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Abstract

ANALYSIS OF CORRUGATED SHELLS

by
SURENDRA TULSIDAS SHAH

Submitted to the Department of Civil and Sanitary Engineer-
ing on November 24, 1958, in partial fulfillment of the
requirements for the degree of Doctor of Science in Civil
Engine ering.

A few years ago an unusual prefabricated Quonset-type
structure known as the "Wonder Building" appeared in the
building industry. The structure consists of corrugations
with da -ith of about 8 inches and a pitch of 2 feet run-
nin irn mhe longitudinal direction. In addition to these
corrugations, there are small secondary corrugations in
the transverse direction which are introduced to facili-
tate the fabrication of the structure. The longitudinal
edges are supported continuously so that each 2 feet wide
transverse section behaves effectively as a two-hinged
arch.

The secondary corrugations increase the flexibility
in the transverse direction, In order to determine the
effect of these corrugations, three types of corrugated
pipes under axial and transverse forces were investigated.
The results obtained were then applied to a structure
hav i.~ng idealized major corrugations. The distortion of
the major corrugations due to the effect of curvature in
the transverse direction, similar to that which occurs in
the bending of curved tubeswas also considered. The
solution obtained for the ,idalized case was then used to
arrive at an approximate solution of the actual structure.

The approximate solution is found to be in satisfac-
tory agreement with the available test results.

Thesis Supervisor. Charles E. Norris

Profes,•.: of Structural EngineeringTitle 4
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CHAPTER 1

INTRODUCTION

A few years ago an unusual pre-fabricated Quonset-

type structure known as the "Wonder Building" appeared in

the building industry. The Wonder Building is built en-

tirely of 18-gauge galvanized shell metal. The sheet

metal is formed into a bath-tub shape as shown in Fig. 1.1,

and then given a secondary curved shape by forming second-

ary corrugations into the bottom portion of the shape (Fig.

1.2). The structural component so formed will be referred

to as a shell since its behaviour is very similar to that

of a long barrel shell.

These shells are then bolted together end-to-end to

form a complete arch, which is so supported at its ends

that it acts effectively as a two-hinged arch. This arch

then forms a two-foot long section of the building, and is

completely self-supporting. By bolting together successive

arches along the edges A a complete building is formed,

which may be as long as desired ?Fig. 1.3).

The main advantage of this type of structure is the

great saving it makes in the cost of labour. Shells with

chord length of up to 9 feet are manufactured in the fac-

tory. These are then assembled in the field by bolting

them together to form the complete structure, and this pro-

cedure requires only unskilled labour. This type of
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structure is ideal as a roof for warehouses, factories, and

industrial buildings.

The presence of the secondary corrugations in the

shell increases its flexibility in the span-wise direction.

An axial force or a bending moment on it causes bending of

these corrugations. This changes the radius of curvature

of the cross section, which in turn produces circumferen-

tial stresses, much in the same way as in a corrugated pipe

under an axial load or bending moment.

For this reason the case of a corrugated pipe is

rigorously treated. Pipes having the types of corrugations

shown in Fig. 3.1 are considered. It is seen that the cor-

rugated pipes shown in this figure can be formed by combin-

ing several shells of revolution, either conical or ring

shells. The general solutions for these types of shells

are given in Chapter 2. By using appropriate boundary

zonditioins, the stresses and flexibility of a corrugated

pipe can be obtained as showr in Chapter 3. The increased

flexibility of a *orrugated pipe can be taken into account

by using a "reduced nodulus of elasticity," so that the

deflections of corrugated pipes can be calculated by con-

sidering the pipe to be plain and using this reduced modu-

lus as its modulus of elast *ty.

The solution obtained for the pipe is next applied

to a shell with a straight axi, of an idealized cross sec-

tion shown in Fig. 4,1(b), and having secondary corrugations
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of the types considered for pipes. This procedure is

strictly valid only when the shell is under pure bending so

that the longitudinal forces are linearly distributed over

any cross section. However, under the influence of snow

and dead loads, transverse moments occur which distort the

cross section, as in a multiple barrel shell, so that the

assumption of linear distribution of the longitudinal

forces is not strictly correct. But since the shell is

stiffened transversely by the secondary corrugations and

since the shell is long in comparison with the cross-

sectional dimensions, the effect of the distortion of the

cross section is very small on the longitudinal behaviour

as explained in Chapter 4. Therefore, the longitudinal

forces can be assumed to be linearly distributed and the

solution for corrugated pipes can be used for these shells.

When these shells are curved and are subjected to a

bending moment, distortion of the cross sections occurs

similar to that which takes place in thin curved tubes.

Not only does this distortion of the cross sections in-

crease the flexibility of the shell but it also makes the

distribution of the longitudinal forces nonlinear. It is

shown in Chapter 5 that the secondary corrugations help to

stiffen the transverse sectiola, thereby considerably reduc-

ing the distortion of the cross -.ctions. In nearly all

cases the distortion is so small that it can safely be
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neglected, and the longitudinal forces can be assumed to

be linearly distributed over any cross section.

After this the analysis of the shell as a two-

hinged arch can be performed very simply. In Chapter 6 the

method of superposition is used to obtain the external

moments and thrusts on any cross section. By neglecting

the effect of distortion of the cross sections due to the

curvature of the arch and the effect of shearing deforma-

tions, the analysis reduces to that for an ordinary arch.

Having obtained the external moments and thrusts, the unit

stresses can easily be found by using the solutions devel-

oped for corrugated pipes. The deflections can easily be

obtainqd by considering the shell to be plain and using

the reduced modulus as its modulus of elasticity, as in the

case of corrugated pipes.

The cross section of the actual Wonder Building

arch (Fig. 1.3) is much different than the idealized cross

section of Fig. 4.1(b). The shape of the actual cross

section is such that it cannot be represented by any simple

geometrical figure. The problem is further complicated due

to the fact that the shell has secondary corrugations in

the bottom portion only. The corrugated portion consists

of a circular arc and two tzai.ents as shown in Fig. 7.1.

An approximate solution *fr this shell is given in

Chapter 7. It is assumed that the circular corrugated arc



is a part of a complete pipe of radius 9d125 in., and that

each of the two tangents is a part of a pipe whose radius

is equal to infinity. The reduced moduli of elasticity

for these portions are then equal to those for the corre-

sponding pipes; the modulus for the portion which has no

secondary corrugations is simply the modulus of elasticity

of the material. The stresses and deflections are then

found by a method very similar to the method of trans-

formed sections used for beams of composite sections. The

theoretical results were found to be in very good agree-

ment with the available test results.

It is shown in Chapter 7 that for a given moment on

any section of the shell, the maximum stress at this sec-

tion depends primarily on the depth of the secondary corru-

gations; it increases as the depth increases. The shells

are corrugated in the transverse direction mainly because

it makes it easy to bend the shells into circular arcs.

Therefore, the depth of the secondary corrugations in-

creases with an increase in the curvature of the arc. But

as the curvature in.reases, the span of the complete arch

becomes shorter, so that the maximum imomeant in the arch

due to a given loading decreases. Thus, an increase in

depth of the secondary corrx.uions is accompanied by a

reduction in the maximum moment in the arch, or vice

versa, which enables one to use the same cross section

over a wide range of span length.
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Throughout the analysis it is assumed that the

material follows Hooke's Law, is homogeneous, and iso-

tropic.
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CHAPTER 2

SHELLS HAVING THE FORM OF A SURFACE OF REVOLUTION

2.1. General Case of Unsymmetrical Load. Fig. 2.1 shows

an element, ABCD, cut from a shell of revolution by two

adjacent meridian planes and two parallel circles. The

position of the meridian plane is defined by the angle e,

measured from some datum meridian plane, and the position

of the parallel circle is defined by the angle 0, made by

the normal to the surface and the axis of rotation. The

meridian plane and the plane perpendicular to it are planes

of principal curvature at a point on the surface of revolu-

tion, and the corresponding radii of curvature are denoted

by r1 and r 2 , respectively. The radius of the parallel cir-

cle is denoted by r o . Thus the length of the sides AD and

and BC is rd~ that of AB is r de, and that of CD is

dr o
(r0 + o do) de

The forces and moments per unit length acting on the

element ABCD are shown in Fig. 2.1 and are positive when

acting in the directions shown. In obtaining the equilib-

rium equations, it will be assumed that the shell surface

is free of any external load.

Equilibrium Equations: Let " consider the equilibrium of

the element ABCD by first projecting the forces in the di-

rection of the tangent to the meridian. The normal force

acting on the side AB is
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Norode

The corresponding force on CD is

(@ + do)(r0 + 2 do) de
By neglecting a small quantity of the second order, the

resultant of these two forces in the y-direction is found

to be equal to

N - dd + r de= (Nro) dde (a)

The radial shear force, Qrod d, on the side AB has no com-

ponent in the y-direction, while on the side CD the com-

ponent of the radial shear force in the y-direction is

- (q4 + -do)(r 0+ d ) ded#

and this is equal to

- Q# rodde (b)

if only the quantity of the first order is retained.

Now let us consider the forces acting on the other

two sides, AD• and BC. The normal forces on these two

sides are Nerldý and (N- + de) rd , and have a re-

sultant in the direction of the radius of the parallel

circle equal to Nerido de, The component of this force in

the y-direction is then

- Ncrcosodode (c)

Finally, the lateral shear force on AD is Ne~rldo and on

BC is



(N9 + -ade) rd

which give a resultant in the y-direction of

L rldde (d)

Summing up the forces (a) to (d), the equation of equilib-

rium of forces in the y-direction becomes

- (Nr o) - NBrcosp + a- rm- ro = 0

The other five equations of equilibrium could be obtained

similarly, and they are stated below, together with the

one obtained above:

SF =0

F=0

T M =0
x

: (Nr ) - Ner•cos# + - r - Q~ = 0
SNe

: (N ero)+ r+ +N rcosoQrisino=0

SNro 0+ Nergsiný + (Qr O ) + - 0

~k ( r ) -Mr oos - r -- or = 0
ýMmy =0 o . • M, D cos ~-Q-9rr = O

M7 = 0 : M1 ero Mr r sin - Nrr + N rorj = 0

(2.1)

It can be shown that

(e)
Npy = Nse]

Nfi& N(9
M MJ

if the thickness t of the shell is small in comparison with

the radii of curvatures, r. and r..1 However, an

S Timoshenko, "Theory of Plates and Shells," pp.35.2,353,

i"

i



consistency results when these relationships are substi-

ted in the last of the equilibrium Eqs. (2.1). This

consistency is due to the fact that expressions (e) are

only approximately true. If the exact expressions for

Ne4 , N e , Me4 , and M#e are used, then the last of Eqs.

(2.1) is identically satisfied. In our further discussion,

it will be assumed that the last of Eqs. (2.1) is always

satisfied, and that the thickness of the shell is small in

comparison with the radii of curvature, so that expressions

(e) are valid.

Stress-Strain Relationships: With eight unknowns and only

five equations provided by statics, additional equations,

based upon the stress-strain relationships, must be intro-

duced. If ( denotes the unit strain in the meridional

direction, E~ the corresponding strain in the direction

perpendicular to the meridian, E4e the shearing strain,

iYsand)e the changes of curvature of the meridian and the

plane perpendicular to the meridian, ~e the change of

twist, E the Modulus of Elasticity and ) the Poisson's

ratio, then, for thickness, t, small in comparison with r2

and rI, we have2

2 Ibid, pp. 354,355.
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E = -1) ; e= 1 ( Csc"+V ota-w)r, ae cn#w

-1 bu 14v + ctn
r r. r 2  -etn

.1 a
-+r •rcs ,

c+ csc (csc_ + _)
rF ae rF Fe rI

•1 o4s U 1+
F, " ra be r. F. r

(g)

3 A. E. H. Love, "A Treatise on the Mathematical Theory of
Elasticity," pp. 521,524.

Strain Displacement Relationships: The strains and the

changes of curvature and twist can be related to the dis-

placements n, v, and w, where u and v are the displacements

in the directions of the tangents to the parallel circle

and meridian, respectively, and considered plus when in the

direction of increasing ) and 0 , respectively; and w is

the displacement in the direction normal to the shell sur-

face, plus when directed inward. These relationships are

.------ \

19
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Stress Displacement Equations: Substituting the strain

displacement equations (g) into the stress-strain relation-

shios (f) gives

Et 1 v 9 u ctn w

Et 1l 1 u

S rx "r

r , (2.2)
s 1 1 uwa ° tn

+(v ) + seco r ( csc + -- ) ctn

r r~ r r e

1 1

where D (2o3)
12(--NV2 )

Substituting expressions (2.2) in Eqs. (2.1) will

then, yield five equations in terms of the five unknown

quantities u, v, w, Q , and Qz,



MM(N ro)- Nericos - Q r = 0

N r + NO rsin + - (Qoro) = 0

d (Mor o ) - Mercoso - Qpror, = 0

and the stress displacement Eqs. (2.2) become

Et dv yNp =- --- t2  - - w) + -(v ctn - w)

Et Y V dv

_IM - 1 v 1I dw d v 1w dw= - + tn

r r r do 1 11
- 2 1 1J. 717 1 Uý

(2.4)

(2.5)

I

Substitution of expressions (2.5) into the equilib-

rium Eqs. (2.4) yields three equations with the three

2.2. Shells of Revolution Under Axially Symmetrical Load

Distribution. It can be concluded from the condition of

symmetry that only normal stresses will act on the sides

of the element ABCD (see Fig. 2.1) lying in the meridian

plane. Hence

QgN= N = Ne = Me = Moe = 0

Also due to symmetry the circumferential displacement u

must be zero. The remaining stresses and displacements

will all be independent ofG. With these conditions the

equilibrium Eqs. (2.1) reduce to

h

L

P
I:
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unknowns v3 w, and QQ. But considerable simplification of

the equations can be obtained by the introduction of two

new variables, U and V, where

2 + (2.6)v = l Cv + ) ýa-

r dO

It should be noted V is the expression for the rotation of

the tangent to the meridian.

To simplify the transformation, we replace the first

of the equilibrium Eqs. (2.4) by one obtained by consider-

ing the equilibrium of the portion of the shell above the

parallel circle defined by the angle ý (Fig. 2.2). If the

resultant edge load on the edge AB of a shell of revolution

is 2vrF, then the equation of equilibrium is

27r N sinl + 2fr Qocos =O 2irF

from which

N~J csc - Qectn 1 F csc• U ctn) (2.7)

From the sec.nd of Eqs. (2.5) we have

This method of analysing stresses in shells was developed
for the case of a spherical shell by ,. Reissner, "Muller-
Breslau-Festschrift, p, 181, Leipzig, 1912 it was gen-
eralized aid applied to particular cases by E. Mpissner,
David W. Taylor Model Basin Translation 238, and by H.
Wissler, "Festigkeitsberechnung von Ringflachenschalen,
doctoral thesis, Zurich, 1916.
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Ner sin = - N -ro- ro)

Substitution of Eq. (a) in this and noting that r -

r2 sino gives

N - (rF csc + ) (2.8)

From the first two of Eqs. (2.5) we readily obtain

- w = r (No - Y N
dv r

C (a)
v ctno - w = ( - 3N)

Elimination of w from these two equations leads to

- v ctn 1 = L r +rs) N (Cr,+ Ir) N (b)

Differentiation of Eq. (a) gives (if t is assumed to be

constant)

dv ctn -v cscj- -dw d= r(N,-N)

dvThe derivate - can now be eliminated from the last twodjs
equations, to yield

v + d = r V = od  (r +Yr ) NO -(r ++Vr) N]
1 d N, (Ne

Substituting' expressions (a) and (b) for Np and Ne, we

finally obtain the first of the two equations relating to

U and V



V
a d2U 1 [ r r2 o r dU 1 r, I- + d~ )+ ctn tn U

CUr di do 1 a do rI r

=Et V +Z

1 rF tan1  r r d
where Z = - rF csc0 tn +)ra rE ri do rJ1

cc)

(2.9)

The second equation relating U and V is obtained by sub=

stituting the last two of Eqs. (2.5) in the last of Eqs.

