
Distributed Algorithms for Self-Disassembly in

Modular Robots

by

Kyle W Gilpin

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

@Kyle W Gilpin, 2006.
The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis and to
arnf. n .hprQ thp ri cht tfn drn Qn

Author'-.---
Department of Electrical Engineering and Computer Science

May 26, 2006

Certified by............ ... -.
Daniela Rus

Associate Professor of Electrical Engineering and Computer Science
.Tesi5sSupervisor

Accepted by ;. .

Arthur C. Smith
Chairman, Department Committee on Graduate Students

ARCHIVES

MASSACHUSETTS INSTMITE
OF TECHNOLOGY

AUG 1 4 2006

.... LLBRARIES

Distributed Algorithms for Self-Disassembly in Modular

Robots

by

Kyle W Gilpin

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2006, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Electrical Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

We developed a modular robotic system that behaves as programmable matter.
Specifically, we designed, implemented, and tested a collection of robots that, starting
from an amorphous arrangement, can be assembled into arbitrary shapes and then
commanded to self-disassemble in an organized manner.

The 28 modules in the system were implemented as 1.77-inch autonomous cubes
that were able to connect to and communicate with their immediate neighbors. Two
cooperating microprocessors controlled the modules' magnetic connection mecha-
nisms and infrared communication interfaces.

We developed algorithms for the distributed communication and control of the
system which allowed the modules to perform localization and distribute shape infor-
mation in an efficient manner. When assembled into a structure, the modules formed
a system which could be virtually sculpted using a computer interface which we also
designed. By employing the sculpting process, we were able to accurately control the
final shape assumed by the structure. Unnecessary modules disconnected from the
structure and fell away.

The results of close to 200 experiments showed the that the algorithms operated
as expected and were able to successfully control the distributed system. We were
able to quickly form one, two, and three dimensional structures.

Thesis Supervisor: Daniela Rus
Title: Associate Professor of Electrical Engineering and Computer Science

Acknowledgments

I owe a great deal of gratitude to Daniela Rus for her support throughout the last year.

This project never would have come to fruition without the help of my colleagues in

the Distributed Robotics Lab. In particular, I am indebted to Iuliu Vasilescu who

provided the impetus for the algorithms that I developed as well as countless hours

soldering and assembling the modules. Keith Kotay also deserves special recognition

for the time he spent discussing and prototyping the early connector mechanisms.

Finally, I would like to thank my parents, Linda and Bill, who both read this thesis

and provided excellent feedback.

This thesis was made possible by support from NSF, Air Force MURI, Intel, and

a generous donation of connectors by Magswitch Technology, Inc.

Contents

1 Introduction

2 Related Work

3 Hardware

3.1 Processors

3.1.1 Primary ARM Processor

3.:1.2 Secondary PSoC Processor

3.2 Connection Mechanism

3.3 Communication Interface

3.4 Orientation Detector

3.5 Power Regulators

4 Low-Level Software

4.1 I2C Communication

4.1.1 I2C Commands

4.2 Magswitch Control

4.2.1 Threshold-Based Magswitch Control

4.2.2 Slope-Based Magswitch Control .

4.3 Inter-Module Message Transmission

4.3.1 Message Format

4.3.2 Message Structure

4.3.3 Message Buffering

7

: : : : : : : :

4.4

4.5

Inter-Module Message Reception

Basic Message Types

4.5.1 Acknowledge (ACK) Messages

4.5.2 Not Acknowledge (NCK) Messages

4.5.3 Disconnect All Magswitches(DCA) Messages.

4.5.4 Disconnect Request (DRQ) Messages

4.5.5 Magswitch State (MSS) Messages

4.5.6 Reset (RST) Messages

4.5.7 Real Time Clock (RTC) Messages

5 Self-Disassembly Algorithms

5.1 Neighbor Discovery

5.2 Localization

5.2.1 Localization Message Propagation

5.2.2 Reflection Messages

5.2.3 Correctness of the Localization Algorithm . .

5.2.4 Running Time of the Localization Algorithm .

5.3 Inclusion Message Generation

5.3.1 Constructing the Graph

5.3.2 Finding Shortest Paths

5.3.3 Generating the Inclusion Messages

5.4 Shape Distribution

5.4.1 Inclusion Message Propagation

5.4.2 Shape Distribution Correctness

5.4.3 Running Time of the Shape Distribution Algorithm

5.5 Disassembly

5.5.1 Disassemble Message Propagation

5.5.2 Correctness of the Disassembly Algorithm

5.5.3 Running Time of the Disassembly Process

55

56

56

57

58

58

59

59

60

61

62

........ . 63

. 63

.. 65

. 66

. 68

. 69

. 70

. 71

. 72

........ . 73

. 73

. 77

. 79

6 Algorithm Implementation 83

6.1 Increasing System Reliability 83

6.1.1 Synchronization 85

6.1.2 Localization Modification 87

6.1.3 Shape Distribution Modification 88

6.2 Message Specification 89

6.2.1 Ping (PNG) Messages 89

6.2.2 Localization (LOC) Messages 90

6.2.3 Reflection (REF) Messages 90

6.2.4 Inclusion (INC) Messages 91

6.2.5 Disassemble (DAS) Messages 92

6.3 Graphical User Interface 93

7 Experimental Results

7.1 Neighbor Discovery Results

7.2 Localization Results

7.3 Inclusion Message Generation Results

7.4 Shape Distribution Results

7.4.1 Running Time Comparison

7.5 Disassembly Results

8 Conclusions

8.1 Hardware Lessons Learned

8.2 Software Lessons Learned ..

A Schematics

B ARM Source Code

B.1 main.c

B.2 handlemsg.c

B.3 txmisg.c

B.4 crc.c

97

98

98

103

104

109

110

113

113

114

117

125

125

127

140

145

. 146

B.6 msgqueue.c 152

B.7 debug.c 156

B.8 usrint.c.............. 169

B.9 log.c 174

B.10 rtc.c 177

B.11 eeprom.c 181

B.12 psoc.c 186

B.13 i2c.c 193

B.14magswitch.c 196

B.15 orientation.c 202

B.16 tmrl.c 205

B.17 uart.c 207

B.18 ioctrl.c 210

B.19 clocks.c 211

B.20 util.c 213

C PSoC Source Code 215

C.1 main.c 215

C.2 i2c.c 215

C.3 comparator.c 219

C.4 tx.c 221

C.5 rx.c 222

C .6 hall.c .. . 223

B.5 parsemsg.c

List of Figures

1-1 Initial and final configurations of a self-disassembling system 19

3-1 A single self-disassembling module 27

3-2 The inside of a self-disassembling module 28

3-3 ARM processor block diagram 30

3-4 PSoC processor block diagram 32

3-5 A single Magswitch connector 35

3-6 Magswitch drive chain 36

3-7 Magswitch and Hall Effect sensor arrangement 37

3-8 Hall Effect sensor output voltage vs. Magswitch rotation 38

3-9 Photodiode output voltage vs. distance 40

3-10 Photodiode output voltage vs. alignment offset 40

4-1 Low-level message processing loop 44

4-2 Hall Effect sensor output voltage variance 48

4-3 Slope-based Magswitch control algorithm 50

4-4 Basic inter-module message format 53

4-5 Acknowledge (ACK) message format 57

4-6 Magswitch state (MSS) message format 59

4-7 Real time clock (RTC) message format 60

5-1 Four phases of self-disassembly 61

5-2 Localization of several modules 64

5-3 Constructing a graph for the shape distribution message generation

5-4

5-5

5-6

6-1

6-2

6-3

6-4

6-5

6-6

6-7

process

Constructing a breadth-first tree . . .

Evolution of a single inclusion message

Shape distribution process

Complete software heirarchy

Ping (PNG) message format

Localization (LOC) message format . . .

Reflection (REF) message format

Inclusion (INC) message format

Disassemble (DAS) message format . . .

Graphical user interface screen capture

7-1 Time required for a chain of modules to receive localization messages

7-2 Time required for a chain of modules to transmit reflection messages

back to the GUI during localization

7-3 Time required for a square of modules to receive localization messages

7-4 Time required for a square of modules to transmit reflection messages

back to the GUI during localization

7-5 Time required for a cube of modules to transmit reflection messages

back to the GUI during localization

7-6 Time required by the GUI to generate a sequence of inclusion messages

for a chain of modules

7-7 Time required for a chain of modules to receive inclusion messages . .

7-8 Time required for a chain of modules to transmit reflection messages

back to the GUI during shape distribution

7-9 Time required for a square of modules to receive inclusion messages

7-10 Time required for a square of modules to transmit reflection message

back to the GUI during shape distribution

7-11 Time required for a cube of modules to receive inclusion messages . .

. 84

. 90

. 90

. 91

. 92

. 93

. 94

100

100

101

101

102

104

106

106

107

108

108

................. 7 1

. 72

. 76

................. 77

7-12 Humanoid figured created by self-disassembly 112

List of Tables

4.1 I2C commands 46

4.2 Comparison of the threshold-- and slope-based Magswitch control al-

gorithms 52

5.1 A depth-first search generates a sequence of inclusion messages . . . 73

6.1 Message type priorities 86

Chapter 1

Introduction

Self-organization is the ability of distributed systems to form functional groups and

structures in accordance with their environment and task. Self-organizing systems

serve as tools which can be used to simulate the interaction of simple behaviors

that, when aggregated, display surprisingly complicated phenomena. The systems are

highly relevant and potential laden due to their similarities with numerous biological

systems such as those of social insects and nervous systems. Consequently, artificial

self-organizing systems can assist scientists in gaining a better understanding of the

natural world and extracting information which can be utilized to better society.

This thesis looks at self-organizing systems which are able to self-disassemble.

That is, they are able to transform from regular homogeneous structures into more

intricate and interesting configurations by removing some system components. The

basic idea behind the self-disassembling modules we developed can be thought of

as sculpting a block of marble. A prearranged structure of individual modules will

transform into a different structure by breaking apart in an orderly fashion. Much like

a sculptor would remove the extra stone from a block of marble to reveal a statue, our

self--disassembling system eliminates unnecessary modules to form a more interesting

structure.

A collection of millions of modules, if each were small enough, could form a com-

pletely malleable building material that could solidify and then disassemble on com-

mand. The applications for such a material are numerous. For example, the material

could be applied to help heal severely broken bones that would otherwise require the

use of permanent steel plates or pins. Thousands of tiny modules could be packed

around the break by a surgeon, or they could be injected into the body and drawn

to the site of the break with a magnetic field. Once satisfied that enough modules

surrounded the break, the modules could be instructed to solidify. The solid struc-

ture of modules would both immobilize the broken bone and provide a scaffolding on

which new bone material could regenerate. The modules would also be able to sense

the bone's regrowth and slowly disassemble in the places they were no longer needed.

The modules could also provide feedback detailing how well the bone was mending.

The disassembly process would continue until the two pieces of bone were securely

re-attached. As the modules disassembled from the structure around the site of the

break, they could be absorbed into the blood stream and passed out of the body in

a harmless manner. While this level of sophistication is still far off, the system we

developed serves as a means to study the algorithms the would be necessary for such

a use.

In the particular system we developed, many small modules are initially arranged

by hand to form a super-structure, for example, the 27-module cube shown in Fig-

ure 1-1(a). Each individual module is physically linked to up to six neighbors. After

the super-structure is assembled, we model a desired final configuration of the sys-

tem using a desktop computer. This model is transmitted to the structure where

it is distributed. Once the super-structure receives information about the desired

final configuration of the modules, the appropriate modules break their connections

with their neighbors and disconnect from the structure. The unnecessary modules

continue to separate until the desired final configuration, pictured in Figure 1-1(b),

is achieved.

In the process of implementing our system, we faced numerous hardware design,

control, and coordination challenges. When dealing with large self-organizing sys-

tems, there are many unsolved problems. We do not yet understand the most efficient

way to communicate with all of the modules in a system, nor do we understand how

to most effectively deal with malfunctioning units. Additional experimentation is

(a) (b)

Figure 1-1: A self-disassembling system can transform from an initial uniform as-

sembly of identical modules, (a), into a more interesting and functional assembly in

(b).

needed to investigate the emerging properties of distributed, self-organizing systems.

Researchers have yet to develop the communication and control algorithms necessary

to successfully employ large distributed robotic systems for the study of natural phe-

nomena. Additionally, studying self-organization presents challenges because it re-

quires vast systems and robust algorithms capable of adaptive, task-driven distributed

coordination and control. Methods of fabricating, programming, and debugging such

systems do not exist.

Other groups have focused on self-assembling, self-reconfiguring, and self-replicating

systems, but little research has been devoted to the specifics of self-disassembly. To

study self-disassembling systems, we first had to design appropriate hardware that

was as small as possible. In the design process, we imposed the additional constraint

that the modules be completely autonomous-each module should have its own sens-

ing, processing, actuation, and power supply capabilities. This choice differentiates

our system from several other modular robotic systems that are also under develop-

ment. Rarely do modules contain their own power supplies, and many are not able

to perform any significant amount of processing. Because we wanted each module to

contain its own power source, the standard mechanical and electromagnetic connec-

tors used in other systems could not be employed because they consume too much

power.

There were also several challenges associated with designing the software that con-

trols the modules. We had to develop communication algorithms that were able to

reliably pass messages from one cube to another. When these failed due to mechanical

misalignment, we had to ensure that the high-level algorithms that control the dis-

assembly process were not affected. The high-level self-disassembly algorithms also

needed to operate in a distributed manner. We decided that it was unrealistic for a

module to have any global information about the system. Individual modules should

only know about the existence and state of their immediate neighbors. Even though

the modules did not have information about the system as a whole, they needed to

localize with respect to one another and be able to route shape distribution messages

throughout the entire structure. Despite these hardware and software challenges, we

developed a successful modular self-disassembling system that can serve as a platform

for further study.

This thesis is divided into eight chapters. After this first chapter, the second ad-

dresses some related work. Chapter 3 then begins to discuss the specifics of the mod-

ules we developed by presenting their hardware platform. Following the discussion

of the hardware, Chapter 4 explains the important aspects of the low-level software.

This software interfaces with the hardware and allows the top-level self-disassembly

algorithms to control the modules in a more abstract manner. Chapter 5 presents the

basic self-disassembly algorithms, proves that they operate correctly, and analyzes

their running times. To actually implement the algorithms on the hardware, we had

to incorporate several refinements. These changes and the additional details explain-

ing how the algorithms were implemented on the hardware are discussed in Chapter 6.

Following the discussion of how the algorithms were implemented, Chapter 7 presents

the results of close to 200 experiments that we performed to test the system's abilities

and verify that the algorithms operated correctly. Finally, Chapter 8 draws several

conclusions about the system and presents directions for future work.

Chapter 2

Related Work

Our work draws on prior and ongoing research in modular and distributed robotics.

Specifically, we have built upon work in the fields of self-assembling and self-reconfiguring

robotics to develop a new type of system that behaves as programmable matter. To

date, only a limited amount of research has been devoted to self-disassembling sys-

tems. Most research has focused on self-assembly and self-reconfiguration in robotic

systems. Typically, these systems construct and rearrange themselves in order to pro-

vide locomotion or to manipulate objects. The topic of this thesis, self-disassembly,

can be viewed as a specialized case of self-reconfiguration, so the research of self-

reconfiguring robotic systems is still relevant. In what follows, we summarize several

modular systems which have already been developed.

Yoshida presents an intriguing self-reconfiguring system which uses shape mem-

ory alloy (SMA) springs to connect neighboring modules [16]. He states that he chose

SMA based actuators because they maintain a favorable power to weight ratio when

miniaturized. In fact, his smallest modules fit inside a 2 centimeter cube and weigh

only 15 gramns. Yoshida's system, which is currently confined to two dimensions, con-

sists of square modules that include two male connectors, (on opposing vertices), and

two female connectors, (on the opposite set of opposing vertices). The male connec-

tors can swing through a 180 degree arc and bond with their female counterparts.

This design allows one module to traverse around the exterior of a number of other

connected modules. One drawback to Yoshida's system is the amount of power it

consumes. While the system's connectors do not dissipate power in their static state,

actuation requires 1 Amp. Consequently, the modules do not contain their own power

supplies. Furthermore, all of the processing required for the system's motion planning

is performed on a separate computer after which control commands are transmitted

to the individual modules [16].

In a separate paper, Yoshida devotes additional space to describing a three-

dimensional adaptation of his system [15]. Additionally, he presents a recursive

method for describing the structures formed by modular robots. This recursive repre-

sentation uses multiple layers of abstraction in order to separate the low-level details

of the structure from the structure's general shape. For example, eight modules could

be arranged to form a cube which is then viewed as a single, indivisible node by higher

level descriptions of the system as a whole. Yoshida states that using such a recursive

representation enables one to describe sizable, complicated shapes which would be

impossible to characterize otherwise.

In [8], Rus describes a system of "crystal" modules which can expand and contract

two of their dimensions by a factor of two. The crystal modules are composed of four

movable faces arranged in a square. Two of these faces contain active connectors

and two contain passive connectors. The active connectors can mate with passive

connectors. By selectively latching and unlatching from their neighbors, a collection

of crystals is able to arbitrarily modify its structure in two dimensions. In total, each

crystal module has only three degrees of freedom: one to expand the faces and two to

control the state of the latches on the active faces. Rus presents detailed algorithms

to accompany the crystal hardware. These algorithms prove that composite crystal

structures can assume arbitrary configurations and that any individual module can

relocate anywhere in the structure.

A novel system for self-assembly and reconfiguration is presented by White [13]

which uses fluid flow to bind individual modules together. In particular, the modules

have gated inlets which, when opened, draw in fluid to exert a suction force on the

neighboring modules. Unfortunately, the modules only operate in fluids more viscous

than air, such as oil and water. Additionally, the modules have limited processing

power and depend on an external pump to move the fluid and provide the suction

force. According to the authors, the greatest advantage of their system is its ability

to function correctly even if the modules are shrunk to the microscale [13], a property

absent in most self-reconfiguring systems.

The CHOBIE robot developed by Koseki [6] is also unique in its mechanical design.

The modules in the CHOBIE system, which are rectangular, are able to locomote by

sliding in two planes relative to one another. A module cannot only slide horizontally

across the top of another module, but vertically down a module's side as well. This

ability allows one robot to climb up and over another. While the CHOBIE robots

contain only basic processing power, they are self-contained and able to operate

untethered. The system is still confined to two dimensions.

Mytilinaios presents an especially clever system of modular robotics in [7] which is

able to self-replicate. The system is composed of cubes that have a rotational degree

of freedom in line with the diagonal from one corner of the cubic modules to the corner

farthest away. The system uses electromagnets to connect neighboring modules and

two electrical contacts to share power and communication signals. Mytilinaios uses

the system to investigate different initial configurations that, when given a supply for

spare modules, can replicate themselves. As with other systems, the disadvantage

of Mytilinaios' system is the apparent inability of the modules to perform high-level

computation and the fact the the modules must be anchored to a special base which

supplies the necessary power.

While most of the above research efforts focused on modular systems which are

completely homogeneous, systems with multiple types of modules also exist. Yim

presents the PolyBot system, which relies on two types of modules: segments and

nodes [14]. The nodes are passive cubes that have connectors on all six faces. In

contrast, the segments consist of only two connectors which are able to move relative

to one another. Specifically, a rotational joint driven by a motor separates the two

connectors. The PolyBot is a chain type reconfigurable modular robot. In other

words, chains of modules connect in order to form structures such as loops, legs, or

tendrils. Yim's system has the ability to achieve locomotion through any number

of configurations. For example, a number of segment and node modules can form a

loop that rolls across smooth terrain. If confronted with more challenging terrain,

the robot can reconfigure itself as a multi-legged walking robot. The PolyBot is also

unique because its connectors are not of a specific gender. Using a system of pins and

latches, any connector face can mate with any other connector face.

Castano developed another chain-type modular robotic system called Conro that

is detailed in [1]. The Conro robot is able to assume forms that resemble snakes and

multi-jointed walkers. The Conro system is completely self-contained. Each module

has a microprocessor, a power supply, sensing capabilities, communication interfaces,

and actuation mechanisms that allow modules to both flex and join together. In fact,

each individual module can be considered a robot by itself.

Finally, Kamimura et. al. have developed the M-TRAN modular robotic system

[5]. The M-TRAN system is able to use numerous cooperating modules to, among

other tasks, achieve a modular walking robot. The individual modules contain two

degrees of freedom. In addition, they contain processing and battery power. The

most interesting aspect of the M-TRAN system is the way in which it is controlled

using a set of interconnected oscillators that are all out of phase with respect to one

another. By optimizing the phase relationships between the oscillators, they can be

used to drive the modules' motors in a coordinated fashion that leads to forward

locomotion. The M-TRAN robot relies on evolutionary algorithms to perform this

optimization process. The optimization process can occur in simulation before being

implemented in hardware, or it can be performed in real-time to allow the robot to

adapt to a changing environment [5].

The modular system presented in this thesis is different from all of the above

systems for several reasons. First, the system presented here focuses on the process

of self-disassembly. Unlike most existing systems which must find creative ways to

compress or hide extra modules, the system presented here disposes of extra modules.

Second, the system operates in three dimensions. The modules have no preferential

direction and can be assembled into arbitrary structures. Third, the modules we

developed contain significant amounts of processing and battery power. If necessary,

this allows the modules to play a significant role in the process of shape planning and

distribution. The modules' autonomous nature also enables any structure they com-

pose to continue to perform sensing and computation even after the self-disassembly

process is complete. Finally, this thesis explores several novel algorithms that com-

municate structural data about the system to a user interface and information about

the structure's desired configuration back to the modules.

Chapter 3

Hardware

The self-disassembling system that we developed is composed of autonomous modules

that cooperate to form more complex structures. A module, such as the one shown in

Figure 3-1, is a cube that is identical to all other modules in the system. All modules

contain the resources necessary to be totally self-sufficient: processing capabilities,

actuation mechanisms, communication interfaces, and power supplies. This chapter

will examine the above named features.

Figure 3-1: Each module in the system is a cube which measues 1.77 inches on each
side and weighs 4.5oz. Each module is completely autonomous and can operate for
several hours under its own power.

The modules are built from six distinct printed circuit boards that interlock to

form a rigid structure. When completely assembled, each cubic module is 1.77 inches

on a side and weighs 4.5 oz. As shown by an open module in Figure 3-2, all electronic

components are surface mounted on the top side of the boards so that when assembled

into cubes, all components reside on the inside. The only pieces of the system mounted

externally are three steel plates that form half of the magnetic connection mechanism,

presented in detail below.

Figure 3-2: An open module shows all of its major components. Each contains
two microprocessors, connection mechanisms, infrared emitters and detectors, an ac-
celerometer, a tilt switch, and batteries. Each cube is totally self-sufficient.

This chapter details the major components of each module. To begin, Section 3.1

describes the processing capabilities of each module. It examines the major hard-

ware resources of the two microprocessors in each module. Section 3.2 explains the

magnetic connection mechanism that the cubes employ to latch together. Then, Sec-

tion 3.3 describes the infrared communication system that the cubes use to interface

with their neighbors. Section 3.4 characterizes the ability of the modules to detect

their orientation with respect to gravity by using an accelerometer and a tilt switch.

Finally, Section 3.5 outlines the power supply system.

3.1 Processors

Each module contains two microprocessors that perform different tasks. The primary

microprocessor is a 32-bit ARM processor produced by Philips. It is responsible for

all of the high-level disassembly algorithms. The second processor is an 8-bit pro-

grammable system on a chip (PSoC) that is manufactured by Cypress Microsystems.

The PSoC handles the low-level functions that would otherwise occupy the ARM.

The two systems communicate using the I2C protocol [10].

3.1.1 Primary ARM Processor

The ARM processor executes all of the high-level algorithms that give the system

the ability to self-disassemble. The processor, a Philips LPC2106, boasts a 32-bit

wide data path, 128KB of reprogrammable flash memory for program storage, and

64KB of RAM for temporary data storage. We operate the processor at 11.0592MHz

to minimize the ARM's power consumption, but the chip is capable of running at up

to 60MHz [11].

A block diagram of the major hardware components of the ARM processor is

displayed in Figure 3-3. Most of the functionality of the ARM chip is implemented in

software and will be discussed in later chapters. Starting at the upper right portion of

the diagram in Figure 3-3, the first hardware component worth noting is Timer 0. This

timer interfaces with the accelerometer that is detailed in Section 3.4 and converts

its two pulse width modified (PWM) output signals into acceleration estimates.

The next piece of hardware, Timer 1, operates as an interrupt source. It sends

interrupt events to the software at fixed intervals. These interrupts serve two pur-

poses. First, the interrupts, along with the PWM generator shown in the diagram,

change the mode of the user LED so that it can display complex patterns that com-

municate the state of the module to an observer. Additionally, the interrupts prompt

E
CO

CO,,
OLH

EcUoO

.-E
.E
CD0-00

5
0,0aoz

CO-

-S: E

ARM
L_

a)Eo

a)00CO

o
-J

a)
CD

0

8 RS-232 12C
to PSoC

Figure 3-3: The ARM processor contains numerous hardware resources which are
crucial to the correct operation of the system. These resources are all controlled by
the software which executes on the ARM.

the RS-232 transceiver, shown in the bottom left of Figure 3-3, to automatically re-

transmit any messages that it has queued. The RS-232 transceiver is used by the

modules to communicate with their neighbors. Any message destined for a neighbor

is transmitted on this interface to the PSoC. The PSoC then routes the message to

the appropriate neighbor. Details of the message format are covered in Chapter 4.

The RS-232 transceiver also communicates with a desktop computer over what

we term the up-link interface. The up-link interface allows one module to serve as a

bridge between a desktop computer and the distributed system. By connecting the

system to a desktop computer, the user can easily visualize and sculpt the system

using a graphical user interface (GUI). Once the user has modeled the cubes into a

final configuration, the configuration is transmitted by the desktop computer over the

RS-232 interface back to the system.

In addition to the RS-232 transceiver, the ARM has two other communication

interfaces. The first is the I2C bus that it uses to interface with the PSoC. The

ARM acts as the master of the bus and transmits requests to the PSoC. The PSoC

then replies with the desired data. The final communication interface is the JTAG

port, which can be used to debug the processor while software is being developed.

The JTAG port allows the software developer to single-step through the source code,

and, additionally, it also update the ARM's flash memory.

The last major piece of hardware on the ARM is the flash memory. One 8KB

sector is reserved for use as a debugging log. If the ARM chip encounters errors

during its normal course of execution, it logs them in this section of the memory.

Then, even after the module has been power-cycled, the user can use the RS-232

interface to examine the contents of the log in an attempt to determine the source

of any problems. All data stored in the log can be time-stamped with a resolution

of one second using the clock which is illusrtated to the left of the debugging log

in Figure 3-3 Time-stamping allows the user to reconstruct a composite sequence of

events from event logs recorded in several different modules.

3.1.2 Secondary PSoC Processor

In addition to the ARM processor, each module in the system contains a Cypress

CY8C29466 PSoC. Each PSoC has an 8-bit wide data path, 32KB of flash memory

for program storage, and 2KB or RAM for data storage [9]. The PSoC is clocked by

the same 11.0592MHz source as the ARM processor. The most significant benefit of

using the PSoC chip is that it contains 32 reconfigurable hardware blocks that can

serve many purposes. In particular, the CY8C29466 has 16 digital hardware blocks,

eight of which are specifically designed for digital communication. It also contains

16 flexible analog blocks that lend themselves to processing and generating analog

signals. Like the ARM, the PSoC can be reprogrammed without being removed from

the circuit. Unfortunately, it cannot be debugged this way [9].

Figure 3-4 shows how we have configured the PSoC. The feature that is the basis

for all of the PSoC's functionality is the I2C slave interface shown in the upper right-

hand corner of the diagram. It continuously waits for commands from the ARM.

When it receives a command, it processes or generates the provided or requested

data, and, if required, transmits a response to the ARM. The I2C interface provides

a means to control all of the PSoC's other peripherals.

RS-232 12C
from ARM from ARM

LU
U,

-)

E 42

201.9o

wmoE13
I.U

U)CD(D__.-0

E000ooa- .•

.4

PSoC °

Figure 3-4: The PSoC processor implements much of the low-level functionality of
the system. It is primarily responisble for buffering the data received from a module's
six faces. The PSoC is controlled by the ARM processor using the I2C interface.

Moving to the left across the top of Figure 3-4, the next important hardware

resource is the configuration flash. This 64-byte sector of the PSoC's non-volatile

flash memory is used by the module to store configuration parameters that must be

retained when the power is switched off. This sector contains information such as

the module's unique identification number and several threshold values, which ensure

that the communication and orientation detection systems operate correctly.

Next, in the upper left-hand corner of the figure, two of the PSoC's digital blocks

are used to implement a 1-input, 6-output multiplexer labeled, "Tx. MUX." This

multiplexer, controlled by commands sent from the ARM processor over the 12C

interface, redirects the RS-232 data stream, (also generated by the ARM), to a specific

IR LED on any of the six faces. By switching the output of the multiplexer, the

ARM can send inter-module messages to a specific neighbor without also addressing

all others.

Below the RS-232 multiplexer, Figure 3-4 illustrates the PSoC's analog-to-digital

conversion subsystem. It is composed of two of the PSoC's analog blocks. The first

part of the system uses a demultiplexer to select between three analog inputs: one

from each of the Hall Effect sensors used in the connection mechanism described in

Section 3.2. The single analog output of the demultiplexer is then routed to the

analog-to-digital converter (ADC) to be processed. The ADC provides an 8-bit

digital output that ranges from 0 to 255 and which is routed back to the 12C block.

Moving to the right along the bottom of Figure 3-4, the next component is the

RS-232 receiver. This block consists of six identical subsystems that first receive and

decode RS-232 data stream and then buffer the received data. Each RS-232 receiver

occupies one of the PSoC's digital communication blocks. Because the receivers are

implemented in hardware, they can all operate in parallel. This ability allows a mod-

ule to simultaneously receive messages from each of its six neighbors. Because the

modules in the system do not transmit their messages in a synchronized pattern, it

is important that a single module be able to handle messages from all of its neigh-

bors concurrently. The buffers, which sit behind the RS-232 receivers, each have a

capacity of 65 bytes-large enough to hold even the longest inter-module messages.

Additionally, the RS-232 receivers automatically detect the start and stop indicators

transmitted with each inter-module message. When a complete message is received,

the corresponding buffer will not accept any additional characters until it is explicitly

flushed. This restriction guarantees that when the ARM queries any of the receive

buffers using the I2C interface, the ARM always finds an empty buffer or a complete

message.

Finally, the bottom right-hand corner of the PSoC block diagram in Figure 3-4

illustrates the digital-to-analog converter (DAC) and two of the comparators that are

necessary for inter-module communication. In addition to the two comparators inside

of the PSoC, there are four additional comparators in a separate integrated circuit.

Together, the six comparators process the analog voltages returned from the six IR

photodiodes on the module faces. The comparators' outputs are digital logic levels

that can be processed by the RS-232 receivers. By modifying the analog voltage

produced by the DAC, we can control the sensitivity of the receivers. Section 3.3

details the infrared communication interface.

3.2 Connection Mechanism

Individual modules bind to each other using switchable permanent magnet assemblies,

hereafter referred to as Magswitches. These assemblies are produced by Magswitch

Technology, Inc., and one is shown in Figure 3-5. Three faces of each cube contain

Magswitches. Like all other components, they are mounted on the inside of the cubes

and pass through similarly sized holes in the printed circuit boards. The other three

cube faces are covered by steel plates. The steel is cold rolled A336/1008 that is

0.033 inches thick. When multiple cubes are assembled into a structure, Magswitches

always attach to their neighboring cubes' steel plates, not other Magswitches. As a

result, the modules can only attract one another. They do not repel but, instead,

depend upon gravity or user intervention to clear unused modules from any final

structure. A single Magswitch connected to a neighbor's steel plate can support over

4.5 lbs.-the combined weight of 17 other modules.

rotating
permanent -

magnet
- keyway

Magswitch body

Figure 3-5: Each Magswitch consists of a two permanent magnets stacked on top of
each other inside of metal housing. The bottom magnet is fixed while the top one
contains a keyway and is free to rotate. As the top magnet is rotated through 1800,
the entire device switches from on to off or vice versa.

The Magswitch assemblies control a magnetic field by changing the relative ori-

entation of two permanent disc magnets. The magnet with the keyway shown in the

assembly in Figure 3-5 can rotate freely with respect to the fixed magnet that sits

below it in the structure. Depending on their relative orientations, the Magswitch is

either activated and attracts other ferromagnetic materials, or it is deactivated and

releases it hold. The advantage of such a system is that power is only consumed while

changing the state of the Magswitch. Once a Magswitch is on or off, it remains in

that state indefinitely. This is invaluable for the battery life of the modules.

A miniature pager motor with an integrated gear box drives each Magswitch.

These motors have stall torque of 0.28oz-in [12]. A 17-thread-per-inch worm gear is

glued to the motor's output shaft. This worm gear turns a 30-tooth spur gear which

has a key that matches the keyway of the Magswitch shown in Figure 3-5. The entire

motor, worm gear, spur gear, and Magswitch assembly is illustrated in Figure 3-6.

When driven with 4.1V, the voltage of a fresh lithium-polymer battery, the motor

requires approximately 1.3 seconds to switch a deactivated Magswitch on and back

off again.

The motor driver circuit consists of a single MOSFET. As a result, the motor

can only turn in one direction, but three additional MOSFETs, which would be

needed to run the motor in both directions, are eliminated. The drawback to such

motor
pur gear

ffect sensortop cove

Figure 3-6: A worm gear attached to the output shaft of a minature DC motor turns a
spur gear that mates with the keyway in the Magswitch. In the figure, the Magswitch
is obscured by the spur gear, and the temporarily removed top cover of the entire
assembly is shown on the left.

a configuration is that if the Magswitch is not completely deactivated, the process

of rotating it to the off position may momentarily turn it on. Additionally, the

Magswitches become difficult to activate if they are not placed in contact with the

steel plate on a neighboring cube. Because without a steel plate to complete the

magnetic circuit, the magnetic flux must flow through an air gap which has a high

magnetic resistance. This magnetic resistance translates into mechanical resistance

which the motor sometimes fails to overcome. As a result, there is no guarantee

that a Magswitch can be deactivated if it is not in contact with another cube. This

restriction, while inconvenient for testing, does not affect the capabilities of the system

as a whole because the Magswitches only need to deactivate when they are already

in contact with other cubes.

A Hall Effect sensor is used to detect the state of each Magswitch. The Hall

Effect sensor is placed such that its axis of sensitivity is aligned with the magnetic

field produced by the Magswitch. This is shown in Figure 3-7. The Hall Effect sensor

produces an analog voltage that is proportional to the attractive force produced by

the Magswitch. An analog to digital converter in the PSoC microprocessor converts

this analog voltage to an 8-bit digital value that ranges between 0 and 255. Figure 3-

8 shows how the converter's output approximates a sine wave as the Magswitch is

rotated continuously. We chose to orient the Hall Effect sensor such that the peaks

in the plot correspond to times at which the Magswitch is fully activated, and the

L:!

minimums correspond to times when the Magswitch is completely off. Chapter 4 will

discuss the algorithm that uses the Hall Effect sensor values to control the Magswitch's

state.

Hall
Effect -
sensor

Magswitch
body

motor

Eixed
permanent
nagnet

gear

Figure 3-7: A Hall Effect sensor placed near the Magswitch is used to sense the amount
of force it generates. We have chosen to align the Hall Effect sensor and Magswitch
such that higher voltages at the output of the Hall Effect sensor correspond to stronger
a attractive force.

3.3 Communication Interface

All communication between modules is performed using infrared light. Each of the six

cube faces contains an infrared LED and an infrared sensitive photodiode. Together,

these allow bidirectional communication between neighboring cubes at 9600 bits per

second (bps). While higher bit rates were achievable, 9600bps proved adequate.

Infrared communication has several advantages over other alternatives such as

direct electrical contacts. First, an infrared based system does not require that the

faces of neighboring cubes be completely flush. In an assembly of many modules, this

is a legitimate concern because imperfections in the manufacturing process produce

cubes that are not perfectly square nor exactly the same size. Electrical contacts are

also disadvantageous because they may short out on the steel plates that cover three

of the six cube faces.

In order to simplify the design of the circuit boards which compose the faces of

Hall Effect Sensor Voltage vs. Time

Gý
I

0
W

00
O

C

Cr

Time [sec]

Figure 3-8: The output of the analog-to-digital converter connected to a Hall Effect
sensor approximates a sine wave as the corresponding Magswitch is rotated con-
tinuously. The Hall Effect sensor and Magswitch are oriented such that peaks in
the converter's output indicate that the Magswitch is exerting its maximum holding
force. The minimums in the plot correspond to times at which the Magswitch was
deactivated.

the modules, the infrared LED and photodiode were not always placed in the center

of each face. This decision dictates that every module have only one valid orientation

in a composite structure if the LEDs and photodiodes of neighboring cubes are to

align. However, because any multi-module structure must be assembled by hand,

this restriction does not affect the functionality of the system.

The infrared LED and photodiode have both a limited range and a limited field

of view. Like all of the electrical components, the LED and photodiode are mounted

on the inside faces of the modules, and they point down through holes in the circuit

boards. In order to prevent these holes from further restricting the field of view of the

emitters or receivers, they are countersunk on the back (bottom) side of the boards.

Figure 3-9 shows how the voltage at the output of the photodiode varies with dis-

tance between the photodiode and the infrared LED if they are laterally aligned. It

illustrates that two cubes must be immediate neighbors in order to communicate. It

is not possible for two cubes separated by the width of another cube to communicate.

Figure 3-10 shows how the voltage varies with alignment offset between the emitter

and detector if two modules have their faces touching. To convert these analog volt-

ages to digital signals that can be used by a microprocessor, a voltage comparator is

used. It forces any input voltage above a threshold to 3.3V and any voltage below

that threshold to OV. Empirically, a threshold voltage of 2.1V provided the best com-

promise between robustness to misalignment and noise rejection. Higher thresholds

tended to produce noisy output, and lower thresholds reduced the system's robust-

ness to misalignment. The chosen 2.1V threshold allows two modules to communicate

if they were placed within approximately 0.25 inches of each other. The threshold

voltage is stored in the PSoC's flash memory, and it is simple for the user to change

using the ARM's RS-232 interface if desired.

3.4 Orientation Detector

Each module is able to detect its absolute three-dimensional orientation by using

a two-axis accelerometer and a binary tilt switch that are connected to the ARM

Photodiode Output Voltage vs. Distance

•o
0
0

n0.

0,

0

0 0.5 1
Distance Between IR LED/Phototransistor Pair [inches]

Figure 3-9: The voltage at the output of the photodiode varies as the IR LED is
moved farther away. When the LED is off, the IR photodiode produces 3.3V. When
the LED is turned on, the voltage produced by the photodiode drops by an amount
inversely proportional to the distance.

3.5

3

S2.5

S2
a-

S1.5

7,

> 0.5

0

Photodiode Output Voltage vs. Offset

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Offset Between IR LED/Phototransistor Pair [inches]

Figure 3-10: The voltage change at the output of the IR photodiode varies as the
misalignment with the IR LED increases. In this test, two modules were placed face
to face, and their alignment offset was gradually increased. When the LED is off, the
IR photodiode produces 3.3V. When the LED is turned on, the voltage produced by
the photodiode drops by an amount inversely proportional to the alignment offset.

microprocessor. The accelerometer returns two PWM signals that correspond to the

acceleration that each axis is experiencing. The period of these signals is fixed, but

the percentage of one period that the signal is on is proportional to acceleration.

The ARM microprocessor measures the pulse width of the two signals to obtain an

estimate of the cube's orientation.

The specific accelerometer, the MXD2004AL, produced by Memsic, Inc., was cho-

sen because it is highly resistant to the large accelerations that can result from being

dropped []. Given a structure of modules that is disassembling, many of the unused

modules will detach and fall away from the structure. The accelerometer should be

able to survive these falls.

A tilt switch is needed in addition to the accelerometer in order to detect a mod-

ule's orientation when neither of the two accelerometer axes is experiencing accel-

eration due to gravity. There are two possible orientations which produce such a

situation. The tilt switch differentiates between these two configurations by turning

on or off. Like the accelerometer, the tilt switch was chosen for its durability. Instead

of a typical mercury-filled glass cylinder, each tilt switch uses a small metal ball bear-

ing encased in a metal cylinder. While the tilt switch only tells the microprocessor

whether the module is oriented roughly up or down, this information, combined with

the more precise data from the accelerometer, is enough to determine which side of a

module is facing down.

