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Abstract
ANALYSIS OF CORRUGATED SHELLS

by
SURENDRA TULSIDAS SHAH

Submitted to the Department of Civil and Sanitary Engineer-
ing on November 2, 1958, in partial fulfillment of the
requirements for the degree of Doctor of Science in Civil
Engineering.

A few years ago an unusual prefabricated Quonset-type
structure known as the "Wonder Building™ appeared in the
building industry. The structure consists of corrugations
witn a dapth of about 8 inches and a pitch of 2 feet rune-
aing in vhe longitudinal direction. In addition to these
corrugations, there are small secondary corrugations in
the transverse direction which are introduced to facili-
tate the fabrication of the structure. The longitudinal
edges are supported continuocusly so that each 2 feet wide

transverse section behaves effectively as a two-hinged
arch.

The secondary corrugations increase the flexibility
in the transverse direction. In order to determine the
effect of these corrugations, thrse types of corrugated
pipes under axial and transverse forces were investigated.
The results obtained were then appliesd to a structure
having idealized major corrugations., The distortion of
the major corrugations due to the effect of curvature in
the %ransverse direction, similar to that which occurs in
the Ptending of curved tubes, was also considered. The
solution obtained for tha idealized case was then used to
arrive at an approximate solution of the actual structure.

The approximate solution iz found to be in satisfac-
tory agreement with the avaiiabls test results,
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CHAPTER 1
INTRODUCTION

A few years ago an unusual pre-fabricated Quonset-
type structure known as the "Wonder Building® appeared in
the bullding industry. The Wonder Building is bullt en-
tirely of 18-gauge galvanized shell metal. The sheet
metal is formed into a bath-tub shape as shown in Fig. 1.1,
and then given a secondary curved shape by forming second-
ary corrugations into the bottom portion of the shape (Fig.
1.2). The structural component so formed will be referrsd
to as a shell since its behaviour is very similar to that
of a long barrel shell,

These shells are then bolted together end-to-end to
form a complete arch;, which is so supported at 1ts ends
that it acts effectively as a two~hinged arch, This arch
then forms a two-foot long section of the building, and is
completely self-supporting. By bolting together successive
arches along the edges A a complete building is formed,
which may be 23 long as desired {Fig. 1.3).

‘ The main advanitage of this type of structure is the
great saving it makes in the cost of lavour. Shells with
chord length of up to 9 feet are manufactured in ths fac-
tory. These are then assembisd in the field by bolting
them together to form the compless structure, and this pro-

cedure requires only unskillecd labour. This type of
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FPig. 1.3. Corrugated Shell as Two-Hinged Arch
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structure is ideal as a roof for warehouses, factories, and
industrial buildings.

The presence of the secondary corrugations in the
shell increases its flexibility in the span-wise direction.
An axial force or a bending moment on it causes bending of
these corrugations., This changes the radius of curvature
of the cross section, which in turn produces circumferen-
tial stresses, much in the same way as in a corrugated pipe
under an axial load or bending moment.

For this reason the case of a corrugated pipe is
rigorously treated. Pipes having the types of corrugations
shown in Fig. 3.1 are considered. It is seen that the cor-
rugated pipes shown in this figure can be formed by combin-
ing several shells of revolution, either conical or ring
shells. The general solutions for these types of shells
are given in Chapter 2. By using appropriate boundary
sonditions, the stresses and flexibility of a corrugated
pipe can be obtained as shown in Chapter 3. The increased
flexibili%ty of = zorrugated p.os can be taken into account
oy using a "reduczd modulus of slasticity,™ so that the
deflections of corrugatsd pipes can be calculated by con=-
sidering the pipe to be pizin and using this rsduced modu-
lus as its modulus of elast’ ~*5v.

The solution obtained for =he pipe is next appiied
to a shell with a straight axis of an idealized cross sec-

tion shown in Fig. L.1{bj, and having secondary corrugations
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of the types considered for pipes. This procedure is
strictly valid only when the shell is under pure bending so
that the longltudinal forces are.linearly distributed over
any cross section. However, under the influence of snow
and dead loads; transverse moments occur which distort the
cross section, as in a multiple barrel shell, so that the
assumption of linear distribution of the longltudinal
forces 1s not strictly correct. But since the shell is
stiffened transversely by the secondary corrugations and
since the shell is long in comparison with the cross-
sectional dimensions, the effect of the distortion of the
cross section is very small on the longlitudinel behaviour
as explained in Chapter 4. Therefore, the longitudinal
forces can be assumed to be linearly distributed and the
golution for corrugated pipes can be used for these shells.
When these shells are curved and are subjected to a
bending moment, distortion of the cross sections occurs
similar to that whieh takes place in thin curved tubes.
Not ogly doez thils distortion of the cross sections in-
crease the flexibility of the shell but it also makes the
distribution of the longitudinal forces nonlinear. It is
shown in Chapter 5 that the secondary corrugations help to
stiffen the transverse sectivi:, thereby considerably reduc-
ing the distortion of the cross =sctions. In nearly all

cases the dlstortion 1s so small that 1t can safely be
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neglected, and the longitudinal forces can be assumed to
be linearly distributed over any cross section.

After this the analysis of the shell as a two-
hinged arch can be performed very simply. In Chapter 6 the
method of superposition is used to obtain the external
moments and thrusts on any cross section. By neglecting
the effect of distortion of the cross sections due to the
curvature of the arch and the effect of shearing deforma-
tions, the analysis reduces to that for an ordinary arch.
Having obtained the external moments and thrusts, the unit
stresses can easily be found by using the solutions devel-
oped for corrugated pipes. The deflections can easily be
obtained by considering the shell to be plain and using
the reduced modulus as its modulus of elasticity, as in the
case of corrugated pipes.

The cross section of the actual Wonder Building
arch {Fig, 1.3) is much different than the idealized cross
section of Fig. 4.1{b). The shape of the actual cross
section is such that it cannot be represented by any simple
geome%rﬁcal figure. The problem is further complicated due
to the fact that the shell has secondary corrugations in
the bottom portion only. The corrugated porticn consists
of a circular arc and two tcozents as shown in Fig., 7.1,

An approximate solution for this shell is given in

Chapter 7. It 1s assumed that the circular corrugated arc



is a part of a complete pipe of radius 9,125 in., and that
each of the two tangents is a part of a pipe whose radius
is equal to infinity. The reduced moduli of elasticity
for these portions are then equal to those for the corre-
sponding pipes; the modulus for the portion which has no
gsecondary corrugations i1s simply the modulus of elasticity
of the material. The stresses and deflections are then
found by a method very similar to the method of ftrans-
formed sections used for beams of composite sections. The
theoretical results were found to be in very good agree-
ment with the available test results.

It is shown in Chapter 7 that for a given moment on
any section of the shell;, the maximum stress at this sec-
tion depends primarily on the depth of the secondary corru-
gations; it increases as the depth increases. The shells
are corrugated in the transverse direction mainly because
it makes it easy to bend the shells into circular arcs.
Therefore, the depth of the secondary corrugations in-
creases Witk an Iinecrease in the curvature of the arc, But
as the curvature :iacrsases, the span of the complete arch
becomes shorter, so that the maximum moment in the arch
due to a given loading deczreases. Thus, an incrsase in
depth of the secondary corr..:3ions is accompanied DY a
reduction in the maximum momen% “n the arch, or vice

varsa, which enables one to use the zame cross section

cver a wide range of span length.



Throughout the analysis it is assumed that the

material follows Hooke's Law,

tropic,

is homogeneous,

and iso-
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CHAPTER 2

SHELLS HAVING THE FORM OF A SURFACE OF REVOLUTION

2.1. General Case of Unsymmetrical Load. Fig. 2.1 shows

an element, ABCD, cut from a shell of revolution by two

ad jacent meridian planes and two parallel circles. The
posltion of the meridian plane is defined by the angle ©;
measured from some datum meridian plane, and the position
of the parallel circle is defined by the angle'ﬁ, made by
the normal to the surface and the axls of rotation. The
meridian plane and the plane perpendicular to it are planes
of principsal curvature at a point on the surface of revolu-
tion, and the corresponding radii of curvature are denoted
by r, and r,, respectively. The radlus of the parallel cir-
cle is denoted by T Thus the length of the sides AD and

and BC 1is rld¢, that of AB is rode, and that of CD is

dr,,
(r, + 3% dp) de
The forces and moments per unit length acting on the
element ABCD are shown in Fig, 2.1 and are positive when
acting In the directions shown. In obtalning the equilib-
rium equations, it will be assumed that the shell surface

is free of any external load.

Equilibrium Equations: Let w. consider the equilibrium of
the element ABCD by first projeciing the forces in the di-
rection of the tangent to the meridian, The normal force

acting on the side AB is
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N¢r°d9

The corresponding force on CD is

b or,
Ny + = )(r+ 2 3g) de
(g d¢ 37 ¢
By neglecting a small quantity of the second order, the
resultant of these two forces in the y-direction is found

to be equal to

NG

2 dpde + ST r d¢de =

" 53 a¢ 5% 5

The radial shear forcs, Q¢rod¢, on the side AB has no com=-

(Nyr ) dgde (a)

ponent in the y-direction, while on the side CD the com-

ponent of the radial shear force in the y-direction is

l

ar
- Q4 + 288 d¢)(r + -——4) d¢) ded¢
and this is equal to
- Q4r dgde {v)
1f only the quantity of the first order is retained.
Now let us consider the forces acting on the other

two sides, 3D and BC., The normal forces on these two

<
) i @ ’g :
sides are Ngr,d¢ and (Ny + 77" d8) r,d¢ , and have a re-

St N

sultant in the direction of the radius of the parallel

circle equal to Ngr,d¢ d@. The component of this force in

the y-direction is then
- Ngr,cosddgds (e)

Finally, the lateral shear force on AD is Né¢r1d¢ and on
BC is
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(Neqb +.a—§—%‘2- de) rlc’@

which give a resultant in the y-direction of

%—1;-256 rldqbde

{a)

Summing up the forces (a) to {d), the equation of equilib=-

rium of forces in the y=-direction becomes

§—¢ (N¢ro) - Ngr cosg + S5 TaT Q¢ro = 0

The other five equations of equilibrium could be obtained

similarly, and they are stated below, together with the

one obtained above:

0

0

F_=0 : 2(Nyr ) - X +6N6¢ =
v = 3 a¢ ¢ro - er;cosﬁ 5 r, - Q¢ro =
3 Vo ‘
FX =0 3 s-a(Nysero)‘l'-éﬂé— r;+Ne¢rlcos¢-Qerlsin¢=O
28Q
= . 3 o _
F, =0 3 Nyr_ + Nor;sing + gg(%ro) s T T
' oM
— o % ? . - - e - =
Mx = 0 3 amg}gﬁcpro} Merg_cos;é JBG r, Q¢rorl =
Mg 3 .
My =0 3 = ro* S};‘Mfﬁero’ ohe"é{rlcos¢-Q9rorl =

It can be shown that

g = - Moy |

1

M, =0 3 Mygr 4 Mggr.sing - Ngor, vy + Npgr ry = 0

-~

> (2.1)

J

(e)

1f the thickness t of the shell is small in comparison with

the radii of curvatures, r,

e

1
and r,. However, an

* 5. Timoshenko, "Theory of Plates and Shells, ™ pp,352,353.
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inconsistency results when these relationships are substi-
tuted in the last of the equilibrium Eqs. (2.1). This
inconsistency is due to the fact that expressions (e) are
only approximately true. If the exact expressions for

Naé’ N¢e, Me¢, and M¢e are used, then the last of Egs.
(2.1) is identically satisfied. In our further discussion,
it will be assumed that the last of Egs. (2.1) is always
satisfied, and that the thickness of the shell is small in
comparison with the radii of curvature, so that expressions

fe} are valid.

Stress-Strain Relationships: With eight unknowns and only
five equations provided by statics, additional equations,
based upon the stress-strain relationships, must be intro-
duced. If £¢ denotes the unit strain in the meridional
direction, €o the corresponding strain in the direction
perpendicular to the meridian, £pe the shearing strain,
){@and}(a the changes of curvature of the meridian and the
plane perpendicular to the meridian,jﬂ¢s the change of
twist, E the Modulus of Elasticity and ¥V the Poisson's
ratio; then, for thickness, t, small in comparison with r,

and r,, we have®

2 Ibid, pp. 354,355.
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= 6 ? N .=
N¢ lay (€¢+)’ s ) o 1oy

(hg# Vo )5 Moz i (K ¥Xg) L)

+y€H)

12(1 y2)

E 3
Mg = Neg = T(TyY €905 Mgo= - Meg = T2TIFIT Fde
J

Strain Displacement Relationships: The strains and the
changes of curvature and twist can be related to the dis-
placements u, v, and w, where u and v are the displacements
in the directlons of the tangents to the parallel circle
and meridian, respectively, and considered plus when in the
direction of increasing © and ¢ s respectively; and w is
the displacement in the direction normal to the shell sur-
face, plus when directed inward., These relationships ar33

A

]

@

€¢-._ ;j.“... Q.QX - W) 3 €g= é féﬁ csc¢+v ctnc}-w)

19
Eog= ;.';53"' ;;-a-g cscp - _i_.u_ ctng

-]

=1 9 v .1 9wy -1 V4l dw
qu.._...-...( * ¢) 5 Xg 30t¢ (l*rla¢) §s)

4 C8c8 O (cscd,Q_
rg 36 rz 59 rz

=)

gu

3 a. E. H. I.ove, "A Treatise on the Mathematical Theory of
Elasticity," pp. 521, 52l4.



Stress Displacement Equationss Substituting the strain

displacement equations {g) into the stress-strain relation-

ships (f) gives \
Ng = 532 E (%é" W) +;y; (24 5 cscg + v ctng - w)j}

Ng = f‘;z (82 cscps v ctng- et & = w)}

Yo = Yog = TiHT = B¢ i & eacd - etmp)

R 'a% e -r—l;%a‘%)

- _ D(1-V) [_a_ 1 9w ay _ 1 Ju
M¢9 Med) Ty 3?5 ('r'z 06 csc¢ * z) ry, 9
[ d
where D Et” f203§
12{1-y2)

Substlsuting expressions {2.2) in Egs. (2.1) will
then yield five equations in terms of the five unknown

quantities u, v, w, Q#s and Qg.

(2.2)
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2.2. Shells of Revolution Under Axially Symmetrical Load

Distribution. It ean be concluded from the condition of

symmetry that only normal stresses will act on the sides

of the element ABCD (see Fig., 2.1) lying in the meridian

plane., Hence

Qg = Ngo = Ngg = Mgp = Mgg = 0

Also due to symmetry the circumferential displacement u

must be zero. The remaining stresses and displacements

will all be independent of & . With these conditions the

equilibrium Egqs. (2.1) reduce to

-a% (N¢ro) - Nprycosg - Q¢ro =0
Ngr, + Npr,sing + ’%5 (Qgr,) =0
a% (M¢I'o) - Mgr,cos¢ - %rorl =

and the stress displacement Egs. (2.2)

become

Et | 1 .dv Yy
N4 = o f - w) [ T A (v ctn - w)]
¢ ley® | Py ‘i‘? Ta ¢
Bt | 1 Yy ,dv
= comewsocms e - * . cseem o«
Ng T | v {v ctng - w) = (3 w)]

1 4 ,v o dWy, Yev . 1 dw,
P T dé r, r, d¢’ T ‘v, T, & ¢
(1 v .1 dwy ..o d,v, 1 dw
e r, 7, r, dp < r, dg'r, T, 3@

r

/

,

r

(2.4)

{2.5)

Subatitution of expressionz (2.5) into the equilib-

rium Eqs. {2.4) yields three equations with the three
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anknowns v, w, and Q¢. But considerable simplification of
the equations can be obtained by the introduction of two

new variables, U and V, where

U = r, Q(# }> (2.6)
= ._1.;. X -q}i i
vV = e (v + d¢) j

It should be noted V is the expression for the rotation of

the tangent to the meridian.™

To simplify the transformation, we replace the first
of the equilibrium Egqs. (2.4) by one obtained by censider-
ing the equilibrium of the portion of the shell above the
parallel circle defined by the angle ¢ (Fig. 2.2). If the
resultant edge load on the edge AB of a shell of revolubtion

is 2yr?®, then the equation of equilibrium is
27Trol\lg5s.1n¢ + 2W0Q¢cos¢ = 2prF

from which

N(,i = e-?f!- csep - Ggctng = *’;,I‘:: F 030295 = "f-']: u ctngb (2.7

From the second of Egs. (2.5) we have

4 This method of analysing stresses in shells was develcped
for the case of a spherical shell by H. Reissner, "Muller-
Breslau-Festschrift," p. 181, Leipzig, 1912; it was gen-
sralized and applied to particular cases by E., Meissner,
David W. Taylor Model Bas:» Translation 238, and by H.
Wissler, ™Festigkeitsberechnung von Ringflachenschslen,®
doctoral thesis, Zurich, 1916,
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Herlsin(ﬁ = - N¢r° - Eda (Q¢ro)