(2.4) and using the notations (2.6). In this way

rr 2 da[ r r dV 1 r'"rd + 1 (- +--- ct n r r t1 -ycU
r d$a rr rL r2

U

By introducing the notation

.d2 + (2)+ ctn d-( )

r dao r .[7 r rd

1 ctna (C.....) (2.

Eqs. (c) and (d) can be written in the following forms:

L () + ÷- = EtV + Z
r

L (V) "V_ u"r

(da)

10)

(2.11)

This system of two simultaneous differential equa-

tions of the second order can be reduced to a single equa-

tion of the fourth order. Operating on the first of Eqs.

(2.11) by L(.....) gives

25



LL(U) + 9L(U-) = Et L(V) + L(Z)

Substituting the second of Eqs. (2.11) in this gives

L(V) = V U • (U) + ~- Z Ur 1  D Etra L r j D

Using this, we obtain

LL(U) + L( U L (U) U Et U + L(Z) - zr rI r2 D ri

If r, is constant, as is the case for spherical, conical,

and ring shells, then

L(U) = li n(U)
r r2

Using the notation

= - 2 (2.12)

LL(U) + M(U) = L(Z) - (2.13)

Similarly

LL(• ) +t(V) = - (2.14)

The .pplication of Eqs, (2.13) and (2.14) to partic-

ular cases of a truncated conical shell and a ring shell

will be discussed in the next two articles. However, the

expression for the relative displacement between two

parallel circles will first ',- found.

The deflection p of any point P on the shell sur-

face in the direction of the shell axis can be found in
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terms of the stresses Ný and Ne. In Fig. 2.3 P' represents

the displaced position of P.. From the figure, it is seen

that Ap is given in terms of the displacements v and w by

the expression

y = v sin•+ w cos$

Integration of the differential eq. (b) gives

V [Na N(r, + yr.) - N,(r + yr) do + C} (e)

in which C is a constant of integration.

From Eq. (a)

r
w = v ctn - E (Ne -NON) (f)

Substitution of these two expressions for v and w in the

expression for Ap yields

Ap ra J(r,,+yr,) Ne(r,+yr 1 d -rr,(N-N9 ) + c

The relative deflection between two parallel circles

whose positions are defined by the angles 4,. and po can be

found by solving the above expression for A between the

limits 4. 1.zd a~ Denoting this deflection by A, we have

N= +r { [r+ry+rr) - NN(r+ -r1] ) (2.15)

2.3. Truncated Conical Shell Under Axially Symmet.zical

Load. A truncated conical shell, ABCD, is shown in Fig. 2.4.

The dimensions b, c, h, and r are defined in this figure.

,
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Fig. 2.4. Truncated Conical Shell

r
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4
4

Ac

4

r ( h h dr -_2 h
a cos-c r r z dz coso-

Substituting these expressions into (a) and putting r =

oq the symbol L(...) becomes

L...) = a tan+ h

-c 2 dz' ca cosoC dz r

For the special case of a conical shell, Eqs. (2.9) and

(2.13) reduce to

(b)

(c)

To apply the general equations developed above to this case,

we introduce in place of 0 a new variable z which is the

product of c and the distance along the meridian from the

edge AB (see Fig. 2.4). The length of an infinitesimal

element of a meridian is now cdz, instead of r do. As a

result,

d 1 d d d r d d t da 1 dr2 dd= s - = ( ) = +2 " dz dd z C do dz

Using these transformations, and noting that r. is

constant for a conical shell, the operator L(...) of Eq.

(2.10) becomes

rrPd2 1 drP rL(...) = "- ...() + ( + ctn ) - d.
ca dz c dz r r c dz

1 ctna (..') (a)
r (a

Observing that 0 is constant, and using the notation

wiffor . B/2 - , we obtain (see Fig. 2.4)

- - -1

29
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Z = -r F seck tancx (d)r2

and LL(T) + 4'U = L(Z) (e)

The expression for Z when operated by L gives

L(Z) = 0

Eq. (e) then becomes

LL(U) + U4 U - 0 (2.16)

which can be written in one of the following two forms:

L [L (U) i, i U i2U L(U) : ifrUJ 0

where i = V;""

These equations indicate that the solutions of the second

order equations

L(U) + i LU = 0 (2.17)I /

are also the solutions of Eq. (2.16).

Using the expressions (b) and (c) in the first of Eqs. (2.17)

gives

( 1  h ) h

ca cos r r 4d ac cos dz

tan '% cos• . i U - 0
r (l-b/r+h/r z)

Multiplying by c coas - z),1- and introducing ther r x"



r (f)

a s a cosoL be
r rt

finally yields the equation

2 d 2U dU
(1 - e + ez) dz-- + C(1 - + z) dz

- 2- ia (1- + z)] U2 = 0 (2.18)

The solution of Eq. (h) can be found in the form of power

series in z multiplied by a power of z,

0o
U = 1 s A k s)

k=O

The method of Frobenius was used for the determination of

s and the recurrence formulae for the coefficients.5 It

was found that s = 0 and 1.

For S = 0, the recurrence formula is

k(k-l)(1-F) Ak =- (l-C)(k-l)(2k-3) Ak-l

+ L)(k-)(k-3) + ia(l-e' Ak- 2 + iaP Ak-3 k 1

When k 1 , the recurence formula is identically satis-

fied, leaving Al as well as Ao arbitrary.,

When s = 1, the solution obtained is the sate- as

that corresponding to the coefficient A. for the case

F. B•, Hildebrand, "Advanced Calculus for Engineers,"
pp. -32-139,



s = 0. Hence the complete solution of (2.18) can be ex-

pressed as

U•r1 = Ak zk
k=0

where

A = - 1P 2 {(l-k)(k-I)(2k-3) Akl
I k(k-1) (1e)k

+[ a(k-l)(k-3)+ ia(l- )j Ak- 2 + ia? Ak3 k a2 (1)

Separating the series (i) into its real and imaginary

parts, we obtain

U1 = A (I, + i I2) + A az(I3 + i I,)

where I,, ... , I, are power series which are convergent

when (I-?+ ( z) # 0.

By inspection, the solution of the second of Eqs. (e) is

U2. = Ao( 1 , - i 12) + A, z(I- i 14)

Solutions Ua and U1 together represent the complete system

of independent solutions of Eq. (2.16). By using the sums

and differences of solutions U1 and U., the general solu-

tion of Eq. (2.16) can be written in the form:

U = A +IB1 + BI, + Cla + DI (2.19)

where A, B, C, and D are arbitrary constants.

Substituting (2.19) in the first of Eqs. (2.11) gives4

I
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= in •, nV [(l-ee(-a z)(Al,+BI +CIt+DI4)
Etb(l-9+ez)

+ (1-+ez) (AI'+ BI + CIa+ DI) - !(AI,+ BI,+ CI+ DI4)

+ Ph seco csco (2.20)

9 dI 1 d2 1where I d , I dI
dz2

2.4. Ring Shell. A ring shell is shown in Fig. 2.5. The

radius r is as defined in Fig. 2.5. The angle Q varies

from o to 7T- o . For this case it is convenient to solve

Eq. (2.14) for V. Since this is a linear nonhomogeneous

differential equation, its solution can be separated into

VH, the solution of (2.14) with Z = 0 (homogeneous solu-

tion), and Vp a particular solution of Eq. (2.14).

Homogeneous Solution: Setting Z = 0 in Eq. (2.14) gives

LL(VH) + y? VH = 0 (a)

Eq. (a) is similar to Eq. (2.16) and hence it can be con-

cluded that the solution of the second order equations

L(V) + ± VH = 0 (b)

are also solutions of Eq. (a)

From Fig. 2.5 we see that

r= constant

rz = (r-rj) csc + r 1 (c)

dr
S= - (r-r1 ) sca ctnadýj
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Fig. 2.5. Ring Shell
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With these relationships, the symbol L(...) of Eq. (2.10)

becomes

r

2

d( 2

dOs
.°) + ctctL d . 1

r
ctn 2a

Using this in the first of Eqs. (b) gives

r d2 V H
1 1

2 d2
I

dV
+ ctn dVll

r1 do
- ctn2• V 12

A further simplification is obtained by introducing the

new variable

x = 1 - sinr.

With this change

d
d- = -

dcosý da

d~

Using these relationships,

d

dx2

Eq. Ce)

sin -d

(f)

(g)

becomes

d 2V +

dxa

r
r a(-- sin

r r

cos_2  dVH1
sin dx

- ( ctn2

By noting that

cosO = 1 - sin2 o = x(2-x)

ctn os x(2-x)sn tna(l-x

sin'O5 (1-x),
r-rS x

a)CsC4+ r, = .-.

1-x

35

(d)

+ /~ = 0 (e)

r

r2
I

2itiý

and r 2 = (r-r

s

i
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x(r-rax) (2-x)
.... (2-x)

r (1-x)

dHi + 1 r-r. x  x(2-x) dVH1
dx r r, 1-x dx

I x(2-x) i1  v =0
(l-x)(r-r x) H 1

rl(1-x)(r-rax)
Multiplying by , and introducing

xr
the nota-

tions

r

a r r 12(1-~) r 2

S r r t

(h)

finally yields the equation

(2-x)+(-l-x) 2 d (+-x1(-)x)a - Ax(2-x) (1-A.x) dV
dxz x

Saxa (2-x) - i a x(1-x)(l-Ax)

x - IVH = 0

Here again the solution can be found in the form of power

series in I multiplied by a power of x

VH1 = x S
Ak xk

k=O

The method of Frobenius was again used for the determina-

tion of s and the reaurrence formulae for the coefficients.

It was found that s = 0 and 1/2 for this case. For s = 1/2

the recurrence formula is

we have

(i)

·4

L

111

36
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Ak k( 2 k+l 4 (j2k-1)(l+4) - ia Ak-

- fe(k-1X2k-3)(1+X) - 2a - in(l+wX) Ab-2

,+ Jj (2k-3)(2k-S) - - iaX kS1 >)

A second solution corresponding to s = 0 is of the form

V = Ak xkIll
k=O

Because of symmetry, [V= -VjT for all values of4.

Since the series corresponding to s = 0 cannot

satisfy this condition, the second solution should not be

considered. Hence the complete solution of Eq. (i) can be

expressed as

VH X1/2 Ak  (k)

k=0

where Ak is given by the recurrence formula (j).

Separating the series (k) into real and imaginary parts,

we obtain

V1 = Ao(J, + i J2 ) (1)

where J. and Ja are power series multiplied by 1 /2, the

series being convergent when (2-x)(C1-x) 2 ý 0.

As was shown for the case of the truncated cone, the

complete solution of Eq. (a) can be represented in the

L



following form

VH = C JI + CaJ2

where C1 and Ca are arbitrary constants.

Substituting (1) in the first of Eqs. (b) gives

L(J, + i J) + i (J + i Ja) = 0

*. [a + )(1 JJi[Jp) +s Jj = O

For this to be an identity,

L(J3) =/ J2

L(J2) = -a 2 J,

Substituting Eq. (m) in the second of Eq. (2.11) and using

the above relationships gives

U = D (C2 Ha + C3) J - (C,2 - C J2rI 2

Having obtained the homogeneous solution of Eq. (2.11), we

shall next attempt to find its particular solution bystem.

Particular Solution: If

S = SI + i S

is a particular solution of the inhomogeneous equation

L(s) - i/L2 S = Z

then it can be shown by direct substitution that

VP = -s

P 1 S

Co)

(p)

(q)

(m)

(n)

iiI

p



is the particular solution system of Eqs. (2o11). The

solution of the differential equation (p) will also be

obtained in terms of power series~

Using the relationships (c), (f), and the first of the

expressions (h) in Eq. (2.9) gives

z = F(1X) cos5 2 +(2 - 3Xx)
X2(1-\x)(1-x)'

Let S = SI+ i S2 = Fr(l-A) W ctnci (r)

The differential equation (p) then becomes

L(W ctn4) - i W W ctn = cos (2+~- 3x)
Xr,(1->x)(1-x)X

The symbol L(...) is defined by (d), and 0 is related to

x by the expression (f). Using this in the above differ-

ential equation gives

(1- x)(2-x) e1-x) w
dx'

+ (1-XX)(1-x) (1-+x)(lx)2+2(l x)-xx(l-x)(2-x)x dx

S 2x(e-l~x -•x(l-x) (1-x)-x(1-x) 2(2-x)

- a x(l-ýx)(l-x)' w - (2+X) xW-3x~ (s)
1 x

A solution of the above equation can be taken in the form
oc

= =Bk xk (t)
k=O



i

Bk =k

+ (k-s-l)Ps+

- sI [k-s-l)(k-s-2)Rs+
l

s=O

1+ Qs+J B k-s-

(Bo= 0 , k1l)0 (u)

where

N = C2+%1) ; N = - 3% ; Na = N = N = ..... = 0

R = - (5+L4) ; R2 = (4+10k+ 2X2) Ra = - (1+8X+5X2 )

R= = 2(1+2X) ; = -

P = - (5+8X) ; P6 = (3+15A+ 5A!) ; P? = - (1+lOA+ l0>• ) ;

P? = h(3+7T-) ; P = - 2

Q = (2-ý- is ) ; = - (3X+ 2 - 3 ia- ialX);

Q ;3 3 ~-i, ia,)J;Q$

Separating the series into real and imaginary parts, we

obtain

W= J + J

where J. and J4 are converging power series when

(1-x)(2x-x)(-x) ý 0.

L
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Substituting the series (t) in Eq, (s) and equating

the coefficients for each power of x to zero, we obtain

the following recurrence formula for Bk

-(4X!-iai-3iaj) Q Qs=(•-ia•)



S, and S. can then be related to J3 and J4 by the expres-

sion (r) giving

SI = Fr (1-ý) ctn# Ja = F r(l-X) V x J

S = Fr (l-h)ctn J 4 = F r(l-X) v ( J,,

Substitution of these relationships in (q) yields

= Fr(l-) /x2-x)
VP # -D 1-X

Up = Fr(1-) x(2-x
1-x (Ja -- J4 )

as the particular solution system of the differential

equations(2.11). Since these are linear equations, it is

permissible to add the homogeneous and the particular solu-

tions to obtain the complete solution.

Thus U = UH + Up
V = VH + V

or
O ~r

U = D Ct + C0 - i -.c cc C

+ Fr(l-x) x2-x) ( J ) (2.21)1-x *(2.21)

V = C J + CJ a Fr(l- l x 2 4
JX 'j 4_

(2.22)

2.5. Equations for Forces, Moments, and Displacements in

Terms of U and V. Having the expressions for U and V, we

~Jlm'
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can obtain all the forces, moments, and displacements in

terms of these two quantities. The forces No and Ne are

found from Eqs. (2.7) and (2.8). The bending moments MO

and Me are obtained from the last two of Eqso (2o5) by set-

ting 1 (v + d equal to V. The only displacement that

will be of interest is the relative deflection between two

parallel circles defined by the angles (j and (,. This is

obtained by substituting Eqs. (2.7) and (2.8) into Eq.

