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ABSTRACT

In designing a production system for the fabrication of a product, a manufacturing
engineer usually has some control over the extent of the use of subassemblies.
He/she may have the freedom to decide whether or not parts or groups of parts should
be assembled together before being added to the main assembly. In this thesis, we
study the pros and cons associated with that choice.

We present a list of qualitative advantages and disadvantages of subassembly use,
based on a broad literature search that covered the conventional manufacturing and
assembly literature, as well as the literature in areas that exhibit subassembly-like
entities such as modules or subroutines.

We also develop a simulation to compare the output rate of the production system
configurations which display the most extreme use of subassemblies: the sequential
and arborescent configurations. Specifically, we compare the output rate of non-
synchronous arborescent and sequential production systems with reliable stations
with stochastic processing times for different buffer allocation schemes. This part of
the thesis is meant to mark the beginning of a comprehensive study of the quantitative
impact of subassembly use in assembly and production systems.

To facilitate such a study, we present algorithms to determine the most arborescent
and most sequential assembly sequences possible for a product, based on the
algorithmic liaison sequence generation method of De Fazio and Whitney (1986).

Thesis Supervisor: Professor Stephen C. Graves
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"The enormous number of Japanese Buddhist temples built between AD 700 and 1600
were made by flexible production methods. Each of the temples looks quite different.
And yet each is put together out of essentially standardized parts, such as beams
standardized to width and length; standardized roofing and roof tiles; standardized
intervals between the various levels of a pagoda, and so on. The individually
distinctive features such as the doors, iron grills, or the ornamentation of the tiles on
the roof's edge, were only added at the very end, thus creating brilliant diversity
based, however, on true mass production, that is, on standardized parts assembled
according to prearranged pattern."

Peter Drucker (1974)



CHAPTER I

INTRODUCTION

1.1) OVERVIEW

Recent declines in productivity, losses in market share and increases in global

competition have caused US manufacturers to reconsider their manufacturing

practices. All aspects of product and process design are being reevaluated in order to

find more efficient ways of producing better quality products.

At the Charles Draper Laboratory, engineers are working on a project called

"Strategic Approach to Product Design" aimed at the full integration of product and

process design. This thesis is a part of that effort. We consider the part of product and

process design, where the choice of subassemblies is made.

In designing a production system for the fabrication of a product, a manufacturing

engineer usually has some control over the extent of the use of subassemblies.

He/she sometimes has the freedom to decide whether or not parts or groups of parts

should be assembled together before being added to the main assembly. In this

thesis, we identify and discuss some qualitative and quantitative reasons associated

with that choice.

1.2) THESIS OUTLINE

In chapter II, we present a list of qualitative advantages and disadvantages of

subassembly use. Due to the broad nature of the word "subassembly", our literature



search was as exhaustive as possible and covered a wide spectrum of fields with

assembly-like entities. The list includes the advantages of these subassembly-like

entities, which are applicable to subassemblies in the manufacturing and assembly

sense of the word, as well as the extrapolation of comments on the subassemblies in

the sparse manufacturing and assembly literature. In this chapter, we felt the need to

distinguish between two types of subassemblies: Subassemblies in a single-product

manufacturing environment and subassemblies in a multi-product manufacturing

environment.

An initial study of subassemblies in a single-product manufacturing environment is

important, because it allows us to focus on the intrinsic structural advantages and

disadvantages of using subassemblies. The joint study of subassemblies in a multi-

product environment and the benefits of commonality, modularity, cannibalization and

standardization that emanate from such a structural organization, while relevant to our

discussion, would only muddle our initial analysis.

In a multi-product environment, the quantitative advantages of subassembly use are

clear. Commonality, modularity and cannibalization result in substantial savings in

inventory and production costs, as well as design time. While there are definite

qualitative reasons for use of subassemblies in a single-product environment, it is less

clear that there are substantial quantitative advantages to do so.

In an effort to quantify the impact of using subassemblies in a single-product

environment, in Chapter III, we compare the output rate of two types of configurations,

which display the most extreme use of subassemblies: the arborescent and the

sequential (or serial) configurations. