
libDsp A- n Object Oriented C++ Digital

Signal Processing Library

by

Daniel F. Gruhl

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1995

© Daniel F. Gruhl, MCMXCV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part, and to grant others the right to do so.

Author, .-.....
Department of Electrical Engineering and Computer Science

December 21, 1994

Certified by..

i\

AK

Accepted by...

Chalnan, D epaihpa•aqQ•F L _tYe
OF TECHNOLOGY

Barry L. Vercoe
Professor

m ilesis Supervisor

F, R. Morgenthaler
on Graduate Theses

AUG 10 1995

LIBRARIES

------···-·

libDsp - An Object Oriented C++ Digital Signal

Processing Library

by

Daniel F. Gruhl

Submitted to the Department of Electrical Engineering and Computer Science
on December 21, 1994, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis covers the design and implementation of a library of objects and func-
tions in C++ for the manipulation of sounds. The library is meant to be machine
independent and portable, though its basic layout assumes a Unix like environment.
The library assumes a sound file to sound file processing scheme. It is designed to be
easily extensible, reasonably optimizable and fairly complete.

This thesis includes a discussion of the design issues addressed in the development
of the library, the specific details of the implementation, and a discussion of the appli-
cations currently using the library. Last will be a discussion of what directions future
work on the library might proceed in.

Thesis Supervisor: Barry L. Vercoe
Title: Professor

Acknowledgments

I would like to thank Professor Vercoe and all the members of the Music and Cognition

Group at the MIT Media Laboratory for their guidance and insites into the world of

sound processing. I would like to thank John Buck, who was the sole instructor

responsible for my learning DSP while an MIT undergraduate. I would also like to

thank Melba Jezierski of the Writing Center for her patient help in converting my

thesis to a form comprehendible by others beside myself.

Contents

1 Introduction

1.1 Definition of Problem

1.2 Current Art

1.3 Definition of Goal

1.4 Overview

2 Design Choices

2.1 Environment

2.1.1 Language vs. Library

2.1.2 What language to use

2.1.3 Real Time vs. Static Processing .

2.2 Completeness

2.2.1 Input and Output Capabilities . .

2.3 Uniformity

2.4 Extendibility and Abstraction

2.4.1 Inheritance

2.4.2 Abstraction

2.5 Portability

2.5.1 Autoconfigure vs. System specific

2.5.2 Imported Code

2.5.3 C+ +

2.6 Speed

2.6.1 Simple access routines

14

. 14

. 15

. 16

. 16

. 17

. 18

. 19

. 20

.... 20

.... 21

.... 22

. 22

... 22

... 24

... 24

.... °

. . . .

.... •

.... °

....

....

2.6.2 Assembly language type functions 25

2.6.3 Inline functions 25

2.7 Conclusion 25

3 Implementation 26

3.1 Data Types 27

3.1.1 CA rray 27

3.1.2 Tim eSignal 30

3.1.3 FreqSignal 33

3.1.4 FreqSlice 34

3.2 Functions .. 34

3.2.1 Signal Generation 36

3.2.2 Fourier Transforms 36

3.2.3 Filters .. . 36

3.2.4 Transformation 37

3.3 Utility Code 37

3.3.1 CommandLine 37

3.3.2 G nuPlot 37

3.3.3 A IFF 37

3.3.4 UniqueName 38

3.3.5 M iscellaneous 38

3.4 Conclusion .. . 38

4 Applications 39

4.1 Example Programs 39

4.1.1 Intro .. . 40

4.1.2 E cho .. . 40

4.1.3 AIFFdisplay 40

4.1.4 AIFFm ath 40

4.1.5 Voice M odification 41

4.2 Data Hiding 41

4.2.1 Spread Spectrum 41

4.2.2 Phase Coding 42

4.3 Conclusion . 42

5 Future Work 43

5.1 Possible Enhancements 43

5.1.1 Fourier Transforms 44

5.1.2 Assembly Functions 45

5.1.3 Very Long Sound Files 46

5.1.4 Automatic Sound File Conversion 46

5.1.5 Temporary Files and GnuPlot 46

5.1.6 Better Temporary File Handling 46

5.1.7 Signal Generators 47

5.1.8 Spread Spectrum Sub-library 47

5.1.9 Filters .. . 47

5.2 Inherent Limitations 48

5.2.1 Real Time Capabilities 48

5.3 Future Research 48

5.3.1 I/O Stream Approach 48

5.3.2 Arbitrary Dimensions 49

5.3.3 Hardware Hooks 49

5.4 Conclusion .. . 49

6 Conclusion 50

A libDsp user's manual 52

B Spread Spectrum Codes 99

B .1 BitG en.cc 99

B.2 directsequence.cc 100

B .3 m ain.cc .. . 102

C libDsp source code

C.1 Files

C.2 libDsp/INSTALL

C.3 libDsp/NEWS

C.4 libDsp/README

C.5 libDsp/TODO

C.6 libDsp/install.sh

C.7 libDsp/configure.in

C.8 libDsp/configure

C.9 libDsp/Makefile.in

C.10 libDsp/doc/

C.11 libDsp/libsrc/Makefile.in

C.12 libDsp/libsrc/aifif/

C.13 libDsp/libsrc/objects/Makefile.in . . .

C.14 libDsp/libsrc/objects/CommandLine.cc

C.15 libDsp/libsrc/objects/FFT.cc

C.16 libDsp/libsrc/objects/FreqSlice.cc . . .

C.17 libDsp/libsrc/objects/GPlot.cc

C.18 libDsp/libsrc/objects/SigGen.cc

C.19 libDsp/libsrc/objects/Slice.cc

C.20 libDsp/libsrc/objects/UniqueName.cc

C.21 libDsp/libsrc/objects/FreqSignal.cc ..

C.22 libDsp/libsrc/objects/TimeSignal.cc .

C.23 libDsp/libsrc/objects/DSPtools.cc ...

C.24 libDsp/libsrc/objects/Filters.cc

C.25 libDsp/libsrc/objects/CArray.cc

C.26 libDsp/include/

C.27 libDsp/include/Makefile.in

C.28 libDsp/include/CommandLine.h

. 176

108

108

110

111

112

113

113

116

116

117

118

119

120

120

122

125

128

130

132

133

135

136

144

157

158

160

175

175

175

C.29 libDsp/include/Consts.h

C.30 libDsp/include/DSPtools.h ..

C.31 libDsp/include/Consts.h ...

C.32 libDsp/include/Dsp.h

C.33 libDsp/include/FFT.h

C.34 libDsp/include/Filters.h ...

C.35 libDsp/include/FreqSignal.h

C.36 libDsp/include/FreqSlice.h ..

C.37 libDsp/include/GPlot.h

C.38 libDsp/include/SigGen.h ...

C.39 libDsp/include/Slice.h

C.40 libDsp/include/TimeSignal.h .

C.41 libDsp/include/UniqueName.h

C.42 libDsp/include/CArray.h ...

C.43 libDsp/examples/

.... 177

.... 17 7

. 178

. 178

. 179

. 180

. 18 2

.. 183

.. 184

. 184

. 18 5

. 188

.. 188

... 193

List of Figures

3-1 Inheritance Diagram for libDsp 27

3-2 Sample TimeSignal of author saying "hello" 31

3-3 Sample FreqSignal of author saying "hello" 33

3-4 Sample FreqSlice of author saying "hello". Time is in internal units. . 35

Chapter 1

Introduction

1.1 Definition of Problem

A fairly common problem that appears in sound research is that a researcher spends

that majority of his' time trying to get data into some form for processing, and getting

it back from processing into a form for evaluation2 , rather than on constructing the

algorithms that do the processing.

I encountered this problem myself in doing research on internote transitions in

human singing. I was trying to find a way to anticipate the next note in a song. What

I spent the majority of my time on was getting sound data into a form I could look at.

I had to use approximately eight different programs and no less than three different

machines to attempt a simple pitch track.

What I needed, and what any researcher in this field needs, are tools that will allow

him to take a sample sound file on whatever machine he happens to be using, and to

very quickly obtain spectrograms, statistics, plots and other data on this sample. If

his job is to devise an algorithm to predict the above mentioned note transitions, the

majority of his work should be on the algorithm itself, and not on the mechanics of

sound file I/O. Additionally, the final product of such research (probably a program of

'Please note, that for simplicity, I will use masculine pronouns when I imply a neuter. This choice
is based on my own masculinity, and does not mean to imply that all sound researchers are male.

20ften by listening to it, or plotting it.

some sort) should be portable to any of a number of machines, without much additional

work.

The problem this thesis addresses, then, is to provide such a researcher with a set

of tools to facilitate computer investigations into the nature and perceptions of sound.

1.2 Current Art

Several tools now exist that are in common use for sound processing. Two fairly

typical examples of these are Matlab and CSound. Both allow for the manipulation

of sound files, and both provide a fair number of signal processing functions. How-

ever, both have shortcomings when one attempts to use them for the kind of sound

processing commonly done in sound research.

Matlab is a matrix and vector handling package that has a number of useful fea-

tures. It allows arrays to be treated as objects, and manipulated with common matrix

operators. It not only has a suite of built-in functions, but it is also extensible, al-

lowing the user to define his own functions. Built into the program are graphing and

file I/O functionality. This functionality makes it easy to read in a data set, and then

perform any of a number of operations on it.

However, Matlab is not without its problems. Many versions of Matlab suffer from

inherent memory limitations that prohibit the analysis of larger arrays 3 . Additionally,

as Matlab is an interpreted language, at least as far as user defined functions are

concerned, it suffers from very slow processing of loops, which are the heart of many

signal processing algorithms4 . Lastly, as Matlab (and most other packages like it)

are commercial packages 5 , there is a considerable financial cost associated with using

3Note that a 10 second sound sample taken at CD quality represents nearly a half million entry
array. This is too large for the version of Matlab which I tested. The problem gets even worse when
you are trying to analyze a five minute piece of music.

4While it is often possible to code a Matlab algorithm to use just vector operations, which Matlab
can do quickly, this can be quite difficult and requires a fair degree of skill. It also doesn't always
work.

5There does exist a package, Octave, which is free software and provides much of Matlabs func-
tionality. However, one area it is quite weakness is signal processing, as it provides only basic fourier
tranforms.

them, especially if one wants a copy of the program on each of several machines.

CSound overcomes many of these problems with Matlab-like programs as it is

designed specifically for sound processing. It does a nice job of separating the concept

of instrument from score, and expressing a sound, its spectrum and its spectrogram

as different objects.

However, its strength, and weakness lies in its initial design as a real time sound

synthesis system. It supports what might be viewed as a stream approach to sound

processing, which is very well suited to real time work. Unfortunately, real time

processing places a limit on the complexity of operations which may be performed,

and also enforces a certain degree of causality in the operations. Secondly, as CSound

is a non-extendable scripting language6 , its functionality is limited to what operations

are predefined.

1.3 Definition of Goal

While there are problems associated with existing packages, there are also a number

of strengths. A well designed system will try to exploit these, without introducing the

weaknesses described above. Such a set of tools should have:

* Completeness - It should be possible to do all sound manipulation in a single

environment, without having to resort to chains of programs to tailor the input

and output in specific ways.

* Uniformity - It should provide a set of tools that have a degree of uniformity

in how they function, to make learning how to use them easier.

* Extendability - Bearing in mind that any research field constantly expands,

it should be simple to expand the tool kit so that it does not become obsolete.

These extensions should behave as naturally as the original toolkit.

6 This is not strictly true. It is possible to write new "modules" in C and link them into the final
code. What I mean by non-extensible is that you cannot create new functions in the environment
those functions are used.

* Portability - It should be possible to use the same tool kit on any of a number

of machines, with the same "look and feel".

* Speed - As sound processing is computationally intensive, the tools to do it

should operate as quickly as practical, and allow easy access the underlying data

to allow for the writing of fast, special purpose tools.

* Abstraction - It should be easy to abstract to any level, allowing the unimpor-

tant underlying details to be ignored. Additionally, any new tools should also

be allowed to abstract for the same reason.

1.4 Overview

The second chapter will consider the design choices made in the writing of the library,

the third will briefly outline the implementation details of libDsp, the fourth will give

some examples of current programs that use libDsp, and the fifth will discuss new

directions and extensions that could be made to the library, and what limitations are

inherent to its design.

Chapter 2

Design Choices

An engineering project starts with a set of design objectives. These objectives alone,

however, rarely suggest a single solution to the project. This does not imply that all

the possible solutions suggested are equally good. Rather, engineering is the finding

of the best solution among all those possible.

The first step is limiting the possibilities by making design choices. If each of

these choices is made in an informed way, it is likely that when the design process is

complete, the solution arrived at will be acceptable.

This chapter addresses what choices were made in the course of this thesis project,

and why. While Chapter 3 will address the specifics of what was done, this chapter

might be best described as listing what was not done and why.

2.1 Environment

The first set of considerations to be addressed are those involved in defining the

environment in which the tool set will be implemented. These choices define what

over all "shape" the tool set will take.

2.1.1 Language vs. Library

In writing a set of tools, one can either start from scratch and write a whole new

language, or one can try to graft new features onto an existing language. From a

designer's standpoint, it is often attractive to start fresh. This allows the designer

to tailor the architecture of his language to the problem at hand, and almost always

results in a cleaner, easier to understand product.

CSound is an example of where this is used to good effect. The language is

structured so that there is a logical distinction between instruments and scores. Since

this mirrors real life, it allows musicians to continue working on the computer in ways

they are already used to.

Despite these advantages, I chose to implement my tools as a library, that is, as

an extension to an existing language. First, and foremost, I wanted to encourage the

use of the package. It is quite frustrating to have to rewrite all your programs to use

the new "latest and greatest" language. If implemented as a library, however, existing

code can continue being used, and useful tools and features can be slowly integrated

as needed1 .

Second, with every new language, there is a learning curve associated with using it.

A new language implies a new approach and a new way of thinking about problems.

While this is true even for a library, using an existing language offers a familiar syntax

and a correctly implemented library follows it as much as possible. For example, if a

= 1 + 1 is an assignment in the parent language, it helps if the extension allows two

objects to be added with result = object + object.

Third, it is quite time consuming to implement all the trivial features of any

language like +, -, x, and + as they apply to the base types (ie., integers, floating

point numbers, etc.). Using an existing language allows you to inherit these from the

parent language as appropriate.

Fourth is a matter of speed. For a language to quickly implement arbitrary algo-

'Not unlike the way C++ can compile most C programs. As a result, existing code can be
compiled with a C++ compiler, and the new features of the C++ language can be added to existing
programs as useful.

rithms, it almost certainly needs to provide an optimizing compiler. It is, however,

often prohibitively time consuming to write one from scratch. As I wanted my package

to be quite fast, and I didn't have the time to write an optimizing compiler myself,

I decided to use a library written in a common languages, for which there would

hopefully be a good compiler already developed.

2.1.2 What language to use

Given that I wante d to develop these tools as a library, the next question was

guage to implement the library in. The logical choice was C, as it is almost universally

portable, one of my design goals.

Another of my design goals, however, was to abstract my representations as much

as possible. For an example of what happens when you try to abstract too far in

C, see X windows 2. While it is possible to make such abstractions work, it is very

difficult to make them work elegantly.

It made sense then to consider languages that allow for a high degree of abstraction.

Scheme comes to mind, as do languages such as Smalltalk and Common Lisp. The

difficulty with all of these is that they are interpreted, and therefore are fairly slow

when compared to compiled C code3 .

Additionally, these languages are somewhat more esoteric and not as generally

available as C. The compromise, therefore, was to use C++. While it is not as well

distributed as C, it is becoming more and more prevalent, and though it does have

several inherent limitations, these can be overcome in most circumstances to provide

a workable environment which supports abstraction and inheritance.

2.1.3 Real Time vs. Static Processing

One big consideration was whether or not to structure libDsp to support real time

processing. Either choice has its pluses and minuses. On the plus side for real time

2Specifically the X Toolkit Intrinsics.
3However, compiled Scheme runs ay 40% the speed of comparable C. Still, the difference between

waiting 4 hours for a run and 8 hours is non-trivial.

processing is the advantage of being able to quickly get feedback on what a process

is doing, and also to use libDsp in a real time performance type environment.

This interactiveness is not without its price. First, when attempting to operate in

real time, one must make some difficult design choices for how to deal with situations

where the user has requested processing faster than the machine is capable. One

common solution to this problem is to throw away part of the input, so that the data

comes in slowly enough to deal with.

While this is a good solution in terms of the output sound being reasonable, it is

somewhat disconcerting to run an analysis on a sound file three times, and to get three

different results depending on how busy the machine is at the moment. As I intended

libDsp to be primarily an analysis tool, I felt that such variance was unacceptable.

Secondly, real time processing imposes a high degree of causality. You cannot

delay the output by as much as ' of a second, so you are limited in how far you can

"look ahead" in doing a calculation. This prohibits using any function that needs to

"see into the future" to process data. Examples of such functions include automatic

gain control, rescaling the volume of whole songs, and convolution of very large zero

phase delay filters. As I wanted to be able to do as much as possible with libDsp,

I felt the inability to perform these types of functions would impose an unacceptable

constraint.

2.2 Completeness

Completeness, in a library, means that you should be able to use the library to do

any of the common tasks that it was designed for. It is frustrating to start using a

tool, and to find out it doesn't do everything you need. I felt that it was important

to provide features that might be useful unless there was a compelling reason not to.

When a feature might be useful, but implementing it wasn't practical due to time

constraints, I tried to provide for it. For specifics of what expansions are planned, see

Chapter 5.

2.2.1 Input and Output Capabilities

Provide Sound I/O functions

It is tempting to provide functions that allow the library to read in and play out its

own sounds. However, there is the problem of accessing the sound hardware. It turns

out there are almost as many different ways to access a sound port on a computer as

there are brands of computers. No clear standard exists for how to do this4 and as a

result, new code must be written for every machine that libDsp would run on.

On the operating system level, different operating systems, and even different re-

leases of the same operating system provide different ways of accessing the sound

functions'. Thus, for a package to be truly portable, a way of accessing the sound

port on all major and many minor platforms must be provided. This can become a

real problem when you upgrade the package and don't have a system of every type to

test your code on. You are forced to rely on other beta testers to find bugs, maintain

your code, etc.

On top of this, many systems6 provide an excellent GUI7 interface to sound utilities.

It is doubtful that any program could provide a general interface that even approaches

the ease of use of the one provided by the manufacturer.

I therefore decided to work on sound files acquired from other programs, and

played by other programs. If a standard for hardware access emerges, it might be

worthwhile to include this ability at a later time.

File formats to support

There are quite a few file formats currently being used for sound files. Some of the

more popular ones are AIFF, Wave, an p-Laws . It would be nice to support these

and as many other file formats as possible. I have picked the libDsp native sound

4Although the X Windows like Audiofile package may change this.
5In fact, to make matters even worse, some operating systems have one or more optional "sound

modules" that can be installed or left out at the installer's discretion.
6The NeXT and Silicon Graphics Indigo come to mind.
7Graphical User Interface.
8Popular under Macs, Windows and Sun/NeXT respectively

file format to be AIFF as it provides all the information needed to generate the other

sound formats using translators .

Further sound file support, while a definite design objective, is deemed not as

important as some others and thus is discussed in Subsection 5.1.4.

Provide plotting functions

Matlab's plotting functions enhance its utility considerably, and I consider the presence

of a plotting function to be essential to the usefulness of a sound analysis package.

I also wanted the package be fairly portable this precluded using even so universal

a standard as X windows as it is not available on many personal computers. The

answer I found was to use an external program, GnuPlot, to do the actual plotting,

but to hide the specifics of this in the library.

GnuPlot provides plotting in a wide variety of environments 10 . This has allowed

libDsp to display in a wide variety of environments with minimum additional devel-

opment, by just opening a pipe to GnuPlot and letting it do the actual plotting.

Coincidentally, I found after I had implemented this that several major packages

use this technique (plotting with GnuPlot) including Calc, Octave and Oleo (all Gnu

packages).

2.3 Uniformity

One of my design objectives was uniformity. A uniform approach to designing a

toolkit means that if a user learns the syntax for one function, and he already knows

the syntax for all related functions. In practice, this is implemented by choosing

library naming and calling conventions and sticking to them:

9Sox, the excellent sound translation package is one example. Serious thought has been given
to incorporating the sox library into libDsp and it might become a feature at some later date (see
Chapter 5 for a more complete discussion).

10The version I have supports plotting to over 50 different devices.

* There are only four major data types defined in libDsp. These all follow the

convention of studifying" the names and all inherit from a common ancestor

(CArray). This means that all methods common to all objects share a common

interface.

* Most functions start with the prefix DSP. eg. the FFT function is DSPFFT. This

is to avoid possible name crashes with existing functions. Most functions start

with an uppercase letter and are studified.

* All functions of one type, ie. filters, signal generators, etc. use the same argu-

ment format.

If new additions to the toolkit follow these conventions and inherit from exist-

ing functions and objects whenever feasible, they should merge seamlessly with the

existing code, and should be quite easy for a user to learn.

2.4 Extendibility and Abstraction

Extendibility is sort of the counterpart to completeness, as it is an admittion that

any finite toolkit cannot provide all the functionality that a person might need. All is

not lost however, if the toolkit is designed to allow users to add their own functions

gracefully.

2.4.1 Inheritance

C++ allows objects to inherit from one another. This means that if a new object

is just a special case of an existing object, none of the common code needs to be

rewritten. An example of this is the Stereo object, which I did not implement in

my library. Instead, it could be implemented as two Mono objects (TimeSignals)

with a left/right selector. This simple implementation requires about 20 lines of code.

"Studifying - Capitalizing each word in a compound word. eg. FreqSignal. This notation comes
from X windows.

Contrast this with TimeSignal (and CArray which it inherits from) with a current

total of 1907 lines. The savings in coding and debugging time is apparent.

Additionally, inheritance enforces the use of similar formats for doing similar

things. All signals have a size method which returns how big they are. Anything

that inherits from them gets a size method from its parent, unless it provides its own.

Again, this helps with uniformity.

Taken together, these two points allow new features to be added to a library with

minimal work, encouraging people to extend the library as needed for their own work.

2.4.2 Abstraction

In the above section, I gave the example of how a Stereo object could be easily

written. But perhaps more important than this is that the resulting object can be

used as if it were a primitive defined in the library. In other words, the user doesn't

have to think about how a Stereo object works, they just use it. This abstraction is

one of the tools that keeps a big library from becoming overwhelming to a user.

Additionally abstraction provides another bonus. One feature I would like to add

to libDsp at a later date is the ability to deal with very long signals. Currently,

TimeSignal is called with the method readAiff. It then loads an entire signal into

memory and returns. Clearly, this could be problematic with very long signals (several

minutes) as you could run out of memory. The fix to this would be implemented by

having TimeSignal only read in the portion of an array from a file that it was working

on at the time. This would require a fairly major change in the way that the method

readAiff works, as it would now have to look at the file size12 , decide whether or not

to load it all in, etc. But note, it would not change the way readAiff was used. In

fact, most users wouldn't even notice. This is because the change went on below the

abstraction barrier. This ability to make improvements to a library without the user

having to learn new ways to use them is key to creating a library that can grow over

time.

12Which is quite easy to do as this information is included in the AIFF file header

2.5 Portability

One fairly major design goal I wanted to meet was that of portability. I wanted

libDsp to run on a wide variety of systems, even though this required some sacrifice

in functionality as detailed elsewhere.

2.5.1 Autoconfigure vs. System specific changes

There are three fairly typical ways of allowing a package to run on a large suite of

systems. The first is to make the code so general that there are no system-dependent

variations. While this is sometimes possible, it can be quite difficult because different

machines provide for different functionality, even with such "standards" as the math

library.

The second option is to code with #ifdefs all over your code to include or not

include sections as appropriate to a specific machine. While allowing for a high degree

of granularity in one's code, this requires a fair amount of work to write, and also

access to all targeted systems for testing.

The last method, and the one I chose, was to use the package Autoconfigure from

Gnu. It examines the system being installed on, and makes the changes appropriate to

the code for that system. This means an install may take somewhat longer, but many

more target machines are supported as a result (in fact, almost all Un*x machines

are supported).

2.5.2 Imported Code

In constructing any software package, a designer realizes that some of the work that

needs to be done in the package has already been done by others. It can be quite

seductive to use code that someone else has written in your own package, often ap-

pearing to need just minor modifications before you can use it. I feel this approach

can be highly problematic, and I will explain why I have avoided using imported code

to a large degree, even when it might have been useful.

The first reason is that while someone else's code might be close to what you

need, it often needs "small" modifications. Before you can make these modifications,

however, you have to understand the code the other person has written. This can

often take longer than simply writing the code again from scratch yourself. Many the

"obvious" assumptions the person made in writing this code turn out to be the reverse

of what you assume. If you are lucky, you can give up on porting their code before

you have invested too much time in it.

Second, assuming that the code is well documented, clearly written, and exactly

what you need, the chances are the person who maintains it is quite proud of it. So

proud, in fact, that he expects a small monetary donation for using it. This can

become a problem when using each copy of your library requires several dozen small

donations. Additionally, there are considerable legal hassles concerned with what you

can do with someone else's code (ie., make money off it, choose not to make money

off it, etc.).

Next, let's assume that the code you want to use is written by a life member of

the Free Software Foundation, and you don't mind your code being copy lefted also.

There is still the problem of revisions. That code that worked into your programs so

well when it was in Revision 1.43 might break in Revision 1.44. When this happens,

you have to choose between making extensive revisions in your own code, or not

improving that part of the package when the original author does.

If it sounds as if some problems have been encountered in using others code in

the past, this is true. However, by following a few guidelines, it is possible to include

other's code without losing portability, which is the main concern of this section.

First, the code should be free to use and hopefully free of any restrictions on use

you are unwilling to live with. Second, the code should already be portable to all the

systems you want your package to target. Third, the software should be somewhat

self contained. Perhaps it is best if it is a separate program all together, accessed

through a pipe. Second choice would be a library which is already set up to exist as

a separate unit.

Three specific examples of code that is imported into libDsp are as follows. First,

GnuPlot is used as an auxiliary program, with a pipe as an interface. Second are the

AIFF routines used for reading and writing. While they required a small amount of

rewriting to cast them as a library, and difficulties were encountered when the original

code underwent revision, they proved to be a real time saver as I didn't have to learn

the internals of AIFF files to use them.

Last was the Complex data type from libg++. Because this was used, it has been

impossible to port libDsp to run on DEC Alphas. It is likely that this object will

have to be completely rewritten for such a port to be possible, as gcc (and hence, g++

and libg++) has not been ported to the Alpha.

2.5.3 C++

One of my reasons for choosing C++ as a development language was its portability. By

avoiding use of the more advanced features of the language (templates and exception

handling, for example) it is possible to use the library on most any system. For those

without native C++ compilers, there are programs that can translate C++ to C, and

almost all machines have a native C compiler.

2.6 Speed

Signal processing is in general a computationally intensive task. It was therefore

important to make design decisions that allow the package to be as fast as possible.

2.6.1 Simple access routines

It is fairly common to provide a "copy" type access routine to data stored in an

object. This protects the user against accidentally altering data that they shouldn't

be altering. Unfortunately, this almost doubles the amount of time it takes to access

data.

Another common practice is to do bounds checking on array lookups. While this

can save some time on debugging, the additional compare calls for every access to the

data can again more than double run times. With this in mind, I decided that the

speed advantage of simple access routines far outweighed the error checking of a more

complex scheme.

2.6.2 Assembly language type functions

There are some serious trade offs to be made between code readability and speed.

These trade offs come are a result of the compiler not knowing the exact storage size

of an object.

Specifically, when an existing object's value is set through a call like objectl =

object2 + object3, there is an additional, unnecessary copy performed (object2 +

object3 yields an object which is then copied into objectl). Normally this is not

much of a problem, but in the case of large arrays, it can nearly double the run time of

a program. It is therefore rather common to provide "assembly like" functions so that

the above would be expressed as add(objectl, object2, object3). As the result

of the add can be written directly into the target, this prevents the extra copy.

2.6.3 Inline functions

Judicious use has been made of inlining. Inlining is a hint to the compiler to expand

the designated function as a macro rather than a formal function call. This results in

somewhat larger executables, but hopefully also in faster code.

2.7 Conclusion

While there were obviously many other design choices that had to be made, I feel that

these are some of the major ones. The rest will become apparent in the next chapter

on Implementation, and in Appendix A, the libDsp user's manual.

Chapter 3

Implementation

libDsp is implemented as a C++ library. As such it provides classes and functions

that operate on those classes. These work together to allow a user to quickly implement

arbitrary signal processing algorithms.

While the library is implemented in C++, I won't spend that much time explaining

the specifics of this language, but instead refer the curious to Dewhurst's book[3] which

provides a good introduction.

I will now outline some terminology of object oriented programming (OOP) that

is relevant to the discussion in the rest of this chapter. Object oriented programming

is based on items called, not surprisingly, objects. An example of an object in the

real world is a shoe, a tree or a pen. An example of things that might be objects in

programming are numbers, arrays, databases and strings.

Objects can exist by themselves, can be made up of other objects, or they might

be a special case of another object. For example, a dog has a tail, and has four legs,

and a poodle is a special case of a dog. The two types of inheritance in C++ are just

those, has-a and is-a, and they are used pretty much as they sound. You has-a wallet

and you is-a human.

The reason to even bother with this becomes apparent when you consider de-

scribing something. By saying Bob is-a human, you are stating that he has all the

characteristics common to humans. If these are defined somewhere else, you need not

define them again when talking about Bob. Likewise, if everyone knows what a wallet

is, it is sufficient to just say that Bob has-a wallet.

Lastly, a type of an object is its class. Fido is an object of the class dog. Objects

can do things, and these things are called methods. For example, a dog might have a

method bark. All objects have a constructor method, which is run when the object

comes into being, and a destructor method which is run when an object ceases to

exist.

3.1 Data Types

A library has to operate on something, and those somethings are data types. libDsp

provides four main types of objects, or classes, including the base class CArray, and

the three working classes TimeSignal, FreqSignal and FreqSlice.

i has-a

Figure 3-1: Inheritance Diagram for libDsp

3.1.1 CArray

libDsp defines three classes for general use, and one base class which these others

inherit from. This base type is an array of complex numbers known as a CArray.

Signals in a non-real time signal processing system are often stored as arrays. I

have chosen to implement my basic storage type as an array of complex, floating point

numbers. Initially, this choice of using complex numbers may seem to be a bit wasteful

of space, as all real signals are, by their nature, real. However, much signal processing

is done in the frequency domain where a complex number is a more natural choice.

