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Abstract

This thesis is intended to define a new means of calculating the marketer's
audience measures of reach, frequency, and gross rating points (GRP) from a
new advertising medium. It is intended to, for perhaps the first time, blend
marketing science and queueing theory.

Consider televisions mounted at the checkout lanes of a supermarket which
broadcast specialized programming. Customers waiting in queue constitute a
captive audience for advertisers. The crucial input to determining audience
size is the time the customers spend waiting in the queue: the longer they
wait the more likely they are to see an advertisement.

Three different models are considered to illustrate how the supermarket
queue behavior can be studied and the waiting times determined: (1) M/M/1
queue model, (2) M/M/k queue model, and (3) a derived model which
combines elements of the M/M/1 and the M/M/k models. Realistic data,
based on an actual test of this technology, show the most optimistic values of
reach, frequency, and GRP result from the M/M/1 model.

Thesis Advisor: Richard C. Larson
Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction and Background

Section 1.1: Introduction

In the 1990's, American businesses trying to reach the buying public are

faced with two increasingly important marketing issues. While neither of

these issues is new, new difficulties and emphases are arising. Innovative

solutions are required. These two growing challenges are the ability to reach

the consumer with advertisements and the rising demand for customer

service.

The need for new and creative means of advertising is expanding.

Network television was once considered the surest way of reaching the

American buying public, but recently the overall level of ratings as reported

by Nielsen Media Service has fallen. This drop in the ratings of network

television has sparked concern over both Nielsen's ability to accurately

measure the audience size [Schlossberg, 1990b] and the American people's

switch to cable and VCR's for their entertainment [Henke and Donohue,

1989]. In addition to network spending, advertisers are now having to spend

for cable ads as well [Katz and Lancaster, 1989]. The combination of remote

controls and VCR's means ads during regular network programs may be
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'zapped' (the rapid changing of channels during an ad or the muting of the

sound) and during the watching of taped programs, commercials may be

'zipped' (fast-forwarding the tape through the commercials) [Stout and

Burda,1989; Kaatz, 1987; Marketing News, May 9, 1990], thus reducing the

effectiveness of the ad. Further there is the issue of using VCR's to watch

rented 'theater' movies, which displace television watching and have no

advertisements [Sims, 1989].

No one with any connection to television or advertising is happy with

the current state of affairs. The networks returned almost $200 million

dollars to advertisers from their 1989 - 1990 spending for refunds for

advertisements during programs when the viewership fell below the

guaranteed level [Advertising Age, March 11, 1991]. There is increasing

hesitation on the part of advertisers to commit to network television ads

[Advertising Age, Feb 11, 19911. Clients of advertising agencies are demanding

the more creative use of their advertising budget [Advertising Age, March 4,

19911.

More creative advertising ideas have begun to be visible. The home-

shopping channels are like the point of sale items at the grocery checkout,

playing up to the impulse buy. Print ads on grocery carts act like little

billboards, trying to reach the subconscious or trigger the forgotten desire to

purchase the item [Schuman, et al, 1991]. The scratch-'n-sniff cards or the

scented cards in magazines are really free samples, an old marketing

technique [Smith, 1989]. Thus old ideas are being turned around with new

technology to provide new ways of reaching the consumers. The mass



media, mass marketing approach is no longer the norm, but rather more

specific targeting is on the rise [Light, 1990].

Advertisers need more original ways to reach consumers. Almost

equally important is the need that these new ways be measurable.

Advertisers want to know who they are reaching with their messages and

how often.

On top of these challenges, businesses are also being faced with greater

demands for customer service. The buying public is no longer concerned

with just the lowest price, but rather is demanding increased levels of

attention from sellers. Japanese competition comes not just from products,

but from the services they offer [Schlossberg, 1990a]. New ways to satisfy

customers in this country are being implemented [Michaelson, 1990; Miller,

1990]. The installation of Automatic Teller Machines to increase the banking

hours and decrease the lines for live tellers are a prime example. The

increasing number of money-back guarantees and the posted store policies of

providing more cashiers if the lines reach a certain threshold length are the

beginnings of attempts to satisfy customers in non-price related ways.

Whereas the 800 number for questions and comments used to be a rarity, it is

now the norm for many consumer product companies [Major, 19901. Articles

in the professional journals about service and the relationship of service to

continued business by a consumer are more visible in recent editions; for

example, two articles on service appeared in the 1990 Journal of Marketing,

while there are none in 1989 or 1988 [Bitner, Booms, Tetreault, 1990; Bitner,

1990]. An entire issue of Marketing News was devoted to articles on service



[Marketing News, May 28, 1990]. The articles document attempts to improve

service in everything from car sales to fast food sales.

It is against the backdrop of these new business challenges that the

concept of placing televisions at supermarkets was born. If customers waiting

in line to pay for their groceries could be exposed to advertisements which

they could not turn off or mute, and if at the same time they could be

distracted by specialized programming so that they felt they waited less time

in line, then both the buyers, the sellers, and the store managers could be

satisfied.

Groceries stores would provide a sizable audience for the advertiser.

The average grocery store completes 12,000 transactions a week in this

country. The primary shoppers are still women, aged 24-52, who are married

and have children [Pagano, 1990]. Ninety percent advertisements during

prime time network television programs are targeted at men and women

between the ages of 18 and 54 [Advertising Age, April 22, 1991]. Thus almost

half of the prime time audience purchasers are also at the grocery store.

Moreover, studies have shown that 65% to 81% of buying decisions are

actually made in the supermarket [Schuman, et al, 1990]. Thus for the

advertiser there is an audience in the process of trying to decide what to buy at

the moment the advertisement is running.

The idea of placing television and advertisements where people wait is

not entirely new. The United Airlines "Air Report" which is shown on board

flights is really the same idea. Students in Canada have also brainstormed the



idea of televisions in supermarkets. * Turner broadcasting is also starting a

television service in airports to appeal to customers waiting to check in at the

ticket counters .

There is at least one precedent which leads one to believe these types of

distractions can work. In a study completed in the Bank of Boston, customers

waiting on line for teller service were exposed to "silent radio", a LCD rolling

screen of news and information. It was found that customers who were

videotaped and surveyed greatly reduced their perceived waiting time while

the silent radio was in operation [Katz, Larson, and Larson, 1990]. Thus there

is a reason to believe this new technology can not only succeed for

advertisers, but for consumers as well.

In this paper, I shall concentrate on the potential of this new medium

for the advertiser. Just how much audience exposure could an advertiser

expect? How many people will see the advertiser's ad in a week or in six

months? How many people will see it twice or three times in a week or a

month? These issues are important to the advertiser for determining how

much she is willing to pay for the ad. These issues also come into play in

determining the relationship between the level of exposure and increased

sales. Thus the flow of traffic through the supermarket and the time the

customer spends waiting in line (when the customer is available to watch the

television) are crucial.

* The student authors of a paper regarding their ideas for this concept sent a
copy of their report to Richard Larson, who in turn shared it with the author
of this paper.
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The work here is -n attempt to blend marketing science and queueing

theory to develop new formulations of old definitions. Marketers measure

audiences with the concepts of reach, frequency, and gross rating points. The

goal of this paper is to present some illustrative ways of approaching new

definitions of these concepts through the use of queueing theory. The project

is motivated by a real life test of the Checkout Channel, completed in the fall

of 1990.

Section 1.2 of this chapter defines and discusses how reach and

frequency have been calculated in the past. Section 1.3 describes the Pilot Test

of the Checkout Channel and the differences between the Checkout Channel

advertising situation and advertising through other mediums. Section 1.4 of

this chapter will discuss the data used in this paper. Chapter Two will discuss

the formulation of each model, as well as its strengths and weaknesses and

some general concerns regarding modelling the supermarket checkout

system. The chapter will also derive the reach and frequency equations in the

general situation and then the specific formulations under the models.

Chapter Three contains the empirical results of the three models and a

discussion of the findings, as well as some consideration of how the results

would change with changes in the parameters. Chapter Four gives an

overview of the work, discusses conclusions, details other places this type of

technology could be applied, and makes suggestions for further research.

Section 1.2: Reach, Frequency, and Gross Rating Points

Reach, frequency, and gross rating points (GRP) are the marketer's

measures and evaluators of the audience of an ad. Those who sell

advertising space in magazines, on television or on radio base their prices on

11



the values of the reach, frequency, or GRP numbers [Katz and Lancaster, 1989].

While the concepts of what each number is trying to measure are fairly well

understood, there is little agreement on the methods of calculation.

Section 1.2.1: Definitions

Consider a particular ad which is placed in an advertising schedule; for

example, six issues of a monthly magazine or once during each evening's

episode of 'Jeopardy.' Let x be a discrete, non-negative variable which

represents the number of times the ad is seen by an individual or a

household in a particular time period. Let f(x) be the number of individuals

or households who see the ad x times in the time period in question. The

function, f(x), is defined to be the frequency distribution of the ad. When the

total size of the target population of the ad, call it N, is known, the frequency
f(x)

distribution is sometimes written as N for each x and thus resembles a

probability mass function.