3.5 Power Regulators

Each module is equipped with two rechargable lithium-polymer batteries connected in

parallel. These batteries supply power to the module's electronics and motors. They

provide 3.7V nominally and have a combined capacity of 340mAh. If the batteries are

fully charged and the module is continuously transmitting messages on each face but

not running its motors, the useable battery life is over six hours. The batteries drive

the motors directly, but two voltage regulators provide power for the electronics.

One produces 3.3V which is used by all of the components. The other regulator

produces 1.8V which is only used by the core of the ARM microprocessor. The

voltage regulators were chosen for their low-dropout voltages. The 3.3V regulator

stops operating only when the batteries produce less than 3.5V [3]. Likewise, the

1.8V regulator drops out when the batteries can only supply 2V [4].

The modules can be recharged without removing the batteries. Each module

contains an integrated circuit that manages the process. The electrical connection

to recharge the batteries is provided through two of the metal faces that adorn the

outside of the cubes. Large areas of solder mask are missing on the bottom (outside)

of two of the printed circuit boards that form the faces of the cubes in order to

electrically connect the steel plates to the circuit. To achieve a reliable connection,

the plates are affixed with conductive epoxy. To recharge the batteries, the modules

are set in a 28 inch long trough whose metal sides supply a potential difference of 5V.

Because the trough is so long, it can recharge 15 modules simultaneously. Current

to recharge each module's batteries flows from the sides of the trough, through the

metal faces and conductive epoxy to the solder mask-free contacts on the back of the

printed circuit boards. The integrated circuit responsible for managing the charging

process automatically detects when a charging voltage is present. Therefore, starting

or stopping the charging process is achieved by simply placing the modules in or

removing the modules from the charging trough.

Chapter 4

Low-Level Software

To support the algorithms that allow our system of modules to disassemble, we have

implemented a series of low-level functions that control the hardware in each module.

These routines place an abstraction barrier between the localization, shape distribu-

tion, and disassembly algorithms and the complex hardware contained in each module.

This separation facilitates the rapid implementation and modification of the high-

level concepts which are responsible for the system's visible behavior. The high-level

algorithms do not have to contend with the specifics of basic tasks such as exchanging

messages or activating a Magswitch.

Once a module has the ability to transmit and receive messages, the low-level

operation reduces to the simple process illustrated in Figure 4-1. After initializing,

a module loops forever, simply receiving and transmitting messages to its neighbors.

The interesting behavior responsible for the system's self-disassembly is governed by

how the high-level algorithms, described in Chapters 5 and 6, respond to received

messages.

Section 4.1 of this chapter explains how the ARM and PSoC processors com-

municate. Their cooperation is essential to all other functionality displayed by the

modules. Both the ARM and PSoC are necessary to actuate the Magswitches, send

messages, or receive messages from a module's neighbors. Section 4.2 presents the

algorithm used by the ARM processor to control the Magswitches using Hall Effect

sensors.

Figure 4-1: The message processing loop executing on each module is simple. First,
modules initialize all their peripherals. Then, they loop infinitely, receiving and
sending inter-module messages. How a module changes its internal state in response
to received messages and what messages it transmits in return, dictate the system's
high-level abilities.

Sections 4.3 and 4.4 explain the process a module must follow in order to send

and receive messages, respectively. In addition to explaining how messages are trans-

mitted, Section 4.3 details the basic structure of all inter-module messages. Finally,

Section 4.5 examines several specific inter-module messages and the actions that their

reception prompts.

4.1 I2C Communication

The I2C bus protocol is based on the concept of a master and a slave. The master

transmits requests to the slave, and the slave replies [10]. We have designed our

disassembling system so that the ARM microprocessor is the master and the PSoC

is the slave. This relationship allows the ARM to be in control of the bus and

request data from the PSoC when necessary. The ARM may initiate two types of

data transfers: write and read. Writing and reading data cannot be combined in a

single I2C transaction. As a result, if the ARM wants specific data from the PSoC,

it must utilize a write transaction to inform the PSoC what data it wants before it

executes the read operation. While the I2C specification allows for data rates of up

to 3.4Mb/sec [10], we found that data rates above 20Kb/sec were unreliable given

our choice of hardware. In large part, we feel this is due to the inability of the PSoC

to simultaneously process the RS-232 data from the module's six neighbors and the

12C commands from the ARM.

Each I2C exchange, regardless of whether the ARM is transmitting or receiving,

begins with the ARM sending one byte of data that contains the 7-bit I2C address

of the PSoC (64) and one bit that indicates whether the ARM wishes to read or

write data. If the ARM is writing data, the second byte of the I2C transmission is a

command byte that indicates what type of data, if any, is to follow. Some commands

transmitted by the ARM are followed by additional data bytes which further specify

how the PSoC should react. If the ARM is receiving data from the PSoC, the PSoC

should already know what type of data to provide, and every byte in the transaction

after the first is sent by the PSoC to the ARM.

4.1.1 I2C Commands

Table 4.1.1 provides a list of valid I2C commands, the number of data bytes that

are to follow, and an indication of whether they prepare the PSoC for a subsequent

read transaction. For example, consider the first command listed in the Table 4.1.1,

MONITOR HALL SENSOR. If the ARM wishes to read the current value of one of the

Hall Effect sensors, it must first transmit a MONITOR HALL SENSOR command followed

by one byte which specifies which Hall Effect sensor to monitor. After the 12C write

is complete, the ARM initiates a read operation to which the PSoC replies with one

byte containing the most recent output of the ADC connected to the specified Hall

Effect sensor.

The STOP ADC command is closely related to the MONITOR HALL SENSOR com-

mand. It is issued by the ARM whenever it realizes that it will not need to change

the state of any Magswitches for a significant period of time. Because each Magswitch

is actuated at most twice during any assembly/disassembly sequence, such times are

Table 4.1: The commands transmitted from the ARM to the PSoC over the I2C bus
may be one byte long, or they may be followed by several parameters as specified by
the Bytes to Follow column. Some commands, as denoted by the Read Next column,
also prepare the PSoC to respond to request to read data.

PC Command Bytes to Follow Read Next
MONITOR HALL SENSOR 1 Yes
STOP ADC 0 No
SET TX CHANNEL 1 No
SET COMPARATOR 1 No
GET RX STATUS 0 Yes
READ RX BUFFER 1 Yes
SAVE CFG DATA 64 No
READ CFG DATA 0 Yes

common. When the PSoC receives the STOP ADC command, it turns its ADC off to

conserve power until another MONITOR HALL SENSOR command is received. There is

no additional data sent along with the STOP ADC command.

Other commands operate in similar fashion to the two already discussed. The SET

TX CHANNEL command is used to control the digital multiplexer which redirects the

RS-232 data stream generated by the ARM to an IR LED on any of the six faces.

The additional byte expected after the initial command specifies the face to which

the stream should be redirected.

The SET COMPARATOR, GET RX STATUS, and READ RX BUFFER commands control

the flow of inter-module messages received from a module's six neighbors. In partic-

ular, the SET COMPARATOR command modifies the output of the DAC, which drives

the non-inverting inputs of the comparators used for processing the outputs of the

six photodiodes. In this case, the additional byte transmitted by the ARM after the

initial command specifies the output value of the converter. This, in turn, sets the

threshold of the comparators. The GET RX STATUS command is used by the ARM to

check which of the six RS-232 receive buffers have messages pending. The command

requires no additional argument, but like the MONITOR HALL SENSOR command, read-

ies the PSoC for a read operation in which it transmits a single byte which indicates

which of the six receive buffers is full. After determining which of the six buffers

contains a pending message using the GET RX STATUS command, the ARM typically

issues several READ RX BUFFER commands to read the contents of every buffer that

contains a pending message. The additional byte sent after the READ RX BUFFER

command specifies which buffer the PSoC should prepare to transmit back to the

ARM. A subsequent 12C read retrieves that buffer contents.

Finally, the SAVE CFG DATA and READ CFG DATA commands provide a means for

the ARM to store and retrieve configuration data from a single 64-byte page of the

PSoC's flash memory. The SAVE CFG DATA command can be followed by up to 64

bytes of data to be stored. Likewise, the READ CFG DATA command prepares the the

PSoC to return those 64 bytes during the next I2C read operation.

4.2 Magswitch Control

This section describes how feedback from a Hall Effect sensor and the ability to only

turn a Magswitch in one direction, it is possible to precisely control the state of each

Magswitch. As shown in Figure 3-8, the voltage produced by the Hall Effect sensor

approximates a sine wave as the Magswitch is rotated continuously. We have oriented

the Magswitches and Hall Effect sensors such that when the voltage produced by the

Hall Effect sensor is at a minimum, the Magswitch is deactivated. Likewise, when

the voltage is maximized, the Magswitch exerts its maximum holding force.

Due to variations in the assembly process, not all of the Hall Effect sensors are

placed at exactly the same distance from the side of the Magswitches. This results

in a variance in the minimum and maximum voltage produced by each sensor. As

illustrated by the red data points in Figure 4-2, the variance is significant when the

Magswitches are activated but not in contact with a neighbor's steel plate.

4.2.1 Threshold-Based Magswitch Control

Initially, we attempted to control the state of the Magswitches using threshold-based

algorithm. We assumed that if the reading from the Hall Effect sensor was above

a certain value, the Magswitch was activated. If the value was below a different

Hall Effect Sensor Value Histogram (n=30)

10

LL

5

n
130 140 150 160 170 180 190 200

Hall Effect sensor value

Figure 4-2: The variance seen among the minimum and maximum values of the Hall
Effect sensors monitoring the Magswitches makes it difficult to determine when a spe-
cific Magswitch is activated or deactivated using simple connection and disconnection
threshold. To overcome this problem, we looked at the derivative of the Hall Effect
sensors value to determine when the Magswitches were on and off.

threshold, we assumed the Magswitch was deactivated. As soon as the appropriate

threshold was crossed, the Magswitch control algorithm turned off the appropriate

motor to stop the Magswitch's rotation.

The threshold-based algorithm presented several problems. First, it required that

we individually calibrate every Magswitch of every module with an appropriate con-

nection and disconnection threshold. These thresholds were stored in the PSoC's

flash memory. Every time we reprogrammed a PSoC, the calibration information was

lost.

The second problem stemmed from the fact that a Magswitch must be com-

pletely deactivated in order to release its neighboring module. We found that the

force exerted by a Magswitch when nearly deactivated is very sensitive to how close

the Magswitch was to the minimum. Even if the Magswitch was close, it still ex-

erted enough force to lift another cube. In an attempt to ensure that the modules

disconnected reliably, we were forced to set the disconnection threshold as low as

-- 0 Minimums
--El Maximums with Neighboring Cube
-* Maximums without Neighboring Cube

T. _ T9 I'Th T TTTTT1r,

possible. Unfortunately, the readings from the Magswitches varied slightly across ex-

periments. Sometimes, the voltages produced by the Hall Effect sensors did not cross

the thresholds necessary to stop further rotation. When attempting to disconnect,

some Magswitches would rotate until a timeout was reached instead of ever stopping

at point of minimum attractive force. This phenomenon was less of a problem when

activating the Magswitches because even a partially activated Magswitch is strong

enough to support several other modules. As a result, we could set the connection

threshold farther from the true maximum value of the Hall Effect sensor.

4.2.2 Slope-Based Magswitch Control

We made the process of connecting and disconnecting the Magswitches more reliable

by examining the slope of the values returned from the Hall Effect sensor to detect

when the Magswitch's holding force was maximized or minimized. In particular, this

happens when the Hall Effect sensor data has zero slope. A flowchart illustrating

this approach when attempting to connect a Magswitch is presented in Figure 4-3.

The algorithm assumes that the Magswitch has reached its maximum if the slope of

the values returned by the Hall Effect sensor transitions from positive to zero or to a

negative number.

The algorithm first checks to make sure that a specified time has not expired

without connecting. If an error occurs, this check ensures that the ARM does not

attempt to rotate the Magswitch indefinitely. If the time-out has not occurred, the

algorithm reads a new value from the Hall Effect sensor and averages it with several

of the most recent values in order to smooth any noise present in the data. If the new

average is the same as the previous average, a counter is incremented. Then the value

of the counter is checked. If it is large enough, it indicates that the readings from

the sensor currently have zero slope. Next, the algorithm examines the previously

computed slope of the Hall Effect sensor values. If it is negative, but the newest

average is larger than the previous average, the algorithm updates its estimate of the

slope to positive and begins another iteration of the loop by rechecking the timer.

If the previous estimate of the slope is positive and the new slope is either zero

o

Figure 4-3: The slope-based algorithm used to activate a Magswitch stops the
Magswitch's rotation when the slope of the Hall Effect sensor values transitions from
positive to zero or a negative value.

or negative, the algorithm assumes that the Magswitch has achieved its maximum

holding strength. Consequently, it deactivates the motor. A similar algorithm is

implemented to deactivate the Magswitch.

To further ensure the system's reliability, every request to activate or deactivate

a Magswitch results in the Magswitch switching both on and off, but not necessarily

in that order. For example, when one of the high-level algorithms makes a request to

activate a Magswitch, the Magswitch is first deactivated and then activated. Likewise,

a request to deactivate a Magswitch results in the Magswitch first being turned on,

after which it is turned off.

This strategy of turning a Magswitch on before turning it off, coupled with the

slope-based algorithm above, produced better results than the threshold-based sys-

tem described in Section 4.2.1. The most noticeable advantage to the slope-based

system is its accuracy. When a Magswitch is under control of the slope-based algo-

rithm, it always stopped very near the position that exerts the minimum or maximum

force on its neighbor.

Table 4.2.2 compares how successful the two algorithms were by examining how

often Magswitches controlled by the threshold based system, as opposed to those

controlled by the slope-based algorithm, were still able to lift a neighboring cube after

being deactivated. The results of the comparison favor the slope-based algorithm

because it does not require any configuration, and a Magswitch under its control was

never able to lift another module after being deactivated.

4.3 Inter-Module Message Transmission

This section explains how messages are transmitted from a module to one of its

neighbors. As explained in Section 3.3, all inter-module communications utilize the

IR LED and photodiode pairs that exist on each of the module's six faces. The

process of transmitting a message involves several steps. First, the message body

is constructed. Then, a checksum produced by a cyclic redundancy check (CRC)

is appended to the message. Next, the ARM processor sends a SET TX CHANNEL

Table 4.2: The threshold-based and slope-based algorithms were compared while
trying to disconnect a Magswitch from a neighboring cube. There were three possible
outcomes, which are listed along the left side of the table. Successful outcomes cor-
responded to the Magswitch releasing its hold on the neighboring cube. Unsuccessful
outcomes occurred when the Magswitch was still active enough to lift the neighboring
cube. In some cases, time-outs occurred because the algorithm could not find what
it believed to be the off position of the Magswitch. Given a correct threshold, the
threshold-based algorithm was as successful as the slope-based one, but the thresh-
old had to be chosen carefully. The slope-based algorithm excels because it does not
require any configuration and always operates correctly.

Threshold-based Alg. Slope-based Alg.
Threshold 134 135 136 137 138 1139 140
Successful 0 15 15 5 11 1 0 30
Unsuccessful 0 0 0 10 4 14 15 0
Time-out 15 0 0 0 0 0 0 0

command over the I2C interface directing the PSoC to activate the RS-232 transmis-

sion multiplexer so that the message is directed to the correct face. After the PSoC

acknowledges that it received this command, the ARM sends the message over the

RS-232 interface, through the PSoC, and to the correct IR LED. Finally, once all

bits have been transmitted, the ARM once again uses an I2C bus to deactivate the

transmission multiplexer.

4.3.1 Message Format

Messages themselves are constructed from the standard set of printable ASCII char-

acters. We make no attempt to compress the messages into a space-efficient format.

While this lengthens the transmission time, it also makes it easy for anyone debugging

the system to see exactly what is happening by simply scanning all of the messages

that a module transmitts. The software running on the ARM builds the messages in a

sequential manner starting at the beginning of a message and adding the appropriate

information until the message is complete.

Each message begins with a unique start character-we chose the pound character,

(#). Messages are also terminated by a unique character, the carriage return. Unique

start and stop characters allow a stream of messages to be parsed accurately and

efficiently. As explained in Section 3.3, the RS-232 receiver blocks in the PSoC do

not begin to fill their associated receive buffers until a start character is detected.

Likewise, they stop writing to their buffers when a stop character is detected. This

ensures that any message the ARM processor reads from the the PSoC's receive

buffers is complete.

4.3.2 Message Structure

After the start character, each message consists of a number of alphanumeric fields

separated by ampersands. The ampersands never appear within a field, making it easy

for the routines that process the received messages to identify any field by number.

The structure of a typical message is shown in Figure 4-4.

transmit face msg. type optional type-specific fields

11& sequence &XX& X & & che um \r

start character one byte field delimiter cmd. terminator

Figure 4-4: Messages are composed of a start character, some number of alphanu-
meric data fields separated by ampersands, a hexadecimal checksum, and a message
terminator.

After the pound character, which starts each message, a single-digit number is

added which specifies on which face the message is to be transmitted. This trans-

mission face field exists solely for the purpose of debugging the system and allows

anyone monitoring the messages transmitted by a module to correlate specific mes-

sages with each face. The transmission face field, like all data fields, is terminated

by an ampersand. Following the transmission face field, each message contains a se-

quence number field which is a positive number of no more than four digits. As each

new message is constructed by the software, the sequence number is incremented. As

a result, messages that are transmitted a short time apart are guaranteed to carry

unique sequence numbers. When a neighbor acknowledges a message, the original

sequence number is echoed back to the sender to eliminate any ambiguity as to which

message the neighbor is acknowledging.

After the sequence number field, each message contains a three letter type field.

Different message types are used to accomplish different system tasks. Any module

receiving a message will process different types of messages in different ways. Message

types associated with low-level functionality are covered in Section 4.5. The message

type field may be followed by several more type-specific fields, or it may be the last

field before the CRC checksum. After the last message field and its terminating

ampersand have been attached to the message, a 16-bit checksum is calculated. This

checksum is represented in hexadecimal and appended to the end of the message.

This ends the process of message construction.

4.3.3 Message Buffering

Instead of being transmitted immediately upon construction, a message is placed

into a face-specific transmission buffer along with a number that specifies how many

attempts should be made to transmit the message before timing out. If the destination

module acknowledges the receipt of the message in the buffer before it has been

transmitted the specified number of times, the buffer is cleared and the message is

assumed to have been successfully transmitted. In practice, attempting to transmit

a message 500 times usually proved more than sufficient.

Once a message is placed in the transmit buffer, the function that placed it there

can forget about it. The function is not responsible for ensuring that the message is

retransmitted the specified number of times or transmitted until an acknowledgment

is received. Instead, retransmission happens as part of an interrupt routine that is

triggered by the hardware-based Timer 1 at regular intervals. Each time that an

interrupt occurs, the transmit buffer is checked for pending messages. If there is a

pending message for any face, it is transmitted then. The interrupt routine transmits

no more than one message on each face before returning control to the main program.

The software running on the ARM microprocessor treats acknowledge (ACK) and

not acknowledge (NCK) messages differently than any other type of message. Instead

of being placed into a buffer along with a retry count, ACK and NCK messages are

transmitted in place of any other message that is pending in the buffer for a specific

face, but they are only transmitted once. Normally, when a new message is placed

into a transmit buffer, the message that was already present, regardless of whether

it had been successfully transmitted or not, is overwritten. ACK and NCK messages do

not override any messages already buffered for transmission. After the ACK or NCK

message has been transmitted, the buffer returns to sending whatever message it had

been transmitting previously.

This caveat in the message buffers ensures that ACK and NCK messages are not

transmitted unnecessarily. Assuming that there are no problems with a received mes-

sage, a single ACK message is transmitted in response. Because a module receiving

an ACK or NCK message does not send an ACK message in response, the module trans-

mitting the ACK or NCK message would always transmit the message the maximum

number of times. This should be avoided because both the transmitting and receiving

module must waste valuable processing time dealing with the extraneous messages,

and the extra messages deplete the battery life of the modules. Finally, the fact that

ACK and NCK messages do not overwrite any messages already in the transmission

buffers improves two-way communication between modules. Messages can flow into

a module through a specific face without significantly delaying any message already

being transmitted on that face.

4.4 Inter-Module Message Reception

Receiving messages from neighboring cubes requires several steps. First, the ARM

must use the I2C bus to configure the digital to analog converter that drives the non-

inverting inputs of the comparators. Once the DAC is configured, it will continue to

supply a constant voltage. As a result, this step is only necessary when a module turns

on. Assuming that the threshold voltage is reasonable, the ARM proceeds to query

the PSoC receive buffers for the presence of any messages using the GET RX STATUS

I2C command. If some buffer contains a valid message, the ARM issues a READ RX

BUFFER command to retrieve the message. After the PSoC transfers a message to the

ARM, it automatically empties the buffer that had been holding the message. Doing

so allows the buffer to once again begin filling with the next message that is received

on the specified face.

Once the ARM has retrieved a message from the PSoC, it begins to process it.

The first thing that it checks is the CRC checksum. It separates the checksum of

the received message from the message body and recomputes the checksum of the

body. If the computed checksum does not match the checksum that was received,

the message is assumed faulty. Faulty messages prompt the software to send a not

acknowledge, (NCK), message on the face on which the message was received. As

explained Section 4.5.2, NCK messages cause the original transmitter to increase the

number of times it attempts to transmit the message in question.

If the received message passes the initial CRC verification process, the software

then identifies the message by its three-letter type. Depending on the type, the

software parses the message for all of the associated data fields. In some cases there

may be none. If the parsing routines are unable to extract a specific field, they

interpret this as an error, abort the message processing, and send a NCK message to

the original transmitter. If they successfully parse the message, they pass the contents

of all of the message fields on to a type-specific handler. The data fields unique to

each type of messages and the handlers for those low-level messages are described in

the next section.

4.5 Basic Message Types

Modules use a number of messages to accomplish low-level tasks that do not directly

affect the high-level behavior of the system. This section examines the format and

implications of many of those inter-module messages.

4.5.1 Acknowledge (ACK) Messages

Acknowledge (ACK) messages are sent by modules in response to the reception of most

valid messages. The structure of an ACK message is shown in Figure 4-5. It contains

two message specific data fields. The first, the initial type field, specifies the three-

character type of the initial message that justified transmitting the ACK message. The

second unique field is the initial sequence number field. Similar to the initial type

field, it contains the sequence number of the initial message that was the impetus for

the transmission of the ACK message.

transmit face msg. type

I &sequence I A:C K &I ial I& initial c cnumbe & r sequence# & checsumr
start character one byte field delimiter cmd. terminator

Figure 4-5: Acknowledge (ACK) messages contain two type specific fields. The first
specifies the type of message in response to which the acknowledge message was
generated. The second specifies the sequence identifier of that message. Together,
these fields are used to correlate ACK messages to messages in a module's transmit
buffer.

When a valid ACK message is received, two things happen. First, the initial message

type and initial sequence number fields are compared against any message currently

buffered for transmission on the receiving face. If the message types and sequence

numbers match, the message in the buffer is assumed to have been successfully re-

ceived and is not retransmitted in the future. The ARM also interprets a valid match

as an indication that the module is able to successfully send and receive messages on

the face that was the source of the ACK message. This is a valid assumption because

the module's neighbor would not transmit an ACK message unless it has received a

valid message first. Second, if the module from which the message originated was

previously unknown, the ARM now notes that the module has a new neighbor.

4.5.2 Not Acknowledge (NCK) Messages

Not acknowledge (NCK) messages are similar to ACK messages except they are trans-

mitted in response to errors encountered while processing a received message. Because

they are transmitted in response to faulty messages, no information about the orig-

inal message is included in the NCK. If such data were included, there would be no

guarantee that it was correctly received in the first place. As a result, NCK messages

contain no type specific fields.

When a module receives a NCK message, it compares the sequence number of the

received message to the sequence number of the last NCK message to be received on the

same face. If these sequence numbers differ, the ARM increments the number of times

any message currently in the receiving face's transmission queue is assigned to be re-

transmitted. The ARM ensures that the sequence numbers differ before incrementing

the retransmission count in order to avoid situations in which the transmission buffer

never stops transmitting one specific message. Empirically, we found that increment-

ing the retransmission count by 5 was sufficient. We also found that the modules

rarely transmit NCK messages. Usually, a module receives all of a message correctly

or none of it.

4.5.3 Disconnect All Magswitches(DCA) Messages

Disconnect all Magswitches (DCA) messages are employed to quickly disconnect all

modules in any structure that has been previously assembled. DCA messages lack any

type specific fields. When a module receives a DCA message, it send an ACK message

back to the transmitter. It forwards the DCA message on to every other face overriding

any messages that were already in the transmission buffers. After it has done this,

the module attempts to disconnect all three of its Magswitches if it knows that they

are not already deactivated. Because of the aggressive manner in which they are

forwarded, DCA messages will quickly propagate through any assembly of modules.

4.5.4 Disconnect Request (DRQ) Messages

Disconnect Request (DRQ) messages are transmitted by modules wishing to disconnect

from the structure. In many cases, a module wishing to disconnect will be connected

through the structure with not only one if its own Magswitches but also by one of its

neighbors. In these cases, the DRQ message is transmitted to the neighbor. As a result,

DRQ messages are only transmitted on faces that lack a Magswitch and should always

be received on a face that does. If a module receives a DRQ message, it assumes that

the receiving face is the one on which it should deactivate one of its Magswitches.

Therefore, DRQ messages do not contain any type specific fields. When a module

receives a DRQ message, it transmits an ACK in reply and then attempts to deactivate

the Magswitch on the receiving face.

4.5.5 Magswitch State (MSS) Messages

Magswitch state (MSS) messages indicate the state of the Magswitch on the face from

which they are transmitted. To do so, they include one type specific "state" field as

illustrated in Figure 4-6.

transmit face msg. type state field

S & sequence "r i & &chum \r

start character one byte field delimiter cmd. terminator

Figure 4-6: Magswitch state (MSS) messages contain one type specific field which in-
dicates the state of the Magswitch on the face from which the message is transmitted.
A MSS message is transmitted whenever the Magswitch on a face attempts to change
state.

A MSS message is transmitted whenever a module attempts to change the state

of a Magswitch. The message is transmitted regardless of whether that attempt is

successful. The state field indicates the final state of the Magswitch, not whether the

actuation attempt was successful. When a module receives a MSS message, it sends

an ACK in reply. Then it updates its internal model of the transmitting neighbor to

reflect the current state of the neighbor's Magswitch.

4.5.6 Reset (RST) Messages

Reset (RST) messages are used to reset the internal state of each module. This simple

task requires no message specific fields. When a module receives an RST message,

it acknowledges it by sending an ACK message to the transmitter and rebroadcasts

the message on all other faces. An RST message sent to one module propagates

through the entire assembly. After receiving an RST message, the module forgets

any information it had amassed about its neighbors. Receiving an RST message is

equivalent to manually resetting the module.

4.5.7 Real Time Clock (RTC) Messages

Real time clock (RTC) messages are used to reset the clock that is contained on the

ARM microprocessor in each module. As illustrated in Figure 4-7, RTC messages

contain numerous type specific fields. Fields exist for the current year, month,day of

the year, day of the week, day of the month, hour, minute, and second.

transmit face msg. type day of week day of month minute second

SI&lR TCl& year I&Imon1& dy I&I I II I I&I I&Ic umr
start character one byte field delimiter hour cmd. terminator

Figure 4-7: Real time clock (RTC) messages are used to synchronize the hardware
clock of all modules in a system for debugging purposes. They contain many type
specific fields which are used to transmit the current date and time.

When a module receives an RTC message, it updates the hardware clock in the

ARM processor, sends an ACK message to the neighbor from whom the message orig-

inated, and rebroadcasts the message to all other neighbors. In this way, the RTC

message will reach every module in an assembly of many, assuming there are no

serious communication failures. In general, individual modules do not initiate the

propagation of RTC messages. Instead, a user debugging the system transmits an RTC

message to synchronize the clocks of each module so that different modules' debug-

ging logs can be combined into a composite trace which includes a time-stamped list

of all events that occurred in the system.

Chapter 5

Self-Disassembly Algorithms

The algorithms which give the system its unique ability to self-disassemble can be

divided into the four phases illustrated in Figure 5-1. The first, neighbor discovery,

which commences after the modules are reset, is discussed in Section 5.1. During

this phase, modules detect any neighbors in close proximity and attempt to establish

mechanical and communication links.

Figure 5-1: The entire self-disassembly process consists of four phases: neighbor
discovery, localization, shape distribution, and disassembly.

During the localization phase, which follows neighbor discovery, modules discover

their positions within the structure and transmit their positions back to the GUI

running on the user's desktop computer. Localization is explained in Section 5.2.

Once each module has transmitted its position to the GUI, the GUI can form a

model of the system. Using this model, the desired final configuration of modules

can be virtually sculpted. Using the GUI, each module can be included or excluded

from the final shape. After this sculpting process is complete, the GUI generates

a sequence of shape distribution messages that is sent to the modules during phase

three. The algorithm used to generate this sequence of inclusion messages is presented

in Section 5.3. Next, Section 5.4 addresses the shape distribution phase during which

the modules propagate the inclusion messages generated by the GUI. The fourth,

and final, phase is disassembly. During the disassembly phase, which is detailed in

Section 5.5, extra modules disconnect from the system to reveal the shape the user

sculpted using the GUI.

This chapter is primarily concerned with the theoretical aspects of the algorithms

used in the self-disassembly processing. Their practical implementation will be ad-

dressed in Chapter 6. Additionally, Chapter 6 will address how the GUI is imple-

mented.

5.1 Neighbor Discovery

Before a structure of modules can self-disassemble, the structure must first be con-

structed from a set of individual modules during the neighbor discovery phase. After

being reset or being turned on for the first time, all modules begin in the neighbor

discovery phase. During neighbor discovery, every module uses its IR LEDs and

photodiodes to detect and connect to its neighbors.

The pseudocode for the neighbor discovery phase is provided in Listing 5.1. Ev-

ery module begins by transmiting ping messages on all faces. If a module receives

an acknowledgment on any face, it knows that a neighbor exists in that direction.

If that face contains a Magswitch, the module activates it in order to bind to the

neighbor. It is also possible that a module receives its neighbor's ping message before

Listing 5. 1: The neighbor discovery algorithm broadcasts ping messages on each
face until it receives an acknowledgement at which point it stops broadcasting ping
messages on the receiving face and activates the face's Magswitch.

1 loop until localization message received
2 for each face
3 if no aknowledgment message has been received
4 transmit a ping message
5 elseif acknowledgment message newly received
a stop transmitting ping messages
7 if face has Magswitch
8 activate Magswitch

an acknowledge message. In this case, the module behaves identically-it attempts

to activate the face's Magswitch, (if present). As discussed in Chapter 3, the range

of the IR system is limited to approximately 0.25 inches. This ranage has prevented

false detections in all observed cases. Once a module receives an acknowledgment

that one of its ping messages has been received by a neighbor, it stops transmitting

ping messages on that face because any further ping messages would be redundant.

Because neighbor discovery occurs independently on each cube, it only requires O(1)

time for the phase to complete. At the end of the neighbor discovery phase, the

modules have formed a solid structure, and they are ready for localization.

5.2 Localization

The localization phase ensures that each module discovers its absolute three-dimensional

coordinates in the system. Once each module has that information, it can notify the

GUI running on the desktop computer of its existence. Once all modules have local-

ized and transmitted their positions to the GUI, the GUI has a complete model of

the initial configuration of the system.

5.2.1 Localization Message Propagation

The localization process is initiated through the use of the GUI. When satisfied with

the shape that has been assembled during the neighbor discovery phase, a connector is

attached to one of the modules in the structure so that the computer and the module

can communicate. This module is termed the root module. The GUI is instructed to

send an initial localization message to the root. This message tells the root that it is

located at coordinates (0, 0, 0). This initial message is illustrated in Figure 5-2(a) by

the single arrow with coordinates (0, 0, 0).

t t

(0,1,0,) e

(I +5
4,00 4I

(pole)oP

1,0) (1,-

-I

(,1)4 - 204)

(a) (b) (c)

0,0, (1,0,0

(0,-I,0 (1,-1,0)

(0,-2,0) (

(2,0,0)

(3,-

(o0,0,0
(0,-1,0)

(0,-2,0)

1,00 (2,0,0)

(1,-1,0) (2,-1,0)

(1,-2,0 (3,-

IA -- 1

2,0).

(e) (f)

Figure 5-2: Localization messages, represented by the single width arrows, propagate
from one module to the next and carry the location of the receiving module. Once
a module is localized, it transmits a reflection message, represented by double arrow,
to its parent and it eventually propagates back to the root module.

Once a module has received a localization message, it knows its position in the

structure. Using its position, it can calculate the positions of all of its immediate

neighbors by simply incrementing or decrementing the individual coordinates in the

triplet that represents its location. For example, the module that lies to the right

of the root is located at (1, 0, 0); the module to the left: (-1, 0, 0). Once the root

has determined the coordinates of its neighbors, it sends an appropriate localization

message to each. Each message contains the correct address of the neighbor to which

64

.... | * L*.Ad

(a) (b) (c)~

4--

42

%(-1 (f) 1

it is transmitted. The messages sent by the root to its neighbors are shown in Figure 5-

2(b) by the single arrows and their associated triplets.

This process continues unaltered until localization messages reach the farthest

extents of the structure. Figures 5-2(c-f) show localization messages, (represented by

single arrows), propagating through the remainder of the 3-by-3 structure. The only

difference between how the root handles the localization message it receives from the

GUI and how all other modules handle localization messages is that the other modules

do not transmit a localization message back to the module from which they received

the message. Such backward transmissions would be redundant because any module

which transmits a localization message already knows its position. Additionally, no

module, even if its receives another localization message, retransmits another set of

localization messages to its neighbors.

5.2.2 Reflection Messages

Once a module is localized, it needs some way of informing the GUI that it exists.

To do so, every module transmits a reflection message to the GUI after it is localized.

Specifically, the modules only transmit the reflection messages on their parent faces.

A module's parent face is defined as the first face on which it received a localization

message. Figure 5-2 denotes each module's parent face using a double arrow. These

pointers always point from a module to its parent. The figure illustrates the fact that

a module's parent pointer always points toward the neighboring module from which

it first received a localization message.

In addition to initiating the transmission of a reflection message on its parent

face, each module also forwards any reflection messages that it receives from its

neighbors on to its parent face. Eventually, all reflection messages propagate back

to the root module and from there to the GUI. Such a process, as will be shown in

Section 5.2.3, guarantees that the GUI receives a reflection message from each module

in the structure. In other words, starting from any module in Figure 5-2(f), one can

trace a path back to the root module by following the modules' parent pointers.

Listing 5.2: The localization algorithm ensures that every module determines its
position and that each informs the GUI in turn.

Swait for localization message
2 when message with position L is received on face F
3 Localized = TRUE
4 Parent = F
5 Location = L
6

7 calculate locations of neighbors
8 for each face , except Parent
9 transmit localization message
o10 transmit reflection message to Parent

it ignore future localization messages
12 return

5.2.3 Correctness of the Localization Algorithm

Listing 5.2 illustrates with pseudocode the algorithm that each module uses to local-

ize. To show that the localization algorithm operates correctly, we first show that each

module receives a localization message. Then we show that these messages all contain

the correct position information. Finally, we show that the algorithm terminates.

Theorem 1 The localization algorithm ensures that each module determines its po-

sition in the structure in a finite amount of time.

Proof: By assumption, we know that the root module receives a localization message

because we use the GUI to send that message. Because the root retransmits the

message to its neighbors, we know that all of the root's neighbors receive a localization

message. The neighbors also retransmit the message. By induction, after k iterations,

all modules which are at most k units away from the root along any contiguous path

are localized.

Now we show that every localization message received by any module correctly

identifies the module's position. (In reality, we only need to show that the first

message is correct because the pseudocode ignores all localization messages after the

first.) Again, by assumption, we know that the root is correctly localized because

we use the GUI to tell the root module its position. Because of the symmetric and

independent way in which the coordinates of each localization message are modified

as the messages propagates, (incrementing the x-coordinate when a message is passed

to a module's right and decrementing the x-coordinate when a message is passed to

a module's left, etc.), no matter which path a localization message follows from the

root to any other module, the final coordinates contained in the message when it

reaches that module will be identical. Therefore, each localization message received

by any module will contain the same set of coordinates and the module will localize

correctly.

Finally, the localization algorithm terminates because each module only responds

to the first localization message that it receives. Once all modules in the structure

have received a localization message, no additional localization messages will be sent.

Listing 5.3 contains the pseudocode which forwards reflection messages to a mod-

ule's parent. This pseudocode, combined with the localization pseudocode in List-

ing 5.2, demonstrates that all reflection messages eventually reach the root module.

Theorem 2 All reflection messages reach the root module.

Proof: After localization, some neighbor of the root must have a valid parent pointer

that points to the root. (If this were not the case, localization messages could not

have propagated to any other module in the system.) For the remainder of this proof,

a valid parent pointer is one which points to a cube which already has a valid parent

pointer. The root's neighbors, like all other modules, do not transmit localization

messages to their neighbors until they have a valid parent. As a result, any localization

message that another module receives originates from a module with a valid parent.

By induction, all parent pointers must be valid, and they must eventually lead to the

root. M

Listing 5.3: Modules must forward reflection messages from their neighbors on to
their parent to ensure that all reflection messages eventually reach the root module.

loop forever
2 if reflection message received
3 if Parent != NULL
4 forward reflection message to Parent

5.2.4 Running Time of the Localization Algorithm

For the purposes of analyzing the running time of the localization algorithm, we place

an upper bound on the amount of time required by a module to process any messages

that it has received and produce outgoing messages in response. We denote this upper

limit on a module's processing time t.

Theorem 3 The running time of the localization algorithm is O(nt).

Proof: If there are n modules in a system, the running time of the localization

algorithm is O(nt) because the modules could form an n-unit chain, and each module

could require time t to forward the localization message. Therefore, the time for the

localization messages to reach the end of the chain is O(nt). U

Theorem 4 The running time of the localization algorithm is O(mt), where m is the

length of the longest of the set of shortest paths from the root module to any other.

Proof: While localization messages may propagate to a module through a path longer

than k units in a shorter amount of time, localization messages will always propagate

to the module along a path of length k in O(kt) time. Likewise, localization messages

will propagate to each module, i, in O(kit) time if ki is the length of the path from

the root module to the i-th module. Therefore, if f is the module farthest away from

the root, in particular, k1 = m units away, all localization messages will be received

in O(mt) time. U

Theorem 5 The time required for all reflection messages to propagate back to the

root module is O(nt).

Proof: Given n modules, the time required for all localization messages to return

to the root is O(nt) because all n modules could form a single chain. The reflection

message from the module at the far end of the chain would have to pass through all

n - 1 other modules, each of which could require time t to process the message. U

Theorem 6 The bound on the time required for all reflection messages to return to

the root cannot be reduced to O(mt), where m is the length of the longest of the set

of shortest paths from the root to any other module.

Proof: We cannot claim an O(mt) bound on the time it takes for reflection messages

to return to the root because the chain of parent pointers may be longer than m, the

longest of the set of shortest paths from the root module to any other. The chain of

parent pointers may be longer than m because some chain of modules may process

localization messages quickly, leading to a situation where a module that is k units

away from the root receives its first localization message from a module that is k + 1

units away from the root. In such a situation, the reflection message would need to

travel through at least k other modules before reaching the root. U

5.3 Inclusion Message Generation

After localization is complete, the GUI is utilized to select which modules are to be

included in the final structure and which should detach. By default, every module

assumes that it is not a part of the final shape. Only by receiving an inclusion message

does a module learn that it is destined to be a part of the final configuration. Once the

virtual sculpting process is complete, the GUI must generate a sequence of inclusion

messages. The remainder of this section is devoted to explaining the algorithm used

to do so. Before continuing, it is important to note that both the algorithm executed

by the GUI and the shape distribution algorithm presented in Section 5.4 assume

that the root module is a part of the final structure and that all modules in the final

structure are connected. In other words, there is a contiguous path from the root

module to every other module included in the final structure.