The choice of using floating point numbers as the base type rather than integers

was due largely to discussions with Dan Ellis on the speed of arithmetic in a FPU1

compared to integer arithmetic. The speed of integer arithmetic is usually the clock

speed of the processor chip. This speed is hovering around the 100 MHz mark, but

there doesn't seem to be much indication that it will go up by more than a factor

of three or four in the near future. FPUs, on the other hand are special purpose

processors that are continuing to get faster under pressure of such applications like

CAD, simulation and signal processing.

For sound in particular, floating point numbers deal nicely with many of the prob-

lems associated with the huge dynamic range of perceived sounds caused by the ear's

logarithmic approach to volume discrimination.

Thus the CArray data type, an array of complex floating point numbers. Internally,

it is nothing more than a pointer to an array of type Complex and a count of the

elements in the array. This results in an extremely light weight data object as the

overhead of an additional long storage space is negligible compared to the array of

complex data by itself.

What CArray does provide, however, is a large number of ways to access and

manipulate the data stored in it.

Constructors

Three constructors are provided, allowing for construction with default size, by defin-

ing the number of elements in the CArray, by giving CArray control of an existing

array of Complex numbers, or by a "fast pass" through a structure. This last method

1Floating Point Unit: A co-proccesor that handles floating point computation.

is used internally for passing without a copy between procedures and is not really

intended for users.

Destructor

CArray has a destructor that frees any heap memory allocated for the array. The

destructor, like all the following methods, is virtual, so any classes that inherit from

CArray will also automatically call the memory freeing routine on exit. I will not

mention destructors for any of the classes that inherit from CArray as they are provided

by the base class to each member class logically unchanged.

Element Access

Array access is done through a simple inline [] function. Array indexing starts from

0, as this is the C standard. No error checking is provided at this stage for reasons

discussed in Sub Section 2.6.1. All types that currently inherit this access operator

from CArray use similar functionality.

Size related function

A method size is provided to allow for queries as to the number of array elements.

Two methods for changing size are provided, resize and stretch which change the

size of the array and don't copy or do copy as much data as possible, respectively.

slice returns a copy of a portion of a CArray, for example, an array made up of all

the elements between 10 and 100 in the original array. Last, the giveaway method is

used internally in the constructor for the "fast pass".

Plotting

CArray provides the interface to the GnuPlot plotting through the method plot. This

method provides for such sundries as title, axis labels and a number of alignment

variables describing how to label and center the data (i.e., spectrums tend to look

better if centered at zero and going off to +r, though it is more convenient to work

with them going from 0 to 27r). It is expected that these parameters and the axis

labels will be filled in as appropriate by the objects that inherit from CArray.

Magnitude and Phase

Two methods, MagnitudeArray and AngleArray each take a double array and fill it

in with the magnitude or phase of the equivalent complex cell. I have found this to

be useful in a number of signal processing applications where one treats a spectrum

as an object. It is also useful to pull the magnitude out of a signal if this is needed.

It would be convenient to have these methods write out to a generic array type,

and they may do so at some later date, but I have yet to find an array type that I

like. Additionally, any template driven array type would violate some of the portability

arguments given in Chapter 2, though this should change in a year or two as templates

become more standard to C++.

Arithmetic

All the built-in arithmetic operators are supported on an element by element basis

between CArray and int, float, double, and Complex. Additionally, a method Maxabs

which returns the maximum magnitude in the array is supplied to allow for normal-

ization.

3.1.2 TimeSignal

A TimeSignal is the basic representation of a sound. It is-a CArray so its storage

is that of a CArray with an additional variable to hold sampling rate. As such it

represents a mono signal, for example, a sample from an external sound track, or the

left channel of a CD (see Figure 3-2).

Throughout the TimeSignal class, ints and longs are used to represent a number

of samples, and doubles a length of time. Many functions are overloaded2 to allow the

2Overloading is the using of the same function name for more than one (hopefully related) func-
tions. For example, + is overloaded, as it represents one function that knows how to add ints, another
that knows how to add floats, etc.

hello.aiff
0.8

0.6

0.4

0.2

0

E
< -0.2

-0.4

-0.6

-0.8

.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

Figure 3-2: Sample TimeSignal of author saying "hello"

0.9 1

^^

use of either in describing the size of a signal.

I use the terms "Time Base" and "Sampling Rate" interchangeably to indicate the

number of samples per second in a sound.

Constructors

A selection of six different constructors is provided by TimeSignal. These include a

default, the setting of just the size (and accepting a sampling rate of one sample per

second), setting by sampling rate and number of samples, sampling rate and duration

(in seconds) of signal, as well as all the constructors from a CArray, with a preceding

sampling rate.

Miscellaneous

Provided are methods to set and query the sampling rate and to query the duration.

Methods are given to normalize the whole signal, to return a 16-bit quantized version

of the data, and to return the largest and smallest samples. Additionally, all the

methods from CArray are available, as a TimeSignal is-a CArray.

File I/O

A TimeSignal can read and write AIFF files, and can write an ascii dump of itself.

I have not yet integrated the sox library (as discussed in Subsection 2.2.1) to allow

for reading and writing of arbitrary sound files, but there is no reason it couldn't be

done, and I will discuss this further in Sub Section 5.1.4.

Delay

This pair of methods (a number of samples and number of seconds versions) returns

a TimeSignal delayed by an arbitrary amount (it can be negative). The returned

signal is the same length and temporal position as the original, and data that falls off

the ends is lost.

Arithmetic

All the arithmetic operations from CArray are provided.

3.1.3 FreqSignal

A Frequency Signal, or spectrum, is the frequency space duel of a TimeSignal(see

Figure 3-3). It maintains a variable from which the number of hertz the spectrum

spans can be recovered. While, strictly speaking, assigning anything but a 0 to 27r

interpretation to locations on a discrete frequency spectrum is incorrect, it is a useful

illusion to preserve, as most users are interested in the corresponding real world

meaning of the signal they are looking at, and realize it is only correct in the context

of the signal they are working on at that time.

60

40

20

-20

-40

-60

-An

hello.aiff

-40(-3000 -2000 -1000 0
Frequency (Hz)

1000 2000 3000 4000

Figure 3-3: Sample FreqSignal of author saying "hello"

real -
imag -----I I

I I

i i) iy
SI I I I I I

I-

-

-

I-

-

-

00
I

Constructors

As most FreqSignals are created by DFTs, I have provided very few constructors,

the same as those provided to CArray, all an option of providing a spectrum width.

Miscellaneous

Provided are methods for plotting, querying the center frequency of any bin, writing

an ascii dump of the data and doing all standard math on signals. In many respects,

a FreqSignal is just another way of looking at a CArray. As I don't expect much

I/O to be done on signals, and that most analysis will be case specific, FreqSignal

is a much smaller object than a TimeSignal.

3.1.4 FreqSlice

A Frequency Slice is my name for a spectrogram, as a spectrogram can be thought of

as the spectrum of slices of a TimeSignal(see Figure 3-4). It is created by a Slice

function from a TimeSignal. It is implemented as an array of FreqSignals with the

number of windows and delta time between windows stored.

As most operations on this type are lookups into the appropriate FreqSignal, no

real functionality is provided except a fairly complex plotting function that produces

nice spectrograms on the GnuPlot interface.

The only math provided is assignment, as no other types were deemed relevant.

Also provided is a method to query the center time of any window.

3.2 Functions

Objects in space are interesting, but they become much more useful when there are

functions defined to manipulate them. libDsp provides a number of such functions

to do operations such as signal generation, Fourier transformation, filtering and signal

transformation.

hello.aiff

data -

Magnitude
40 -
35
30
25
20
15
10
5
0

0

3500

ncy

SAi.0n7

Figure 3-4: Sample FreqSlice of author saying "hello". Time is in internal units.

3.2.1 Signal Generation

A variety of signal generators are provided to do sine, cosine, square and triangle

waves. There are obviously many more signal generators that could be useful including

chirp, white noise, and maximal length. Because signal generators are so easy to write,

and because they tend to be somewhat application specific, I haven't put much time

into adding more, but rather expect users to define their own as appropriate to their

work using the provided ones as templates.

Many useful algorithms can be implemented as combinations of specialized func-

tion generators and filters.

3.2.2 Fourier Transforms

Fourier transforms are functions that take a signal in time and return that signals

spectrum, or vice versa. Fast Fourier Transforms, Discrete Fourier Transforms and

their inverses are all provided in libDsp. There is a central dispatch routine that take

a log 2 to determine which transform to use. In the future, I hope to provide for better

FFT algorithms to handle non-power of two cases, at which time the dispatch routine

will be adapted to pass more signals to the more efficient FFT and less to the DFT.

3.2.3 Filters

Both IIR3 and FIR4 filters are provided for with a filter kernel structure. Because

it is so easy to make good filters with windowing, I have provided Bartlett, Han-

ning and Hamming widow routines. An additional function is provided to convolve

TimeSignals. It is envisioned that users will just create a FreqSignal of their desired

filter response, convert it to a TimeSignal with an IFT, and window it with one of

the above functions to get most filters.

Additionally, two non linear filters, full and half wave rectifiers, are provided.

3Infinite Impulse Response.
4 Finite Impulse Response.

3.2.4 Transformation

Two functions, Slice and Unslice are provided to allow transformation between

TimeSignals and FreqSlices. These rather generic spectrogram generation routines

can be supplemented with specialized routines (eg. to take spectrum samples every

half second) as needed, using these routines as templates.

3.3 Utility Code

There is a fair amount of code in the library that was included to make doing other

things easier, though this code may have very little to do with signal processing. I

will quickly outline some of the major sub-libraries here.

3.3.1 CommandLine

This is an class for parsing and querying switch settings and flags on the command

line. It is used extensively in the examples, otherwise most of the example code would

be command line parsing.

3.3.2 GnuPlot

A FILE* type interface is provided to GnuPlot. This is encapsilated by CArray but

there is no reason it can't be used separately.

3.3.3 AIFF

The AIFF reading and writing routines were provided by Dan Ellis and converted to

a sub-library to handle all the sound file I/O. I have only used a small portion of the

possible functionality of his routines, though it is all available to libDsp users.

3.3.4 UniqueName

This is an class that provides a pseudo unique name when queried. It is used for

creating temporary files when plotting with GnuPlot.

3.3.5 Miscellaneous

Functions such as zero padding and the like were written when needed and thrown in

a generic toolbox sub-library. All of them are fairly special purpose.

3.4 Conclusion

This chapter has covered in broad overview the functionality of libDsp. The specifics

of how to use the library are better addressed by the user's manual in Appendix ??.

Chapter 4

Applications

libDsp is a library that can be best appreciated when seen in action. It allows many

simple sound manipulations to be done in correspondingly simple codes. This encour-

ages exploration and experimentation, as the cost of trying a new idea is minimal.

This kind of experimentation is exactly what libDsp was designed to encourage.

I will illustrate where libDsp can be useful by briefly showing a few of the appli-

cations were libDsp has already been applied. Many of these applications grew out

of ideas that I had wanted to try for a while, but had been daunted by the technical

hurdles to sound processing that I found existed on many systems'. With libDsp

around I was able to code most of them up in under an hour.

4.1 Example Programs

The libDsp package comes with a number of sample programs to demonstrate some

of the more basic uses of the library. I won't go into great detail here on each of them,

as they are covered in the User's Manual which can be found in Appendix A.

1The all time winner is the NeXT, where using the sound chip requires at times sending it Motorola
56001 micro-code.

4.1.1 Intro

Intro is a short 13 line program that plots a sine wave in a graphics display window,

then plots it's Fourier transform. It demonstrates the basics of what libDsp can do:

read in sound files, process them in some way, and display the results.

4.1.2 Echo

Echo is perhaps even a more minimal program that reads in a sound file, and writes

out a sound file created by taking the input sound and adding an echo. In all, this

takes 3 lines of working code: one to read in the sound file, one to add the sound to

delayed copies of itself, and one to write the result out. Again, since libDsp hides the

specifics of I/O, array mathematics and delays, the amount of code needed to realize

this is small.

4.1.3 AIFFdisplay

This program is a conversion of Intro to a command line driven display utility. It

takes a sound file and plots either it, it's Fourier spectrum or its spectrogram in either

a graphics window, or in a Postscript file for later printing. It is quite handy for a

first pass analysis of a sound file.

4.1.4 AIFFmath

This is a program to add, subtract, multiply or divide mono AIFF files. It is included

as a demonstration that without too much work, one could use a programs like Lex

and Yacc or Borne Shell to implement scripting languages similar to CSound, though

obviously ones that would not be as fast nor as capable of real time performance.

Rather, this allows for special purpose scripting languages to be quickly assembled as

needed.

In many respects it is a throw back to the kind of command line sound processing

utilities that were used before libDsp, and shows how the existing codes for these could

be replaced by very short libDsp programs, probably enhancing their performance

and definitely enhancing their portability and maintainability.

4.1.5 Voice Modification

This program was thrown together in 15 minutes after I had seen the movie "True

Lies" and wanted to reproduce a voice distortion technique that had been used (down

shifting the central frequency of the voice). The result is fun to play with, and at only

half a page of code it illustrates how quickly you can implement fairly complex ideas

using this library.

4.2 Data Hiding

libDsp was used in a body of research performed at the MIT Media Laboratory,

News in the Future group over the summer of 1994 under the direction of Walter

Bender. The research dealt with placing data of one form unobtrusively into the data

of another, for example, text in sound. While many mediums where explored, sound

received quite a bit of interest and this is where libDsp proved helpful.

As an aside, the work that was done on 2D image processing generated the be-

ginnings of a library that might be included in libDsp at some future date (see Sub

Section 5.3.2 for discussion).

4.2.1 Spread Spectrum

One of the first techniques pursued was that of Spread Spectrum signal encoding.

This is a body of techniques developed for allowing sound to be transmitted via radio

frequencies in a way that was uninterceptable and unjammable. It turned out to be

equally useful for putting a text data stream into a sound.

libDsp was used for the sound file I/O, the manipulation of the sound samples,

and the Fourier decoding of the result. Using the strategy mentioned in Sub Sec-

tion 3.2.1, the spread spectrum systems were implemented as a group of specialized

signal generators. The resulting TimeSignals could be manipulated with the generic

TimeSignal operators.

This worked quite well. The end result was fast enough to use for demonstrations

to sponsors, and the C++ development environment gave us the flexibility we needed

to "tweak" parameters to get the whole system working in a surprisingly short amount

of time.

The code for this work is included in Appendix B.

4.2.2 Phase Coding

Another Data Hiding technique developed was based on the fact that the ear is only

sensitive to relative phase, and not to absolute phase. This means that if you advance

the phase for each frequency through time at a given rate, it doesn't matter what fre-

quency you start at, the result will sound the same. Thus, you can encode information

in the starting frequencies.

This technique was originally developed under Matlab, but it was found that Mat-

lab could handle only about a 10 second sound sampled at 8kHz, so the method is

being recoded in libDsp and seems to be coming along well.

This dual of developing theories in a Matlab-like environment and testing them in a

libDsp environment seems very productive, and I will discuss this more in Chapter 6.

4.3 Conclusion

Though I have presented only a few examples, I hope that they illustrate the flexibility

and ease of using libDsp. I've found that more than anything, having a package that

takes care of the "grunge work" of signal processing has encouraged me to try more

and more new ideas, many of which haven't worked (and thus are not included here)

and a few that turned out to be quite interesting.

Chapter 5

Future Work

One of the design goals for libDsp was that it be as extensible as possible. A mea-

surement of how successful I was in meeting this goal can be seen in the many areas

that libDsp can be extended. I have divided my discussions of these possible exten-

sions into several sections. The first covers those enhancements which are already

provided for in the library. As such, implementing them involves only the coding

or recoding of certain routines. Next, I try to outline what the inherent limitations

of the libDsp design are, pointing out areas where small additions would involve a

tremendous amount of work, and would perhaps be better implemented as a separate

project rather than as an extention to this one. Third is a discussion of changes for

which a serious redesign of the library would be involved, but which would greatly

enhance its functionality.

5.1 Possible Enhancements

This section covers several areas: a variety of optimizations to the Fourier transform

procedure, the infix arithmetic functions, and the plotting functions; some extensions

for dealing with extremely large sound files and sound files of different formats; and

additions to the existing signal generator and filter codes. All of these would be fairly

straight forward to implement, and in many cases I have outlined one possible way to

do so.

5.1.1 Fourier Transforms

These routines are some of the most time consuming of any in the package. The

majority of the signal processing routines are O(n), the FFT 1 routines are O(n lgn)

and the DFTs2 are 0(n2)3 .

This becomes a considerable burden when a ten second telephone quality signal

has n = 80, 000. At this n, a FFT takes roughly 16 times as long as most other

processes, and a DFT takes 80,000 times as long.

Thus, since these routines are where most programs will spend the majority of

their time, it is worthwhile to try to optimize them.

Native Data Format FFT

Currently, libDsp makes use of the FFT routines found in Numerical Recipes in C.

These require a special format for the incoming data, and return the data in the same

format. Thus to use these routines, the TimeSignal must reformat the data before

sending it to the FFT, and reformat it again to put the result into a FreqSignal.

A speed increase might be realized if the entire FFT and IFFT4 functions were

recoded to make use of the raw CArray data format. This would eliminate a copy on

each end, and probably lead to a speed increase in the transform routines.

Before this is undertaken, however, some experimentation should be done as to

whether the Numerical Recipes data format or libDsp's is faster to access. I suspect

they should be nearly the same, but it might be that the cost of the two copies is

insignificant compared to the difference in computation time afforded by the more

optimal data format.

1Fast Fourier Transforms: A algorithm devised first by Gauss to quickly calculate transforms on
signals with a power of two sample length.

2Discrete Fourier Transform: An algorithm for performing Fourier transforms on arbitrarily long
signals

3This gives an idea of how much longer it takes for a routine to run with larger input. That is, if
you quadruple the length of the input, an O(n) routine runs four times as long, the O(nlgn) runs 8
times as long, and the O(n 2) runs 16 times as long.

4Inverse Fast Fourier Transform.

Faster FFT for non-power of two data

Some thought needs to be given to how to speed up non-power of two transforms. Two

possibilities present themselves at first glance. One would be to develop a variety of

different power butterflies and use them in stages. This is somewhat complicated,

though it has the potential for being the fastest algorithm. The downside to this

method is that a factoring of the signal size must be done, and either an automatic

butterfly constructor, or a large set of prime butterflies need to be included [ref OP

and Shf].

The second option is to pad the incoming data out to a power of two. This can

be quite a burden if the data is slightly larger than a power of two, (eg. 2049 samples

long), as it involves nearly doubling the size (the 2049 sample signal increases to 4096

samples, and the running time by 218% over an optimal butterfly).

Despite the time it would take to implement this, it would probably pay off as

either of these options would be preferable to the current scheme of taking a DFT. As

discussed above, the DFT is an O(n2) operation.

Unifying FFT/IFFT code

There may not be a good reason to use a separate transforming engine in the FFT and

IFFT functions. Since they are very similar, they could probably benefit by sharing a

central computational routine. The existence of such a unified structure would greatly

simplify the future optimizing and debugging of these functions.

5.1.2 Assembly Functions

As discussed in Sub Section 2.6.2, the infix math notation under C++ leads to an extra

temporary object being created and an extra copy from it being performed. While

infix notation is vastly preferable for writing code, once a code fragment is working,

hand optimizing it with some assembly language style routines would make sense.

Such an optimization typically leads to a 50% speed increase in the math for large

arrays. libDsp could include several two argument and variable argument assembly

functions.

5.1.3 Very Long Sound Files

Sometimes it is necessary to write a program that will operate on sound files larger

than the virtual memory of the machine you are on. In this case, implementing the

change discussed in Sub Section 2.4.2 would allow processing to occur on sound files

regardless of their length. As noted, such changes should be user transparent. The

result would be that existing codes would run identically, but they would also work

on longer sound files.

5.1.4 Automatic Sound File Conversion

Currently, libDsp only reads and writes AIFF files. I want to keep the I/O interface

the same to allow dealing with very long sound files5. However, libDsp could convert

from any input format to AIFF and back. To do this would require integrating a

sound file translation utility (probably Sox) into the package.

When asked to read a non-AIFF file, it would translate the file to a temporary file

(e.g., /tmp/libDsp8273) and read that. When done, it could just convert back. All

this would, of course, be made transparent to the user.

5.1.5 Temporary Files and GnuPlot

Currently, libDsp uses a temporary file for plotting through GnuPlot. However, this

is not necessary. It is possible to plot data directly through a pipe, and save disk

space and time. Implementing this would speed plotting considerably.

5.1.6 Better Temporary File Handling

Temporary file names need to be improved, checked for uniqueness, moved to the /tmp

directory and automatically deleted when the program terminates. None of these are

5see previous subsection. The AIFF routines include many functions to pull out datat from sound
files a section at a time.

currently done.

5.1.7 Signal Generators

Phase in signal generators

All the signal generators could benefit from having an arbitrary phase argument,

allowing the generator to not necessarily start at the beginning of a cycle.

Generic Signal Generator

A function which takes another function as an argument, and uses that function to

generate a signal would be a useful addition to the signal generating package. A calling

sequence like:

SignalGenerator a(sin,

SignalGenerator b(cos,

100,

100,

could be used to generate a sine or cosine wave at

900 phase offset.

10.0, PI/2);

10.0, PI/2);

100 Hertz for ten seconds with a

5.1.8 Spread Spectrum Sub-library

All the code developed for the spread spectrum research discussed in Sub Section 4.2.1

could be included as a sub-library. A number of such sub-libraries could be included

to perform some of the more esoteric functions of signal processing.

5.1.9 Filters

There are many good filter construction algorithms in the public domain. Two that

might be most useful would be Kaiser windows and the Parks McLauren filter design

algorithm.

5.2 Inherent Limitations

Every design has some inherent limitations. I have tried to minimize these on libDsp

by keeping the architecture as open and extensible as possible. However, there are

some limitations that can't be avoided.

5.2.1 Real Time Capabilities

libDsp is inherently not a real time system. The whole design concept treats sounds

as complete objects, and allows them to be manipulated without worrying whether

the whole object exists yet or not. Allowing libDsp to be implemented with real

time processing would require a basic change in the way the package is laid out. One

possible approach is discussed in Sub Section 5.3.1

5.3 Future Research

Section 5.1 covers those extensions to libDsp which involve nothing more than coding.

The following extentions might involve a fair amount of additional design work before

they become practical.

5.3.1 I/O Stream Approach

One possible technique for real time signal processing in a C++ environment is to use

I/O streams. Klee Diens at the Media Lab has supervised the development of a way

to hook multiple stream filters together. One might reimplement much of libDsp as

stream filter functions, and allow the filters to pull in from an input port and write

out to an output one. If the internal filtering routines a fast enough, the result could

be used for real time processing.

5.3.2 Arbitrary Dimensions

Currently, libDsp works only on one dimensional (ie. sound) signals. It would be

useful if the library were generalized to allow for the same approach to be used on

two dimensional (pictures) and three dimensional (movies/television) signals. Some

preliminary work on two dimensions has been done already as part of the research

into Data Hiding (see Section 4.2).

5.3.3 Hardware Hooks

There are several different types of DSP hardware installed in machines today, ranging

from the integrated DSP processor in the NeXT to the various plug in boards available

for the Intel PC market. The common denominator between all these is that they do

signal processing orders of magnitude faster than may be done in software.

The Image Extentions to X11R6 provide an interesting approach to this problem

in the world of images. The extention proscribes a family of functions, and provide

working software versions of all of them. On machines where hardware is available to

perform some of these tasks, those routines are recoded in the library as calls to the

appropriate hardware.

The result is that code can be written that will run on all machines. On those

machines that support hardware processing, the code simply runs faster.

5.4 Conclusion

libDsp is a very extensible design. As such, there are really no limits to what can

be added to it. Just a few suggestions have been mentioned of what might be imple-

mented. More ideas will have to come from users who use the library to do signal

processing in their everyday work.

Chapter 6

Conclusion

This thesis has demonstrated that it is possible to construct a signal processing library

that allows for quick and easy implementation of a wide range of signal processing

applications. These applications can be created on one system, and then used on a

wide variety of different systems, enhancing the portability of such applications.

Previously, there was a fairly large gap between developing an algorithm in a fast

prototyping language like Matlab, and developing specialized C code or hardware to

implement a useful version of it. Most algorithms run in Matlab are limited to process-

ing just a few seconds of sound. This is often insufficient for testing and debugging a

sample of useful length. The result is that often someone spends a tremendous amount

of time implementing an algorithm in hardware or specialized C code, only to find

that it had some problems that had to be worked out, in what now was a very costly

medium (specialty C code, or worse still hardware).

libDsp is not meant to replace either a Matlab like environment or fast hardware

or specialized C code, but rather to serve as an intermediate step between them where

bugs can be caught, and parameters optimized much more cheaply than they could be

before. libDsp also provides a natural stopping place for many algorithms that run

just fine at the speed libDsp runs; many times it is acceptable for an algorithm to run

in a few minutes, especially if you are doing experiments and not writing commercial

software.

I have found that the existance of such a generalized sound processing library has

encouraged my to try sound manipulation ideas with that I would probably not have

tried if each implementation taken several days to code. The code that is created can

be shared among many people without modification.

This suggests that perhaps a uniform signal processing library would be a valu-

able addition to the libraries distributed with computers today. The use of such a

standardized interface could do for sound what X windows did for graphics, with

the advantage that such a library could be assembled with modern object oriented

methods (as demonstrated in this thesis) to make it both powerful and easy to use.

Appendix A

libDsp user's manual

libDsp
A C++ Object Oriented DSP Library

Users Guide and Reference Manual
Edition 1.4.4 of this manual

for use with Version 2.0.0 of libDsp

Daniel F. Gruhl

Copyright @ 1994 Daniel F. Gruhl

This library was developed in fulfillment of the Master of Engineering Thesis Requirement for
Course VI at MIT. The work was done for Prof. Barry Vercoe of the MIT Media Lab. As part
of this work derives in part from the libg++ library, please see the libg++ library disclaimer for
distribution of this work.

Chapter 1: Introduction

1 Introduction

libDsp is a C++ object oriented implementation of a digital signal processing library. If you
understood the previous sentence, you are well on your way to using libDsp. If you didn't, you
probably need some more background in either computer programming or signal processing.

The remainder of this manual assumes you have at least passing knowledge of C and C++ (though
if you understand C and another Object Oriented language you shouldn't be in bad shape) and the
very basics of signal processing.

1.1 History - Or where did libDsp come from

Despite any evidence to the contrary, libDsp did not "just growed". It was developed to allow
for reasonably fast development of signal processing programs for music processing.

I developed it after spending a semester trying to do analysis of inter-note transitions in human
singing. I found that most of my time was spent trying to chase down people to find out how
their code worked, finding out what their code actually did, converting from one person's program
output to another person's program input and so on...

I decided it would be nice if all the code necessary for basic signal processing was available
in one place with a consistent interface that was easily extensible, reasonably fast and reasonably
complete. libDsp is a result of that effort.

1.2 Format - How this manual is laid out

I find that the best way to learn how to use a library is to jump right in and use it. As a result,
the first part of this manual is a series of example programs highlighting how to use the library.
Following that is a reference manual listing all the functions and what they do.

1.3 Contributions

libDsp will only continue to grow if people contribute to it. I am not an expert in signal
processing, nor in any of the esoteric arts of music processing. However, I am more than happy to

Chapter 1: Introduction

integrate functions you use in every day life into libDsp for others to use. If you wish to contribute,
please observe the following:

1. I need a detailed description of what your code does. In english. "See program comment
statements" won't fly.

2. I need to know who you are (name, address, e-mail). This is so I can get in contact with you
again if I need to.

3. You need to release the code into the public domain. For now, a statement to that effect is
sufficient. Later, I guess if I'm ever going to submit this to the FSF they want a written notice.
libDsp is free code, so NO PROPRIETARY CODE!!!

4. Send the code to <druidemit.edu>

5. Accept my thanks :)

1.3.1 Contributors

* The whole AIFF reading and writing routine package is
courtesy of Dan Ellis <dpweemedia.mit.edu>

Chapter 2: Examples

2 Examples

The best way to learn how to use libDsp is to play with it. To this end I will try to provide a
few examples of what libDsp is typically used for. All of the code in this section can be found in
the examples subdirectory.

2.1 intro

The first example is creating a signal, displaying it, taking a it's fourier transform and displaying
the transformed data.

// intro.cc
// An introduction to what libDsp can do

#include "Dsp.h"

maino({
// Open a plotting window
GPlot* g = GPopen();

// Define a signal to use
TimeSignal a = DSPSinSignal(100, 10.24, 10.0/10.24);

// Plot that data
a.gplot(g, "Sample Data");

// Wait for entry
cout << "Press Enter to continue...\n" << flush;
pause();

// Take the fourier transform and store
// it in a
FreqSignal b = DSPFFT(a);

// Plot the Fourier Transform
b.gplot(g, "Fourier Transform of Sample Data");

// Wait for enter
cout << "Press Enter to continue.. .\n" << flush;
pause();

// Be nice, close your gnuplot window
GPclose(g);

Chapter 2: Examples

2.2 Echo

#include <Dsp.h>

main(int argc, char** argv)
{

TimeSignal in, out;

in. readAiff ("sample. aiff");
out = in + in.delay(2.0) + in.delay(3.0);
out. writeAiff ("samplel. aiff") ;

'echo' is a quick little program that implements an echo. Because the delays are double's, the
mean "seconds" rather than "samples". Note, you can add the results of delay as if the were
normal time signals (the extra samples fall off the end, leaving the result the same length as the
original...).

2.3 AIFFmath

'AIFFmath' is a simple program that illustrates command line parsing, reading and writing AIFF
files, and some simple operations with TimeSignals.

Following is the code for the example. Following the code, I will discuss some of the features in
it.