When marketers use the term frequency, they are usually referring the

average frequency of individuals or households who saw the ad. This

quantity answers the question, Of people who saw the ad, what is the average

number of times any one of them saw the ad? The average frequency is

equal to
0o

Sf(x) * x

N - f(O)
f(x)

When N is thought of as a probability mass function, average frequency is

equal to E(x Ix > 0).
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Reach is defined to be the total number of individuals or households

who saw the ad at least once in a given time period. Using the notation

already defined, reach is equal to

00

Y f(x)
x=1 or N-f(0)

00

I f(x)
x=1

Often reach is expressed as a percentage of the total audience, or N

Occasionally marketers are interested in the number of people who saw

the ad at least twice or at least thrice. Effective reach is the term used in these

cases. Effective reach at level i is equal to
00

00 1 f(x)
I f(x) x =-

x = i or, in terms of percentages, is equal to N

The level of the effect is the minimum number of times the ad must be seen

to be counted in the 'reached' group.

The third measure of interest is the gross rating points (GRP). GRP is

often used to price advertisements. GRP is the total number of exposures to

the advertisement in the time period of interest. Therefore, GRP is equal to

00

Sf(x) * x
x=l1

While reach is concerned with the number of people exposed, GRP is

concerned with the number of exposures, regardless of how many people

13



make up the exposed group. Frequency is the merger of the two concepts. A

good summary of these measures can be found in Dickson, 1991.

Section 1.2.2: Methods of Calculation

In the past, reach and frequency have been calculated in a number of

ways. The expected GRP of an advertising schedule can be obtained from

media rating services, like Nielsen for television, and thus if the reach figure

is known, a simple division of GRP by reach gives the average frequency:

X f(x)*x 2 f(x)*x
GRP= = 1 = = 1 = Ave. Frequency

Reach 0 N- f(O)
I f(x)

x=1

Thus many authors have worked on estimating reach accurately [Agostini,

1961; Caffyn and Sagovsky, 1963; Metheringham, 1964; Young, 1972;

Friedman, 1971; Cannon, 1983]. Yet it has been pointed out by other authors

that this type of analysis does does not provide the full frequency distribution.

Clearly there are benefits from the additional information that the full

distribution provides, as opposed to the information the mean alone

provides. For example, it may be important to a company to know how many

people saw the ad for a product at least three times, for three exposures may

be the level considered necessary for inducing the customer to try the product.

Thus while knowing the gross rating points and the reach are important, they

are not sufficient information, and more calculation is necessary to fully

understand frequency.

14



A variety of methods have been used to evaluate the full frequency

distribution. Some methods for determining frequency in magazine

advertising have used survey data to estimate the probability that an

individual saw the ad in question [Greene, 1970]. Then the distribution of

exposures is determined by a binomial distribution or Monte Carlo

simulation. For television advertisements, the negative binomial and the

beta-binomial have been used to model the exposure of households to the

advertisements. In the latter model, the beta distribution gives the probability

that any portion of the audience is exposed to the ad and the binomial

distribution gives the percentage which is exposed once, twice, etc. Other

models begin by estimating the probability of an individual seeing the ad and

extend from there [Greene, 1970]. Other specialized techniques like the

Modal-2, the Metheringham method,the Kwerel-Geometric, and the

Hofmans-Geometric [Headen, Klompmaker, and Teel, 1976; Leckenby and

Kishi, 1982a] have been studied and improved upon over the years. A good

review of the various models and the way they are viewed by media directors

can be found in Leckenby and Kishi, 1982b and Leckenby and Boyd, 1984.

Section 1.3: The Checkout Channel Pilot Test

The Checkout Channel Pilot Test was completed in the Fall of 1990 as a

joint venture between Turner Broadcasting and Actmedia, Inc., a major,

national supermarket chain marketer. For six weeks, a satellite feed of news,

weather, sports, feature pieces and advertisements was supplied by Turner

Broadcasting, to twelve supermarkets around the U.S. Television monitors

were placed at the checkout lanes so as to be seen by the people standing in

line to have their groceries totaled. A small speaker was placed just above the
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conveyor belt, with two sound levels (loud and soft), but no switch which

would allow it to be shut off.

Section 1.3.1: Monitor and Speaker Placement

Clearly the placement of the monitors at the lanes will have a

profound impact on the effectiveness of this medium. The monitors were

placed about six feet high on the left side of each lane above the magazines

and point of sale items. They were angled so as to be particularly visible to

the second person in queue and the people behind him, as is shown in Figure

1.1. Once in service, a customer would have a difficult time actually seeing

the monitor, without backing up into the lane. The angle of the monitors

also allows a customer in queue to see the monitor in the next lane to his left.

Observation of customers in the test stores showed that for the third or fourth

customer in queue, especially taller customers, it was actually preferable to

watch the monitor one lane to the left. The angle was a bit less acute and

appeared to be more comfortable.

For customers still shopping in the store, when moving down the

main horizontal aisle (the one which runs perpendicular to the checkout

lanes and forms the queueing area), the televisions were quite visible when

queueing was low. I observed one older gentleman leaning against a display

case at the end of an aisle watching the Channel and guarding the shopping

cart while his wife moved about the store gathering the groceries. Thus

customers may be exposed to the Channel for more time than simply their

queue time.
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Figure 1.1:

Front of Supermarket
Hass-Hill, 1990
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The speaker was also angled to most effectively reach the customers in

queue. The intent was to avoid distracting the cashiers any more than

absolutely necessary, and thus the single speaker for each lane was placed at

the end of the conveyor belt facing the queueing customers, as is shown in

Figure 1.2. The design was to have the sound only be audible in a four to six

foot radius from the speaker [Schlossberg, 1990d]. The first and second

customers in queue thus received the greatest impact of the speaker in their

lane, but the overlap of the speakers allowed customers further along in the

queue to also hear the audio. The first or second customer in queue could

reach the small button on the bottom of the speaker to adjust the sound level

to high or low.

The speakers also had sensors. If no customer arrived to the queue to

trigger the sensor, the volume dropped to virtually inaudible. When a

customer arrived to the lane, the sensor triggered the sound to return to the

lower of the two settings. In this way, when a lane was closed, its speaker was

not adding to the din of the store or overwhelming the cashiers who were

busy. The more lanes idle, the lower the overall sound. The more lanes

busy, the greater the overall level of sound which helped compensate for the

noise of the additional customers.

Section 1.3.2: Programming

The format of the programming was quite similar to that of Turner's

CNN/Headline News program, with some additional consumer information

particularly aimed at grocery shoppers. Because the programming was

supplied by satellite and not a taped version, it could be updated frequently or

pre-empted to cover news of immediate importance. The programming was

18



Figure 1.2:
Audio Exposure

Hass-Hill, 1990
Front of Supermarket
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Rear of Supermarket
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updated hourly for the test. The programming changed slightly over the

course of the day to reflect the differences in the shopping population at the

various times of day: programming aimed at parents during the day,

programming aimed at single adults or adults with no children in the

evening, family programming on the weekends. The feed was available

twenty-four hours a day, seven days a week for the length of the test.

Section 1.3.3: Data Gathered in the Pilot Test

Data gathered included videotape from seven test stores (with

programming) and two control stores (without programming). Survey data

were also gathered from each of four waves of surveys, which occurred

before, during (2 waves) and after the test, at a minimum of sixty surveys

completed per store per wave. Most of the stores' management also provided

the number of transactions completed each hour of the day for a week during

the test. These data were used to examine the length of queueing in the

stores, understand the overall level of business and customer activity in the

stores, and determine if customers who watched the televisions had a

perceived waiting time lower than those who did not watch the televisions.

This situation provides some unique opportunities for study, as well as

unique opportunities for the advertiser. For the advertiser, there is a captive

audience which cannot turn off the monitor, cannot mute the sound and

cannot fast-forward through the ad. There is dearly an audience with money

to spend in grocery stores and thus is an audience advertisers would like to

reach. Moreover, beyond just the shopper, there is the potential of the

additional companion to the shopper: a spouse, friend or child over the age of

sixteen, who though while not purchasing at that moment, is a valuable

20



target for the advertiser. This issue will be discussed further in the following

chapters. Thus we have a large, desirable, captive audience for the advertiser.

The supermarket environment also provides the researcher with a

unique opportunity. Many of the weaknesses of the previously mentioned

models for calculating reach and frequency have come from their inability to

predict audience size. Often there is a reliance on outside sources, like the

Nielsen ratings service or magazine readership studies, to determine the

potential audience size. Thus there is the possibility of error from two

sources: the model itself and the data fed into it. However, the grocery store

world is different. Whereas magazine readership and television audience

size may need estimation, we at least have the potential audience size from

the number of transactions the store completes. The only estimation we may

need is the estimation of the contributing effect of the shoppers' companions.

Thus we need not worry about inaccurate data for our model, at least in terms

of potential audience size component.

Section 1.4: Data for this Work

The data used in this paper are not the actual data which resulted from

the Checkout Channel Pilot Test. Difficulties in getting permission to use the

data, due to its proprietary nature, have prevented its actual use. However,

using some of its patterns and some known industry standards, I have created

examples for this work which are realistic and illustrative, but are not the

results from any particular store in the study. The following guidelines were

used:

21



1. The following are industry standards, as t6id to me by

Actmedia researchers:

a) The average supermarket in the U.S. completes 12,000

transactions per week.

b) The average customer shops 2.3 times per week.

2. I have maintained the pattern found in many of the stores

that the number of transactions per day has a small peak in the

noon - 1PM hour and then a larger peak in the 5PM - 6PM hour,

as shovm in Figure 1.3 at the end of the section.

3. I have only considered stores to be open from 8AM to

midnight. The late night hours are not considered in this study,

because of the extremely small number of transactions which

take place during those hours.

