DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Pages are missing from the original document.

$$
78
$$

by

SURENDRA TULSIDAS SHAH

S.B., Massachusetts Institute of Technology (1955)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 1959

Abstract

ANALYSIS OF CORRTGGTED SHELLS
by

SURENDRA TULSIDAS SHAH

Submitted to the Department of Civil and Sanitary Engineere ing on November 24, 1958, in partial fulfillment of the requirements for the degree of Doctor of Science in Civil Engineering.

A few years ago an unusual prefabricated Quonsetotype structure known as the "Wonder Building" appeared in the building industry. The structure consists of corrugations whtin a dapth of about 8 inches and a pitch of 2 feet runm aing in the longitudinal direction. In addition to these corrugations, there are small secondary corrugations in the transverse direction which are introduced to facilitate the fabrication of the structure. The longitudinal edges are supported continuously so that each 2 feet wide transverse section behaves effectively as a two-hinged arch.

The secondary corrugations increase the flexibility in the transverse direction. In order to determine the effect of these corrugations, three types of corrugated pipes under axial and transverse forces were investigated. The results obtained were then applied to a structure haring idealized major corrugations. The distortion of the major corrugations due to the effect of curvature in the transverse direction, similar to that which occurs in the bending of curved tubes, was also considered. The solution obtained for the idoelized case was then used to arrive at an approximate solution of the actual structure.

The approximate solution i found to be in satisfactory agreement with the available teat sesults.

Thesis Supervisor:
Charles F . Norris
Titue:
Profesi.: of Structural Engineering

ACKNOWLEDGEMENT

The author expresses his sincere appreciation to Professor Charles H. Norris, Professor of Structural Engio neering, for his invaluable advice, encouragement, and guidance in the development of this thesis. For her assistance, the author expresses his debt of gratitude to his wife, Fallavi. Grateful acimowledgement is made for use of the facilities of the M.I.T. Computation Center. The contributions of the following are hereby acknowledged; Mr. Kirit Parikh, for assistance in programming for the IBM 704 Computer; Mr. Makarand Desai, Mr. Sukumar Parikh, and Mr. Jayant Shah for assisting in the final preparation; Mrs. Gladys D. Rand for the typing of the thesis; Miss Eva Bonis for preparing the illustrations; and Mrs. Anna Parks for the multilith reproduction.

TABLE OF CONTENTS
No. Page
1 INTRODUCTION 7
2 SHELLS HAVING THE FORM OF A SURFACE OF REVOLUTION 14
2.1 General Case of Unsymmetrical Load 14
2.2 Shells of Revolution Under Axially Symmet- trical Load Distribution 21
2.3 Truncated Conical Shell Under Axially Symmetrical Load 27
2.4 Ring Shell 33
2.5 Equations for Forces, Moments, and Dis- placements in Terms of U and $V \ldots \ldots$
3 CORRUGATED PIPES 43
3.1 Corrugated Pipe Under Axial Load 43
3.2 Explicit Solution for an Axially Loaded Pipe With VoShaped Corrugations 56
3.3 Corrugated Pipe Under Pure Bending 62
3.4 Corrugated Pipe Jnder Bending Moment and Transverse Shear Forces 72
3.5 Verification of Theoretical Results With Experimental Results 80
4 CORRUGATED SHELIS 83
4.2 Introduction 83
4.2 Corrugeted Shell Thder Axial Tension 86
H.3 Gosrugated Shell Joinn Pure Bending Moment 90
4.4 Corrugated Shell Jnder Distributed Loading 91
4.5 Shells With Circilar Corrugations 98
5 BENDING OF CURVED SHETS 100
5.1 Introduction 100
5.2 Pure Bending of Curver Shell 105
5.3 Pure Bending of Cwred Corrugated Shell - 117

table of Contents (Continued)

No.Page6 SHELI AS TWO-HINGED ARCH 121
6.1 Arch Under a General Case of Loading 121
6.2 Arch Under a Uniformly Distributed Snow Load 127
6.3 Unit Stress in the Arch 130
7 THE WONDER BUILDING ARCH 132
7.1 Introduction 132
7.2 Calculation of Stresses and Deflections - 134
7.3 Effect of the Depth of the Corrugations on the stresses 138
7.4 Comparison of Test Results With Theoret- ical Results ….................. 141
BIBLIOGRAPHY 147
APPENDIX A - 149
APPENDIX B 159
BIOGRAPHY 161

LIST OF FIGURES

No. Page
1.1 Straight Shell 8
1.2 Curved Corrugated Shell 8
1.3 Corrugated Shell as Two-Hinged Arch 8
2.1 Stress Acting on an Element of the Shell 15
2.2 Equilibrium of a Portion of Shell Above a Parallel Circle 23
2.3 Displacements in a Shell 23
2.4 Truncated Conical Shell 28
2.5 Ring Shell 34
3.2 Worrugated Pipes 44
3.2 Ring Shells 46
3.3 Bending of a Corrugated Pipe 65
3.4 Shear Forces and Bending Moments on an Element of Pipe 75
3.5 Corrugated Pipe Tested by Cope and Wert 75
4.1 Corrugated Shells 84
4.2 Enlarged View of Cross Section of Shell 88
4.3 Simply Supported Shell Under Snow Load 92
4.4 Average Area and Moment of Inertia per Unit Length of Corrugation 97
5.1 Bending of Curved Shell 101
5.2 Stresses Acting on an Element of Curved Shell 107
5.3 Distortions of the Cross Sections of a Pipe and a Shell $-\ldots \infty \ldots \infty$ 107
6.1 Analysis of Two-Hinged Arch 122
7.1 Gross Section of Wonder Building Arch 133
7.2 Transformed Cross Section 133
7.3 Deflection and Strain Measurements in Wonder Building Shell 144

CHAPTER I

INTR ODUCTION

A few years ago an unusual pre-fabricated Quonsettype structure known as the "Wonder Building" appeared in the building industry. The Wonder Building is built entirely of l8-gauge galvanized shell metal. The sheet metal is formed into a bath-tub shape as shown in Fig. 1.1, and then given a secondary curved shape by forming secondary corrugations into the bottom portion of the shape (Fig. 1.2). The structural component so formed will be referred to as a shell since its behaviour is very similar to that of a long barrel shell.

These shells are then bolted together end-tomend to form a complete arch, which is so supported at its ends that it acts effectively as a two-hinged arch. This arch then forms a two-foot long section of the building, and is completely self-supporting. By bolting together successive arches along the edges a complete building is formed, which may be as long as desirea (rig. 1.3).

The main advantage of this type of structure is the great saving it makes in the cost of iavour. Shells with chord length of up to 9 feet are manufactured in the factory. These are then assembios in the field by bolting them together to form the complete structure, and this procedure requires only unskilied labour. This type of

Fig. 1.1. Straight Shell

Section $x-x$

Fig. 1.2. Curved Corrugated Shell

Section $x-x$

Fig. 1.3. Corrugated Shell as Two-Hinged Arch
structure is ideal as a roof for warehouses, factories, and industrial buildings.

The presence of the secondary corrugations in the shell increases its flexibility in the span-wise direction. An axial force or a bending moment on it causes bending of these corrugations. This changes the radius of curvature of the cross section, which in turn produces circumferential stresses, much in the same way as in a corrugated pipe under an axial load or bending moment.

For this reason the case of a corrugated pipe is rigorously treated. Pipes having the types of corrugations shown in Fig. 3.1 are considered. It is seen that the corrugated pipes shown in this figure can be formed by combining saveral shells of revolution, either conical or ring shells. The general solutions for these types of shells are given in Chapter 2. By using appropriate boundary conditions, the stresses and flexibility of a corrugated pipe can be obtained as show in Chapter 3. The increased flexibility of a sorrugated pioe can be taken into account by using a "reauced nodulus of elasticity," so that the deflections of corrugated pipes can be calculated by considering the pipe to be plain and using this reduced modulus as its modulus of elasti $\cdots+y$.

The solution obtained for the pipe is next appied to a sheli with a straight axis of an idealized cross section shown in Fig. 4.i(b), and having secondary corrugations
of the types considered for pipes. This procedure is strictly valid only when the shell is under pure bending so that the longitudinal forces are linearly distributed over any cross section. However, under the influence of snow and dead loads, transverse moments occur which distort the cross section, as in a multiple barrel shell, so that the assumption of linear distribution of the longitudinal forces is not strictly correct. But since the shell is stiffened transversely by the secondary corrugations and since the shell is long in comparison with the crosssectional dimensions, the effect of the distortion of the cross section is very small on the longitudinal behaviour as explained in Chapter 4. Therefore, the longitudinal forces can be assumed to be Iinearly distributed and the solution for corrugated pipes can be used for these shells.

When these shells are curved and are subjected to a bending moment, distortion of the cross sections occurs similar to that which takes place in thin curved tubes. Not only does this distortion of the cross sections increase the flexibility of the sheli but it also makes the distribution of the longitudinal forces noninear. It is shown in Chapter 5 that the secondary corrugations help to stiffen the transverse sectiva, thereby considerably reducing the distortion of the cross sections. In nearly all cases the distortion is so smali that it can safely be
neglected, and the longitudinal forces can be assumed to be linearly distributed over any cross section.

After this the analysis of the shell as a twohinged arch can be performed very simply. In Chapter 6 the method of superposition is used to obtain the external moments and thrusts on any cross section. By neglecting the effect of distortion of the cross sections due to the curvature of the arch and the effect of shearing deformations, the analysis reduces to that for an ordinary arch. Having obtained the external moments and thrusts, the unit stresses can easily be found by using the solutions developed for corrugated pipes. The deflections can easily be obtained by considering the shell to be plain and using the reduced modulus as its modulus of elasticity, as in the case of corrugated pipes.

The cross section of the actual Wonder Building arch (Fig. 1.3) is much different than the idealized cross section of Fig. 4.1(b). The shape of the actual cross section is such that it cannot be represented by any simple geometrical figure. The problem is further complicated due to the fact that the shell has secondary corrugations in the bottom portion only. The corrugated portion consists of a circular arc and two taisents as shown in Fig. 7.l.

An approximate solution for this shell is given in Chapter 7. It is assumed that the circular corrugated arc
is a part of a complete pipe of radius 9.125 in. and that each of the two tangents is a part of a pipe whose radius is equal to infinity. The reduced moduli of elasticity for these portions are then equal to those for the corresponding pipes; the modulus for the portion which has no secondary corrugations is simply the modulus of elasticity of the material. The stresses and deflections are then found by a method very similar to the method of transformed sections used for beams of composite sections. The theoretical results were found to be in very good agreement with the available test results.

It is shown in Chapter 7 that for a given moment on any section of the shell, the maximum stress at this section depends primarily on the depth of the secondary corrugations: it increases as the depth increases. The shells are corrugated in the transverse direction mainly because It makes it easy to bend the shells into eircular ares. Therefore, the depth of the secondary corrugations in creases with an increase in the curvature of the arc. But as the curvature anceases, the apan of the complete arch becomes shorter, so that the maximurn moment in the arch due to a given loading ciecreases. Thus, an increase in depth of the secondary corrwations is accompanied by a reduction in the maximum moment in the arch, or vice Fersa, which enables one to ase the same cross section over a wide range of span length.

Throughout the analysis it is assumed that the material follows Hooke's Law, is homogeneous, and isotropic.

SHELLS HAVING THE FORM OF A SURFACE OF REVOLUTION
2.1. General Case of Unsymmetrical Load. Fig. 2.1 shows an element, $A B C D$, cut from a shell of revolution by two adjacent meridian planes and two parallel circles. The position of the meridian plane is defined by the angle θ, measured from some datum meridian plane, and the position of the parallel circle is defined by the angle ϕ, made by the normal to the surface and the axis of rotation. The meridian plane and the plane perpendicular to it are planes of principal curvature at a point on the surface of revolution, and the corresponding radii of curvature are denoted by r_{1} and r_{z}, respectively. The radius of the parallel circle is denoted by r_{0}. Thus the length of the sides $A D$ and and $B C$ is $r_{2} d \phi$, that of $A B$ is $r_{0} d \theta$, and that of $C D$ is

$$
\left(r_{0}+\frac{d r_{0}}{d \phi} d \phi\right) d \theta
$$

The forces and moments per unit length acting on the element $A B C D$ are shown $2 n$ Fig, 2.1 and are positive when acting in the directions shown. In obtaining the equilibrium equations, it will be assumed that the shell surface is free of any external load.

Equilibrium Equations: Let $u:$ consider the equiliorium of the element $A B C D$ by first projecting the forces in the direction of the tangent to the meridian. The normal force acting on the side $A B$ is

$$
\mathbb{N}_{\phi} r_{0} d \theta
$$

The corresponding force on CD is

$$
\left(\mathbb{N}_{\phi}+\frac{\partial \mathbb{N}_{\phi}}{\partial \phi} d \phi\right)\left(r_{o}+\frac{\partial r_{o}}{\partial \phi} d \phi\right) d \theta
$$

By neglecting a small quantity of the second order, the resultant of these two forces in the y-direction is found to be equal to

$$
\begin{equation*}
\mathbb{N}_{\phi} \frac{\partial r_{0}}{\partial \phi} d \phi d \theta+\frac{\partial N_{\phi}}{\partial \phi} r_{0} d \phi d \theta=\frac{\partial}{\partial \phi}\left(\mathbb{N}_{\phi} r_{0}\right) d \phi d \theta \tag{a}
\end{equation*}
$$

The radial shear force, $Q_{\phi} r_{0} d \phi$, on the side $A B$ has no component in the y-direction, while on the side $C D$ the component of the radial shear force in the y-direction is

$$
-\left(Q_{\phi}+\frac{\partial Q \phi}{\partial \phi} d \phi\right)\left(r_{0}+\frac{\partial r_{0}}{\partial \phi} d \phi\right) d \theta d \phi
$$

and this is equal to

$$
\begin{equation*}
-Q_{\phi} r_{0} d \phi d \theta \tag{b}
\end{equation*}
$$

if only the quantity of the first order is retained.
Now let us consider the forces acting on the other two sides, $3 D$ and $B C$. The normal forces on these two sides are $N_{\theta} r_{1} d \phi$ and ($N_{\theta}+\frac{\partial N_{\Theta}}{\partial \theta} d \theta$) $r_{2} d \phi$, and have a resultant in the direction of the radius of the parallel circle equal to $N_{\theta} r_{1} d \phi$ de. The component of this force in the y-direction is then

- $N_{\theta} r_{1} \cos \phi d \phi d \theta$

Finally, the lateral shear force on $A D$ is $N_{\Delta \phi} r_{1} d \phi$ and on $B C$ is

$$
\left(N_{\theta \phi}+\frac{\partial N_{\theta \phi}}{\partial \theta} d \theta\right) r_{z} d \phi
$$

which give a resultant in the y-direction of

$$
\begin{equation*}
\frac{\partial N \theta \phi}{\partial \theta} r_{1} d \phi d \theta \tag{d}
\end{equation*}
$$

Summing up the forces (a) to (d), the equation of equilibrium of forces in the y-direction becomes

$$
\frac{\partial}{\partial \phi}\left(N_{\phi} r_{0}\right)-N_{\theta} r_{1} \cos \phi+\frac{\partial N_{\theta \phi}}{\partial \theta} r_{1}-Q_{\phi} r_{0}=0
$$

The other five equations of equilibrium could be obtained similarly, and they are stated below, together with the one obtained above:

$$
\left.\begin{array}{l}
\sum F_{Y}=0: \frac{\partial}{\partial \phi}\left(N_{\phi} r_{0}\right)-N_{\theta} r_{2} \cos \phi+\frac{\partial N_{\theta \phi}}{\partial \theta} r_{I}-Q_{\phi} r_{0}=0 \\
\sum F_{X}=0: \frac{\partial}{\partial \phi}\left(N_{\phi \theta} r_{0}\right)+\frac{\partial N_{\theta}}{\partial \theta} r_{I}+N_{\theta \phi} r_{I} \cos \phi-Q_{\theta} r_{I} \sin \phi=0 \\
\sum F_{z}=0: N_{\phi} r_{0}+N_{\theta} r_{I} \sin \phi+\frac{\partial}{\partial \phi}\left(Q_{\phi} r_{0}\right)+\frac{\partial Q_{\theta}}{\partial \theta} r_{I}=0 \\
\sum M_{X}=0: \frac{\partial}{\partial \phi}\left(M_{\phi} r_{0}\right)-M_{\theta} r_{2} \cos \phi-\frac{\partial M_{\theta \phi}}{\partial \theta} r_{I}-Q_{\phi} r_{0} r_{I}=0 \tag{2.1}\\
\sum M_{y}=0: \frac{\partial M_{\theta}}{\partial \theta} r_{I}+\frac{\partial}{\partial \phi}\left(M_{\phi \theta} r_{0}\right)-M_{\theta \phi} r_{I} \cos \phi-Q_{\theta} r_{0} r_{I}=0 \\
\sum M_{Z}=0: M_{\phi \theta} r_{0}+M_{\theta \phi} r_{I} \sin \phi-N_{\phi \theta} r_{0} r_{I}+N_{\theta \phi} r_{o} r_{I}=0
\end{array}\right\}
$$

It can be shown that

$$
\left.\begin{array}{l}
N_{\phi \theta}=N_{\theta \phi} \\
M_{\phi \theta}=-M_{\theta \phi} \tag{e}
\end{array}\right\}
$$

if the thickness t of the shell is small in comparison with the radii of curvatures, r_{1} and $r_{2} \cdot{ }^{1}$ However, an
s. Timoshenko, "Theory of Plates and Shells," pp.352,353.
inconsistency results when these relationships are substituted in the last of the equilibrium Eqs. (2.1). This inconsistency is due to the fact that expressions (e) are only approximately true. If the exact expressions for $N_{\theta \phi}, N_{\phi \theta}, M_{\theta \phi}$, and $M_{\phi \theta}$ are used, then the last of Eqs. (2.1) is identically satisfied. In our further discussion, it will be assumed that the last of Eqs. (2.1) is always satisfied, and that the thickness of the shell is small in comparison with the radil of curvature, so that expressions (e) are valid.

Stress-Strain Relationships: With eight unknowns and only five equations provided by statics, additional equations, based upon the stress-strain relationships, must be introduced. If ε_{ϕ} denotes the unit strain in the meridional direction, \mathcal{E}_{θ} the corresponding strain in the direction perpendicular to the meridian, $\mathcal{E}_{\phi \theta}$ the shearing strain, X_{ϕ} and X_{θ} the changes of curvature of the meridian and the plane perpendicular to the meridian, $X_{\phi \theta}$ the change of twist, E the Modulus of Elasticity and ν the Poisson's ratio, then, for thickness, t, small in comparison with r_{2} and r_{2}, we have ${ }^{2}$

2 Ibid, pp. $354,355$.

$$
\begin{align*}
& N_{\phi}=\frac{E t}{1-\nu^{2}}\left(\epsilon_{\phi}+\nu \epsilon_{\theta}\right) ; \quad N_{\theta}=\frac{E t}{1-\nu^{2}}\left(\epsilon_{\theta}+\nu \epsilon_{\phi}\right) \\
& M=\frac{-E t^{a}}{12\left(1-\nu^{2}\right)}\left(X_{\phi}+\nu X_{\theta}\right) ; M_{\theta}=\frac{-E t^{3}}{12\left(1-\nu^{2}\right)}\left(X_{\theta}+\nu X_{\phi}\right) \tag{f}\\
& N_{\phi \theta}=N_{\theta \phi}=\frac{E t}{2(1+\nu)} \epsilon_{\phi \theta ;} \quad M_{\phi \theta}=-M_{\theta \phi}=\frac{E t^{3}}{12(1+\nu)} X_{\phi \theta}
\end{align*}
$$

Strain Displacement Relationships: The strains and the changes of curvature and twist can be related to the displacements u, \forall, and w, where u and v are the displacements in the directions of the tangents to the parallel circle and meridian, respectively, and considered plus when in the direction of increasing θ and ϕ, respectively; and w is the displacement in the direction normal to the shell surface, plus when directed inward. These relationships are ${ }^{3}$

$$
\begin{gathered}
\epsilon_{\phi=}=\frac{1}{r_{1}}\left(\frac{\partial v}{\partial \phi}-w\right) ; \quad \epsilon_{\theta}=\frac{1}{r_{2}}\left(\frac{\partial u}{\partial \theta} \csc \phi+v \operatorname{ctn} \phi-w\right) \\
\epsilon_{\theta \phi}=\frac{1}{r_{1}} \frac{\partial u}{\partial \phi}+\frac{1}{r_{2}} \frac{\partial v}{\partial \theta} \csc \phi-\frac{u}{r_{2}} \operatorname{ctn} \phi \\
X_{\phi}= \\
\frac{1}{r_{2}} \frac{\partial}{\partial \phi}\left(\frac{v}{r_{2}}+\frac{1}{r_{1}} \frac{\partial w}{\partial \phi}\right) ; X_{\theta}=\frac{1}{r_{2}} \operatorname{ctn} \phi\left(\frac{v}{r_{2}}+\frac{1}{r_{2}} \frac{\partial w}{\partial \phi}\right) \\
\\
+\frac{\csc \phi}{r_{2}} \frac{\partial}{\partial \theta}\left(\frac{\csc \phi}{r_{2}} \frac{\partial w}{\partial \theta}+\frac{u}{r_{2}}\right) \\
X_{\theta \phi}=\frac{1}{r_{2}} \frac{\partial}{\partial \phi}\left(\frac{\csc \phi}{r_{2}} \frac{\partial w}{\partial \theta}+\frac{u}{r_{2}}\right)-\frac{1}{r_{2}^{2}} \frac{\partial u}{\partial \phi}
\end{gathered}
$$

3 A. E. H. Love, "A Treatise on the Mathematical Theory of Elasticity," pp. 521,524.

Stress Displacement Equations: Substituting the strain displacement equations (g) into the stressostrain relationships (f) gives
$N_{\phi}=\frac{E t}{1-\nu^{2}}\left[\frac{1}{r_{1}}\left(\frac{\partial v}{\partial \phi}-w\right)+\frac{\nu}{r_{2}}\left(\frac{\partial u}{\partial \theta} \csc \phi+v \operatorname{ctn} \phi-w\right)\right]$
$N_{\theta}=\frac{E t}{1-\nu^{2}}\left[\frac{1}{r_{2}}\left(\frac{\partial u}{\partial \theta} \csc \phi+v \operatorname{ctn} \phi-w\right)+\frac{V}{r_{2}}\left(\frac{\partial v}{\partial \phi}-w\right)\right]$
$N_{\phi \theta}=N_{\theta \phi}=\frac{E t}{2(1+y)}\left\langle\frac{1}{r_{1}} \frac{\partial u}{\partial \phi}+\frac{1}{r_{2}} \frac{\partial v}{\partial \theta} \csc \phi-\frac{u}{r_{z}} \operatorname{ctn} \phi\right)$
$M_{\phi}=-D\left\{\frac{1}{r_{2}} \frac{\partial}{\partial \phi}\left(\frac{V}{r_{2}}+\frac{1}{r_{2}} \frac{\partial W}{\partial \phi}\right)\right.$
$\left.+\frac{\nu}{r_{z}}\left[\frac{1}{r_{1}}\left(v+\frac{\partial w}{\partial \phi}\right)+\sec \phi \frac{\partial}{\partial \theta}\left(\frac{1}{r_{2}} \frac{\partial w}{\partial \theta} \csc \phi+\frac{u}{r_{2}}\right)\right] \operatorname{ctn} \phi\right\}$
(2.2)
$M_{\theta}=-D\left\{\frac{1}{r_{2}}\left[\frac{1}{r_{1}}\left(v+\frac{\partial w}{\partial \phi}\right)+\sec \phi \frac{\partial}{\partial \theta}\left(\frac{1}{r_{2}} \frac{\partial w}{\partial \theta} \csc \phi+\frac{u}{r_{2}}\right)\right] \operatorname{cin} \phi\right.$
$\left.+\frac{\nu}{r_{1}} \frac{\partial}{\partial \phi}\left(\frac{v}{r_{1}}+\frac{1}{r_{1}} \frac{\partial w}{\partial \phi}\right)\right\}$
$M_{\phi \theta}=-M_{\theta \phi}=\frac{D(I-\gamma)}{r_{I}}\left[\frac{\partial}{\partial \phi}\left(\frac{I}{r_{2}} \frac{\partial w}{\partial \theta} \csc \phi+\frac{u}{r_{2}}\right)-\frac{1}{r_{I}} \frac{\partial u}{\partial \phi}\right]$
where $D=\frac{E t^{3}}{12\left(1-v^{2}\right)}$

Substituting expressions (2.2) in Eqs. (2.1) will
then yield five equations in terms of the five unknown quantities u, v, w, Q_{ϕ} s and Q_{0} 。
2.2. Shells of Revolution Under Axially Symmetrical Load Distribution. It can be concluded from the condition of symmetry that only normal stresses will act on the sides of the element $A B C D$ (see Fig. 2.1) lying in the meridian plane. Hence

$$
Q_{\theta}=N_{\phi \theta}=N_{\theta \phi}=M_{\theta \phi}=M_{\phi \theta}=0
$$