/* FILE: /User/druid/src/c++/ALPHA-libDsp/libDsp/examples/AIFFmath.cc */
/* AUTHOR: Daniel F. Gruhl <druidemit.edu> */
/* DATE LAST MODIFIED: Mon Apr 18 19:28:07 EDT 1994 */
/* DESCRIPTION: Do simple math with CArray files */

#include <stdlib.h>
#include <iostream.h>
#include "Dsp.h"

// This is the message that AIFFmath will use if it needs
// to display help.

const char* helpmsg =
"Usage: %,s <math command> aiffl aiff2 aiff3\n"
" where <math command> is one of\n"

Chapter 2: Examples

" -a aiff3 = aiffl + aiff2 \n"
" -s aiff3 = aiffl - aiff2 \n"
" -m aiff3 = aiffl * aiff2 \n"
" -d aiff3 = aiffl / aiff2 \n\n"
" -h Generate this help.\n";

main(int argc, char** argv){

// Parse Command Line
CommandLine CL(argc, argv);
CL.helpset(help_msg);
CL.dieon.switch("h");
CL.die-if-switch-count_notbetween(l, 1);
CL.die-if switchnot.oneof(4, "a", "s", "m", "d");
CL.die-if-param_countnotbetween(3, 3);

// Allocate Storage
TimeSignal aiffl, aiff2, aiff3;

// Load in working files
aiffi.readAiff(CL.csParameter(O));
aiff2.readAiff(CL.csParameter(1));

// If the files are of different time bases (ie. sampling rates)
// we have a problem...
if (aiffl.time-base() != aiff2.time_base()){

cerr << "ERROR: Cannot do math on aiff sampled at different rates.\n";
exit(1);

}

// Resize Storage Area of smaller AIFF file
if (aiffl.size() > aiff2.size()) aiff2.stretch(aiffl.size());
else if (aiffl.size() < aiff2.size()) aiffl.stretch(aiff2.size());

// Do the math
if (CL.switch_set("a")) aiff3 = aiffi + aiff2;
else if (CL.switch-set("s")) aiff3 = aiffl - aiff2;
else if (CL.switch_set("m")) aiff3 = aiffl * aiff2;
else if (CL.switchset("d")) aiff3 = aiffl / aiff2;

// Write out the result
aiff3.writeAiff(CL.csParameter(2));

cout << "Successful Completion\n";
exit(0);

Chapter 2: Examples

Ok, starting at the top. We need #include <stdlib.h> to get the proper definition for exit.
#include <iostream.h> is for all the input and output we do, and #include "Dsp.h" is for all
the libDsp definitions.

The first actual code is the declaration of helpmsg. This message, cryptically enough, is the
one we will be displaying whenever we want to give the user help. The format for the string is
defined in the CommandLine object. Basically, there must be one '7,s' which will get filled with
the name of the command when it is run (from argv[O]) and the rest should be formatted the way
you want it to print under fprintf.

While a command line help is no replacement for a good man page (which is no replacement
for a good texinfo file...) it does provide a quick reminder of usage. You should include all the
switches, what they do and what all the parameters mean, along with a brief description of what
your program does.

Moving onwards, the program body starts. The main function needs to have the argc and argv
arguments in order to read in the command line.

CommandLine CL(argc, argv);

Next, the object CL of type CommandLine is declared. The declaration includes a pass of the
argument information from the command line, which cues CL to parse the command line.

CL.help_set (help-msg);

Next, a call is made to help-set to tell CL what to print when we need to print the user a help
message.

CL. dieon-switch("h");

This code checks if the user has typed a '-h' requesting help from the command line. If they
have, we print help and die.

CL.die_ifswitchcountnotbetween(1, 1);

We only want one switch. we wouldn't know what to do if we got more, so we should just die
if there is less than 1 switch, or greater than 1 switch set.

CL.dieif-switch-not-oneof(4, "a", "s", "m", "d");

Chapter 2: Examples

The only valid switches are a, s, m and d. If any other switch than these are set, we should
print the help and quit.

CL.die-if-param_countnotbetween(3, 3);

We need three and only three file names. The first two will be input files. The last will be the
output file. If we don't get this many token's, this is an error and we should die printing the help
message.

That takes care of the command line parsing. Next we allocate our TimeSignals and read two
of them in from AIFF files. If any trouble is encountered during these read ins, the internals of
readAiff will cause them to die issuing an error.

if (aiffl.time_base() != aiff2.timebase()){
cerr << "ERROR: Cannot do math on aiff sampled at different rates.\n";
exit (1);

Next we check to make sure the signals we read in where sampled at the same rate. If not, we
should stop.

// Resize Storage Area of smaller AIFF file
if (aiffl.size() > aiff2.size()) aiff2.stretch(aiffl.size());
else if (aiffl.size() < aiff2.size()) aiffl.stretch(aiff2.size());

Next we pad the smaller AIFF file with zeros so that they are now the same size.

// Do the math
if (CL.switch_set("a")) aiff3 = aiff 1 + aiff2;
else if (CL.switchset("s")) aiff3 = aiffl - aiff2;
else if (CL.switch_set("m")) aiff3 = aiffl * aiff2;
else if (CL.switch_set("d")) aiff3 = aiffl / aiff2;

Next we just do the math. If this looks a lot like regular C math, then I should be well on my
way to a thesis. That's the idea.

Lastly, we write the file out and send the user a useful message. That's all there is to it.

2.4 AIFFdisplay

Chapter 2: Examples

/* FILE: /User/druid/src/c++/ALPHA-libDsp/libDsp/examples/AIFFdisplay.cc */
/* AUTHOR: Daniel F. Gruhl <druidemit.edu> */
/* DATE LAST MODIFIED: Mon Apr 25 17:20:29 EDT 1994 */
/* DESCRIPTION: */

#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include "Dsp.h"

const char* help_msg =
"usage: %s -spec -<sip> <output.ps> filenamel.AIFF... \n"
I"\n "

" -spec means to output a spectrogram\n"
-s means display to screen\n"
-p means display to postscript\n"
-h display this help\n"

" \n "

" This program will display 16 bit AIFF files to either the screen or\n"
" into a postscript file for later plotting.\n";

typedef enum {POSTSCRIPT=1, SCREEN=0} plot-mode;
typedef enum {True=1, False=0} boolean;

#define SIZE 128

main(int argc, char** argv){
GPlot *g;
plotmode pm;
boolean sliceit;

// Parse the command line;
// The CommandLine object is fully documented in the
// Texinfo document for libDsp

// Loads and parses command line
CommandLine CL(argc, argv);

// Sets the help message that will be displayed if
// need to the one above.
CL.help_set(helpmsg);

// If -h has been set, give the user help
CL.die_on_switch("h");

// Make sure only one or two switches have been set.
CL.die-if-switchcount_notbetween(1,2);

Chapter 2: Examples

// Make sure they are switches I recognize
CL.dieifswitch_not-oneof(3, "p", "s", "spec");

If one f them is spec, flag
spectrogram
(CL.switch_set("spec"))
sliceit = True;

else
slice-it = False;

// Decide if we are displaying to t]
// postscript file
if (CL.switch-set("s")) {

pm = SCREEN;
g = GPopen();

} else {
pm = POSTSCRIPT;
g = GPfopen(CL.csParameter(O));

that we are to compute a

he screen or a

// Alocate working data space
TimeSignal indata;
FreqSlice inslice;
long j; double d;

// Loop... Note, if postscript, we are starting with the
// 2nd parameter, as the first was the ps filename
for (long i=pm; i<CL.howmany_params(); i++){

// Read in the AIFF file
indata.readAiff(CL.csParameter(i));

If we are making a spectrogram, cut the data up
and fourier transform it
(sliceit == True){
// This hack limits floating point
// overflows
d = Maxabs((CArray &) indata);
indata /= d;
inslice = Slice(indata, SIZE);
for (j=O; j<inslice.Windows(); j++)

inslice[j] /= d;
inslice.gplot(g, CL.csParameter(i));

else {
indata.gplot(g, CL.csParameter(i));

Chapter 2: Examples

If we are displaying to screen, pause after
printing each graph
(pm == SCREEN){
cout << "Press <ENTER>
pause();

// Close all
GPclose(g);

// And leave
exit(0);

files, kill all spawned processes

2.5 TimeStretch

#include <iostream.h>
#include <math.h>
#include "Dsp.h"
#include <String.h>

const char* help_msg
"usage: %s <stretch percentage> <infile> <outfile>\n"
" where strtch percentage is 1.3 for 130'/\n";

main(int argc, char** argv){
long WINDOWSIZE = 128;

// Parse Command Line
CommandLine CL(argc, argv);
CL.help_set(helpmsg);
CL.dieonswitch("h");
CL.die if switchcount_not_between(0, 1);
CL.dieifparamcountnotbetween(3, 3);

GPlot* g = GPopen();
double stretch = atof(CL.csParameter(0));
String infile = CL.Parameter(1);
String outfile = CL.Parameter(2);

to continue.\n" << flush;

Chapter 2: Examples

// LoadData
TimeSignal tin;
tin.readAiff(infile);

// Checkpoint
tin.gplot(g, "Data in");
cout << "Press enter to continue.\n" << flush;
pause();

FreqSlice fsin = Slice(tin, WINDOWSIZE);

fsin.gplot(g, "Spectrogram", 1);
cout << "Press enter to continue.\n" << flush;
pause();

long NewNumberOfWindows = (long) (stretch * (double) fsin.Windows());

FreqSlice fsout(NewNumber_Of Windows, fsin.WindowSize());

double *anglel, *angle2;
double *magl, *mag2;
double *currentang = new double[fsout.Windows()];

long ref, j;
double delta;
double ang, mag;

long sz = fsin[ref].size();
anglel = new double[sz];
angle2 = new double[sz];
magl = new double[sz];
mag2 = new double[sz];

for (long i=1; i<fsout.Windows()-1; i++){ // HACK!!!
ref = (long) ((double) i / stretch);
delta = (double) i / stretch - (double) ref;

anglel = fsin[ref].AngleArray(anglei);
angle2 = fsin[ref+1] .AngleArray(angle2);
magi = fsin[ref] .MagnitudeArray(magl);
mag2 = fsin[ref+1] .MagnitudeArray(mag2);

for (j=O; j<fsout.WindowSize(); j++){
ang = current-ang[j] += (angle2[j] - anglel[j]) * delta;
mag = (mag2[j] - magl[j]) * delta + magl[j];
fsout[i] [j] = polar(mag, ang);

}

Chapter 2: Examples

delete [] angle};
delete [] angle2;
delete [magl2;
delete [] mag2;

TimeSignal tout;
tout = UnSlice(fsout);

tout.gplot(g, "Data out");
cout << "Press enter to continue.\n" << flush;
pause();

tout.writeAiff (outfile);

GPclose(g);

Chapter 3: Classes

3 Classes

LibDsp is based on a number of Classes designed to aide in digital signal handling. Many of the
functions in these can be safely ignored by casual users of the library as they are used only by the
internals of the DSP toolkit.

The idea for placing the signals in a "Hierarchy" of Classes is lifted from Barry Vercoe's Csound
program. This technique allows the user a great deal of flexibility in how they deal with their data,
while still hiding as much of the implementation detail as possible.

3.1 CArray - Complex data type array

CArray Base Signal Processing Class
CArray is the base class for all other signals in the libDsp library. The complex array
data type provides the ability to perform vector operations such as addition, subtrac-
tion, element wise multiplication and division and cross products. The Complex data
type this class is based is the GNU g++ Complex data type. I have chosen not to use
the GNU AVec prototype for my vectors as I wanted the class to have more flexibility
than AVec provides. I have, however, borrowed several ideas from the AVec template.

A CArray can be created one of two ways. It can be initialized to have a number of
elements, or it can just be created as an empty array with the number of elements to
be set later with a resize command.

Example:

#include <Dsp.h>

main()
CArray a, b(10); //a is an empty array, b is an array of 10 elements

//empty arrays are actually implemented as arrays of
//1 element

A couple of warnings regarding CArray. First, the array has an automatic destructer.
This means that when the array goes out of scope, all information in it is destroyed.
Thus, if you have pointers to elements of a CArray, and the array goes out of scope,
these pointers will no longer be valid.

Chapter 3: Classes

Secondly, for those of you from Fortran land, CArray uses the standard C convention
of numbering arrays starting at 0. Thus and array of 10 elements goes from 0...9, not
1...10.

Next, briefly, here are the internal data types defined and used by a CArray:

CArrayGiveAway Passing Variable
This is an internal variable used for fast passing in CArray. It holds a
pointer to data, and size of data information. As just a pointer is passed,
rather than a whole array recopied, it is a fast way to pass data if you are
not again going to use the source.

Following are the various user functions provided by CArray.

void CArray::CArray (long items) Function
void CArray::CArray (long items, Complex* data) Function
void CArray::CArray (CArrayGiveAway& c) Function

These are all ways of initializing a CArray. The first provides just the size of the CArray
in items, the second provides the size and the data (which CArray then owns) and the
last is an internal passing mechanism to allow fast copying.

long CArray::size () Function
Returns the number of items in the current Complex Array.

Example:

#include <iostream.h>
#include <Dsp.h>

mainO(
CArray A(10);
cout << "The variable A has " << A.size() << " elements in it.\n"

<< flush;
}

long CArray::setsize (long newsize) Function
This is the internal resetting routine. It should not be called by users.

Chapter 3: Classes

void CArray::resize (long newsize) Function
Resize deletes the current array and creates a new array of the size requested for the
object. Note, all pointers, references, etc. are lost to the original array. If you want
the array data to stay the same, use stretch instead.

Example:

#include <Dsp.h>

main()
CArray a, b(10);

b [3] = 4;

a.resize(4);
b.resize(4);

// a is now an array of 4 elements
// b is now an array of 4 elements.
// 3 is NO LONGER set to (4, 0)!!!

void CArray::stretch (long newsize) Function
Stretch is sort of like resize, but it copies over as many elements as will fit into the new
array. Note, that new storage space is allocated for the new array, so pointers will no
longer be valid.

If stretch allocates new storage space, that space will be set to zero initially.

Example:

#include <Dsp.h>

main(){
CArray a, b(10), c;

b [3] = 2;
b [5] = 4;
c = b;

a.resize(4);
b.resize(4);

c.resize(12);

a is now an array of 4 elements
b is now an array of 4 elements.
element 3 is still set to (2, 0)
but element 5 is lost.
Just like b, but now there are two more
elements, both zero at the end of the
array.

element

Chapter 3: Classes

CArray CArray::slice (long first, long last) Function
Slice returns a CArray made up of the elements of a current CArray from element first
through and including element last.

Example:
#include <Dsp.h>

mainO {
CArray a(5), b;
a[01 = 2;
aE[i = 8;
a[2] = 4;
a[3] = 9;
a[4] = 3;
b = a.slice(2,4);
// b == {4, 9, 3}

void CArray::showme (long i) Function
An internal debugging routine. Prints the value of the array item at location i. Useful
in 'GDB' and other debuggers without full support for 'C++'.

CArrayGiveAway CArray::giveaway () Function
Passes the data from a CArray into a CArrayGiveAway. The CArray is no longer
usable and should be ignored or destroyed after this routine is called.

void CArray::gplot (GPlot* g, char* title, char* xlabel, char* Function
ylabel, double offset, double delta, double stepoff)

Gplot is the routine used for display of data from a CArray to the screen or a Postscript
file. g is a gplot window opened by GPfopen(). title is the title of the plot, xlabel
and ylabel are the labels applied to the corresponding axis, offset, delta and stepoff
control the value on the left side of the graph, the delta between each data point, and
the point in the data array to call index 0 (with wrap around). These are usually set
by the higher level calling object.

Chapter 3: Classes

CArray CArray::operator= (const CArray& rhs) Function
CArray CArray::operator= (const int& rhs) Function
CArray CArray::operator= (const float& rhs) Function
CArray CArray::operator= (const double& rhs) Function
CArray CArray::operator= (const Complex& rhs) Function

The equal operator performs in two very different ways. First, it can be used as a
regular vector equator, in which case it takes on the size and contents of whatever it
is supposed to equal. Secondly, it can be used to set an entire array to some constant
value. In this case the array size is unchanged. For CArray, all arithmetic operators
are defined for CArray and int, float, double and Complex data types.

Example:
#include <Dsp.h>

main(){
CArray a(2), b(2), c(4);

a[O] = 1;
a[1] = 2;

b = 3.4; // b[O] and b[l] get set to 3.4
c = a; // c is resized to two elements which are

// set the same as a

CArray CArray::operator+ (*) Function
CArray CArray::operator- (*) Function
CArray CArray::operator* (*) Function
CArray CArray::operator/ (*) Function
CArray CArray::operator+= () Function
CArray CArray::operator-+= (*) Function
CArray CArray::operator-= (*) Function
CArray CArray::operator/*= () Function

All the basic math types, +, -, * and / are supported on an element by element basis.
Additionally, +=, -, *= and /= are supported, again on an element by element basis.

The actual complex math is handled by the Complex data type, CArray simply provides
the machinery to the complex operations on a vector basis.

Example:

#include <iostream.h>
#include <Dsp.h>

Chapter 3: Classes

mainO {
CArray a(2), b, c, d, e, f;
Complex CNum(1,2);

a [0] = 1;
a[11] = 2;

b = a + 2;
c = 4.7 - b;
d *= a;
e = d / b;
f -= CNum;

cout << a << " " << b << " " << c << " " << d
<< " " << e << " " << f << "\n";

}

CArray CArray::operator<< () Function
This operator formats a CArray for somewhat reasonable printing. At the moment this
is a hack, and not a real iostream operator.

3.2 Time Signal

TimeSignal isa CArray. Signal processing class
A Time Signal is-a CArray with one additional variable associated with it, that being
the Sampling Rate which that data was taken at. This sampling rate is known as the
"time base" for the object.

Time Signals can be created somewhat differently from CArrays. Instead of specifying
the size of the array, (which you can still do), you may instead specify the duration of
the signal. Alternately, you can just specify the length of the signal in samples, and
accept a sampling rate of 1 sample per second.

Example:

#include <Dsp.h>

Chapter 3: Classes

main() {
long samples = 1;
double duration = 1.0;
TimeSignal a(100, duration), b(100, samples);

//a is a TimeSignal sampled
// at 100 Hz and of a duration
// one second (hence it has 100
// samples). b is a TimeSignal
// sampled at 100 Hz with only
// one sample.

All operations that could be done with CARRAYS are fully supported for TimeSignals,
with some additions:

double TimeSignal::time-base () Function
This just returns the current sampling rate of this time signal.

Example:

#include <iostream.h>
#include <Dsp.h>

main(){
TimeSignal a(100, 1.0);
cout << "a has a sampling rate of " << a.time-base() << " \n";

}

double TimeSignah::duration () Function
This just returns the current duration of this time signal.

Example:

#include <iostream.h>
#include <Dsp.h>

mainO({
TimeSignal a(100, 1.0);
cout << "a has a sampling duration of " << a.time-base() << " \n";

}

Chapter 3: Classes

void TimeSignal::dataout (char* filename) Function
This is the low level dump of a TimeSignal. The output file is ASCII write out in the
following format:

<time in seconds of this sample> <real part> <imaginary part>

The procedure is called with an argument of the filename to write the data into. This
routine is provided mainly for debugging purposes.

Example:

#include <iostream.h>
#include <Dsp.h>

main(){
TimeSignal a(100, 2);
a[01 = 5;
a[1] = 3;
a. dataout ("dataf ile. dat");

}

void TimeSignal::readaiff (char* filename) Function
Read AIFF loads a 16-bit AIFF file into a time signal. Only 16 bit AIFF file are
supported at this time.

Example:

#include <iostream.h>
#include <Dsp.h>

main(){
TimeSignal a;
a.readaiff("soundin.1"); // Read in an aiff file.

}

void TimeSignal::writeAiff (char* filename) Function
Write AIFF writes a 16-bit AIFF file from a time signal. Signal is scaled so the largest
magnitude in the signal corresponds to 32,000.

Example:

#include <stdio.h>
#include <iostream.h>
#include "Dsp.h"

Chapter 3: Classes

main(int argc, char** argv){
TimeSignal a;
a. readAiff (argv [1]);
a.writeAiff(argv [2);

}

// Read in an aiff file
// Write out an aiff file

TimeSignal TimeSignal::delay (long amount) Function
TimeSignal TimeSignal::delay (double amount) Function

Delay allows shifting of a TimeSignal. This shift can be defined in samples, or in
seconds. A positive delay results in a later signal. Zeros are shifted in and the data
shifted out is lost.

Example:
#include <Dsp.h>

main(){
TimeSignal t(2.0, 10), r, s;
t[5] = 1;

r = t.delay(1); // r[6] is now 1;
s = r.delay(-2.0); // s[5] is again 1

// (-2 seconds of shift)
}

3.3 Frequency Signal

FreqSignal isa CArray -- Signal processing class
A Frequency Signal is-a CArray with the addition of a variable to track the central
frequency in each "bin". While all internal calculations are done in 2pi radians for the
signal length, for convenience interfaces to the user present the represented frequency.

Frequency Signals are created exactly the same way as CArrays, by specifying the
length. All math valid for CArrays is also valid for frequencies.

Example:

#include <Dsp.h>

Chapter 3: Classes

main(){
FreqSignal a(10); // a is a frequency spectrum with 10 bins.

}

All operations that could be done with CARRAYS are fully supported for FreqSignals, with
some additions:

double FreqSignal::freq.perbin ()
This just returns the current delta frequency per bin in Hz.

Function

Example:

#include <iostream.h>
#include <Dsp.h>

mainO()
FreqSignal a(10);
cout << "a has a delta freq per bin of " << a.freq_perbin() << " \n";

double FreqSignal::frequency (long bin)
Returns the central frequency for the given bin.

Function

Example:

#include <iostream.h>
#include <Dsp.h>

main()
FreqSignal a(100);
cout << "a[l] has a central frequency of

}
" << a.frequency(1) << " \n";

Frequency Signal::data.out (char* filename) Function
This is the low level dump of a FreqSignal. The output file is ASCII write out in the
following format:

<frequency in radians> <real part> <imaginary part>

The procedure is called with an argument of the filename to write the data into. This
routine is provided mainly for debugging purposes.

Chapter 3: Classes

Example:

#include <iostream.h>
#include <Dsp.h>

main(){
FreqSignal a(2);
a [0] = 5;
a[1] = 3;
a. data-out ("dat af ile. dat");

}

3.4 Frequency Slice

FreqSlice has a FreqSignal. Signal Processing Class
The Frequency Slice data type is just an array of frequency signals. It is used to hold
a set of data for display. The format would typically be used to show a Time Signal's
spectrogram.

This sample program reads in an AIFF file, takes every 5th Window of 128 sample
points, takes their FFT, stores them in a FreqSignal, then plots that FreqSignal to a
Postscript file.

#include <stdio.h>
#include <iostream.h>
#include "Dsp.h"

#define SLICES 128
#define MULT 5

main(int argc, char** argv){
TimeSignal a, b(128);
GPlot* g;
char buffer[128];

g = GPfopen(argv[2]);
a.readAiff (argv [1]);

FreqSlice f(SLICES, 128);

Chapter 3: Classes

long j;
for (long i=0; i<SLICES; i++){

for (j=O; j < 128; j++)
blj] = a[i*128*MULT + j];

f i] = DSPFFT(b);
cout << i << "\n" << flush;

}

f.gplot(g, argv[1]);

GPclose(g);

cerr << "Done.. .\n" << flush;

void FreqSlice::FreqSlice (long Windows, long samples-per-window) Function
This is the initializer for the class. You set how many windows you need, and how
many samples in each window.

void FreqSlice::~FreqSlice () Function
This is the class distructor. It just calls the destructors of every FreqSignal in the data
array.

FreqSignal FreqSlice::operator (long Index) Function
Returns the Indexth FreqSignal of the FreqSlice.

void FreqSlice::set delta time (double dt) Function
Sets the internal delta t between the centers of each slice.

double FreqSlice::time-of_window (long window) Function
Returns the central time of the windowth window in the FreqSlice.

void FreqSlice::gplot (GPlot* g, char* plot'title, long every) Function
Plots the data stored in the FreqSlice. The graph has the title plot-title and is plotted
in the GnuPlot window g. I found that these plots can get very messy (and not very
informative) if you plot all the data of even a short signal. Thus, it plots every every
signal instead (set this to 1 to plot everything, if set to 3 for example, this will print
every third spectrum).

Chapter 4: Tool Box

4 Tool Box

The DSP toolbox provides some basic tools for manipulating the data types above. These are
a kind of catch all for routines that don't fall under a particular class.

4.1 Signal Generators

libDsp provides several basic signal generators. Please send me your favorites and I'll try to
include them in my next release. All signal generators share the following format:

TimeSignal SigGen(Sampling Rate, Duration(seconds), Frequency);

TimeSignal DSPSinWave (double sampling-rate, double Function
duration,

double frequency)

This Simply returns a sin wave of the duration and frequency requested.

Example:

#include <Dsp.h>
main()
TimeSignal a = DSPSinWave(1000, 5.5, 60);

// a is a sine wave sampled at 1000 hz, of duration
// 5.5 seconds and a frequency of 60 Hz

}

TimeSignal DSPCosWave (double sampling-rate, double Function
duration, double frequency)

This Simply returns a cosine wave of the duration and frequency requested.

Example:

#include <Dsp.h>
main() {

TimeSignal a = DSPCosWave(1000, 5.5, 60);
// a is a cosine wave sampled at 1000 hz, of duration
// 5.5 seconds and a frequency of 60 Hz

}

Chapter 4: Tool Box

TimeSignal DSPSquareWave (double sampling-rate, double
duration,

double frequency)

This Simply returns a square wave of the duration and frequency requested.

Example:

#include <Dsp.h>
mainO(

TimeSignal a = DSPSquareWave(1000, 5.5, 60);

TimeSignal DSPTriangleWave(double sampling-rate, double
duration, double frequency)

This Simply returns a triangle wave of the duration and frequency requested.

Example:

#include <Dsp.h>
main ()

TimeSignal a = DSPTriangleWave(1000, 5.5, 60);

4.2 Special Filters

libDsp provides some non linear filters that appear in signal processing.

Function

Function

TimeSignal HalfWaveRectifier (TimeSignal& t) Function
A Half Wave Rectifier (HWR) takes a time signal t, and returns another time signal
where any non positive portion of the signal is reset to zero. This simulates the behavior
of a shunt diode.

Example
#include <Dsp.h>

Chapter 4: Tool Box

main(){
TimeSignal t = DSPSinSignal(100, 5, 20);
TimeSignal t2 = HalfWaveRectifier(t2);
GPlot* g = GPopen();
t2.gplot(g);
pause();
GPclose(t2);

TimeSignal FullWaveRectifier (TimeSignal& t) Function
A Full Wave Rectifier (FWR) takes a time signal t, and returns another time signal
where the resulting signal is the absolute value of the original signal.

Example
#include <Dsp.h>

main(){
TimeSignal t = DSPSinSignal(100, 5, 20);
TimeSignal t2 = FullWaveRectifier(t2);
GPlot* g = GPopen();
t2.gplot(g);
pause();
GPclose(t2);

4.3 Fourier Transforms

Fourier transforms allow you to make a frequency representation of a time signal and vice versa

libDsp makes a distinction between FT's and IFT's. It also provides an intelligent interface to
these routines. Please note, by working in powers of two you get a much faster FT.

FreqSignal DSPFT (TimeSignal& t) Function
The Fourier Transform is a simple dispatching routine that decides if a sample is a
candidate for FFT, or rather it must avail to DFT. It is recommended that you use
this whenever possible. As the FFT routine becomes more capable, this routine will
begin to dispatch more signals to it.

Chapter 4: Tool Box

Example:
#include <iostream.h>
#include "Dsp.h"
main(){

TimeSignal swavel = DSPSinSignal(100, 5.12, 1/5.12*10.0);
FreqSignal specl = DSPFT(swavel);
swavel. dat a_out ("samp") ;
specl.data_out ("samp2");

}

FreqSignal DSPFFT (TimeSignal& t) Function
The Fast Fourier Transform is the fastest way to take a FT. However, it is limited to
performing only on signals of a length 2**n. When you can use it, though, it computes
several orders of magnitude faster than the DFT.

Normally, you don't have to use DSPFFT directly. If you just call DSPFT, that
function will dispatch to the appropriate fourier transform. However, if you know a
priori that the signal is the correct length, you can get slightly faster operation with a
direct call.

Example:
#include <iostream.h>
#include "Dsp.h"
main() {

TimeSignal swavel = DSPSinSignal(100, 5.12, 1/5.12*10.0);
FreqSignal specl = DSPFFT(swavel);
swavel. data-out("sampl");
specl.data_out ("samp2");

}

FreqSignal DSPDFT (TimeSignal& t) Function
The Discrete Fourier Transform is the slow way to take a FT. However, it is not
limited to performing only on signals of a length 2**n. Normally, you don't have to
use DSPDFT directly. If you just call DSPFT directly, that program will dispatch to
the appropriate fourier transform. However, if you know a priori that the signal is the
correct length, you can get slightly faster operation with a direct call.

Chapter 4: Tool Box

Example:
#include <iostream.h>
#include "Dsp.h"
main ()

TimeSignal swavel = DSPSinSignal(100, 5.11, 1/5.12*10.0);
FreqSignal specl = DSPDFT(swavel);
swavel.data_out("sampi");
speci.data_out ("samp2");

}

4.4 Inverse Fourier Transforms

Inverse Fourier transforms allow you to make a time representation of a frequency spectrum.

libDsp makes a distinction between FT's and IFT's. It also provides an intelligent interface to
these routines. Please note, by working in powers of two you get a much faster IFT.

TimeSignal DSPIFT (FreqSignal& f) Function
The Inverse Fourier Transform is a simple dispatching routine that decides if a sample
is a candidate for IFFT, or rather if it must avail to IDFT. It is recommended that you

use this whenever possible. As the IFFT routine becomes more capable, this routine
will begin to dispatch more signals to it.

When calling the DSPIFT, you must supply the sampling rate, as this information is
not intrinsic in the spectrum.

Example:
#include <iostream.h>
#include "Dsp.h"
main() {
TimeSignal swavel = DSPSinSignal(100, 5.12, 1/5.12*10.0);
FreqSignal specl = DSPFT(swavel);
TimeSignal swave2 = DSPIFT(specl, 100);
swavel.dataout ("sampi");
specl.dataout ("samp2");
swave2.dataout ("samp3");

}

Chapter 4: Tool Box

TimeSignal DSPIFFT (FreqSignal& f) Function
The Inverse Fast Fourier Transform is the fastest way to take a IFT. However, it is
limited to performing only on signals of a length 2**n. When you can use it, though,
it is several orders of magnitude faster than the IDFT.

Normally, you don't have to use DSPIFFT directly. If you just call DSPIFT directly,
that program will dispatch to the appropriate inverse fourier transform. However, if
you know a priori that the signal is the correct length, you can get faster operation
with a direct call.

Example:
#include <iostream.h>
#include "Dsp.h"
main(){

TimeSignal swavel = DSPSinSignal(100, 5.12, 1/5.12*10.0);
FreqSignal specl = DSPFFT(swavel);
TimeSignal swave2 = DSPIFFT(specl);
swavel. dat aout ("sampl");
specl.data-out ("samp2");
swave2 .data-out (" samp3");

}

TimeSignal DSPIDFT (FreqSignal& f) Function
The Inverse Discrete Fourier Transform is the slow way to take a IFT. However, it is
not limited to performing only on signals of a length 2**n. Normally, you don't have
to use DSPIDFT directly. If you just call DSPIFT directly, that program will dispatch
to the appropriate inverse fourier transform. However, if you know a priori that the
signal is the correct length, you can get faster operation with a direct call.