Listing 5.4: The message generation algorithm uses a BFS to find the shortest path
from the root to all modules and then uses a DFS to generate the sequence of messages
to be transmitted.

1make graph w/ vertex for each module of final struct.
2 perform BFS to find shortest paths
3 perform DFS to generate message sequence

Message generation can be divided into the three steps that are seen in Listing 5.4.

First, as explained in Section 5.3.1, the algorithm constructs a graph that contains

information about the assembled structure of modules. Second, the algorithm per-

forms a breadth first search (BFS) on the graph to find the shortest distance between

the root module and all others. The BFS is detailed in Section 5.3.2. Finally, Sec-

tion 5.3.3 illustrates how the algorithm uses a depth first search (DFS) to traverse

the graph and produce a set of inclusion messages.

5.3.1 Constructing the Graph

The first step in generating the inclusion messages is to generate a graph, G(v, e),

in which every module of the final configuration is a vertex. Then, edges are added

between vertices whose corresponding modules have touching faces. An example is

shown in Figure 5-3. Part (a) of the figure shows the shaded modules that should be

included in G. Figure 5-3(b) shows the first step in the construction of G: vertices have

been added for every module that is a part of the final structure. Figure 5-3(c) shows

G once complete: edges have been added between all nodes whose corresponding

modules are neighbors.

After the final configuratin of the system is modeled, the time to construct G is

O(n), where n is the number of modules that will be a part of the final structure. For

each of the n modules, the algorithm must insert up to six edges in G, one for each

neighbor that is also included.

Desired Final Partial G: Complete G:
Configuration:

(0,01,0)

(1,0,0)

(1.-1,0)

(17-2,0)

(1,-2,0)
(1,0,0) (1,0,0)

(0,0,0)0 0 0 (1,-2,0) (0,0,0) (1,-2,0)

(0,-1,0) 0(1-1,0) (o,-1,0) (1,-1,o)

0(1,-2,0) 1(1,-2,0)

(a) (b) (c)

Figure 5-3: The desired final configuration of a structure of 9 modules is shown in (a)
where shaded cubes represent modules that should be included in the final structure.
As shown in (b), the first step in generating a sequence of inclusion messages is to
construct a graph which contains a vertex for every module in the final structure.
Edges, inserted in (c), represent the face that modules are neighbors.

5.3.2 Finding Shortest Paths

After the graph, G, of modules in the final structure is determined, the algorithm

performs a BFS on G to determine the shortest path between the root vertex and

all other vertices. A BFS produces the shortest paths because all paths have unit

length [2]. The BFS modifies G so that it becomes a breadth-first tree. Any edge in

G that is not part of a shortest path from the root module to any other module is

eliminated. We want to find the shortest paths between the root and all other nodes

because these paths are the sequence of modules that the inclusion messages should

follow. If each inclusion message follows the shortest path between the root and its

destination module, the shape distribution algorithm, discussed in Section 5.4, will

be as efficient as possible.

Figure 5-4 shows how the initial G is transformed into a breadth-first tree by the

BFS. The edge between the modules at positions (0, -1, 0) and (1, -1, 0) is eliminated

in the breadth-first tree because moving from the root, (0, 0, 0), to the module at

(1, 0, 0) and then to the module at (1, -1, 0) provides an equally short path from the

root to the module located at (1,-1,0) as following the path through (0, -1, 0).

The typical BFS algorithm executes in O(V+E) where V is the number of vertices

(0,0,0)

(0,-1,0)

Initial G: Result of BFS:
(1,0,0) (1,0,0)

(1,-2,0)

(a) (b)

Figure 5-4: Performing a breadth-first search on G, the initial adjacency graph in (a)
produces the breadth-first tree shown in (b). The search eliminates any edge which
is not a part of the shortest path from the root module to any other.

and E is the number of edge in the graph [2]. In our system, the number of edges

is never more than six times the number of vertices because each module has only

six faces. Therefore, the running time of the BFS is O(n), where n is the number of

modules included in the final structure.

5.3.3 Generating the Inclusion Messages

Once the message generation algorithm has constructed a breadth-first tree, G, of

all modules that are a part of the final structure, it performs a DFS on G starting

at the root to determine the order in which the modules will be notified that they

are a part of the final structure. Because G is already a tree, no additional edges

are removed by the DFS. Instead, as the DFS progresses, it generates an inclusion

message for each module as it is encountered for the first time. Table 5.3.3 shows one

possible order in which the messages are generated from the breadth-first tree shown

in Figure 5-4(b). The contents of these messages and the way they are distributed is

addressed in Section 5.4.

The running time of the DFS algorithm when applied to an arbitrary graph is

E(V + E) [2]. As discussed above, we can refine this bound to 8(n), (where n is

the number of modules in the final structure), because no vertex has more than six

Table 5.1: The inclusion message for a module is generated the first time a DFS
encounters that module in the breadth-first tree. This ordering of inclusion messages
was generated using the breadth first tree in Figure 5-4(b).

Order Module encountered
1 (0,0,0)
2 (1,0,0)
3 (2,0,0)
4 (1,-1,0)

5 (1, -2,0)
6 (0,-1,0)

edges. The entire message generation process completes in O(n) time because each

step of the algorithm, (constructing G, performing the BFS, and walking down the

tree using the DFS) requires O(n) time.

5.4 Shape Distribution

This section is devoted to examining how the set of inclusion messages generated by

the GUI is automatically distributed by the system of modules. As stated before,

only by receiving an inclusion message does a module learn that it is destined to be a

part of the final configuration. Also, recall that the final structure of modules is fully

connected.

5.4.1 Inclusion Message Propagation

Each inclusion message carries two important pieces of information: a hop count and a

branch direction. As the inclusion messages are distributed by the structure, a virtual

chain of inclusion pointers is formed. The hop count field of each inclusion message

dictates how far down this chain each message should travel. Once the message has

reached the specified depth in the chain, it extends the chain by including the module

specified by the branch direction. Listing 5.5 shows this algorithm implemented in

pseudocode.

Listing 5.5: The shape distribution algorithm checks whether the hop count of the
inclusion message is zerp. If it is the module assumes that it is a part of the structure.
Otherwise the hop count is decremented and the message is forwarded along the
inclusion chain
Included = FALSE
NextInIncChain = NULL

er
for inclusion message
msg. w/ H hops and branch
if H=O0

Included = TRUE
transmit reflection

elseif H = 1
transmit inclusion n

else

dir. BD is rcvd.

message to Parent

iessage with
hops = 0 and ...
branch direction = BD .
to NextInIncChain

NextInChain = BD

transmit inclusion message with .
hops = (H-1) and ...
branch direction = BD ...
to NextInIncChain

loop forev
wait
when

The algorithm operates as follows. It begins in lines 1-2 by assuming that the

module is not included in the structure and that the module has no inclusion chain

pointer. It then loops forever waiting for inclusion messages. When it receives an

inclusion message, it chooses to perform one of three actions. The first option, listed

on line 7 of Listing 5.5, occurs when the hop count of the received message is zero.

This is an indication that the inclusion message was originally destined to include

this module. As a result, the module now realizes that it is a part of the structure

and transmits a reflection message back to the GUI. (Like the reflection messages

transmitted in response to localization messages, it follows a chain of parent pointers

to reach the root module.) The reflection message informs the GUI that the module

was successfully notified of its status in the final structure.

The second case occurs when the hop count of the incoming message is one. This

signals that one of the module's neighbors is the final destination of the message.

The module determines which neighbor is the final destination of the message by

examining the branch direction field of the inclusion message. The branch direction

field indicates the face on which the neighbor that is supposed to be included is

attached. The algorithm forwards a modified inclusion message whose hop count is

zero to the neighbor specified by the branch direction field. In addition, as shown in

line 15, the module updates its inclusion chain pointer to reflect where to forward the

next inclusion message.

The third and final action is prompted by the receipt of an inclusion message in

which the hop count is greater than or equal to two. In this scenario, the module

should have already received at least two inclusion messages: one including the module

itself, and another including one of its neighbors and assigning a valid direction to its

inclusion chain pointer. When a module receives such a message, it decrements the

message's hop count and forwards it along in the direction of the module's inclusion

chain pointer.

Figure 5-5(a-d) illustrates the evolution of an inclusion message as it is forwarded

from the root module, (0, 0, 0), to the next module that should be included in the

structure (1, -2, 0). In the figure, the message is represented by the straight arrow.

One can observe the hop count decreasing as the message passes farther down the

existing inclusion pointer chain, which is represented by the arced arrows. When the

message reaches the neighbor of new module in Figure 5-5(c), it causes that module,

(1, -1,0), to update its inclusion chain pointer. The result is seen in Figure 5-5(d).

Hops = 3
Rrnnch = Drnwn

(a)

Hops = 1

(c)

Hops = 2
Branch = Down

(1,-2,0)

(b)

Hops = 0
Branch = Down

(d)

Figure 5-5: An inclusion message, represented by the straight arrow, progresses
through a number of modules that, as denoted by their shading, have already been
included in the structure. As the message propagates, it follows the arced inclusion
chain pointers until it reaches the module at position (1,-1,0) shown in (c). At this
point, the branch direction (down) directs the module to forward the message to its
downward neighbor and update its own inclusion chain pointer.

The progression of several inclusion messages that are destined for different mod-

ules is pictured in Figure 5-6. In this structure, modules with addresses (0, 0, 0),

(1,-2,0)

(0.0,0)
uiutivii vv··i |

(1, 0, 0), (1, -1, 0), (0, -1, 0), (2,0, 0), and (1, -2, 0) are supposed to be included in

the final structure. The six inclusion messages needed to notify the six modules of

their destiny are injected into the system at the root module, (0, 0, 0). From there,

they propagate to their destination modules, which are shaded after they know that

they are supposed to be a part of the final structure.

Me,
H(
Br

isage #
Ips = 0
anch =

(a)

1:

Null

Me,
Hc
Br

;sage #
Ips = 1
anch =

(b)

2:

Right

Me,
Hc
Br

Me,
Hc
Br

,sage #
'ps = 2
anch =

(C)

(f) =

(f)

3:

Down

6:

Down

Figure 5-6: Six inclusion messages are transmitted by the GUI to the root module
in order to include six modules in the final structure. The messages propagate by
following the arced inclusion chain pointers until they reach their destinations. The
branch direction and initial hop count for each message is indicated. Once a module
knows that it is part of the final structure, it is shaded. Sometimes, as shown in (e),
some inclusion chain pointers remain intact even after the active chain has shifted
away.

5.4.2 Shape Distribution Correctness

Whether or not the shape distribution algorithm operates correctly depends on how

the inclusion messages are generated by the GUI. As discussed in Section 5.3, the

messages are generated by a DFS. The first time that the DFS algorithm encounters

an included module, it generates that module's inclusion message. In the process, it

keeps track of the newest module's depth in the tree and the branch direction from

the previously encountered module which needs to be taken in order to arrive at

the newest module. These two pieces of information are embedded in the inclusion

message destined for the new module.

Theorem 7 The shape distribution process ensures that every module that should be

included in the final structure receives an inclusion message.

Proof: To show that the shape distribution algorithm operates correctly, we need to

show that every module in the final structure receives an inclusion message. Addi-

tionally, we need to show that modules not destined to be a part of the final structure

do not receive inclusion messages.

Based on the pseudocode in Listing 5.5 and the explanation of the pseudocode

given in Section 5.4.1, a module forwards inclusion messages properly if the module's

inclusion chain pointer is configured correctly. This pointer is configured correctly if

the module receives an inclusion message destined for one of its immediate neighbors

before it receives an inclusion message destined for any module farther away from the

root. In fact, this is exactly what happens because the DFS generates an inclusion

message the first time that it encounters each module. The inclusion messages for

modules past the current one are generated later. As a result, a module will always

have a valid inclusion chain pointer before it needs to forward inclusion messages to

modules other than its neighbors. This means that the inclusion messages are always

forwarded correctly and that each module that should receive an inclusion message

does.

Now that we know that every module in the final structure receives an inclusion

message, it is easy to see that no other modules do. This is based on the fact

that the message generation algorithm only generates one inclusion message for each

module in the final structure. If all modules that are supposed to be part of the final

structure receive inclusion messages, there are no additional inclusion messages that

could be received by the other, soon to be discarded, modules. Therefore, the shape

distribution algorithm operates correctly. U

5.4.3 Running Time of the Shape Distribution Algorithm

As with the localization algorithm, we assume an upper bound, t, on the amount of

time required by any module to process and produce a response to a received message.

Also, assume that n modules are included in the final structure.

Theorem 8 The running time of the shape distribution algorithm is O(nt).

Proof: Each of the n modules in the final structure requires a separate inclusion

message to be transmitted from the GUI to the root module, where it will be dis-

tributed. Fortunately, the GUI does not have to wait for one inclusion message to

reach its final destination before sending another. Instead, time t after sending the

first inclusion message to the root, we know that the root has finished processing the

message and can now accept another. After another t units of time, the root has

passed the second inclusion message on to one of its neighbors and can accept a third

message. The same constraints also apply to all other modules in the system, so the

system can accept one new inclusion message every t units of time. Therefore, the

system requires O(nt) time to include all n modules in the final structure. U

As explained in Section 5.2.4, the time required for all n reflection messages gen-

erated in response to the inclusion messages to return to the root module is also

O(nt).

5.5 Disassembly

Once all modules which need to be included in the final structure have received

inclusion messages, the system is ready to disassemble. The disassembly process is

initiated when the GUI is instructed to send a disassemble message.

Listing 5.6: The disassembly algorithm propagates any received disassembly message
on all faces and only instructs the module to disconnect from the structure if it has
not received an inclusion message.

1 wait for disassemble message
2 when message is received on face F
3 transmit acknowledgment on face F
4 for every face except F
5 retransmit disassemble message
6 if module not included in structure
7 for each face with a Magswitch
s disconnect the Magswitch
9 for all other faces

10 transmit disconnect request to neighbor

5.5.1 Disassemble Message Propagation

Pseudocode for the disassembly algorithm is given in Listing 5.6. When a module re-

ceives a disassemble message, it transmits an acknowledgment to the transmitter and

forwards the disassemble message to all of its other neighbors. Modules that are in-

cluded in the final structure perform no further tasks after forwarding the disassemble

message. In comparison, modules that are not a part of the final structure attempt to

disconnect. First, they deactivate all three of their Magswitches. Second, for any face

lacking a Magswitch that is attached to a neighbor, they send a disconnect request

message to that neighbor. If the neighbor has not already deactivated the correct

Magswitch, it does. Otherwise, the neighbor ignores the disconnect request message.

In any case, the module is now free to fall away from the remaining structure.

5.5.2 Correctness of the Disassembly Algorithm

Theorem 9 The disassembly algorithm only disconnects those modules which should

not be a part of the final structure.

Proof: We need to show that disassembly messages reach each module and that

only the specified modules disconnect. Based on the correctness of the localization

algorithm discussed in Section 5.2.3, we know that disassemble messages reach all

modules because the disassemble messages are propagated identically to localization

messages. From Section 5.5.1, we know that once each module receives a disassemble

message, it only disconnects from the structure if the module has not received an

inclusion message. Therefore, the disassembly algorithm operates correctly. U

5.5.3 Running Time of the Disassembly Process

As before, we assume an upper bound, t, on the amount of time required by any

module to process and produce a response to a received message.

Theorem 10 The running time of the disassembly algorithm is O(nt).

Proof: Once a disassemble message reaches a module, the time required for the

module to disconnect from its neighbors is 0(1). Therefore, if there are n modules

in the structure, the time for the disassemble messages to propagate to all modules

is O(nt). This worst case occurs when the modules form a single chain. N

As with the localization algorithm, we can provide a tighter bound if we are

able to determine m, the length of the longest of the set of shortest paths from the

root module to all other modules. In this case, the amount of time required for the

disassemble message to reach all modules is O(mt). The proof follows that given in

Section 5.2

Chapter 6

Algorithm Implementation

This chapter describes a variety of issues related to implementing the algorithms of

Chapter 5 in hardware. A diagram showing the software heirarchy is presented in

Figure 6-1. It shows how the different pieces of software are layered from the lowest

level hardware drivers, (shown at the bottom), to the high-level self-disassembly

algorithms., (shown at the top). Except for some small pieces of assembly code in

the PSoC, all other algorithms were implemented in C. The implementation of the

low-level software was already addressed Chapter 4. This chapter will focus on how

the high-level software running on the ARM chip was implemented.

This chapter begins, in Section 6.1, by discussing three modifications we made

to the high-level algorithms which drastically improve the system's performance by

reducing the number of lost messages. Then, similar to Section 4.5, Section 6.2

presents the format of the inter-module messages that are employed by the high-

level self-disassembly algorithms. Finally, Section 6.3 discusses the graphical user

interface (GUI) which is used to visualize and control the system.

6.1 Increasing System Reliability

While Chapter 5 proves that the self-disassembly algorithms work in theory, the al-

gorithms, as described in that chapter, sometimes fail in practice. The primary cause

of failure is lost messages, which can occur for two reasons. First, these algorithms

Message Magnet
Processing Control

(construction, parsing, error checking) (min/ax idntiiion Orientation
Detection

(2-axis PWM capture,
12c filtedng, and interpolation)

I I·,

ARM

PSoC

Figure 6-1: The software heirarchy is divided horizontally into a number of functional
blocks. The blocks depicted lowest in the diagram correspond to the most basic
functionality and provide abstractions of the hardware that can be used by the high-
level algorithms running in the blocks near the top of the diagram.

Localization,
Shape Distribution, and

Shape Realization

I
2-axis accelerometer

and tilt-switch

sometimes fail to successfully transmit messages to the modules' neighbors. This type

of failure is discussed in Section 6.1.1.

Second, neighboring modules are sometimes unable to communicate because they

were poorly aligned. While we could attempt to carefully align the modules as we

assembled them, imperfections in the manufacturing process make it difficult to en-

sure that every LED/phototransistor pair was able to communicate. For example,

one module that is not perfectly square can affect the alignment of several neigh-

boring modules. To account for misalignment, we implemented two modifications to

the self-disassembly algorithms. Section 6.1.2 details how we made the localization

process robust to misalignment. Then, Section 6.1.3 explains how we modified the

way inclusion messages are distributed by appending additional information to all

reflection messages. This resulted in a more reliable shape distribution phase.

6.1.1 Synchronization

We found that if a module was attempting to send several messages to a neighbor

in quick succession, that some of those messages were lost. We traced this problem

back to the way in which the transmission buffers were implemented, as discussed

in Section 4.3.3. When one of the high-level routines transmits a message on a

specific face, the new message overrides any message that was already buffered for

transmission on that face. Therefore, if the message that was already pending in the

buffer has not yet been received by the neighboring module, it is lost. As a result, if a

module is busy communicating with many of its neighbors, some of those neighbors,

in their hurry to transmit messages to the module, may drop some messages.

To rectify this problem, we synchronized the message passing process. When a

module receives any high-level message that has a specific destination, (e.g., a shape

distribution or reflection message), it does not send an acknowledgment immediately.

Instead, it first checks to see if the transmission buffer for the face on which the

message should be retransmitted is empty. If the buffer is empty, the algorithm han-

dling the message transmits an acknowledgment back to the sender and then places

the new message in the transmission buffer of the appropriate face. If the needed

transmission buffer is not empty, the module never transmits an acknowledgment

back to the sender. As a result, the sender continues transmitting the message until

the needed transmission buffer on the receiving module is available. As a result of

this synchronization, messages that have specific faces over which they need to be

forwarded, never override any message already being transmitted on that face. In a

common scenario, this prevents one inclusion message from overriding another.

All of the lower-level messages presented in Section 4.5, (except acknowledge

and not acknowledge messages), in addition to ping, localization, and disassemble

messages automatically override any message already in a face's transmission buffer

because they do not have specific destinations. This is acceptable because these

messages fall into one of two categories. They either modify system-wide properties of

the structure, or else they are not used while system-critical messages, (like inclusion

and reflection messages), are being propagated. Table 6.1.1 shows into which of the

two categories each type of messages falls.

Table 6.1: All messages that do not need to be transmitted on a specific face fall
into two categories. Either they modify system-wide properties that invalidate the
data contained in any message that must be retransmitted on a certain face, or they
do not propagate through the system at the same time as messages that need to be
retransmitted on a certain face.

Message Type System-wide Mod. Not Prop. Concurrently
Disconnect All (DCA) Yes No
Disconnect Request (DRQ) No Yes
Magswitch State (MSS) No Yes
Reset (RST) Yes No
Real Time Clock (RTC) Yes No
Ping (PNG) No Yes
Localization (LOC) No Yes
Disassemble (DAS) Yes Yes

It is acceptable for messages which modify system-wide properties to override

destination-specific messages because they make irrelevant any information contained

in a destination specific message. For example, a reset message can safely override

any inclusion or reflection message because when the system is reset, it forgets any

information that it has amassed through the passing of inclusion and reflection mes-

sages. Likewise, we never need to consider some messages overriding destination

specific messages because those messages are not presented in the system during the

same time periods. For example, a module finishes passing all localization messages

before it begins to pass reflection messages. As another example, disassemble mes-

sages are only injected into the system after all inclusion and reflection messages have

been sent. In practice, the synchronization system described in this section effectively

eliminates scenarios in which messages are lost because they are overwritten while in

a transmission buffer.

6.1.2 Localization Modification

In the localization algorithm presented in Section 5.2, the modules assume that the

first face over which they receive a localization message is their parent face. This is

problematic because the ability to receive inter-module messages on a specific face

does not correlate with the ability to successfully send messages on the face. Using

the algorithms presented in Chapter 5, modules had parent faces on which they were

unable to transmit, (or the parent was unable to receive). Some modules were able

to localize, but they were unable to tell the GUI of their existence because they could

not transmit reflection messages, (which follow a sequence of parent pointers), back

to the GUI. This type of error affects more than just the modules that are unable to

successfully transmit information to their parents. It also affects any module whose

chain of parent pointers passes through another module that cannot communicate

with its parent.

To rectify the problem, we modified how modules localize. Instead of blindly

accepting the first neighbor that transmits a localization message as its parent, each

module first checks whether two-way communication with that neighbor is possible.

This check does not require any additional messages; if two-way communication is

possible, the module should have received an acknowledgment to one of the ping

messages it sent during the neighbor discovery phase. If the module never received

an acknowledgment of any of its pings, it assumes that two-way communication

with the neighbor is impossible and waits for another neighbor, with whom two-way

communication is possible, to transmit a localization message.

This modification has two effects on the system. First, some modules, even if

they can receive localization messages, may not localize. This does not affect the

system's functionality because those modules would be unable to inform the GUI of

their presence even if they did localize. If the GUI does not know about a module's

existence, it does not matter if the modules are localized or not because they would

be uncontrollable anyway.

Second, the modification to the localization algorithm affects its running time.

It is no longer reasonable to assume that localization messages can flow along the

shortest path from the root module to any other. Even if the structure is not a single

chain, some localization messages may have to travel through all n modules in the

structure before reaching the final module. We can no longer claim that, if m is

the length of the longest of the set of shortest paths from the root module to any

other, the running time of the algorithm is O(mt). Instead, the running time of the

localization algorithm is O(nt), where t is the maximum time required by any module

to process a message and generate a response.

6.1.3 Shape Distribution Modification

The localization process is not the only aspect of the high-level self-disassembly

algorithms which can be affected by communication failures. If a module cannot

transmit or receive on specific faces, the shape distribution process may be impeded.

The original message generation algorithm presented in Section 5.3 assumes that

modules can reliably communicate with all of their neighbors. As a result, it routes

inclusion messages through the faces which lie along the shortest path from the root

to any module included in the final system configuration. Unfortunately, these paths

may sometimes cross faces which are unable to communicate with their neighbors.

To operate successfully, the message generation algorithm needs to know which

faces can successfully communicate and which cannot. To transmit this information

to the GUI, we modified the reflection messages. In addition to the transmitter's

location and user identifcation (UID), the reflection messages were modified to include

a field that indicates with which neighboring modules the sender can successfully

communicate. The GUI uses this information when constructing the graph, G, of all

modules which are supposed to be included in the final structure. If a module that

is supposed to be in the final structure cannot communicate with a neighbor that is

also a part of the final structure, no edge is inserted between them.

Accounting for missing communication links makes the system more reliable and

does not increase the theoretical running time of the shape distribution algorithm

because one inclusion message can still be transmitted from the GUI to the root

every t time units, the maximum amount of time required by any module to process

a message and generate a response. It is the case that some inclusion messages will

have to travel longer than optimal paths in the structure to reach their destinations.

This implies that some messages will travel through more modules than they did in

the optimal scenario. Therefore, the message load on some modules will increase, and

t may increase in turn.

6.2 Message Specification

This section details the specifics of the inter-module messages used by the algorithms

presented in Chapter 5. All messages follow the basic format presented in Figure 4-4.

They have a start character, data fields separated by ampersands, a checksum, and

a termination character. For an explanation of all other inter-module messages, one

should consult Section 4.5.

6.2.1 Ping (PNG) Messages

Ping (PNG) messages, such as the one illustrated in Figure 6-2, are transmitted on all

faces of a module after it is reset in an attempt to detect neighboring modules. If

a module receives a PNG message, it assumes that it has a neighbor on the face that

received the message and transmits an ACK in response. Additionally, if the module

has a Magswitch on any face that receives a PNG message, it activates that Magswitch.

Because PNG messages are simply used to detect a module's neighbors, they do not

contain any type specific fields.

I transmit face msg. type field delimiter

numbecr ch eck um

start character one byte cmd. terminator

Figure 6-2: Ping (PNG) messages contain no type specific fields because they are only
used to detect the presence of a module's neighbors. If a module receives a PNG
message, it replies with an ACK.

6.2.2 Localization (LOC) Messages

The first localization (LOC) message is transmitted by the GUI to localize the root

module. From there, localization messages radiate outward. Each localization mes-

sage uses three type specific fields to hold the x, y, and z coordinates of the receiving

module. When a module receives an LOC message, and if it has a two-way communi-

cation channel with the transmitter, it transmits an ACK message in return, followed

by a reflection message. The module is now localized, and its parent is the module

which transmitted the localization message. Now that the module is localized, it

transmits LOC messages to all of its neighbors. For additional details of the localiza-

tion algorithm, consult Sections 5.2 and 6.1.2.

transmit face msg. type cmd. terminator -

& sequence & L:OiC & x-coord. & y-coord. & z-coord. & checum \r

start character one byte field delimiter

Figure 6-3: Localization (LOC) messages contain three type specific fields which specify
the x, y, and z coordinates of the module which is destined to receive the message.

6.2.3 Reflection (REF) Messages

Reflection (REF) messages are transmitted in response to a module localizing or re-

ceiving an inclusion message. REF messages notify the GUI that the transmitter exists

or that it has received an inclusion message. There is no algorithmic motivation for

transmitting REF messages in response to the receipt of an inclusion message, but

they allow the GUI to display which modules have received inclusion messages and

which have not. REF messages are always transmitted on a module's parent face. This

ensures that every REF message eventually propagates back to the root module. From

there, it is transmitted to the GUI.

REF messages have five type specific fields that can been seen in Figure 6-4. The

first three fields contain integer values and specify the transmitter's absolute location

in the structure. The next field, which is also integer valued, contains the transmitting

module's unique identification, (UID). The UID, while not used by any of the high-

level algorithms, is helpful when debugging the system. The last type specific field is a

list of all neighboring modules with which the transmitting module can communicate.

This list is up to six digits long-one digit for each potential face. The order of the

digits is unimportant.

transmit face msg. type

I # &I a e Ia& R.E-F1&xc & d.&-co ord & Iz-cor d. & UID & &

start character one byte Tfield delimier cmd. terminator

Figure 6-4: Reflection (REF) messages are used to inform the GUI of the structure's
configuration. Each REF message contains five type specific fields. The first three type
specific fields contain the x, y, and z coordinates of the transmitter, respectively. The
fourth field contains the module's unique identification (UID). The last field is a list
of all neighboring modules with which the transmitter can communicate.

6.2.4 Inclusion (INC) Messages

Inclusion (INC) messages are used by the shape distribution algorithm to include indi-

vidual modules in the final structure. They are generated by the GUI and propagate

down a virtual chain of inclusion pointers in the final structure. Each additional INC

message transmitted down the chain extends the chain in some direction and includes

the module which forms the new link of the chain in the final structure. When a mod-

ule receives an INC message, it either determines that it is now a part of the final

structure, or, if it already knows this, it forwards the message along to one of its

neighbors. INC messages include two type specific fields. The first, the hop count,

specifies how far down the inclusion pointer chain the message should travel before

branching off. Each time an INC message is forwarded, its hop count is decremented

by one. The second type specific field is the message's branch direction which specifies

in which direction the inclusion pointer chain should be extended when the message

has reached the specified depth in the chain.

- transmit face msg. type cmd. terminator

I e# I&1 :: NmeC1 &I hops & & ch um \r
start character one byte branch direction

Figure 6-5: Inclusion (INC) messages contain two type specific fields. The first, the
hop count, or hops, specifies how many modules down the inclusion pointer chain the
message should travel before branching off. The second field, the branch direction,
determines in which direction the inclusion should branch off the inclusion pointer
chain once it has reached the specified depth.

6.2.5 Disassemble (DAS) Messages

A disassemble (DAS) message, such as the one shown in Figure 6-6, is transmitted

by the GUI to the root module to start the disassembly process. Each module to

receive a DAS message propagates the message on all faces. If a module is to be a

part of the final structure because it has previously received an inclusion message, it

performs no other actions after retransmitting the DAS message. In comparison, when

a module that is not part of the final structure receives a DAS message, it disconnects

from the structure. The simple task of informing all modules that they should begin

the disassembly process does not require that DAS messages contain any type specific

fields.

- transmit face msg; type f field delimiter

& sequence &ID:AiSI& che um \r
number .S C C IV

start character one byte cmd. terminator

Figure 6-6: Disassemble (DAS) messages are used to tell the modules which are not
a part of the final structure to disassemble. They do not need to include any type
specific fields.

6.3 Graphical User Interface

The graphical user interface (GUI), shown in Figure 6-7 is used to virtually sculpt

the initial structure of modules to determine the final configuration. For simplicity,

the GUI was implemented in Matlab, which ensured that the development time was

short. The greatest advantage of Matlab is that it provides a simple way to visualize

the structure of modules in three dimensions. We used the Matlab patch command

to create three dimensional cubes that could be combined to model more complex

structures. The GUI also allowed us to develop a point-and-click interface with

which to sculpt the initial structure of modules down to a final configuration. By

simply right-clicking the mouse on each module of the structure, we were able to

choose whether that module should be a part of the final configuration. To aid in

the creation of more complex structures, we could also temporarily hide modules near

that outside of the structure in order to sculpt modules that were otherwise obscured.

As mentioned in Chapter 5, the GUI generates the sequence of inclusion messages

that is sent to the structure of modules over the serial port. The GUI code responsible

for transmitting messages over the serial port is similar to the transmission buffers

on the modules. The code, once supplied with a message to transmit, uses a timer

to automatically retransmit the message until an acknolwedgment is receieved or a

time-out occurs. These retransmissions occur without the intervention of the main

program. As per the synchronization proceedure presented in Section 6.1.1, the GUI

waits to transmit any inclusion message until the previously transmitted message has

been acknowledged by the root module. This ensures that that the root module is

Figure 6-7: A graphical user interface (GUI) was used to virtually sculpt the initial
configuration of modules into a more interesting configuration. Here, modules that
will be included in the final structure are shown in red, and those that will not be
included are shown in blue. The list box in the lower right displays the sequence
of messages that will be transmitted to the root module (the darkest red cube) for
distrubtion in the structure.

94

not overrun with more messages than it can successfully handle.

Matlab also automatically processes messages received from the root module. We

attached a callback function to the serial port so that every time a message termina-

tion character is received, Matlab calls a routine which parses and handles the new

message. By using this callback, the GUI does not have to poll the serial port contin-

uously. We found that Matlab does not deal with large volumes of serial data well.

In particular, Matlab garbles the reception of or completely misses a large precentage

of the messages from the root module. In effect, this symptom retards the rate at

which Matlab can process messages. The problem is exacerbated when Matlab is also

transmitting messages to the root. Because the root module retransmits each message

many times, the fact that Matlab misses some of the messages does not threaten the

GUI's effectivness. It does, as discussed in Section 7.4, seem to affect the execution

speed of the shape distribution algorithm.

Chapter 7

Experimental Results

To test the algorithms of Chapter 5 and the modifications that we proposed in Chap-

ter 6, we conducted 191 experiments. These experiments involved measuring the

success rate and running time of the algorithms. To measure the running time of

each algorithm, we used a timer built into the GUI which starts counting in fractions

of a second after the GUI is told to begin the localization or shape distribution process.

After either of these processes begins, pressing the an assigned key on the desktop

computer's keyboard causes the GUI to record and display a split time. Pressing the

GUI's localization or shape distribution buttons again halts the associated process

and the timer. The total elapsed time is then displayed separately from the split

time. The ability to record a split time is crucial in measuring the time required for

all modules to receive localization and inclusion messages. In general, all modules

receive these messages at least several seconds before their associated reflection mes-

sages propagated back to the GUI. The split time allows us to quantify the difference

between the two times.

Following the same structure as Chapter 5, the experimental results associated

with the neighbor discovery and localization phases are discussed in Sections 7.1 and

7.2, respectively. We show that the observed behavior of the algorithms correlates ac-

curately with the behavior and running time predicted by the analysis in Chapter 5.

Then, Section 7.3 demonstrates that the message generation algorithm associated

with the GUI operates correctly. Next, the result of implementing the shape dis-

tribution algorithm on the hardware is presented in Section 7.4. The experiments

presented in this section show that the observed running time of the shape distri-

bution algorithm does not match the predicted running time. This section discusses

why this may be the case. Finally, Section 7.5 presents a separate set of experiments

that show the disassembly process operating correctly.

7.1 Neighbor Discovery Results

We tested the neighbor discovery process with modules that had anywhere from one

to six neighbors. The neighbor discovery process worked correctly in all cases. When

two modules were brought into close proximity with each other and aligned, they

each detected the other's presence and latched together. Sometimes, if a module was

poorly aligned with a neighbor, it failed to detect it. Shifting either of the modules

slightly tended to fix this problem. Even if the modules were not adjusted, they did

not compromise the system's overall reliability. Fortunately, it was never the case

that a module was misaligned with all of its neighbors, so every module always had

at least one mechanical and communication link to the rest of the structure. In all of

the 191 experiments that we conducted, every single module successfully connected

to the structure and prepared for localization. That means the neighbor discovery

process operated correctly over 1,200 times.

7.2 Localization Results

In each of the 191 experiments that we performed, we tested the localization algo-

rithm. We could observe the algorithm's progress in two ways. First, we were able to

monitor the algorithm's progress by watching the user LED on each module. After a

module localized, it began to flash its LED. Also, as specified by the localization algo-

rithm, the modules transmit reflection messages after they are localized. When these

messages propagate back to the desktop computer connected to the root module, the

modules appear in the GUI. We were able to measure the amount of time required for

the user LEDs on all modules to begin flashing and the amount of time required for

all modules to appear in the GUI. We measured these times for linear, square, and

cubic structures of different size. We were not able to measure the amount of time

required for all user LEDs to begin flashing in a cubic structure because the LEDs of

the modules in the middle of the structure were obscured by other modules. In these

cases, we were still able to record how long it took before all modules appeared in the

GUI.

The first experiment we performed measured the amount of time required for a

line of modules to localize. We recorded the localization times for chains of modules

that were one, four, seven, and nine units long when the root module was at the end

of the chain. In the case of one module, we performed twenty experiments. Because a

single module localizes so quickly, it was impossible to accurately resolve the amount

of time required for the module's LED to begin blinking. We were able to accurately

record how quickly a single module appeared in the GUI. We performed 16, 15, and 15

experiments for the 4-, 7-, and 9-module cases, respectively. Figure 7-1 illustrates the

mean and standard deviation of the time required for all user LEDs to begin blinking.

Likewise, Figure 7-2 presents the mean and standard deviation of the time required

for all modules to be displayed in the GUI. Both figures show a linear relationship

between the number of modules in the chain and the time required for all to localize

and transmit their positions back to the GUI.

The next experiment that we carried out used 1-by-i, 2-by-2, 3-by-3, 4-by-4, and

5-by-5 square assemblies of modules. In this set of experiments, the root module

was always chosen to be a corner module. We performed 20, 16, 17, 18, and 6 trials

for the 1-, 4-, 9-, 16-, and 25-module squares, respectively. The time required for

all modules to receive the localization messages and activate their LEDs is shown in

Figure 7-3. The time required for all reflection messages to return to the GUI, where

they appear as modules, is shown in Figure 7-4. In both figures, we have plotted

the average times as circles, and the whiskers represent the standard deviations of

the different experiments. Both plots, especially the second, demonstrate a linear

relationship between the number of modules and the localization time.

Time for All Modules to Localize in a 1-by-n Chain

2.5

2 4 6
n (length of chain)

8 10

Figure 7-1: The time required for a chain of modules to localize is linear in the
length of the chain. The circles represent the average time required for all modules to
localize. For each different experiment, the whiskers span two standard deviations.
When fitting the line to the data, the one-module case was ignored because it was
too difficult to resolve the time required to localize one module.

Return Time for All Localization Reflection Messages in a 1-by-n Chain

2 4 6
n (length of chain)

8 10

Figure 7-2: The time required for all reflection messages transmitted by a chain of
modules to reach the GUI is linear in the number of modules in the chain. The circles
in the plot represent the average time required for all reflection messages to propagate
back to the GUI. The whiskers associated with each data point span two standard
deviations.

100

Norm of Fitting Error: 0.079

- Note: n=1 not included in linear
fit because the localization time
of one module was too short
to resolve accurately.

Norm of the Fitting Error:1.857

./--

(-·

ft · ·

.·I

Time for All Modules to Localize in a d-by-d Square

0 5 10 15 20
n (d2 / number of modules in square)

25 30

Figure 7-3: There is a linear relationship between the number of modules in a square
structure and the amount of time required for all modules to receive a localization
message. The circles represent the average time for each different experiment. The
associated whiskers reach one standard deviation in each direction.

Return Time for All Localization Reflection Messages in a d-by-d Square

40

= 30

0 5 10 15 20
n (d2 / number of modules in square)

25 30

Figure 7-4: The time required for all reflection messages transmitted by a square
structure of modules to reach the GUI is linear in the total number of modules in the
square. The circles in the plot represent the average time required for all reflection
messages to propagate back to the GUI. The whiskers associated with each data point
span two standard deviations.

101

Norm of Fitting Error: 0.353

-

-----F

I--
Note: n=1 not included in linear
fit because the localization time
of one module was too short
to resolve accurately.

Norm of Fitting Error: 4.502

- · -

-- I

1

n · · ·

111I

E

I--

||

.··~ -L
I)

Although we were unable to measure the time required for all modules in a cu-

bic structure to receive localization messages, we did measure the amount of time

required for all of the modules to appear in the GUI. As before, the root module was

chosen to be a corner of the structure. The number of different experiments we could

run was limited by the number of cubes available, (27), but we did conduct 20, 16,

and 6 experiments for 1-, 8-, and 27-module cubic structures. The results of these

experiments are shown in Figure 7-5. As with the one- and two-dimensional cases,

the figure shows a linear relationship between the number of modules in the structure

and the time required for all reflection messages to propagate back to the GUI.

Return Time for All Localization Reflection Messages in a d-by-d-by-d Cube
8u

70

60

50

40
E

30

20

10

n
0 5 10 - 15 20 25 30

n (d3 / number of modules in cube)

Figure 7-5: In a cubic structure, the amount of time required for all reflection messages
to propagate back to the GUI is linearly related to the total number of modules. The
circles represent the average time required for each different sized cubic structure.
The associated whiskers reach one standard deviation in each direction.

Considering all of the localization experiments we executed, the success rate of

the localization algorithm was excellent. In the 191 experiments, we only encountered

2 occasions where a single reflection message did not propagate back to the GUI.

Considering that the equivalent of over 1,500 cubes were used in the experiments, this

failure rate is less than one percent. Unfortunately, it is difficult to locate the source of

the errors. The reflection messages typically travel through several modules, making

102

Norm of Fitting Error: 2.489

--I--
- I

-

--t

it difficult to track a specific message. It is also possible that, due to a malfunctioning

module, the missing messages were never transmitted.