Also due to symmetry the circumferential displacement u must be zero. The remaining stresses and displacements will all be independent of θ. With these conditions the equilibrium Eqs. (2.1) reduce to

$$
\begin{align*}
& \frac{d}{d \phi}\left(N_{\phi} r_{0}\right)-N_{\theta} r_{1} \cos \phi-Q_{\phi} r_{0}=0 \\
& N_{\phi} r_{0}+N_{\theta} r_{2} \sin \phi+\frac{d}{d \phi}\left(Q_{\phi} r_{0}\right)=0 \tag{2.4}\\
& \frac{d}{d \phi}\left(M_{\phi} r_{0}\right)-M_{\theta} r_{1} \cos \phi-Q_{\phi} r_{0} r_{1}=0
\end{align*}
$$

and the stress displacement Eqs. (2.2) become
$\mathbb{N}_{\phi}=\frac{E t}{1-\nu^{2}}\left[\frac{1}{r_{1}}\left(\frac{d v}{d \phi}-w\right)+\frac{\nu}{r_{2}}(v \operatorname{ctn} \phi-w)\right]$
$N_{\ominus}=\frac{E t}{1-\nu^{2}}\left[\frac{1}{r_{z}}(v \operatorname{ctn} \phi-w)+\frac{\nu}{r_{I}}\left(\frac{d v}{d \phi}-w\right)\right]$
$M_{\phi}=-D\left[\frac{1}{r_{I}} \frac{d}{d \phi}\left(\frac{V}{r_{2}}+\frac{2}{r_{I}} \frac{d w}{d \phi}\right)+\frac{\nu}{r_{z}}\left(\frac{V}{r_{I}}+\frac{1}{r_{I}} \frac{d w}{d \phi}\right) \operatorname{ctn} \phi\right]$
$\left.M_{\theta}=-D\left[\frac{1}{r_{2}}\left(\frac{\nabla}{r_{1}}+\frac{1}{r_{1}} \frac{d w}{d \phi}\right) \cos \phi+\frac{\nu}{r_{2}} \frac{d}{d \phi}\left(\frac{v}{r_{1}}+\frac{1}{r_{1}} \frac{d w}{d \phi}\right)\right]\right]$
Substitution of expression: (2.5) into the equilibrim Eqs. (2.4) yields three equations with the three
unknowns $v, w, a n d Q_{t}$. But considerable simplification of the equations can be obtained by the introduction of two new variables, U and V, where

$$
\left.\begin{array}{l}
U=r_{2} Q_{\phi} \tag{2.6}\\
V=\frac{1}{r_{2}}\left(v+\frac{d W}{d \phi}\right)
\end{array}\right\}
$$

It should be noted V is the expression for the rotation of the tangent to the meridian. 4

To simplify the transformation, we replace the first of the equilibrium Eqs. (2.4) by one obtained by considerIng the equilibrium of the portion of the shell above the parallel circle defined by the angle ϕ (Fig. 2.2). If the resultant edge load on the edge $A B$ of a shell of revolution is $2 \pi F^{2}$, then the equation of equilibrium is

$$
2 \pi r_{0} \mathbb{H}_{\phi} \sin \phi+2 \pi r_{0} Q_{\phi} \cos \phi=2 \pi r F
$$

from which
$N_{\phi}=\frac{r F}{r_{0}} \csc \phi-G_{\phi} \operatorname{ctn} \phi=\frac{r}{r_{z}} F \csc ^{2} \phi-\frac{1}{r_{z}} U \operatorname{ctn} \phi$
From the second of Eqs. (2.5) we have

[^0]

Fig. 2.2. Equillbrium of a Portion of Shell Above a Parallel Circle

Fig. 2.3. Displacements in a Shell

$$
N_{\theta} r_{2} \sin \phi=-N_{\phi} r_{0}-\frac{d}{d \phi}\left(Q_{\phi} r_{0}\right)
$$

Substitution of Eq. (a) in this and noting that $r_{0}=$ $r_{z} \sin \phi$ gives

$$
\begin{equation*}
N_{\theta}=-\frac{1}{r_{1}}\left(r F \csc ^{2} \phi+\frac{d U}{d \phi}\right) \tag{2.8}
\end{equation*}
$$

From the first two of Eqs. (2.5) we readily obtain

$$
\begin{align*}
& \frac{d v}{d \phi}-w=\frac{r_{2}}{E t}\left(N_{\phi}-\nu N_{\theta}\right. \\
& v \operatorname{ctn} \phi-w=\frac{r_{z}}{E t}\left(N_{\theta}-\nu N_{\phi}\right) \tag{a}
\end{align*}
$$

Elimination of w from these two equations leads to

$$
\begin{equation*}
\frac{d \nabla}{d \phi}-\nabla \operatorname{ctn} \phi=\frac{I}{E t}\left[\left(r_{2}+\nu r_{2}\right) N_{\phi}-\left(r_{2}+\nu r_{2}\right) N_{\theta}\right] \tag{b}
\end{equation*}
$$

Differentiation of Eq. (a) gives (if t is assumed to be constant)

$$
\frac{d v}{d \phi} \operatorname{ctn} \phi-v \csc ^{2} \phi-\frac{d w}{d \phi}=\frac{1}{E t} \frac{d}{d \phi}\left[r_{i}\left(N_{\theta}-\nu N_{\phi}\right)\right]
$$

The derivate $\frac{d v}{d \phi}$ can now be eliminated from the last two equations, to yield

$$
\begin{aligned}
& v+\frac{d W}{d \phi}=r_{2} V=\frac{c t n}{E t}\left[\left(r_{2}+\nu r_{2}\right) N_{\phi}-\left(r_{z}+\nu r_{2}\right) N_{\theta}\right] \\
&-\frac{I}{E t} \frac{d}{d \phi}\left[r_{z}\left(N_{\theta}-\gamma N_{\phi}\right)\right]
\end{aligned}
$$

Substituting expressions (a) and (b) for \mathbb{N}_{ϕ} and N_{e}, we finally obtain the first of the two equations relating to U and V

$$
\begin{align*}
& \frac{r_{2}}{r_{1}^{2}} \frac{d^{2} U}{d \phi^{2}}+\frac{1}{r_{1}}\left[\frac{d}{d \phi}\left(\frac{r_{2}}{r_{1}}\right)+\frac{r_{2}}{r_{1}} \operatorname{ctn} \phi\right] \frac{d U}{d \phi}-\frac{1}{r_{1}}\left[\frac{r_{1}}{r_{2}} \operatorname{stn} \operatorname{tn}^{2} \phi-\nu\right] U \\
& =E t V+Z \tag{c}
\end{align*}
$$

where $Z=-r F \csc ^{2} \phi \operatorname{ctn} \phi\left[\frac{1}{r_{2}}-\frac{r_{2}}{r_{2}^{z}}+\frac{\tan \phi}{r_{1}} \frac{d}{d \phi}\left(\frac{r_{2}}{r_{2}}\right)\right]$
The second equation relating U and V is obtained by substituting the last two of Eqs. (2.5) in the last of Eqs. (2.4) and using the notations (2.6). In this way

$$
\begin{align*}
& \frac{r_{2}}{r_{2}^{2}} \frac{d^{2} V}{d \phi^{2}}+\frac{1}{r_{1}}\left[\frac{d}{d \phi}\left(\frac{r_{2}}{r_{1}}\right)+\frac{r_{2}}{r_{1}} \operatorname{ctn} \phi\right] \frac{d V}{d \phi}-\frac{1}{r_{1}}\left[\frac{r_{1}}{r_{2}} \operatorname{ctn}{ }^{2} \phi-\nu\right] U \\
& =-\frac{U}{D} \tag{d}
\end{align*}
$$

By introducing the notation

$$
\begin{align*}
L(\ldots \ldots)= & \frac{r_{2}}{r_{2}^{2}} \frac{d^{2}}{d \phi^{2}}(\ldots)+\frac{1}{r_{1}}\left[\frac{d}{d \phi}\left(\frac{r_{2}}{r_{1}}\right)+\frac{r_{2}}{r_{1}} \operatorname{ctn} \phi\right] \frac{d}{d \phi}(\ldots \ldots) \\
& -\frac{1}{r_{2}} \operatorname{ctn}^{2} \phi(\ldots \ldots) \tag{2.10}
\end{align*}
$$

Eqs. (c) and (d) can be written in the following forms:

$$
\left.\begin{array}{l}
I(V)+\frac{\nu U}{r_{2}}=E t V+z \tag{2.11}\\
I(V)-\frac{\nu V}{r_{I}}=-\frac{U}{D}
\end{array}\right\}
$$

This system of two simultaneous differential equations of the second order can be reduced to a single equation of the fourth order. Operailing on the first of Eqs. (2.11) by L(......) gives

$$
L L(U)+\nu L\left(\frac{U}{r_{2}}\right)=E t L(V)+L(Z)
$$

Substituting the second of Eqs. (2.11) in this gives

$$
L(V)=\frac{\nu V}{r_{2}}-\frac{U}{D}=\frac{\nu}{E \operatorname{tr} 2}\left[L(U)+\frac{\nu U}{r_{2}}-Z\right]-\frac{U}{D}
$$

Using this, we obtain
$L L(U)+\nu L\left(\frac{U}{r_{2}}\right)-\frac{\nu}{r_{2}} L(U)-\frac{\nu^{2}}{r_{2}^{2}} U=-\frac{E t}{D} U+L(Z)-\frac{\nu}{r_{2}} Z$

If r_{1} is constant, as is the case for spherical, conical. and ring shells, then

$$
L\left(\frac{U}{r_{1}}\right)=\frac{1}{r_{1}} L(U)
$$

Using the notation

$$
\begin{gather*}
\mu^{*}=\frac{E t}{D}-\frac{\nu^{2}}{r_{1}^{2}} \tag{2.12}\\
L U(U)+\mu^{4}(U)=L(Z)-\frac{\nu Z}{r_{2}} \tag{2.13}
\end{gather*}
$$

Similarly

$$
\begin{equation*}
L L(V)+\mu^{4}(V)=-\frac{Z}{D} \tag{2.14}
\end{equation*}
$$

The upplication of Eqs. (2.13) and (2.14) to particular cases of a truncated conical shell and a ring shell Will be discussed in the next two articles. However, the expression for the relatipe displacement between two parallel circles will first in found.

The deflection Δ_{P} of any point P on the shell suro face in the direction of the shell axis can be found in
terms of the stresses N_{ϕ} and N_{θ}. In Fig. $2.3 P^{8}$ represents the displaced position of $\boldsymbol{P}_{\mathbf{I}}$. From the figure, it is seen that Δ_{P} is given in terms of the displacements v and w by the expression

$$
\Delta_{P}=v \sin \phi+w \cos \phi
$$

Integration of the differential eq. (b) gives
$v=\frac{\sin \phi}{E t}\left\{\int \frac{1}{\sin \phi}\left[N_{\phi}\left(r_{2}+\nu r_{2}\right)-N_{e}\left(r_{2}+\nu r_{1}\right)\right] d \phi+C\right\}$
in which C is a constant of integration.
Prom Eq. (a)

$$
\begin{equation*}
w=v \operatorname{ctn} \phi-\frac{r_{2}}{E t}\left(N_{\theta}-\gamma N_{\phi}\right) \tag{f}
\end{equation*}
$$

Substitution of these two expressions for v and w in the expression for Δ_{p} yields
$\Delta_{P}=\frac{1}{E t}\left\{\int\left[N_{\phi}\left(r_{1}+\nu r_{2}\right)-N_{\theta}\left(r_{2}+\gamma r_{1}\right)\right] d \phi-r_{2}\left(N_{\theta}-\nu N_{\phi}\right)+C_{1}\right\}$
The relative deflection between two parallel circles whose positions are defined by the angles ϕ_{1} and ϕ_{a} can be found by solving the above expression for Δ_{P} between the limits ϕ_{2} and ϕ_{a}. Denoting this deflection by Δ, we have $\Delta=\frac{1}{E t}\left\{\int_{\phi_{1}}^{\phi_{2}}\left[N_{\phi}\left(r_{2}+\nu r_{2}\right)-N_{\theta}\left(r_{2}+\gamma r_{2}\right)\right] d \phi-\left[r_{2}\left(N_{\theta}-\nu N_{\phi}\right)\right]_{\phi_{1}}^{\phi_{2}}\right\}(2.15)$
2.3. Truncated Conical Shell Under Axially Symmetrical

Load. A truncated conical shell, $A B C D$, is shown in Fig. 2.4. The dimensions b, c, h, and r are defined in this figure.

F1g. 2.4. Truncated Conical Shell

To apply the general equations developed above to this case, we introduce in place of ϕ a new variable z which is the product of c and the distance along the meridian from the edge $A B$ (see Fig. 2.4). The length of an infinitesimal element of a meridian is now cdz, instead of $r_{2} d \phi$. As a result,
$\frac{d}{d \phi}=\frac{r_{2}}{c} \frac{d}{d z} ; \frac{d^{2}}{d \phi^{2}}=\frac{d}{d \phi}\left(\frac{r_{2}}{c} \frac{d}{d z}\right)=\frac{r_{1}^{2}}{c^{2}} \frac{d^{2}}{d z^{2}}+\frac{1}{c} \frac{d r_{2}}{d \phi} \frac{d}{d z}$
Using these transformations, and noting that r_{2} is constant for a conical shell, the operator $L(\ldots)$ of $E q$. (2.10) becomes

$$
\begin{align*}
L(\ldots)= & {\left[\frac{r_{z}}{c^{z}} \frac{d^{2}}{d z^{2}}(\ldots)+\left(\frac{1}{c} \frac{d r_{z}}{d z}+\frac{r_{z}}{r_{2}} \operatorname{ctn} \phi\right) \frac{1}{c} \frac{d}{d z}(\ldots)\right.} \\
& \left.-\frac{1}{r_{z}} \operatorname{ctn} \operatorname{tn}^{2} \phi(\ldots)\right] \tag{a}
\end{align*}
$$

Observing that ϕ is constant, and using the notation Kior $\Pi / 2-\phi$, we obtain (see Fig. 2.4)

$$
\begin{equation*}
r_{2}=\frac{r}{\cos \alpha}\left(1-\frac{h}{r}+\frac{h}{r} z\right) ; \frac{d r_{z}}{d z}=\frac{h}{\cos \alpha} \tag{b}
\end{equation*}
$$

Substituting these expressions into (a) and putting $r_{2}=$ ∞, the symbol I(...) becomes
$L(\ldots)=\left[\frac{r_{2}}{c^{2}} \frac{d^{2}}{d z^{2}}(\ldots)+\frac{h}{c^{2} \cos \alpha} \frac{d}{d z}(\ldots)-\frac{\tan ^{2} \alpha}{r_{z}}(\ldots)\right]$
For the special case of a conictal shell. Eqs. (2.9) and (2.13) reduce to

$$
\begin{equation*}
Z=-\frac{r}{r_{2}} F \sec ^{2} \alpha \tan \alpha \tag{d}
\end{equation*}
$$

and

$$
\begin{equation*}
L I(U)+\mu^{4} U=L(Z) \tag{e}
\end{equation*}
$$

The expression for Z when operated by L gives

$$
L(Z)=0
$$

Eq. (e) then becomes

$$
\begin{equation*}
I I(U)+\mu^{4} U=0 \tag{2.16}
\end{equation*}
$$

which can be written in one of the following two forms:

$$
I\left[L(U) \pm i \mu^{2} U\right] \mp i \mu^{2}\left[I(U) \pm i \mu^{2} U\right]=0
$$

where $i=\sqrt{-1}$

These equations indicate that the solutions of the second order equations

$$
\begin{equation*}
\pm(U) \pm 1 \mu^{3} U=0 \tag{2.17}
\end{equation*}
$$

2re also the solutions of Eq. (2.16).
Using the expressions (b) and (c) in the first of Eqs. (2.17) givos

$$
\begin{aligned}
& \frac{1}{c^{2}} \frac{x^{2}}{\cos \alpha}\left(1-\frac{h}{r}+\frac{h}{r} z\right) \frac{d^{2} U^{2}}{d z^{2}}+\frac{h}{c^{2} \cos \cos } \frac{d U}{d z} \\
& -\frac{\tan ^{2} \alpha \cos \alpha}{r} \frac{\pi_{1}}{(1-h / r+h / r z)}+1 \mu^{2} U_{2}=0
\end{aligned}
$$

Multiplying by $\frac{c^{2} \cos \alpha}{r}\left(1-\frac{h}{r}+\frac{h}{x} 2\right)$, and introducing the notations

$$
\begin{align*}
& P=\frac{h}{r} \tag{f}\\
& a=\frac{\mu^{2} c^{2} \cos \alpha}{r}=\sqrt{\left.12(1-)^{2}\right)} \frac{b c}{r t}
\end{align*}
$$

finally yields the equation

$$
\begin{align*}
&(1-\rho+\rho z)^{2} \frac{d^{2} U_{1}}{d z^{2}}+\rho(1-\rho+\rho z) \frac{d U_{1}}{d z} \\
&-\left[\rho^{2}-i a(1-\rho+\rho z)\right] U_{1}=0 \tag{2.18}
\end{align*}
$$

The solution of Eq. (h) can be found in the form of power series in z multiplied by a power of z,

$$
\mathrm{U}_{1}=z^{s} \sum_{k=0}^{\infty} A_{k} z^{k}
$$

The method of Frobenius was used for the determination of s and the recurrence formulae for the coefficients. 5 It was found that $s=0$ and 1 .

For $s=0$, the recurrence formula is

$$
\begin{aligned}
& k(k-1)(1-P)^{2} A_{k}=-\left\{P(1-P)(k-1)(2 k-3) A_{k-1}\right. \\
& \left.+\left[\rho^{2}(k-1)(k-3)+1 a(1-P) A_{k-2}\right]+i a \rho A_{k-3}\right\} \quad k \geqslant 1
\end{aligned}
$$

When $k=1$, the recurrence Pormula is identically satisfied, leaving A_{2} as well as A_{0} arbitrary,

When $s=1$, the solution obtained is the same as that corresponding to the coefizeient A_{I} for the case 5 F. B, Hildebrand, "Advanced Calculus for Engineers, " 2p. 132-139.
$s=0$. Hence the complete solution of (2.18) can be expressed as

$$
\begin{equation*}
U_{2}=\sum_{k=0}^{\infty} A_{k} z^{k} \tag{h}
\end{equation*}
$$

where

$$
\begin{align*}
A_{k}= & -\frac{1}{k(k-1)(1-\rho)^{2}}\left\{\rho(1-\rho)(k-1)(2 k-3) A_{k-1}\right. \\
& \left.+\left[\rho^{2}(k-1)(k-3)+i a(1-\rho)\right] A_{k-2}+i a \rho A_{k-3}\right\} \quad k \geqslant 2 \tag{i}
\end{align*}
$$

Separating the series (i) into its real and imaginary parts, we obtain

$$
U_{2}=A_{0}\left(I_{2}+i I_{2}\right)+A_{2} z\left(I_{3}+i I_{4}\right)
$$

where I_{1}, \ldots, I_{4} are power series which are convergent when $(1-\rho+\rho z) \neq 0$.

By inspection, the solution of the second of Eqs. (e) is

$$
U_{2}=A_{0}\left(I_{2}-i I_{2}\right)+A_{1} z\left(I_{3}-i I_{4}\right)
$$

Solutions U_{1} and U_{z} together represent the complete system of independsnt solutions of Eq. (2.16). By using the sums and differences of solutions U_{1} and U_{2}, the general solution of Eq. (2.16) can be written in the form:

$$
\begin{equation*}
\mathrm{U}=A I_{2}+B I_{2}+C I_{3}+D I_{4} \tag{2.19}
\end{equation*}
$$

where A, B, C, and D are arbitrary constants.
Substituting (2.19) in the first of Eqs. (2.11) gives

$$
\begin{align*}
V= & \frac{\sin \alpha}{E \operatorname{tb}\left(1-\rho+\rho_{z}\right)}\left[\frac{1}{e}(1-\rho+\rho z)^{2}\left(A I_{2}^{\prime \prime}+B I_{2}^{\prime \prime}+C I_{3}^{\prime \prime}+D I_{4}^{\prime \prime}\right)\right. \\
& +(1-\rho+\rho z)\left(A I_{1}^{\prime}+B I_{2}^{\prime}+C I_{3}^{\prime}+D I_{4}^{\prime}\right)-\rho\left(A I_{2}+B I_{2}+C I_{3}+D I_{4}\right) \\
& +F h \sec \alpha \csc \alpha] \tag{2.20}
\end{align*}
$$

where $\quad I^{\beta} \equiv \frac{d I}{d z} \quad, \quad I^{\prime \prime} \equiv \frac{d^{2} I}{d z^{2}}$
2.4. Ring Shell. A ring shell is shown in Fig. 2.5. The radius r is as defined in Fig. 2.5. The angle ϕ varies from ϕ_{0} to $\Pi-\phi_{0}$. For this case it is convenient to solve Eq. (2.14) for V. Since this is a linear nonhomogeneous differential equation, its solution can be separated into V_{H}, the solution of (2.14) with $Z=0$ (homogeneous solus ion), and V_{p} a particular solution of Eq. (2.14).

Homogeneous Solution: Setting $z=0$ in Eq. (2.14) gives

$$
\begin{equation*}
\operatorname{LL}\left(V_{H}\right)+\mu^{4} V_{H}=0 \tag{a}
\end{equation*}
$$

Eq. (a) is similar to Eq. (2.16) and hence it can be concluded that the solution or the second order equations

$$
\begin{equation*}
\pm\left(V_{H}\right) \pm i \mu^{2} V_{H}=0 \tag{b}
\end{equation*}
$$

are also solutions of Eq. (a)
From Fig. 2.5 we see that

$$
\begin{align*}
r_{1} & =\text { constant } \\
r_{2} & =\left(r-r_{1}\right) \csc \phi+r_{1} \tag{c}\\
\frac{d r_{2}}{d \phi} & =-\left(r-r_{1}\right) \csc \phi \operatorname{ctn} \phi
\end{align*}
$$

Fig. 2.5. Ring Shell

With these relationships, the symbol L(...) of Eq. (2.10) becomes
$L(\ldots)=\frac{r_{2}}{r_{2}^{2}} \frac{d^{2}}{d \phi^{2}}(\ldots)+\frac{c \operatorname{tn} \phi}{r_{2}} \frac{d}{d \phi}(\ldots)-\frac{1}{r_{2}} \operatorname{ctn}^{2} \phi(\ldots)$
Using this in the first of Eqs. (b) gives
$\frac{r_{z}}{r_{I}^{2}} \frac{d^{2} V_{H I}}{d \phi^{2}}+\frac{\operatorname{ctn} \phi}{r_{I}} \frac{d V_{H I}}{d \phi}-\frac{I}{r_{2}} \operatorname{ctn}^{2} \phi V_{H I}+i \mu^{2} V_{H I}=0$
A further simplification is obtained by introducing the new variable

$$
\begin{equation*}
x=1-\sin \phi . \tag{f}
\end{equation*}
$$

With this change

$$
\begin{equation*}
\frac{d}{d \phi}=-\cos \phi \frac{d}{d x} \quad, \frac{d^{2}}{d \phi^{2}}=\cos ^{2} \phi \frac{d^{2}}{d x^{2}}+\sin \phi \frac{d}{d x} \tag{g}
\end{equation*}
$$

Using these relationships, Eq. (e) becomes

$$
\begin{gathered}
\frac{r_{2}}{r_{1}^{2}} \cos ^{2} \phi \frac{d^{2} V_{H I}}{d x^{2}}+\frac{1}{r_{1}}\left(\frac{r_{2}}{r_{1}} \sin \phi-\frac{\cos ^{2} \phi}{\sin \phi}\right) \frac{d V_{H I}}{d x} \\
-\left(\frac{1}{r_{z}} \operatorname{ctn}^{2} \phi-i \mu^{2}\right) V_{H I}=0
\end{gathered}
$$

By noting that

$$
\begin{aligned}
& \cos ^{2} \phi=1-\sin ^{2} \phi=x(2-x) \\
& \operatorname{ctn}^{2} \phi=\frac{\cos ^{2} \phi}{\sin ^{2} \phi}=\frac{x(2-x)}{(1-x)^{2}}
\end{aligned}
$$

and $\quad r_{2}=\left(r-r_{1}\right) \csc \phi+r_{1}=\frac{r-r_{2} x}{1-X}$
we have

$$
\begin{gathered}
\frac{x\left(r-r_{1} x\right)}{r_{2}^{2}(1-x)}(2-x) \frac{d^{2} V_{H 1}}{d x^{2}}+\frac{1}{r_{2}}\left[\frac{r-r_{2} x}{r_{1}}-\frac{x(2-x)}{1-x}\right] \frac{d V_{H 1}}{d x} \\
-\left[\frac{x(2-x)}{(1-x)\left(r-r_{2} x\right)}-i \mu^{2}\right] V_{H 1}=0
\end{gathered}
$$

Multiplying by $\frac{r_{2}^{2}(1-x)\left(r-r_{2} x\right)}{x r^{2}}$, and introducing the notations

$$
\left.\begin{array}{l}
\lambda=\frac{r_{1}}{r} \\
a_{1}=\frac{\mu^{2} r_{1}^{2}}{r}=\frac{r_{1}}{r} \sqrt{\frac{12\left(1-\nu^{2}\right) r_{1}^{2}}{t^{2}}-\nu^{2}} \tag{h}
\end{array}\right\}
$$

finally yields the equation

$$
\begin{gather*}
(2-x)(1-\lambda x)^{2} \frac{d^{2} V_{H 1}}{d x^{2}}+\frac{1}{x}\left[(1-x)(1-\lambda x)^{2}-\lambda x(2-x)(1-\lambda x)\right] \frac{d V_{H I}}{d x} \\
-\frac{1}{x^{2}}\left[\lambda^{2} x^{2}(2-x)-i a_{2} x(1-x)(1-\lambda x)\right] V_{H I}=0 \tag{i}
\end{gather*}
$$

Here again the solution can be found in the form of power series in z multiplied by a power of x

$$
V_{H I}=x^{s} \sum_{k=0}^{\infty} A_{k} x^{k}
$$

The method of Frobenius was again used for the detarmination of s and the recurrence formulae for the coefficients. It was found that $s=0$ and $1 / 2$ for this case. For $s=1 / 2$ the recurrence formula is

$$
\begin{align*}
A_{k}= & \frac{1}{k(2 k+1)}\left\{\left[\frac{1}{4}(2 k-1)^{2}(1+4 \lambda)-1 a_{1}\right] A_{k-1}\right. \\
& -\left[\rho(k-1)(2 k-3)(1+\lambda)-2 \lambda^{2}-1 a_{2}(1+\lambda)\right] A_{k-2} \\
& \left.+\left[\frac{\lambda^{2}}{4}(2 k-3)(2 k-5)-\lambda^{2}-i a_{1} \lambda\right]\right\} \quad k \geqslant 1 \tag{j}
\end{align*}
$$

A second solution corresponding to $s=0$ is of the form

$$
V_{H I}=\sum_{k=0}^{\infty} A_{k} x^{k}
$$

Because of symmetry, $\quad[\mathrm{V}]_{\phi}=-[\mathrm{V}]_{\Pi-\phi}$ for all values of ϕ.
Since the series corresponding to $s=0$ cannot satisfy this condition, the second solution should not be considered. Hence the complete solution of Eq. (i) can be expressed as

$$
\begin{equation*}
V_{H I}=x^{I / 2} \sum_{k=0}^{\infty} A_{k} x^{k} \tag{k}
\end{equation*}
$$

where A_{k} is given by the recurrence formula (j).
Separating the series (k) into real and imaginary parts, we obtain

$$
\begin{equation*}
V_{H I}=A_{0}\left(J_{2}+i J_{2}\right) \tag{I}
\end{equation*}
$$

where J_{2} and J_{2} are power series multiplied by $x^{1 / 2}$, the series being convergent when $(2-x)(1-\lambda x)^{2} \neq 0$ 。

As was shown for the case of the truncated cone, the complete solution of Eq. (a) can be represented in the
following form

$$
\begin{equation*}
V_{H}=C_{2} J_{2}+C_{2} J_{2} \tag{m}
\end{equation*}
$$

where C_{1} and C_{2} are arbitrary constants.
Substituting (I) in the first of Eqs. (b) gives

$$
\begin{array}{r}
L\left(J_{1}+i J_{2}\right)+i \mu^{2}\left(J_{1}+i J_{2}\right)=0 \\
\therefore\left[L\left(J_{1}\right)-\mu^{2} J_{2}\right]+i\left[L\left(J_{2}\right)+\mu^{2} J_{1}\right]=0
\end{array}
$$

For this to be an identity,

$$
\begin{aligned}
& I\left(J_{1}\right)=\mu^{2} J_{2} \\
& I\left(J_{2}\right)=-\mu^{2} J_{2}
\end{aligned}
$$

Substituting Eq. (m) in the second of Eq. (2.11) and using the above relationships gives

$$
\begin{equation*}
U_{H}=D\left(C_{2} H^{2}+C_{2} \frac{y}{r_{1}}\right) J_{1}-\left(C_{2} \mu^{2}-C_{2} \frac{y}{r_{1}}\right) J_{2} \tag{n}
\end{equation*}
$$

Having obtained the homogeneous solution of Eq. (2.11), we shall next attempt to find its particular solution system.

