
Sensor Design and Feedback Motor Control For

Two Dimensional Linear Motors

by

Douglas Stewart Crawford

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1995

@ Massachusetts Institute of Technology 1995. All rights reserved.

A uthor

Department of Mechanical Engineering
May 18, 1995

Certified by............. .. .-...
Kamal Youcef-Toumi

Associate Professor
Thesis Supervisor

Accepted by........ --

Dr. Ain A. Sonin
Chairman, Departmental Committee on Graduate Students

..iASSAC1HUSETTS INSTITUTE
OF TECHNOLOGY

AUG 31 1995
I iaaARIES Didrar rnr

Sensor Design and Feedback Motor Control For Two

Dimensional Linear Motors

by

Douglas Stewart Crawford

Submitted to the Department of Mechanical Engineering
on May 18, 1995, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

A high speed flexible automation system based on a two dimensional Sawyer linear
motor is being developed at MIT. These motors are commercially available as stepper
motors with no means of directly controlling the commutation current. In this thesis,
I designed a two axis position and velocity sensor which measures the translational
and rotational movements of the motor. Using this sensor, a digital closed loop
controller was also implemented using a high speed digital signal processor. Under
servo control, the motor's dynamic performance can be optimized to produce greater
force and increased damping at high velocities.

Thesis Supervisor: Kamal Youcef-Toumi
Title: Associate Professor

Acknowledgments

I would like to thank Professor Kamal Youcef-Toumi for his support and understand-

ing throughout my stay at MIT. Kamal has always been very helpful and I feel he is

one of the friendliest teachers I know.

I would also like to thank Francis Wong who provided much encouragement and

helped me me whenever I had questions. I could not have completed this thesis

without his guidance, especially during the early stages of the project.

As with many long projects, the work load seemed to double near the finishing

stages. Luckily, I had help from Wayne, Ed and Jose during those final days. You

guys were a big help and really made the project enjoyable and fun. I hope Jose and

Ed have good success as they continue research on the motor. I wish all of you good

luck.

I would like to give special thanks to my girlfriend, Holly, for always being there

for me. She always gave me hope even during those late nights when I felt stuck and

didn't know what to do. I love you, Holly.

Thanks to previous students Henning, and Hiroyuki. Henning's continued support

on the project made Francis's and my lives much easier. Two people who put in extra

effort to help me finish are Leslie Regan and Fred Cote. I thank you both for your

support.

Finally, I would like to thank my family. I could not have finished this thesis

without their reassurement and encouragement.

Contents

1 Introduction 12

1.1 Industrial Application 12

1.2 Linear Motor Operation 14

1.3 Advantages of Feedback Motor Control 20

1.4 Thesis Content 21

2 Inductive Sensor Design 22

2.1 Selection of Sensor Technology 22

2.1.1 Capacitive Sensors 23

2.1.2 Optical Sensors 24

2.1.3 Inductive Sensors 25

2.2 Inductive Sensing Element 27

2.2.1 Sensor Output 28

2.2.2 Air Gap Variations 32

2.3 Dual Core Inductive Sensor Design 33

2.3.1 Signal Processing and Calibration 35

2.3.2 Inductive Harmonic Cancelation 36

2.4 Sum m ary 37

3 Sensor Modeling and Simulation 38

3.1 Modeling Techniques 38

3.1.1 Magnetic Domain 38

3.1.2 Electrical Domain 40

3.2 Sensor Dynamics and Parameter Design

3.3 Sum m ary .

4 Position Detection

4.1 Signal Processing Techniques

4.1.1 Demodulation and Calibration.

4.1.2 Digital ATAN Processing

4.1.3 Inductosyn to Digital Converter

4.1.4 DSP Based Tracking Converter

4.2 Relative Position Sensing Performance

4.2.1 Experimental Results

4.3 Summary

5 Feedback Motor Control

5.1 Control Hardware

5.2 High Level Control

5.2.1 Trajectory Generation

5.3 Closed Loop Control

5.3.1 Commutation

5.3.2 PD Current Control

5.3.3 Variable Lead Angle Control

5.4 Experimental Results

5.4.1 High Speed Performance

5.4.2 Velocity Ripple

5.4.3 Two Dimensional Motor Performance

5.5 Summary

6 Conclusion

A Modeling Parameters

A.1 Calculation of Sensor Core Reluctance

A.2 Air Gap Reluctance

46

46

46

47

48

50

54

54

56

59

59

60

61

62

63

65

68

69

69

70

73

.. 77

78

80

80

82

A.3 Estimation of Coil Inductance 84

B Sensor Fabrication 85

C System Hardware 89

C.1 Connection Diagrams 91

D Simulation Codes 98

E DSP Based Motor Controller 101

List of Figures

Linear Motor Configuration

Cross section of a one dimensional linear motor

simple model of magnetic field

Force vs. Displacement curve

Layout of a two dimensional linear motor

Comb shaped Capacitive Transducer . . .

Photo Detector Sensing System

Inductosyn Sensor [Slocum 1992]

Previous Inductive Sensor

Current Inductive Sensing Element

Sensor Output Traveling at 100 pitch/sec .

Synchronous Demodulator

Sensor Cores and Mount

2-9 Signal Conditioning Circuitry for the Dual Co

. . . 13

. . . 15

. . . 16

. . . 19

. . . 20

. 23

. 24

. 26

. 27

. 28

. 29

. 30

.. 33

re Sensor 36

Magnetic Circuit Diagram of Sensor Core

Frequency Response Veecondar
Vprimary

Sensitivity vs Carrier frequency

Sensitivity vs. Sensor Thickness

Position Output Traveling at 50pitch/s

Diagram of Inductosyn to Digital Converter Chip . . .

Converter chip and Related Circuitry

. 39

. 42

. 43

. 45

1-1

1-2

1-3

1-4

1-5

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

3-1

3-2

3-3

3-4

4-1

4-2

4-3

4-4 Block Diagram of Position Detection simulation 54

4-5 Experimental Setup to Test Inductive Sensor Along One Axis 55

4-6 Position Output using Arctangent Algorithm 57

4-7 Position Output using Software Based Tracking Algorithm 57

4-8 Position Error Between Inductive Sensor and LVDT 58

4-9 Position Output using Inductosyn to Digital Converter Chip 58

5-1 System Configuration for the Linear Motor 60

5-2 Sample Constant Acceleration Profile 62

5-3 Timing Diagram for DSP Processors 64

5-4 Sensor Attachments for Rotation Control 65

5-5 Position Response to a Step Input with a Constant lead Angle 66

5-6 Filtered Velocity Response to a Step Input, Constant lead Angle . . . 67

5-7 Near Optimal Lead Angle Functions 69

5-8 High Speed Motor Performance (Position Response) 70

5-9 High Speed Motor Performance (Velocity Response) 71

5-10 Constant Velocity Motor Performance (raw velocity signal) 72

5-11 Frequency Spectrum of Velocity Signal (Nominal Motor Speed-100 p/s) 73

5-12 Motion along Y axis, sensor reading from X axis (open loop) 75

5-13 Motion along Y axis, sensor reading from X axis (closed loop) 75

5-14 Motion along X and Y axis, sensor reading from X and Y axis 76

5-15 Motion along X and Y axis, sensor reading from X and Y axis 76

A-1 Detailed Sensor Geometry 81

B-1 Motor Housing for Dual Core Inductive Sensor 87

B-2 Picture of Sensor Housing and two Sensor Cores 88

C-1 Connection Diagram for Sensor 92

C-2 Circuit Diagram for Sensor 93

C-3 Connection Diagram for Circuit Box 94

C-4 Connection Diagram for UD12 PWM Amplifier 95

C-5 Connection Diagram for Single Motor Wiring Harness 96

C-6 Connection Diagram for Quad Motor Wiring Harness 97

Chapter 1

Introduction

1.1 Industrial Application

A high speed two dimensional linear motor system is being developed at MIT's Lab-

oratory for Manufacturing Productivity. The motor is designed to fulfill the require-

ments for a high precision and high speed X-Y positioning device. Two dimensional

positioning systems are designed to serve a variety of applications including pick and

place robotics and other manufacturing tasks. In particular, the linear motor at MIT

is aimed toward the development of a high speed flexible palletizer.

Palletizing is a common term in industry used to describe the process of stacking

boxes or cans onto palets which are easily loaded onto trucks for shipping. A "flexible"

palletizer can easily accommodate different palets or stacking arrangements without

complex hardware changes. Since both high speed and high reliability are essential

to this task, the two dimensional linear motor offers a good solution.

A linear motor system consists of a moving forcer or armature which rides upon a

stationary platen. The forcer is separated from the platen by a small air gap, which is

maintained by either ball bearings or, as in our case, a high pressure air bearing. With

the air bearing, the motor offers near frictionless travel, and eliminates all rotating

and sliding surfaces.

Conventional methods of producing two dimensional linear motion usually involve

two sets of rotary motors attached to either lead screws, belts, or gears. There are

several disadvantages to these types of motion systems. The overall accuracy can

deteriorate due to wear. Lead screws and belts introduce backlash and free play into

the system. Since linear motors don't have any complex moving parts, these problems

are eliminated. Also, conventional positioning systems are usually limited to one

manipulator within the allowable motion range. In a linear motor system, multiple

forcers can operate simultaneously on the same platen for increased efficiency.

A diagram of the linear motor system currently being used at MIT is shown in

figure 1-1. The overall platen area is 51 in. by 36 in., and the forcer is 7 in. square.

As shown in the figure, the forcer is mounted upside down such that an end effector

can be mounted to the bottom of the motor. A permanent hold down magnet within

the motor causes an attracting force between the motor and the platen, while the air

bearing produces a repelling force. The force produced by the air bearing decreases

significantly as the air gap distance is increased. Therefore, the air gap distance is

maintained relatively constant.

Figure 1-1: Linear Motor Configuration

Currently, there are no two dimensional linear motors in production which include

an integral feedback device. Without feedback, the linear motor runs in stepper mode,

or open loop mode. My project is concerned with designing a feedback sensor which

measures the position and velocity in both the X and Y directions. Rather than

redesign an existing motor, my thesis will focus on sensor development as a method

of improving motor performance.

The sensing system is mounted directly to the motor itself, which consists of a

separate sensor for the X axis the Y axis. Under this setup, the current state of

the motor can accurately be measured. This feedback information can then be used

to improve the dynamic characteristics of the existing motor. In order to better

understand the dynamics of both the forcer and the sensor, it is important to have

some knowledge of how linear motors operate.

1.2 Linear Motor Operation

All linear motors operate on top of a platen, which in simply a magnetic steel track

with grooves cut across the surface for single dimensional motors. The distance

between two consecutive crests or valleys is commonly referred to as one pitch. Figure

1-2 shows a side view of a one dimensional platen and motor. This figure shows the

cross section for a typical Sawyer linear motor [13]. This is a two phase motor which

consists of two force generating cores which are offset from each other by an integral

number of pitches plus 1 pitch.

As illustrated in the diagram, the motor consists of two phases which are 90

degrees, or 1 pitch apart. Each phase has a permanent magnet joining two steel cores

which are wound with electrical windings. Both the magnet and the windings serve

to generate magnetic flux which travels through the core armatures and the platen

base, and also through the air gap which separates the motor and the platen. The

ridges and grooves on the motor, and the platen ridges can also be referred to as the

motor teeth and the platen teeth.

The underlying physical property of this type of motor is that the reluctance,

which can be regarded as an energy storage element for magnetic flux, changes as the

motor moves along the platen. For this reason, stepper motors are also called variable

reluctance motors. If the platen teeth and the motor teeth are aligned, the reluctance

is at a minimum. If they are 1 of a pitch apart, the reluctance is at a maximum. In

Figure 1-2: Cross section of a one dimensional linear motor

this respect, the linear motor is very similar to a rotary motor. The rotor is analogous

to the linear motor core and the stator is analogous to the platen. Also, position in

a linear motor can be substituted for angle in a rotary motor. Likewise, force can be

substituted for torque.

By supplying the appropriate currents to phase A and phase B of the motor,

linear motion in either direction can be produced. Figure 1-2 also explains how the

motor travels when it is driven using cardinal steps, or 1 pitch increments. In the

first step, the current in phase B is applied producing enough magnetic flux to cancel

the flux generated by the permanent magnet in poles 5 and 7. Under this magnetic

field, the motor will align itself such that the magnetic reluctance is minimized, which

TM -- A bL- -,

corresponds to the first step in figure 1-2. Next, the current in phase B is switched

off and the current in phase A is switched on. This causes the motor to move a1

pitch increment to the left. For another 1 pitch increment, phase A is switched off

and phase B is switched on in the opposite direction. Finally, to travel one complete

pitch phase B is switched off and phase A is switched on in the opposite direction.

In practice, however, the currents are not switched on and off. Instead, phase A

is supplied with a sine current and phase B is supplied with a cosine current. With

this type of control, the motor can be micro stepped along the platen. Theoretically,

the resolution of the sine input will determine the resolution of the motor within

one pitch. It is important to note that motor operation is cyclical for each pitch.

Therefore the average motor velocity is proportional to the frequency of the sine and

cosine driver currents.

Up to now, no mention of how much force the motor can generate has been made.

Figure 1-3 illustrates a simple model for one motor tooth.

WE pitch

Figure 1-3: simple model of magnetic field

Using this model, a simple equation for the energy stored in the air gap can be

written as the following:

E, = 2 I2 (I.

where (D is the flux through the motor tooth, and R, is the varying air gap reluc-

tance. A simple approximation of the air gap reluctance shows that it varies almost

sinusoidally with the platen pitch. A function for IR, therefore is:

Rlg = [Ro + kg sin 2rx (1.2)

where R, is the average air gap reluctance, and kg is the air gap reluctance amplitude.

The tangential force which is produced by displacement is

ME 1 BVR9
F= - _ - 2 (1.3)

Ox 2 Ox

The sawyer linear motor is designed such that the flux path through the motor core is

premagnetized with a permanent magnet. One of the reasons for using a permanent

magnet is to reduce hysteresis losses which occur when the flux path changes from

forward to reverse. Since, the maximum flux generated by the electric coil is designed

to be equal to the flux generated by the permanent magnet, the resulting flux path

through the motor core flows in one direction. Assuming the Reluctance through the

magnet is negligible, the resulting flux through the tooth is

Smagnet coil

mg= + (1.4)
2 2

where

,magnet = flux produced by permanent magnet

@(prim,,, = flux produced by electric coil

Substituting (1.4) into equation (1.3) results in the force output for one tooth which

can be written as

F = -(4magnet + ()coi) 7r k g s 2 (1.5)4p p
By summing equation (1.5) for each tooth, the total force per axis can be calculated.

Rather than re-derive the equations, the reader is referred to previous thesis' con-

taining detailed derivations [13, 21]. After summing the separate equations, the force

relation simplifies into

p p

where 'magnet is the flux caused by the permanent magnet, and ýcoil is the flux

generated by the sinusoidal control currents with frequency w. An important quantity

is ?P or the lead angle which is expressed as:

W= t - - (1.7)

The lead angle can be thought of as the phase advance of the magnetic field relative to

the instantaneous motor position. It is important to note that the force is maximized

when this quantity is equal to 900.

The influence of the lead angle is better illustrated in the force vs. displacement

curve shown in figure 1-4. As the graph points out, the maximum force is reached

when the motor is displaced 1 pitch or 90 degrees. Beyond that, the force decreases

and the motor will seek a new equilibrium position. This brings up the important

point of stalling. When the motor is run, the driving currents will attempt to produce

a magnetic field which is 90 degrees ahead of the instantaneous motor position. If

this angle is less than 90 degrees the motor won't be producing it's maximum force.

However, if the lead angle is greater than 90 degrees, then the motor will seek a

different equilibrium position and loose synchronism with the controller. This loss of

synchronism leads to stalling and causes the motor to stop abruptly. It should be

noted, that the optimal lead angle of 90 degrees is only true when the motor is static

or traveling at low speeds. When the motor is moving at high speeds, other effects

Linear Region

Figure 1-4: Force vs. Displacement curve

such as saturation become significant and can change the force vs. displacement

curve.

All of the force generation principles and dynamic equations also carry over to the

two dimensional case. A two dimensional forcer is basically made of one dimensional

cores arranged along the X and Y axes. Figure 1-5 illustrates a cut away view of a

two dimensional linear motor and platen. As mentioned earlier, the force from the

air bearing opposes the force from the hold down magnet in order to produce the

necessary air gap. The main difference between the single dimension case is that now

the platen is a grid of cubes in a waffle pattern, rather than an array of ridges. In

all other aspects, the two dimensional forcer operates in the same manner as a one

dimensional motor.

Once the basic theory of operation is understood, the next step is to investigate

how motor performance can be improved. One approach is to optimize the physical

geometry of the motor cores. On the other hand, significant gains in performance can

also be realized by optimizing the control currents which are used to drive the motor.

Although there are open loop optimizations which can be used to achieve small gains,

the optimal motor performance can only be achieved through closed loop, feedback

control.

Figure 1-5: Layout of a two dimensional linear motor

1.3 Advantages of Feedback Motor Control

As noted earlier, stalling occurs when the lead angle is greater than 90 degrees. The

problem with open loop control is that the controller has no sense of where the motor

is in relation to the platen, and may command a lead angle which is in fact higher

than 90 degrees. Under closed loop control, the computer will continually monitor the

motor's position and supply control currents such that the lead angle is maintained

at 90 degrees. This inherently eliminates the possibility of stalling.

Besides linear X and Y motion, a two dimensional forcer also has a third rotational

degree of freedom about the Z axis. Figure 1-5 illustrates how the cores are arranged

such that no force imbalance or torque is produced under normal operation. However,

an unbalanced payload can generate an external moment and twist the motor until

a stall condition occurs. Using a sensing system which measures rotational displace-

ments, it is possible to send the appropriate currents to either the left or right half of

the motor such that the external torque is counter balanced.

Another problem with open loop control is heat dissipation. When a linear motor

is driven under open loop, the control currents remain at a constant amplitude even

if the motor is stationary. These high currents cause the motor to generate excessive

heat which can damage both the motor and the platen. On the other hand, a controller

operating under closed loop control will only produce enough current to achieve the

required force. When the motor is at rest, the currents will correspondingly go to

zero.

Finally, one of the most important reasons to use feedback control is to improve

the dynamic performance of the motor. For example, the linear motor at MIT is

supported by an air bearing, which results in extremely low frictional resistance.

For the most part, this is beneficial but it also contributes to the forcer's low natural

damping which can leads to undesired oscillations. With sensor feedback, it is possible

to increase the damping ratio, and thus adjust the dynamic characteristics of the

motor.

1.4 Thesis Content

The goal of this thesis is to design and fabricate a position and velocity sensing system

for a two dimensional linear motor, and design a closed loop, real time feedback

controller.

Chapter 2 briefly mentions different sensing technologies and then describes in

detail the inductive sensing element which is used in the current version of the sensor.

Chapter 3 describes the modeling techniques and presents some simulation results.

Chapter 4 concentrates on position and velocity detection both from the hardware and

software point of view. The closed loop controller for both the two dimensional motor

is presented in chapter 5. Finally, chapter 6 offers conclusions and recommendations

for further work.

Chapter 2

Inductive Sensor Design

This chapter presents several different types of linear displacement transducers and

the design methodology used to develop the inductive sensor. Finally, the modified

dual core sensor design is described along with it's improvements in performance and

robustness.

2.1 Selection of Sensor Technology

One of the most critical aspects to any positioning system is the quality of the feedback

signal. This section describes several types of non contact sensing systems suitable

for high precision applications. In order to design an ideal sensor, it is first necessary

to define some general qualities which can be used to characterize any sensor.

A sensor's resolution determines the smallest physical change which can be de-

tected. The difference between the measured value and the actual value is determined

by the accuracy. The maximum rate of change of the input at which the sensor is still

accurate is called the slew rate. Repeatability is the consistency of several measured

values for the same input value.

Currently, there are one dimensional linear motors in production that include

position and velocity sensors, however, these only operate along one axis. One di-

mensional motors usually rely on sensors which measure displacements relative to a

fixed scale or ruler. This technology, however, is not applicable for a two dimensional

forcer because position measurements are limited to the fixed scale. Before a new

sensor can be designed, however, we must first investigate and select an appropriate

sensing mechanism.

2.1.1 Capacitive Sensors

A linear capacitive transducer relies on the change in capacitance between two parallel

plates. The capacitance is proportional to the change in area between the two plates

and can be written as:

C = AE, (2.1)

A is the surface area between the two plates and d is the distance separating each

plate. r~ and Eo are the dielectric and permeability constants respectively. Figure

2-1 describes how two plates could be fabricated such that linear motion produces a

detectable change in the capacitance [12]. As shown in the figure, the capacitance will

change cyclically as the electrodes on the moving plate move in and out of alignment

with the electrodes on the fixed plate. The dielectric layer is used to increase the

amplitude of the total capacitance change.

liectroae Layer Jlelectrlc Layer

Figure 2-1: Comb shaped Capacitive Transducer

This type of system could be applied to two dimensional linear motors and in

fact, an attempt to do so has already been made. Reference [16] describes how to use

the linear motor cores themselves as the capacitive sensing elements. The problem

with capacitive sensors is their extreme sensitivity to environmental changes. One

might believe that the . in equation 2.1 is always constant. However, this is not the

case. Small changes in humidity or temperature can significantly affect this value.

Sensor
fiberoptic bundl

Light Detector ---- Light Source

Platen

Figure 2-2: Photo Detector Sensing System

In a controlled, clean room environment this might be acceptable. But, in most

common industrial settings, such as automated palletizing, environmental changes

are common, making capacitive sensors a poor choice for high repeatability.

2.1.2 Optical Sensors

Optical sensors can be split into two groups, those involving photo detectors and

photo diodes, and sensors which use the wavelength of light to measure displacements.

A photo detector is switched on or off depending on if it senses transmitted light.

Usually, a light source sends a beam of light off of a reflecting surface where it is

sensed by a photo detector. Reference [4] describes an optical sensing system of this

type for use on a linear motor. Figure 2-2 explains in more detail how the sensor

works.

As shown in the figure, the light source and detecting elements are made of bundled

fiber optics. The detector operates by sensing the reflectivity of the platen surface

which changes from crest to valley. It is important to note that the sensor has a

thickness t that extends into the page and that the beam of light is produced along

a narrow slit. To ensure that the sensor detects changes only along one direction,

the value of t should be equal to an integral number of pitches. Thus, if a two

dimensional waffle platen is used, any motion normal to the sensor's intended sense

direction should not produce a change in the output.

The main downfall of this sensor is it's resolution. The detector can only determine

if the sensor is over a crest, or a valley, or a transition region. This limits the output

of the device to only three discrete states. To meat the requirements of electronic

commutation and closed loop servo control, the sensor must have a much higher

resolution within one pitch.

An optical sensor which offers ultimate performance in terms of resolution is the

laser interferometer. This sensor directs a laser beam to the object which is to be

measured. The reflected beam is combined with the original reference beam and

the constructive and destructive interference is measured. Because all displacement

measurements are based on the wavelength of light, this system offers one of the

highest resolutions of any sensor.

One major drawback is the cost for an interferometer. Another is the fact that

the measurements are dependent on the reflected light from the forcer rather than

being an integral component of the motor. One of the advantages of the linear motor,

is that multiple forcers can operate on the same platen. If one motor were to pass in

front of a beam used by a second motor, it would damage the feedback signal for the

second motor.

2.1.3 Inductive Sensors

Inductive sensors use the principles of electro magnetic induction to sense position

and velocity. The induced voltage in a N turn coil is equal to the rate of change of

magnetic flux and can be expressed as:

d~B
V = -N (2.2)

dt

One particular sensor which can be used with one dimensional linear motors is

the Inductosyn made by Farrand Controls Inc. The Inductosyn consists of a fixed

scale and a moving slider. Figure 2-3 illustrates the arrangement of the slider [3]. A

primary AC voltage is applied to the scale and two secondary coils are wound around

poles on the slider. The reluctance between the poles on the slider and the scale varies

sinusoidally, and each pole is offset from one another by 1/4pitch. This produces two

.11,iul

Scale

I I

7LVJ7 [LFL] Slider

Two windings 90 degree out of phase

Figure 2-3: Inductosyn Sensor [Slocum 1992]

secondary output signals of the following form:

V1 = A sin(wt) sin 2 x (2.3)

V2 = A sin(wt) cos (2-) (2.4)

x is the displacement of the slider, w is the frequency of the primary or carrier

voltage, and p is the distance of one pitch. The two outputs are 90 degrees apart or

in quadrature which enables the sensor to determine not only position, but direction

of travel as well.

Inductosyns are extremely rugged. They can withstand temperature changes from

100K to 1800C and have resolutions down to 0.5 pm [19]. The problem with an

Inductosyn is that the sensing is limited to a fixed one dimensional track. Also, a two

dimensional platen could not be energized in the same manner as a one dimensional

scale. In order to meet the requirements of a two dimensional system, a new sensor

must be developed.

2.2 Inductive Sensing Element

Figure 2-4 illustrates one of the first sensors which was developed by previous stu-

dents [9]. The design is similar to an Inductosyn except the primary voltage energizes

the sensor rather than the track. This eliminates the dependence on a fixed one di-

mensional scale and allows freedom of motion in two dimensions. It is important to

note that the primary coil is energized by an alternating voltage source, rather than

a constant voltage source. If we recall Faraday's law, the induced voltage in the sec-

ondary coil is proportional to the rate of change of magnetic flux. A constant current

primary, or a permanent magnet will produce a constant magnetic flux. Therefore the

induced current in the secondary coils would be zero when the sensor is stationary,

and change only when the sensor is moving. This design would be limited to velocity

sensing and could not directly measure position.

Vin Primary coil

rr

Vout

Secondary coil

U K l Li
Platen

Figure 2-4: Previous Inductive Sensor

In order to obtain the maximum reluctance change, the secondary cores are me-

chanically displaced 1 pitch from each other. However, this design can can not distinguish

which direction the sensor is moving. By using an offset of 1 pitch, or 900, it is pos-

sible to measure both displacement and direction. An inductive sensing core which

uses this arrangement is described in figure 2-5 [5]. In this modified core, the central

legs (2 and 5) are mechanically displaced by an integral number of pitches plus 1

pitch. In other words, legs 2 and 5 have a 900 phase offset. Also, each of the side

Primary Coil

Figure 2-5: Current Inductive Sensing Element

legs (1 and 3)(4 and 6) are physically offset from the corresponding central legs by

an integral number of pitches plus 1 pitch. Unlike the first version, the new core is

fabricated from laminated magnetic steel sheets. This reduces eddy current losses,

or circulating magnetic flux lines into and out of the page. Eddy currents can cause

significant losses in the overall flux path and diminish the sensor's sensitivity.

The sensor acts like a linear motor in reverse. Rather than suppling a signal

to generate motion, the movement of the sensor will create an induced voltage in

the secondary coils. The underlying operating principle is the same. Position is

determined by measuring the reluctance change between the sensor teeth and the

platen teeth. A close examination of the sensor reveals that legs 1 and 2 are in phase

with each other, but are 1800 apart from leg 2. Likewise, legs 4 and 6 are also 1800

apart from leg 5. When one of the central legs, for example leg 2 is perfectly aligned

with the platen teeth, the induced voltage in the corresponding secondary coil will

increase. If leg 2 leg is 1800 out of alignment, more flux will travel through legs 1

and 3, and the the secondary voltage will decrease. The total flux path is always

conserved.

2.2.1 Sensor Output

As one might expect, the output from each secondary coil is an amplitude modulated

sinusoid, which corresponds to the sinusoidally varying air gap reluctance as described

by equation (1.2). The frequency of the sine wave is equal to the frequency of the

carrier signal, and the envelope of the output varies cyclically with each pitch. Figure

2-6 plots the output for both of the secondary coils. Notice that the envelope of one

output is displaced from the other by 900. This is due to the fact that legs 2 and 5

have a 4 pitch offset, or a 900 phase shift. The outputs from each coil suggest that

the envelope of the signal contains the position and velocity information.

0.4

S0.2
0

-0.2 :

-0.4
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

time (sec)

Figure 2-6: Sensor Output Traveling at 100 pitch/sec

Under ideal conditions, the signals can be expressed as

V = (v. + Vi sin 2-x) sin(wt)

2= (+ V2. cos _P) sin(wet) (2.5)

wc is the frequency of the carrier or primary, p is the length of one pitch, and x is the

sensor position within one pitch.

The first step in recovering the position, is to synchronously rectify and filter the

secondary output signals. Synchronous rectification, or demodulation, is performed

mathematically by multiplying the output signal with the primary input, and then

filtering the result as shown in figure 2-7. If, for example, one of the secondary outputs

is combined with the reference, the resulting signal takes the form of:

V = (V + V1, sin 1)(- cos2wct) (2.6)

A simple low pass filter will eliminate the high frequency term and allow only the

envelope of the input signal to pass.