(2.15). The equations resulting from these substitutions

are

1
("P r2

N- (Fr U- ctnq)

N9 I(r F csc2ý+d

I dV V ctn= - D ( + )
r dr r 2

(2.23)

r d r

- (- ) tn d+ ( + F sc

+- d - )U ctn
r. doLi ~ l
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3.1. Corrugated Pipe Under Axial Load. Pipes with three

different types of corrugation are shown in Fig. 3.1, each

subjected to an axial load of 27-F. The first one has

V-shaped corrugations; the corrugations -of the second one

consists of concave circular arcs, while those of the pipe

in (c) consist of a series of alternating concave and con-

vex circular arcs. These three types of corrugations will

be referred to as V-shaped corrugations, cusped corruga-

tions, and undulating corrugations, respectively.

The dimensions of the corrugation will be defined

by the symbols b, c, and h. (See Fig. 3.1.) In our fur-

ther discussion we shall refer to b as the width of a

corrugation, c as the length, and h as the depth of a

corrugation. The thickness t of the pipe wall will be

assumed to be constant over the entire pipe length. The

radius r of the pipe will be considered to mean the aver-

age radius of the pipe. It wi22 be seen that all the

quantities defined above have the same meaning for all

three types of corrugations.

Each of the three corrugated pipes shown in Fig.

3.1 can be considered as being formed by combining several

shells of revolution such as ABOC, CDEF, .... . If the

pipe is sufficiently long, any one such shell can be ana-

lysed and considered to be typical for the entire pipe.

CHAPTER 3

CORRUGATED PIPES
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The shells ABCD, CDEF, .... for the pipe in (a) are

truncated conical shells, whereas those for (b) and (c)

Aare ring shells. Each one of these shells is subject to

an axially symmetrical load of 2wrF. This load acts along

the edges AB, CD, EF, .... only, so that the shell surface

can be considered to be free of any external load (the

weight of the shell being neglected).

In Chapter 2, we have obtained solutions for trun-

cated conical shells and convex ring shells, such as ABCD

of Fig. 3.1(a) and (c), respectively, subjected to the

type of loading mentioned above. The solution for the con-

cave ring shell, such as CDEF of Fig. 3.1(b) and (c), can

be directly obtained from that for a convex ring shell, if
the parameter

(2.1)r

is small and if the edge conditions are the same. For if

is small, the radius of curvature r, is approximately the

same for corresponding points of the two shells (see Fig.

3.2)., However, the curvature of the meridian for the con-

vex and concave shells is of the opposite kind. Hence,

the force No and moments M, and Me for the two shells

which arise due to this curvature will be of the same mag-

nitude, but opposite in sign, for these two shells, where-

as the force Ni will be of the same sign and magnitude.

Also since the forces and moments are of the same magnitude



csc r-
rcsc l4 , p

(sLrL- sLa 4 )1
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(a) Convex Ring Shell
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e rcsc

(bj Concave Ring Shell

Fig. 3.2. Ring Shells
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tion of their axes of revolution must also be the same.

Thus, if is small the solution of a convex ring shell

can be directly used for a concave shell by only changing

the signs of Ng, MN, and Me. Unless otherwise stated,

will be assumed to be small in our further discussion.

In each of the three cases, it is only necessary to

analyse the shell ABCD and consider it to be typical for

the entire pipe length. The stresses and deflection for

the conical shell can be obtained by using the general so-

lutions (2.19) and (2.20), while those for the ring shell

can be obtained from (2.21) and (2.22). The constants ap-

pearing in these solutions can be determined from the

boundary conditions at the edges AB and CD.

Because of the restraint from adjacent shells, the

rotation of the meridian at t•he edges AB and CD of Fig.

3.1(a) and (b) must be zero, Fu-rthermore, there can be no

component of force normal to the axis of revolution at

these edges. The expression for the rotation of a tangent

to the meridian is given by the second of Eqs. (2.6), while

the component of force normal to the axis of revolution is

equal to Q~sin~ - Nocos (see Fig, 2.2). The forces Q0 and

NT are related to the parameter U by the first two of Eqs.

L47

for the convex and concave ring shells, the strain energy

due to the axial force of 2wrF must be the same for the

two. By equating the strain energy to the external work,

it follows that the expansion of the shells in the direc-

iii,

i
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(2.23). Thus, the boundary conditions at the edges AB and

CD can be written as

v = 0

sYino - Icos s = c(U - Frctn4) = 0a)

For the pipe with the undulating corrugations it

can be concluded from the antisymmetry of the deformations

that there would be inflection points at the edges AB and

CD and that the circumferential force N8 , given by the

third of Eqs. (2.23), must be zero. In equation form the

boundary conditions at the edges AB and CD are

1 dV

(b)
Ne - (rFcsc 6 + d)' =0

where V is the rotation of a tangent to the meridian.

With these boundary conditions the constants appear-

ing in the solutions (2.19) through (2.22) can be deter-

mined, thereby obtaining exipressions for U and V for all

the three cases. Substitution of these expressions into

Eqs. (2.23) will finally give the forces and moments in the

shell and the relative deflection A between the edges AB

and CD can be found. It should be noted that A represents

the deflection of an axially loaded corrugated pipe of

length equal to the perpendicular distance between AB and

CD. The unit stresses in the circumferential direction and

in the meridian direction (i.e. perpendicular to the
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circumferential direction) can easily be obtained from the

values of the forces and moments.

In the meridional direction, the unit stress in the

extreme fibre is given by

N 6MO

In order to obtain a dimensionless quantity, we shall

divide 6-0 by

-= (d)
t

which is the stress in a plain pipe having the same thick-

ness and mean radius as the corrugated one. The ratio

6/6- will be called the meridional stress factor and will

be denoted by the symbol Ký

No 6MS

Similarly, for the circumferential direction we have

Ne 96Me

in which Ke is the circumferential stress factor.

For all practical purposes it is only necessary to

know the absolute maximum value of the stresses. So in our

further discussion we will take Ke and Kg to mean the abso-

lute maximum values of these two factors, i.e.

ma(e)

t;+



N 6M

max

Then in order to obtain the maximum value of the stresses

in the meridional and circumferential directions in a

corrugated pipe, one merely multiplies the stress in a

corresponding plain pipe by the stress factors K4 and Ke,

respectively.

In place of calculating the relative deflection

between the edges AB and CD, it is convenient to obtain a

"reduced modulus of elasticity" for a corrugated pipe, so

that deflection calculations for a corrugated pipe can be

made by considering the pipe to be plain but having this

reduced modulus as its modulus of elasticity. The ratio

of the modulus of elasticity of the pipe material to this

reduced modulus will be called the modular ratio and will

be denoted by the symbol N. It is evident that N is equal

to the ratio of A for a corrugated pipe to the correspondt

ing t for a plain pipe of the same major dimensions.

Use was made of the IBM 704 Computer at the M.I.T.

Computation Center to obtain values of K#, Ke, and N for

all three types of corrugations. It was found that these

factors could be put in the following forms

K= 1 + ko (3.1)

Ke = t ke (3,2)



N = coso'+ an (3.3)

in which

o= tan 1 h (3.4)

and ko, ke, and n are, in general, functions of *- and

another parameter A, where

The quantities ko, k&, and n were calculated for

values of 9 ranging from 0 to 5, with Oe varying from 0.1

to 1.5 radians for V-shaped corrugations and from 0.05 to

0.75 radians for the circular corrugations. The value of

Poisson's ratio,y, was taken to be 0.3 in these calcula-

tions. The results of these calculations are shown in

Figs. A.1 through A.9 in Appendix A.

Comparison of Eqs. (e) and (3.1) shows that the

value of j10 is unity. However, this is not correct.

For the V-shaped and cusped corrugations its value was

cosoeand coa-2~ , respectively, whereas for the undulating

corrugations its value ranged from 1 to 2.25 depending upon

the value of cc andS. But in comparison with the value of

h
h k4 this term is small, except for very shallow corruga-

tions, i.e. for smalloc, and its value then approaches

that given. Hence, its value can be taken equal to unity

without introducing any appreciable error in Ka.
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The term cosolin Eq. (3.3) is also not correct for

the circular corrugations. This term represents the ef-

fect of the meridional direct stresses NO. The correct

value of this term is given by the expression

oL cos 20o
sin2oc 2 (g)

However, this expression differs from cosotonly for large

values of O(, and the difference is maximum for semi-

efirculr corru ation ti e = for a = T-)I wenL the e3rr. rS.Y TV . oI
less than 10%. But for large values of OC, the second term

of Eq. (3.3) is so large that the resulting error in N is

negligible if expression (g) is approximated by coso .

Hence, it is permissible to make this approximation. This

also makes it possible to have the expression for N of the

same form for all three types of corrugations.

The parameter A given by expression (3.5) has the

same significance as the parameter 1/ used in connection

with beams on elastic foundation.1 X is known as the char-

acteristic length since it has the dimension of length,

whereas is a dimensionless quantity obtained by multiply-

ing by a quantity which has a dimension of length. In

our case this quantity is /=E. In further discussion we

will refer to B as the pipe characteristic, as it is the

parameter which primarily influences the factors KO, Ke,
and N.

M. Hetenyi, "Beams on Elastic Foundation.*

t



It should be mentioned that the charts shown in

Appendix A are valid only when the thickness of the pipe

is small in comparison with the two principal radii of

curvature of the corrugations. This is so because the

solutions for conical and ring shells presented in Chapter

2, on which the results of the charts are based, were ob-

tained under these assumptions. The radius of curvature

ri of the meridian is infinite for V-shaped corrugations;

hence, t/r. is zero. For the circular corrugations

h
1? 1-cos 2o.

and so t(l-cos 34/h must be small. The other radius of

curvature r. is proportional to the radius of the pipe r,

so that t/r must also be small.

The only other assumption made is that the ratio

9= h/r is small. In order to study the effect of e, the

modular ratio N was calculated for V-shaped corrugations,

for ( = 0.05, 0.10, and 0.15 and oC= 0.7. The results of

these calculations are shown in Fig. A.3, so that they

could,be compared with the curve for small values of e.

It is seen that there is considerable difference between

the curves when P is small. But when / is small, e must

also be small in order that the ratio t/r be small; for

b be h rt
= Fr = rt ctnoosc= P - tno cscom

For OCX= 0.7, we have
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t 1

from which it is seen that P must be small when p is so, in

order that the ratio t/r be small. When is larger, the

variation between the values of N for the various values

of e is small. The same general trend was found for the

stress factors, KE and Ke

A similar investigation was carried out for the

cusped corrugation which revealed the same results as for

thek, V-shrarr ecorru •atio•,or the ,,. --u-lati c r
U.L.L~# -UL~ ~ -L L.U.L QIJL.L e .L U .L.&1 L&LU.AL · LL~ 6 W.&J % CL

tions, however, the effect of e on the results could not

be studied as the boundary conditions (b) are correct only

when e is small. Since these types of corrugations behave

similar to the V-shaped and cusped corrugations, it would

be reasonable to a'sume that the factors KO, K9, and N

would also be insensitive to P as long as the ratio t/r is

small.

Donnell2 has studied the flexibility of pipes having

V-shaped and undulating semi-circular corrugations. He

considered a longitudinal strip of the pipe as being sup-

ported on an elastic foundation and by using the method of

internal energy he obtained expressions for the modular

ratio for the two types of corrugations. In terms of the

notation of this chapter, his results are

2 L. H. Donnell, "The Flexibility of Corrugated Pipes Under
Longitudinal Forces and Bending," Trans. Am.Soc.Mech.
Eng., APM-54-7-69, 1932.



V-shaped Corrugations:

iN = 1 + - 1•  + 0.125~P - 0.00219861

N l t(h)
Semi-Circular Corrugations:

N = 1 + 1.5 h + 0.0625p' - .o00435 5

In obtaining these expressions, Donnell also assumed that

the depth of the corrugations is small compared with the

radius of the pipe, and that the wall thickness is fairly

small compared with the radius of curvature of the corru-

gations. It is seen that these two expressions are of the

same form as the expression (3.3). The first term in the

expressions (h) represents the effect of meridional axial

stresses. As was shown earlier, it is approximately equal

to cosoC, though the resulting error in N is negligible if

the effect of axial stresses is approximated by unity. In

deriving the expressions (h) Donnell used Eta/12 as the

flexural rigidity of the strip. Since any change in the

shape of the cross section of the strip is prevented by the

adjacent s.rips in a manner similar to that in plates,

Et/l2(1-Y• ) should be used for its flexural rigidity.

With these two changes, the above expressions for N become

V-shaped Corrugations:

Ncosoc+ h  [1-+•• )  +0. 125 • )(11• -o0.00219(1- 16)

3bt)
(3.6)

i

I I

7
55



Semi-Circular Corrugations:

Ncose+ c-h 2 - 1 +0.0625(1- )f -0.00435(1-4 1.3l 02
bt 2  • o o

N was calculated from these two expressions for

V= 0.3 and for values of 1 ranging from 0 to 5. The re-

sults of these calculations are shown in Figs. A.3 and A.9,

so that they could be compared with the results obtained by

using the solution for conical and ring shells. It is seen

that thie agreement between the results of the two methods

is very good.

3.2. Explicit Solution for an Axially Loaded Pipe with

V-shaped Corrugations. In order to show that the factors

K4, Ke, and N can also be used for the case of a corru-

gated pipe under bending, an explicit solution for a pipe

with V-shaped corrugations will be developed. This solu-

tion will be expressed very simply in terms of trigonomet-

ric and hyperbolic functions instead of in terms of power

series,

In the previous article it was shown that the solu-

tion obtained for small values of C gives good results also

when e is relatively large, as long as the wall th.ickness

is small compared to the radius of the pipe. This would

make it reasonable to assume 1 i. zero. Under this assump-

tion Eq. (2.18) becomes
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daU(
d  + ia U, = 0 (a)

dz a

This represents the first of Eqs. (2.17). It is convenient

to shift the origin of z from the edge AB (see Fig. 2.4)

to the edge 00' midway between the edges AB and CD. For

this purpose we shall introduce a new variable y, where

y (3 8)

With this change, Eq. (a) becomes

+ ia U+ = 0 (3 9)
dy

This is an ordinary linear differential equation the solu-

tion of which is

U1 = C (cos? + i sin ) + c,,e(cosj - i sinj) (b)

where

f=7 = ya (3.10)

As before, the complete solution of Eq. (2.17) is then

U = (Cel + Cae_?) sin'+ (Cuel + C,e-i)cosy (c)

If the depth of the corrugation is small relative

to the radius of the pipe, then the point 0 will be a point

of inflection, so that the shear forces Q4 at ±twill be

equal. If we use this condition and observe that

1 coL osU. Cost1 - U = c 080 Ur--- coa_ • U
r. r r

we have, from (c), that

L



58

(CzeL+ Cae-l)sinT+ (Ce 'q + Ce'q)aoY = (CLe - +Caee) -slny)

+ (C e 1-+ C eq)cos-q

Transposing and collecting like terms gives

(CI + Cz)(eN + ei-)sinY+ (C 2 - C,)(e 4 - e-))cos = 0

This can be satisfied for all values of YL only if

C, = - Ca and C. = C4.

Then solution (c) becomes

U = C (e' - e't)sin-I + C3 (el + e-)ocos

Using the relationships

eA- e"  .
2 = sinh Y

2 + e cosh
2 = cosh32

and introducing the notations

fl = sinytsinhll , f= coskcoshY

finally gives

U = CzfI + C2 f (3.11)

For future reference, we shall tabulate f. and f,

and their first and second derivatives with respect to ..