Particular Solution: If

$$
\begin{equation*}
s=s_{1}+i s_{z} \tag{0}
\end{equation*}
$$

is a particular solution of the inhomogeneous equation

$$
\begin{equation*}
I(S)-i \mu^{2} s=z \tag{p}
\end{equation*}
$$

then it can be shown by direct substitution that

$$
\left.\begin{array}{l}
v_{P}=-\frac{1}{\mu^{2} \mathbb{D}} s_{2} \tag{q}\\
U_{P}=s_{1}-\frac{\nu}{\mu^{2} r_{1}} s_{2}
\end{array}\right\}
$$

is the particular solution system of Eqs. (2.11). The solution of the differential equation (p) will also be obtained in terms of power series.

Using the relationships (c), (f), and the first of the expressions (h) in Eq. (2.9) gives

$$
\begin{equation*}
z=\frac{F(1-\lambda) \cos \phi}{\lambda^{2}(1-\lambda x)(1-x)^{4}}(2+\lambda-3 \lambda x) \tag{r}
\end{equation*}
$$

Let $\quad S=S_{1}+i S_{2}=\operatorname{Fr}(1-\lambda) W \operatorname{ctn} \phi$

The differential equation (p) then becomes

$$
L(W \operatorname{ctn} \phi)-i \mu^{2} W \operatorname{ctn} \phi=\frac{\cos \phi}{\lambda r_{2}(1-\lambda x)(1-x)^{4}}(2+\lambda-3 \lambda x)
$$

The symbol L(...) is defined by (d), and ϕ is related to x by the expression (f). Using this in the above differential equation gives

$$
\begin{align*}
& (1-\lambda x)(2-x)(1-x)^{2} \frac{d^{2} W}{d x^{2}} \\
& +\frac{(1-\lambda x)(1-x)}{x}\left[(1-\lambda x)(1-x)^{2}+2(1-\lambda x)-\lambda x(1-x)(2-x)\right] \frac{d W}{d x} \\
& +\frac{1}{x^{2}}\left[2 x(1-\lambda x)^{2}-\lambda x(1-\lambda x)(1-x)-\lambda^{2} x^{2}(1-x)^{2}(2-x)\right. \\
& \left.-1 a_{1} x(1-\lambda x)(1-x)^{3}\right] W=\frac{1}{x^{2}}(2+\lambda) x-3 \lambda x^{3} \tag{s}
\end{align*}
$$

A solution of the above equation can be taken in the form

$$
\begin{equation*}
w=\sum_{k=0}^{\infty} B_{k} x^{k} \tag{t}
\end{equation*}
$$

Substituting the series (t) in Eq (s) and equating the coefficients for each power of x to zero, we obtain the following recurrence formula for B_{k} :

$$
\begin{align*}
& B_{k}= \frac{1}{k(2 k+1)}\left\{N_{k}-\sum_{s=0}^{4}\left[(k-s-1)(k-s-2) R_{s+1}\right.\right. \\
&\left.\left.+(k-s-1) P_{s+1}+Q_{s+1}\right] B_{k-s-1}\right\} \\
&\left(B_{0}=0, k \geqslant 1\right) \tag{u}
\end{align*}
$$

where

$$
\begin{aligned}
& N_{1}=(2+\lambda) ; N_{2}=-3 \lambda ; N_{3}=N_{4}=N_{5}=\ldots \ldots=0 \\
& R_{1}=-(5+4 \lambda) ; R_{2}=\left(4+10 \lambda+2 \lambda^{2}\right) ; R_{3}=-\left(148 \lambda+5 \lambda^{2}\right) ; \\
& R_{4}=2 \lambda(1+2 \lambda) ; R_{5}=-\lambda^{2} \\
& P_{1}=-(5+8 \lambda) ; P_{2}=\left(3+15 \lambda+5 \lambda^{2}\right) ; P_{3}=-\left(1+10 \lambda+10 \lambda^{2}\right) ; \\
& P_{4}=\lambda(3+7 \lambda) ; P_{5}=-2 \lambda^{2} \\
& Q_{1}=\left(2-\lambda-1 a_{1}\right) ; Q_{2}=-\left(3 \lambda+\lambda^{2}-3 i a_{1}-i a_{1} \lambda\right) ; \\
& Q_{3}=\left(6 \lambda^{2}-3 i a_{1}-3 i a_{2} \lambda\right) ; Q_{4}-\left(4 \lambda^{2}-i a_{1}-3 i a_{1}\right) ; Q_{5}=\left(\lambda^{2}-i a_{1} \lambda\right)
\end{aligned}
$$

Separating the series into real and imaginary parts, we obtain

$$
W=J_{3}+i J_{4}
$$

where J_{3} and J_{4} are converging power series when $(1-\lambda x)(2-x)(1-x) \neq 0$.
S_{1} and S_{2} can then be related to J_{3} and J_{4} by the expression (r) giving

$$
\begin{aligned}
& S_{1}=F r(1-\lambda) \operatorname{ctn} \phi J_{3}=F r(1-\lambda) \frac{\sqrt{x(2-x)}}{1-x} J_{3} \\
& S_{2}=F r(1-\lambda) \operatorname{ctn} \phi J_{4}=F r(1-\lambda) \frac{\sqrt{x(2-x)}}{1-x} J_{4}
\end{aligned}
$$

Substitution of these relationships in (q) yields

$$
\begin{aligned}
& V_{P}=-\frac{\operatorname{Fr}(1-\lambda)}{\mu^{2} D} \frac{\sqrt{x(2-x)}}{1-x} \\
& J_{4} \\
& U_{P}=\operatorname{Fr}(1-\lambda) \quad \sqrt{\frac{x(2-x)}{1-x}} \quad\left(J_{3}-\frac{\nu}{\mu^{2} r_{1}} J_{4}\right)
\end{aligned}
$$

as the particular solution system of the differential equations(2.11). Since these are linear equations, it is permissible to add the homogeneous and the particular solutions to obtain the complete solution.

Thus $\quad U=J_{H}+U_{P}$

$$
\mathrm{V}=\mathrm{V}_{\mathrm{H}}+\mathrm{V}_{\mathrm{P}}
$$

or
$U=D\left[\left(C_{2} \mu^{2}+C_{2} \frac{\nu}{r_{2}}\right) J_{2}-\left(C_{2} \mu^{2}-C_{2} \frac{\gamma}{r_{2}}\right) J_{2}\right]$ $+\operatorname{Fr}(1-\lambda) \sqrt{\frac{x(2-x)}{1-X}}\left(J_{3}-\frac{\gamma}{\mu^{2} r_{i}} J_{4}\right)$
$V=C_{1} J_{1}+C_{2} J_{2}-\frac{F r(1-\lambda)}{\mu^{2} D} \frac{\sqrt{\frac{X(2-X)}{1-X}} J_{4}}{}$
2.5. Equations for Forces, Moments, and Displacements in Terms of U and V. Having the expressions for U and V, we
can obtain all the forces, moments, and displacements in terms of these two quantities. The forces N_{ϕ} and N_{θ} are found from Eqs. (2.7) and (2.8). The bending moments $M \phi$ and M_{θ} are obtained from the last two of Eqs. (2.5) by setting $\frac{1}{r_{1}}\left(v+\frac{d w}{d \phi}\right)$ equal to V. The only displacement that will be of interest is the relative deflection between two parallel circles defined by the angles ϕ_{1} and ϕ_{2}. This is obtained by substituting Eqs. (2.7) and (2.8) into Eq. (2.15). The equations resulting from these substitutions are
$Q_{\phi}=\frac{1}{r_{2}} U$
$N_{\phi}=\frac{1}{r_{2}}\left(\mathrm{Fr}_{2} \csc ^{2} \phi-U \operatorname{ctn} \phi\right)$
$N_{\theta}=-\frac{1}{r_{2}}\left(r F \csc ^{2} \phi+\frac{d U}{d \phi}\right)$
$M_{\phi}=-D\left(\frac{1}{r_{3}} \frac{d V}{d \phi}+\frac{V V \operatorname{ctn} \phi}{r_{2}}\right)$
$M=-D\left(\frac{y}{r_{2}} \frac{d V}{d}+\frac{V \operatorname{ctn} \phi}{r_{2}}\right)$
$\Delta=\frac{1}{E t}\left\{\int_{D_{1}}^{r_{2}\left(\frac{r_{2}}{r_{2}} \div \frac{r_{2}}{r_{2}}\right) F \csc ^{2} \phi+\left(\frac{r_{2}}{r_{2}}+V\right) \frac{d U}{d \phi}}\right.$
$\left.-\left(\frac{r_{1}}{r_{z}}+y\right) U \operatorname{ctn} \phi\right] \alpha \phi+\left[r\left(\frac{r_{2}}{r_{2}}+y\right) F \csc ^{2} \phi\right.$
$+\frac{r_{2}}{r_{2}} \cdot \frac{d U}{d \phi}-\left.\nu U \operatorname{ctn} \phi\right|_{\phi_{2}} ^{\phi_{x_{2}}}$

CHAPTER 3
 CORRUGATED PIPES

3.1. Corrugated Pipe Under Axial Ioad. Pipes with three different types of corrugation are shown in Fig. 3.1, each subjected to an axial load of $2 \pi r{ }^{2}$. The first one has V-shaped corrugations; the corrugations of the second one consists of concave circular arcs, while those of the pipe in (c) consist of a series of alternating concave and convex circular arcs. These three types of corrugations will be referred to as V-shaped corrugations, cusped corrugations, and undulating corrugations, respectively.

The dimensions of the corrugation will be defined by the symbols b, c, and h. (See Fig. 3.1.) In our further discussion we shall refer to b as the width of a corrugation, c as the length, and h as the depth of a corrugation. The thickness t of the pipe wall will be assumed to be constant over the entire pipe length. The radius r of the pipe will be considered to mean the average radius of the pipe. It will be seen that all the quantities defined above have the same meaning for all three types of corrugations.

Each of the three corrugated pipes shown in fig. 3.1 can be considered as beimg formed by combining several shells of revolution such as $A B \mathrm{O}_{\mathrm{y}}$ CDEF, If the pipe is sufficiently long, any one such shell can be analysed and considered to be typical for the entire pipe.

(a) V-Shaped Corrugations

The shells $A B C D$, CDEF, for the pipe in (a) are truncated conical shells, whereas those for (b) and (c) are ring shells. Each one of these shells is subject to an axially symmetrical load of $2 \pi \mathrm{FF}$. This load acts along the edges $A B, C D, E F, \ldots$ only, so that the shell surface can be considered to be free of any external load (the welght of the shell being neglected).

In Chapter 2, we have obtained solutions for truncated conical shells and convex ring shells, such as $A B C D$ of Fig. 3.1(a) and (c), respectively, subjected to the type of loading mentioned above. The solution for the concave ring shell, such as CDEF of Fig. 3.1(b) and (c), can be directly obtained from that for a convex ring shell, if the parameter

$$
\begin{equation*}
e=\frac{h}{r} \tag{2.1}
\end{equation*}
$$

is small and if the edge conditions are the same. For if C is small, the radius of curvature r_{z} is approximately the same for corresponding points of the two shells (see Fig. 3.2). However, the curvature of the meridian for the convex and concave shells is of the opposite kind. Hence, the force N_{θ} and moments M_{ϕ} and M_{θ} for the two shells which arise due to this curvature will be of the same magnitude, but opposite in sign, for these two shells, whereas the force \mathbb{N}_{ϕ} wili be of the same sign and magnitude. Also since the forces and moments are of the same magnitude

$$
\begin{aligned}
r_{2} & =\csc \phi\left[r+r_{1}\left(\sin \phi-\sin \phi_{0}\right)\right] \\
& =r \csc \phi\left[1+\rho \frac{\left(\sin \phi-\sin \phi_{0}\right)}{\left(1-\sin \phi_{0}\right)}\right] \\
& \approx r \csc \phi
\end{aligned}
$$

(a) Convex Ring Shell

$$
\begin{aligned}
r_{2} & =\csc \phi\left[r-r_{1}\left(\sin \phi-\sin \phi_{0}\right)\right] \\
& =r \csc \phi\left[1-\rho \frac{\left(\sin \phi-\sin \phi_{0}\right)}{\left(1-\sin \phi_{0}\right)}\right] \\
& \approx r \csc \phi
\end{aligned}
$$

for Concave Ring Shell
Fig. 3.2. Ring Shelis
for the convex and concave ring shells, the strain energy due to the axial force of $2 m r F$ must be the same for the two. By equating the strain energy to the external work, it follows that the expansion of the shells in the direc. tion of their axes of revolution must also be the same. Thus, if P is small the solution of a convex ring shell can be directly used for a concave shell by only changing the signs of N_{θ}, M_{ϕ}, and M_{θ}. Unless otherwise stated, P will be assumed to be small in our further discussion.

In each of the three cases, it is only necessary to analyse the shell ABCD and consider it to be typical for the entire pipe length. The stresses and deflection for the conical shell can be obtained by using the general soIutions (2.19) and (2.20), while those for the ring shell can be obtained from (2.21) and (2.22). The constants appearing in these solutions can be determined from the boundary conditions at the edges $A B$ and $C D$.

Because of the restraint from adjacent shells, the rotation of the meridian at the edges $A B$ and CD of Fig. 3.2(a) and (b) must be zero. Fwhermore, there can be no component of force normal to the aris of revolution at these edges. The exprestion for the rotation of a tangent to the meridian is given by the second of Eqs. (2.6), while the component of force normal to the axis of revolution is equal to $Q_{\phi} \sin \phi-N_{\phi} \cos \phi\left(\right.$ see $F s g$: 2.2). The forces Q_{ϕ} and $N \vec{p}$ are related to the parmeter U by the first two of Eqs,
（2．23）．Thus，the boundary conditions at the edges $A B$ and $C D$ can be written as

$$
\left.\begin{array}{rl}
V & =0 \tag{a}\\
Q_{\phi} \sin \phi-\mathbb{K}_{\phi} \cos \phi=\frac{\csc \phi}{r_{2}}(U-\operatorname{Frctn} \phi) & =0
\end{array}\right\}
$$

For the pipe with the undulating corrugations it can be concluded from the antisymmetry of the deformations that there would be inflection points at the edges $A B$ and $C D$ and that the circumferential force N_{θ} ，given by the third of Eqs．（2．23），must be zero．In equation form the boundary conditions at the edges $A B$ and $C D$ are

$$
\left.\begin{array}{r}
\frac{1}{r_{1}} \frac{d V}{d \phi}=0 \tag{b}\\
N_{\theta}=-\frac{1}{r_{1}}\left(r F \csc ^{2} \phi+\frac{d U}{d \phi}\right)^{\prime}=0
\end{array}\right\}
$$

where V is the rotation of a tangent to the meridian．
With these boundary conditions the constants appear－ ing in the solutions（2．19）through（2．22）can be deter－ mined，thereby obtaining expressions for U and V for all the three cases．Substitution of these expressions into Eqs．（2．23）will finally give the forces and moments in the shell and the relative deflection Δ between the edges $A B$ and $C D$ can be found．It should be noted that Δ represents the deflection of an axially loaded corrugated pipe of length equal to the perpendicular distance between $A B$ and CD．The unit stresses in the circumferential direction and in the meridian direction（i．e．perpendicular to the
circumferential direction) can easily be obtained from the values of the forces and moments.

In the meridional direction, the unit stress in the extreme fibre is given by

$$
\begin{equation*}
\sigma_{\phi}=\frac{N_{\phi}}{t} \pm \frac{6 M_{\phi}}{t^{2}} \tag{c}
\end{equation*}
$$

In order to obtain a dimensionless quantity, we shall divide σ_{ϕ} by

$$
\begin{equation*}
\sigma=\frac{F}{t} \tag{d}
\end{equation*}
$$

Which is the stress in a plain pipe having the same thickness and mean radius as the corrugated one. The ratio σ_{ϕ} / σ will be called the meridional stress factor and will be denoted by the symbol K_{ϕ}

$$
K_{\phi}=\frac{N_{\phi}}{F} \pm \frac{6 M_{\phi}}{F t}
$$

Similarly, for the circumferential direction we have

$$
K_{\theta}=\frac{N_{\theta}}{F} \pm \frac{6 M_{\theta}}{F t}
$$

in which \mathbb{K}_{Θ} is the circumferential stress factor.
For ali practical purposes it is only necessary to know the absolute maximum value of the stresses. So in our further discussion we will take K_{ϕ} and \mathbb{K}_{θ} to mean the absolute maximum values of these two factors, i.e.

$$
\begin{equation*}
K_{\phi} \equiv\left[\left|\frac{N_{\phi}}{F}\right|+\left|\frac{6 M_{\phi}}{F t}\right|\right]_{\max } \tag{e}
\end{equation*}
$$

$$
\begin{equation*}
K_{\theta}=\left[\left|\frac{N_{\theta}}{F}\right|+\left|\frac{6 M_{\theta}}{F t}\right|\right]_{\max } \tag{f}
\end{equation*}
$$

Then in order to obtain the maximum value of the stresses in the meridional and circumferential directions in a corrugated pipe, one merely multiplies the stress in a corresponding plain pipe by the stress factors K_{ϕ} and K_{θ}, respectively.

In place of calculating the relative deflection Δ between the edges $A B$ and $C D$, it is convenient to obtain a "reduced modulus of elasticity" for a corrugated pipe, so that deflection calculations for a corrugated pipe can be made by considering the pipe to be plain but having this reduced modulus as its modulus of elasticity. The ratio of the modulus of elasticity of the pipe material to this reduced modulus will be called the modular ratio and will be denoted by the symbol N. It is evident that N is equal to the ratio of Δ for a corrugated pipe to the corresponding Δ for a plain pipe of the same major dimensions.

Use was made of the IBM 704 Computer at the M.I.T. Computation Center so obtain values of K_{ϕ}, K_{θ}, and N for all three types of corragations. It was found that these factors could be put in the following forms

$$
\begin{align*}
& K_{\phi}=1+\frac{h}{t} k_{\phi} \tag{3.1}\\
& K_{\theta}=\frac{h}{t} k_{\theta} \tag{3,2}
\end{align*}
$$

$$
\begin{equation*}
N=\cos \alpha+\frac{c h^{2}}{b t^{2}} n \tag{3.3}
\end{equation*}
$$

in which

$$
\begin{equation*}
\propto=\tan ^{-1} \frac{h}{b} \tag{3.4}
\end{equation*}
$$

and k_{ϕ}, k_{θ}, and n are, in general, functions of \propto and another parameter β, where

$$
\begin{equation*}
\beta=\sqrt{\frac{b c}{r t}} \tag{3.5}
\end{equation*}
$$

The quantities k_{ϕ}, k_{θ}, and n were calculated for values of β ranging from 0 to 5 , with α varying from 0.1 to 1.5 radians for V-shaped corrugations and from 0.05 to 0.75 radians for the circular corrugations. The value of Poisson's ratio, γ, was taken to be 0.3 in these calculations. The results of these calculations are shown in Figs. A. 1 through A. 9 in Appendix A.

Comparison of Eqs. (e) and (3.1) shows that the Value of $\left|\frac{N_{\phi}}{F}\right|$ is unity. However, this is not correct. For the V-shaped and cusped corrugations its value was $\cos \alpha$ and $\cos 2 x$, respectively, whereas for the undulating corrugations its value ranged irom 1 to 2.25 depending upon the value of α and β. But in comparison with the value of $\frac{h}{t} k_{\phi}$ this term is small, except for very shallow corrugations, i.e. for smallo, and its value then approaches that given. Hence, its value can be taken equal to unity without introducing any appreciable error in K_{ϕ}.

The term $\cos \alpha$ in Eq. (3.3) is also not correct for the circular corrugations. This term represents the effect of the meridional direct stresses N_{ϕ}. The correct value of this term is given by the expression

$$
\begin{equation*}
\frac{\alpha}{\sin 2 \alpha}+\frac{\cos 2 \alpha}{2} \tag{g}
\end{equation*}
$$

However, this expression differs from cos α only for large values of α, and the difference is maximum for semicircular corrugations (i.e. for $\alpha=\pi / 4$) when the error is less than 10%. But for large values of α, the second term of Eq. (3.3) is so large that the resulting error in N is negligible if expression (g) is approximated by $\cos \alpha$. Hence, it is permissible to make this approximation. This also makes it possible to have the expression for N of the same form for all three types of corrugations.

The parameter β given by expression (3.5) has the same significance as the parameter $1 / \lambda$ used in connection with beams on elastic foundation. ${ }^{l} \lambda$ is known as the characteristic length since it has the dimension of length, whereas β is a dimensionless quantity obtained by multiplying $\frac{1}{\lambda}$ by a quantity which has a dimension of length. In our case this quantity is $\sqrt{b c}$. In further discussion we will refer to β as the pipe characteristic, as it is the parameter which primarily infiliences the factors K_{ϕ}, K_{θ}, and N.

1 M. Hetenyi, "Beams on Elastic Foundation."

It should be mentioned that the charts shown in Appendix A are valid only when the thickness of the pipe is small in comparison with the two principal radii of curvature of the corrugations. This is so because the solutions for conical and ring shells presented in Chapter 2, on which the results of the charts are based, were obtained under these assumptions. The radius of curvature r_{1} of the meridian is infinite for V-shaped corrugations; hence, t / r_{1} is zero. For the circular corrugations

$$
r_{1} \sim \frac{h}{1-\cos 2 \alpha}
$$

and so $t(1-\cos 2 x) / \mathrm{h}$ must be small. The other radius of curvature r_{z} is proportional to the radius of the pipe r, so that t / r must also be small.

The only other assumption made is that the ratio $\ell=h / r$ is small. In order to study the effect of ρ, the modular ratio N was calculated for V-shaped corrugations, for $\rho=0.05,0.10$, and 0.15 and $\alpha=0.7$. The results of these calculations are shown in Fig. A.3, so that they could, be compared with the curve for small values of ρ. It is seen that there is considerable difference between the curves when β is small. But when β is small, ρ must also be small in order that the ratio t / r be small; for

$$
\beta^{2}=\frac{b c}{r t}=\frac{h^{2}}{r t} \operatorname{ctn} \alpha \csc \alpha=\rho^{2} \frac{r}{t} \operatorname{ctn} \alpha \csc \alpha
$$

For $\alpha=0.7$, we have

$$
\frac{t}{r}=1.843 \frac{\rho^{2}}{\beta^{2}}
$$

from which it is seen that ρ must be small when β is so_{s} in order that the ratio t / r be small. When β is larger, the variation between the values of N for the various values of ρ is small. The same general trend was found for the stress factors, K_{ϕ} and K_{θ}.