The primary data of importance for this work are the average number

of transactions per hour, the number of lanes open per hour, and the average

service time. These values are shown in Table 1.1. These averages total to

11,970 transactions per week, just under the industry average. I also take the

average service time to be 90 seconds.

Once more before closing this section I stress that these are not the

actual data, but are reasonable values considering the actual averages and the

ranges of the values which resulted from the study.
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Figure 1.3:
Pattern of Transactional Data
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Table 1.1: Transactional Data and Number of Lanes Open
by Hour of the Day

Time of Day

Avrg Nube Nube of
Average Number
of Transactions

8:00 - 9:00 AM
9.00 - 10:00 AM
10:00 - 11:00 AM
11:O0 AM -Noon
Noon - 1.00 PM
1:00 - 2:00 PM
2:00 - 3.00 PM
3:00 - 4:00 PM
4:00 - 5:00 PM
5:00 - 6:00 PM
6:00 - 7•00 PM
7:00 - 8:00 PM
8:00 - 9:00 PM
9.00 - 10:00 PM
10.00 - 11.00 PM

11.:0 PM - Midnight

50.00
70.00
90.00
110.00
130.00
110.00
120.00
140.00
150.00
180.00
170.00
140,00
100.00
70.00
50.00
30.00

3.00
4.00
5.00
5.00
6.00
5.00
5.00
6.00
6.00
7.00
7.00
6.00
5.00
4.00
3.00
2.00
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Chapter 2

Three Models of Supermarket Queueing

In this chapter three different models for a grocery store checkout

system will be discussed and considered. The techniques for calculating reach,

frequency, and GRP under the models will be outlined. As the key to these

calculations is the distribution of waiting times of the customers, the

equations will be derived in terms of a general waiting time distribution in

Section 2.2, and then the specific cases under the different modelling

assumptions will be demonstrated in Section 2.3. In section 2.1 I shall present

the three models and their viability.

Section 2.1: The Three Models in Question and Their Viabilities

To characterize the checkout system at a supermarket, three different

models were considered. The first two are somewhat standard models: the

M/M/1 and the M/M/k queueing models. The third model arose from the

inability of these two models to fully capture the idiosyncrasies of the

queueing at a supermarket, and is an attempt at combining the two.
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Section 2.1.1: The M/M/1 Model

Suppose we consider each checkout lane at a supermarket to be an

M/M/1 queue. The number of customers who arrive each hour at the

checkout lane to have their groceries totalled is a Poisson random variable

with parameter Xh , where h designates the hour of the day. There is one

server or cashier at each lane whose service time for a customer is an

exponential random variable, with a mean of 90 seconds. We shall assume

that the distribution of service times does not vary with the hour of the day.

The M/M/1 model divides the traffic equally among the available

lanes. Quite literally, the model requires dividing the total arrival rate by the

number of open lanes and therefore assumes that the traffic is evenly

distributed over the lanes. This model allows us to use the well-known

results of the M/M/1 queue and allows the lanes to function independently,

which is somewhat like how they actually behave in the supermarket.

While this division of the arrival rate may seem reasonable decision, it

is not exactly how supermarkets work. Arriving shoppers are not assigned a

checkout lane number at the entrance of the store which dictates which lane

they must check out through, but the model assumes this sort of structure. It

is possible that the the 'forcing' of customers into a line, as this formulation

does, may in fact increase waiting times by not allowing faster services to be

taken advantage of by waiting shoppers. If one queue empties, the shoppers

in the other lines are not allowed to switch under this structure, and thus the

model may over-represent the actual waiting times. Thus we may expect

slightly higher waiting times, which will result in higher probabilities of
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seeing advertisements and thus overly-optimistic reach, frequency, and GRP

numbers.

Section 2.1.2: The M/M/k Model

For the second model, consider all the checkout lanes together as one

system, instead of considering each lane individually. Consider customer

arrivals to the system of lanes to be Poisson, with rate .h which changes for

each hour of the day and h designates the hour. In this model there are now

k cashiers or servers available to all the customers. Service times are

exponential random variables with a mean of 90 seconds. As with the

M/M/1 case, we shall assume that service times are not dependent on the

hour of the day.

This model considers the entire system of checkout lanes as a whole

and thus allows for the possibility that customers may do better in terms of

waiting than the 'assigned lanes' approach of the M/M/1 model. Thus in a

sense it allows customers to continually change lanes to find the shortest

waiting time. However, this model actually assumes that customers form

one line to wait for the next available cashier. Supermarkets do not use these

'serpentine' queues, but rather shoppers choose their own lanes upon

arriving to the checkout area. By assuming that customers form one line the

model assumes the most efficient allocation of cashiers. Shoppers may not

actually choose their lines this efficiently and thus this model may under-

represent waiting times. If waiting times are underestimated then the reach,

frequency, and GRP figures will also be underestimated.
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Section 2.1.3: The Derived Model

Because of the specific concerns of overestimating and underestimating

waiting times by the M/M/1 and M/M/k models respectively, a third model

was considered. If the M/M/1 and M/M/k model formed bounds for the true

behavior of the supermarket queueing, perhaps a model which predicted

waiting times somewhere in between could be developed. The following

model was proposed.

Suppose customers are allowed to choose their own lane upon arriving

at the checkout area. Customers must choose the lane with the least people

in it and once chosen, the lane may not be changed. This procedure is fairly

close to how customers actually choose their lanes at the grocery store.

Further, assume that there are k servers available, or k checkout lanes open.

To simplify calculation, assume that when there are k customers in the

system, they are distributed evenly over the k available lanes. Thus we

cannot have a situation in which there are more than k customers in the

system and there is an empty checkout lane.

Consider the state transition diagram, Figure 2.1. Under this model,

when the system is in state Sk+3 then the assumption is that all k servers are

busy and three of them have one person in queue. For example, when there

are k+3 customers in the system, the situation of k-2 servers busy (two servers

are idle) and five of them with queues cannot occur. These assumptions also

imply that if there is a transition from Sk+3 to Sk+2 then a customer must

have left one of the lanes with a queue. This assumption is not wholly

unreasonable. If a customer has a choice of a number of lanes which have the

same length queue, then the choice of which queue to join is arbitrary.
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Similarly, when a service finishes, there is no reason to assume it is not a

service by one of the servers with the maximum queue. There may be a

combinatorial term for the number of servers which could be the appropriate

one to finish, but I have assumed this to be a second order effect.

Figure 2.1: State Transition Diagram for the New Model

Arriving customer Arriving customer is Arriving customer is
goes straight into first in queue second in queue

service

In an entirely parallel way, if the system is in state S2k+4 then all k

servers have one person in service and at least one more person in queue.

When a service is finished, we assume that is by one of the servers with a

maximum queue.

In order to determine the waiting time distribution under this model, I

assume that the probability a customer arrives and joins a line of length L

(remembering that customers must join the shortest possible line) is the

probability that there are more than (L-1)k customers in the system but less

than Lk customers in the system. If a customer arrives to find less than k

people in the system, then the customer goes straight into service without

waiting in queue. I have assumed that the probability the customer arrives to

find between (L-1)k and Lk customers in the system is
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Lk-1

1: P(i)
i=(L-1)k

where P(i) is the steady probability of i customers being in the system under

the M/M/k queueing model.

Once a customer is in a line of length L, the time the customer waits

until his service begins is an Erlang random variable, order L, and the

parameter of this density function is equal to the parameter of the

exponential service time distribution, in this case 90 seconds. As in the other

models, random variable w is the time a customer spends waiting in queue.

The total time the customer spends in the system is also an Erlang random

variable with order L+1.

By combining these results, the waiting time distribution for this

model can be derived. I have the conditional density function for how long a

customer waits, conditional on L:

fwIL(WoJ) = gL" WoLo-1 e-*wo
(Lo-1)!

I have the probability law for the customer joining a line of length L:

Lk-1

pL(Lo) = P(i)
i = (L-1)k

where P(i) is the probability of i people in the system under the M/M/k

model. By multiplying these two probability laws I obtain the joint

probability law for joining a line of length L and waiting time w. By

summing over all the possible values of L, I obtain the marginal probability
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law for w, which is what I need for the reach, frequency, and GRP

calculations:

o Lk--1

I pL(Lo) fwIL(WoLo)= • I P(i) gL.wLole"w°o
4=0 L.o=0 i= (L-1)k (Lo'l-)

This model allows for some of the idiosyncrasies of the supermarket

checkout. It allows customers to choose their own lanes reasonably, but also

allows the system to function as a whole. By not forcing customers into

specific lanes as the M/M/1 did, the model may compensate for the

overestimated waiting times. By not allowing the customers to switch lines,

the model may allow for the possibility of not having the most efficient

allocation of cashiers. However, this model still does not accurately describe

the checkout system.

By using the probabilities from the M/M/k system, this model may

underestimate the probability of finding i people in the system. The use of

the M/M/k probabilities assumes that the cashiers are being allocated most

efficiently, and thus may in effect assume that people are leaving sooner than

they are. Thus the number of people in line may be underestimated.

Numerical results will show that this seems to be the case.

Section 2.1.4: General Modelling Concerns

While each of these models raises its own questions as to its viability,

there are some general concerns about modelling this situation which apply

to all three models.
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The first concern is the use of steady state probabilities to obtain the

waiting time distributions. Each of the models implicitly assumes that the

probability of being in state i is not dependent on what state the system was in

when the process started. This would imply that the number of people in the

system at the beginning of the hour is independent of the number of people a

customer will find in the system at any point in the hour. Clearly this is a

broad assumption. The probability that a customer who arrives only

moments after the beginning of an hour is not independent of the number of

customers in the system at the beginning of the hour, but rather is dependent

on this number of customers, which is the number of customers left behind

by the previous hour.