Input
Signal Output

Low Pass

Reference FilterIh Signal

Figure 2-7: Synchronous Demodulator

Synchronous demodulation works well as long as the phase shift between the input

signal and the reference is small and constant. In practice, however, the secondary

output signals have a phase shift consisting of a constant term, 0,, and a variable

term, 0,, which depends on the angular position within one pitch, 1. The variablep
part of the phase shift, 0,, is also cyclic with each pitch. In other words, the secondary

signal has a variable amplitude and phase shift, both of which are repetitive with each

pitch. As mentioned earlier, due to the physical 1 pitch offset between the legs on the

sensor core, the output envelope of one secondary coil follows a sine while the other

follows a cosine. The same generalization can be applied to the variable phase shift

term, 0,, by including a f offset in the function for one of the secondary coils. It is

not necessary to know exactly how 0, varies with position. The only key concerns

are that the function varies cyclically with each pitch. Taking into account the phase

shift, the sensor signals can be more accurately described as:

Primary = sin (wet)

V1 = [lo +Vsin 2rx sin t + c+ (V))P p

2o x 2snx 7rV2 = V2 COS sin ±c v -(+ (2.7)

The constant part of the phase shift is on the order of 150 to 300 and is caused by

the inductance of the primary coil. The constant term, however, can be compensated

with phase shifting circuitry. The variable component is much smaller, on the order

of 1' to 30, yet it can still produce errors in the recovered position signal and is not

easily corrected using simple circuits.

To overcome this, an alternate method of demodulating the input signal is used

which compares the input signal to itself rather than with the reference. In practice,

the multiplier block shown in figure 2-7 is usually implemented in an analog com-

parator. The comparator does not actually multiply the signals, instead it uses the

reference signal to trigger either positive or negative amplification, thus producing

a rectified output. The problem with using the input signal as the trigger is that

the envelope of the input may go to zero in which case there would be no signal to

trigger the comparator. This is not a problem with our sensor signals, since the en-

velope always has an offset, and never goes to zero. Therefore, by using the sensor's

secondary output as both the input and the trigger, the signal can be demodulated

without phase shift errors.

Once the output has been demodulated and filtered, the resulting signal for each

of the secondary coils is an offset sine wave described by the equations below.

signal1 = (V o + Via sin 27x)

signal2 = V2o + V2a COS (2.8)

It is important to understand why the offset terms are apparent in the output. To

answer this question, we should take a closer look at the underlying operating principle

of the sensor. The envelope of the secondary output is proportional to the reluctance

of the flux path which travels through the secondary coil. The predominant factor

which influences this reluctance is the air gap. As previously mentioned in chapter

one, equation (1.2) the air gap reluctance contains a constant term which is related

to the nominal air gap distance, and a variable sinusoid term which is related to the

moving sensor teeth.

Rairgap -o 1 + kg sin (~-• (2.9)

It makes sense, therefore, that the output should contain a constant term proportional

to the nominal air gap distance. Ideally, the only parameter that should change is

the sinusoidally varying term. However, in practice, the nominal air gap height does

change, which introduces another variable in the output.

2.2.2 Air Gap Variations

One factor which can affect the air gap height is the platen flatness. Since the platen

is only flat within certain tolerances, high or low spots may exist which can change

the air gap height. Another more dominant factor is the attractive force between

the motor and the platen. In equation (1.3) the tangential force of the motor as a

function of flux was calculated. A similar derivation can be made for the attractive

force.

F= -OEg 1 2z (2.10)
(z 2 9z

The conclusion from equation (2.10) is that increasing the flux produces a higher

attractive force. Since the air bearing acts like a stiff spring, a higher force will result

in a reduced air gap distance. This poses a serious problem for the position detection

algorithm, since it is virtually impossible to distinguish whether changes in the sensor

signal are due to lateral displacements, or the undesirable vertical displacements.

To accurately model the air gap fluctuations, we need to examine how the air

gap reluctance changes. As the nominal air gap height decreases, the minimum and

maximum reluctances of the air gap will also decrease. This would suggest that the

offset, R, in equation (1.2) is reduced. We can represent this by adding an additional

offset term, Vgap, to the output signals. Therefore, the new output signals under

influence of the air gap can be written as:

Primary = sin (wet)

lo + ap la Sin sin jw t+ C+ v 2)x

V2 = V2o + Vp + 2 cos sin (wt + + -(+) (2.11)p p 4
It is not important to know exactly how Vgap changes with respect to the air gap

height as we will see in the next section a design that eliminates this dependence

regardless of how the offset changes.

2.3 Dual Core Inductive Sensor Design

A robust method of eliminating the sensor's dependence in the vertical direction is to

have two secondary outputs which are 1800 out of phase and subtract the two signals.

Since any vertical displacements produce the same effect in each secondary output,

the net result is canceled when the two signals are subtracted. Using this idea, a new

sensor was developed which consists of two primary coils and four secondary coils as

shown in figure 2-8. This design uses two cores which are similar to those previously

Figure 2-8: Sensor Cores and Mount

described. The important difference, however, is that now the physical offset between

the central teeth of one core corresponds to an integral number of pitches plus 1 pitch,

rather than ¼ pitch which was previously used. The second core is also constructed

in the same manner. Each separate core is then positioned within the sensor housing

such that the relative shift between each of them is an integral number of pitches

plus ¼ pitch. Therefore, the resulting signals from the secondary cores once they have

been demodulated can be written as:

V2 = V2o+Vap+V2asin x r)=- o+ ap+ .i)--
V3 = V3o +vap + 3. cos

V4 V4o + Vap +V 4a COS r - (2.12)

The sensor should be designed such that V10 is equal to V2o and Via is equal to V2a.

Also, V3o should be equal to V40 and V3a should be equal to V4a. This is usually

accomplished by matching the number of turns and winding impedances for each

secondary coil. Assuming this relation is true, the signals V2 and V1 can be subtracted

to produce a new signal which does not contain the offset voltage. A similar algorithm

can be performed for signals V3 and V4 producing:

1r = (2Vla sin -)

2 = 2Va cos 2 (2.13)

One important assumption is that the air gap fluctuations affect all four sensor

outputs in the same manner. This assumption is based on the fact that all of the cores

are permanently mounted in a rigid housing and each sensor tooth, initially, should

experience the same nominal air gap. It has been demonstrated through experiments

that slight variations in the air gap do in fact produce similar responses from each

of the secondary coils. Nevertheless, it is possible that the sensor could tilt in such

a way that part of the sensor would have a smaller air gap, and thus, ,gap would

be present in the output. Even in this case, however, the amplitude of Vgap will be

partially reduced.

2.3.1 Signal Processing and Calibration

The dual core sensor design is similar to a previous design by Sawyer [17]. One of

the main differences between the two is that, in the Sawyer design, the outputs of Vi

and V2 are connected in series to form one signal rather than having each output pass

through a separate demodulator. One problem with Sawyer's method is the phase

shift in the carrier portion of the secondary signal, (2.7). Since the carrier phase

shift, 4,, will not be exactly the same for Vi and V2, errors will arise if the signals are

combined directly. A better approach is to demodulate each signal separately and

subtract the results after demodulation.

Another problem with Sawyer's design is that the signal parameters, V1o and

V2o are assumed to be exactly equal, and likewise, Via and V2a are assumed to be the

same. In practice, it is extremely difficult to have these parameters be perfectly equal.

Many factors can cause this imbalance, including mismatched winding impedances,

or errors in fabrication due to manufacturing tolerances. Using equations (2.12) and

considering the parameter mismatches, the combined signals can be calculated. After

demodulation, the signals corresponding to V1 and V2 , and V3 and V4 are subtracted

producing:

V1 = Vo - Vo + (a + V2a)sin -

27rx
V2 = V3o - V4o + (V3a + V4a) cos - (2.14)

p

Any remaining offsets and amplitude imbalances can be removed online by adding

a fixed constant, a, and multiplying by a fixed factor, P. The values for these adjust-

ment parameters can be determined off line from a calibration run in which the motor

travels at a very low speed so as not to produce a large attractive force between the

motor and platen. During calibration, the sensor signals are stored in a data buffer

in the computer. Next, the offsets and amplitudes are measured in order to calculate

the adjustment factors: a and 0. For example, assuming the signals from V1 and V2

are being calibrated, the value of a would be V2, - V1o, and the value for f would be

(V +a)A diagram of the signal conditioning circuitry for one sensor is shown in

figure 2-9.

VI 4th orderInput Buffer Demodulator low ss filte

S Coarse Offset Analog/Digital
Adjustment Converter

V Input Buffer Demodulator _ 4 thlow pass° e

V3 4th orderInput Buffer H Demodulator - low pass filte
+ Coarse Offset Analog/Digital

4th order Adjustment Converter

Input Buffer Demodulator low pass filte

Figure 2-9: Signal Conditioning Circuitry for the Dual Core Sensor

After calibrating the other two signals, V3 and V4, in a similar manner and sub-

tracting the results, we are left with:

27rx
V1 = sin-

27rx
V2= cos (2.15)

p

Once the signals are in this ideal format, the position and velocity are readily obtained

using one of the signal processing techniques presented in chapter 4.

2.3.2 Inductive Harmonic Cancelation

Another advantage of the dual core design is the reduction of non ideal harmonics in

the demodulated secondary output. Due to several factors such as tooth geometry

and manufacturing tolerances, the reluctance between the sensor and the platen does

not change perfectly sinusoidally, but, in fact contains extra, non ideal, harmonics.

This would suggest a modified set of equations describing the secondary outputs.

Neglecting the air gap variation for simplicity, the new output equations are:

00 2rxx
V1 = Vio + Via, k, sin n=

V2 = V 2 +V2aE knsin (n - --r
n=l P

V3 = 3o + V3aEkn cos n-

V = o + .J: kn Cos n -- 7r
n=l P

(2.16)

After subtracting V2 from V1 and V4 from V3 , we are left with two new signals which

contain only the odd harmonics. For simplicity, all of the offset and amplitude terms

are considered to be equal.

Vinew

V2new

00 27rx
= E knsin n

n=ln=odd P
00 27rx

= E k cos n
n=1 n=odd p

(2.17)

In practice the elimination of the even harmonics is not precise, however, this does

illustrate that even further refinement of the output signal is possible by using two

sensor cores rather than just one.

2.4 Summary

In general, inductive sensors are robust to environmental changes and provide very

high resolutions. Also, since the inductive sensing design is non contacting and not

dependent on a fixed scale, it is particularly well suited for two dimensional linear mo-

tors. By using a pair of inductive cores, the sensor can be made relatively insensitive

to vertical deflections, there by improving it's robustness and performance.

Chapter 3

Sensor Modeling and Simulation

This chapter presents the mathematical model of the sensor, and describes the indi-

vidual sensor cores in more detail . Also, some simulation results are included and a

design methodology for selecting certain design parameters is also presented.

3.1 Modeling Techniques

This section will describe a model which is used in the design of various sensor pa-

rameters. Because of the difficulties involved in fabricating a laminated sensor core,

it is difficult to change the detailed geometry. The most flexible parameters to adjust

are the coil impedances, the sensor thickness, and the primary carrier frequency and

amplitude.

3.1.1 Magnetic Domain

The goal of this thesis is not to provide a detailed model of all loss mechanisms

such as eddy current and hysteresis losses. Therefore, a simple model that neglects

higher order loss terms is developed which still provides an accurate representation

of the sensor's dynamics. The model can be split up into the electrical domain and

the magnetic domain. Figure 3-1 illustrates a circuit representation of the core and

platen in the magnetic domain. The sensor core, the platen, and the air gap are

,
I

'I/
I

S
\\

R

Rpb

Figure 3-1: Magnetic Circuit Diagram of Sensor Core

all modeled as a reluctance. lcr and Rpb are the reluctances for the core body and

platen base respectively. R,1 includes the reluctance for one of the central legs and

the corresponding sensor teeth. Since each pair of the side legs are in phase with each

other, the reluctances for each of them are lumped together into R,1. This circuit

representation assumes that all of the magnetic flux lines pass within the steel core

and the platen. In reality, however, this is not the case. The flux path will leak

outside of the core boundaries and follow the path of least reluctance. However, the

core is designed such that these losses are minimized. All fringing and leakage effects,

therefore, are neglected in the model and simulations.

By far, the majority of the reluctance is produced by the air gap. As noted earlier,

the air gap reluctance varies sinusoidally with position, and R, and R3 are 900 out

of phase. Since reluctances R2a, 7 2b and 7R4a, IZ4b are in phase with each other, they

are lumped together in 7 2 and R4. All of the reluctance calculations are performed

in the appendix. By analyzing the circuit, the following relations can be made:

Mprimary = 4IprimaryTtotal (3.1)

(Rl- + 12) (-Rs + R2) 2 (Rd + R3) (7sl + R4) (3.2)

cl cl 1 sl = prim ary (3.3)
whe + re + sre + R2

where

Rsl

Mprimary = magneto motive force due to current in primary coil

(primary = total magnetic flux induced by primary coil

IcD = magnetic flux in central leg

3.1.2 Electrical Domain

In the electrical domain, the impedance of the primary coil must be modeled which

consists of a resistance and an inductance. At low frequencies, the coil impedance

can be very low, and may place an excessive load on the driving amplifier. Therefore,

the voltage amplifier must be modeled as a real source rather that an ideal source,

and the internal resistance of the driver, Rsource, should be included into the model.

According to Faraday's law, the rate of change in magnetic flux through the primary

also induces a voltage which opposes the source. The following dynamic equation can

be used to find the resulting current in the primary coil.

di,

Vsource = icoii (Rcoii + Rsource) + Lcoi-- + NprimaryI primary (3.4)

where

Vsource = V sin (wct)

Once the current is known, the magneto motive force can be calculated and is directly

proportional to the current times the number of turns, Nprimary.

Mprimary = Nprimary iprimary; (3.5)

Now, using the relations in equation (3.3) the flux through each of the central legs can

be calculated. It is important to note, that the complete reluctance path, equation

(3.2), remains relatively constant with changes in displacement. This suggests that

the rate of change of flux in the primary, Aprimary also remains relatively constant.

The total reluctance in the central and side legs, however, changes dramatically with

displacement, and the voltage induced in each secondary coil is proportional to the

rate of change of magnetic flux through the central legs.

Vsecondary = Nsecondary dt (3.6)

One may think that the current in the secondary coil would also produce a magneto

motive force in the central leg. However, the outputs of the secondary are connected

to a high impedance voltage amplifier, which results in extremely small currents.

Because the currents are so small, energy losses due to the resistance in the secondary

coil and the coil impedance are neglected. A comparison of the model with the actual

sensor will show that these assumptions are justified.

All energy losses such as eddy currents and hysteresis have been neglected, since

including these effects is beyond the scope of this thesis. The laminated construction

of the sensor core, however, dramatically reduces eddy current losses. Saturation

losses are also not included into the model since the peak flux densities produced by

the primary coil are relatively small. Therefore, the relationship between flux density

and magnetic field strength in the core can be assumed to be linear.

3.2 Sensor Dynamics and Parameter Design

We now have a set of non linear equations describing the sensor dynamics. Because

of the non linear behavior of the air gap reluctance, the model was implemented in

a high level Matlab language program which is included in the appendix. Figure

3-2 plots the frequency response using experimental and simulated data. For this

test, the input is the driving signal to the primary coil and the output is the induced

voltage in the secondary coil. Although this test does not measure the position sensing

performance, it does offer a way to check the accuracy of the model and aids in the

selection of the carrier frequency.

The experimental data is obtained by measuring the gain and phase at different

frequencies. To compensate for the small coil impedance at low frequencies, a resistor

is placed in series between the driving amplifier and the primary coil. In general, the

-20

-_
--00 Simulated Data

... Experimental Data

: : : : Frequency (Hz):
10 2 le 10l

Frequency (Hz)

o00

50

0

102 102 O4
10s
l

Frequency (Hz)

Figure 3-2: Frequency Response Vlecondary
Vprimary

coil inductances are dictated by the number of turns on each winding. The coils are

wrapped such that the maximum number of turns can fit within the small confines of

the sensor geometry. For the prototype sensor, the primary and secondary coils have

100 and 70 turns respectively. The values for the resulting inductances are estimated

in the appendix.

For each test sample in the frequency response, the sensor is static and remains

fixed with respect to the platen. All other parameters are held constant. As the graph

shows, both the experimental and simulated cases exhibit similar frequency responses.

This would suggest that the model is an accurate description of the physical system

at least over the selected frequency range.

One method of characterizing how sensitive the output is to position changes is

to define a parameter, y, which can be expressed as:

sensitivity = 7= a Vmn (3.7)
Vmax + Vmin

where V,a and Vin are the maximum and minimum values of the envelope as shown

in figure 2-6. One of the goals of this design is to maximize the sensitivity for a given

carrier frequency and sensor thickness.

The first major design parameter is the carrier frequency, or the frequency of the

V~,h

-YY

.......... ...

primary driving voltage. For an AM signal, the carrier frequency should be about

10 times the highest frequency in the envelope [7]. As a result of this, the frequency

content in the envelope will be well below the cutoff frequency in the synchronous

demodulator. The estimated maximum speed of the motor is 1000 pitch/s, which

corresponds to a 1000 Hz frequency in the output waveform from the sensor. Thus,

a carrier frequency of 10lkHz was selected as a first choice. The selection of carrier

frequency can also affect the sensitivity as defined by equation (3.7). A plot of

sensitivity vs carrier frequency is provided in Figure 3-3.

0.45

0.4

0.35

0.3

90.25

c 0.2

0.15

0.1

0.05

n
10 104 0s

Carrier Frequency (Hz)

Figure 3-3: Sensitivity vs Carrier frequency

In general, the simulation results exhibited much higher sensitivities. This may

be due to the fact that magnetic losses were neglected in the model. The effects of

fringing become increasingly important especially around the area between the platen

teeth and the sensor teeth. If flux fringes around the edges of the central legs directly

to the platen, the overall sensitivity will be reduced.

Another generality obtained from the graph is the decrease in sensitivity with

increased carrier frequency. At 30 kHz and 50 kHz there is a sharp decline in the

sensitivity, especially in the experimental data. Again this may be due to neglected

energy loss terms. In general, the power dissipated due to eddy currents is a function

of the material properties, the core volume, the peak flux density, and the excita-

tion frequency. Therefore, it is not unusual to expect higher energy losses at higher

43

SSimuled DataExperim .ental D ata.....
-- ·

.

... -...: ..::

.: .: .: .: .i i " ..: ..:

....! .}: -: "
.. ". .. .•:~ -- i Ii i
-- · o ·

frequencies.

Based on the previous experiment, 10 kHz remains a good choice for the primary

driving frequency. In practice, however, the position sensing bandwidth depends also

on the cutoff frequency of the demodulator and the speed of the position detection

algorithm which will be discussed in chapter 4.

Up to now, sensor performance along only one axis has been considered. In order

to function on a two dimensional platen, the sensor must be independent to motion

orthogonal to it's sensing core. Any motion normal to the sensor, for example along

the Y axis, should not produce a detectable change in the output. This imposes

an absolutely critical requirement that the thickness of the sensor, t, be equal to an

integral number of pitches. Under this constraint, the overlap area between the sensor

teeth and the platen teeth remains constant and thus the reluctance does not change

when the sensor moves sideways.

A simulation of sensor thickness vs sensitivity is presented in figure 3-4. One

simple method of modifying the core thickness is to split apart the laminations of a

larger core. Therefore, the simulation only uses sample thickness that are an integral

number of pitches and an integral number of laminations. The speed at which each

sample is measured is 100 pitch/s. All other parameters are kept constant. As

expected, the sensitivity increases with thickness. However, the sensitivity is only

weakly dependent upon the thickness when compared with the dependency on the

carrier frequency. Since reducing the sensor weight is also a design goal, it does not

make sense to use a large sensor core just to increase sensitivity.

Due to the difficulty in fabricating different laminated cores the simulation could

not be compared with real data. However, based on the model, a core thickness of

0.28in., or 20 laminations was chosen as a good compromise between sensitivity and

size.

C4)
U,

5 10 15 20 25 30 35 40
Sensor Thickness (laminations)

Figure 3-4: Sensitivity vs. Sensor Thickness

3.3 Summary

In general, inductive sensors are robust to environmental changes and are capable

of providing very high resolutions. Also, since the sensor is non contacting and

not dependent on a fixed scale, it is particularly well suited for two dimensional

applications. A basic model was implemented to simulate the sensor's dynamics and

to optimize various design parameters.

_ _n_

Chapter 4

Position Detection

The purpose of this chapter is to present and select a robust and accurate algorithm

to convert the output from the secondary coils into useful position and velocity in-

formation. Three methods are described: digital arctangent processing, Inductosyn

to digital conversion, and a software based digital tracking converter. Also, sensor

performance and accuracy are compared for each algorithm.

4.1 Signal Processing Techniques

4.1.1 Demodulation and Calibration

The first step in any algorithm is to synchronously demodulate and calibrate the

outputs from the secondary coils as was described in chapter 2. This type of de-

modulator can be implemented in both software and hardware. A software based, or

digital, demodulator employs online digital filtering and requires a high speed analog

to digital converter. To avoid aliasing, the sampling rate must be at least twice the

highest frequency in the input [8]. Since the selected carrier frequency for the sensor

is 10 kHz, the absolute minimum, required sampling rate would be 20 kHz. Although

is is possible to sample data at this frequency, it reduces the available computation

time for the control law and position detection algorithms.

A more economical approach is to use an analog demodulator for each secondary

output and then send the demodulated signals to an A/D converter. This reduces the

speed requirements of the A/D converter, and still allows the signals to be calibrated

online in the computer.

4.1.2 Digital ATAN Processing

The arctangent estimation approach is a software based position detection algorithm.

The basic steps involve first demodulating the sine and cosine sensor signals either by

analog or digital means, then sending them to a high speed digital signal processor,

otherwise known as a DSP. Once the secondary outputs are sent to the DSP, they are

calibrated online as previously described. The resulting signals are the sine and cosine

functions described by equations (2.15). The most obvious next step is to divide these

two signals(Vi and V2) and take the arctangent of the result. There is no question

that this will produce accurate results, the only issue is dynamic performance and

speed limitations of the algorithm.

One way to implement the arctangent digitally on a signal processor is to use the

series expansion. An approximation of the arctangent to 16 bit accuracy is given in

the following equation [1].

arctan(x) = 0.318253x + 0.003314x 2 - 0.130908x 3 + 0.068524x 4 - 0.009159X 5 if x < 1
0.5 - arctan(1/x) if x > 1

(4.1)

As one might expect, this algorithm is very computationally intensive. Most

digital signal processors handle multiplication efficiently, whereas, operations using

division can incur several additional clock cycles which increase the overall computa-

tion time. The ATAN algorithm involves at least one time consuming division step

and must evaluate the arctangent series expansion. In order to process the incoming

sensor signals at an acceptable sampling rate, a relatively high speed signal processor

must be used which increases the overall system cost.

Once the arctangent is evaluated, the resulting signal is the sensor position within

one pitch. Therefore, the recovered position output is in the form of a saw tooth

wave as shown in figure 4-1. In order to calculate the absolute displacement, a pitch

counter is implemented which measures the total number of pitches by detecting each

discontinuity in the output signal.

U,

U,a-
.2

12
time(sec)

Figure 4-1: Position Output Traveling at 50pitch/s

Although the ATAN processing method is accurate, it is also very computationally

intensive. This point can not be overemphasized. Position detection is only one part

of the digital signal processor's tasks, which also include D/A conversion and control

law evaluation. Therefore other position detection algorithms were explored which

are less time consuming but still offer good performance and accuracy.

4.1.3 Inductosyn to Digital Converter

The Inductosyn to Digital Converter approach differs from the previous technique in

that the algorithm is performed on a separate analog chip rather than being integrated

into the DSP program. The advantage of using a separate chip, is that it frees up

more computation time on the DSP board. The disadvantage is that we can't control

or modify the algorithm. Thus, the chip limits the flexibility of the overall system.

The Inductosyn to Digital Converter chip is an off the shelf product which converts

the sensor data from an Inductosyn into a digital word representing the position within

one pitch. The two inputs into the chip are the quadrature sine and cosine signals.

V2 = V sin - sin(wt)

V2 = (V cos sin(wt) (4.2)

Note that these signals are similar to the calibrated secondary output signals (equa-

tions 2.15) except that the carrier has not been filtered off. The four secondary

output signals are processed as previously described, however, the calibration step

can't be implemented in the computer and must be handled by external, analog com-

ponents. For example, to remove the voltage offset, V , a summing op amp can be

used. Likewise to calibrate the value of Va, an adjustable gain voltage amplifier is

used.

A schematic of the converter chip is provided in figure 4-2. Besides the digital

position output, the converter also provides an analog output which is proportional

to velocity. The digital up-down counter contains a digital word, i, which represents

Digital Converter Chip Reference

V I

V2

Digital Output Analog Output
Position Velocity

Figure 4-2: Diagram of Inductosyn to Digital Converter Chip

the true sensor position within one pitch, x. Basically, the converter uses a feedback

loop to force i equal to x. The first step in the algorithm is to multiply V1 by cos 2

and V2 by sin 2__ and then subtract the two signals producing:
p

[sin (2_ x)cos - cos (2xx)sin (27-r)] sin(wt) (4.3)

This can be simplified into the following equation which is the error signal for the

servo loop.

E = sin(wt) sin (2r 2p (4.4)

This error signal is then synchronously demodulated and the servo loop drives the

signal to zero. Since the error signal is also integrated over time, all steady state

errors between the actual position and the digital position will go to zero. Thus, after

demodulating, the error signal is:

sin 2- x -2 = 0 (4.5)

using the small angle relation, this becomes:

x = & (4.6)

Therefore the digital output word will track the actual position of the sensor.

Figure 4-3 shows the layout of the related circuitry used in conjunction with

the Inductosyn to converter chip. As illustrated, analog op amps handle all of the

calibration and filter off high frequency noise on the input signals.

The Inductosyn to Digital Converter Chip has several limitations. First of all, The

maximum speed is limited by the maximum tracking rate for the particular converter,

which for our chip was 100pitch/s. A higher speed converter was available but with

a lower resolution. Another problem was that calibrating the signals before demodu-

lation proved to be less effective than calibrating them after they were demodulated

which was done in the arctangent algorithm. Also, since the converter only provides

information for one axis, two separate chips are needed for a two dimensional system.

4.1.4 DSP Based Tracking Converter

The goal of this algorithm is to develop a software based implementation of the

Inductosyn to Digital Converter. This approach is not as computationally intensive as

the arctangent method, but still retains the flexibility of an integrated DSP program.

The main difference between this implementation and the Inductosyn chip is that the

Oscillator and
Power Amp

MoI
U

Filter
Section\

Summer &
Calibration

Section
/

a

UU
U0

I@
as
isisi

I1 II

Primary Analog
Source Signals
from from

Oscillator Sensor

Clamping
Protection

Circuit

Digital Output Velocity
from Converter Output

Chip (Analog)

Figure 4-3: Converter chip and Related Circuitry

sensor signals are demodulated before being multiplied by the cosine and sine of the

position tracking variable, I. Therefore, equations (4.3) to (4.6) are still valid except

that the high frequency carrier component is filtered off.

At this point, it is helpful to explain the similarity between linear position, I, and

the angular position, 0. Since the sensor only measures the position within one pitch

it is equivalent to measuring an angle within 21r radians. Therefore, 0 = . Often,

expressing the position as an angle simplifies the notation.

A close examination of the feedback path in an Inductosyn chip reveals the fol-

lowing open loop transfer function between the error signal (equation 4.4) and the

I I • d
i le

I

angular position, 9 [3]:
G(s) (s) (1 + Ti) (4.7)

E(s) s2 (1+ T2s)

This system employs a double integrator which forces both the position and velocity

error to zero when the sensor is traveling at constant acceleration. The phase lead el-

ement, (1 + Tis), is used to compensate for the 1800 lag of the double integrator. The

(1 + T2s) element is a low pass filter and is used to remove the high frequency carrier

term. Since the low pass filter is implemented separately in the analog demodulator,

the new open loop transfer function is:

G(s) = K (1 + Tis) (4.8)
8
2

This transfer function can be further broken down to produce the velocity output, 9.

9(s) K (1 + Tis) (4.9)
E(s) s

O(s) 1S- (4.10)
O(s) S

The gains, K, T1, should be selected such that the bandwidth of the transfer

function is 10 to 20 times the bandwidth of the closed loop system. However, the

gains should not be so high as to amplify noise in the input. For the initial design,

a bandwidth of 400 Hz and a damping ratio of 0.707 was selected. The bandwidth

in rad/s is approximately equal to the damping ratio times the natural frequency

for a second order system. Thus, the gains can be calculated by comparing the

characteristic equations of the closed loop transfer function with the general second

order system.