Ignoring these two failures, the experiments were conclusive and indicate a linear

relationship between the number of modules in a structure and the time required for

all of them to receive a localization message. This supports the initial O(nt) bound

that we proposed in Section 5.2.4, where t is the maximum time required by any

module to process a message. The experiments do not support the tighter O(mt)

that we also proposed in that section. (Recall, m is the longest of the set of shortest

paths from the root module to any other, and it scales linearly with the side length of

any square or cube.) This discrepancy can be explained by the fact that the modules

were running the modified localization algorithm presented in Section 6.1.2. This is

the algorithm that checks whether the module can successfully transmit messages to

whichever neighbor it chooses as its parent. As shown in Section 6.1.2, the theoretical

running time of this algorithm is O(nt) and agrees with our results.

The experiments also found a strong linear relationship between the number of

modules in a structure and the time required for all reflection messages to return to

the GUI. This agrees with the O(nt) bound we proposed in Section 5.2 for the receipt

of all reflection messages. In the case of the reflection messages, there was never any

guarantee that they would return any faster than O(nt).

7.3 Inclusion Message Generation Results

The message generation algorithm worked flawlessly. In each of the 191 experiments,

we used the GUI to include all the modules of the initial configuration in the final

structure. In all cases, the GUI successfully generated the shortest possible path for

all messages while taking into account the constraints imposed by pairs of neighboring

modules that were unable to communicate with one another. In the five cases where

not all modules in a structure received the inclusion messages destined for them, the

source of the failure was narrowed to a bad communication channel or a faulty cube,

never an incorrect message path.

103

The time required for the GUI to generate sequences of messages is quantified

in Figure 7-6. The plot displays the time required to generate message sequences

for chains of modules in which the root was placed at one end and all modules are

included in the final structure. The figure demonstrates a linear relationship between

the length of the chain and the time required to generate the sequence. This matches

the theoretical bound of O(n) presented in Section 5.3.3.

Time Required to Generate Sequences of Inclusion Messages for 1-by-n Chains
4.8

4.6

4.4

4.2

a 4

. 3.8

3.6

3.4

3.2

0 5 10 15 20 25
n (number of modules in chain)

Figure 7-6: The time required by the GUI to generate sequences of messages is linear
in the number of messages that need to be generated. In particular, the plot considers
the time required to generate sequence of messages to include every module in an n-
unit chain. The circular data points represent the average time required for each n,
and the whiskers span a total of two standard deviations.

7.4 Shape Distribution Results

For each of the 191 experiments that we performed, we included every module that

was a part of the initial structure in the final configuration. While not interesting from

the perspective of disassembly, including every module in the final structure provided

the most stringent test of the system. As mentioned in Section 5.4, modules assume

they are not a part of the final structure unless they receive an inclusion message.

Therefore, including every module in the final structure required that the maximum

104

Norm of Fitting Error: 0.217

/-

-- 1
- -.-. ..- - -. .-

number of inclusion messages be distributed by the structure. For each experiment,

we attempted to measure both the time required for all modules to receive their

inclusion messages and the time for the associated reflection messages to return to

the GUI. We were able to measure the amount of time required for all modules to

receive their localization messages by watching the user LEDs on the modules and

using the split function of the timer in the GUI. When a module determines that it

is a part of the structure, it changes its LED from flashing to solid.

The specific experiments we used to test the shape distribution algorithm were

identical to the experiments used to test the localization algorithm. We began by

measuring the time required to send inclusion messages to all modules in an n-unit

chain when the root module was placed at one end of the chain. We repeated this

experiment 20 times for 1 cube; 16 times for a chain of 4 cubes; and 15 times for chains

of both 7 and 9 cubes. We plotted the average time for all inclusion messages to reach

their destinations in Figure 7-7. The plot shows a quadratic relationship between the

number of modules in the chain and the time required for inclusion messages to

reach them all. We also measured, and plotted in Figure 7-8, the time required for

all reflection messages to return to the GUI. Typically, the last reflection message

returned to the GUI shortly after the last module received its inclusion message, so

the time required for all inclusion messages to propagate back the the GUI is also

quadratic in n, the total number of modules in the system.

After finishing all experiments with chains of modules, we proceeded to perform

the same experiment with squares of modules. We already had the results from the

case of single cube. As with the tests of the localization algorithm, we performed

16 trials with 2-by-2-module squares; 17 trials with 3-by-3 squares; 18 trials with

4-by-4 squares; and 6 trials with 5-by-5 squares. In each test, we chose to place the

root module in the corner of the square. The average time required for all modules

to receive their inclusion messages, (and the associated set of error bars), is shown

in Figure 7-9. Figure 7-10 shows the closely related time required for all reflection

messages to return to the GUI. Figure 7-10 does not include a data point for the

case of a 25 module square because in the six trials, there was never an outcome in

105

1 U

160

140

120

Time for All Modules to Receive Inclusion Messages in a 1-by-n Chain

Norm of Fitting Error: 7.453

-/

/

0 2 4 6
n (length of chain)

8 10

Figure 7-7: Time required for all modules in an n-unit chain to receive inclusion
messages varies as n2 . In the plot, the circles represent the average time required for
all modules to receive their inclusion messages, and the error bars cover a total of two
standard deviations.

Return Time for All Inclusion Reflection Messages in a 1-by-n Chain

Norm of Fitting Error: 8.009

-
- -. -

0 2 4 6
n (length of chain)

8 10

Figure 7-8: Given a chain of modules, the time required for the GUI to receive all of
the reflection messages that are sent during the shape distribution phase is quadratic
in the length of the chain. The circular data points are average times and the whiskers
span a total of two standard deviations.

106

7 I -4

- I

.- -

I1

which all 25 reflection messages returned to the GUI. One or two messages always

went missing. Both figures show a strong quadratic dependence between the number

of modules in the square and the time required for the shape distribution phase to

complete.

Time for All Modules to Receive Inclusion Messages in an d-by-d Square
40U

400

350

300

250

200

150

100

50

n
0 5 10 15 20 25 30

n (d2 / number of modules in square)

Figure 7-9: There is a quadratic relationship between the number of modules in a
square structure and the amount of time required for all modules to receive an inclu-
sion message. The circles represent the average time for each different experiment.
The associated whiskers reach one standard deviation in each direction.

We also experimented with modules arranged to form a cube. We performed 16

experiments with an 8-module cube and 6 with a 27-unit cube. The 20 trials with a

single module were also included in this set of experiments because a single module

is also a cube. As before, we placed the root module at the corner of the structure.

Figure 7-11 shows the time required for inclusion messages to reach each module in

the structure. It is not surprising that the three data points can be fit perfectly

by a quadratic function because a parabola has three degrees of freedom. We did

not include a plot of the time required for all reflection messages to return to the

GUI because there was never an experiment with the 27-module cube in which all

reflection messages returned. In the six trials, one or two were always lost.

Over the course of all 191 experiments, we encountered 5 cases where some num-

107

Norm of Fitting Error: 5.352

/
/

/
/

/

/1f

I-

/

/

- --

i

-

Return Time for All Inclusion Reflection Messages in a d-by-d Square

150

100

0 2 4 6 8 10 12 14 16 18
n (d2 / number of modules in square)

Figure 7-10: The time required for all reflection messages transmitted by a square of
modules during shape distribution to reach the GUI is quadratic in the number of
modules in the chain. The circles in the plot represent the average time required for
all reflection messages to propagate back to the GUI. The whiskers associated with
each data point span two standard deviations.

Time for All Modules to Receive Inclusion Messages in an d-by-d-by-d Cube
30U

250

200

150

100

0 5 10 15 20
n (d3 / number of modules in cube)

25 30

Figure 7-11: The three average times required to transmit inclusion messages to all
modules in a cube can be fit perfectly by a quadratic function. The average times,
shown by the circles, are bounded by whiskers which extend one standard deviation
in each direction.

108

Norm of Fitting Error 3.167

T //I ~/

/

~-4--p

Norm of Fitting Error: 0.0

/'

Qnn

n i ~~~ | I

*

t7 Y · i i ,, ,

Nomo itngErr .

1-

I-

ber of inclusion messages were not received. This accounted for a total of 17 messages

that were missed. In cases where several inclusion messages were not received during

one experiment, the cause could generally be traced back to one poorly aligned IR

LED/photodiode pair that had possibly shifted since the modules decided it was a

valid message path. Because of the way inclusion messages are distributed, a mal-

functioning communication interface can affect all modules which depend on that

interface being a part of the inclusion pointer chain that delivers their inclusion mes-

sages. Even though 17 messages were lost, this number is still less than 2 percent

of the more than 1500 inclusion message that had to be sent over the course of all

experiments.

There were also 26 reflection messages that did not propagate back to the GUI.

This is also less than 2 percent of the total number of reflection messages sent during

the shape distribution phase for all experiments. One explanation for the slightly

higher number of reflection messages that did not return to the GUI during the shape

distribution phase in comparison to the localization phase is that during the shape

distribution phase, the reflection messages must contend with the inclusion messages

which are also propagating through the system. The total number of messages places

a high load on the system, and it is possible that some messages reached their timeouts

before being acknowledged by a neighboring module. This explanation is supported by

the fact that most reflection messages were lost in larger square and cubic structures

in which the modules near the root are handling a proportionally greater number

messages than in smaller structures.

7.4.1 Running Time Comparison

Section 5.4.3 theorized that the running time of the shape distribution algorithm

would be O(nt), where n is the number of modules in the system, and t is the time

required for the slowest module to process a message. All experiments indicate a

quadratic, 0(n 2), running time. This quadratic relationship may be explained by

the way Matlab behaves when bombarded with too much serial data. As stated in

Section 6.3, Matlab, when faced with a large amount of serial data, begins to drop or

109

corrupt many of the messages received from the root module. In turn, this slowdown

affects t because the synchronization process described in Section 6.1.1 couples how

quickly the modules can exchange messages with how quickly Matlab can process

them.

Because the rate at which Matlab can receive and process messages seems to be

inversely proportional to how busy it is transmitting messages, larger structures, be-

cause they require more inclusion messages to be transmitted, may limit how quickly

Matlab can receive messages from the root. In short, this means that t is directly

correlated to the size of the structure, n. Therefore, the running time of the shape

distribution algorithm is actually O(n2). This dependence of t on n also explains

why the time to receive all reflection messages during the shape distribution phase is

quadratic in n: the last module to be included has to wait until after it has received

its inclusion message before transmitting a reflection message. Therefore, if the time

required by the modules to receive all inclusion messages is O(n2), the time for all

reflection messages to propagate back to the GUI must also be O(n 2).

7.5 Disassembly Results

The disassembly process itself was not specifically tested after each of the 191 exper-

iments. It would have required too much time to allow the modules to fall apart and

then reassemble them by hand. Additionally, the self-disassembly and reassembly

process would have required activating each Magswitch twice. Over time, it would

have amounted to a significant drain on the batteries of each cube and would have

required more frequent recharging. Instead of sending a disassemble message after

each experiment, we sent a reset message. Reset messages, like disassemble messages,

are propagated by broadcast and quickly reach all modules in a structure. In each

of the 191 recorded experiments, the reset messages successfully reached all modules.

This allows us to conclude that disassembly messages would also have reached all

modules.

For a more specific test of the system's ability to disassemble, we conducted an

110

experiment which used fifteen modules initially arranged in a 3-by-5 rectangle. We

followed the standard process of neighbor discovery, localization, message generation,

and message distribution followed by actual disassembly. The final structure that we

modeled in the GUI resembled a basic humanoid robot and is shown in Figure 7-

12. To transform the initial 3-by-5 rectangle into the desired configuration, 5 of the

initial 15 modules had to separate from the structure. We tested this process sixteen

times during which one individual Magswitch failed twice. Once the Magswitch was

replaced, all trials were completely successful. The average time for all required for

modules to transmit their positions back to the GUI was 30.79 seconds. The average

time required for the GUI to generate a sequence of inclusion messages was 3.58

seconds. The time required for all modules to use reflection messages to inform the

GUI that they had received their inclusion messages was 54.58 seconds. Once the five

modules not a part of the final structure received disassemble messages, they began

disconnecting immediately. This allowed us to conclude that the system was truly

able to self---disassemble.

111

Figure 7-12: The final robot-like shape we "self-disassembled" using an initial 3-by-5

rectangle of modules. From start to finish, the self-disassembly process required a

total of approximately 90 seconds excluding any time spent modeling the desired final

shape.

112

Chapter 8

Conclusions

In the process of designing, building, programming, and testing our self-disassembling

system, we encountered many problems. We developed solutions for some of the

problems, but we learned from them all. If we were able to develop solutions for the

problems we encountered, we attempted to incorporate the changes into the system.

In some cases this was impossible. In what follows, we present the most important

lessons that we learned while developing our self-disassembling system. Where ap-

propriate, we attempt to render advice for future revisions of the system as well as

more general advice about distributed and modular systems as a whole. Section 8.1

presents several considerations that should be kept in mind when designing the hard-

ware for a distributed or modular system. Then, Section 8.2 addresses some of the

lessons we learned during the software development process.

8.1 Hardware Lessons Learned

The most important thing learned in the hardware development process was the

value of easy manufacture. If we were only producing one module, the complexity

of its assembly would be irrelevant. Since we built 28, it was important to make

the assembly process as simple as possible. While we made a concerted effort to

simplify the hardware assembly process, assembling a single module still required

approximately ten major steps and two days of time. It required several weeks and

113

the work of several individuals to assemble and test all 28 modules that we produced.

If we were to produce any additional modules, we would consider using a commercial

fabricator. Unfortunately, the mechanical and electrical systems of the modules are

so tightly integrated that it would be difficult to communicate the intricacies of the

assembly process to anyone not highly focused on the project. Future revisions to the

project should take this into account and attempt to further simplify the assembly

process.

We also came to appreciate the ability to individually test each subsystem of

each module. This was possible for some aspects of the system, for example the

Magswitches, but not all. In the manufacturing process, we encountered many com-

mercially produced printed circuit boards that contained broken, non-conducting

vias. These vias, until they were repaired, rendered the modules completely inoper-

able. Unfortunately, the broken vias were difficult to locate because we did not have

the ability to isolate the different electronic subsystems. As with the assembly pro-

cess, the different subsystems were too tightly integrated. Eventually, the experience

we gained debugging the early modules accelerated the debugging process in modules

that were assembled later. By planning for debugging the hardware during the design

phase, we could have made the entire process more efficient.

8.2 Software Lessons Learned

During the software development process, one of the first lessons we learned was that

every attempt should be made to ensure that communication systems are as robust

as possible. The inter-module messages contained a start character, checksum, and

stop character because without these, communication was unreliable. Even with these

features, Matlab still failed to handle serial communication well. Future versions of

the system should replace Matlab with a GUI that can better handle vast amounts

of serial data. Another possibility may be to implement a low-level program which

parses the data from the desktop computer's serial port before passing it along to

Matlab to be be displayed in the GUI.

114

The self-disassembly algorithms we implemented need to be made more robust

to communication failures. In the current system, if two modules are misaligned,

they are unable to pass message to each other. The message generation algorithm

attempts to detect these broken communication links and route messages around

them, but it makes no attempt to account for communication links that are partially

reliable. If the message generation algorithm mistakenly thinks that a broken link is

viable, a potentially large number of modules may not receive their shape distribution

messages. Improvements to the system should focus on re-routing messages on-the-

fly to avoid unreliable communication links. This should be done by the modules, not

the GUI, in a distributed manner. If these algorithms to reroute messages around

broken links are implemented, they may also be able to relieve the GUI of all its path

planning duties.

The final lesson we learned is the importance of, (and difficulty of obtaining),

accurate information about any distributed system's state. It is nearly impossible to

debug distributed systems efficiently. Because each module executes asynchronously,

it is difficult to understand the state that every module is in at any particular time.

In our case, the messages transmitted by the modules were indicative of their status,

but they only provided a high-level impression of their internal state. While the

development tools used for the ARM processor allowed us to debug the code executing

on one module and gain detailed information about that module's state, we could only

do this for one module at a time. Because the interactions between modules are what

give a distributed system its unique abilities, the ability to only debug one module

at a time is a hinderance to the implementation of more interesting and complex

algorithms. In our case, the algorithms were relatively simple, but even three or four

modules produced too much data to process and understand. At best, it was possible

to observe and understand the messages transmitted by two neighboring modules.

Even so, it was not possible to accurately order both sets of messages by transmission

time. We were only able approximate the time that a message was sent by one cube

with respect to the time that a message was sent by the other.

In particular, individual distributed systems should be designed with special care

115

paid to how they can be analyzed and debugged. In general, more research should

be devoted to developing generic tools that can be used to effectively analyze, debug,

and control large distributed systems. If we are ever to reach a point in time when

we can successfully deploy distributed systems containing millions of units, we will

first need to develop interfaces that can analyze, program, and control these systems

in an efficient manner.

116

Appendix A

Schematics

The following six figures are the schematics of the printed circuit boards which com-

posed the six faces of each module. The schematics are separated by face and, to

some degree, by function. The first schematic is represents the module face that

contains the primary ARM microprocessor. This board also contains the user LED,

accelerometer, and tilt switch. The circuit board described by the second schematic

contains the PSoC and the associated external comparators. This board handles all

of the IR communication. The third schematic contains all of the power regulation

and battery charing circuitry. The last three schematics are all similar and describe

the three faces which contain Magswitches. Because the Magswitches occupy so much

area on the these circuit boards, the boards do not contain many other components.

117

AIc1 1-a

ii

I

I i

i
i

~

-s

I-

118

j-

.1d LA"

t

;. .. _1__1___.__:1_ ._: 1:I:;__

II UO a C

I +

' I t.

bi ;4

119

ni

Ii

I

I

SI Je

IB I

121

_L--iL~~__~___ ._~~ ·- ~__- .-__~_ -.. _~1__~~_~__.____ ____.._ -__.----------------

B
rZ

af

i

i : :: : :

I

M

,~~ : "

IUT I a

122

rar. .., I

L~LL41 .

123

L0

-$

a'
a

Iri

I 8~

B.H sq

124

Appendix B

ARM Source Code

This appendix countains all of the source code which controls the Philips ARM mi-

croprocessor. For more details, consult Chapters 4 and 6.

B.1 main.c
This source file initializes the system and then loops forever calling the message
handling and transmission routines.

#include <targets/LPC210x.h>

#include "boolean.h"

#include "miche.h"

#define _main_

#include "main.h"

#undef _main_

tinclude "hal/rtc.h"

#include "hal/uart .h"

#include "hal/i2c.h"

#include "hal/magsuitch.h"

#include "debug.h"

#include "hal/orientation.h"

#include "usrint.h"

#include "crc.h"

#include "hal/psoc.h"

#include "msgs/handlemsg.h"

#include "localize.h"

#include "msgs/parsemsg.h"

#include "msgs/msgsched.h"

#include "log.h"

struct cfgData settings;

/**************int** ***n(vod)**
int main(void) {

125

struct time t,u,v;

unsigned int ctime;

char msg[653;

int temp;

MANCR - 2; //Enable full memory acceleration

initSystem();

while (1) {

handleIncomingMsgsO;

handleOutgoingMsgs();

handleBackgroundTasks O ;

/******************* ******a*****a****aaeaaaaeaaa***** * . /

void initSystem(void)

{

initl2CO ;

initUART(9600);

initRTCO);

initAccelerometer() ;

initTiltSwitchO ;

initTHR•0 ;

initLEDO);

generateCRCTable();

setTHR1MRIPeriod(20000);

_.ARMLIBenableIRQ();

initMagswitchesO; // must happen after interrupts

// are enabled because the end

// of routine re-enables them

IOCLR = PSOC RESET; // PSoC reset is active high

IODIR I- PSOC_RESET; // make PSoC reset an output

resetPSoCO); // reset the PSoC

pause(5000); // give PSoC time to initialize

readSettingsFromPSoCO; // read settings

setComparatorThreshold(settings comparatorThreshold);

// setup comparators for RX'ing

logEvent(0, "Xs", "System Reset");

void handleBackgroundTasks() {

if((ledOnForIRT) Rb (isTimeExpiredO))

blankLEDO;

}

126

B.2 handlemsg.c

This code implements most of the high-level disassembly algorithms.

#include <targets/LPC21Ox .h>

#include "boolean.h"

#include "miche.h"

#include "msgs.h"

#include "hal/rtc.h"

#define _handlemsg_

#include "handlemsg.h"

#undef _handlemsg_

#include "hal/psoc.h"

#include "hal/magswitch.h"

#include "log.h"

#include "usrint.h"

#include "main.h"

#include "demo.h"

#include "debug.h"

#define _logerrors_

struct cube nbrs [7]

{{0, 0, 0}), FALSE,

{{0, 0, 0}, FALSE,

{{0 , 0, O}), FALSE,

{{0, 0, 0}, FALSE,

{{0, 0, 0), FALSE,

{{0, 0, 0}, FALSE,

{{0, 0, 0), FALSE,

FALSE, FALSE, FALSE),

FALSE, FALSE, FALSE},

FALSE, FALSE, FALSE},

FALSE, FALSE, FALSE},

FALSE, FALSE, FALSE),

FALSE, FALSE, FALSE},

FALSE, FALSE, FALSE)

unsigned char ledOnForIRT - FALSE;

static unsigned char incChainPtr = 0;

static int state - ASSEMBLING;

static unsigned int totalRxCount - 0;

/******* ****** ***************** /

void handlelncomingMsgs O {

unsigned char rxstatus;

char rawamsg[MAX MSGCLENGTH+ 1];

int rcvface;

unsigned int seqid;

unsigned int acked_type, acked_seq_id;

int disconface;

unsigned int hops, bd;

struct point dest;

unsigned char ass;

struct point arc;

unsigned int ref..type, uid;

char rnbrs [7 ;

struct time t;

// for all msg types

// for ACK msgs

// for DRQ msgs

// for INC msgs

// for LOC msgs

// for MSS msgs

// for REF msgs

// for RTC msgs

127

getRxsufferStatus(&rx_status); // get summary of which faces have incoming msgs pending

for(rcvface = 0; rcvface <- 6; rcvface++) { // for each face including the uplink:

/* we first deal with the uplink interface separately */

if(rcvface = 0) { // for the uplink,

readUplinkQueue(rawmsg); // read uplink message buffer

if(raw_msg[03 - O) // if no message received,

continue; // continue to to check face 1

nbrsDME].rxAble = TRUE; // otherwise, we can rcv uplink

nbrsDME].txAble = TRUE; // and assume we can transmit

if(strcmp(raw_msg, "#*))) // if user entered #*CR,

startDebugInterface(); // start the debugging interface

/* now, we deal with msgs from neighboring

else if(rx_status & (OxO1 << (rcvface - 1)

readPSoCRxQueue(rcvface, rawmsg);

else

continue ;

/* if we've made it this far, new mag. exisl

if(rcvface != 0)

totalRxCount++;

if(!checkCRC(rawmsg))

txNCKMsg(rcvface);

continue ;

cubes */

))

// for all faces besides uplink that have msg. pending,

// read msg buffer on that face

// if no message pending,

// then continue to next face

ts in raw_msg */

// if new mag not from uplink,

// inc. total * msgs rcv'd

// if CRC is unsuccessful,

// send NCK msg on rcving face

// and continue to next face

/* if we make it here, new msg with valid CRC exists in raw_msg */

nbrs(rcvface] .rxAble - TRUE; // indicate we can rcv mags from that neighbor

if(!getMlgSeqlD(raw.msg, kseqid)) // if can't extract seq_id,

{
txNCKMsg(rcvface); // send NCK mag on rcving face,

continue; // and continue to next face

}

/* if we make it here, we were able to extract Seq. ID of the new msg */

switch(getMsgType(raw_msg)) // process msg. based on type

{
case ACK_MSG: // ACKnowledge message

acked_type = getMagAckedType(rawvmsg);// get the type of msg ACK is responding to

if(!getMsgAckedSeqlD(raw_mag, &acked_seq_id))

{ // if can't extract ACKed Seq. ID,

txNCKMsg(rcvface); // send NCK msg on rcving face,

continue; // and continue to next face

}

/* if we make it to here, ACK mag was parsed correclty */

128

if(msgqhandleACKMsg(rcvface, ackedtype, ackedseq_id))

nbrs[rcvface].txAble = TRUE;

handleACKMsg(rcvface, acked_type,

continue;

case DAS.MSG:

handleDASMsg(

continue;

case DCA_MSG:

handleDCAMsg(

continue;

case DRQMSG:

handleDRQMsg(

continue;

rcvface, seqid);

rcvface, seq_id);

// if msg queue system successfully matches ACK mag rcvd on

// a face to msg pending in tx queue for that face,

// indicate that we can successfully tx on that face

ackedseq_id);

// process ACK msg

// move on to next face

// DisASsemble message

// nothing else to parse, process DAS msg

// move on to next face

// DisConnect All message

// nothing else to parse, process the masg

// move on to next face

// Disconnect Request message

rcvface, seq.id);

case INCMSG:

if(!getMsgHops(raw_mag, &hops))

txNCKMsg(rcvface);

continue;

// nothing else to parse, process the DRQ message

// move on to next face

// INClusion message

// if unable to extract number of hops,

// transmit NCK msg,

// and move on to next face

if(!getMsgBranchDirection(raw_msg, &bd))

txNCKMsg(rcvface);

continue;

// if unable to extract branch direction,

// transmit NCK msg,

// and move on to next face

/* if we make it to here, INC msg was parsed correclty */

handleINCMsg(rcvface, seq_id, hops, bd);

// process the INC msg

continue; // move on to next face

case IRTMSG:

handleIRTMsg(rcvface, seqid);

break;

case LOC_MSG:

if(!getMsgDest(rawmsag, dest))

txNCKMsg(rcvface);

continue;

// InfraRed Test message

// nothing else to parse, process IRT msg

// LOCalization message

// if unable to extract destination,

// transmit a NCK msg

// and move on to next face

/* if we make it to here, LOC msg was parsed correclty */

handleLOCMag(rcvface, seq-id, Mdest); // handle the LOC msg

continue; // move on to next face

case MSSMSG: // MagSwitch State message

if(!getMsgMSStatus(rawmsg, amss)) // if unable to extract magswitch state,

129

txNCKMag(rcvface); // transmit NCK msg,

continue; // and move on to next face

I

/* if we make it to here, INC msg was parsed correclty */

handleMSSMasg(rcvface, seqid, mass); // process MSS message

continue; // move on to next face

case NCK_MSC: // Not aCKnowledge message

handleNCKMsg(rcvface, seq_id); // nothing else to parse, process NCK msag

continue; // move on to next face

case PNGMSG: // PiNG message

handlePNGMsg(rcvface, seqid); // nothing else to parse, process NCK msg

continue; // move on to next face

case REF_MSG: // REFlection message

if(!getMsgRefType(rawsg., &reftype))

{ // if unable to extract ref type

txNCKMsg(rcvface); // transmit NCK msg

continue; // and move on to next face

if(!getNsgSrc(rawmsg, &src)) // if unable to extract src,

{

txNCKMsg(rcvface); // transmit NCK ssg,

continue; // and move on to next face

}

if(!getMsgUID(raw_mog, tuid)) // if unable to extract uid,

txNCKMsg(rcvface); // transmit NCK msg

continue; // and move on to next face

I

if(!getMsgReachableNbrs(rawmag, rnbrs))

{ // if can't get reachable nbrs,

txNCKMsg(rcvface); // transmit NCK msg
continue; // and move on to next face

/* if we make it to here, REF asg was parsed correclty */

handleREFMsg(rcvface, ref_type, seq_id, &src, uid, rnbrs);

// process the REF msg

continue; // move on to next face

case RST_MSG: // ReSeT message

handleRSTMag(rcvface, seqid); // handle RST message

continue; // and move on to next face

case RTC_MSG: // Real Time Clock message

if(!getMsgTime(raw_msg, Nt)) // if unable to extract time,

txNCKMsg(rcvface); // transmit NCK msg

continue; // and move on to next face

130

/* if we make it to here, RTC msg was parsed correclty */

handleRTCMsg(rcvface, seq_id, it);

continue;

// process the RTC msg

// move on to next face

/********* **/

void handleOutgoingHsgs O {

int txface;

if((state =- DISCARDED) II (state == SOLIDIFIED) II

(state == LOCALIZED) II (state =- SCULPTED))

return;

for(txface = 1; txface <= 6; txface++) // for each neighbor,

I

if((!nbrs[txface].pop) II (!nbrs[txface].txAble))

// if we don't have a neighbor,

// or if we have so far been

// unsuccessful txing to it,

if(msgq_queueEmpty(txface)) // if the tx queue is empty,

txPNGMsg(txface); // ping our neighbor

/************************************* ******** ***** **/

static void handleACKMse

(int rcvface, unsigned int acked_type, unsigned int ackedseqid)

if (((ackedtype -= PNGMSG) It (ackedttype -- LOCISC)) UA

(nbrs[rcvfacel.pop -- FALSE)) // if ACK in response to PNG

{ // or LOC msg,

if((state == SOLIDIFIED) II (state - DISCARDED))

// but if already solidified

// or discarded,

return; // return without action

nbrs [rcvface] .pop = TRUE;

if((rcvface =- 4) 11 (rcvface -=

if(setMagswitchState(rcvface,

nbrs[rcvface .con - TRUE;

txzSSMsg(MSS_ON, rcvface);

else

abrs[rcvface] .con - FALSE;

txMSSMsg(MSS_OFF, rcvface);

// otherwise,

// remember our new neighbor

5) II (rcvface -= 6))

// if nghbr touches active face,

MSS_ON)) // if able to connect magswitch,

// indicate it

// and let neighbor know

// otherwise, unable to connect,

// indicate it

// and let neighbor know

131

/*e*e* ee**** * *** ************ **** *** */

static void handleDASMsg(int rcvface, unsigned int seqid)

{
int taface;

tzACKnsg(DASMSG, seq_id, rcvface);

if(state == LOCALIZED)
state - DISCARDED;

else if(state --== SCULPTED)

state = SOLIDIFIED;

else

return;

for(txface = 1; txface <= 6; txface++)

if(txface != rcvface)

txDASMsg(txface);

}

if(state -- DISCARDED)

disconFromStructureO;

// transmit an ACK msg

if already localized,

we haven't rcvd INC msg, so

we're now 'discarded'

if we did rcv INC asg,

we're now 'solidified'

otherwise,

return

// for each face,

// if face is not rcving face, &

// fwd DAS msg

// if not part of final struct.,

// disconnect from the structure

static void handleDCAMsg(int rcvface, unsigned int seq_id)

{

/*

handleDCAMsg is called whenever a "DisConnect All" message is received. It

sends an ACK message on the face on which the DCA message was received and

forwards the DCA message to every other face. Then it calls

disconFromStructure() to turn off all of the cube's MagSwitches.

int txface;

char rawmsg[MAXSG_LENGTH+ 11;

txAC•Msg(DCA_MSG, seqid, rcvface); // tx ACK msg

state = DISCARDED; // update our state

for(txface - 1; txface <= 6; txface++)

if(txface !- rcvface)

txDCAMsg(txface);

}

disconFroaStructureO;

// for faces 1-6,

// if face isn't receiving face,

// forward the DCA message

// disconnect from the structure

/* the following code is new as of 5/17/06 */

measureSeconds(6);

while(!isTimeExpiredO);

for(txface = 0; txface <- 6; txface++)

readPSoCRxQueue(txface, raw_msg);

// pause for 2 seconds

// clean the PSoC RX buffers

132

static void handleDRQMsg (int rcvface, unsigned int seqid)

{

static int prevSeqID[33 = {10000, 10000, 10000};

// init. seq id's are invalid

txACKMsg(DRQ_MSG, seq_id, rcvface); // send an ACK message

if((rcvface != 4) t& (rcvface != 5) At (rcvface != 6))

// if face lacks magsswitch,

return; // return without doing anything

if(prevSeqIDlrcvface - 4] =- seqid) // if msg is duplicate of prey,

return; // ignore it and return

prevSeqlD[rcvface - 4] = seq_id; // save new msg for next time

if(setMagswitchState(rcvface, MSSOFF)) // if able to discon. magswitch,

tzMSSMsg(MSS_OFF. rcvface); // tell nghbr rqst was honored

else // else, unable to disconnect:

txMSSMsg(MSS.ON, rcvface); // tell nghbr rqst unsuccessful

/****es****e l********sse s s*eee ***** *** ****es* *se **•*•sese** *e /

static void handleINCMsg

(int rcvface, Imsigned int seqid, unsigned int hops, unsigned int bd)

I

int txface, msg_type;

char *queued_msg;

if((state --== LOCALIZED) II (state == SCULPTED))

// if we were localized,

state - SCULPTED; // we've now been 'sculpted'

else

{

txACKMsg(INC_SG., seq_id, rcvface);

return;

// otherwise,

// tx ACK msg to source of INC

// return w/out changing state

/* the following is only executed if we received an INC mesg while localized */

/* first, we will clear the TX queues of any pending mesg that is not a INC or

REF asg--doing so should produce improvements in system responsiveness

because we will not waste time transmitting LOC messages to non-existent

neighbors when we could be forwarding INC messages */

for(txface = 1; txface <= 6; txface++) // for each face,

{

if(msgqgetQueueContents(Cqueued_msg, txface))

// if there exists queued msg,

msgtype - getMsgType(queued_msg); // get its type

if((msg.type != REF_MSC) At (msg..type != INC_MSG))

// if its not a REF nor INC msg,

msgqpurgeQueue(txface); // purge the queue to stop its

} // transmission

/* the following code either includes this cube in the structure or forwards

133

the INC message to one of our neighbors */

if((hops - 0) A& (bd - 0)) // if we are final dest of msg,

solidLED(75); // illuminate our User LED,

txACKMsg(INC_MSG, seq_id, rcvface); // tx ACK msg to source of INC,

txREFMsg(INC_MSG, settings.uid, nbrs[MEJ.p);

// and tx REF mesg to our parent

else if((hops -= 1) U msgq_queueEmpty(bd))

incChainPtr - bd;

if(fwdINCMsg(0, 0, incChainPtr))

txACKEsg(INC MSG, seq_id, rcvface);

else if((hops >- 2) U (incChainPtr != 0)

{

if(fwdINCMsg(hops - 1, bd, incChainPtr

txACKMsg(INC_MSG, seqid, rcvface);

else if(incChainPtr -= 0)

logEvent(INVALID_INC_MSG, "no incChainPt

// if dest is direct nghbr,

// and that tx queue is empty,

// update our inc. chain ptr

// if able to forward INC msg,

// tx ACK msg to source of INC

Ut msgq.queueEmpty(incChainPtr))

// if dest not direct nghbr,

// our inc.chain ptr is valid, &

// tx queue on inc. chain ptr

// face is empty,

))// if able to forward INC msg,

// tx ACK msg to source of INC

// if inc. chain ptr invalid,

xr for face %Sd msg", rcvface);

// log an error

static void handleIRTMsg(int rcvface, unsigned int seq_id)

/*

handleIRTMsg is called whenever a "InfraRed Test" message is received. IRT

messages are used to test the ability of each cube to transmit and receive IR

messags on each face. The routine sends an ACK message on the face on which

the IRT message was received and forwards the IRT message to every other face.

In addition, the the routine illuminates the cube's User LED for one second so

that it is possible to tell that the IRT message was received.

*/

int trface;

tzACKMsg(IRT_MSG, seq-id, rcvface); // tx an ACK msg

if((state - ASSEMBLING) II (state -- IRTEST))

state - IRTEST; // switch to 'IR test' state

else // for any other state,

return; // return without action

solidLED(128); // turn the LED on at half power

ledOnForIRT - TRUE; // signal why User LED is on

measureSeconds(1); // start the countdown timer

for(txface = 1; txface <= 6; txface++) { // for every face:

if((txface !- rcvface)) // if face isn't receiving face,

txIRTMsg(txface); // forward the IRT message

134

static void handleLOCMsg(int rcvface, unsigned int seq_id, struct point *dest)

{

int txface;

txACKMsg(LOC_YG, seqid, rcvface); // tx an ACK msg

/* first, if LOC came from unknown neighbor, connect */

if((!nbrs[rcvface .pop))

{ // if prev unaware of neighbor,

nbrs [rcvface] .pop = TRUE; // remember that we have nghbr

if((rcvface -== 4) 1I (rcvface - 5) II (rcvface - 6))

{ // if nghbr touches active face,

if(setMagswitchState(rcvface, MSS_0N))// if able to connect magswitch,

{
nbrs[rcvface] .con = TRUE; // indicate it

txMSSMeg(MSSON, rcvface); // and let neighbor know

}

else { // otherwise, unable to connect,

nbrs[rcvface] .con = FALSE; // indicate it

txMSSMsg(MSS_OFF, rcvface); // and let neighbor know

/* now, deal with specific repercusions of the LOC msg */

if((state =- LOCALIZED) II (state =- SCULPTED) II

(state == SOLIDIFIED) II (state - DISCARDED))

{ // if we not in a state in which

// LOC asgs are relevant,

if(addrcmp(&nbrs[ME].addr, dest) =- FALSE)

// and if LOC msgs doesn't match

// our assumed position,

logEvent(LOC_DISCREPENCY, 0); // log an error

return; // return regardless

else if((state == ASSEBLING) II (state

{

if(nbrs[rcvface] .txAble)

state = LOCALIZED;

nbrs [ME] .addr = *dest;

nbrs[ME] .pop = TRUE;

nbrs[ME .p = rcvface;

nbrs[nbrs[ME] .p] .pop = TRUE;

genNeighborAddresses();

for(txface =- 0; txface <= 6; txface+

i

if(txface =- nbrs[M] .p)

-- IRTEST))

// if we are not localized,

// and if we can successfully

// transmit msgs on the face on

// which the LOC msg was rcv'd

// we're now localized,

// our new addr is dest of mag

// our address is now populated

// parent is rcving face

// parent must be populated

// generate addrs of neighbors

+) // scan through all faces

// when hit parent/rcving face,

135

txREFMsg(LOC_MSG, settings.uid, txface);

// transmit REF msg,

else if(txface !-0) // for other faces xcept uplink,

txLOCMHg(txface); // forward LOC ssg

blinkLED(382400, 20); // indicate we're localized

/**static void handleS*** s(***** nt rcace, unsi**ened int seqd, nsigned in ss

static void handleMSSMsg(int rcvface, unsigned int seq.id, unsigned int ass)

txACKMsg(MSS_MSG, seq_id, rcvface);

nbrs[rcvface).con = mss;
// and tx an ACK msg

// update connection status

static void handleNCKMsg(int rcvface, unsigned int seqid)

{
static unsigned int prev.nck-seqid[7);

if (seqid != prevnck_seq_id[rcvface])

msgq.incAttempts(rcvface, 5);

// if new SeqID is not same as

// that of last NCK on rcvface,

// inc number of re-tx atttempts

Checking to see that newest NCK is different from previous prevents deadlock

in which two cubes send nothing but NCK to each other. This should have only

been an issue in the old system in which (A/N)CK msgs were treated like any

other msg. In the new system, (A/N)CK are only transmitted once for each

faulty rcvd msg. As a result, rcving a NCK would never cause a NCK to be

retransmitted. Keeping the shouldn't harm anything and helps prevent one

message from being transmitted forever.

prevnckseq_id[rcvface] = seqid; // update

/*****static void handlePNMs(int rcvface, unsigned int seqd

static void handlePNGMsg(int rcvface, unsigned int seq id)

txACKMsg(PNG_MSG, seq_id, rcvface);

if(nbrs[rcvface).pop)

return;

// send ACK immediately

// if aleady aware of neighbor

// simply return

/* the following is only executed if new neighbor was previously unknown */

nbrs [rcvface].pop = TRUE; // remember that we have nghbr

if((rcvface == 4) II (rcvface -- 5) II (rcvface -- 6))

{ // if nghbr touches active face,

if(setMagswitchState(rcvface, MSSON)) // if able to connect magswitch,

{

nbrs[rcvface].con = TRUE;

tzMSSMsg(MSS_ON, rcvface);

// indicate it

// and let neighbor know

136

else {

nbrsErcvface] .con = FALSE;

txMSSMsg(MSS_OFF, rcvface);

// otherwise, unable to connect,

// indicate it

// and let neighbor know

/** ************

static void handleREFMsg

(int rcvface, unsigned int type, unsigned int seqid,

struct point *src_p, unsigned int uid, char *rnbrs)

{
struct point queued_src;

unsigned int queued_type, queued_uid;

char *queued_msg;

if(asgqqueueEmpty(nbra[ME3.p)) // if tx queue on parent face is

{ // empty,

txACKMsg(REF_MSG, seq_id, rcvface); // tx ACK to sender of REF msg.,

fwdREFMsg(type, src_p, uid, rnbrs, nbrs[ME].p);

// and forward REF msg to parent

return;

/* below code ACKs rcvd REF msg if that msg matches msg in parent queue */

if(msgq_getQueueContents(&queued_msg, nbrs [ME] .p))

getMsgRefType(queuedmsg, &queued-type);

getfsgSrc(queuednsg, Aqueuedmsg, queuedrc);

getMsgUID(queued_msg, Aqueued_uid);

if(addrcip(s:rccp, Aqueued_src) &

(uid -- queueduid) &M

(type - queuedtype))

txACKMsg(REF_~SG, seq_id, rcvface);

// if able to get msg queued for

// tx to parent,

// get type of queued msg,

// get src. of queued msg, and

// get UID of source cube

// if arc's match,

// if uid's match, and

// if type's match,

// tx an ACK on rcving face

/********************* ***************************************

static void handleRSTMsg(int rcvface, unsigned int seqid)

{

int txface;

char rawimsg[MAXUSGLENGTH+ 13;

unsigned int totalTxCount;

totalTxCount = msgq.getTotalTxCount(); // log total # msgs sent/rcvd

logEvent(0, "Tx Total: 7d, Rx Total: 7d", totalTxCount, totalRxCount);

msgqclearTotalTxCount(); // clear the totals

totalRxCount - 0;

nbrs[ME].addr.x = 0;

nbrs[ME).addr.y = 0;

nbrs[ME].addr.z = 0;

nbrs [ME].pop FALSE;

nbrsD[ME.p = O;

// forget our location

// forget that we're populated

// forget our parent

for(txface = 1; txface <= 6; txface++)

137

if(txface !- rcvface)

txRSTMsg(txface);

else

msgq_purgeQueue(txface);

nbrs[txface .addr.x = O;

nbrs[txface].addr.y = 0;

nbrs[txface].addr.z = 0;

nbrs[txfacel.pop = FALSE;

nbrs[txface].con = FALSE;

nbrs[txface].p = 0;

abrs[txface].txAble = FALSE;

nbrs[txface].rxAble = FALSE;

// forget neighbor's location

// forget that neighbor exists

// this is a lie--doesn't matter

// forget our neighbor's parent

// forget transmit ability

// forget receive ability

state = ASSEMBLING;

blankLEDO;

measureSeconds(6);

while(!isTimeExpired());

for(txface = 0; txface <= 6; txface++)

readPSoCRxOueue(txface, raw msg);

// pause for 2 seconds

// clean the PSoC RX buffers

static void handleRTCMsg(int rcvface, unsigned int seq_id, struct time* t)

{

int txface;

txACKMsg(RTCMSG, seq_id, rcvface);

if(!timeValid)

setTime(t);

for(txface - 1; txface <- 6; txface++)

// transmit an ACK msg

// if our RTC is invalid

// set the clock

// for each face

if(txface != rcvface)

txRTCMsg(t, txface);

// if not rcving face,

// forward RTC msg

static void disconFromStructure() {

int face;

nbrs[aE].addr.x - 0;

nbrs[ME].addr.y = 0;

nbrs[ME].addr.z = 0;

abrs[ME].pop - FALSE;

nbrs[ME).p = 0;

for(face = 1; face <= 6; face++)

// forget our location

// forget that we're populated

// forget our parent

// for each potential neighbor,

138

// if neighbor exists,

if((face=--) 11 (face-2) II (face-=3)) // if ngbr in question is 1,2,3

msgq_purgeQueue(face);

txDRQMsg(face);

else if(((face-4) II (face==5) II

(setMagswitchState(face, MSSOFF

{

nbrs(face]).con - FALSE;

msgq.purgeQueue(face);

txlMSMsg(MSSOFF, face);

}

nbrs[facel.addr.x - 0;

nbrs(face].addr.y - 0;

nbrs[face].addr.z = 0;

nbrs[face).pop - FALSE;

nbrs[face].p = 0;

nbrs[face].txAble - FALSE;

nbrs[face].rxAble = FALSE;

blankLED() ;

// immediately tx DRQ msg

(face-6)) &A

))) // if ngbr in question is 4,5,6

// and can turn magswtch off,

// remember that it is off,

// and immediately tx MSS msg

// forget neighbor's location

forget that neighbor exists

forget our neighbor's parent

forget transmit ability

forget receive ability

// turn LED off

/********* *** *** * ***********************************/

static void genNeighborAddresses() {

/*

genNeighborAddresses examines our address (stored in nbrs[ME].addr) and

computes correct address for each of our six neighbors: abrs[1-6].addr.

