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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

As computer system complexity grows, so do total costs. Tech-

nological innovations are rapidly decreasing hardware costs, but these

decreases are more than offset by investments needed to develop and/

or rewrite software. Each new technology (e.g. microprocessors)

results in a software "reinvention of the wheel." As this complexity

increases, the labor intensive software reinvention costs escalate.

For example, office computers of today have limited word processing

capabilities. In order to permit graphic outputs, remote communica-

tions, audio input and output facilities and similar features that

are. desirable for the office computer of tomorrow, the present systems

architectures will most probably have to be redesigned, and control

program software developed for each new function. It is estimated

that with the current 30% increase in microprocessor designs per annum,

and a 100% implementation effort increase for design, the total

implementation costs will exceed $1.25 million in 1985, and more than

1,000,000 software engineers will be needed for all such applications

by 1990 (34, 35).

In order to curb these escalating costs, a long term stable

applications base is needed in this area. One way is to develop new

architectures that support user's needs over a long growth period



with the same basic structure; the system must be modular and easy

to use, and hardware changes should be transparent to the user. (This

is vital since the technology is changing so rapidly). Multiprocessors,

if designed properly allow this modulanty, long term growth, ease of

use, and possibly, as a side benefit, large computation capability.

One commonly identifies three basic motivations for the

development of multiprocessors (1). These are as follows:

a) THROUGHPUT. Multiple processors permit increased

throughput by simultaneous, rather than simply

concurrent, processing of parallel tasks;

b) FLEXIBILITY. Multiple-processor systems differ from

a collection of separate computer systems since the

former provide some level of close-sharing of recources,

e.g. shared memory, input/output devices, software

libraries, not allowed by separate computer systems.

Jobs, too "large" to run on a single processor, can

be executed on the multiprocessor system. Flexibility

also permits smooth system growth through incremental

expansion by adding new processor modules;

c) RELIABILITY. Multiprocessor systems possess the potential

for detecting and correction/elimination of defective

processing modules. This leads to high availability,



a key characteristic to fault tolerant systems and

a fail-soft capability. Traditional fault-tolerant

systems attempt to achieve both high availability and

high integrity by using duplexed and triplexed functional

units. (2)

The last five years have witnessed a spurt in activities relating

to research and development of multimicroprocessor systems. The

overwhelming factor has been the rapidly plummeting cost of semi-

conductor hardware (e.g. microprocessors) accompanied by an enormous

increase in their computing power and capabilities. The availability

of microprogrammable microprocessors has been an added boon and

permits easier adaptation of microprocessors to multiprocessor systems.

1.2 PROBLEM AREAS

The following problem areas exist for uniprocessor systems:

1) The memory address space is too small and there is a

lack of memory management and memory protection features.

2) Assembly language programming is difficult and

extremely time-consuming for anything but the

shortest program. This problem can be alleviated

though, by the use of a high-level language.



3) The memory usage is extremely high and inefficient.

4) There is no capability to execute an indivisible TEST

and SET instruction. This facility will be necessary

for resource allocation in a multiprocessor environ-

ment.

5) The 8-bit wood size of the microprocessor in most common

usage is just too small for extended precision

operations.

6) There is no ability to configure an operating system

with priveleged states or priveleged instructions.

An operating system would include at least a problem

state and a supervisor state. (3)

Today, 16 bit word size microprocessors are available; however,

several of the above problems continue to be areas of sustained research

activities.

As compared to uniprocessor configurations, multiprocessor

systems are characterised by increased complexity in two major areas:

a) Interconnection mechanism.

In a system with 'N' processors, if each processor

is to directly co-mmunicate with every other (N-1)



processor, then N.(N-1) connections would be required.

As the value of N increases, the number of intercon-

nections increases as a square of N, and this makes the

strategy costly to implement. The problem is identical

to telephone systems wherein it was realized very early

that line sharing is necessary in order to reduce

costs. In the multimicroprocessor environment, such

sharing has been attempted in the form of parallel

buses, ring buses, cross point switches, trunk systems,

and multiple buses. Haagens (5) has summarised these

characteristics of these designs, and has attempted a

unique split transaction Time-Shared Bus that permits

a single bus to be optimized for catering to very

high communication loads.

In essence, the interconnection mechanism represents

the hardware facet of the problem.

b) Operating System

For optimal utilization of the processing elements,

the "distributed operating system" (DOS) is now required

to perform additional coordination, scheduling and

dispatching functions. Further, DOS must select "the

means by which computing tasks are to be divided

among the processors so that for the duration of that
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unit of work, each processor has logically consistent

instructions and data." (6)

This must be done without replicating the program

routines, and without compromising the "privacy" of

the program at any stage. Finally the design must

implicitely provide for graceful degradation in case

any element fails. Thus each processing element

should be capable of undertaking the "distributed

operating system" functions. This resilience is

especially critical where the system application

dictates a maximum system throughout.

1.3 PRESENT WORK

The Center for Information Systems Research is involved in the

design, development and implementation of a multi-microprocessor

system which is hoped to be the blueprint of systems architectures

for the previously outlined needs during the 1985-1995 timeframe.

This system features much tighter processor coupling, higher

resilience and much higher throughput than the systems under develop-

ment at Carnegie-Mellon (7) and Stanford (8).

The work on this multimicroprocessor project can be divided

into the following phases:



(i) Analysis of microprocessors, and their suitability

as basic elements in larger systems;

(ii) Evaluation of existing interconnection protocols

in order to identify the optimal bus architecture;

(iii) Development of a distributed operating system;

(iv) Final implementation.

Obviously, the above phases have considerable overlap in terms

of time. Phase (i) is completed and the effort is documented in

(11, 12, 13, 14, 15).

The author has been heavily involved in phase (ii). In this

search for an optimum bus architecture, it was considered desirable

to develop a computer-based decision support system (9, 10) to

facilitate the design and evaluation process, both for interconnection

mechanisms as well as for the distributed operating system. In

the next chapter, this design aid is described in detail. The following

chapters examplify the use of this facility to analyze various bus

architectures, and their efficacy in different job environments.
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2.1 INTRODUCTION

In the previous chapter, we saw that with the availability of low

cost microprocessors, there is a growing trend towards multi-micropro-

cessor systems. Presently, research is focussed on the evolution of

improved inter-processor communication facilities. Whereas the

constraint in single processor systems is the speed of the processor

itself, the constraint in multi-processor systems is the speed of the

bus used for communicating between processors. As the number of processors

increases, so does the probability of simultaneous request for bus

service by more than one processor. This bus contention problem has

been examined among others by (5,24).

This chapter describes a tool, entitled IMfPS (acronym for Inter-

active Multi-Microprocessor Performance System), developed to study

single time-shared bus based multimicroprocessor systems. DLMTS,

developed at the Center for Information System Research (CISR) of MIT,

is an example of the use of queueing theory for the development of

analytic models of computer systems. In this chapter, the model is

developed, and the broad features of IMMPS outlined. Finally, the

effect of a new message protocol on the system throughput are analyzed

using IM~{PS.



2.2 Multi-microprocessor systems

A single processor system can be represented as shown in Figure 2.1.

Figure 2.1 Single Processor System

When several of such mono-processor systems are connected together,

Iany element of the system (CPU, Memory or /0) must be capable of communi-

cating with any other element of that system (CPU, Memory or /0), and a

typical two-processor system is shown in Figure 2.2.

I J I

Figure 2.2 Tvyical Two-nrocessor System



It is obvious that as the number of processors increases, the load on the inter-

face increases sharply. For the mono-processor configuration shown in Fig. 2.1,

the number of possible message paths is 3!/2! = 3; for the configuration in

Figure 2.2, the number of paths = 6! = 15. Several authors have proposed
21 41

multi-bus systems (Ref. 5 contains a good summary), but the cost of such

multiple-bus interconnections increases as a square of the number of processors.

On the other hand, if only one bus is used, the contention problem between

different messages may become critical.

In order to reduce the load on the bus, it is now becoming common for

individual processors to have cache memories. On the other side, the intelli-

gence of memory and I/0 units is increasing, and as such the dividing line

between these elements is becoming blurred. In this thesis, devices are cate-

gorised into two major groups:

(a) Primary Processing Modules (PPM):

These are elements with higher level of intelligence; these elements

control the operation of other elements. A traditional CPU is an example

of a PPM: another term for such modules is "Masters";

(b) Tertiary Processing Modules (TPM):

These are elements with lower or zero level of intelligence; typical

examples are memory, /0 processors. The operation of TPM is initiated

and controlled by a PPM. Another term for such modules is "slaves".



In traditional single processor systems, there is one and only one PPM, and

typically more than one TPM. In multi-microprocessor systems, there are

several PPMs, each "controlling" the functions of a number of other TrM's,

in coordination with other PPMs. The term PM or Processing Module is used

to represent an element which may be either a PPM or a TPM.

The term "message" is used in the literature to represent a wide

spectrum of communication levels. In this thesis messages are considered

to be of one of the following two main types:

(a) "m-message"(short for macro-message). This type of message is initiated

by any PPM, and includes all the resulting supplementary processes and

communications that are directly attributable to the PPM's command. In

general, an m-message will involve one or more PPMs, several TPMs and a

sequence of bus usages disjoint over time.

(b) "e-message" (short for elementary-message). Such messages require a single

usage of bus, and involve only two PMs (both PPMs or both TPMs or one PPM

and one TPM). An example of e-message is a simple "WRITE" from a processor

to a memory. Essentially, an e-message denotes the most elementary message

communication between two processing modules.

In general, each m-message will result in one or more e-messages. A simple

store of type Register to Memory (direct addressing) will usually result in

a single WRITE message that includes the value to be written. This is an

example of an m-message resulting in a single e-message. On the other hand,

a READ-MODIFY-WRITE sequence may be a single m-message, but would necessarily

involve a sequence of e-messages.



2. 3. PARAMETERS FOR THE MODEL

IMMPS is designed specifically for the analysis of any multi-microprocessor

system with a single time-shared bus. Such networks, with 'p' primary

processor modules and 't' tertiary processing modules can be depicted

as shown in Figure 2.3.

Figure 2 .3  Typical single bus multimicroprocessor configuration

- : An equivalent representation is depicted in Figure2.4 . Here, an m-message is

* generated by a PPM, and transmitted as an e-message on the bus to a pre-speci-

fied PM(PPM or TPM). After appropriate processing at this PM, another e-message

may be transmitted to a definite PM via the bus. In general, this process is

repeated several times, and a given PM may be accessed zero, one or more times.

TPN

PPM2PP42
TPM2

TPM3

Figure 2.4 Equivalent single bus multiprocessor configuration

The m-message ends with either a reply to the initiating PPM (similar to an

answer to a customer's query at an automated bank teller) or it just "dies"

in the network after all the specified operations have been carried out. The

total existence time of an m-message is analogous to the concept of system

response time and will depend on the bus service time, PM service time (time

taken for the processint), and the wait •times (waitin because -th. f2cli:

is busy) at both PMs.and the bus. The model uses the following input data:



Messages:

- number of message types (either as e-messages or m-messages or any appropriate

combination provided a given physical message is not repeated)

- the frequency (arrival rate) and priority of each message type.

System configuration:

- the system configuration in terms of numbers of different PPMs and TPMs.

Details of similar PMs (e.g. memory units with same access time) have to be

specified only once

- the bus time (also called service time) required to transmit a message (may

be different for different messages);

- average processing time for each PM.

In case, the system has been specified in terms of m-messages, the movement path

of each type of message (number of requests to each PM) must be specified. For

example, a credit query request may result in two accesses to a particular PPM

and four accesses to a particular TPM.



2.4. QUEUEING N'P.TWOK 1MODEL

The configurations indicated in Figures 2.3 and 2.4 earlier can be represen-

ted by the central server model depicted in Figure 2.5. This is a system with

a single bus and multiple processing elements.

PROCESSING MODULES

BUS BUS

ARRIVING M
MESSAGES QUEUE SERVER

COMPLETED

M-MESSAGES

QUEUE SERVER

QUEUE SERVER
4

QUEUE SERVER

Figure 2.5 The Multi-microprocessor model

The term "server" refers to any PM or to the bus. Each of the elements is

represented by a circle, and the rectangles in front of the circles (servers)

represent queues of messages of that specific server. Different types of

m-messages enter the system and are then regarded as entities which circulate

through the network, making requests (e-messages) for processing from each

server they encounter and waiting in queues at times when they make a request

1

,, -r II

I

m

.- _



to a busy server. Different messages may be assigned different priorities, or

several messages may share the same priority. This affects their chances of

getting the bus. A "m-message" may cause several "e-message" involving various

processing modules.