Example:
#include <iostream.h>
#include "Dsp.h"
main(){

TimeSignal swavel = DSPSinSignal(100, 5.11, 1/5.12*10.0);
FreqSignal specl = DSPDFT(swavel);
TimeSignal swave2 = DSPIDFT(specl);
swavel. data-out ("sampl") ;
specl.data.out ("samp2");
swave2 . data-out ("samp3");

}

Chapter 5: Gnu Plot

5 Gnu Plot

The standard output device used to display data is the very excellent GnuPlot program. To use
these functions, you must have gnuplot on your system and in your execution path. If this is the
case, all you have to do is open a gnuplot window (by using GPopen), then pass that valid window
to the object you want to plot. When you are done, remember to use GPclose to terminate the
gnuplot process.

Additionally, you have the option of opening a gnuplot window that prints to a PostScript file
instead of the screen.

An example of these plotting routines:

#include <Dsp.h>
#include <String.h>

int MyPlotTimeSignal(TimeSignal& t){
static GPlot* gl = GPopen(;
static GPlot* g2 = GPfopen("dump.ps");
String buffer;

t.gplot(gl);
cout << "Save this plot to the dump file?" << flush;
cin >> buffer;
if (buffer[Ol == 'y' 1I buffer[O] == 'Y')
t.gplot(g2);

return 1;

GPlot File Reference Pointer
A GPlot is used just like FILE, ie. normally you use a GPlot* to point to a gnuplot
window.

GPlot* GPopen () Function
Returns a new, open GnuPlot X11 window which can now be plotted in (technically,
the window doesn't open until plotting is actually done in it. What is happening is
that a pipe is opened to a gnuplot process. Gnuplot doesn't open a window until the
first time you plot in it.)

Chapter 5: Gnu Plot

GPlot* GPfopen (char* filename) Function
Returns a new, open GnuPlot window which will plot PostScript to the file names in
filename. Otherwise, this is identical to GPopen.

GPlot* GPclose (GPlot* gp) Function
Closes (and flushes) the plotting window opened by either GPopen or GPfopen.

char* GPUniqueName () Function
Returns a pointer to a string containing a pseudo unique file name for holding plotting
information. Used by internal GnuPlot functions to pass data. Note, the return value
is a pointer to a static piece of memory which is overwritten every call (i.e. strcpy the
name if you ever want to use it again).

void pause () Function
The pause command is provided to allow the program to, you guessed it, pause between
graphs. While it was developed for this purpose, it can pause the program at any time
it is convient. Pause is held until the return key is pressed, but no message to this
effect is printed by the pause program.

#include <iostream.h>
#include "Dsp.h"

mainO(
GPlot* g = GPopen();

// Plot the time signal
TimeSignal a = DSPSinSignal(100.0, 2.56, 10.0);
a.gplot(g, "Sample Data");
cout << "Press <enter> to continue\n" << fflush ;
pause();

// Plot its frequency representation
FreqSignal b = DSPFT(a);
b.gplot(g, "Fourier Transform of Sample Data");
cout << "Press <enter> to continue\n" << fflush
pause();

GPclose(g);
}

Chapter 6: CommandLine

6 CommandLine

While writing the examples code, I found that an awful lot of one's coding time was spent
parsing the command line. This, inevitably was also where all the bugs showed up, because it's
quickly hacked together.

CommandLine is an object that handles the parsing one might want to do on a command line.

Some quick nomenclature notes. A switch is something on a command line proceeded by a
single dash. A parameter is anything on the command line not proceeded by a dash. All switches
must appear before parameters (in fact, after the first parameter is scanned, everything else on the
command line is treated as a parameter.)

CommandLine Utility Class
CommandLine is a class for parsing and asking questions about a command line.

6.1 CommandLine Functions

void CommandLine::help-set (String help-message) Function
helpset sets the internal help message of CommandLine to be the string in help-
message. This string must be formatted as follows: it is being printed by fprintf so
all standard formatting conventions apply. Secondly, there MUST be one 'Is' in the
string. This will be replaced by the name of the program when help is printed.

Example:
char* help-msg = "USAGE: %s <infile> <outfile>\n";

int CommandLine::parse (int argc, char** argv) Function
parse is the parsing engine called by the base initializer. It takes the argc and argv
that are passed to main and figures out what switches and parameters have been set.

int CommandLine::switch.set (String s) Function
switch_set is a query as to whether or not a particular switch has been set on the
command line. Returns 1 if it has and 0 if it hasn't.

Chapter 6: CommandLine

long CommandLine::how.many-switches () Function
how-manyswitches returns the number of switches that were set on the command
line.

long CommandLine::how_.many.params () Function
how_many_params returns the number of parameters that were set on the command
line.

String CommandLine::Parameter (long which-one) Function
Parameter returns the which-oneth parameter from the command line. Note, param-
eter numbering starts at 0, ie. the first parameter is parameter number 0. Asking for
a parameter beyond the last one on the line or one less than 0 results in a fatal error
and terminates the program.

String CommandLine::Switch (long which'one) Function
Switch returns the whichoneth switch from the command line. Note, switch number-
ing starts at 0, ie. the first switch is switch number 0. Asking for a switch beyond
the last one on the line or one less than 0 results in a fatal error and terminates the
program.

char* CommandLine::csParameter (long which'one) Function
csParameter returns the whichoneth parameter from the command line. Note, pa-
rameter numbering starts at 0, ie. the first parameter is parameter number 0. Asking
for a parameter beyond the last one on the line or one less than 0 results in a fatal
error and terminates the program. The char * is a reference to a static buffer, which
of course will change each time the function is called (so use strcpy to save it if you
will need it again.)

char* CommandLine::csSwitch (long wvhich'one) Function
Switch returns the whichoneth switch from the command line. Note, switch number-
ing starts at 0, ie. the first switch is switch number 0. Asking for a switch beyond
the last one on the line or one less than 0 results in a fatal error and terminates the
program.The char * is a reference to a static buffer, which of course will change each
time the function is called (so use strcpy to save it if you will need it again.)

void CommandLine::die () Function
die terminates execution of the program and returns an error status of 1 to the calling
shell.

Chapter 6: CommandLine

void CommandLine::die-on.switch (String switch) Function
die onswitch prints the help message and terminates execution if switch was set on
the command line. Most commonly, you will place one of these in your code with the
switch '"h"' so that people may type 'foo -h' to get help.

void CommandLine::die.if-switch..notoneof (int how-many, ...) Function

dieif switchnot_oneof allows you to quickly scan the switches that were set, and
if any of them are not on the allowed list, to print the help message and die. how-many
is set to the number of valid switches in the list, and then the valid switches are listed
afterwards.

Example
CL.die-if-switchnot_one-of(4, "a", "s", "m", "d");

The above example will print help and halt the program if any switch beside a, s, m
or d was set.

void CommandLine:: dieifswitchcount _notbetween (long Function
low, long high)

dieifswitchnotbetween prints the help and halts the program if the number of
switches set is not between low and high inclusive.

void CommandLine::dieifparam.countnotbetween (long Function
low, long high)

die-if switch-not-between prints the help and halts the program if the number of
parameters set is not between low and high inclusive.

6.2 CommandLine Variables

The following are the variables internal to CommandLine. You can't touch them, but their
descriptions are provided here for the curious.

String CommandLine::command.name Variable
This variable gets the name of the command (from argv[O]). It's assigned when the
parse method runs.

Chapter 6: CommandLine

String* CommandLine::switches
This array holds the switches that have been set.

String* CommandLine::svalues
This array holds the values switches have been set to.

String* CommandLine::parameters
This array holds the parameters that have been set.

It is not yet used.

String CommandLine::help..msg Variable
help.msg holds the help message that get's displayed when CommandLine detects an
error and decides to die.

long CommandLine::s count
scount holds the number of switches that have been set.

long CommandLine::pcount
s-count holds the number of parameters that have been set.

Variable

Variable

Variable

Variable

Variable

Concept Index

Concept Index

C
Classes.................... 13

CommandLine 33
CommandLine functions 33

CommandLine variables 35

Contributions............... 1

Contributors 2

E
Examples........................ 3

Format 1

Fourier Transforms 27

Functions, CommandLine 33

G
Gnu Plot ..

H
History................. 1

I
Introduction............... 1

S
Special Filters 26

Tool Box 25

V
variables, CommandLinc 35

Function Index

Function Index

C
CArray::CArray

CArray::giveaway

CArray::gplot

CArray:: operator*

CArray::operator*=

CArray::operator-...........................

CArray:: operator-=

CArray::operator/

CArray::operator/=

CArray::operator=

CArray::operator+

CArray::operator+=.

CArray::operator=

CArray::operator<<

CArray::resize

CArray::setsize

CArray::showme

CArray::size

CArray::slice

CArray:: stretch

CommandLine:: csParameter

CommandLine::csSwitch

CommandLine::die

CommandLine: :die.if-param-countanotbetween ...
CommandLine::die-if-switch.count-not-between ..

CommandLine: :die-if-switch.not-one-of

CommandLine:: die-on-switch

CommandLine::help-set

CommandLine: : how.many-params

CommandLine: : how.many.switches

CommandLine:: Parameter

CommandLine: : parse
CommandLine::Switch

CommandLine::svitch-set

D
DSPCosWave.................................. 25

DSPDFT 28

DSPFFT

DSPFT.........
DSPIDFT

DSPIFFT.................................

DSPIFT
DSPSinWave

DSPSquareWave

DSPTriangleWave(double

FreqSignal::freq.per.bin....................

FreqSignal::frequency

FreqSlice:: FreqSlice

FreqSlice::FreqSlice

FreqSlice::gplot

FreqSlice::operator

FreqSlice: :set.deltatime

FreqSlice: :time-of.window

FullWaveRectifier

G
GPclose....................................

GPfopen................................

GPopen

GPUniqueName

H
HalfWaveRectifier

I
Inverse Fourier Transforms 29

P
pause.................. 32

S
Signal Generators 25
Signal::data-out................. 22

Function Index

T
TimeSignal:: data.out 19

TimeSignal::delay.............................. 21

TimeSignal::duration 19

TimeSignal::readaiff 20

TimeSignal::timebase 19

TimeSignal::writeAiff 20

93

Variable Index

Variable Index

C
CommandLine: :command-name 35
CommandLine: :help.msg 36

CommandLine: :p.count 36

CommandLine: :parameters 36
CommandLine::s-count 36

CommandLine::s.values 36

CommandLine::switches 36

Data Type Index

Data Type Index

C
CArray 13

CArrayGiveAvway 14

CommandLine 33

FreqSignal 21

FreqSlice .. 23

G
GPlot..

TimeSignal.. 18

Program Index

Program Index

A
AIFFdisplay 7

AIFFmath..................................... 4

E
echo..................... 4

I
intro .. 3

T
TimeStretch 10

96

Table of Contents

1 Introduction .. 1
1.1 History -- Or where did libDsp come from 1
1.2 Format - How this manual is laid out 1
1.3 Contributions 1

1.3.1 Contributors 2

2 Examples 3
2.1 intro 3
2.2 Echo 4
2.3 AIFFmath....................... 4
2.4 AIFFdisplay 7
2.5 TimeStretch 10

3 Classes 13
3.1 CArray - Complex data type array 13
3.2 Time Signal......................... 18
3.3 Frequency Signal............................... . 21
3.4 Frequency Slice .. 23

4 Tool Box .. 25
4.1 Signal Generators.............................. 25
4.2 Special Filters 26
4.3 Fourier Transforms 27
4.4 Inverse Fourier Transforms 29

5 G nu P lot 31

6 CommandLine 33
6.1 CommandLine Functions 33
6.2 CommandLine Variables 35

Concept Index 37

Function Index .. . 38

Variable Index 40

97

Data Type Index............... 41

Program Index 42

98

Appendix B

Spread Spectrum Codes

The material in this section, and this section only is copyright The Massachusetts
Institute of Technology 1994.

B.1 BitGen.cc

This is the maximal length bit stream generator:

#ifndef BITGEN H
#define BITGEN_H
#include "BitGen.h"

unsigned long WatsonMod2[21][4] =
{{0, },//11
{1 i, , }, //22
{1, 1, }, 1/SS
{1, 1, }, //44
{1, 2, }, //55 o10
{1, 1, }, //66
{1, 1, }, //77
{3, 4, 3, 2,}, //88
{1, 4 }, //99
{1,3 },//110
{1, 2 }//111
{3, 6, 4, 1 }, //1112
{3, 4, 3, 1 },//113
{3, 5, 3, 1 }, //114
{1, 1 }, //115 20

{3, 5, 3, 2 }, //116
{1, 3 },//117
{3, 5, 2, 1 },1//118
{3, 5, 2, 1 }, /119
{1, 3 1, //220
};

BitGen::BitGen(long length, long seed){
Length = length; 30

Seed = seed;
if (seed & (1L << length)) Current = 1; else Current = 0;
State = 1;
Mask = 0;
for (long i=0; i < WatsonMod2[length-1][0]; i++){

Mask i= 1L << WatsonMod2[length-1][1 + i]-1;

}

void 40
BitGen::timeadvance()

{
if (State & 1L << Length){

State = ((State ^ Mask) << 1) 1L;
Current = 1;

} else {
State <<= 1;
Current = 0;

}
50

}
#endif

B.2 direct-sequence.cc

This is the directsequence code itself:

#include "Dsp.h"
#include "BitGen. h"

// Return a TimeSignal sampled at rate srate of length time, made up
// of a carrier frequency Wc, a PseudoRandom noise signal at at Time
// Rate Tc (chip), of bits bits and seed seed. The data is at a rate
// Td and is held in memory starting at data (1 bit/byte) and of
// data_bits length.

TimeSignal 10
directsequenceencode

(double srate, double time, double Wc, double Tc, double Td, long
bits, unsigned long seed, long databits, char* Data)

{
long i;

TimeSignal carrier = DSPCosWave(srate, time, Wc);

TimeSignal chip(srate, time);
BitGen bg(bits, seed); 20
unsigned long chip_num = 0;
double currenttime;
unsigned long current_chip;
for (i=0; i<chip.size(; i++){

currenttime = (double) i / srate;

100

current chip = (unsigned long) (current-time / Tc);
while (current_chip > chipnum){

chip num++;
bg.time_advanceO;

} 30
if(bg.currento) chip[i] = 1.0;
else chip[i] = -1.0;

TimeSignal data(srate, time);
unsigned long data num = 0;
unsigned long current_data;
for (i=O0; i<data.sizeO; i++){

current time = (double) i / srate;
current-data = (unsigned long) (current time / Td); 40

while (current data > datanum){
data num++;

I
if (Data[data num % data_bits] == '1') data[i] = 1.0;
else data[i] = -1.0;

return (carrier * chip * data);

50

char*
direct sequence decode

(TimeSignal& signal, double Wc, double Tc, double Td, long
bits, unsigned long seed)

{
double srate = signal.time_base();
double time = signal.duration();

TimeSignal chip(srate, time);
BitGen bg(bits, seed); 60
unsigned long chip num = 0;
double current_time;
unsigned long current-chip;
for (long i=0; i<chip.size(); i++){

current time = (double) i / srate;
current_chip = (unsigned long) (current-time / Tc);
while (current_chip > chip num){

chip_num++;
bg.timeadvance();

} 70
if (bg.current()) chip[i] = 1.0;
else chip[i] = -1.0;

TimeSignal unspread = signal / chip;
TimeSignal unmod = unspread / DSPCosWave(srate, time, Wc);

unsigned long datanum = 0;
unsigned long current_data;

101

Complex sum = 0; 80
char *rval = new char[(long) (((double) unmod.size()/Td) + 1];
for (i=0; i<unmod.sizeo; i++){

currenttime = (double) i / srate;
currentdata = (unsigned long) (currenttime / Td);
while (current_data > data_num){

if (abs(sum) > 0)
rval[datanum] = ' 1';

else
rval[datanum] = '0';

sum = 0; 90
data_num++;

}
sum += unmod[i];

return rval;

100

B.3 main.cc

and finally a main section that was used to test the above code:

#include "Dsp. h"
#include "BitGen.h"
#include <stdio.h>
#include <stdlib.h>
GPlot* gp;

TimeSignal
DTfill_timesignal

(double SampRate, double time, long dsize, Complex* data)
{ 10

unsigned long length = (unsigned long) (SampRate * time);
Complex* rval = new Complex[length];

for (long i=0; i<length; i++)
rval[i] = data[i % dsize];

return TimeSignal(SampRate, length, rval);

20

TimeSignal
DTchipsignal

(double SampRate, double time, long bits, double Dt)
{

102

unsigned long length = (unsigned long) (SampRate * time);
Complex* rval = new Complex[length];
BitGen bg(bits, 1);

double ctime; 30

long cstep;
long step=0;
for (long i=0; i<length; i++){

ctime = ((double) i / SampRate);
cstep = (long) (ctime / Dt);
while (cstep > step) {

step++;
bg.time_advance();

}
if (bg.current()){ 40

rval[i] = (Complex) (1.0);
} else {

rval[i] = (Complex) (-1.0);

}

return TimeSignal(SampRate, length, rval);

50

TimeSignal
DTdata signal

(double SampRate, double time, long data_bits, char* data, double Dt)

{
unsigned long length = (unsigned long) (SampRate * time);
Complex* rval = new Complex[length];

double ctime;
long cstep; 60

long step=0;
for (long i=0; i<length; i++){

ctime = ((double) i / SampRate);
cstep = (long) (ctime / Dt);
while (cstep > step){

step++;
}
if (data[step%data_bits] == '1 '){

rval[i] = (Complex) (1.0);
} else { 70

rval[i] = (Complex) (-1.0);
}

return TimeSignal(SampRate, length, rval);

char*

103

DTget_data
(TimeSignal& ts, double Dt, double We) so

{
char msg[512];

long dbits = (long) (ts.duration() / Dt);
char* rval = new char[dbits + 8];

// Calculate how big a fourier transform to use
long bits = (long) (log(Dt * ts.time base() / log(2.0));
long samples = (long) pow(2.0, (double) bits);

// printf("Samples => %ld\n", samples); 90

// Allocate space
TimeSignal working(ts.timebase(), samples);
FreqSignal fworking;

// Figure the bins to pull the signal out of
We /= (ts.time_baseo) / (double) samples; // Adjust to bin space

double bini = Wc;
double bin2 = (double) samples - binl; 100
long offl = (long) binl;
double dell = binl - (double) offl;
long off2 = (long) bin2;
double del2 = bin2 - (double) off2;

/ * printf("Bins: %lg (%ld + %lg) and %lg (%ld + %lg)\n", bini, off1,
dell, bin2, off2, del2);

long i, j, offset;
Complex suml, sum2, sum;
for (i=0; i<dbits; i++){ 110

offset = (long)(i * Dt * ts.time_baseo) ;

for (j=0; j<samples; j++)
working[j] = ts[offset+j];

fworking = DSPFT(working);

#ifdef PLOTME
sprintf(msg, "Bit /ld", i);
fworking.gplot(gp, msg);

#endif 120
#ifdef HPoint

for (j=0; j<samples; j++)
if (real(fworking[j]) + imag(fworking[j]) > 200.0)

printf("Hot Point --- [Yld] %ld\n", i, j);
#endif

suml = (fworking[offl + 1] - fworking[offl]) * dell +
fworking[offl];

sum2 = (fworking[off2 + 1] - fworking[off2]) * del2 +
fworking[off2]; 130

if (real(suml + sum2) > 0)
rval[i] = ' 1';

104

else
rval[i] = '0';

}

rval[dbits]= '\0';
return rval;

140
TimeSignal
DT BP filter

(double srate, long points, double start, double stop)

long i;
FreqSignal working(points);
// to convert radians -> Hz
double tfactor = 1.0 / (2.0 * PI) * srate / 2.0;
start /= tfactor;
stop /= tfactor; 150

for (i=0; i<working.size(; i++)
if ((working.frequency(i) > start &&

working.frequency(i) < stop) I
(working.frequency(i) > -stop &&

working.frequency(i) < -start))
working[i] = 1.0; else working[i] = 0.0;

TimeSignal rval = DSPIFT(working, srate);
return DSPWindowHanning(rval);

160

/*
main(){

TimeSignal t = DT_ BP filter(8000, 128, 900, 1100);
gp = GPfopen("foo.ps");
t.gplot(gp, "Filter");
GPclose(gp);

}

char* 170

makedata(long bits)
{

char* buffer;
buffer = new char[bits + 1];
for (long i=0; i<bits; i++){

if (((double) rand() / (double) RAND_MAX) > .5)
buffer[i] = '0';

else
buffer[i]= '1';

} 180

buffer[bits] = '\0';
return buffer;

main(int argc, char** argv){
long i;

105

srand(atoi(argv[4]));
double nlevel = atof(argv[1]);

gp = GPfopen("sample.ps");

TimeSignal midata;
midata.readAiff(" samplel. aiff ");
double mymax = 0.0;
for (long ii = 0; ii < midata.size(); ii++){

if (abs(midata[ii]) > mymax) mymax = abs(midata[ii]);

m
midata /= mymax;

double srate = 8000;
double Wc = 1000;
double time = midata.duration();
double factor = atof(argv[2]);
double Td = factor / 8000.0 * atof(argv[3]) ;
double Tc = factor / 8000.0 ;
char *Data = make_data(time / Td);
long databits = strlen(Data);

TimeSignal chip = DTchipsignal(srate, time, 10, Tc);
TimeSignal data = DTdata signal(srate, time, databits, Data, Td);
TimeSignal carrier = DSPCosWave(srate, time, Wc);
TimeSignal encode = data * carrier;

//eencode.gplot(gp, "Pre mess");

#ifdef PLOTME
FreqSlice fs;
fs = Slice(encode, 128);
char msg[512];
sprintf(msg, "spectrogram, slice
fs[30].gplot(gp, msg);

#endif

TimeSignal sample = chip * data *

//ssample.gplot(gp, "Post spread");

#ifdef PLOT_ME
fs = Slice(sample, 128);
sprintf(msg, "spectrogram, slice
fs[30].gplot(gp, msg);

#endif

// double noise;
// for (i=O; i<sample.sizeO; i++){
// noise = (double) rand() / (d
// noise = noise * nlevel - nle'
// sample[i] += noise;
// 1

30 before spread with %s", argv[1]);

30 after spread with %s", argv[1]);

ouble) RAND_MAX;
vel / 2;

106

sample += nlevel * midata;
sample.writeAiff(" encoded. aiff ");

#ifdef PLOT ME
fs = Slice(sample, 128);
sprintf(msg, "spectrogram, slice 30 noise introduced with %s", argv[1]);
fs[30].gplot(gp, msg);

#endif

//ssample.gplot(gp, "Post mess"); 250

TimeSignal unspread = sample * chip;

#ifdef PLOT ME
fs = Slice(unspread, 128);
sprintf(msg, "spectrogram, slice 30 unspread with %s", argv[1]);
fs[30].gplot(gp, msg);

//uunspread.gplot(gp, "Post spread");
#endif

260

#ifdef FILTER-ME
double fstart = 900;
double fstop = 1100;
TimeSignal filt = DTBPfilter(8000, 512, fstart, fstop);
TimeSignal filtered = ApplyFIR(unspread, filt);

#ifdef PLOT ME
fs = Slice(unspread, 128);
sprintf(msg, "spectrogram, slice 30 uns and filt with %s filt %lg"

" to %lg", argv[1], fstart, fstop);
fs[30].gplot(gp, msg); 270

#endif
#endif

char* decoded = DTget_data(unspread, Td, Wc);

double right = 0.0;
double wrong = 0.0;
for (i=0; i<strlen(decoded); i++){

if (decoded[i] == Data[i]) right += 1.0; else wrong += 1.0;
} 280
printf("NSR <%s> Bits/Chip <%s> N <%s> Bits <%d> Correct<%lg%%> \n",

argv[1], argv[2], argv[3], strlen(decoded), right / (right + wrong));

}

107

Appendix C

libDsp source code

C.1 Files

Following is a list of the files in the libDsp distribution:

libDsp
libDsp/INSTALL
libDsp/NEWS
libDsp/README
libDsp/TODO
libDsp/install.sh
libDsp/configure.in
libDsp/configure
libDsp/Makefile.in
libDsp/doc
libDsp/doc/Makefile
libDsp/doc/examples
libDsp/doc/examples/echo.cc
libDsp/doc/examples/AIFFdisplay.cc
libDsp/doc/examples/Makefile
libDsp/doc/examples/AIFFmath.cc
libDsp/doc/examples/MakeAIFF.cc
libDsp/doc/examples/TimeStretch.cc
libDsp/doc/examples/intro.cc
libDsp/doc/examples/vdistort.cc
libDsp/doc/examples/vdistort
libDsp/doc/examples/.cvsignore
libDsp/doc/examples/intro
libDsp/doc/examples/echo
libDsp/doc/examples/TimeStretch
libDsp/doc/examples/Makefile.in
libDsp/doc/echo.cc.texi
libDsp/doc/Makefile.in

108

libDsp/doc/libDsp.texi
libDsp/libsrc/Makefile.in
libDsp/libsrc
libDsp/libsrc/aifif
libDsp/libsrc/aifif/edif.cc
libDsp/libsrc/aifif/genutils.cc
libDsp/libsrc/aifif/macsndf.cc
libDsp/libsrc/aifif/xxmpeg.cc
libDsp/libsrc/aifif/aifif.c
libDsp/libsrc/aifif/Makefile
libDsp/libsrc/aifif/aifif.cc
libDsp/libsrc/aifif/byteswap.cc
libDsp/libsrc/aifif/edif.c
libDsp/libsrc/aifif/IEEE80.cc
libDsp/libsrc/aifif/IEEE80.c
libDsp/libsrc/aifif/byteswap.c
libDsp/libsrc/aifif/genutils.c
libDsp/libsrc/aifif/macsndf.c
libDsp/libsrc/Makefile.in
libDsp/libsrc/objects
libDsp/libsrc/objects/Makefile.in
libDsp/libsrc/objects/CommandLine.cc
libDsp/libsrc/objects/FFT.cc
libDsp/libsrc/objects/FreqSlice.cc
libDsp/libsrc/objects/GPlot.cc
libDsp/libsrc/objects/SigGen.cc
libDsp/libsrc/objects/Slice.cc
libDsp/libsrc/objects/UniqueName.cc
libDsp/libsrc/objects/FreqSignal.cc
libDsp/libsrc/objects/TimeSignal.cc
libDsp/libsrc/objects/DSPtools.cc
libDsp/libsrc/objects/Filters.cc
libDsp/libsrc/objects/CArray.cc
libDsp/include
libDsp/include/CommandLine.h
libDsp/include/Consts.h
libDsp/include/DSPtools.h
libDsp/include/Dsp.h
libDsp/include/FFT.h
libDsp/include/Filters.h
libDsp/include/FreqSignal.h
libDsp/include/FreqSlice.h
libDsp/include/GPlot.h
libDsp/include/IEEE8O.h
libDsp/include/SigGen.h

109

libDsp/include/Slice.h
libDsp/include/TimeSignal.h

libDsp/include/UniqueName.h

libDsp/include/aifif.h
libDsp/include/byteswap.h

libDsp/include/dpwe-aiff.h

libDsp/include/dpwelib.h
libDsp/include/edif.h
libDsp/include/genutils.h
libDsp/include/vecops.h
libDsp/include/CArray.h

libDsp/include/.cvsignore

libDsp/include/Stereo.h
libDsp/include/Makefile.in
libDsp/examples
libDsp/examples/echo

libDsp/examples/echo/Makefile
libDsp/examples/echo/main.cc
libDsp/examples/echo/Makefile.in
libDsp/examples/MakeAIFF

libDsp/examples/MakeAIFF/Makefile.in
libDsp/examples/MakeAIFF/main.cc
libDsp/examples/MakeAIFF/Makefile
libDsp/examples/Makefile.in

libDsp/examples/AIFFdisplay

libDsp/examples/AIFFdisplay/main.cc

libDsp/examples/AIFFdisplay/Makefile.in
libDsp/examples/intro
libDsp/examples/intro/Makefile.in

libDsp/examples/intro/main.cc
libDsp/examples/AIFFmath

libDsp/examples/AIFFmath/Makefile.in
libDsp/examples/AIFFmath/main.cc
libDsp/examples/NOTES
libDsp/examples/vdistort
libDsp/examples/vdistort/main.cc
libDsp/examples/vdistort/Makefile.in

C.2 libDsp/INSTALL

To Create the library, just type make in the main directory. The .a
file will be made in the libsrc directory. To compile a program use

g++ -o foo -I$(BASE)/include foo.cc -L$(BASE)/libsrc -lDsp

110

where $(BASE) is whereever the main directory tree is.

type make doc

C.3 libDsp/NEWS
Version 2.0.0 ---
* Added install

* Cleanup of manual in general

* Major restructuring of files witin release

* Begining of port to GNU autoconf to allow libDsp to
compile out of the box on a number of platforms

* Removed all examples from manual and placed them in seperate
files so that they will be tested before each release

* Brought most makefiles up to GNU spec

Version 1.3.5 ---
* Lots of bug fixes, including virtual in base class
destructors, and passes by argument rather than by value

in operators.

Version 1.3.0 ---
>>>>>>> * CommandLine object added -- This is a really neat hack I
wish I had come up with a lot earlier. It is an auto command
line parser that takes much of the pain out of providing a
usable user interface.

* Major cleanup of documentation

* Aliased SinSignal --> SinWave

* Aliased CosSignal --> CosWave

* Added Examples section, including
** intro -- how it works

** AIFFmath -- simple math on AIFF files
** TimeStretch -- Increases or decreases signal duration

111

w/o changing frequency of data.

* Added delay to time signals.

* Cleaned up plotting of Freq Slice

* Cleaned up bug in scaling DSPIDFT

Version 1.2.1 ---
* Fixed bug in write AIFF

Version 1.2.0 ---
* Added Freq Slice data type -- This data type is what one
uses to hold the "break the signal up into frames, FFT the

frames and display them" way of looking at a signal. Right
now I don't have a routine to go from Time Signal directly
to FreqSlice, because I find I usually want something like
every 10th slice displayed to increase plotting speed. If
anyone has a good idea for geberalizing this, let me know.

* Added Write AIFF

Version 1.1.0 ---
* Added AIFF reading

* Added Square Wave and Triangle Wave generators.

* Added full and half wave rectifiers

* Added GPfopen: This allows you to open a gplot file for
ploting to postscript rather than the screen.