Characteristic Equation s2 + KTls + K

Second Order System s2 + 2(w, + w, 2

where

C = 0.707

w, = 4 4 4 3 rad

K = 44432

T, = 1.591 x 10- 4

In order to implement this algorithm digitally, the discrete time Z transform is

performed. To simulate the analog to digital converters, a zero order hold transform

is used.

(z) = Z- (4.11)
E (T) Z - 1O(z) z

(T) (4.12)
9(z) z-1

where, K = KT, + KT,

KT,
KT, + KT,

T,= sampling period

From this, the digital algorithm which is implemented in software can be derived.

6(n + 1) = 9(n) + R (E(n + 1) - TE(n)) (4.13)

0(n + 1) = 9(n) + T,8 (n + 1) (4.14)

This routine involves only three sets of multiplication and addition instructions.

Also, the evaluation of the sine and cosine functions (equation 4.3) can be imple-

mented in a high speed look up table. Another advantage of this algorithm is that

the output is continuous and does not require an extra pitch counting step as in the

previous two approaches.

The next section will discuss the relative performance of each algorithm.

4.2 Relative Position Sensing Performance

The position response for all three signal processing designs are presented in this

section. The results for the inductosyn to digital converter were obtained online

directly from the chip. The other two designs used sensor output obtained online,

and then processed the position signal off line using a simulation prepared in Simulink.

The simulation was implemented to verify that the algorithms would produce accurate

results before they were implemented in the DSP program. Figure 4-4 shows a block

diagram of this Simulink model.

Figure 4-4: Block Diagram of Position Detection simulation

4.2.1 Experimental Results

To measure the performance and accuracy of the sensor in one dimension, the output

can be compared to a known reference sensor. Figure 4-5 describes the setup used to

compare the inductive sensor output with a Linear Variable Differential Transformer

(LVDT). In each test, the linear motor was commanded to follow a fixed, linear

velocity profile in open loop mode.

The position signal generated using the arctangent algorithm is plotted against

the reference LVDT output in figure 4-6. Likewise, the output from the software

based tracking converter is also plotted against the LVDT signal in figure 4-7. Both

Figure 4-5: Experimental Setup to Test Inductive Sensor Along One Axis

Responses exhibit good tracking performance and accuracy. It is also important to

note that the steady state position error is almost zero.

A clearer plot of the position error (LVDT position - sensor position) is provided

in figure 4-8. The time scales are the same for both the position outputs and the

error signals for easy comparison. The large error at the beginning of the time re-

sponse is due to an initial position offset and would not be encountered during normal

operation.

Figure 4-8 suggests that the accuracy of the inductive sensor is no greater than

0.2 pitch, or 0.008 in.. This may be true only if the LVDT has a higher accuracy

than the inductive sensor, which may in fact not be the case. For example, the motor

may have been slightly offset from the centerline of the LVDT which would cause

the sliding rod in the LVDT to bind resulting in increased damping. Notice that

the largest position error occurs when the motor is oscillating, and in fact the LVDT

does have a more damped response. Therefore, the accuracy of the sensor can't be

measured exactly unless it is compared with a sensor that is verifiable more accurate.

The position output from the Inductosyn to Digital Converter chip is plotted in

figure 4-9. Due to noise, The effective resolution of the converter chip was only 8 bit

per pitch which is evident in the highly discretized position signal. The over damped

response of the LVDT is even more emphasized in this case.

The output from the chip however, proved to be very unreliable and noisy. The

majority of the problems encountered were caused by difficulties involved in calibrat-

ing the sensor signals using analog components rather than performing the calibration

step online in the computer. Because of the problems with noise and the limitations

on speed, the Inductosyn Chip design was never developed for the two axis sensing

system.

4.3 Summary

Three different approaches to position conversion were investigated and experimen-

tally tested. The advantage of using a software implementation is increased system

flexibility, and the ability to calibrate the sensor signals online within the computer.

In the final version of the digital controller, the tracking conversion algorithm was

implemented to improve computational efficiency. Although the experiments using

the LVDT may be inconclusive, the sensor does show good accuracy, and is definitely

suitable for the task of electronic commutation when the motor is operated under

closed loop control.

0
(n

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time (sec)

Figure 4-6: Position Output using Arctangent Algorithm

C.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time (sec)

Figure 4-7: Position Output using Software Based Tracking Algorithm

0.4

0.3

time (sec)

Figure 4-8: Position Error Between Inductive Sensor and LVDT

0

0

Time (sec)

Figure 4-9: Position Output using Inductosyn to Digital Converter Chip

- ATAN algorithm error
.Tracking

algorithim error

b I I I I I I 1 I .

E

E

Chapter 5

Feedback Motor Control

5.1 Control Hardware

The major components of the closed loop motor control system are described in figure

5-1. All of the high level commands and trajectories are generated in the PC. This

information is then sent to a digital signal processing board which executes all of the

low level commands. The control outputs are then sent to a digital to analog converter

resulting in a voltage signal to the current drivers. The pulse width modulated drivers

behave like transconductance amplifiers by converting the input voltage signal to a

proportional output current. This current is finally sent to each phase on the motor

producing the desired force.

All of the inputs from the signal conditioning circuitry are sent to an analog to

digital board which can sample all channels simultaneously. This is critical in order to

maintain the correct phase relationship between each of the incoming sensor signals.

The heart of the system is the DSP board which is made by Spectrum Inc. and

is based on two Texas Instruments TIC40 50 MHz floating point processors. There

are several advantages to using a dedicated DSP processor rather than the main

PC processor. First of all, the analog input and output boards can be connected

directly to the DSP board, on the other hand, analog boards connected directly to

the PC have a much lower data bandwidth due to the bottleneck of the PC bus. Also,

the DSP architecture includes a dedicated multiplier unit and several other features

which make it extremely efficient at performing filtering and control type algorithms.

The spectrum board also uses two separate processors to take advantage of parallel

processing. By splitting up tasks to each processor, more overall computations can

be performed during a given sampling period.

Figure 5-1: System Configuration for the Linear Motor

5.2 High Level Control

The host program, which runs on the PC processor, consists of all user interface

functions and high level trajectory generation commands. This host program loads

two separate programs onto each DSP processor for execution of all of the low level

commands. The trajectory module creates the parameters used to generate piecewise

functions of the desired motor paths in the X and Y axes. Other modules generate

the parameters used in the online calibration and filtering functions.

Any communication between the host program and the DSP board is initiated by

the host. This asynchronous communication protocol frees the DSP from monitoring

the host program so that the DSP can execute control operations more efficiently.

Currently, the DSP performs no active communication to the PC. This could be

modified, however, if the DSP were required to communicate some state information

back to the host program. For example, the DSP may output a signal if the position

error from the desired trajectory becomes too large.

5.2.1 Trajectory Generation

Previous versions of the digital control software created motor trajectories by storing

a table of velocities which the motor would execute for a specified period of time [21]

[13]. This type of control can be implemented in software by using a look up table to

evaluate the sine and cosine functions. At each time step, the index into the look up

table is advanced depending on the commanded velocity. The amount that the index

advances during each time step is governed by the following relation:

v = fdaPAi (5.1)
r

where, vc = commanded velocity

fda = frequency of A/D converter

p = length of one pitch

r = resolution or number of entries in sine table

Ai = value of increment into sine table

This algorithm has a number of limitations. For example, the smallest increment

for Ai is 1. Therefore, assuming that the D/A frequency is constant, the minimum

velocity that the motor can achieve is, Vmin = Ld. If the D/A frequency is reduced,

lower speeds are possible, but, the output waveform becomes more discretized at

higher speeds which can lead to increased velocity ripple.

Saving only the velocity data, however, does lead to much lower storage require-

ments compared to saving a table of specified motor positions, especially when the

motor is traveling at a constant velocity. Velocity storage is one of the best algo-

rithms when using an integer based DSP processor. However, since the TIC40 chip

is a floating point processor the trajectory generation module was revised to take

advantage of this.

Rather than storing each motor position for every time step, the software calcu-

lates the necessary parameters for a function which is evaluated at every sampling

period. Once the updated position is obtained, the sine and cosine functions can still

be evaluated in a high speed look up table. Since the commanded trajectory is the

actual position rather than velocity, this method does not suffer from the velocity

discretization problem previously described. Another advantage is further reduction

in storage requirements. Since only a few parameters describing the piecewise con-

struction of the position are required, much longer trajectories can be down loaded to

the DSP. The only real disadvantage is that the trajectory function must be evaluated

online at each time step, which increases the number of overall computations. Fortu-

nately, the speed of the floating point processor makes online trajectory generation a

practical alternative.

Currently the software supports constant acceleration and linearly variable accel-

eration profiles. Figure 5-2 plots the commanded position and velocity for a constant

acceleration profile. It is possible to include more complex trajectories, however, the

increase in computational load would have to be considered.

I

Figure 5-2: Sample Constant Acceleration Profile

5.3 Closed Loop Control

In servo mode, the timing of all control commands is based on the input sampling rate

rather than the output update frequency. A new output command can't be generated

until a new input sample from the sensor is received. In general, a closed loop, digital

controller consists of the following key steps:

1. Update desired trajectory.

2. Read sensor data from A/D converter.

3. Compare measured state with the desired state and evaluate the control Law.

4. Calculate the new command signal and send it to the D/A converter.

5. Repeat 1 through 4.

Because of the time critical nature of these tasks, all functions are implemented

completely within the Digital Signal Processor. One of the goals of a good digital

controller is to minimize the time between the input sample and the output command.

This is accomplished by sharing the computation load between both DSP processors.

Figure 5-3 provides an approximate timing diagram and describes which functions

are performed by each processor.

In general, processor A is responsible for operations in the X axis, and processor

B handles all operations in the Y axis. The analog input/output card is connected

directly to processor A, so all information must first be routed through processor A

and then to processor B.

The controlling software also has the capability of reading information for a third

sensor mounted in the X axis as shown in figure 5-4. Using a third sensor, the rotation

of the motor can be calculated along with the nominal X and Y displacements. This

information can then be used to compensate for torque disturbances around the Z

axis of the motor. Unfortunately, this controller could not be tested experimentally

because the required number of amplifiers needed to control rotation were unavailable.

5.3.1 Commutation

Recalling from chapter one, the current supplied to phase A and phase B of the motor

uniquely defines an equilibrium position, x,, within one pitch. These commands are:

2
7rxe 2rxZe

iA = I sin -- , iB =I cos 2 (5.2)
p p

Analow InmarKlnermt Card

Digital Signal Processor

Er- r1 n -1r- r1 -
CY .U PPU B C~PU A

......... ! • ...- -•p l .. ! \"'""'""
:~~~ I "'-..

-I

VRApeivP Y anMr Ltk frtm wrmnn

Convert Y sensor data to position
and velocity

Open Loop Control
Y axis

trolUose lo p
Y axis

h admnandI fnr VaIt
Create new trajectroy for next

imt step

Jo w up 1 o0uu

X axis

DR -ivye nnmnds fnr Y axis

Evaluate sin look up table for
phase A and phase B

Output command signals to D/A Card

Save position variables in buffer

Figure 5-3: Timing Diagram for DSP Processors

It is important to note that in the above equation, Xe defines the new equilibrium

position that the motor will attempt to reach. Xe does not command the exact motor

position, and should not be confused with x from equation (2.15) which is the actual

sensed motor position.

In open loop mode, the amplitude of the current in, I,, is set to the maximum

rated value, which for the Normag motor is 4 amps, and the argument to the sine and

cosine functions is simply the desired trajectory. Therefore, the updated value of the

equilibrium position, xe, is simply equal to the desired trajectory. Without feedback,

however, the motor may in fact never reach the new equilibrium position and loose

synchronism with the platen.

Under closed loop control, the controller must continuously advance the equilib-

rium position ahead of the actual position in order to produce the required force.

CPU D
,Opcbmd

Read sensor data from A/D card

Receive new traetr from arocessr,end Y smmr daa to paaar B

Convert X sensor data to position
and velocity

Open Loop Control
X axis

dU l Cr

Iý I
SWnd- 7rw tr. ectoryto pocs A -,

r

m
,11

--

No

l

I

Amdo ImM --

-

I

I

Figure 5-4: Sensor Attachments for Rotation Control

This idea of generating the output command based on the input position summarizes

the principle of electronic commutation. As mentioned in chapter one, the lead angle

is defined as the difference between the equilibrium position, which is defined by the

current through phase A and B, and the actual position of the motor. Therefore, the

lead angle should be added to or subtracted from the sensed position, x, in order to

produce a positive or negative force. It is important to note that the lead angle is

only one of the variables which influences force generation. The current amplitude,

I,, can also be regarded as a control output.

5.3.2 PD Current Control

The first implementation of the servo controller maintained a constant lead angle and

varied the current amplitude. In this case, the system reduces to a single input, single

output system. Theoretically, the lead angle which produces the maximum force is

I~,,,,r 'Ll,,,r

900, however, at this value the maximum speed of the motor, or the slew speed,

was much lower than the maximum speed achieved in open loop mode. This would

suggest that lead angles other than 900 should be used at high velocities. In fact,

effects such as eddy current losses and other unmodeled dynamics become significant

at high speeds.

Figures 5-5 and 5-6 plot the motor positions and velocities respectively for a step

input. Due to the oscillatory nature of the motor, the velocity output was filtered

through a 100 Hz low pass digital filter to give a clearer signal of the average speed.

For each experiment, the value of the lead angle was held constant and the step

response was performed in both the positive and negative directions along the X

axis. Adjusting the values of the P and D variables did affect the response, but, the

influence of these parameters was almost negligible when compared to the effect of

the lead angle.

00
No. of Samples (fs = 5KHz)

Figure 5-5: Position Response to a Step Input with a Constant lead Angle

Two key characteristics can be obtained from figures 5-5 and 5-6. The first, and

most obvious, is that higher lead angles result in higher maximum velocities. This

would suggest that the motor can produce more force at high speed using a larger

lead angle. The second important observation is that at low speeds high lead angles

w

.,3

0.

No. of Samples (fs = 5KHz)

Figure 5-6: Filtered Velocity Response to a Step Input, Constant lead Angle

result in a slower initial response suggesting that less force is produced. A strange

anomaly appeared when driving the motor in the reverse direction. The experimental

results suggest that higher lead angles are required in the negative direction in order

to achieve comparable performance as in the positive direction. One explanation

for this may be misalignment of the motor cores, but, further investigation of this

behavior is required.

Clearly, the lead angle should be treated as a control variable in order to optimize

performance. One of the obstacles at this point, however, is that previous attempts

at modeling motor dynamics [13, 2, 9], assume that the ideal force equation (1.6) is

always true. Recalling from chapter one, this equation assumes that the optimal lead

angle is 900 and can be written as:

Fmotor - 2=rRokg 4pmDcoil sin ¢

where ¢ = Lead Angle

This relationship, however, is only true for the static case, and is not accurate under

dynamic conditions.

5.3.3 Variable Lead Angle Control

The goal of controlling the lead angle is to maximize or minimize the force output at

any given speed or loading condition without loosing synchronism with the platen.

In a rotary motor, this can be accomplished by generating torque-speed curves for

different lead angles. Then, an optimum lead angle can be selected which produces

maximum or minimum torque for a given speed. A technique for accomplishing this

is presented in Kuo [14], in which he mentions that the near optimum lead angle

depends on the angular speed, w, and if the motor is accelerating or decelerating. In

a linear motor, however, it is much more difficult to measure the force as a function

of velocity compared to measuring the torque speed curve for a rotary motor.

Another important inference from the step responses in figure 5-5 is the extremely

oscillatory response at high lead angles. In fact, much higher speeds could be achieved

than those plotted in figure 5-6, but, the motor would loose synchronism and stall as

soon as it began to decelerate. This behavior is caused by using a constant positive

lead angle throughout acceleration and then suddenly switching to a constant negative

lead angle for deceleration. The switch between an extremely high positive lead angle

to a large negative lead angle produced a substantial jerk on the motor, often times

causing it to stall. Thus, in order to decelerate the motor more effectively, the lead

angle should be decreased from a high positive value to a smaller positive value and

finally to a negative value.

For initial testing, a variable lead angle controller was designed which increased

the lead angle linearly with velocity for acceleration, and likewise linearly decreased

the lead angle with velocity for deceleration. These new functions for acceleration

and deceleration are provided in figure 5-7. The functions graphed in figure 5-7

apply to the case when the motor is traveling in the positive direction. If the motor is

moving in the negative direction, the two curves should be reflected about the velocity

axis. As a general trend, increasing the slope of the acceleration curve improved the

acceleration up to a point. Likewise, decreasing the slope of the deceleration curve

resulting in higher deceleration up to a certain point after which stalling occurred.

Optimized lead Angles for Motion in the Positive Direction

Tr9!
Lead Angle Values for Acceleration

00
Velocity (pitch/s)

Figure 5-7: Near Optimal Lead Angle Functions

The above functions are only a first step. In order to obtain better performance,

the influence of the lead angle on force generation must be further researched. Several

authors outline strategies for determining these optimum functions [14, 6]. Danbury

presents a method of calculating the near optimum lead angle at each time instant

based on the slopes of the state plane trajectories [6]. Using this type of adaptive

control the motor force could be optimized for different loading conditions as well as

for different velocities.

5.4 Experimental Results

5.4.1 High Speed Performance

An important goal in most robotic motion controllers is to minimize the time required

to move from one point to another, and this is especially critical for palletizing tasks.

The motor responses in both servo and open loop mode are plotted in figure 5-8. For

each experiment, a constant acceleration trajectory with a maximum speed of 1000

p/s was used. This trajectory was selected such that the motor was running at near

peak performance. Also, all tests were performed along one axis only.

For the closed loop run, the variable lead angle controller was used which provided

good performance exhibiting only a small overshoot at the end of the trajectory. In

open loop mode, however, the motor could faithfully complete the trajectory in only

about 1 in 5 times. Typically, the motor would stall near the point of maximum ve-

locity. The closed loop controller, on the other hand, provided very good disturbance

rejection and reliably completed the desired trajectory.

Figure 5-9 plots the velocity information for the same experiment. As before, the

velocity in the graph has been filtered through a 100 Hz low pass filter in order to

reduce the ripple component and noise. It should be noted that the peak velocity

reached during the servo experiment was higher than could be reliably achieved in

open loop mode without loosing synchronism.

Accel time=O.ls, Decel time=0.ls, max speed=1000 p/s

U0..C.

E
ICL
0

Time (sec)

Figure 5-8: High Speed Motor Performance (Position Response)

5.4.2 Velocity Ripple

Oscillatory behavior is common in linear motors as well as in rotary stepper motors.

Providing a velocity feedback loop can help reduce the ripple, but is not completely

effective. Figure 5-10 plots the velocity output from the inductive sensor while the

Accel time=0.1s, Decel time=0.1s, max speed=1000 p/s

a,

Time (sec)

Figure 5-9: High Speed Motor Performance (Velocity Response)

motor is commanded at a constant velocity of 100 pitch/s along one axis. Note that

the velocity response is the actual output from the sensor, not the filtered output as

shown in figure 5-9.

Both figures have very large ripple components, however, under closed loop control

the ripple is slightly reduced. Increasing the gain for the velocity error improves

performance up to a certain point, after which, higher gains only lead to increased

ripple. This is due to the fact that at high control gains, relatively small levels of

noise in the sensor can be amplified greatly in the commanded output.

If both phases are driven by pure sine waves, the commanded position and the

actual position may differ by some error which repeats with each pitch. This is

referred to as cyclic error and is a major cause of velocity ripple in two-phase motors.

According to Nordquist, the predominant harmonics present in the cyclic error are

the fundamental and the fourth harmonic [15]. Therefore, in the previous experiment,

we should see the major components of the velocity ripple to be at 100 Hz and at

400 Hz. Figure 5-11 plots the frequency spectrum of the steady state velocity output

when the motor is commanded to move at 100 pitch/s. The spectrum was obtained

using a Fast Fourier Transform performed in MatlabTM. As expected, there are two

Constant Velocity Command-100 p/s, Open Loop Control

Constant Velocity Command-100 p/s, Closed Loop Control

Figure 5-10: Constant Velocity Motor Performance (raw velocity signal)

peaks in the spectrum at 100 Hz, and at 400 Hz. The relatively large peak at 300 Hz

may be due to additional error harmonics in the cyclic error, or to other unmodeled

dynamics of the motor.

Nordquist presents a way of compensating for cyclic error by including extra har-

monics in the driving signals to phases A and B [15]. For example, rather than

supplying simply a sine to phase A and a cosine to phase B, a new controller could

be developed in which non sinusoidal currents are supplied to the motor. This type

of control, however, is not implemented in the current version of the software, but,

would be an interesting topic for further research.

Pownr Snadcral Density for Onen Loon Resnonse

0

z

0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

Figure 5-11: Frequency Spectrum of Velocity Signal (Nominal Motor Speed-100 p/s)

5.4.3 Two Dimensional Motor Performance

Up to now, all experiments have been performed in one axis only. Clearly the per-

formance of the sensor and the motor in the axis orthogonal to the intended sense

direction is just as important. For the first experiment (figure 5-12), the motor was

controlled in open loop mode along both the X and Y axes with the sensor reading

information along the X axis. The graph plots the output of a sensor measuring

position along the X axis while the motor is moving only along the Y axis at a speed

of 100 pitch/s. Ideally, the output from the sensor should be a straight line, how-

ever, due to the oscillatory behavior of the motor this is unlikely. It is important to

remember that the length of one pith is 0.04 in.

An interesting result from this experiment shows that there is increased position

error at the beginning of the trajectory while the motor is accelerating. when design-

ing the controller for the two-dimensional motor, each axis (X and Y) was considered

to be completely decoupled. However, figure 5-12 provides evidence that there is some

coupling between the two axes.

Figure 5-13 plots the same output for the same experiment except that now the

motor is being controlled under open loop mode in the Y axis and under closed loop

mode in the X axis. As shown in the graph, the position feedback loop resulted in

decreased oscillations once the motor reached steady state speed.

A similar experiment to the previous one is plotted in figure 5-14. In this exper-

iment, the motor is controlled open loop in the Y axis, and closed loop along the X

axis, exactly as was done in the previous experiment. The trajectory, however, is now

a diagonal consisting of the same paths in both the X axis and the Y axis. As the

results show, the Y axis response (open loop) was very accurate which was expected

from the open loop controller at low speeds. The X axis response (closed loop) was

also accurate although the results exhibit slightly move overshoot throughout the

trajectory.

An important observation from the previous two experiments, is that the sensor

still performs well even when moving "sideways", or orthogonal to it's intended sense

direction. The underlying design feature which makes this possible is that the thick-

ness of each sensor core is exactly an integral number of pitches. Therefore, sideways

motion should not produce any change in the reluctance under each core, and the

position output should also be insensitive to any sideways motions.

One of the last experiments performed was a servo run in which each axis was

controlled in closed loop mode using two sensors (figure 5-15). When motion was

constrained along either the X or the Y axis, the tracking performance was very good

and the response was similar to figures 5-13 and 5-14. However, when a combined

trajectory in X and Y, or a diagonal path, was executed the motor would often twist

about the Z axis and become unstable. Never the less, it was possible to complete

diagonal trajectories, but only at slower acceleration compared to what is attainable

when moving along a single axis.

Some of the most influential factors which produce torque disturbances are: the

drag from the electrical cables and air line, the moment produced by the unbalanced

location of the sensors during acceleration, and small warps in the platen resulting in

different drag forces on either half of the motor. In open loop mode, the motor has

no problem compensating for these disturbances, because the rotational stiffness is

X Axis Control-Open Loop, Y Axis Control-Open loop

0.05 0.1 0.15 0.2 0.25
Time (sec)

0.3 0.35 0.4 0.45 0.5

Figure 5-12: Motion along Y axis, sensor reading from X axis (open loop)

X Axis Control-Closed Loop, Y Axis Control-Open loop

0.05 0.1 0.15 0.2 0.25
Time (sec)

0.3 0.35 0.4 0.45 0.5

Figure 5-13: Motion along Y axis, sensor reading from X axis (closed loop)

75

U.VO

0.06

0.02

-0.02

-0.04

-0.06

-0. nA
0

Ud

0.06

0.04

-0.02

-0.04

-0.06

-0. NR
0

I I I I I I I I E.,U ...

1 1 I I 1 I 1 I . .

, i I I I I I I Ivv

#'tO

'

:; :: :: :: :: :· :: :· :: :· ,
·· · ·

· · ·

· · ·

r

· · · ·
~-· f: :f :: :: I: :: :i I: i

"'

'·;~ ·':·''':~'·' ":' " ~'

L

j

: ·
t

: i
'''

·' :

::
- --

E

-

X Axis Control-Closed Loop, Y Axis Control-Open loop

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time (sec)

Figure 5-14: Motion along X and Y axis, sensor reading from X and Y axis

X & Y axis-closed loop control

.15

x 10

0a.

v--0 0.05 0.1 0.15 0.2
Time (sec)

0.25 0.3 0.35 0.4

-- Yaxis- l
Desired

0.25 0.3 0.35 0.4

closed
traject

0 0.05 0.1 0.15 0.2
Time (sec)

Figure 5-15: Motion along X and Y axis, sensor reading from X and Y axis

..X axis-closed
- Desired traject

15
IL

Un · ---- · ·

VII · · · -- ·-- · · ·

n a v i i 1 I i i i

looc
ory

loopory

very high. In servo mode, the currents drop to near zero when there are no external

forces. Using only two sensors, the motor has high stiffness along either the X or

Y axis, but not in the rotational degree of freedom. The solution is to use three

sensors as described in figure 5-4. At the time this thesis was written, three sensors

were fabricated, and the software implementation of the rotational controller was

ready. However, the required number of actuators were not available. Thus even if

the sensors could accurately detect motor twist, the control system would have no

means of actively compensating for it.

5.5 Summary

A digital controller utilizing parallel processing techniques was implemented and suc-

cessfully used to control the linear motor both in open loop and closed loop mode.

Under closed loop control, the motor exhibited improvements in top speed and ac-

celeration, and even larger gains in terms of disturbance rejection when, the motor

was constrained to one axis. Effective control of the lead angle has proven to increase

force generation throughout the speed range resulting in increased acceleration and

top speed. When operating in two dimensions, however, the rotational degree of free-

dom can not be neglected and proved to be a serious problem when controlling the

motor using only two sensors. Never the less, the sensors still worked reliably even

while the motor was executing combined trajectories along the X and Y axis.

Chapter 6

Conclusion

In this thesis, a position and velocity sensing system for two dimensional linear motors

has been implemented and experimentally tested. Before designing the sensor, several

different sensing technologies were evaluated in order to meet the requirements and

operating conditions for our motor. Once a sensing mechanism was selected, several

prototype sensors were designed and tested. The final version of the inductive sensor

offers high accuracy along with strong robustness against temperature changes and

air gap fluctuations.

Once the basic design of the sensor was complete, a mathematical model and

computer simulation were developed in order to optimize sensitivity and bandwidth.

The results from the simulation and experimental tests were very similar suggesting

that the model accurately describes the characteristics of the sensor, at least over the

frequency ranges which were tested. Using the model, many sensor parameters could

be adjusted in order to improve the resolution and accuracy of the position output.

Finally, a digital controller based on a dual processor DSP was implemented.

Along with controlling the driving currents to the motor, the software also has the

responsibility of converting the sensor inputs into useful position and velocity infor-

mation. Different position conversion algorithms were investigated and implemented

in software in order to improve the accuracy of the position data as well as reduce

the computational load within the digital signal processor.

The final version of the controller utilized both current magnitude and lead angle

as control variables. Of these two, the lead angle proved to be the most influential

parameter affecting force generation. Using a look up table, the lead angle was varied

as a function of velocity depending if the motor was accelerating or decelerating. This

variable lead angle controller resulted in significant improvements in motor response

especially at high speeds.

One of the most serious problems, however, with closed loop control is the ex-

tremely low rotational stiffness when using only two sensors. Future research should

definitely focus on improving the control loop about the rotational axis in order to

maintain correct alignment between the motor and the platen.

Other areas for further research include low level time optimal control and adap-

tive control. Several strategies have been outlined by previous authors to optimize

performance in rotary motors by using an adaptive controller on the lead angle [6].

The concepts used in rotary motors could easily be applied to the linear motion

case. Another interesting area of research is optimizing constant speed performance

by using non-sinusoidal output waveforms. Two dimensional linear motors have the

capability of serving a variety of applications besides palletizing. For example, other

robotic applications might include computer controlled machining in which case, re-

ducing the velocity ripple would have the up most importance.