The steady state probabilities smooth out the variation within the

hour, but they also smooth out the carry-over effects between hours. When

there are a number of high traffic (high arrival rate) hours in a row, a time

when there is apt to be large carry-over, the steady state probabilities may be

underestimating the number of people in queue. Similarly, during low traffic

hours (low arrival rates)when there are high probabilities of no one in queue,

the steady state probabilities may be overestimating the number of people in

queue. For this work, the underestimating during high traffic hours is of

particular concern. This concern will be discussed further in Chapter 4.

Another concern regarding modelling supermarket queueing is the

difference between express and regular lanes. Express lanes, where customers

usually have only a few items, may have a very short average service times

and the regular lanes in which customers may have large carts full of

groceries may have very long average service times. Express lanes may
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behave very differently, for the lines can get very long but can also be

dispersed very quickly. It may be that while the probability of seeing the ad is

very small in express lanes, it is quite large in regular lanes. Thus the issue

would be how much of the audience goes through the regular lanes and thus

has a real chance of seeing the ad. The two lane types may require two

separate models, which must somehow be weighted by the amount of

business which is completed through the two lane types. It may also be

possible to model the express and regular lanes as a queueing system in which

some customers have priorities and a different service time distribution.

These ideas will be discussed again in Chapter Four.

Though less pressing than the previous issues, another area for

exploration is the question of companions. It may be that a shopper is more

likely to have a companion along when he is doing a large shopping trip or

planning to purchase many items. Shoppers in express lines stopping in for

the proverbial quart of milk may be less likely to have someone with them.

Thus there is a chance that the people who stand in line longest also increase

the audience size more often with their companions, or in other words,

companions are not distributed over the frequency distribution categories in

proportion to the shoppers, but are more concentrated in the higher

categories. Depending on this concentration and the overall number of

companions, this increase could greatly increase the number of gross rating

points. Some sample calculations are done in Chapter Three.

A final issue to be explored in terms of modelling is the service time

distribution. We assumed here that service times are independent of the

hour of the day, but this may not be the case. It is possible that the average
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service time decreases as lines get longer. Cashiers under pressure may scan

groceries with more vigor. Thus there may be a correlation between the

length of the line and the speed of service. Such a correlation, if found to

exist, would have to be included in an accurate model.

This work does not address all these concerns individually, but it is

illustrative of the ways in which this question can be approached.

Alternative models and ideas are discussed in Chapter Four.

Section 2.2: Developing the Equations for Reach, Frequency, and GRP

As previously mentioned, the key to developing the new equations for

reach, frequency, and GRP for this new medium of advertising is the waiting

time distribution. Clearly the longer a customer waits in line at the store, the

greater the probability of seeing a particular advertisement.

Section 2.2.1: The Probability of Seeing an Ad on a Single Shopping Trip

Consider a programming loop which is t minutes long. The news,

weather, feature and sports segments as well as the advertisements repeat

every t minutes, with slight variations in the reported stories. The

importance of the length of the programing loop is that in each repetition of

the loop, an advertiser's ad is shown once. A firm is only interested in the

number of people who see its ad; the total number of ads seen by the

customer which belong to other firms is irrelevant. A customer arriving to

the queue is equally likely to arrive during any moment of the programming.

Thus if the customer waits w minutes then the probability that the customer

sees the ad in question is the probability that the ad falls somewhere in the w

minutes that the customer waits, with possible end effects. Because the loop
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repeats and the ad shown in each repetition of the loop, if a customer waits an

amount of time longer than the loop of programming, then the customer

must be exposed to the ad at least once. It is possible to formalize this

argument into a probability statement.

Let r be the random variable for the number of times a customer is

exposed to an ad. If a customer waits a time w which is less than the t then

the probability a particular firm's ad falls entirely in the section of tape
IL

covered by the time the customer waits is t . However, the customer could

arrive during the ad, or begin service during the ad, thus creating the end

effects.

Define a to be the length of each advertisement in the loop of

programming. Suppose a customer is considered to have seen the ad if he

sees at least half of the ad, or a/2. Consider again that w is less than t. As

Figure 2.2a shows, the probability the customer sees the ad once is now, given

that w is less than t:

w + 2(k)
t

Suppose w is greater than t. Then the probability the customer is

exposed to the ad at least once is 1, because the customer has been exposed to

the entire length of the programming loop. Thus it is possible to define:

0 w<0

prŽ(1 w)= w+a 0w t-a
t1 w > t -a
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Figure 2.2a
Determining the probability of seeing an ad when w < t.
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Figure 2.2b
Determining the probability of seeing an ad when w > t.
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The probability that the customer sees the ad twice is, as shown in Figure 2.2b:

w - t + 2(i)

t

With a parallel argument to the case with w less than t, it is possible to define:

pr;dw(21w) =
w<t-a

t- a •w w 2t- a

w > 2t -a

Generalizing to seeing the ad at least r = h times the following probability

law conditional on w, is obtained:

pr Iw (hlw) =
w< (h- 1)t- a

(h- 1)t- aS w5ht- a
w> ht- a

Having derived a probability law for the number of times the ad is seen

conditional on the time the customer waits in queue, it is possible to obtain a

joint probability law for the time waited and the number of ads seen by

multiplying the two probability laws:

fr,w(ro,wo) = Pr Iw. (ro I wo) fw(Wo)
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By integrating over all possible values of w, the marginal probability law for

the number of times the ad is seen on a trip to the store is achieved:

pr(ro)= Wfr,w(ro,wo) dwo = f pr w. (ro I wo) fw(wo) dwo

For each model, there is a different probability law for w, and thus a different

probability law for the number of times the ad is seen will result.

Section 2.2.2: Extending to a Week

Consider random variable y to be the number times in a week

that a customer sees a particular ad. Then y is equal to the number of times

the ad is seen on a single trip summed over the number of trips per week,

which is also a random variable which we shall call s. Thus, y is a random

sum of random variables, or

y = rl+ r2 + ... + rs.

It is possible to obtain from survey data something which looks like

the probability mass function for the number times per week a customer

shops. However, if the survey is taken at a supermarket, the attained

percentages cannot be used for the density function of s, because an

interviewer at a supermarket is more likely to question the customers who go

to the supermarket more often, for the simple reason the frequent shoppers

are more likely to be there on the given day when questions are asked. Thus

the resulting density is skewed towards the customers who shop more often.

This problem can be fixed.
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Suppose in a survey we obtain the following percentages: i% of the

questioned customers shop once a week, j% shop twice a week, k% shop three

times a week, and 1% of the customers shop four (or more) times per week. If

we take these percentages as probabilities and define random variable d to be

the number of shopping trips per week as described by the survey data, then

the 'random incidence' relationship gives the result that

dops(so)pd(do) = s(o)
E(s)

This equation can be used to solve for Ps(so). The following equations can be

set up from the data:

E(s) = ps(1) + 2ps(2) + 3ps(3) + 4ps(4)

..L = ps(1) = 2ps(2)
(a) 100 E(s) (b) 100 E(s)

k = 3ps(3) 1 = 4ps(4)
(c) 100 E(s) (d) 100 E(s)

(e) ps(l) + ps(2) + ps(3) + ps(4) = 1

By substituting E(S) into equations (a), (c), and (d), and using equations (a), (c),

(d), and (e) we have system of four equations in four unknowns and we can

solve for the values of s that are needed.
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We now have a probability mass function for s, and one for r, though it

is tedious, we can determine a density function for y by noting that since

y = r1 + r2 + ... + rs, the z-transform for y is just the z-transform for s

evaluated at the z-transform for r, or

pT(z) = p(h)I h =pTr(z)

However, for our calculations here, we have different probability mass

functions for r for each hour of the day. Without additional information, we

assume that the probability of shopping during a particular hour of the day is

equal to the average number of shoppers during that hour divided by the

total number of shoppers in the day, or the proportion of shoppers in that

hour of the day. Thus the random variable we need in the transform

equation is really the resulting value from the random choice of the random

variables for each hour of the day. Thus PTr(z) as noted above is equal to

pTr(z) = p(8 AM)pTr(s AM)(Z) + p(9 AM)pTr(9 AM)(Z) + ... + p(11 PM)pTr(11 PM)(Z)

We can substitute this piece into the above equation and determine the

probability mass function for y. The final result is notationally cumbersome,

but once the data are applied, it simplifies a great deal. The results under each

model will be shown in Chapter 3.

Section 2.2.3: Reach, Frequency, and GRP

We can now use the probability mass function for y to determine how

many people see the particular ad once, twice, etc, within a week. We cannot
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however, simply multiply PY(1) times the number of transactions in a

week, or PY(2) times the number of transactions in a week to get the number

of people who see the ad once or twice respectively. The number of

transactions per week counts twice each person who shopped twice, counts

three times the number of people who shopped three times. etc. Thus to

perform these multiplications would be to treat each transaction like it

represents a separate customer, which is not the case. We must determine

the number of individuals who constitute this number of transactions.

Define T to be the total number of transactions completed in a week.