The following variables and indices are used:

Index i denotes a specific processing module (1 < i < n)

Index j denotes a specific message (m or e type) (1 < J < m)

Index k denotes a specific priority (1 < k < 1)

q denotes a priority level (1l q < )

n number of PM in the system configuration

m number of message types

t number of priority levels ( £< m), I is assumed to be lowest priority.

ai gross arrival rate of messages to element i

a gross arrival rate of type j messages in system

ak arrival rate of messages with priority k

si service time of module i

s gross bus service time for message j

sj' bus service time per e-message from message j of priority k

Sk average bus service time per e-message of priority k

NRiJ number of e-messages due to m-message j* to element i

Qi queue length of device i

Squeue length of priority k at the bus

Ri response time of element i

RDj total device response time for m-message j

RBUSj bus response time for m-message j



R

Ui

Uk
Usk

total system response time for m-message j

average bus response time for m-message k

utilization of element i

bus utilization by messages of priority k

weighted bus utilization by messages of priority k

2.4.1 Formulae for bus evaluation

Assuming exponential distribution of interarrival times of messages,

exponential distribution of service times required per message, and a

single central server (summarized as M/IM/ model), the following

formulae are-valid:

ak = Za
sk = (Za..s')/(Za.) I

Uk = ak.sk
2

sk 3

k n
Rk - k + E Usk/(1-Z ak.Sk)

q=1 k=l

k-i
1-- E a .s

q=l q q

Qk = Rk.ak

sum up only those aj, ajsj'

with given priority k



2.4.2 Formulae for device/element evaluation.

For a M/M/I model, and a first come-first serve (FCFS) discipline,

regardless of message type and priority, the formulae, for the

respective expected values, are as under:

Ui = a .s i

Q U / (1-Ui)

R ± sl /(1-U i )

2.4.3 Formulae for evaluation of individual messages:

The response time for a specific message is composed of two parts:

the total PM response time for that message and the bus response time for

that message. The formulae for these components and the total response

time are shown below:

n
RDj Ri  NRij

i=1

n

iil

where s n8
where s.' =

+ I NR Nij
i=1

F Dj R+ RBUSjFinally, R



2.5. SALIENT FEATURES OF DLP2S MODEL

The Interactive Multi-Microprocessor Performance System (DI~PS) is a

modified and expanded version of the central server queueing model developed

by (25,26). Salient features of the new model will now be discussed:

2. 5.1 Queueing Network Model:

OMPS is a queueing network model based on a Poisson distribution

of message generation. The Poisson assumption is close to reality,

and gives accurate results (27). It is the only continuous distribu-

tion with the "memory-less" property, and further it leads to

relatively simple mathematical formulae. The arrival rate is assumed

to be constant and homogenous, and these assumptions have generally

given results within 10% of observed results. (28)

2. 5.2 Interactive operation:

The program is written in FORTRAN and operates in an interactive mode.

System commands and data parameters can be input in the interactive

mode, filed for later use in the file mode, and readily modified in

the edit mode. User is prompted to respond by easy to understand

questions.

2. 5.3 System configuration:

Presently, DM~PS is set up to accept a maximum of 100 processing

modules. This limit can be easily increased, when larger configura-

tions are analysed.

2. 5.4 NACK and TIMEOUT imnlementation:

In the latest implementation of the model, the NACK (short for

not acknowledged - results in case of parity busy, incorrect address



for receiving PM or when receiving PM is busy) and TIMEOUT (no reply

signal received in pre-specified time duration) are also imple-

mented. Values for these parameters can be inserted and varied

by the user.

2.5.5 Average Response Time:

The model outputs average response times for the bus and individual

processing elements, plus the average (expected value) queue lengths

at various devices. The computed results are arranged by message

type and also by PM type. For initial design, the use of average

response time as a ballpark figure is sufficient. Later, when

various system parameters are known more accurately, actual individual

figures help in a better comprehension of the entire system.

2.5.6 Sensitivity analysis and graphical outputs:

After obtaining results for a specific configuration, various

parameters (e.g. bus speed, NACK rate, TIMEOUT rate) can be modified

and a new output obtained. An easier alternative is to use the

option of sensitivity analysis and graphical output. The user can

specify the independent variable, the step size (as a percentage of

initial value), the number of iterations or graphical points (maximum

of 99), and the range for the average response time which is the

dependent variable. The latter, and the type of graph points, can

either be specified by -the user or pre-programmed default values

are assumed.

2.5.7 Elaborate warning and error detection routines;

All user specified values are checked, to the extent possible, for

correctness and compatibility with other values. User is prompted



in case of errors/potential errors, and amendments are easily done

in EDIT mode.

2.5.8 Infinite queues:

An assumption is made that there is no upper limit on the queue

lengths at input/output of different PY-s. This is done because

finite/queue capacity problems can be mathematically sol-ed only

for some cases. A companion simulation model has been used at

MIT for finite queue capacity system analysis, and these results

have been very close to the values predicted by DMfPS [ChS ]. However,

it is true that if average queue lengths (as computed by model)

are smaller than one-tenth the physical maximum queue size

(engineering approximation), then the assumption of infinite queue

capacity is valid for purposes of design.

To calculate the mathematical probability of the "goodness"

of this assumption, consider the situation at any PM of the bus

as shown in Figure 2.6.

-- -T
i ,Facility I
I Facility |

I Queue I
Message 1- Message Service Rate = Rarrival
rate = A

Subsystem 'S'

Figure 2.6 A Typical System Facility

Messages arrive at a rate of A per unit time, and are processed/

serviced at a rate of R per unit time. For mathematical simplicity,

assume that both arrivals and processing timings are exponentially

distributed. The sub-systems is therefore of type M/M/l, where



the first M means that the inter-arrival times are exponentially

distributed (M stands for "'!rkovian"), the second M that the

service/'processing times distribution is also exponential, and 1

means that the server has one channel. No output queue is

considered, as this wait time is considered to be due to the

input queue of the next facility (bus or PM).

Let

p probability of no message in sub-system S

(i.e. service facility is free, and queue is empty),

p = probability of 1 message in sub-system S

(i.e. service facility is busy, but queue is empty),

P2 = probability of 2 messages in sub-system S

(i.e. service facility is busy, and one message awaits

processing); and

PN °= probability of N messages in sub-system S (i.e. service

facility is busy, and (N-l) messages await in the queue

Then PN=1
=0N

AAlso, the traffic intensity, T =

(by definition).

For the V/M/I case, the following formulae are valid (28,29,30)

PO = I - T

PN = (1 - T) TN

T
N 1-T

Var (N) = T

(1 - T

p( > k) = Tk



Using IMPS, suppose the average number of messages in the

system, N = 2 (including the message being serviced) which

gives the traffic intensity, T = /3 .

If using the previous logic, the actual queue capacity was

10, the maximum value N can attain physically is 11. The

probability of an error due to the assumption of infinite

queue capacity is given by:

(proximation k 212p = p(N > 12) =T =
< 0.78%

Hence, the error due to the infinite queue capacity assumption

is really very small. If the queue length is set to 64 (not too

difficult to realize) the probability of queue overflow becomes

-12
essentially zero, 2.4 x 10-12 . At the same time, it must be

emphasized that the hardware implementation must prohibit receipt

of any new message if the queue is filled to capacity. The pre-

dicted through-put using LMMPS would be very slightly higher than

actual through-put using IMEfS with finite queues.

2.5.9 Arbitration modes:

In any real multin-microprocessor system, there will always be

occasions when several PMs want to use the bus at the same time,

In order to permit meaningful operation, there must be logic,

either centralized or decentralized, to grant the bus to a par-



ticular PM. This process is called arbitration. Figure 2.7

depicts a case where an arbitration cycle is carried out

every time the bus becomes free. The arbitration cycle

denotes bus
operation

denotes
arbitration

Time

Figure 2.8 Effect of arbitration cycle

. and the bus service time are each assumed to be one unit time long.