Substitution of Eq. fa) in this and noting that r, =

r, sing gives

2

Ng = = ;]-‘; (rF csc® + %) (2.8)

Prom the first two of Egs. (2.5) we readily obtain
dv _ T2
Tp- " =EF (Np -VHg
rz
v ctng - w = g7 (Ng - YNg) (a)

Elimination of w from these two equations leads to

dv v ct = A (r.+VYr_ ) N (r_+yr.) N (b)
d¢ = ncﬁ - Bt 1 2 ¢=\Ty 1 6
Differentiation of Eq. (a) gives (if t is assumed to be

constant)

§p omd-v eso¥ - T =gt F [r, (o -¥0p)]

The derivate av can now be eliminated from the last two

de
equatiocns, to yield

aw
V‘!‘a-a:

r,V= %%‘t [(rl+yr2) N¢ ~-{r_+yr,) Ne:l
1l 4 -
Substituting expressions (a) and {b) for N¢ and Ng, we

finally obtain the first of the two equations relating to
U and V
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T2 40 , 1|4 au 1 {f1x . =2
—aﬁ-—-—?‘?;‘-:[d?i (rl)+ ctn¢]¢=rl [I‘ utn¢=)’ U

1

=Et V+ 2 (c)

r

= |1 tang d
where Z = - rF csc?P ctn¢{-f;— - —-f'f —P—J-—Q- Y (—E)} (2.9)

The second equation relating U and V is obtained by sub-
stituting the last two of Egqs. {2.5) in the last of Egs.
(2.4) and using the notations (2.6). In this way

rs 43y 1 Fa 1 [rl 2 .]
ri dd® T (:dgb ) T, ¢ nqﬁ} q& r,| r, © n¢ Y
- U
=-5 (a)

By introducing the notation

y = F2 a? o1 [a T2y, T2 ]d
L(:.o»ol ri d¢2(ooo) rl 3-3 I,'l) rl Ctﬂ? d¢(ooooo)
1 2
- ;;' Ctnlp (vooo) (2910)

Eqs, {c¢)} and {d) can be written in the following forms:

E{'ﬁ}%g‘i=EtV+-Z ?
i 1

;> {2.11)
YV _ 18] /
L(V)-?;--‘E i

This system of two simultaneous differential equa-
tions of the second order can be reduced to a single squa-
tion of the fourth order. Operzsiing on the first of Egs.
{2.11) by Ll.....) gives
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o

LL{T) +))L(-g—) = Et L(V) + L{2)
i

Substituting the second of Eqs. {2.11) in this gives

Lev) =2 0o ﬁ_’,gg),,.ﬂ-z],.ﬁ
L Ta

>

Using this, we obtain

U= - 'U+L(z)-;)iz
i

it

LL(T) + M(;?Z) - ;}-’; L(U) -

ol

&

If r, is constant, as is the case for spherical, conical,

and ring shells, then
Uy .1
L(;-l-) = 7 L{U)

Using the notation

2
/t{g 4 %E = -ag- (2012)
rl
LLIT) + u*(U) = L(z) - & {2.13)
i
Silmiiarly
LL{V) + u*(V) = - £ (2.14)

The upplication of Eqs. {2.13) and (2.14) to partic-

ular ;ases of a truncated conical shell and a ring shell
will be discussed in the next two articles, However, the
expression for the relative displacement between btwo
rarallel circles will first .z found.

The deflection Ap of any point P on the shell sur-

face in the direction of the shell axis can be found in
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terms of the stresses Ny and Ne. 1In Fig. 2.3 P' represents

the displaced position of B;. From the figure, it is seen
that AP is given in terms of the displacements v and w by

the expression

AP = v sin¢ + w cos¢

Integration of the differential eq. {b) gives
v = %%‘2 j?%@ [N¢(rl + Yyr;) - Ng(r, + )ﬁrl)] do + c} {e)

in which C is a constant of integration.

Prom Eq. {a)
wW=v ctnc?-;% (No - YNg) ()

Substitution of these two expressions for v and w in the

expression for A}, vields
[
AP =i %‘@(rﬁ-)’ra) - Ny(r, +Yr1}] d¢ -r_(Ng - yn¢) + C:.}

The relative deflection between two parallel circles
whose positions are defined by the angles ¢, and P, can be
found by solving the above expression for AP between the

limits ¢, and ¢5. Denoting this deflection by A, we have
4, )
A= N (r. +vr.) - N.(r.+yr.)| d ]- N - (2.15)
-—Et ¢ I‘J_ YI‘z - 8 I‘z yrl i ¢ - I‘z e"%)] t-.ols
? ot ?
]

2.3. Truncated Conical Shell Under Axially Symmetrical

i

Load. A truncated conical shell, ABCD, is shown in Fig. 2.l.

The dimensions b, ¢, h, and r are defined in this figure.
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Fig. 2.4. Truncated Conical Shell
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To apply the general equations developed above to this case,
we introduce in place of ¢ a new variable z which is the
product of ¢ and the distance along the meridian from the
edge AB (see Fig. 2.L). The length of an infinitesimal

element of a meridian 1s now cdz, instead of r,d¢. As a

result,

2
d - f2d , & _dTsdy_Tig® 197 g
dg ¢ dz ° ag® I ¢c dz c® 4,2 ¢ dF dz

Using these transformations, and noting that r, is

constant for a conical shell, the operator L{...) of Eq.

{2.10) becomes

_ 1Tz g% ldrz Ts 1l 4
L{...) = {;-;':{-z-; eee) + (-c-'a-i—*'}-; ctn¢)ga—£(..o)

- L ctnch(o..)] (a)

2

Observing that ¢ is constant, and using the notation
o Tor /2 - ¢, we obtain (see Fig. 2.4)

_ _r h,.h ,9dr,  h
Tz ¥ Cosw (1 - r v z) 3 dz =~ cose (b)

Substituting these expressions into (a) and putting r, =

o4 the symbol L{...) becomes

r =2 -
L * e 0 = —B; d e o o + h .i‘ ‘ tan%(’ o e o 1
(...) La ) R o)

For the special case of a conical shell, Egqs. (2.9} and

{2.13) reduce to
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Z = - <= F sec®™ tancx (a)
rz
and IL(U) + u*U = L(Z) (o)

The expression for Z when operatsd by L gives
L(z) =0
Bq. (e) then becomes
LL(U) + U*U = 0 (2.16)
which can be written in one of the following two formss
Z.[L('G) + i}fU} ¥ i/(x'"[L(U) + i}fU] =0
where i =.,=1

These equations indicate that the solutions of the second

order squations

L{U) * 1/_1{‘!1 =0 (2.17)

are also the solutions of Bqg. {2.16).

Using the expressions {b} and (¢) in the first of Egqs. (2.17)

gives
a®u. :
1 r h oo - * b du
-= (1 - 24 2 g et B QU
c? cowxf rT T Y c2coge 4z
tan®x cose I3 4 1P T =
- 1) U, =0
r (1-h/r+n/r z)
2

Multiplying by 2—3355- {1 - % - % z), and introducing the

actations



¢

a =

b
T ’ (1)
A

2 2
¢~ cosx _ 32 be
- J12(1-3%) e

finally yields the equation

2

(1 + )sz:‘w (1
“‘e ?Z dZa e =

i
dz
- [ez - ia (1 =P +¢ zﬂ (2.18)

The solution of Eg. {h) can be found in the form of power

series in 2 multiplied by a power of z,

20
;Ej A, 2% {g)

k=0
The method of Frobenius was used for the determination of

3 and the recurrence formulae for the coefficients.5 It

was found that 3 = 0 and 1.

=

for 8 = 0, the recurrsence formula is

X

k(kel}(lu?)z A, = ={(7(lwi?3(k»l)(2ko3) A4

k>1

Y )
+ |01 (k-3) + 1a(1-0) Ak52]+ iap A4

When k = 1, the recurrence formula is identically satis=-
fled, leaving A, as well as Ao arbitrary.
Whenn s = 1, the solution obtained is the samz as

that corresponding to the coefiicient A, for the case

=
° F. B, Hildebrand, "Advanced Calculus for Engineers,™
o)

p. 132-139.
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s = 0., Hence the complete solution of (2.18) can be ex-

pressed as

U, = j?j a, 2" (h)

k=0
where
1
A = - (1-0)(k-1){2k-3) A
E o k(k-1)(1-0)® {Q kel

+[(f‘2(k-=-l)(k=3)+ ia(l-("?} A _, * lap Ak_s} kz2 (1)

Separating the series (i) into its real and imaginary

parts, we obtain
Uy = A(I; +1I,)+ A2(I5 +11,)
where I;, ..., I, are power series which are convergent
when {1-¢+ ¢ z) # O.
By inspection, the solution of the second of Egs. (e) is
U, = AO(I1 -1 I,)+ A, z(Is-11,)
Solutions U; and U, together represent the complete system

of independsnt solutions of Eq. (2.16). By using the sums

and differences of solutions U; and Uy, the general solu-

tion of Eq. (2.16) can be written in the forms

U= AI, + BI, + CI, + DI, (2.19)

where A, B, C, and D are arbitrary constants.

Substituting {2.19) in the first of Egs. (2.11) gives



o
(VS

_ sinc( 1 " n " "
v = =(1-0+02)2(AI ,+BI +CI+DI
Fto{1-0+02) {?( e+0z) “(AI, 2+CILa+DI, )

+ (1-0+pz) (AIi+ BIi+ CIg+ DI,) - C(AI;+ BIg+ CIg+ DI,)

+ Fh sec«.csca} {2.20)
n 1¢ o 4l " 471
whnere -'a-z— 9 = dzg

2.4. Ring Shell. A ring shell is shown in Fig. 2.5. The

radius r is as defined in Fig. 2.5. The angle ¢ varies
fromwﬁc toTTw¢é, For this case it 1s convenient to solve
Bq. €2.14) for V. Since this is a linear nonhomogeneous
differential equation, its solution can be separated into
Vys> the solution of {2.14) with 2 = 0 (homogeneous solu-

tion), and Ve a particular solution of Eq. (2.14).

Homogeneous Solution: Setting 2 = 0 in Eq. (2.1L) gives
LL{Vg) + u* Vg =0 (a)

Eg. {a) is similar to Eq. {2.16) and hence it can be con-

cluded that the solutlon of the second order equations
L{Vg) 2 1 A% Vg =0 {v)

are also solutions of Eg. (a)

From Fig. 2.5 we see that

r, = constant
ry = (r-r,) csc¢-+ r, {c)
dr
2

= - (r-rl) CSC(} Ctn¢ !
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Fig. 2.5. Ring Shell
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With these relationships, the symbol L(...) of Eq. {2.10)

becomes

TR R R . AT Y

2 2 r
ry d¢ 1 2

Using this in the first of Egqs. (b} gives

r 42V dav

2 Hl , ctnd =~ H1 1 2 2 .
;d¢2+ = dq)--r—;ctndlvm-*i/q Vg =0 (e)
‘1

A further simplification is obtained by introducing the

new variable
x =1 - sin¢. (£)

With this change

d d a® 2, 42 d
= COS¢ —— 5 — = OS ¢ —— sin¢u—— {g)

Using these relationships, Eq. (e} becomes

2
LERP dVH1+_;___z_si¢ cos®py VmL
R Gx® r,'r, sin ¢ ax
1
L 2 2
-{zctngb«i ) Vg =0

By noting that

cos® =1 - sin®} = x{2-x)

2 cos®g

ctn ¢ - = X(E“X)

sin®g (1-x;”

rer.x
and r; = {r-r,)cscp+ r; =

l=x
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we have

=2
x{r-r,x) (5ox) 4%V , 1 [r-rlx i x(2BX)J dViy
ri (1-x) dx> T, r, l=x dx

X{2=x 2 -
= [ll-xgtr-rIXS -1ip J Vm =0©

r2(l-x)(r-r,x)

Multiplying by =

s and introducing the nota-

xr
tions
.
2p2 T 12(1-y®) r* (h)
al:é‘?’lh.;l. 1 _y2

tz

finally yields the equation

a 4%y AV
(2-x) (1) 4+ 3 a1 ® - AaCom) (1oax) |
ax
- -l—:3 [)@xa(z-x) - 1 a, x(1-x)(1-Xx) ]Vm =0 (1)
X

Here again the solution can be found in the form of power

series in z multiplled by a power of x

&0
VHl = x° :E: Ak xk
k=0
The method of Frobenius was again used for the determina-
tion of s and the recurrence fermulae for the coefficients.,
It was found that s = 0 and 1/2 for this case. For s = 1/2

the recurrence formula is
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Ak : Em];m [‘&(Zk‘l)z(l"'u.).) - ial]Ak°1

- [@(kalXZK-B)(l'*M - 20 - ial(l“'?‘)] Ay >
+ [%? (2x-3)(2k-5) - A® - iaik] k21 (i)

A second solution corresponding to s = 0 is of the form

(0%
i Kk
Vm = Z A x
k=0

Because of symmetry, [V]d): -[V]_n._¢ for all values ofd).

Since the series corresponding to s = 0 cannot
satisfy this condition, the second solution should not be
considered. Hence the complete solution of BEq. {i) can be

expressed as
y o)
= /2 k
Vi = X g A, x (k)
k=0
where Ak is given by the recurrence formula (j).

Separating the series (k) into real and imaginary parts,

we obtain

Vip = AT, + 1 7) (1)

where J, and J, are power series multiplied by xl/zg the

series being convergent when {2-x){1-)x)® # 0.
As was shown for the case of the truncated cone, the

complete solution of Eq. {a) can be represented in the
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following form
VH =CJ, + CJ, (m)
where C; and C, are arbitrary constants.

Substituting (1) in the first of Eqs. (b) gives

0

LT, + 1 J,) + 1 M3(7, +17,)

[L(Jl) -/uzJa]-:- i E:.(Jz) + I8 Jl] =0
For this to be an identity,

L(7;) = I€ I,

L(J;) = -/u"' J,

Substituting Eq. (m) in the second of Eq. (2.11) and using
the abtove relationships gives

Ug = D (C4° + erll') Ty = (CLu® - C, ;};) I, (n)

Having obtained the homogeneous solution of Eq. (2.11), we

shall next attempt to find its particular solution system.

Particular Solution: If

S=8,+18, (o)

is a particular solution of the inhomogeneous equation
L(s) -1p®s8 =2 (p}
then it can be shown by direct substitution that
1
Vp = = === §
P 2
#o ta)

U? i 2 S,

]
7]
i




is the particular solution system of Egs. (2.11). The
solution of the differential equation {p) will also be

obtained in terms of power series.

Using the relationships (c), (f), and the first of the

expressions {h) in Eq. (2.9) gives

g = E-A) cos® (5,5 | 3xx)
2 (1-xx) (1-x)*

Let S

i

S,+ 1 8, = Fr{l-A) Wectng

The differential equation {p) then becomes

LOW ctad) - L 4° W otng = ——C08 9 (241 3hx)
R e S s (1) 7
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(r)

The symbol L{...} is defined by (d), and gsis related to

x by the expression (f). Using this in the above differ-

ential equatiocn gives

(1-3x) (2-x) (1-x)° dz‘;f

dx

+ {1&::;(1%) 3[(1_;0;)(1-x)2+2(l°>~x)->~x(l-x)(2-»::) ]%

Y

xa

s
4

{1oaz) ®- Xz (1=-2x) {1~z = ¥x®(1-x)*(2-x)

l_"g\;)""’"i

S |

- 1 a,x(1-x)(1-x)° |W = -}5 (2+3) x-32x"

X

-

(=)

A solution of the above equation can be taken in tne form

cC
W=~'Z kak
k=0

(t)
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Substituting the series {t) in Eg. {s) and equating
the coefficients for each power of x to zero, we obtain

the following recurrence formula for Bk:

.

1L
_ 1
By = ¥mwTT I Mk - 2 [(k"s°1)(k“s“’2)Rs+1
8=0
* (k-s=1)P g # Qs+%} Bras-1
(B,= 0, kz1) (u)

where
Ny =f{20d) 5 Ny=-3% 5 Ny=¥N, =Nc=.....=0

R, = - {5+42) ; Ry, = (L+10X+ 2)3) 5 R, = - (148M5)7) ;

R, = 2A[1+2A) ; Ry = -2

]
]

P, = - {5#BA) ; P, = (3+15)+ 5A%) ; P, = - (1+10A+ 10A%) ;

P, = M3+TA) 5 Pg = - 2X
Qp = (2=~ ia,) 5 Q= = (3}* X - 3 ia,- ia )\);
Qe = 6X0-3ia3- 31ayd) 5 Q, -(4N\-1ai-31ay) 5 Q=(A3-1a})

Separating the series into real and imaginary parts, we
obtain

W=J,+1 J,
where J, and J, are converging power series when

{1-Xx){2-x){1-x) # O.
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S, end S, can then be related to J, and J Dby the expres-

sion {r) giving

S, =Fr {(1-A) ctng I3 = F r{l-A) VKEZ-XS
S, =Fr (1- Aetng J, = F r(1-A) \/xlff;x) 7,

Substitution of these relationships in {q) yields

V. = _Fr(1-A) VEZ {2-2{5 7,

P MzD
- VEZ==]
Up = Fr(1-a) VEEE (g, -M-sl"- 7,)
1

as the particular solution system of the differential
equations {(2.11). 8Since these are linear equations, it is
permissible to add the homogeneous and the particular solu-

tions to obtain the complete solution.