*/

int face;

for(face - 1; face <= 6; face++)

nbrs[face).addr - nbrs[MEL].addr;

abrs[RIGHT .addr.x - nbrslME].addr.x + 1;

nbrs [LEFT) .addr.x - nbrslE .addr.x - 1;

nbrs [FRONT]).addr y - nbrs[ME]. addr.y + 1;

nbrs[BACK].addr.y - nbrsME] .addr.y - 1;

nbrs [TOP]. addr.z = nbrs [ME]. addr.z + 1;

nbrs[BOTTOM].addr.z = nbrs[MEI.addr.z - 1;

// for each of our six neighbors,

// begin by assuming their address is our addres,

then, for our right neighbor, increment x coordinate by 1

for our left neighbor, decrement x coordinate by 1

for our front neighbor, increment y coordinate by 1

for our back neighbor, decrement y coordinate by 1

for our top neighbor, increment z coordinate by 1

for our bottom neighbor, decrement z coordinate by 1

/***/

int addrcmpRaw(struct points 1, int x, int y, int z) {

if((l->x == x) A (l->y -- y) U (1->z -- z))

return TRUE;

else

return FALSE;

}

/************ **/

static int addrcmp(struct point* 1, struct points m) {

139

if(nbrs[face] .pop)

if ((1->x -- m->x) U (1->y -- m->y) kk (1->z - a->z))

return TRUE;

else

return FALSE;

}

B.3 txmsg.c

This section of code constructs outgoing messages and sends them to the transmission
buffer.

#include <targets/LPC21Ox.h>

#include "boolean.h"

#include "miche.h"

#include <string.h>

#include "msgs/handlemsg.h"

#include "hal/rtc.h"

#define _txmsg

#include "msgs/txmsg.h"

fundef _txmsg_

#include "hal/psoc.h"

tinclude "msgs/msgs.h"

#include "msgqueue.h"

#include "crc.h"

#include "main.h"
tinclude "debug.h"

unsigned int seq_id O0;

unsigned char txACKMsg(int initmsgtype, unsigned int initseqid, int face) {

char msgCMAX_MSGLENGTH + 1); // +1 accounts for null terminator

char initmsg.type.string[TYPE_FIELDLENGTH + 2];

if(initseq.id > 10000)

return FALSE;

switch (initjmsg_type) {

case ACKMSG: strcpy(init_msgtypestring, "ACK&"); break;

case DASMSG: strcpy(init_msg_type_string, "DASh"); break;

case DCAMSG: strcpy(init_msg_type_string, "DCAV"); break;

case DRQMSG: strcpy(init_msg_type_string, "DRQR"); break;

case INCMSG: strcpy(initmsgtypestring, "INCA"); break;

case LOC MSG: strcpy(initmsg.type string, "LOCW"); break;

case MSSMSG: strcpy(initmsgtype_string, "MSSk"); break;

case NCKMSG: strcpy(init_msg_typestring, "NCKA"); break;

case PNGMSG: strcpy(initmsg_type_string, "PN1G"); break;

case RST_MSG: strcpy(initmssgtypestring, "RST&"); break;

case REF.MSG: strcpy(initmasg_type_string, "REF&"); break;

default: return FALSE; break;

strcpy(msg, "#0O");

140

sprintf(Cmsg[strlen(msg)], "WdA", seqid++ X 10000);

sprintf(•msg[strlen(msg)],. "ACK*");

strcat(msg, init_msg_type_string);

sprintf(Cmsg[strlen(msg)]. "Xd"., initseq_id);

return (txMsg(msg, face));

/******** ******************** ** ** ** ***/

unsigned char tzxDASMsg(int face) {

char msg[MAXSG_LENGTH + 13;

strcpy(msg, "#O*");

sprintf(Cmsg[strlen(msg)). "7'Y ", seqid++ X 10000);

sprintf(Cmsgtstrlen(msg)3. "DASk");

return (txMsg(msg, face));

}

/******************************** *************************************/

unsigned char txDCAMsg(int face) {

char msgDMAXISG_LENGTH + 1];

strcpy(msg, "#0l");

sprintf(Cmsg[strlen(msg)]. "7Vd", seqid++ % 10000);

sprintf(a&sg[strlen(msg)], "DCAt");

return (txMsg(msg, face));

}

/*a********a*ese e****e*ee ******e *****e*/

unsigned char txDRQMsg(int face) {

char msg[MAX_MSG.LENGTH + 11;

strcpy(msg, "#Ok");

sprintf(kmsg[st:rlen(msg)), "'dW", seqid++ 7. 10000);

sprintf(tmsg[strlen(msg)], "DRQk");

return (txMsg(msg, face));

/*e*e*e** ***e*****a****e***e****e*ee*e******eee*** * * ****/

unsigned char fwdINCMsg(int hops, char bd, int face) {

char msagMAXSG..LENGTH + 13;

strcpy(msg, "#O");

sprintf(Cmsg[strlen(msg)], "dt", seqid++ 7X 10000);

sprintf(Cmsg[strlen(msg)], "INCA");

sprintf(C&msg[strlen(msg)], "7V",. hops);

sprintf(*msg[strlen(msg)], "W7d", bd);

return (txMsg(msg, face));

}

unsigned char txIRTMsg(int face) {

char msg[MAXMSGCLENGTH + 1I;

141

strcpy(msg, "#0*");

sprintf(kmsg[strlen(ssg)], "WXd", seqid++ % 10000);

sprintf(Cmsg[strlen(msg)], "IRTV");

return(tMlsg(msg, face));

unsigned char txLOCMsg(int face) {

char msg[MAXMSG_LENGTH + 1]; // +1 accounts for null terminator

strcpy(msg, "#0k");

sprintf(tmsg[strlen(msg)], "%d&", seq_id++ % 10000);

sprintf(Cmsg[strlen(msg)], "LOC•");

sprintf(•msgestrlen(msg)], "%dk%dk%dX",

nbrs [face] .addr.x, nbrs [face). addr.y, nbrs [face]. addr.z);

return (txMsg(msg, face));

/***a*eeeeaeaeaa***a********a***/

unsigned char txMSSMsg(unsigned char ass, int face) I
char ssgMALXMSGLENGTH + 1];

strcpy(meg, "#0t");

sprintf(msgE[strlen(msg)], "%,dA", seq_id++ A 10000);

sprintf(kmeglstrlen(msg)], "MSS&");

sprintf(kmsg[strlen(msg)], "%d&", ess);

return (tzMg(msg., face));

/*e*** *** ae**e***** ae*****e**a***e***e***aaeea** * eeeeea*e*e*e** e**a*****eee /

unsigned char txNCKMsg(int face) {

char asg[MAX_-SGLENGTH + 11; // +1 accounts for null terminator

strcpy(msg, "#O&");

sprintf(•msg[strlen(msg)], "%dA", seq.id++ % 10000);

sprintf(•"msg[strlen(msg)], "NCK&");

return (txMsg(msg, face));

}

unsigned char tzPNGMsg(int face) {

char msg(MAXMSG_LENGTH + 11;

strcpy(msg, "#0t");

sprintf(Cmsg[strlen(mag)), "Xdk", seq.id++ % 10000);

sprintf(Cmsg[strlen(msg)], "PNGC");

return (txMsl(msg, face));

142

unsigned char txREFMsg(int type, int uid, int face)

char msg[MAX_MSC_LENGTH + 1];

char type_str[TYPEFIELDLENGTH + 2];

char rnbras[] = {0O,,0,0,0,0,};

int i;

switch(type)

case INCMSG:

case LOCMSG:

default:

strcpy(type_str.

strcpy(type_str,

return FALSE;

"INCA"); break;

"LOCAW); break;

break;

for(i = 1; i <= 6; i++)

if(nbrs[i].txAble)

sprintf(Arnbrs[strlen(rnbrs)], "%d", i);

strcpy(mag, "#Ok");

sprintf(kmsg[strlen(msg)), "WdA", seq_id++ % 10000);
sprintf(&msg[strlen(msg)], "REFP");

strcat(msg, type_str);

sprintf(Amsg[strlen(msg)], "%dA&dA.d&".

nbrs[ME].addr.x, nbrs[ME].addr.y, nbrs[ME].addr.z);

sprintf(Amsg[strlen(msg)], "%dA", uid);

sprintf(&msg[st:rlen(msg)], "%st", rnbrs);

return (txMsg(msg, face));

unsigned char fwdREFMsg

(int type, struct point* arc, int uid, char* rnbra, int face)

char msgDIAX_-SGLENGTH + 11];
char type_str[TY'EFIELDLENGTH + 23;

switch(type)

case INC_MSG: strcpy(type_str, "INCA"); break;

case LOC_MSG: strcpy(typestr, "LOCk"); break;

default: return FALSE; break;

strcpy(nsg, "#0&");

sprintf(&msg[strlen(msg)],

sprintf(m-sg[strlen(msg)3,

strcat(msg, type_str);

sprintf(•msg[strlen(msg)],

sprintf(Amsg[strlen(msg)],

sprintf(&msg[strlen(msg)],

"%d", seq_id++ X 10000);

"REFp");

"YUd4dkXdk", arc->x, arc->y, arc->z);

"%dA", uid);

"%sA", rnbrs);

return (txMsg(msg, face));

}

/*5****5**•*t******5** 5*e*******+*·****** e** * e** **** *** *** ***/

unsigned char txRSTMsg(unsigned int face) {

char msgDAX_MSG_LENGTH + 13;

143

strcpy(msg, "#Ok");

sprintf(Amsg[strlen(msg)], "7WO ", seq_id++ % 10000);
sprintf(tmsg[strlen(msg)], "RST&");

return (txMsg(msg, face));

/**e * ****** ******eeeeeeeeeee*e********** /

unsigned char txRTCMsg(struct time* t, unsigned int face) {

char msg[MAX_MSGLENGTH + 13;

if(!validateTime(t))

return FALSE;

strcpy(mag, "#O0");

sprintf(Amsg[strlen(msg)], "%dt", seq_id++ X 10000);

sprintf(&msg[strlen(msg)], "RTCE");

sprintf(&msg[strlen(msg)3, "Xdl%d&%d kd&7&7.%d•dtAtd",

t->year, t->month, t->doy, t->dow, t->dom, t->hour, t->min, t->sec);

return(txMsg(msg, face));

unsigned char txlsg(char msag, unsigned int face) {

if(face > 6)

return FALSE;

msgC13 = face + 48;

// transmitting on face 0 is txing only on debug uplink

// tack transmitting face on to start of message

sprintf(Bmsg[strlen(msg)], "zx\n", calcCRC(msg, strlen(msg)));

// attach the checksum and message terminator (/r)

if(debugging) {

pause(peripheralClockFrequencyO

if(switchTxFace(face))

printf("'%s", msg);

pause(peripheralClockFrequencyO)

switchTxFace(0);

else {

switchTxFace(0);

return;

/ 9000); //

//

//

//

//

//

/ 500);//

//

pause before turning on mux in PSoC to prevent

tail end of previous character being transmitted

from being tacked on to the head of the message

to be transmitted

if PSoC responds to request to switch muz to requested face,

send the message

again, wait for the RS-232 to finish before switching mux

set mux to not forward messages to any face

attempt to switch face unsuccessful,

try and switch off mux just for good measure

and return failure

else

if(getMsgType(msg) == RST_MSG)

return(msgqenQueue(msg, 5, face));

else if(getMsgType(msg) - DCA_MSG)

return (msgqenQueue(msg, 5, face));

// otherwise, we're not debugging

// only tx RST msgs 5 times

// only tx DCA msgs 5 times

else

return(msgq_enqueue(msg, settings.repeatCount, face));

// so add the message to a queue

144

B.4 crc.c
This code computes the CRC checksums that are appended to each inter-module
message.
/*

This code based on code written by Sven

the excellent CRC tutorial, "A Painless

Error Detection Algorithms," written by

Reifegerste and

Guide to CRC

Ross N. Williams

*include <targets/LPC21Ox.h>

#include "boolean.h"

#define _crc_

#include "crc.h"

Nundef _crc_

unsigned int crctable[256);

/**s**** ****** see*eeee***s*e*****e***** eeeees*e***** e**+*e** **** eseee*/

void generateCRCTable() {

unsigned int crc, bit, i;

unsigned char j;

for (i=0; i<256; i++) {

crc = (unsigned int)i;

crc <<= 8;

for (j=0; j<8; j++) {
bit = crc & Ox8000;

crc <<- 1;

if (bit)

crc -= polynomial;

}

crc_.tableli] = (crc & OxFFFF);

/******************** ******** **** ***/

unsigned int calcCRC (unsigned char* p, unsigned int len) {

unsigned int crc = initialcrc;

while (len--)

crc = ((crc << 8) I *p++) - crctable[(crc >> 8) & OxPF];

crc = (crc << 8) - crc_table[(crc >> 8) & OxFF);

crc = (crc << 8) ̂ crctable[(crc >> 8) & OxFF];

return(crc & OxFFFF);

145

B.5 parsemsg.c

This section, given a received message, extracts the data fields.

#include <targets/LPC210x.h>

#include "boolean.h"

#include <string.h>

#include "handlemsg.h"

#include "hal/rtc.h"

#include "mega.h"

*define _parsemsg_

#include "parsemsg.h"

#undef _parsemsg.

#include "hal/psoc.h"

#include "msgqueue.h"

#include "log.h"

#include "crc.h"

/************************** Methods for all messages *************************/

unsigned char getMsgSeqlD(char* rawmsg, unsigned int* seq_id) {

if(sscanf(getFieldNPtr(rawmsg, SEQID_FIELD-NUMER), "%d&", seqid))

return TRUE;

logEvent(PARSE_FAILURE_SEQ_ID, "Xs", raw_ms);

return FALSE;

}

unsigned int getMsgType(char* rawamsg) {

chars typestrp;

char type_str[TYPE_FIELDLENGTH + 1];

typestr_p = getFieldNPtr(raw.msg, TYPEFIELD_NUMBER);

// get a pointer to the message type field

strncpy(type_str, typestrp, TYPEFIELDLENCTH);

// copy the message type field into its its own string

type_str [TYPE_FIELDLENGTH] = 0; // null terminate the string

if (strcmp(typestr, "ACK") = 0)

return ACK_ISG;

else if (strcmp(type_str, "DAS") -)

return DAS_MSG;

else if (strcmp(type_str, "DCA") - 0)

return DCA_MSG;

else if (strcmp(type_str, "DRQ") = 0)

return DRQ.MSG;

else if (strcmp(typestr, "INC") - 0)

return INC_MSG;

else if (strcmp(typestr, "IRT") - 0)

return IRTMSG;

else if (strcmp(typestr, "LOC") - 0)

return LOC_MSC;

else if (strcmp(typestr, "MSS") == 0)

146

return MSS_MSG;

else if (strcmp(type_str, "NCK") - 0)

return NCK_MSC;

else if (strcmp(type_str, "PNG") -- 0)

return PNG_MSG;

else if (strcmp(typestr, "REF") = 0)

return REF_MSG;

else if (strcmp(type_str, "RST") == 0)

return RST_MSG;

else if (strcmp(typestr, "RTC") =- 0)

return RTC_MSG;

else

{

logEvent(PARSE_FAILURETYPE. "%s", rav_msg);

return UNKNOWNMSG;

}

/************************** Methods for ACK messages s ********** s**************/

/*********************************** ******************************s /

unsigned char getMsgAckedSeqID(chars rawmsg, unsigned int* acked.seq_id)

if(getMsgType(raw_msg) == ACKMSG)

if(sscanf(getFieldNPtr(rawmsg, INIT_SEQIDFIELDNUMBER),

"7dt", acked seq_id))

return TRUE;

logEvent(PARSFFAILURE_ACKEDSEQ_ID, "%s", raw_msg);

return FALSE;

}

/******* *** ********** *********** ********* **/

unsigned int getMsgAckedType(char* ravmwg)

chars inittype_str_p;

char init_type_str[INITTYPE_FIELD_LENGTH + 13
"
"

if(getMsgType(rawvmsg) =- ACKMSG) {

inittype_str.p - getFieldNPtr(ravmsg, INIT_TYPE_FIELDNUMBER);

strncpy(init_type_str, init_type_str_p, INITTYPE_FIELD_LENGTH);

inittypestr(INIT_TYPEFIELD.LENGTH) - 0;

if (strcmp(init_type_str, "ACK") == 0)

return ACKMSG;

else if (strcmp(init typestr, "DAS") =- 0)

return DASMSG;

else if (strcmp(init_type_str, "DCA") == 0)

return DCA•MSG;

else if (strcmp(init typestr, "DRQ") -- 0)

return DRQMSG;

else if (strcmp(init.type_str, "INC") == 0)

return INCMSG;

else if (strcmp(init_type_str, "IRT") - 0)

return IRT_HSG;

else if (strcmp(init_typestr, "LOC") -- 0)

return LOC_MSG;

else if (strcmp(init_typestr, "MSS") = 0)

return MSS_MSG;

else if (strcmp(init typestr, "NCK") - 0)

147

return NCKMSG;

else if (strcmp(init_typestr, "PNG") = 0)

return PNGMSG;

else if (strcmp(init.type.str, "REF") -- 0)

return REFMISG;

else if (strcmp(inittype_str, "RTC") == 0)

return RTC_MSG;

else

{

logEvent(PARSEFAILURE_ACKEDTYPE, "%s", rav_msg);

return UNKNOWNMSC;

/*s************************ Methods for INC Messages ***********************ee*/

unsigned char getMsgHops(char* raw_msg, unsigned int* hops)

{
if (getMsgType(rawmsg) -- INCMSG)

if(sscanf(getFieldNPtr(raw msg, HOPS_FIELD_NUMBER), "7d", hops) = i)

return TRUE;

logEvent(PARSEFAILURE_HOPS, "Us", rawmsg);

return FALSE;

}

unsigned char getMsgBranchDirection(char* rawujsg, unsigned int* bd)

{

if (getMsgType(rawmsg) -- INC.-SG)

if(sscanf(getFieldNPtr(rawmsg, BDFIELDJNUMBER), "Ed", bd) == 1)

return TRUE;

logEvent(PARSEFAILURE_BD, "Us", rawmsg);

return FALSE;

/**********e*************** Methods for LOC messages *********e e***************/

unsigned char getMsgDest(char* raw_ssg, struct point* dest)

{

if(getMsgType(rawmsg) == LOCMSG)

if (sscanf(getFieldNPtr(rawmsg, DESTFIELD_NUMBER), "%dA&&%dlA",

&(dest->x),&(dest->y).&(dest->z)) = 3)

return TRUE;

logEvent(PARSEFAILURE_DEST, "%s", rawmsg);

return FALSE;

I

/**e*********************** Methods for MSS Messages *************************/

unsigned char getMsgMSStatus(char* rawmsg, unsigned char* mss)

{
if(getMsgType(rawmsg) -- MSSMSG)

if(sscanf(getFieldNPtr(rawumsg, MSS_FIELD_NUMBER), " md", rss) =e 1)

148

return TRUE;

logEvent(PARSEFAILURE_MSS, "%s", rav_msg);

return FALSE;

// log failure

/************************** Methods for REF Messages **********************/

/** /

unsigned char getMsgRefType (char* raw_msg, unsigned int* type)

{

char typestrCTYPE_FIELD_LENGTH + 13• "";

if(getMsgType(rawamsg) == REFMSG)

{

strncpy(type_str,

getFieldNPtr(rawvsg, REF_TYPE_FIELD-NUMBER), REF_TYPE_FIELDLENGTH);

typestr[REF TYPE_FIELD_LENGTH] = 0; // null terminate the string

if (strcmp(type_str, "INC") == 0)

{
*type = INC.MSG;

return TRUE;

}

else if (strcmp(type_str, "LOC") -= 0)

{

*type = LOC_MSG;

return TRUE;

}

else

logEvent(PARSE_FAILUREACKEDTYPE, '"s", raw_msg);

*type - UNKNOWNM_SG;

return FALSE;

}

return FALSE;

/********************************* ******* *** *****/

unsigned char getMsgSrc(char* raw msg, struct point* src)

if(getMsgType(ravw sg) -= REFMSG)

if (sscanf (getFieldNPtr(raw_msg, SRC_FIELD_NUMBER), "%d&%dkXd&".

&(src->x),A(src->y),A(src->z)) 3)

return TRUE;

logEvent(PARSEFAILURE-SRC, "%s", raw_msg); // log failure

return FALSE;

/***/

unsigned char getMsgUID(char* rawssg, unsigned int* UDID)

if (getMsgType(raw_masg) == REFJSG)

if(sscanf(getFieldNPtr(raw_msg, UID_FIELD_NUMBER), "Xd", UID) -)

return TRUE;

logEvent(PARSEFAILURE.UID, "%s", raw_msg); // log failure

149

return FALSE;

/**** * ******************* ** ** ******** ** /

unsigned char getMsgReachableNbrs(char* rawmasg, char* nbrs)

{
int nbrs_int;

if(getMsgType(raw.msg) REF_MSG)

nbrs(0] - 0;

nbrsC[1] 0;

nbrsa[2] 0;

nbrs[3] = 0;

nbrs [4] 0;

nbrs [53 0;

abrs[63 = 0;

if(sscanf(

getFieldNPtr(

return TRUE;

rav_msg, RNBRS_FIELDNUMBER), "7,6d", &nbrsint) == 0)

sprintf(nbrs, "%d", nbrs_int);

return TRUE;

}

return FALSE;

/************************** Methods for RTC Messages **** ** ************* **

/********************e****************/

unsigned char getMsgTime(char* rawmsg, struct time* t)

char* fieldptr;

if(getMsgType(raw_msg) -- RTC_MSG) {

fieldptr = getFieldNPtr(ravmsg, YEAR_FIELD_NUMBER);

if(!sscanf(fieldptr, "%d", &t->year))

{

logEvent(PARSEFAILURE_TIME, "%s", raw_mcg);

return FALSE;

fieldptr = getFieldNPtr(ravmsg. MONTHFIELDNUMBER);

if(!sscanf(fieldptr, "%d", kt->month))

logEvent(PARSE_FAILURE_TIME, "Es", rawmsg);

return FALSE;

f ieldptr = getFieldNPtr(raw_msg, DOY_FIELDNUMBER);

if(!sscanf(fieldptr, "%d", At->doy))

logEvent(PARSE_FAILURE_TIME, "%s", raw_mag);

return FALSE;

fieldptr = getFieldNPtr(rawmag, DOW_FIELDJNUMBER);

150

if(!sscanf(fieldptr, "%d", &t->dow))

logEvent(PARSEFAILURE_TIME, "%s", rawmsg);
return FALSE;

}

fieldptr - getFieldNPtr(rawvasg. DOMLFIELDNUMBER);
if(!sscanf(fieldptr, "74d", &t->dom))

{

logEvent(PARSEFAILURE_TIME, "Xe", rawmeg);
return FALSE;

}

fieldptr = getFieldNPtr(raw_meg, HOUR_FIELD NUMBER);
if(!secanf(fieldptr, "UAd", &t->hour))

{

logEvent(PARSE.FAILUREJTIME, "%s", rawsg);

return FALSE;

fieldptr = getFieldNPtr(raw_msg. MINFIELDINUMBER);

if(!sscanf(fieldptr, "•d". &t->min))

{

logEvent(PARSE_FAILURE_TIME, "%s", raw_msg);
return FALSE;

}

fieldptr - getFieldNPtr(raw_meg, SEC_FIELD NUMBER);

if(!sscanf(fieldptr, "Ad", &t->sec))

{

logEvent(PARSE_FAILURE_TIME, "es", rav_msg);
return FALSE;

}

if(validateTime(t))

return TRUE;

else

{

logEvent(PARSEFAILURETIME, "Xs", raw.msg);
return FALSE;

logEvent(PARSE_FAILURE_TIME, "Xs", raw_msg);

return FALSE;

/*5+*5*****5IS***5**$***+***ss Utility functions **•*,s******s***•*•** **s*s*s /

char* getFieldNPtr(chart rav_msg, int n) {

int len;

int i = 0;

len - strlen(raw,_msg);

Wi(n > 0) {

i - 0;

while((n > 0) Lb (i <= len - 1)) {

if(rav_msge[:] -- FIELD-SEPARATOR)

151

}

else if (n < 0) {

i = len - 1;

while((n < 0) && (i >- 0)) {

if(rawmsg[il -= FIELD_SEPARATOR)

n++;

i--;

}

if(i < 0)

i = len- 1;

else

i= i+2;

}

return &ravasgli];

/*********************e*ee***eee******/

unsigned char checkCRC(char* rasmsg) {

unsigned char* rcvd-crc_strp;

unsigned int rcvd_crc;

if(strlen(raw_msg) < 5)

return FALSE;

rcvdcrc str_p = getFieldNPtr(rawJmg, -1);

sscanf(rcvdcrcstrp, "x", &rcvdcrc);

if (rcvdcrc =- calcCRC(ravmsg,

(unsigned int)rcvd_crc_str.p - (unsigned int)ravs•sg))

return TRUE;

else

return FALSE;

B.6 msgqueue.c

This is the code that implements the transmission buffer for each face.

#include <targets/LPC21Ox.h>

#include "boolean.h"

#include "miche.h"

#include "msgs/msgs.h"

#include "hal/psoc.h"

#define _msgqueue.

#include "msgqueue.h"

#undef _msgqueue.

#include "hal/i2c.h"

152

struct messageQueue msgq[71;

static unsigned int totalTxCount;

static int paused - FALSE;

/************************* * * * * * /

unsigned int ssgq_getTotalTxCount(void)

{

return totalTxCount;

}

/**********ece**e** **************** ***/

void msgq_clearTotalTxzCount(void)

{

totalTxCount = 0;

/*eeee**e*ees********es *eeseee**e e *eeeee ** **/

int msgq_queueEmpty(unsigned int face)

{

if(msgq[face).cnt -- 0)

return TRUE;

else

return FALSE;

}

/********** ***eee*e ee*** *eeeeeee e *e ***e*/

int msgqgetQueueContents(char **msg, unsigned int face)

{

if(face > 6)

return FALSE;

if(ssgq[face] .cnt == 0)

return FALSE;

*msg - msgq[face] .msg;

return TRUE;

}

void msgqincAttempts(unsigned int face, int increment)

{

if(msgq[facet.cnt == 0)

return;

msgq Eface] .cnt += increment;

/**e**** ***e* ee*eeee********* eeeeeeeeeeeee***** ****/

void msgqpauseTx()

paused = TRUE;

153

void msgq_restartTx()

paused = FALSE;

/************************************** ******************************** /

int msgqenQueue(char* msg, unsigned int count, unsigned int face) {

int i;

unsigned int type;

if(face > 6)

return FALSE;

type = getMsgType(msg);

if((type == ACK_MSG) II (type == NCKMSG))

sprintf(&msgq[face].ack_msg[0], "7,s", msg);

return TRUE;

/* this only happens if message to be enqueued in not a (N/A)CK message */

msgqEface] .cnt = 0;

sprintf(msgq[face] .msg, "Us", msg);

msgq[face] .cnt = count;

getMsgSeqID(msg, &msgq[face].seqid);

msgq[face] .init_type = type;

return TRUE;

/** */

int msgq_handleACKMsg(unsigned int face, unsigned int acked type,

unsigned int acked_seq_id)

if(face > 6)

return FALSE;

if (acked_type == msgq[face].init type)

if(ackedseq id == msgq[face].seq_id)

{

msgq[facel.cnt = 0;

return TRUE;

return FALSE;

/*** *

void msgq_purgeQueue(unsigned int face) {

if(face > 6)

return;

msgq[face].cnt = 0;

154

/ee**********/****** ********/

void msgq.purgequeues() {

int face;

for(face = 1; face <= 6; face++)

msgq[face] cat = 0;

}

/*************************************** ***** ****** * ***************

void msgq_reTx(void) {

int face;

unsigned char ack;

char etxmag;

int msg_valid;

int oneshot;

if(paused)

return;

for(face = 0; face <= 6; face++)

msg_valid = FALSE;

if(msgqf ace .ackmsg[Ol !- 0

txesg = mssgqface].ackmsg;

msg_valid - TRUE;

oneshot = TRUE;

else if(msgq[face] .cnt > 0)

{

txmsg = msgqEface] .msg;

asgvalid = TRUE;

oneshot = FALSE;

}

if((face == C) && (sevalid)

printf("%Xes", txmsg);

if(oneshot)

msgq[face) .ack_mesgl[) 0;

else

msgq[face].cnt--;

else if((face != 0) &A (msgvalid))

I

pause(peripheralClockFrequency() / 9000

ack = txI2CAddress(SLA, WRITE);

ack &- txI2CData(SWITCH_TX_FACE);

ack R= txI2CData(face);

stopI2CO;

if(ack)

printf("Xe", txmsg);

// for actual cube faces,

// assume no msg to tx.

// if (N/A)CK msgs waiting,

// get a pointer to it

// indicate we have a msag to tx

// we'll only tx it once

// otherwise, if there is any

// other type of msg to tx,

// get a pointer to it

// indicate we have a msg to tx

// we'll be tx'ing many times

// if valid msg for uplink face,

// just send the message

// if it was a (N/A)CK message,

// prevent it from being re-tx'd

// for all other types,

// dec. repeat count

// for all real cube faces, with

// valid messages pending,

// pause before attempting a mux

// switch to allow prev. ssg to

// finish

// initiate a master tx exchange

// transmit switch face command

// tx new dest. of mux output

// terminate the exchange

// if mux change successful,

// send the message

155

pause(peripheralClockFrequencyO / 500);

ack = txI2CAddress(SLA, WRITE);

ack A= txI2CData(SWITCH_TX_FACE);

ack A= txI2CData(O);

stopI2CO;

if(oneshot)

msgq[face].ackmsg[O) - 0;

else

msgq[face].cnt--;

totalTxCount++;

ack = txL2CAddress(SLA, WRITE);

ack t- txl2CData(SWITCH_TX_FACE);

ack 9- txI2CData(O);

stopI2CO;

// again, wait before switch mux

// initiate a master tx exchange

// transmit switch face command

// disable all mux outputs

// terminate the exchange

// if it was a (N/A)CK message.

// prevent it from being re-tx'd

// for all other types,

// dec. repeat count

// inc. total a msg tx'd

// else mux switch unsuccessful,

// initiate a master tx exchange

transmit switch face command

try to deactivate mux

terminate the exchange

B.7 debug.c

The functions contained here implement a debugging interface that can also be used
to set some of the system configuration parameters.