Previously it was shown how use the survey data to solve for the true

percentage of customers who shop s times per week (s = 1,2,3, or 4). Suppose

sl% of the customers shop once a week, s2% shopped twice, s3% shopped three

times, and s4% shopped four or more times. Thus .siT represents the number
s2T

of individuals who shopped once. Similarly, 2 x 100 represents the number
s3T

of people who shopped twice; 3 x 100 represents the number who shopped
s4T

three times; and 4 x 100 represents the number who shopped four times. If

we define P to be the total number of individuals who shopped in the week,

then

4

•_ix100

The frequency distributions determined by calculating P x py(Yo) for

each value of yo. If no is defined to be the number of people out of the total

available audience who saw the ad zero times, then no = P x py(0).
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Similarly, if ni is defined to be the number of people who saw the ad once,

then n" = P x py( 1) . The same calculations can be made for each possible

value of y.

Summing the P x py(yo) over all values of Yo not equal to zero gives the

gross rating points, or

GRP = C P x py(i)
i=1

Having the frequency distribution makes the calculation of reach

rather straightforward. If reach is defined to be the total number of people

who see the ad at least once, then we can obtain the needed values from the

frequency distribution. We simply add up the all the values in the frequency

Spy(i)
distribution which are defined for values greater than one, or i=1 . In

practical terms it would make more sense to take the total population P and

subtract out the number of people who never saw the ad or P-Pxpy(O)

I note however, that if one wishes to take a broader view of the

definition of reach, it could be defined as the total available audience. If this

is the case, the the total population P is the actual reach figure. Clearly this

number will be higher than the that of the first definition and is perhaps

overly optimistic, unless a specific example presents probabilities of viewing

the ad which are close to one during any given hour.
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Section 2.2.4: Summary of Algorithm to Determine Reach, Frequency, and

GRP

The purpose of this section is to review the algorithm described for the

new calculations of reach and frequency. The algorithm can be summarized

as follows:

Step 1:

Determine the probability mass function for rh, the

number of times an individual sees the ad on a trip to the

supermarket, given the customer shopped in hour h.

w < (ro- 1)t- a
PrIWw (ro I ) -(ro- 1)t + aPRIw (row)t (ro- 1)t- a<w <rot - a

1 w> rot - a

ro = 1,2,...

Step 2:

Using the probability density function for the time a

customer spends waiting in queue from the model of choice,

determine the joint density function for the time the

customer waits and the number of ads he sees, given the

hour he shopped in. Integrate over all values of w to obtain

the unconditional, marginal probability mass function for the

number of ads a customer sees in a single shopping trip for

that hour:

p f(ro)= fr,w(rowo) dwo = p 1w.(ro I wo)fw(wo) dwo
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Step 3:

Determine the mass function for r for the whole day by

weighting the individual mass functions for r for each hour

of the day by the appropriate weights, here taken to be the

proportion of customers in the hour, and summing. This

may be most easily done via the sum of the weighted z-

transforms of rh :

pTr(z) = p(8 AM)pTr(8 )(z) + p(9 AM)pTr(9 AM)(Z) +...

+ p(11 PM)pTrT11 PM)(Z)

Step 4:

Using random variable s, the number of times a customer

shops in a week (adjusted from survey data if necessary),

determine the probability mass function for y, the total

number of times an individual sees an ad in a week by

summing the random variable r, s times:

y= rl + r2 + + rs

This step may aiso be most easily accomplished by using the

z-transforms, by recalling

pTy(z) = pTs(m) m pTr(z)
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Step 5:

Using random variable s, determine the actual number of

customers, P, to complete the week's number of transactions,

T.

Step 6:

Determine the frequency distribution by calculating

ni = P x p y(i)

Determine reach by calculating

py(i) P-Pxpy(O)i=1 or

Determine GRP by calculating

P x py(i)
i=1

Section 2.3: Waiting Time Distributions under Each Model

Each of the following subsections details the waiting time distribution

under one of the models and gives the derived probability law for the

number of times a particular ad is seen on a trip to the store.
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Section 2.3.1: M/M/1 Model

The waiting time distribution under the M/M/1 model is well known

and thus is stated here, not derived in detail. The probability law for the time

a customer spends waiting in queue for his service to begin, w, is:

wo = 0

>) 0

The impulse at zero results from the probability that the customer enters

service immediately and thus waits no time at all in queue. The total

probability of the impulse is equal to the probability that there are no

customers in this system. Using the procedure outlined in the previous

section, the obtained probability mass function for r is:

pr(1) = P [ 1- exp(- g(1 - p)to) ]
Wi(1 -p)to

pr(2) = -Pt [exp(- p(1 - p)2to) I + p exp(- g(1 - p)to) ]
g(1 -p)to ( -p)to

or in general

r(i) = ---- [exp(- g(1 - p)ito) I + -P- [exp(- i(1 - p)(i - 1)to) ]
i (1-p)to i(1 -p)to

Section 2.3.2: M/M/k Model

The resulting probability density function for the time ,w, that a

customer spends in queue waiting for service in the M/M/k model is also
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fairly well documented [Saaty, 1961]. If k is the number of servers, then the

density for w is the following:

fwq(Wo) = P(>O)kg(1-p)exp(-kgJ(1-p)wo) wo~0

where

P(>O)= k= p Po
k! (1-p)

Po = ( +(kp)kJ
n ! k! (1-p)_

and

kg

The derived distribution for the number of times the ad is seen on a trip to

the store, r, is then:

- P(>O) P(>O)pr(l)=- P(>0) exp(-kg(1-p)to) +
kP(1-p)to k_(1-p)to ,

- P(>O) P(>O)
pr(2) = exp(-kg(1-p)2to) + - exp(-kg(1-p)t

kg(1-p)to kg(1-p)to

or in general

- P(>O0) P(> 0) 1)t)pr(i)= exp(-kg(1-p)ito) + -- o) -exp(-kg(1-p)(i -1)to)kg(1-p)to kg(1-p)to

Section 2.3.3: The Derived Model

As mentioned in section 2.1.3, the waiting time distribution under the

new model must be derived by using the conditional density for the time

waited given the length of the line joined and the probability of joining a line
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of that length. Multiplying these two and summing over all possible line

lengths gives the density for the time spent waiting in queue. However, this

infinite sum does not have closed form. The sum is:

fwq(w) = PL(O)x(O) + PL(1)geiLw + PL(2)gi2we w + ...

where

k -1 (-)1
PL(O) = 1 -Po

i=O po k-1(kp)n (kp)k "

and L n! k (1-p)

nk -1 (

PL(n) = •Y .I P
i = (n-1)k kik k

!

Because no closed form for the infinite sum, in this paper, the summation

was expanded until the coefficient of the Erlang term was not significant to

five decimal places. The resulting probabilities for r are found by integrating

the expansion. The integration requires many repeated integrations by parts

and contains over twenty-five terms. The form is not particularly useful, and

the expanded version is not included here, but may be found in the appendix.

The numerical results are presented in Chapter 3.
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Chapter 3

Empirical Results and Discussion

In this chapter, the data described in Chapter One are put into each of

the theoretical models and the numerical results are calculated. Some

parametric analysis is completed for the M/M/1 and M/M/k models. The

values and the models are compared, and the implications for the Checkout

Channel are discussed.

For each of the models, the mean number of arrivals per hour and the

number of open lanes is important to the formulation. For the specific

values being used, the reader is referred back to Table 1.1. For all the

calculations, I shall assume the length of the programming loop,to, is 8.5

minutes.

Section 3.1: Numerical Results

Random variable s, described in Chapter Two, is defined to be the

number of times per week a customer shops. For each of the models, the

probability law for s is the same.
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A survey was conducted during the Pilot Test at one of the test stores.

Suppose the survey found that 15% of the queried customers shop once per

week; 22% shop twice per week; 27% shop three times per week; and 36%

shop four times (or more) per week. Using the equations set out in Section

2.2.2, it is possible to solve for the probability law for s. In this case, these are

not the actual survey values, and thus the values of s are not those which

were obtained in this study. However, after solving I obtained the values

ps(1) = .35
ps(2) = .25
ps(3 ) = .20
ps(4) = .20

which results in an expected value of s is 2.25, just slightly lower than the

industry standard of 2.3. This probability law for s will be used in all three

models.

Section 3.1.1: Results for the M/M1 Model

From the data described in Chapter One, the model describes a grocery

store with checkout lanes with different arrival rates per hour. Table 3.1

shows the number of lanes open for each hour and the arrival rate per hour

for each open lane.
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Table 3.1: Number of Transactions and Arrival Rate

Time of Day

8:00 - 9.00 AM
9:00 - 10:00 AM

10:00 - 11:00 AM
11:00 AM -Noon
Noon - 1.00 PM
1:00 - 2:00 PM
2:00 - 3:00 PM
3:00 - 4:00 PM
4:00 - 5:00 PM
5:00 - 6:00 PM
6:00 - 7:00 PM
7:00 - 8:00 PM
8:00 - 9:00 PM
9.00 - 10:00 PM

10:00 - 11.00 PM
11:00 PM - Midnight

Number of
Lanes Open

3.00
4.00
5.00
5.00
6.00
5.00
5.00
6.00
6.00
7.00
7.00
6.00
5.00
4.00
3.00
2.00

Ave. Arrival Rate
per Hour=er Lane

0.417
0.389
0.375
0.458
0.433
0.458
0.5

0.467
0.5
0.5

0.472
0.467
0.417
0.389
0.417
0.25

Using the equations defined in 2.1.1 above for the probability mass

function for r, the values in Table 3.2 were obtained. I note that for most

hours of the day there is between a 0.2 and 0.4 chance of seeing the ad once.