In this case, the bus is actually used for 3 units of time out of

6 units of time, i.e. for 50% of cycles; the remaining time, arbi-

tration is in progress, and the bus is forced to be idle.

One way to increase bus throughput would be to permit over-

lapping of bus operation and the arbitration cycle. Such a case

is shown in Figure 2.8.

j denotes
tbus usage

denotes
arbitration

1 2 3 4 5 6

Figure 2.8 Overlavped operation

When the bus is being used, the arbitration unit decides the next

PM to use the bus. As soon as the bus becomes available, the PM

starts using the b's, and the arbi~raticn c-cle starts afresh to

decide the next candidate for using the bus.
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In case of fully overlapped operation, the bus is avail-aib-e

for use at all times, and the throughput is not adversely affected

by the arbitration overhead. In case of non-overlapped operation,

the arbitration overhead is taken into account by assuming the

bus service time to be the sum of the actual bus service time plus

the arbitration overhead.



2.6. IMPLEMENTATION OF A SPECIFIC BUS STRUCTLURE

2.6.1 NACK and TIMEOUT

Taking clues from telecommunication experience, a certain

percentage of NACK and TI.ME-OUT must be expected in any practical

multi-microprocessor system. A NACK occurs due to incorrect parity

or the queue being full at the receiver's end. An incorrect destina-

tion code, non-operational telecommunication link or a faulty device

would result in a TIME-OUT. System software normally re-transmits

the message, for a pre-specified number of times, before informing

the user. Suppose, the probability of getting an ACK, a NACK and a

TIMEOUT are PA, PN and PT as shown in Figure 2.9,2.10 and 2.11respec-

tively.

probability = PA

ACK
Figure 2.9 Case 1: ACK

probability = PN-

Figure 2.10 Case 2: NACK

* probability = PT

)> --- TIMEOUT **.........

Figure 2.11 Case 3 TIMEOUT

*NOTE: (Figures 2.10 & 2.11)

In NACK and TIMEOUT, message must be re-transmitted. Input load

correction is therefore necessary.



In the last two cases, the messages are re-transmitted and the total

system load is therefore greater than the physical arrival rate. In

fact the bus is busy for a total time T where

T = [PA-tA + PN-tN + PTLtT] L

where

tA = average bus time for an ACK message;

tB = average bus time due to a NACK message

(the message "re-enters" system and an ACK message must finally

be transmitted);

tT  average bus time for a TIMEOUT message (the message "re-enters"

system and an ACK message must finally be transmitted).

L m system load corrected for the "re-entered" messages as shown

in Figure 2.12.

Completed
m-messages

Figure 2.12 Corrected System Load



2.6.2 Workload Characterization - An Idealized Case

Consider a multimicroprocessor configuration with 10 processors

(PPM) and 10 m=ory units (7PM) all sharing a single bus. For this case

assume the memory service time (read/write) is 500 nanoseconds, and the

bus service time is 100 nanoseconds. Assume that each processor makes

1.4 accesses to memory every microsecond, and all memory units are used

equally on the average (i.e. a uniform distribution of processor requests

to the 10 memories - Figure2.13.

In the specific case described above, there are 1.4 messages per pro-

cessor per microsecond, or a total of (1.4 messages/processor/microsecond)

X (10 processors) X (106 microsecond/second) = 14 X 106 messages per second.

Using traditional methods of memory access, each message keeps the memory

busy for (1 bus service time + 1 memory service time + 1 bus service time)

= (100 ns + 500 ns + 100 ns) = 700 ns. Using values of service time and

message arrival rate, DILMS analysis indicates that the bus utilization

exceeds 97%, causing an average wait time exceeding 12 microseconds, and the

response time for each memory access of almost 13 microseconds.

The same workload was next analyzed, with the aid of IMMPS, in a~ Pended

Transaction environment (5). In this case, the m-message consists of the

following:

(i) An e-message from processor to memory
- bus service time of 100 ns;

(ii) Actual memory access
- memory service time of 500 ns;

(iii) An e-message from memory to processor
- bus service time of 100 ns.

IMPS generated the following results:

(i) Response time for first e-message

(ii) Memory response time

(iii) Response time for reply e-message

Total time for transaction

Bus Utilization

= 119.23 ns

= 537.31 ns

= 119.23 a

775.77 ns

= 27.78%
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It is seen that for the particular datapoint assumed, the Pended Transaction

protocol drastically reduces the response time (from 13 microseconds to less

than 1 microsecond) and the bus utilization from 97% to 28%.

It is fairly simple to include the impact of NACK and TlIMEOUT on the

system behavior. Assume that there is a 1% probability of NACK and TI-MOU T

each. One can then create dummy messages with a frequency of 1% of actual

messages, (1% of 14 X 10 messages/second or 0.14 X 106 messages/second), and

these messages have a bus service time equal to the ACK service time, or

a different service time depending on how the system hardware and software

behave when an abnormal condition is detected.

2.6.3 Workload Characterization - Another Case

In the previous sub-section, specific values of service times and

transaction rates were assumed. These values are dictated by the system

architecture and the particular job environment. Here, we consider a more

realistic case.

The future will witness increased usage of speech recognition and voice

answer back systems. Consider the system in which speech inputs are used as

commands/queries to a data base, and the answers are "spoken" by the.computer,

followed by a prompt to the user for the next question. In a distributed

system, the configuration may be as depicted in Figure 2 .14. In this case,

the maximum data input and data output rates are less than 8 KB/sec each. The

total load on the bus is 16 KB/sec. If the same data base were now to be

accessed by say 60 users simultaneously (e.g. airline reservations or auto-

mated bank tellers), there will be a worst case of 60 such loads of 16 KB/sec.

Knowing the bus service time and disk service time, all input parameters for

an IMMPS analysis are now available and could be used to evaluate the

performance of different communication protocols.

At MIT, IIMPS has been used to study several multimicroprocessor appli-

cations likely to become widespread by the late eighties.

2.6.4 Homogeneity Assumption

A final INMPS consideration must deal with the time-history dependence

of m-messages. In several instances, the nu-'er cf --messages, or t*e i~nut

queries, is not an autonomous variable, but is dependent directly on the

previous' system response. For example, if a bank teller responds after a



VOICE INPUT

8+8 = 16 KB/sec

BUS

8 KB/sec

I

A Typical System
Figure 2.14



wait of one hour, the number of user queries will be much lower than a case

where the teller responds in one second. This feedback effect cannot be

explicitly accounted for within L'E~ S, but can be indirectly accounted for

by considering different time-periods with their own characteristic input

loads.

When designing future systems to cater to particular applications, the

effort is geared towards identifying system protocols that operate comfortably

with the prescribed workloads, and in addition have sufficient margin to cater

to incidental overloads. This implies that the response times are within

reasonable limits, and the users are able to do their work on an undiminished

basis. It is best to consider the maximum transfer rates of peripherals while

evaluating the bus loads, as this results in maximum contention and the longest

response timings. In such a case, one gets the worst case behavior of the

system, irrespective of the heterogeneity of the workload involved.