Another area of further research might include collision avoidance and high level

motor control. It is conceivable that using the current DSP, more processors could

be added such that multiple motors could be controlled simultaneously. As far as low

level control is concerned, the two most important areas for further development are:

understanding and optimizing the affects of the lead angle throughout the motor's

speed range, and improving the rotational control in order to reduce the motor's sen-

sitivity to torque disturbances. Even now, the closed loop controller offers significant

improvements in performance, especially high speed performance which is critical for

almost all automated robotic applications.

Appendix A

Modeling Parameters

A.1 Calculation of Sensor Core Reluctance

Calculations for the sensor reluctance are lumped into five main groups: the sensor

core, the central legs, the side legs, the platen base, and the air gap. Each of these

regions are denoted more clearly in figure A-1. The reluctance for the steel core is

dependent on the path length, the cross sectional area and the relative permeability.

In practice, the relative permeability is dependent on the flux density, however, since

peak flux densities in our sensor are extremely low, there won't be large errors due

to non linearity, or flux saturation. Also, the air gap constitutes a much larger

reluctance than either the core or the platen. Therefore, the permeability can be

considered constant.

Major properties of each sensor core are:

Sensor thickness 0.200 in.

Thickness of laminations 0.014 in.

Windings on primary 100 turns, 29 AWG PN bond

Windings on secondary 70 turns, 29 AWG PN bond

Sensor material M3 Electrical Steel

Platen material Annealed 1018 Silicon Steel

Figure A-1: Detailed Sensor Geometry

The following equations calculate the reluctance for each section of the sensor

core. All measurements are in meters and o, is the permeability of free space, which

is equal to 47r x 10-'H/m.

Core body:

ilr
Rc - porAcr (A.1)

le = 21.84 x 10-3 m

Ac = (2.413 x 10-3) (t) m2

Central leg:

R =Ac (A.2)yoprAct
ld = 12.46 x 10-3 m

Ad = (5.59 x 10-3) (t) 2

Side legs:

si = olorAsI (A.3)

1,1 = 12.46 x 10-3 m

A,1 = (2) (2.667 x 10-3)(t) m2

Central and side leg teeth:

lzct = lzst = (A.4)
poprAt

It = 5.08 x 10- 4 m

At = (6 x 5.08 x 10-4)(t) n2

The platen material is low carbon silicon steel, and in general has a lower perme-

ability than the sensor core. Mp for the platen is approximately 1200.

Platen base:

lpb = pb (A.5)
IoIr Apb

1pb = 21.84 x 10- 3 m

Apb = (1.524 x 10-3) (t) m2

Platen teeth:

pt = t (A.6)
Po r Apt

1pt = 5.08 x 10- 4 m

Ap = (24) (5.08 x 10-4) (t) m 2

A.2 Air Gap Reluctance

The Reluctance at the air gap is modeled as a sinusoid with an offset. Figure A-1

shows the exact geometry of the sensor. Since side legs: 2a and 2b are in phase

they will be lumped together. Both the reluctances 7Z1 and R 2 can be calculated by

summing all of the overlapping areas.

= Io i (A.7)

It should be noted that the platen is a an array of cubes, not ridges, so the

effective area between the platen teeth and sensor teeth is reduced by half. In a

single dimensional case, the overlapping area between the platen and a sensor tooth

is simply toothroidth X toOththickness. However, in the two dimensional case the platen is

an array of cubes so the overlapping area is reduced by half. The combined minimum

and maximum reluctances can be found by summing the overlapping areas for every

tooth on both the side legs and the central legs. The subscripts used in defining each

reluctance follow the same notation as was used to describe the reluctances in the

sensor core in figure 3-1 . The minimum air gap reluctance can be calculated when

the sensor teeth and platen teeth are aligned.

1 2 (0.02 0.02t
= A0o 6 +6 0.02 +5 (- 1]0.0254 (A.8)

Rlmin d d + 0.02 d + 0.04)

1 -= Po 6 +6 2 +4 0.042 0.0254 (A.9)
R2min d d + 0.02) d + 0.04

The maximum reluctances are found when the teeth are 1800 out of alignment.

1 0.02 (0.02 0.02t
= o 5 +2 5 2 +6(0.0254 (A.10)

Rimax = d + 0.04 'd + 0.02 d + 0.02

1 0.02) 0.02 0.02t= A0o 4 +4 + +4•2]6 0.0254 (A.11)
R 2max d + 0.04 d + 0.02 / d+ 0.02

The sine wave can then be written as:

Ri = Rofiset + Ramplitude (co + Oi) (A.12)

Roffset 2 m mi

iamplitude = ma 2 Emin

9i corresponds to the offset of each central leg. therefore for one sensor core, 01 is 00,

and 02 is 1800.

A.3 Estimation of Coil Inductance

The Inductance for a coil wrapped around a steel bar can be estimated using:

L = Po•,n2Al (A.13)

n is the number of turns per unit length, A is the cross sectional area of the bar,

and 1 is the length of the winding. The primary coil has 10000 windings/m and the

secondary has 7000 windings/m. The length and area of both coils is approximately

0.01m, and 6.5 x 10- 4 m 2 respectively. The inductances are found to be .816mH for

the primary and .401mH for the secondary.

Appendix B

Sensor Fabrication

A critical requirement for good sensor accuracy is to maintain the correct phase

relationship between each sensor tooth. In practice, however, the ideal spacing and

positioning is difficult to achieve. For example, in the final version of the sensor each

core has a 1800 offset between the central legs. However, the actual offset is only

accurate to within certain tolerances. Of the six sensor cores produced, the worst

error was 150, in other words the actual offset was 1650 rather than 1800. This error

proved to be unacceptable in terms of position accuracy, and the core had to be

replaced.

One of the main sources of error in the sensor cores in the fabrication process.

initially, the cores are manufactured in a long stack of laminated sheets which are

glued together. This laminated construction dramatically reduces losses due to eddy

currents. In order to create sensors of a certain thickness, each core is split off of

the main stack at the correct number of laminations. This splitting process often

produces slight bends in the resulting cores. For example, the relatively large error

of 150 degrees was produced by only a 0.0016 in. error in the linear distance between

each central leg on one of the sensor cores. In the future, in would be wise to inves-

tigate different manufacturing processes which minimize handling the cores in order

to guarantee the required tolerances.

Even if each individual core is within tolerances, a larger source of error still exists:

the relative positioning between each of the separate cores both to each other and with

respect to the motor cores on the linear motor. Several different sensor housings were

constructed and experimentally evaluated. The goal of each design was to maintain

rigid alignment between the cores, while at the same time minimize the overall weight.

Also, provisions were required to allow adjustment of at least one the cores in order

to produce the 900 phase offset once the sensors were inside the housing. The final

version of the housing is presented in the following pictures. Figure, B-1 is a CAD

drawing of the housing, and figure B-2 is a picture of one completed sensor along with

two sensor cores. Once each core is aligned in the correct position, they are held in

place with set screws. This is to provide a temporary fixture. Once the sensor has

been experimentally tested and is within tolerances, it can be potted with epoxy or

polyester resin. After potting, the alignment between the cores is fixed, and there is

less of a chance of either the primary or secondary coils shorting through the sensor

core. Unfortunately, due to a limited number of cores the final versions of the sensor

was never potted.

In future versions, it might be worthwhile to look at methods of fabricating the

core out of one solid piece an then cutting it into separate pieces once it is aligned

and potted. In fact, this is a common method used in the construction of both single

dimensional and two dimensional linear motors.

CIO
C)

0

C,,

Figure B-1: Motor Housing for Dual Core Inm

.20"

Figure B-2: Picture of Sensor Housing and two Sensor Cores

Appendix C

System Hardware

The two dimensional linear motor is produced by Northren Magnetics inc., model

4XY2504-2-0. Some general specifications for this motor are:

Number of axes = 2

Number of phases = 2

Number of sets/axis = 2

Static Force = 26-30 lbs

Force @ 40 in/sec = 19-22 lbs

Resistance/phase/set = 1.9 Q

Inductance/phase/set = 2.3 mh

Amps/phase/set = 4.0

Airgap = 0.0008 in

Maximum forcer temp = 110 C

Weight = 4.5 lbs

Air pressure = 80.0 psi

Airflow = 60.0 scfh
The digital signal processing board used to control the two dimensional linear

motor is the QPC40b quad processor carrier board produced by Spectrum Signal

Processing Inc. This carrier board can accept up to four Texas Instruments C40

processor modules. Currently, the carrier has two MDC40S1 processor modules each

containing 3 banks of 32 kbyte sram memory. Data transfer between the DSP and

the PC is performed through a direct memory access controller, or DMA, allowing

the cpu to perform computations in parallel with data transfer.

The analog input output board is the PC/16IO08 which is also produced by spec-

trum. The input section consists of sixteen analog to digital converters. Each A/D

has 12 bit resolution and the board is capable of sampling all 16 channels simulta-

neously at 25 kHz. The sampling frequency can be increased to 48 kHz if only 4

channels are sampled. The output section consists of eight, 12 bit D/A converters.

The maximum update rate for the D/A converters is 100 KHz. All data transfer

between the DSP and the analog board is performed over a high speed proprietary

bus called the DSPLinkTM. This bus can sustain a data throughput rate which is

much higher than is capable with the PC bus. Also, if additional analog boards are

required they can be connected in series along the DSPLinkTM , providing even further

flexibility.

In closed loop mode using rotation control, a single motor requires six A/D inputs

(2 per sensor) and eight D/A outputs (phase A and phase B for each axis and each

half of the motor). In the future, if multiple motors are to be operated simultaneously,

the number of pro cessors on the QPC40b carrier board could be increa

the number of analog boards along the DSPLinkTM.

The driving amplifiers are the UD12 servo drives produced by parker compumotor.

The major properties of each UD12 are:

Peak motor current iA,peak, ±iB,peak = 25 A (5 sec)

Max continuous motor current fiA,maz, iiB,max = 12 A

Motor supply voltage VA,maz, VB,max = 150 V

Peak power dump current = 12 A @ 150 V

Maximum continuous dump power = 40 W

Internal resistance Rd = 6.80

Bandwidth = 2500 Hz

PWM switching frequency = 20000 Hz

Form factor = 1.01

Gain = 10... 3000 A/V

C.1 Connection Diagrams

The remaining pages contain further information for all of the major hardware com-

ponents. Figures (C-1, C-2, C-3, C-4, C-5, C-6) containing wiring diagrams and other

information pertaining to the sensor, current amplifiers, signal conditioning circuitry,

DSP, and the motor wiring harness.

Inductive Sensor Connection Diagram

6

4
5
8
9
3

10
12
1
3
5
7
2
4
6
8

Ground cable shield to 9 pin
connector housing. Ground
the connector to the ground
point on the signal box.

Figure C-1: Connection Diagram for Sensor

black

orange
blue
green
white
red/black

Signal Conditioning Circuit for one Sensor

pm 3 pm 4 pmI pin 8 pin 9
• ln.. A

9 pin Sensor Connector

Figure C-2: Circuit Diagram for Sensor

93

UD12 PWM Amplifier Connection Diagram

UD2 AMPO UD12AMP2 UD12 AMP3 UDI2 AMP4 UD12 Power Spply

.mL. 1•.4 cnuem Umi.c4 cWut LA4 ar Li•4
Vedohay OO- Vdoc•y udO VelaVhd o~eO Vdoby O•im

- m - - -

4...

9 pin Male Plastic
Power Connector

Left Half

Pin No. UDI2 Signal
I motarl-AMPO
2 mota2-AMPO
4 motorl-AMPI
5 motoa-AMPI
7 motor-AMP2
8 moo-AMP2
3 moorl-AMP3
6 morr2-AMP3
9

25 Pin Male
Connector

nNo. in!)1il

144
2
15
3
16
4
17 mn-•+A~MP

10 ,.AM
22 roMALWA
11 -

23
12
24
13 I-A
14 2-AMPO

9 pin Male Plastic
Power Connector

Right Half

Pin No. UD12 Signal
I mmor-AMP4

2 motad-AMP4
4 motalr-AMP5
5 mtot2-AMPS
7 motorl-AMP6
8 moto2-AMP6
3 motorl-AMP7
6 mo-AMP7
9 Iround

Figure C-4: Connection Diagram for UD12 PWM Amplifier

Single Motor Connection Diagram

> Phase Set 1
Left Half

Phase Set 2
Right Half

Phase set 1 (left half)
Cable Color 25 pin motor connector 9 pin female Corresponding D/A

power connector channel

white pin 1 (phase Al+, x axis) pin I D/A chan0
green pin 2 (phase Al-, x axis) pin 2
red pin 3 (phase Bl+, x axis) pin 4 DIA chan 1
blue pin4 (phaseBl-, xaxis) pin 5

orange pin 14 (phase Al+, y axis) pin 7 D/A chan 2
black pin 15 (phase Al-, y axis) pin 8

white/black pin 16 (phase Bl+, y axis) pin 3 DIA chan 3
red/black pin 17 (phase Bl-, y axis) pin 6

shield pin 9 pin 9

Phase set 2 (right half)
Cable Color 25 pin motor connector 9 pin female Corresponding D/A

power connector channel

white pin 5 (phase A2+, x axis) pin I D/A chan 4
green pin 6 (phase A2-, x axis) pin 2
red pin 7 (phase B2+, x axis) pin 4 D/A chan 5
blue pin 8 (phase B2-, x axis) pin 5
orange pin 18 (phase A2+, y axis) pin 7 D/A chan 6
black pin 19 (phase A2-, y axis) pin 8
white/black pin 20 (phase B2+, y axis) pin 3 D/A chan 7
red/black pin 21 (phase B2-, y axis) pin 6
shield pin 9 pin 9

Normag 4XY2504-2 Maximum Current rating:
Maximum Output from each UD12 Amplifier.

4 amps/phase/set
4 amps

Figure C-5: Connection Diagram for Single Motor Wiring Harness

Quad Motor Connection Diagram

Motor 3 Motor4
This wiring harness is used to control
four motors as a single unit. The controller
can control both the left and right half of the
unit. Motor I has an inverted 25 pin
connector to identify it as the master motor

i
/

Y Axis

Control Diagram
D/A output Motor which is
channel No. controlled
0 motor 1 & motor 4 (Phse A, X axis)
1 motor 1 & motor 4 (Phase B, X axis)
2 motor 4 & motor 3 (Phase A, Y axis)
3 motor 4 & motor 3 (phas , Y axis)
4 motor 2 & motor 3 (Phase A, X axis)
5 motor 2 & motor 3 (Phase B, X axis)
6 motor 1 & motor 2 (PaseA, Y axis)
7 motor 1 & motor 2 (Phase B, Y axis)

Phase A, Xaxis, left half
Motor 4

Each pair of motors that is wired together along a single axis
ie Aset2

A set 1 is wired in parallel. For Example, the wiring for phase A,
x axis, motors 1 &4 is shown to the left. Each set of phases
for an individual motor is wired in series, and each pair of
motors is wired in parallel. The maximum current rating
provided by Normag is 4 amps/phase/set. Therefore, the
maximum current each amplifier should produce is 8 amps.

PWM AMPO

Figure C-6: Connection Diagram for Quad Motor Wiring Harness

..D

Appendix D

Simulation Codes

All of the simulation for the sensor model was performed in Matlab. The flowing

code listing was used to find the sensitivity for different parameters. The frequency

response test, was performed by repeating this section of code multiple times at

discrete frequencies up to the sensor's bandwidth.

%matlab m code for sensor model

%%e%%%%%%% %%%%%% m^M
%%set up parameters
clear;
clg;^M
Ep=l;
Np=100;
Lp=2.94E-4*i;
Rp=l;
Ns=70;
fc=10000;
fx=10;
Ax=.5;
res=10;
boderes=10;
w=.007112;
d=.0002032;
p=.000508;
Imc=.02184;
Amc=.00241;
lcl=.01246;
Acl=.00559*w;
lct=.000508;

%amplitude of primary voltage
%number of turns on primary
%Inductane of primary in heneries
%resistance of primary in ohms
%number of turns on secondary
%carrier frequency in Hz
%frequency of position cycles
%Amplitude of position cycle in pitches
%how many sample points for one carrier period
%determines resolution of bode plot
%thickness of sensor
%width of airgap
%half of pitch length
%length of main core
&Area of main core
%length of one central leg
%Area of one central leg
%length of one core tooth

Act=.000508*w*6; %overlapping area of all teeth
lsl=.01246; %length of one side leg

on one central leg

Asl=.005334*w; %Area of one side leg
lst=.000508; %length of one side tooth
Ast=.000508*w*6; %Area of all teeth on one side leg
lpb=.02113; %length of platen base 30
Apb=.001524*w/2; %Area of platen base
lpt=.000508; %length of one platen tooth
Apt=.000508*12*w; %overlapping area of all platen teeth
VOLcore=Amc*lmc+2*(Acl*lcl)+2*(Asl*lsl); % Volume of main core
VOLplaten=Apb*lpb; %Average volume of platen in flux path of core
Uo=12.5663E-7; %permeability of free space
Ucr=4000; %average permeability of core
Upb=1000; %average permeability of platen
RI=inv(Uo*Ucr*Amc/lmc);
RII=inv(Uo*Ucr*(Acl/lcl+Act/lct)); 40

RIII=inv(Uo*Ucr*(Asl/lsl+Ast/lst));
RIV=inv(Uo*Upb*(Apb/lpb+Apt/lpt));
Rlmin=inv(Uo*(6*p*w/2/d + 6*p*w/2/(d+p) + 5*p*w/(d+2*p)));
R2min=inv(Uo*(6*p*w/2/d + 6*p*w/2/(d+p) + 4*p*w/(d+2*p)));
Rlmax=inv(Uo*(6*p*w/(d+p) + 5*p*w/2/(d+p) + 5*p*w/2/(d+2*p)));
R2max=inv(Uo*(6*p*w/(d+p) + 4*p*w/2/(d+p) + 4*p*w/2/(d+2*p)));
Rlo=RII+(R1max+R1min)/2;
Rla= (R1max-R1min)/2;
R2o=RIII+(R2max+R2min)/2;
R2a= (R2max-R2min)/2; 50

%%begin simulation
omega=logspace(1,5,boderes);
for k=l:boderes %resolution fo bode plot
fx=500

Vout(1)=0;
PHI2old=0;
PHIin=0; %Average total flux through one secondary coil 60
PHIinold=0;
[B,A]=butter(4,2*(.2*fc)/(fc*res));
Zp=Rp+2*pi*fc*Lp;
Zpmag=abs(Zp);
Zpangle=angle(Zp);
Pcdisp=146.3*VOLcore*(fc/60) ^2;
Ppdisp=15680*VOLplaten*(fc/60) ^2.5;
Rdisp=Ep 2̂*(Pcdisp+Ppdisp)/2/Zpmag;
Zpmag=abs(Rdisp+Zpmag);
Ttr=10/fc; %transient time is 10 times the carrier period 70
Tss=l/fx; %staedy state time is 1 times the position period
Ttot=Tss+Ttr;
Tstep=l/fc/res;
t=0:Tstep:Ttot;
jmax=Ttot/Tstep;

for j=2:jmax+l
Vp=Ep*sin(2*pi*fc*t(j));
MFin=Np/Zpmag*(Vp-Np*(PHIin-PHIinold));
PHIinold=PHIin; so

pos=.5*sin(2*pi*fx*t(j));
%pos=fx*t(j);
R1=Rlo+Rla*sin(2*pi*pos+pi/2);
R2=R2o+R2a*sin(2*pi*pos-pi/2);
R3=Rlo+Rla*sin(2*pi*pos+3*pi/2);
R4=R2o+R2a*sin(2*pi*pos-3*pi/2);
PHIin=MFin/(RI+RIV+R1*R2/(R1+R2) +R3*R4/(R3+R4));
PHIS(j)=PHIin;
PHI2=PHIin*R1/(R1+R2);
Vout(j)=Ns* (PHI2-PHI2old)/(t(j)-t(j- 1)); 90

PHI2old=PHI2;
end
env=filter(B,A,abs(Vout));
Vmax=max(env(jmax/4:3*jmax/4));
Vmin=min(env(jmax/2:jmax));
%tl=floor(jmax/2-. 5*res);
%t2=floor(jmax/ 2+. 5*res);
% Vmax=max(Vout(tl:t2));
%tl =floor(3*jmax/4- .5 *res);
%t2=floor(3*jmax/4 +. 5 *res); 100
% Vmin=max(Vout(tl:t2));
sen(k)=(Vmax-Vmin); %sensor sensitivity
end

100

Appendix E

DSP Based Motor Controller

This chapter includes the source code listings for the host C program and the DSP

C programs for the A and B CPU's. All files ending with .cpp and all header files

ending with .h belong to the host program. Each DSP program consists of the main

code, "lmd2a.c" and "lmd2b.c", and the header files , "lmda.sys" and "lmdb.sys".

Many comments describing program flow, communication, and handshaking are in-

cluded in the code.

/ * Linear Motor Driver
High Speed Flexible Automation Project
Laboratory for Manufacturing and Productivity
Massachusetts Institute of Technology

C++ Chapter:
Header File
lmd2.h

10

Written by Henning Schulze-Lauen
04/13/1993
Rewritten by Doug Crawford
02/19/1995

This file is included into every module of the software and provides for
the global variables.

#include <stdlib.h>
#include <stdio.h> 20

#include <conio.h> */

101

/ *Defines */
#define CppExeName "lmd2. exe" /* Executable C++ program file (i.e

SysParFilename "sy
DfMotorFilename "m
Version "1.0"

XYoff
XYstep
XservoYstep
XstepYservo
XYservo
XYRotservo

.*/
/ * result of compiling this file). */

spar. lmd" / * System Parameter settings file. */
otor. lmd" /* Default machine constant database. */

0 / *set by the variable driverMode. */
1 /*Defines the state of the motor*/

/*at any time.*/

// Declarations
typedef struct { / *This structure defines the*/

unsigned int pathtype; /*trajectory in both the X and*/
float time,ax,ay, / *Y ais*/

vxold,vyold,xxold,xyold,
vxfin,vyfin,xxfin,xyfin;

} pathList;

// System Parameters *
#ifdef Main
unsigned int

driverMode,
calReady,

maxInstrCount
numMotors;

float

double

char

/* Define Globals only in Main module. */

/*Defines the stste of the motor, ie XYstep*/
/*flag set to 1 if calibration has been perfromed*/

/ *maximum number of different piecewise trajectories*/
/ * number of motors in current configuration, 1 or 4*/

maxAmplitude, / *maximum voltage output from DIA this voltage will
/ *result in the maximu current from the PWM amps*/

filterBWData, / *Defines cut off frequency for digital filter*/
filterBWCal, / *filterBWData is the cutoff used for all incoming AID*1
filterBWVel; / *samples, filterBWcal has a lower cut off and is used */

/ *in place of filterBWdata during calibration. */
/ *filterBWVel is used to filter the velocity signal*/

motorName[40]= "<none>",
/ * Description of current motor configuration. */

motorFilename[80]=DfMotorFilename;
/ * Filename of machine data base. */

unsigned long
sampleFreq,

float

minSampleFreq,
maxSampleFreq;

/*controls the sampling rate on the multi channel I/0*/
/*card, the main interrupt is controlled by this timing*/
/ *Minimum and maximum sampling freqeuncy [Hz], */
/ *determined by the by the limits of I/O board. */

leadMaxAccel, / *maximum lead angle which defines the saturation level, */

102

#define
#define
#define

#define
#define
#define
#define
#define
#define

/

/ * = 3.14 ... */

leadMaxDecel, /* ie when the velocity is maximuml.*/
leadMinAccel, / *minimum lead angle, ie, the value when velocity is zero*/
leadMinDecel,
IsAccel, /*speed at which lead angle saturates to it's maximum*/

lsDecel, /*defined in leadMaxAccel and leadMaxDecel*/
P, / *Proportional const for current control*/
D, / *Derivative constant for current control*/
I, / *Integral const for current control(currently not used) */
Prot, / *Proportional const for rotation control(currently not used)*/
Drot, /*Derivative const for rotation control(currently not used)*/
leadMax, /*maximum value of the lead angle which can be set user*/
kmax; / *maximum value of the control parameters set by user*/

#else // In all non-Main modules declare globals extern
extern unsigned int maxInstrCount, driverMode, calReady, numMotors;
extern float maxAmplitude, filterBWData, filterBWCal, filterBWVel;
extern double pi;
extern char motorName[40], motorFilename[80];
extern unsigned long sampleFreq, minSampleFreq, maxSampleFreq;
extern float leadMaxAccel, leadMaxDecel, leadMinAccel, leadMinDecel,

IsAccel, IsDecel, P, D, I, Prot, Drot, leadMax, kmax;
#endif

/*///
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology
//
// C++ Chapter:
// Main Program
// lmd2.cpp
//
// Written by Henning Schulze-Lauen
// 04/08/1993
// Rewritten by Doug Crawford
// 03/15/1995
//
// This program drives a 2-axis linear motor, 2 phases per axis, using the
// Texas Instruments QPC-40 digital signal processing board. While this C++
// Chapter provides for user interface and calculation of trajectories to
// run, the TMS32OC40 C program is responsible for generating the necessary
// waveforms.

// For communication between this C++ program and the TMS320C40 System Board
// we use the NETAPI High Level Language Interface Library provided by
// Spectrum./-
// All functions ending with ..DSPO are defined in the interface module,
// Imd2_ifr.cpp */

103

#define Main
30

#include "lmd2.h"
#include "lmd2_rou.h"
#include "lmd2_ifr.h"

/ *//
// Declaration of Modules
/*/
int mainMenu(pathList *);
void initialization(void);
void createTrajectory (pathList *); 40

void go(pathList *);
void resetMotor(void);
void dumpADCInput(void);
void setup(void);
void termination(void);

void main()

// 50
{

initialization();
static pathList *trajectoryl=

(pathList *) calloc (maxInstrCount, sizeof(pathList));
/ * From here the current trajectory is distributed to the modules*/

while (mainMenu(trajectoryl));
/ * Repeat mainMenu until user requests termination. */

termination();
}
// end main() 60

int mainMenu(pathList trajectory[)

// Print main menu, wait for input, and execute selection

// Return: 0 = user requested program termination;
// 1 = else.
//
{ 70

pagelnit("Main menu");
printf("Available applications -\n\n"

"Create a trajectory............................ A\n"
"Execute trajectory 2\n"
"Reset motor................................... 3\n"
"Dump ADC data.................................. 4\n"
"Setup system parameters 5\n"
"Calibrate sensors.............................. 6\n"
"Terminate session O\n\n\n");

80
switch (userSelection(0,6,(trajectory[1].pathtype?2:1))) {

case 1: createTrajectory(trajectory); return 1;

104

case 2: go(trajectory); return 1;
case 3: resetMotor(); return 1;
case 4: dumpADCInputo; return 1;
case 5: setup(); return 1;
case 6: calibrateSensorDSPo; return 1;
case 0: return !waitYN("\nTerminate session - sure? (Y/N; <Enter>=Y) ", 'Y');

return 0; 90

// end mainMenu()

/*///
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology
//
// C++ Chapter:
// Initialization Mo dule
// lmd2_inm.cpp 10

//
// Written by Henning Schulze-Lauen
// 04/13/1993// 07/30/1993
// 09/12/1993
// Rewritten by Doug Crawford
// 03/15/1995
/*/
#define Initialization
#include "lmd2. h" 20

#include "lmd2.rou. h"
#include "lmd2_dsr. h"
#include "lmd2_ifr.h"
#include "math.h"

void systemDefaults (void);

void initialization()

// Startup activities: setting up system parameter from DSP board memory, 30

// clearing all outputs, generating sine table
//
// Globals: all system parameters
//
//

pageInit("Welcome! ");

105

systemDefaults();
loadSysPar();
loadMotorData();

startUpDSP();
sendGlobalsDSP();
calReady=0;

}
// end initialization()

Load system parameters including filename of*/
current motor database, which is loaded next. */
If file(s) not available, default values as*/
loaded from DSP board will be used. */

This flag is set to one once sensor calibration*/
has been performed */

void systemDefaults(void)

pi=4*atan(1);
minSampleFreq=0;
maxSampleFreq=30000;
maxInstrCount=15;
leadMaxAccel=400; //lead angle values are in degrees
leadMaxDecel=170;
leadMinAccel=80;
leadMinDecel=-80;
lsAccel=700; //used in lead angle control units are pitch/s
lsDecel=700; //used in lead angle control units are pitch/s
P=25;
D=0.1;
I=1;
Prot=1;
Drot=1;
leadMax=720;
kmax= 1000000;
maxAmplitude=2.6; /*this will cause a sinusoid with maximum amplitude*/

/ *of +/- 2.6 volts from the D/A which corresponds*/
/ *to about +/- 8 amps from the UD12 amplifiers*/
/ *The gain of the amplifiers, however, may be adjusted*/
/ *through a potentiometer, so make sure the amps*/
/ *are supplying the correct amps before connecting them*/
/ *to the motor*/

/*///
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology
//
// C++ Chapter:
// Online Trajectory Generation Module
// Imd2_tgm.cpp

106

//
// Written by Doug Crawford
// 02/19/1995
/*/
#define TrajectoryMenu
#include "lmd2. h"
#include "lmd2_rou.h"

// Declaration of Sub-Modules 20

//
int createTrajectoryMenu(pathList *);
void standardTrajectory(const int, pathList *);
void dumpInstr(pathList *); /*dumps the trajectory information to the screen*/

void createTrajectory(pathList patho)

// Select and customize a trajectory
// 30
// Parameter: path = instruction list to store the created trajectory;
// list is terminated by a 0 in time.
//
{

while (createTrajectoryMenu(path)); // Repeat menu until user requests
// termination.