; fa = cos hcoshYL
4)

= dfl
f=-- =sin coshy+cos sinhy ;

df
f dI - = costsinhy- sinq coshJ

2, dd 2it d 2f
f , - 2 f1

d2f

.Jo0Ad~fl

Using expressions (c) and (d) of Chapter 2 in the

first of Eqs. (2.11) we obtain for V, the expression

V aseco(Cf h f (C f + C2f )
L c ý c cosC

r t C I fI+ C 2 f2 ) + F tan se O

This can also be written as

V = ar (Cf2-Caf ) + C (ClfI+ C2f,)SEtbc - 2

a (Cif 1+C 2f2 ) + a
-a ab

If ý is small, the last three terms in the above expression

are small compared with the first term, and could thus be

neglected. This then gives for V

V= (C1f, - C2 fl)Etbc •"z

The constants C. and C, can be determined from the

boundary conditions (a) of Art. 3.1 at the edges

y= + 1) I

fI = sinq si nhY



rC - Fr tan) = 0r

V = 01aty = + l2

which gives for C, and C, the expressions:

C1  = Fr tano - f 2.... . . ...
I ( +l)) f 22178-

C2 =Fr tanre

From Eqs. (2.2.3) the expressions for the forces,

moments, and displacements can easily be found. If is

neglected, these expressions are

Q = F sinoc(Af + Bf )

N = F sec4 - sinkc (Af1 + Bfs

N = 3(___ _ (Af + Bf') (313)

M =- AFh l Bf')
M = M=- (Af Bf)Af B

_A 6 (1-v) ho sinh- sinj -a= rt coso )+ in oino (3.14)
Et bt coshy cos]

where

31) 3(1 a) b(d)~JII ---- yt
dna

ein

!

•.Kl (I
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cA = oshY - )(1-cos) B = /cosh +1)(cosy+
coshy+ cost coshy + cos(

(e)

The expressions for the displacements v and w will

be needed in the next article. They can be obtained very

simply by substituting the above expressions for N and Ne

in Eqs. (e) and (f) of Art. 2.2. These expressions, for

small values of (, are

v .Fbv y

w Fch (Af' + Bf')
Et 2

The constant of integration appearing in (e) was taken to

be zero so that the displacement v would be zero at y = 0.

The stress factors Ký and Ke and the modular ratio

N can readily be calculated from Eqs. (3.13) and (3.14).

Calculations show that for values of 8 ranging from 0 to 5,

the absolute maximum values of Ne , MP, and Me occur at the

crests of the corrugations, that is, at the edges AB and

CD. Hence, in calculating expressions for Kp and K& , the

stresses should be oalculated at these edges, i.e. at

y = + The expressions for KO, Ke, and N are

I h sinhI + sTn J
+t coshy + cos rb

S= 31-9) (sinhy- sinY) + 3J(sinhY+ sinf) (3o17)
a t (coshy + cosy)

I

riji
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N = cos+ 6(1-)) ch2  sinh - s 318)
Ia bt2 coshý + cosy)

These expressions were calculated for various values ofK

ranging from 0 to 6.5 with )= 0 3. When the results of

these calculations were plotted it was found that the

curves coincided almost exactly with the corresponding

curves shown in Figs. A.1 to A.3. It should be noted that

Sis related to the pipe characteristic 3 by expression

(d).

3.3. Corrugated Pipe Under Pure Bending. The stress dis-

tribution in a corrugated pipe bent by couples acting at

its ends is not symmetrical about the pipe axis as was the

case for an axial load. The circumferential displacement
u, the lateral shear forces Ng =Nqa,the torsional moments

M9 = - NMq, and the radial shear force Q, will no longer

be zero. Hence, the equilibrium equations (2.1) and the

stress-displacement relationships given by Eqs. (2.2) must

be used instead of the Eqs. (2.4) and (2.5).

When expressions (2.2) art substituted into Eqs.

(2.1), a system of five simultaneous partial differential

equations results, two of which are of the third order.

The solution of this system of equations can be obtained,

if at all, with only the greazest of difficulty. However,

it is possible to obtain the solution for the case of

V-shaped corrugations by making use of the solution (3.13)



obtained in the previous article for an axially loaded

pipe.

Before doing this, it is helpful to rewrite Eqso

(2.1) and (2.2) for the special case of a conical shell

such as ABCD of Fig. 3.1(a). With the notation of Art.

3.2, the equilibrium equations (2.1) become

c 3y

c Y3
c 3y

M r) N ssinoe +

(Nero) + Nsina+ Qcac 0'IT e %cgo ce 0

(Qr o) + N cos + - = C3.19)

a.

C
(o r o ) - M s i nc e - • - r O= 0

h stp roe d sia + - eGr 0=

The stress-displacement relationships (2.2) for a

conical shell become

K + I - + v si n - w o )SO

Ne Et 1 + v sin.X- w coa ) 2
1-2 0o a c 3y

No 6E; E t u uV U
N 2 T 1_+y C

w 9 )w I w 1 buD + + +y r°  r o ry r o

S 1 -3w 1 W 1 bu a UTAG = - 1 ( s+ coa) -) + 1
.r O  r 0 o r 0  •

ir

M4=- Me =o D(1-y) +o iC r r) ·3Lt~~

>
(3.20)

%
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A pipe with couples Ttr 2 F, acting at its ends is shown

in Fig. 3.3. Again here it is necessary to consider only

the element ABCDo The boundary conditions at the edges are

the same as those for a corrugated pipe under an axial

load, namely, that the rotation of the tangent to the merid-

ian at the edges must be zero and that there can be no com-

ponent of force parallel to the edges.

From equilibrium, the resultant of the forces

parallel to the pipe axis must be equal to the applied

couple 1Tr2PF. An assumption as to the distribution of

these forces must be made in order to find their values.

In a plain pipe, these forces vary linearly across any

cross section. It seems reasonable to assume that the

same is true for a corrugated pipe too. Under this assump-

tion, the longitudinal force at any point is equal to

Fasine, where e is the angle measured in the anti-clockwise

direction from the neutral axis of the pipe. The corre-

sponding force for a pipe under axial load of 2yrF is con-

stant and ,qual to F. This suggests that the forces Q0,

No, and Ne, the moments MO and Me, and the displacements v

and w for the case of bending can be taken to be given also

by Eqs. (3.13) and (3.15), if F is taken to be equal to

Fisine. If this is assumed, then the expression for the

above stresses and displacements for the case of bending

are

64
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(a) (b)

Fig. 3.3. Bending of a Corrugated Pipe
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(c)

(d)
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= sinox (Af + Brf) F.sine

S se o[l - sink (Afr + BI) F, sine

SN (Af + Bfr) F, sine (3.21)

S(A Bf) F z sine

Me =- (Af Bf ) F. sinG
Me 2 3

ib v F sin ePtr5Ll I
(3.22)

A3'1V2 ) c0h - -

w = .(Af • kA + sine
ra Et a

where all the quantities appearing on the right hand side

of these equations are defined in Art. 3.3.

In addition to these stresses and displacements,

there would also be lateral shear forces, Noe = N0e, tor-

sional moments Mpe = - MIo, radial shear force QG and the

circumferential displacement u. We shall first attempt to

obtain the torsional moments. For this purpose, the dis-

placement 1 will be assumed to be small relative to the

partial derivative of the displacement w with respect to

). It will be shown later that this assumption is actually

correct. Then by substituting the expression for w given

above into the last of Eqs. (3.20), we obtain

-- M ( ) h [I7o (Af + BfP) F1 cose (a)

I

r

I:'
1



From Eq. (3.10)

a= - i = (b

The radius r0 of the parallel circle is

r0 = r (l + ey)

When is small,

ro r (c)

Using (b) and Cc) in (a) and noting that the func-

tions f, and f2 and their derivatives are given by Eq.

(3.12), we get

MO, = -M 1M~2 (Af 2 - Bf ) F1 cos 9

Using expression (d) of the previous article for , we

finally obtain the expression

Moe M0 1 t tanoc Af -B ) F, cose (d)

The expression for QG can be found by substituting

expressions for M. and M9e given by Eqs. (3.21) and (d) in

the last, of the equilibrium equations (3.19). In the lat-

ter equation, the term Mýsina is small in comparison with

the other terms for small values of Q, and can thus be

neglected. Also, r0 is approximately equal to r. This

gives the expression

L
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(1-•) Yt tano (A Ef ) Fh coe

2V/3(1- V)
for Q9. Simplifying this gives

Q= 1 e (Af' - Bf') P, cose

The maximum value of this expression is found to be

0.5(1-3V)e F cose, which is small enough to be neglected,

so that

4e = o (e)

The expression for the lateral shear forces,

N4 = NeO can be obtained in a similar manner by substi-

tuting the known expressions for N9 and Qg in the second

of the equilibrium Eqs. (3-19). This expression, for

small values of , is

Ne = NG = tano (Af + Bf) F, cose (f)

Grouping expressions (d), (e), and (f), we have

Ne = N,1 = tano< (Af. + Bfj) F; cos

M =(1-)t tanxt = - tn = o A( Bf 1 ) F, cos (3,.23)
2 /3(1-

The displacement u can now be obtained from! the

third of the stress-displacement relationships (3.20), by

using the expression for v as giv~s by Eq 6 (3.22) and the

above expression for EN~. This gives

I.
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tanoL(Af1 + Bfr) F cose d Ezqu F .• cF s -

The last two terms are small in comparison with the

first, and can therefore be neglected, giving for u the

expression

u 2(1+y) ch (Af' - Bf') F cose (3.24)
Et b- z

The ratio of u to is found to beb-7
2(1+•) (Af' - Bf) t

.u 2

The ratio t/r is generally very small, so that the assump-

tion made earlier that u is small relative to -t is cor-

rect. It can be checked that the solution represented by
Eqs. (3.21) through (3.24) satisfies both the equilibrium

equations (3.19) as well as the stress-displacements

relationships (3.20) for small values of &. This is thus

the correct solution for the pure bending of a pipe with

V-shaped corrugations as long as the ratio e is small.

Calculations show that th. unit shear stresses due

4-"h 4- 4 i 4- A 1 l 1 in

Eqs. (3.23) are small relative to the direct stresses caused

by the bending moments and direct forces. Hence only the

latter need be considered in calculating the maximum

stresses in the pipe.

The meridional stress, 6_ , is

L
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No 6M- t

The stress in a plain pipe due to a moment of lrr 2 F 1 is

F
'6= -1 sinet

For any given angle 9, G4 is maximum (or minimum) at the

crest of the corrugations, and its absolute value is given

by

, Fcoscsin + 3h sinhZ + sinY
Smax + F sinemax t t 1 cosh' + cost

Defining the meridional stress factor K as the ratio of

m6I to 6, we find that

KO = cos+ 3• h sinh-  + sinY
(t cosh5 + cosY

For reasons given in Art. 3.2, the term cosO can be re-

placed by unity so that

K! = 1 + 3h sinhY + sine
t coshY + cosY

This expression is exactly the same as the expression given

by (3.16) f1r a pipe under an axial load. Similarly, it

can be shown that the circumferential stress factor KR for

the case of bending is the same as that for axial load as

given by (3.17).

It can also be shown that the "reduced" modulus of

elasticity to be used for calculating the bending deflec-

tions of the pipe is the same as that used in calculating
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the axial deflections. To show this we need to calculate

the relative deflection A between the edges AB and CD (see

Fig. 3.3(d)]. From the figure it is seen that

'A= [v cosoc+ w sinY-]
2 y=1/2

The angle of rotation Ady- between the edges AB and CD is

Ad)~ = 2 [v cos x+ w sino]
r sine y=1/2

bcosi<F ch]Fcoa 6(1-V6 _______ch sinhY - sinYi
SEtr Eta coshY + cosI

i The corresponding angle of rotation for a plain pipe is

=o Etr

The bending deflections are proportional to these rotations,

so that if N is definmed as the ratio of the bending defleo-

tion for a corrugated pipe to the corresponding deflection

for a plain pipe of the same major dimensions, we have

Ncos + 6(1-2) ch 2 sinhX- sin()N cosoe + ( )
a bts2 c0sh+ cost

which is also seen to be the same as that given by (3.18).

N can as well be thought of as the modular ratio, i.e. the

ratio between the actual modulus of elasticity of the pipe

material and the "reduced" mo~&:ius. The bending deflections

of a corrugated pipe can then be easily computed by consid-

ering the pipe to be plain but having this reduced modulus

as its modulus of elasticity.

LJ
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It has been shown above that the stress factors K4

and Ke and the modular ratio N for a pipe with V-shaped

corrugations are the same for bending as for axial compres-

sion (or extension) of the pipe. There is no simple way of

showing that this is so for pipes with cusped and undulat-

ing circular corrugations. It will be assumed that this is

true also for these types of corrugations since the only

difference between these and V-shaped corrugations is that

of geometry.

i3.4. Corrugated Pipe Under Bending Moment and Transverse

Shear Forces. We have seen that a corrugated pipe under a

bending moment or an axial force is more flexible than a

plain pipe. This is so because the longitudinal forces due

to an axial force and moment are perpendicular to the cross

sections of the pipe and thus create bending of the corruga-

tions. However, transverse shear forces being in the plane

of the cross sections do not create such bending of the

* corrugations, so that one would expect that the effect of

transverse shear forces is small for corrugated pipes. It

can be shown that this is actually so,

For this purpose we shall investigate the effect of

shear forces on a pipe with V-shaped corrugations, although

the discussion is equally applicable to pipes with cusped

and alternating circular corrugaticns. One of the conical

shells forming the pipe is shown in Fig. 3.4. The length
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b of this shell can be assumed to be small enough so that

it can be considered to be an elemental length. Transverse

shear forces S are shown acting on the edges AB and CD.

The bending moment on the edge AB is M and this, due to the

shear forces S, increases to M + dM on GD. From equilib-

rium, we have

dM = bS (a)

We shall obtain the distribution of the shearing

stresses over the pipe cross section by a method similar to

that used for ordinary beams. It was shown in the previous

article that the longitudinal forces vary linearly over any

cross section as shown in Fig. 3.4. On the edge AB, they

are given by

MsineF = a (b)

while on the edge CD we have

F +dF (M + dM)sineF +-dF = Cc)
T1r +dr d"0 0

Consider the equilibrium of the element mAnqCp. On

the side mAn the total .,Jrce acting in the direction of the

pipe axis is

Fr ode0
which, by making use of Cb), becom•ms

i-
:j
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Fig. 3.14.

Fig. 3.5.

Shear Forces and Bending Moments on an Element of Pipe

Corrugated Pipe Tested by Cope and Wert

L

Hyd.
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TT rd)

Similarly, the total force acting on the side pCq in the

direction of the pipe axis is

2(M+dM)cose (e)
f (~r +dr )

On each of the two planes mp and nq, the force due to unit

shearing stresses 'T is

'Ltc
The component of this force in the direction of the pipe

axis is

T2tc cosox= 'Ztb

Then the total force in the direction of the pipe axis due

to the unit shearing stresses Zjon planes mp and nq is

2 'Ctb (f)

The forces given in (d), (e), and (f) must be in equilib-

rium:

2 2tb ~2(M+dM)cose I2 cos
I hotb Tf (r +sdr 0) rT

If the depth h or the corragation is small relative to the

radius of the pipe, then

r + dr i r r
so that the unit longitudinal shear stress is

so that the unit longitudinal shear stress is

i
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dMoos s
/CL T Trbt

Substituting expression (a) for dM and noting that the

shear stresses on any two perpendicular planes are equal,

we have for the unit shear stress t on the cross section

the expression

rcosit (3.25)

It is seen that this is the same expression as that for a

plain pipe.