CHAPTER THREE

APPLICATIONS AND THEORETICAL CONSTRAINTS

3.1 INTRODUCTION

In the preceding chapter, IMMPS was described in some detail, and

its relevance for multimicroprocessor system design and evaluation

was outlined. While analyzing multimicroprocessor bus architectures,

one is soon confronted with questions realted to the job environment

in which these systems are expected to operate. Computer performance

evaluation has traditionally classified environments (27) as Scientific

(high CPU loads, and negligible Input/Output) or Commercial (low CPU

loads, high I/O). The literature generally neglects evaluation of

real-time systems altogether. The future will witness new uses of

the computer technology, such as in areas of speech recognition,

audio response, word/graphics processing and real-time movies.

For such applications, the simple categories of Scientific versus

Commercial are neither pertinent nor useful. Instead, from the vast

continuum of applications, one identifies discrete applications to

serve as benchmarks in the design and evaluation process. In this

chapter, four discrete application reference points are identified and

described.

To the above "primal" problem, the "dual" aspect is equally

important. One doesn't wish to reinvent the wheel, if some previous

wheel can serve the purpose, possibly with sor.e modifications. In



the case of computer communications, the Synchronous Data Link

Communication (31) has been in usage for some time, and it would be

pertinent to evaluate the efficacy of SDLC for the particular appli-

cations. In (5), an innovative parallel bus has been outlined, and

this PENDED architecture is also evaluated in this thesis. Finally,

a leading computer manufacturer has come up with another parallel

bus that bears at least some resemblence to PENDED; this design is

codenamed "Q" in this thesis.

In this chapter, we focus on the theoretical capacities of

"Q", PENDED and SDLC bus architectures. The efficiency or suitability

of any bus architecture is usually examined in terms of the actual

throughput and response timings. In the ideal case, the messages will

not be required to wait, and the response time will equal the service

time. Also, if one can control the actual arrival time of all individual

messages, the bus can be loaded continuously, or the bus utilization

increased to one. In such a case, the bus throughput is implicitly

dependent on the protocol overhead and the data transfer data. It is

obvious that any real life situation will yield throughput lower than

the maximum under the ideal conditions enunciated above. One must

therefore undertake a deeper analysis only if the "maximum throughput"

is at least adequate for the intended application.

3.2 Datapoints

The adequacy angle raises the implicit question of "adequate for what?"

In [17], the analysis was focused around a graphic display application

depicted in Figure 3.1. The total data transfer rate, excluding CE load, is
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TOTAL DATA LOADS ON BUS FOR VARIOUS DATAPOINTS

DATAPOINT 1

COMM, -- FLOPPY 125 KB/S

FLOPPY - TEXT 40 KB/S

TEXT -- GRAPHICS

GRAPHICS ->DISPLAY

40 KB/S

-75 KB/S

KEYBOARD

PRINTER

NEGLIGIBLE

280 KB/S

FIGURE 3.1 (B)
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280 Kilobytes per second.

Figure 3.2 depicts a text scrolling application, and the total data

transfer rate is now about 10.7 Megabytes per second. Figure 3 .3 shows a

configuration similar to Figure 3.1, but with additional capaLilities for

speech recognicion and voice answer back; the data transfer rate aggregates

to 1.7 Megabytes per second.

Finally, in Figure 3.4, we have the real time color movie. Assuming

that a single memory contains all the data, the total bandwidth requirements

are now 47.3 Megabytes per second.

The four applications described above are used as the data reference

points for calibrating the response times possible through implementing

the alternative bus architectures.

3.3 THEORETICAL CONSIDERATIONS

For each of the various bus architectures ("Q", PENDED and SDLC)

there is a definite upper bound to the data transfer rate that can be sustained

under the most ideal conditions. This upper bound is determined by circuit

speeds, the width of the data transfer path, and the implicit overheads inherent

in flags and arbitration. In this section, these upper-bound values are

determined as a function of the message size.

3.3.1. "0"

At the present time, the message size has no known bounds, and several

possible cases are therefore considered. In case only one data byte is

transferred per message, the actual message size is 3 frames with the first

two frames being header frames, followed by the data frame. Including arbitra-

tion, the transfer time, or the time for which the bus is unavailable to

others, is about 1.33 microseconds. Hence, the maximum data transfer rate

equals:

i data s :z= eiessuae = 0.75 Megabytes/second

1.33 microseconds/message
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DATAPOINT 2

TEXT/IFAGE PROCESSOR

MEMORY <-> DISK 3.95 MB/S

MEMORY .-- > DISPLAY 3.95 MB/S

MEMORY -- TEXT/IM!AGE

OTHERS

2,5 MB/S

NEGLIGIBLE

10,4 MB/S

FIGURE 3 2 (B)
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DATAPOINT 3

TEXT EDITOR WITH SPEECH RECOCNITIOV- VOICE ,ANSWER BACK

4 DATAPOINT 1 + ADDITIONIIAL DATA LOAD OF 1,5 MB/S

S 1, 7 - 1,8 MB/S

s= 6 TIMES THE LOAD OF DATAPOINT I

FIGURE 3 3 (B)
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DATAPOINT 4
REAL TIME MOVIE COLOR

*TOTAL LOAD 47,3 MB

TO SUMMARIZE:

D1

D2

D3

D4

= 0,280

= 10.4

S1,7

= 47,3

MB/S

MB/S

MB/S

MB/S

FIGURE 3 .4 (B)



If 8 bytes are transferred every time, the message size equals

8 bytes + 2 = 6 frames, and the transfer time is 2.33 microseconds, giving
2

a maximum data transfer rate equaling 8 data bytes/,essage = 3.4 Megabytes/sec.

2.33 microseconds/message

The maximum data transfer rates for longer messages are similarly calculated,

and the results are summarized in Figure 3.5. It is readily observed that the

maximum bandwidth of the "Q" protocol ranges from 0.75 Megabytes/second.

6.0 Megabytes/second depending on the message size.

3.3.2Pended

Here, it takes 50 nanoseconds to transfer a message frame four bytes

of address information. The remaining 2 bytes of the first frames, and all

four bytes of the second and all subsequent frames, carry data (in block

transfer mode).

If a message consists of one data byte only, only one message frame is

necessary. The transfer time being 50 nanoseconds, the maximum data transfer

rate is 20 Megabytes/second.

If, however, the message is comprised of eight databytes, three message

frames are necessary. The transfer time is now 3 x 50 nanoseconds = 150

nanoseconds, giving a maximum data transfer rate equaling

8 databvtes/message = 53.3 Megabytes/second
150 nanoseconds/message

With similar calculations for longer messages, one obtains the results

summarized in Figure 3.6. The Pended bus architecture permits a maximum data

transfer rate varying between 20 Megabytes/second and 80 Megabytes/second

depending on the message size.
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NO, OF DATA
BYTES/SEC.

(THEORETICAL)
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MESSAGE SIZE

(LOG SCALE)
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3.4 SU•cMMARY

In Section 3.2, the total communication loads for each of the

four applications were calculated to be as follows:

Datapoint 1 =

Datapoint 2 =

Datapoint 3 =

Datapoint 4 =

In Section 3.3, the maximum capacities

itectures was shown to be as follows:

PENDED =

SDLC =

0.28 MB/sec

10.7 MB/sec

1.7 MB/sec

47.3 MB/sec

of the three bus arch-

6 MB/sec

80 MB/sec

0.278 MB/sec

Thus, in the "best" case, "Q" can accomodate datapoints 1 and

3 only, and SDLC is incapable of handling any of these applications.

In the next chapter, the impact of contention is studied using LMMPS,

and expected values of response times obtained.
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4.1 Introduction

Response time is the sum of service time and the wait time. As message

size increases, the service time increases proportionately. However, for

the same data rate, there are now fewer messages, and a corresponding decrease

in the probability that two messages will arrive simultaneously or almost

simultaneously. This decreases the wait time. Thus, the overall response time

reflects two conflicting trends, and it is advantageous to identify the

minima in the curve; this point gives "best response time", and a realistic

throughput rate.

In this section, IIMPS is used to calculate the response time.

4.2 "Q"

We assume an M/C/1 model, i.e., an exponential distribution of the

message arrival rates, and a constant service time, with a single central

server. The analysis is made for different message sizes (databytes per

message = 1, 8, 64 and 512). Further, the impact of increasing the bus

speed by factors of 10 and 100 respectively, is evaluated for the same

message sizes. The increase in the bus speed can be due to one or both

of the following reasons:

(a) Using a faster technology for implementing the
bus structure;

(b) Using multiple (but identical) "Q" buses to
interconnect all the elements.

In case (b), one must realize that such multiple buses require more buffer

areas in all elements; furthermore, the housekeeping overhead for splitting

the message for transmission purposes, and for the subsequent message

recreating (or concatenation) exercise, will be enormous.