// end createTrajectory()

40

int createTrajectoryMenu(pathList trajectory[)

// Print menu, wait for input, and execute selection
//
// Return: 0 = user requested main menu;
// 1 = else.
//
{

int maxSelect;
50

pageInit("Creating a Trajectory");
printf("Select a basic trajectory -\n\n"

" Constant acceleration ax,ay=const 1\n"
" Linear acceleration ax,ay=kt 2\n\n");

if (trajectory[1].pathtype) {
printf(" Note: Selection 1 through 2 will delete\n"

" the currently programmed trajectory!\n\n"
"Show current trajectory's instruction list 3\n\n");

maxSelect=3; 60
}
else

maxSelect=2;
printf("Return to Main Menu 0\n\n");

107

switch (userSelection(O,maxSelect,(trajectory[1].pathtype?0:1))) {
case 1: standardTrajectory(1, trajectory); return 1;
case 2: standardTrajectory(2, trajectory); return 1;
case 3: dumpInstr(trajectory); return 1;

} 70
return 0;

// end createTrajectoryMenu

// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology
//
// C++ Chapter:
// Trajectory Generation Sub Modules
// lmd2_tgs.cpp 10

//
// Written by Doug Crawford
// June 1995
//
#define Trajectory
#include "lmd2. h"
#include "lmd 2 _rou .h"
#include <math.h>

// Declaration of internal subroutines 20

void constantVel(const float, const float, const float, const int, pathList

void constantVel(const float, const float, const float, const int, pathList *);
void constantAccel(const float, const float, const float, const int, pathList *);
void linearAccel(const float, const float, const float, const int, pathList *);
void initTrajectory(pathList *); /*sets trajectory structure elements to zero*/

void standardTrajectory (const int shape, pathList trajectoryD)
/*i/// 30
// Generating standard trajectory

//
// Parameters: shape = number of selected curve form:
// 1 = constant acceleration,
// 2 = linear acceleration,
// trajectory = instruction List to store the created trajectory;
// list is terminated by a 0 in time.

/*/
{

static float accelTime=.1, /* Times allowed to reach targetSpeed,*/ 40
decelTime=.1, /* and vice versa [s]. */

108

runTime=0;
static float vX=200,

vY=0;
static float xxmax,xymax,totTime;
int trajStep;

/ * Time running at const vX, vY [s]. */
/* Target velocities [pitch/s]. */
/* Note that initialization is static*/

initTrajectory(trajectory); /*sets trajectory elements to zero*/
/ * User input curve parameters*/
pagelnit("Creating a Trajectory");
printf("You selected a ");
switch (shape) {

case 1: printf("constant acceleration curve."); break;
case 2: printf("linear acceleration curve."); break;

}
printf("\nPlease enter the curve parameters -\n\n"

"Acceleration time = %7.3f s
accelTime=readNum(accelTime);
printf("Cruising time (v=const) = %7.3f s N

runTime=readNum(runTime);
printf("Deceleration time = %7.3f s N

decelTime=readNum(decelTime);
printf("\nCruising speed x = %8.3f pitch/s
vX=readNum(vX);
printf("Cruising speed y = %8.3f pitch/s Ne
vY=readNum(vY);

New value: ", accelTime);

ew value: ", runTime); 60

ew value: ", decelTime);

New value: ", vX);

w value: ",vY);

switch (shape) {
case 1:
trajStep=0;

trajectory[trajStep].xxold=O; trajectory[trajStep].xyold=0;
trajectory[trajStep].vxold=O; trajectory[trajStep].vyold=O;

constantAccel(vX,vY,accelTime,1,trajectory);
constantVel(vX,vY,runTime,2,trajectory);
constantAccel(0,0,decelTime,3,trajectory);
xxmax=trajectory[3].xxfin; xymax=trajectory[3].xyfin;
totTime=accelTime+runTime+decelTime;
if (waitYN("\nlnclude return trip? (Y/N <enter>=Y)

constantAccel(-vX,-vY,accelTime,4,trajectory);
constantVel(-vX,-vY,runTime,5,trajectory);
constantAccel(0,0,decelTime,6,trajectory);

break;
case 2:

trajStep=0;
trajectory[trajStep].xxold=O; trajectory[trajStep].xyold=O;

trajectory[trajStep].vxold=O; trajectory[trajStep].vyold=O;
linearAccel(vX,vY,accelTime,l,trajectory);
constantVel(vX,vY,runTime,2,trajectory);
linearAccel(0,0,decelTime,3,trajectory);
xxmax=trajectory[3].xxfin; xymax=trajectory[3].xyfin;
totTime=accelTime+runTime+decelTime;
if (waitYN("\nInclude return trip? (Y/N <enter>=Y)

linearAccel(-vX,-vY,accelTime,4,trajectory);

109

", ,'Y)){
80so

90

,, ,y)){

constantVel(-vX,-vY,runTime,5,trajectory);
linearAccel(0,0,decelTime,6,trajectory);

}
break;

} // end switch(shape) 100
printf("\nYour trajectory has been compiled.\n"

"Required platen space = (%.lf,%.lf)..(I. lf,%.1f) pitch\n"
"Total run time = %.3f s\n\n",
0, 0, xxmax, xymax, totTime);

// end standardTrajectory()

void constantAccel(const float vxfin, const float vyfin,
const float duration, const int ts, pathList trajectory[)
//*////////////////////////////////////// IO
// Generating one piece of trajectory information

//
// Parameters: vx, vy = final velocities.
// ts = current trajectory step, ie which piecewise part of

// the position cureve are we on
// duration = time length of generated trajectory piece.
// trajectory = instruction list to be filled.

{
trajectory[ts].pathtype = 2; //constant acceleration 120

trajectory[ts].time = duration;
trajectory[ts].ax = (vxfin-trajectory[ts-1].vxfin)/duration;
trajectory[ts].ay = (vyfin-trajectory[ts- 1].vyfin)/duration;
trajectory[ts].vxold = trajectory[ts- 1].vxfin;
trajectory[ts].vyold = trajectory[ts- 1].vyfin;
trajectory[ts].xxold = trajectory[ts- 1].xxfin;
trajectory[ts].xyold = trajectory[ts-1].xyfin;
trajectory[ts].vxfin=vxfin;

trajectory [ts].vyfin=vyfin;
trajectory[ts].xxfin= (trajectory[ts].ax*duration*duration)/2 130

+trajectory[ts].vxold*duration+trajectory[ts].xxold;
trajectory[ts].xyfin= (trajectory[ts].ay*duration*duration)/2

+trajectory [ts].vyold*duration+trajectory [ts].xyold;
I
// end constantAccel

void constantVel(const float vxfin, const float vyfin,
const float duration, const int ts, pathList trajectoryf)

// Generating one piece of trajectory 140
//
// Parameters: vxfin, vyfin = final velocities.
// ts = current trajectory step
// duration = time length of generated trajectory piece.
// trajectory = instruction list to be filled.

trajectory[ts].pathtype = 1; / *constant velocity*/
trajectory[ts].time = duration;
trajectory[ts].vxold = trajectory[ts- 1].vxfin;

110

trajectory[ts].vyold = trajectory[ts-1].vyfin; 150
trajectory[ts].xxold = trajectory[ts-1].xxfin;
trajectory[ts].xyold = trajectory[ts-1].xyfin;
trajectory [ts].vxfin=vxfin;

trajectory[ts].vyfin=vyfin;
trajectory[ts].xxfin=(trajectory[ts].vxfin*duration)

+trajectory[ts].xxold;
trajectory[ts].xyfin= (trajectory[ts].vyfin*duration)

+trajectory[ts].xyold;
}
// end constantVel 160

void linearAccel(const float vxfin, const float vyfin,
const float duration, const int ts, pathList trajectory0)

// Generating one piece of trajectory
//
// Parameters: vx, vy = final velocities.
// ts = current trajectory step
// duration = length of generated trajectory piece.
// trajectory = instruction list to be filled. 170

trajectory[ts].pathtype = 3; //constant acceleration
trajectory[ts].time = duration;
trajectory[ts].ax = 2*(vxfin-trajectory[ts- 1].vxfin)/duration/duration;
trajectory[ts].ay = 2*(vyfin-trajectory[ts- 1].vyfin) /duration/duration;
trajectory[ts].vxold = trajectory[ts- 1].vxfin;
trajectory[ts].vyold = trajectory[ts-1].vyfin;
trajectory[ts].xxold = trajectory[ts- 1].xxfin;
trajectory[ts].xyold = trajectory[ts-1].xyfin;
trajectory[ts].vxfin=vxfin; 1so

trajectory[ts].vyfin=vyfin;
trajectory[ts].xxfin=(trajectory[ts].ax*duration*duration*duration)/6

+trajectory[ts].vxold*duration+trajectory[ts].xxold;
trajectory[ts].xyfin= (trajectory[ts] .ay*duration*duration*duration) /6

+trajectory[ts].vyold*duration+trajectory[ts].xyold;
}
// end linearAccel

void dumpInstr(pathList trajectory0) 190

// Dump instruction list to CRT
//
// These are the definitions of the parameters that make up the trajectory
// pathType: O-resting, 1-constant vel, 2-constant accel, 3-linear accel
// vxfin: final x axis velocity for the particular trajectory piece
// vyfin: final y axis velocity for the particular trajectory piece
// vxold: initial x axis velocity for the particular trajectory piece
// vyold: initial y axis velocity for the particular trajectory piece
// ax: value of accelration for x axis 200
// ay: value of acceleration for y axis
// Parameter: trajectory = instruction list to be dumped
//

111

pagelnit(" Instruction List");
printf("Hit any key to stop and resume the listing, <Esc> to abort.\n"
"Listing will show:\n\n"
"instr # pathtype velx vely accelx accely velxi velyi posxi posyi time \n");

waitEnterO;
unsigned int pc; 210
pc=1;
while (trajectory[pc].pathtype != 0) {

printf("\n%6i> %4i %3.2f %3.2f %3.2f %3.2f %3.2f %3.2f %3.2f %3.2f ,3.1
pc, trajectory[pc].pathtype, trajectory[pc].vxfin, trajectory[pc].vyfin,
trajectory[pc].ax, trajectory[pc].ay, trajectory[pc].vxold,
trajectory[pc].vyold, trajectory[pc].xxold, trajectory[pc].xyold,
trajectory[pc].time);

pc++;
if (kbhit())

if (getcho==Esc) 220
break;

else
if (getcho==Esc)

break;
}
printf("\n\n");
waitEnter();

}
// end dumpInstr()

230

// end reverseTrajectory()

void initTrajectory(pathList trajectoryl])

{
int j=O;
while (j <= maxInstrCount){

trajectory[j].pathtype=O;
j++;

240

/ *///
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology
//
// C++ Chapter:
// Trajectory Execution Module
// lmd2 gom.cpp 10

// Written by Henning Schulze-Lauen

// 04/13/1993
// Rewriten by Doug Crawford

112

// June, 1995

#define Go
#include "lmd2. h"
#include "lmd2_rou. h"
#include "Imd2_ifr.h" 20

void go(pathList trajectoryD)

// Execute the precalculated trajectory

//
// Parameter: trajectory = instruction list to be executed.
//
{

pageInit("Executing Trajectory");
if (trajectory[1].pathtype==0) { /* instruction list empty*/ 30

printf("\aSorry, no trajectory yet created.\n"
"Select 'Create a trajectory' from main menu first.\n\n");

waitEnter();
return;

/ *calibration has not been performed*/
if ((driverMode > XYstep) && (!calReady)) {

printf("\aSorry, no clibration data available.\n"
"Select 'Calibrate Sensors' from main menu first.\n\n");

waitEntero; 40
return;

}
printf("Select Controller -\n\n"

"X-Y step control............................... 1\n"
"X-servo control, Y-step control................ 2\n"
"X-step control, Y-servo control................ 3\n"
"X-Y servo control.............................. 4\n"
"X-Y-rotation servo control..................... 5\n"
"Return to main menu O\n\n\n");

50
switch (userSelection(0,6,1)) {

case 1: driverMode=XYstep;
executeTrajectoryDSP (trajectory); return;

case 2: driverMode=XservoYstep;
executeTrajectoryDSP (trajectory); return;

case 3: driverMode=XstepYservo;
executeTrajectoryDSP (trajectory); return;

case 4: driverMode=XYservo;
executeTrajectoryDSP (trajectory); return;

case 5: driverMode=XYRotservo; 60
executeTrajectoryDSP (trajectory); return;

case 0: return;
}
return;

}
// end go()

113

/*IIIIIIIIIIIIIIIII//
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology
//
// C++ Chapter:
// ADC Input Dump Module
// Imd2_mdm.cpp l1
//
// Written by Henning Schulze-Lauen
// 09/10/1993
// Rewritten by Doug Cratwford
// June 1995
*/
#deflne ADCDumpMenu
#include "lmd2. h"
#include "lmd2_rou. h"

20

/ *///I//////////////////
// Declaration of Sub-Modules
*/ // File Names
int dumpADCInputMenu(void);
void dumpADCInputASCII(int); // Ilmdc_mds.cpp

void dumpADCInput(void)

// Dump DSP board memory to file 30

//
{

while (dumpADCInputMenuo); // Repeat menu until user requests
// termination.

// end dumpADCInputo

int dumpADCInputMenu(void)
///////////////////////////////////////40
// Print menu, wait for input, and execute selection
//
// Return: 0 = user requested main menu;
// 1 = else.
//

int maxSelect;

pageInit("Dump ADC readings to file");
printf("These functions write to a file the ADC readings recorded\n" 50

114

"during the last execution of a trajectory. What kind of data\n"
"these readings represent depends on the current hardware and\n"
"software configuration.\n\n"
"Dump sample buffer from processor A i\n"
"Return to Main Menu O\n\n\n");

switch (userSelection(0,2,2)) {
case 1: dumpADCInputASCII(1); return 1;

)
return 0; 60

}
// end dumpADCInputMenu()

/ *///
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology
//
// C++ Chapter:
// ADC Input Dump Module
// Submodule ADCDumpASCII to
// lmd2_mds.cpp
//
// Written by Doug Crawford
// 07/20/1995
*/
#define ADCDumpASCII
#include "lmd2. h"
#include "lmd2_rou. h"
#include "lmd2_ifr. h"
#include "math.h" 20

void stringCopy(char *, char *);

void dumpADCInputASCII(int procNo)

// Dump DSP memory to ASCII file
//
{

static char filename[80];
static char *DfASCIIFilenameA="dumpa.dat"; 30

unsigned long ij;
unsigned long ADBufferSize;
unsigned long ADBufferCol;
static float *ADBuffer;

unsigned long bufferWriteLength;
FILE *dumpfile;
if(procNo==1) stringCopy(filename,DfASCIIFilenameA);

pageInit("Dump ADC readings to ASCII file");
40

115

if (readFilename("A new file will be created for dumping the last measurements.\n"
"Please enter filename -", filename, "w"))
return;

printf("\nWriting... ");

ADBuffer=getADBufferDSP(&ADBufferSize,&ADBufferCol,procNo);
//returns a pointer to an array containing DSP buffer

bufferWriteLength=floor(ADBufferSize/ADBufferCol)*ADBufferCol;
dumpfile=fopen(filename,"w"); // Open ADCII output file. 50
if(dumpfile==NULL) {

printf("unable to open file %s\n", dumpfile);
waitEnter();}

for (i=0; i< bufferWriteLength; i=i+ADBufferCol) {
for(j=0 ; j< (ADBufferCol-1) ; j++)

fprintf(dumpfile, "%f\t", *ADBuffer++);
fprintf(dumpfile, "%f\n", *ADBuffer++);

//format for matlab must be in double precision format
}
/*free((void *)ADBuffer);*/ 60
printf(" Done. \n\n");
fclose(dumpfile);
return;

}
// end dumpADCInputASCII()

void stringCopy(char *s, char *t)
//copys string value in t to string array in s
{ 70
while((*s++ = *t++) != '\0');}

/*///
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology
//
// C++ Chapter:
// Reset Motor Module
// lmd2_rmmacpp 10

//
// Written by Henning Schulze-Lauen
// 04/13/1993
// Rewritten by Doug Crawoford
// June 1995
*/
#define ResetMotor
#include "lmd2. h"
#include "lmd2_rou. h"
#include "lmd2_if r. h" 20

116

void resetMotoro

// Reset outputs and motor position
//
// Allows the motor to be moved by hand to a new start position

{
pageInit("Reset Motor"); 30

printf("To switch off motor current press <Enter> -\n\n");
if (!waitEnterEsc())

return;

/ * Switch off current on all phases*/
setAmpZeroDSP();

printf("\nYou can now move the motor by hand.\n\n"
"After having installed the motor in the desired position,\n" 40
"press <Enter> to switch on motor current and reset the position\n"
"counters to x=O, y=O. Press <Esc> if you want the power to\n"
"remain off and the position counters not to be changed.\n\n");

if (!waitEnterEsc())
return;

/ * Set new position as reference point and switch on current*/
/ * to align and fix motor in new position */

resetMotorDSP();
} 50
// end reset()

/ *///
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology
//
// C++ Chapter:
// Setup Module
// lmdc sum.cpp 10
// This module controls all user input for the global variables
//
// Written by Henning Schulze-Lauen
// 04/13/1993
// 07/30/1993
// Rewritten by Doug Crawford
// June 1995
*/

117

#define Setup
#include "lmd2. h" 20

#include "imd2.rou. h"
#include "lmd2_ifr. h"
#include "lmd2_dsr.h"

void setup()

// Setting up system parameters

//
// Globals: system parameters
// 30
{

static int newdata=0;
int newfile;
double oldvalue;

pageInit("Setup System Parameters");

printf("Change system parameters or press <Enter> to keep old values.\n"
"Be sure to know what you do; serious damage to the equipment can\n"
"result from messing up the settings.\n\n\n"); 40

printf("\n\n");
sampleFreq=readNumPrompt("Sampling Frequency", ". Olf Hz",

" determines the frequency at which the sensors are sampled and the\n"
" output of motor current is updated.\n\n",
minSampleFreq, maxSampleFreq, sampleFreq);

printf("\n\n");
leadMaxAccel=readNumPrompt("Maximum lead Angle for Acceleration", "%.11f deg",

" provides the maximum value of the lead angle for acceleration\s"
" values should be in degrees for the positive direction, typical\n"

" values are 360 to 400 degrees.\n\n",
-720, 720, leadMaxAccel);

printf("\n\n");
leadMinAccel=readNumPrompt("Minimum lead Angle for Acceleration", "%. llf deg",

" provides the minimum value of the lead angle for acceleration\n"
" values should be in degrees for the positive direction. This is\n"

" the value of the lead angle which is used at zero velocity. \n"
" Typical values are 40 to 90 degrees.\n\n", 60

-720, 720, leadMinAccel);

printf("\n\n");
leadMaxDecel=readNumPrompt("Maximum lead Angle for Deceleration", "%. llf deg",

" provides the maximum value of the lead angle for acceleration\n"
" values should be in degrees for the positive direction, typical\n"

" values are 120 to 180 degrees.\n\n",
-720, 720, leadMaxDecel);

printf("\n\n"); 70
leadMinDecel=readNumPrompt("Minimum lead Angle for Deceleration", ".%. 11f deg",

" provides the minimum value of the lead angle for acceleration\n"

118

" values should be in degrees for the positive direction. This is\n"
the value of the lead angle which is used at zero velocity.\n"

" Typical values are -40 to -90 degrees.\n\n",
-720, 720, leadMinDecel);

printf("\n\n");
IsAccel=readNumPrompt("Lead Angle Saturation Speed (Acceleration)", "%. lf p/s",

" The speed at which the lead angle function saturates to it's\ngb
" maximum value for acceleration. Typically 400 to 700 pitch/s.\n\n",
0, 2000, IsAccel);

printf("\n\n");
IsDecel=readNumPrompt("Lead Angle Saturation Speed (Deceleration) ", "%. llf p/s",

" The speed at which the lead angle function saturates to it's\n"
" maximum value for deceleration. Typically 400 to 700 pitch/s.\n\n",
0, 2000, lsDecel);

printf("\n\n"); so
P=readNumPrompt("Proportional Controller Constant", "%-71G",

" Proportional controller constant for the current amplitude.\n\n",
-kmax, kmax, P);

printf("\n\n");
D=readNumPrompt("Derivative Controller Constant", "%-71G",

" Derivative controller constant for current amplitude\n\n",
-kmax, kmax, D);

printf("\n\n"); 100
I=readNumPrompt("Integral Controller Constant", "%-71G",

" Integral controller constant for current amplitude.\n\n",
-kmax, kmax, I);

printf("\n\n");
Prot=readNumPrompt("Proportional Rotation Controller Constant", "%-71G",

" Proportional controller for rotation control.\n\n",
-kmax, kmax, Prot);

printf(" \n\n"); 110
Drot=readNumPrompt("Derivative Rotation Controller Constant", "%-71G",

" Derivative controller for rotation control.\n\n",
-kmax, kmax, Drot);

printf("\n\n");
filterBWData=readNumPrompt("Input Data Stream filter Cut Off Frequency", "%.1Of Hz",

" determines the cut off frequency for the data stream filter.\n\n",
0, sampleFreq/2,filterBWData);

printf("\n\n"); 120
filterBWCal=readNumPrompt("Calibration filter Cut Off Frequency", "%.Olf Hz",

" determines the cut off frequency for the calibration filter.\n\n",
0, sampleFreq/2,filterBWCal);

printf(" \n\n");
filterBWVel=readNumPrompt("Velocity filter Cut Off Frequency", "%. 01f Hz",

119

" determines the cut off frequency for the calibration filter.\n\n",
0, sampleFreq/2,filterBWVel);

130

printf("\n\n");

if (!readFilename("\n\nM a c h i n e C o n-s t a n t s\n\n"
"The motor and drive constants following now have been stored in the\n"
"database named below. Enter a new filename to load a different database,\n"
"or press <Return> to continue with current values.",
motorFilename, "rn"))
loadMotorData();

printf("\n\n"); 140
oldvalue=numMotors;
numMotors=readNumPrompt("Number of Motors", "%,. 1lf",

" is the number of motors in simultaneous operation. \n\n",
1, 4, numMotors);

if (numMotors!=oldvalue) newdatal=1;

printf("\n\n");
oldvalue=maxAmplitude;
maxAmplitude=readNumPrompt("Max Amplitude", "%. 11f Volts",

" is the maximum amplitude of the D/A signal used during operatinm. \n"
" Make Sure the amps are no greater than 4 amps for the single motor. \n"
" and no greater than 8 amps for the quad motor configuration. \n"

please note, 2.6 volts on the DAC will produce 8 amps of current. \n\n'

0, 8, maxAmplitude);
if (maxAmplitude!=oldvalue) newdatal=1;

printf("\n\n");
newdatal =readStringPrompt("Conf igurat ion Name",

" Description of configuration entered above.\n"
" Max 35 characters.\n\n", 160
motorName, 35);

if ((newdata & 1)
&& waitYN("\n\nMachine data has been changed -

Save? (Y/N, <Enter>=Y) ", 'Y')) {
if (!readFilename("\n Please enter database filename -",

motorFilename, "w"))
if (!saveMotorDatao) { 170

printf("\nData saved. \n");
newdata&=OxFFFE;

}

printf(" \n");
saveSysPar(); /* Save all system parameters, including new */

/* current motor database filename.*/
sendGlobalsDSPO; /* update data on DSP board*/

180

120

// end setup()

*///
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology
/-
// C++ Chapter:
// General I/O Routines
// Header File 10
// lmdcrou.h
//
// Written by Henning Schulze-Lauen
// 02/04/1993
*/

// Defines
//

// Macros 20
#define LoByte(w) ((unsigned char)(w))
#define HiByte(w) ((unsigned char)((unsigned int)(w) >> 8))
#define Round(w) ((long) ((w)>=0.0 ? floor((w)+0.5) : ceil((w)-0.5)))
#define Max(a,b) (((a) > (b)) ? (a): (b))
#define Min(a,b) (((a) < (b)) ? (a): (b))

// ASCII Characters
#define CR '\xOD'
#define EoF ' \xA'
#define Esc '\xlB' 30

// Declarations
//
void pageInit(char *);
int userSelection(int, int, int);
void waitEnter(void);
int waitEnterEsc(void);
int waitYN(char *, char);
double readNum(double); 40
double readNumMinMax(char *, double, double, double);
double readNumPrompt(char *, char *, char *, double, double, double);
int readString(char *, int);
int readStringPrompt(char *, char *, char *, int);
int readFilename(char *, char *, char *);
void checkInstrCount(unsigned int);

/ *//1111

121

// Linear Motor Driver
//
// High Speed Flexible Automation Pro
// Laboratory for Manufacturing and P
// Massachusetts Institute of Technolog
//
// C++ Chapter:
// General I/O
// lmd2 rou.cpp

// Written by Henning Schulze-Lauen
// 02/04/1993
*/
#define Routines
#include "lmd2. h"
#include "imd2_rou.h"
#include <string.h>
#include <ctype.h>
#include <math.h>

void pagelnit(char titlef)

//Initialize new screen page

//{

ject
Yroductivity
y

Routines

clrscr();
{printf("Linear Motor Driver

"Version %-4s
"%s\n\n\n\n\n",
Version, motorName, title);}

}
// end pagelnit 0

Selected Machine Database:\n"
%s\n\n" 30

int userSelection(int min, int max, int defaultValue)
/*///
// Ask user to input menu selection
//
// Parameter: min, max = range from which selection is allowed.
// defaultValue = returned if <Enter> is pressed.
//
// Return: n = selected value.*/

char inChar;
int selection;

printf("Please enter your selection; <Enter>=7.i: ", defaultValue);
do {

if ((inChar=getchO)==CR)
selection=defaultValue;

else
selection=inChar-' 0';

122

} while ((selection<min) 11 (selection>max));
printf("%i", selection);
return selection;

}
// end userSelectiono 60

void waitEnter()
/ *///
// Wait for user to press <Enter>

/*/
{

printf("Press <Enter> to continue ");
while (getchO!=CR);

printf("\n"); 70

}
// end waitEnter()

int waitEnterEsc()
/ *///
// Wait for user to press <Enter> or to break with <Esc>

//
// Return: 0 = break,
// 1 = continue. so
*/
{

char key;

printf("Press <Enter> to continue, <Esc> to break ");
do {

key=getch();
} while ((key!=CR) && (key!=Esc));

printf(" \n");
if (key==CR) 90

return 1;
return 0;

}
// end waitEnterEsc()

int waitYN(char *prompt, char defaultValue)
/ *//
// Wait for user to press < Y> or <N>
// 10oo
// Parameters: prompt = prompt
// defaultValue = 'Y' or 'N'
//
// Return: 0 = No,
// 1 = Yes.
*/char key;
{

char key;

123

printf("%s", prompt); 110
do {

key=toupper(getch();
switch (key) {

case CR: key=defaultValue; break;
case 'O': key=' N'; break; // Alternative for Insiders...
case '1': key=' Y'; break;

}
} while (!((key=='Y')I (key=='N')));
printf("%c\n", key);
if (key==' Y') 120

return 1;
return 0;

}
// end waitYN()

double readNum(double defaultValue)

/"//
// Read a numeric value from keyboard
// 130
// Parameter: defaultValue = will be returned if only new line entered.

//
// Return: value read.
*/
{

double inNum;
char inString[40];

gets(inString);
if (!strlen(inString)) 140

return defaultValue;
sscanf(inString, "%lf", &inNum);
return inNum;

}
// end readNumo

double readNumMinMax(char *format, double min, double max, double defaultValue)
/*//
// Read a numeric value within min, max limits from keyboard 150
//
// Parameter: format = format string for input/output of value.
// min, max = legal limits for inputs.
// defaultValue = will be returned if only new line entered.