#include <targets/LPC210x .h>

*include "boolean.h"

#include "miche.h"

#define _debug_
#include "debug.h"

tundef _debug

#include

#include

#include
#include

Linclude

#include

"hal/psoc.h"

"hal/orientation.h"

"main.h"

"usrint.h"

"util.h"

"hal/magswitch.h"

int debugging - FALSE;

void startDebugInterfaceO)

{

disableUARTISRO;

msgq_pauseTxO;

debugging - TRUE;

pulsateLED(4000);

156

readSettingsFromPSoC();

displayMainMenu ();

handleMainMenu();

blankLED() ;

debugging - FALSE;

enableUARTISRO ;

msgq_restartTx();

static void displayMainMenuO)

{

printf ("\e [H");

printf ("\e 23");

printf(" Miche Self-Test System\n");

printf("\n");

printf(" Main Menu:\n");

printf ("------- ------------------------------- ---------------------------------\n")

printf ("\n");

printf ("\n");

printf ("\t\t\t C\t Co-mmunication\n");

printf("\n");

printf("\t\t\t O\t Orientation\n");

printf("\n");

printf("\t\t\t M\t Magswitches\n");

printf ("\n");

printf("\t\t\t L\t debug Log\n");

printf ("\n");

printf("\t\t\t U\t set UID ()\n");

printf ("\n");

printf("\t\t\t W\t Write settings to flash\n");

printf ("\n");

printf("\t\t\t Q\t Quit\n");

printf("\e[23; If");

printf ("-- --------------------------------\n")

printf (">");

printf("\e[15;43f ");

printf ("%d", settings.uid);

printf ("\e[24; 1");

static void handleMainMenu()

{

int choice;

unsigned int new_uid;

printf("\eE15;43f");

printf("%d", settings.uid);

printf ("\e[24;lf");

while ((choice -" toupper(getchar())) != '')

printf("%c", choice);

pause(INPUTPAUSE);

suitch(choice) {

case 'C':

157

displayCommMenu() ;

handleCommMenuO;

break;

case '0':

displayOrientationMenuO;

handle0rientationMenuO;

break;

case 'M':

displayMagsvitchMenuO;

handleMagswitchMenuO;

break;

case 'L':

displayDebugLogMenuO;

handleDebugLogMenuO;

break;

case 'U' :

printf("\e[15;43f ");

new_uid = getNumber(16, settings.uid);

if (new_uid != settings.uid) {

settings.uid - new_uid;

settings.modified = TRUE;

break;

case 'W':

writeSettingsToPSoCO;

break;

printf ("\e[24;lf\e[2K\e [24;if>"); // redisplay the prompt

i

if (settings.modified)

printf("\e[24;lf\e[2K\e[24;lfSettings have not been

do (

printf("\e[24;63f \e[24;631");

choice - toupper(getcharO);

printf("%c", choice);

pause(INPUTPAUSE);

} while ((choice != 'Y') && (choice != 'N'));

if (choice == 'Y')

writeSettingsToPSoC 0 ;

}

printf("\e[2J"); // Q was pressed: clear the screen

printf("\e[H"); // and move the cursor home

static void displayCommMenu()

printf("\e[H");

printf("\e[2J");

printf("

printf("\n");

printf("

printf("--------------------------

printf("\n");

print ("\n");

printf("\t\t\t Tmt Transmit messaj

printf("\n");

saved, do you want to save them? (y/n)>");

Miche Self-Test System\n");

Communication Subsystem Menu:\n");

158

--

printf("\t\t\t F\t query receive Fifos\n");

printf("\n");

printf("\t\t\t C\t set Comparator thresholds:\n");

printf ("\n");

printf("\t\t\t R\t set transmit Repeat count:\n");

printf("\n");

printf("\t\t\t B\t Back to main menu\n");

printf ("\e 23; 1");

printf("-- -------------------------------------- \n")

printf(">");

static void handleCommMenu()

{

int choice;

unsigned char face;

unsigned char message[MAX_MSG_LENGTH + 1);

unsigned char new_thold;

unsigned int newsrepeat_count;

int i;

printf("\e[11;6lf7d", settings. comparatorThreshold);

printf("\e[13;61f7d", settings.repeatCount);

printf("\e[24;lf\e[2K\e[24;if>"); // clear the input line

while ((choice = toupper(getchar())) ! 'B')

printf("%c", choice);

pause(INPUT_PAUSE) ;

if (choice == 'T')

{

printf("\e[24;lf\e(2K\e[24;IfSelect face (1-6)> ");

do {

[E24;19f") ;
);

printf("\e[24;19f \e

face - toupper(getchar()

printf("%c", face);

pause(INPUTPAUSE) ;

if (face =- 27)

break;

} while (!((face >=

// clear the last input

// get a new character

// print it

// pause so that the user can see what was typed

// if ESC is pressed,

// stop asking for a face

'1') && (face <- '6')));

if (face != 27)

face - (face - 48);

printf("\e [24; lf\e [2K") ;

printf("\e 24;ifType message>");

i * 0;

do{

choice = toupper(getchar());

if ((choice -- 8) &a (i > 0))

{

printf("\e[D \e[D");

i--;

}
else

{

// convert ascii codes into real numbers

// clear the prompt

// ask user for message content

159

message[i] = choice;

printf ("%c",message i]) ;

i++;

} while ((i < (MAh-MSGLENGTH - 1)) && (messageCi-i] != 13));

if (message[i-11 != 13) {

while (getchar() != 13);

message[i] - 0;

message[i-11 - 0;

printf("\e[24;1f\e[2K");

if (!txMsg(meassage, face))

printf("\e[24; fFailure: Message

pause(1000000);

// if the message has reached maximum length without

// the user pressing enter,

// loop until user presses enter to complete the message

// tack a null character onto end of message

// clear the prompt line

could not be sent!");

// if (face !- 27)

// if (choice == 'T')

else if (choice == 'F')

{

printf("\e[24;lf\e\ [2K\e [24; if");

printf("Select face (1-6)>");

do {

printf("\e[24;19f \e(24;19f");

face = toupper(getchar()); //

printf("%c", face); //

pause(INPUTPAUSE); //

if (face == 27)

break;

} while (!((face >= '1') U (face <-

// clear the last input

get a new character

print it

pause so that the user can see what was typed

// if ESC is pressed,

// stop asking for a face

'6')));

if (choice != 27)

printf("\e[24;lf\e[2K\e[24;lf");

if (readPSoCRxQueue((face-48), message))

{

if (message [O =- 0)

printf("No new message on face Xc.", face);

else

printf("Cs",message);

getchar(); // wait for user to acknowledge by pressing any key

else

{

printf ("Failure communicating with PSoC");

pause(3*INPUT~PAUSE);

else if (choice == 'C')

{

printf("\e[ll;61f");

newthold = getNumber(8, settings.comparatorThreshold);

// get an 8 bit (3 digit) number from the user

printf("\e[24;if\e[2K\e [24;f ");

if (new_thold != settings.comparatorThreshold)

160

if (setComparatorThreshold(nev_thold)) {

printf("New threshold successfully set.");

settings.comparatorThreshold = newthold;

settings.modified - TRUE;

}

else

printf("PSoC not responding");

pause(3*INPUT_PAUSE);

else if(choice -= 'R')

{
printf("\e[13;61f");

newrepeat_count - getNumber(16. settings.repeatCount);

if(new_repeatcount != settings.repeatCount)

{

settings.repeatCount = new_repeatcount;

settings.modified - TRUE;

printf("\e[24;if\e[2K\e[24;if>"); // clear the input line

displayMainMenu(); // B was pressed, redisplay the main menu

static void displayOrientationMenu()

{

printf ("\e[H");

printf("\e[2J");

printf(" Miche Self-Test System\n");

printf (
"\n ")

;

printf (" Orientation Subsystem Menu:\n");

printf ("----------------------------------- --- \n");

printf ("\n");

printf("\t\t O\t turn accelerometer\n");

printf("\n");

printf("\t\t X\t configure X-axis inversion:\n");

printf ("\t\t\t\t\t\t neutral: neutral:\n");

printf("\t\t\t\t\t\t upright: \n");

printf ("\n");

printf("\t\t Y\t configure Y-axis inversion:\n");

printf ("\t\t\t\t\t\t neutral: neutral:\n");

printf("\t\t\t\t\t\t upright: \n");

printf("\n");

printf("\t\t R\t Reset min and max accelerometer values\n");

printf ("\n");

printf("\t\t B\t Back to main menu\n");

printf("\n");

printf("\t\tBottom face: \t\t\t\tTilt:\n");

printf("\t\tX: \tCurrent: \t Min: \t Max: \n");

printf("\t\tY: \tCurrent: \t Min: \t Max: \n");

printf ("\e[23; f ");

printf ("-- --------------------------------------\n")

printf (">");

161

static void handleOrientationMenu ()

int choice - '';

unsigned char accelState;

unsigned char newTiltSwPos, prevTiltSwPos;

unsigned int newXAccel, prevXAccel, newYAccel, prevYAccel;

unsigned int xAccelMin = 100000;

unsigned int xAccelMax = 0;

unsigned int yAccelMin = 100000;

unsigned int yAccelMax = 0;

unsigned int inverted-thold, neutral_low_thold, neutralhigh.thold, upright_thold;

accelState = isAccelerometerOnO;

if (accelState)

printf("\e[6;45fOff");

else

printf("\e[6;45fOn ");

printf("\e[8;59f%d",

printf("\e[9;59fd",

printf("\e[9;75fYd",,

printf("\eo10;59fYd",.

printf("\e[12;59fd",

printf("\e[13;59f7d",

printf("\e[13;75fd",

printf("\e[1i4;59fd",

settings.xAis . invertedThreshold);

settings.xAxis.neutralLowThreshold);

settings.xAxis.neutralHighThreshold);

settings.xAxis.uprightThreshold);

settings.yAxis.invertedThreshold);

settings.yAxis.neutralLowThreshold);

settings.yAxis.neutralHighThreshold);

settings.yAxis.uprightThreshold);

printf("\e[20;30f ");

printf("\e[20;3OfdA", getBottomFace());

while (choice != 'B')

{

if (accelState != isAccelerometerOn(O))

if (isAccelerometerOnO))

{

accelState - 1;

printf("\e[6;45fOff");

else

{

accelState = 0;
printf("\e6;45fOnn ");

newTiltSwPos - getTiltSwitchState();

if (newTiltSwPos != prevTiltSwPos)

if (newTiltSwPos -- 0)

printf("\e[20;63fOpen ");

else

printf("\e[20;63fClosed");

prevTiltSwPos = newTiltSwPos;

newXAccel = getAcceleration(XAXIS);

if (newXAccel != prevXAccel)

printf("\e[21;34f ");

printf("\e[21;34f7dA", newXAccel);

// get the newest state of the tilt switch

// if the tilt switch has changed state,

// and if it is grounded,

// then display that the tilt switch is open

// otherwise,

// display that the tilt switch is closed

// update for the next iteration

// get the newest x acceleration from the accelerometer

// if the new value is different than the previous

// clear the old value on the scren to prevent artifacts

// display the new x acceleration

162

prevXAccel = newXAccel;

newYAccel = getAcceleration(YAXIS);

if (newYAccel != prevYAccel)

printf("\e[22;34f ");

printf("\e[22;34f7d", newYAccel);

prevYAccel = newYAccel;

if (newXAccel < xAccelMin)

xAccelMin = newXAccel;

printf("\e[21;47f ");

printf ("\e [21 ;47fd", xAccelMin) ;

if (newXAccel > xAccelMax)

xAccelMax = newXAccel;

printf("\e[21;63f ");

printf("\e[21;63fd", xAccelMax);

if (newYAccel < yAccelMin)

yAccelMin = newYAccel;

printf("\e[22;47f ");

printf("\e[22;47fd", yAccelMin);

if (newYAccel > yAccelMax)

yAccelMax = newYAccel;

printf("\e[22;63f ");

printf("\e[22;63f7d", yAccelMax);

// update for the next iteration

// get the newest y acceleration from the accelerometer

// if the new value is different than the previous,

// clear the old value on screen to prevent artifacts

// display the new y acceleration

// update for the next iteration

// if the new x acceleration is less than previous min,

// update the minimum with the newest value

// clear the old value on screen to prevent artifacts

// display the new minimum

// if the new x acceleration is greater than previous max,

// update the maximum with the newest value

// clear the old value on screen to prevent artifacts

// display the new maximum

printf("\e[20;30f ");

printf("\e[20;30f%d", getBottomFace());

if (UOLSR & Ox01) // if there is a character in the receive FIFO

choice = toupper(getchar()); // retrieve it

printf ("\e[24;2f7.c", choice); // print the character

pause(INPUT_PAUSE); // pause so that the user can see what was typed

if (choice == '0') // if the user typed an '0',

if (isAccelerometerOn()) // if the accelerometer is already on,

accelerometerOff(); // turn it off

else // otherwise, it must be off

accelerometerOnO; // so turn it on

else if (choice == 'X') // otherwise, if the user typed an 'X',

printf("\e[8;59f"); // move back to the beginning of the field

invertedthold = getNumber(14, inverted_thold);

// get a 14-bit (5 digit) number from the user

settings xAxis.invertedThreshold = inverted_thold;

163

printf("\e[9;59f ");

neutrallow.thold = getNumber(14, neutral_low_thold);

if (neutrallow_thold < invertedthold)

printf("\e[24;f Lower neutral threshold must be larger than inversion threshold.");

} while (neutrallowthold < invertedthold);

settings.xAxis.neutralLowThreshold = neutrallowthold;

do {

printf("\e[9;75f");

neutral_highthold - getNumber(14, neutral_high.thold);

if (neutral-highthold < neutral_low.thold)

printf("\e[24;IfUpper neutral threshold must be larger than lover neutral threshold.");

} while (neutralhigh_thold < neutrallow_thold);

settings.xAxis.neutralHighThreshold - neutral_highthold;

do {

printf("\e[10;59f");

uprightthold - getNumber(i4, upright.thold);

if (upright.thold < neutralhigh_thold)

printf("\e[24;IfUpright threshold must be larger than upper neutral threshold.");

} while (upright_thold < neutral_high_thold);

settings.xAxis.uprightThreshold = upright.thold;

settings.modified = TRUE;

}

else if (choice == 'Y')

printf("\e[12;59f"); // move back to

inverted_thold - getNumber(14, inverted_thold);

// get a 14-bit

settings.yAxis.invertedThreshold - invertedthold;

printf("\e[13;59f");

neutral_low.thold = getNumber(14, neutral_low_thold);

if (neutral-lowthold < invertedthold)

printf("\e[24;lfLower neutral threshold must be larger

I while (neutrallow_thold < inverted_thold);
settings.yAxis.neutralLowThreshold - neutral_low.thold;

printf("\e[13;75f");

neutralhigh_thold = getNumber(14, neutralhigh_thold);

if (neutral.high.thold < neutrallow_thold)

printf("\e[24;IfUpper neutral threshold must be larger

} while (neutral_high_thold < neutral_lowthold);

settings.yAxis.neutralHighThreshold = neutral_high_thold;

the beginning of the field

(5 digit) number from the user

than inversion threshold.");

than lover neutral threshold.");

printf("\e[14;59f");

upright_thold - getNumber(14, uprightthold);

if (uprightthold < neutral_high_thold)

printf("\e[24; fUpright threshold must be larger than upper neutral threshold.");

} while (upright_thold < neutral_highthold);

settings.yAxias.uprightThreshold = upright_thold;

164

settings.modified - TRUE;

else if (choice -= 'R')

xAccelMin = 99999;

xAccelMax - 0;

yAccelM:in L 99999;

yAccelMax - 0;

printf("\e[21;47f

printf ("\e[21 ;47fd",

printf ("\e[21;63f

printf ("\e [21 ; 63f%d",

printf ("\e [22;47f

printf ("\e [22;47f .d",

printf ("\e [22;63f

printf ("\e [22; 63f %d",

// make the min. x acceleration as large as possible

// make the max. x acceleration as small as possible

// make the min. y acceleration as large as possible

// make the max. y acceleration as small as possible

")1;

xAccelMin);

") ;

xAccelMax);

");

yAccelMin);

") ;

yAccelMax);

printf("\e [24; f\e[2K\e 24: f>") ;

clear the

print the

clear the

print the

clear the

print the

previous minimum x acceleration

new minimum x acceleration

previous maximum x acceleration

new maximum x acceleration

previous minimum y acceleration

new minimum y acceleration

// clear the previous maximum y acceleration

// print the new maximum y acceleration

// reprint the input prompt

displayMainMenu();

static void displayMagswitchMenu()

printf("\e[H");

printf("\e[2J");

printf(" Miche Self-Test System\n");

printf("\n");

printf(" Magswitch Subsystem Menu:\n");

printf(-- \n");

printf("\n");

printf("\n");

printf("\t\t 4\t monitor/configure magswitch on face 4\n");

printf("\n");

printf("\t\t 5\t monitor/configure magswitch on face 5\n");

printf("\n");

printf("\t\t 6\t. monitor/configure magswitch on face 6\n");

printf("\n");

printf("\t\t B\t Back to main menu\n");

printf ("\e[23; 1f");

printf ("-- --------------------------------\n");

printf(">");

static void handleMagswitchMenu()

{

int choice;

while ((choice = toupper(getchar())) ! 'B')

printf("%c". choice);

pause(INPUT_PAUSE);

if ((choice == '4') 11 (choice =='5') II (choice -- '6'))

displayMagswitchSubmenu(choice - 48);

handleMagswitchSubmenu(choice - 48);

165

printf("\e[2K\e[24;lf>"); // clear the input line

displayMainMenu) ;

I

static void displayMagsvitchSubmenu(int face)

printf(
"
\e H");

printf("\e 2J");

printf(" Miche Self-Test System\n");

printf("\n");

printf(" Magswitch Xd Subsystem Menu:\n", face);

printf(---------------------------------- -------------------------------------- \n")

printf ("\n");

printf("\t\t C\t Connect magswitch\n");

printf("\n");

printf("\t\t D\t Disconnect magswitch\n");

printf("\n");

printf("\t\t T\t Turn magswitch\n");

printf("\n");

printf("\t\t R\t Reset minimum and maximum hall values\n");

printf("\n");

printf("\t\t B\t Back to magswitch menu\n");

printf("\n");

printf("\n");

printf("\n");

printf ("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\t State: \t Cur value: \t Min value: \t Max value: \n");

printf ("\e [23; if");

printf(--- ---------------------------------------\n")

printf(">");

}

static void handleMagswitchSubmenu(unsigned char face)

{

int choice = ' '

char motorState;

char stickState;

unsigned char hallcur, hallprev;

unsigned char hall_max = 0;
unsigned char hall_min = 255;

unsigned int new_thold;

unsigned char connectthold, disconnect_thold;

if (getMotorState(face) == MOTOR_OFF)

printf("\e[10;41foff");

else

printf("\e[10;41fon ");

if (getMagswitchState(face) == MSS_ON)

printf("\e [22;17fConnect");

else if (getMagswitchState(face) -- MSSOF)

printf("\e[22 ; 17fDiscon.") ;

else

166

printf("\e[22;17fUnknown");

while (choice !=: 'B')

if(getMotorState(face) == MOTOROFF)

printf("\e[10;41foff");

else

printf("\e[10;41fon ");

if (getMagswitchState(face) == MSS_ON)

printf("\e[22;17fConnect");

else if (getMagswitchState(face) == MSSOFF)

printf("\e [22; 17fDiscon.");

else

printf("\e[22;17fUnknown");

/*

Update the minimum and maximum Hall sensor values. We only bother updating

any field on the screen if its value has changed. The saves unnecessary

instructions and makes the screen look a lot better because it prevents

so much flickering.

*/readHallSenso

readHallSensor(face, &hall cur);

if (hall_cur != hall_prev)

printf("\e[22;37f ");

printf ("\e[22;37f%d", hall_cur) ;

if (hall_cur > hallmax)

hall_max = hall cur;

printf("\e[22;69f ");

printf("\e[22;69f %d", hall_max) ;

if (hallcur < hall_min)

hall_min = hall_cur;

printf("\e[22;53f ");

printf("\e[22;53fd", hall_min);

hall prey = hall_cur;

// compare against on

if (UOLSR & COxOl)

choice = toupper(getchar());

printf("\e[24;2fc", choice);

pause(INPUTPAUSE);

// only update current reading necessary -- for aesthetics

// clear field to prevent artifacts

// print the new sensor reading

// check if newest reading greater than old maximum

update the maximum

clear the field to prevent artifacts

print the new maximum

// check if the newest reading is less than old minimum

update the minimum

clear the field to prevent artifacts

print the new minimum

// save the reading so that we have something to

the next iteration

// if there is a character in the receive FIFO

retrieve it

print the character

pause so that the user can see what was input

if (choice =-= 'C')

if (!setMagswitchState(face, MSSON))

printf("\e[24;1fFailure: Magswitch could not connect!");

pause(1000000);

167

else if (choice == 'D')

if (!setMagswitchState(face, MSS_OFF))

{

printf("\e[24;1f Failure: Magswitch could not disconnect!");

pause(1000000) ;

}

else if (choice = 'T')
{

if (getMotorState(face) OTOR_0N)

setMotorState(face, MOTOR0OFF);

else

setMotorState(face, MOTORON);

else if (choice - 'R')

{

hall_min = 255;

printf("\e[22;53f ");

printf("\e[22; 53ff d", hall_min);

hallmax = 0;

printf("\e[22;69f ");

printf("\e[22;69f 7•d", hallmax);

printf("\e[24;lf\e[2K\e[24;if>"); // clear and reprint the prompt

}

}

displayMagsvitchMenu();

void displayDebugLogMenu() {

printf ("\e [H");

printf("\el23");

printf(" Miche Self-Test System\n");

printf("\n");

printf(" Debug Log Menu:\n");

printf("-- --------------------------------------\n
")
;

printf("\n\n");

printf("\t\t\t D\t Display log\n");

printf ("\n");

printf("\t\t\t C\t Clear log\n");

printf ("\n");

printf("\t\t\t B\t Back to main menu\n");

printf("\n");

printf("\e[23; if");

printf(--\n");

printf(">");

void handleDebugLogMenu({

int choice;

printf("\e[24;if"); // move cursor to the prompt

while ((choice = toupper(getchar())) != 'B')

168

printf (".c", choice);

pause(INPUTPAUSE);

switch(choice) {

case 'D':

printf ("\e[H");

printf ("\e 2J") ;

printDebugLog() ;

while(getchar() !- 13);

displayDebugLogMenu();

break;

case 'C':

clearDebugLog() ;

break;

}
printf ("\e[24; 1f\e(2K\e (24;1if>"');

printf("\e 2J") ;

printf ("\e [H") ;

displayMainMenu();

move teh cursor home

clear the screen

print the error log

wait for the user to hit enter

redisplay the debug log menu

// clear the error log

// redisplay the prompt

// B was pressed: clear the screen

// and move the cursor home

// redisplay the main menu

B.8 usrint.c
This code controls the user LED and is used to parse data from the serial port for
the debugging interface.

#include <targets/LPC210x.h>

#include <stdio.h>

#include "miche.h"

#define _usrint_

#include "usrint.h"

#undef _usrint_

#include "hal/ioctrl.h"

unsigned char ledMode;

unsigned char countDir, ledOnOff; // used by ISR to keep track of LED's state

/**voide*** e ee aee*e**eee*****e*****e **a **e **e*e **eee ****** */

void initLED()

/*

initLED() sets up the ARM chip

control the LED, the following

LED's intensity and Timer 1 to

LED on and off.

PUMPR = Ox0;

PYMPCR = Ox400;

PWMTCR = Ox2;

PWMrCR = OxO;

PUWMCR = Ox2;

so that user LED can easily be controlled. To

routines use the PWM module to modulate the

either update the PWM duty-cycle or turn the

// no prescalar on PWMTC

// enable PWI2 output (single edge)

// reset the PWMTC

// bring PWMTC out of reset (but don't start it)

// reset PUMTC on PWNMRO match

169

// enable MR2 latch so that changes to MR2 will take effect

blankLEDO; // initially turn LED off

/************ *** **********e************ ********* /

void blankLEDO

{

blankLEDO simply turns off the user status LED

*/

ledMode = LED_OFF; // record what mode we are chaning to

//VICIntEnClr = Ox20;

PWMTCR = ODO;

//T1TCR = xO;

setTNR1MROPeriod(0);

IOSET I USERLED;

setGPIOMode(USERLED,GPIO);

// disable T1 interrupts

// stop the PUWTC

// stop the TiTC

// disable calls to the updateLEDO routine from the Ti ISR

// turn LED off

// setup USERLED as GPID so that previous statment

// has a noticeable effect

void solidLED(unsigned char intensity)

{
/*

solidLED(intensity) turns on the user status LED with a given intensity.

The intensity can range between 0 and 255. The PWU module is used to control

LED's intensity. Timer I is not used.

*/

ledMode - LED.SOLID;

setGPIOnode(USERLED, PWM2);

//VICIntEnClr = Ox20;

PWVCR = Ox2;
//TITCR OxO;

setTMR1MROPeriod(0);

PWMRO = OxFF;

PW4MR2 = (255-intensity);

PWMTCR - Oxl;

// record what mode we are chaning to

// setup USERLED as PWM2 so that PWM module

// will have control over LED

// disable Ti interrupts

// stop and reset the PWMTC

// stop the TITC

// disable calls to the updateLEDO routine from the Ti ISR

// setup the PWM period

// setup the PWM duty-cycle

// enable the PWMTC

void pulsateLED(unsigned int speed)

{

pulsateLED(speed) pulsates the LED with the provided speed in mHz.

ledMode - LED_PULSATE; // indicate what mode we're changing to

170

PWILER = Ox5;

setGPIOMode(USERLED, PWM2);

//VICIntEnClr = Ox20;

PWMTCR = Ox2;

//T1TCR = Ox2;

//TiMRO = speed;

setTMR1MROPeriod(speed);

PWMMRO = 276;

PWMMR2 = 275;

countDir = LEDCOUNT_DOWN;

//VICIntEnable -= 0x20;

PWMTCR = Oxl;

//T1TCR = 0x01;

// setup USERLED as PWM2 so that PWM module

// will have control over LED

// disable T1 interrupts

// stop and reset the PWMTC

// stop and reset the T1TC

// setup the Ti period which controls how

// often the PWM duty-cycle is updated

// set the PWM period

// set initial PWM duty-cycle very large so

// that the LED begins in an off state

// indicate that we start by counting down

// (the period of PWM2 will initially decrease)

// enable TMR1 interrupts

// enable the PWMTC

// enable the T1TC

void blinkLED(unsigned int speed, unsigned char intensity)

/*

blinkLED(speed, intensity) blinks the LED with the provided speed in mHz and

at the given intensity which ranges from 0-255.

ledMode = LED_BLINK;

setGPIOMode(USERLED,PWM2);

//VICIntEnClr = Ox20;

PWMTCR = Ox2;

//TITCR = Ox2;

//T1MRO = speed;

setTMR1MROPeriod(speed);

PWMMRO = OxFF;

PWMMR2 = (255-intensity);

ledOnOff = LED_CN;

PWMTCR = Oxl;

//VICIntEnable = Ox20;

//TITCR = Ox01;

// record what mode we're chaning to

// setup PO.7 as PWM2

// disable T1 interrupts

// stop and reset the PWMTC

// stop and reset the T1TC

// set flash rate

// setup PWM period

// setup PWM duty-cycle

// indicate that the LED is on so that ISR knows

// to turn it off

// enable PWMTC

// enable TMR1 interrupts

// enable TITC

void ledUpdate () {

ledUpdate() is called on a regular basis by the timerl ISR. The period is set

by a call to setTMR1MROPeriod(). Depending on which mode the LED is operating

in, ledUpdate() makes regular changes to the state of the LED itself and the

171

PWM channel that controls it.

switch (ledMode) {

case LED_PULSATE:

if (countDir --== LEDCOUNT_UP) {

if (PWR2 < (PWMMRO - 1))

PWMMR2 += 1;

else {

PIMR2 -= 1;

countDir = LEDCOUNT•DOWN;

} else {

if (PWIMR2 > 0)

PWOR2 -= 1;

else C

PWMNR2 += 1;

countDir = LED_COUNT_UP;

if we're pulsating the LED,

and if we're counting up (increasing duty-cycle)

and if duty-cycle less than (max - 1),

then increase duty-cycle

otherwise, duty-cycle is maximized,

decrease duty-cycle

indicate that we're now decreasing duty-cycle

// otherwise, we were already decreasing duty-cycle

// if duty cycle is still greater than 0,

// decrease it

// otherwise, duty cycle was 0

// start increasing duty-cycle

// indicate that we're now increasing duty-cycle

break;

case LEDBLINK:

if (ledOnOff == LED_ON) {

IOSET - USERLED;

setGPIOMode(USERLED,GPIO);

ledOnOff i LEDOFF;

} else {

setGPIOMode(USERLED,PWM2);

ledOnOff - LED_ON;

// otherwise, if we're blinking the LED,

// and if the LED is already on,

// set USERLED high to turn off led if its is GPIO

// set USERLED as GPIG so previous statement takes effect

// remember our status for the next ISR

// otherwise, LED was off already

// configure USERLED as PWM2 to turn on LED

// remember our status for the next ISR

break;

unsigned int getNumber(unsigned char bits, unsigned int initial)

{

/*

getNumber(bits,initial) uses the serial port to ask the user for an unsigned

integer that is bits long. It expects that the cursor is already placed at

the beginning of the number which is to be changed. The initial parameter

passed to getNumber is used as the function's return value if the user does

not enter a new number or if the user cancels the input sequence by pushing

escape. Otherwise, getNumber automatically calculates the maximum number of

digits given the number of bits desired and restricts the user to entering a

number of this length. If the number that the user enters is the maximum

number of digits but exceeds the largest integer that can be stored in the

given number of bits, the function rounds the user's entry down to

(2Cbits - 1)--the maximum integer that can be stored in that many bits.

The function also supports the backspace key in the case that the user makes a

mistake in entering his number.

*/

unsigned char key;

unsigned int result = 0;

unsigned char max_digits, digitsremaining;

unsigned char digits[10);

int i,j;
// input array of all digits entered

// simple counters

172

// find the maximum number of digits in given bits

case 3:

case 6:

case 9:

case 12:

case 16:

case 19:

case 22:

case 26:

case 29:

case 32:

mar_digits

max_digits

max_digits

case 13: max.digits

max_digits

max_digits

case 23: maxdigits

max_digits

max_digits

default: max_digits

digits_remaining - max_digits;

i = 0; // initially 0 digits entered

while(1)

key = getchar(); // get keyboard input

if (((key = 13)II(key = 27)) ha

(digitsremaining == max_digits))

return initial;

else if (key -- 27)

if ESC or RET typed

and nothing else has been typed,

return whatever was in the field previously

// otherwise, if ESC after digits have been entered

printf("\e[ldD", (ma_digits - digits_remaining));

// move cursor back the number of digits typed

for (i=0; i<(max_digits - digits_remaining); i++)

printf(" "); // clear each of the digits entered

printf("\e[%dD", (max_digits - digits_remaining));

printf("%d.", initial);

return initial;

I

else if (key == 13)

{

for (;i>0;i--)

result = lO*result + digits[max.digits

if (result > ((l<<bits) - 1))

{

printf("\e[ltD",max_digits);

for (i-0; i<maxdigits ; i++)

printf(" ");

printf("\e[%dID",max_digits);

printf("%d",((1<<bits) - 1));

return ((1<<bits) - 1);

else

return result;

}
else if (key == 8)

printf("\e[D \e[D");

digitsremaining++;

i--;

// reprint the original value of the field

// return the original value of the field

// otherwise, if RET after digits have been entered

// for each digits entered starting with the first

- digitsremaining - i];

// add it to the previous sum multiplied by 10

// if the result is bigger than largest int that can

// fit in given number of bits,

// move cursor back the number of digits typed

// clear each of the digits entered

// again, move cursor back the number of digits typed

// print largest number than can be stored in given bits

// return largest number than can be stored in given bits

// otherwise, number entred isn't "too big"

// return that number

// otherwise, backspace pressed

// move cursor back, overwrite char, move cursor back

// increment number of possible digits remaining

// decrement number of digits entered

173

case 0:

case 1:

case 4:

case 7:

case 10:

case 14:

case 17:

case 20:

case 24:

case 27:

case 30:

case 2:

case 5:

case 8:

case 11:

case 15:

case 18:

case 21:

case 25:

case 28:

case 31:

return 0;

- 1; break;

- 2; break;

- 3; break;

- 4; break;

= 5; break;

- 6; break;

- 7; break;

- 8; break;

- 9; break;

- 10; break;

switch (bits)

else if ((isdigit(key)) & (maxdigits -= digitsremaining))

// otherwise, if user has typed his first digit,

putchar(key); // ech

digitsCi] = (key - 48); // pla

digits_remaining--; // dec

i++; // inc

for (jQO; j<digits_remaining; j++) // cle

printf(" ");

printf("\e %dD", digitsremaining);

else if (isdigit(key) t& (digits_remaining > 0))

putchar(key);

digits[i] = (key - 48);

digits_remaining--;

i++;

o the character back to the screen

ce it into the input array

rement number of digits remaining

rement number of digits entered

ar whatever number was under the cursor initially

erwise, user entered non--first digit and the

r has not already entered max number of digits

// echo the digit back to the display

// place digit into the input array

// decrement the number of digits remaining

// increment number of digits entered

B.9 log.c

This code implements the event logging facility of the system.

#include <targets/LPC210x.h>

#include <stdio.h>

#include <stdarg.h>

#include <string.h>

#include "miche.h"

#include "boolean.h"

#include "hal/rtc.h"

#define _log_

#include "log.h"

#undef _log-

#include "hal/eeprom.h"

#include "hal/psoc.h"

int logEvent(int e, char* fmt, ...) {

va_list ap;

char* fmt_p;

char* strp;

struct eeRecord entry;

struct time t;

unsigned int eeResponse[2];

unsigned int i, ctime;

__ARMLIBdisableIRQO;

entry._id = EE_RECID;

// disable interrupts

// allows EEPROM routines to identify individual records

174

if(getTime(&t)) {

compressTime(&t, &ctime);

entry.date = ctime;

else

entry.date = 0;

entry.e = e;

for(i = 0; i < MAX_MSG_LENGTH; i++)

entry.msg[i) =] 0;

vastart(ap, fmt);

for(fmtp = fmt; *fmt p; fmtp++) {

if(*fmt_p != 'V')

entry.msg[strlen(entry.msg)] = *fmt-p;

else

switch(*++fmt_p) {

case 'd':

if the RTC is set correctly,

compress the relevant time info into a word

store the compressed time in the log entry

// otherwise, RTC time is invalid

// so insert a dummy time into the log entry

// store the error number in the log entry

// zero out the message field to ensure that the

// strlen function call to follow operates correctly

initialize ap to point to the first unknown arg

for each character in the format string

if it is not a % character,

copy it to the message string of the log entry

otherwise,

// if the % is followed by a 'd',

sprintf(&entry.msg[strlen(entry.msg)], "%d", vaarg(ap, int));

// print the int passed in the parameter list to

break; // the message string of the log entry

case 's': // if the % is followed by a 's',

for(str_p = va_arg(ap, char *); *str_p; str_p++)

entry.msg[strlen(entry.msg)] = *str_p;

break;

default: // if we don't recognize the format identifier,

entry.msg[strlen(entry.msg)] = *fmtp;// just print it

break;

ee-write((unsigned int)(&entry), eeResponse);

// write the record to flash

_ARMLIBenablelERQ(); // re-enable interrupts

if((eeResponse[0] == 0) II (eeResponse[0] == 10))

// if there was no error, or simply a compare error,

return TRUE;

else

return FALSE;

// return success

// otherwise, if any other error is encountered

// return failure

/************************** *******/

void printDebugLog() {

struct eeRecord* entry;

struct time t;

unsigned int eeResponse[2];

int rec cnt, i;

ee_count(0, eeRosponse);

reccnt = eeResponse[li ;

if(rec_cnt == 0) {

printf("Log is empty.\n");

return;

175

printf(" DATE TIME E# MESSAGE \n");

printf (--- -------------------------------- \n");

for(i = 0; i < reccnt; i++) {

ee_readn(i, eeResponse);

if(eeResponse[01 == 0) {

entry = (struct eeRecord *)eeResponse[1];
uncompressTime(&(entry->date), At);

printf("%,02d/%02d/%02d ", t.month, t.dom, (t.year- 2000));

printf("%02d:%02d:%02d ", t.hour, t.min, t.sec);

printf(
"
%02d ", entry->e);

printf("%s\n", entry->msg);

/************************************/**

int clearDebugLogO {

unsigned int eeResponse[2];

__ARMLIB_disableIRQO ;

ee_erase(0, eeResponse);

_ ARMLIBenableIRQ)O;

if(eeResponse[1] == 0)

return TRUE;

else

return FALSE;

/** ee*sss**eee***** ses*e***s*************C*ee**e*** C*ee*****CLs e*****e*** C/

void compressTime(struct time* t, unsigned inte ctime) {

*ctime = 0;

*ctime I= ((t->year - 2000)<<26) & OxFC000000;// year

*ctime I
=
(t->month << 22) & Ox03C00000; // month

*ctime 1= (t->dom << 17) & Ox003E0000; // day of the month

*ctime I= (t->hour << 12) & 0xOOIF000; // hours

*ctime 1= (t->min << 6) a 0x00000FC0; // minutes

*ctime 1= (t->sec) & 0x0000003F; // seconds

/Se***********ee **e***s*** *** ***eeCC**S********* * eeees*ee/

void uncompressTime(unsigned int* ctime, struct time* t) {

t->year - ((*ctime & OxFC000000) >> 26) + 2000;

t->month = (*ctime 8 Ox03C00000) >> 22;
t->dom = (*ctime & Ox003E0000) >> 17;

t->hour = (*ctime & Ox0001F000) >> 12;

t->min = (*ctime & OxOOOOOFCO) >> 6;

t->sec = (*ctime & OxOO0000003F);

176

B.10 rtc.c
This code manages the real time clock used to time stamp messages in the event log.

#include <targets/LPC210x .h>

#include "miche.h"

#include "boolean.h"

#define _rtc_

#include "rtc.h"

#undef rtc

unsigned char timeExpired;

int timeValid;

void initRTC()

{

/*

initRTC() initializes the real time clock with the correct time base and

interrupt priority defined by rtcVICVectAddr and rtcVICVectCntl. Define these

macros to change the RTC's interrupt priority.

*/

int i; // used to store integer part of RTC prescalar

timeValid = FALSE;
CCR = Ox000000020;

// indicate that the time stored in the RTC is invalid

// keep the RTC in reset

i = (peripheralClockFrequency() / 32768) - 1; // calculate the integer part of the RTC prescalar

PREINT = i; // load integer part of the RTC prescalar

PREFRAC = peripheralClockFrequency) - (32768 * (i + 1));

// calculate and load the fractional part of prescalar

ILR - Ox03; // clear pending interrupts

VICIntSelect &= 0x2000;

rtcVICVectAddr -. (unsigned int)rtcISR;

rtcVICVectCntl = Ox2d;

VICIntEnable = Cx2000;

CIIR = Ox00;

AMR Oxff;

CCR - Ox000000000;

SEC = 0;

MIN - 0;

HOUR = 0;

DOM - 1;

DOW = 0;

DOY - 1;

MONTH = 1;

YEAR = 0;

CCR = Ox00000001;

timeExpired - TRUE;

// assign RTC IRQ status (as opposed to FIRQ)

// assign RTC ISR interrupt 5th priority

// assign RTC int. to 5th priority and enable it

// enable RTC interrupts

// don't generate IRQ on time counter increments

// don't generate IRQ on alarm matchings

// bring RTC out of reset, but keep it disabled

// initialize RTC with basic defaults

// enable the RTC

// indicate that there is no timer running

/***~C****5 ** **aa aa*a **a***a*aa *ae**/177

177

int setTime(struct time* now) {

if(!validateTime(now))

return FALSE;

if(timeExpired == TRUE) {

CCR = Ox00000000;

SEC = now->sec;

MIN - now->min;

HOUR = now->hour;

DOM = now->dom;

DOW = now->dow;

DOY = now->doy;

MONTH = now->month;

YEAR = now->year;

timeValid - TRUE;

CCR = OO00000001;

return TRUE;

// if the time is not valid

// return failure

// otherwise, if the timer isn't in use

// pause the RTC

// setup all the time registers

// indicate that the RTC contains a valid time

// re-enable the RTC

return FALSE;

/****************** *** *****************/

int getTime(struct time* t) {

if(timeValid -- TRUE) {

t->year = YEAR;

t->month = MONTH;

t->doy = DOY;

t->dow - DOW;

t->dom = DOM;
t->hour = HOUR;

t->min = MIN;

t->sec - SEC;

return TRUE;

return FALSE;

/**/

void measureSeconds(unsigned int seconds)

f

measureSeconds(seconds) uses the RTC to measure the specified number of

seconds. Initially, it sets timeExpired to false. When time is expired,

calls to isTimeExpired return true. The timer can be cancelled by calling

cancelRTC();

if (seconds <= 59)

ALSEC - (SEC + seconds) % 60;

AMR - Oxfe;

timeExpired = FALSE;

// if we can measure in seconds only

// set the alarm

// unmask the seconds comparison of the alarm

// indicate that time has not expired

}

else if (seconds <= 3599) { // only bother timing up to 3599 seconds

ALMIN - (MIN + (unsigned int)(seconds / 60)) . 60;

// setup the number of minutes to be timed

178

ALSEC = (SEC + (seconds - 60*(unsigned int)(seconds / 60))) % 60;

// setup the number of seconds to be timed

AMR - Oxfc; // unmask the min. and sec. fields of the alarm register

timeExpired = FALSE; // indicate that time has not expired

//CCR I Ox0000C 001;

//now, it should never have stopped

// start the RTC

/*******a * * **eeesesee*e ees*ee*e***ee*e**eeeeeeeeeeee***/

void cancelRTC()

{

/*

Prevents the RTC from generating an interrupt and sets timeExpired to true.

*/

AMR - Oxff;

//CCR = Ox00000000;

timeExpired = TRUE;

// clear all alarms

// stop the tick counter

// indicate that time has (artifically) expired

/*e*eeee*s***eees se**************e**e***************e*************e***** * * e** **/

unsigned char isTimeExpired(

{
/*
isTimeExpiredO returns true if the timer setup by a call to measureSecondsO

has expired. Otherwise it returns false.

*/

return timeExpired;

/*** ***************************s** /*

int validateTime(struct time* t) {

int invalidTime = FALSE;

if(t->sec > 59) {

#ifdef _logerrors_

logError(INVALID_TIME,

Sendif
"Seconds invalid");

invalidTime = TRUE;

if(t->min > 59) {

#ifdef _logerrors_

logError(INVALID_TIME,

#endif

"Minutes invalid");

invalidTime = TRUE;

}

if(t->hour > 23) {

#ifdef _logerrors_

logError(INVALID_TIME, "Hours invalid");

#endif

invalidTime = TRUE;

179

if(t->doma > 31) {

#ifdef _logerrors_

logError(INVALID TIME,

#endif

"Day of month invalid");

invalidTime = TRUE;

if(t->dow > 6) {

#ifdef _logerrors_

logError(INVALID_TIME,

#endif

"Day of week invalid");

invalidTime = TRUE;

if(t->doy > 366) {

#ifdef _logerrors_

logError(INVALIDTIME,

sendif

"Day of year invalid");

invalidTime = TRUE;

}

if(t->month > 12) {

#ifdef _1ogerrors_

logError(INVALID.TIME, "Month invalid");

#endif

invalidTime = TRUE;

if(t->year > 4095) {

#ifdef _logerrors_

logError(INVALIDTIME, "Year invalid");

*endif

invalidTime = TRUE;

}

if(invalidTime)

return FALSE;

else

return TRUE;

/a**e***e*e***e*e***e*e*ae *****ee ****e* **eee**e**e** eeeeeeeeeeeee/

void rtcISR(void)

/*

rtcISR() is the interrupt service routine for the RTC. It is called when

the unmasked alarm registers match the current time. The routine prevents

further RTC interrupts (until another timer is started) and it sets

timeExpired to true.

,/

AMR - Oxff; // disable further interrupts

180

timeExpired = TRUE;

//CCR = OxOO0000000;

ILR = Ox00000002;

VICVectAddr - 0;

B.11

// indicate that the required amount of time has passed

// disable the RTC

// clear the interrupt

// reset the VIC

eeprom.c

This code interfaces the debugging log to the ARM's flash memory.

#include <targets/LPC21Ox.h>

#include "miche.h"

#define _eeprom_

#include "eeprom.h"

tundef _eeprom_

#include "main.h"

#include "clocks.h"

IAP iap_entry;

/**ees* esees*****ee**e*e** ******* ee**e**e***e** es* see*e*see/

/* */

/* function: */

/* void ee_erase(unsigned int commandee,unsigned int result_ee[]) */

/* type: void

/* parameters:

/* command.ee -

/* result ee[0] -

/*
/,

/*

/* resulteel1] -

Not used. */

Returns a response to the last IAP command used. */

0 - EEPROM successfully erased. */

For all other response values, see microcontroller

User Manual, IAP Commands and Status Codes Summary.