A similar investigation was carried out for the cusped corrugation which revealed the same results as for the V-shaped corrugations. For the undulating corrugations, however, the effect of P on the results could not be studied as the boundary conditions (b) are correct only when ρ is small. Since these types of corrugations behave similar to the V-shaped and cusped corrugations, it would be reasonable to assume that the factors $K_{\phi}, K_{\theta,}$ and N would also be insensitive to ρ as long as the ratio t / r is small.

Donnell ${ }^{2}$ has studisd the flexibility of pipes having V-shaped and undulating semi-circular corrugations. He considered a longitudinal strip of the pipe as being supported on an elastic foundation and by using the method of internal energy he obtained expressions for the modular ratio for the two types of corrugations. In terms of the notation of this chapter, his results are
2 E. H. Donnell, "The Flexibility of Corrugated Pipes Under Longitudinal Forces and Bending, "Trans. Am.Soc. Mech. Eng., APM-54-7-69, 1932.

V-shaped Corrugations:

$$
\begin{equation*}
N=1+\frac{c h^{2}}{b t^{2}}\left[1+0.125 \beta^{4}=0.00219 \beta^{6}\right]^{-1} \tag{h}
\end{equation*}
$$

Semi-Circular Corrugations:

$$
N=1+1.5 \frac{c h^{2}}{b t^{2}}\left[1+0.0625 \beta^{4}-0.00435 \beta^{5.2}\right]^{-1}
$$

In obtaining these expressions, Donnell also assumed that the depth of the corrugations is small compared with the radius of the pipe, and that the wall thickness is fairly small compared with the radius of curvature of the corrugations. It is seen that these two expressions are of the same form as the expression (3.3). The first term in the expressions (h) represents the effect of meridional axial stresses. As was shown earlier, it is approximately equal to $\cos \alpha$, though the resulting error in N is negligible if the effect of axial stresses is approximated by unity. In deriving the expressions (h) Donnell used $E t^{3} / 12$ as the flexural rigidity of the strip. Since any change in the shape of the cross section of the strip is prevented by the adjacent strips in a manner similar to that in plates, $\left.\mathrm{Et}^{3} / 12(1-)^{2}\right)$ should be used for its flexural rigidity. With these two changes, the above expressions for N become V-shaped Corrugations:

$$
\begin{equation*}
N=\cos \alpha+\frac{c h^{2}}{b t^{2}}\left[\left(1-\nu^{2}\right)\left\{1+0.125\left(1-\nu^{2}\right) \beta^{4}-0.00219\left(1-\nu^{2}\right)^{1.5} \beta^{6}\right\}^{-1}\right] \tag{3.6}
\end{equation*}
$$

Semi-Circular Corrugations:
$N=\cos \alpha+\frac{c h^{2}}{b t^{2}}\left[1.5\left(1-\nu^{2}\right)\left\{I+0.0625\left(1-v^{2}\right) \beta^{4}-0.00435\left(1-v^{2}\right)^{1.3} \beta^{5.2}\right\}^{-1}\right]$
N was calculated from these two expressions for $\nu=0.3$ and for values of β ranging from 0 to 5. The rec suits of these calculations are shown in Figs. A. 3 and A.9, so that they could be compared wi th the results obtained by using the solution for conical and ring shells. It is seen that the agreement between the results of the two methods is very good.
3.2. Explicit Solution for an Axially Loaded pipe with Veshaped Corrugations. In order to show that the factors K_{ϕ}, K_{θ}, and N can also be used for the case of a corvusgated pipe under bending, an explicit solution for a pipe with V-shaped corrugations will be developed. This solus tion will be expressed very simply in terms of trigonometrice and hyperbolic functions instead of in terms of power series.

In the previous article it was shown that the solustimon obtained for small values of P gives good results also when P is relatively large, as long as the wall thickness is small compared to the radius of the pipe. This would make it reasonable to assume ℓ is zero. Under this assumpo tron Eq. (2.18) becomes

$$
\begin{equation*}
\frac{d^{2} U_{1}}{d z^{2}}+i a U_{1}=0 \tag{a}
\end{equation*}
$$

This represents the first of Eqs. (2.17). It is convenient to shift the origin of z from the edge $A B$ (see Fig. 2.4) to the edge 00^{\prime} midway between the edges $A B$ and $C D$. For this purpose we shall introduce a new variable y, where

$$
\begin{equation*}
y=z-\frac{1}{2} \tag{3.8}
\end{equation*}
$$

With this change, Eq. (a) bacomes

$$
\begin{equation*}
\frac{d^{2} U_{1}}{d y^{2}}+i a U_{1}=0 \tag{3.9}
\end{equation*}
$$

This is an ordinary linear differential equation the solution of which is

$$
\begin{equation*}
\mathrm{U}_{2}=\mathrm{c}_{2} \mathrm{e}^{\eta}(\cos \eta+i \sin \eta)+c_{3} e^{-\eta}(\cos \eta-i \sin \eta) \tag{b}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=y \sqrt{\frac{9}{2}}=7 \gamma \tag{3.10}
\end{equation*}
$$

As before, the complete solution of Eq. (2.17) is then

$$
\begin{equation*}
U=\left(c_{2} e^{\eta}+c_{3} e^{-\eta}\right) \sin \eta+\left(c_{2} e^{\eta}+c_{4} e^{-\eta}\right) \cos \eta \tag{c}
\end{equation*}
$$

If the depth of the corrugation is small relative to the radius of the pipe, then the point 0 will be a point of inflection, so that the shear forces Q_{ϕ} at $\pm \eta$ will be equal. If we use this condition and observe that

$$
Q_{\phi} \equiv \frac{1}{r_{2}} U=\frac{\cos \alpha}{r_{0}} U \approx \frac{\operatorname{coss} s}{r} U
$$

we have, from (c), that

$$
\begin{aligned}
\left(c_{1} e^{\eta}+c_{3} e^{-\eta}\right) \sin \eta+\left(c_{2} e^{\eta}+c_{4} e^{-\eta}\right)_{\cos \eta}= & \left(c_{1} e^{-\eta}+c_{3} e^{\eta}\right)(-\sin \eta) \\
& +\left(c_{2} e^{-\eta}+c_{1_{3}} e^{\eta}\right) \cos \eta
\end{aligned}
$$

Transposing and collecting like terms gives $\left(C_{2}+C_{3}\right)\left(e^{\eta}+e^{-\eta}\right) \sin \eta+\left(C_{2}-C_{4}\right)\left(e^{\eta}-e^{-\eta}\right) \cos \eta=0$ This can be satisfied for all values of η only if $C_{1}=-C_{3}$ and $C_{2}=C_{4}$ 。

Then solution (c) becomes

$$
U=c_{2}\left(e^{\eta}-e^{-\eta}\right) \sin \eta+c_{3}\left(e^{\eta}+e^{-\eta}\right) \cos \eta
$$

Using the relationships

$$
\frac{e^{\eta}-e^{-\eta}}{2}=\sinh \eta ; \frac{e^{\eta}+e^{-\eta}}{2}=\cosh \eta
$$

and introducing the notations

$$
f_{1}=\sin \eta \sinh \eta, f_{2}=\cos \eta \cosh \eta
$$

finally gives

$$
\begin{equation*}
U=C_{1} f_{1}+C_{3} f_{2} \tag{3.11}
\end{equation*}
$$

For suture reference, we shall tabulate f_{1} and $f_{?}$ and their first and second derivatives with respect to η.

$$
\begin{align*}
& f_{z}=\sin \eta \sinh \eta \quad ; f_{z}=\cos \eta \cosh \eta \\
& f_{2}^{\prime} \equiv \frac{d f_{1}}{d \eta}=\sin \eta \cosh \eta+\cos \eta \sinh \eta ; \\
& f_{2}^{\prime} \equiv \frac{d f_{a}}{d \eta}=\cos \eta \sinh \eta-\sin \eta \cosh \eta \tag{3.22}\\
& f_{1}^{\prime \prime} \equiv \frac{d^{2} f_{1}}{d \eta^{2}}=2 f_{z} \\
& \text {; } f_{z}^{\prime \prime} \equiv \frac{\alpha^{2} f_{z}}{d \eta^{2}}=-2 f_{3} \\
& \text { Using expressions (c) and (d) of Chapter } 2 \text { in the } \\
& \text { first of Es. (2.11) we obtain for } V \text {, the expression } \\
& V=\frac{1}{E t}\left[\frac{\operatorname{arsec} \alpha_{1}}{c^{2}}\left(C_{1} f_{z}-C_{2} f_{1}\right)+\sqrt{\frac{a}{2}} \frac{h}{c^{2} \cos \alpha}\left(C_{1} f_{1}^{8}+C_{2} f_{z}^{q}\right)\right. \\
& \left.-\frac{\sin \alpha \tan \alpha}{r}\left(C_{1} f_{2}+C_{2} f_{2}\right)+F \tan \alpha \cdot \sec \alpha\right]
\end{align*}
$$

This can also be written as

$$
\begin{aligned}
V= & \frac{a r}{E t b c}\left[\left(C_{1} f_{2}-C_{2} f_{1}\right)+\frac{e}{\sqrt{2 a}}\left(C_{1} f_{1}^{\prime}+C_{2} f_{z}^{\ell}\right)\right. \\
& \left.-\frac{\rho^{2}}{a}\left(C_{1} f_{1}+C_{2} f_{z}\right)+\frac{\rho c^{2}}{a b} F\right]
\end{aligned}
$$

If p is small, the last three terms in the above expression are small compared with the first term, and could thus be neglected. This then gives for V

$$
V=\frac{a r}{E t b c}\left(C_{2} f_{z}-C_{2} f_{2}\right)
$$

The constants C_{3} and C_{2} can be determined from the boundary conditions (a) of $A t .3 .1$ at the edges $\left(y= \pm \frac{1}{2}\right)$:

$$
\left.\begin{array}{rl}
V & =0 \\
\frac{1}{r}(U-F r \tan \alpha) & =0
\end{array}\right\} \quad \text { at } y= \pm \frac{1}{2}
$$

which gives for C_{1} and C_{2} the expressions:

$$
\begin{aligned}
& C_{1}=\operatorname{Fr} \tan \alpha \frac{f_{1}(\sqrt{a / 8})}{f_{1}^{2}(\sqrt{a / 8})+f_{2}^{2}(\sqrt{a / 8})} \\
& C_{2}=\operatorname{Fr} \tan \alpha \frac{f_{2}(\sqrt{a / 8})}{f_{2}^{2}(\sqrt{a / 8})+f_{2}^{2}(\sqrt{a / 8})}
\end{aligned}
$$

From Eqs. (2.23) the expressions for the forces, moments, and displacements can easily be found. If P is neglected, these expressions are

$$
\begin{align*}
& Q_{\phi}=F \sin \alpha\left(A f_{1}+B f_{2}\right) \\
& N_{\phi}=F \sec \alpha\left[I-\sin ^{2} \alpha\left(A f_{1}+B f_{2}\right)\right] \\
& N_{\theta}=-\frac{\sqrt{3\left(1-V^{2}\right)}}{\gamma} \frac{F h}{t}\left(A f_{2}^{\prime}+B f_{2}^{\prime}\right) \tag{3.13}\\
& M_{\phi}=-\frac{F h}{2 \gamma}\left(A f_{2}^{1}-B f_{2}^{\prime}\right) \\
& M_{\theta}=Y M_{\phi}=-\frac{Y F h}{2 \gamma}\left(A f_{2}^{\prime}-B f_{2}^{i}\right) \\
& \Delta=\frac{F b}{E t}\left[\cos \alpha+\frac{6\left(1-\nu^{3}\right)}{\gamma^{3}} \frac{c h^{2}}{b t^{2}}\left(\frac{\sinh \gamma-\sin \gamma}{\cosh \gamma+\cos \gamma}\right]\right. \tag{3.14}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma=\sqrt{\frac{a}{2}}=\beta^{4} \sqrt{3\left(1-\gamma^{2}\right)}=\sqrt{3\left(1-y^{2}\right) \frac{b^{2} c^{2}}{r^{2} t^{2}}} \tag{d}
\end{equation*}
$$

and

$$
\begin{equation*}
A=\frac{\sqrt{(\cosh \gamma-1)(1-\cos \gamma)}}{\cosh \gamma+\cos \gamma} ; B=\frac{\sqrt{(\cosh \gamma+1)(\cos \gamma+1)}}{\cosh \gamma+\cos \gamma} \tag{e}
\end{equation*}
$$

The expressions for the displacements v and w will be needed in the next article. They can be obtained very simply by substituting the above expressions for N_{ϕ} and N_{θ} in Eqs. (e) and (f) of Art. 2.2. These expressions, for small values of ρ, are

$$
\left.\begin{array}{l}
\nabla=\frac{F D}{E t} y \tag{3.15}\\
w=\frac{3\left(1-y^{2}\right)}{\gamma^{3}} \frac{F c^{2} h}{E t^{3}}\left(A f_{z}^{\prime}+B f_{z}^{j}\right)
\end{array}\right\}
$$

The constant of integration appearing in (e) was taken to be zero so that the displacement v would be zero at $y=0$.

The stress factors K_{ϕ} and K_{θ} and the modular ratio N can readily be calculated from Eqs. (3.13) and (3.14). Calculations show that for values of β ranging from 0 to 5s the absolute maximum values of N_{θ}, M_{ϕ}, and M_{θ} occur at the crests of the corrugations, that is, at the edges $A B$ and CD, Hence, in calculating expressions for K_{ϕ} and K_{θ}, the stresses should be ealculated at these edges, i.e. at $y= \pm \frac{1}{2}$. The expressions for K_{ϕ}, K_{θ}, and N are
$K_{\phi}=1+\frac{3 h}{\gamma t} \frac{\sinh \gamma+\sin \gamma}{\cosh \gamma+\cos \gamma}$
$K_{\theta}=\frac{h}{t}\left[\frac{\sqrt{3\left(1-\gamma^{2}\right)}(\sinh \gamma-\sin \gamma)+3 \gamma(\sinh \gamma+\sin \gamma)}{\gamma(\cosh \gamma+\cos \gamma)}\right]$

$$
\begin{equation*}
\mathrm{N}=\cos \alpha+\frac{6\left(1-\gamma^{2}\right)}{\gamma^{3}} \frac{\operatorname{ch}^{2}}{b t^{2}}\left(\frac{\sinh \gamma-\sin \gamma}{\cosh \gamma+\cos \gamma}\right) \tag{3.18}
\end{equation*}
$$

These expressions were calculated for various values of γ ranging from 0 to 6.5 with $\mathcal{V}=0.3$. When the results of these calculations were plotted it was found that the curves coincided almost exactly with the corresponding curves shown in Figs. A.I to A.3. It should be noted that γ is related to the pipe characteristic β by expression (d).
3.3. Corrugated Pipe Under Pure Bending, The stress diso tribution in a corrugated pipe bent by couples acting at its ends is not symmetrical about the pipe axis as was the case for an axial load. The circumferential displacement u_{9} the lateral shear forces $N_{\phi \theta}=N_{\theta \phi}$, the torsional moments $M_{\phi \theta}=-M_{\theta \phi}$, and the radial shear force Q_{θ} will no longer be zero. Hence, the equilibrium equations (2.1) and the stress-displacement relationships given by Eqs. (2.2) must be used instead of the Eqs. (2.4) and (2.5).

When expressions (2.2) are substituted into Eqs. (2.1), a system of fisve simultaneous partial differential equations results, two of which are of the third order. The solution of this system of equations can be obtained, if at all, with only the greacest of difficulty. However, it is possible to obtain the solution for the case of V-shaped corrugations by making use of the solution (3.2.3)
obtained in the previous article for an axially loaded pipe.

Before doing this, it is helpful to rewrite Eqs. (2.1) and (2.2) for the special case of a conical shell such as ABCD of Fig. 3.1(a). With the notation of Art. 3.2, the equilibrium equations (2.1) become

$$
\begin{align*}
& \frac{1}{c} \frac{\partial}{\partial y}\left(N_{\phi} r_{0}\right)-N_{\theta} \sin \alpha+\frac{\partial N_{\theta \phi}}{\partial \theta}=0 \\
& \frac{1}{c} \frac{\partial}{\partial y}\left(N_{\phi \theta} r_{0}\right)+N_{\theta \phi} \sin \alpha+\frac{\partial N_{\theta}}{\partial \theta}-Q_{\theta} \cos \alpha=0 \\
& \frac{1}{c} \frac{\partial}{\partial y}\left(Q_{\phi} r_{0}\right)+N_{\theta} \cos \alpha+\frac{\partial Q_{\theta}}{\partial \theta}=0 \tag{3.19}\\
& \frac{1}{c} \frac{\partial}{\partial y}\left(M_{\phi} r_{0}\right)-M_{\theta} \sin \alpha-\frac{\partial M_{\theta \phi}}{\partial \theta}-Q_{\phi} r_{0}=0 \\
& \frac{1}{c} \frac{\partial}{\partial y}\left(M_{\phi \theta} r_{0}\right)-M_{\theta \phi} \sin \alpha+\frac{\partial M_{\theta}}{\partial \theta}-Q_{\theta} r_{0}=0
\end{align*}
$$

The stress-displacement relationships (2.2) for a conical shell become
$N_{\phi}=\frac{E t}{1-y^{3}}\left[\frac{1}{c} \frac{\partial v}{\partial y}+\frac{1}{r_{0}}\left(\frac{\partial u}{\partial \theta}+v \sin \alpha-w \cos \alpha\right)\right]$
$N_{\partial}=\frac{\partial v}{1-\nu^{2}}\left[\frac{1}{r_{0}}\left(\frac{\partial u}{\partial \omega}+v \sin \alpha-\omega \cos \alpha\right)+\frac{\nu}{c} \frac{\partial v}{\partial y}\right]$
$N_{\phi \theta}=N_{\theta \phi}=\frac{E t}{2(1+y)}\left(\frac{1}{\theta} \frac{\partial u}{\partial y}+\frac{1}{r_{0}} \frac{\partial y}{\partial \theta}-\frac{u}{r_{0}} \sin \alpha\right)$
$M_{\phi}=-D\left[\frac{1}{c^{3}} \frac{\partial^{2} w}{\partial y^{2}}+\frac{y}{r_{0}}\left(\frac{1}{c} \frac{\partial w}{\partial y}=\alpha \alpha+\frac{1}{r_{0}} \frac{\partial^{2} w}{\partial \theta^{2}}+\frac{I}{r_{0}} \frac{\partial u}{\partial \theta} \cos \alpha x\right)\right]$
$M_{\Theta}=-\mathbb{D}\left[\frac{1}{r_{0}}\left(\frac{1}{c} \frac{\partial w}{\partial y} \sin \alpha+\frac{1}{r_{0}} \frac{\partial^{2} W}{\partial \theta^{2}}+\frac{1}{r_{0}} \frac{\partial u}{\partial \theta} \cos (x)+\frac{\nu}{c^{x}} \frac{\partial^{2} w}{\partial y^{8}}\right]\right.$
$M_{\phi \theta}=-M_{\theta \phi}=D(1-v)\left[\frac{1}{0} \frac{\partial}{\partial y}\left(\frac{1}{r_{0}} \frac{\partial w}{\partial \theta}+\frac{u}{r_{0}}\right.\right.$ cosec) $]$

A pipe with couples $\pi r^{2} F_{1}$ acting at its ends is shown in Fig. 3.3. Again here it is necessary to consider only the element $A B C D$. The boundary conditions at the edges are the same as those for a corrugated pipe under an axial load, namely, that the rotation of the tangent to the meridian at the edges must be zero and that there can be no component of force parallel to the edges.

From equilibrium, the resultant of the forces parallel to the pipe axis must be equal to the applied couple $\pi r^{2} F_{2}$. An assumption as to the distribution of these forces must be made in order to find their values. In a plain pipe, these forces vary linearly across any cross section. It seems reasonable to assume that the same is true for a corrugated pipe too. Under this assumption, the longitudinal force at any point is equal to $F_{2} \sin \theta$, where θ is the angle measured in the anti-clockwise direction from the neutral axis of the pipe. The corresponding force for a pipe under axial load of $2 \pi \mathrm{rF}$ is constant and equal to F. This suggests that the forces Q Q, N_{ϕ}, and N_{θ}, the moments M_{ϕ} and M_{θ}, and the displacements v and w for the case of bending can be taken to be given also by Eqs. (3.13) and (3.15), if F is taken to be equal to $\mathrm{F}_{1} \sin \theta$. If this is assumed, then the expression for the above stresses and displacements for the case of bending are

Fig. 3.3. Bending of a Coxrugated Pipe

$$
\left.\begin{array}{l}
Q_{\phi}=\sin \alpha\left(A f_{1}+B f_{z}\right) F_{1} \sin \theta \\
N_{\phi}=\sec \alpha\left[1-\sin ^{2} \alpha\left(A f_{1}+B f_{2}\right)\right] F_{1} \sin \theta \\
N_{\theta}=-\frac{\sqrt{3\left(1-\nu^{2}\right)}}{\gamma} \frac{h}{t}\left(A f_{1}^{\prime}+B f_{2}^{8}\right) F_{1} \sin \theta \\
M_{\phi}=-\frac{h}{2 \gamma}\left(A f_{2}^{1}-B f_{1}^{\prime}\right) F_{1} \sin \theta \\
M_{\theta}=-\frac{\gamma h}{2 \gamma}\left(A f_{2}^{\prime}-B f_{1}^{\prime}\right) F_{I} \sin \theta \\
\nabla=\frac{b y}{E t} F_{1} \sin \theta \tag{3.22}\\
w=\frac{3\left(1-\nu^{2}\right)}{\gamma^{3}} \frac{c^{2} h}{E t^{3}}\left(A f_{1}^{\prime}+B f_{z}^{i}\right) F_{1} \sin \theta
\end{array}\right\}
$$

where all the quantities appearing on the right hand side of these equations are defined in Art. 3.3.

In addition to these stresses and displacements,
there would also be lateral shear forces, $\mathbb{N}_{\phi \theta}=N_{\theta \phi}$, torsional moments $M_{\phi \theta}=-M_{\theta \phi}$, radial shear force Q_{θ} and the circumferential displacement u. We shall first attempt to obtain the torsional moments. For this purpose, the diso placement u will be assumed to be small relative to the partiail derivative of the dispiacement w with respect to θ. It will be shown leter that this assumption is actually correct. Then by substitating the expression for wiven above into the last of Eqs. (3.20), we obtain
$M_{\phi \theta}=-M_{\theta \phi}=\frac{(1-\nu)}{4} \frac{c h}{\gamma^{3}} \frac{\partial}{\partial y}\left[\frac{1}{r_{0}}\left(A f_{2}^{i}+B f_{z}^{i}\right)\right] F_{I} \cos \theta$

From Eq. (3.10)

$$
\begin{equation*}
\frac{\partial}{\partial y}=\frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial y}=\gamma \frac{\partial}{\partial \eta} \tag{808}
\end{equation*}
$$

The radius r_{0} of the parallel circle is

$$
r_{0}=r(I+e y)
$$

When e is small,

$$
\begin{equation*}
r_{0} \approx r \tag{c}
\end{equation*}
$$

Using (b) and (c) in (a) and noting that the funce tions f_{1} and f_{2} and their derivatives are given by Eq. (3.12), we get

$$
M_{\phi \theta}=-M_{\theta \phi}=\frac{(I-V)}{2} \frac{c h}{\gamma^{2}} \frac{1}{r}\left(A f_{2}-B f_{2}\right) F_{2} \cos \theta
$$

Using expression (d) of the previous article for 0 , we finally obtain the expression

$$
\begin{equation*}
M_{\phi \theta}=-M_{\theta \phi}=\frac{(1-\nu) t \tan \alpha}{2 \sqrt{3\left(1-\nu^{2}\right)}}\left(A f_{a}-B f_{2}\right) F_{2} \cos \theta \tag{d}
\end{equation*}
$$

The expression for Q_{e} can be found by substituting expressions for M_{θ} and $M_{\phi \theta}$ given by Eqs. (3.21) and (d) in the last of the equilibrium equations (3.19). In the lato ter equation, the term Mosin α is small in comparison with the other terms for small values of ρ, and can thus be neglected. Also, r_{0} is approximately equal to r. This gives the expression
$Q_{\theta}=\left[\frac{(1-\nu)}{2 \sqrt{3\left(1-\nu^{2}\right)}} \frac{\gamma t \tan \alpha}{c}-\frac{\nu h}{\gamma r}\right]\left(A P_{8}^{8}-B f_{1}^{1}\right) F_{1} \cos \theta$
for Q_{θ}. Simplifying this gives

$$
Q_{\theta}=\frac{1-3 \nu}{2} \frac{e}{\gamma}\left(A f_{z}^{\prime}-B f_{1}^{\prime}\right) P_{z} \cos \theta
$$

The maximum value of this expression is found to be $0.5(1-3 \nu) \rho F_{I} \cos \theta$, which is small enough to be neglected, so that

$$
\begin{equation*}
Q_{\theta}=0 \tag{e}
\end{equation*}
$$

The expression for the lateral shear forces. $\mathbb{N}_{\phi \theta}=N_{\theta \phi}$ can be obtained in a similar manner by substio tuting the known expressions for N_{θ} and Q_{\ominus} in the second of the equilibrium Eqs. (3.19). This expression, for small values of ρ, is

$$
\left.\begin{array}{rl}
N_{\phi \theta} & =N_{\theta \phi}=\tan \alpha\left(A f_{1}+B f_{2}\right) F_{2} \cos \theta \\
& \text { Grouping expressions (d), (e), and (f), we have } \\
N_{\phi \theta} & =N_{\theta \phi}=\tan \alpha\left(A f_{1}+B f_{z}\right) F_{2} \cos \theta \\
M_{\phi \theta} & =-M_{G \phi}=\frac{(1-\nu) t \tan \alpha}{2 \sqrt{3\left(1-\nu^{2}\right)}}\left(A f_{2}-B f_{2}\right) F_{2} \cos \theta \\
Q_{\theta} & =0
\end{array}\right\} \text { (3.23) }
$$

The displacement u can now be obtained from the third of the stress-displacement relationships (3.20), by using the expression for v as given by Eq. (3.22) and the above expression for $N_{\phi \theta}$. This gives
$\tan \alpha\left(\mathrm{Af}_{1}+\mathrm{Bf}_{2}\right) \mathrm{F}_{1} \cos \theta \approx \frac{\mathrm{Et}}{2(1+\nu)}\left(\frac{\gamma}{\mathrm{c}} \frac{\partial \mathrm{u}}{\partial \eta} \frac{\mathrm{ey}}{\mathrm{Et} \sin \alpha} \mathrm{F}_{2} \cos \theta-\frac{\mathrm{u}}{\mathrm{c}} e\right)$
The last two terms are small in comparison with the first, and can therefore be neglected, giving for u the expression

$$
\begin{equation*}
u=-\frac{2(I+\gamma)}{E t} \frac{c h}{b \gamma}\left(A f_{z}^{1}-B f_{2}^{i}\right) F_{1} \cos \theta \tag{3.24}
\end{equation*}
$$

The ratio of u to $\frac{\partial w}{\partial \theta}$ is found to be

$$
\frac{u}{\partial w / \partial \theta}=\left[-\frac{2(1+\nu)}{\sqrt{3\left(1-\nu^{2}\right)}} \frac{\left(A f_{2}^{1}-B f_{i}^{0}\right)}{\left(A f_{I}^{1}+B f_{z}^{p}\right)}\right] \frac{t}{r}
$$

The ratio t / r is generally very small, so that the assumption made earlier that u is small relative to $\frac{\partial w}{\partial \theta}$ is correct. It can be checked that the solution represented by Eqs. (3.21) through (3.24) satisfies bo th the equilibrium equations (3.19) as well as the stress-displacements relationships (3.20) for small values of ℓ. This is thus the correct solution for the pure bending of a pipe with V-shaped corrugations as long as the ratio ρ is small.