It can be shown quite simply that the distribution

of the shear stresses as given by expression (3.25) makes

the internal strain energy of shear a minimum. To show

this, let us assume that the distribution is given by the

Fourier cosine series

= Ft F 1cose + a.cos8 3 + .. + cos(2n+l)G+.

(g)

where a,, a, .o aree 7rbit-rary coefficients. Only odd

terms are considered, since, because of symmetry, C= 0 at

e= 7 TY2. The series (g) can be made to represent any

distribution by appropriately choosing the values of the

coefficients.

By statics, the resultant of the shear stresses C

must equal the external shear force S :
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2n

J rtde cose * S
e=o

Using for T the expression (g) and noting that

27r
fo cos(2n+l)ecosede is zero for ný 0, we find that a = 1.

Then (g) becomes

(cose + a cos 39 + .1. + a2n+cos(2n+1)G] (h)

The strain energy of shear stored in the element ABCD is

dW. - i rtde. )

8=0

where G is the modulus of elasticity in shear, and lis

given by (h). For this strain energy to be a minimum, the

partial derivative of (i) with respect to the coefficients

a 2n+ n=1l,2, ... ) must be zero.

S asecccdx
ba2n1 ea rtd 2n+l (n=1,2, ... )

This can only be satisfied if a l is zero. Then the dis-

tribution of the shea7 saress as given by (h) reduces to

the expression given by t3.25).

In a similar way it aan be shown that the distribu-

tion of the longitudinal forces F as given by (b) makes the

strain energy of bending a minimum. The total strain

energy, which is the sum of the two, is then also a minimum,
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will be called the shear modular ratio and will be denoted

by the symbol N':

N' c (3.26)b

A similar analysis shows that the shear modular
ratios for pipes with cusped and undulating circular corru-

gations are also given by Eq. (3.26). The dimensions b and

and c for these two cases are defined in Fig. 3.1(b) and

(c).

It was shown in the previous article that the de-

flection of a corrugated pipe is N times that for a plain

pipe. -Thus, the total deflection of a corrugated pipe,

subjected to both bending moment and transverse shear

forces, is

N' so3.27)
= Nb.o (1 + - ) (3.27)

where Sbo and Sso are the bending and shearing components

of the deflection of a plain pipe.

The second term in the parentheses represents the

effect of deflection due to shear compared with that due to

bending moment. The ratio N'/N is unity for a plain pipe

and less than one for a corrugated pipe. It is thus seen

that the effect of a shearing component of the deflection

on the total deflection is always less for corrugated pipes

than for plain pipes, if both are of the same major

L
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dimensions and are loaded identically. It is known that

the deflection due to shearing deformation for plain pipes

is only a small percentage of the total deflection, if the

length of the pipe is large in comparison with its radius.

Hence, it can be stated that in calculating the deflection

of corrugated pipes, the effect of shearing deformation

can be neglected whenever it can be done for plain pipes.

3.5. Verification of Theoretical Results with Experimental

Results. Only a few tests on corrugated pipes have been

reported in the literature, and these have only attempted

to find the modular ratio N. Donnell 3 has tested a corru-

gated pipe under both an axial load and under pure moment.

In his paper, Donnell does not specifically mention the

shape of the corrugations. According to Hetenyi4 , the

pipe had undulating circular corrugations. The dimensions

of the pipe were r = 5.33 in.; t = 0.065 in.; b = 1.34 in.;

h = 0.470 in.; g = 1.47 in. The modular ratio N was found

to be 19.9 for axial load and 20.7 for the pipe under pure

bending. The theoretical value of N for this pipe can be

found by the use of Eq. (3.3) and Fig. A.9. The values of

the angle oc and the pipe characteristic 0 as obtained from

the dimensions of the pipe are 0.337 radians and 2.38,

respectively, for which the valuke of n for this case is

3L. H. Donnell, loc. cited, p. 54>
M. Hetenyi, "Beams on Elastic Foundation," p. 176.

C
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found from Fig. A.9 to be 0.341. Eq. (3.3) then gives the

value of 20.5 for the modular ratio N. This is seen to be

in very good agreement with the experimental results. The

experimental results also show that the value of the modu-

lar ratio for the corrugated pipe under bending is, within

experimental limitations, the same as that for an axial

load, as was assumed in Art. 3.4.

Cope and Wert5 have tested the corrugated pipe

shown in Fig. 3.5. In addition to testing this pipe under

an axial load and under a pure moment, they also tested it

as a cantilever loaded by a concentrated force applied at

the free end. The modular ratios N for these three types

j of loading were found to be 6.5, 5.1, and 5.2, respec-

tively. However, in obtaining these values, Cope and Wert

compared the corrugated pipe with the plain pipe from

which it was made, This plain pipe had a wall thickness

of 0.5 in, and a mean radius of 6.75 in., whereas these

were actually 0.59 in. and 7.44 in,, respectively, for the

corrugated pipe (see Fig. 3.5). If the corrugated pipe is

compared with a plain pipe of thickness 0.59 in. and

radius of 7.44 in.,, then the values of N for the three

types of loading mentioned above are 8.4, 7.3, and 7.4,

respectively.

E. T. Cope and E. A. Wert, "Load-Deflection Relations for
Large Plain, Corrugated and Creased Pipe Bends," Trans.
SAm.Soc.Mech.Eng.,, FSP-54-12-115, 1932.
SThe result for the case of axial load was obtained from
the Discussion of Donnell's paper (loc.cit., p. 54).
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The corrugations of this pipe can be approximated

as cusped circular corrugations. The dimensions of the

corrugations are r = 7.44 in.; t = 0.59 in.; b = 2.15 in.;

h = 1.41 in. From these dimensions it is found that c =

2.73 in., cc = 0.579 radians; and 0 = 1.16. The value of

n given by Fig. A.6 is 0.84, which when substituted in

Eq. (3.3) gives a value of 6.9 for the modular ratio. The

discrepancy between theoretical and experimental results

for this pipe is due perhaps to the fact that the thick-

ness of the pipe is not small compared to the radius of

curvature of the corrugations as assumed in the theoretical

consideration. The radius of curvature r. is

b
= bin o 2.36

which gives for the ratio t/r, the value of 0.25. This is

seen to be fairly large.



CHAPTER 4

CORRUGATED SHELLS

4.1. Introduction. Corrugated shells1 which are straight

in the axial direction will be considered in this chapter;

the effect of curvature will be taken up in the following

chapter. The behaviour of shells such as the one shown in

Fig. 4.1 under snow and dead loads is very similar to that

of long barrel shells. It is known that the longitudinal

behavior of long barrel shells is almost identical with the

behaviour of beams with curved cross section, so that the

longitudinal stresses can be determined under the assump-

tion of a straight-line distribution of stress. The

transverse stresses can then be obtained by considering

the equilibrium of an element between two cross sections

an elemental length apart. This method of obtaining

stresses in a barrel shell is sometimes known as the "beam

method." 2  It can be shown that the stresses obtained by

the "beam method" are suffi;iently accurate if the

I For the first time we encounte.r a structural member
which has corrugations in two directions, The shell
shown in Fig. 4.1 has iuajor corrugations in the longi-
tudinal direction; in addition to these corrugations,
there are secondary transverse corrugations as shown in
Fig. 4.1(a), which are similar to the corrugations in
pipes considered in the pz'rrious chapter. In our fur-
ther discussion the term corrugations will refer to the
secondary transverse corrugations; in case of ambiguity,
the main corrugations will be ••ferred to as the major
corrugations.

H. Lundgren, "Cylindrical Shells, Vol. I.

SnlV



AA

O B 0BI "•I o,

C

Section x-x

(a)

(b)

Fig. 4.o1 Corrugated Shells

I

I~



transverse stresses are small relative to the longitudinal

stresses.3 This is generally so for long barrel shells

The major corrugations shown in Fig. 4.1(b) will be

assumed to extend over a considerable length in the z-direc-

tion. The complete structure is somewhat like a multiple

barrel shell. With identical loads on all shells, each

shell behaves in like manner, so that only one barrel need

be investigated. The condition of continuity in the

transversal direction is fulfilled by preventing the longi-

tudinal edges A from moving horizontally and rotating.

These restraints at the edges make the distortion of the

cross section due to the transverse moments less than that

for a single shell. The results obtained by the "beam

method" are in error chiefly due to this type of distor-

tion. Hence, it can be said that the *beam methodtt gives

better results for a multiple barrel shell than for a

single shell'

The corrugations in the shell further help to in-

crease the ;ransverse stiffness of the shell while at the

same time decreasing the longitudinal stiffness. This dual

effect makes the transverse moments smaller and the longif

tudinal stresses larger than those occurring in a plain

shell. So the "beam method hen applied to corrugated

3 Ibid.
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shells will give results closer to the true values than

for plain shells.

The length of the shells shown in Fig. 4.1 will be

assumed to be very large in comparison with the radius r,

so that, for reasons mentioned above, it can be assumed

that the "beam method" gives satisfactory results.

The solutions for the corrugated shell under axial

tension and pure bending will first be obtained from the

corresponding solutions for a corrugated pipe. These solu-

tions will then be used to obtain the stresses and deflec-

tions for the shell under snow and dead loads.

4.2. Corrugated Shell Under Axial Tension. A shell hav-

ing V-shaped corrugations is shown in Fig. 4.1. The cross

section ABCBA is seen to be composed of four 900 arcs each

of radius r. In the diagram the radii of the arcs AB and

BC are designated as r. and r, respectively, as it makes

it convenient to refer to these arcs; it should be kept

in mind that r, is actually equal to r. In general, the

subscript z will be used to refer to arc AB. The thickness

t will be assumed to be constant throughout the shell, and

will be assumed to be small relative to the radius r.

The dimensions of the corrugations will also be assumed

to be small in comparison with r.

The shape of the cross section suggests that the

shell under an axial force of 21TrF behaves like a pipe of
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radius r and having the same corrugations, so that the

stresses and displacement are given by Eqs. (3.13) and

(3.14). However, when these equations are used, the

stresses Ne are found to be incompatible along the longi-

tudinal sections through B. To see this, let us examine

the behaviour of the shell in the vicinity of B. An en-

larged view of this portion of the shell is shown in Fig.

4.2. If the element HJMN is considered as part of a pipe,

then the circumferential stress Ne on the longitudinal

section through B is given by the third of Eqs. (3.13),

i.e.

-Ne 'h IAf•&)) + Bf(a)

Swhere

By considering the element HJKL as part of another pipe,

N, on the longitudinal section through B is

l FL + Bfv (b)

where

From Fig. 4.2(b) it is seen that y, =  y, so that , = =-.

Using this relationship in (b) and noting that f. and f• as

given by (3.12) are odd functions ofN, we have
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Enlarged View of Cross Section of ShellFig. 4.2.
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Ne 9 ( ) + Bf,(y)] (c

Examination of Eqs. (a) and (c) shows that the cir-

cumferential stresses at any point on longitudinal section

through B as given by these equations, though of equal

magnitude, are of opposite signs. This cannot actually

occur, and so the circumferential stress along the entire

longitudinal section through B must be zero. The distribu-

tion of the circumferential stresses along a longitudinal

section through B, as given by either (a) or (c), is also

statically equivalent to zero. By Saint-Venant's princi-

ple, the stress distribution as given by Eq. (3.13) will

be sensibly changed only in the neighbourhood of the longi-

tudinal section through B; the stresses at a distance of h,

from this section will be changed by a few per cent only.

i f the depth of the corrugations h is small relative to the

radius r (or i9) then the displacement A for this shell is

also given by Eq. (3,912), as the disturbance is spread over

on.l a very amall portion of t • shell cross section.

Hence, in the deflection calculations the reduced modulus,

equal to E/N, should be used, where N is given by Eq.

(3.18).

The stresses along the 1ongitudinal section tinrough

B may be larger than those at a ~tance from it, but it is

drIficult to determine their e•xac vai uues. However, we

E,••, ••~es•Hwvr•w



shall mainly be concerned with the bending of the shell

shown in Fig. .ol, for which, as will be shown in the fol-

lowing article, the solution is given exactly by Eqs.

(3.21) and (3.23). When axial forces are present, as in

the case of the shell as a two-hinged arch (Chapter 6),

they are always accompanied by bending moments. As will be

shown in Chapter b, the effect of the axial forces on the

stresses and deflectIons can nearly always be neglected

for the types of arches generally used. So in a practical

case, it is not necessary to determine the stress distribu-

tion along the longitudinal section through B due to an

axial force.

Lo3. Corrugated Shell Under Pure Bending Moment, When the

pipe solution as given by Eqs. (3.21) and (3.23) is used

2
Vor the bendiLng Uof the shel1 A.L .L lg. 4.1 by coVUp.Let IL'V

at its ends, it is found that there is complete compatibil-

ity along the longitudinal section through B. The only

stresses that ocur along this section are the lateral

shear forces and torsional momenta~ the expressions for

owhich are given by Eqs. ,3.23). These are found to have

the same value for +Y, and hence it can be shown that they

are compatible along the lice'tudinal section through B.

The displacement expressions (322) are also found to give

distortion of the cross section wi'-ch is compatible along

this section.!
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Thus for the case of bending of the corrugated

shell, the stresses and deflections can be obtained by con-

sidering it to be a pipe of radius r and thickness t, and

having the same corrugations.

4.4. Corrugated Shell Under Distributed Loading. It was

shown qualitatively in Article 4.1 that the longitudinal

behaviour of a corrugated shell can be approximated quite

well by considering it to be a beam of curved cross sec-

tion if its length is large in comparison with the radius

r. From strain energy considerations it will be shown that

this is so.

Consider the shell of length i shown in Fig. 4.3.

The shell is simply supported at its ends and is under a

snow load of qL per unit area of horizontal projection.

By statics the external moment and shear at any cross sec-

tion is given by

M = 2qLr( (1 , x) (4.1)

S-- 2qLrk (1 exl

In the previous article it was shown that the stress

distribution in a shell due to a moment of TrFap is given

by Eqs. (3.21) and (3.23). So if

2qLte txh x

then the stress distribution due to the bending moment M
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is also given by Eqs. (3.21) and (3,23). (When using these

equations for the shell, it should be remembered that e

should be replaced by Gi for the arcs AB.) This solution

was obtained by assuming that plane sections remain plane,

which is the fundamental assumption of the beam method.

The stresses at the crests of the corrugations can

be obtained by multiplying the stress in a plane shell by

the stress factors Kp and KX given by Eqs. (3.16) and

(3.17). The stress at any point in a plain shell is

2qj
- ( 1 - x) sine

x Tirt L I

The maximum meridional and circumferential stresses in a

corrugated shell at any given 9 are

2q LL sine1! = rt (1 - sine

2q x L
8 = eK 2 x (1 -x) sine

The "beam" deflections of the shell are found to be

N times thoe. for a plain shel,I where N is given by Eq.

(3.18). This can bc taken into account by using for the

deflection computations a reduced modulus of elasticity

which is equal to 7 times the E of the material.

The unit shear stress :I on a cross section due to

Sthe shea r forcel S can be on.d b he methoi a ilth shea foco a i on - em -11o
that used for a pipe fArticle 394). The expression forZ

is found to be



c= SCse=-- I(1.- ) cose (4-5)-ffrt t L

As in the case of pipes, the reduced modulus of shear G'

must be used in calculating the deflection due to shearing

deformation. This is given by

j g b
S= GU t4 6)

where b and c are the width and length of a corrugation as

defined in Fig. 4.2(b). When the £/r ratio is large, the

effect of shear on the total deflection is so small that it

can safely be neglected.