Not used. */

constants defined in LPC2k_ee.h used in this function:

EESEC_L - microcontroller's Flash sector where EEPROM begins */

EESEC_H - microcontroller's Flash sector where EEPROM ends */

description: */

This function erases LPC2000 on-chip Flash sectors selected to act

as an EEPROM. All Flash sectors between EE_SEC.L abd EE.SEC_H */

(including these sectors) will be erased using the In Application */

Programming (IAP) routines (see User Manual for more details). */

/****************=**********************.* $.v********** *****·l*** ***/

void eeerase(unsigned int commandee,unsigned int result_eel]){

unsigned int i;

unsigned int commandtiap[53;

unsigned int result_iap[3];

command_ iap [0] =50;

command_iap 11=EE_SEC._L;

comand_ iap [2)=EE_SECH;

iap_entry-(IAP) :IAPLOCATION;

iapentry(command_iap,result_iap);

//prepare sectors from EE_SEC.L to EESECH for erase

181

commandiap[0=52; //erase sectors from EE_SECL to EESEC_H

commandiap [i]=EE_SECL;

commandiap [2]=EE_SEC_H;

comnand iap [3] =processorClockFrequency() / 1000;

iap_entry-(IAP) IAP_LOCATION;

iap_entry(commandiap,result_iap);

command iap[01=53; //blankcheck sectors from EESEC_L to EELSECH

coamand_iap [11 EE_SEC_L;

commandiap [2]=EE_SEC_H;

iap.entry= (IAP) IAP_LOCATION;

iap.entry(commandiap,result.iap);

result_ee 0)=result iap [0] ;

return;

/************************************** */

/, */

/* function: */

/* void ee_write(unsigned int command.ee,unsigned int result_eel() */

/* */

/* type: void */

/* */

/* parameters:

/* command_ee - An address of a content of ee_data type that has */

/* to be programmed into EEPROM. */

/* result_ee[O] - Returns a response to the last IAP command used. */

/* 0 - data successfully programmed in EEPROM. */

/* 501 - no space in EEPROM to program data. */

/* For all other response values, see microcontroller */

/* User Manual, IAP Commands and Status Codes Summary. */

/* result_ee[1] - Not used. */

/* */

/* constants defined in LPC2kee.h used in this function: */

/* EE_BUFFERSIZE - IAP buffer size; must be 256 or 512 */

/* NOSPACEIN_EEPROM - EEPROM is full */

/* EE_BUFFERMASK - parameter used for interfacing with IAP */

/* EERECSIZE - eedata structure size in bytes */

/* EESECL - micro's Flash sector where EEPROM begins */

/* EESECH - micro's Flash sector where EEPROM ends */

/* */

/* description: */

/* This function writes a single structure of ee_data type into the */

/* EEPROM using an In Application Programming (IAP) routines (see */

/* User Manual for more details). command_ee contains an address of */

/* this structure. EEPROM is scanned for the last (if any) record */

/* identifier (EEREC_ID), and a new record is added next to it. */

/* */

/********************************** /

void ee_write(unsigned int command_ee ,unsigned int resultee [3)

int location;

unsigned int *source, *destination, i;

unsigned char ee_buffer [EE_BUFFERSIZE] ;

unsigned int command_iap[5], result_iap[3);

location = eelocateO();

if (location - -1)O

resultee [03=NOSPACE_IN_EEPROM;

182

else{

for (i=O;i<EE. BUFFERSIZE;i++) ee_buffer[i]=OxFF;

destination = (unsigned int *) ((&ee_buffer[0])+((unsigned int)location & EE_BUFFER_MASK));

source = (uns:.gned int *) commandee;

for(i=EE_RECSIZE/4;i>O;i--)

*(destination++) = *(source++);

command_iap[0]=50; //prepare sectors from EE_SECL to EESECH for erase

commandiap[l]=EESECL;

commandiap [2] =EE_SEC_H;

iapentry=(IAP) IAP-LOCATION;

iapentry(comnand_iap,result_iap);

commandiap[O]=51; //copy RAM to flash/eeprom

commandiap[l]=(unsigned int) (location & EE_START_MASK);

commandiap [2]= (unsigned int) (&eebuffer[0]);

commandiap [3]=EE_BUFFER_SIZE;

command iap [4] =processorClockFrequency() / 1000;

// cclk in kHz

iap entry=(IAP) IAP_LOCATION;

iapentry(command_iap,result_iap);

command_iap [01=56; //compare RAM and flash/eeprom

command iap [1:]=(unsigned int) source;

command-iap [2]=(unsigned int) destination;

command_iap [3] =EE_REC_SIZE;

iap entry=(IAP) IAP_LOCATION;

iapentry(com6and_iap,result_iap);

result ee [0] =resultc_iap [0];

return;

/* function: ;/

/* void ee_read(unsigned int command_ee,unsigned int result_ee[]) */

/1 type: void */

/* parameters: */

/* command ee - Not used. */

/* result ee[O] - Returns a response. */

/* 0 - data successfully found in EEPROM. */

/s 500 - no data/records available in EEPROM. */

/* result ee[l] - an address of the last record of ee_data type */

/* in EEPROM. */

/* 0/

/* constants used in this function: */

/* NORECORDSAVAILABLE - EEPROM is empty/no records identifiable */

/* with a record identifier (EE_REC_ID) found */

/* EEADRL - flash address from where EEPROM begins */

/* EEREC SIZE - size (in bytes) of a ee-data structure */

I* sI

/* description: */

/* This function scans an EEPROM content looking for the last record */

/* that can be identified with a record identifier (EE_RECID). When */

/* such data is found, its address is passed as result_ee[l]. */

183

/ **e*** * ******ee***************

void ee_read(unsigned int commandee,unsigned int result_ee]){

int location;

location - eelocate();

if (location == EEADDRL){

result_ee [0 =NO-_RECORDS_AVAILABLE;
}
else{

result._e [0] =0;

resulteell)=(unsigned int)(location - EEREC.SIZE);

}
return;

/*********************/ee·es***** * * *

/* */

/* function: */

/* void ee.readn(unsigned int command_ee,unsigned int result_eel]) */

/* */

/* type: void */

/* */

/* parameters: */

/* commandee - An index of a record in EEPROM that should be read. */

/* resulteeOl(- Returns a response. */

/* 0 - data successfully found in EEPROM. */

/* 502 - requested index is out of EEPROM's memory */

/* result_.ell] - an address of the specified record */

/* */

/* constants used in this function: */

/* INDEXOUT.OFRANGE - index of a record is out of EEPROM's range */

/* EE_ADR_L - micro's Flash address from where EEPROM begins */

/* EE.ADRH - micro's Flash address where EEPROM ends */

/* EEREC_SIZE - size (in bytes) of a ee_data structure */

/* */

/* description: */

/* This function returns in result_ee[i] an address of an EEPROM */

/* record index specified in commandee. Index can not be less than 0. */

/, */

void ee_readn(unsigned int commandee,unsigned int result_ee]) {

if (command-ee>((EE_ADDR_BH+-EEADDR.L)/EEREC SIZE)){
result_ee [0) INDEXOUT_OF_RANGE; }

else{

result_ee [l=0;

result_ee [1] =(unsigned int) (EEADDRL+EEREC_SIZE*command-ee);

}
return;

/* function: */

/* void ee.count(unsigned int command_ee,unsigned int resultee[]) */

/* */

/* type: void */

/* */

/* parameters:

/* commandee - Not used. */

/* resultee[]0 - Returns a response. Always 0. */

/* resultee[l] - number of records of eedata type in EEPROM. */

184

/* constants defined in LPC2kee.h used in this function: */

/* EEADRL - micro's Flash address from where EEPROM begins */

/* EE-REC_SIZE - size (in bytes) of a ee_data structure */

/* */

/* description: */

/* This function returns number of records of eedata type in EEPROM. */

/* */

void ee_count(unsigned int commandee,unsigned int result_eel]){

result_ee(03=0;

result_ee [ll(unsigned int) ((ee_locate O()-EE_ADDRL)/EE_RECSIZE);

return;

}

/* */

/* function: */

/* void eelocate() */

/* */

/* type: int */

/* */

/* parameters: none */

/* */

/* constants used in this function: */

/* EE_ADRL - micro's Flash address from where EEPROM begins */

/* EEADR_H - micro's Flash address where EEPROM ends */

/* EE_REC_ID - a record indicator used to identify valid data */

/* EERECSIZE - size (in bytes) of a ee_data structure */

/* */

/* description: */

/* This function returns an address as of which new record can be */

/* added into Flash/EEPROM. The function is called only if it is */

/* known in advance that at least one record can be added. Searching */

/* is based on divide by two method that provides the fastest */

/* processing time. */

/* */

static int ee.locate() {

unsigned int addrl, addr_m, addr_r, size;

addr_l = EE.ADDR .L;

if ((*((unsigned char *)addr_l))==zxFF) return(addr_l);

addrr = EEADDR..H+1;

if ((*((unsigned char *)(addrr-EEREC_SIZE)))-=EE_RECID) return(-1);

size = addr.r-addrl;

while(size != EE_REC.SIZE){

addrm = (addrs.r+addr_l)/2;

if ((*((unsigned char *)addr_m))==OxFF)

addrr - addrm;

else

addrl = addr m;

size = size/2;

return(addrr);

185

B.12 psoc.c

This code implements the high-level 12 C routines used to communicate with the
PSoC.

#include <targets/LPC210x.h>
#include "boolean.h"

#include "miche.h"

#define _psoc_
#include "psoc.h"

*undef _psoc_

#include "i2c.h"

#include "main.h"

#include "util.h"

void resetPSoC()

resetPSoC() resets the PSoC chip.
*/

IOSET = PSOC_RESET;

pause(500);

IOCLR = PSOC_RESET;

// activate reset

// wait

// deactivate

unsigned char getRxBufferStatus(unsigned char *rxstatus)

{
unsigned char ack;

__ARMLIBdisableIRQO);

ack = txI2CAddress(SLA, WRITE);

ack A- txI2CData(GET_RX_STATUS);

stopI2C();

if(!ack) {

__ARMLIB_enableIRQ();

*rxstatus = Ox00;

return FALSE;

}

ack = txl2CAddress(SLA, READ);

rxI2CDataNACK(rx_status);

__ARMLIBenableIRQ);

if(ack)

return TRUE;

else {

rxstatus = x000;

return FALSE;

// disable interrupts

// tell PSoC we want status of RX buffers

// if PSoC doesn't acknowledge,

// re-enable interrupts

// indicate no messages avail

// and return failure

// read the status of the RX buffers

// re-enable interrupts

// return the status of the operation

// indicate no messages avail

186

unsigned char switchTxFace(unsigned char face)

/*

switchTxFace(face) controls which face re-transmits (over IR) the serial data

that is emitted by UARTO of the ARM chip. Face is a number ranging from 1-6.

The function returns true if the PSoC acknowledged each byte of the I2C

exchange and false otherwise.

*/

__ARMLIBdisableIRQO;

unsigned char ack;

ack - txl2CAddress(SLA, WRITE);

ack &= txI2CData(SWITCHTX.FACE);

ack A= txI2CData(face);

stopI2C();

__ARMLIB_enableIRQO;

return ack;

// if we can initiate a master transmitter exchange,

// transmit the switch face command

// transmit the new face on which to re-broadcast

// terminate the exchange

// return indication of success or failure

/***/

unsigned char setComparatorThreshold(unsigned char threshold)

/*
setComparatorThreshold(threshold) update the threshold of six comparators

on the communication interface board. Two of these comparators are internal

to the PSoC and the other four exist on a separate chip and have their

inverting inputs driven by a DAC on the PSoC. If the routine successfully

update the thresholds, it also modified the global configuration settings

and indicates that they have been changed. It returns true if the I2C

sequence was successful and false otherwise.

unsigned char ack;

__ARMLIB_disablelRQO;

ack = txI2CAddress(SLA, WRITE);

ack A= txI2CData(SETCOMPARATOR_THOLD);

ack &= txl2CData(threshold);

stopI2CO;

if (ack)

settings. comparatorThreshold = threshold;

initiate a master transmitter exchange

send the command to set the comparator threshold

send the new comparator value

terminate the exchange

// if the previous exchage was successful,

// update the comparator threshold in the global config.

__ARMLIB_enablelRQ();

return ack; // return with indication of success or failure

unsigned char readPSoCRxQueue(unsigned char face, unsigned char* dataptr)

187

readPSoCRxQueue(face, *dataptr) attempts to retrieve the contents of one of

the 6 queues on each of cube's faces. It places the contents of the queue on

the specified face in a location pointed to the *dataptr. Additionally, the

function places a null character at the end of any received string. If

successful, even if there is nothing new in the queue, the function returns

true. If the PSoC does not respond properly, the function returns false and

also places a null character at the address passed in data_ptr to indicate

a 0 length string has been received.

unsigned char ack;

unsigned char datalength;

int i;

__ARMLIB.disableIRQ(;

ack = txI2CAddress(SLA, WRITE);

ack A= txI2CData(READRXQUEUE) ;

ack &- txI2CData(face);
stopI2CO ;

if (!ack) {

edata_ptr - 0;

__ARMLIB_enableIRQ();

return FALSE;

// number of bytes in the queue

// simple loop counter

initiate a master transmitter exchange

transmit the command to read a receive queue

indicate which face we plan to query

terminate the 12C exchange

if the slave did not acknowledge,

null terminate the non-existent string to prevent the

calling procedure for thinking that a new (duplicate)

message was received if the communication fails and the

caller does not bother to check the return value

// return failure

if (txI2CAddress(SLA, READ)) {

rxI2CData(&data_length);

if (datalength == 0) {

rxI2CDataNACK(data_ptr);

stopI2C();

*dataptr = 0;

__ARMLIBenableIRQO);

return TRUE;

}

if(datalength > MAXS-.LENGTH)

data_length = MAXMSG_LENGTH;

for (i = 0; i < (data_length - 1); i++)

rxI2CData(dataptr++);

rxI2CDataNACK(data_ptr++);

*data_ptr = 0;

stopI2CO;

_.ARMLIB_enableIRQO);

return TRUE;

} else {

stopI2CO;

*data_ptr = 0;

if the slave responds to a master receiver command,

the first byte received contains the number of

data bytes to follow

if no data bytes are to follow (ie. queue empty)

read an extra byte (w/ NACK) to make the PSoC happy

terminate the I2C exchange

null terminate the (non-existent) string of characters

that was just received

// return success even though nothing received

otherwise, loop one less times than the number

of data bytes to be received

on each iteration, receive a byte and store it

in the location pointed to by dataptr and also

increment data.ptr

NACK the last data byte to make PSoC happy

null terminate the string of characters just received

terminate the 12C transaction

// return success

otherwise, slave didn't respond to read request

null terminate the non-existent string to prevent the

calling procedure for thinking that a new (duplicate)

message was received if the communication fails and the

188

// caller does not bother to check the return value

__ARMLIB_enableIRQ (;

return FALSE; // return failure

/********eeee*e*eee******** *** ****** ****/

unsigned char readHallSensor (unsigned char face. unsigned char *value_ptr)

{

/*

readHallSensor(face, *value_ptr) reads the value of the Hall effect sensor on

the specified face and stores its result in the location pointed to by the

valueptr parameter. It returns true if successful and false otherwise.

unsigned char ack;

__ARMLIBdisableIRQO;

ack = txI2CAddress(SLA, WRITE);

ack &= txI2CData(MONITORHALL-SENSOR);

ack &= txI2CData(face);

stopI2CO;

if(!ack)

return FALSE;

else if (txI2CAddress(SLA, READ))

{

rxl2CDataNkCK(value_ptr);

stopI2CO;

if(*value_ptr - 0) {

_.ARMLIB_enableIRQO;

return FALSE;

}

__ARMLIBenableIRQo);

return TRUE;

else

// start a write sequence

// indicate we want to monitor a hall sensor

// indicate which face

// finish the 12C transaction

// if the previous transaction wasn't successful

// return failure

// otherwise, if the slave accepts a read sequence

// retrieve the latest value from the hall sensor

// finish the 12C transaction

// return success

// the slave didn't accept the read transaction

stopI2CO;
__ARMLIB_enableIRQO;
return FALSE;

// vacate the I2C bus

// return failure

/*$*•******* ** ********t**+*·*** *** **** * /

int saveMSSToPSoC(unsigned char state)

{
unsigned char ack;

__ARMLIB_disablelgRO;

ack = txl2CAddress(SLA, WRITE);

ack &= txl2CData(SAVE_MSS);

ack &= txI2CData(state);

stopI2C();

189

__ARMLIB_enablelRQ();

return ack;

}

/***** 5* * * *ee****/*************/

int loadMSSFromPSoC(unsigned char *state)

{
unsigned char ack;

__ARMLIB_disableIRQO ;

ack = txl2CAddress(SLA, WRITE);

ack k= txI2CData(LOAD_MSS);

stopI2CO;

if(!ack)

{

__ ARMLIB.enablelRQ(O;

return FALSE;

else if(txz2CAddress(SLA, READ))

{

rxI2CDataNACK(state);

stopI2CO;

__ARMLIB_enablelRQO;

return TRUE;

}

else

stopI2C();

__ARMLIBenableIRQO;

return FALSE;

/******* ********* ** *******L********* ****/

unsigned char writeSettingsToPSoCO {

unsigned char ack;

__ARMLIB_disableIRQO;

ack = txI2CAddress(SLA, WRITE);

ack k- txI2CData(SAVE_CFC_DATA);

ack &- txl2CData(settings.comparatorThreshold);

ack k
=
txl2CData(

ack &- txl2CData(

ack &- txI2CData(

ack &- txI2CData(

(unsigned char)((settings.repeatCount >> 24) & OxFF));

(unsigned char)((settings.repeatCount >> 16) & OxFF));

(unsigned char)((settings.repeatCount >> 8) & OxFF));

(unsigned char)((settings.repeatCount) & OxFF));

ack &= txI2CData(settings.unusedi);

ack &- txl2CData(settings.unused2);

/*

ack &= txl2CData(settings.face4.disconnectThreshold);

ack &- txl2CData(settings.face4.connectThreshold);

190

settings.face5.disconnectThreshold);

settings.face5.connectThreshold);

settings.face6.disconnectThreshold);

settings.face6.connectThreshold);

ack &- txI2CData(

ack &= txl2CData(

ack &- txI2CData(

ack i- txI2CData(

*/

ack 8- txl2CData(

ack &- txI2CData(

ack &- txI2CData(

ack k= txI2CData(

ack &- txI2CData(

ack - txI2CData(

ack &- txI2CData(

ack &= txI2CData(

ack &- txI2CData(
ack 8= txI2CData(

ack 8= txl2CData(

ack &8 txI2CData(

char)((settings.zAxis.invertedThreshold >> 24) & OxFF)

char)((settings.xAxis.invertedThreshold >> 16) & OxFF)

char)((settings.xAxis.invertedThreshold >> 8) & OxFF)

char)((settings.xAxis.invertedThreshold) & OxFF)

char)((settings.xAxis.neutralLowThreshold >> 24) & OxFF

char)((settings.xAxis.neutralLovThreshold >> 16) & OxFF

char)((settings.xAxis.neutralLowThreshold >> 8) & OxFF

char)((settings.xAxis.neutralLowThreshold) & OxFF

(unsigned char)(

(unsigned char)(

(unsigned char)(

(unsigned char)(

(unsigned char)(

(unsigned char)(

(unsigned char)(

(unsigned char)(

(unsigned char)(

(unsigned char)(

(unsigned char)(

(unsigned char)(

(unsigned

(unsigned

(unsigned

(unsigned

(unsigned

(unsigned

(unsigned

(unsigned

(unsigned

(unsigned

(unsigned

(unsigned

(settings.zAxis.neutralHighThreshold >> 24:

(settings.xAxis.neutralHighThreshold >> 16:

(settings.xAxis.neutralHighThreshold >> 8:

(settings .xAxis.neutralHighThreshold

(settings.zAxis.uprightThreshold >> 24) &

(settings.xAxis.uprightThreshold >> 16) &

(settings.xAxis.uprightThreshold >> 8) &

(settings.xAxis.uprightThreshold) &

(settings.yAxis.invertedThreshold >> 24) &

(settings.yAxis.invertedThreshold >> 16) &

(settings.yAxis.invertedThreshold >> 8) &

(settings.yAxis.invertedThreshold) &

char)((settings.yAxis.neutralLovThreshold

char)((settings.yAxis.neutralLowThreshold

char)((settings.yAxis.neutralLowThreshold

char)((settings.yAxis.neutralLowThreshold

char)((settings.yAxis.neutralHighThreshold

char)((settings.yAxis.neutralHighThreshold

char)((settings.yAxis.neutralHighThreshold

char)((settings.yAxis.neutralHighThreshold

char)((settings.yAxis.uprightThreshold >>

char)((settings.yAxis.uprightThreshold >>

char)((settings.yAxis.uprightThreshold >>

char)((settings.yAxis.uprightThreshold

(unsigned char)(

(unsigned char)(

(unsigned char)(

(unsigned char)(

(settings.uid

(settings.uid

(settings.uid

(settings.uid

>> 24)

>> 16)

>> 8)

>> 24)

>> 16)

>> 8)

)& OFF)

)& OzFF)

) & OxFF)

) OFF)

OxFF));

OxFF));

OxFF));

•FF));

OxFF));
OxFF));

OxFF));

OzFF))

& OxFF))

& OxFF)

& OxFF)

& OzFF)

A & OXFF)

) & OxFF)

& OFF));

& OxFF));

SOxFF));

& OlFF));

& OxFF)

& OxFF)
& OXFF)
& OxFF)

stopl2C();

if (ack)

settings.modified = FALSE;

__ARMLIB_enableIRQ();

return ack;

191

(unsigned

(unsigned

(unsigned

(unsigned

(unsigned

(unsigned

(unsigned

(unsigned

&- txI2CData(

&f txI2CData(

&= txI2CData(

&- txI2CData(

&= txI2CData(

&= txI2CData(

&= txI2CData(

&f txI2CData(

&= txl2CData(

k= txl2CData(

&= txI2CData(

&- txI2CData(

ack &= txI2CData(

ack &- txI2CData(
ack tZ txI2CData(
ack &a txI2CData(

ack a- txI2CData(
ack &= txl2CData(

ack 8- txI2CData(
ack a- txl2CData(

ack a= txI2CData'
ack &= txI2CData(

ack &= txI2CData(

ack &= txl2CData(

/**e****ee***e************/********

unsigned char readSettingsFromPSoCO {

unsigned char ack;

__ARMLIB_disablelRQ 0;

ack - txI2CAddress(SLA, WRITE);

ack &= txI2CData(READCFG.DATA);

stopI2CO;

if (!ack) {

__ARMLIBenableIRQO;

return FALSE;

}
else if (txI2CAddress(SLA, READ))

{

rxI2CData(&settings.comparatorThreshold);

rxI2CData((unsigned char *)&settings.repeatCount + 3);

rxI2CData((unsigned char *)&settings.repeatCount + 2);

rxI2CData((unsigned char *)&settings.repeatCount + 1);

rxl2CData((unsigned char *)&settings.repeatCount + 0);

rxI2CData(ksettings.unusedi);

rxl2CData(&settings.unused2);

/*

rxI2CData(&settings.face4.disconnectThreshold);

rxl2CData(&settings.face4.connectThreshold);

rxl2CData(&settings.face5.disconnectThreshold);

rxI2CData(Asettings.faceS.connectThreshold);

rxI2CData(&settings.face6.disconnectThreshold);

rxI2CData(Asettings.face6.connectThreshold);

rxI2CData((unsigned char *)&settings.xAxis.invertedThreshold + 3);

rxI2CData((unsigned char *)tsettings.xAxis.invertedThreshold + 2);

rxI2CData((unsigned char *)&settings.xAxis.invertedThreshold + 1);

rxl2CData((unsigned char *)Asetting.xAxis.invertedThreshold + 0);

rxI2CData((unsigned char *)&settings.xAxis.neutralLowThreshold + 3);

rxI2CData((unsigned char *)&settings.xAxis.neutralLowThreshold + 2);

rxI2CData((unsigned char *)tsettings.xAxis.neutralLowThreshold + 1);

rxI2CData((unsigned char *)&settings.xAxis.neutralLowThreshold + 0);

rxI2CData((unsigned char *)&settings.xAxis.neutralHighThreshold + 3);

rxI2CData((unsigned char *)&settings.xAxis.neutralHighThreshold + 2);

rxl2CData((unsigned char *)&settings.xAxis.neutralHighThreshold + 1);

rxI2CData((unsigned char *)&settings.xAxis.neutralHighThreshold + 0);

rxI2CData((unsigned char *)Asettings.xAxis.uprightThreshold + 3);

rxl2CData((unsigned char *)&settings.xAxis.uprightThreshold + 2);

rxl2CData((unsigned char *)&settings.xAxis.uprightThreshold + 1);

rxI2CData((unsigned char *)&settings.xAxis.uprightThreshold + 0);

rxI2CData((unsigned char *)Asettings.yAxis.invertedThreshold + 3);

rxl2CData((unsigned char *)&settings.yAxis.invertedThreshold + 2);

rxI2CData((unsigned char *)&settings.yAxks.invertedThreshold + 1);

rxI2CData((unsigned char *)&settings.yAxis.invertedThreshold + 0);

192

rxl2CData((unsigned char *)&settings.yAxis.neutralLowThreshold + 3);

rxl2CData((unsigned char *)&settings.yAxis.neutralLowThreshold + 2);

rxl2CData((usLSigned char *)&settings.yAxis.neutralLowThreshold + 1);

rxl2CData((unsigned char *)&settings.yAxis.neutralLowThreshold + 0);

rxI2CData((unsigned char *)&settings.yAxis.neutralHighThreshold + 3);

rxI2CData((unsigned char *)&settings.yAxis.neutralHighThreshold + 2);

rxl2CData((unsigned char *)&settings.yAxis.neutralHighThreshold + 1);

rxl2CData((unsigned char *)&settings.yAxis.neutralHighThreshold + 0);

rxl2CData((unsigned char *)&settings.yAxis.uprightThreshold + 3);

rxI2CData((unsigned char *)&settings.yAxis.uprightThreshold + 2);

rxI2CData((unsigned char *)&settings.yAxis.uprightThreshold + i);

rxl2CData((unsigned char *)&settings.yAxis.uprightThreshold + 0);

rxl2CData((unsigned char *)&settings.uid + 3);

rxl2CData((unsigned char *)&settings.uid + 2);

rxl2CData((unsigned char *)&settings.uid + 1);

rxI2CDataNACK((unsigned char *)&settings.uid);

stopI2CO();

ARMLIB_enableIRQ();

return TRUE;

} else {

stopI2CO;

__ARMLIBenableIRQO;

return FALSE;

B.13 i2c.c
This code handles all of the generic low-level I2C functions.

#include <targets/LPC210x.h>

#include "miche.h"

#include "boolean.h"

#define _i2c

#include "i2c.h"

#undef _i2c

#include "ioctrl.h"

/**/

void initI2C(void)

initI2C() configure the I2C controller using the frequency defined by

I2C_FREQUENCY. It must be called before any routine that uses the I2C

interface.

I2CONCLR = OxFF; // reset the I2C controller

setGPIOMode(I2CSCL,I2C); // put I2CSCL pin in I2C mode

setGPIOMode(I2CSDA,I2C); // put I2CSDA pin in I2C mode

193

I2SCLL = peripheralClockFrequencyO / (2 * 12C_FREQUENCY);

I2SCLH - peripheralClockFrequencyO / (2 * I2C_FREQUENCY);

// configure the 12C bus clock rate

// I2SCLL and I2SCLH are equal so that

// clock has 50Y. duty cycle

I2CONSET - I2EN; // enable master mode

/*************************************** * /

unsigned char txI2CAddress(unsigned char address, unsigned char rd.wr)

{

TxI2CAddress(address, rd_wr) must be called to initiate a I2C exchange. Only

the 7 least significant bits in address are considered when addressing a

slave. The rd_wr parameter is used to specify whether the master will be

reading from the slave or writing to it. If the slave acknowledges the

master, the function returns true. Otherwise, it returns false.

I2CONCLR = Oxff;

12CONSET = I2EN;
// reset the I2C controller

// enable master mode

if (rdwr == READ)

I2CONSET = AA I STA;

else

I2CONSET = STA;

while (I2STAT != StartComplete);

I2DAT = (address << 1) I rd_wr;

12CONCLR = STAC I SIC;

while (!(I2CONSET & SI));

// if the master is performing a write,

// allow the master to ack the data that the slave

// returns and send a start condition

// otherwise,

// just send a start condition

// wait until the start condition has been transmitted

// if code freezes here, it indicates that the ARM cannot

// pull the SDA line low for some reason.

// I2DAT[7:13 contain slave address, bit 0 contains R/'W bit

// set to not resend the start condition,

// instead we'll send the data in I2DAT

// wait for the I2C interrupt flag to go high

if (((rd.wr == WRITE) && (I2STAT SLA_WACKed)) II

((rdwr == READ) && (I2STAT - SLA_RACKed)))

return TRUE;

else

return FALSE;

// if the slave acknowledged,

// return true

// otherwise,

// return false

/s•si•e** *** **s **·e ******s* *** *** *csi***c*****a*****/

unsigned char txI2CData(unsigned char data)

/*

Txl2CData(data) should be called after an 12C master transmitter exchange has

already been initiated by an appropriate and successful call to Txl2CAddress.

The data parameter will be sent to the slave. The function return true if the

slave acknolwedges the data and false otherwise.

*/

I2DAT = data; // load the data to be transmitted

194

I2CONCLR = SIC;

while (!(I2CONSET A SI));

if (I2STAT -- TxData_ACKed)

return TRUE;

else

return FALSE;

// clear the interrupt flag to send data

// wait for the I2C interrupt flag to go high

// if data was ACKed by the slave

// return success

// otherwise,

// return failure

/**/

void rxI2CData(unsipned char *data)

/-

RxI2CData(*data) should be called after an I2C master receiver exchange has

already been initiated by an appropriate and successful call to Txl2CAddress.

The location pointed to by the *data pointer will be filled with whatever data

the slave returns. After receiving 8 bits of data, the master will

acknowledge its receipt. The function does not return any indication of

success because there is no way to determine whether the master is actually

reading data from the slave or just reading the default state (high) of the

SDA line.

I2CONSET = AA;

I2CONCLR = SIC;

while(!(I2CONSET & SI));

*data = (char)I2DAT;

// allow master to acknowledge the slave (PSoC)

// clear the I2C interrupt to unstall bus

// wait for the 12C interrupt flag to go high

// move the recieved data to the supplied variable

/***************************** *****************************e******************/

void rxI2CDataNACK(unsigned char *data)

{

/,
RxI2CDataNACK(*data) should be called after an I2C master receiver exchange

has already been initiated by an appropriate and successful call to

TxI2CAddress. The location pointed to by the *data pointer will be filled

with whatever data the slave returns. After receiving 8 bits of data, the

master will not acknowledge its receipt. This feature may be useful for

some slave devices. The function does not return any indication of success

because there is no way to determine whether the master is actually reading

data from the slave or just reading the default state (high) of the SDA line.

I2CONCLR = AAC;

12CONCLR - SIC;

while(!(I2CONSET & SI));

*data = (char)I2DAT;

// prevent master from acknowledging the slave (PSoc)

// used to indicate to PSoC firmware that master

// is in the process of requesting the last byte of

// a transfer

// clear the I2C interrupt to unstall bus

// wait for the I2C interrupt flag to go high

// move the recieved data to the supplied variable

195

void stopl2C(void)

{

/*

stopl2C() puts a stop condition on the 12C bus. It releases (brings high) the

data line while the clock line is already high. It signals to all other

devices on the bus that a transaction has completed. It must be called after

completing an I2C exchange or else slave devices will hang.

*/

//__ARMLIBdisableIRQOJ;

I2CONCLR = SIC;

I2CONSET - STO;

while(I2CONSET & STO);

//__ARMLIBenableIRQ();

// if interrupts aren't disabled, this function hangs...vtf

// clear the I2C interrupt

// send stop condition

// wait for the stop condition to be completed

// re-enable interrupts

B.14 magswitch.c

The code contained below is the Magswitch control code.

#include <targets/LPC210x.h>

#include "miche.h"

*include "boolean.h"

#include "main.h"

#include "debug.h"

#define _magswitch_

#include "magswitch.h"

Sundef _magswitch_

*include "ioctrl.h"

#include "psoc.h"

static int curState[33 = {MSSUNKNOWN, MSS_UNKNOWN, SSUNKNOWN)};

static int hallAvg[3J = {0, 0, 0};

void initMagswitches()

{

setGPIOMode(MOTOR4,GPIO);

setGPIOMode(MOTORS,GPIO);

setGPIOMode (MOTOR6, GPIO);

IOCLR = (OTOR4 I MOTORS I MOTORS);

IODIR I= (MOTOR4 I MOTORS I MOTOR6);

// loadMagswitchStates();

/*

setMagswitchState (4, MSSOFF);

setMagswitchState(5, MSS_OFF);

setMagswitchState(6, MSS_OFF);

// configure the motor pins as GPIO

// make sure that all motors are off

// make the motor pins outputs

196

int getMotorState(int face)

getMotorState(face) returns MOTOR ON if the motor on the specified face is

activated. It returns MOTOR_OFF otherwise. Valid faces are 4-6 which

correspond to ActiveFacel, ActiveFace2, and ActiveFace3, respectively.

*/

if ((face == 4) && (IOSET & MOTOR4))

return MOTORON;

else if ((face == 5) && (IOSET & MOTORS))

return MOTOR_]ON;

else if ((face == 6) && (IOSET & MOTORS))

return MOTOR_(ON;

else

return MOTOR-OFF;

void setMotorState(int face, int state)

if (face == FACE4)

if(state == MOTORON)

IOSET = MOTOR4;

curState[O] = MSS_UNKNOWN;

else

IOCLR = MOTOR4;

else if (face == FACES)

if(state == MOTOR_ON)

IOSET = MOTORS;

curState[l] = MSS_UNKNOWN;

else

IOCLR = MOTORS;

else if (face == FACE6)

if(state == MOTOR ON)

IOSET = MOTCRS;

curState[2] = MSS_UNKNOWN;

else

IOCLR = MOTOR6;

/•**/

int getMagswitchState(int face)

if(face == 4)

return curState10];

else if(face == 5)

197

return curState[1l];

else if(face == 6)

return curState [23;

else

return MSS_UNKNOW;

/**e****************e**eee**e********* *******************************/

int setMagswitchState(int face, int newState)

{

int success;

if(curState[face-4] == neuState)

return TRUE;

if(newState -- MSS_OFF)

success = findMSExtreme(face, MSS_MAX);

success &= findMSExtreme(face, MSSMIN);

}

else if(neuState -= MSSON)

success {indNSExtreee(face, MSS N);

success = findESExtreme(face, MSSINAX);

// saveMagswitchStates();

return success;

/********************** ********** **********************************/

static int findMSExtreme(int face, int extreme)

unsigned char nev_val;

int prev_avg, new_avg, old_avg;

int approach = FALSE;

static int reset = TRUE;

int reps = 0;

static int slope([3 =

{MSS_SLOPEUNKNOWN, MSS_SLOPE_UNKNOWN, MSS_SLOPEUNKNOWN};

if((face != 4) && (face !-5) SA (face != 6))// if invalid face provided,

return; // return without doing anything

face = face - 4; // allow easy matrix indexing

measureSeconds(MS-TIMEOUT);

setMotorState(face + 4, MOTORON);

disableUARTISR();

msgq_pauseTx() ;

while(!isTimeExpired())

readHallSensor(face + 4,&new_val);

prev_avg - hallAvg[face];

198

new_avg - updateHallAvg(face + 4, new_val);

if(newvavg -- prevavg)

reps++;

else

reps = 0;

old_avg = updateHallAvgHistory(face + 4, new_avg);

/* this delay is critical to good disconnections */

pause(6500);

if((extreme =- MSS_MAX) && approach)

{

if((slope Ef ace] - MSSSLOPE_POS) && (new_avg > CON_THOLD) U

((newvavg < oldavg) II (reps >= 4)))

{

slope[face] = MSS_SLOPENEG;

curStatef ace)] MSS_ON;

break;

}
else if((slope[face] =-= SSSLOPE_NEG) &U (nev_avg > old-avg))

slope[face] = MSS_SLOPE.POS;

else if((slope[face] - MSSSLOPEUNKNOWN) && (newavg > oldavg))

slope[face] = MSS_SLOPEPOS;

else if((slope[face] -- MSS_SLOPEJUNKNOWN) (newavg < oldavg))

slope[face] = MSSSLOPE_NEG;

else if((extreme =- MSSMAX) && (!approach))

{
if(nev.avg > old_avg)

{

slope[face] = MSSSLOPE.POS;

approach = TRUE;

}
else if(new_avg < oldavg)

slope[face] = MSS_SLOPE_NEG;

I

else if((extreme == MSSMIN) U approach)

{

if((slope[face] == MSS.SLOPENEG) & (new_avg < DISCONTROLD) &&

((nev_avg > old_avg) II (reps >= 4)))

slope[face) = MSS_SLOPE_POS;

curState [face] - MSSOFF;

break;

}
else if((slope[face) == MSS_SLOPEPOS) U& (nev_avg < oldavg))

slope[face) = MSS_SLOPENEG;

else if((slope[face] == MSS_SLOPEUNKNOWN) & (newavg > old_avg))

slope[face] = MSSSLOPEPOS;

else if((slope[face] - MSS_SLOPEUNKNOWN) (new_avg < oldavg))

slope[face] = MSS_SLOPENEG;

else if((extreme == MSSMIN) U (!approach))

{
if(newavg < oldtavg)

{

199

slope[face] = MSSSLOPE_NEG;

approach = TRUE;

}

else if(new_avg > old_avg)

slope[face) = MSSSLPE_POS;

if(!debugging)

{

enableUARTISR()O ;

msgqrestartTx();

setMotorState(face + 4, MOTOR_OFF);

cancelRTC() ;

if (((curState [face -- MSS_0FF) Uk (extreme - MSS_MIN)) II

((curState[face] == MSSON) && (extreme == MSS_MAX)))

return TRUE;

else

return FALSE;

/************************ ** ** * ********************* /

static int saveMagswitchStates()

{

unsigned char state = 0;

int face;

for(face = 0; face <- 2; face++)

if (curState [face] = MSS_OFF)

state I=
(MSS_OFF << (2*face));

else if(curState[face) = MSS_0N)

state I
=
(MSS_0N << (2*face));

else if(curState[face] == MSS.UNINOWN)

state = (MSS_UNKNOUN << (2*face));

else

state I
=

(MSSUNKNOWN << (2*face));

return(saveMSSToPSoC(state));

/**e****es ********** **************/

static int loadMagswitchStates()

unsigned char state = 0;

int face;

if(loadMSSFromPSoC(Cstate))

{

for(face = 0; face <- 2; face++)

{

switch(((state >> (2*face)) & Ox03))

{

case MSSOFF: curState[face] = MSS0OFF; break;

case MSSUNKNOUN: curState[face] - MSS.UNKNOWN; break;

200

case MSS._ON: curState[face] - MSS.0N; break;

default: curState lface] = MSSUNKNOWN; break;

return TRUE;

}

return FALSE;

static int updateHallAvg(int face, int newval)

static

static

static

static

static

static

int sum[33 = {O, 0, 0);
int n[3]3 {0, 0, 0);

int head(3] = {0, 0, 0};

int tail[33 - {O, 0, 0};
int hist33][HISTLENGTH];

int empty = TRUE;

if((face != 4) At (face !=5)

return;

face = face - 4;

if(n[face] < HISTLENCTH)

n[face]++;;

sum[face) += new_val;

sum[face] -= hist[facel [tail[face]];

sum[facel += new_val;

number of values stored in each history

ptr to newest memeber of each history

ptr to oldest memeber of each history

&& (face != 6))// if invalid face provided,

// return without doing anything

// allow easy matrix indexing

// if history buffer is not full,

// increment its length

// add newest value to sum

// otherwise, if history buffer is full,

// subract oldest value from sum

// add newest value to sum

head[face) - (head[face) + 1) 7 HIST_LENGTH; // increment the head pointer

hist [face] [head[face]3 - new_val; // update value stored at head ptr

if((head[face] == tail[face]) II empty) // if head ptr overtook tail ptr,

tail[face] = (tail[face) + 1) % HISTLENGTH;//

empty = FALSE;

if(sum[face] != 0)

hallAvg[face] = sum[face) / n[face];

else

hallAvg[face] = 0;

increment the tail pointer

// if the sum is not 0,

// compute the average

// otherwise,

// set avg. to 0

return hallAvg[face];

I

/*st t**ac d***divi*****i y******rm**f**ae t*e*wv*a/

static int updateHallAvgHistory(int face, int new.val)

static int n[33 = {0, 0, 0);

static int head[3] = {0, 0, 0};

static int tail[33 - (0, 0, 0);

static int hist[35 [AVG_HIST_LENGTH];

// number of values stored in each history

// ptr to newest memeber of each history

// ptr to oldest memeber of each history

201

static int empty = TRUE;

if((face !- 4) & (face !=5) U (face != 6))// if invalid face provided,

return; // return without doing anything

face = face - 4; // allow easy matrix indexing

if(n[face] < AVGHIST_LENGTH) // if history buffer is not full,

n[face]++; // increment its length

head[face] = (head[face] + i) % AVG_HIST_LENGTH;

// increment the head pointer

hist [face] [head [face]) = newvval; // update value stored at head ptr

if((head[face] == tail[face]) II empty) // if head ptr overtook tail ptr,

{

tail[face) = (tail[face] + I) % AVGHIST_LENGTH;

// increment the tail pointer

empty = FALSE;

return hist face] [tail [face]];

}

B.15 orientation.c
This code processes values from the accelerometer to inform the module of its orien-
tation with respect to gravity.
#include <targets/LPC21Ox.h>

#include "miche.h"

#include "boolean.h"

#define _orientation_

#include "orientation.h"

#undef _orientation_

#include "hal/ioctrl.h"

#include "main.h"

static unsigned char xAxisTriggered, yAxisTriggered;

// used by TimerO ISR to keep track of which falling

// edges from the accelerometer it has seen

static unsigned int xAxisHighPeriod, yAxisHighPeriod;

// hold x and y acceleration values

void initAccelerometerO

X component of acceleration is on CaptureO.2 and Y component of acceleration

is on CaptureO.1.