The results for the four datapoints are contained in Tables 4.1 and

4 .2.; these are summarized in Figure 4.1. It is seen that the present

"Q" speeds permit direct implementation for datapoint 1, and possibly

for 3. The other datapoints dictate a modification of the "present" "Q"

~~~l~m~11~ ~hrrrr r\~rrr·nh~~~~r m·r~rYll~n



RESPOMSE TIr'E

( ) = DATAPOINT I

FACTOR

100

0.01332

SPEED

10

0,136

0,234

(0.284)

1,169
(1,304)

8,62
(9.523

TABL 4,1
WITH ( ) = DATAPOINT 2

(Js)
'IQIt

BUS
1

1,725
(oo)

2,433
(co)

(0.01436)

0,024
(0,025)

0.116
(0,117)

0.86

(0,87)

64 11.979

(co)

512 88,157

BLOCK
SIZE

WITHOUT

~I IslCII II_



TABLE .2

RESPOINSE TITIE (Cus)

IQT

BUS
1

SPEED

10

0.152
(Co)

3,435
(co)

14.290
(w)

103.28
(ce)

0.238
(co)

1.184
(5.089)

8,73

(25.6)

BLOCK
SIZE

WITHOUT ( ) = DATAPOINT 3

( ) = DATAPOINT 4

FACTOR
100

0.014
(0,025)

0.023
(0.025)

0.1168
(0.112)

0.86
(0.8)

512

WITH
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4.3 Pended

The Pended bus architecture described in (5) is also modeled for various

message sizes (1, 8, 64 and 512 data bytes per message), with bus speed factors

of 1, 10 and 100, all under M/C/1 conditions. The results for the four data-

points are shown in Tables 4.3, 4.4 and 4.5; the graphical summary is con-

tained in Figure 4.2. It is seen that the Pended protocol can cope

with all the different data loads, except that a real time movie isn't

feasible with a message size of 1 byte/frame.

4.4 SDLC

SDLC has several options, namely Point to Point, Loop and Multipoint

configurations (31) . In point to point, each processing element is

arranged as shown in Figure 4.3 for datapoint 1.

CONMM . FLOPPY a•0 TEXT GRAPHICS - DISPLAY

125 KB/s 40 KB/s 40 KB/s 75 KB/s

Figure 4.3: SDLC Point to Point

In a general case with 'n' processing elements, and each PE directly connected

to every other PE, 'n x n' linkages will be necessary. As value of n increases,

this option becomes increasingly unattractive, from the cost viewpoint.

The Loop is constrained by the limitation that in order to communicate with

another secondary PE, a secondary PE must first transfer the entire message

to a primary, and then another message is transmitted to the (destination) PE.

FLOPPY

TEXT

Figure 4.4: SDLC Loop



TABLE 4.3

RESPON:E TIT'E (Ns)

PENDED: DATAPOINT 1

SPEED

10

0.005

0.015

0.085

0.646

BUS

1

0.05

0.150

0.852

6,462

FACTOR

100

0,0005

0,0015

0.0085

0.0645

64

512

BLOCK
SIZE



TABLE L 4

RESPONSE TIE (.us)

PENDED: DATAPOINT 2

SPEED

10

0.006

0.016

0.0856

0 ,E49

BUS

1

0,075

0.168

FACTOR

100

0,0005

0,0015

0.0085

0,064 5

64 0.919

512 6.943

BLOCK

SIZE

I ,0



TABLE 4,5

RESPONSE TNDE (Ds)
PENDED

BUS
1

0.052
wo)

0,152
(0.761)

0,860

(1.576)

6.521
(11.255)

SPEED

10

0.005

(0;057)

0,015

(0,0157)

0,085

(0.088)

0.647

(0.665)

FACTOR

100

0,0005

(0.00051)

0,0015

(0.0015)

0,0085

(0.0085)

0.0645
(0.0647)

WITHOUT ( ) = DATAPOINT 3

WITH ( ) = DATAPOINT 4

64

512

BLOCK
SIZE'
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TABLE 4.6

RESPONSE TIN-E (ps)

SDLC

SPEED
10

5,733
-(3.147)

27.13

(26.07)

212.499

FACTOR

100

0.264
(0.259)

0.514
(0.511)

12.564

(2.556)

20.112

WITHOUT ( ) = MULTIPOINT

( ) = POINT TO POINTWITH

t NO. OF BYTES OF INFORMATION

4 NO, OF MESSAGES• RESPONSE TIME FOR EVEN THE

LONGER MESSAGE

BUS
1

(04

8

64

512

oo

(146)

(443)

00o /

BLOCK

SIZE



TAB•L 4,7

RESPONSE lE (Tli• s)

SDLC

SPEED

10

00

co
(00e)

00

00)

c*ae
(oo)

FACTOR

100

o00

(0,351)

1,029
(0,540)

3.471

(2.643)

26.981

(20,714)
T

BLOCK
SIZE

WITHOUT ( ) = DATAPOINT 2

WITH ( ) = DATAPOINT 3

RESPONSE TIME FOR DATAPOINT 4 IS oo IN ALL CASES,

BUS
1

@0)

64

@o)

512

m)
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Further, none of the links can be full duplex. Thus the 40 KB of data load

between TEXT and GRAPHICS results in 40 KB of load from TEXT to CCMM and

another 40 KB from COMM to GRAPHICS. In all, it represents an average load

of more than 40 KB for each link in the loop. The aggregate load of 280 KB/sec

thus reflects almost 340 IB/sec over the link between DISPLAY and COMM. On

the whole, this SDLC configuration results in large overheads, and hence

large response times.

The multipoint configuration with full duplex links has been considered

as it gives "best" response times. The same methodology and datapoints were

used, and the results are contained in Tables .6 and .7. It is seen that

SDLC, in the present form, is unable to handle the individual loads of any of

the four datapoints at any message size. A bus speed factor improvement of

10 (either by increasing circuit speed, or by using 10 parallel SDLC links)

makes some configurations feasible, and the results are summarized in Figure

.5. Thus, if SDLC is to be used for supporting multimicroprocessor systems;

it must either by speeded up, or a number of parallel SDLC links used; in the

latter case, the inherent overhead must be taken into account.

4.5 CONCLUSION

The data presented in the preceding section can be summarized as shown

below:

BUS STRUCTURE Datapoint Datapoint Datapoint Datapoint

1 2 3 4

"Q" Feasible Not Feasible Not
Feasible Feasible

PENDED Feasible Feasible Feasible Feasible

SDLC Not Not Not Not
Feasible Feasible Feasible Feasible

The above matrix illustrates that drastic modifications in SDLC speeds and/
or protocols will be necessary in order to adapt it for multimicroprocessor
applications. The "Q" protocol is currently suitable for a limited set
of applications. The PENDED bus protocol is most suitable for the

multimicroprocessor job environment.



CHAPTER FIVE

VALIDATION OF ID S

5.1 INTRODUCTION

In Chapter 2, the IM1PS analytic model was described; operating

details are summarized in the appendix to this thesis. This model

was used to derive the results in the preceding chapter. In the ideal

case, one would have desired to cross-check the results using actual

hardware and software. But since all the applications outlined are

future projections, and the "Q" and PENDED bus architectures are still

being implemented, one is compelled to look for alternative methods

for model validation.

IMMPS is based on queueing theory, and the program implicitly

uses closed form analytic expressions derived from the concepts of

work flow and steady state considerations. Unfortuantely, queueing

theory provides results only for systems with static message arrival

rates and service times. No doubt for these simple cases, it provides

accurate results with little effort. But some inherent assumptions

of queueing theory are not exactly valid, in particular, the assump-

tion about infinite queue capacities. However, if physical queue

capacities are more than 10 times the value of expected queue length,

the queue capacity can be assumed to be infinitely long for all practical

purposes. In Chapter 2, this approximation error was shown to be

negligible; further, the error could be made as small as desired.



But to a critical observer, more direct evidence is required to

completely validate the queuing model. An excellent analysis of

these issues is contained in (32).

Fortunately, Abdel-Hamid (19) has developed simulation models

for bus architectures. These simulation models, programmed in GPSS,

have been used to verify the results obtained with I`MfMPS. Since the

GPSS models assume finite queue capacities, it is possible to evaluate

the true impact of assumptions made in ITMPS. (It would be relevant

to point out, however, that a simulation run for a few milliseconds

of real time costs more than 10,000 times as much as the execution of

an equivalent analytic model in terms of computer time. Thus, some

restraint in the domain of simulation runs became essential.)

5.2 RESULTS FROM THE TWO MODELS

For "Q" bus architecture, and datapoints 1, 2 and 3, the results

are summarized in Tables 5.1, 5.2 and 5.3 respectively. The results

for PENDED are contained in Tables 5.4, 5.5 and 5.6 (21).



Tabl 5.1_ DATAPOIN

Average
response
time by
GPSS

model (ns)

1770

135

13

2401

231

24

11849

1157

115

Table 5.2 :

Bytes
of

Info.
per

Message

Average
response
time by
IMMPS

model (ns)

1725

136

13

2433

234

24

11979

1169

116

DATAPOINT 2

Average
response
time by
GPSS

model (ns)

14.0

283

1296

Average
response
time by
IMMPS

model (ns)

13.3

284

1304

3.3 116 116

% difference
from GPSS

model

0.0

0.0

- 1.0

0.0
+ 0.4
0.0

0.0

+ 0.7

0.0

Serial
No.

% difference
from GPSS

m=del

- 2.5

+ 0.7

0.0

+ 1.3

+ 1.3

0.0

+ 1.1

+ 1.0

+ 0.9

Bus
Speed

(ns)

330

33
3.3

330

33

3.3.

330

33

3.3

Serial
No.

Bytes
of

Info.
per

Message

Bus
Speed

(ns)

330

33

3.3

330

33

3.3

330

33

_ __ I

Table 5 .1 : "0" : DATAPOINT

"TQ"

9 64



Tabl 5.3 DAAPIN 3

Average
response

time by
GPSS

model (ns)

Bytes
of

Info.
per

Message

Average
response
time by

IModel (
model (ns)

152

Serial
No.

Bus
Speed

(ns)

330

33

3.3

330

33

3.3

330

33

3.3

Bus
Speed