Calculations show that the unit shear stresses due to the torsional moments and lateral shear forces given by Eqs. (3.23) are small relative to the direct stresses caused by the bending moments and direct forces. Hence only the latter need be considered in valculating the maximum stresses in the pipe.

The meridional stress, σ_{ϕ}, is

$$
\sigma_{\phi}=\frac{N_{\phi}}{t} \pm \frac{6 M_{\phi}}{t^{2}}
$$

The stress in a plain pipe due to a moment of $\pi r^{2} F_{1}$ is

$$
\sigma=\frac{F_{1}}{t} \sin \theta
$$

For any given angle θ, σ_{ϕ} is maximum (or minimum) at the crest of the corrugations, and its absolute value is given by

$$
\left|\sigma_{\phi}\right|_{\max }=\frac{F_{1} \cos \alpha \sin \theta}{t}+\frac{3 h}{\gamma t^{2}} F_{2} \sin \theta \frac{\sinh \gamma+\sin \gamma}{\cosh \gamma+\cos \gamma}
$$

Defining the meridional stress factor $K \phi$ as the ratio of $\left|\sigma_{\phi}\right|_{\max }$ to σ, we find that

$$
K_{\phi}=\cos \alpha+\frac{3 h}{\gamma t} \frac{\sinh \gamma+\sin \gamma}{\cosh \gamma+\cos \gamma}
$$

For reasons given in Art. 3.2, the term $\cos \alpha$ can be replaced by unity so that

$$
K_{\phi}=I+\frac{3 h}{t} \frac{\sinh \gamma+\sin \gamma}{\cosh \gamma+\cos \gamma}
$$

This expression is exactly the same as the expression given by (3.16) for a pipe under an axial load. Similarly, it can be shown that the circumferential stress factor K_{θ} for the case of bending is the same as that for axial load as given by (3.17).

It can also be shown that the "reduced" modulus of elasticity to be used for calcuiating the bending deflections of the pipe is the same as that used in calculating
the axial deflections. To show this we need to calculate the relative deflection Δ between the edges $A B$ and $C D$ [see Fig. 3.3(d)]. From the figure it is seen that

$$
\frac{1}{2} \Delta=\left[\begin{array}{ll}
v \cos \alpha+w \sin \alpha
\end{array}\right] y=1 / 2
$$

The angle of rotation $\Delta d y$ between the edges $A B$ and $C D$ is

$$
\begin{aligned}
\Delta d y & =\frac{\Delta}{r \sin \theta}=2[V \cos \alpha+w \sin \alpha] y=1 / 2 \\
& =\left[\frac{b \cos \alpha F_{1}}{E \operatorname{tr}}+\frac{6\left(1-\nu^{2}\right)}{\gamma} \frac{\operatorname{ch}^{2} F_{2}}{E t^{3} r}\left(\frac{\sinh \gamma-\sin \gamma}{\cosh \gamma+\cos \gamma}\right)\right]
\end{aligned}
$$

The corresponding angle of rotation for a plain pipe is

$$
\Delta d Y_{0}=\frac{F_{1} b}{E t r}
$$

The bending deflections are proportional to these rotations, so that if N is defined as the ratio of the bending deflection for a corrugated pipe to the corresponding deflection Por a plain pipe of the same major dimensions, we have

$$
N=\cos \alpha+\frac{6\left(1-\gamma^{2}\right)}{\gamma^{3}} \frac{c^{2}}{b t^{2}}\left(\frac{\sinh \gamma-\sin \gamma}{\cosh \gamma+\cos \gamma}\right)
$$

which is also seen to be the same as that given by (3.18). N can as well be thought of as the modular ratio, i.e. the ratio between the actual modulus of elasticity of the pipe material and the "reduced" moculus. The bending deflections of a corrugated pipe can then be aasily computed by considering the pipe to be plain but having this reduced modulus as its modulus of elasticity.

It has been shown above that the stress factors K_{ϕ} and K_{θ} and the modular ratio N for a pipe with $V a s h a p e d$ corrugations are the same for bending as for axial compression (or extension) of the pipe. There is no simple way of showing that this is so for pipes with cusped and undulating circular corrugations. It will be assumed that this is true also for these types of corrugations since the only difference between these and V-shaped corrugations is that of geometry.
3.4. Corrugated Pipe Under Bending Moment and Transverse Shear Forces. We have seen that a corrugated pipe under a bending moment or an axial force is more flexible then a plain pipe. This is so because the longitudinal forces due to an axial force and moment are perpendicular to the cross sections of the pipe and thus create bending of the corrugations. However, transverse shear forces being in the plane of the cross sections do not create such bending of the corrugations, so that one would expect that the effect of transverse shear forces is smaji for corrugated pipes. It can be shown that this is actually so.

For this purpose we shall inveatigate the effect of shear forces on a pipe with V-shaped corrugations, although the discussion is equally applicable to pipes with cusped and alternating circular corrugations. One of the conical shells forming the pipe is shown in Fig. 3.4. The length
b of this shell can be assumed to be small enough so that it can be considered to be an elemental length. Transverse shear forces S are shown acting on the edges $A B$ and $C D$. The bending moment on the edge $A B$ is M and this, due to the shear forces S, increases to $M+d M$ on $C D$. From equilib $=$ rium, we have

$$
\begin{equation*}
d M=b S \tag{a}
\end{equation*}
$$

We shall obtain the distribution of the shearing stresses ovar the pipe cross section by a method similar to that used for ordinary beams. It was shown in the previous article that the longitudinal forces vary linearly over any cross section as shown in Fig. 3.4 . On the edge $A B$, they are given by

$$
\begin{equation*}
F=\frac{M \sin \theta}{\pi r_{0}^{2}} \tag{b}
\end{equation*}
$$

while on the edge CD we have

$$
\begin{equation*}
F+d F=\frac{(M+d M) \sin \theta}{\pi\left(r_{0}+d r_{0}\right)^{2}} \tag{c}
\end{equation*}
$$

Consider the squilibrium of the element mAnqCp. On the side man the total furce acting in the direction of the pipe axis is

$$
\int_{\theta}^{\pi-\theta} F_{0} d \theta
$$

which, by making use of (b), becomes

Fig. 3.4. Shear Forces and Bending Moments on an Element of Pipe

Fig. 3.5. Corrugated Pipe Tested by Cope and Wert

$$
\begin{equation*}
\frac{2 M \cos \theta}{\pi r_{0}} \tag{d}
\end{equation*}
$$

Similarly, the total force acting on the side pCq in the direction of the pipe axis is

$$
\begin{equation*}
\frac{2(M+d M) \cos \theta}{\pi\left(r_{0}+d r_{0}\right)} \tag{e}
\end{equation*}
$$

On each of the two planes mp and nq , the force due to unit shearing stresses τ_{λ} is

$$
c_{x} t c
$$

The component of this force in the direction of the pipe axis is

$$
\tau_{l} t c \cos \alpha=\tau_{l} t b
$$

Then the total force in the direction of the pipe axis due to the unit shearing stresses τ_{l} on planes mp and nq is

$$
\begin{equation*}
2 \tau_{\lambda} t b \tag{f}
\end{equation*}
$$

The forces given in (d), (e), and (f) must be in equilibrium:

$$
2 r_{l} t b=\frac{2(M+d M) \cos \theta}{\pi\left(r_{0}+d r_{0}\right.}-\frac{2 M \cos \theta}{\pi r_{0}}
$$

If the depth h of the corpugation is small relative to the radius of the pipe, then

$$
r_{0}+d r_{0} \approx r_{0} \approx r
$$

so that the unit longitudinal shear stress is

$$
\tau_{l}=\frac{d M \cos \theta}{\pi r b t}
$$

Substituting expression (a) for $d M$ and noting that the shear stresses on any two perpendicular planes are equal, we have for the unit shear stress τ on the cross section the expression

$$
\begin{equation*}
\tau=\frac{\operatorname{scos} \theta}{\pi r t} \tag{3.25}
\end{equation*}
$$

It is seen that this is the same expression as that for a plain pipe.

It can be shown quite simply that the distribution of the shear stresses as given by expression (3.25) makes the internal strain energy of shear a minimum. To show this, let us assume that the distribution is given by the Fourier cosine series

$$
\begin{equation*}
\tau=\frac{s}{\pi r t}\left[a_{2} \cos \theta+a_{3} \cos 3 \theta+\ldots+a_{2 n+1} \cos (2 n+1) \theta+\ldots\right] \tag{g}
\end{equation*}
$$

where a_{1}, a_{3}, \ldots are zritiary coefficients. Only odd terms are considered, since, because of symmetry, $\widehat{C}=0$ at $\theta= \pm \pi / 2$. The series (s) can be made to represent any distribution by appropriately choosing the values of the coefficients.

By statics, the resultant of the shear stresses τ must equal the external shear fores S :

$$
\int_{\theta=0}^{2 \pi} \tau r t d \theta \cos \theta=s
$$

Using for τ the expression (g) and noting that

$$
\int_{0}^{2 \pi} \cos (2 n+1) \theta \cos \theta d \theta \text { is zero for } n \neq 0 \text {, we find that } a_{2}=1
$$

Then (g) becomes
$\tau=\frac{s}{\pi r t}\left[\cos \theta+a_{a} \cos 3 \theta+\ldots+a_{2 n+1} \cos (2 n+1) \theta\right]$
The strain energy of shear stored in the element $A B C D$ is

$$
\begin{equation*}
d W_{3}=\int_{\theta=0}^{2 \pi} \frac{1}{2} \frac{\gamma^{2}}{G} r \operatorname{td} \theta \cdot c \tag{i}
\end{equation*}
$$

Where G is the modulus of elasticity in shear, and τ given by (h) . For this strain energy to be a minimum, the partial derivative of (i) with respect to the coefficients $a_{2 n+1}(n=1,2, \ldots)$ nust be zero:

$$
\frac{\partial}{\partial a_{2 n+1}}\left(d w_{3}\right)=0=\frac{s^{2} s_{s e c o d x}}{\pi r t G} a_{2 n+1} \quad(n=1,2, \ldots)
$$

This can onjt be satisilied if anci is zero. Then the distribution of the shear stress as given by (h) reduces to the expression given by (3.25).

In a similar way it an be shown that the distribution of the longitudinal forcas F as given by (b) makes the strain energy of bending a minimum. The total strain energy, which is the sum of the two, is then also a minimum,

PAGES (S) MISSING FROM ORIGINAL

will be called the shear modular ratio and will be denoted by the symbol N^{\prime} :

$$
\begin{equation*}
N^{\prime}=\frac{c}{b} \tag{3.26}
\end{equation*}
$$

A similar analysis shows that the shear modular ratios for pipes with cusped and undulating circular corrugations are also given by Eq. (3.26). The dimensions b and and c for these two cases are defined in Fig. 3.I(b) and (c).

It was shown in the previous article that the de= flection of a corrugated pipe is N times that for a plain pipe. Thus, the total deflection of a corrugated pipe, subjected to both bending moment and transverse shear forces, is

$$
\begin{equation*}
\delta=N \delta_{b o}\left(1+\frac{N^{\prime}}{N} \frac{\delta_{s o}}{\delta_{b o}}\right) \tag{3.27}
\end{equation*}
$$

where $\delta_{b o}$ and $\delta_{\text {so }}$ are the bending and shearing components of the deflection of a plain pipe.

The second term in the parentheses represents the effect of deflection due to shear compared with that due to bending moment. The ratio N^{\prime} / N is unity for a plain pipe and less than one for a corrugated pipe. It is thus seen that the effect of a shearing component of the deflection on the total deflection is always less for corrugated pipes than for plain pipes, if both are of the same major
dimensions and are loaded identically. It is known that the deflection due to shearing deformation for plain pipes is only a small percentage of the total deflection, if the length of the pipe is large in comparison with its radius. Hence, it can be stated that in calculating the deflection of corrugated pipes, the effect of shearing deformation can be neglected whenever it can be done for plain pipes.

3.5. Verification of Theoretical Results with Experimental

Results. Only a few tests on corrugated pipes have been reported in the literature, and these have only attempted to find the modular ratio N. Donnell ${ }^{3}$ has tested a corrugated pipe under both an axial load and under pure moment. In his paper, Donnell does not specifically mention the shape of the corrugations. According to Hetenyi4, the pipe had undulating circular corrugations. The dimensions of the pipe were $r=5.33$ in.g $t=0.065$ in. $\% \mathrm{~b}=1.34 \mathrm{in} . \mathrm{g}$ $h=0.470$ in. $\mathrm{i} c=1.47$ in. The modular ratio N was found to be 19.9 for axal 1 od and 20.7 for the pipe under pure bending. "The theoretical value oi N for this pipe can be found by the use of Eq. (3.3) and Fig. A.9. The values of the angle α and the pipe characteristic β as obtained from the dimensions of the pipe are 0.337 radians and 2.38 , respectively, for which the vaine of n for this case is 3 L. H. Donnell, loc. cited, p. 54.
4_{M}. Hetenyi, "Beams on Elastic Foundation," p. 176.
found from Fig. A. 9 to be 0.341 . Eq. (3.3) then gives the value of 20.5 for the modular ratio N. This is seen to be in very good agreement with the experimental results. The experimental results also show that the value of the modular ratio for the corrugated pipe under bending is, within experimental limitations, the same as that for an axial load, as was assumed in Art. 3.4 .

Cope and Wert ${ }^{5}$ have tested the corrugated pipe shown in Fig. 3.5. In addition to testing this pipe under an axial load and under a pure moment, they also tested it as a cantilever loaded by a concentrated force applied at the free end. The modular ratios N for these three types of loading were found to be 6.5,5.1, and 5.2, respectively. ${ }^{6}$ However, in obtaining these values, Cope and Wert compared the corrugated pipe with the plain pipe from Which it was made. This plain pipe had a wall thickness of 0.5 in. and a mean radius of 6.75 in ., whereas these were actually 0.59 in. and 7.44 in., respectively, for the corrugated pipe (see Fig. 3.5). If the corrugated pipe is compared with a plain pipe of thickness 0.59 in. and radius of 7.44 in. then the values of N for the three types of loading mentioned above are $8.4,7.3$, and 7.4, respectively.
E. T. Cope and E.A. Wert, "Load-Deflection Relations for Large Plain, Corrugated and Creased Pipe Bends," Trans. Am.Soc.Mech.Eng., FSP-54-12-115, 1932.
6 The result for the case of axial load was obtained from the Discussion of Donnell's paper (loc.cit., p. 54.).

The corrugations of this pipe can be approximated as cusped circular corrugations. The dimensions of the corrugations are $r=7.44$ in.; $t=0.59$ in. $: b=2.15$ in. $;$ $h=1.41$ in. From these dimensions it is found that $c=$ 2.73 in., $\alpha=0.579$ radians; and $\beta=1.16$. The value of n given by Fig. A. 6 is 0.84 , which when substituted in Eq. (3.3) gives a value of 6.9 for the modular ratio. The discrepancy between theoretical and experimental results for this pipe is due perhaps to the fact that the thickness of the pipe is not small compared to the radius of curvature of the corrugations as assumed in the theoretical consideration. The radius of curvature r_{1} is

$$
r_{I}=\frac{b}{\sin 2 \propto}=2.36
$$

which gives for the ratio t / r_{1} the value of 0.25 . This is seen to be fairly large.

CHAPTER 4 CORRUGATED SHELLS
4.1. Introduction. Corrugated shelis ${ }^{1}$ which are straight in the axial direction will be considered in this chapter: the effect of curvature will be taken up in the following chapter. The behaviour of shells such as the one shown in Fig. 4.1 under snow and dead loads is very similar to that of long barrel shells. It is known that the longitudinal behaviour of long barrel shells is almost identical with the behaviour of beams with curved cross section, so that the longitudinal stresses can be determined under the assumption of a straight-iine distribution of stress. The transverse stresses can then be obtained by considering the equilibrium of an element between two cross sections an elemental length apart. This method of obtaining stresses in a barrel shell is sometimes known as the "beam method. ${ }^{2}$ It can be shown that the stresses obtained by the "beam method" are surficsently accurate if the
${ }^{1}$ For the first time we encounter a structural member which has corrugations in two directions. The shell shown in Fig. 4.1 has najor corrugations in the longitudinal direction; in addition to these corrugations, there are secondary transverse corrugations as shown in Fig. 4.1(a), which are similar to the corrugations in pipes considered in the persious chapter. In our further discussion the term corrugations will refer to the secondary transverse corrugations; in case of ambiguity, the main corrugations will be referred to as the major corrugations.
2 H. Lundgren, "Cylindrical Shells," Vol.I.

(a)

(c)

(b)

Fig. 4.I. Corrugated Sheils
transverse stresses are small relative to the longitudinal stresses. ${ }^{3}$ This is generally so for long barrel shells The major corrugations shown in Fig. 4.1(b) will be assumed to extend over a considerable length in the z-direc. tion. The complete structure is some what like a multiple barrel shell. With identical loads on all shells, each shell behaves in like manner, so that only one barrel need be investigated. The condition of continuity in the transversal direction is fulfilled by preventing the longitadinal edges A from moving horizontally and rotating. These restraints at the edges make the distortion of the cross section due to the transverse moments less than that for a single shell. The results obtained by the "beam method" are in error chiefly due to this type of distortion. Hence, it can be said that the "beam method" gives better results for a multiple barrel shell than for a single shell.

The corrugations in the shell further help to in crease the oransverse stiffness of the shell while at the same time decreasing the longitudinal stiffness. This dual effect makes the transwerse moments smaller and the longio tudinal stresses larger then those occurring in a plain shell. So the "beam method" hen appiled to corrugated Ibid.
shells will give results closer to the true values than for plain shells.

The length of the shells shown in Fig. 4.1 will be assumed to be very large in comparison with the radius r s so that, for reasons mentioned above, it can be assumed that the "beam method" gives satisfactory results.

The solutions for the corrugated shell under axial tension and pure bending will first be obtained from the corresponding solutions for a corrugated pipe. These solutions will then be used to obtain the stresses and deflec= tions for the shell under snow and dead loads.
4.2. Corrugated Shell Under Axial Tension. A shell havo ing V-shaped corrugations is shown in Fig. 4.1. The cross section ABCBA is seen to be composed of four 90° arcs each of radius r. In the diagram the radii of the arcs $A B$ and BC are designated as r_{1} and r, respectively, as it makes it convenient to refer to these arcs; it should be kept in mind that r_{I} is actually equal to r. In general, the subscript isill be used to refer to arc $A B$. The thickness t will be assumed to be constant throughout the shell, and will be assumed to be small relative to the radius r. The dimensions of the corrugations will also be assumed to be small in comparison with r.

The shape of the cross section suggests that the shell under an axial force of $2 \pi r F$ behaves like a pipe of
radius r and having the same corrugations, so that the stresses and displacement are given by Eqs. (3.13) and (3.14). However, when these equations are used, the stresses N_{θ} are found to be incompatible along the longio tudinal sections through B. To see this, let us examine the behaviour of the shell in the vicinity of B. An enlarged view of this portion of the shell is shown in Fig. 4.2. If the element HJMN is considered as part of a pipe, then the circumferential stress N_{θ} on the longitudinal section through B is given by the third of Eqs. (3.13), i.e.

$$
\begin{equation*}
N_{\Theta}=-\frac{\sqrt{3\left(1-\nu^{2}\right)}}{\gamma} \frac{F h}{t}\left[A f_{2}^{\prime}(\eta)+B f_{2}^{\prime}(\eta)\right] \tag{a}
\end{equation*}
$$

where

$$
\eta=\gamma y
$$

By considering the element HJKL as part of another pipe, N_{θ} on the longitudinal section through B is

$$
\begin{equation*}
N_{\theta 1}=-\frac{\sqrt{3\left(2-\gamma^{2}\right)}}{\gamma} \frac{\mathrm{Fh}_{1}}{t}\left[A_{2}^{\prime}\left(\eta_{1}\right)+B f_{2}^{\prime}\left(\eta_{2}\right)\right] \tag{b}
\end{equation*}
$$

where

$$
\eta_{1}=\gamma \mathrm{v}_{1}
$$

From Fig. 4.2(b) it is seen that $J_{I}=-y$, so that $\eta_{I}=-\eta$. Using this relationship in $\left(b ;\right.$ and noting that f_{1}^{\prime} and f_{z}^{\prime} as given by (3.12) are odd functions of η, we have

Fig. 4.2. Enlarged View of Cross Section of Shell

$$
\begin{equation*}
N_{\theta I}=\frac{\sqrt{3\left(1-y^{2}\right)}}{\gamma} \frac{\mathrm{Fh}_{h}}{t}\left[\mathrm{Af}_{2}^{\prime}(\eta)+B f_{2}^{\gamma}(\eta)\right] \tag{c}
\end{equation*}
$$

Examination of Eqs. (a) and (c) shows that the circumferential stresses at any point on longitudinal section through B as given by these equations, though of equal magnitude, are of opposite signs. This cannot actually occur, and so the circumferential stress along the entire longitudinal section through B must be zero. The distribution of the circumferential stresses along a longitudinal section through B, as given by either (a) or (c), is also statically equivalent to zero. By Saint-Venant's principle, the stress distribution as given by Eq. (3.13) will be sensibly changed only in the neighbourhood of the longitudinal section through B; the stresses at a distance of h. from this section will be changed by a few per cent only. If the depth of the corrugations h is small relative to the radus $r\left(o r r_{2}\right.$) then the displacement Δ for this shell is also given by Eq. (3.11), as the disturbance is spread over onty a yery mall portion of the shell cross section. Hence, in the derlection calculations the reduced modulus, equal to \mathbb{E} / \mathbb{N}, should be wed, where \mathbb{N} is given by $E q$. (3.18).

The stresses along the Longitudinal section tarough
3 may be larger than those at a :stance from it, but it is cifficult to determine their exact values. However, we
shall mainly be concerned with the bending of the shell shown in Fig. 4.1 , for which, as will be shown in the following article, the solution is given exactly by Eqs. (3.21) and (3.23). When axial forces are present, as in the case of the shell as a two-hinged arch (Chapter 6), they are always accompanied by bending moments. As will be shown in Chapter 6, the effect of the axial forces on the stresses and deflections car nearly always be neglected for the types of arches generally used. So in a practical vase, it is not necessary to determine the stress distribution along the longitudinal section through B due to an axial force.
4.3. Corrugated She 11 Under Pure Bending Moment. When the pipe solution as given by Eqs. (3.21) and (3.23) is used for the bending of the shell of Fig. 4.1 by couples $\pi r^{2} F_{1}$ at zits ends, it is found that there is complete compatibility along the longitudinal section through B. The only stresses that ocur along this section are the lateral shedr forces and torsional moments, the expressions for which are given by Eqs. (3.23). These are found to have the same value for $\pm \eta_{g}$ and hence it can be shown that they are compatible along the longitudinal section through B. The displacement expressions (3.22) are also found to give distortion of the cross section which is compatible along this section.