The transverse stresses can be obtained by consid.

ering an element between two cross sections an elemental

length dx apart. The load acting on such an element is

equal to 2qLrdx, and this is balanced by the difference in

the shear forces acting on the two faces of the element.

The transverse moments and axial forces per unit length

can be obtained by a method similar to that used for a

multiple barrel shell. The expressions for these are

given by

4 i. Lundgren. loc.cited, p. 83.
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Mt = q r( - sine + cos - cose - cos c)t L a T 2 T
M = qLra ( iT i 3 c + O c o s 01- cosa 1

N= qLr C- sine- coso+ - cose+ cos e)

(4.8)
Nti Lr 1( sine, - 3 cos e+ ~cos9- Cos

The boundary conditions used to obtain these expressions

were that the longitudinal edges at A are prevented from

moving horizontally and rotating because of the restraint

provided by the adjacent shells. The moments are consid-

ered positive when causing compression on the outside

fibre (see Fig. 4.3), and the axial force is positive when

tensile.

The absolute maximum value of the transverse moment

is found to occur at= T and at = 2 2, where it ism 8 2 8 2

SMt8 2 0.07605 qL •r f9)

iax max TJ

The transverse ••orces have an absolute value of

Nt 2L a 06366 Lrmax Imrax I

A comparison of Eqs. (4.7) and (4. 8 ) with the stresses due

to the bending moment M as given by Eq. 4.4 shows that the

transverse moments are small relative to these stresses if

the ratio I is fairly large. This then makes the beamr
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method valid for the shell of Fig. 4.3 subjected to a snow

load.

The unit stresses due to the transverse moments and

thrusts can be found by using the sectional properties of

the corrugation given in Fig. 4.4. The maximum stress is

given by

c h

_r = 0.6366 2 + 0.4563 - U (4.11)]tmax 0 a ch
bt"

Let us consider a particular case of a shell whose

dimensions are as follows: g = 120", r = 4", t = 0 05",

The corrugations of this shell will be assumed to be

V-shaped with b = 0.500, h = 0.100, and c = 0.510. With

these values, the maximum transverse stress is found from

Eq. (4.11) to be

I6tI = 1,767 q, (a)
For the dimensions given above, taxe value of

For the dimensions given above, the value of the

characterist ic is 1.13 for which the stress factors given

by either Eqs. (3.16) and (3.17) or by the curves of Figs.

A.1 and A.2 are

KO = 6.30 and K9 = 2.56

The maximum meridional and circumferential stresses at mid

span are, from Eqs. (4.4),
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60= 72,200 q L  and = 29,400 qL (b)

These are seen to be much larger than the transverse

stresses 6 t given by (a). In a practical case the I ratio

will be much larger than the one used in the above exam-

ple, so that one would not need to consider the transverse

moments MtN

Dead Load: The stresses and deflections of the shell under

ihe in~luence of its own weight can be found by the same

method used for the case of snow load. However, because

of the distribution of the load, there are no transverse

moments; the transverse forces are found to be

Ne = qDrsine

(4.12)

NG = Drsine

where qD is the weight per unit area of the shell.

It is evident that the stress due to these forces

will be very small in comparison with the longitudinal

strýý ses,r so ch;at for this casa the beam method will give

7ery good results.

4.5. Shells with Circular Corrugations. In the preceding

articles the shells were cori.dered to have V-shaped corru-

gations. However, the discussion, is equally applicable to

the cusped and undulating circular corrugations. The
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stress factors and modular ratios needed to obtain the

stresses and deflections of shells having these types of

corrugations can be found from the curves of Figs. A.4

through A.9 of Appendix A, The sectional properties of

these corrugations, which are needed to obtain the trans-

verse stresses, are given in Fig. 4.4.
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CHAPTER 
$

BENDING OF CURVED SHELLS

5 1 Introduction 
It is well known that a curved tube

with a comparatively thin wall is much more flexible during

bending than a straight tube of the same cross section due

to distortion of the cross section to an ellipse-like

shape. 1 A similar phenomenon would also occur in the

curved shell of Fig. 5.1.

Consider an element between two adjacent cross sec-

tions of the shell which is bent by couples in the direc-

tion indicated. Due to the curvature of the shell both

the compressive forces at the convex side and the tensile

forces at the concave side have resultants away from the

neutral axis, so that the originally circular cross sec-

tions distort to a shape shown approximately by the dotted

line in Fig. 5.1(b). This distortion of the cross section

affects the strain of the longitudinal fibres of the shell.

Let R be the radius of the centre line of the undeformed

shell, di the angle between the 7wo cross sections, ds the

length of the outermost fibre, and r the radius of the cir-

cular arcs forming the cross section. Let R + R, d/ -A dy,

This phenomenon for a pipe of circular section was first
explained by Th. v. Karman, V.D.I., Vol. 55, 1911, p.
1189. This problem was later investigated by others,
among whom is L. Beskin, Trans. A.S.M.E., Vol. 67, 1945,
p. A-1. The case of a tube with rectangular cross sec-
tion was considered by S. Timoshenko, Trans. A.S.M.E.,
Vol. 45, 1923, p. 135.
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ds - Ads, and r + Ar be the corresponding quantities for

the deformed shell. The length of the fibre AB is

ds = (R + r) df

After deformation its length becomes

ds - Ads = [ (R + AR) +•(r+ Ar)] (dy-Ad)L)

The compressive strain zds/ds in the outermost fibre is

then

Ads AR + Ar
ds d4 = + r

Since the centre line remains unchanged in length we have

the relation

(R + AR)(dy -•d/) = Rdy
Neglecting products of small quantities, we have

Using this relation in (a) then gives

Ads r .Ar)
ds R + r ()r

as the expression for the com•-:esive strain in the outer.

most fibre. The ordinary theory for bending of curved

bars assumes that the shape of the cross section remains

unchanged, so that the corresponding expression for the

strain given by this theory is

4,d s r AR
ds WR +r• C)

L,j
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Comparison of expressions (b) and (c) shows that

the effect of the distortion of the cross sections reduces

the strain in the outermos rfibres; the effect is appreel-

able as soon as the ratio &r/r is of the same magnitude as

,a/a. A change in the direction of the bending moment

causes a change of sign of the longitudinal forces, and as

a result the cross section distorts to a shape indicated by

the dotted line in Fig. 5.3(b). From the same reasoning

as above it may be shown that here again the distortion of

the cross section reduces the strain in the most remote

fibres. Consequently, a smaller bending moment is required

to produce a given change of curvature in the curved shell.

Defining the rigidity of the shell as the ratio of bending

moment to change of curvature it follows that the distor-

tion of the cross sections reduces the rigidity of the

j shell.

I Detailed analysis shows that the initial curvature

of the centre line of the shell not only increases the

flexibility but has other effects as well. Marked devia-

tions may occur from the linear distribution of stresses

over the cross section which holds for a shell with

straight axis, and secondary wall bending stresses arise

which may be as large or larger than the primary fibre

stresses parallel to the centre line.

j
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In the following article the case of bending of the
curved shell without longitudinal corrugations is solved
by the principle of least work. Use is made of an infinite

trigonometric series which converges very rapidly and

gives an exact solution of the problem. This analysis is

theoretically valid only in the case when the ratio of the

radius of curvature of the centre line of the shell to the

radius r of the cross section is large, so that the neu-

tral axis can be taken as passing through the centroid of

the cross section. This assumption means the same for the

present problem as disregarding the difference between

hyperbolic and linear bending stress distributions means

for solid beams with curved axis. The analysis applies

only to shells of uniform thickness, with a constant

radius r and a constant curvature of the centre line. The

method presented is similar to the method used by Beskin

for obtaining the solution of curved thin pipes.2

The solution obtained for the plain shell can, as

shown in Art:-, 5.3, be used, after a slight modification,

for a curved shell corrugated in the transverse direc-

tion.3  It is found that the distortion is less for this

case than for a plain shell. This is to be expected since

the secondary corrugations ielp to increase the transverse

stiffness of the shell.

2 L. Beskin, loc. cit. p. 100,
3 See footnote 1 on p. 83.

:i
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In a general case of loading there will be axial and

shear forces on a cross section in addition to a bending

moment. This occurs, for example, when the shell acts as

a two-hinged arch and is subjected to a snow load. In

such cases it will be assumed that the stresses due to

these forces will be distributed in the same manner as in

a straight shell. This is permissible since the stresses

produced by these forces are small in comparison with

those produced by the bending moment for arches whose

span length is large relative to the cross sectional dimen-

sions as is usually the case. (See Arts. 6.2 and 6.3.)

5.2. Pure Bending of Curved Shell. Let us examine the

forces acting on an element MNPQ of the shell (Fig. 5.1).

The total force acting on each of the two faces MN and PQ

is Frde, where F is the longitudinal force per unit length.

These forces act in a plane parallel to the neutral sur-

face of the shell. The resultant of these forces is di-

rected away and normal to the neutral surface, and has a

magnitude of

Resultant = Frded% (a)

The are length MP of the element is

MP = (R + rsinn)di = R(i + - Rsine) d

The are length MP is approximattely equal to Rdy if R »r.
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Taking the arc length MP equal to unity the resultant force

given by (a) can be written as R . The resultant force

per unit area of the shell is then

p (5.1)

The distortion of the cross section is due to these

p-forces, as stated in the previous article.

Fig. 5.2 shows the forces and moments acting on the

element MNPQ. The horizontal force is denoted by H, the

vertical force by P, and the moment by m. In addition to

I these, there is the distributed vertical force p on the

element. The horizontal force H must be constant since no

horizontal forces are applied to the surface of the ele-

ment MNPQ.

The equilibrium of forces in the vertical direction

gives

dP + prde = 0 (b)

f Using the axpression (5.1) for p gives

rT M
P P de + cN (5.2)R3 2ITrR

in which the last term is a constant of integration.

Equilibrium with respect tc moments gives

dm + Hrcosede - Prsinede = 0 (c)

if products of small quantities are neglected. Upon
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subsitution of expression (5.2) in (c), it is found that

dm (5.3)d• = - rcose + - sine Fde M C- (53)

The distortion of the cross section is shown by the

dotted line of Fig. 5.1(b). It is seen that the distor-

tion is symmetrical about points A and C and anti-symmet-

rical about points B. Because of this only one quadrant

AB need be considered. The vertical force P must be zero

at A, while the bending moment m must vanish at B. Fur-

thermore, the relative horizontal displacement between the

points A and B must be zero. Thus, the boundary condi-

tions for the quadrant AB are:

72 rde
[P /2 = A 0 [m]=0 0; ; rsine t= 0 (d)

0

where e is the angle shown in fig, 3.2 and It is the

moment of inertia of a transverse section of the shell

given by

I t -Iglt_It 12 t(5.4)

The last of the expressions (d) was obtained by the princi-

ple of virtual work considering only bending distortions.

By statics the axternal bending moment on the shell

must be equal to the moment of the longitudinal forces F.

!If the moment on each shell 3CBA is M, then

7 d/2

Frde-rsino Ce)
w
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It is convenient to introduce the dimensionless

parameters

2r TrFX= Y = 27rRm
M (C5_5)

Substitution of these relationships in Eq .3) gives

Substitution of these relationships in Eq. (5.3) gives

= - [C 2 cose + sinejXde + C.] (5.6)

The first of the boundary conditions (d) when used

in (5.2) gives

JfdJ = 27 C
9=7/2 2MrC

Substituting the first of the relationships (5.5) in the

above equation gives

(5.7)
J' -J-.y c-

as one of the boundary conditions. Substitution of the

second of the relationships (555) in the two remaining

boandary conditions (d) results in

LY]
&=0

and

= 0

T/2
Y s inedG = 0

0

(5.9)

Similarly, the relationship between the external and in-

ternal moments given by (e) becomes

2 Y'r

'I
Xd I

la=WV2

i·;,~
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/2

Xsinede = T/2 (5.10o)
o

Let us assume that the function X is represented by

the Fourier sine series

X = 2sine- + 6bzsin3a + 10 b5sinSe ... (g)

in which the first coefficient 2 is defined by Eq. (5.10).

Only odd terms are considered since

dF dXS= = 0 at ( = //2

in order to satisfy the condition of symmetry at A. The

series (g) can be written in the compact form

X = 2 (2n+1) b2n+ sin(2n+1)8 (bi  1) (5.11)

with the convention that b, = 1.

Substituting this into the boundary condition (5.7)

gives C0 = 0. Setting C, = 0 in Eq. (5.6) and integrating

it leads to

Y = - Casine- sine ( Xde de + C

where C is another constant of integration. Carrying out

the integration by using for X its series representation

(5.11) and introducing the boundary condition (5,8) gives
Oo inn

Y= •- sin ne no • _ntn 2n-' an+1n=



!II

The constant C2 is found to be

o n

C2 (b 2n-1 + b1 = b 2n- -1 2 n+1
n=l

by introducing the boundary condition (5.9) in (h) so that

we finally obtain for Y the expression

S(b2n-1 -b sin 8n - sine] (5.12)
n=1 2n-1 2n+7 C 9 7T4n2-1)

The coefficients b3 , b5 ... appearing in Eqs. (5.11)

must be such as to make the total strain energy in the

shell a minimum. Considering only the distortion due to

the longitudinal forces F and the transverse bending

moments m, the expression for the strain energy per unit

length along the centre line is

S dW7 =2 Frde 1 ( !2 mn2 rdes 2 Et 2 D (5.13i
o o

in which

SEt
a

Dr (5.14)

Upon using the expressions (5.5) the above expression for

the strain energy becomes

mF /27T /2dW /2dde + Y d C.15)
dks 2Tir'Et

0 0

in which the parameter P, is defined by
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1 Rt

v1 1- ) .

The strain energy is a minimum if

(dWs )
2"asb = 0 (a = 1,2,,...9n,,.)
2a+1

Using these conditions in Eq. (5.15) gives

7/2
/2

de +0X2a lcb2a+
11

Y )Y de =
2a+1

(a=1,2,3, ...,n,... ) (5.17)

Substituting expressions

gives

a+2,a+3,...

(5.5) into this and integrating it

F 1
i3na(a+1Jbu

-b F a+3
2a-1 .l6a2(a+l)

+b 2 + 1 (2a+1)
L

16 a

7ý(2a-1)(4a'-1l) (2a+3)

16a2(a+l) P "1 (2a-1) '2a+3) 2

Sa-2 16(a+1)ab3 -2a+3 +1ail 2a+3)
~ai3c~ogy. )

The above expression will yield a set of infinite

linear simultaneous equations. However, an approximate

solution of the problem can be obtained by retaining only

r~'~LPt a1I

bi = 1

1 R J
r R

2n-1 2n+1 1

2( na-1)(2a-1)(2a+3)
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a finite number of terms in Eq. (5.11). If only (n+l)
terms are retained in Eq. (5.11), then we shall have n

simultaneous equations involving the n unknown b's

(bab***,...,b 2 n+l). The approximate solution so obtained

will be referred to as the approximation of the nth order.

The number of terms,(n+l), to be retained in Eq. (5.11)

in order to give a desired accuracy depends on the value

of the parameter/31 ; as • decreases, the number of terms

to be retained increases. As will be shown later, the

solution obtained with n=l gives a very good approximation

for values of/x as small as 0.04.