Version 1.0.0 --- Base Release

C.4 libDsp/README

README -- This file

NEWS -- What's new in this release

112

./include - all the include files for libDsp

./libsrc - the C++ source files for libDsp

./doc - the texi manual for libDsp

./examples - The example code you should look at

./testsrc - These are test files I have used with libDsp's
development. They are included for now until I can get around
to writing a decent tutorial to give the enthusiastic some
examples of how libDsp works.

C.5 libDsp/TODO

* Add SOX to read/write any (reasonable) format.

* Change GNUplot to pass by pipe rather than file

C.6 libDsp/install.sh

This is provided incase the target system is missing an install program.

#!/bin/sh

install - install a program, script, or datafile
This comes from X11R5; it is not part of GNU.

$XConsortium: install.sh,v 1.2 89/12/18 14:47:22 jim Exp $

This script is compatible with the BSD install script,
but was written from scratch.

set DOITPROG to echo to test this script

Don't use :- since 4.3BSD and earlier shells don't like it.
doit="${DOITPROG-}"

put in absolute paths if you don't have them in your path;

113

or use env. vars.

mvprog="${MVPROG-mv}"

cpprog="${CPPROG-cp}"
chmodprog="${CHMODPROG-chmod}"
chownprog="${CHOWNPROG-chown}"
chgrpprog="${CHGRPPROG-chgrp}"
stripprog="${STRIPPROG-strip}"

rmprog="${RMPROG-rm}"

instcmd="$mvprog"
chmodcmd=""
chowncmd=""

chgrpcmd=""
stripcmd=""
rmcmd="$rmprog -f"

mvcmd="$mvprog"
src=""
dst=""

while [x"$1" != x]; do
case $1 in

-c) instcmd="$cpprog"
shift

continue;;

-m) chmodcmd="$chmodprog $2"
shift

shift
continue;;

-o) chowncmd="$chownprog $2"
shift
shift

continue;;

-g) chgrpcmd="$chgrpprog $2"
shift
shift

continue;;

-s) stripcmd="$stripprog"
shift

continue;;

114

*) if [x"$src" = x]
then

src=$1
else

dst=$1
fi
shift
continue;;
esac

done

if [x"$src" = x]
then
echo "install: no input file specified"
exit 1
fi

if [x"$dst" = x]
then
echo "install: no destination specified"
exit 1
fi

If destination is a directory, append the input filename; if
your system does not like double slashes in filenames, you may
need to add some logic

if [-d $dst]
then
dst="$dst"/'basename $src'
fi

Make a temp file name in the proper directory.

dstdir='dirname $dst'
dsttmp=$dstdir/#inst.$$#

Move or copy the file name to the temp name

$doit $instcmd $src $dsttmp

and set any options; do chmod last to preserve setuid bits

if [x"$chowncmd" != x 1; then $doit $chowncmd $dsttmp; fi

115

if [x"$chgrpcmd" != x 1; then $doit $chgrpcmd $dsttmp; fi
if [x"$stripcmd" != x]; then $doit $stripcmd $dsttmp; fi
if [x"$chmodcmd" != x]; then $doit $chmodcmd $dsttmp; fi

Now rename the file to the real destination.

$doit $rmcmd $dst
$doit $mvcmd $dsttmp $dst

exit 0

C.7 libDsp/configure.in

dnl Process this file with autoconf to produce a configure script.
ACINIT(examples)
AC_PROG_CXX
AC_LN_S
AC_PROGINSTALL
ACO0UTPUT(
Makefile
doc/Makefile
doc/examples/Makefile

examples/Makefile
examples/AIFFdisplay/Makefile

examples/AIFFmath/Makefile
examples/MakeAIFF/Makefile
examples/TimeStretch/Makefile
examples/echo/Makefile
examples/intro/Makefile
examples/vdistort/Makefile

libsrc/Makefile
libsrc/aifif/Makefile
libsrc/objects/Makefile
include/Makefile

C.8 libDsp/configure

This file is created by the Autoconfigure utility.

116

C.9 libDsp/Makefile.in
srcdir = Osrcdir@
VPATH = @srcdir@

CXX = @CXX@

INSTALL = @INSTALL@
INSTALL_PROGRAM = @INSTALL_PROGRAM@
INSTALL_DATA = @INSTALL_DATA@

DEFS = @DEFS@
LIBS = @LIBS@

CFLAGS = -g
LDFLAGS = -g

prefix = /usr/local
exec_prefix = $(prefix)
binprefix =
manprefix =
incprefix =

bindir = $(exec_prefix)/bin
libdir = $(exec_prefix)/lib
mandir = $(prefix)/man/manl
manext = 1
infodir = /usr/local/info

SHELL = /bin/sh

LIBDIRS = include libsrc
SRCDIRS = doc examples $(LIBDIRS)

DISTFILES = INSTALL NEWS configure.in README configure\
Makefile.in $(SRCDIRS)

all: library

install:
echo foo
for var in $(LIBDIRS); do cd $$var; $(MAKE) install; cd .. ; done

installdirs:

117

uninstall:

check:
@echo No tests are supplied at this time.

library:
for var in $(LIBDIRS); do\

cd $$var;\
$(MAKE) all;\
cd ..; done

Makefile: Makefile.in config.status
$(SHELL) config.status
config.status: configure
$(SHELL) config.status --recheck
configure: configure. in
cd $(srcdir); autoconf

TAGS:

clean:
for var in $(SRCDIRS); do\

cd $$var;\
$(MAKE) clean;\
cd ..; done

mostlyclean: clean

distclean: clean
rm -f Makefile config.status

realclean: distclean

dist:

C.10 libDsp/doc/

The contents of this subdirectory create the manual found in Appendix A.

118

C.11 libDsp/libsrc/Makefile.in

INSTALL = @INSTALL@

INSTALL_PROGRAM = @INSTALL_PROGRAM@

INSTALL_DATA = @INSTALL_DATA@

C++ = @CXX@

C++FLAGS = -g

LDFLAGS = -g

DEFS = @DEFS@

LIBOBJS = objects/*.o aifif/*.o

dirs=objects aifif

prefix = /usr/local

incdir = ../include

srcdir = @srcdir@

libdir = $(prefix)/lib/${SYS}

VPATH=$(dirs)

lib=libDsp.a

INCS=-I${incdir} -I/usr/include/local

Suffix Rules the way I want them

.c.o:

${C++} ${C++FLAGS} ${INCS} -c $< -o $@
.cc.o:

${C++} ${C++FLAGS} ${INCS} -c $< -o $@

INSTALL=cp

all:$(lib)

install:$(lib)

for var in $(dirs); do cd $$var; $(MAKE) HEAD=$(head)/.. install\
; cd .. ; done

$(INSTALL) $(lib) $(libdir)

OBJS=aifif/*.o objects/*.o

$(lib):objs

119

ar ruv $0 $(OBJS)
ranlib $@

clean:
rm -f $(lib)
for var in $(dirs); do cd $$var; $(MAKE) clean ; cd .. ; done

objs:
for var in $(dirs); do cd $$var; $(MAKE) DEFS=$(DEFS) all ;\

cd ..; done

Fun with dependencies
CArray.o : CArray.cc
DSPtools.o : DSPtools.cc
FFT.o : FFT.cc
FreqSignal.o : FreqSignal.cc
FreqSlice.o : FreqSlice.cc
SigGen.o : SigGen.cc
Slice.o : Slice.cc
TimeSignal.o : TimeSignal.cc
GPlot.o : GPlot.cc
UniqueName.o : UniqueName.cc

$(incdir)/Dsp.h
$(incdir)/Dsp.h
$(incdir)/Dsp.h
$(incdir)/Dsp.h
$(incdir)/Dsp.h
$(incdir)/Dsp.h
$(incdir)/Dsp.h
$(incdir)/Dsp.h
$(incdir)/GPlot.h
$(incdir)/UniqueName.h

C.12 libDsp/libsrc/aifif/

These routines are courtisy of Dan Elis and not specifically part of this thesis.

C.13 libDsp/libsrc/objects/Makefile.in
CXX=QCXXQ

C++FLAGS = -g

head=../../..

120

incdir=../../include
srcdir=.
libdir=$(head)/lib/${SYS}

lib=libDsp.a

INCS=-I${incdir} -I/usr/include/local

SRCS=$(wildcard *.c) $(wildcard *.cc)

OBJS=$(patsubst %.c,%.o,$(wildcard *.c))\
$(patsubst %.cc,%.o,$(wildcard *.cc))

Suffix Rules the way I want them

${CXX} ${C++FLAGS} ${INCS} $(DEFS) -c $< -o $@
.cc.o:

${CXX} ${C++FLAGS} ${INCS} $(DEFS) -c $< -o $@

all:$(OBJS)

install:$(OBJS)

clean:

rm -f ${OBJS}

Fun with dependencies
CArray.o : CArray.cc
DSPtools.o : DSPtools.cc
FFT.o : FFT.cc
FreqSignal.o : FreqSignal.cc
FreqSlice.o : FreqSlice.cc
SigGen.o : SigGen.cc
Slice.o : Slice.cc
TimeSignal.o : TimeSignal.cc
GPlot.o : GPlot.cc
UniqueName.o : UniqueName.cc

$(incdir)/Dsp.h
$(incdir)/Dsp.h

$(incdir)/Dsp.h
$(incdir)/Dsp.h
$(incdir)/Dsp.h
$(incdir)/Dsp.h

$(incdir)/Dsp.h
$(incdir)/Dsp.h
$(incdir)/GPlot.h

$(incdir)/UniqueName.h

121

C.14 libDsp/libsrc/objects/CommandLine.cc

#include <stdarg.h>
#include <stdio.h>
#include <iostream.h>
#include "CommandLine.h"
#include <stdlib.h>

void
CommandLine::dieif param_count_not_between(long low, long high){

if (howmany_params() < low II how-many-params() > high){
issue_help(); 10
die();

}
return;

void
CommandLine::die_if switch_not_one_of(int howmany,...){

valist ap;
int i, j; 20

if (howmany < 1) {
cerr << "CommandLine: :dieifflag_not-one_of - incorrect how_many\n";
exit(l);

}
String choices[how many];
va start(ap, howmany);

for (i=O; i<howmany; i++)
choices[i] = (char *) vaarg(ap, char*); 30

va end(ap);

int flag = 0;
for (i=O; i<how_many_switchesO; i++){

for (j=0O; j<how_many; j++)
if (switches[i] == choices[j]){

flag = 1;
break;

} 40
if (!(flag)){

issuehelp();
die();

}
}
return;

void
CommandLine::die_if switch_count_notbetween(long low, long high){ 50

if (how_manyswitches() < low 1I howmany-switches() > high){

122

issuehelp();
die();

}
return;

}

void
CommandLine::dieonswitch(String flag){

if (switchset(flag)) { 60

issue_help();
die();

}
}

void
CommandLine::die() {

exit(l);
}

70

void
CommandLine::issue_help() {

fprintf(stderr, (char *) help_msg, (char *) command_name);
return;

}

CommandLine::CommandLine(int argc, char** argv) {
parse(argc, argv);
return;

}so
CommandLine:: CommandLine () {

delete [] switches;
delete [] s_values;
delete [] parameters;
return;

}

int
CommandLine::parse(int argc, char** argv) { 90

command_name = argv[O];
switches = new String[argc];
s_values = new String[argc];
parameters = new String[argc];
s_count = 0;
p_count = 0;

long i=1;
long still_switches_p = 1;

100

while (i < argc) {

// Snag a switch
if (still_switches-p && argv[i][0] == '-') {

switches[s_count++] = argv[i] + 1;

123

} else {
stillswitches_p = 0;
parameters[pcount++] = argv[i];

}
110

i++;

}

return argc;

// Was the switch set?
int
CommandLine::switch_set(String swtch){ 120

// Deal with trivial case
if (scount == 0) return 0;

// Scan switches
for (long i=O; i<scount; i++) {

if (switches[i] == swtch)
return 1;

}
130

return 0;
}

// return parameter
String
CommandLine::Parameter(long ww) {

if (ww >= p_count II ww < 0) {
cerr << "CommandLine: :parameter - requested out of range"

<< "parameter. bye.\n";
exit(1); 140

}

return parameters[ww];
}

// return parameter
String
CommandLine::Switch(long ww){

if (ww >= scount II ww < 0) {
cerr << "CommandLine: :switch - requested out of range" 150

<< "switch. bye.\n";
exit(l);

}

return switches[ww];
}

// return parameter
char*

124

CommandLine::csParameter(long ww) { 160
static char buffer[256];
if (ww >= p_count II ww < 0) {

cerr << "CommandLine: :parameter - requested out of range"
<< "parameter. bye.\n";

exit(l);

}

strcpy(buffer, parameters[ww]);
return buffer;

170

// return parameter
char*
CommandLine::csSwitch(long ww) {

static char buffer[256];
if (ww >= s_count 11 ww < 0) {

cerr << "CommandLine: :switch - requested out of range"
<< "switch. bye.\n";

exit(l);

} 180

strcpy(buffer, switches[ww]);
return buffer;

190

C.15 libDsp/libsrc/objects/FFT.cc

/ * FILE: / User/druid/src/c++/libDsp/libsrc/FFT.cc */
/ * AUTHOR: Daniel F. Gruhl <druid@mit.edu> */
/* DATE LAST MODIFIED: Tue Feb 1 11:57:57 EST 1994 */
/ * DESCRIPTION: This file provides the fourier transform and inverse */
/ * transform functions for the libDsp library */

static char rcsid[] = "$Id: FFT.cc,v 1.2 1994/08/01 12:27:06 druid Exp $";

#include "Dsp. h" to
#include <math.h>
#include "FreqSignal. h"

long
DSPFlipAddress(int bits, long number){

long rval=0, mul = (long) pow(2.0, (double) bits - 1);
for (int i=0; i<bits; i++){

125

rval += mul * (number % 2);
number /= 2;
mul /= 2; 20

}
return rval;

}

FreqSignal
DSPFT(TimeSignal& t) {

double testval = t.size();
double tvall = log(testval) / log(2.0);
if (tvall == (long) tvall)

return DSPFFT(t); 30

else
return DSPDFT(t);

}

TimeSignal
DSPIFT(FreqSignal& f, double base){
// f.data_ out("dbgl.dat");

double testval = (double) f.size();
double tvall = log(testval) / log(2.0);
if (tvall == (long) tvall) 40

return DSPIFFT(f, base);
else

return DSPIDFT(f, base);

}

// Adapted from FFT in Numerical Recipies in C
FreqSignal
DSPFFT(TimeSignal& t) {

unsigned long i;
float* wdata = new float[t.size() * 2 + 1]; 50

Complex* rval = new Complex[t.size()];
const Complex Ci(0,1);

for (i=0O; i<t.size(); i++){
wdata[i*2 + 1] = real(t[i]);
wdata[i*2 + 2] = imag(t[i]);

}

fourl(wdata, t.size(, 1);
for (i=0; i<t.size(); i++) 60

rval[i] wdata[i*2 + 1] + Ci*wdata[i*2 + 2];

delete [] wdata;
return FreqSignal((long) t.size(), rval, t.timebase()/t.size());

TimeSignal
DSPIFFT(FreqSignal& f, double base){

unsigned long i;
float* wdata = new float[f.size() * 2 + 1]; 70

Complex* rval = new Complex[f.size()];

126

const Complex Ci(0,1);

for (i=O0; i<f.sizeo; i++){
wdata[i*2 + 1] = real(f[i]);
wdata[i*2 + 2] = imag(f[i]);

}

fourl(wdata, f.size(, -1);
80

for (i=O; i<f.size(; i++)
rval[i] = (wdata[i*2 + 1] + Ci*wdata[i*2 + 2]) / f.size();

delete [] wdata;
return TimeSignal(base, (long) f.sizeO, rval);

}

#define SWAP(a,b) tempr=(a); (a)=(b); (b)=tempr
void fourl(float data[], unsigned long nn, int isign) 90
{

unsigned long n, mmax, m, j, istep, i;
double wtemp, wr, wpr, wpi, wi, theta;
float tempr, tempi;

n=nn << 1;
j=1;
for (i=l; i<n; i+=2){

if (j > i) {
SWAP(data[j], data[i]); 100
SWAP(data[j+l], data[i+1]);

}
m=n >> 1;
while (m >= 2 && j > m) {
j -= m;
m >>= 1;

}
j+= m;

110

mmax=2;
while (n > mmax)(

istep=mmax << 1;
theta = isign*(6.28318530717959/mmax);
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi=O.O;
for (m=l; m<mmax; m+=2){ 120

for (i=m; i<=n; i+=istep){
j=i+mmax;
tempr=wr*datalj] - wi*databj+1];
tempi=wr*data[j+l] + wi*data[j];
data[j] = data[i] - tempr;

127

data[j+l] = data[i+1] - tempi;
data[i] += tempr;
data[i+1] += tempi;

}
wr= (wtemp=wr)*wpr-wi*wpi+wr; 130
wi=wi*wpr+wtemp*wpi+wi;

}
mmax=istep;

const Complex DSPi(0, 1);

inline Complex 140
DSPTW(long super, long sub){

return pow(exp(-DSPi * (2.0 * PI / (double) sub)), (double) super);
}

FreqSignal
DSPDFT(TimeSignal& t){

Complex* f = new Complex[t.size()];

for (long k = 0; k<t.size(); k++){
f[k] = 0.0; 150
for (long n = 0; n<t.size(); n++){

f[k] += t[n] * DSPTW((long)(n*k), (long)t.size());
}

}
return FreqSignal(t.size(), f, t.time_base()/t.size();

TimeSignal
DSPIDFT(FreqSignal& f, double base){

Complex* t = new Complex[f.size()]; 160

for (long k = 0; k<f.size(); k++){
t[k] = 0.0;
for (long n = 0; n<f.size(); n++){

t[k] -= f[n] * DSPTW(-(long)(n*k), (long)f.size());
}

}
for (k =0; k<f.size(); k++) t[k] /= -f.size();
return TimeSignal(base, f.sizeO, t);

170

C.16 libDsp/libsrc/objects/FreqSlice.cc

#include <iostream.h>

128

#include <stdlib.h>
#include "FreqSignal .h"

#include "FreqSlice .h"

#include <string.h>

double
maxabs(FreqSlice& f) {

double d = 0.0;
for (long i=0; i<f.Windows(); i++) 10

if (Maxabs(f[i]) > d) d - Maxabs(f[i]):
return d;

}

FreqSlice::FreqSlice(long Windows, FreqSignal* Data, double Deltatime){
windows = Windows;
data = Data;
deltatime = Deltatime;

}
20

void
FreqSlice::gplot(GPlot* gp, char* plot_title, long every=l){

char datafile[256];
FILE *dfile;

strcpy(datafile, GPUniqueName());

dfile = fopen(datafile, "w");
if (!dfile) {

cerr << "FreqSlice: :gplot - Cannot open plotting file. bye.. .\n"; 30
exit(l);

}

long i,j, k = data[0].size()/2;
for (i=0; i<windows; i+=every)

if ((i/every)%2){
for (j=0; j<k; j++)

fprintf(dfile, "%lg U1g 1lg\n",
timeof window(i), operator[] (0).frequency(j),
abs(data[i] [j])); 40

} else {
for (j=k-1; j>=0; j--)

fprintf(dfile, "%lg 1g %lg\n",
timeof window(i), operator[](0) .frequency(j),
abs(data[i] [j]));

}
fclose(dfile);

fprintf((FILE*) gp, "set title 'Is'\n", plot_title);
fprintf((FILE*) gp, "set xlabel '%s'\nset ylabel '%s'\nset zlabel '%s'\n", 50

"Time", "Frequency", "Magnitude");
fprintf((FILE*) gp, "set parametric\n");
fprintf((FILE*) gp, "splot '1s' title 'data' with lines\n",(char*)datafile);
fflush((FILE*) gp);

}

129

FreqSlice::FreqSlice(long Windows= 1, long samplesper_window= 1) {
windows = Windows;
data = new FreqSignal[windows];
if (data == NULL) { 6o

cerr << "FreqSignal: :FreqSignal - Cannot allocate storage space. Bye...\n";
exit(l);

}
for (long i=O; i<Windows; i++)

data[i] .resize (samples-per_window);

I

FreqSlice:: FreqSlice() {
if (data != NULL) {

delete [] data; 70

data = NULL;

}
}

FreqSignal&
FreqSlice: :operator[] (long index) {

return data[index];
}

FreqSlice& 80

FreqSlice::operator= (FreqSlice& f) {
if (data != NULL) {

delete [] data;
data = NULL;

}
windows = f.Windows();
deltatime = f.DeltaTime();
data = new FreqSignal[windows];
for (long i=0; i<windows; i++)

data[i] = f[i]; 90

C.17 libDsp/libsrc/objects/GPlot.cc

/ * FILE: / User/druid/src/c++/libDsp/libsrc/ GPlot.cc */
/ * AUTHOR: Daniel F. Gruhl <druid@mit.edu> */
/ DATE LAST MODIFIED: Tue Feb 8 09:51:55 EST 1994 */
/ * DESCRIPTION: */

char static rcsid[] = "$Id: GPlot.cc,v 1.1 1994/06/27 15:02:34 druid Exp $";

#include <stdio.h>
#include <string.h>
#include <stdlib.h> 10

130

#include "Dsp .h"
#include "UniqueName. h"

/ * typedef FILE GPlot; */

GPlot*
GPopen() {

FILE* hold;
hold = popen("gnuplot", "w");
if (hold == NULL) { 20

cerr << "GPopen: ERROR:: Could not open pipe to gnuplot\n";

exit(l);

}
fprintf(hold, "set terminal Xl1\n");
fflush(hold);
return (GPlot*) hold;

}

GPlot*
GPfopen(char* filename) { 30
FILE* hold;
hold = popen("gnuplot", "w");
if (hold == NULL) {
cerr << "GPopen: ERROR:: Could not open pipe to gnuplot\n";

exit(l);

}
fprintf(hold, "set terminal postscript\n");
fprintf(hold, "set output '%s '\n", filename);
fflush(hold);

return (GPlot*) hold; 40
}

GPlot*
GPclose(GPlot* gp){

fprintf((FILE*) gp, "exit\n");
flush((FILE*) gp);
pclose((FILE*) gp);

}

int 50
GPPlotFile(GPlot* gp, char* filename, char* title, char* xaxis,

char* yaxis, char* data, char* plottype){
fprintf((FILE*) gp, "set title '%s' \n", title);

fprintf((FILE*) gp, "set xlabel '%s'\nset ylabel '%s'\n",
xaxis, yaxis);

fprintf((FILE*) gp, "plot '%s' title '%s' with %s\n",
filename, data, plottype);

fflush((FILE*) gp);

60

char*
GPUniqueName() {
// static UniqueName un;

static long num = 0;

131

num++;
static char buffer[128];

// char* tmp = un.tmpfile_name("GPlot");
// strcpy(buffer, tmp);

sprintf(buffer, "GPlot%ld", num);
// free(tmp); 70

return buffer;
}

void
pause() {

char buffer[128];
gets(buffer);

}

80

C.18 libDsp/libsrc/objects/SigGen.cc

/* FILE: / ti/ class/l druid/src/l c++/ libDsp/DSPtools. cc */
/ * A UTHOR: Daniel F. Gruhl <druid@mit. edu> */
/ * DATE LAST MODIFIED: Wed Jan 5 08:56:57 EST 1994 */
/ * DESCRIPTION: This file contains the functions implemented in the */
/ * libDsp toolkit. Please see the libDsp tezi file for full */
/ * odcumentation of these functions. */

static char rcsid[] = "$Id: SigGen.cc,v 1.2 1994/08/01 12:27:08 druid Exp $";

#include <math.h> 10
#include "SigGen .h"
#include "Dsp. h"

TimeSignal
DSPTriangleWave(double base, double time, double freq){
long size = (long) (base * time);
Complex* rval = new Complex[size];
long SamplesPerCycle = (long) (freq * base) * 2;
double delta = 1.0 / SamplesPerCycle;
long QuarterSample = SamplesPerCycle / 4; 20
long ref;

for (long i=0; i<base*time; i++){
ref = (i + 3 * QuarterSample + 1) % SamplesPerCycle;
if (ref < 2 * QuarterSample)

rval[i] = 1 - 4.0 * ref * delta;
else

132

rval[i] = -1 + 4.0 * (ref - 2 * QuarterSample) * delta;

}
return TimeSignal(base, size, rval);

I

TimeSignal
DSPSquareWave(double base, double time, double freq){

long size = (long) (base * time);
Complex* rval = new Complex[size];
long SamplesPerCycle = (long) (freq * base) * 2;
for (long i=0; i<base*time; i++){

if (i % SamplesPerCycle < SamplesPerCycle / 2)
rval[i] 1.0;

else
rval[i] = -1.0;

I
return TimeSignal(base, size, rval);

TimeSignal
DSPSinSignal(double base, double time,

long size = (long) (base * time);
Complex* rval = new Complex[size];
for (long i=0; i<base*time; i++)

rval[i] = sin(freq / base * ((double) i)
return TimeSignal(base, size, rval);

I

TimeSignal
DSPCosSignal(double base, double time,

long size = (long) (base * time);
Complex* rval = new Complex[size];
for (long i=0; i<base*time; i++)

rval[i] = cos(freq / base * ((double) i)
return TimeSignal(base, size, rval);

I

double freq) {

* 2.0 * PI);

double freq) {

* 2.0 * PI);

C.19 libDsp/libsrc/objects/Slice.cc

// This may look like C, but it's really - *- C++ - *-
/ * FILE: / User/ druid/src/l c++/libDsp/libsrc/Slice. cc */
/ * A UTHOR: Daniel F. Gruhl <druid@mit. edu> */
/ * DATE LAST MODIFIED: Wed May 18 08:27:58 EDT 1994 */
/ * DESCRIPTION: This file does the sliceing of a TimeSignal znto a
/ * Frequency Slice. Yes... I know there should be an elegant way to do
/ * this, but I can't think of a way to incorperate it right now. */

static char rcsid[] = "$Id: Slice.cc,v 1.2 1994/08/01 12:27:08 druid Exp $";

133

#include "Dsp.h"
#include <iostream.h>
#include <stdio.h>
#include <math.h>

TimeSignal
UnSlice(FreqSlice& F) {

long windows = F.Windows();
long windowsize = F.WindowSize(); 20

Complex *rval = new Complex[windows * windowsize];
double time_base = F.DeltaTime() / windowsize;

long i, j, index;
TimeSignal working;
FreqSignal fworking;

for (i=0; i<windows; i++){
fworking = F[i];

30

// fworking. data out("dbg.dat");

working = DSPIFT(fworking, timebase);
index = i * windowsize;
for (j=O; j<windowsize; j++)

rval[j + index] = working[j];

return TimeSignal(time_base, windows * windowsize, rval);
} 40

FreqSlice
Slice(TimeSignal& T, int windowsize){

// First off, find out how big our array we are going to be
// dumping into is. We round up, because we will pad the last
// entry with zeros to bring it to it's full length

long slices = (long) ceil(((double) T.size()/ (double)
windowsize));

50

// Now allocate memory for slicing into. Because C++ doesn't
// support argument passing to arrays on ititialization, we have
// to do it by hand afterwards.