Thus for the case of bending of the corrugated shell, the stresses and deflections can be obtained by considering it to be a pipe of radius r and thickness t, and having the same corrugations.
4.4. Corrugated Shell Under Distributed Loading. It was shown qualitatively in Article 4.1 that the longitudinal behaviour of a corrugated shell can be approximated quite well by considering it to be a beam of curved cross section if its length is large in comparison with the radius r. From strain energy considerations it will be shown that this is so.

Consider the shell of length ℓ shown in Fig. 4.3. The shell is simply supported at its ends and is under a snow load of q_{L} per unit area of horizontal projection. By statics the external moment and shear at any cross section is given by

$$
\begin{align*}
& M=2 q_{L^{r}} l^{2} \frac{x}{l}\left(1-\frac{x}{\lambda}\right) \tag{4.1}\\
& E=2 q_{I^{\prime}} r\left(1-\frac{2 x}{l}\right) \tag{4,2}
\end{align*}
$$

In the previous article it was shown that the stress distribution in a shell due to a moment of $\pi r^{2} F_{I}$ is given by Eqs. (3.21) and (3.23). So if

$$
\begin{equation*}
F_{I}=\frac{2 q_{L} l^{2}}{\pi r} \frac{x}{l}\left(1-\frac{x}{l}\right) \tag{4.3}
\end{equation*}
$$

then the stress distribution due to the bending moment M

Fig. 4.3. Simply Supported Shell Under Show Load
is also given by Eqs. (3.21) and (3.23). When using these equations for the shell, it should be remembered that θ should be replaced by θ_{I} for the arcs $A B$.) This solution was obtained by assuming that plane sections remain plane, which is the fundamental assumption of the beam method.

The stresses at the crests of the corrugations can be obtained by multiplying the stress in a plane shell by the stress factors K_{ϕ} and K_{θ} given by Eqs。(3.16) and (3.17). The stress at any point in a plain shell is

$$
\sigma_{x}=\frac{2 q_{L} l^{2}}{\pi r t} \frac{x}{l}\left(1-\frac{x}{h}\right) \sin \theta
$$

The maximum meridional and circumferential stresses in a corrugated shell at any given θ are

$$
\left.\begin{array}{l}
\left|\sigma_{\phi}\right|=K_{\phi} \frac{2 q_{L} l^{2}}{\pi r t} \frac{x}{l}\left(1-\frac{z}{h}\right) \sin \theta \tag{4.4}\\
\left|\sigma_{\theta}\right|=K_{\theta} \frac{2 q_{L} l^{2}}{\pi r t} \frac{x}{2}\left(1-\frac{x}{l}\right) \sin \theta
\end{array}\right\}
$$

The "beam" deflections of the shell are found to be \mathbb{N} times those for a plain sheln; where N is given by Ea, (3.28). This can be taken into account by using for the deflection computations a reduced modulus of elasticity which is equal to $\frac{l}{N}$ times the E of the material.

The unit shear stress \therefore on a cross section due to the shear force S can be found $b ;$ the method similar to that used for a pipe (tricicle 3.4). The expression for Z is found to be

$$
\begin{equation*}
\tau=\frac{S \cos \theta}{\pi r t}=\frac{2 q_{L} l}{\pi t}\left(1-\frac{2 x}{l}\right) \cos \theta \tag{4.5}
\end{equation*}
$$

As in the case of pipes, the reduced modulus of shear G^{B} must be used in calculating the deflection due to shearing deformation. This is given by

$$
\begin{equation*}
G^{\prime}=\frac{b}{c} G \tag{4.6}
\end{equation*}
$$

where b and c are the width and length of a corrugation as defined in Fig. $4.2(b)$. When the l / r ratio is large, the eifect of shear on the total deflection is so small that it can safely be neglected.

The transverse stresses can be obtained by conside ering an element between two cross sections an elemental length $d x$ apart. The load acting on such an element is equal to $2 q_{L} r d x$, and this is balanced by the difference in the shear forces acting on the two faces of the element. The transverse moments and axial forces per unit length can be obtained by a method similar to that used for a multiple barrel shell. ${ }^{4}$ The expressions for these are given by

4 m. Lundgren. loc.cited, p. 83.

$$
\left.\begin{array}{l}
M_{t}=q_{L} r^{2}\left(\frac{1}{4}-\frac{8}{\pi^{2}}+\frac{2}{\pi} \sin \theta+\cos \theta-\frac{2}{\pi} \theta \cos \theta-\cos ^{2} \frac{\theta}{2}\right) \\
M_{t_{1}}=q_{L^{\prime}} r_{1}^{2}\left(\frac{1}{4}-\frac{8}{\pi^{2}}-\frac{2}{\pi} \sin \theta_{1}-3 \cos \theta_{I}+\frac{2}{\pi} \theta_{1} \cos \theta_{1}-\cos ^{2} \frac{\theta_{1}}{2}\right)
\end{array}\right\}(4.7)
$$

The boundary conditions used to obtain these expressions were that the longitudinal edges at A are prevented from moving horizontally and rotating because of the restraint provided by the adjacent shells. The moments are consid. ered positive when causing compression on the outside fibre (see Fig. 4.3), and the axial force is positive when tensile.

The absolute maximum value of the transverse moment is found to occur at $\theta=\frac{\pi}{2}$ and at $\theta_{1}=\frac{3 \pi}{2}$, where it is

$$
\begin{equation*}
\left|M_{1}\right|_{\text {ax }}=\left|M_{t_{1}}\right|_{\max }=\left(\frac{1}{1}-\frac{8}{\pi^{2}}+\frac{2}{\pi}\right)=0.07605 q_{I} r^{2} \tag{4.9}
\end{equation*}
$$

The transverse forces have an absolute value of

$$
\begin{equation*}
\left|N_{t}\right|_{\max }=\left|N_{t 2}\right|_{\text {max }}=\frac{2}{\pi} q_{L}=0.6366 q_{L^{r}} \tag{4.10}
\end{equation*}
$$

A comparison of Eqs. (4.7) and (4.8) with the stresses due to the bending moment M as given by Eq. 4.4 shows that the transverse moments are small relative to these stresses if the ratio $\frac{\ell}{r}$ is fairly large. This then makes the beam
method valid for the shell of Fig. 4.3 subjected to a snow load.

The unit stresses due to the transverse moments and thrusts can be found by using the sectional properties of the corrugation given in Fig. 4.4. The maximum stress is given by
$\left|\sigma_{t}\right|_{\max }=q_{L} \frac{r}{t}\left[0.6366 \frac{b}{c}+0.4563 \frac{r}{t} \frac{\frac{c}{b}+\frac{h}{t}}{\left(\frac{c}{b}\right)^{3}+\frac{c h^{2}}{b t^{2}}}\right]$
Let us consider a particular case of a shell whose dimensions are as follows: $l=120^{n}, r=4^{n}, t=0.05^{n}$. The corrugations of this shell will be assumed to be V-shaped with $b=0.500, h=0.100$, and $c=0.510$. With these values, the maximum transverse stress is found from Eq. (4.11) to be

$$
\begin{equation*}
\left|G_{t}\right|_{\max }=1,767 q_{L} \tag{a}
\end{equation*}
$$

For the dimensions given above, the value of the characteristic β is 1.13 for which the stress factors given by either Eqs. (3.16) and (3.17) or by the curves of Figs. A. 1 and A. 2 are

$$
K_{\phi}=6.30 \quad \text { and } \quad K_{\theta}=2.56
$$

The maximum meridional and circumferential stresses at mid span are, from Eqs. (4.4),

$$
\begin{aligned}
& \bar{y} \approx \frac{1}{2}(t+h) \\
& I_{t}=\frac{c t}{b} \\
& \text { Voshaped } \\
& \text { Corrugations }
\end{aligned}
$$

Cusped
Corrugations

$$
\begin{aligned}
& \overline{\bar{y}} \approx \frac{1}{2}\left[t+h \frac{\sin 2 \alpha-2 \alpha \cos 2 \alpha}{\alpha(1-\cos 2 \alpha)}\right] \\
& A_{t}=\frac{c t}{b} \\
& I_{t}=\frac{t^{3}}{12}\left(\frac{4 \alpha+\sin 4 \alpha}{4 \sin 2 \alpha}\right)+\frac{\mathrm{ch}^{2} t}{b}\left[\frac{4 \alpha^{2}+\alpha^{2} \sin 4 \alpha-2 \sin ^{2} 2 \alpha}{8 \alpha^{2}(1-\cos 2 \alpha)^{2}}\right]
\end{aligned}
$$

Undulating Corrugations

$$
\begin{aligned}
& \bar{J}=\frac{1}{2}(t+h) \\
& A_{t}=\frac{c t}{b}
\end{aligned}
$$

$$
I_{t}=\frac{t^{3}}{12}\left(\frac{4 \alpha+\sin 4 \alpha}{4 \sin 2 \alpha}\right)+\frac{\operatorname{ch}^{2} t}{b}\left[\frac{4 \alpha+8 \alpha \cos ^{2} 2 \alpha-3 \sin 4 \alpha}{32(1-\cos 2 \alpha)^{2}}\right]
$$

Fig. 4.4. Average Area and Moment of Inertia per Unit Length of Corrugation

$$
\begin{equation*}
\sigma_{\phi}=72,200 \cdot q_{L} \text { and } \sigma_{\theta}=29,400 \mathrm{q}_{\mathrm{L}} \tag{b}
\end{equation*}
$$

These are seen to be much larger than the transverse stresses σ_{t} given by (a). In a practical case the $\frac{\ell}{r}$ ratio Will be much larger than the one used in the above exampie, so that one would not need to consider the transverse moments M_{t}.

Dead Load: The stresses and deflections of the shell under the influence of its own weight can be found by the same method used for the case of snow load. However, because of the distribution of the load, there are no transverse moments; the transverse forces are found to be

$$
\begin{align*}
& N_{\theta}=q_{D} r \sin \theta \tag{4.12}\\
& N_{\theta_{1}}=q_{D} r \sin \theta_{1}
\end{align*}
$$

where q_{D} is the weight per unit area of the shell.
It is evident that the stress due to these forces will be very small in comparison with the longitudinal stresses, so bat for this casa the beam method will give rery good results.
4.5. Shells with Circular Corrugations. In the preceding articles the shells were cor edered to have Voshaped corrugations. However, the discussion is equally applicable to the cusped and undulating circular corrugations. The
stress factors and modular ratios needed to obtain the stresses and deflections of shells having these types of corrugations can be found from the curves of Figs. A. 4 through A. 9 of Appendix A. The sectional properties of these corrugations, which are needed to obtain the transo verse stresses, are given in Fig. 4.4.

CHAPTER 5

BENDING OF CURVED SHELLS

5.1. Introduction. It is well known that a curved tube With a comparatively thin wall is much more flexible during bending than a straight tube of the same cross section due to distortion of the cross section to an ellipse-like shape. A similar phenomenon would also occur in the curved shell of Fig. 5.1.

Consider an element between two adjacent cross sections of the shell which is bent by couples in the direco tion indicated. Due to the curvature of the shell both the compressive forces at the convex side and the tensile forces at the concave side have resultants away from the neutral axis, so that the originally circular cross sections distort to a shape shown approximately by the dotted line in Fig. 5.1(b). This distortion of the cross section affects the strain of the longitudinal fibres of the shell. Let R be the radius of the centre line of the undeformed sheil, dy the angle between the -wo cross sections, ds the length of the outermost ifbre, and r the radius of the circular arcs forming the cross section. Let $R+\Delta R, d y-\triangle d y$,

1 This phenomenon for a pipe of circular section was first explained by Th. v. Karman, V.D.I., Vol. 55, 1911, p. 1189. This problem was later investigated by others, among whom is L. Beskin, Trans. A.S.M.E., Vol. 67, 1945, p. A-1. The case of a tube with rectangular cross section was considered by S. Timoshenko, Trans. A.S.M.E., Vol. 45, 1923, p. 135.

Fig. 5.1. Bending of curved Shell
$d s-\Delta d s$, and $r+\Delta r$ be the corresponding quantities for the deformed shell. The length of the fibre $A B$ is

$$
d s=(R+r) d \psi
$$

After deformation its length becomes

$$
\mathrm{d} s-\Delta \mathrm{d} s=[(R+\Delta R)+(r+\Delta r)](d \psi-\Delta d \psi)
$$

The compressive strain $\Delta d s / d s$ in the outermost fibre is then

$$
\begin{equation*}
\frac{\Delta \mathrm{ds}}{\mathrm{ds}}=\frac{\Delta \mathrm{d} \psi}{\mathrm{~d} \psi}-\frac{\Delta \mathrm{R}+\Delta \mathrm{r}}{\mathrm{R}+\mathrm{r}} \tag{a}
\end{equation*}
$$

Since the centre line remains unchanged in length we have the relation

$$
(R+\Delta R)(d \psi-\Delta d \psi)=R d \psi
$$

Neglecting products of small quantities, we have

$$
\frac{\Delta d \psi}{d \psi}=\frac{\Delta R}{R}
$$

Using this relation in (a) then gives

$$
\begin{equation*}
\frac{\Delta d s}{d s}=\frac{r}{R+r}\left(\frac{\Delta R}{R}-\frac{\Delta r}{r}\right) \tag{b}
\end{equation*}
$$

as the expression for the comprossive strain in the outermost fibre. The ordinary theory for bending of curved bars assumes that the shape of the cross section remains unchanged, so that the corresponding expression for the strain given by this theory is

$$
\begin{equation*}
\frac{\Delta d s}{d s}=\frac{r}{R+r} \frac{\Delta R}{R} \tag{c}
\end{equation*}
$$

Comparison of expressions (b) and (c) shows that the effect of the distortion of the cross sections reduces the strain in the outermost fibres; the effect is appreciable as soon as the ratio $\Delta r / r$ is of the same magnitude as $\Delta a / a$. A change in the direction of the bending moment causes a change of sign of the longitudinal forces, and as a result the cross section distorts to a shape indicated by the dotted line in Fig. 5.3(b). From the same reasoning as above it may be shown that here again the distortion of tine cross section reduces the strain in the most remote fibres. Consequently, a smaller bending moment is required to produce a given change of curvature in the curved shell. Defining the rigidity of the shell as the ratio of bending moment to change of curvature it follows that the distortion of the cross sections reduces the rigidity of the shell.

Detailed analysis shows that the initial curvature of the centre line of the shell not only increases the flexibility but has other effects as well. Marked deviations may occur from the linear distribution of stresses over the cross section which holds for a shell with straight axis, and secondary wall bending stresses arise which may be as large or laxer than the primary fibre stresses parallel to the centre Ine.

In the following article the case of bending of the curved shell without longitudinal corrugations is solved by the principle of least work. Use is made of an infinite trigonometric series which converges very rapidly and gives an exact solution of the problem. This analysis is theoretically valid only in the case when the ratio of the radius of curvature of the centre line of the shell to the radius r of the cross section is large, so that the neutral axis can be taken as passing through the centroid of the cross section. This assumption means the same for the present problem as disregarding the difference between hyperbolic and linear bending stress distributions means for solid beams with curved axis. The analysis applies only to shells of uniform thickness, with a constant radius r and a constant curvature of the centre line. The method presented is similar to the method used by Beskin for obtaining the solution of curved thin pipes. ${ }^{2}$

The solution obtained for the plain shell can, as show in Are. 5.3, be used, after a slight modification, for a curved shell corrugated in the transverse direction. ${ }^{3}$ It is found that the distortion is less for this case than for a plain sheil. This is to be expected since the secondary corrugations iseip to increase the transverse stiffness of the shell.

2 L. Beskin, loc. eit. p. 100.
3 See footnote 1 on p. 83 .

In a general case of loading there will be axial and shear forces on a cross section in addition to a bending moment. This occurs, for example, when the shell acts as a two-hinged arch and is subjected to a snow load. In such cases it will be assumed that the stresses due to these forces will be distributed in the same manner as in a straight shell. This is permissible since the stresses produced by these forces are small in comparison with those produced by the bending moment for arches whose span length is large relative to the cross sectional dimensions as is usually the case. (See Arts. 6.2 and 6.3.)
5.2. Pure Bending of Curved Shell. Let us examine the forces acting on an element MNPQ of the shell (Fig. 5.1). The total force acting on each of the two faces $M N$ and $P Q$ is Frde, where F is the longitudinal force per unit length. These forces act in a plane parallel to the neutral surface of the shell. The resultant of these forces is directed away and normal to the neutral surface, and has a magnitude of

$$
\begin{equation*}
\text { Resultant }=\text { Frded } \psi \tag{a}
\end{equation*}
$$

The arc length MP of the element is

$$
\widehat{M P}=(R+r \sin \phi) d \psi=R\left(I+\frac{r}{n} \sin \theta\right) d \psi
$$

The arc length $\overparen{M P}$ is approximately equal to Rdy if $R>r$.

Taking the arc length $\widehat{M P}$ equal to unity the resultant force given by (a) can be written as $\frac{\operatorname{Frd} \theta}{\mathrm{R}}$. The resultant force per unit area of the shell is then

$$
\begin{equation*}
\mathrm{p}=\frac{\mathrm{F}}{\mathrm{R}} \tag{5.1}
\end{equation*}
$$

The distortion of the cross section is due to these p-forces, as stated in the previous article.

Fig. 5.2 shows the forces and moments acting on the element MNPQ. The horizontal force is denoted by H, the vertical force by P, and the moment by m. In addition to these, there is the distributed vertical force p on the element. The horizontal force H must be constant since no horizontal forces are applied to the surface of the element MNPQ.

The equilibrium of forces in the vertical direction gives

$$
\begin{equation*}
d P+\operatorname{prd\theta }=0 \tag{b}
\end{equation*}
$$

Using the expression (5.1) for p gives

$$
\begin{equation*}
\mathbb{P}=-\frac{\pi}{\mathrm{R}} \int \mathrm{Fd} \theta+\frac{\mathrm{M}}{2 \pi r \mathrm{R}} C_{3} \tag{5.2}
\end{equation*}
$$

in which the last term is a constant of integration. Equilibrium with respect to moments gives

$$
\begin{equation*}
d m+\text { Hrcosed } \theta-\operatorname{Prsin} \theta d \theta=0 \tag{c}
\end{equation*}
$$

if products of small quantities are neglected. Upon

Fig. 5.2. Stresses Acting on an Element of Curved Shell

Fig. 5.3. Distortions of the Cross Sections of a Pipe and a Shell
subsitution of expression (5.2) in (c), it is found that

$$
\begin{equation*}
\frac{d m}{d \theta}=-\left[H r \cos \theta+\frac{r^{2}}{R} \sin \theta \int F d \theta=\frac{M}{2 \pi R} C_{1}\right] \tag{5.3}
\end{equation*}
$$

The distortion of the cross section is shown by the dotted line of Fig. 5.1(b). It is seen that the distortion is symmetrical about points A and C and antiasymmetrical about points B. Because of this only one quadrant $A B$ need be considered. The vertical force P must be zero at A, while the bending moment m must vanish at B. FurGermore, the relative horizontal displacement between the points A and B must be zero. Thus, the boundary conditions for the quadrant $A B$ are:

$$
\begin{equation*}
\left[P_{\theta=\pi / 2}=0 ;[m]_{\theta=0}=0 ; \int_{0}^{\pi / 2} m \operatorname{rsin} \theta \frac{r d \theta}{E I_{t}}=0\right. \tag{d}
\end{equation*}
$$

where θ is the angle shown in $\mathrm{FHg}, 3.2$ and I_{t} is the moment of inertia of a transverse section of the shell given by

$$
\begin{equation*}
I_{t}=\frac{1}{12} t^{3} \tag{5.4}
\end{equation*}
$$

The last of the expressions (d) was obtained by the principle of virtual work considering only bending distortions.

By statics the axternal bonding moment on the shell must be equal to the moment of the longitudinal sorces F. If the moment on each shell sGBA is M, then

$$
\begin{equation*}
\int_{0}^{\pi / 2} F r d \theta \cdot r \sin \theta=\frac{R}{4} \tag{e}
\end{equation*}
$$

It is convenient to introduce the dimensionless parameters

$$
\begin{equation*}
X=\frac{2 \pi r^{2} F}{M} \quad ; \quad Y=\frac{2 \pi R m}{M} \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{Z}=\frac{2 \pi r R H}{M} \tag{f}
\end{equation*}
$$

Substitution of these relationships in Eq. (5.3) gives

$$
\begin{equation*}
\frac{d Y}{d \theta}=-\left[C_{2} \cos \theta+\sin \theta \int X d \theta+C_{1}\right] \tag{5.6}
\end{equation*}
$$

The first of the boundary conditions (d) when used in (5.2) gives

$$
\left[\int f d \theta\right]_{\theta=\pi / 2}=\frac{M}{2 \pi r^{2}} C_{I}
$$

Substituting the first of the relationships (5.5) in the above equation gives

$$
\begin{equation*}
\left[\int \mathrm{Xd} \mathrm{\theta}\right]_{\Theta=\pi / 2}=c_{1} \tag{5.7}
\end{equation*}
$$

as one of the boundary conditions. Substitution of the second of the relationships (5.5) in the two remaining boundary conditions (d) resulta in

$$
\begin{equation*}
[Y]_{\theta=0}=0 \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\pi / 2} Y \sin \theta d \theta=0 \tag{5.9}
\end{equation*}
$$

Similarly, the relationship between the external and internal moments given by (o) becomes

$$
\begin{equation*}
\int_{0}^{\pi / 2} x \sin \theta d \theta=\pi / 2 \tag{5.10}
\end{equation*}
$$

Let us assume that the function X is represented by the Fourier sine series

$$
\begin{equation*}
x=2 \sin \theta+6 b_{3} \sin 3 \theta+10 b_{5} \sin 5 \theta+\ldots \tag{g}
\end{equation*}
$$

in which the first coefficient 2 is defined by Eq. (5.10). Only odd terms are considered since

$$
\frac{d F}{d \theta}=\frac{d X}{d \theta}=0 \quad \text { at } \theta=\pi / 2
$$

in order to satisfy the condition of symmetry at A. The series (g) can be written in the compact form

$$
x=2 \sum_{n=0}^{\infty}(2 n+1) b_{2 n+1} \sin (2 n+1) \theta \quad\left(b_{1} \equiv 1\right) \quad \text { (5.11) }
$$

with the convention that $b_{I} \equiv 1$.
Substituting this into the boundary condition (5.7) gives $C_{1}=0$. Setting $C_{1}=0$ in Eq. (5.6) and integrating it leads to

$$
Y=-C_{2} \sin \theta-\int \sin \theta\left[\int x d \theta\right] d \theta+0
$$

where C is another constant of integration. Carrying out the integration by using for X its series representation (5.11) and introducing the boundary condition (5.8) gives

$$
\begin{equation*}
Y=\sum_{n=1}^{\infty} \frac{\sin ^{2} n \theta}{n}\left(b_{2 n-1}+b_{2 n+1}\right)-c_{2} \sin \theta \tag{h}
\end{equation*}
$$

The constant C_{2} is found to be

$$
c_{2}=\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{n}{4 n^{2}-1}\left(b_{2 n-1}-b_{2 n+1}\right)
$$

by introducing the boundary condition (5.9) in (h) so that we finally obtain for Y the expression

$$
\begin{equation*}
Y=\sum_{n=1}^{\infty}\left(b_{2 n-1}-b_{2 n+1}\right)\left[\frac{\sin ^{2} n \theta}{n}-\frac{8 n}{\pi\left(4 n^{2}-1\right)} \sin \theta\right] \tag{5.12}
\end{equation*}
$$

The coefficients $b_{3}, b_{5} \ldots$ appearing in Eqs. (5.11) mast be such as to make the total strain energy in the shell a minimum. Considering only the distortion due to the longitudinal forces F and the transverse bending moments m, the expression for the strain energy per unit length along the centre line is

$$
\begin{equation*}
\mathrm{d} \mathrm{~W}_{\mathrm{s}}=4\left[\frac{1}{2} \int_{0}^{\pi / 2} \frac{\mathrm{~F}^{2} r \mathrm{~d} \theta}{E t}+\frac{1}{2} \int_{0}^{\pi / 2} \frac{\mathrm{~m}^{2} r \mathrm{~d} \theta}{D_{2}}\right] \tag{5.13}
\end{equation*}
$$

in which

$$
\begin{equation*}
D_{2}=\frac{E t^{a}}{12\left(1-v^{2}\right)} \tag{5.14}
\end{equation*}
$$

Upon using the expressions (5.5) the above expression for the strain energy becomes

$$
\begin{equation*}
d W_{s}=\frac{M^{2}}{2 \pi^{2} r^{3} E t}\left[\int_{0}^{\pi / 2} X^{2} d \theta+\frac{1}{\beta_{1}^{2}} \int_{0}^{\pi / 2} Y^{2} d \theta\right] \tag{5.15}
\end{equation*}
$$

in which the parameter β_{I} is defined by

$$
\begin{equation*}
\beta_{1}=\frac{R}{r^{2}} \sqrt{\frac{D_{1}}{E t}}=\frac{1}{\sqrt{12\left(1-V^{2}\right)}} \frac{R t}{r^{2}} \tag{5.16}
\end{equation*}
$$

The strain energy is a minimum if

$$
\frac{\partial\left(d w_{s}\right)}{\partial b_{2 a+1}}=0 \quad(a=1,2,3, \ldots, n, \ldots)
$$

Using these conditions in Eq. (5.15) gives

$$
\begin{align*}
& \int_{0}^{\pi / 2} X \frac{\partial x}{\partial b} 2 a+1 \\
& d \theta+\frac{1}{\beta_{1}^{2}} \int_{0}^{\pi / 2} Y \frac{\partial Y}{\partial b} 2 a+1 \tag{5.17}\\
&(a=1,2,3, \ldots, n, \ldots)
\end{align*}
$$

Substituting expressions (5.5) into this and integrating it gives

$$
\left.\begin{array}{l}
\sum_{n=1,2, \ldots, a-1,}^{\infty} \quad\left(b_{2 n-1}-b_{2 n+1}\right)\left[\frac{16 n}{\pi^{2}\left(4 n^{2}-1\right)(2 a-1)(2 a+3)}-\frac{1}{8 n a(a+1)}\right] \\
-b_{2 a-1}\left[\frac{a+3}{16 a^{2}(a+1)}-\frac{16 a}{\pi^{2}(2 a-1)\left(4 a^{2}-1\right)(2 a+3)}\right] \\
+b_{2 a+1}\left[\beta_{1}^{2}(2 a+1)^{2}+\frac{2 a^{2}+2 a+3}{16 a^{2}(a+1)^{2}}-\frac{16}{\pi^{2}(2 a-1)^{2}(2 a+3)^{2}}\right] \\
-b_{2 a+3}\left[\frac{a-2}{26 a(a+1)^{2}}+\frac{16(a+1)}{\left(4 a^{2}-1\right)(2 a+3)^{2}}\right]=0 \tag{5.18}\\
\left(a=1,2, \ldots, \ldots, \ldots b_{1} \equiv 1\right.
\end{array}\right]
$$

The above expression will yield a set of infinite linear simultaneous equations. However, an approximate solution of the problem can be obtained by retaining only
a finite number of terms in Eq. (5.11). If only ($n+1$) terms are retained in Eq. (5.11), then we shall have n simultaneous equations involving the n unknown b s $\left(b_{3}, b_{5}, \ldots, b_{2 n+1}\right)$. The approximate solution so obtained will be referred to as the approximation of the $n^{\text {th }}$ order. The number of terms, $(\mathrm{n}+1)$, to be retained in Eq. (5.11) in order to give a desired accuracy depends on the value of the parameter β_{1}; as β_{1} decreases, the number of terms to be retained increases. As will be shown later, the solution obtained with $n=1$ gives a very good approximation for values of β_{1} as small as 0.04 .