]

Thus U UH*UP

V=VH+VP

or

U=DL(L;,(”+C EJ-{C,J..-CV)J-!

+ Fr{1-\) \/ii";;@-_ (7, - Y J,) (2.21)
) Mo,
V=g, + 0, - F2a-A V%—-———-{Z"X) 3, (2.22)
D o

2.5. Equations for Forces, Moments, and Displacements in

Terms of U and V. Having the expressions for U and V, we
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can obtain all the forces, moments, and displacements in
terms of these two quantltles., The forces Ng and Ny are
found from Egqs. {2.7) and (2.8). The bending moments Mg
and Me are obtained from the last two of Egs., {2.5) by set=

ting = {v + W} equal to V. The only displacement that

T3 dg¢

will be of interest is the relative deflection between two
parallel circles defined by the angles ¢, and ¢,. This is
obtained by substituting Eqs. (2.7) and (2.8) into Eq.

{2.15). The equations resulting from these substitutions

are
W= )
Ng = %: {(Fr 2sc% - U ctng)
g = = = (r F csc®p + Er |
Mg = - D (;%;%%-:-«3}4—%-?9—1)

(2.23)
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CHAPTER 3
CORRUGATED PIPES

pe Under _Load. Pipes with three
different types of corrugation are shown in Fig. 3.1, each
subjected to an axial load of 2mrF. The first one has
V-shaped corrugations; the corrugations -of the second one
consists of concave circular arcs, while those of the pipe
in (c¢) consist of a series of alternating concave and con-
vex circular arcs. These three types of corrugations will
be referred to as V-shaped corrugations, cusped corruga-
tions, and undulating corrugations, respectively.

The dimensions of the corrugation will be defined
by the symbols b, ¢, and h, (See Fig. 3.1.) In our fur-
ther discussion we shall refer to b as the width of a
corrugation, ¢ as the length, and h as the depth of a
corrugation. The thickness t of the pipe wall will be
assumed tc be constant over the entire pipe length. The
radius » of the pipe will be considered to mean the aver-
age radius of the pipe. It will be seen that all the
quantities defined zabove have the same meaning for all
three types of corrugations,

Each of the three corrugated pipes shown in Fig.
3.1 can be considered as being formed by combining several
shells of revolution such as ABCD, CDEF, ,... . If the
pipe is sufficiently long, any one such shell can be ana=-

lysed and considered to be typical for the entire pipe.
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The shells ABCD, CDEF, .... for the pipe in (a) are
truncated conical shells, whereas those for (b) and (c¢)
are ring shells, Each one of these shells 1s subject to
an axially symmetrical load of 2urF. This load acts along
the edges AB, CD, EF, .... only, so that the shell surface
can be considered to be free of any external load (the
welight of the shell being neglectéd),

In Chapter 2, we have obtained solutions for trun-
cated conical shells and convex ring shells, such as ABCD
of Pig. 3.1(a) and (c), respectively, subjected to the
type of loading mentioned above. The solution for the con-
cave ring shell, such as CDEF of Fig. 3.1(b) and (c), can
be directly obtained from that for a convex ring shell, if

the parameter
=2
Q =3 {2.1)

is small and if the edge conditions are the same., For if
2 is small, the radius of curvature r, 1s approximately the
same for corresponding peints of the two shells (see Fig.
3.2).. However, the curvaturse of the meridian for the con-
vex and concave shelis is of the opposite kind. Hence,

the force Ny and moments M¢ and Mg for the two shells
which arise due to this curvature will be of the same mag-
nitude, but opposite in sign, for these two shells, where-
as the force N¢ willi be of the same sign and magnitude.

4lso since the forces and moments are of the same magnituds



(a) Convex Ring Shell

'b; Comcave Ring Shell

Fig. 3.2. Ring Shelils
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F, = cscg [r +r, (sanﬁ-Suzq&o)J

_ i (3Lh.¢ - ¢o )
4%&¢V+P U‘Qmﬁﬁ]

~ TCSCP

fp=csce [r -r ($ng-sn «p)]

= recd [‘ -9 %%)J

x rescg
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for the convex and concave ring shells; the straln energy
due to the axial force of Z2nrF must be the same for the
two. By equating the strain ensrgy to the external work,
it follows that the expansion of the shells in the direc-
tion of thelr axes of revolution must alsoc be the same.
Thus, if e is small the solution of a convex ring shell
can be directly used for a concave shell by only changing
the signs of Ng, Mg, and Mp. Unless otherwise stated,
will be assumed to be small in our further discussion.

In each of the three cases, it is only necessary to
analyse the shell ABCD and consider it to be typical for
the entire pipe length. The stresses and deflection for
the conical shell can be obtained by using the general so-
lutions (2.19) and {2.20), while those for the ring shell
can be obtained from €2.21) and (2.22). The constants ap-
pearing in these sclutions can be determined from the
boundary conditions at the edges AB and CD.

Because of the restraint from adjacent shells, the
rotation of the meridian at the edges AB and CD of Fig.
3.1{a} and {b) must be zero. Furthermore, there can be no
component of force normal to the axis of revolution at
these edges. The expression for the rotaticn of a tangent
to the meridian is given by the second of Egs. (2.6), while
the component of force normal %c the axis of revolution is
equal to %sindy - N¢cosq‘ {see Fig. 2.2). The forces Qg and

N? are related to the parametsr U by the first two of Eqs,
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{2.23). Thus, the boundary conditions at the edges AB and

0
} (a)
)

For the pipe with the undulating corrugations it

D can be written as
1

Q¢sin¢ - N¢cos¢ = 3§§Q(U - Frctng)

can be concluded from the antisymmetry of the deformations
that there would be inflection points at the edges AB and
CD and that the circumfersntial force Ng, given by the
third of Eqs. (2.23), must be zero. In equation form the
houndary conditions at the edges AB and CD are

.=:}‘—dv = 0
r. 3 (b)

H
o

- 1 2 4avuy.
Ny = ooy (rEcsc¢ * d¢)

where V is the rotation of a tangent to the meridian.

With these boundary conditions the constants appear-
ing in the solutions (2.19} through {2.22) can be deter-
mined, thersby obtaining expressions for U and V for all
the three cases. Substitution of these expressions into
Eqs. (2.23) will finally give the forces and moments in the
shell and the relative deflection A between the edges AB
and CD can be found. It should be noted that A represents
the deflection of an axially loaded corrugated pipe of
length equal to the perpendicuiar distance between AB and
CD. The unit stresses in the circumferential direction and

in the meridian direction {i.e. perpendicular to the
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circumferential direction) can easily be obtained from the

values of the forces and moments.

In the meridional direction, the unit stress in the

extreme fibre is given by

N, 6M
%: %i.t—é:f (C)

In order to obtain a dimensionless quantity, we shall

divide 6{;, by
6 = -F'E' (d)

which is the stress in a plain pipe having the same thick-
ness and mean radius as the corrugated one. The ratio
0g/s will be called the meridional stress factor and will

be denoted by the symbol K¢

Ny EMg
B =F2F

Similarly, for the circumferential direction we have

Ny .6Mg
Ko =TFip

in which Kg is the circumferential stress factor.

For alli practical purpeses it is only necessary to
know the absolute maximum value of the stresses. So in our
further discussion we will take K¢ and Xg to mean the abso-
lute maximum values of these two factors, i.e.

K¢ = [-};?i ;22!:“ (e)

max

+
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N 6M
Kg = !?G" + "ﬁg! &2

max

Then in order to obtain the maximum value of the stresses
in the meridional and circumferential directions in a
corrugated pipe;, one merely multiplies the stress in a
corresponding plain pipe by the stress factors K¢ and Ko,
respectively.

In place of calculating the relative deflection A
between the edges AB and CD, it is convenient to obtain a
"reduced modulus of elasticity™ for a corrugated pipe, so
that deflection calculations for a corrugated pipe can be
made by considering the pipe to be plain but having this
reduced modulus as its modulus of elasticity. The ratio
of the modulus of elasticity of the pipe material to this
reduced modulus will be called the modular ratio and will
be denoted by the symbol N. It is evident that N is equal
to the ratio of A for a corrugated pipe to the correspond-
ing & for a plain pipe of the same major dimensions.

‘ Use was made of the IBM 704 Computer at the M.I.T.
Computation Center to obtain values of K¢, Kg, and N for
all three types of corrugations. It was found that these

factors could be put in the following forms
Kfg=1+2k (3.1)
T <9 .

Ko = 2 ke (3.2)
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2
N = cosx+ 9-1-1-5 n (3.3)
bt
in which
o= tan~1 % {(3.4)

and k¢, kg, and n are; in general, functions of « and

another parameter /8, where

/8 = -I-,% {3.5)

The quantities kq), kg, and n were calculated for
values of ﬁ ranging from O to 5, with & varying from 0.1
to 1.5 radians for V-shaped corrugations and from 0.05 to
0.75 radians for the circular corrugations. The value of
Poisson's ratio;y; was taken to be 0.3 in these calcula-
tions. The results of these calculations are shown in
Figs, A.1 through A.9 in Appendix A.

Comparison of Egqs. (e) and (3.1) shows that the

value of

.?5 is unity. However, this is not correct.
For the V-shaped and cusped corrugations its value was
cosx and cns2x , respectively, whereas for the undulating
corr\uéations its value ranged from 1 to 2.25 depending upon

the value of & andﬁ. But in comparison with the value of

%k,’ this term is small, except for very shallow corruga-

tions, i.e. for smalloc, and its value then approaches
that given. Hence, its value can be taken equal to unity

without introducing any appreciable error in K¢.



52

The term cosolin Eq. (3.3) is also not correct for
the circular corrugations. This term represents the ef-
fect of the meridional direct stresses N¢. The correct

value of this term is given by the expression

sindx’ T 2

ol cos 2X (g)

However, this expression differs from cosclonly for large
values of &, and the difference is maximum for semi-
eircular corrugations (i.e. foroC = TVl;) when the error is
less than 10%. But for large values of o, the second term
of Eq. (3.3) is so large that the resulting error in N is
negligible if expression {g) is approximated by cosocc .
Hence, it 1s permissible to make this approximation. This
also makes it possible to have the expression for N of the
same form for all three types of corrugations.

The parameter 3 given by expression (3.5) has the
same significance as the parameter 1/7\ used in connection
with beams on elastic foundation.l A is known as the char-
acteristic length since it has the dimension of length,
whereas /B 1s a dimensionless gquantity obtained by multiply-
ing iby & quantity which has a dimension of length. In
our case this quantity is /bc . In further discussion we
will refer toﬁ as the pilpe characteristic, as it is the

parameter which primarily influences the factors K¢, Kg,
and N.

1
M. Hetenyl, "Beams on Elastic Foundation."
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It should be mentioned that the charts shown in
Appendix A are valid only when the thickness of the pipe
is small in comparison with the two principal radii of
curvature of the corrugations. This is so because the
solutions for conical and ring shells presented in Chapter
2, on which the results of the charts are based, were ob-
tained under these assumptions. The radius of curvature
ry; of the meridian is infinite for V-shaped corrugations;

hence, t/r, is zero. For the circular corrugations

T, 7\ ctmmcsmm—————
i l=cos 20

and so t(l-cos 3)/h must be small. The other radius of
curvature r, is proportional to the radius of the pipe r,
so that t/r must also be small.

The only other assumption made is that the ratio
@ = h/r is small, In order to study the effect of P, the
modular ratio N was calculated for V-shaped corrugations,
for P = 0.05, 0,10, and 9.15 and &= 0.7. The results of
these calculations are shown in Fig. A.3, so that they
could . be compared with the curve for small values of P.
It is seen that there is considerable difference between
the curves whenﬁ is small. But when ,@ is small, @ must

also be small in order that the ratio t/r be small; for

be h*

2 _ - = n I
/3 =3 = 3% ctne csece. = (3 T ctnoc cseoe

For (= 0.7, we have
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H et

=1.803 &
1 &

from which it is seen that ¢ must be small when,B is 80, 1in
order that the ratio t/r be small. Whenjﬁ is larger, the
variation between the values of N for the various values
of e is small. The same general trend was found for the
stress factors, K¢ and Ke.

A similar investigation was carried out for the
cusped corrugation which revealed the same results as for
the V-shaped corrugations. For the undulating corruga-
tions, however, the effect of‘e on the resgults could not
be studied as the boundary conditions (b) are correct only
when e is small. Since these types of corrugations behave
similar to the V-shaped and cusped corrugations, it would
be reasonable to amsume that the factors K¢, Kgs and N
would also be insensitive to e as long as the ratio t/r is
small.

Donne1l? has studled the flexibility of pipes having
V-shaped and undulating semi-circular corrugations. He
considered a longitudinal strip of the pipe as being sup-
ported on an elastic foundation and by using the method of
internal energy he obtained expressions for the modular
ratio for the two types of corrugations. In terms of the

notation of this chapter, his results are

2 r. H Donnell, ™The Flexibility of Corrugated Pipes Under
Longitudinal Forces and Bending,™ Trans. Am.Soc.Mech,
Engo, APM-SL;.*—?—ég, 19320
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V-shaped Corrugations:

N =1+ 2B [1 4 0.1258% - 0.00219 6].'1
- bt> 125 - O /B
(h)

Semi-Circular Corrugations:
.
ch® P 5.2:{‘:""
N=1+1,5—— |1+ 0.062 - 0,00
5 b [ 5B 435

In obtaining these expressions, Donnell also assumed that
the depth of the corrugations is small compared with the
radius of the pipe, and that the wall thickness is fairly
small compared with the radius of curvature of the corru-
gations. I% is seen that these two expressions are of the
same form as the expression (3.3)., The first term in the
expressions (h) represents the effect of meridional axial
stresses. As was shown earlier, it is approximately equal
to cosol, though the resulting error in N is negligible if
the effect of axial stresses is approximated by unity. 1In
deriving the expressions (4) Donnell used Et®/12 as the
flexural rigidity of the strip. Since any change in the
shape of the cross section of the strip is prevented by the
adjacent strips in a manner similar to that in plates;
Eta/lé(l-vz) should be used for its flexural rigidity.

With these two changes, the above expressions for N become
V-shaped Corrugations:

-1
N=cos<>c+-c-l-ﬁ [(1-3)") 1+O,125€’1-v3)’3*-0.00219(1-v"")1'5!86} ]

bt?
{306)
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Semi-Circular Corrugations:

-
e

= A Ch2 # 2 4 1.3 Sozlm
N =cosect == 1.561-\)2}{1*000625&%}) 8 -~ 0,00435(1-¥7) [ |

N was calculated from these two expressions for
¥= 0.3 and for values OfiB ranging from O to 5. The re-
sults of these calculations are shown in PFigs. A.3 and A.9,
so that they could be compared with the results obtained by
using the solution for conical and ring shells, It is seen
that thwe agreement between the results of the two methods

is very good.