Having obtained the coefficients ba,b ,...,b 2 n+1 9

the stresses and the change in curvature can easily be

computed. The unit longitudinal stress, 6~, is equal to

F/t. In terms of the parameter X defined by (5.5), the

absolute maximum value of this stress is

max 2r jXlmax

The corresponding stress in a plain shell having a

straight axis is

M
lr t

so that1
i1 maxi , -

I
I - -

mmax
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SSimilarly, the absolute value maximum transverse stress due

to the moment m is

max ta 2Rt YImax

or

36ra max 0a35 6Yma
max Rt max

in which the parameter /3 is defined by (5.16). ForI= 0.3,

the above expression becomes

F max 1 6 Ki C(5.20)max L oi

I To this the stress due to the direct force in the trans-

verse direction should be added. This is found to be so

small relative to the stress given by expression (5.20)

that it can safely be neglected.

Based on the fact that the internal strain energy is

equal to the work done by the external moment M, we have

dW = M (i)
s 2 Rd .

in which Ady. is the change in angle between two adjacent

cross sections a distance Rd4 apart along the centre line

[see Fig. 5.1(a)] and dWs is the strain energy per anit

length along the centre line. Substituting (5.15) in this

gives
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Rdt 1TratE LT
0

X 2d & +
2 13

The quantity -  represents theRdý

Yf 2 de , (j)

change in curvature of the

shell due to the moment M. The corresponding change in

curvature for a plain shell is

Rdi - tE
. 1T:rat

so that

N f5(.21)

where N: represents the parentheses on the right hand side

of Eq. (j). Upon substitution of expressions (5.5) into

these parentheses, it is found that

N1 =

n=0

(2n+1)2 b2 +1 1b -b
2n+1 2 1 2n- 1 2n+1i

/n-=n-

k=l

=(b -b
k b2k--b 2k+l)

n=k+l

L6 -/S1b -b
2 n-I 2n+1

The first two approximations to the factors H6,

Ke1 , and N. were obtained as functions of the parameter

gZ, and are shown graphically in Appendix B. Comparison

(b2nl -b2 )n 2-'2n+1

(5.22)

7 T/2

k1ý1 Tr
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of the two approximations shows that the first approxima-

tion gives very good results for values of I as small as

0.04. The curved shells used for roofs are of such dimen-

sions that the values of , 1 are generally larger than 0.1,

so that for our purposes, it is not necessary to calculate

approximation of an order higher than the second.

Upon comparison of the results shown in Appendix B

with the results for a curved pipe given in the paper by

Beskin , it was found that for a given value of the param-

Seltr ý the value of N, was less for the shell than for a

pipe. For example, for131 = 0.04, NZ = 2.55 for the shell,

whereas for a pipe N, = 12.50. This difference can be ex-

plained by a consideration of the distortion of the cross

sections. It is known that the cross section of a curved

pipe distorts to an ellipse-like shape, as shown in Fig.

5.3(a); the distorted shape of the cross section of the

shell is shown in Fig. 5.3(b). It is seen that the points

B of the pipe lying on the neutral axis move towards the

centre 0, whereas the corresponding points of the shell

have no displacement due to the antisymmetry of the defor-

mations. Thus, the distortion of the cross sections of a

shell will be less than that of the cross sections of a

pipe and this makes the shell less flexible than the pipe.

L. Beskin, loc.cit., p. 100~
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S.3. Pure Bending of Curved Corrugated Shell. The equa-

tions relating the longitudinal forces F and the trans-

verse forces and moments in a corrugated shell will be the

same as those for a plain shell [Eqs. Cl.1) through (5.3)]

since these were derived solely by a consideration of

equilibrium. Thus, Eqs. (5.11) and (5.12) will also apply

for a corrugated shell. In order to satisfy compatibility,

the strain energy in the shell must be a minimum. The

strain energy per unit length due to the transverse moment

4[f m2 _rd. rMd j2 m o Yde (a)0 Da 2 T(R'D, o
where D is the transverse flexural rigidity of the shell

and Y the parameter defined by (5.5). The strain energy

due to the longitudinal forces F is approximately

M2NrSETt1 X de (b)
0

where X is the parameter defined by (5.5) and N is the

modular ratio given by Eq. (3.3). This expression for the

strain energy is strictly correct only when all of the

undetermined coefficients b in the Fourier series repre-

sentation of X [Eq. (5.11)] aro zero. It will be sho-wn

later that the distortion of the cross section is negligi-

ble so that these coefficients are very small in comparison

4



with the coefficient 2 of the first term in Eq. (5.11).

Hence, it is permissible to use (b) as the expression for

the strain energy due to the longitudinal forces. The

total strain energy per unit length is the sum of (a) and

(b), or

MaN 72 /2 idW 
= 

(Xdc 
+ 

) Yd
S 2 er'Et

L o 0 o

in which the parameter a is defined by

In order that the strain energy be a minimum, the partial

derivative of (c) with respect to each of the coefficients

ba, b5, ... must be zero, or

/ 2  2 a+l
1 J 281$ r B = P.
o F' 2a+1o2

(a=1,2,3, ... n, ... ) (d)

This system of equations is the same as that represented

by (5.17) except that , is replaced by/,. Thus, the

coefficients b for the corrugated shell can be determined

from Eqs. (5.18) if • in these equations is replaced by
PT-

It can be shown that the expression for Ni as given

by Eq. (5.22) can also be used for a corrugated shell if

I1
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3 • is replaced by /3o In this case N1 should be taken as

the ratio of the change in curvature for a curved corru-

gated shell to the change in curvature for a corresponding

corrugated shell with a straight axis.

The factor V)aN/iDi appearing in (5.23) is always

greater than unity for a corrugated shell, so that /2 /13

it can be deduced from the curves in Appendix B that the

distortion of the cross sections increases with decreasing

values of ,. Therefore it can be said that the distor-

-.on of the cross sections is less in a curved corrugated

shell than in a plain shell of the same major dimensions.

The depth h of the corrugations of the shells manu-

factured by the Wonder Building Corporation is greater

for a shell with a smaller radius of curvature R than that

with a larger R due to the fabrication process involved in

the manufacture of these shells. Conzequently, the value

2 of 1 increases .ith a decrease in R. This has

the effect of keeping the value of the parameter 2  as

def•ned py •y,23), large for i-. shells,, As an examples

consider a plain curved shell having a cross section shown

in Fig. 5.1(b). If the radius r of the crcss section is

4 in., the thickness t is 0,05 in.~ and the radius of

curvature R is 180 in.? then the value of S is found from

expression (5.16) to be 0.1703, for which N2 = 1.24 (see

Fig, B.1). Even though this is an extreme case, the



1 (N'.

flexibility is increased by only 24%. With the presence

of corrugations the factor N, is considerably reduced.

Assuming V-shaped corrugations with h = 0.10 in., b = 0.50

in., and c = 0.51 in., it is found that for )= 0.3.

+1-V) = 4.77
1 bts

b chi
and N = + n = 4.45 (see Fig. A.3)

c bt s

Eq. (5.23) then gives P = 0.783 for which N1 as given by

Fig. B.1 is 1.02. This means that the flexibility of the

curved corrugated shell is only 2% larger than that of a

straight corrugated shell. Thus, the distortion of the

cross section of a corrugated shell can be neglected and

the longitudinal forces can be assumed to be linearly dis-

tributed over the cross section.

ILV
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CHAPTER 6

SHELL AS TWO-HINGED ARCH

6.1. Arch Under a General Case of Loading. Having ob-

tained the effects of both the corrugations and the curva-

ture in the previous, two chapters, it is now possible to

analyse the shell as a two-hinged arch under various types

of loading. This arch is statically indeterminate to the

first degree, and we shall take the horizontal reaction H

at the right support as the redundant [Fig. 6,1(a)]. The

value of this redundant for the various types of loading

will be determined by the superposition method. The value

of the redundant H is given by the equation

bo + H&bb = 0 (6.1)

where

o = horizontal deflection of the point B due to the

applied load with H = 0, plus when in the

direction of H;

bb = horizontal deflection of the point B due to

zero applied load and H = 1

Eq. (6.1) merely states that the deflection of B is zero,

The value of the deflections dbo and dbb will be flund by

the method of virtual work.

If a unit virtual load is applied at B in the direc-

tion of H, then the external virtual work done by this load

___
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as the point deflects by an amount Abo must be equal to

the virtual internal work done by the stresses due to this

load as the structure deflects. The internal work due to

bending distortion is

o MoM1Rdý
2 NNE =E (a)

where Mo = moment due to the applied load with H = 0,

plus when causing compression on the convex

side;

NM = moment due to a unit horizontal load at B in

the direction of H, plus when causing com-

pression on the concave side;

I = moment of inertia of the cross section about

its neutral axis (trat);

R = radius of curvature of the centre line of

the arch;

f= angle between the mid-span cross section and

that at any other point on the arch [Fig.

6.1(a)];

and o = angle between the mid-span cross section and

that at the support.

Expression (a) is the same as the corresponding expression

for an arch of solid cross section except for the factors

N and N,. It was shown in Art. 4.2 that the corrugated

IL
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shell is N times as flexible as a plain shell, while in

Art. 5.3 it was shown that due to the curvature, the de-

flection of a curved corrugated shell is N, times that of a

corrugated shell with a straight axis. This is the reason

for the inclusion of the factors N and N1 in expression (a).

Similarly, the internal work due to axial deforma-

tion is

2 N (b)
oAi

where T = axial force due to the applied load with
0

H= 0, plus when tensile;

T = axial force due to a unit horizontal load at

B in the direction of H, plus when tensile;

and A = area of the cross section.

Again here N is the factor taking into account the effect

of the corrugations.

In a curved bar an axial force To produces tensile

or compressive forces uniformly distributed over the cross

ssction and equal to To/Ao Due to these stresses the

centre line undergoes extension or contraction and the

angle dL between two adjacent cross sections increases by

the amount

ToRdý 1

td hAE R

For a corrugated shell, this expression should be multiplied

I
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by the factor N. The internal work done by the virtual

moment M1 is

- 2 N (c)AE

where the minus sign is used since the moment M1 is con-

sidered positive when it tends to increase the angle dy

between two adjacent cross sections.

Finally, the internal work due to shearing deforma-

tions is

io So0S Rdý
2 N' (d)AG

where S = shear force due to the applied load with

H = 0, plus when it tends to displace the

right side downward relative to the left

side;

S. = shear force due to a unit horizontal load

at B in the direction of H, plus when it

tends to displace the right side downward

relative to the left side.

Again here the factor N' as given by Eq. (3.26) takes into

account the effect of the corrugations on the shearing

deformations. In obtaining expressions (b), (c), and (d)

it was assumed that the curvature of the arch does not

alter the distribution of the stresses over a cross sec-

tion due to axial and shear forces, i.e., the distribution
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is the same as in a straight shell.

The external work done by the unit virtual load is

1.Abo which must be equal to the total internal virtual

work as represented by expressions (a) through (d). Thus,

the deflection Abo is

Abo = 2
L

NN MoMIRdy +• 0N TT• dy IR

NN --- +N AE +

O o

ToMd
AE

Yo SoSRdp i+ N' AG (6.2)
o

In a similar manner the deflection Sbb is found to

Sbb = 2

O
M2Rdb (0o TyRdT / i TC M dt

NNI EI + N 1 4 N AEI EI E AE

0

+ N'

O

The value of the redundant H can then 4e found by substi-

tuting the above expressions into Eq. (6.1). Rewriting

Eq. (6.1) gives

4 bo

H bb
dbb

(6.4)

The moment M, the axial force T, and the shear S in

the actual structure can easily be obtained from the fol-

lowing expressions

I

(6.3)

W
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M = M + MI (6.5)

T = T + HT (6.6)

S = +HS (6.7)

These are obtained by superposing the stresses due to the

applied load (H = 0) with those due to the redundant

force H.

6.2. Arch Under a Uniformly Distributed Snow Load. An

arch under a uniformly distributed snow load of WL lbs.

per horizontal foot is shown in Fig. 6.1(a). The expres-

sions for the external moments and forces will be found by

making use of the general equations (6.2) through (6.6).

The case of H = 0 is shown in Fig. 6.1(b). The ex-

pressions for the moment, axial force, and shear force for

this case are

SMo 0 2 sin 0do sin ) (6.8)
oiO 2

o WLR sinay (6.9)

So  WLR sinlcos% (6.10)

The corresponding expressions for the case of H = 1 can be

obtained by reference to Fi5g, 6.1(c). These are found to

be

Mi = - R (cosY- cos~o) (6.11)

_I
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T = - cos% (6.12)

S = - sin/ (6.13)

Substitution of the above expressions into Eqs. (6.2) and

(6.3) and integrating results in the following expressions

for the displacements Abo and bb"

NWLR4 N (2 sin30 1 ocos cos 2  1 s sin2o)
bo EI 1 3 ls 2c0 0n 4 o 2o

+ I(cosýosin2Co - 2/ os~o)
2AR2

2 El N' 2

AGR2 N 3 sino (d)

6b N N  +o cos - sin2 o) (sin2 so

A2AR 2

It can be shown that the effects of axial and shear dis-

tortions on Abo are negligible if the radius r of the

cross section is very small in comparison with the radius

of curvature R [Fig. 6,1(a)]. •e shall assume that this is

so, so that

LR'NN(bo E sin3 .~ 0+3~ocosno3cos2 -3ain/cos (f)

The effects of axial and shear distortions onrbb are also

negligible when the ratio r/R is small, provided the angle

,I
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,o is not very small. For a flat arch, however, the effect

of axial distortion on bb is not negligible. Thus, if

only the effect of shear distortion is neglected, then

bb N N o +2 )Lcos 2 o -3sin ocosyo) I-(sinhocos (g)

Substitution of expressions (f) and (g) into Eq. (6.4)

gives

WLR
H -

The second term in the denominator, which represents the

effect of axial distortion, is of significance only when

the angle xo is small. For small values of ao the radius

R is large, so that the factor N , which represents the ef-

fect of the distortion of the cross section due to the curv-

ature of the arch, is approximately equal to unity. Taking

NI = 1, we have

WLR 4.sin 3 ° + 3Y°cosy)cos2y. - 3sinýocos~L•°

H = --6 -1 0 0 1 ( 6 .1 4 )
L o +2)Lcos o 3sin cos s2AR in 2 0cos)

This expression is the same as that for an arch of solid

cross section. The values of the moment, axial and shear

forces on any cross section can now be found from Eqs.

(6.5) through (6.7). Expres-Lons for the redundant H for

various other types of loading, such as partial snow loads,

dead load, and wind loads, can be found by a similar

L.

I

i
J

I I
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method. In each case the analysis reduces to that for a

corresponding load on an arch of solid cross section.

6.3. Unit Stresses in the Arch. The values of the bend-

ing moment, the axial force and the shear force on any

cross section of the arch can be found, as shown in the

previous article, by considering the arch to be of solid

cross section. It was shown in Chapter 4 that the stresses

in a corrugated shell due to a moment and axial and shear

forces are the same as in a corrugated pipe of radius r

and under the same loading. Thus, the maximum stress in

the meridional and circumferential directions due to a

moment M and axial force T are (if the distortion of the

cross section due to curvature is neglected)

+T 1 + T KO (6.12)
max rt 2 qrt rt

max - 2art Kj = 1 ±t Kr (6.13)

where K• an-i K are the stress factors given by Eqs. (3.1)

and (3.2). In Art. 5.3 it was shown that the distortion of

the cross section due to curvature is very small in a corru-

gated shell, so that it will not be considered here. The

term Tr/M in Eqs. (6.12) and '6.13) is found to be propor-

tional to r/R. Generally, the ratio r/R is very small so

that the effect of axial force on the stresses 6- and 64

can be neglected.