*/

202

TOPR - (peripheralClockFrequency() /

(2 * ACCELEROIETERFREQ * NOMINALCOUNT)) - 1;

// configure prescalar to provide a standard number

// of pulses (NOMINAL COUNT) when experiencing no accel.

setGPIOMode(ACCELY, CAPO_1);

setGPIOMode(ACCELX,CAPO_2);

IODIR 1= ACCPD;

IOCLR = ACCPD;

TOIR = Oxff;

VICIntSelect &= 0x10;

tmrOVICVectAddr = (unsigned int)tmrOISR;

tmrOVICVectCntl = 0x24;
VICIntEnable - Ox10;

// configure ACCELY pin as timer 0, capture channel 1

// configure ACCELX pin as timer 1, capture channel 2

// P0.15 is an output used to turn on/off the accelerometer

// ensure that the accelerometer is off

// clear pending TMRO interrutps

// assign TMRO IRQ status

// configure the TMRO interrupt vector

// assign TMRO to a priority and enable it

// enable TMRO interrupts

TOTCR = Ox02;
TOCCR = 0x28;

TOTCR = Ox01;

// reset the counter and the prescalar counter

// enable capture event and interrupt on rising edge of chnl I

// enable the timer

VICVectAddr = 0;

void initTiltSwitchO

IODIR k= "UP_DN; // tilt switch connected to PO.13--make sure it an input

/**a**/

unsigned char getTiltSvitchState()

{

if (IOPIN & UPDN)

return 0;

else

return 1;

/*******e*******e***ae** e****e* e*********** ***********e e************e ******/

void accelerometerOn()

{

IOSET = ACCPD;

}

void accelerometerOffO

{
IOCLR = ACCPD;

203

unsigned char isAccelerometerOn)

if (IOSET & ACCPD)

return TRUE;

else

return FALSE;

/** ******* ************/***********

unsigned int getAcceleration(unsigned char axis)

{

if (axis - XAXIS)

return xAxisHighPeriod;

else if (axis -- YAXIS)

return y•xisHighPeriod;

else return 0;

/*********e***e*********e*************************** */

unsigned char getBottomFaceO)

{
if ((xAxisHighPeriod <= settings.xAxis.invertedThreshold) AU

(yAxisHighPeriod >= settings.yAxis.neutralLowThreshold) U

(yAxisHighPeriod <- settings.yAxis.neutralHighThreshold))

return 2;

else if ((xAxisHighPeriod

(yAxisHighPeriod

(yAxisHighPeriod

return 4;

else if ((yAxisHighPeriod

(xAxisHighPeriod

(xAxisHighPeriod

return 5;

else if ((yAxisHighPeriod

(xAxisHighPeriod

(xAxisHighPeriod

return 3;

else if ((xAxisHighPeriod

(xAxisHighPeriod

(yAxisHighPeriod

(yAzisHighPeriod

>= settings.xAxis.uprightThreshold) U

>= settings.yAxis.neutralLowThreshold) Uk

<- settings.yAxis.neutralHighThreshold))

<= settings.yAxis.invertedThreshold) aU

>= settings.xAxis.neutralLowThreshold) U&

<= settings.xAxis.neutralHighThreshold))

>= settings.yAzis.uprightThreshold) &&

>- settings.xAxis.neutralLouThreshold) U

<= settings.xAxis.neutralHighThreshold))

>- settings.xAxis.neutralLowThreshold) AU

<= settings.xAxis.neutralHighThreshold) &&

>= settings.yAxis.neutralLowThreshold) AU

<= settings.yAxis.neutralHighThreshold))

if (getTiltSwitchState())

return 1;

else

return 6;

else

return 0;

/voi***d **rOISO******** *************************************/

void tarOISR()

if ((TOCCR & Ox08) &U (TOIR & 0x20)) // if we're waiting for rising edge on channel i,

204

TOIR &- Oxff;

TOTCR I
=
Ox02;

TOTCR -= ~x02;

TOCCR = OxlbO;

xAxisTriggered = FALSE;

yAxisTriggered - FALSE;

else

if ((TOCCR & OxO1) && (TOIR & 0x20))

{
TOIR &= 0x20;

yAxisTriggered - TRUE;

yAxisHighPeriod TOCRI;

TOCCR &-= 0x38;
}

else if ((TOCCR & Ox80) && (TOIR & 0x40))

{

TOIR &- Ox40;

xAxisTriggered = TRUE;

xAxisHighPeriod * TOCR2;

TOCCR &- -OxlcO;

}

if (xAxisTriggered && yAxisTriggered)

{

TOCCR 1= 0x28;

I

VICVectAddr = 0;

// and capture event on channel 1 occured */

// clear all match and capture interrupt flags

// reset the timer counter and prescalar counter

// enable capture and interrupt on falling edge of both

// channel 1 and 2

// indicate that neither axis has transitioned from high to low

// otherwise, deteced a falling edge detected on some chnl

// if falling edge on capture channel 1

// clear the capture channel 1 interrupt flag

// denote that the y-axis signal has fallen

// store the time at which it fell

// disable any further capture events on channel 1

// otherwise, falling edge on capture channel 2

// clear the capture channel 2 interrupt flag

// denote that the x-axis signal has fallen

// store the time at which it fell

// disable any further capture events on channel 2

// if both channels have fallen

// re-enable capture and interrupt on posedge of chnl 1

// to capture the beginning of the next cycle

// reset the VIC

B.16 tmrl.c
This code is the interrupt handler for Timer 1 and, among other tasks, prompts the
transmission buffers to resend their data.

#include <targets/LPC21Ox.h>

#include "boolean.h"

#include "miche.h"

#define -tmrl_

#include "tmrl.h"

#undef _tmrl_

#include "hal/psoc.h"

#include "msgs/msgqueue.h"

#include "debug.h"

unsigned int TMRIMROPeriod;

unsigned int THR1MRIPeriod;

/aea* eeaeesaaaaaeeeaeees*eeaaaasaeaeaeeeeeeesaas*eaaeeaaaaea

205

void initTHR1fO

TiPR = Ox0; // no prescalar on TITC

TiMCR = 0x9; // enable interrupt on MRO or MRI match //

TiCCR = Ox0; // not using Ti to capture signals

TiENR - Ox; // Ti not connected to any GPIO pins

TiTCR - Ox2; // reset the T1TC

TITCR = Ox0; // bring the TITC out of reset (but don't start it)

TilR = OxFF; // clear any pending Ti interrupts

VICIntSelect -= ~0x20; // assign THR1 IRQ status

VICVectAddrl= (unsigned int)tmrlISR; // assign THRI interrupt 2nd priority

VICVectCntli = Ox25; // assign TMRI interrupt (15) to 2nd IRQ slot and enable it

VICIntEnable - Oz20;

TITCR = Ox1i; // enable TITC

VICVectAddr = Ox0;

void setTMRftiROPeriod(unsigned int period) {

if(period == 0)

TIMCR &= O0x01;
else {

VICIntEnClr = 0x20;

TITCR - 0x00;

THRiMROPeriod = period;

T1MRO - TITC + THRiNROPeriod;

T1MCR I= Ox01;

VICIntEnable = 0x20;

T1TCR = OxO1;

void setTMRIMRiPeriod(unsigned int period) {

if(period == 0)

TIMCR & "Ox08;

else i

VICIntEnCIr = Ox20;

TITCR = Ox00;

THRiMRiPeriod = period;

T1MRI = TITC + TMR1MRIPeriod;

TiMCR 1
=

Ox08;

VICIntEnable = Ox20;
T1TCR = Ox01;

void tmrlISRO {

/*

206

tmrlISR() is called by the processor when a timer 1 interrupt occurs.

Depending on which channel a match occurred, the ISR calls different routines

for other parts of the software that depend on receiving regular interrupts.

Instead of ever resetting the timer/counter, the newly triggered match

register is incremented by the appropriate period.
*/

if(TIR & OxO:L) {

VICIntEnCIr = Ox20;

ledUpdateO;

T1TCR = OxO0;

T1IR OxO1;

T1MRO = T1TC + THREMROPeriod;

VICIntEnable = Ox20;

}

else if(TIR & Ox02) {

VICIntEnClr = Ox20;
if(debugging == FALSE)

msgq_reTxO;

T1TCR = OxO0;

T1IR = Ox02;

T1MR1 = TITC + THR1•R1Period;

VICIntEnable = Ox20;

TIIR =OxFF;

T1TCR = Ox01;

VICVectAddr = OxO;

// if match on channel 0

call the LED subroutine that depends on interrupts

disable the TC temporarily

clear the matchO interrupt

increment the match register since we never reset the TC

// otherwise, if match on channel 1

call the message transmission routine

disable the TC temporarily

clear the matchl interrupt

increment teh match register since we never reset the TC

// otherwise,

// clear all other possible tmrl interrupts

// reset the ISR to prepare for next interrupt

B.17 uart.c
This section of code implements low-level UART control functions.

#include <targets/LPC210x.h>

#include "miche.h"

#include "boolean.h"

#define _uart-

#include "uart.h"

#undef uart-

#include "clocks.h"

#include "ioctrl.h"

#include "hal/psoc.h"

int uplinkBufferFull;

char uplinkBuffer[MAX_MSG_LENGTH + 1);

int ulBufP;

void initUART(unsigned int baud)

/*

initUART(baud) configures UARTO with the given baud rate specified in bps.

It must be called before any of the stdio routines that interact with the user

such as printf and getchar.

207

unsigned int divisor;

divisor - peripheralClockFrequency() / (16

UOLCR = 0x83;

UODLL = divisor & OxFF;

UODLM = (divisor >> 8) & OxFF;

UOLCR &
=

"Ox80;

setCPIOMode (TXMAIN,UARTO);

setGPIOMode (RX_DBG, UARTO);

UOFCR = Ox07;

UOIER = Ox01;

VICIntSelect &' -0x40;

uartOVICVectAddr = (unsigned int)uartOISR;

uartOVICVectCntl = Ox26;

VICIntEnable = 0x40;

uplinkBufferFull = FALSE;

ulBufP = 0;

uplinkBuffer[O] 0;

* baud);

// compute the correct divisor given the baud rate

// 8 bit, I stop bit, no parity, enable divison latch access

// setup divisor low byte

// setup divisor high byte

// disable divisor latch access

// configure TXIMAIN pin of ARM as UARTO

// configure RX_DBG pin of ARM as UARTO

// enable and clear the transmit and receive FIFOs

// interrupt generated when RX FIFO is half full

// enable receive data avail and char. receive time-out IRPs

// do not enable Rx line status or THRE interrupts

// assign UARTO IRQ status (as opposed to FIRQ)

// associate ISR with a priority level

// associate UARTO interrupts with a priority level

// enable UARTO interrupts

// indicate that uplink buffer is empty

// reset the buffer pointer

// invalidate any data in the uplink buffer

/e**********eee******ee**e********e**ees*eee****e***e***e**eeeeeeeee*ee*e******/

void disableUARTISR(void) {

VICIntEnClr - Ox40; // disable UARTO interrupts

}

void enableUARTISR(void) {

VICIntEnable = Ox40; // enable UARTO interrupts

void readUplinkQueue(char* raw_msg){

if(uplinkBufferFull) { // if the uplink buffer is full,

strcpy(rawvmsg, uplinkBuffer); // return a copy of the uplink buffer,

ulBufP - 0; // and reset the buffer pointer

uplinkBufferFull = 0; // indicate that the buffer is no longer full,

I
else

rawmag[Ol) 0; // clear the first character of the returned string to

// indicate that a new message was not received in full

/***/

void __putchar(int ch)

{

/t

__putchar(ch) is called by assembly routines such as printf to place a single

208

character on the UARTO TxD line.

if (ch -= '\n') {

while ((UOLSR & Ox20) == 0);

UOTHR = '\r';

while ((UOLSR & Ox20) -= 0);

UOTHR = ch;

// if transmitting a new line,

// loop while the THR still contains valid data

// then send a carriage return

// loop while the THR still contains valid data

// and then load THR with next byte to be sent

unsigned char g__etchar(void)

{

__getchar() is called by assembly routines to get a character from the serial

port.

*/

while ((UOLSR & Ox01) -- 0);

return UORBR;

// wait until the receive FIFO contains a character

// return that character

/********************* **•***+ **** ***

void uartOISR(void) {

unsigned char newchar;

if(((UOIIR E OxOE) - 0x04) II ((UOIIR

while(UOLSR & Ox01) {

newchar = UORBR;

if(!uplinkBufferFull) {

if((ulBufP == 0) k& (newchar != '#')

continue;

uplinkBuffer[ulBufP] = newchar;

if(uplinkBuffer[ulBufP] -- OxOd) {

uplinkBufferfulBufP] = 0;

uplinkBufferFull = 1;

& OxOE) = OxOC)) C
// if RDA or CTI

// while there's a new character avail.

// grab it from the hardware buffer

// if 1st char in ssg not '#'

// get next character

// put the next char. in the message buffer

if the new character was a CR

replace the CR with a null terminator

indicate that a complete message was received

ulBufPl= ufP + 1) % (MAX_GC_LENGTH + 1);

// otherwise, increment the uplink buffer ptr

// wrapping around to 0 if we still haven't received

// a message terminator and then get the next char

VICVectAddr = OxO; // reset the interrupt controller

209

B.18 ioctrl.c
This section contains low-level input/output control functions.

#include <targets/LPC21Ox.h>

#include "boolean.h"

tdefine _ioctrl_

*include "ioctrl.h"

Vundef _ioctrl_

/**•*****•*•i******** ***• ** •*********** ***********/

unsigned char setGPIOMode(unsigned int pin, unsigned int mode)

{
unsigned int mask;

if (!checkValidPin(pin))

return FALSE;

if ((mode >= 0) •k (mode <= 2)) {

if ((pin >= Ox00000001) U& (pin <= Ox00008C

mask = pin * pin;

mask = mask I (mask << 1);

PINSELO = (PINSELO & "mask) I (mode << (2*

return TRUE;

} else if ((pin >= Ox00010000) && (pin <=

pin = pin >> 16;

mask = pin * pin;

mask = mask I (mask << 1);

PINSELI = (PINSEL1 & "mask) I (mode << (2*

return TRUE;

// if not passed a valid pin representation,

// return to avoid messing anything up

*g(pin)));

x8O000000)) {

*ig(pin)));

unsigned char getGPIONode(unsigned int pin)

{

unsigned int mask;

if ((pin >= 0) Ak (pin -< 15)) {

mask - Ox3 << (2*lg(pin));

return (PINSELO & mask) >> (2*lg(pin));

} else if ((pin >= 16) At (pin <= 31)) {

mask = Ox3 << (2*lg(pin >> 16));

return (PINSEL1 & mask) >> (2lg(pin >> 16));

} else

return Ox3;

/********e***e****e********e****************ee ***s**e *s****s**e****s*e******/

static unsigned char checkValidPin(unsigned int pin)

{

/*

checkValidPin(pin) returns true if the provided integer representation

of a pin is valid. In other words, it must contain a single 1. For example,

pin 13 is represented as Ox00002000 or 000000000010000000000000b. If the

provided parameter is not a valid representation of a pin, the function

returns false.

210

// counter: number of bits considered

// present sum of bits

sum += (pin & Ox00000001);

pin = pin >> 1;

i++;

} while ((sum <= 1) U (i < 32));

if (sum -= 1)

return TRUIE;

else

return FALSE;

// increment sum by the LSB

// shift right to update LSB

// indicate that one more bit has been considered

// repeat until we find 2 "ones" or all bits examined

// if we only encountered 1 "one",

// return true

// otherwise,

// return false

static unsigned char Ig(unsigned int x)

lg(x) computes the base 2 logarithm of a

It is used to compute a pin number given

example, given OxO010 it returns 4.

unsigned char y = O;

while (!(x & Oxl)) {

x = x >> 1;

y++;

if (y == 32)

break;

return y;

number that is already a power of 2.

a mask representation of a pin. For

// loop while the LSB of x isn't a 1

// rotate x right so that we can examine the next bit

// increment the counter

// catch the case where x = 0
// to prevent an infinite loop

// return the result

B.19 clocks.c
These functions manage the ARM's internal clock.

#include <targets/LPC21Ox.h>

#define _clocks_

*include "clocks.h"

*undef _clocks-

#include "boolean.h"

int initPLL(unsigned int m, unsigned int p)

{
if((m < 1) II (m > 32))
return FALSE;

if((m * OSCILLATORCLOCKFREQUENCY) > MAXIMUM_CCLK_FREQUENCY)

211

int i - 0;

int sum = 0;

return FALSE;

if(! ((p -- 1) II (p- 2) II (p - 4) 11 (p -- 8)))

return FALSE;

if(((2 * p * OSCILLATORCLOCK_FREQUENCY) < MINIMUMCCOFREQUENCY) II

((2 * p * OSCILLATORCLOCK_FREQUENCY) > MAXINUM_CCO_FREQUENCY))

return FALSE;

m = m - 1;

switch(p)

// multiplier in PLLCFC is m-I

// configure PLLCFG

case 1: PLLCFG = m I OxO0; break;

case 2: PLLCFG = m I Ox20; break;

case 4: PLLCFG = m I Ox40; break;

case 8: PLLCFG = m I Ox60; break;

default: return FALSE;

PLLCON - 0x01;

PLLFEED = OxAA;

PLLFEED = Ox55;

while((PLLSTAT & Ox400) =I 0);

PLLCON - Ox03;
PLLFEED = OxAA;

PLLFEED - Ox55;

// enable the PLL

// transmit feed seq to update

// wait for PLL lock

// connect (and enable) PLL

// transmit feed seq to update

return TRUE;

/**************************t**/

unsigned int processorClockFrequency(void)

{
/*

processorClockFrequency() returns the cclk frequency--the frequency at which

the ARM core is running--in Hertz. It does account for PLL settings.

*/

return OSCILLATOR_CLOCKFREQUENCY * (PLLCON & I ? (PLLCFG & OxF) + 1 : 1);

}

unsigned int peripheralClockFrequency(void)

/*

peripheralClockFrequency() returns the pclk frequency--the frequency at which

all peripherals are operating--in Hertz.

unsigned int divider;

switch (VPBDIV & 3) {

case O:

divider = 4;

break;

case 1:

divider = 1;

break;

case 2:

// find the correct pclk divider

212

divider == 2;
break;

return processcrClockFrequency() / divider; // pclk = cclk / divider

B.20 util.c
This code is simply a pause function used for some fixed-length delays.

#define _util

#include "util.h"

#undef _util

void pause(unsigned int time) {

unsigned int i;

for (i = 0; i < time; i++);

213

214

Appendix C

PSoC Source Code

This appendix includes all of the C language source code that executes on the Cypress

PSoC microprocessor. Because much of the PSoC's functionality is implemented in

reconfigurable hardware blocks, this code does not capture the full extent of the

PSoC's functionality.

C.1 main.c
This code initializes the PSoC and then just loops checking for new 12C messages.
#include <m8c.lh // part specific constants and macros

#include "PSoCAPI.h" // PSoC API definitions for all User Modules

#include "i2c.h"

#include "tx.h"

#include "rx.h"

void main()

initI2C() ;

initRxSys();

initTxSys();

E2PROM_Start();

M8CEnableGInt;

while(1)

handleI2CO ;

C.2 i2c.c
This code handles all 12C messages received from the ARM.

215

#include <m8c.h>

#include "PSoCAPI.h"

#define _i2c_

#include "i2c.h"

Sundef _i2c~

#include "comparator.h"

#include "rx.h"

#include "tx.h"

#include "hall.h"

BYTE I2CMsg[66];

// part specific constants and macros

// PSoC API definitions for all User Modules

EEPROM page is only 64 bytes, but one of the extra

bytes is for the I2C command, and the other is slack

so that the default generated 12C routine doesn't

return a NACK after receiving the last real byte

BYTE DefaultBuffer[2J - {0, 0};

BYTE RXStatusReg - 0;

void initl2CO {

12CStartO;

I2CEnableSlaveO;

12CEnableInt();

I2CInitWrite(I2CMsg,66);

// outdated -- was the buffer that 12C reads without

// prior destination command defaulted to reading

holds most important things that ARM cares about for

quick access: 3 Hall effect sensor values, status of

the 6 RX buffers

start the 12C handler

enable slave mode only

enable I2C interrupts so that incoming

I2C messages can be processed

configure I2C receiver to write any

received data to the I2CMsg buffer

I2CClrRdStatusO;

void handleI2CO {

BYTE status;

status = 12CbReadI2CStatusO;

if (status & 12CHWWRCOMPLETE) {

switch (I2CMsglCOMMAND]) {

case READRX_BUFFER:

switch (I2CMsg[DATA1I)

{

case FACE1:

if (RX8_l_bCmdCheckO)

RX8_lMsgSize = RX8_1_bCmdLength);

else

RXI8_1MsgSize = 0;

12C_InitRamRead(RKS_1_I2CMsg, RXSIMsgSize + 1);

break; // case FACEl

case FACE2:

if (RX8_2_bCmdCheckO)

216

RXS_2_MsgSize - RX8_2_bCmdLengthO;

else

RX8_2_MsgSize = O;

I2CInitRasmRead(RX82_I2CMsg, RX8_2_MsgSize + 1);

break; // case FACE2

case FACE3:

if (RX_3_"bCmdCheck))

RX8_3_MsgSize = RX8S3_bCmdLength()O;

else

RX8_3_MsgSize = 0;

12CInitRamRead(RX8_3_I2CMsg, RX8_3_MsgSize + 1);

break; // case FACE3

case FACE4:

if (RX8.4_bCmdCheckO)

RX8_4_MsgSize - RX8_4 bCmdLengthO;

else

RX8_4_MsgSize O0;

I2C_InitRamRead(RX8_4_I2CMsg, RX8_4_MsgSize + 1);

break; // case FACE4

case FACE5:

if (RX8_5_bCmdCheckO)

RX8_5_MsgSize = RX8_5_bCmdLength();

else

RX8.5_MsgSize = 0;

I2C_InitRamRead(RX8_5_I2CMsg, RXS_5_MsgSize + 1);

break; // case FACE5

case FACES:

if (RX8_6.bCmdCheckO)

RX8_6_MsgSize = RXS_6_bCmdLengthO;

I2CInitRamRead(RX8_6_I2CMsg, RX8_6_MsgSize + 1);

break; // case FACE6

} // svwitch (I2CMsgDATAIt)

break; // case READ_RX_BUFFER

case SETCOMPARATORS:

startAllComparators (I2CMsgEDATAIJ);

break; // case SET_COMPARATORS

case MONITOR_HALL_SENSOR:

startADC (I2CMsg DATAl);

I2C_InitRamRead(&ADCResult, 1);

break; // case MONITOR_HALL_SENSOR

case STOP_ADC:

stopADCO ;

AMUX4_Stop() ;

break; // case STOPADC

case SETTX_CHANNEL:

switchTXChannel(I2CMsg[DATAI));

break; // case SET_TXCHANNEL

case SAVECFG_DATA:

E2PROMbE2Write (64, kI2CMsgDATAi]. 64, 25);

break;

217

case READCFGDATA:

12C_InitFlashRead((const unsigned char *)Ox7FCO, 64);

break;

case POWERDOWN:

stopADCO;

ANUX4_StopO ;

RX8_1StopO ;

RX8_2_StopO;

RX8_3_StopO;

RX8_4_StopO;

RX8_5_StopO;

RX8_6_StopO;

PVWMBStopO;

stopAllComparatorsO;

DAC8_StopO;

DigBuf.l_StopO;

DigBuf.2_StopO);

12C_StopO; //at this point, a POR is necessary to restore PSoC functionality */

break;

case GETRX_STATUS:

12CjInitRamRead(kRXStatusReg, 1);

break;

case SAVEISS:

E2PROM.bE2Write(0, &I2CMsg[DATA13, 64, 25);

break;

case LOADMSS:

I2CInitFlashRead((const unsigned char *)OxTF80, 64);

break;

I2CClrWrStatusO; // data received and processed--clear write status

I2C_InitWrite(I2CMsg,66); // reset write buffer for new command

}

if (status & I2CHW.RD_COMPLETE) {

if (I2CMsg[COMMAND) - READRX.BUFFER) {

switch (I2CMsg[DATAII) {

case FACE1:

RX8_1_MsgSize - 0;

RXStatusReg &= "(OxOl);

RX8_1_CmdResetO;

break; // case FACEI

case FACE2:

RX8_2_MsgSize = 0;

RXStatusReg &I -(Ox02);

RX8_2_CmdResetO;

break; // case FACE2

case FACE3:

RX8_3_MsgSize - 0;

RXStatusReg &= -(0x04);

218

RX183_CmdReset();

break; // case FACES

case FACE4:

RX8_4_MsgSize = 0;

RXStatusReg &= (O0x08);

RX8.4_CmdReset();

break; // case FACE4

case FACES:

RX8_5.MsgSize = 0;

RXStatusReg &= (Ox10);

RX8_5_CmdReset;()

break; // case FACES

case FACE6:

RX8_6.MsgSize - 0;

RXStatusReg &= "(Ox20);

RX8.6_CmdReset ();

break; // case FACE6

} // switch (I2CMsg[DATA1])

} // if (I2CMsg[COMMAND3 -= READRX_BUFFER)

12CClrRdStatus();

//I2CInitRamRead(DefaultBuffer, 2);

12CInitRamRead(&RXStatusReg, 1);

} // if (status & I2CHW_RD COMPLETE)

C.3 comparator.c

This code is used set the output voltage of the digital-to-analog converter which
drives the four external comparators. Additionally, it controls the two comparators
internal to the PSoC.

#include <msc.h> // part specific constants and macros

#include "PSoCAPI.h" // PSoC API definitions for all User Modules

#define _comparator_

#include "comparator.h"

#undef _comparator_

void startAllComparators (char vref)

/*

The routine ensures that all 6 comparators are operating so that the analog

voltages produced by the IR photodiodes are converted to valid logic levels.

The routine can also be called to change the threshold values of the

comparators even if they are already operating.

*/

CMPPRGC_LStart(CMPPRG._ HIGHPOWER);

//Start the internal comparators

CMPPRG_2_Start (CMPPRG_2_HIGHPOWER);

219

DAC8.Start(DAC8_HIGHPOWER) ;

DAC8_WriteStall (vref);

setCompRefVoltage (vref);

//Start DAC to provide reference for 4 external comparators

//Write the specified value to the DAC

//Configure the 2 internal comparators

void stopAllComparators (void)

{

Nothing special--just turnoff the DAC and the conmparators to conserver battery.

CMPPRG_1_Stop() ;

CMPPRG_2_Stop() ;

DAC8_Stop() ;

//Stop the 2 internal comparators

//Stop the DAC which provides the reference voltage

//for the 4 external comparators

setCompRefVoltage (char vref)

/*

The internal comparators only have 18 possible threshold values. As a

result, we have to take the reference voltage passed to the function which

ranges from 0 to 255 and estimate it using a fixed set of 18 values. The

approximation below assumes that the low refernece of the comparator is VSS,

and the high reference, which is impossible to change is VCC. It would be

possible to change the low reference to AGND, but this would require a

completely new set of if statements.

if (vref <= 8)

{ CMPPRG_1.SetRef (CMPPRG_1_REFO_021) ;

else if (vref <- 13)

{ CMPPRG_1.SetRef (CMPPRG IREFO_042) ;

else if (vref <- 24)

{ CMPPRG__LSetRef(CNPPRG__1REF0O_062) ;

else if (vref <= 40)

{ CMPPRG_1_SetReff(CMPPRGIREFO_125) ;

else if (vref <- 56)

{ CMPPRG_lSetRef(CMPPRGC__REFO_188) ;

else if (vref <= 72)

{ CMPPRG.l_SetRef (CMPPRG__REFO_250) ;

else if (vref <= 88)

{ CMPPRGC__SetRef(CMPPRG__REFO_312) ;

else if (vref <= 104)

{ CMPPRG_ISetRef(CMPPRG_LREFO_375);

else if (vref <- 119)

{ CMPPRG_i_SetRef(CMPPRG_1.REFO_437);

else if (vref <- 135)

{ CMPPRG_1_SetRef (CMPPRG_&_REF0_500) ;

else if (vref <= 151)

{ CMPPRGC__SetRef (CMPPRG_I_REFO_562);

else if (vref <= 167)

{ CMPPRG_I_SetRef (CMPPRC_.REF0_625);

else if (vref <- 183)

{ CMPPRC_1_SetRef (CMPPRG_.REFO_688) ;

else if (vref <= 199)

{ CMPPRG_1SetRef (CMPPRGjIREFO_750) ;

else if (vref <= 215)

{ CMPPRGc_.SetRef (CMPPRG_ N REOF_812);

CMPPRG.2_SetRef(CMPPRG.2_.REFO.021); }

CMPPRG_2.SetRef (CMPPRG_2.REF•O042); }

CMPPRG_2_SetRef (CMPPRG_2_REFO0062); }

CMPPRG_2_SetRef(CMPPRG_2_REFO 125); }

CMPPRG_2_SetRef (CMPPRG_2_REFO 188); }

CMPPRG_2_SetRef (CMPPRG2_2 _EFO_250); }

CMPPRG_2_SetRef (CMPPRG_2_REFO_312); I

CMPPRG_2_SetRef (CMPPRG_2_REF0O_375); I

CHPPRG_2_SetRef (CMPPRG2_2_REF 437); }

CMPPRG_2_SetRef (CMPPRG.2_REFO_500); I

CMPPRG_2.SetRef (CMPPRG,2_REFO_562); I

CMPPRG_2_SetRef (CMPPRG.2_REFO0625); I

CMPPRGC2_SetRef (CMPPRG-2_REFO_688); I

CMPPRG._2SetRef (CMPPRG2_REFO0750); I

CMPPRGC2_SetRef (CMPPRG&2_REFO_812); I

220

else if (vref <- 231)

-C CMPPRG_1_SetRef (CMPPRGI_REF0..875); CMPPRG_2_SetRef (CMPPRG_2_REF0_875); }

else if ,vref <- 247)

, CMPPRG_1_SetRef (CMPPRG__LREFO.937); CMPPRG 2_SetRef (CMPPRG_2_REF0_937); }

else

{ CNPPRG1_SetRef (CMPPRG l_REFI_000); CMPPRG.2_SetRef (CMPPRG_2_REFl_000); }

C.4 tx.c
This code is used to switch the output of the digital multiplexer and redirect the
RS-232 data stream to a particular face.

#include <m8c.h>

#include "PSoCAPI.h"

void initTxSys()

DBBOIOU = OxO0;
DBB11OU = Ox00;

PRT2DR - Ox00;

PRT2GS = Ox03;

DigBuf_1_Start();

DigBuf_2.Start() ;

// part specific constants and macros

// PSoC API definitions for all User Modules

// P2 pins default to low when not driven by global bus

// P2[7-23 default to not being driven by global bus

void switchTXChannel(char channel) {

/*

Given a channel (1-6), procedure flips bits in the output

registers of DBBO1 and DBB11--the two basic digital blocks

configured as buffers. For each register, bit 1 enables

buffer 1. Bits 1:0 select which row output the input 1 is

redirected to. <00> redirects to output row 0, etc.

DBB01 is use for TX1 and TX2 channels. DBB11 is used for

TX3-TX6. Only channel can be transmitting at once. (This

may be changed in future revisions of software.)

Pass a parameter outside of the 1-6 range in order to turn off

all transmitters.

*/

switch (channel) {

case 1:

DBBIOU 1- Ox00;

DBBOIOU = Ox06;

PRT2GS - Ox07;

break;

case 2:

DBB11OU = Ox00;

DBB010U - Ox07;

PRT2GS = OxOB;

break;

case 3:

DBBOO1U = Ox00;

221

DBBI1OU - Ox04;

PRT2GS 0Oxi3;

break;

case 4:

DBBOIOU = OxO0;

DBB11OU - Ox05;

PRT2GS - 0x23;

break;

case 5:

DBB010U - OxO0;

DBB11OU , Ox06;

PRT2GS = Ox43;

break;

case 6:

DBBOIOU = OxO0;

DBB11OU = Ox07;

PRT2GS = 0x83;

break;

default:

DBBOIOU - O0x0;

DBB11OU = Ox00;

PRT2GS = Ox03;

break;

C.5 rx.c
This code initializes the six RS-232 receivers and their associated buffers.

#include <m8c.h>

#include "PSoCAPI.h"

#define _rx_

#include "rx.h"

#undef _rx_

#include "comparator.h"

void initRxSys O

{
BYTE threshold;

// part specific constants and macros
// PSoC API definitions for all User Modules

PWM8_StartO; // PWM for UAR's (RX8_1, etc.)

RX8_1_Start (RX8__PARITYNONE);

RX8_IEnableIntO ;

RX8_lMsgSize = 0;

RX8_I CmdResetO;

RX8 2_Start (RX8_2_PARITYNONE);

RX8_2_EnableInt O ;

RX8_2_MsgSize = 0;

RX8_2_CmdResetO;

RX8_3_Start(RX8_3_PARITY_NONE);

RX8_3_EnableInt O ;

RX8_3_MsgSize = 0;

// start the receiver (no parity bit)

// necessary for the high-level command handling APT

// indicate 0 initial message size to prevent the ARM

// from reading junk data

// reset the command buffer

222

RX8_3_CmdResetO;

RX8_4_St;rt (RX8_4_PARITYNONE);

RX8_4.EnableIntO;

RX8_4_MsgSize = 0;

RX8_4_CmdReset() ;

RX85_Start (RX8_5_PARITY_NONE);

R18.5_EnableInt) ;

RX8_5_MsgSize = 0;

RX8_5 CmdReset ;

RX8_6_Start (RX8_5_PARITY_NONE);

RX8_6 EnablelntO ;

RX8_6_MsgSize = 0;

RX8_6_CmdReset ;

E2PROM_E2Read(O, &threshold, 1);

startAllComparators(threshold);

C.6 hall.c
This code controls the analog-to-digital converter used to sample the values produced
by the Hall Effect sensors.

#include <m8c.h>

#include <e2prom.h>

#include "amux4.h"

#include "adc.h"

*define -hall-

#include "hall.h"

#undef _hall_

unsigned char ADCResult; // the ADC ISR stores data here so that it

// can be accessed by the 12C subsystem

void startADC(char channel)

{
stopADCO; // stop the ADC if it was already operating

AMUX4_StartO; // analog mux allows channel selection

if ((channel >- 4) II (channel <= 6)) {

// only allow selection of valid channels

switchHallChannel(channel);

// select the correct input channnel

ADC Start(ADC_HIGHPOWER);

// start the ADC

ADCfClearFlagO; // invalidate any previous samples

ADC_GetSamples (O); // sample forever

void switchHallChannel(char channel)

{
AMUX4-InputSelect(channel - 3); // from the mux's perspective, valid

223

// channels are 0-3 (channel 0 is RXAN2)

// and 1-3 map to Hall4. Hall5, and Hall6,

// respectively

void stopADC (void)

ADCfClearFlagO;

ADC.StopO;

// indicate that any old data is no longer valid

// turn off the ADC

224

Bibliography

[1] Andres Castano, Alberto Behar, and Peter Will. The conro modules for recon-

figurable robots. IEEE Transactions on Mechatronics, 7(4):403-409, December

2002.

[2] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Intro-

duction to Algorithms. MIT Press, second edition, 2001.

[3] National Semiconductor Corporation. LP3981: Micropower, 300mA Ulta Low-

Dropout CMOS Voltage Regulator, April 2005. Document No. DS200203.

[4] ON Semiconductor Corporation. NCP561: 150mA CMOS Low Iq Low-Dropout

Voltage Regulator, July 2004. Publication Order No. NCP561/D.

[5] Akiya Kamimura, Haruhisa Kurokawa, Eiichi Yoshida, Satoshi Murata, Kohji

Tomita, and Shigeru Kokaji. Automatic locomotion design and experiments for a

modular robotic system. IEEE/ASME Transactions on Mechatronics, 10(3):314-

325, June 2005.

[6] Michihiko Koseki, Kengo Minami, and Norio Inou. Cellular robots forming a

mechanical structure (evaluation of structural formation and hardware design

of "chobie ii"). In Proceedings of 7th International Symposium on Distributed

Autonomous Robotic Systems (DARS04), pages 131-140, June 2004.

[7] Efstathios Mytilinaios, David Marcus, Mark Desnoyer, and Hod Lipson. De-

signed and evolved blueprints for physical self-replicating machines. In Ninth

International Conference on Artificial Life (ALIFE IX), pages 15-20, 2004.

225

[8] Daniela Rus and Marsette Vona. Crystalline robots: Self-reconfiguration

with compressible unit modules. International Journal of Robotics Research,

22(9):699-715, 2003.

[9] Cypress Semiconductor. PSoC Mixed Signal Array Final Data Sheet:

CY8C29466, CY8C29566, CY8C29666, and CY8C29866, November 2004. Doc-

ument No. 38-12013 Rev. *G.

[10] Philips Semiconductors. The P C-Bus Specification, Version 2.1, January 2000.

Document Order No. 9398 393 40011.

[11] Philips Semiconductors. LPC2106/2105/2104 User Manual, September 2003.

[12] Solarbotics. Gml5-gear motor 15-25:1 6mm planetary gear pager motor.

http://www.solarbotics.com/products/index.php?scdfa-250100084-viewDetail-

productzq3945zq4categoryzq37=true, June 2006.

[13] Paul White, Victor Zykov, Josh Bongard, and Hod Lipson. Three dimensional

stochastic reconfiguration of modular robots. In Robotics Science and Systems.

MIT, June 8-10 2005.

[14] Mark Yim, Ying Zhang, Kimon Roufas, David Duff, and Craig Eldershaw. Con-

necting and disconnecting for self-reconfiguration with polybot. In IEEE/ASME

Transaction on Mechatronics, special issue on Information Technology in Mecha-

tronics, 2003.

[15] Eiichi Yoshida, Shigeru Kokaji, Satoshi Murata, Kohji Tomita, and Haruhisa

Kurokawa. Micro self-reconfigurable robot using shape memory alloy. Journal

of Robotics and Mechatronics, 13(2):212-219, 2001.

[16] Eiichi Yoshida, Satoshi Murata, Shigeru Kokaji, Akiya Kamimura, Kohji Tomita,

and Haruhisa Kurokawa. Get back in shape! a hardware prototype self-

reconfigurable modular microrobot that uses shape memory alloy. IEEE Robotics

and Automation Magazine, 9(4):54-60, 2002.

226