Only during the most congested hours does the probability of seeing the ad

twice get near 0.10. Thus the probabilities of seeing the ad at least twice per

trip are extremely small. There are no values in the table for the probability

of seeing the ad three or more times in a single trip, as they were equal to zero

when rounded to five decimal places. Thus the probability that the customer

did not see the ad, p(r=0), is taken to be 1 - p(r=l) - p(r=2). While this means

customers will not be bored by repetition, it does not bode well for a great

many exposures in a week.
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Table 3.2: Probabilities of Seeing An Ad r Number of Times Under M/M/1

Time of Da P(r=0) P(r=l) P(r=2)

8:00 - 9.00 AM 0.741 0.228 0.031
9:00 - 10:00 AM 0.776 0.205 0.019
10:00 - 11:00 AM 0.792 0.192 0.016
11:00 AM -Noon 0.678 0.272 0.05
Noon - 1:00 PM 0.717 0.247 0.036
1:00 -2:00 PM 0.678 0.272 0.05
2:00 - 3:00 PM 0.599 0314 0.087
3:00 - 4:00 PM 0.664 0.28 0.056
4:00 - 5.00 PM 0.599 0314 0.087
5:00 - 6.00 PM 0.599 0.314 0.087
6:00 - 7:00 PM 0.654 0.286 0.06
7:00 - 8.00 PM 0.664 0.28 0.056
8:00 - 9:00 PM 0.741 0.231 0.028
9.00 - 10:00 PM 0.776 0.205 0.019
10:00 - 11.00 PM 0.741 0.231 0.028

11:00 PM - Midnight 0.897 0.1 0.003

The probability of seeing the ad at least once or at least twice changes as

v changes. Figure 3.1 shows this relationship. The pattern of the change,

which is exponential, is similar to the behavior of the expected waiting time

in the M/M/1 queue. This similarity of pattern is reasonable, because of the

relationship between the waiting times and the probability of seeing the ad.

Note that the probability of seeing the ad three or more times will be come

less negligible and indeed significant as v increases.
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Figure 3.1: Changes in Probabilties of Seeing an Ad
Versus Lambda/Mu Under M/M/1 Model
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Table 3.3 presents the probabilities of shopping during the various

hours of the day, based on the proportion of shoppers whose transactions

were during the hour. Table 3.4 presents a representative probability mass

function for the random variables rh where h represents the hour of the day.

Combining the weighted mass functions for rh results in the probability

mass function for r. The probability mass function for s, the number of

shopping trips per week is also presented, as is the resulting probability mass

function for y, the number times the ad is seen per week. Note that while it

should be possible to see the ad eight times in a week - twice per trip and four

trips in the week - the probability of this occurring does not appear in the

probability mass function of y. The probability of seeing the ad seven or eight

52



times in a week was zero to four decimal place accuracy. This result is not

surprising, as the probability of seeing the ad twice on any trip is so small.

Table 3.3: Probability of Shopping in each Hour of the Day

Time of Day P(sho in this hour)

8:00 - 9:00 AM 0.029
9:00 - 10:00 AM 0.041
10:00 - 11:00 AM 0.052
11.00 AM -Noon 0.064
Noon - 1:00 PM 0.076
1:00 -2:00PM 0.064
2:00 - 3:00 PM 0.072
3:00 - 4:00 PM 0.082
4:00 - 5•00 PM 0.088
5.00 - 6:00 PM 0.105
6.00 - 7.)0 PM 0.099
7:00 - 8:)0 PM 0.082
8.00 - 9.:0 PM 0.058

9:00 - 10:00 PM 0.041
10•00 - 11:00 PM 0.029

11:00 PM - Midnight 0.018
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Table 3.4: Probability Mass Functions Under M/M/1 Model

Example of hourly probability mass function for r:

.741 ro= 0
.228 ro= 1

Pr(8AM)r) = .031 ro = 2

Probability mass function for r:

(.681 ro = 0

pr(ro) = .266 ro= 1
.053 ro = 2

where r is the number of times the ad is seen on a single trip to the
supermarket.

Probability mass function for s:

.35 so:=1

.25 So = 2
Ps(so) = .20 So = 3

20 so = 4

where s is the number of trips to the supermarket per week.

Probability mass function for y:

.460 Yo= 0
.325 yo= 1

.151 yyo 2
.048 yo=3

py(YO) .013 Yo = 4
.002 Yo= 5

.0003 Yo= 6

where y is the total number of times the ad is seen in a week.
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Table 3.5 presents the breakdown of the 11,970 (= 1710 x 7) transactions

which occurred during the sample week. The resulting figure is that 7074

individuals completed these 11,970 transactions.

Table 3.5: Proportion of Transactions Completed by Distinct Individuals

T = 11,970

.35T 4190

.25T/2 1496

.20T/3 798

.20T/4 50

Total - P - 7074

Table 3.6 presents the frequency distribution under this formulation.

Dividing through by the total potential audience size, I can express these

values as percentages of the total audience, and thus extrapolate to other

stores if I believe they behave similarly. Note also that Table 3.6 has the total

reach figure as well as the corresponding gross rating points figure.

Table 3.6: Frequency Distribution Under M/M/1 Model

Total Number Available to See Ad: 7074

Number of Times
Exposed to Ad in a Week Number of Shoppers

0 3258
1 2298
2 1066
3 342
4 91
5 17
6 2
7 0
8 0

Total Reach: 3816 or 53.9% of the total number of shoppers

Gross Rating Points: 5917
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I noted in Chapter One that there is the possibility of customers

shopping with companions, which are defined to be adults or teen-age

children over 16. Though not counted in the number of transactions, these

supermarket-goers are very much a part of the audience. If I assume that

approximately 20% of the customers have a companion with them, then the

total audience size increases by 20% as well. It is difficult to speculate on the

frequency distribution for companions, as I do not know how often a

companion accompanies the shopper, even if I know how often the shopper

visits the store. I can distribute the 20% more people over the categories of

the frequency distribution in proportion to the distribution of shoppers, but

this may not truly be reflective of the distribution of companions. If

companions were distributed in the manner just described, the resulting

reach and frequency values can be found in Table 3.7. I note the

corresponding 20% increase in GRP. While percent reach remains the same,

total number of individuals reached also increases by 20%.

Table 3.7: Frequency Distribution Under M/M/1 with Companions

Total Number Available to See Ad: 8488

Exposed to Ad in a Week Number of Shoppers

0 3909
1 2757
2 1279
3 410
4 109
5 20
6 2
7 0
8 0

Total Reach: 4579 or 53.9% of the total number of shoppers

Gross Rating Points: 7093
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If the service time could be considered as time available for exposure to

advertisements, then it is possible to obtain new values of reach, frequency,

and GRP. Table 3.8 shows the new values under this change in the model.

Table 3.8: Frequency Distribution Under M/M/1
Including Service Time

Total Number Available to See Ad: 7074

Number of Times
Exposed to Ad in a Week Number of Shoppers

0 2157
1 2040
2 1641
3 755
4 360
5 127
6 32
7 6
8 1

Total Reach: 4962 or 69.7% of the total number of shoppers

Gross Rating Points: 9862

Section 3.1.2: Results for M/M/k Model

The results for the M/M/k model parallel the results for the M/M/1

model. Table 3.9 presents the calculated probabilities of seeing the ad once or

twice in a shopping trip. There is almost no chance of seeing an ad twice,

even during the most congested hours of the day. This also implies the

chance of seeing the ad three or more times is negligible. Thus p(r=O) = 1 -

p(r=2) - p(r=l).

57



Probabilities of Seeing an Ad r times Under M/M/k

Time of Day (r=) P(r=l) P(r=2)

8:00 - 9:00 AM 0.887 0.111 0.002
9:00 - 10.00 AM 0.953 0.047 0
10:00 - 11:00 AM 0.976 0.024 0
11•00 AM -Noon 0.942 0.058 0
Noon - 1:00 PM 0.969 0.031 0
1:00 - 2:00 PM 0.942 0.058 0
2:00 - 3:00 PM 0.909 0.09 0.001
3:00 - 4:00 PM 0.956 0.044 0
4:00 - 5:00 PM 0.935 0.065 0
5:00 - 6:00 PM 0.95 0.05 0
6•00 - 7:00 PM 0.65 0.35 0
7.00 - 8:00 PM 0.956 0.044 0
8:00 - 9:00 PM 0.962 0.038 0
9:00 - 10:.00 PM 0.953 0.047 0
10:00 - 11.00 PM 0.888 0.111 0.001
11:00 PM - Midnight 0.97 0.03 0

In Table 3.10, the probability that an arriving customer will wait more

than 0 seconds for each hour of the day are shown. Only one of these

probabilities is greater than 0.5, thus demonstrating that many customers are

able to go straight into service in this queueing situation. Figure 3.2 shows the

relationship between the probability of seeing the ad at least once on a trip

and the probability that a customer arrives to find he must wait, i.e., not go

into service immediately because a queue exists. As the figure shows, the

greater the probability of a queue existing, the greater the probability of seeing

the ad at least once.
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Table 3.10: Probability of Queueing Under MIM/k Model

Time ofDay P(wait more than 0)

8:00 - 9:00 AM 0.481
9.00 - 10:00 AM 0.334
10:00 - 11.00 AM 0.241
11.00 AM - Noon 0.409
Noon - 1.00 PM 0.302

1.:00 - 2:00 PM 0.409
2.:00 - 3:00 PM 0.509
3:00 - 4:00 PM 0.378
4:00 - 5:00 PM 0.462
5:00 - 6:00 PM 0.422
6:00 - 7:00 PM 0.349
7:00 - 8:00 PM 0.378
8:00 - 9:00 PM 0.32

9.00 - 10.00 PM 0.334
10:00 - 11:00 PM 0.481

11:00 PM - Midnight 0.205

Figure 3.2: Probability of Customer Seeing at Least One Ad
Versus Probability of Customer Arriving
to Find a Queue Under M/M/k Model
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Referring to Table 3.3 for the probabilities of shopping in the particular

hours of the day, the probability mass function for r is obtained from the

weighted probability mass functions for r(h). Table 3.11 shows the resulting

probability mass function for r, repeats the mass function for s (the number of

shopping trips per week), which was found in the above section, and shows

the resulting probability mass function for y, the number of times the ad is

seen per week by a customer. Since there was virtually no chance of seeing

the ad two or more times in a single visit to the store, it makes sense that the

highest number of times the ad could be seen in a week is 4, however the

probability of seeing the ad 4 times was 0, rounded to five decimal places.