Having obtained the coefficients $b_{3}, b_{5}, \ldots, b_{2 n+1}$, the stresses and the change in curvature can easily be computed. The unit longitudinal stress, σ_{ϕ}, is equal to F / t. In terms of the parameter X defined by (5.5), the absolute maximum value of this stress is

$$
\left|\sigma_{\phi}\right|_{\max }=\frac{M}{2 \pi^{2} t}|X|_{\max }
$$

The corresponding stress in a plain shell having a straight axis is

$$
\sigma_{0}=\frac{M}{\pi r^{2} t}
$$

so that

$$
\begin{equation*}
\left|\sigma_{\phi}\right|_{\max }=\sigma_{0}\left[\frac{\AA_{\max }}{2}\right] \equiv \sigma_{0} \cdot K_{\phi_{1}} \tag{5.19}
\end{equation*}
$$

Similarly, the absolute value maximum transverse stress due to the moment m is

$$
\left|\sigma_{\theta}\right|_{\max }=\frac{6 m}{t^{2}}=\frac{6 M}{2 \pi R t^{2}}|Y|_{\max }
$$

or

$$
\left|\sigma_{\theta}\right|_{\max }=\frac{3 \sigma_{0} r^{2}}{R t}|Y|_{\max }=\frac{\sigma_{0}|Y|_{\max }}{\beta_{2}} \sqrt{\frac{0.75}{\left(1-\nu^{2}\right)}}
$$

in which the parameter β_{2} is defined by (5.16). For $\gamma=0.3$, the above expression becomes

$$
\begin{equation*}
\left|\sigma_{\theta}\right|_{\max }=\sigma_{0}\left[\frac{|Y|_{\max }}{I .102 \beta_{1}}\right] \equiv \sigma_{0} K_{\theta I} \tag{5.20}
\end{equation*}
$$

To this the stress due to the direct force in the transverse direction should be added. This is found to be so small relative to the stress given by expression (5.20) that it can safely be neglected.

Based on the fact that the internal strain energy is equal to the work done by the external moment M, we have

$$
\begin{equation*}
\mathrm{d} W_{\mathrm{s}}=\frac{1}{2} \mathrm{M} \frac{\Delta \mathrm{~d} \psi}{\mathrm{Rd} \psi} \tag{i}
\end{equation*}
$$

in which $\Delta d y$ is the change in angle between two adjacent cross sections a distance Rdy apart along the centre line [see Fig. $5.1(a)]$ and dW_{s} is the strain energy per anit length along the centre line. Substituting (5.15) in this gives

$$
\begin{equation*}
\frac{\Delta \mathrm{d} \psi}{\mathrm{Rd} \psi}=\frac{\mathrm{M}}{\pi r^{3}+E}\left[\frac{1}{\pi} \int_{0}^{\pi / 2} X^{2} d \theta+\frac{1}{\pi \beta_{2}^{2}} \int_{0}^{\pi / 2} Y^{2} d \theta\right] \tag{j}
\end{equation*}
$$

The quantity $\frac{\Delta d y}{R d y}$ represents the change in curvature of the shell due to the moment M. The corresponding change in curvature for a plain shell is

$$
\left[\frac{\Delta d \psi}{\operatorname{Rd} \psi}\right]_{0}=\frac{M}{\pi r^{3}+z}
$$

so that

$$
\begin{equation*}
\frac{\Delta \mathrm{d} \psi}{\mathrm{Rd} \psi}=N_{\mathrm{I}}\left[\frac{\Delta \mathrm{~d} \psi}{\operatorname{Rd\psi }}\right]_{0} \tag{5.21}
\end{equation*}
$$

Where N_{I} represents the parentheses on the right hand side of Eq. (j). Upon substitution of expressions (5.5) into these parentheses, it is found that
$N_{1}=\sum_{n=0}^{\infty}(2 n+1)^{2} b_{2 n+1}^{2}+\frac{1}{\beta_{1}^{2}}\left\{\frac{3}{16} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(b_{2 n-1}-b_{2 n+1}\right)^{2}\right.$

$$
\begin{array}{r}
+\frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k}\left(b_{2 k-1}-b_{2 k+1}\right) \sum_{n=k+1}^{\infty}{ }_{n}^{n}\left(b_{2 n-1}{ }^{-b} b_{2 n+1}\right) \\
-\frac{16}{T^{2}}\left[\sum_{n=1}^{\infty} \frac{n}{4 n^{2}-1}\left(y_{2 n-1}^{-b_{2 n+1}}\right]^{2}\right) \tag{5.22}
\end{array}
$$

The first two approximations to the factors X_{1},
K_{θ}, and N_{1} were obtained as functions of the parameter β_{2}, and are shown graphically in appendix B. Comparison
of the two approximations shows that the first approximation gives very good results for values of β_{1} as small as 0.04. The curved shells used for roofs are of such dimensions that the values of β_{1} are generally larger than 0.1 , so that for our purposes, it is not necessary to calculate approximation of an order higher than the second.

Upon comparison of the results shown in Appendix B With the results for a curved pipe given in the paper by Beskin ${ }^{4}$, it was found that for a given value of the parametar β_{1} the value of N_{1} was less for the shell than for a pipe. For example, for $\beta_{1}=0.04, N_{I}=2.55$ for the shell, whereas for a pipe $N_{1}=12.50$. This difference can be explained by a consideration of the distortion of the cross sections. It is known that the cross section of a curved pipe distorts to an ellipse-like shape, as shown in Fig. 5.3(a); the distorted shape of the cross section of the shell is shown in Fig. $5.3(b)$. It is seen that the points B of the pipe lying on the neutral axis move towards the centre 0, whereas the corresponding points of the shell have no displacement due to the antisymmetry of the deformations. Thus, the discortion of the cross sections of a shell will be less than that of the cross sections of a pipe and this makes the sheri less flexible than the pipe.
L. Beskin, loc.cit., p. 100.
5.3. Pure Bending of Curved Corrugated Shell. The equations relating the longitudinal forces F and the transverse forces and moments in a corrugated shell will be the same as those for a plain shell [Eqs. (5.1) through (5.3)] since these were derived solely by a consideration of equilibrium. Thus, Eqs. (5.11) and (5.12) will also apply for a corrugated shell. In order to satisfy compatibility, the strain energy in the shell must be a minimum. The strain energy per unit length due to the transverse moment (n 13

$$
\begin{equation*}
4\left[\frac{1}{2} \int_{0}^{\pi / 2} \frac{m^{2} r d \theta}{D_{z}}\right]=\frac{r M^{2}}{2 \pi^{2} R^{2} D_{z}} \int_{0}^{\pi / 2} Y^{2} d \theta \tag{a}
\end{equation*}
$$

Where D_{z} is the transverse flexural rigidity of the shell and Y the parameter defined by (5.5). The strain energy due to the longitudinal forces F is approximately

$$
\begin{equation*}
4\left[\frac{1}{2} \int_{0}^{\pi / 2} \frac{N f^{2} r d \theta}{E t}\right]=\frac{M^{2} N}{2 \pi^{2} r^{3} E t} \int_{0}^{\pi / 2} X^{2} d \theta \tag{b}
\end{equation*}
$$

Where X is the parameter defined by $(5,5)$ and N is the modular ratio given by Eq. (3.3). This expression for the strain energy is strictly correct only wher all of the undetermined coefficients b in the Fourier series representation of X [Eq. (5.11)] ane zero. It will be shown later that the distortion of the cross section is negligible so that these coefficients are very small in comparison

With the coefficient 2 of the first term in Eq. (5.11). Hence, it is permissible to use (b) as the expression for the strain energy due to the longitudinal forces. The total strain energy per unit length is the sum of (a) and (b), or

$$
\begin{equation*}
d W_{S}=\frac{M^{2} N}{2 \pi^{2} r^{3} E t}\left[\int_{0}^{\pi / 2} X^{2} d \theta+\frac{1}{\beta_{2}^{2}} \int_{0}^{\pi / 2} Y^{2} d \theta\right] \tag{c}
\end{equation*}
$$

in which the parameter β_{2} is defined by

$$
\begin{equation*}
\beta_{2}=\frac{R}{r^{2}} \sqrt{\frac{D_{2} N}{E t}}=\beta_{I} \sqrt{\frac{D_{2} N}{D_{2}}} \tag{5.23}
\end{equation*}
$$

In order that the strain energy be a minimum, the partial derivative of (c) with respect to each of the coefficients b_{a}, b_{5}, ... must be zero, or

$$
\int_{0}^{\pi / 2} x \frac{\partial x}{\partial b_{2 a+1}} d \theta+\frac{1}{\beta_{a}^{2}} \int_{0}^{\pi / 2} Y \frac{\partial Y}{\partial b_{2 a+1}}=0
$$

$$
\begin{equation*}
(a=1,2,3, \ldots n, \ldots) \tag{d}
\end{equation*}
$$

This system of equations is the same as that represented by (5.17) except that β_{2} is replaced by β_{a}. Thus, the coefficients b for the corrugated shell can be determined from Eqs. (5.18) if β_{1} in these equations is replaced by β_{2} 。

It can be shown that the expression for N_{2} as given by Fq. (5.22) can also be used for a corrugated shell if
β_{1} is replaced by β_{2}. In this case N_{2} should be taken as the ratio of the change in curvature for a curved corrum gated shell to the change in curvature for a corresponding corrugated shell with a straight axis.

The factor $\sqrt{D_{2} N / D_{1}}$ appearing in (5.23) is always greater than unity for a corrugated shell, so that $\beta_{2}>\beta_{1}$. It can be deduced from the curves in Appendix B that the distortion of the cross sections increases with decreasing values of β_{1}. Therefore it can be said that the distorwon of the cross sections is less in a curved corrugated shell than in a plain shell of the same major dimensions.

The depth h of the corrugations of the shells manuPactured by the Wonder Building Corporation is greater for a shell with a smaller radius of curmature R than that with a larger R due to the fabrication process involved in the manufacture of these shells. Consequentiy, the value of $\sqrt{D_{2} N / D_{2}}$ increases x_{1} th a decrease in R. This has the etrect of weeping the vaine of the parameter β_{2}, as defzned by (3.23), large for say shells. As an example, consider a plain curved shell having a cross section shown in Fig. 5.1(b). If the radius of the arcas section is 4 in., the thickness t is 0.05 in., and the radius of curvature R is 180 in., then tie value of β_{1} is found from expression (5.16) to be 0.170 , 4 which $N_{3}=1.24$ (see Pie. B.1). Even though this is an extreme case, the
flexibility is increased by only 24%. With the presence of corrugations the factor N_{2} is considerably reduced. Assuming V-shaped corrugations with $h=0.10$ in., $b=0.50$ in., and $c=0.51$ in., it is found that for $\nu=0.3$.

$$
\frac{D_{2}}{D_{1}}=\left(\frac{c}{b}\right)^{3}+\frac{c^{2}}{b t^{2}}\left(1-\nu^{2}\right)=4.77
$$

and $\quad N=\frac{b}{c}+\frac{c^{2}}{b t^{2}} n=4.45 \quad$ (See Fig. A.3)
Eq. (5.23) then gives $\beta_{2}=0.783$ for which N_{2} as given by Fig. B.l is 1.02. This means that the flexibility of the curved corrugated shell is only 2% larger than that of a straight corrugated shell. Thus, the distortion of the cross section of a corrugated shell can be neglected and the longitudinal forces can be assumed to be linearly distributed over the cross section.

CHAPTER 6

SHELL AS TWOهHINGED ARCH
6.1. Arch Under a General Case of Loading. Having obtained the effects of both the corrugations and the curvature in the previous, two chapters, it is now possible to analyse the shell as a two-hinged arch under various types of loading. This arch is statically indeterminate to the first degree, and we shall take the horizontal reaction H at the roght support as the redundant [Fig. 6.1(a)]. The value of this redundant for the various types of loading will be determined by the superposition method. The value of the redundant H is given by the equation

$$
\begin{equation*}
\Delta_{b o}+H \delta_{b b}=0 \tag{6.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta_{00}= & \text { horizontal deflection of the point } B \text { due to the } \\
& \text { appiied load with } H=0, ~ p l u s \text { when in the } \\
& \text { direction of } H ; \\
\delta_{b b}= & \text { norizontal deflection of the point } B \text { due to } \\
& \text { zero applied load and } F=1 .
\end{aligned}
$$

Eq. (6.1) merely states that the deflection of B is zero. The value of the deflections $\Delta_{b o}$ and $\delta_{b b}$ will be found by the method of virtual work.

If a unit virtual load is applied at B in the direction of H, then the external virtual work done by this load

Fig. 6.I. Analysis of Two-Hinged Arch
as the point deflects by an amount $\Delta_{b o}$ must be equal to the virtual internal work done by the stresses due to this load as the structure deflects. The internal work due to bending distortion is

$$
\begin{equation*}
2 \int_{0}^{\psi_{0}} \mathrm{NN}_{1} \frac{\mathrm{M}_{0} \mathrm{M}_{2} \mathrm{Rd} \psi}{\mathrm{EI}} \tag{a}
\end{equation*}
$$

where $\quad M_{0}=$ moment due to the applied load with $H=0$, plus when causing compression on the convex side;
$M_{2}=$ moment due to a unit horizontal load at B in the direction of H, plus when causing compression on the concave sides
$I=$ moment of inertia of the cross section about its neutral axis ($\pi r^{3} t$);
$R=$ radius of curvature of the centre line of the arch;
$\psi=$ angle between the mid-span cross section and that at any other point on the arch [Fig. 6.1(a)]:
and $\psi_{0}=$ angle between the mid-span cross section and that at the support.

Expression (a) is the same ss the corresponding expression for an arch of solid cross section except for the factors N and \mathbb{N}_{2}. It was shown in Art. 4.2 that the corrugated
shell is N times as flexible as a plain shell, while in Art. 5.3 it was shown that due to the curvature, the deflection of a curved corrugated shell is N_{1} times that of a corrugated shell with a straight axis. This is the reason for the inclusion of the factors N and N_{1} in expression (a). Similarly, the internal work due to axial deformation is

$$
\begin{equation*}
2 \int_{0}^{\psi_{0}} N \frac{T_{0} T_{2} R d \psi}{A E} \tag{b}
\end{equation*}
$$

Where

$$
\begin{aligned}
T_{0}= & \text { axial force due to the applied load with } \\
& H=0 \text {, plus when tensile; } \\
T_{1}= & \text { axial force due to a unit horizontal load at } \\
& B \text { in the direction of } H \text {, plus when tensile; }
\end{aligned}
$$

and $A=$ area of the cross section.

Again here N is the factor taking into account the effect of the corrugations.

In a curved bar an axial force T_{0} produces tensile or compressive forces unfformly distributed over the cross aection and equal to T_{0} / A. Due to these stresses the centre line undergoes extension or contraction and the angle dy between two adjacent cross sections increases by the amount

$$
\Delta \mathrm{d} \psi=\frac{\mathrm{T}_{0} \mathrm{Rd} \psi}{A E} \cdot \frac{1}{\mathrm{R}}
$$

For a corrugated shell, this axpression should be multiplied
by the factor N. The internal work done by the virtual moment M_{I} is

$$
\begin{equation*}
-2 \int_{0}^{Y_{0}} N \frac{T_{0} M_{2} d \psi}{A E} \tag{c}
\end{equation*}
$$

where the minus sign is used since the moment M_{1} is considered positive when it tends to increase the angle d ψ between two adjacent cross sections.

Finally, the internal work due to shearing deformations is

$$
\begin{equation*}
2 \int_{0}^{\psi_{0}} N^{2} \frac{S_{0} s_{2} R d \psi}{A G} \tag{d}
\end{equation*}
$$

where $\quad S_{0}=$ shear force due to the applied load with $H=0$, plus when it tends to displace the right side downward relative to the left side:
$S_{I}=$ shear force due to a unit horizontal load at B in the direction of H, plus when it tends to displace the right side downard relative to the leit side.

Again here the factor N^{\prime} as given by Eq. (3.26) takes into account the effect of the corrugations on the shearing deformations. In obtaining expressions (b), (c), and (d) it was assumed that the curvature of the arch does not alter the distribution of the stresses over a cross section due to axial and shear forces, i.e., the distribution
is the same as in a straight shell.
The external work done by the unit virtual load is 1. $\Delta_{\text {bo }}$ which must be equal to the total internal virtual work as represented by expressions (a) through (d). Thus, the deflection $\Delta_{b o}$ is
$\Delta_{b 0}=2\left[\int_{0}^{\psi_{0}} N N_{1} \frac{M_{0} M_{1} R d \psi}{E I}+\int_{0}^{\psi_{0}} N \frac{T_{0} T_{1} B d \psi}{A E}+\int_{0}^{\psi_{0}} N \frac{T_{0} M_{1} d \psi}{A E}\right.$

$$
\begin{equation*}
\left.+\int_{0}^{\psi_{0}} N \cdot \frac{S_{0} S_{1} R d \psi}{A G}\right] \tag{6.2}
\end{equation*}
$$

In a similar marner the deflection $\delta_{b b}$ is found to be

$$
\begin{align*}
& \delta_{b b}=2\left[\int_{0}^{\psi_{0}} N_{I} \frac{M_{1}^{2} R d \psi}{E I}+\int_{0}^{\psi_{0}} N \frac{T_{1}^{2} R d \psi}{A E}+\int_{0}^{\psi_{0}} N \frac{T_{2} M_{2} d \psi}{A E}\right. \\
& \left.+\int_{0}^{\psi_{0}} N \cdot \frac{S_{1}^{2} R d \psi}{A G}\right] \tag{6.3}
\end{align*}
$$

The value of the redundant H ean then found by substituting the above expressions into Eq. (6.1). Rewriting Eq. (6.1) gives

$$
\begin{equation*}
\mathrm{H}=-\frac{\Delta_{\mathrm{bo}}}{\delta_{\mathrm{bb}}} \tag{6.4}
\end{equation*}
$$

The moment M, the axial force T, and the shear S in the actual structure can easily be obtained from the following expressions

$$
\begin{align*}
& M=M_{0}+H M_{2} \tag{6.5}\\
& T=T_{0}+H T_{2} \tag{6.6}\\
& S=S_{0}+H S_{1} \tag{6.7}
\end{align*}
$$

These are obtained by superposing the stresses due to the applied load ($H=0$) with those due to the redundant force H.
6.2. Arch Under a Uniformly Distributed Snow Load. An arch under a uniformly distributed snow load of W_{L} lbs. per horizontal foot is shown in Fig。6.1(a). The expressions for the external moments and forces will be found by making use of the general equations (6.2) through (6.6).

The case of $H=0$ is shown in Fig. 6.1(b). The expressions for the moment, axial force, and shear force for this case are

$$
\begin{align*}
& M_{0}=\frac{W_{L} R^{2}}{2}\left(\sin ^{2} \psi_{0}-\sin ^{2} \psi\right) \tag{6.8}\\
& T_{0}=-W_{L} R \sin \psi \tag{6.9}\\
& S_{0}=W_{L} R \sin \psi \cos \psi \tag{6.10}
\end{align*}
$$

The corresponding expressions for the case of $H=I$ can be obtained by reference to FiE. 6.I(c). These are pound to be

$$
\begin{equation*}
M_{2}=-R\left(\cos \psi-\cos \chi_{0}\right) \tag{6.11}
\end{equation*}
$$

$$
\begin{align*}
& T_{1}=-\cos \psi \tag{6.12}\\
& S_{1}=-\sin \psi \tag{6.13}
\end{align*}
$$

Substitution of the above expressions into Eqs. (6.2) and (6.3) and integrating results in the following expressions for the displacements $\Delta_{b o}$ and $\delta_{b b}$:

$$
\begin{align*}
& \Delta_{b o}=-\frac{W_{L} R^{4}}{E I} N[N_{1}\left(\frac{2}{3} \sin ^{3} \psi_{0}+\frac{1}{2} \psi_{0} \cos \psi_{0} \cos 2 \psi_{0}-\frac{1}{4} \cos \psi_{0} \sin 2 \psi_{0}\right) \\
&+\frac{I}{2 A R^{2}}\left(\cos \psi_{0} \sin 2 \psi_{0}-2 \psi_{0} \cos \psi_{0}\right) \\
&\left.+\frac{2 E I}{A G R^{2}} \frac{N^{1}}{N}\left(\frac{2}{3} \sin ^{3} \psi_{0}\right)\right] \tag{d}\\
& \delta_{b b}=\frac{2 R^{2}}{E I} \mathbb{N}\left[N_{1}\left(\frac{1}{2} \psi_{0}+\psi_{0} \cos ^{2} \psi_{0}-\frac{3}{4} \sin 2 \psi_{0}\right)+\frac{I}{2 A R^{2}}\left(\sin 2 \psi_{0}\right)\right. \\
&\left.+\frac{2 E I}{A G R^{2}} \frac{N^{2}}{N}\left(\frac{1}{2} \psi_{0}-\frac{I}{4} \sin 2 \psi_{0}\right)\right] \tag{e}
\end{align*}
$$

It can be shown that the effects of axial and shear distortions on $\Delta_{b o}$ are negligible if the radius r of the cross section is very smali in comparison with the radius or curvature R [Fig. Gol(a)]. we shall assume that this is so, so that
$\Delta_{b o}=-\frac{W_{L} R^{4} \mathrm{NN}_{1}}{6 E I}\left(4 \sin ^{3} \psi_{0}+3 \psi_{0} \cos \psi_{0} \cos 2 \psi_{0}-3 \sin \psi_{0} \cos ^{2} \psi_{0}\right)$
The effects of axial and shear distortions on $\delta_{b b}$ are also negligible when the ratio r / R is shall, provided the angle
ψ_{0} is not very small. For a flat arch, however, the effect of axial distortion on $\delta_{b b}$ is not negligible. Thus, if only the effect of shear distortion is neglected, then $\delta_{b b}=\frac{R^{3}}{E I} N\left[N_{1}\left(\psi_{0}+2 \psi_{0} \cos ^{2} \psi_{0}-3 \sin \psi_{0} \cos \psi_{0}\right)+\frac{I}{2 A R^{2}}\left(\sin \psi_{0} \cos \psi_{0}\right)\right]$ Substitution of expressions (f) and (g) into Eq. (6.4) gives
$H=\frac{W_{L} R}{6}\left[\frac{4 \sin ^{3} \psi_{0}+3 \psi_{0} \cos \psi_{0} \cos 2 \psi_{0} 3 \sin \psi_{0} \cos ^{2} \psi_{0}}{\left(\psi_{0}+2 \psi_{0} \cos ^{2} \psi_{0}-3 \sin \psi_{0} \cos \psi_{0}+\frac{I}{2 N_{I} A R^{2}}\left(\sin \psi_{0} \cos \psi_{0}\right)\right.}\right]$
The second term in the denominator, which represents the effect of axial distortion, is of significance only when the angIe ψ_{0} is small. For small values of ψ_{0} the radius R is large, so that the factor \mathbb{N}_{1}, which represents the epfeet of the distortion of the cross section due to the curbature of the arch, is approximately equal to unity. Taking $N_{1}=1$, we have
$H=\frac{W_{I} R}{6}\left[\frac{4 \sin ^{3} \psi_{0}+3 \psi_{0} \cos \psi_{0} \cos 2 \psi_{0}-3 \sin \psi_{0} \cos ^{2} \psi_{0}}{\left(\psi_{0}+2 \psi_{0} \cos ^{2} \psi_{0}-3 \sin \psi_{0} \cos \psi_{0}+\frac{I}{2 A R^{2}}\left(\sin \psi_{0} \cos \psi_{0}\right)\right.}\right]$
This expression is the same as that for an arch of solid cross section. The values of the moment, axial and shear forces on any cross section can now be found from Eqs. (6.5) through (6.7). Expressions for the redundant E for various other types of loading, such as partial snow loads, dead load, and wind loads, can be round by a similar
method. In each case the analysis reduces to that for a corresponding load on an arch of solid cross section.
6.3. Unit Stresses in the Arch. The values of the bending moment, the axial force and the shear force on any cross section of the arch can be found, as shown in the previous article, by considering the arch to be of solid cross section. It was shown in Chapter 4 that the stresses in a corrugated shell due to a moment and axial and shear forces are the same as in a corrugated pipe of radius r and under the same loading. Thus, the maximum stress in the meridional and circumferential directions due to a moment M and axial force T are (if the distortion of the cross section due to curvature is neglected)

$$
\begin{align*}
& \sigma_{\phi_{\max }}=\left[\frac{M}{\pi r^{2} t} \pm \frac{T}{2 \pi r t}\right] K_{\phi}=\frac{M}{\pi r^{2} t}\left[1 \pm \frac{T r}{M}\right] K_{\phi} \tag{6.12}\\
& \sigma_{\theta \max }=\left[\frac{M}{\pi r^{2} t} \pm \frac{T}{2 \pi r t}\right] K_{\theta}=\frac{M}{\pi r^{2} t}\left[1 \pm \frac{T r}{M}\right] K_{\theta} \tag{6.13}
\end{align*}
$$

where K_{ϕ} ani K_{θ} are the stress factors given by Eqs. (3.1) and (3.2). In Art. 5.3 it was shown that the distortion of the cross section due to curvature is very small in a corrugated shell, so that it will not be considered here. The term $\operatorname{Tr} / \mathrm{M}$ in Eqs. (6.12) and (5.13) is found to be proportional to r / R. Generally, the ratio r / R is very small so that the effect of axial force on the stresses σ_{ϕ} and σ_{θ} can be neglected.