(ns)

330

33

3.3

149

14

3399

237

23

14229

1176

116

Average
response
time by
GPSS

model (ns)

50

5

0.5

150

15

1.5

851

85

8.5

% difference
from GPSS

model

0.0

+ 2.0

0.0

+ 1.0

+ 0.4

0.0

+ 0.5

+ 0.8

+ 1.0

% difference
from GPSS

model

0.0

0.0

0.0

0.0

0.0

0.0

+ 0.1

0.0

0.0

Table 5.4: PENDED: DATAPOINT 1

3435

238

23

14290

1184

117

Average
response
time by
IM PS

model (ns)

Bytes
of

Info.
per

Message

50

5

0.5

I50

Serial
No.

1.5

852

85

8.5

330

33

3.3

330

33

3.3

Table 5.3: "Q" : DATAPOINT 3



Table 5.5: PENDED: DATAPOINT 2

Bytes
of

Info.
per

Message

Average
response
time by
IMMPS

model (ns)

75

Average
response
time by
GPSS

model (ns)

72

5.9

0.5

159

15.4

1.5

899

89

8.5

% difference
from GPSS

model

+ 4.0

0.0

Bus
Speed

(ns)

330

33

3.3

330

33

3.3

330

33

3.3

Table 5.6: PENDED: DATAPOINT 3

Serial
No.

Bytes
of

Info.
per

Message

9 64

Bus
Speed

(ns)

330

33

3.3

330

33

3.3

330

33

3.3

Average
response
time by
GPSS

model (ns)

52.3

5

0.5

152.3

15
1.5

879

86

8.5

Average
response
time by

IMMPS
model (ns)

52

5

0.5

152

15

1.5

860

85

8.5

% difference
from GPSS

model

- 0.6

0.0

0.0

- 0.2

0.0

0.0

- 2.4

- 1.2

0.0

6.0

0.5

168

16.0

1.5

919
85.6

8.5

Serial
No.

+ 6.0
+ 4.0
0.0

+ 2.2
- 3.6

0.0



In generating the above data, an M/C/i model is assumed

throughout. For simple WRITE operations, the bus service time is

in fact a constant quantity dictated by hardware. On the other hand,

for m-messages, it would be more appropriate to assume an M/M/I

model. As regards the arrival rates, it is difficult to prove that

they are truly random. But it has been shown in (33) that when large

numbers of sources are independently generating messages, then

irrespective of the actual distribution of the individual message

trains, the aggregate message train does in fact tend towards a Poisson

distribution. In our case, the messages will emanate from the different

microprocessors, and hence the bus will actually see a Poisson

distribution of inputs.

5.3 ANALYSIS OF RESULTS

In all, there are 54 sets of observations summarised in Section

5.2. Of these, 27 sets have identical values for IMlPS and GPSS results.

This implies that for these 27 sets, the differential was of a lower

magnitude than the least count of that particular observation. This

shows that the simulation runs were conducted over a "long period of

real time," so that the aggregate period represented balanced statistics.

Of the other 27 observations, the break-up is as follows;

- 4 to --5% = 0 observations
--5 to --1% = 5 observations
- 1 to 0 = 3 observations
0 to + 1 = 11 observations

+ 1 to +5 = 8 observations
more than +5 = 1 observations



The above distribution is slightly biased in favour of positive differentials.

This implies that the analytic model gave response times slightly longer than

the simulation model results.

After considerable exploration, it was discovered that the analytic model

uses a 1 microsecond time for the transmission of a 3 frame GALAXY message

whereas the simulation model simulates on a frame by frame basis, each frame

taking 330 nanoseconds and 3 frames therefore taking 990 nanoseconds. This

implies that the basic service time in IMIMPS model was about 10/990 = 0.01

or 1% higher than the corresponding service time in GALAXY model. The over-

all bias in the results is also of the same order of magnitude.

Finally, it must be emphasized that a data size of 54 observations is

small by statistical measures, and in such a case, the sample mean and the

population mean will differ by a few percentage points. On the whole, the

results fall within these limits.

Minror differences between analytic and simulation models can further be

explained as inherent in the modeling process itself.

Let us consider the analytic and simulation results for a very simple

experiment, namely tossing a coin. If the coin is unbiased, the analytic

model states that the number of heads (also equal to the number of tails)
is exactly one half the number of times the coin was tossed. The probability

of getting heads is irrespective of the number of tosses. A simulation run
with only one toss will either yield a head (pH = 1.0) or a tail (PH = 0.0).
If the simulations are repeated infinite numbers of times, then only pH = 0.5.

A typical simulation run is depicted in Figure 5.1. One notices in this
figure that as the number of simulated tosses increases, the function f
(number of heads divided by number or tries) does tend towards 0.5. For a
finite number of tosses, there is, however, a finite difference between fH
and 0.5, and this difference has-an equal probability of being positive or
negative. Thus, when any simulation run is compared with its analytical
equivalent (that i-•licitly assumes an infinite number of simulations),
some differentials -'st be expected.



# of Heads
# of Tries

Figure 5.1: Coin Tossing Experiment
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5.4 Conclusion

In this chapter, the results obtained through analytical and simulation

methods have been presented, and an effort made to summarize the similarities

and to explain the differences. The two methods have been used for evaluating

the PENDED and GALAXY protocols over a wide spectrum of message sizes and

sensitivity factors.

In order to obtain closed form solutions, the analytic model uses

queueing theory implicitly making several assumptions. In the absence of

these assumptions, queueing theory can be used only for very simple configu-

rations, and these trivial cases are unlikely to be implemented using multi-

microprocessors of tomorrow. On the other hand, for larger and practical

configurations, one is forced to make the assumptions in order to obtain

closed form solutions.

The simulation model is a step closer to the realities of the world.

Here, one can map actual physical conditions; for example, the finiteness

of queue capacities. This report examines the efficacy of the analytic model

as compared to the simulation model in order to verify the impact of the

implicit assumptions.

In this report, it has been seen that the results obtained through the

two methods are identical within statistical tolerances. The enormous over-

head involved in simulation runs make it suitable for rare occasions. Hence,

for a first pass analysis, the analytic results are generally suitable.



CHAPTER SIX

CONCLUSION

6.1 PERSPECTIVE

In Chapter 1, it was emphasized that the overall throughput df

multimicroprocessor systems is directly linked to the bandwidth of the

interprocessor channels. As more complex and faster microprocessor/

memory chips become technologically feasible, the criterion of optimal

overall performance of multimicroprocessor configurations dictates the

investigation and identification of new system architectures that support

higher data transfer rates. This is achieved by faster circuits,

increased number of message paths and/or by protocols that have lower

overheads.

Chapter 2 described the Interactive Multimicroprocessor Performance

System (LIMPS) and the facilities it provides to assist in the design

and evaluation of alternative bus structures and for sensitivity analyses.

The different bus architectures and some likely application areas were

outlined in Chapter 3. In Chapter 4, our attention focused on the

possibility of using the alternative bus structures in future multi-

microprocessor systems. These results are discussed and cross-checked

with outputs from simulation models in Chapter 5.

6.2 THE FUTURE!

In Chapter 1, the following phases in the development work were



indicated:

(i) Analysis of microprocessors, and their suitability
as basic elements in larger systems;

(ii) Evaluation of existing interconnection protocols
in order to identify the optimal bus architecture;

(iii) Development of a distributed operating system;

(iv) Final implementation.

It is seen that the PENDED protocol is most ideally suited to the

communication needs of the multimicroprocessor systems of tommorrow.

This analysis concludes Phase (ii) of the project, and IMMPS has been

a valuable support tool throughout this phase.

The distributed operating system now deserves full attention. A

preliminary analysis shows that IMPS would be relevant for studying

various possibilities in this area by treating parts of operating system

as chains of m-messages. This work has already commenced, along with

an attempt to minimize bus arbitration overhead. It is likely that as

this work progresses, it may be desirable to enhance the capabilities

of IMMPS through additional subroutines. In particular, ILMPS could

be extended to analyze systems with multiple buses; this can be done

easily by setting up multiple "central servers". Further, in analyzing

memory management, decisions of swapping-in and swapping-out could be

analyzed using an "extended IMMPS."
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