3.2. Explicit Solution for an Axially Loaded Pipe with

V-shaped Corrugations. In order to show that the factors

K@, Kgs and N can also be used for the case of a corru-

gated plpe under bending, an explicit solution for a pipe
with Veshaped corrugations will be developed. This solu-
tion will bLe expressed very simply in terms of trigonomet-
ric and hyperbolis functions instead of in terms of power

zerie

Lol

In the previcus article it waz shown that the soclu-
tion obtained for small values of £ gives good results also
when Q is relatively large, as long as the wall thickness
is small compared to the radius of the pipe. This would
make 1t reasocnable to assume Q is zero, Under this assump-

tion Bq. {2.18) becomes



a%u

dz*®

1

+ia U, =0 (2)

This represents the first of Eqs. {2.17). It is convenient
to shift the origin of z from the sdge AB (see Fig. 2.l
to the edge 00' midway between the edges AB and CD, For

this purpose we shall introduce a new variable y, where
y=2z = % (3.8)
With this change, Eq. {(a) bscomes

da®u,

dy*

+ ia U, =0 (3.9}

This is an ordinary linear differential equation the solu-
tion of which is
U, = Cléqicosv~+ isiny) + Cae'v(cosq - 1 siny) (b)
where
N=yv % = vy (3.10)
As vefore, the complete solution of Eq. (2.17) is then

T = (Crel 4 Coe™0) siny+ (Caol + Ciecony (c)

If the depth of the corrugation is small relative
to the radius of the pipe, then the point 0 will be a point
of inflection, so that the shear forces Q¢ at zvlwill be

equal, If we use this condition and cbserve that

%5—1-U=°°3°‘Ug°°s“z}
r, Ty r

we have, from {c), that
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(Cet+ CieMsinnt (0,1 + 6 e Nooan= (.67 + ¢ o) (-51m)
+ (Ce 7+ ¢ el)cosy

Transposing and collecting like terms gives

(Cy + Ca)(eM+ e Msinn+ (C; - C,)(e - e"’l)cosnrz 0

This can be satisfied for all values of‘nlonly if

C, = = Cs and Cp = C,.
Then solution (c) becomes
U= Cylel - e'n)sinn:* Cale'l + e;n)cosq‘

Using the relationships

- N ? -7
Eﬂ;ﬁmﬁ__ = sinh ; §~—%—3- = cosh7]

and introducing the notations
T, = siny sinhn , f, = cosNcosh)
finally gives

U= C,f, + Cof, {3.11)

For Iuture reference, we shall tabulate f, and f,

and their first and second derivatives with respect to??,



fy = siny sinhn 3 I, = cosycoshy
ar
£, ET =simz coshyL-l- cosn sinh)z 3
, df, >{3.12)
r, = _Tl- = cosy sinhy - siny coshy
a?r w 4°f
f;Ed;':zfz 3fz“'-:d:=-2fl
1 n J

Using expressions (c¢) and (d) of Chapter 2 in the

first of Eqs. {(2.11) we obhtain for V, the expression

1 rarseca% a h
Vo= g | BESEC o polCafy)e /2
5b [ c® 1mRTvRtl 2 cRcosx

- 3225%§595(01fl+ C,f,) + F tan«.se@x}

(C fi# Cofy)

This can also be written as

v = E%§El}clf2-czfl) + {C.rle Cofl)

28

2 2

g - gc
Yy (leﬁ'cziz) + ab F]

if ¢ is small, the last three terms in the above expression

are small compared with the first term, and could thus be

neglected. This then gives feor V
ar N =1 'a]
V = W Luql, - bzfl)

The constants C, and C, can be determined from the

boundary conditions (a) of #r%., 3.1 at the edges
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} at y =

which gives for C; and C, the expressions:
£.0/a/8)
£2¢/a/8 )+ £2 {(/a/8 )
fa{\/2/8 )
2
f‘i {V2/8 ) + £ (/a/8")

% (U - Fr tanx)

C, = Fr tanx

Cg = Fr tamx

From Eqs. (2.23) the expressions for the forces,
moments, and displacements can easily be found. If¢@ is

neglected, these expressions are

Qp = F sincc (Af; + Bf,)

Ny = F secoc]zl. - sin% {Af, + sz)]
Ng = “\/é_f..l_%?f.l_ & (ar] + Br)) F (3.13)

- %‘, {ar; - Bf})

=
--
I

M, =g = - LB (ar} - Br)

J

A = i) [cosoé * 6(1-?3_1 oh_ (sinhb’- sinl)] (3.141

Et bt2 "coshy 4+ cosy

where

¥ =/2 = ,5\73?1?»;53" = :/3(1-\)“) ca (a)

and
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ylcoshy - TJ{I-cosy] ., g - VIcoshy #1jl{cosy + 1)
coshY + cosy ’ coshy + cosy

A=
fe)

The expressions for the displacements v and w will
be needed in the next article. They can be obtained very
simply by substituting the above expressions for Nqi and Np
in Eqs. {e) and {f) of Art. 2.2. These expressions, for
small values of @, are

By
{3.15)

w -—-2-%31’2%%;9 (ar! + Br!)

The constant of integration appearing in (e) was taken to
be zero so that the displacement v would be zero at y = 0.

The stress factors K¢ and Kg¢ and the modular ratio
N can readily be calculated from Eqs. (3.13) and (3.1lL).
Calculations show that for values of ,8 ranging from O to 5,
the absolute maximum values of Ny, M¢, and MG occecur at the
crests of the corrugations, that is, at the edges AB and
CD, Hence, in calculating expressions for K¢ and Kz , the
stresées should be zalculated at these edges, i.e. at

y== % The expressions for K¢, Kg, and N are

h sinhy + siny
p =1+ %5 coshy + coSy {3.16)

Ky = .1.1.!:\/3(1-1?’) {sinhY- sin¥) + 3yY(sinh¥+ siny) (3.17)
b Y (coshy + cosy) e

i
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_— 6£1-Y%) ch® /sinhy - sinY
N = cos(+ —=3 2% |Goshy # cosy (3.18)

These expressions were calculated for various values of )
ranging from O to 6.5 with V¥ = 0.3, When the results of
these calculations were plotted it was found that the
curves coincided almost exactly with the corresponding
curves shown in Figs, A.1 to A.3. It should be noted that

Y is related to the pipe characteristic;E by expression
(d).

3.3. Corrugated Pipe Under Pure Bending. The stress dis-

tribution in a corrugated pipe bent by couples acting at
its ends is not symmetrical about the pipe axis as was the
case for an axial load. The circumferential displacement
u; the lateral shear forces N¢@ =N§¢,the torsional moments
M¢e = - Mg#, and the radial shear force Qg will no longer
be zero. Hence, the equilibrium equations {(2.1) and the
stress-displacement relationships given by Eqs. {2.2) must
be used instead of the Egs. {2.l) and (2.5].

. When esxpressions {2.2) uzres substituted into Egs.
{2.1), a system of five simultaneous partial differential
equations results,; two of which are of the third order.
The solution of this system of equations can be obtained,
if at all, with only the greasest of difficulty. However,
it is possible %o obtain the soluition for the case of

V-shaped corrugations by making use of the solution {3.13}



obtained in the previous article for an axially loaded

pipe.

Before deing this, it is heipful to rewrite Egs.,

{2.1) and {2.2) for the special case of a conical shell

such as ABCD of Fig. 3.1fa). Witk the notation of Art.

3.2, the equilibrium equations {2.1) beccme

% g% (Nyr ) - Npsinec + %;ff = 0

%5%7 (Njor, ) + Nog3inee + %%2 - Qgcosct = 0
%é%; C%I‘O) + Nycosel + %Eg = 0

%"’a% {M‘f’ro) = Mgainoe -2%%? - %ro = 0
%5% (Mgor ) = Mppsice + %- Qer, = O

7

A

?f.&,l?}

The stress-displacement relationships (2.2} for a

conical shell becoms

o Et [1dv, 1 pu, .. }
w5 e B v st - woom
T 5 4
Bk .30 . Y oS b
Ng = - ;ﬁ (= 4+ v sin = w cosx) + X Qv
1mv3 ) (42 ] yJ
N = N = Bt ;i-a f\ju, o a-.fl-m 151’,’ . aii—. S‘?'—ﬁm\i
be =Tep =TT (585 T B sl
1 3w, Y {1 dw 1 XPw 1 3u
Mg = - D Tl e | S LY 4 = == £= gns
" % 357 T T\ ro 368 | T, 38" ““)
1 ;13w _. 1 2%y 1 2du Y P |
Mg = = D jo= (= &= 3ine + === St © == %2 cosx) + 2
PO c oy PO B ro 26 Gg ay@
N - j |
M - - D"I = D{?-\}) ;; a ( l éji 4 mgan ﬂogm\i
be o = DU-VIT 55 (5 S5+ 7 o=

{3.20



A pipe with cou.ples'ﬁrzFl acting at its ends is shown
in Fig. 3.3. Again here it is necessary to consider only
the element ABCD. The boundary conditions at the edges are
the same as those for a corrugated pipe under an axial
load, namely, that the rotation of the tangent to the merid-
ian at the edges must be zero and that there can be no com=
ponent of force parallel to the edges.

From equilibrium, the resultant of the forces
parallei to the pipe axis must be equal to the applied
coupleTTrzF;, An assumption as to the distribution of
these forces must be made in order to find their values,

In a plain pipe;, these forces vary linearly across any
cross section., It seems reasonable to assume that the

same 1s true for a corrugated pipe too. Under this assump-
tion, the longitudinal force at any point is equal to
F,8ine, where © is ths angle measured in the anti-clockwise
direction from the neutral axis of the pipe. The corre-
sponding force for a pipe under akial load of 2Z27rF is con-
stant and sgval to F., This suggests that the forces Qps
Nos and No, the moments M¢ and My, and the displacements v
and w for the case of bending can bs taken to be given also
by Eqs. €3.13) and {3.15}, if F is taken to be sgual to
F.sin@. If this is assumed, *hen the expression four the
above stresses and displacements for the case of bending

are



Fi%’ 393-

Bending of a Corrugated Pipe

) (c)
c
_ T
_______ = _ -7
- i
\ !
\ !
\ I
\ ]
\ /
\ Al
\
\
\ I (d)
\ r I rsines
éﬂK {
\\\ . \L@"A
\*,\ \\\ i 2
\ \\ f ,
e b
~ ] .



56

Qg = sinx (Af, + Bf;) F,sin®©

=1
.
il

secoc[l - sin¥k (AT, + sz)} F, sin®

Ng = - _\/3(1;33) B (ar] + Br}) F, sine {S (3.21)

Mp = - 5 (Af, - Bf}) F, sin@
Mg = - 33 (Af] - Bf]) F, sin®

b
v = P, sine
® )7 (3.22)

- 3{1-¥2) c®n

(Afl + Bfl) F, sine |
r? Et®

where all the quantities appearing on the right hand side
of these equations are defined in Art. 3.3.

In addition to these stresses and displacements,
there would also be lateral shear forces, Ngg = Ngg, tor-
sional moments Mgg = - Mpg, radial shear force Qg and the
circumferential displacement u. We shall first attempt to
obtain the torsional moments. For thlis purpose, the dis-
placement 1 will be assumed to be small relative to the
partiél derivative of the displilacement w with respect to
8. It will be shown Later that this assumption is actually
corréct. Then by substituting the expression for w given

above into the last of Egs. {3.20), we obtain

%e = - M9¢= —(-;;ﬁ-\-)-)— %% [-1%-— (Af; + Bfgz)] Fl cosg (3)
o



From Eq. (3.10)

2 -2 M- 52 {0}

The radius T of the parallel circle 1s

ro=7r (1 +p7)

When ¢ is small,

rox T {c)

Using (b) and (c) in (a) and noting that the funec-
tions f; and f; and their derivatives are given by Eg.

{3,12), we get

Mg = - Nog = (l?’) %lél,}l_ (Af, - Bf,) F, cose

Using expression {d) of the previous article for § , we

finally obtain the expression

Mpo = - Nog = (I-y)t taneC rpe . pr ) 7, coso (d)

2 /301-y%)

The expression for Q4 can be found by substituting
expressions for M, and Mgg given by Egs. (3.21) and {d) in
the last of the equilibrium ecuations (3.19). In the lat-
ter equation, the term Mygsinx is small in comparison with
the other terms for small values of ¢, and can thus be

neglected. Also, rS is approximately equal to r, This

gives the expression
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Qe = .9:__\)}_5_._ 1 Zano(a 3’%’% (Af) - Bf;) P, cos®
2/3(1=-y%)

for Qg. Simplifying this gives

=3y

Qg = 'l—é"— ; (AT, - Bf,) P, cose

e

The maximum value of this expression is found to be
00551”3V)€'F1 cose, which is small snough to be neglected,
so that

Qe

i

0 {e}

The expression for the lateral shear forces,
N¢5‘= Ne¢ can be obtained in a similar manner by substi-
tuting the known expressions for Ny and Qg In the second
of the squilibrium Eqs. {3.19). This expression, for

amall values of Q, is
E¢e = Ng¢ = tanx (Af, + Bf_) F, coso ()

Grouping expressions (d), (e), and {f), we have

~

Ngo = Nog = tanx (Af, + Bf,) F, cosé

Mpo = - Hep = (L-p)t tamo rr  _ 3r ) B, cos 9% £3.23)
2 /3(1=-V7)}

Qg =0

~

The displacement u can now be cbtained from the
third of the stress-displacement relationships (3.20), by
using the expression for v as giv:n by Eg. £3.22) and the

above sxpression for N¢9, This gives
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~ Bt X Ju, oY -2
tanot (Af, + Bf) F. cose~m(c BYL* Tt T Facos e ¥ce)

The last two terms sre small in comparison with the

first, and can therefore be neglected, giving for u the

expression
= - 2(1+Y) ch ot gt .
u = T By (Af, Bf) F, coso (3.24)

The ratio of u toj%% is found to be
-

2(1+y)  (Af - Bf))

t
u - | k <
2vhe V3(1-v%)  (Af + Bf)) j T

The ratio t/r is generally very small, so that the assump-

tion made earlier that u is small relative t0<%g is eor-
rect. It can be checked that the solution represented by
Bgs. (3.21) through (3.24) satisfies both the equilibrium
equations (3.19) as well as the stress-~displacements
relationships (3.20) for small values of ¢. This is thus
the correct solution for the pure bending of a pipe with
V-shaped corrugations as long as the ratio ¢ 1s small.

~ Calculations show that the unit shear stresses due
to the torsional moments and lateral shear forces glven by
Egs. (3.23) are small relative to the direct stresses caused
by the bending moments and direct forces. Hence only the
latter need be considered in calculating the maximum
stresses in the pipe.

The meridional stress,é& s 1is
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N 6M
6'¢ :—iv{- .___.?
t 2
The stress in a plain pipe due to a moment of‘?[raFl is

Fl
G = :E- sine

For any given angle &, 6p 1s maximum {or minimum) at the

crest of the corrugations, and its absolute value is given

by

- Flcoso(sin9+ 3h

s sinhy + sinY
l ¢|max t th

coshy + cosY

Flsine

Defining the meridional stress factor K¢,as the ratio of

164,{ nax £0 6 we find that

3h sinhY + sinY
Yt coshy + cosY

K¢ = cosoL *

For reasons glven in Art. 3.2, the term cosX can be re-

placed by unity so that

- 3h sinhY + siny
K¢ 1+ t coshy + cosY

This expression 1s exactly the same as the expression given
by (3.16)} fn» a pipe under an axial load. Similarly, it
can behshown that the clrcumferentlal stress factor Kg for
the case of bending is the same as that for axial load as
given by (3.17).

It can also be shown *hat the "reduced" modulus of
elasticity to be used for calcuiating the bending deflec-

tions of the pipe is the same as that used in calculating



71

the axlal deflections. To show this we need to calculate
the relative deflection /A between the edges AB and CD [see
Fig. 3.3(d)]. From the figure it is seen that

%A= [v cosx+ w sinx]

y=1/2

The angle of rotation Ady between the edges AB and CD 1s

A
AdyY = = = 2 [y cos® + w sinw]
YT T sine [ y=1/2

i

2
booseF, . 6(1-y?) Ch'F,y (Sinhy - siny

Etr Y3 Et3p coshy + cosf)

The corresponding angle of rotation for a plain pipe is

_ Flb
Adyb - Etr

The bending deflections are proportional to these rotatioms,
g0 that if N i3 defined as the ratio of the bending deflec-
tion for a corrugated pipe to the corresponding deflection

for a plain pipe of the same major dimensions; we have

N = cosx +

6(1-Y%) ch® csinh!= sinY)

¥3 bt? cosh¥ + cosy
which is also seen %0 be the same as that given by (3.18).
N can as well be thought of as the modular ratio, i.e. the
ratio between the actual modulus of elasticity of the pipe
material and the "reduced" mceulus. The bending deflections
of a corrugated pipe can then be =asily computed by consgid-
ering the pipe to be plain but having this reduced modulus

ag 1ts modulus of elasticity.



It has been shown above that the stress factors K4
and Ky and the modular ratio N for a pipe with V-shaped
corrugations are the same for bending as for axial compres-
sion (or extension) of the pipe. There is no simple way of
showing that this is so for pipes with cusped and undulat-
ing circular corrugations. I% will be assumed that this is
true also for these types of corrugations since the only
difference between these and V-shaped corrugations is that

of geometry.

3.4. Corrugated Pipe Under Bending Moment and Transverse

Shear Forces. We have seen that a corrugated pipe under a

bending moment or an axial force is more flexible than a
plain pipe. This is sc because the longitudinal forces due
to an axial force and moment ares perpendicular to the cross
sections of the pipe and thus create bending of the corruga-
tions. However, transverse shear forces being in the plane
of the cross sections do not create such bending of the
corrugations;, so that ong would expect that the effect of
transverse shear forces 1s smail for corrugated pipes. It
can be shown that this is actually so,

For this purpose we shall investigate the effect of
shear forces on a pipe with V-shaped corrugations, although
the discussion is equally applicable to pipes with cusped
and alternating circular corrugaticns. One of the conical

shells forming the pipe is shown in Fig. 3.4. The length
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b of this shell can be assumed to be small enough so that
it can be considered to be an elemental length. Transverse
shear forces S are shown acting on the edges AB and CD.

The bending moment on the edge AB is M and this, due to the
shear forces S, increases to M + dM on CD. From equilib-

rium, we have

dM = bS8 (a)

We shall obtain the distribution of the shearing

stresses over the pipe cross section by a method similar to
that used for ordinary beams. It was shown in the previous
article that the longitudinal forces vary linearly over any
cross section as shown in Fig. 3.4. On the edge AB, they
are given by

F =%§%§3 (b)

o

while on the edge CD we have

4 dF = (M + dM)sine© (c)
C h gl S
‘{T{rc‘&dd. o )

F

Consider thz 2quilibrium ¢f the element mAngCp. On
the side mAn the total Turce acting irn the direction of the

pipe axis is
M-
/ Frode
&
which, by making use of {b), bscomas



Fig. 3.l.