The unit shear stresses due to the shear force S on a cross section of the corrugated shell are the same as in a plain shell, and these two are found to be very small for small values of the ratio r / R.

The deflection calculations for the arch can be made by considering the shell to be plain but having a reduced modulus of elasticity equal to E divided by the modular ratio n (Eq. 3.3). The effects of shearing distortion and the distortion of the cross sections due to curvature can be neglected in the deflection computations.

CHAPTER 7

THE WONDER BUIIDING ARCH
7.1. Introduction. The cross section of the actual Wonder Building arch (Fig. 7.1) is much different than the idealized cross section of Fig. 5.l(a). The shape of the cross section is such that it cannot be represented by any simple geometrical figure. The problem is further complio cated due to the fact that the shell is corrugated in the cottom portion only. For this reason only an approximate solution is given in this chapter.

The corrugated portion of the shell consists of a circular arc and two tangents as shown in Fig. 7.1(a). A longitudinal section through the corrugated portion is shown in Fig. 7.l(b). From this it is seen that the actual corrugations can be approximated as V-shaped corrugations. We shall assume that the corrugations are V-shaped for which the dimensions, b, c, and h are shown in Fig. 7.l(b).

In obtaining the solution for the corrugated shell hating the idealized cross section of Fig. $4.1(b)$ it was shown that each one of the quadrants behaved as if they were parts of a complete pipe. On this basis it will be assumed that the circular corrugated arc CDC is a part of a pipe of radius 9.125 in., and that each of the two tangents $B C$ is a part of a pipe whose radius is equal to infinity. The modular ratio N for the arc CDC will be

(a)

Section $x-x$
(b)

Mig. 7.7. Cross Section of Wonder Building Arch

Fig. 7.2. Transformea Cross Section
different from that for the tangents $B C$ as they have different radii of curvature. Thus, the reduced modulus of elasticity which is equal to E divided by the modular ratio will be different for the se parts of the cross section. The remainder of the cross section has no corrugations, so that its modular ratio is unity. The cross section can be considered as being formed of three different materials having different moduli of elasticity. For an ordinary beam of composite sections it is assumed that plane sections remain plane after bending. This will also be assumed in our case. Furthermore, it will be assumed that the effect of the distortion of the cross section due to curvature on the stresses and deflections is negligible. This seems reasonable since it was shown in Art. 5.3 that this is true for a curved corrugated shell having the idealized cross section of Fig. 5.1(0). Also, on the basis of the results obtained in the previous chapter, it will. be assumed that the effect of the shear force on stresses and deflections is negligible. Even though so many assumptions have been made, the approximate solution so obtained gives results which are in very good agreement with the available test pesults.
7.2. Calculation of Stresses and Deflections. The stresses and deflections can be obtained by a method very similar to that used for beams of composite sections. The
modular ratio for the tangents $B C$ [Fig. 7.I(a)] will be denoted by the symbol N_{a}, while that for the arc CDC will be denoted by N_{b}; by definition, the modular ratio for the remainder of the section is unity. The transformed section is obtained by dividing the thickness t of $B C$ by N_{a} and that of CDC by N_{b} (Fig. 7.2). The centroidal axis of the transformed section is located a distance \bar{y} above the point \bar{D}, where \bar{y} is given by

$$
\begin{equation*}
\ddot{\mathrm{y}}=6.94\left[\frac{0.1848 \mathrm{~N}_{\mathrm{a}}+0.2085 \mathrm{~N}_{\mathrm{b}}+\mathrm{N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{b}}}{1.176 \mathrm{~N}_{\mathrm{a}}+0.358 \mathrm{~N}_{\mathrm{b}}+\mathrm{N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{b}}}\right] \text { in. } \tag{7.1}
\end{equation*}
$$

The area A_{T} of the transformed section is

$$
\begin{equation*}
A_{T}=\left[0.652+\frac{0.232}{N_{2}}+\frac{0.769}{N_{b}}\right] \text { in. }{ }^{2} \tag{7.2}
\end{equation*}
$$

and the moment of inertia I_{T} about the centroidal axis is

$$
\begin{align*}
I_{T}=\left[0 . 6 5 2 \left(\bar{y}^{2}\right.\right. & -13.89 \bar{y}+49.0)+\frac{0.232}{\mathbb{N}_{a}}\left(\bar{y}^{2}-8.12 \bar{y}+16.75\right) \\
& \left.+\frac{0.769}{\mathbb{N}_{b}}\left(\bar{y}^{2}-2.115 \bar{y}+2.055\right)\right] \tag{7.3}
\end{align*}
$$

In obtaining the above expressions, the length of the corrugated tangent $B C$ was taken to be 2.37 in., in accordance with the measurements made by Tabush on samples of the Wonder Building Shell. ${ }^{I}$

1 J. Tabush, "An Experimental Stady of a Thin Steel Arch Fanel," S.M. Thesis, Massachusetts Institute of Technology, August 1958.

In the deflection computations, the expressions (7.2) and (7.3) must be used for the area and moment of inertia, while the modulus of elasticity should be the same as that of the material. For example, in obtaining the redundant H for the Wonder Building arch under a unim formly distributed snow load, A_{T} and I_{T} of the transformed section must be used in Fq. (6.14) instead of the area A and moment of inertia I of the actual cross section.

The longitudinal strain ϵ_{X} at any point of the cross section due to an axial force T and a moment M can be obtained from the formula

$$
\begin{equation*}
\epsilon_{X}=\frac{T}{A_{T} E}+\frac{M(\bar{Y}-Y)}{I_{T} E} \tag{7.4}
\end{equation*}
$$

where y is the distance as defined in Fig. 7.2. This expression for the strain is obtained by assuming that plane sections remain plane. The stress at any point can be obtained by multiplying the strain, as given by Eq. (7.4), by the corresponding reduced modulus of elasticity. Thus, for a point on the circular arc CDO, the stress is obtained by multiplying the strain $b y E / N_{b}:$ For a point on the tangent $B C$ the strain is to b maitiplied $b y E / N_{a}$ and for any other point outside of these corrugated portions, the stress is equal to $\epsilon_{X} E$. The: will be discontinurty along the longitudinal sections throueh C since there is an abrupt change of curvature, similar to that occurring in
the shell of the idealized cross section under an axial load, which was discussed in Art. 4.2. In Fig. 7.1 itis shown that the corrugations end abruptly at B, so that there would also be a discontinuity here. However, this is not actually so as the depth of the corrugations gradually reduce from h to zero over a length of about an inch. The location of B was taken as the midpoint of this length of one inch. In any case we shall be interested in the stresees at A and D since the stresses are maximum here, as will be shown in the next article. The longitudinal stresses at these two points are

$$
\begin{align*}
& \sigma_{A x}=\frac{T}{A_{T}}+\frac{M(\bar{y}-7.875)}{I_{T}} \tag{a}\\
& \sigma_{D x}=\frac{I}{N_{b}}\left[\frac{T}{A_{T}}+\frac{M y}{I_{T}}\right] \tag{b}
\end{align*}
$$

The stress $\sigma_{D x}$ given by (b) should be multiplied by the stress factors $K_{p b}$ and $K_{a b}$ [given by Eqs. (3.1) and (3.2)] in order to obtain the absolnte maximum value of the meridiona an circumferentian stresses at the crest or the corrugations. The cactor K_{ϕ} is alvays larger than K_{θ} s so that we shall consider only the meridional stress, $\sigma_{D X} K_{\phi}$. Since we are considering miy the meridional stress, we shall drop the subscript x. The maximum absolute values of the stresses at A and D are

$$
\begin{align*}
& \sigma_{A}=\left|\frac{T}{A_{T}}+\frac{M(\bar{y}-7.875)}{I_{T}}\right| \tag{7.5}\\
& \sigma_{D}=\frac{K_{\varnothing D}}{N_{D}}\left[\left|\frac{T}{A_{T}}\right|+\left|\frac{M \bar{Y}}{I_{T}}\right|\right] \tag{7.6}
\end{align*}
$$

It will be shown in the next article that these stresses depend primarily upon the depth of the corrugations h. Particular cases are worked out to show the effect of h on the stresses.

7.3. Effect of the Depth of the Corrugations on the

Stresses. The arches constructed by the Wonder Building Corporation of America have the same cross sections even though their span lengths vary; only the depth h of the corrugations varies. The manufacturing process is such that h increases with an increase in curvature of the arch. In order to study the effect of the depth of the corrugao tions on the stresses, we shall consider two extreme cases of arches as constructed by the Wonder Building Corporation, which will be referred to as $X-P$ and M arches, in accordance 6 th the designation used by the manufacturer. The dimensions of the arches and the corrugations for these two arches are:
$\mathrm{X}-\mathrm{P}$ Arch: $\mathrm{R}=15 \mathrm{ft} . ; \psi_{0}=86^{\circ} ; \mathrm{b}=0.50 \mathrm{in} . ; \mathrm{h}=0.200 \mathrm{in}$, M Arch: $\quad R=33 \mathrm{ft} . ; \psi_{0}=67^{\circ} ; \mathrm{b}=0.50 \mathrm{in} . ; \mathrm{h}=0.092 \mathrm{in}$. in which the dimensions R and to are defined in Fig. 6.1(a).

The values of $N_{a}, N_{b}, K_{\phi b}$ can be obtained from Eqs. (3.1) and (3.3) and Figs. A.I and A.3; the properties of the transformed section can then be found from Eqs. (7.1) through (7.3). These are found to be

$$
N_{a} \quad N_{b} \quad K_{\phi b} \quad \bar{y}(i n .) A_{T}\left(i n .^{z}\right) I_{T}\left(i n .^{*}\right)
$$

$\begin{array}{lllllll}\text { X-P Arch: } & 17.2 & 16.7 & 12.9 & 6.51 & 0.712 & 2.09\end{array}$ $\begin{array}{lllllll}M \text { Arch: } & \begin{array}{lllll}4.24 & 4.14 & 6.48 & 5.55 & 0.892\end{array} \quad 5.82\end{array}$

With this information the stress at any point on the cross section due to a moment M and axial force T can be determined. From Eq. (7.5) it is found that the stresses σ_{A} and σ_{D} are
X-P Arch: $\left.\quad \sigma_{A}=|1.40 \mathrm{~T}-0.653 \mathrm{M}| \mathrm{psi} ; \sigma_{D}=[|1.08 \mathrm{~T}|+|2.40 \mathrm{M}|] \mathrm{psi}\right\}$
M Arch:

$$
\begin{equation*}
\left.\sigma_{\mathrm{A}}=|1.12 \mathrm{~T}-0.400 \mathrm{M}| \mathrm{psi} ; \sigma_{\mathrm{D}}=[|1.76 \mathrm{~T}|+|1.49 \mathrm{M}|] \mathrm{psi}\right\}^{\ell} \tag{7.7}
\end{equation*}
$$

where M is expressed in lb . in. and T is expressed in lb . It will be shown later that the stress due to T is small in comparison with that due to the moment M, so that in both the cases the stress is maximum at D. The stresses at the points B and C are found to be less than σ_{D} for these two arches.

The bending moment and axial force on any cross section due to any loading car be calculated by the method indicated in Chapter 6. We shall consider only a unifirmly distributed snow load of W_{L} lbs, per horizontal inch
over the entire arch. The maximum negative moment and the axial force at the section where the negative moment is maximum are

$$
\begin{aligned}
& \text { X-P Arch: } M=-2520 W_{L} \operatorname{lb} . \operatorname{in} ; T=-180 W_{L} I b . \\
& \text { M Arch: } \quad M=-5330 W_{L} \text { lb.ino: } T=-396 W_{L} \mathrm{lb} \text { 。 }
\end{aligned}
$$

When these are substituted into expressions (7.7) it is found that

$$
\begin{array}{ll}
\text { X-P Arch: } & \sigma_{D}=(194+6050) W_{I}=6240 W_{L} \text { psi } \\
\text { aresi } & \sigma_{D}=(697+7930) W_{I}=8630 W_{I} \text { psi }
\end{array}
$$

The effect of the axial force on the stresses is found to be very small. It is seen that even though the span of the M arch is approximately twice that of the X-P arch, the maxImem stress in the M arch is only 1.4 times that in the X-P arch. This is due chiefly because the depth h in creases with the curvature. As h increases N_{a}, N_{b}, and $K_{\text {pb }}$ increase as can be seen by examining Eqs. (3.1) and (3.3). The factors n and $k_{\not x}$ appearing in these equations are functions of the characteristic β defined by Eq. (3.5) For the tangent part BC [Fig. 7.1(a)], $\beta_{a}=0$, so that $n_{a}=0.91$. The ratio $0 / h$ is generally very near unity, so that N_{a} is seen to depend primarily on h (the thickness t is the same for all arches). The characteristic \mathcal{B}_{b} for the circular arc CDC is found to be approximately 0.72 for both the arches, and for this value, n and k_{ϕ} are
approximately the same as those for $\beta=0$. So N_{b} and $K_{\phi b}$ are also mainly dependent on h. Thus, when h increases, the factors N_{a}, N_{b}, and $K_{\phi b}$ all increase so that for a given moment M, the stresses increase with the depth h for increase with an increase in curvature of the arch). However, when the curvature is large the span length of the arch is small, so that the moments are also smaller. This then makes it possible to use the same cross section over a wide range of span lengths.
7.4. Comparison of Test Results with Theoretical Resulte. Tests were performed by Tabush ${ }^{2}$ at M.I.T. on three samples of shells provided by the Wonder Building Corporation of America. These were components of the M arch discussed in the last article. The chord lengths of these shells were 111 in. and the mid span rise was 4 in. Each shell was simply supported at its ends and loaded by two equal loads placed symmetrically about the mid span, so that the region between the loada was in pure bending. The deflection at más span was measured relative to two symmetrically located points within the region of pure bending. Using a value of $29.3 \times 10^{6} \mathrm{psi}$ for the modulus of elasticity, it was found from the deflection measurements that the transformed moment of inertia I_{T} of the cross section ranged from

[^1]4.53 in. ${ }^{4}$ to 5.20 in. ${ }^{4}$, with a mean of 4.89 in. ${ }^{4}$. This compares favourably with the theoretical value of 5.82 in. ${ }^{4}$ computed in the previous article for the M arch. The discrepancy between the theoretical and experimental values is perhaps due to the fact that the cross-sectional shape was observed to differ from the standard shape to which the shells were supposed to have been rolled. It was shown in the last chapter that the maximum stress occurred at the lowermost point of the section, and is given by Eq. (7.7). From this equation the moment at which this stress is equal to the field stress of the material can be obtained. Tabush performed tensile tests on specimens of the shells and found that the yield stress had an average value of 38,500 psi. Using this value in Eq. (7.7), it is found that the moment at which yielding first occurs is $2.15 \mathrm{k} . f \mathrm{t}$. It was difficult to ascertain from the experimental Ioad versus deflection curves as to at what point the curye became nonlinear, since the deviation from a straight line in the inelastio range is very small. Approximately, the yield point moment ranged from 1.9 to 3.0 k.ft.

Another series of tests on three similar shells was performed by Chipman at U.O.L.A. ${ }^{3}$ In these testa the
${ }^{3}$ R. D. Chipman, "Bending Test Conducted on M.F.H. Building Sheets," Report No. C54-59, Dept. of Engineering, University of California, Los Angeles, July 1954.
samples were simply supported on pipes and subjected to a concentrated load at mid span. Mid span deflections were measured relative to the testing machine platform which did not move with reference to the laboratory floor. A plot of the experimentally determined deflections versus the bending moment at mid span is shown in Fig. 7.3(a). The deflection readings were measured to the nearest thirty second of an inch, which makes the error in the deflection reading large when the loads are small. Furthermore, the pipes on which the shells were supported were found to deflect under the load when plain shells (i.e. without corrugations) were tested. The deflection of the pipes for a moment of $4.75 \mathrm{k} . f t$. was found to be $1 / 32$ of an inch in one case and $2 / 32$ of an inch in another case. Since the tests were run primarily to determine the ultimate load for the corrugated shells, no attempt was made to measure the pipe derilections during the bending tests of theso shells. However, in the elastic range the deflections are very small, and thua the deflection readings for Low loads are not very accurate. For comparison, the theoretical mid span defilection was calculated from the formula

$$
\begin{equation*}
\delta=\frac{\mathrm{PL}^{3}}{48 \mathrm{EI}}=\frac{2 \pi_{T}^{2}}{12 K I_{T}} \tag{7.8}
\end{equation*}
$$

in which M is the mid span moment and L is the distance

C Test No. 3
\triangle Test No. 5
x Test No. 6

\triangle Test No. 5
x Test No. 6

Fig. 7.3. Dellection and Strain Messurementa in Wonder Building Sheil
between the supports. The values of E and I_{T} were taken to be $29.3 \times 10^{6} \mathrm{psi}$ and $5.82 \mathrm{in} \mathrm{m}^{4}$, respectively. The curve for δ versus M is shown in Fig. 7.3(a). This curve is valid only in the elastic range; based on a yield stress of 38,500 psi, the moment at which yield first occurs is $2.15 \mathrm{k} . f \mathrm{ft}$., as was shown earlier.

Strain measurements were also made at the point A [Fig. 7.1(a)] at mid span. These are shown in Fig. 7.3(b) together with the theoretical strain calculated from Eq. (7.4). Here the deflections of the pipe supports do not affect the strain measurements. It is seen that the agreement between the experimental and theoretical results is very good when the moment is within the elastic range.

The shells tested at M.I.T. and at U.C.L.A. all failed in the inelastic range due to local buckling of the upper flange at mid span. The ultimate moment at mid span ranged from $5.2 \mathrm{k} . f t$. to $6.0 \mathrm{k} . f t$. The theory developed earlier in this chapter is applicable only for elastic behayiours and does not consider the question of instabil. ity, so that no conclusion can be made with reference to the mode of failure.

The experiments that were made at M.I.T. and at U.C.L.A. were performed on weils which behaved as simply supported beams. Actually they are components of the actual arch so that experiments should be conducted by
loading the shells as two-hinged arches, and preferably having a larger span. Strain and deflection measurements should be made at more frequent load intervals than was done in the U.C.I.A. tests, so that a better value of the yield moment may be found. The strains in the corrugated portion are very difficult to measure since the corragations are very small and the bending moment in them varies rapidly. However, the elongation between two successive crests can easily be measured with Huggenberger tensometers, and the elongation could then be compared with the theoretical results. On the basis of these tests the theoretical results could be modified by empirical constants if serious discrepancy exists between theoretical and experimental results. Until this is done, the theory should be used in designing the Wonder Building Arches using an adequate factor of safety.

BIBLICGRAPHY

Beskin, L., Bending of Curved Thin Tubes, "Transactions of the American Society of Mechanical Engineers, Vol. 67, 1945, p. A-1.

Chipman, R. D., "Bending Test Conducted on M.P.H. Building Sheets," Report No. C54-59, Department of Engineering, University of California, Los Angeles, July 1954.

Cope, E. T. and Wert, E.A., "Load-Deflection Relations for Large Plain Corrugated and Creased Pipe Bends," Transactions of the American Society of Mechanical Engineers, FSP-54-12-125, 1932.

Donnell, L. H., "The Flexibility of Corrugated Pipes Under Longjtudinal Forces and Bending," Transactions of the mimean Society of Mechanical Engineers, A.P.M.-54-7-69, 1932.

Hetenyi, M., "Beams on Elastic Foundation," The University of Michigan Press, Ann Arbor, 1946.

Hildebrand, F. B., Advanced Calculus for Engineers, PrenticeHall, Inc., New York, 1949.

Karman, Th. V., "Über die Formanderung dinnwandiger Röhre," Zeitschr., Vereines Deutscher Ingeniure, Band 55, 1911, p. 1889.

Love, A. F. H., A Treatise on the Mathematical Theory of Elazticity, Dover Piblications, New York, 1944.

Lundgren, H., Cylindrical Shells, Vol. I, The Danish Technical Press, Copenhagen, 1949.

Meissne: E. EThe Elasticiov Eoblem for Thin Shells of Toroidal, Spherical or Conical Shape," David W. Taylor Model Basin Translation 238 (Translated by William A. Nash) from "Das Elas:izitats problem fur aune Schalen Von Ringflachen-, Kusel-oder Kegelform," Physikalische Zeitschrift, Vol. 14, 1913.

Reissner, H_{o}, Miiller-Bresle, Tostschrift, Leipzig, 1912.
Tabush, J., "An Experimental Stucir of a Thin Shell Arch Panel, S.M. Thesis, Massaciosetts Institute of Techo nology, August 1958 .

Timoshenko, S_{0}, Bending Stresses in Curved Tubes of Reco tangular Cross Section, Transactions of the American Society of Mechanical Engineers, Vol. 45, 1923, p. 135。

Timoshenko, Sos Theory of Plates and Shells, McGrawoHill Book Company, Inc., New York, 1940.

Wissler, $M_{\text {, }}$ "Festigkeifsherechung Von Ringflachenschalen, " Doctoral Thesis, Eidgenossischen Technischen Hochschule, Zurich, 1916.

APPENDIX A

CURVES FOR THE DETERMINATION OF STRESS FACTORS AND MODULAR RATIO OF CORRUGATED PIPES

Explanation of Symbols:

a) V-shaped
Corrugations

b) Cusped

c) Undulating

Meridional Stress Factor:

$$
\begin{equation*}
K_{\phi}=1 * \frac{h}{t} k_{\phi} \tag{3.1}
\end{equation*}
$$

Circumperential Stress Factor: $\quad K_{\theta}=\frac{h}{t} k_{\theta}$
Moduiar Ratio: $\mathrm{N}=\cos \alpha+\frac{\operatorname{ch}^{2}}{b t^{2}} n$

The quantities k_{ϕ}, k_{θ}, and n can be determined from the curves on the following pages. These curves are plotted as functions of α and β, where

$$
\begin{align*}
& \alpha=\tan ^{-1} \mathrm{~h} / \mathrm{b} \tag{3.4}\\
& \beta=\sqrt{\frac{b c}{\mathrm{r} t}}
\end{align*}
$$

FIG. A.4

APPENDIX B

$$
\text { CURVES FOR } N_{2}, K_{\phi_{3},}, K_{\theta 2}
$$

FIG. B.I

BIOGRAPHY

The author was born in Bombay, India on March 14. 1934. From 1942 to 1950 he received his primary and secondary education at the Cathedral and John Connon High School in Bombay, India.

In September 1951 he entered the Massachusetts Institute of Technology and received the degree of Bachelor 0 Scis inse in Civil Engineering in June 1955.

He entered the M.I.T. Graduate School in September 1955 as a student in the Department of Civil and Sanitary Engineering。

[^0]: This method of analysing stresses in shells was developed for the case of a spherical shell by H. Reissner, Muller-Breslau-Festschrift, p. i81, Leipzig, 1912; it was generalized and applied to particular cases by E. Meissner, David W. Taylor Model Basen Translation 238, and by H. Wissler, Festigkeitsberechnung von Ringflachenschelen, ${ }^{\text {W }}$ doctoral thesis, Zurich, 1916.

[^1]: 2 J. Tabush, loc.cit. P. 135.