//
// Return: value read.
*/
{

char output[80], textLine[80]="";
double inNum=0; 160

strcat(textLine, " min ");
strcat(textLine, format);

124

strcat(textLine, " max ");
strcat(textLine, format);
sprintf(output, textLine, min, max);
while (strlen(output)<45)

strcat(output, " ");
strcat(output, "New value = ");

170

do {
printf("%s", output);
inNum=readNum(defaultValue);

} while ((inNum<min) I (inNum>max));
return inNum;

}
// end readNumMinMax

double readNumPrompt (char *title, char *format, char *description, 180

double min, double max, double old)
/ *//
// Output prompt and read numeric value from keyboard

//
// Parameters: title = name of value to be read.
// format = format string for input/output of value.
// description = explanation printed before input is made.
// min, max = legal range for input value.
// old = old value, used as default for input.
// 190
// Return: value read from keyboard.
*/
{

char output[80]="";

strcat(output, title);
while (strlen(output)<45)

strcat(output, " ");
strcat(output, "Old value = ");
strcat(output, format); 200

strcat(output, "\n\n");

printf(output, old);
printf(".s", description);
return readNumMinMax(format, min, max, old);

}
// end readNumPrompt

int readString(char *input, int len) 210

/*//
// Read a string from keyboard
//
// Parameter: input = pointer to target variable, also used as default.
//
// Return: 0 = default string used,
// 1 = new string entered.

125

double inNum;
char inString[80];

gets(inString);
if (!strlen(inString))

return 0;
else {

strncpy (input, inString, len);
return 1;

}
// end readString()

int readStringPrompt (char *title, char *description, char* input, int len)
/I*//
// Output prompt and read string from keyboard

//
// Parameters: title = name of value to be read.
// description = explanation printed before input is m7
// input = pointer to input, also used as default.

//0 = default strin used,
// Return: 0 = default string used,

1 = new string entered.

printf("%s\n\n%s", title, description);
printf(" Old value = %s\n"

" New value = ", input);
return readString(input, len);

end readStringPrompt

int readFilename(char *title, char *filename, char *mode)
/ *//
// Read filename from keyboard and check if file present

//
// Parameter: title = pointer to prompt,
// filename = pointer to input, also used as default,
// mode = pointer to "w","r","a" - open to write, read, or append, 260

// or "wn", "rn", "an" - use of default not allowed.

//
// Returns: 0 = success,
// 1 = error (user break).

FILE *fp;

printf("%s\n\n"
" Default = %s\n", title, filename); 270

do {

126

iade.

printf(" New = ");
if (!readString(filename, 80) && (mode[1]=='n'))

return 1: / *Only CR entered, so return error if default not allowed. */
if (!isalpha(filename[0]))
printf(" The first character must be a letter. Please try again.\n\n");

} while (!isalpha(filename[0]));
fp=fopen(filename, "r");

switch (mode[0])
case 'w'

}

case 'r'

{

if (fp!=NULL) {
fclose(fp);
printf("\nExisting file '%s' will be replaced if you proceed.\n",

filename);
if (!waitEnterEsc())

return 1;

return 0;

if(fp==NULL) {
printf("\nFile I's' not found - read skipped.\n", filename);
waitEnter();
return 1;

fclose(fp);
r

case 'a':
i

eturn 0;

f (fp!=NULL) {
fclose(fp);
printf("\nFile '%s' exists.\n", filename);
if (waitYN("Do you want to delete this file

it with a new file\n"
"of the same name? (Y/N/<Enter>=N)
fp=fopen(filename, "w");
fclose(fp);
return 0;

}
if (waitYN("\nDo you

"append new
return 0;

return 1;

and replace

", 'N')) {

want to use the existing file and "
data? <Y/N/<Enter>=Y) ", 'Y')) 310

return 0;
} // end switch

return 1;
}
// end readFilename0;

void checkInstrCount(unsigned int pc)
/*/// / 11111111///
// Check if instr list counter exceeds maxlnstrCount

// Parameters: instr list counter

127

:

// Returns: exit if overflow*/
{

if (pc >= maxInstrCount) {
printf("\n\nFatal Error: Out of memory.\n\n" 330
"The program attempted to create a trajectory too large for storage\n"
"in DSP board's memory. After restarting please arrange for a less\n"
"complex trajectory (possibly not including a return trip) or ask your\n"
"system programmer to change the buffer size [lmda.dsp] or the time\n"
"step during trajectory generation.\n\n"
"Sorry! - Good Bye.\n");
exit(l);

}

// end checkInstrCount() 340

/I*///
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology

//
// C++ Chapter:
// Disc I/O Routines
// Header File 1o
// lmdc-dsr.h
//
// Written by Henning Schulze-Lauen
// 07/30/1993
// Rewritten by Doug Crawford
// June, 1995
*/
void systemDefaults(void);
int loadSysPar(void);
int saveSysPar(void); 20

int loadMotorData(void);
int saveMotorData(void);

/ *///
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology

// Chapter:
// C++ Chapter:

128

// Disc I/O Routines
// lmd2 dsr.cpp to
//
// Written by Henning Schulze-Lauen
// 07/30/1993
*/
#define DiscIO
#include "lmd2. h"
#include "lmd2 _ rou. h"
#include "imd2_dsr. h"
#include <string.h>
#include <math.h> 20

int loadSysPar(void)
/*//
// Restore last-used system parameters from disk
//
// Returns: 0 = read successful,
// 1 = error, no parameters changed.
//

{ 30
FILE *fp;

char inString[80], cmpString[20];

/ * Check if file exists */
if ((fp=fopen(SysParFilename,"rb"))==NULL) {

printf("System parameter file '%s' not found - use defaults.\n",
SysParFilename);

waitEnter();
printf("\n");

return 1; 40

}

/ * Check if file is created by the right version of LMD*/
fread(inString, sizeof(char), sizeof(inString), fp);
sprintf(cmpString, "LMD %s "/ * trailing space is important! */, Version);
if (strstr(inString, cmpString)==NULL) {

printf("System parameter file '%s' version mismatch - use defaults.\n",
SysParFilename);

waitEnter();
printf("\n"); 50

return 1;

/ * Read data*/

fread(&leadMaxAccel, sizeof(leadMaxAccel), 1, fp);
fread(&leadMaxDecel, sizeof(leadMaxDecel), 1, fp);
fread(&leadMinAccel, sizeof(leadMinAccel), 1, fp);
fread(&leadMinDecel, sizeof(leadMinDecel), 1, fp);
fread(&lsAccel, sizeof(lsAccel), 1, fp); 60
fread(&lsDecel, sizeof(lsDecel), 1, fp);
fread(&sampleFreq, sizeof(sampleFreq), 1, fp);

129

fread(&P, sizeof(P), 1, fp);
fread(&D, sizeof(D), 1, fp);
fread(&I, sizeof(I), 1, fp);
fread(&Prot, sizeof(Prot), 1, fp);
fread(&Drot, sizeof(Drot), 1, fp);
fread(&filterBWData, sizeof(filterBWData),1,fp);
fread(&filterBWCal, sizeof(filterBWCal),1,fp);
fread(&filterBWVel, sizeof(filterBWVel),1,fp); 70

fread(motorFilename, sizeof(char), sizeof(motorFilename), fp);
fclose(fp);

return 0;
}
// end loadSysPar()

int saveSysPar(void) so
/I*///111111111
// Save current system parameters in file
//
// Returns: 0 = write successful,
// 1 = error.
*/
{

FILE *fp;
char outString[80];

90

if ((fp=fopen(SysParFilename,"wb"))==NULL) {
printf("Error writing file '%s' -\n"

"system parameters not saved. Sorry.\n",
SysParFilename);

waitEnter();
printf("\n");

return 1;
}
sprintf(outString, "LMD %s System Parameter File\r\n%c", Version, EoF);
fwrite(outString, sizeof(char), sizeof(outString), fp); 100

fwrite(&leadMaxAccel, sizeof(leadMaxAccel), 1, fp);
fwrite(&leadMaxDecel, sizeof(leadMaxDecel), 1, fp);
fwrite(&leadMinAccel, sizeof(leadMinAccel), 1, fp);
fwrite(&leadMinDecel, sizeof(leadMinDecel), 1, fp);
fwrite(&lsAccel, sizeof(lsAccel), 1, fp);
fwrite(&IsDecel, sizeof(IsDecel), 1, fp);
fwrite(&sampleFreq, sizeof(sampleFreq), 1, fp);
fwrite(&P, sizeof(P), 1, fp);
fwrite(&D, sizeof(D), 1, fp); 110
fwrite(&I, sizeof(I), 1, fp);
fwrite(&Prot, sizeof(Prot), 1, fp);
fwrite(&Drot, sizeof(Drot), 1, fp);
fwrite(&filterBWData, sizeof(filterBWData),1,fp);
fwrite(&filterBWCal, sizeof(filterBWCal),1,fp);
fwrite(&filterBWVel, sizeof(filterBWVel),1,fp);

130

fwrite(motorFilename, sizeof(char), sizeof(motorFilename), fp);
fclose(fp);
return 0;

I
// end saveSysParo

int loadMotorData(void)
/ *///
// Load current machine database from disk
//
// Returns: 0 = read successful,
// 1 = error, no parameters changed.*/

FILE *fp;
char inString[80], cmpString[20];

/ * Check if file exists */
if ((fp=fopen(motorFilename," rb"))==NULL) {

printf("Machine database I'%s' not found - read skipped.\n",
motorFilename);

waitEnter();
printf(" \n");
return 1;

/* Check if file is created by the right version of LMD */
fread(inString, sizeof(char), sizeof(inString), fp);
sprintf(cmpString, "LMD %s "/* trailing space is important! */, Version);
if (strstr(inString, cmpString)==NULL) {

printf("Machine database '.s' version mismatch - read skipped.\n",
motorFilenamne);

waitEnter();
printf("\n");
return 1;

/ * Read data */
fread(motorName, sizeof(char), sizeof(motorName), fp);
fread(&maxAmplitude, sizeof(maxAmplitude), 1, fp);
fread(&numMotors, sizeof(numMotors), 1, fp);
fclose(fp);
return 0;

end loadMotorData()

int saveMotorData(void)
/*//////////////////////////////////////
// Load current machine database from disk

// Returns: 0 = read successful,

131

end loadMotorDataO

// 1 = error, no parameters changed.*/
{

FILE *fp;
char outString[80];

if ((fp=fopen(motorFilename,"wb"))==NULL) {
printf("Error writing file '%s' -\n"

"Machine data unsaved.\n",
motorFilename); 1so

waitEnter();
printf(" \n");
return 1;

}
sprintf(outString, "LMD %s Machine Database\r\n%.s\r\n%c",

Version, motorName, EoF);
fwrite(outString, sizeof(char), sizeof(outString), fp);
fwrite(motorName, sizeof(char), sizeof(motorName), fp);
fwrite(&maxAmplitude, sizeof(maxAmplitude), 1, fp);
fwrite(&numMotors, sizeof(numMotors), 1, fp); 190

fclose(fp);
return 0;

}
// end saveMotorDatao

200

/ *///
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology

//
// C++ Chapter:
// Termination Module
// lmd2_trm.cpp 10

// Written by Henning Schulze-Lauen

// 04/13/1993
// Rewritten by Doug Crawtford
// June 1995
*/
#define Termination
#include "lmd2. h"
#include "lmd2_rou. h"
#include "Imd2_ifr. h" 20

132

void termination()

// Terminate program and reset outputs
//

pageInit("Good Bye.");

setAmpZeroDSPO; /* Clear all outputs*/ 30

shutDownDSP();
/ * and terminate DSP board operation.*/

}
// end termination()

/*//
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology

//
// C++ Chapter:
// DSP Interface Routines
// Header File 10
// Imdc_dsr.h
//
// Written by Doug Crawford
// 03/03/1995
// Rewritten by Doug Crawford
// June, 1995
*/

void startUpDSP(void);
void setAmpZeroDSP(void); 20

void executeTrajectoryDSP(pathList *);
void resetMotorDSP(void);
void sendGlobalsDSP(void);
float* getADBufferDSP(unsigned long*, unsigned long*, int);
void shutDownDSP(void);
void calibrateSensorDSP(void);

/ *//
// Linear Motor Driver
//
// High Speed Flexible Automation Project
// Laboratory for Manufacturing and Productivity
// Massachusetts Institute of Technology
//
// C++ Chapter:
// TMSS320C40 DSP Module

133

// tic40.cpp to
//
// Written by Doug Crawford
// 02/19/1995
//
// This module contains all of the interface routines to the DSP
// this includes data transfer and handshaking routines from the DSP to the PC
//this is also the only module that calls library functions in TIC40.cpp
*/

#define interface 20
#include "lmd2. h"
#include "lmd2_rou.h"
#include "time.h"
#include "1md2ifr. .h"
#include <windows.h>
extern "C" {
#include "c4xwin.h" / *netapi applications library for the TIC40*/
}
#include "chkerror. c" / *netapi error checker printouts*/

30

/ *defines*/
#define dspFileA "lmd2_a.out"
#define dspFileB "lmd2_b.out"
#define procNameA "CPUA"
#define procNameB "CPUB"
extern unsigned _stklen = Ox4000U; /*necessary when using borland c*/

/ *modes used for the callDSP() function */
/ *these numbers must match exactly with the numbers on the DSP program*/
#define changeModeC 0 40
#define GlobalsC 1
#define resetC 2
#define calibrateC 3
#define TrajDataC 4
#define dumpADBufferC 5

/ *local function declarations */
void callDSPA(int);
void createDSPList(float *,long *,float *,pathList *, char *); 50
void sendTrajData(float *, long *, float *, long *);
void waitForClock(float);

//global variables for this module
PROCID *handleA, *handleB; /*pointers to processors A and B*/
UINT ret;

void startUpDSP(void)
//*/////////////////////////////////////// 6o
//performs a global reset and loads the program, prints error messages if there
//are any
*/

134

printf("\n\nRebooting the C40 network ... ");
ret=Global Network Reboot();
checkReturnCode(ret);
printf("OK");

printf("\nOpening processor B... "); 70
ret= OpenjProcessor ID(&handleB,procNameB,NULL);
checkReturnCode(ret);
printf("OK");
printf("\nLoading C40 program B... ");
ret= Load AndRun File LIA(handleB,dspFileB);
checkReturnCode(ret);
printf("0K\n\n");

printf("\nOpening processor A... ");
ret=OpenProcessorID(&handleA,procNameA,NULL); so
checkReturnCode(ret);
printf("OK");
printf("\nLoading C40 program A... ");
ret= Load_And_Run File_LIA(handleA,dspFileA);
checkReturnCode(ret);
printf("OK");

}
//end startUpDSP 90

void executeTrajectoryDSP(pathList trajectoryo)
/*//
//ezecutes trajectory
l/first the parameters in trajectory[] are converted to a more computationally
//effecient form in createDSPListO . Next, callDSPA(changeModeC) is called to
l/indicate that the state of the motor will change. Finaally, the new state of 1oo
//motor, driverMode, is setn to the DSP
*/
{

static long *pathsX=(long *) calloc((maxInstrCount),sizeof(long));
if(pathsX==NULL){ printf("can't allocate memeory"); waitEnter();

static float *instrsX=(float *) calloc(maxInstrCount*3,sizeof(float));
if(instrsX==NULL){ printf("can't allocate memeory"); waitEnter();}

static long *pathsY=(long *) calloc((maxlnstrCount),sizeof(long));
if(pathsY==NULL){ printf("can't allocate memeory"); waitEntero;}

static float *instrsY=(float *) calloc(maxInstrCount*3,sizeof(float)); 110
if(instrsY==NULL){ printf(" can't allocate memeory"); waitEnter();}

float totTimeList=0;
createDSPList(instrsX, pathsX, &totTimeList, trajectory,"X");
createDSPList(instrsY, pathsY, &totTimeList, trajectory,"Y");
sendTrajData(instrsX,pathsX,instrsY,pathsY);

callDSPA(changeModeC);

135

callDSPA(driverMode); / *this variable is declared in lmd2.h*/
/ *and it defines the state of the motor, ie*/

/ *XYoff, Xystep, etc..*/ 120

//end executeTrajectory

void resetMotorDSP(void)
/*//
//turns off motor currents, and leaves them in step mode when finished*/
{ 130

callDSPA(resetC);
driverMode=XYstep;
}
//end resetStep

void sendGlobalsDSP(void)
/*///
//send Global Parameters to DSP board CPU A
//The functions write_lia foats_32 and writeliawords_32 both accept 3
// arguments: the pointer to the processor which receives the data, the
f/increment for each element in an array, and the pointer to the word or
// array of data to be written
*/A

//create dummy variables of type ULong and float, because the function
//write lia floats 32 corrupts the data

ULONG
oneRec= 1, 150

maxInstrCountTemp=maxInstrCount;
float

sampPeriodTemp= (float) 1/sampleFreq,
maxAmplitudeTemp=maxAmplitude,
leadMaxAccelTemp=leadMaxAccel,
leadMaxDecelTemp=leadMaxDecel,
leadMinAccelTemp=leadMinAccel,
leadMinDecelTemp=leadMinDecel,
lsAccelTemp=lsAccel,
IsDecelTemp=lsDecel, 160

filterBWDataTemp=filterBWData,
filterBWCalTemp=filterBWCal,
filterBWVelTemp=filterBWVel,
PTemp=P,
DTemp=D,
ITemp=I,
ProtTemp=Prot,

DrotTemp=Drot;
/ *the order of these writes, must match exactly with the order of the reads*/
/ *in the DSP program*/ 170

136

/ *processor A writes*/
callDSPA(GlobalsC);
ret=WriteLIA Words 32(handleA,1,&oneRec);

ret= Write LIA Words 32(handleA,1,&maxInstrCountTemp);
ret=WriteLIAWords 32(handleA,1,&oneRec);

ret=Write LIAFloats_32(handleA,1,&sampPeriodTemp);
ret=WriteLIAWords_32(handleA,1,&oneRec);

ret=Write LIA Floats 32(handleA,1,&maxAmplitudeTemp);
ret=Write LIA Words_32(handleA,1,&oneRec); 180

ret=WriteLIAFloats 32(handleA,1,&filterBWDataTemp);
ret=Write LIA Words 32(handleA,1,&oneRec);

ret=WriteLIA Floats 32(handleA,1,&filterBWCalTemp);
ret=Write LIA Words_32(handleA,1,&oneRec);

ret=Write LIA Floats 32(handleA,1,&filterBWVelTemp);
ret=Write LIA Words 32(handleA,1,&oneRec);

ret=Write_LIAFloats 32(handleA,1,&leadMaxAccelTemp);
ret=Write LIA Words 32(handleA,1,&oneRec);

ret=Write LIA Floats_32(handleA,1,&leadMaxDecelTemp);
ret=Write LIA Words 32(handleA,1,&oneRec); 19o

ret=WriteLIAFloats 32(handleA,1,&leadMinAccelTemp);
ret=Write LIA Words 32(handleA,1,&oneRec);

ret=WriteLIA Floats_32(handleA,1,&leadMinDecelTemp);
ret=Write LIA Words 32(handleA,1,&oneRec);

ret=WriteLIAFloats 32(handleA,1,&lsAccelTemp);
ret=WriteLIA Words_32(handleA,1,&oneRec);

ret=WriteLIA Floats 32(handleA,1,&lsDecelTemp);
ret=Write LIAWords 32(handleA,1,&oneRec);

ret=Write LIA_Floats_32(handleA,1,&PTemp);
ret=Write LIA Words 32(handleA,1,&oneRec); 200

ret=Write LIA Floats_32(handleA,1,&DTemp);
ret=Write LIA Words 32(handleA,1,&oneRec);

ret=Write LIA Floats_32(handleA,1,&ITemp);
ret=Write LIA Words 32(handleA,1,&oneRec);

ret=WriteLIA Floats_32(handleA,1,&ProtTemp);
ret=WriteLIA Words 32(handleA,1,&oneRec);

ret=Write LIA Floats 32(handleA,1,&DrotTemp);
}
//end sendGlobals

210

float* getADBufferDSP(unsigned long *ADBufferSize, unsigned long *ADBufferCol,
int procNo)

/ *///
receives calibration burrer from DSP. first an array of the buffer size
is allocated, then the DSP memory contents are copied to the PC memory
this function thenreturns a pointer to the array in PC memory
*/
{

ULONG numToRec, bsize, bcol; 220
float *ADBuffer;

if(procNo==1){
callDSPA(dumpADBufferC);
ret=Read_LIA_Words_32(handleA,1,&numToRec);
ret=ReadLIA Words_32(handleA,1,&bcol);

137

*ADBufferCol=bcol;
ret=Read LIA Words_32(handleA,1,&numToRec);
*ADBufferSize=numToRec;
ADBuffer=(float *)calloc(*ADBufferSize, sizeof(float));
ret=ReadLIA Floats 32(handleA,*ADBufferSize,ADBuffer); 230

)
return(ADBuffer);

//end getADBufferDSP

void calibrateSensorDSP(void)
/*//
l/sets amplifier currents to zero
*/ 240
{

callDSPA(calibrateC);
calReady=l;

I
//end setAmpZero

void setAmpZeroDSP(void) 250

//sets amplifier currents to zero
*/
{

callDSPA(changeModeC);
callDSPA(XYoff);

}
//end setAmpZero

260

void shutDownDSP(void)
/*///
//performs a global reset and clears all memory and closes processor ID
//prints error messages if there are any
*/
{

ret=Close Processor ID(handleB);
checkReturnCode(ret); 270

ret=CloseyProcessor ID(handleA);
checkReturnCode(ret);

ClearAllLib Memory();

//end dspShutDown

/ *///

138

// LOCAL FUNCTION DEFINITIONS 280

*1

void callDSPA(int mode)
/*//
l/switches the mode on the dsp program for processor A
*/
{
ULONG modeCopy=mode;
ret=Write_LIA_Words_32(handleA,1,&modeCopy); 290

checkReturnCode(ret);
}
//end callDSPA()

void createDSPList(float instrsD, long pathsD, float *totTimeList,
pathList trajectory], char *axis)

/ *///
l/convert the trajectroy data into DSP trajList form
l/see DSP code for a description of what the DSP arrays are 300

l/the functions trajPieceX0 and trajPieceY) in the file lmd2_b.c
/contain a more complete description of the parameters in
//instrs[] and paths[]
*/{

int i=1;
int j=0;

while (trajectory[i].pathtype!=0) { //remember, trajectory[0]." is initial cond
if (axis[0]=='X'){

if(trajectory[i].pathtype==1){ 310

instrs[j]=trajectory[i].time;
instrs[j +1]=trajectory[i].vxfin;
paths[i-1]=1;
j=j+2;

}
if(trajectory[i].pathtype==2) {

instrs[j] =trajectory[i].time;
instrsUj+1]=trajectory[i].ax;
instrs[j+2]=(trajectory[i].ax)/2;
paths[i-1]=2; 320

j=j+3;
}

if(trajectory[i].pathtype==3){
instrslj]=trajectory [i].time;
instrs[j+1]=(trajectory[i].ax)/2;
instrsU+2]= (trajectory[i].ax)/6;
paths[i-1]=3;
j=j+3;

330

if (axis[0]=='Y'){

139

if(trajectory[i].pathtype== 1) {
instrs j]=trajectory [i].time;
instrsbj+ 1]=trajectory[i].vyfin;
paths[i-1]=1;
j=j+2;

if(trajectory[i].pathtype==2){ 340
instrs[j]=trajectory[i].time;
instrs[j+l]=trajectory[i].ay;
instrs[j+2]=(trajectory[i].ay)/2;
paths[i-1]=2;

j=j+3;
}

if(trajectory[i].pathtype==3) {
instrs[j]= trajectory[i].time;
instrsj+11]= (trajectory[i].ay)/2;
instrs[j+2]= (trajectory[i].ay)/6; 350
paths[i-1]=3;
j=j+3;
}

}
*totTimeList=*totTimeList+trajectory[i] .time;
i++;

paths[i-1]=0; //put a trailing zero at the end to stop trajectory
}360
//end createDSPList

void sendTrajData(float dspInstrXD, long dspPathX], float dspInstrYD,
long dspPathYO)

//sends the instruction list, to the DSP program
{

ULONG pathRows=maxInstrCount,
instrRows=maxInstrCount*3; 370

ULONG oneRec=1;
int k;

static ULONG *dspPathTempX=(ULONG *)calloc(maxInstrCount, sizeof(ULONG));
if(dspPathTempX==NULL){ printf("can't allocate memeory"); waitEnter();}

static ULONG *dspPathTempY= (ULONG *)calloc(maxInstrCount, sizeof(ULONG));
if(dspPathTempY==NULL){ printf("can't allocate memeory"); waitEnter();}

static float *dspInstrTempX=(float *) calloc(maxInstrCount*3, sizeof(float));
if(dspInstrTempX==NULL){ printf("can't allocate memeory"); waitEnter();}

static float *dspInstrTempY= (float *) calloc(maxInstrCount*3, sizeof(float));
if(dspInstrTempY==NULL){ printf('can't allocate memeory"); waitEnter4qp}

callDSPA(TrajDataC);
for(k=0;k<maxInstrCount;k++) {

dspPathTempX[k]=dspPathX[k];
ret=WriteLIAWords_32(handleA,1,&oneRec);
ret=Write LIAWords 32(handleA,1,&dspPathTempX[k]);

dspPathTempY[k]=dspPathY[k];
ret=WriteLIA_Words_32(handleA,1,&oneRec);

140

ret=Write_LIA_Words_32(handleA,1,&dspPathTempX[k]);
}

for(k=0;k<(maxInstrCount*3);k++) { 390

dspInstrTempX[k]=dspInstrX[k];
ret=WriteLIAWords_32(handleA,1,&oneRec);
ret=Write LIAFloats 32(handleA,1,&dspInstrTempX[k]);

dspInstrTempY[k]=dspInstrY[k];
ret=WriteLIAWords 32(handleA,1,&oneRec);
ret=WriteLIAFloats 32(handleA,1,&dspInstrTempY[k]);

}
/ *free((void *)dspPathTempX);

free((void *)dspPathTempY); 400

free((void *)dspInstrTempX);
free((void *)dspInstrTempY);*/

}
//end sendTrajList

void waitForClock(float totTimeList)
/*//
l/waits for the specified time to pass, a kbhit causes XYoff

410
{

clockt timel, time2;
timel=clock();

time2=clock();
while((time2-timel)/CLK_TCK < totTimeList){

time2=clock();
if (kbhit()){

if(driverMode!=2) {
callDSPA(changeModeC); 420

callDSPA(XYoff);
totTimeList=0;}

}
}

}
//end waitForClock

141

/**
FILE: lmd2_a.sys

This file defines all constants and variables for lmd a.c

Writen by Doug Crawford, June 1995

**/

/*THIS FILE IS COMPILED USING THE BATCH FILE CLDSPA.BAT*/
/*the batch file contains information for each c40 processor*/
/*if higher sampling rates are required, it might be helpful to include*/
/*the optimizer during compilation. This is done by including -o3 in the*/
/*c130 command line in the batch file*/

Header Files
****************/

#include
#include
#include
#include
#include
#include

"math.h"
"intpt40.h"
"compt40.h"
"dma40.h"
"timer40.h"
"stdlib.h"

#define PI2
#define PI
#define inv2pi
#define ADBufferSize

/* Math functions (needed for sine function) */
/* C40 Intrpt. support in Parallel Runtime Lib */

/* C40 comm port support in Parallel Runtime Lib */
/* dma support in parallel runtime support library*/

/* C40 timer support found in 'prts.lib' */

6.2831853 /*2*pi*/
3.1415926

0.15915494 /*inverse of 2*PI*/
9996 /*number of elements in DSP memory

dedicated to recording the motor
history*/

/* Pointers to DSPLINK interface registers
- Link settings for QPC/C40B:

LK3: Open since the slave I/O cards use DSPLINK1
LK5: Position 'a' (select /INTO signal for IIOF1 pin)*/

#define dsplink OxB0000100 /*1 wait state access*/
#define ADCO ((unsigned long*)(dsplink+0)) /*for reading ADC 0-3*/
#define ADC1 ((unsigned long*)(dsplink+4)) /*for reading ADC 4-7*/
#define ADC2 ((unsigned long*)(dsplink+8)) /*for reading ADC 8-11*/
#define ADC3 ((unsigned long*)(dsplink+12)) /*for reading ADC 12-15*/

long*) (dsplink+0x10))
long*)(dsplink+Oxll))
long*) (dsplink+0x12))
long*) (dsplink+0xl3))
long*) (dsplink+0xl4))
long*) (dsplink+0xl5))
long*)(dsplink+0xl6))
long*)(dsplink+0x17))

/*D/A channels numbers*/

142

#define
#define
#define
#define
#define
#define
#define
#define

DACO
DAC1
DAC2
DAC3
DAC4
DAC5
DAC6
DAC7

((unsigned
((unsigned
((unsigned
((unsigned
((unsigned
((unsigned
((unsigned
((unsigned