Fig. 3.5. Corrugated Pipe Tested by Cope and Wert

L

Shear Forces and Bending Moments on an Element of Pipe
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2Mc;se (a)
nr,

Similarly, the total force acting on the side pCq in the

direction of the pipe axis is

2{M+dM)coso
T (v _+dr_] (e)

On each of the two planes mp and ng, the force due to unit

shearing stresses {| is

/CLtC
The component of this force in the direction of the pipe
axis is

Qte cosx. = Gtb

Then the total force in the direction of the pipe axis due

to the unit shearing stresses Q&on planes mp and nq 1is

24D (r)
The forces given in (d), {e}, and (f) must be in equilib-

rium:

2{M#aM)cose _ 2M cose
T{r *dr ) mr,

2t =

If the depth h of the corrugation i1s smell relative to the

fadius of the pipe; then

r +dr =~ r_ =
o C~ o«.»x‘

80 that the unit longitudinal shear stress is
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dMcos s
T rbt

T =

Substituting expression {a) for dM and noting that the
shear stresses on any two perpendicular planes are equal,
we have for the unit shear stress T on the cross section

the expression

Scosd
7N o o=
L "ﬂ'rt (3025)

It is seen that this is the same expression as that for a
plain pipe.

It can be shown quite simply that the distribution
of the shear stresses as given by expression (3.25) makes
the internal strain energy of shear a minimum. To show
this, let us assume that ths distribution 1s given by the

Fourier cosins series

,\._. s E oy -
C—nrt [alcose‘%« agz08 36+ ... * 32n+1008(2n+1)9+ ]

(g)

where 8,, 25, ... are zraitrary coefficients. Only odd

terms are considered, sincs, bscause of symmetry, T= 0 at

(532

O= 4% T/2, The series {g) can be made to represent any
distribution by appropriatsly choosing the values of the
coefficients.

By statics, the resultant of the shear stresses T

must equal the external shear forces S



2n
Trtde cose = 8

=0

Using for T the expression (g) and noting that

2
j' cos{2n+l)ecossde is zero for n¥ 0, we find that a, = 1,
)

Then (g) becomes

T= ﬁ%? [cose + a_cos 30 + ... + a2n+1008€2n*l)9] (h)

The strain energy of shesar stored in the element ABCD is

27

z rtde-c (1)

dWB = 5

rolr-

8=0
whers G is the modulus of elasticity in shear, and Tis
given by fh). For this strain energy to be a minimum, the
partial derivative of {1} with respect to the coefficients

8504l {n=1,2, ...) must be zero:

g ’ . S%secxdx
08, .1 des) =0 = =350 241 {n=1,2, ...)

This can only be satistied if 20041 is zeroc. Then the dis-

tribution of the shsar siress as given by (h) reduces to
the expression given by £3.25}.

In a gimilar way it can be shown that the distribu-
tion of the longitudinal forces F as given by (b) makes the
strain energy of bending a minimum. The total strain

snergy, which is thse sum of the two, is then also a minlmum,
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will be called the shear modular ratio and will be denoted

by the symbol N':

N' = (3.26)

olo

A similar analysis shows that the shear modular
ratios for pipes with cusped and undulating circular corru-
gations are also given by Eq. (3.26). The dimensions b and
and ¢ for these two cases are defined in Fig. 3.1{b) and
{c).

It was shown in the previous article that the de-
flection of a corrugated pipe is N times that for a plain
pipe. -"Thus, the total deflection of a corrugated pipe,
sub jected to both bending moment and transverse shear

forces, 1is

§ =x5, @+ %— ‘gg%‘i ) (3.27)
0

Where<fbo and 5;0 are the bending and shearing components
of the deflection of a plain pipe.
Thg second term in the parentheses represents the

effect of deflection due to shear compared with that due %o
bending moment. The ratio N'/N is unity for a plain pipe
and less than one for a corrugated pipe. It is thus seen
that the effect of a shearing component of the deflection
on the total deflection is always less for corrugated pipes

than for plain pipes, if both are of the same major
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dimensions and aré loaded identically. It is known that
the deflection due to shearing deformation for plain pipes
is only a small percentage of the total deflection, if the
length of the pipe is large in comparison with its radius.
Hence, 1t can be stated that in calculating the deflection
of corrugated pipes, the effect of shearing deformation

can be neglected whenever 1t can be done for plain pipes.

3.5. Verification of Theoretical Results with Experimental

Resulta. Only a few tests on corrugated pipes have been
reported in the literature, and these have only attempted
to find the modular ratio N. Donnell3 has tested a corru=-
gated pipe under both an axial load and-under pure moment.
In his paper, Donnell does not specifically mention the
shape of the corrugations, According to Hetenyiu, the
pipe had undulabting circular corrugations. The dimensions
of the pipe were r = 5.33 in.3 t = 0,065 in.é b= 1.34 in.g
h =0,470 in.; ¢ = 1.47 in. The modular ratio N was found
to be 19.9 for axial load and 20.7 for the pipe under pure
bending. ' The theoretical valus of N for this pipe can be
found by the use of Egq., {3.3) and Pig. A.9. The values of
the angle ¢ and the pipe characterisiic 8 as obtained from
the dimensions of the pipe are 0.337 radians and 2.38,

respectively, for which the valius of n for this case is

?L, H. Donnell, loc. cited, p. 5i.
QMO Hetenyi, "Beams on Elastic Foundation,™ p. 176.
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found from Fig. A.9 to be 0.341. Eq. (3.3) then gives the
value of 20.5 for the modular ratio N, This is seen to be
in very good agreement with the experimental results. The
experimental results also show that the value of the modu-
lar ratio for the corrugated pipe under bending is, within
experimental limitations, the same as that for an axial
load, as was assumed in Art. 3.L.

Cope and Wért5 have tested the corrugated pipe
shown in Fig. 3.5. In addition to testing this pipe under
an axial load and under a pure moment, they also tested it
as a cantilever loaded by a concentrated force applied at
the free end. The modular ratios N for these three types
of loading were found to be 6.5, 5.1, and 5.2, respec-
tively.6 However, in obtaining these values, Cope and Wert
compared the corrugated pipe with the plain pipe from
which 1t was made. This plain pipe had a wall thickness
of 0.5 in. and a mean radius of 6.75 in., whereas these
were actually 0.59 in. and 7.44 in., respectively, for the
corrugated pive (see Fig. 3,5). If the corrugated pipe is
compared with a plain pipe of thickness 0.59 in. and
radius of 7.4); in., then the values ¢f N for the three
types of loading mentioned above are 8.4, 7.3, and 7.l,

respectively.

5 E. T. Cope and E. A, Wert, "Load-Deflection Relations for
Large Plain, Corrugated and Creased Pipe Bends," Trans.
Am.Soc.Mech,.Eng., FSP-5l-12-115, 1932,

The result for the case of axial load was obtained from
the Discussion of Donnell's paper (loc.cit., p. 5L).

/
@)
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The corrugations of this pipe can be approximated
as cusped circular corrugations, The dimensions of the
corrugations are r = 7.4l in.; t = 0.59 in.; b = 2.15 in.;
h = 1.41 in. PFrom these dimensions it is found that ¢ =
2.73 in., © = 0.579 radiens; and 8 = 1.16. The value of
n given by Fig. A.6 is 0.84, which when substituted in
Eq. (3.3) gives a value of 6.9 for the modular ratio. The
discrepancy between theoretical and experimental results
for this pipe is due perhaps to the fact that the thick-
ness of the pipe is not small compared to the radius of
curvature of the corrugations as assumed in the theoretical
consideration. The radius of curvature r; is

— b —
3 7 §indc 2.36

r

which gives for the ratio t/rl the value of 0.25. This is

seen to be fairly large.
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CHAPTER 44
CORRUGATED SHELLS

h.l. Introduction. OCorrugated shells’ which are straight
in the axial direction will be considered in this chapter;
the effect of curvature will be taken up in the following
chapter. The behaviour of shells such as the one shown in
Fig. 4.1 under snow and dead loads is very similar to that
of long barrel shells., It is known that the longitudinal
pehavieur of long barrel shells is almost identical with the
behaviour of beams with curved cross section;, so that the
longitudinal stresses can be determined under the assump-
tion of a straight-line distribution of stress. The
transverse stresses can then be obtained by considering
the equilibrium of an element between two cross sections
an elemental length apart. This method of obtaining
streases in a barrel shell is sometimes known as the "beam
method."™ It can be shown that the stresses obtained by

the "beam method" are suffiziently accurate if the

* For the first time we encounter a structural member
which has corrugations in two dirsciions., The shell
shown in Fig. 4.l has major corrugations in the longi-
tudinal direction; in addition to these corrugations,
there are secondary transverse corrugations as shown in
Pig. L4.1{a), which are similar to the corrugations in
pipes considered in the pr27icus chapter. In our fur-
ther discussion the term corrugations will refer to the
Secondary transverse corrugati-ns; in case of ambiguity,

the main corrugations will be i =2Terred to as the major
corrugations.

2 g, Lundgren, ™Cylindrical Shells,® Vol., I,
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transverse stresses are small relative to the longitudinal
stresses,3 This is generally so for long barrel shells

The major corrugations shown in Fig, L .1{b) will be
assumed to extend over a considerable length in the z=direc-
tion. The complete structure is somewhat like a multiple
barrel shell. With identical loads on all shells, each
shell behaves in like manner, so that only one barrel need
be investigated., The condition of continuity in the
transversal direction 1s fulfilled by preventing the longi-
tudinal edges A from moving horizontally and rotating.
These restraints at the edges make the distortion of the
cross section due to the transverse moments less than that
for a single shell. The results obtained by the ®beanm
method® are in error chiefly due to this type of distor-
tion. Hence, it can be said that the "beam method" gives
better results for a multiple barrel shell than for a
8ingle shell,

The corrugations in the shell further help to in-
crease the cransverse stiffness of the shell while at the
same timé decreasing the longitudinal stiffness. This dual
effect makes the transvsrse meoments gmaller and the longi-
tudinal stresses larger than those occurring in a plain

shell. So the "beam method® .hen applied to corrugabed

3 1pid4.
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shells will give results closer to the true values than
for plain shells.

The length of the shells shown in Fig. L.l will be
assumed to be very large in comparison with the radius r,
so that, for reasons mentioned above, it can be assumed
that the "beam method" gives satisfactory results.

The solutions for the corrugated shell under axial
tension and pure bending will first be obtained from the
corresponding solutions for a corrugated pipe. These solu-
tions will then be used to obtain the stresses and deflec-

tions for the shell under snow and dead loads.

l.2. Corrugated Shell Under Axial Tension. A& shell hav-
ing V-shaped corrugations is shown in Fig. L.1l. The cross

section ABCBA is seen to be composed of four 90° arcs each
of radius r. In the diagram the radii of the arcs AB and
BC are designated as r, and r, respectively, as it makes
it convenient to refer to these arcs; it should be kept
in mind that r; is actually equal to r. In general, the
gubgeript : will be used to refer o arc AB. The thickness
t will be assumed tc be constant throughout the shell, and
will be assumed to be small relative tc the radius r.
The dimensions of the corrugations will also be assumed
to be small in comparison witi r.

The shape of the cross section suggests that the

shell under en axial force of 2mrF behaves like a pipe cf
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radius r and having the same corrugations, so that the
stresses and displacement are given by Egs. {3.13) and
{3.14). However, when these equations are used, the
stresses Ng are found to be incompatible along the longi-
tudinal sections through B. To see this, let us examine
the behaviour of the shell in the vicinity of B, An en-
larged view of this portion of the shell is shown in Fig,
4.2. If the element HJMN is considered as part of a pipe,
then the circumferential stress Ng on the longitudinal
section through B is given by the third of Egs. (3.13),

i.e,
No = - -@Z 5513 [Af (M) + B, (M)] (a)
Wwhere
=Yy

By considering the element HJKL as part of another pipe,

Ny on the longitudinal section through B is

TSN
- v iia=Y") P, a1 ?
Nél = Y < Lﬁél(ql> + sz(ﬁh)] {b)
where
N, = Iy,

From Fig. L.2{b) it is seen that y, = = y, so that 1, = 1.
Using this relationship in (b, and noting that f} and r! as

given by (3.12) are odd functions 5L N, we have
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Fig. L4.2. Enlarged View of Cross Section of Shell
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N. = v 3(1-y %) Fh

o1 > = [ArL0)) + Brg())] (c)

Examination of Eqs. {a) and {c) shows that the cir-
cumferential stresses at any point on longitudinal section
through B as given by these equations, though of equal
magnitude, are of opposite signs. This cannot actually
occur, and so the circumferential stress along the entire
longitudinal section through B must be zero. The distribu-
tion of the circumferential stresses along a longitudinal
section through B, as given by either (a) or {c), is also
8tatically equivalent to zero. By Saint-Venant's princi-
ple, the stress distribution as given by Eq. {3.13) will
be sensibly changed only in the neighbourhood of the longi-
tudinal section through B; the stresses at a distance of h.
from this section wlll be changed by a few per cent only.
I the dspth of the corrugations h is small relative to the
radius » {or r,) then the displacement A for this shell is
also given by Eg. {2.1lt), as the disturbance is spread over
only a very asmall portion of %hns shell creoss section,
Henice, in the defleec%ion calculations the reduced modulus,
equal to E/N, should be used, where N is given by Eq.
{3.18).

The stresses along the -ongitudinal section tarough

B may be larger than those at a . stance from it, but i% is

difficult to determine their exact values, However, we
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shall mainly be concerned with the bending of the shell
shown in Pig. l1.1, for which, as will be shown in the fol-
lowing article, the solution is given exactly by Egs.
{3.21) and {3.23). When axial forces are present, as in
the case of the shell as a two-hinged arch {Chapter 6),
they are always accompanied by bending moments. As will be
shown in Chapter 6, the effect of the axial forces on the
stresses and deflections can nearly always be neglected

for the types of arches generally used. So in a practical
cage, 1t 18 not necessary to determine the stress distribu-
tion along the longitudinal section through B due to an

axial force.

1.3, Corrugated Shell Under Pure Bending Moment. When the

pipe solution as given by Egs. {3.21) and {3.23) is used
for the bending of the shell of Fig. L.l by couples‘n“rzFl
at its ends, it is found that there is complete compatibil-
ity along the longitudinal section through B. The only
stregses that ocour along thiszs section are the lateral
shear forces and torsional moments, the expressions for

>

which are given by Egs. {3.23). These are found to have
the same value for #), and hence it can be shown that they
are compatible along the lcnzitudinal section through B,
The displacement expressions (3.22) are also found to give

distortion of the cross section wixich is compatible along

this section.
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Thus for the case of bending of the corrugated
shell, the stresses and deflections can be obtained by con-
sidering it to be a pipe of radius r and thickness t, and

having the same corrugations.

L.i. Corrugated Shell Under Distributed Loading. It was

shown qualitatively in Article lj.1 that the longitudinal
behaviour of a corrugated shell can be approximated quite
well by considering it to be a beam of curved cross sec-
tion irf its length is large in comparison with the radius
r. From strain energy considerations it will be shown that
this is so.

Consider the shell of length { shown in Fig. l.3.
The shell is simply supported at its ends and is under =
snow load of qy, per unit area of horizontal projection.
By statics the external moment and shear at any cross sec-

tion is given by

M= .Z’.cl_I‘rl.’a -JE {1 - -’i) (4L.1)
g o 2 L zx\ IS
£ o= 2q.rk (1 - R {h.2)

In the previous article it was shown that the stress
distribution in a shell due to a moment ofT{rZFI is given
by Eqs. {3.21) and (3.23). So if

2qp, ¢°
Fa=—a—50-3 (4.3)

then the stress distribution due to the bending moment M
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is also given by Egs. (3.21) and (3.23). (When using these
equations for the shell, it should be remembered that €
should be replaced by @, for the arcs AB.)} This solution
was obtalned by assuming that plane sections remain plane,
which 1s the fundamental assumption of the beam method.

The stresses at the crests of the corrugations can
be obtained by multiplying the stress in a plane shell by
the stress factors K4 and Kg given by Eqs. (3.16) and

{3.17). The stress at any point in a plain shell is

- Zqu b'd

X
Cx = Frp 7 (L -7) sine

The maximum meridional and circumferential sitresses in a

corrugated shell at any given 6 are

ZqLQ?
6- = 2_( - _'};;.} 2
! ¢} Bp =1 (1 ) sine ? »
(L.L
- I _ QQZ‘f x x .
1°e§ = Ko Tt 1 (1 - z) sine

The "beam™ deflections of the shell are found to be
N times thos: for a plain shell, where N is given by FEaq.
(3.18)}. This can be taken into account by using for the
deflection computations a reduced modulus of elasticity
which is equal to § times the E of the material.