Referring to Table 3.5 we have the total number of shoppers who

completed the 11,970 transactions in our week, 7074. Using this figure and the

density function for y, we obtain the frequency distribution in Table 3.12.

Table 3.12 also shows the total reach and gross rating points.
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Table 3.11: Probability Mass Functions Under M/M/k Model

Example of hourly probability mass function for r:

.887
.111

Pr(8AM) .002

Probability mass function for r:

ro = 0
r o= 1
ro= 2

(.916 ro = 0
Pr(r ) = .083 ro= 1

where r is the number of times the ad is seen on a single trip to the
supermarket

Probability mass function for s:

.35 so

.25 so= 2
Ps(SO) = .20 so = 3

20 So = 4

where s is the number of trips per week

Probability mass function for y:

.824

.160
PY  =  .012

ey i t.A004

where y is the total

Yo = 1

yo= 2
yo= 3
yo= 4

number of times the ad is seen in a week.
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Table 3.12: Frequency Distribution Under M/M/k

Total Number Available to See Ad: 7074

Total Reach: 1249 or 17.6% of the total number of shoppers

Gross Rating Points: 1397

Once again the issue of companions needs consideration. If 20% of the

shoppers are accompanied by a companion, and if that 20% is distributed over

the frequency categories proportional to the percentage of shoppers in that

category,the new reach and frequency values are obtained. The results are in

Table 3.13. The table shows a 20% increase in GRP and number of people

reached.

Table 3.13: Frequency Distribution Under M/M/k with Companions

Total Number Available to See Ad: 8488

Number of Times Number of Shoppers and
Exposed to Ad in a Week Companions

0 6998
1 1357
2 105
3 36
4 0

Total Reach: 1498 or 17.6% of the total number of shoppers

Gross Rating Points: 1675
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Section 3.1.3: Results for the Derived Model

The results for the derived model were calculated as they were for the

other two models. Table 3.14 shows the calculated probabilities of seeing an

ad once, twice, or not at all on a trip. The probabilities of seeing the ad once

are lower than those under the M/M/1 model as expected, but are also

actually lower in this model than in the M/M/k model, which is something

of a surprise. Again the probability of seeing the ad three or more times is

negligible, and p(r=0) = 1 - p(r=l) - p(r=2).

Table 3.14: Probability of Seeing an
Derived Model

Ad r Times Under

Time of Day P(r=-0) P(r=) P(r=2)

8:00 - 9:00 AM 0.933 0.055 0.012
9:00 - 10:00 AM 0.98 0.016 0.004
10:00 - 11•00 AM 0.995 0.003 0.002
11:00 AM -Noon 0.973 0.022 0.005
Noon - 1000 PM 0.993 0.005 0.002
1:00 - 2:00 PM 0.973 0.022 0.005
2:00 - 3:00 PM 0.946 0.044 0.01
3:00 - 4:00 PM 0.984 0.012 0.004
4.00 - 5:00 PM 0.967 0.027 0.006
5.:00 - 6:00 PM 0.981 0.015 0.004
6:00 - 7:00 PM 0.991 0.006 0.003
7.00 - 8:00 PM 0.984 0.012 0.004
8.00 - 9:00 PM 0.987 0.01 0.003
9.)0 - 10:00 PM 0.98 0.016 0.004
10:00 - 11•00 PM 0.933 0.055 0.012
11.00 PM - Midnight 0.992 0.006 0.002

Table 3.15 shows the resulting probability mass function for r, after

weighting by the values in Table 3.3, and the probability mass function for y,

the total number of times the ad is seen in a week. Since the probabilities of

seeing the ad twice on a trip are so small, it again makes sense that the

probability of seeing an ad more than four times is negligible.
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Table &3.1 Probability Mass Functions Under Derived Model

Example of hourly probability mass function for r:

Pr(8AM)(ro) =

(.933
.055
.012

r= 0
ro= 1
ro= 2

Probability mass function for r:

pr(ro) =
.977
.017
.001

ro = 0
ro= 1
ro= 2

where r is the number of times the ad is seen on a single trip to the
supermarket.

Probability mass function for s:

.35 sO= 1
.25 so=2

Ps(o) 3..20 so = 3
,20 so =4

where s is the number of trips to the supermarket per week.

Probability mass function for y:

. 24
.160

PY( .012
.004

yoi1
yo=2

yo=3
yo =

where y is the total number of times the ad is seen in a week.

Table 3.16 shows the frequency distribution as well as the reach and

GRP achieved under this model. As the results are dependent on the

probabilities for he number of times the ad is seen on a trip, the results are

consistent with the previous findings: the overall reach and GRP figures are

lower than those of the M/M/k queue. Table 3.16 shows the frequency
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distribution for the derived model if companions are also counted. Again

note the 20% increase in GRP and number of people reached.

Table 3.16: Frequency Distribution Under Derived Model

Total Number Available to See Ad: 7074

Total RI

Table

each. 360 or 5.1% of the total number of shoppers

Gross Rating Points: 465

3.17: Frequency Distribution Under Derived Model
With Companions

Total Number Available to See Ad: 8488

Number of Timunes
Exposed to Ad in a Week Number of Shoppers

0 8058
1 312
2 115
3 4
4 1
5 0
6 0
7 0
8 0

Total Reach: 432 or 5.1% of the total number of shoppers

Gross Rating Points: 558
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0 6715
1 260
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3 3
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7 0
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It is also possible with this model to consider the time in service as

time when the customer could be exposed to the advertisements. With this

change to the model included, the new results for reach, frequency and GRP

are shown in Table 3.18.

Table 3.18: Frequency Distribution Under Derived Model
Including Service Time

Total Number Available to See Ad: 7074

Number of Times
Exposed to Ad in a Week Number of Shoppers

0 5657
1 1337
2 324
3 46
4 6
5 1
6 0
7 0
8 0

Total Reach: 1714 or 24.3% of the total number of shoppers

Gross Rating Points: 2152

Section 3.2: Discussion

The empirical results are both surprising and not surprising. It was

hypothesized that the M/M/1 model might overestimate waiting times and

thus give generous figures for reach, frequency and GRP. When compared

with the results for the M/M/k model, which was thought to underestimate

waiting times, it would appear that the hypotheses were correct. However,

the derived model was intended to produce results within the bounds set by

the two other models. Indeed, the derived model produced results even

more pessimistic to the advertiser than the M/M/k model.
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One interesting note is that while the the derived model estimates a

lower probability of seeing an ad once than the M/M/k model, it estimates a

higher probability of seeing an ad twice. Thus while it seems to indicate that

the overall probability of seeing the ad is lower than it is in the M/M/k

model, once the ad has been seen, it is more likely to be seen a second time

under this model.

The results from the derived model may have resulted for a

combination of reasons. First, the use of the M/M/k steady state probabilities

for the number of people in the system may be underestimating the number

of people in the system so severely as to cause these results. The description

of the model does not allow customers to change lanes, but the steady state

probabilities are in effect letting them. Because these probabilities implicitly

assume the most efficient use of cashiers, they are assuming customers are

leaving faster than they are in the rest of the model - and perhaps in real life.

Thus this double discrepancy, both within the model and in interacting with

the real data, may be the cause of the very low probabilities of exposure.

The fact that the derived model produces higher probabilities of seeing

the ad twice (higher than the M/M/k model), there is some indication that it

is the steady state probabilities which are causing the discrepancy: The higher

probability of seeing the ad more than twice indicates that once there is

waiting it is longer than in the M/M/k model, which is part of what the

model was intended to achieve. However the lower probabilities for seeing

the ad once indicate an overall lower level of queueing, which could arise

from the underestimation by the M/M/k steady state probabilities of the

people in the system.
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An additional concern is that the models are do not account for the

possible carry-over effects between hours. The use of the steady state

probabilities in each of the models ignores the the dependence of the number

of people in the system in an hour on the number of people who were in the

system at the end of the last hour. Of particular concern is the

underestimating during successive high traffic hours. These hours are of

great interest because the most business is done during these hours. Thus to

underestimate the waiting times in these hours decreases the probabilities of

seeing the advertisements for a disproportionately large part of the audience.

The main implication of these results is that the true behavior of the

supermarket queueing must be determined. It may be that the assumptions

involved in the M/M/k and derived model are not necessary and that the

M/M/1 model is actually the best fit to real world behavior.
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Chapter 4

Conclusions and Further Ideas

In this chapter, I review the work done in this paper and suggest areas

for further research. Section 4.1 contains an overview of the models and

results. In Section 4.2, ideas for other locations where the concept could be

effective are proposed. Section 4.3 outlines possible extensions of this work.