#define CR ((unsigned long*) (dsplink+0x18)) /*control registers used*/
#define SR ((unsigned long*)(dsplink+0x18)) /*by the multi channel I/O card*/
#define TIMER16 ((unsigned long*) (dsplink+0x19))
#define TIMER2 ((unsigned long*)(dsplink+OxlA))
#define PGR ((unsigned long*)(dsplink+0xlB))
#define DOR ((unsigned long*) (dsplink+0xlC))
#define DIR ((unsigned long*) (dsplink+0xlC))
#define ADCASYNC ((unsigned long*) (dsplink+0xlE)) 60

/*comm port defines*/
#define liaChanNo 1 /*defines C40 comm port link with the PC*/
#define procB 0 /*defines C40 comm port link with processor B*/

/*modes used for the mainMenu() function*/
/*these numbers must match exactly with the numbers on the host program*/
#define changeModeC 0 /*change state of motor, ie XYstep*/
#define GlobalsC 1 /*send global parameters to processor A*/ 70
#define resetC 2 /*reset motor after an unstable condition or stall*/
#define calibrateC 3 /*calibrate all three sensors*/
#define TrajDataC 4 /*get trajectory data from PC*/
#define dumpADBufferC 5 /*copy contents of buffer array in dsp memory*/

/*to PC memory*/

/*these modes define the current state of the motor and must also*/
/*match the parameters in the host program*/
#define XYoff 0
#define XYstep 1 80
#define XservoYstep 2
#define XstepYservo 3
#define XYservo 4
#define XYRotservo 5

/*handshaking modes used to talk to processor B*/
#define normalAB 0 /*normal operation send Y sensor data, recieve

commands from Y controller*/
#define globalsAB 1 /*send global parameters to processor B*/
#define calAB 2 /*send calibration adjustment factors for sensor 90

y to processor B*/
#define trajAB 3 /*send trajectory information to processor B*/
#define initAB 4 /*initialize sensor variables on processor B*/

/********************
Global Variables

********************/

100
unsigned int

motorMode=XYoff, /*this variable directs the interrupts*/
calMode=0, /*checks if calibrating sensors*/
motorMoving=0, /*determins if trajPieceX should be executed*/
handshakeAB=normalAB, /*controls communication between A and B*/
intCounter=0, /*flag to determine how many interrupts have passed*/

143

maxInstrCount=0,
ADBufferCount=0,
ADBufferCol=4,
*pathTypeX,
*pathTypeY;

/*max size of pathType and trajList*/
/*current index into ADBuffer*/
/*number of collumns data buffer is split into*/

/*type of trajectory piece in the x axis*/

float
*ADBuffer, /*pointer to the buffer used to save a history of*/
*trajListX, /*motor parameters*/
*trajListY, /*explained in trajPieceX0 see'lmd2 b.c*/
sampPeriod=0.0, /*global variables, see lmd2.h for further definitions*/
maxAmplitude=0.0,
filterBWData=O0.0,
filterBWCal=0.0,
filterBWVel=0.0,
leadMaxAccel=0.0,
leadMaxDecel=0.0,
leadMinAccel=0.0,
leadMinDecel=0.0,
IsAccel=0.0,

IsDecel=0.0,
P=0.0,
D=0.0,
I=0.0,
Prot=0.0,
Drot=0.0;

/**
Other global variables which are not updated by the host program

volatile long hostIn=0; /*This is a handshke variable between the host and */
/*processor A, this is the first word read from the host*/

/*during any mode changes.*/

/*parameters used by the function filter()*/ 140

/*filter coeficients obtained from matlab for a second order filter*/
float coefData[5]={0.09131490043583,0.18262980087166,0.09131490043583,

0.98240579310840,-0.34766539485172}, /*600 Hz cutoff sampling at 5KHz*/
coefData2[5]= {0.20657208382615,0.41314416765230,0.20657208382615,

0.36952737735124, -0.19581571265583}, /*1000 Hz cutoff sampling at 5KHz*/
coefData3[5]={0.29289321881345,0.58578643762690,0.29289321881345,

0.00000000000000, +0.17157287525381}, /*1300 Hz cutoff sampling at 5KHz*/
coefCal[5]={0.34604133763916E-3, 0.69208267527809E-3, 0.34604133763916E-3,

1.94669754075618, -0.94808170610674}, /*35 Hz cutoff sampling at 5KHz*/
coefVel[5]={0.34604133763916E-3, 0.69208267527809E-3, 0.34604133763916E-3, 15o

1.94669754075618, -0.94808170610674}, /*35 Hz cutoff sampling at 5KHz*/
histData[30],/*history array used when filtering A/D samples*/

histVel[5]; /*history array used when filtering velocity signal*/

/*parameters used by sensorConvert*/
/*these parameters are more clearly defined in sensorConvertX*/
/*posX is the current position of the sensor*/
/*posXold is the position at the previous time step*/
/*errorX is the error in the servo loop for the digital tracking
Dosition conversion*/

144

/*sinSig and cosSig are the sine and cosine signals from a sensor "after"
they have been adjusted using the calibration parameters*/
/*sensorOffset is the physicall offset of the sensor from the beginning edge
of one pitch. It is calculated in the reset function*/
float posX=0,posXold=0,posXR=0,posXRold=0,

velX=0,velXold=0,velXR=O,velXRold=O,
errorX=0,errorXold=0,errorXR=O,errorXRold=0,

sensorOffsetX=0, sensorOffsetXR=0,
sinSig=0, cosSig=0, Ktrack=O, Atrack=0;

170

/*parameters shared with cpu_B*/
float cmdY=0, amplitudeY=0, sinInY=O, cosInY=0,

pi2trajPosX=0, pi2trajVelX=0, pi2trajPosY=0, pi2trajVelY=0;
float posY=0, velY=O, filtVelY=0, sensorOffsetY=0;

/*parameters used by calibration*/
/*this defines the trajectory used during the calibration run.*/
/* it is a very slow movement along both the X and Y axes*/
float pathCal[7]= {2,1,2,2,1,2,0}; 180

float listCal[16]={.25,20,10,1,5,.25,-20,-10,.25,-20,-10,1,-5,.25,20,10};

/*parameters used by the calibration routines*/
/*these factors are used to remove the DC offset for each of the incoming
sensor seignals and to adjust the amplitude so that each signal is +/- 0.5*"/
float sinInXoffset=0, sinInXfactor=0, cosInXoffset=0, cosInXfactor=0,

sinInXRoffset=O, sinInXRfactor=0, cosInXRoffset=0, cosInXRfactor=0,
sinInYoffset=0, sinInYfactor=0, cosInYoffset=0, coslnYfactor=0;

190

/*parameters used by multi I/O card*/
/*these variables define the output sinusoids to phases A and B for both
the X and Y axes and for each half of the motor, left or right*/
long phaseAXR=O,phaseAXL=O,phaseBXR=O,phaseBXL=O ,

phaseAYR=O,phaseAYL=O,phaseBYR=O,phaseBYL=0;
float sinInX=0, cosInX=0, sinInXR=0, cosInXR=0;

/*parameters used by controlLaw*/
/*posErrorX is the difference between the sensed position and the desired position*/
/*velErrorX is the difference between the actual (not filtered) velocity and the 200

desired velocity*/
/*filtvelX is the velocity signal after passing through a low pass filter(35-100Hz)
this signal is then used to control the lead angle*/
/*amplitudeX and maxOutput are the instantaneous and maximum values of the voltage
from the D/A */
/*Klead is the value of the lead angle which is added to the actual position,
posX in order to produce the comanded position: cmdX*/
/*commanded position = actual position + lead Angle*/
float posErrorX=0, velErrorX=0, rotation=0, filtVelX=0, Klead=0, cmdX=0;
float maxOutput=0,amplitudeX=0; 210

Function Prototypes
*************************/

145

void c int04(void); /* ISR for interrupt */
void getTrajData(void);
void reset(void);
void calibrate(void);
void changeMode(void);
void saveADBuffer(void);
void dumpADBuffer(void);
void setGlobalVars(void);
void setFilterCoef(void);
float filter(float, float *, float *);
void ADin(void);
void sensorconvertX(void);
void sensorConvertXR(void);
void controlLawX(void);
void controlLawRot(void);
void posCmd(void);
void setAmpZero(void);
void DAout(void);
void getGlobals(void);
void initAnalog(void);
void setADtimer(void);
void setInterruptEOC(void);
void globalsToB(void);
void calToB();
void trajToB();

/

FILE: Imd2_a.CPP (C source code for QPC/C40B)

THIS CODE RUNS ON CPUA ON THE TI C40 BOARD

DESCRIPTION:
This C40 program Controls all of the DSP operations using the

TI C40 processor

Writen by Doug Crawford, June 1995

#include "lmd2_a. sys"

MAIN
usanwassassessessenessay$,~

void main(void){
motorMode=XYoff;
hostIn=inword(liaChanNo);
getGlobals();
setGlobalVarsO;

/*initial state of motor currents off*/
/ *get first word form host program*/

/ *update parameters from host*/
/*set global varibales for the new*/

/ *sampling frequency*/

146

setFilterCoefO; / *recalculate filter coeficients */
for the new sampling frequency/

globalsToB(); / *send global parameters to procB*/
ADBuffer=calloc(ADBufferSize,sizeof(float));
pathTypeX=calloc(maxInstrCount,sizeof(unsigned long));
trajListX=calloc(maxInstrCount*3,sizeof(float));
pathTypeY=calloc(maxInstrCount,sizeof(unsigned long));
trajListY=calloc(maxInstrCount*3,sizeof(float));

initAnalogo; /*initialize analog board*/
setADtimer(; /*set timer on analog noard to desired sampling rate*/
setInterruptEOC(); /*initialize interrupts*/

CACHE-ON(); /*turns on DSP instruction cache*/

/ *this is the main polling loop. It will loop forever untill one of two things
happen user input, or AID end of conversion interrupt. Either it will detect
data coming in from the host PC, in which case the
unsigned long variable, hostln, reads the first word of data and then switches
control depending on what that integer is. Also, at any time during this loop,
the interrupt routine c_int04 may be called in which case, when c int04 is finished,
control is returned exactly to the point in the loop when the interrupt function
was originally called*/

{ 50
if(cpjin_level(liaChanNo)){ /*is there data in the input comm port?*/

hostIn=inword(liaChanNo); / *read handshake parameter from PC*/
switch(hostIn){

case changeModeC: motorMode=inword(liaChanNo);
if(motorMode!=XYoff) {
ADBufferCount=O; motorMoving=l;}
/ *now begin executing trajPieceX() */
break;

case GlobalsC: *CR=0x30000000; /*disable interrupts*/
getGlobalso; 60
setGlobalVars();
setFilterCoef();
*CR=0x30010000; /*enable interrupts*/
dumVar=*ADCO;
handshakeAB=globalsAB;
intCounter=0;
while (intCounter<1);
handshakeAB=normalAB;
break;

case resetC: reset(); 70
break;

case calibrateC: calibrate();
reset();
break;

case TrajDataC: getTrajData();
break;

case dumpADBufferC: *CR=0x30000000; /*disable interrupts*/
dumpADBuffer();

147

while(l)

*CR=0x30010000; / *enable interrupts*/
dumVar=*ADCO; 80

break;
}

/ * end of main() */

/ ****************************** 90
Interrupt Service Routines

void c.int04(void)

The interrupt service routine for the IIOF1 interrupt.
This corresponds to the INTO signal on the DSPLINK, coming from the
multi channel I/O card (i.e., an EOC signal).

THIS FUNCTION HAS THE HIGHEST PRIORITY OF ALL FUNCTIONS
***** ***** ** ******************* ********* / 100

/ *All communication to processor B is performed using a somewhat awkward
handshaking routine. Data is only sent to processor B when this interrupt
routine is called. Also, data is sent to B only through processor A, the
link between B and the PC is not being used. At each time step, processor
A sends a word of data to processor B(handshakeAB). depending on the value
of this parameter, different types of data will be sent, therefore both A and
B must have the same defines for the posiible values of handshakeAB. Under
Normal operation, handshake AB is set to normalAB. In this mode, processor A
sends all AID data pertainng to the Y axis, and receives the new updated
trajectories from B. In the other modes of handshakeAB, communication is more 110o
awkward. in order to send the calibration parameters, for example, to B the
handshake AB mode must first be set to calAB somewhere in the main polling loop
above. However, after the new data value is writen to handshakeAB, there is no
guarantee that the calibration data was sent to B. Since data is only sent at each
time step, we must wait for at leat one time step to pass after changing the mode
in handshakeAB. This is the function of the variable intCounter which is
incremented by one at each time step. After changing the mode for handshake AB,
intCounter is set to zero. When intCounter is > 0, we know that at least one time
step has passed and that the data has been sent to B. Now we can return to normal
operation and set handshakeAB back to normalAB. 120

Throughout the program, two functions are used to send data back and forth between
processors and between the PC and the DSP. These are outmsgo, and inmsgo .
inmsgo has three arguments: comm port number to receive data from, pointer to
memory location to store incoming data, and increment value when receiving arrays.
outmsg0 has four arguments: comm port number to send data, pointer to maemory
where data to be sent resides, size in words(elements) of the data to be sent, and
increment using when sending arrays. The first word out_msg sends is the number of
words to be sent. the first word in_msg receives is the number of words to receice,
so there is no problem when using in_ msg to receive data from out msg. However, 130

when communicating with the PC, the first word of data that the PC either sends or
receives must correspond with the total number of words being sent. */

148

/ *all units for the position and velocity are 2*pi*pitch. This convention is used
position, velocity, lead angle, and all other parameters used by teh functions
controlLawX and sensorConvertX0() *

{ 140
ADin(); /*read in data from the AID converter*/
intCounter++;
if(intCounter>5) intCounter=4; / *this simply limits the maximum size of intCounter*/

/ *so that the variable does not become too large*/
/*in handshaking, we are only concerned when */

/ *intCounter goes above 1 */
out_msg(procB, &handshakeAB,1,1); /*send handshake message to B*/
switch(handshakeAB) {

case globalsAB: globalsToB(); /*sends global parameters to B*/
break; 150

case trajAB: trajToB(); /*sends trajectory information to B*/
break;

case calAB: calToB(); / *sends calibraton and sensor offsets to B*/
break;

case initAB: break; / *initializes sensor vars on processor B*/
case normalAB: / *sends Y axis data from AID board to B*/

outmsg(procB, &motorMode, 1,1); / *state of the motor*/
out.msg(procB, &motorMoving,l,1);

/ *flag set to 1 if motor is moving, no new trajectories can be recieved until motor*/
/ *has stopped moving */ 160

outmsg(procB, &sinInY,1,1); / *signals from sensor*/
out_msg(procB, &cosInY,1,1); / *signals from sensor*/
inmsg(procB, &pi2trajPosX,1); / *(desired x pos)(2)(pi)*/
inmsg(procB, &pi2trajVelX,1); / *(desired y pos)(2)(pi)*/
in.msg(procB, &pi2trajPosY,1); /*(desired x vel)(2)(pi)*/
in_msg(procB, &pi2trajVelY,1); / *(desired y vel)(2)(pi)*/

sensorConvertX(; / *converts sine and cosinse sensor
signals into position and velocity for X axis *1

if(motorMode==XYRotservo) sensorConvertXR();
if((motorMode==XYstep) II (motorMode==XstepYsexva)){

cmdX=pi2trajPosX, amplitudeX=maxOutput;}
f((motorMode==XYservo) I1 (motorMode==XservoYstep))

controlLawX();
in_msg(procB,&motorMoving,1);

in_msg(procB,&cmdY,1);
inmsg(procB,&litudeY,1);
inmsg(procB,&posY,1);
in_msg(procB,&velY,1);
in_msg(procB,&filtVelY,1);

if(motorMode==XYRotservo); controlLawRoto; 180
else rotation=0;

posCmdo; / *generate sine and cosine waveforms for
all phases on the motor (X and Y axis) */

if(motorMode==XYoff) setAmpZero();
DAouto; /*send commanded signals to D/A converter*/

saveADBuffer();

149

break;
}

}
/* end c_int02() */

function definitions
********************1

void globalsToB()

sends all global parameters and filter coeficients to processor B*/

out_msg(procB, &maxInstrCount,1,1); /*number o pieciewise trajectories*/
out_msg(procB, &maxOutput,1,1); /*maximum output form D/A 's*/
outmsg(procB, &sampPeriod, 1,1); /*global parameters-defined in lmd2.h*/
out_msg(procB, &leadMaxAccel,1,1);
out_msg(procB, &leadMinAccel,1,1);
outmsg(procB, &leadMaxDecel,1,1);
outmsg(procB, &lsAccel,1,1);
outmsg(procB, &lsDecel,1,1);

outmsg(procB, &P,1,1);
out_msg(procB, &D,1,1);
out msg(procB, &I,1,1);
out_msg(procB, &Atrack,1,1); /*used in tracking position conversion*/

out msg(procB, &Ktrack,1,1); /*used in tracking position conversion*/
outmsg(procB, coefVel,5,1); / *coefiecients for velocity filter*/

}
/ *end globalsToB();*/

void calToB()
/**
sends all calibration data and sensor offsets to processor B*/

out_msg(procB, &sensorOffsetY,1,1);
out_msg(procB, &sinInYoffset,1,1);
out_msg(procB, &sinInYfactor,1,1);
out msg(procB, &cosInYoffset,1,1);

outmsg(procB, &cosInYfactor,1,1);
}/ *end calToB*/

/ *calibration Adjustment(alpha)*/
/ *calibration Adjustment(beta) */

void trajToBO
/**
sends both X and Y axis trajectory information to processor B*/

outmsg(procB, pathTypeX,maxInstrCount,1);
outmsg(procB, trajListX,maxInstrCount*3,1);
outmsg(procB, pathTypeY,maxInstrCount,1);
outmsg(procB, trajListY,maxInstrCount*3,1);

150

}
/ *end trajToB(;*/

void getTrajData(void)
/ **/
/ *load in the trajectory data for X axis*/
/*the function in_msg expects the first value sent to be an integer*/
/ *equal to the number of items*/ 250

{
int i=0;
while(motorMoving== 1); / *wait here until previous trajectory

is finished*/
/ *start loading new trajectory, but wait until

mode change to begin running*/
*CR=0x30000000; / *disable interrupts*/
for(i=0;i<maxInstrCount;i++){ / *receive data from B*1

in_msg(liaChanNo,&pathTypeX[i],1);
in_msg(liaChanNo,&pathTypeY[i],l); 260

}
for(i=O;i< (maxInstrCount*3);i++){

in msg(liaChanNo,&trajListX[i],l);
inmsg(liaChanNo,&trajListY[i],1);
}

*CR=0x30010000; / *enable interrupts*/
dumVar=*ADCO;

handshakeAB=trajAB; /*change handshake mode*/
intCounter=0;
while(intCounter<1); / *wait for at least one 270

time step for data to be sent to b*/
handshakeAB=normalAB;

}
/ *end getTrajDataO */

void reset(void)
/ **/ 280

/ *This function resets all trajectory history, and sensor variables*/
/ *It also recalculates the sensor offset*/
/ *If accurate sensor information is desired, the required sensors need
/ *to be calibrated before this function is called*/
{
int duration;
motorMoving=0; /*puts trajectory in hold mode*/

handshakeAB=initAB;
intCounter=0;
while(intCounter<1); 290
handshakeAB=normalAB;

velXold=0; velXRold=O;
posXold=0; posXRold=O;
errorXold=0; errorXRold=O;

151

motorMode=XYstep; / *activate stepMode set currents to maximum and hold*/
timestart(l);
duration=time_read(1);
while(duration < 10E6) / *hold the motor for 0.5 see to let transients die*/

duration=time read(1);
duration=timestop(1); 300
sensorOffsetX= -posX;
sensorOffsetY= -posY;
sensorOffsetXR= -posXR;

handshakeAB=calAB;
intCounter=0;
while(intCounter<1);
handshakeAB =normalAB;

}
/ *end reset() */

310

void calibrate(void)

/ *finds calibration offsets and adjustment factors for sensor's X and XR*/
/ *the trajectory which is executed corresponds to a constant accel path with*/
/ *accel time .25 sec, cruising time 1 see, decel time .25 see, max speed 5 p/s*1
{
int i; 320
float max=O, min=0, duration;

handshakeAB=initAB; /*initialize trajectory vars on proc B*/
intCounter=0;
while(intCounter<1);
handshakeAB=normalAB;

motorMoving=0; /*puts motor into a hold mode*/
calMode=1; / *set this up to store the buffer properly*/

/ *if calMode==1 then the raw sensor signals are stored in the buffer*/
/ *if it is set to zero, then the user defined variables are saved in */

/ *the buffer*/ 330
motorMode=XYstep;
timestart(l);
duration=time_read(1);
while(duration < 10E6) / *hold the motor for 1 sec to let transients die*/

duration=time_read(1);
duration=time_stop(1);
for(i=0;i<7;i++) pathTypeX[i]=pathCal[i];
for(i=0;i<16;i++) trajListX[i]=listCal[i];
for(i=O;i<7;i++) pathTypeY[i]=pathCal[i];
for(i=0;i<16;i++) trajListY[i]=IistCal[i]; 340

handshakeAB=trajAB; /*send trajectory information to B*/
intCounter=0;
while(intCounter<1);
handshakeAB=normalAB;

ADBufferCount=O; /*clear input sample buffer*/
motorMoving=l; /*start the motor moving on the calibration trajectory*/

while(motorMoving==1); /*wait here until trajectory

152

is finished */
350

/ *calibrate each signal from all three sensors*/
max=O; min=O;
for(i= 1;i<(int) (ADBufferSize);i+ =6){

if(ADBuffer[i] > max) max=ADBuffer[i];
if(ADBuffer[i] < min) min=ADBuffer[i];
}
sinInXoffset=-(max+min)*0.5;
sinInXfactor=1/(max-min);

max=O; min=O;
for(i=1;i< (int) (ADBufferSize);i+=6){- 360

if(ADBuffer[i] > max) max=ADBuffer[i];
if(ADBuffer[i] < min) min=ADBuffer[i];
}
cosInXoffset=- (max+min)*0.5;
cosInXfactor=1/(max-min);

max=0; min=0;
for(i=2;i<(int)(ADBufferSize);i+=6){

if(ADBuffer[i] > max) max=ADBuffer[i];
if(ADBuffer[i] < min) min=ADBuffer[i];
} 370
sinInYoffset=-(max+min)*0.5;
sinInYfactor=1/(max-min);

max=O; min=O;
for(i=3;i< (int) (ADBufferSize);i+=6){

if(ADBuffer[i] > max) max=ADBuffer[i];
if(ADBuffer[i] < min) min=ADBuffer[i];
}
cosInYoffset=- (max+min)*0.5;
cosInYfactor=1/(max-min);

max=0; min=0; 380

for(i=4;i<(int)(ADBufferSize);i+=4){
if(ADBuffer[i] > max) max=ADBuffer[i];
if(ADBuffer[i] < min) min=ADBuffer[i];
}
sinInXRoffset=-(max+min)*0.5;
sinInXRfactor=1/(max-min);

max=0; min=0;
for(i=5;i< (int) (ADBufferSize);i+=4){

if(ADBuffer[i] > max) max=ADBuffer[i];
if(ADBuffer[i] < min) min=ADBuffer[i]; 390

}
cosInXRoffset=- (max+min)*0.5;
cosInXRfactor=1/(max-min);

handshakeAB=calAB;
intCounter=0;
while(intCounter<1);
handshakeAB=normalAB;

calMode=O; /*exit from calibration mode*/
i/*end calibrateO*/ 400

153

void saveADBuffer(void)
/***/

/ *saves selected data to ADBuffer*/
{
if(ADBufferCount < ADBufferSize){

if(calMode==0){
ADBufferCol=4; 410

ADBuffer[ADBufferCount++]=posX+sensorOffsetX;
ADBuffer[ADBufferCount++]=posY+sensorOffsetY;
ADBuffer[ADBufferCount++]=filtVelX;
ADBuffer[ADBufferCount++]=pi2trajPosX;
}

else{ / *calibration mode*/
ADBufferCol=6;
ADBuffer[ADBufferCount++]=sinInX;
ADBuffer[ADBufferCount++]=cosInX;
ADBuffer[ADBufferCount++]=sinInY; 420

ADBuffer[ADBufferCount++]=cosInY;
ADBuffer[ADBufferCount++]=sinInXR;
ADBuffer[ADBufferCount++]=cosInXR;

}
}
}
/ *end save AD sample*/

430

void dumpADBuffer(void)
/**

/ *sends ADBuffer data to the host program*/

{
while(motorMoving==1); / *wait here until previous trajectory

is finished before dumpin data*/
outmsg(liaChanNo,&ADBufferCol,1,1);
send_msg(liaChanNo,ADBuffer,ADBufferSize,1);
while(chk_dma(liaChanNo)); 440

}
/ *end dumpADBufferO;*/

void setGlobalVars(void)
/************************ ***********************************/
/ *updates control variables once they are received from the Host*/

{
float K,T1; 450

K=1414*1414;
T1=0.001;
/ *Ktrack=1888.0;*/ *used in the digital tracking algorithim*/
/*Atrack=0.665;*/ /*used in the digital tracking algorithim*/
Ktrack=K*T1+K*sampPeriod; / *Kbar*/
Atrack=(K*T1)/(K*T1+K*sampPeriod); / *Tbar*/

154

/ *the above to parameters are described in section
4.1 of my thesis, sensor position conversion*/

maxOutput=0.99*maxAmplitude/10.0*2048; / *maximum output amplitude*/
leadMaxAccel=2*PI*leadMaxAccel/360.0; /*control Law parameters*/ 460
leadMaxDecel=2*PI*leadMaxDecel/360.0;
leadMinAccel=2*PI*leadMinAccel/360.0;
leadMinDecel=2*PI*leadMinDecel/360.0;
IsAccel=(leadMaxAccel-leadMinAccel)/(2*PI*lsAccel);
IsDecel=(leadMaxDecel-leadMinDecel)/(2*PI*lsDecel);

void setFilterCoef(void) 470
I **/
/ *This function creates the filter coeficients for the sensor in, */
/ *calibration, and velocity filter signals*/
/ *parametrs are found using a 2nd order butterwoth model*/
{
/ *I didn't have time to implement a function which creates the filter coeficients
as a function of the sampling rate, so instead I generate them from matlab.
I use the matlab function [B,A]=butter(2,x) (second order butterwoth filter)
where z=2*(desired cut off Hz)/(Sampling Rate Hz). From here, the coeficients can
be entered into the five element coeff] array in lmd2_a.sys. 480
coeff[O]=B[OJ, coef[1]=B[1], coef[21=B/21, coef[3J=-A[1], coef[4j=-A[2]*/

int i;
for(i=0;i<30;i++) histData[i]=0.0;
for(i=0;i<5;i++) histVel[i]=0.0;
}
/ *end setFilterCoefO; */

490

float filter(float input, float *coefptr, float *histptr)
/ **/
/ *This function implements a second order IIR digital filter*/
/ *the first argument is the sample to be filtered, the second
argument is a pointer to the coeficient array. The third
argument contains the filter history for the particular signal
each signal must have its own filter history allocated for it. */
{
float output=O;
*histptr=input; 500
output += (*histptr++)*(*coefptr++).;
output += (*histptr++)*(*coefptr++);
output += (*histptr++)*(*coefptr++);
output += (*histptr++)*(*coefptr++);
output += (*histptr)*(*coefptr);
*histptr = *(--histptr);
*histptr-- = output;
*histptr = *(--histptr);
*histptr = *(--histptr);
coefptr -=4; 510

155

return(output);

/ *end filter*/

void ADin(void)
/***gets the samples from the 16 input multi****************I0 board***************
/ *gets the samples from the 16 input multi I/O board*/

volatile long input;
float *coefptr;

if(calMode==1) coefptr=coefCal;
else coefptr=coefData3;
coefptr=coefData;

input= *ADCO; input<<=4; input>>=20;
/ *necessary to right shift the data when reading
sinInX=(float) input;
sinInX=filter(sinInX,coefptr,histData);
input= *ADCO; input<<=4; input>>=20;
cosInX=(float) input;
cosInX=filter(cosInX,coefptr,histData+5);
input= *ADCO; input<<=4; input>>=20;
sinInY=(float) input;
sinInY=filter(sinInY,coefptr,histData+10);
input= *ADCO; input<<=4; input>>=20;
cosInY=(float) input;
cosInY=filter(cosInY,coefptr,histData+ 15);
input= *ADC1; input<<=4; input>>=20;
sinInXR=(float) input;
sinInXR=filter(sinInXR,coefptr,histData+20);
input= *ADC1; input<<=4; input>>=20;
cosInXR=(float) input;
cosInXR=filter(cosInXR,coefptr,histData+25);