FreqSignal* rval = new FreqSignal[slices];
for (long i=0; i<slices; i++) rval[i].resize(windowsize);

// Now, we do our slicing
TimeSignal slicechunk(T.time base(), windowsize);
long index, j; 60

for (i=O; i<slices-1; i++){
index = i * windowsize;
for (j=O; j<windowsize; j++)

134

slicechunk[j] = T[index + j];
rval[i] = DSPFT(slicechunk);

}
index = (slices - 1) * windowsize ;
for (i=0; i<slicechunk.sizeo; i++) slicechunk[i] = 0.0; 70

for (i=index; i<T.sizeO; i++)
slicechunk[i - index] = T[i];

rval[slices-1] = DSPFT(slicechunk);

return FreqSlice(slices, rval, T.timebase()*windowsize);

C.20 libDsp/libsrc/objects/UniqueName.cc

#include <std.h>
#include <stdio.h>
#include <string.h>
#include "UniqueName. h"

UniqueName::UniqueName() {
snum = maxsnum++;
ref num = 1000;

}
10

int
UniqueName::number() {

FILE* p = popen("echo $$", "r");
int id;
fscanf(p, "%d", &id);
fclose(p);
return id;

}
char* 20
UniqueName::name() {

char buffer[256];
sprintf(buffer, "%ddd", snum, refnum++, number());
return strdup(buffer);

}

char*
UniqueName::tmpfile name(char* header) {

char buffer[256];
char* nm = name(); 30

sprintf(buffer, "%s%s", header, nm);
free(nm);

135

return strdup(buffer);

}

C.21 libDsp/libsrc/objects/FreqSignal.cc

/ * FILE: / ti/l class/l druid/src/ c + +/ libDsp/FreqSignal. cc */
/ A UTHOR: Daniel F. Gruhl <druid@mit. edu> */
/ * DATE LAST MODIFIED: Wed Jan 5 08:55:07 EST 1994 */
/ * DESCRIPTION: This file provides the functions for the Frequency */
/ * Signal data type. Please see the libDsp texi file for full */
/ * documentation. */

char static rcsid[] = "$Id: FreqSignal.cc,v 1.2 1994/08/01 12:27:07 druid Exp $";

10

#include "FreqSignal .h"

#include <stdio.h>

void FreqSignal::gplot(GPlot *g, char* title)

{
CArray::gplot(g, title, "Frequency (Hz) ", "Amplitude",

- Freq_Per_Bin * size() / 2.0, Freq_Per Bin, size()/2);
}

FreqSignal::FreqSignal(long size, Complex* data) 20
: CArray(size, data)

{
FreqPer Bin = 2.0 * PI / size;

}

FreqSignal::FreqSignal(long size, Complex* data, double FPB)
: CArray(size, data)

{
Freq_PerfBin = FPB;

} 30

FreqSignal::FreqSignal(long size)
: CArray(size)

{
FreqPerBin = 2.0 * PI / size;

}

FreqSignal::FreqSignal(CArrayGiveAway& c)
: CArray(c)

{ 40
Freq_Per Bin = 2.0 * PI / c.num_items;

}

void
FreqSignal::resize(long size)

{
FreqPerBin = 2.0 * PI / size;

136

CArray: :resize(size);

}
50

FreqSignal: :FreqSignal()
: CArray(1)

{
Freq_PerBin = 0;

}

double
FreqSignal::frequency(long bin) {

if (bin > size() / 2.0)
return -Freq_PerBin * (double) (size() - bin); 60

return Freq Per Bin * (double) bin;
}

void
FreqSignal::dataout(char* filename) {

FILE* outfile = fopen(filename, "w");
for (int i = 0; i<size(); i++)

fprintf(outfile, "%l1g\t %lg \t %lg\n",
frequency(i), real(operator[](i)), imag(operator[](i)));

70

fclose(outfile);
}

FreqSignal&
FreqSignal::operator= (FreqSignal& rhs) {

Freq_Per Bin = rhs.freq_perbin();
CArray::operator=((CArray&) rhs);
return *this;
Sso

FreqSignal&
FreqSignal::operator= (CArray& rhs) {

CArray::operator=(rhs);
return *this;

}

FreqSignal&
FreqSignal: :operator= (CArrayGiveAway& rhs) { 90

CArray::operator=(rhs);
Freq_PerBin = 2.0 * PI / size();
return *this;

}

FreqSignal
operator+(FreqSignal& lhs, FreqSignal& rhs){

CArray intval = (CArray&) lhs + (CArray&) rhs;
return FreqSignal(intval.giveaway());

} 100

137

FreqSignal
operator+ (FreqSignal& lhs, int& rhs){

CArray intval = (CArray&) lhs + rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal
operator+ (FreqSignal& lhs, float& rhs) {

CArray intval = (CArray&) lhs + rhs; 110
return FreqSignal(intval.giveaway());

}

FreqSignal
operator+(FreqSignal& lhs, double& rhs) {

CArray intval = (CArray&) lhs + rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal 120
operator+ (FreqSignal& lhs, Complex& rhs) {

CArray intval = (CArray&) lhs + rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal
operator+(int& lhs, FreqSignal& rhs){

CArray intval = lhs + (CArray&) rhs;
return FreqSignal(intval.giveaway());

} 130

FreqSignal
operator+(float& lhs, FreqSignal& rhs){

CArray intval = lhs + (CArray&) rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal
operator+(double& lhs, FreqSignal& rhs){

CArray intval = lhs + (CArray&) rhs; 140
return FreqSignal(intval.giveaway());

}

FreqSignal
operator+ (Complex& lhs, FreqSignal& rhs) {

CArray intval = lhs + (CArray&) rhs;
return FreqSignal(intval.giveaway());

} 150

FreqSignal
operator- (FreqSignal& lhs, FreqSignal& rhs){

CArray intval = (CArray&) lhs - (CArray&) rhs;

138

return FreqSignal(intval.giveaway());

}

FreqSignal
operator- (FreqSignal& lhs, int& rhs) { 160

CArray intval = (CArray&) lhs - rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal
operator- (FreqSignal& lhs, float& rhs){

CArray intval = (CArray&) lhs - rhs;
return FreqSignal(intval.giveaway());

}
170

FreqSignal
operator- (FreqSignal& lhs, double& rhs){

CArray intval = (CArray&) lhs - rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal
operator- (FreqSignal& lhs, Complex& rhs){

CArray intval = (CArray&) lhs - rhs;
return FreqSignal(intval.giveaway()); 180

}

FreqSignal
operator-(int& lhs, FreqSignal& rhs){

CArray intval = lhs - (CArray&) rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal
operator- (float& lhs, FreqSignal& rhs){ 190

CArray intval = lhs - (CArray&) rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal
operator- (double& lhs, FreqSignal& rhs){

CArray intval = lhs - (CArray&) rhs;
return FreqSignal(intval.giveaway());

}
200

FreqSignal
operator- (Complex& lhs, FreqSignal& rhs){

CArray intval = lhs - (CArray&) rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal

139

operator*(FreqSignal& lhs, FreqSignal& rhs){ 210
CArray intval = (CArray&) lhs * (CArray&) rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal
operator*(FreqSignal& lhs, int& rhs){

CArray intval = (CArray&) lhs * rhs;
return FreqSignal(intval.giveaway());

}
220

FreqSignal
operator*(FreqSignal& lhs, float& rhs){

CArray intval = (CArray&) lhs * rhs;
return FreqSignal(intval.giveaway();

}

FreqSignal
operator*(FreqSignal& lhs, double& rhs){

CArray intval = (CArray&) lhs * rhs;
return FreqSignal(intval.giveaway()); 230

}

FreqSignal
operator*(FreqSignal& lhs, Complex& rhs){

CArray intval = (CArray&) lhs * rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal
operator*(int& lhs, FreqSignal& rhs) { 240

CArray intval = lhs * (CArray&) rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal
operator*(float& lhs, FreqSignal& rhs){

CArray intval = lhs * (CArray&) rhs;
return FreqSignal(intval.giveaway());

}
250

FreqSignal
operator*(double& lhs, FreqSignal& rhs){

CArray intval = lhs * (CArray&) rhs;
return FreqSignal(intval.giveaway());

}
FreqSignal
operator*(Complex& lhs, FreqSignal& rhs){

CArray intval = lhs * (CArray&) rhs;
return FreqSignal(intval.giveaway()); 260

}

140

FreqSignal
operator/(FreqSignal& lhs, FreqSignal& rhs){

CArray intval = (CArray&) lhs / (CArray&) rhs;
return FreqSignal(intval.giveaway());

}
270

FreqSignal
operator/(FreqSignal& lhs, int& rhs){

CArray intval = (CArray&) lhs / rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal
operator/ (FreqSignal& lhs, float& rhs){

CArray intval = (CArray&) lhs / rhs;
return FreqSignal(intval.giveaway()); 280

}

FreqSignal
operator/(FreqSignal& lhs, double& rhs){

CArray intval = (CArray&) lhs / rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal
operator/ (FreqSignal& lhs, Complex& rhs){ 290

CArray intval = (CArray&) lhs / rhs;
return FreqSignal(intval.giveaway ());

}

FreqSignal
operator/(int& lhs, FreqSignal& rhs){

CArray intval l= hs / (CArray&) rhs;
return FreqSignal(intval.giveaway());

}
300

FreqSignal
operator/ (float& lhs, FreqSignal& rhs) {

CArray intval = lhs / (CArray&) rhs;
return FreqSignal(intval.giveaway());

}

FreqSignal
operator/(double& lhs, FreqSignal& rhs){

CArray intval = lhs / (CArray&) rhs;
return FreqSignal(intval.giveaway()); 310

}

FreqSignal
operator/(Complex& lhs, FreqSignal& rhs){

CArray intval = lhs / (CArray&) rhs;
return FreqSignal(intval.giveaway());

}

141

FreqSignal&
FreqSignal::operator+= (FreqSignal& rhs) { 320

CArray::operator+= ((CArray&) rhs);
return *this;

}

FreqSignal&
FreqSignal::operator+ = (int& rhs) {

CArray: :operator+= (rhs);
return *this;

}
330

FreqSignal&
FreqSignal::operator+= (float& rhs){

CArray::operator+=(rhs);
return *this;

}

FreqSignal&
FreqSignal::operator+= (double& rhs) {

CArray: :operator+= (rhs);
return *this; 340

FreqSignal&
FreqSignal::operator+= (Complex& rhs) {

CArray: :operator+= (rhs);
return *this;

}

FreqSignal&
FreqSignal: :operator- = (FreqSignal& rhs) { 350

CArray::operator- =((CArray&) rhs);
return *this;

}

FreqSignal&
FreqSignal: :operator-= (int& rhs) {

CArray:: operator-= (rhs);
return *this;

}
360

FreqSignal&
FreqSignal::operator-= (float& rhs) {

CArray: :operator- =(rhs);
return *this;

}

FreqSignal&
FreqSignal: :operator- =(double& rhs) {

CArray: :operator- = (rhs);
return *this; 370

}

142

FreqSignal&
FreqSignal::operator-= (Complex& rhs) {

CArray: :operator- = (rhs);
return *this;

}
FreqSignal&
FreqSignal: :operator*= (FreqSignal& rhs) { 380

CArray::operator*= ((CArray&) rhs);
return *this;

}

FreqSignal&
FreqSignal::operator*= (int& rhs) {

CArray::operator*= (rhs);
return *this;

}
390

FreqSignal&
FreqSignal::operator*= (float& rhs) {

CArray: :operator*=(rhs);
return *this;

}

FreqSignal&
FreqSignal: :operator*= (double& rhs) {

CArray: :operator*= (rhs);
return *this; 400

FreqSignal&
FreqSignal::operator*= (Complex& rhs) {

CArray: :operator*= (rhs);
return *this;

}

FreqSignal&
FreqSignal: :operator/= (FreqSignal& rhs) { 410

CArray::operator/= ((CArray&) rhs);
return *this;

}

FreqSignal&
FreqSignal::operator/= (int& rhs){

CArray: :operator/= (rhs);
return *this;

}
420

FreqSignal&
FreqSignal::operator/= (float& rhs){

CArray: :operator/= (rhs);
return *this;

}

143

FreqSignal&
FreqSignal::operator/= (double& rhs) {

CArray: :operator/= (rhs);
return *this; 430

}

FreqSignal&
FreqSignal::operator/= (Complex& rhs) {

CArray::operator/= (rhs);
return *this;

}

C.22 libDsp/libsrc/objects/TimeSignal.cc

// This file may look like C, but its really - *- C++ - *-
/ * FILE: / ti/ class/druid/src/ c++/libDsp/ TimeSignal. cc */
/ * A UTHOR: Daniel F. Gruhl <druid@mit. edu> */
/ * DATE LAST MODIFIED: Wed Jan 5 08:46:47 EST 1994 */
/ * DESCRIPTION: This file provides the procedures for the Time Signal */
/ * data type. For a complete discussion of this Class please see the */
/ * libDsp texi file. */

static
char rcsid[] = "$Id: TimeSignal.cc,v 1.3 1994/08/01 12:27:09 druid Exp $"; 10

#include "TimeSignal. h"
#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include "aifif .h"

TimeSignal::~ TimeSignal() {
#ifdef _FREE_TRACK 20

cout << "Timesignal Pre Free data == " << whatdatao << "\n";
#endif

Dealocate();
#ifdef _FREETRACK

cout << "Timesignal Post Free data == " << whatdataO << "\n";
#endif
}

void
TimeSignal::normalize() { 30

RangeVal r;
r = maxposneg();

double nval;
if (fabs(r.maxpos) > fabs(r.maxneg)){

nval = fabs(r.maxpos);

144

} else {
nval = fabs(r.maxneg);

}
40

for (long i=0; i<size(); i++)
operator[](i) /= nval;

}

void
TimeSignal::gplot(GPlot *g, char* title) {

if (TimeBase == 0) TimeBase = 1.0;
CArray::gplot(g, title, "Time (seconds) ", "Amplitude", 0, 1.0 / TimeBase);

}
50

TimeSignal::TimeSignal(long size)
CArray(size)

{
TimeBase = 1.0;

}

TimeSignal::TimeSignal(double base, long size)
CArray(size)

{60
TimeBase = base;

}

TimeSignal::TimeSignal(double base= , double time=1)
CArray((long) (base * time))

{
TimeBase = base;

}

TimeSignal::TimeSignal(double base, long size, Complex* data) 70

CArray (size, data)
{

TimeBase = base;
}

TimeSignal::TimeSignal(double base, CArray c)
CArray (c)

{
TimeBase = base;

} 80

RangeVal
TimeSignal: :maxposneg() {

RangeVal rval;
rval.maxpos = 0;
rval.maxneg = 0;
for (long i=0; i<size(); i++)

if (real(operator[](i)) > rval.maxpos) rval.maxpos =
real(operator[] (i));

else if (real(operator[](i)) < rval.maxneg) rval.maxneg = 90

145

real(operator[](i));
return rval;

}

Quantized
TimeSignal::QData() {

Quantized rval;
rval.num = size();
rval.data = new short [rval.num];
double ScaleNum; 100
RangeVal rv = maxposneg();

if (rv.maxpos == rv.maxneg) ;
else {

if (fabs(rv.maxpos) > fabs(rv.maxneg)) ScaleNum = 32000.0 / rv.maxpos;
else ScaleNum = 32000.0 / fabs(rv.maxneg);

for (long i=0; i<rval.num; i++)
rval.data[i] = (short) (real(operator[](i) * ScaleNum));

}110
return rval;

int
printRangeVal(RangeVal rv){

printf("%lg Ylg\n", rv.maxpos, rv.maxneg);

}
int
printComplex(Complex v) {

printf("%lg + %lg i\n", real(v), imag(v)); 120
}

TimeSignal::TimeSignal(double base, CArrayGiveAway& c)
: CArray(c){

TimeBase = base;
}

// TTimeSignal
// TTimeSignal::slice(long first, long last){
// return TimeSignal(TimeBase, CArray::slice (first, last)); 130
//I}}

void
TimeSignal::data_out(char* filename) {

FILE* outfile = fopen(filename, "w");
for (int i = 0; i<size(; i++)

fprintf(outfile, "%lg\t %lg \t %lg\n",
(double) i / TimeBase, real(operator[](i)), imag(operator[](i)));

fclose(outfile); 140
}

TimeSignal&
TimeSignal::operator=(TimeSignal& rhs){

146

TimeBase = rhs.time_base();
CArray::operator=((CArray&) rhs);
return *this;

}

TimeSignal&
TimeSignal::operator= (CArray& rhs) {

CArray::operator=(rhs);
return *this;

}

TimeSignal
operator+(TimeSignal& lhs, TimeSignal& rhs){

if (lhs.time_baseo != rhs.time_base() I
lhs.size() != rhs.size()){

cerr << "Fatal Error: <TimeSignal: :operator+> Tried to add";
cerr << " TimeSignals with different parameters. Bye...";

exit(1);

}
CArray intval = (CArray&) lhs + (CArray&) rhs;
return TimeSignal(rhs.time base(), intval.giveaway());

TimeSignal
operator+ (TimeSignal& lhs,

CArray intval = (CArray&)
return TimeSignal(lhs.time_

}

TimeSignal
operator+ (TimeSignal& lhs,

CArray intval = (CArray&)
return TimeSignal(lhs.time_

}

TimeSignal
operator+ (TimeSignal& lhs,

CArray intval = (CArray&)
return TimeSignal(lhs.time_

}

TimeSignal
operator+ (TimeSignal& lhs,

CArray intval = (CArray&)
return TimeSignal(lhs.time_

int& rhs) {
lhs + rhs;
base(), intval.giveaway());

float& rhs){
lhs + rhs;
base(), intval.giveawayo);

double& rhs){
lhs + rhs;
base(), intval.giveaway());

Complex& rhs){
lhs + rhs;
.base(), intval.giveaway());

TimeSignal
operator+(int& lhs, TimeSignal& rhs){

CArray intval = lhs + (CArray&) rhs;
return TimeSignal(rhs.time_base(), intval.giveaway());

}

147

TimeSignal
operator+(float& lhs, TimeSignal& rhs){ 200

CArray intval = lhs + (CArray&) rhs;
return TimeSignal(rhs.timebase(), intval.giveaway());

}

TimeSignal
operator+(double& lhs, TimeSignal& rhs){

CArray intval = lhs + (CArray&) rhs;
return TimeSignal(rhs.time baseO, intval.giveaway());

210

TimeSignal
operator+(Complex& lhs, TimeSignal& rhs){

CArray intval = lhs + (CArray&) rhs;
return TimeSignal(rhs.time_base(), intval.giveaway());

TimeSignal 220

operator- (TimeSignal& lhs, TimeSignal& rhs){
if (lhs.time_base0 != rhs.timebase() II

lhs.size0 != rhs.size()){
cerr << "Fatal Error: <TimeSignal: :operator-> Tried to add";
cerr << " TimeSignals with different parameters. Bye...";
exit(l);

CArray intval = (CArray&) lhs - (CArray&) rhs;
return TimeSignal(rhs.time_base(), intval.giveaway();

}230

TimeSignal
operator- (TimeSignal& lhs, int& rhs) {

CArray intval = (CArray&) lhs - rhs;
return TimeSignal(lhs.time base(), intval.giveaway());

TimeSignal
operator- (TimeSignal& lhs, float& rhs){

CArray intval = (CArray&) lhs - rhs; 240
return TimeSignal(lhs.time base(), intval.giveaway());

TimeSignal
operator- (TimeSignal& lhs, double& rhs){

CArray intval = (CArray&) lhs - rhs;
return TimeSignal(lhs.time base(), intval.giveaway());

TimeSignal 250
operator- (TimeSignal& lhs, Complex& rhs){

CArray intval = (CArray&) lhs - rhs;

148

return TimeSignal(lhs.timebase(), intval.giveaway());

}

TimeSignal
operator-(int& lhs, TimeSignal& rhs){

CArray intval -= hs - (CArray&) rhs;
return TimeSignal(rhs.timebase(), intval.giveaway());

} 260

TimeSignal
operator- (float& lhs, TimeSignal& rhs) {

CArray intval = lhs - (CArray&) rhs;
return TimeSignal(rhs.timebaseo, intval.giveaway());

}

TimeSignal
operator- (double& lhs, TimeSignal& rhs){

CArray intval = lhs - (CArray&) rhs; 270
return TimeSignal(rhs.time base(), intval.giveaway());

}

TimeSignal
operator- (Complex& lhs, TimeSignal& rhs) {

CArray intval = lhs - (CArray&) rhs;
return TimeSignal(rhs.time_base(), intval.giveaway());

}

280

TimeSignal
operator* (TimeSignal& lhs, TimeSignal& rhs){

if (lhs.time_base() != rhs.time_base() I
lhs.size() != rhs.size()){

cerr << "Fatal Error: <TimeSignal::operator*> Tried to add";

cerr << " TimeSignals with different parameters. Bye...";

exit(l);

}
CArray intval = (CArray&) lhs * (CArray&) rhs; 290
return TimeSignal(rhs.time base(), intval.giveaway());

I

TimeSignal
operator* (TimeSignal& lhs, int& rhs){

CArray intval = (CArray&) lhs * rhs;
return TimeSignal(lhs.time_base(), intval.giveaway());

}

TimeSignal 300
operator* (TimeSignal& lhs, float& rhs){

CArray intval - (CArray&) lhs * rhs;
return TimeSignal(lhs.timebase(), intval.giveaway());

I

TimeSignal

149

operator* (TimeSignal& lhs, double& rhs) {
CArray intval = (CArray&) lhs * rhs;
return TimeSignal(lhs.time_base(), intval.giveaway());

} 310

TimeSignal
operator*(TimeSignal& lhs, Complex& rhs){

CArray intval = (CArray&) lhs * rhs;
return TimeSignal(lhs.time_base(), intval.giveaway();

}

TimeSignal
operator*(int& lhs, TimeSignal& rhs) {

CArray intval = Ihs * (CArray&) rhs; 320
return TimeSignal(rhs.time base(), intval.giveaway());

}

TimeSignal
operator*(float& lhs, TimeSignal& rhs){

CArray intval = Ihs * (CArray&) rhs;
return TimeSignal(rhs.time_base(), intval.giveaway());

}

TimeSignal 330
operator*(double& lhs, TimeSignal& rhs){

CArray intval = lhs * (CArray&) rhs;
return TimeSignal(rhs.timebase(), intval.giveaway());

}

TimeSignal
operator*(Complex& lhs, TimeSignal& rhs){

CArray intval = lhs * (CArray&) rhs;
return TimeSignal(rhs.time_baseo, intval.giveaway();

}340

TimeSignal
operator/(TimeSignal& lhs, TimeSignal& rhs){

if (lhs.time_base() != rhs.time_base() I
lhs.size() != rhs.size()){

cerr << "Fatal Error: <TimeSignal: :operator/> Tried to add";
cerr << " TimeSignals with different parameters. Bye... ";
exit(l); 350

}
CArray intval = (CArray&) lhs / (CArray&) rhs;
return TimeSignal(rhs.time_base0, intval.giveaway();

TimeSignal
operator/(TimeSignal& lhs, int& rhs){

CArray intval = (CArray&) lhs / rhs;
return TimeSignal(lhs.time_base(), intval.giveawayo);

}360

150

TimeSignal
operator/(TimeSignal& lhs, float& rhs){

CArray intval = (CArray&) lhs / rhs;
return TimeSignal(lhs.timebase(), intval.giveawayo);

}

TimeSignal
operator/(TimeSignal& lhs, double& rhs) {

CArray intval = (CArray&) lhs / rhs; 370

return TimeSignal(lhs.time.base(), intval.giveaway());

}

TimeSignal
operator/(TimeSignal& lhs, Complex& rhs){

CArray intval = (CArray&) lhs / rhs;
return TimeSignal(lhs.time base(, intval.giveaway());

}

TimeSignal 380

operator/(int& lhs, TimeSignal& rhs){
CArray intval = lhs / (CArray&) rhs;
return TimeSignal(rhs.time base(, intval.giveawayo);

}

TimeSignal
operator/ (float& lhs, TimeSignal& rhs){

CArray intval = lhs / (CArray&) rhs;
return TimeSignal(rhs.timebase(), intval.giveaway();

1 390

TimeSignal
operator/(double& lhs, TimeSignal& rhs){

CArray intval = lhs / (CArray&) rhs;
return TimeSignal(rhs.timebase(), intval.giveaway();

}

TimeSignal
operator/(Complex& lhs, TimeSignal& rhs){

CArray intval = lhs / (CArray&) rhs; 400

return TimeSignal(rhs.timebase(), intval.giveawayo);
}

TimeSignal&
TimeSignal::operator+= (TimeSignal& rhs){

if (time_base() != rhs.time_base() I
CArray::size(!= rhs.size()){

cerr << "Fatal Error: <TimeSignal: :operator/> Tried to add";
cerr << " TimeSignals with different parameters. Bye...";
exit(l); 410

}
CArray::operator+=((CArray&) rhs);
return *this;

I

151

TimeSignal&
TimeSignal::operator+= (int& rhs) {

CArray::operator+= (rhs);
return *this;
S420

TimeSignal&
TimeSignal: :operator+= (float& rhs) {

CArray::operator+= (rhs);
return *this;

}

TimeSignal&
TimeSignal::operator+= (double& rhs) {

CArray: :operator+= (rhs); 430
return *this;

}

TimeSignal&
TimeSignal::operator+= (Complex& rhs) {

CArray: :operator+= (rhs);
return *this;

}

TimeSignal& 440
TimeSignal::operator- (TimeSignal& rhs) {

if (time baseo != rhs.time base() II
size() != rhs.size()){

cerr << "Fatal Error: <TimeSignal: :operator/> Tried to add";
cerr << " TimeSignals with different parameters. Bye...";
exit(l);

}
CArray::operator-= ((CArray&) rhs);
return *this;

450

TimeSignal&
TimeSignal::operator-= (int& rhs){

CArray: :operator-= (rhs);
return *this;

}

TimeSignal&
TimeSignal::operator-= (float& rhs) {

CArray::operator- =(rhs); 460
return *this;

}

TimeSignal&
TimeSignal::operator- = (double& rhs) {

CArray: :operator- = (rhs);
return *this;

}

152

TimeSignal& 470
TimeSignal::operator-=(Complex& rhs){

CArray: :operator- = (rhs);
return *this;

}

TimeSignal&
TimeSignal::operator*=(TimeSignal& rhs) {

if (time baseo != rhs.timebase() I
size() != rhs.size()){

cerr << "Fatal Error: <TimeSignal: :operator/> Tried to add"; 480
cerr << " TimeSignals with different parameters. Bye...";
exit(l);

}
CArray::operator*=((CArray&) rhs);
return *this;

}

TimeSignal&
TimeSignal::operator*= (int& rhs) {

CArray::operator*=(rhs); 490
return *this;

}

TimeSignal&
TimeSignal::operator*= (float& rhs) {

CArray::operator*= (rhs);
return *this;

}

TimeSignal& 500
TimeSignal::operator*= (double& rhs) {

CArray::operator*= (rhs);
return *this;

}

TimeSignal&
TimeSignal::operator*= (Complex& rhs) {

CArray::operator*= (rhs);
return *this;

510

TimeSignal&
TimeSignal::operator/=(TimeSignal& rhs) {

if (time_base(!= rhs.time_base() 1I
size() != rhs.size()){

cerr << "Fatal Error: <TimeSignal: :operator/> Tried to add";
cerr << " TimeSignals with different parameters. Bye...";
exit(l);

CArray::operator/= ((CArray&) rhs); 520
return *this;

}

153

TimeSignal&
TimeSignal::operator/=(int& rhs) {

CArray::operator/=(rhs);
return *this;

}

TimeSignal&
TimeSignal::operator/= (float& rhs) {

CArray: :operator/= (rhs);
return *this;

}

TimeSignal&
TimeSignal::operator/= (double& rhs) {

CArray::operator/=(rhs);
return *this;

}

TimeSignal&
TimeSignal::operator/= (Complex& rhs){

CArray: :operator/= (rhs);
return *this;

}

int
TimeSignal::readAiff(char* filename) {

AIFSTRUCT *aifs;
short *buf;
int i;
long pvb[16], pvl;

// Open reading file.
aifs = aifNew();
if ((aifOpenRead(aifs, filename))) {

cerr << "Cannot open AIFF file
exit(l);
}

<" << filename << "> for reading.

// Read in the parameters of this file
pvl = 0;
pvb[pvl++] = AIF_P_FILETYPE; ++pvl; /* 1 */
pvb[pvl++] = AIFP_NFRAMES; ++pvl; /* 3 */
pvb[pvl++] = AIF_P_SAMPSIZE; ++pvl; /* 5 */
pvb[pvl++] = AIFP_CHANNELS; ++pvl; /* 7 */
pvb[pvl++] = AIF_P_SAMPRATE; ++pvl; /* 9 */
pvb[pvl++] = AIF_P_COMPID; ++pvl; /* 11 */
pvb[pvl++] = AIF_PCOMPNAME; ++pvl; /* 13 */
aifGetParams(aifs, pvb, pvl);

#ifdef _PRINT_AIFF_DATA
printf("-*- Reading In Data -*-\n");

154

Bye...\n";

printf("Sampling Rate: %g\n", FLOATofLONG(pvb[9]));
printf("Channels: %ld\n", pvb[7]);
printf("Bits: %ld\n", pvb[5]);
printf("Frames in file: %Id\n", pvb[3]); 580
printf("Summery of params:\n");
for (long prms = 0; prms < 14; prms++)

printf("\tparam[%1d] = %Id\n", prms, pvb[prms]);
#endif

if (pvb[5] != 16){
cerr << "Tried to read non 16 bit signal. Bye...\n";
exit (1);

590

resize(pvb[3]);

TimeBase = (double) FLOATofLONG(pvb[9]);

buf = new short[pvb[3]];
aifReadFrames(aifs, buf, pvb[3]);
aifClose(aifs);

for (i=0; i<pvb[3]; i++)
(*this)[i] = (Complex) buf[i]; 600

delete [] buf;
aifFree(aifs);

return 1;
}

int
TimeSignal::writeAiff(char* filename) {

AIFSTRUCT *aifs; 610
BYTE *buf;
long pvb[16], pvl;
Quantized q;

aifs = aifNew();

pvl = 0;
pvb[pvl++] = AIF P_FILETYPE; ++pvl; /* 1 */
pvb[pvl++] = AIF P_NFRAMES; ++pvl; /* 3 */
pvb[pvl++] = AIFP_SAMPSIZE; ++pvl; /* 5 */ 620
pvb[pvl++] = AIFP_CHANNELS; ++pvl; /* 7 */
pvb[pvl++] = AIF P_SAMPRATE; ++pvl; /* 9 */

pvb[1] = 1;
pvb[3] = (long) size();
pvb[5] 16;
pvb[7] = 1;
float srate = (float) TimeBase;
pvb[9] = LONGofFLOAT(srate);
aifSetParams(aifs, pvb, pvl); 630

155

#ifdef PRINT_AIFF_DATA
printf("-*- Write Out Data -*-\n");
printf("Sampling Rate: %g\n", FLOATofLONG(pvb[9]));
printf("Channels: %ld\n", pvb[7]);
printf("Bits: %ld\n", pvb[5]);
printf("Frames in file: %ld\n", pvb[3]);
printf("Summery of params:\n");
for (long prms = 0; prms < 14; prms++)

printf(" \tparam[%ld] = %ld\n", prms, pvb[prms]); 640
#endif

if ((aifOpenWrite(aifs, filename, UNK_LEN) < 0)){
cerr << "Cannot open AIFF file <" << filename << "> for writing. Bye...\n";
exit(l);

}

q = (*this).QData();
buf = (BYTE *) q.data;
aifWriteFrames(aifs, buf, pvb[3]); 650

aifClose(aifs);
aifFree(aifs);
delete [] buf;
return 1;

void
TimeSignal::resize(long newsize) {

CArray::resize(newsize); 660

void
TimeSignal::stretch(long newsize) {

CArray:: stretch(newsize);
}

TimeSignal
TimeSignal::delay(double seconds) {

long samples = (long) rint(seconds/timebase()); 670
TimeSignal rval = delay(samples);
return TimeSignal((*this).time_base0, rval.giveawayo);

}

TimeSignal
TimeSignal::delay(long samples){

long i;

Complex* rval = new Complex[(*this).sizeo];
680

long start, stop, off;

off = -samples;
start = -samples;

156

stop = (*this).sizeo + samples;

if (start < 0) start = 0;
if (stop >= (*this).sizeo) stop = (*this).size() - 1;

for (i=start; i<stop; i++) 690
rval[i] = (*this)[i - off];

return TimeSignal((*this).time_baseo, (*this).size(), rval);

C.23 libDsp/libsrc/objects/DSPtools.cc

/ * FILE: / ti/ classl druid/src/ c + +/libDsp/DSPtools. cc */
/* AUTHOR: Daniel F. Gruhl <druid@mit.edu> */
/ * DATE LAST MODIFIED: Tue Feb 1 11:57:40 EST 1994 */
/ * DESCRIPTION: This file contains the functions implemented in the */
/ * libDsp toolkit. Please see the libDsp texi file for full */
/ * odcumentation of these functions.

static char rcsid[] = "$Id: DSPtools.cc,v 1.3 1994/08/01 12:27:05 druid Exp $";

#include <math.h> 10

#ifdef NEEDS_GNU COMPLEX
#include "GnuExtras/Complex. h"
#else
#include <Complex.h>
#endif

#include "TimeSignal. h"

TimeSignal 20
FullWaveRectifier(TimeSignal& t){

Complex* c = new Complex[t.sizeo];
register long s = t.size();
for (long i=0; i<s; i++)

c[i] = fabs(real(t[i]));
return TimeSignal(t.time_baseo, s, c);

TimeSignal
HalfWaveRectifier(TimeSignal& t) { 30

Complex* c = new Complex[t.size(];
register long s = t.size();
for (long i=0; i<s; i++){

if (real(t[i]) > 0.0)
c[i] = t[i];

else
t[i] = 0.0;

}
// ^ Magic for, if t is positive, assign it to c, otherwise make c = 0

157

return Timedignaqt.timeDaset), s, c);

TimeSignal
ZeroPad(long num, TimeSignal& T){

Complex* c = new Complex[num];
for (long i=0; i<T.size(; i++)

c[i] = T[i];
for (i = T.size(); i<num; i++)

c[i] = 0.0; 50
return TimeSignal(T.time_base(), num, c);

}

C.24 libDsp/libsrc/objects/Filters.cc

#include "Filters .h"

TimeSignal
Filter(TimeSignal& t, FilterKernal k){

Complex *w, *outdata;
long fbnum, i, j;

// Make and initialize storage to
if (k.an > k.bn) fbnum = k.an;
else fbnum - k.bn;
w = new Complex[fbnum];
for (i=0; i<fbnum; i++) w[0] = 0;

// Allocate output storage
outdata = new Complex[t.size()];

// Do filter run
for (i=0; i<t.size(; i++){ 20

// CCalculate new feedback term
w[0] = t[i];
for (j=1; j<k.an; j++)

w[O] += k.a[j] * w[j];

// And the feed forward term
for (j=0; j<k.bn; j++)

outdata[i] += k.b[j] * w[j];

// And shuffle the stored data 30
for (j=fbnum-1; j>0; j--)

w[j] = w[j-1];
}

158

m· n· 1

delete [] w;
return TimeSignal(t.time_base(, t.size(, outdata);

TimeSignal
ApplyFIR(TimeSignal& t, TimeSignal& filt) { 40

Complex *c = new Complex[t.sizeO];
long i, j, index;
long num = filt.size();

for (i=0; i<t.size(; i++){
c[i] = 0;
for (j=0; j<num; j++){

index = i - num/2 + j;
if (index > 0 1I index < t.size())

c[i] += t[index] * filt[j]; 50

}

return TimeSignal(t.timebase(, t.sizeO, c);
}

// From Op and Sch p. 447
TimeSignal
DSPWindowBartlett(TimeSignal& t) {

Complex* c = new Complex[t.sizeo]; 60

long M = t.size();

// Actually do the window
for (long i=0; i<=M/2; i++)

c[i] = t[i] * (2.0 / ((double) M) * ((double) ((i + M/2) % M)));
for (i=M/2+1; i<M; i++)

c[i] = t[i] * (2.0 - 2.0 / (double) M * (double) ((i + M/2) % M));

return TimeSignal(t.time_base(, t.size(, c);
} 70

// From Op and Sch p. 447
TimeSignal
DSPWindowHanning(TimeSignal& t) {

Complex* c = new Complex[t.size()];
long M = t.size();

// Actually do the window
for (long i=O; i<M; i++)

c[i] = t[i] * (.5 - .5 * cos 80
(2 * PI * (double) ((i + M/2) % M) / (double) M));

return TimeSignal(t.timebase(, t.sizeO, c);
}

// From Op and Sch p. 447
TimeSignal
DSPWindowHamming(TimeSignal& t) {

159

Complex* c = new Complex[t.sizeo];
long M = t.size();

//
for

Actually do the window
(long i=O; i<M; i++)

c[i] = t[i] * (.54 - .46 * cos
(2 * PI * (double) ((i + M/2) % M) / (double) M));

return TimeSignal(t.time_base(), t.size(), c);

C.25 libDsp/libsrc/objects/CArray.cc

// This may look like C code, but it's really - *- C++ - *-
/ * FILE: / ti/ classl druid/src/ c++/ libDsp/ CArray. cc */
/ * AUTHOR: Daniel F. Gruhl <druid@mit. edu> */
/ DATE LAST MODIFIED: Tue May 17 08:18:27 EDT 1994 */
/ * DESCRIPTION: This file contains the functions necessary for the */
/ * Complex array data type. For a full discussion of this data type, */
/ please see the libDsp texi file. */

char static rcsid[= "$Id:

#include
#include
#include
#include
#include

CArray.cc,v 1.2 1994/08/01 12:27:05 druid Exp $";

"CArray. h"
<stdio.h>
<string.h>
<stdlib.h>
<String.h>

I/*
@setfilename carray-info
SECTION

CArray 20

DESCRIPTION
A CArray is an array of Complex variables.