The unit shear stress . on a cross section due %o
the shear force S can be found b; %the method similar to

that used for a pipe {Article 3.L). The expression for 7

L

cund to be

&

s
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2aqy L
o= ‘Scose= 3

(1- %%) cose {4.5)

As in the case of pipes, the reduced modulus of shear G’
must be used in calculating the deflection due to shearing
deformation., This is given by

¢! =

olo

G (4.6)

where b and ¢ are the width and length of a corrugation as
defined in Fig. l;.2(b). When the %/r ratio is large, the
effect of shear on the total deflection is so small that it
can safely be neglected.

The transverse stresses can be obtained by consid-
ering an element between two cross sections an elemental
length dx apart. The load acting on such an element is
equal to Zqudx, and this is balanced by the difference in
the shear forces acting on the two faces of the element,
The transverse moments and axial forces per unit length
can be obtained by a method similar to that used for a
multiple barrel shell.h The expressions for these are

given by

4 H. Lundgren. loc.cited, p. 83,
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- el 8 2 _2 _ 2 €
Mt = qpr (E - - % = sine + cose TTecose cos 2)
(L.7)
map? (.8 .2 28 008 O - cos® 91
Mtl = qrr; (H«- = "7 sin@, - 3 coseﬁﬂ 1C08 O = cos” F

— 2 s _ 2 2
N, = qrr (W sin® - cose + £ @ cose + cos S )

(ly.8)

’ﬁ-ltl = qpr (-1--2T sine; - 3 coss + —1‘-21-91008 ;- coszel)

The boundary conditions used to obtain these expressions
ware that the longitudinal edges at A are prevented from
moving horizontally and rotating because of the restraint
provided by the adjacent shells. The moments are consid-
ered positive when causing compression on the outside
fivre {see Pig. L.3), and the axial force is positive when
tensile,

The absolute maximum value of the transverse moment

and at@, = 2, where 1t is

18 found to occur at 9= s

ol={

' i -1 8 2
M, | =l | = -2+ E) =0.07605 qr®  (4.9)
i T e £ Loy L
The transverse ITorces have an absolute value of
— ! — 2 —— A
’Nt' = th?‘i; = T} qpr = 0.56366 qpr {LL.10)

mazx

A comparison of Egs. (4.7} and {l;.8) with the streszszes due
to the bending moment M as given by Eq. L.l shows that the
transverse moments are small relst*ive to these stresses if

L

the ratioc ; is falrly large. This then makes the beam
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method valid for the shell of Fig. L.3 subjected to a snow
load.

The unit stresses due to the transverse moments and
thrusts can be found by using the sectional properties of

the corrugation given in Fig. L., The maximum stress is

given by
[P <}
r b r b t
= gy = [0.6366 = + 0.4563 =+ ] (L.11)
IGf'max L t [ c t eg)a . ch?®
b ot?

Let us consider a particular case of a shell whose
dimensions are as follows: Q = 120", » = 4™, t = 0.05".
The corrugations of this shell will be assumed to be
V-shaped with b = 0.500, h = 0,100, and ¢ = 0.510. With
these values, the maximum transverse stress is found from
Eq. {It.11) to be

6% | = 1,767 q (a)
m

ax

For the dimensions given above, the value of the
characteristic ﬁ is 1.13 for which the stress factors given

by either Eqs. {3.16) and (3.17) or by the curves of Figs.

A.1l and A,2 ars
K¢:= 6.30 and Kg = 2,56

The maximum meridional and circumferential stresses at mid

span are, from Egs. (L.lL),
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Gp= 72,200 q; and G = 29,400 qp {v)

These are seen to be much larger than the transverse
stresses 6't given by (a). In a practical case the % ratio
will be much larger than the one used in the above exam-
ple, so that one would not need to consider the transverse

moments Mt'

Dead Load: The stresses and deflections of the shell under
the influence of 1ts own weight can be found by the same
method used for the case of snow load. However, because
of the distribution of the load, there are no transverse

moments; the transverse forces are found to be

No = aprsine
(L.12)

a1
whers 4 1s the welight per unit area of the shell.

N = qusine2

it is svident that the stress due to these forces
will be wvery small in comparison with the longitudinal
stresses, sc snat for this cass the beam method will give

7very good results.

I,

art

. Shells with Circular Corrugations. In the preceding
icles the shells were cow.=!dered to have V-shaped corru-
gations., However, the discussion is equally applicable to

the cusped and undulating circular corrugations. The
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stress factors and modular ratios needed to obtain the
stresses and deflections of shells having these types of
corrugations can be found from the curves of Figs., 4.4
through A.9 of Appendix A, The sectional properties of
these corrugations, which are needed to obtain the trans-

verse stresses, are given in Fig. L.lL.
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CHAPTER 5
BENDING OF CURVED SHELLS

5.1. Introduction. It is well known that a curved tube

with a comparatively thin wall i1s much more flexible during
bending than a straight tube of the same cross section due
to distortion of the cross section to an ellipse-like
shape.l A similar phenomenon would also occur in the
curved shell of Fig. 5.1.

Consider an element hetween two adjacent cross sec-
tions of the shell which is bent by couples in the direc-
tion indicated. Due to the curvature of the shell both
the compressive forces at the convex side and the tensile
forces at the concave side have resultants away from the
neutral axis, so that the originally circular cross sec-
tions distort to a shape shown approximately by the dotted
line in Fig, 5.1{b). This distortion of the cross section
affects the strain of the longitudinal fibres of the shell.
Let R be the radius of the centre line of the undeformed
sheil, di the angle between the Two cross sections, ds the
length of the outermcst fibre, and r the radius of the cir-

cular arcs forming the cross section. Let R +AR, dy —A,dy,

1 This phenomenon for a pipe of circular section was first

explained by Th. v. Karman, V,D.I., Vol. 55, 1911, p.
1189. This problem was later investigated by others,
among whom is L. Beskin, Trans. A.S.M.E., Vol. 67, 1945,
P. A-1., The case of a tube with rectangular cross sec-
tion was considered by S. Timoshenko, Trans. A.S.M.E.,
Vol. 45, 1923, p. 135,
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ds - Ads, and r + Ar be the corresponding quantities for
the deformed shell. The length of the fibre AB is

ds = {R + r) Q}
After deformation 1ts length becomes

ds = Ads = [(R + AR) +{r+ Ar)] (dy-ady)

The compressive strain Ads/ds in the cutermost fibre is

then

Ads _ Ady AR + Ar re)
ds " dy T R+r a

3ince the centre line remains unchanged in length we have

the relation
(R +AR)(dy - Ady) = Rdy
Neglecting products of small quantities, we have

é-é%:éﬁ
dy 21

Using this relation in (a) then gives

sne
=

Ads
S

AR Ar
3 & - =)

{b)

r
R+ r

a3 the expresasinn for the compr=zzaive strain in the outer-
most fibre, The crdinary thsory for bending of curved
bars assumes that the share of the crosa secition remsins
unchanged, so that the corrsesponding expression for the
strain given by this theory is

Ads _ _r AR {c)
as R+r R Le



Comparison of expressions {b) and {c) shows that
the effect of the distortion of the cross sections reduces
the strain in the outermost fibres; the effect is appreci-
able as soon as the ratio Ar/r is of the same magnitude as
Aa/a. A change in the direction of the bending moment
causes a change of sign of the longitudinal forces, and as
a result the cross section distorts to a shape indicated by
the dotted line in Fig. 5.3(b). From the same reasoning
as above 1t may be shown that here again the distortion of
tne cross section reduces t he strain in the most remote
fibres, Consequently, a smaller bending moment 1s required
to produce a given change of curvature in the curved shell,
Defining the rigidity of the shell as the ratio of bending
moment to change of curvature it follows that the distor-
tion of the cross sections reduces the riglidity of the
shell,

Detailed analysis shows that the initial curvature
of the centre line of the shell not only increases the
flexibi;;ty but has other effects as well. Marked devia-
tions may occur Irom the linear distribution of stresses
over the cross section which holds for a shell with
straight axis, and secondary wall bending stresses arise
which may be as large or larger than the primary fibre

stresses parallel to the centre line.



In the following article the case of bending of the
curved shell without longitudinal corrugations is solved
by the principle of least work. Use is made of an infinite
trigonometric series which converges very rapidly and
gives an exact solution of the problem. This analysis is
theoretically valid only in the case when the ratio of the
radius of curvature of the centre line of the shell to the
radius r of the cross section is large, so that the neu-
tral axis can be taken as bassing through the centroid of
the cross section., This assumption means the same for the
present problem as disregarding the difference between
hyperbolic and linear bending stress distributions means
for solid beams with curved axis. The analysis applies
only to shells of uniform thickness, with a constant
radius r and a constant curvature of the centre line. The
method presented is similar to the method used by Beskin
for obtaining the solution of curved thin pipes.2

The solution obtained for the plain shell can, as
shown in Ar:t. 5.3, be used, after a slight modification,
for a cu&ved shell corrugated in the transverse direc-
tion.3 It is found that the distortion is less for this
case than for a plain shell. This is to be expected since

the secondary corrugations i:cip to increase the transverse

stiffness of the shell.

2 L. Beskin, loc, cit. p. 100.
2
-~ See footnote 1 on p. 83.
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In a general case of loading there will be axial and
shear forces on a cross section in addition to a bending
moment. This occurs, for example, when the shell acts as
a two-hinged arch and is subjected to a snow load. In
such cases it willl be assumed that the stresses due to
these forces will be distributed in the same manner as in
a straight shell. This 1s permissible since the stresses
produced by these forces are small in comparison with
those produced by the bending moment for arches whose
span length is large relative to the cross sectional dimen-

sions as is usually the case. ({See Arts. 6.2 and 6.3.)

5.2, Pure Bending of Curved Shell. Let us examine the

forces acting on an element MNPQ of the shell (Fig. 5.1).
The total force acting on each of the two faces MN and PQ
is Frde, where F is the longitudinal force per unit length.
These forces act in a plane parallel to the neutral sur-
face of the shell., The resultant of these forces is di-
rected away and aormal 5o the neutral surface, and has a

magnitude of
Resultant = Frdedy (a)
The arc length MP of the element 1is

o~

MP = (R + rsing)dy = R(1 + & sing)dy

af

The arc length ﬁ? is approximately equal to Rdy if R>r.
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Taking the arc length P equal to unity the resultant force

given by €a) can be written as E%Qg . The resultant force

per unit area of the shell is then

b0l

b = (5.1)

The distortion of the cross section is due to these
p-forces, as stated in the previous article.

Fig. 5.2 shows the forces and moments acting on the
element MNPQ. The horizontal force is denoted by H, the
vertical force by P, and the moment by m. In addition to
these, there i1s the distributed vertical force p on the
element. The horizontal force H must be constant since no
horizontal forces are applied to the surface of the ele~
ment MNPQ.

The equilibrium of forces in the vertical direction

gives

dP + prde = 0 (v)

Using the sxpression {5.1) for p gives

v ( M
?=-§de9**§-“7:‘—§(31 (5.2)

in which the last term is a constant of integration.

Equllibrium with respect tc moments gives
dm + Hrcosede - Prsineds = 0 {c)

if products of small quantities are neglected. Upon
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subsitution of expression (5.2) in (c¢), it is found that

dm _ ré M
rr- Sl [ﬁrcoss + = sine:dee - 73 CJ (5.3)

The distortion of the cross section is shown by the
dotted line of Fig. 5.1{b). It is seen that the distor=-
tion is symmetrical sbout points A and C and anti-symmet-
rical about points B. Because of this only one gquadrant
AB need be considered. The vertical force P must be zero
at A, while the bending moment m must vanish at B, Fur-
thiermore, the relative horizontal displacement between the
points A and B must be zero. Thus, the boundary condi-
tions for the quadrant AB are:

V&
[P]a:ﬂ[/a =0 ; [mlg_g = 03 j m rsine%%z =0 {d)
o}

where © is the angle shown in Fig., 3.2 and I, is the

t
moment ¢f inertia of a transverse section of the shell

given by

I, =55 t° (5.1)

The last of the expressions {d} was obtained by the princi-

ple of virtual work considering only bending distortions.
By statics the axternal bending moment on the shell

must be equal to the moment of the longitudinal forces F.

If the moment on each shell s30BA is M, then

ﬂ/g
%1
-[ Frde-rsine = % {e)

Q
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It is convenient to Introduce the dimensionless

parameters

Y = R (5.5)

X M

we

_ 2T cF
= =22

and
c, = 2IERE (£)

Substitution of these relationships in Eq. {5.3) gives

ay

vl [Cocose + sine dee +C,] {5.6)

The first of the boundary conditions {d) when used

in {5.2) gives

M
d = cm—— (]
g =

Substituting the first of the relationships (5.5) in the

above equation gives
]
Xd =
U otz = O (5.7)

as one of the boundary conditions., Substitution of the
second of the rslationships (5.5) in the two remaining

boandary conditions (d) resulta in

EY]9= =0 {5.8)
1d
an 1/2
‘f Y sinede = 0 {5.9)
)

Similarly, the relationship between the external and in-

ternal moments given by {e) becomes
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/2

5 Xsinede = T/2 (5.10)
O

Let us assume that the function X 1s represented by

the Fourier sine series

X = 28ine + 6bzsin3e + 10 bgsinSe + ... (g)

in which the first coefficient 2 is defined by Eq. (5.10).

Only odd terms are considered since

dF _ dX _ _
‘d—s—'-?é'-O atQ—Tr/Z

in order to satizfy the condition of symmetry at A. The

series (g) can be written in the compact form
o0

2 (2n+l) b
n=

X

i

opsey Sinf2n+l)e (v, = 1) (5.11)

with the convention that b; = 1.
Substituting this into the boundary condition (5.7)
gives C; = 0. Setting C; = 0 in Eq. (5.6) and integrating

it leads to

{
i

{
Y = . Oysine - Js:"me [|Xde]l de + ¢

where C is another constant of integration. Carrying out
the integration by using for X its series representation

{5.11) and introducing the boundary condition {5,8) gives
Co

= sin®ne
Y Z = (ban_l + b2n+l) - Cosine (h)
n=
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The constant C; is found to be
o

n
n=1 Ln®-1

_ 8
Ca-ﬁ

- b

(oopa1 = Popsr!

by introducing the boundary condition (5.9) in (h) so that

we finally obtain for Y the expression

)
= - sin®ne _ 8n
Y ZE: (b2n“1 b2n+l)[ = = sine] (5.12)
— T(4n®-1)
The coefficients b,, bS «.. appearing in Egs. {5.11)
must be such as to make the total strain energy in the
shell a minimum. Considering only the distortion due to
the longltudinal forces F and the transverse bending
moments m, the expression for the strain energy per unit

length along the centre line is

= i T Ferde . 1 W2 mzrde_]
Ws~“2j Tﬁ‘*EJ’ T | (5.13)
() o
in which
a
}31 = 7??:‘\9’“2’”; (Salu’)

Upon using the expressions {5.5) the above expression for

the strain energy becomes

2 7?2 3 'We ?
aw_ = .....lﬁ_z_._.. S Y2de + = Y% do! (5.15)
2TPr2Et B2 J
o] 1 Ie)

in which the parameterpl is defined by



/Blz-i = = 1 Rt {5.16)

r® J1i2(1-v) «r°

The strain energy is a minimum if

a(dWS)
gr——gaﬂ=o (a = 1,2,3,00050,000)
Using these conditions in Eg. {(5.15) gives
Ve Ve >
XFE—LdQ'F—J’- Y%——Y—— de = 0
. 2a+l BZ 2a+l

(a=1,2,3,04.505...) {5.17)

Substituting expressions (5.5) into this and integrating it

glves N

% [
(b -B } lén - 1
Z 2n-1 ~2n+l [—nzumznl) (2a-1)(2a43) onala+l)

nzlgz’owo,a"lg
at2,a+*3,...

5» a+3 _ 16a }
a2 | 16a%(a*l)  TR(22-1)(4a®-1)(2a+3)

Los

2a%+2a+3 16 }

+b {@zizwwg +
2041 P 16a%(a+l)® TP(2a-1)3(2a+3)?

f a=2

i b

e b 16{a+l) 1 -
ca*3 | hafa+l)? (La®-1){2a+3)" |

€a=1529¢003n3eaa}g bl E 1

?(5.18}

The above expression will yield a set of infinite
linear simultaneous equations. “owever, an approximate

solution of the problem can ba obtained by retaining only
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a finite number of terms in Eq. (5.11). If only (n+l)
terms are retained in Eq. (5.11), then we shall have n
simultaneous equations involving the n unknown b's
(ba’bS”"’b2n+l)' The approximate solution so obtained
will be referred to as the approximation of the nth order.
The number of terms,(n+l), to be retained in Eq. (5.11)

in order to give a desired accuracy depends on the value
of the parameter/BJ_; as /9’1 decreases, the number of terms
to be retained increases, As will be shown later, the
solution obtained with n=1 gives a very good approximation
for values of /51 as small as 0.04.