Section 4.1: Overview

This paper was an attempt to define new measurements for reach,

frequency, and GRP in a very specific advertising situation. This new

situation is the installation of televisions with specialized programming in

grocery stores. The goal was to try to merge the definitions of marketing

science with the theory of queueing.

Traditional methods of reach and frequency calculations have required

the estimation of the audience size, but in this particular situation, the

audience size is known almost exactly. In this new situation, the key to

accurate measurement is the waiting time distribution of customers waiting

to have their purchases totalled. With this in mind, three different models
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for queueing in a supermarket were proposed: the standard M/M/1 and

M/M/k models, and a derived model which was an attempt to combine the

two models. It was believed that the M/M/1 model would overestimate the

waiting times and the M/M/k model would underestimate the waiting times,

thus the third model was an effort to find something in between.

The third model was a combination of the M/M/1 and M/M/k, an

attempt to capture more of the idiosyncrasies of supermarket queueing. By

assuming that customers arrive to the system in a Poisson manner and then

choose the lane with the fewest available people in it, I can determine that the

time they wait for service to begin is an Erlang random variable, with order

equal to the number of people in line ahead of them, including the customer

in service. I assumed that the customers in the system are evenly distributed

over the lanes, i.e., if there are k customers in the system, then all k servers

are busy. The model assumed there was not a server with a queue if another

server is idle. Thus I used the total number of people in the system to

determine what length line the customer will join. I estimated the

probabilities for the number of people in the system with the steady state

probabilities of the number of people in the system under the M/M/k model.

Thus the model contains a component of the M/M/1 model, the conditional

density of the waiting times, conditional on the number of people n queue,

and a component of the M/M/k model, the steady state probabilities for the

number of people in queue.

The M/M/1 model did produce the highest probabilities of seeing a

particular advertisement. The M/M/k model produced much lower

probabilities of seeing an ad. However, the third model did not produce
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probabilities which fell in the range between the M/M/1 and the M/M/k.

The probability for seeing an ad at least once was actually lower than under

the M/M/k queue. The probability for seeing the ad at least twice was higher,

thus suggesting that it is the steady state probabilities which are

underestimating the number of people in the system, for once an ad is seen it

is more likely to be seen a second time under this model. The conclusion was

that it must be determined what model best fits the true queueing situation at

a supermarket. Ideas as to how to determine the best model are presented in

Section 4.3.

Section 4.2: Other Locations

While this paper has focussed on the televisions being placed at the

checkout lines of supermarkets, there are other locations where this type of

technology could be implemented, both within the supermarket and outside

the supermarket realm.

Section 4.2.1: Other Locations within the Grocery Store

Even if the waiting times are not as long as suggested by the M/M/1

model, thus producing the high probabilities of seeing the ad, there may be

other ways to make this concept a success in the supermarket. Replacing the

monitors is one of the easier ways to improve the audience size.

One reconfiguration of the monitors could involve a monitor at the

end of the checkout lane, so that customers in service can continue to watch

the programming. In this way, the time waited during service would not be

lost. If the service time is included in the M/M/1 case, using the distribution

for the total system time in this model, the reach figure climbed to 69.7% and
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the gross rating points to 9862. (The frequency distribution is shown in Table

3.8.) Including a way for customers to be exposed to the monitors during

service increases the GRP by 67.5% and the reach increases by 1,146 people or

30.0%. There is a significant advantage under the M/M/1 model to reposition

the monitors.

The similar calculations were done for the derived model. The results

were shown in Table 3.18. The reach figure increases by 376% and the GRP

increases by 362%. As is evident, there is much to be gained by allowing the

monitors to be visible by those in service.

Another possible placement of the monitors in the supermarket would

be at the deli/bakery/seafood counters. At these counters where customers

usually take a number and wait for service, during peak shopping hours long

lines may grow. Many customers may wander a little ways away to gather

other groceries, but few stray far for fear of missing their turn. Monitors

placed at these counters could increase the probability of seeing the ad greatly.

As more and more states institute bottle bills offering the return of

deposits on glass and plastic bottles and aluminum cans, more stores will

have to have return centers. These locations, like the bakery/deli/seafood

counters can develop lines at the peak shopping hours. Thus monitors at

these locations could also increase the probability of seeing the ads.

Section 4.2.2: Other Locations Outside Supermarkets

While grocery stores are the focus of this work, they are not the only

locations where this concept may succeed. Any place people wait and are
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impatient is a valid location. Other types of stores and transportation centers

are the two most obvious possibilities. As mentioned in Chapter One, Turner

Broadcasting is already beginning the same concept in airports.

If airports can be considered, then perhaps train stations should be as

well. Busy train stations where interstate as well as instate commuter trains

arrive and depart could be a perfect location for this medium. During rush

hours and holiday times of year, these locations could provide particularly

sizable audiences.

Other types of stores have adopted payment procedures similar to those

in the supermarkets. The discount department stores like Zayre/Ames, K-

Mart, and Bradlee's have begun to install scanners like those in the

supermarkets, and their lane configurations are quite similar. Many of these

stores do not have the extreme number of checkout lanes that the new, large

supermarkets do and thus may incur more substantial lines. Monitors placed

where impatient shoppers could see them in these stores could achieve

positive results. The audience size is actually quite sufficient in these stores

to warrant exploration. A recent survey conducted in Boston asked residents

to name a department or other major store where they shopped in the last 90

days. Table 4.1 shows the percentages who mentioned specific stores

[Advertising Age, April 22, 1991]. Though the major department stores with

checkout islands and not checkout lanes may not be good locations, at least

five of the mentioned stores could be potential locations and would appear to

have sufficient potential..
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Table 4.1: Large Boston-area Retail Stores and the Percentage of Survey
Respondents who Shopped There in Last 90 Days

Percentage who Shopped
Store Name there in last 90 days

Bradlees 49.9
Sears 49.9

Jordan Marsh 42.7
Filene's 40.5

Zayre/Ames 32.1
Lechmere 313
K-Mart 27

Filene's Basement 23.6
JC Penney 18

As mentioned in Chapter One, a similar type of experiment has already

been tried in banks. There is potential for this medium in banks also, as well

as post offices, doctors' and dentists' offices and maybe even hair salons. Any

place where people wait and get impatient is a possible location. While some

may prove logistically difficult or difficult to target, they should not be ruled

out too quickly.

One advantage of almost all of these locations is the possibility of

measuring the audience. Unlike television which must rely on projections

from the Nielsen sample, many of these audiences can be determined fairly

accurately. In the age of growing dependence on quantitative measures, this

advantage may outweigh some of the logistical problems.

Section 43: Further Research

Clearly the most important piece of research which needs to be

completed is a real life analysis of how grocery store queues behave. The wide

variation of results under the different models would suggest very different
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courses of action for those attempting to launch the Checkout Channel

nationwide.

It is quite possible that to accurately model supermarket queueing, a

very complex model is needed. The number of changing elements, of

supermarket queueing is quite large. The model may need to require a

priority system to account for express lane customers versus regular lane

customers. The service times for these two types of customers may be

different. Moreover, the model must capture the different arrival rates over

the hours of the day, which may be correlated. The model may also need to

take into account the fact that additional checkout lanes are often opened

when lines reach a certain length. Thus the number of lanes open is

dependent on the number of customers in line, which is dependent on the

number of servers available. Additionally, servers may work faster when

queues are long, thus service time could be dependent on queue length which

is dependent on service time. These circular, time-dependent characteristics

may require a very complex model to determine an accurate waiting time

distribution. Monte Carlo simulation may be required to capture all the

various elements.

It may well be that the best to determine the waiting time distribution

is a non-parametric model. The Queue Inference Engine (QIE) [Larson, 1990]

may in fact be an excellent means of determining the waiting times of

supermarket customers. The QIE uses only transactional data, which are the

time a service begins and the time the service ends for each customer, and

assumes Poisson arrivals. For busy periods, which are clearly the times

advertisers are most interested in, the QIE can determine the mean waiting
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time in queue as well as the probability law for the number in queue. One of

the most useful aspects of the QIE is that the results do not depend on X, the

arrival rate of the Poisson process of arrivals. Thus the results could be used

in the grocery store with its changing arrival rate, as long as the arrival rate

does change significantly during the busy period. The QIE then removes the

need for a complicated model and parameter estimation. Moreover, it

removes the assumption that the system is in steady state, one of the key

modelling concerns. With the advancements in checkout register

technology, it should be feasible to obtain the necessary transactional data and

implement the QIE.

The second important are of study is customer reaction to the Checkout

Channel. If the Channel is well liked in many regions of the U.S. then it has

promise as a new advertising medium, as well as a way to distract customers

in line. However, if it is perceived as a gimmick, the results could be quite

negative for both for the supermarket ad the advertiser who would be

associated with the Channel. Customer reaction to placing television

programming like that of the Channel in other locations should be

determined before large sums of money are spent on hardware. The buying

public may like the idea of the Channel in some locations where they wait,

but in others they may find it intrusive.

Further work should also be done to clarify the issue of perceived

versus actual waiting time. If distractions like the Channel do lower the

perceived waiting time of customers in line, then they could be a much more

viable option.
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Clearly this technology has a great deal to offer both consumers and

advertisers for its potential to increase customer satisfaction and provide a

new means to advertise in a wide variety of locations and situations. It is

equally clear that accurate measurement of the audience size will continue to

be a crucial element to its success.
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