)/*end ADinO*/

void sensorConvertX(void)
/***
calculates the X sensor position using the tracking method*/
/ *also filters the velocity signal using IIR digital filter*/
{

)/ *end

sinSig=sinInXfactor*(sinInX+sinInXoffset);
cosSig=cosInXfactor*(cosInX+cosInXoffset);

errorX=sinSig*cos(posXold)-cosSig*sin(posXold);
velX=velXold+Ktrack*(errorX-Atrack*errorXold);
posX=posXold+sampPeriod*velX;
errorXold=errorX;
velXold=velX;
posXold=posX;

filtVelX=filter(velX,coefVel,histVel);

sensorConvertX*/

156

from the A/D*/

void sensorConvertXR(void)
/***
calculates the XR sensor position using the tracking method*/
{570

sinSig=sinInXRfactor*(sinInXR+sinInXRoffset);
cosSig=cosInXRfactor*(cosInXR+cosInXRoffset);

errorXR=sinSig*cos(posXRold) -cosSig*sin(posXRold);
velXR=velXRold+Ktrack*(errorXR-Atrack*errorXRold);
posXR=posXRold+sampPeriod*velXR;
errorXRold=errorXR;
velXRold=velXR;
posXRold=posXR;

}
/ *end sensorConvertXR*/ 580

void controlLawX(void)

calculates the control law for the X axis */

{
posErrorX= (pi2trajPosX-posX-sensorOffsetX);
velErrorX=pi2traj VelX- velX;

590

if(posErrorX>0 & filtVelX>0){
Klead=leadMinAccel+lsAccel*filtVelX;
if(Klead>leadMaxAccel) Klead=leadMaxAccel;}

if(posErrorX<0 & filtVelX<0){
Klead=-leadMinAccel+1sAccel*filtVelX;
if(Klead < -leadMaxAccel) Klead=-leadMaxAccel;}

if(posErrorX<0 & filtVelX>0){
Klead=leadMinDecel+IsDecel*filtVelX;
if(Klead > leadMaxDecel) Klead=leadMaxDecel;}

if(posErrorX>0 & filtVelX<0){ 600

Klead=-leadMinDecel+1sDecel*filtVelX;
if(Klead < -leadMaxDecel) Klead=-leadMaxDecel;}

amplitudeX=fabs(P*posErrorX+D*velErrorX);
if(amplitudeX > maxOutput) amplitudeX=maxOutput;
if(fabs(posErrorX) > 450) motorMode=XYoff; /*prevents runaway condition*/

/ *stops motor current if posError > 71 *2*pi pitch, Sin*/
/ * if the current appears to be stopping for no apparent reason*/

/ *try increasing this value*/
cmdX=posX+sensorOffsetX+Klead; 610

}
/ *end controlLawO);*/

void controlLawRot(void)

calculates the control law for the rotational axis*/
/ *this fuction has not been experimentally tested, and the control law*/
/ *may need to be modified in the future*/

157

rotError=posX-posXR; /*this may need to be modified in the future*/ 620
rotation=Prot*rotError;

}
/ *end controlLawO; */

void posCmd(void)
/ *** 630

calculates the outputs to the DA converter*/

{
phaseAXR=(long) amplitudeX*sin(cmdX+rotation);

phaseAXR <<=16; /*necessary to left shift the integer for proper
communication along teh DSPlink cable*/

phaseBXR=(long) amplitudeX*cos(cmdX+rotation);
phaseBXR <<=16;
phaseAYR=(long) amplitudeY*sin(cmdY+rotation);
phaseAYR <<=16;
phaseBYR=(long) amplitudeY*cos(cmdY+rotation); 640

phaseBYR <<=16;
phaseAXL=(long) amplitudeX*sin(cmdX-rotation);
phaseAXL <<=16;
phaseBXL=(long) amplitudeX*cos(cmdX-rotation);
phaseBXL <<=16;
phaseAYL=(long) amplitudeY*sin(cmdY-rotation);
phaseAYL <<=16;
phaseBYL=(long) amplitudeY*cos(cmdY-rotation);

phaseBYL <<=16;
650

/ *end controlLawO;*/

void setAmpZero(void)
/***
sets the amplifier currents to zero*/

{
motorMode=XYoff; /*set motor mode to rest*/
phaseAXR=O; 660

phaseBXR=O;
phaseAYR=O;
phaseBYR=O;
phaseAXL=O;
phaseBXL=O;
phaseAYL=O;
phaseBYL=O;

/ *outputs on DA 's should now be zero*/

}/ *end setAmpZero);*/ 670

158

void initAnalog(void)
/**

/ *Initializes the multi channel input board*/
{

*CR=0OL; /*board reset*/
*DACO=0xO000000; / *clear DAC channels*/
*DAC1=0x000000000;
*DAC2=0x00000000; 680

*DAC3=0x00000000;
*DAC4=0x00000000;
*DAC5=0x00000000;
*DAC6=0x00000000;
*DAC7=0x00000000;
*DOR=0OL; /*data output register*/
*PGR=0x00000000L; /*Gain =1*/

}
/ *end initAnalog*/

690

void setADtimer(void)
/*************************************/
/*calibrates the analog to digital converter chip on the AD board*/
{

long TVAL16, TVAL2;
TVAL16=0x00010000 * (long) (10000000.0 * sampPeriod);

*TIMER16=TVAL16;
TVAL2=(long) (10000000.0 * sampPeriod);

*TIMER2=TVAL2; 700

}
/ *end setADtimer()*/

void setInterruptEOC(void)
/**/

/ *sets up and enables the interrupts on the QPC board*/
{

/* Set up the C40 interrupts */
/ * Need to perform an IACK instruction to allow
external interrupts through to the C40 */ 710

unsigned long dummy;
asm(" PUSH ARO");
asm(" PUSH DP");
asm(" LDI 030H,ARO");
asm(" LSH 16,ARO");
asm(" IACK *ARO");
asm(" POP DP");
asm(" POP ARO");
INT.DISABLEO; /* Global disable of interrupts */ 720
set ivtp((void *)0x002ffe00); /* Explicitly set IVTP on 512 word bndary */
install int_vector((void *)cint04, 0x04); / * Set intrpt vect for IIOF1 */
loadiif(0x00BO); / * Enable IIFO1 pin to be a level triggered interrupt */
*CR=0x30010000; / *enable interrupts-level trig*/
dummy=*ADCO; / *read ADC zero to start interrupts*/
INTENABLEO;

159

/ *end setInterrupto*/

730

void DAout(void)
/*** **************/
/ *sends data out through the DA card*/
{

*DACO=phaseAXR;
*DAC1=phaseBXR;
*DAC2=phaseAYR;
*DAC3=phaseBYR;
*DAC4=phaseAXL; 740
*DAC5=phaseBXL;
*DAC6=phaseAYL;
*DAC7=phaseBYL;

}
/ *end DAoutO*/

750

void getGlobals(void)
/**/

/ *loads in global variable values from the host program*/
{

/ *the order of these reads must match exactly with the order of the
writes from the host C program*/

inmsg(liaChanNo,&maxInstrCount,1);
inmsg(liaChanNo,&sampPeriod,1); 760

inrsg(liaChanNo,&maxAmplitude,1);
in msg(liaChanNo,&filterBWData, 1);
in msg(liaChanNo,&filterBWCal,1);
inmsg(liaChanNo,&filterBWVel,1);
in msg(liaChanNo,&leadMaxAccel,1);
inmsg(liaChanNo,&leadMaxDecel,1);
in msg(liaChanNo,&leadMinAccel,1);
in msg(liaChanNo,&leadMinDecel,1);
in msg(liaChanNo,&lsAccel,1);
in msg(liaChanNo,&lsDecel,1); 770

in msg(liaChanNo,&P,1);
in.msg(liaChanNo,&D,1);
in msg(liaChanNo,&I,1);
in msg(liaChanNo,&Prot,1);

inmsg(liaChanNo,&Drot,1);

/ *end getGlobalsO */ 780

160

/**

FILE: lmd2.a.sys

This file defines all constants and variables for lmd a.c

Writen by Doug Crawford, June 1995

/*THIS FILE IS COMPILED USING THE BATCH FILE CLDSPB.BAT*/
/*the batch file contains information for each c40 processor*/ 10
/*if higher sampling rates are required, it might be helpful to include*/
/*the optimizer during compilation. This is done by including -03 in the*/
/*c130 command line in the batch file*/
/****************

Header Files
****************/

#include "math.h" /* Math functions (needed for sine function) */
#include "intpt40.h" /* C40 Intrpt. support in Parallel Runtime Lib */
#include "compt40.h" /* C40 comm port support in Parallel Runtime Lib */
#include "dma40.h" /* dma support in parallel runtime support library*/ 20
#include "timer40.h" /* C40 timer support found in 'prts.lib' */
#include "stdlib.h"

#define PI2 6.2831853
#define PI 3.1415926
#define inv2pi 0.15915494 /*inverse of 2*PI*/

/*comm port defines*/ 30
#define liaChanNo 1
#define procA 3

/*modes used for the mainMenuo function*/
/*these numbers must match exactly with the numbers on the host program*/
#define changeModeC 0
#define GlobalsC 1
#define resetC 2
#define calibrateC 3
#define TrajDataC 4 40
#define dumpADBufferC 5

161

#define XYoff 0
#define XYstep 1
#define XservoYstep 2
#define XstepYservo 3
#define XYservo 4
#define XYRotservo 5

50
/*handshaking modes used to talk to processor A*/
#define normalAB 0
#define globalsAB 1
#define calAB 2
#define trajAB 3
#define initAB 4

/******************** 60
Global Variables

unsigned int
motorMode=XYoff, /*this variable directs the interrupts*/
motorMoving=0, /*determins if trajPieceY should be executed*/

handshakeAB=normalAB, /*used to communicate with proc A*/
maxInstrCount=0, /*max size of pathType and trajList*/
*pathTypeX,
*pathTypeY; 70

float
*trajListX,
*trajListY,
sampPeriod=0.0,
leadMaxAccel=0.0,
leadMaxDecel=0.0,
leadMinAccel=0.0,
leadMinDecel=0.0,
IsAccel=0.0, 80

IsDecel=0.0,
P=0.0,
D=0.0,
I=0.0;

Other global variables which are not updated by the host program

/*parameters used by the function filter*/ 90
float coefVel[5]={0.34604133763916E-3, 0.69208267527809E-3, 0.34604133763916E-3,

1.94669754075618, -0.94808170610674},
histVel[5]={0,0,0,0,0};

/*parameters used by sensorConvert*/

162

float posY=0,posYold=0,
velY=0,velYold=0,

errorY=0,errorYold=0,
sensorOffsetY=0,
sinSig=0, cosSig=0, Ktrack=O, Atrack=O; 100

/*parameters used by the function trajPieceX(*/
float trajPosX=O, trajVelX=O, trajPosOldX=0, trajVelOldX=0,
unsigned int indexlX=0, index2X=0;
float pi2trajPosX=0, pi2trajVelX=O;

/*parameters used by the function trajPieceY(*/
float trajPosY=O, trajVelY=O, trajPosOldY=0, trajVelOldY=0,
unsigned int indexlY=0, index2Y=0;
float pi2trajPosY=0, pi2trajVelY=O;

trajTimeOldX=0;

trajTimeOldY=0;

/*parameters used by the calibration routines*/
float sinInYoffset=0, sinInYfactor=0, cosInYoffset=0, cosInYfactor=0;

float sinInY=O, cosInY=O;

/*parameters used by controlLaw*/
float posErrorY=O, velErrorY=O0,filtVelY=0, Klead=O, cmdY=O;
float maxOutput=0,amplitudeY=0;

/***********************

Function Prototypes
*************************/

float filter(float, float *, float *);
void sensorconvertY(void);
void controlLawY(void);
void trajPieceX(void);
void trajPieceY(void);
void globalsFromA(void);
void calFromA(void);
void trajFromA(void);
void initializeAB(void);

FILE: lmd2-b.CPP (C source code for QPC/ C40OB)

THIS CODE RUNS ON CPU A ON THE TI C40 BOARD

DESCRIPTION:
This C4O program Controls all of the DSP operations using the

TI C40 processor

Writen by Doug Crawford, June 1995
****include md2b. **************** y ***************y***** **********

#include "lmd2.b. sys"

163

/*****************************

MAIN

void main(void){
motorMode=XYoff; 20

globalsFromAo; /*update parameters from host*/
pathTypeX=calloc(maxInstrCount,sizeof(unsigned long));
trajListX=calloc(maxInstrCount*3,sizeQf(float));
pathTypeY=calloc(maxInstrCount,sizeof(unsigned long));
trajListY=calloc(maxInstrCount*3,sizeof(float));

CACHE_ON(); /*turns on DSP instruction cache*/

/ *This is the infinite loop for processor B, unlike processor A, processor B
does not check the input from the PC. It only checks input from processor A. 30
Also, processor B won't begin executing the commands for each time step until
it has received the handshaking signal from processor A */

while(1){
in msg(procA, &handshakeAB,1); / * wait for input from proc A: HANDSHAKE SIGNAL*/

/ *this line won't be executed untill new
information from processor A arrives*/

switch(handshakeAB) {
case globalsAB: globalsFromAo; /*reads global parameters from A*/

break; 40
case trajAB: trajFromA(; /*reads trajectory information from A*/

break;
case calAB: calFromAo; / *reads calibraton and sensor offsets from A */

break;
case initAB: initializeAB ();/ *initializes sensor variables*/

break;
case normalAB: / *reads normal time step info from A */

/ *these lines must correspond exactly with the out_msg
lines in processor A */

in_msg(procA, &motorMode, 1); 5so
in_msg(procA, &motorMoving,1);
in_msg(procA, &sinInY,1);
in_msg(procA, &cosInY,1);
out_msg(procA, &pi2trajPosX,1,1);
out_msg(procA, &pi2trajVelX,1,1);
out_msg(procA, &pi2trajPosY,1,1);
out msg(procA, &pi2trajVelY,1,1);
if(pathTypeX[indexlX]==0) motorMoving=0;

sensorConvertY();
if((motorMode==XYstep) 1I (motorMode==XsewsoYstep)){

cmdY=pi2trajPosY, amplitudeY=maxOutput;}
if((motorMode==XYservo) 1I (motorMode==XstepYservo))

controlLawY();
outmsg(procA,&motorMoving,1 ,1);
outmsg(procA,&cmdY,1,1);
outmsg(procA,&litudeY,1,1);
out.msg(procA,&posY,1,1);
outmsg(procA,&velY,1,1);

164

outmsg(procA,&filtVelY,1,1);
if(motorMoving==1){

trajPieceX();
trajPieceY();}

pi2trajPosX=trajPosX*PI2;
pi2trajVelX=trajVelX*PI2;
pi2trajPosY=trajPosY*PI2;
pi2trajVelY=trajVelY*PI2;

break;
}

}
/ *end main*/

function definitions

void globalsFromA()
/receives all global parameters **oeens rom proessor A
receives all global parameters and filter coeficients from processor A */

int i;
in_msg(procA, &maxInstrCount,1);
in_msg(procA, &maxOutput,1);
inmsg(procA, &sampPeriod, 1);
inmsg(procA, &leadMaxAccel,1);
inmsg(procA, &leadMinAccel,1);
in_msg(procA, &leadMaxDecel,1);
in_msg(procA, &lsAccel,1);
inmsg(procA, &lsDecel,1);
inmsg(procA, &P,1);
inmsg(procA, &D,1);
inmsg(procA, &I,1);
in_msg(procA, &Atrack,1);
inmsg(procA, &Ktrack,1);

inmsg(procA, coefVel,1);
for(i=0;i<5;i++) histVel[i]=0.0;

}
/ *end globalsFromA O; */

void calFromA()

receives all calibration data and sensor offsets from processor A*/

in_msg(procA,
in_msg(procA,
in_msg(procA,
in_msg(procA,
inmsg(procA,

&sensorOffsetY,1);
&sinInYoffset,1);
&sinInYfactor,1);
&cosInYoffset,1);
&cosInYfactor,1);

165

/ *end calFromA0);*/

void trajFromA()
/ **
receives both X and Y axis trajectory information from processor A */
{ 130

in msg(procA, pathTypeX,1);
in msg(procA, trajListX,1);
in msg(procA, pathTypeY,1);
in msg(procA, trajListY,1);

trajPosX=O; trajPosY=O; /*initialize all trajectory variables*/
trajVelX=O; trajVelY=O; / *except for trajPosold- This variable*/
trajVelOldX=O; trajVelOldY=0; /*is only initialized on the reset function*/
trajTimeOldX=0; trajTimeOldY=0;
indexlX=0; indexlY=0; 140
index2X=0; index2Y=0;

I
/ *end trajFromA(); */

void initializeAB()

initializes all sensor variables and trajposoldX, trajPosoldY*/

{
pathTypeX[indexlX]=O;
pathTypeY[indexlX]=O; 150

trajPosOldX=O;
trajPosOldY=O;
velYold=0;
posYold=0;
errorYold=O;
errorY=O;
posY=O;
velY=O;

/ *initABO;*/ 160

float filter(float input, float *coefptr, float *histptr)
/***/

/ *This function implements a second order IIR digital filter*/

float output=0;
*histptr=input;
output += (*histptr++)*(*coefptr++);
output += (*histptr++)*(*coefptr++); 170
output += (*histptr++)*(*coefptr++);
output += (*histptr++)*(*coefptr++);
output += (*histptr)*(*coefptr);
*histptr = *(--histptr);
*histptr-- = output;
*histptr = *(--histptr);

166

*histptr = *(--histptr);
/ *histptr +=4;*/
coefptr -=4;
return(output); 180

}
/ *end filter*/

void sensorConvertY(void)
/***

calculates the Y sensor position using the tracking method*/
/ *also filters the velocity signal using IIR digital filter*/
{ 190

sinSig=sinInYfactor*(sinInY+sinInYoffset);
cosSig=cosInYfactor*(cosInY+cosInYoffset);

errorY=sinSig*cos(posYold)-cosSig*sin(posYold);
velY=velYold+Ktrack*(errorY- Atrack*errorYold);
posY=posYold+sampPeriod*velY;
errorYold=errorY;
velYold=velY;
posYold=posY;

filtVelY=filter(velY,coefVel,histVel); 200
}
/ *end sensorConvertY*/

void controlLawY(void)
/**** ***

calculates the control law for the Y axis */
{

posErrorY= (pi2trajPosY-posY-sensorOffsetY); 210o
velErrorY=pi2trajVelY-velY;

if(posErrorY>0 & filtVelY>O){
Klead=leadMinAccel+lsAccel*filtVelY;
if(Klead>leadMaxAccel) Klead=leadMaxAccel;}

if(posErrorY<0 & filtVelY<O){
Klead= -leadMinAccel+1sAccel*filtVelY;
if(Klead < -leadMaxAccel) Klead=-leadMaxAccel;}

if(posErrorY<0 & filtVelY>O){
Klead=leadMinDecel+lsDecel*filtVelY; 220
if(Klead > leadMaxDecel) Klead=leadMaxDecel;}

if(posErrorY>0 & filtVelY<O){
Klead=-leadMinDecel+1sDecel*filtVelY;
if(Klead < -leadMaxDecel) Klead=-leadMaxDecel;}

amplitudeY=fabs(P*posErrorY+D*velErrorY);
if(amplitudeY > maxOutput) amplitudeY=maxOutput;
if(fabs(posErrorY) > 450) motorMode=XYoff; /*prevents runaway condition*/
cmdY=posY+sensorOffsetY+Klead;

230

167

/ *end controlLaw();*/

void trajPieceX(void)

X DIRECTION
calculates the pre-programed trajectory in real time

trajListX is one array of floats 240

parameters ending with old are for the previous time step
the array pathTypeff contains integers describing what "type" of path is underway:

0-no motion
1-constant velocity
2- constant acceleration

3-linear acceleration
the array trajList[] contains trajectory instructions which are dependant on the

current path Type. Each path Type will correspond with some defining parameters
in trajList which are:

0 constant position: none 250
1 constant vel: duration(time), velocity
2 constant accel: duration, a*t, 1/•*a*t^2
3 linear accel: duration, 1/2*a*t ̂ , 1/6*a*t ̂ 3
For example, if path Type[indexl]=1 then trajList[index2]

is equal to duration and trajList[index2+1]=vel.
*/

switch(pathTypeX[indexlX]){
case 0: trajVelX=0; 260

trajPosX=trajPosOldX;
break;

case 1: if (trajTimeOldX < trajListX[index2X]){
trajVelX=trajListX[index2X+1];
trajPosX=trajListX[index2X+1]*trajTimeOldX

+ trajPosOldX;
trajTimeOldX=trajTimeOldX+sampPeriod;

}
else { 270

indexlX++;
index2X=index2X+2;
trajVelOldX=trajVelX;
trajPosOldX=trajPosX;
trajTimeOldX=0;

}
break;

case 2: if (trajTimeOldX < trajListX[index2X]){
trajVelX=trajListX[index2X+1]*trajTimeOldX 2so

+ trajVelOldX;
trajPosX=trajListX[index2X+2]*trajTimeOldX

*trajTimeOldX
+ trajVelOldX*trajTimeOldX +

168

trajPosOldX;
trajTimeOldX=trajTimeOldX+sampPeriod;

}
else {

indexlX++;
index2X=index2X+3; 290
trajVelOldX=trajVelX;
trajPosOldX=trajPosX;
trajTimeOldX=0;

break;

case 3: if (trajTimeOldX < trajListX[index2X]){
trajVelX=trajListX[index2X+1]*trajTimeOldX*trajTimeOldX +

trajVelOldX;
trajPosX=trajListX[index2X+2]*trajTimeOldX* 300

trajTimeOldX*trajTimeOldX
+ trajVelOldX*trajTimeOldX + trajPosOldX;

trajTimeOldX=trajTimeOldX+sampPeriod;
}
else {

indexlX++;
index2X=index2X+3;
trajVelOldX=trajVelX;

trajPosOldX=trajPosX;
trajTimeOldX=0; 310

break;
}

}
/ *end trajPieceX()*

void trajPieceY(void)
/ *** 320

Y DIRECTION
trajListY is one array of floats

parameters ending with old are for the previous time step
the array pathType[] contains integers describing what "type" of path is underway:

0-no motion
1- constant velocity
2- constant acceleration

3-linear acceleration
the array trajList[] contains trajectory instructions which are dependant on the

current path Type. Each path Type will correspond with some defining parameters 330
in trajList which are:

0 constant position: none
1 constant vel: duration(time), velocity
2 constant accel: duration, a*t, 1/2*a*t 2
3 linear accel: duration,1/2*a*t ̂2, 1/6*a*t ̂ 3
For example, if path Type[indezl]=1 then trajList[index2]

is equal to duration and trajList[index2+1]=vel.*/

169

switch(pathTypeY[indexlY]){
case 0: trajVelY=O;

trajPosY=trajPosOldY;
break;

case 1: if (trajTimeOldY < trajListY[index2Y]){
trajVelY=trajListY[index2Y+ 1];
trajPosY=trajListY[index2Y+1]*trajTimeOldY + trajPosOldY;
trajTimeOldY=trajTimeOldY+sampPeriod;

else {
indexlY++;
index2Y=index2Y+2;
trajVelOldY=trajVelY;
trajPosOldY=trajPosY;
trajTimeOldY=0;

break;

case 2: if (trajTimeOldY < trajListY[index2Y]){
trajVelY=trajListY[index2Y+1]*trajTimeOldY + kmajVelOldY;
trajPosY=trajListY[index2Y+2]*trajTimeOldY*trajTimeOldY

+ trajVelOldY*trajTimeOldY +
trajPosOldY;

trajTimeOldY=trajTimeOldY+sampPeriod;

else {

}
break;

indexlY++;
index2Y=index2Y+3;
trajVelOldY=trajVelY;
trajPosOldY=trajPosY;
trajTimeOldY=0;

case 3: if (trajTimeOldY

}
else {

trajPosOldY=trajPosY;

< trajListY[index2Y]){
trajVelY=trajListY[index2Y+1]*trajTimeOldY*trajTimeOldY +

trajVelOldY;
trajPosY=trajListY[index2Y+2]*trajTimeOldY*

trajTimeOldY*trajTimeOldY
+ trajVelOldY*trajTimeOldY + trajPosOIdY;

trajTimeOldY=trajTimeOldY+sampPeriod;

indexlY++;
index2Y=index2Y+3;
trajVelOldY=trajVelY;

trajTimeOldY=0;

break;

170

/ *end trajPieceY()*/

171

Bibliography

[1] Analog Devices, ADSP-2100 Applications Handbook, Second Edition, May 1987.

[2] Joe Abraham. Modeling the Sawyer Linear Stepper Motor. 2.141 Term Paper,

Massachusetts Institute of Technology, Cambridge, Massachusetts, 1992.

[3] Geoffrey S. Boyes. Synchro and Resolver Conversion. Memory Devices Ltd, Sur-

rey, U.K., 1980

[4] Lee Clark. Fiberoptic Encoder For Linear Motors and the like, United States

Patent 5,324,934, Magamation Incorporated, Lawrenceville, New Jersey, Jun.

28, 1994.

[5] D. Crawford, F. Y. Wong, and K. Youcef-Toumi. "Modelling and Design of a

Sensor for Two dimensional Linear Motors", Proceedings: IEEE International

Conference on Robotics and Automation Japan, 1995.

[6] Dr R. N. Danbury, "Time-Optimal Position Control of a Minor Closed Loop

Steeping Motor System", Proceedings: Twenteeth Annual Symposium on Incre-

mental Motion Control Systems and Devices, ed. B. C. Kuo, 1991.

[7] Paul M. Embree, and Bruce Kimble. C Language Algorithms for Digital Signal

Processing, Prentice Hall, New Jersey, 1991.

[8] Gene F. Franklin, J. David Powell, and Michael L. Workman. Digital Control of

Dynamic Systems, Addison-Wesley, April 1992.

[9] Paul D. Gjeltema. Design of a Closed Loop Linear Motor System. M.S. Thesis,

Massachusetts Institute of Technology, Cambridge, Massachusetts, 1993.

172

[10] Dean C. Karnopp, Donald L. Margolis, and Ronald C. Rosenberg. System Dy-

namics: A Unified Approach, John Wiley & Sons, Inc., New York, 1990.

[11] Dr. Duane Hanselman. "Signal Processing Techniques for Improved Resolver-

to-Digital Conversion Accuracy" IEEE Transactions on Industrial Electronics

1990.

[12] Mashide Hirasawa, Mitsunobo Nakamura, and Makoto Kanno. "Optimum Form

of Capacitive Transducer for Displacement Measurement" IEEE Transactions on

Instrumentation and Measurement, Vol 1M-33, No 2. December 1984.

[13] Henning Schulze-Lauen. Development of an Enhanced linear Motor Drive for a

High Speed Flexible Automation System. Diploma Thesis, Rheinisch-Westfhilische

Technische Hochschule, Aachen and Cambridge, Massachusetts, October, 1993.

[14] B. C. Kuo and R. H. Brown. "The Step Motor Time-Optimal Control Prob-

lem" ,Proceedings: Fourteenth Annual Symposium on Incremental Motion Con-

trol Systems and Devices, ed. B. C. Kuo, 1985.

[15] Jack Nordquist and Edmond Pelta. "Constant Velocity Systems using Sawyer

Linear Motors", Proceedings, 15th Annual Symposium on Incremental Motion

Control Systems and Devices ed. B. C. Kuo, Champaign, Illinois, 1986.

[16] Gabriel L. Miller. Capacitively Commutated Brushless DC Servomotors, United

States Patent 4,958,115. AT&T Bell Laboratories, Murray Hill, New Jersey,

Sep. 18, 1990. Massachusetts Institute of Technology, Cambridge, Massachusetts,

1993.

[17] Bruce A. Sawyer Linear Magnetic Drive System. United States Patent 3735231,

Woodland Hills, California. May 22, 1973.

[18] H. Schulze-Lauen, F. Y. Wong, and K. Youcef-Toumi. Modelling and Digital

Servo Control of a Two-Axis Linear Motor, Laboratory for Manufacturing and

Productivity Report, Massachusetts Institute of Technology, Cambridge, Mas-

sachusetts, 1994.

173

[19] Alexander H. Slocum. Precision Machine Design, Prentice Hall, New Jersey,

1992.

[20] Surahammars Bruk. Non-Oriented Electrical Steels Catalog and Design Guide.

Sweden, 1987.

[21] Francis Y. Wong. Inductive Position/Velocity. Sensor Design and Servo Control

of Linear Motors, S.M. Thesis, Massachusetts Institute of Technology, Cam-

bridge, Massachusetts, 1994.

, 'y i

174