1
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The unit shear stresses due to the shear force S on

a cross section of the corrugated shell are the same as in

a plain shell, and these two are found to be very small

for small values of theratio r/R.

The deflection calculations for the arch can be made

by considering the shell to be plain but having a reduced

modulus of elasticity equal to E divided by the modular

ratio n (Eq. 3.3). The effects of shearing distortion and

the distortion of the cross sections due to curvature can

be neglected in the deflection computations.



CEAPTER 7

THE WONDER BUILDING ARCH

7.1. Introduction. The cross section of the actual

Wonder Building arch (Fig. 7.1) is much different than the

idealized cross section of Fig. 5.1(a). The shape of the

cross section is such that it cannot be represented by any

simple geometrical figure. The problem is further compli-

cated due to the fact that the shell is corrugated in the

otitom portCin only. For this reason only an approximate

solution is given in this chapter.

The corrugated portion of the shell consists of a

circular are and two tangents as shown in Fig. 7.1(a). A

longitudinal section through the corrugated portion is

shown in Fig. 7.1(b). From this it is seen that the actual

corrugations can be approximated as V-shaped corrugations.

We shall assume that the corrugations are V-shaped for

which the dimensions, b, c, and h are shown in Fig. 7.1(b).

In obtaining the solution for the corrugated shell

hav-izng the idealized cross section of Fig. ,l(b) it was

shown that each one of the quadrants behaved as if they

were parts of a complete pipe. On this basis it will be

assumed that the circular corrugated are CDC is a part of

a pipe of radius 9.125 in,, and that each of the two tan-

gents BC is a part of a pipe whose radius is equal to in-

finity. The modular ratio N for the are CDC will be

i
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different from that for the tangents BC as they have dif-

ferent radii of curvature. Thus, the reduced modulus of

elasticity which is equal to E divided by the modular

ratio will be different for these parts of the cross sec-

tion. The remainder of the cross section has no corruga-

tions, so that its modular ratio is unity. The cross see-

tion can be considered as being formed of three different

materials having different moduli of elasticity. For an

ordinary beam of composite sections it is assumed that

plane sections remain plane after bending. This will also

be assumed in our case. Furthermore, it will be assumed

that the effect of the distortion of the cross section due

to curvature on the stresses and deflections is negligible.

This seems reasonable since it was shown in Art. 5.3 that

this is true for a curved corrugated shell having the

idealized cross section of Fig. 5.1(b). Also, on the basis

of the results obtained in the previous chapter, it will

be assumed that the effect of the shear force on stresses

and deflections is negligible. Even though so many

assumptions have been made, the approximate solution so

obtained gives results which are in very good agreement

with the available test results.

7.2. Calculation of Stresses and Deflections. The

stresses and deflections can be obtained by a method very

similar to that used for beams of composite sections. The
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modular ratio for the tangents BC [Fig. 7.1(a)] will be

denoted by the symbol Na, while that for the are CDC will

be denoted by Nb; by definition, the modular ratio for the

remainder of the section is unity. The transformed sec-

tion is obtained by dividing the thickness t of BC by Na

and that of CDC by Nb(Fig. 7.2). The centroidal axis of

the transformed section is located a distance y above the

point D, where y is given by

0.1848 N + 0.2085 N + N N
= .94 1.176 N ab+ 0.35dN+ in. (7.1)

The area AT of the transformed section is

AT o.652 + 0.232 + 0.72 in.W (7.2)
N a b

and the moment of inertia IT about the centroidal axis is

T = 0.652(y - 13.895 + 49.0) + 0.232 (y - 8.12r+16.75)T N aLa

+ 0.769 ( 2 - 2.115y + 2.055) (7.3)
b

In obtaining the above expressions, the length of the cor-

rugated tangent BC was taken to be 2.37 in., in accordance

with the measurements made by Tabush on samples of the

Wonder Building Shell.1

J. Tabush, "An Experimental Study of a Thin Steel Arch
Panel," S.M. Thesis, Massachusetts Institute of Tech-
nology, August 1958.
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In the deflection computations, the expressions

(7.2) and (7.3) must be used for the area and moment of

inertia, while the modulus of elasticity should be the

same as that of the material. For example, in obtaining

the redundant H for the Wonder Building arch under a uni-

formly distributed snow load, AT and IT of the transformed

section must be used in Eq, (6.14) instead of the area A

and moment of inertia I of the actual cross section.

The longitudinal strain Ex at any point of the

1Coss section due to an axial force T and a moment M can

be obtained from the formula

x MT -y)

where y is the distance as defined in Fig. 7.2. This ex-

pression for the strain is obtained by assuming that plane

sections remain plane. The stress at any point can be ob-

tained by multiplying the strain, as given by Eq. (7.4), by

the corresponding reduced modulus of elasticity. Thus, for

a point on -he circular are DC•, the stress is obtained by

multiplying the strain by E/Nb- for a point on the tangent

BC the strain is to b mnltipied by E/Na; and for any

other point outside of these corrugated portions, the

stress is equal to E. Thl-- will be discontinui~t along

the longitudinal sections through C since there is an

abrupt change of cturvature, similar to that occurring in
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the shell of the idealized cross section under an axial

load, which was discussed in Art. 4.2. In Fig. 7.1 it is

shown that the corrugations end abruptly at B, so that

there would also be a discontinuity here. However, this

is not actually so as the depth of the corrugations gradu-

ally reduce from h to zero over a length of about an inch.

The location of B was taken as the midpoint of this length

of one inch. In any case we shall be interested in the

stresses at A and D since the stresses are maximum here,

as will be shown in the next article. The longitudinal

stresses at these two points are

+ (a)Ax A I T

+ (b)Dx N b AT IT

The stress 6Dx given by (b) should be multiplied by the

stress factors •K and 'Kb [given by Eqs. (3.1) and (3.2)]

in order to obtain the absolute maximum value of the

meridional ' d circumferential stresses at the crest of the

corrugations. The Cactor K¢ is always larger than K~, so

that we shall consider ocly tue meridional stress, DxK

Since we are considering -nly the meridional stress3 we

shall drop the subscript x. 7he maximum absolute values

of the stresses at A and D are ;ien
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6 T M M-7.875) (Z85)
A A I

6 b T M

D Nb AT IT

It will be shown in the next article that these

stresses depend primarily upon the depth of the corruga-

tions h. Particular cases are worked out to show the ef-

feet of h on the stresses.

7.3. Effect of the Depth of the Corrugations on the

Stresses. The arches constructed by the Wonder Building

Corporation of America have the same cross sections even

though their span lengths vary; only the depth h of the

corrugations varies. The manufacturing process is such

that h increases with an increase in curvature of the arch.

In order to study the effect of the depth of the corruga-

tions on the stresses, we shall consider two extreme cases

of arches as constructed by the Wonder Building Corpora-

tion, which will be referred to as X-P and M arches, in

accordance wtth the designation used by the manufacturer,

The dimensions of the arches and the corrugations for these

two arches are:

X-P Arch: R = 15 fto; o 860; b = 0.50 in.; h = 0.200 in,

M Arch: R = 33 ft.; y = 670; b = 0.50 in.; h = 0.092 in.

in which the dimensions R and 7o 7re defined in Fig. 6,l(a).

A
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The values of Na, Nb9 KOb can be obtained from Eqs. (3.1)

and (3.3) and Figs. A.1 and A.3; the properties of the

transformed section can then be found from Eqs. (7.1)

through (7.3). These are found to be

Na Nb K b y(in.) AT(in.2 ) IT(in.A)

X-P Arch: 17.2 16.7 12.9 6.51 0.712 2.09

M Arch: 4.24 4.14 6.48 5.55 0.892 5.82

With this information the stress at any point on

ine coss section due to a moment M and axial force T can

be determined. From Eq. (7.5) it is found that the

stresses A and D are

X-P Arch: 6 A =11.40T -0.653M psi; 6 D = [1.08T + 2.-40M pasiI

M Arch: 6A = 1.12T- 0.400M psi; 6( = [11.76T + 11.49NMI] psi

where M is expressed in lb.in, and T is expressed in lb.

It will be shown later that the stress due to T is small

in comparison with that due to the moment M, so that in

both the cass the stress is ma:smum at D. The stresses at

the points B and C are found to be less than 6D for these

two arches.

The bending moment and axial force on any cross

section due to any loading can be calculated by the method

indicated in Chapter 6. We shall consider only a uni-

formly distributed snow load of WL lbs, per horizontal inch
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over the entire arch. The maximum negative moment and the

axial force at the section where the negative moment is

maximum are

X-P Arch: M = - 2520 WL lb.in.; T = - 180 WL lb.

M Arch: M = - 5330 WL lb.in.; T =- 396 W- lb.

When these are substituted into expressions (7.7) it is

found that

X-P Arch: = (194 + 6050)WL = 6240 WL psi
k Archn 6 = (697 + 7930)W = 8630 WL psi

The effect of the axial force on the stresses is found to

be very small. It is seen that even though the span of the

M arch is approximately twice that of the X-P arch, the max-

imem stress in the M arch is only 1.4 times that in the

X-P arch. This is due chiefly because the depth h in-

creases with the curvature. As h increases Na, Nb, and

Kb increase as can be seen by examining Eqs. (3.1) and

(3.3). The factors n and k, appearing in these equations

are functiQons of the characteristic A defined by Eq. (3.5)

For the tangent part BC [Fig. 7.l(a)], a = 0, so that

na = 0.91. The ratio c/b is generally very near unity, so

that Na is seen to depend primarily on h (the thickness t

is the same for all arches). The characteristic ldb for

the circular are CDC is found to be approximately 0.72 for

both the arches, and for this value, n and kt are
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are also mainly dependent on h. Thus, when h increases,

the factors Na, Nb, and K b all increase so that for a

given moment M, the stresses increase with the depth h (or

increase with an increase in curvature of the arch)o How-

ever, when the curvature is large the span length of the

arch is small, so that the moments are also smaller. This

then makes it possible to use the same cross secti:on over

a wide range of span lengths.

7.4. Comparison of Test Results with Theoretical Results.

Tests were performed by Tabush 2 at M.I.T. on three samples

of shells provided by the Wonder Building Corporation of

America. These were components of the M arch discussed in

the last article. The chord lengths of these shells were

111 in, and the mid span rise was 4 in. Each shell was

simply supported at its ends and loaded by two equal loads

placed symmetrically about the mid span, so that the region

between the loads was in pure bending. The deflection at

mid span was measured relative to two symmetrically located

points within the region of pure bending. Using a value of

29.3 x 106 psi for the modulus of elasticity, it was found

from the deflection measure-ents that the transformed

moment of inertia I T of the cross section ranged from

J. Tabush, locIcit I p. 13S
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,-~3 in.4 to 5.20 in.4, with a mean of 4.89 in. . This

compares favourably with the theoretical value of 5.82 in. 4

computed in the previous article for the M arch. The dis-

crepancy between the theoretical and experimental values is

perhaps due to the fact that the cross-sectional shape was

observed to differ from the standard shape to which the

shells were supposed to have been rolled. It was shown

in the last chapter that the maximum stress occurred at

the lowermost point of the section, and is given by Eq.

(7.7). From this equation the moment at which this stress

is equal to the yield stress of the material can be ob-

tained. Tabush performed tensile tests on specimens of

the shells and found that the yield stress had an average

value of 38,500 psi. Using this value in Eq. (7.7), it is

found that the moment at which yielding first occurs is

2.15 k.ft. It was difficult to ascertain from the experi-

mental load versus deflection curves as to at what point

the curve became nonlinear~ since the deviation from a

straight line in the inelastic range is very small.

Approximately, the yield point moment ranged from 1.9 to

3.0 k.ft.

Another series of tests on three similar shells

was performed by Chipman at D>C.L.A, In these tests the

SR. D. Chipman, "Bending Test Conducted on M.P.H. Building
Sheets," Report No. C54-59, Dept. of Engineering, Uni-
versity of California, Los Angeles, July i914.
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samples were simply supported on pipes and subjected to a

concentrated load at mid span. Mid span deflections were

measured relative to the testing machine platform which

did not move with reference to the laboratory floor. A

plot of the experimentally determined deflections versus

the bending moment at mid span is shown in Fig. 7.3(a).

The deflection readings were measured to the nearest

thirty second of an inch, which makes the error in the de-

flection reading large when the loads are small. Further-

more, the pipes on which the shells were supported were

found to deflect under the load when plain shells (i.e.

without corrugations) were tested. The deflection of the

pipes for a moment of 4.75 k.ft. was found to be 1/32 of an

inch in one case and 2/32 of an inch in another case.

Since the tests were run primarily to determine the ulti-

mate load for the corrugated shells, no attempt was made

to measure the pipe deflections during the bending tests of

these shells. However, in the elastic range the deflec-

tions are very small, and thus the deflection readings for

low loads are not very accurate. For comparison, the

theoretical mid span deflection was calculated from the

formula

= PL a3  (7.8)

in which M is the mid span moment and L is the distance
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between the supports. The values of E and IT were taken

to be 29.3 x 106 psi and 5.82 in.*, respectively. The

curve for 8 versus M is shown in Fig. 7.3(a). This curve

is valid only in the elastic range; based on a yield stress

of 38,500 psi, the moment at which yield first occurs is

2.15 k.ft., as was shown earlier.

Strain measurements were also made at the point A

IFig. 7.1(a)] at mid span. These are shown in Fig. 7.3(b)

together with the theoretical strain calculated from Eq.

i (. - Here the deflections of the pipe supports do not

affect the strain measurements. It is seen that the

agreement between the experimental and theoretical results

is very good when the moment is within the elastic range.

The shells tested at M.I.T. and at U.C.L.A. all

failed in the inelastic range due to local buckling of the

upper flange at mid span. The ultimate moment at mid span

ranged' from 5.2 k.ft. to 6.0 k.ft. The theory developed

earlier in this chapter is applicable only for elastic

behaviour, xond does not consider the question of instabil-

ity, so that no conclusion can be made with reference to

the mode of failure.

The experiments that were made at M.I.T. and at

U.C.L.A. were performed on •clls which behaved as simply

supported beams. Actually they 2re components of the

actual arch so that experiments should be conducted by

F,
145~
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loading the shells as two-hinged arches, and preferably

having a larger span. Strain and deflection measurements

should be made at more frequent load intervals than was

done in the U.C.L.A. tests, so that a better value of the

yield moment may be found. The strains in the corrugated

portion are very difficult to measure since the corruga-

tions are very small and the bending moment in them varies

rapidly. However, the elongation between two successive

crests can easily be measured with Huggenberger tensom-

eters, and the elongation could then be compared with the

theoretical results. On the basis of these tests the

theoretical results could be modified by empirical con-

stants if serious discrepancy exists between theoretical

and experimental results. Until this is done, the theory

should be used in designing the Wonder Building Arches

using an adequate factor of safety.

A~
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The quantities ko, k,, and n can be determined from the

curves on the following pages. These curves are plotted as

functions of cC and(, where

OL = tan-1 h/b

(3.1)

(3.2)

(3.3)

(3.-)
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APPENDIX A

CURVES FOR THE DETERMINATION OF STRESS FACTORS AND

MODULAR RATIO OF CORRUGATED PIPES

Explanation of Symbols:
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APPENDIX B

CURVES FOR N., K;2, KIe
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