Don't you wish you had some?

FUNCTION
CArray::AngleArray

160

SYNOPSIS
DblVector& CArray::AngleArray,
0;

DESCRIPTION
Return a @var{DblVector} of the phase angle of every point in the
CArray. 40

*/

double*
CArray::AngleArray(double* mdata) {

double* rval = mdata;
if (rval == NULL){

cerr << "CArray: :PhaseArray --- cannot allocate memory... \n";
exit ();

} 50
for (long i = 0; i<size(; i++)

rval[i] = arg(data[i]);
return rval;

/*
FUNCTION

CArray::MagnitudeArray

SYNOPSIS 60

DblVector& CArray::MagnitudeArrayO;

DESCRIPTION
Return a @var{DblVector} of the magnitude of every point in the
CArray.

*/

double*
CArray::MagnitudeArray(double* mdata) {

double* rval = mdata; 70
for (long i = 0; i<sizeo; i++)

rval[i] = abs(data[i]);
return rval;

}

//CContructors and destructors for CArray. These provide for the
//ccreation and destruction of Complex Arrays

// CCArray::CArray Of
// num items = 0; 80

// data = new Complexi]; // If the array does not exist I just
// // give it one element. This simplifies
// // the destruction and resizing commands.
ong}

long

161

CArray::setsize (long items) {
num items = items;
data = new Complex[items];

#ifdef _FREE_TRACK 90

cerr << "CARRAY is Creating " << (int) data << "\n" << flush;
#endif

return items;
}
CArray::CArray (long items=1){

if (items < 0) {
cerr << "FATAL ERROR: <CArray: :CArray(long)> Attempted create\n";
cerr << " an array with a negative number of elements. Bye...\n";
exit(l); 100

}
setsize(items);

}
CArray::-CArray() {

Dealocate();

}
void
CArray::Dealocate() { 110
#ifdef FREETRACK

cerr << "CARRAY is Thinking of Freeing " << (int) data << "\n" << flush;
#endif

if (data != NULL){
#ifdef _FREE-TRACK

cerr << "CARRAY is Freeing " << (int) data << "\n" << flush;
#endif

delete [] data;
}

data = NULL; 120
}

// Fun with sizing
// Return the number of elements in the stored array. I know this
// isn't really the "size" in bytes but it's the convention I'm using.

long
CArray::size() {

return num items;
}

130

// Resize just trashes the array and creates a new one.
void
CArray::resize(long newsize) {

delete [] data;
setsize(newsize);

}

// Stretch makes a new array of a given size and copies the elements
// over to the new array. Truncation of extra elements is done

void 140

162

CArray::stretch(long newsize) {
Complex* hold = data;
setsize(newsize);
for (int i=O; i< (newsize < num items ? newsize: numitems); i++)

data[i] = hold[i];
delete [] hold;
return;

CArray 150
CArray::slice(long first, long last) {

long size = last - first + 1;
Complex* c = new Complex[size];
for (long i=O; i<size; i++)

c[i] = data[i+first];
return CArray(size, c);

// Operator Magic 160
// Returns the actual array element indexed.
Complex&
CArray::operator n (long index){
#ifdef DEBUG1

if (index < 0 II index >= num items){
cerr << "FATAL ERROR: <CArray: :operator[]> Attempted to index\n";
cerr << " element outside of array bounds. Bye.. .\n";
exit(1);

}
#endif 170

return data[index];
}

// Equal in many flavors...
CArray&
CArray::operator= (CArray& rhs) {

if (this==&rhs) return *this; // If someone has been clever....
if (num items != rhs.size() {

delete [] data;
num items = rhs.sizeo; 180

data = new Complex[num jtems];
}
for (int i=0; i<num items; i++)

data[i] = rhs[i];

return *this;
}

// Assigning a int 190
CArray&
CArray::operator= (int& rhs) {

for (int i=O; i<num items; i++)
data[i] = rhs;

163

return *this;
}

// Assigning a int
CArray&
CArray::operator= (float& rhs) { 200

for (int i=O; i<numitems; i++)
data[i] = rhs;

return *this;

}

// Assigning a int
CArray&
CArray::operator= (double& rhs){

for (int i=O; i<num items; i++)
data[i] = rhs; 210

return *this;

}

// Assigning a int
CArray&
CArray::operator= (Complex& rhs){

for (int i=O; i<numitems; i++)
data[i] = rhs;

return *this;
}220

CArray&
CArray::operator=(CArrayGiveAway& c) {

if (data != NULL) delete [] data;
data = c.data;
num items = c.num items;
c.data = NULL;
c.num_items = 0;
return *this;

230

// operator +=... Define for all
CArray&
CArray::operator+=(CArray& rhs){

if (size() != rhs.size()){
cerr << "Fatal Error: <CArray: :operator+=> tried to add two arrays\n";
cerr << " of different size. Bye...";
exit(l);

240

for (long i=0; i<numitems; i++)
data[i] += rhs[i];

return *this;
}

CArray&
CArray::operator+=(int& rhs) {

164

for (long i=0; i<num_items; i++)
data[i] += rhs; 250

return *this;

}

CArray&
CArray::operator+= (float& rhs){

for (long i=O; i<num_items; i++)
data[i] += rhs;

return *this;
}

260

CArray&
CArray::operator+= (double& rhs) {

for (long i=O; i<num_items; i++)
data[i] += rhs;

return *this;
}

CArray&
CArray::operator+= (Complex& rhs) {

for (long i=0; i<numitems; i++) 270
data[i] += rhs;

return *this;
}

// operator -=... Define for all
CArray&
CArray::operator-=(CArray& rhs){

if (size() != rhs.size()){
cerr << "Fatal Error: <CArray: :operator+=> tried to add two arrays\n";
cerr << " of different size. Bye..."; 280
exit(l);

}

for (long i=0O; i<numitems; i++)
data[i] -= rhs[i];

return *this;

}

CArray& 290
CArray::operator-=(int& rhs){

for (long i=O; i<numitems; i++)
data[i] -= rhs;

return *this;
}

CArray&
CArray::operator-=(float& rhs){

for (long i=0O; i<numitems; i++)
data[i] -= rhs; 300

return *this;
}

165

CArray&
CArray::operator-=(double& rhs) {

for (long i=0; i<num items; i++)
data[i] -= rhs;

return *this;
}

310

CArray&
CArray::operator-= (Complex& rhs){

for (long i=0O; i<num_items; i++)
data[i] -= rhs;

return *this;

}

// operator *=... Define for all
CArray&
CArray::operator*= (CArray& rhs){ 320

if (size() != rhs.size()){
cerr << "Fatal Error: <CArray::operator+=> tried to add two arrays\n";
cerr << " of different size. Bye.. .";
exit(l);

}

for (long i=0; i<num items; i++)
data[i] *= rhs[i];

return *this; 330
}

CArray&
CArray::operator*=(int& rhs){

for (long i=O; i<num items; i++)
data[i] *= rhs;

return *this;

}

CArray& 340
CArray: :operator*= (float& rhs) {

for (long i=O; i<num items; i++)
data[i] *= rhs;

return *this;

}

CArray&
CArray: :operator*= (double& rhs) {

for (long i=O; i<num_items; i++)
data[i] *= rhs; 350

return *this;
}

CArray&
CArray::operator*=(Complex& rhs) {

for (long i=O0; i<num items; i++)

166

data[i] *= rhs;
return *this;

360

// operator /=... Define for all
CArray&
CArray::operator/=(CArray& rhs){

if (size() != rhs.size()){
cerr << "Fatal Error: <CArray: :operator+=> tried to add two arrays\n";
cerr << " of different size. Bye...";
exit(1);

}

for (long i=O; i<num items; i++) 370
data[i] /= rhs[i];

return *this;

}

CArray&
CArray::operator/= (int& rhs) {

for (long i=O; i<numitems; i++)
data[i] /= rhs;

return *this; 380
}

CArray&
CArray::operator/= (float& rhs) {

for (long i=O; i<numjitems; i++)
data[i] /= rhs;

return *this;
}

CArray& 390
CArray::operator/= (double& rhs) {

for (long i=O; i<numjitems; i++)
data[i] /= rhs;

return *this;
}

CArray&
CArray::operator/= (Complex& rhs) {

for (long i=O; i<num items; i++)
data[i] /= rhs; 400

return *this;
}

// operator +... First, adding two complex arrays. They MUST be the
// same size.
CArray
operator+(CArray& lhs, CArray& rhs) { 410

167

if (lhs.size() != rhs.size() (
cerr << "Fatal Error: <operator+(CArray,CArray)> Tried to add";
cerr << "Two streams of non identical size. Bye...";

}
Complex *result = new Complex[lhs.size(];
for (int i=O; i<lhs.sizeO; i++)

result[i] = lhs[i] + rhs[i];
return CArray(lhs.size(, result);

420

CArray
operator+(CArray& lhs, int& rhs){

Complex* result = new Complex[lhs.sizeo];
register long I = lhs.size();
for (int i=O; i<l; i++)

result[i] = lhs[i] + rhs;
return CArray(lhs.sizeO, result);

CArray 430
operator+(CArray& lhs, float& rhs){

Complex* result = new Complex[lhs.sizeo];
for (int i=O; i<lhs.sizeO; i++)

result[i] = lhs[i] + rhs;
return CArray(lhs.size(), result);

}

CArray
operator+(CArray& lhs, double& rhs){
register long 1 = lhs.sizeo; 440
Complex* result = new Complex[lhs.size()];
for (int i=O; i<l; i++)

result[i] = lhs[i] + rhs;
return CArray(lhs.size(), result);

CArray
operator+(CArray& lhs, Complex& rhs) {

Complex* result = new Complex[lhs.size()];
for (int i=O; i<lhs.size(; i++) 450

result[i] = lhs[i] + rhs;
return CArray(lhs.size(), result);

I
CArray
operator+(int& lhs, CArray& rhs){

Complex* result = new Complex[rhs.sizeo];
for (int i=O; i<rhs.size(; i++)

result[i] = lhs + rhs[i];
return CArray(rhs.size(), result); 460

}
CArray
operator+(float& lhs, CArray& rhs) {

Complex* result = new Complex[rhs.size()];

168

for (int i=O; i<rhs.sizeo; i++)
result[ij = lhs + rhs[i];

return CArray(rhs.size(), result);

}
CArray
operator+(double& lhs, CArray& rhs) { 470

Complex* result = new Complex[rhs.size()];
for (int i=O; i<rhs.size(; i++)

result[i] = lhs + rhs[i];
return CArray(rhs.size(, result);

}
CArray
operator+(Complex& lhs, CArray& rhs) {

Complex* result = new Complex[rhs.size()];
for (int i=O; i<rhs.sizeO; i++)

result[i] = lhs + rhs[i]; 480

return CArray(rhs.size(), result);

I

// operator -... First, subtracting two complex arrays. They MUST be the
// same size.
CArray
operator- (CArray& lhs, CArray& rhs) {

if (lhs.size() != rhs.sizeO) {
cerr << "Fatal Error: <operator+(CArray,CArray)> Tried to add"; 490
cerr << "Two streams of non identical size. Bye...";

}
Complex* result = new Complex[lhs.sizeo];
for (int i=O; i<lhs.sizeo; i++)

result[i] = lhs[i] - rhs[i];
return CArray(lhs.size(), result);

CArray
operator-(CArray& lhs, int& rhs){ 500

Complex* result = new Complex[lhs.sizeO];
for (int i=O; i<lhs.sizeO; i++)

result[i] = lhs[i] - rhs;
return CArray(lhs.size(, result);

}

CArray
operator-(CArray& lhs, float& rhs){

Complex* result = new Complex[lhs.size(];
for (int i=O; i<lhs.sizeO; i++) 510

result[i] = lhs[ij - rhs;
return CArray(lhs.size(), result);

}

CArray
operator-(CArray& lhs, double& rhs){

Complex* result = new Complex[lhs.sizeO];
for (int i=O; i<lhs.sizeo; i++)

169

result[i] = lhs[i] - rhs;
return CArray(lhs.size(, result); 520

CArray
operator-(CArray& lhs, Complex& rhs){

Complex* result = new Complex[lhs.size()];
for (int i=O; i<lhs.sizeo; i++)

result[i] = lhs[i] - rhs;
return CArray(lhs.size(), result);

}
530

CArray
operator-(int& lhs, CArray& rhs){

Complex* result = new Complex[rhs.size(];
for (int i=O; i<rhs.sizeO; i++)

result[i] = lhs - rhs[i];
return CArray(rhs.size(), result);

}

CArray
operator- (float& lhs, CArray& rhs) { 540

Complex* result = new Complex[rhs.size(];
for (int i=O; i<rhs.sizeO; i++)

result[i] = lhs - rhs[i];
return CArray(rhs.size(), result);

}

CArray
operator- (double& lhs, CArray& rhs) {

Complex* result = new Complex[rhs.size(];
for (int i=O; i<rhs.sizeO; i++) 550

result[i] = lhs - rhs[i];
return CArray(rhs.size(), result);

}

CArray
operator-(Complex& lhs, CArray& rhs){

Complex* result = new Complex[rhs.size(];
for (int i=O; i<rhs.size(; i++)

result[i] = lhs - rhs[i];
return CArray(rhs.sizeO, result); 560

// operator *... First, multiply two complex arrays. They MUST be the
// same size.
CArray
operator*(CArray& lhs, CArray& rhs){

if (lhs.size() != rhs.sizeO) {
cerr << "Fatal Error: <operator+(CArray,CArray)> Tried to add";
cerr << "Two streams of non identical size. Bye...";
}570
Complex* result = new Complex[lhs.size()];
for (int i=O; i<lhs.sizeo; i++)

170

result[i] = lhs[i] * rhs[i];
return CArray(lhs.size(), result);

}

CArray
operator*(CArray& lhs, int& rhs){

Complex* result = new Complex[lhs.size()];
for (int i=O; i<lhs.sizeo; i++) 580

result[i] = lhs[i] * rhs;
return CArray(lhs.size(), result);

}
CArray
operator*(CArray& lhs, float& rhs){

Complex* result = new Complex[lhs.size()];
for (int i=0; i<lhs.sizeo; i++)

result[i] = lhs[i] * rhs;
return CArray(lhs.size(), result); 590

CArray
operator*(CArray& lhs, double& rhs){

Complex* result = new Complex[lhs.size()];
for (int i=O; i<lhs.sizeo; i++)

result[i] = lhs[i] * rhs;
return CArray(lhs.size(), result);

}
600

CArray
operator*(CArray& lhs, Complex& rhs){

Complex* result = new Complex[lhs.size()];
for (int i=O; i<lhs.size(; i++)

result[i] = lhs[i] * rhs;
return CArray(lhs.size(), result);

}
CArray
operator*(int& lhs, CArray& rhs){ 610

Complex* result = new Complex[rhs.size()];
for (int i=O; i<rhs.size(); i++)

result[i] = lhs * rhs[i];
return CArray(rhs.size(), result);

}

CArray
operator*(float& lhs, CArray&rhs){

Complex* result = new Complex[rhs.size()];
for (int i=0; i<rhs.size(; i++) 620

result [i] = lhs * rhs[i];
return CArray(rhs.size(), result);

}

CArray
operator*(double& lhs, CArray& rhs){

171

Complex* result = new Complex[rhs.size()];
for (int i=O; i<rhs.size(; i++)

result[i] = lhs * rhs[i];
return CArray(rhs.size(), result); 630

}

CArray
operator*(Complex& lhs, CArray& rhs) {
Complex* result = new Complex[rhs.sizeO];

for (int i=O; i<rhs.size(; i++)
result[i] = lhs * rhs[i];
return CArray(rhs.size(, result);

}
640

// operator /... First, divide two complex arrays. They MUST be the
// same size.
CArray
operator/(CArray& lhs, CArray& rhs) {

if (lhs.size() != rhs.size()){
cerr << "Fatal Error: <operator+(CArray,CArray)> Tried to add";
cerr << "Two streams of non identical size. Bye...";

}
Complex* result = new Complex[lhs.size()];

for (int i=O; i<lhs.size(; i++) 650so

result[i] = lhs[i] / rhs[i];
return CArray(lhs.size(, result);

}

CArray
operator/(CArray& lhs, int& rhs){
Complex* result = new Complex[lhs.sizeo];

for (int i=O; i<lhs.sizeo; i++)
result[i] = lhs[i] / rhs;
return CArray(lhs.size(), result); 660

}

CArray
operator/(CArray& lhs, float& rhs){
Complex* result = new Complex[lhs.sizeo];

for (int i=O; i<lhs.size(); i++)
result[i] = lhs[i] / rhs;
return CArray(lhs.size(), result);

}
670

CArray
operator/(CArray& lhs, double& rhs) {
Complex* result = new Complex[lhs.sizeO];

for (int i=O; i<lhs.sizeO; i++)
result[i] = lhs[i] / rhs;
return CArray(lhs.size(), result);

}

CArray
operator/(CArray& lhs, Complex& rhs) { 680

172

Complex* result = new Complex[lhs.size()];
for (int i=0; i<lhs.sizeo; i++)

result[i] = lhs[i] / rhs;
return CArray(lhs.size(), result);

}

CArray
operator/(int& lhs, CArray& rhs){
Complex* result = new Complex[rhs.size(]; 690

for (int i=0; i<rhs.size(; i++)
result[i] = lhs / rhs[i];
return CArray(rhs.size(), result);

}

CArray
operator/(float& lhs, CArray& rhs){
Complex* result = new Complex[rhs.size()];

for (int i=O; i<rhs.size(); i++)
result[i] = lhs / rhs[i]; 700

return CArray(rhs.size(), result);
}

CArray
operator/(double& lhs, CArray& rhs){
Complex* result = new Complex[rhs.size()];

for (int i=O; i<rhs.size(); i++)
result[i] = lhs / rhs[i];
return CArray(rhs.size(), result);

} 710

CArray
operator/(Complex& lhs, CArray& rhs) {
Complex* result = new Complex[rhs.size()];

for (int i=0O; i<rhs.size(); i++)
result[i] = lhs / rhs[i];
return CArray(rhs.size(, result);

}

ostream& 720
operator < (ostream& output, CArray& carray) {

char buffer[4096], bufl[128];
strcpy(buffer, "{ ");
long mval = carray.size();
Complex mvall;
for (int i=O; i<mval; i++){

mvall = carray.operator [](i);
sprintf(bufl, " (%1g, %lg) ", real(mvall),

imag(mvall));
strcat(buffer, bufl); 730

}
strcat(buffer, "} ");

return output << buffer;
}

173

CArrayGiveAway
CArray::giveaway() {

CArrayGiveAway rval;
rval.data = data;
rval.num_items = num_items;

numjitems = 0;
data = NULL;

return rval;

// This Code predates when
// CComplex&
//CCArray::it(long index){
// return data[index];
//}}

I knew about the operator functions....

void
CArray::showme(long i) {

printf(" (%lg, %•g) \n", real(data[i]), imag(data[i]));

void
CArray::gplot(GPlot* gp, char* title, char* xlabel, char* ylabel,

double offset, double range, long stepoff=0){
char realdata[256], imagdata[256];
FILE *rdata, *idata;
strcpy(realdata, GPUniqueName();
strcpy(imagdata, GPUniqueNameo);
rdata = fopen(realdata, "w");
idata = fopen(imagdata, "w");

This writes out the data for plotting. It allows for the data to
be offset shifted (used in FreqSignal to put the 0 frequency in
the middle of the plot).

for (long i=0; i<numjitems; i++){
fprintf(rdata, "%lg %lg\n", offset + i * range,

real(data[(i+stepoff)%num_items]));
fprintf(idata, "%lg %lg\n", offset + i * range,

imag(data[(i+stepoff)%numjitems]));
}

fclose(rdata);
fclose(idata);
fprintf((FILE*) gp, "set title '%s'\n", title);
fprintf((FILE*) gp, "set xlabel '%s'\nset ylabel '%s'\n",

xlabel, ylabel);
fprintf((FILE*) gp, "plot '%s' title 'real' with lines, ", (char *)realdata);
fprintf((FILE*) gp, " '%s' title 'imag' with lines\n",(char *)imagdata);

174

fflush((FILE*) gp);

}

double
Maxabs(CArray& c){

double d = 0.0;
for (long i=0; i<c.sizeO; i++)

if (abs(c[i]) > d) d = abs(c[i]);
return d;

C.26 libDsp/include/

The files not listed here are part of the aiff distribution mentioned above.

C.27 libDsp/include/Makefile.in

prefix
head
incdir

/usr/local
$ (prefix)
$(head) /include

srcdir = @srcdir@

INSTALL = @INSTALLO
INSTALL-PROGRAM = @INSTALLPROGRAM@
INSTALLDATA = DINSTALLDATA@

HEADERS=*.h

all:

install:
$(INSTALL_DATA) $(HEADERS) $(incdir)

clean:

C.28 libDsp/include/CommandLine.h

/ * FILE: / User/druid/src/c+-+/ALPHA-libDsp/libDsp/libsrc/ Command.cc */
/ * AUTHOR: Daniel F. Gruhl <druid@mit.edu> */
/" DATE LAST MODIFIED: Mon Apr 18 14:31:03 EDT 1994 */
/ * DESCRIPTION: These function parse command lines in a reasonable way. */

#ifndef _COMMANDLINE_ H

175

#define _COMMANDLINEH

// commandname 10
// <-switch>
// <parameter>

#include <stdio.h>
#include <stdarg.h>
#include <iostream.h>
#include <String.h>

20

class CommandLine {
String command_name;
String* switches;
String* svalues;
String* parameters;
String help msg;
long s_count;
long p count;

public:
CommandLine(int argc, char** argv); 30

~CommandLine();
int parse(int argc, char** argv);
int switchset(String s);
long how manyswitches() {return s_count;};
long howmanyparams() {return pcount;};
String Parameter(long ww);
String Switch(long ww);
char* csParameter(long ww);
char* csSwitch(long ww);
void helpset(String hmsg){help_msg = h msg;}; 40
void issue_help();
void dieo);
void dieonswitch(String flag);
void die_if switch_count_not between(long low, long high);
void die_ifswitch_not_oneof(int how-many,...);
void die_if_param_count_not_between(long low, long high);

};

#endif 50

C.29 libDsp/include/Consts.h

// This file may look like C, but it's really - *- C++ -
/ * FILE: / ti/class/druid/src/c++/libDsp/Consts.h */

176

/ * AUTHOR: Daniel F. Gruhl <druid@mit.edu> */
/ * DATE LAST MODIFIED: Wed Jan 5 08:58:09 EST 1994 */
/ * DESCRIPTION: This file provideds constatnts that may not otherwise */
/ * be available to the libDsp library. */

// $Id: Consts.h,v 1.1 1994/06/27 15:01:46 druid Exp $

#ifndef PI to
#define PI 3.1415926535897932384626433
#endif

C.30 libDsp/include/DSPtools.h

// This file may look like C, but it's really - *- C++ -
/ * FILE: / ti/ classl druid/src/ c++/libDsp/DSPtools.h */
/ * A UTHOR: Daniel F. Gruhl <druid@mit. edu> */
/ * DATE LAST MODIFIED: Wed Jan 5 08:56:01 EST 1994 */
/ * DESCRIPTION: This file infludes the headers you need to run the */
/ * libDsp toolkit. For a full description of the functions in this */
/ * toolkit, please see the libDsp texi file. */

// $Id: DSPtools.h,v 1.1 1994/06/27 15:01:47 druid Exp $
10

#ifndef _DSPTOOLS_H
#define DSPTOOLSH
#include <math.h>
#include "TimeSignal. h"
#include "FreqSignal. h"
#include "FreqSlice. h"
#include "Consts .h"

TimeSignal ZeroPad(long num, TimeSignal& T);
TimeSignal FullWaveRectifier(TimeSignal& t); 20

TimeSignal HalfWaveRectifier(TimeSignal& t);

#endif //DSPTOOLS H

C.31 libDsp/include/Consts.h

// This file may look like C, but it's really - *- C++ -
/ * FILE: /ti/class/druid/src/ c++/libDsp/Consts.h */
/ * AUTHOR: Daniel F. Gruhl <druid@mit. edu> */
/ * DATE LAST MODIFIED: Wed Jan 5 08:58:09 EST 1994 */
/ * DESCRIPTION: This file provideds constatnts that may not otherwise */
/ * be available to the libDsp library. */

177

// $Id: Consts.h,v 1.1 1994/06/27 15:01:46 druid Exp $

#ifndef PI to

#define PI 3.1415926535897932384626433
#endif

C.32 libDsp/include/Dsp.h

// This file may look like C, but it's really - *- C++ -
/ * FILE: / User/l druid/src/ c++/libDsp/include/Dsp.h */
/ * A UTHOR: Daniel F. Gruhl <druid@mit. edu> */
/ * DATE LAST MODIFIED: Tue Feb 1 12:09:05 EST 1994 */
/ * DESCRIPTION: This is where all the headers are pulled together for */
/ * one easy include in your favorite code... */

// $Id: Dsp.h,v 1.2 1994/07/01 16:19:52 druid Exp $

#ifndef _DSP_H 10

#define _DSPH

#ifdef NEEDSGNU_COMPLEX
#include "GnuExtras/Complex. h"
#else
#include <Complex.h>
#endif
#include "CArray.h"
#include "TimeSignal. h"
#include "FreqSignal. h" 20
#include "Consts. h"
#include "FFT. h"
#include "SigGen. h"
#include "FreqSlice. h"
#include "DSPtools. h"
#include "GPlot.h"
#include "Slice. h"

#include "aif if .h"
#include "Filters .h"
#include "CommandLine. h" 30
#include "DblVectorAVec. h"
#include "DblVectorVec. h"
#endif

C.33 libDsp/include/FFT.h

// This file may look like C, but it's really - *- C++ - *-

178

/ * FILE: / User/druid/src/c+i+/libDsp/include/FFT.h */
/ * AUTHOR: Daniel F. Gruhl <druid@mit.edu> */
/ * DATE LAST MODIFIED: Tue Feb 1 12:10:08 EST 1994 */
/ * DESCRIPTION: This is the header file for the FFT, IFFT, DFT and */
/ * IDFT routines */

// $Id: FFT.h,v 1.1 1994/06/27 15:01:52 druid Exp $

#ifndef FFTH 10
#define FFT_H

#include "Dsp.h"
#include <math.h>

long DSPFlipAddress(int bits, long number);
FreqSignal DSPPowerof twoFFT(TimeSignal& t);
void fourl(float datan, unsigned long nn, int isign);
inline Complex DSPTW(long super, long sub);
FreqSignal DSPDFT(TimeSignal& t); 20