Having obtained the coefficients ba’b5’°"’b2n+l’
the stresses and the change in curvature can easily be
computed. The unit longitudinal stress, 6%, is equal to
F/t. In terms of the parameter X defined by (5.5), the
absolute maximum value of this stress is

§ ‘)(q’imax = ]x‘max

M
2mr2t

The corresponding stress in a plain shell having a
straight axis is

M
ﬂrzt

]

so that -
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Similarly, the absolute value maximum transverse stress due

to the moment m is

) _ @ _ éaz
lselmax P — 17l nax
or
’6 l = Ef.‘fj hd = 6o nax 0.7
4 max Rt max /61 (l_va)

in which the parameter/?l is defined by (5.16). For7V= 0.3,

the above expression becomes
%]
6, = 6, |c—22E =6 K .20)
l Glmax D[lffﬁzzi o ‘Ot (5

To this the stress due to the direct force in the trans-
verse direction should be added. This is found to be so
small relative to the stress given by expression (5.20)
that 1t can safely be neglected.

Based on the fact that the internal strain energy is

equal to the work done by the external moment M, we have

. _ 1. Ad
d"s"zMﬁa')Z; (1)

in which Ady is the change 1ln angle betwsen two adjacent
cross sections a distance RdY apart along the centre line
[see Fig. 5.1(a)] and dW_ is the strain energy per unit
length along the centre line. Substituting (5.15) in this

gives
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\Nat

-~ M
dy ﬂratE

V/g

/

XRde + 12 ‘ 723 {3)
W/Ql J

E?

o

.

= I

o

The quantity'%%i represents the change in curvature of the
shell due to the moment M. The corresponding change in

curvature for a plain shell is

Adyl _ _m
Rdy o Trots
80 that

B - N{%%ﬂ (5.21)

0

where N1 represents the parentheses on the right hand side
of BEq. {j). TUpon substitution of expressions (5.5} into

these parentheses, it is found that

0 o0
T
_ 2 .2 1 2 - 2
v, = E (21)% 03,5 + g5 ) (20172041
ﬂ;_ n=
o8

n=0
foto)
o
1 iy - 1
*T /& Pok-1"Poke1) 2 P2n-1"Pone1)
k=1 n=k+1
tolfe
2
1S o, 17
B = J : ‘w 2 wznalben#l | (5“22)
o BRI J

The first two approximations to the factors Xg:.
Ko:; and N, were obtained as functions of the parameter

;Ba’ and are shown graphically in 4ippendix B, Comparison



of the two approximations shows that the first approxima-

tion gives very good results for values of‘ﬁl as small as

0.0, The curved shells used for roofs are of such dimen-
sions that the values of/ﬁl are generally larger than 0.1,
so that for our purposes, it is not necessary to calculate
apprpximation of an order higher than the second,

Upon comparison of the results shown in Appendix B
with the results for a curved pipe given in the paper by
Beskinu, it was found that for a given value of the param-
eﬁarjgl the value of N, was less for the shell than for a
pipe. For example, for/gl = 0.04, N, = 2.55 for the shell,
whereas for a pipe N, = 12,50. This difference can be ex-
plained by a consideration of the distortion of the cross
sectlions. It 1s known that the cross section of a curved
pipe distorts to an ellipse-like shape, as shown in Fig,
5.3€a); the distorted shape of the cross section of the
sheil is shown in Pig. 5.3{(b), It is seen that the points
B of the pipe lying on the neutral axis move towards the
centre 0, whereas the corresponding points of the shell
have no displacement due to the antisymmetry of the defor-
mations., Thus, the disvortion of sths cross sections of a
shell will be less than that of the cross sectisnz of a

pipe and this makes the she.l less flexible than the pipe.

% L. Beskin, loc.cit., p. 100.
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5.3. Pure Bending of Curved Corrugated Shell. The equa=-

tions relating the longitudinal forces F and the trans-
verse forces and moments in a corrugated shell will be the
same as those for a plain shell [Egs. (5.1) through (5.3)]
since these were derived solely by a zonsideration of
equilibrium. Thus, Egs. (5.11) and (5.12}) will also apply
for a corrugated shell., 1In order to satisfy compatibility,
the strain energy in the shell must be a minimum. The
straln energy per unit length due to the transverse moment

m is

=
ol

fT/ 2 /2

nrde| _ _ rM° J Y®de {a)
D 2
o 2 21FR*D, %

where Dz is the transverse flexural rigidity of the shell
and Y the parameter defined by {5.5). The strain energy

due to the longitudinal forces F is approximately

W2 T,
| !. 1 4 Nfzfdé,-‘:} _ __MPN /2 s
s =T T T X*de {b)
i J J 27 r Et
O o
where X 1s ti~ parameter defined by (5.5) and N is the

modular ratio given by Eg. (3.3). This expression for the
strain energy is strictly correct oniy when all of the
undetermined coefficients b in the Fourier seriss rspre-
sentation of X [Eq. (5.11)] are zero., It will be shown
later that the distortion of the cross section is negligi-

ble so that these coefficients are very small in comparison
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with the coefficient 2 of the first term in Eq. (5.11).
Hence, it is permissible to use {b) as the expression for
the strain energy due to the longitudinal forces. The

total strain energy per unit length i1s the sum of (a) and

(b): or
T/2 q/p
M2N 1 =
S 21r°r®Et j 2 (e)
o] 2 o

in which the parameter B, is defined by

D_N N
R 2
Pa = o2 T:" =/31 5. {5.23)

In order that the strain energy be a minimum, the partial
derivative of {c) with respect to each of the coefficients

bas b5’ «ee must be zero, or

{“/2 dX 1 2 dY
X de+ = J Y =0
Y 2a+1 B* 4 302041
3

(a=1,2,3, ¢o. O, ...) (d)

This system of equations 1s ths same as that represented
by {5.17) except that B, 1s replacad byﬂg, Thus, the
coefficients b for the corrugated shell can be determined
from Eqs., (5.18) irf /51 in these equations is replaced by
Ba-

It can be shown that the expression for N; as given

by Eq. {5.22) can also be used for a corrugated shell if



ﬁl is replaced by/Sz° In this case N, should be taken as
the ratio of the change in curvature for a curved corru-
gated shell to the change in curvature for a corresponding
corrugated shell with a straight axis.

The factor MD_N/D, appearing in {5.23) is always

greater than unity for a corrugated shell, so that 3, >/3,.
It can be deduced from the curves in Appendix B that the
distortion of the cross sascitions increases with decreasing
values of B,. Therefore it can be said that the distor-
s5ion of the cross sections is less in a curved corrugated
shsall than in a plain shell of the same major dimensions.
The depth h of the corrugations of the shells manu-
factured by the Wonder Building Corporation is greater
for a shell with a smalier radius of curwature R than that
with a larger R dus to the fabrication process involved in

the manufacture of these shells, Conzequently, the value

of J@Qﬁ?ﬁ?ﬂ increases #ith a decrease in R. This has
the eifsct of keeping the waiue of the parameter,Bg, as
defined by i3.23), large for :5us shells, As an exampls,
consider a plain curved shell having a cross ssection shown
in Fig. 5.1(b). If the radius r of the crcas section is

4 in., the thickness t is 0.05 in., and the radius of
curvature R is 180 in., then tze value of £, is found from
expression {5.16) to be 0,170, rc¢» which Ny = 1.2 {see

Pig, B.1). Even though this is an extreme czase, the
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flexibility is increased by only 24%. With the presence
of corrugations the factor N, is coﬁsiderably reduced.
Assuming V-shaped corrugations with h = 0,10 in., b = 0.50
ins, and ¢ = 0.51 in., it is found that for Y= 0.3.

D 2
5= @)%+ 2 (1) = 47T

bt®
2
and ¥=24 8y =45 (See Fig. A.3)
bt

Eq. {5.23) then gives B, = 0.783 for which N, as given by
Fig. B.l is 1.02, This means that the flexibility of the
curved corrugated shell is only 2% larger than that of a
straight corrugated shell. Thus, the distortion of the
cross section of a corrugated shell can be neglected and
the longitudinal forces can be assumed to be linearly dis-

tributed over the cross section.
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CHAPTER 6
SHELL AS TWO-HINGED ARCH

6.1. Arch Under a General Case of Loading. Having ob=-

tained the effects of both the corrugations and the curva=
ture in the previous. two chapters, it is now possible to
analyse the shell as a two-hinged arch under various types
of loading. This arch is statically indeterminate to the
first degree, and we shall take the horizontal reaction H
at the right support as the redundant [Fig. 6.1{a)]. The
value of this redundant for the various types of loading
will be determined by the superposition method. The value

of the redundant H is given by the equation

Ao+ ES, =0 (6.1)
where
Aﬁo = horizontal deflection of the point B due to the
appiied load with H = O, plus when in the
direction of H;
ébb = horizontal deflecticn of the point B due to

zero applied load and H = 1.

Eq. (6.1) merely states that the deflection of B is zero,.
The value of the deflections 4, and d,, will be fund by
the method of virtual work.

If a unit virtual load is applied at B in the direc-

tion of H, then the external virtual work done by this lsad
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Section x-x

Condition H= 0

Condition H= 1

Analysis of Two-Hinged Arch
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as the point deflects by an amount Abo must be equal to
the virtual internal work done by the stresses due to this
load as the structure deflects. The internal work due to
bending distortion is .

fo M M_Rd
2 NN, —EE%-—Z (2)

0

where M = moment due to the applied load with H = 0,
plus when causing compression on the convex
side;

M, = moment due to a unit horizontal load at B in
the direction of H, plus when causing com-
presslion on the concave sideg

I = moment of inertia of the cross section about
its neutral axis (Tr®t);
R = radius of curvature of the centre line of

the arch;

-~
1

angle between the mid-span cross section and
that at any other point on the arch [Fig.
6.1¢a) 13

and YB = angle betwsen the mid-span cross section and

that at the support.

Expression (a) is the same =23 the corresponding expression
for an arch of solid cross section except for the factors

N and N;. It was shown in Art. 4.2 that the corrugated
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shell i3 N times as flexible as a plain shell, while in
Art. 5.3 it was shown that due to the curvature, the de-
flection of a curved corrugated shell is N, times that of a
corrugated shell with a straight axis. This is the reason
for the inclusion of the factors N and N, in expression (a).
Similarly, the internal work due to axial deforma-

tion is

o
} T.T.Rd
2 (1w gt g
o}
where T = axial force due to the applied load with
H = 0, plus when tensile;
T, = axial force due to a unit horizontal load at
B in the direction of H, plus when tensiles

and A area of the ¢ross section,

Again here N is the factor taking into account the effect
of the corrugations.

In a curved bar an axial force TO produces tensile
or compressive forces uniformly distributed over the cross
gection and =squal to TO/AO Due to these stresses the
centre line undergoes extension or contraction and the
angle dy,between two adjacent cross sections increases by

the amount

TORd}‘<£
AE R

Aay =

For a corrugated shell, this sxpression should be multiplied
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by the factor N. The internal work done by the virtual
moment M, is
- 2-{Yb N EB;%E! (c)
)
where the minus sign is used since the moment M; is con-
sidered positive when it tends to increase the angle dy

between two adjacent cross sections.

Finally, the internal work due to shearing deforma-

tions is
o
o 1 2y @
o
where So = ghear force due to the applied load with
H= 0, plus when 1t tends to displace the
right side downward relative to the left
sideg
S. = shear force due to a unit horizontal load

i

at B in the directieon of H, plus when it
tends to displace the right side downward
relative to the ieft side,
Again here the factor N' as given by Eq. (3.26) takes into
account the effect of tihe corrugations on the shearing
deformations. In obtaining expressions (b), (c), and (d)
it was assumed that the curvature of the arch does not

alter the distribution of the stresses over a cross sec-

tion due to axial and shear forces,; il.e., the distribution
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is the same as in a straight shell.

The external work done by the unit virtual load is
1°£%o which must be equal to the total internal virtual
work as represented by expressions (a) through (d). Thus,

the deflection Abo is

Yo M M_Rd fo v Tgay (Fo T M 4
Apg = ww, o b (T DT (7 Ty
bo i Bl AR AE
o] o] [e]
¥o S S_Rd
o.t)t -~
4'& N'—-TG-_—-— (6.(_)
o]

In a similar manner the deflection.ééb is found to

be
Yo M?R4 Yo 1%Rq Yo rwa
5bb=2{5 NN:“'EI"")L"J( N —g 5‘+§ N —% !
L7 ) |
Yo s*Ray
+.Jﬁ N' —%E—- (6.3)

o
The value of the redundant H can then ke found by substi-
tuting the above sxpressions into Eq. (6.1). Rewriting

Eq. (6.1) gives

H=-=— (6.4)

The moment M, the axial force T, and the shear S in
the actual structure can easily be obtained from the fol-

iowing expressions



Mo=M o+ HM {6.5)
T =T, + HT, (6.6)
S = so + HS {6.7)

These are obtained by superposing the stresses due to the
applied load (H = 0) with those due to the redundant

force H.

6.2, Arch Under a Uniformly Distributed Snow Load. An

arch under a uniformly distriﬁuted snow load of WL lbs.
per horizontal foot is shown in Fig. 6.1(a). The expres-
sions for the external moments and forces will be found by
making use of the general equations (6.2) through (6.6).
The case of H = 0 is shown in Fig. 6.1(b). The ex-

pressions for the moment, axial force, and shear force for

this case ars

W.R*
__L Foos R
M, = —5— (sin®y - sinﬁL) (6.8)
T, = = WpR sin®y (6.9)
SO = WLR sin}cosy (6.10)

The corresponding expressions for the case ¢f H = 1 can be

obtained by reference to Figz

. 6.,1{c). These are found to
be
M, =-R (cosy - COSXO) (6,11)
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]

—.cosn/' (6.12)

S, = - siny (6.13)

Substitution of the above expressions into Egs. (6.2} and
(6.3) and integrating results in the following expressions

for the displacements Abo and 5bb

A WLR4 1 1
= - 3 -— -—
bo i N|N ( gin %o'*z %Ocos¥60032%6 n cosycsin2¢0)
+ 2 - 2
5 z{cosy sin2y L cosy )
N
2 BI N',2
+ (5 sin®y ) (&)
agrz ¥ 3 °
é = 2R% NN (5 %'ﬁ‘%cosz%«ﬁsinZ ) + I (sin2\)
2 EI N' ,1 1
e o (= - = 2
AGR? N (2 y’c I sin yb) (e)

It can be shown that the effects of axial and shear dis-
tortions on Abo are negligible if the radius r of the

cross section 1s very small in comparison with the radius
of curvature R [Fig. 6.1(a)]. ™e shall assume that this is

so, so that

W R*NN,
A —-E'E_I_m sin 5LO+3y» cosi cos2y -3sin} cos % ()

The effects of axial and shear distortions on gbb are also

negligible when the ratic r/R is small, provided the angle



o—

%b is not very small. For a flat arch, however, the effect
of axlal distortion on.<5bb is not negligible. Thus, if

only the effect of shear distortion is neglected; then
i

ébb = %; Niﬁl(Vb’*ZYa°°sz¥o ‘3Sin¢ocosyb)*2iﬁg(Sin%bcosybﬂ {g)

Substitution of expressions (f) and (g) into Eq. (6.4)

glves
= ng usin3¢o + 3yb cos}chSZya 3Isinybcoszyo
(yo+ Zybcoszyb- 3sinybcosybi*Eﬁfzgg(sinyocosyb)
1

The second term in the denominator, which represents the
effect of axial distortion, 1s of significance only when
the angle\%o is small. For small values of yb the radius
R is large, so that the factor Nl, which represents the ef-
fect of the distortion of thé cross section due to the curv-
ature of the arch; is approximately equal to unity. Taking

N. = 1, we have

1
H__Wtﬁ[' usinsyo + 3yécosyb0082yo - Bsinybcoszyo

Y T
LF%O +2>%coszy% ~3sinybcosy6+ 2AR2(sinybcosyé)

(6.14)

This expression is the same as that for an arch of solid
cross section. The values of the mement, axial and shear
forces on any cross section can now be found from Egs.
(6.5) through (6.7). Expresz ons for the redundant E for
various other types of loading, such as partial snow loads,

dead load, and wind loads, can be round by a similar
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method. In each case the analysis reduces to that for a

corresponding load on an arch of solid cross section.

6.3. Unit 3tresses in the Arch. The values of the bend-

ing moment, the axlial force and the shear force on any
cross section of the arch can be found, as shown in the
previous article, by considering the arch to be of solid
ecross sectlon. It was shown in Chapter L that the stresses
in a corrugated shell due to a moment and axial and shear
forces are the same as in a corrugated pipe of radius r

and under the same loading. Thus, the maximum stress in
the meridional and circumferential directions due to a
moment M and axial force T are (if the distortion of the

cross sectlon due to curvature is neglected)

r —
_|M T _ M Tr
Spmax == s tEmE| Fp TS|t K (6.12)
) 3 -
Q :;FM + T Ka = M 1 % 2_1_" K (6 13)
max Wr‘”’t = 2mrt =] T2t M o .

whereiK¢ ani Kg are the stress factors given by Eqs. (3.1)
and (3.2). In Art. 5.3 1t was shown that the distortion of
the cross sectlon due to curvature is very small in a corru-
gated shell, so that it will not be considered here., The
term Tr/M in Eqs. (6.12) and f5.,13) is found to be propor-
tional to r/R. Generally, the ratio r/R is very small so
that the effect of axial force on the stresses Gb and Gé

can be neglected,



The unit shear stresses due to the shear fcrce S on
a cross sectlon of the corrugated shell are the same as in
a plain shell, and these two are found to be very small
for small values of theratio r/R.

