

[26] B. Williams and R. Ragno. Conflict-directed A* and its role in model-based
embedded systems. To appear in the Journal of Discrete Applied Math (accepted
2001), 2006.

[27] G. Wu and G. Coghill. A propositional root antecedent ITMS. In Proceedings of the
15th International Workshop on Principles ofDiagnosis, 2004.

101

[28] H. Zhang and M. Stickel. An efficient algorithm for unit propagation. In
Proceedings of the 4' International Symposium on Artificial Intelligence and
Mathematics, 1996.

[29] H. Zhang and M. Stickel. Implementing the Davis-Putnam method. Journal of
Automated Reasoning, 24: 277-296, 2000.

[30] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven
learning in a Boolean satisfiability solver. In Proceedings of the International
Conference on Computer Aided Design, 2001.

[31] L. Zhang and S. Malik. The quest for efficient Boolean satisfiability solvers. In
Proceedings of the 8th International Conference on Computer Aided Deduction, 2002.

102

/ 0 - 7