FreqSignal DSPFFT(TimeSignal& t);
FreqSignal DSPFT(TimeSignal &t);
TimeSignal DSPIFT(FreqSignal& f, double base);
TimeSignal DSPIFFT(FreqSignal& f, double base);
TimeSignal DSPIDFT(FreqSignal& f, double base);
#endif// _FFTH

30

C.34 libDsp/include/Filters.h

#ifndef FILTERS_H
#define _FILTERSH

#include "Dsp.h"

typedef struct {
long an;
Complex *a;
long bn;
Complex *b; 10

) FilterKernal;

// This is for an FIR or IIR filter
TimeSignal Filter(TimeSignal& t, FilterKernal k);

TimeSignal ApplyFIR(TimeSignal& t, TimeSignal& filt);
TimeSignal DSPWindowBartlett(TimeSignal& t);
TimeSignal DSPWindowHanning(TimeSignal& t);
TimeSignal DSPWindowHamming(TimeSignal& t);
#endif 20

179

C.35 libDsp/include/FreqSignal.h

// This may look like C code, but it's really - *- C++ - *-
/* FILE: / ti/class/l druid/src/ c++/libDsp/FreqSignal. h */
/ * AUTHOR: Daniel F. Gruhl <druid@mit. edu> */
/* DATE LAST MODIFIED: Wed Jan 5 08:53:36 EST 1994 */
/ * DESCRIPTION: This file contains the header information for the */
/ * Frequency Signal data type. Please see the libDsp texi file for */
/ * full documentation of this class. */

// $Id: FreqSignal.h,v 1.1 1994/06/27 15:01:54 druid Exp $
10

#ifndef _FREQSIGNAL H
#define _FREQSIGNAL_H

#include "CArray. h"
#include "Consts .h"

class FreqSignal : public CArray {
double FreqPerBin;

public:
FreqSignal(long size); 20

FreqSignal(long size, Complex* data);
FreqSignal(long size, Complex* data, double FPB);
FreqSignal(CArrayGiveAway& c);
FreqSignal();
double frequency(long bin);
double freqperbin() {return Freq.PerBin;};
void data out(char* filename);
void resize(long size);
void gplot(GPlot *g, char* title);

30

FreqSignal& operator= (FreqSignal& rhs);
FreqSignal& operator=(CArray& rhs);
FreqSignal& operator=(CArrayGiveAway& rhs);
friend FreqSignal operator+(FreqSignal& lhs, FreqSignal& rhs);
friend FreqSignal operator+(FreqSignal& lhs, int& rhs);
friend FreqSignal operator+(FreqSignal& lhs, float& rhs);
friend FreqSignal operator+(FreqSignal& lhs, double& rhs);
friend FreqSignal operator+(FreqSignal& lhs, Complex& rhs);
friend FreqSignal operator+(int& lhs, FreqSignal& rhs);
friend FreqSignal operator+(float& lhs, FreqSignal& rhs); 40
friend FreqSignal operator+ (double& lhs, FreqSignal& rhs);
friend FreqSignal operator+(Complex& lhs, FreqSignal& rhs);

friend FreqSignal operator- (FreqSignal& lhs, FreqSignal& rhs);
friend FreqSignal operator- (FreqSignal& lhs, int& rhs);
friend FreqSignal operator-(FreqSignal& lhs, float& rhs);
friend FreqSignal operator- (FreqSignal& lhs, double& rhs);
friend FreqSignal operator- (FreqSignal& lhs, Complex& rhs);

180

FreqSignal operator-(int& lhs, FreqSignal& rhs);
FreqSignal operator-(float& lhs, FreqSignal& rhs);
FreqSignal operator- (double& lhs, FreqSignal& rhs);
FreqSignal operator- (Complex& lhs, FreqSignal& rhs);

FreqSignal operator*(FreqSignal& lhs, FreqSignal& rhs);
FreqSignal operator*(FreqSignal& lhs, int& rhs);
FreqSignal operator*(FreqSignal& lhs, float& rhs);
FreqSignal operator*(FreqSignal& lhs, double& rhs);
FreqSignal operator*(FreqSignal& lhs, Complex& rhs);
FreqSignal operator*(int& lhs, FreqSignal& rhs);
FreqSignal operator*(float& lhs, FreqSignal& rhs);
FreqSignal operator*(double& lIhs, FreqSignal& rhs);
FreqSignal operator*(Complex& lhs, FreqSignal& rhs);

friend
friend
friend
friend

friend
friend
friend
friend
friend
friend
friend
friend
friend

friend
friend
friend
friend
friend
friend
friend
friend
friend

FreqSignal&
FreqSignal&
FreqSignal&
FreqSignal&
FreqSignal&

FreqSignal&
FreqSignal&
FreqSignal&
FreqSignal&
FreqSignal&

FreqSignal&
FreqSignal&
FreqSignal&
FreqSignal&
FreqSignal&

FreqSignal&
FreqSignal&
FreqSignal&
FreqSignal&
FreqSignal&

operator/(FreqSignal& lhs, FreqSignal& rhs);
operator/(FreqSignal& lhs, int& rhs);
operator/(FreqSignal& lhs, float& rhs);
operator/(FreqSignal& lhs, double& rhs);
operator/(FreqSignal& lhs, Complex& rhs);
operator/(int& lhs, FreqSignal& rhs);
operator/(float& lhs, FreqSignal& rhs);
operator/(double& lhs, FreqSignal& rhs);
operator/(Complex& lhs, FreqSignal& rhs);

operator+= (FreqSignal& rhs);
operator+=(int& rhs);
operator+=(float& rhs);
operator+= (double& rhs);
operator+=(Complex& rhs);

operator-= (FreqSignal& rhs);
operator-=(int& rhs);
operator-=(float& rhs);
operator-=(double& rhs);
operator-=(Complex& rhs);

operator*= (FreqSignal& rhs);
operator*=(int& rhs);
operator*= (float& rhs);
operator*= (double& rhs);
operator*= (Complex& rhs);

operator/= (FreqSignal& rhs);
operator/=(int& rhs);
operator/= (float& rhs);
operator/=(double& rhs);
operator/= (Complex& rhs);

FreqSignal operator+(FreqSignal& lhs, FreqSignal& rhs);
FreqSignal operator+(FreqSignal& lhs, int& rhs);
FreqSignal operator+(FreqSignal& lhs, float& rhs);

181

FreqSignal
FreqSignal
FreqSignal
FreqSignal
FreqSignal
FreqSignal
FreqSignal
FreqSignal
FreqSignal

FreqSignal operator+(FreqSignal& lhs, double& rhs);
FreqSignal operator+(FreqSignal& lhs, Complex& rhs);
FreqSignal operator+(int& lhs, FreqSignal& rhs);
FreqSignal operator+(float& lhs, FreqSignal& rhs);
FreqSignal operator+(double& lhs, FreqSignal& rhs);
FreqSignal operator+(Complex& lhs, FreqSignal& rhs);

FreqSignal operator-(FreqSignal& lhs, FreqSignal& rhs); 110
FreqSignal operator- (FreqSignal& lhs, int& rhs);
FreqSignal operator- (FreqSignal& lhs, float& rhs);
FreqSignal operator-(FreqSignal& lhs, double& rhs);
FreqSignal operator- (FreqSignal& lhs, Complex& rhs);
FreqSignal operator-(int& lhs, FreqSignal& rhs);
FreqSignal operator- (float& lhs, FreqSignal& rhs);
FreqSignal operator- (double& lhs, FreqSignal& rhs);
FreqSignal operator-(Complex& lhs, FreqSignal& rhs);

FreqSignal operator*(FreqSignal& lhs, FreqSignal& rhs); 120
FreqSignal operator*(FreqSignal& lhs, int& rhs);
FreqSignal operator*(FreqSignal& lhs, float& rhs);
FreqSignal operator*(FreqSignal& lhs, double& rhs);
FreqSignal operator* (FreqSignal& lhs, Complex& rhs);
FreqSignal operator*(int& Ihs, FreqSignal& rhs);
FreqSignal operator*(float& lhs, FreqSignal& rhs);
FreqSignal operator*(double& lhs, FreqSignal& rhs);
FreqSignal operator*(Complex& lhs, FreqSignal& rhs);

FreqSignal operator/(FreqSignal& lhs, FreqSignal& rhs); 130
FreqSignal operator/ (FreqSignal& lhs, int& rhs);
FreqSignal operator/(FreqSignal& lhs, float& rhs);
FreqSignal operator/(FreqSignal& lhs, double& rhs);
FreqSignal operator/(FreqSignal& lhs, Complex& rhs);
FreqSignal operator/(int& lhs, FreqSignal& rhs);
FreqSignal operator/(float& lhs, FreqSignal& rhs);
FreqSignal operator/ (double& lhs, FreqSignal& rhs);
FreqSignal operator/(Complex& lhs, FreqSignal& rhs);

#endif //_FREQSIGNAL_H 140

C.36 libDsp/include/FreqSlice.h

// This may look like C code but it's really - *- C++ -

// Nomenclature:
// windows - each slice of time spectrum converted to spectrum is a
// window

#ifndef FREQSLICE_H
#define _FREQSLICEH
#include "FreqSignal. h"
#include <String.h> 10
#include "GPlot .h"

182

class FreqSlice {
long windows;
FreqSignal *data;
double deltatime;

public:
long Windows() {return windows;};
long WindowSize() {return data[0].size();};
double DeltaTime() {return deltatime;}; 20
void set_deltatime(double dt) {deltatime = dt;};

FreqSlice(long Windows=1, long samplesperwindow=1);
FreqSlice(long Windows, FreqSignal*data, double deltatime);
~FreqSlice();

FreqSignal& operator[](long index);
void gplot(GPlot* g, char* plot_title, long every=l);
double timeof window(long window) {return deltatime * window;};
FreqSlice& operator=(FreqSlice& f); 30

double maxabs(FreqSlice& f);

#endif

40

C.37 libDsp/include/GPlot.h

#ifndef _GPLOT_H
#define _GPLOT_H

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

// $Id: GPlot.h,v 1.1 1994/06/27 15:01:56 druid Exp $
10

typedef FILE GPlot;

GPlot* GPopen();
GPlot* GPfopen(char* filename);
GPlot* GPclose(GPlot* gp);
int GPPlotFile(GPlot* gp, char* filename, char* title,

char* xaxis, char* yaxis, char* data, char* plottype);
char* GPUniqueName();
void pause();
#endif 20

183

C.38 libDsp/include/SigGen.h

// This may look like C code, but it's really - "- C++ - *-

#ifndef _SIGGEN-_H
#define _SIGGEN_H

// $Id: SigGen.h,v 1.1 1994/06/27 15:01:59 druid Exp $

#include "Dsp. h"
TimeSignal DSPSquareWave(double samplingrate, double duration, double freq);
TimeSignal DSPTriangleWave(double samplingrate, double duration, double freq); 10
TimeSignal DSPSinSignal(double sampling_rate, double duration, double freq);
TimeSignal DSPCosSignal(double sampling_rate, double duration, double freq);

inline TimeSignal
DSPSinWave(double sampling_rate, double duration, double freq){

return DSPSinSignal(sampling_rate, duration, freq);

}

inline TimeSignal
DSPCosWave(double sampling rate, double duration, double freq){ 20

return DSPCosSignal(sampling rate, duration, freq);
}

#endif // _SIGGEN H

C.39 libDsp/include/Slice.h

// This may look like C code, but it's really - *- C++ - *-

// $Id: Slice.h,v 1.1 1994/06/27 15:02:00 druid Exp $

#ifndef SLICE H
#define _SLICEH
#include "Dsp.h"
FreqSlice Slice(TimeSignal& T, int num);
TimeSignal UnSlice(FreqSlice& F);
#endif 10

184

C.40 libDsp/include/TimeSignal.h

// This file may look like C code, but its really - *- C++ - *-
/ * FILE: / ti/class/druid/src/c++/libDsp/l TimeSignal.h */
/* AUTHOR: Daniel F. Gruhl <druid@mit.edu> */
/ * DATE LAST MODIFIED: Wed Jan 5 09:06:46 EST 1994 */
/* DESCRIPTION: This is the time signal data type. It would be most */
/ * often read in from an external sound file. For a full description */
/ * of the Class, please see the libDsp texi document. */

// $Id: TimeSignal.h,v 1.4 1994/07/25 13:07:15 druid Exp $ to

#ifndef TIMESIGNALH
#define _TIMESIGNALH

#ifdef NEEDS GNUCOMPLEX
#include "GnuExtras/Complex. h"
#else
#include <Complex.h>
#endif
#include "CArray. h" 20

typedef struct {
double maxpos;
double maxneg;

} RangeVal;

typedef struct {
short* data;
long num;

} Quantized; 30

class TimeSignal : public CArray {
double TimeBase;

public:
TimeSignal(long size);
TimeSignal(double base, long size);
TimeSignal(double base=1, double time=1);
TimeSignal(double base, long size, Complex* data);
TimeSignal(double base, CArray c);
TimeSignal(double base, CArrayGiveAway& c); 40
~TimeSignal();

void settimebase(double tb){TimeBase = tb;);
double time base() {return TimeBase;);
void dataout(char* filename);
double duration() {return size()/TimeBase;);
void gplot (GPlot *g, char* title);
int readAiff (char* filename);
int writeAiff (char* filename);

185

void resize (long newsize); 50

void stretch (long newsize);
RangeVal maxposneg ();
Quantized QData 0;
TimeSignal delay (double seconds);
TimeSignal delay (long samples);
void normalize ();

// TimeSignal slice(long first, long last);

TimeSignal& operator= (TimeSignal& rhs);
TimeSignal& operator=(CArray& rhs); 60

friend TimeSignal operator+(TimeSignal& lhs, TimeSignal& rhs);
friend TimeSignal operator+(TimeSignal& lhs, int& rhs);
friend TimeSignal operator+(TimeSignal& lhs, float& rhs);
friend TimeSignal operator+(TimeSignal& lhs, double& rhs);
friend TimeSignal operator+(TimeSignal& lhs, Complex& rhs);
friend TimeSignal operator+(int& lhs, TimeSignal& rhs);
friend TimeSignal operator+(float& lhs, TimeSignal& rhs);
friend TimeSignal operator+±(double& lhs, TimeSignal& rhs);
friend TimeSignal operator+(Complex& lhs, TimeSignal& rhs);

70

friend TimeSignal operator- (TimeSignal& lhs, TimeSignal& rhs);
friend TimeSignal operator- (TimeSignal& lhs, int& rhs);
friend TimeSignal operator- (TimeSignal& lhs, float& rhs);
friend TimeSignal operator- (TimeSignal& lhs, double& rhs);
friend TimeSignal operator- (TimeSignal& lhs, Complex& rhs);
friend TimeSignal operator-(int& lhs, TimeSignal& rhs);
friend TimeSignal operator- (float& lhs, TimeSignal& rhs);
friend TimeSignal operator- (double& lhs, TimeSignal& rhs);
friend TimeSignal operator- (Complex& lhs, TimeSignal& rhs);

80
friend TimeSignal operator*(TimeSignal& lhs, TimeSignal& rhs);
friend TimeSignal operator*(TimeSignal& lhs, int& rhs);
friend TimeSignal operator*(TimeSignal& Ihs, float& rhs);
friend TimeSignal operator*(TimeSignal& lhs, double& rhs);
friend TimeSignal operator*(TimeSignal& lhs, Complex& rhs);
friend TimeSignal operator*(int& lhs, TimeSignal& rhs);
friend TimeSignal operator*(float& lhs, TimeSignal& rhs);
friend TimeSignal operator*(double& lhs, TimeSignal& rhs);
friend TimeSignal operator*(Complex& lhs, TimeSignal& rhs);

90

friend TimeSignal operator/(TimeSignal& lhs, TimeSignal& rhs);
friend TimeSignal operator/(TimeSignal& lhs, int& rhs);
friend TimeSignal operator/(TimeSignal& lhs, float& rhs);
friend TimeSignal operator/(TimeSignal& lhs, double& rhs);
friend TimeSignal operator/(TimeSignal& lhs, Complex& rhs);
friend TimeSignal operator/(int& lhs, TimeSignal& rhs);
friend TimeSignal operator/(float& lhs, TimeSignal& rhs);
friend TimeSignal operator/(double& lhs, TimeSignal& rhs);
friend TimeSignal operator/(Complex& lhs, TimeSignal& rhs);

100

TimeSignal& operator+= (TimeSignal& rhs);
TimeSignal& operator+=(int& rhs);
TimeSignal& operator+=(float& rhs);

186

TimeSignal&
TimeSignal&

TimeSignal&
TimeSignal&
TimeSignal&
TimeSignal&
TimeSignal&

TimeSignal&
TimeSignal&
TimeSignal&
TimeSignal&
TimeSignal&

TimeSignal&
TimeSignal&
TimeSignal&
TimeSignal&
TimeSignal&

TimeSignal
TimeSignal
TimeSignal
TimeSignal
TimeSignal
TimeSignal
TimeSignal
TimeSignal
TimeSignal

TimeSignal
TimeSignal
TimeSignal
TimeSignal
TimeSignal
TimeSignal
TimeSignal
TimeSignal
TimeSignal

operator+=(double& rhs);
operator+= (Complex& rhs);

operator-= (TimeSignal& rhs);
operator-=(int& rhs);
operator-=(float& rhs);
operator-=(double& rhs);
operator-=(Complex& rhs);

operator*= (TimeSignal& rhs);
operator*=(int& rhs);
operator*= (float& rhs);
operator*= (double& rhs);
operator*= (Complex& rhs);

operator/= (TimeSignal& rhs);
operator/=(int& rhs);
operator/=(float& rhs);
operator/=(double& rhs);
operator/= (Complex& rhs);

operator+(TimeSignal& lhs, TimeSignal& rhs);
operator+(TimeSignal& lhs, int& rhs);
operator+(TimeSignal& lhs, float& rhs);
operator+(TimeSignal& lhs, double& rhs);
operator+(TimeSignal& lhs, Complex& rhs);
operator+(int& lhs, TimeSignal& rhs);
operator+(float& lhs, TimeSignal& rhs);
operator+(double& lhs, TimeSignal& rhs);
operator+(Complex& lhs, TimeSignal& rhs);

operator- (TimeSignal& lhs, TimeSignal& rhs);
operator- (TimeSignal& lhs, int& rhs);
operator- (TimeSignal& lhs, float& rhs);
operator- (TimeSignal& lhs, double& rhs);
operator- (TimeSignal& lhs, Complex& rhs);
operator-(int& lhs, TimeSignal& rhs);
operator- (float& lhs, TimeSignal& rhs);
operator- (double& lhs, TimeSignal& rhs);
operator- (Complex& lhs, TimeSignal& rhs);

TimeSignal operator*(TimeSignal& lhs, TimeSignal& rhs);
TimeSignal operator*(TimeSignal& lhs, int& rhs);
TimeSignal operator*(TimeSignal& lhs, float& rhs);
TimeSignal operator* (TimeSignal& lhs, double& rhs);
TimeSignal operator*(TimeSignal& lhs, Complex& rhs);
TimeSignal operator*(int& lhs, TimeSignal& rhs);
TimeSignal operator*(float& lhs, TimeSignal& rhs);
TimeSignal operator*(double& lhs, TimeSignal& rhs);
TimeSignal operator*(Complex& lhs, TimeSignal& rhs);

TimeSignal operator/(TimeSignal& lhs, TimeSignal& rhs);

187

TimeSignal operator/(TimeSignal& lhs, int& rhs);
TimeSignal operator/(TimeSignal& lhs, float& rhs);
TimeSignal operator/(TimeSignal& lhs, double& rhs); 160

TimeSignal operator/(TimeSignal& lhs, Complex& rhs);
TimeSignal operator/(int& lhs, TimeSignal& rhs);
TimeSignal operator/(float& lhs, TimeSignal& rhs);
TimeSignal operator/(double& lhs, TimeSignal& rhs);
TimeSignal operator/(Complex& lhs, TimeSignal& rhs);

#endif 1/ TIMESIGNAL H

170

C.41 libDsp/include/UniqueName.h

#ifndef UNIQUE NAMEH
#define UNIQUENAMEH

#include <stdlib.h>
#include <iostream.h>
#include <string.h>

class UniqueName {

/ * static */ unsigned int max_snum;
unsigned int snum; 10
unsigned int refnum;

public:
UniqueName();
char* tmpfile name(char* header);
int number();
char* name();

};
20

#endif

C.42 libDsp/include/CArray.h

// This may look like C code, but it is really - *- C++ - *-
/ * FILE: /ti/class/druid/src/c++/libDsp/l CArray.h */
/ * AUTHOR: Daniel F. Gruhl <druid@mit. edu> */
/ * DATE LAST MODIFIED: Wed Jan 5 08:58:53 EST 1994 */
/ * DESCRIPTION: This file contains the header information for the */
/ * Complex Array data type. For a full discussion of this Class, */
/ * please see the libDsp.texi file. */

188

// $Id: CArray.h,v 1.2 1994/07/01 16:19:50 druid Exp $

#ifndef _CARRAYH
#define _CARRAYH

/ * Includes that will be needed in the following code */
#ifdef NEEDGNU_COMPLEX
include "GnuExtras/Complex. h"
#else
#include <Complex.h>
#endif
#include <math.h>
#include "GPlot.h"

This construct exists to allow quick passing of data from one
CArray to another, by simply passing the data array as a pointer,
rather than copying an entire array.

typedef struct {
Complex* data;
long numitems;

} CArrayGiveAway;

// This is the actual class definition for CArray

class CArray {
private:
Complex* data; //

long numitems; //
public:
// Make and Destroy

Pointer to the array of complex numbers
// stored in the CArray
The number of items in the CArray

CArray(long items = 1); // Serves as a default constructor,
// as well as one to use if you just
// know the size of the array you need.

CArray(long size, Complex* Data){data = Data; num_items=size;};
// Used most often when a CArray is

// being created in a return
// statement. An inline function.

CArray(CArrayGiveAway& c) {data = c.data; num_items=c.numjitems;};
// An inline to take a CArray.

virtual -CArrayo; // The destructor. It mainly frees
// the data.

// Fun with sizing
virtual void Dealocate();

virtual long setsize(long newsize);
virtual long size(); // How many elements are in the array?
virtual void resize(long newsize); // Trash the data array and make a

// new one of the requested size.
virtual void stretch(long newsize); // Trash the data array but copy as

// much of it as you can into the
// new array.

189

virtual CArray slice(long first, long last); // Return a CArray which is a
// slice of the current array
// between first and last, inclusive.

virtual void showme(long i); // Exclusivly a debugging option
// which allows you to look at
// alement i in the data array.

virtual CArrayGiveAway giveaway(); // Give away the current data.
// Relinquish your pointer to it.

virtual void gplot(GPlot* g, char* title, char* xlabel, char* ylabel, 70
double offset, double delta, long stepoff=0);

// Plot the CArray: g is the gnuplot
// to plot into, title, xlabel and
// ylabel are the graph title, etc.
// offset is the first element
// coresponds to. delta is what the
// increment is for each following element.

virtual double* AngleArray(double* mdata);
// Return a DblVector of the angular so

// component at each point
virtual double* MagnitudeArray(double* mdata);

// Return a DblVector of the

// magnitude at each point

// The following material is for TESTING only. Expect it to
// disappear at ANY time....
long whatdata(){return (long) data;};
// End of testing

90

// Operators --- The following are the operators that are used to
// mathimatically manipulate CArrays and the objects that inherit
// from them.
// Operator []

virtual Complex& operator[](long index);
// Operator=

CArray& operator=(int& rhs);
CArray& operator=(float& rhs);
CArray& operator=(double& rhs);
CArray& operator=(Complex& rhs); 100
CArray& operator=(CArray& rhs);
CArray& operator=(CArrayGiveAway& c);
// Operator +

CArray& operator+=(CArray& rhs);
CArray& operator+=(int& rhs);
CArray& operator+=(float& rhs);
CArray& operator+=(double& rhs);
CArray& operator+=(Complex& rhs);
// Operator -=

CArray& operator-= (CArray& rhs); 110
CArray& operator-=(int& rhs);
CArray& operator-=(float& rhs);
CArray& operator-=(double& rhs);
CArray& operator-=(Complex& rhs);
// Operator *=

190

CArray& operator*=(CArray& rhs);
CArray& operator*=(int& rhs);
CArray& operator*=(float& rhs);
CArray& operator*=(double& rhs);
CArray& operator*=(Complex& rhs); 120
// Operator /=

CArray& operator/=(CArray& rhs);
CArray& operator/=(int& rhs);
CArray& operator/=(float& rhs);
CArray& operator/=(double& rhs);
CArray& operator/=(Complex& rhs);

// Binops - All of these are declared as friends for obvious
// implementation reasons (so you can say a + b rather than
// a.operator+(b)) 130

// Plus Operators
friend CArray operator+(CArray& lhs, CArray& rhs);

friend CArray operator+-(CArray& lhs, int& rhs);
friend CArray operator+(CArray& lhs, float& rhs);
friend CArray operator+(CArray& lhs, double& rhs);
friend CArray operator+ (CArray& lhs, Complex& rhs);

friend CArray operator+(int& lhs, CArray& rhs); 140
friend CArray operator+(float& lhs, CArray& rhs);
friend CArray operator+(double& Ihs, CArray& rhs);
friend CArray operator+(Complex& lhs, CArray& rhs);

// Minus Operators
friend CArray operator-(CArray& lhs, CArray& rhs);

friend CArray operator-(CArray& lhs, int& rhs);
friend CArray operator-(CArray& lhs, float& rhs);
friend CArray operator-(CArray& lhs, double& rhs); 150
friend CArray operator-(CArray& lhs, Complex& rhs);

friend CArray operator-(int& lhs, CArray& rhs);
friend CArray operator- (float& lhs, CArray& rhs);
friend CArray operator- (double& lhs, CArray& rhs);
friend CArray operator-(Complex& lhs, CArray& rhs);

// Multiply Operators
friend CArray operator*(CArray& lhs, CArray& rhs);

160

friend CArray operator*(CArray& lhs, int& rhs);
friend CArray operator*(CArray& lhs, float& rhs);
friend CArray operator*(CArray& lhs, double& rhs);
friend CArray operator*(CArray& lhs, Complex& rhs);

friend CArray operator*(int& lhs, CArray& rhs);
friend CArray operator*(float& lhs, CArray& rhs);
friend CArray operator*(double& lhs, CArray& rhs);
friend CArray operator*(Complex& lhs, CArray& rhs);

191

// Divide Operators
friend CArray operator/(CArray& lhs, CArray& rhs);

friend CArray operator/(CArray& lhs, int& rhs);
friend CArray operator/(CArray& lhs, float& rhs);
friend CArray operator/(CArray& lhs, double& rhs);
friend CArray operator/(CArray& lhs, Complex& rhs);

friend CArray operator/(int& lhs, CArray& rhs);
friend CArray operator/(float& lhs, CArray& rhs); 180

friend CArray operator/(double& lhs, CArray& rhs);
friend CArray operator/(Complex& lhs, CArray& rhs);
};

ostream& operator<<(ostream& output, CArray& carray);

CArray operator+(CArray& lhs, CArray& rhs);
CArray operator+(CArray& lhs, int& rhs);
CArray operator+(CArray& lhs, float& rhs);
CArray operator+(CArray& lhs, double& rhs); 190
CArray operator+(CArray& lhs, Complex& rhs);

CArray operator+(int& lhs, CArray& rhs);
CArray operator+(float& lhs, CArray& rhs);
CArray operator+(double& lhs, CArray& rhs);
CArray operator+(Complex& lhs, CArray& rhs);

CArray operator- (CArray& lhs, CArray& rhs);

CArray operator-(CArray& lhs, int& rhs); 200
CArray operator- (CArray& lhs, float& rhs);
CArray operator-(CArray& lhs, double& rhs);
CArray operator-(CArray& lhs, Complex& rhs);

CArray operator-(int& lhs, CArray& rhs);
CArray operator-(float& lhs, CArray& rhs);
CArray operator- (double& lhs, CArray& rhs);
CArray operator-(Complex& lhs, CArray& rhs);

CArray operator*(CArray& Ihs, CArray& rhs); 210

CArray operator*(CArray& lhs, int& rhs);
CArray operator*(CArray& lhs, float& rhs);
CArray operator*(CArray& lhs, double& rhs);
CArray operator*(CArray& lhs, Complex& rhs);

CArray operator*(int& lhs, CArray& rhs);
CArray operator*(float& lhs, CArray& rhs);
CArray operator*(double& lhs, CArray& rhs);
CArray operator*(Complex& lhs, CArray& rhs); 220

CArray operator/(CArray& lhs, CArray& rhs);

192

CArray operator/(CArray& lhs, int& rhs);
CArray operator/(CArray& lhs, float& rhs);
CArray operator/(CArray& Ihs, double& rhs);
CArray operator/(CArray& lhs, Complex& rhs);

CArray operator/(int& lhs, CArray& rhs);
CArray operator/(float& lhs, CArray& rhs); 230
CArray operator/(double& lhs, CArray& rhs);
CArray operator/(Complex& lhs, CArray& rhs);

double Maxabs(CArray& c);
#endif //_CARRA Y H

240

C.43 libDsp/examples/

These are the example discussed in the users manual.

193

Bibliography

[1] Gail Anderson and Paul Anderson. The UNIX C Shell Field Guide.

Hall, 1986.

[2] Borland. Borland C++ ver 2.0 Library Reference, 1991.

[3] Stephan C. Dewhurst and Kathy T. Stark. Programming in C++. Prentice Hall,

1989.

[4] Samuel P. Harbison and Guy L. Steele Jr. C A Refrence Manual. Prentice Hall,

1991.

[5] Al Kelley and Ira Pohl. A Book on C. The Benjamin/Cummings Publishing

Company, Inc., 1990.

[6] John R. Levine, Tony Mason, and Doug Brown. lex & yacc. O'Reilly & Asso-

ciates, Inc., 1990.

[7] Savid MacKenzie, Roland McGrath, and Noah Friedman. Autoconf, 1994.

[8] Scott Meyers. Effective C++. Addison-Wesley Publishing Company, Inc., 1992.

[9] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing.

Prentice Hall, 1989.

[10] Andrew Oram and Steve Talbott. Managing Projects with make. O'Reilly &

Associates, Inc., 1991.

[11] Chet Ramey. Bash - The GNU shell.

194

Prentice

[12] Steve Teale. C++ IO Streams Handbook. Addison-Wesley Publishing Company,

1993.

[13] Sandra Loosemore with Roland McGrath, Andrew Oram, and Richard M. Stall-

man. The GNU C Library Reference Manual, 1993.

195