The deflection calculations for the arch can be made
by considering the shell to be plain but having a reduced
modulus of elasticity equal to E divided by the modular
ratio n (Eq. 3.3). The effects of shearing distortion and
the distortion of the cross sections due to curvature can

be neglected in the deflection computations.
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CEHAPTER 7
THE WONDER BUILDING ARCH

7.1. Introduction. The cross section of the actual

Wonder Building arch {Fig. 7.1l) is much different than the
idesalized cross section of Fig. 5.1{a)}. The shape of the
cross section is such that it cannot be represented by any
simple geometrical figure. The problem is further compli-
cated due to the fact that the shell is corrugated in ths
Lottom poritlion only., For this reason only an approximate
sclution is given in this chapter.

The corrugated portion of the shell consists of a
circular arc and two tangents as shown in Fig. 7.1{a). A
longitudinal section through the corrugated portion is
shown in Fig, 7.1(b). From this it is seen that the actual
corrugations can be approximated as V-shaped corrugations,
We shall assume that the corrugations are V-shaped for
which the dimensions,; b, ¢, and h are shown in Fig. 7.1l(b).

In obtaining the solution for the corrugated shsll
having the idealized crosa section of Fig. i.1l{b} it was
shown that sach one ¢f the quadrants behaved as 1f they
were parts of a complete pipe. On this basis it will be
assumed that the circular corrugated arc CDC is a gart of
a pipe of radius $.125 in., and that each of the two tan-
gents BC 1s a part of a pipe whoss radius is equal %o in-
£

inity. The modular ratio N for the arc CDC will be
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Fig. 7.2. Transformed Cross Section
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different from that for the tangents BC as they have dif-
ferent radii of curvature. Thus, the reduced modulus of
elasticity which is equal to E divided by the modular
ratio will be different for these parts of the cross sec=
tion. The remainder of the cross section has no corruga-
tions, so that its modular ratio is unity. The cross sec-
tion can be considered as being formed of three different
materials having different moduli of elasticity. For an
ordinary beam of composite sections 1t is assumed that
plane sections remain plane after bending. This will also
bve assumed in our case. Furthermore, it will be assumed
that the effect of the distortion of the cross section due
to curvature on the stresses and deflections is negligible.
This seems reasonable since it was shown in Art, 5.3 that
this is true for a curved corrugated shell having the
idealized cross section of Pig. 5.1{b). Also, on the basis
of the results obtained in the previous chapter, 1t will
be assumed that the effect of the shear force on stresses
and deflectimns is negligible. Even though so many
assumptions have been made, the approximate solution so
obtained gives results which are in very good agreement

with the available test results.

7.2. Calculation of Stresses and Deflections. The

stresses and deflections can be c¢ttained by a method very

similar to that used for beams of composite sections., The
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modular ratio for the tangents BC [Fig. 7.1(a)] will be
denoted by the symbol Na’ while that for the arc CDC will
be denoted by Nb; by definition, the modular ratio for the
remainder of the section is unity. The transformed sec-
tion is obtained by dividing the thickness t of BC by Na
and that of CDC by Nb(Fig. 7.2). The centroidal axis of
the transformed section is located a distance y above the

point D, where y is given by

0.1848 N_ + 0.2085 N, + N N

¥ = 6,94 ‘Ifi7g“ﬁ; +0.358 ¥, +‘ﬁ;ﬁ;~ in. {7.1)

wey

The area AT of the transformed section is
Ap = 0.652 + %2832 4 0769 | 4, = (7.2)
N N
a b
and the moment of inertia IT about the centroidal axis is

Ip = [0.652(52 - 13.89F + 49.0) + 2232 (3" _ 8.125+16.75)

a
+ Q'I'EITZ'@'?' (3 - 2.1157 + 2.055)J (7.3)

In obtaining the above expressions, the length of the cor-
rugated tangent BC was taken to be 2.37 in., in accordance
with the measurements made by Tabush on samples of the

Wonder Building Shell.’

1. Tabush, "An Experimental Study of a Thin Steel Arch

Panel,™ S.M. Thesis, Massachusetts Institute of Tech-
nology, August 1958.



In the deflection computaticns, the expressions
(7.2) and (7.3) must be used for the area and moment of
inertia, while the modulus of elasticity should be the
same as that of the material. For sxample, in obtaining
the redundant H for the Wonder Building arch under a uni-
formly distributed snow load, AT and IT of the transformed
section must be used in Eq. {6.1L) instead of the area A
and moment of inertia I of the actual cross section.

The longitudinal strain €y at any point of the

cross section due to an axial force T and a moment M can

be obtained from the formula

T mLmM;TE L) (7.14)
where y 1s the distance as defined in Fig. 7.2. This ex-
pression for the strain is obtained by assuming that plane
sections remain plane. The stress at any point can be ob=-
tained by multiplying *the strain, as given by Eq. (7.L4), by
the corresponding reduced mcdulus of elasticity. Thus, for
a point cn ~he circular arc CDC, the stress is obtained by
multiplying the strain by E/N,: for a point on the tangent
BC the strain is to bs wulbinlied by EfNa; and for any
other point outside of these corrugated porticns, the
stress is esqual %o EKE. The:= will be discontinuity along
the longitudinal sections “hrouzh C since there is an

abrupt change of curvature, similar to that occurring in



the shell of the idealized cross section under an axial
load, which was discussed in Art, L.2. In Fig. 7.1 it is
shown that the corrugations end abruptly at B, so that
there would also be a discontinuifty here. However, this
is not actually so as the depth of the corrugations gradu-
ally reduce from h to zero over a length of about an inch.
The location of B was taken as the midpoint of this length
of one inch. In any case we shall be interested in the
stressges at A and D since the streasses are maximum here,
28 will be shown in the next article. The longitudinal

stresses at these two points are

5 = I . M{y - 7.875) fa)
Ax AT IT

6. =L [I,MT] o)
Dx Nb {ﬁT IT |

The stress 6Dx given by (b} should be multiplied by the
stress factors K@b and Kmb {given by Eqs. (3.1) and {3.2)}]
in ordsr %o obitain the absolute maximum value of the

meridional -nd cilrecumferentis. stresses at the crest of the

corrugations. The facto

Y

K, is zlways larger than K , so

that we shall consider coly The meridional siress, ¢

@

X

Dx72°
Since we are considering ~mly the meridional stress, we
shall drop the aubscript x. ~he maximum absolute values

of the stresses at A and D are =5en
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_ |1 . My - 7.875)
5, = lIT' o Mo ’ (7.5)
K oy
6. =20 | | L My {7.6)
DN, U%‘q&.ilrw !

It will be shown in the next article that these
stresses depend primarily upon the depth of the corruga-
tions h. Particular cases are worked out to show the ef-

fect of h on the stressss,

7.3, Effect of the Depth of the Corrugations on the

3tresses. The arches constructed by the Wonder Building
Corporation of America have the same cross sections even
though their span lengths vary; only the depth h of the
corrugations varies. The manufacturing process 1s such
that h increases ﬁith an incr=ase in curvature of the arch.
In order to study the effect of the depth of the corrugsa-
tions on the stressea, we shall consldsr two extreme cases
nf arches as constructsed by the Wonder Buillding Corpora-
tion, which will be referred to as X-P and M arches, in
accordance w#lth the designatisn used by the manufacturer.
The dimensions of the arches and the corrugations for these

two arches are:

X-P Arch: R

1l
it

15 ft.3 Yy
33 ft.3 4 = 677%:

]

86%; b = 0,50 in.; h = 2,200 in,
b

M Arch: R = 0,50 in.; h = 0.092 in,

in which the dimensions B and ._ eve defined in Fig. 6.1{a),
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Nej

The values of Na’ N X

b’ Tob
and {3.3) and Figs. A.l and A.3; the properties of the

can be obtained from Egs. (3.1}

transformed section can then be found from Egs. {7.1)

through (7.3). These are found to be

Na Nb Kﬂb

y{in.) AT(in,z) IT{in,*)
X-P Arch: 17.2 16.7 12.9 6,51 0.712 2,09

M Arch: .2l 1l 6.48 5.55 0.892 5.82

With this information the stress at any point on

sne oross ssctlon due to a moment M and axial force T can
be determined. PFrom Eq. (7.5) it is found that the

3tresses 6A and 6D are .

X-P Arch: 6 Z.MOMi]psi

il

1.40T -0.653M]psi; 6, DI.OB‘I" +

A=

M Arch: 6A =

1.12T - 0.400M|psi; 6 = Ul.?éT‘ + jl.L@MHpsi

where M is expressed in 1lb.in, and T is expressed in 1lb.
It will be shown later that the stress due to T is small
in comparison with that dus to the moment M, so that in

-

toth the cszss the stress is msximum at D, The stressss atb
the points B and C are found to be less than 6D for these
two arches.

The bending moment and axial force on any cross
section due to any loading cax be calculated by the method

indicated in Chapter 6. We shall consider only a uni-

formly distributed snow load of WL lbs, per horizontal inch



over the entire arch. The maximum negative moment and the
axial force at the section where the negative moment is

maximum are

]

L-P Arch: M - 2520 W. 1lb.in.; T = - 180 W, 1b.

L L

M Arch: M = < 5330 wL 1b.in.; T = - 396 wb 1b,

]
fl

When these are substituted into expressions {7.7) it is
found that

X-P Arch: G5 = (194 + 6050)Wp

6240 Wy psi

g

¥ Arech: 63

(697 + 7930)W; = 8630 Wy psi

The effect of the axial force on the stresses is found to

be very small., It is seen that even though the span of the
M arch i1s approximately twice that of the X-P arch, the max-
imem stress in the M arch is only l.lL times that in the

X-P arch. This is due chiefly tecause the depth h in-

creases with the curvature, As h increases Na’ N and

’b9
K4, increzse as can be seen by exemining Egqs. (3.1) and

{3.3). The factors n and k, appearing in these equations

are functiuns of the characteristic B defined by Eq. {3.5)

~ e

For the tangent part BC [Fig. 7.1{a)], 8. = 0, so that

a
n, = 0.91. The ratio ¢/h is generally very near unity, so
that Na is seen to depend primarily on h (the thickness t
is the same for all archesj. The characteristic,@b for
the circular arc CDC 1s found to be approximately 0.72 for

both the arches, and for this valus, n and k, are
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approximately the same as those for8= 0. So N_ and X

b ¢b
are also mainly dependent on h., Thus, when h increases,
the factors Na’ Nb’ and K¢b all increase so that for a
given moment M, the stresses increase with the depth h {or
increase with an increase in curvature of the arch). How-
aver, when the curvature is large the span length of the
arch is small, so that the moments are also smaller. This

then makes 1t possible to use the same cross section over

a wide range of span lengths.

7., Comparison of Test Results with Theoretical Results.
2

Tests were performed by Tabush™ at M.I.T. on three samples
of shells provided by the Wonder Building Corporation of
Americe., These were components of the M arch discussed in
the last article. The chord lengths of these shells were
111 in. and the mid span rise was L in. Each shell was
simply supported at 1ts ends and loaded by two equal loads
placed symmetrically about the mid span, so that the region
between the loads was in pure vending. The deflection at
mid span was measured relative to two symmetrically locatbed
points within the region of pure bsnding. Using a value of
29.3 x 1O6 psil for the modulus of elasticity, it was found
from the deflection measursments that the transformed

moment of inertia IT of the cross section ranged from

2 J. Tabush, loc.cit. ». 135,
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.53 in.* to 5.20 in.*, with a mean of ;.89 in.*. This
compares favourably with the theoretical value of 5.82 in.*
computed in the previous article for the M arch. The dis-
crepancy between the theoretical and experimental values 1is
perhaps due to the fact that the cross-sectional shape was
observed to differ from the standard shape to which the
shells were supposed to have been rolled., It was shown
in the last chapter that the maximum stress occurred at
the lowermost point of the section, and is given by Eq.
{7.7). From this equation the moment at which this stress
is equal to the yield stress of the material can be ob-
tained. Tabush performed tensile tests on specimens of
the shells and found that the yield stress had an average
value of 38,500 psi. Using this value in Eq. (7.7), it is
found that the moment at which yilelding first occurs is
2.15 k.ft. It was difficult to ascertain from the experi-
mental load versus deflection curves as to at what point
the curve became nonlinear, since the deviation from a
straight line in the inelastic range is very small,
Approximately, the yield point moment ranged from 1.9 to
3.0 k.ft.

Another series of tests on three similar shells

was performed by Chipman at T.7.L.A.° In these testa the

3 R. D. Chipman, "Bending Test Ccnducted on M.P.H. Building
Sheets," Report No. C54-59, Dept. of Engineering, Uni-
versity of California, Los idngeles, July 195L.



samples were simply supported on pipes and subjected to a
concentrated load at mid span. Mid span deflections were
measured relative to the testing machine platform which

did not move with reference to the laboratory floor. A
plot of the experimentally determinad deflections versus
the bending moment at mid span is shown in Fig. 7.3€{a).
The deflection readings were measured to the nearest

thirty second of an inch, which makes the error in the de-
flection reading large when the loads are small. Further-
more,; the plpes on which the shells were supported were
found to deflect under the load when plain shells (i.e.
without corrugations) were tested. The deflection of the
pipes for a moment of l.75 k.ft. was found to be 1/32 of an
inch in one case and 2/32 of an inch in another case.

Since the tests were run primarily to determine the ulti-
mate load for the corrugated shells, no attempt was made

to measure the pipe deflsctions du?ing the bending tests of
these shells. However, in the elastic range the deflec-
tions are very small; and thuz the deflection readings for
iow loads are not very accurate. For comparison, the

theoretical mid span def'lsction was calculated from the

formula
$= BLE o 7% (7.8)
IBETL, ~ Tzl

in which M is the mid span moment and L is the distance
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between the supports. The values of E and IT were taken
to be 29.3 x 10° psi and 5.82 in.*, respectively. The
curve for 8 versus M is shown in Fig. 7.3{(a). This curve
is valid only in the elastic ranges; based on a yield stress
of 38,500 psi, the moment at which yield first occurs is
2.15 k.ft., as was shown earlier,

Strain measurements were also made at the point A
[Fig. 7.1(a)] at mid span. These are shown in Fig. 7.3(b)
together with the theoretical strain calculated from Eq.
{7.4.;. Here the deflections of the pipe supports do not
affect the strain measurements. It is seen that the
agreement between the experimental and theoretiecal results
is very good when the moment is within the elastic range.

The shells tested at M.I.T. and at U.C.L.A. all
failed in the inelastic range due to local buckling of the
upper flange at mid span. The ultimate moment at mid spen
‘ranged‘from 5.2 k.ft. to 6.0 k.ft. The theory developed
eariier in this chapter is applicable only for elastic
behavipurg znd does not consider the question of instabil-
ity, so that no conclusion can be made with reference to
the mode of failure,

The experiments that were made at M,I.T. and at
U.C.L.A. were performed on usr:lls which behaved as simply
supported beams. Actually they sre components of the

actual arch so that experiments should be conducted by



loading the shells as two-hinged arches, and preferably
having a larger span. Strain and deflection measurements
should be made at more frequent load intervals than was
done in the U.C.L.,A. tests, so that a better value of the
yield moment may be found. The strains in the corrugated
portion are very difficult to measure since the corruga-
tions are very small and the bending moment in them varies
rapldly. However, the elongation between two successive
crests can easily be measured with Huggenberger tensom-
ebers, and the elongation could then be compared with the
theoretical results. On the basis of these tests the
theoretical results could be modified by empirical con=-
stants if serious discrepancy exists between theoretical
and experimental results. Until this i1s done, the theory
should be used in designing the Wonder Building Arches

using an adequate factor of safety.
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APPENDIX A
CURVES FOR THE DETERMINATION OF STRESS FACTORS AND
MODULAR RATIO OF CORRUGATED PIPES

Explanation of Symbols:

a) V=-shaped
Corrugations

b) Cusped
Corrugations

¢) Undulating

Corrugations
Meridional Stress Factor: Ky =1+ % ky (3.1)
Circumferential Stress Factor: Kg = % kg (3.2)
. chz
Modular Ratio: N = cosX + ==n (3.3)
bt

The quantities k¢, kg; and n can be determined from the
curves on the following pages. These curves are plotted as
functions of d.and(%, where

ol = tan~t

E

h/b (3.4)

]
B
o
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APPENDIX B

CURVES FOR XN, , K¢l, Ko,
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.02 .03 .04 .06 .08 .10 2 3 .4 6 8 1.0
B - rRt/r? i2(1-v2)
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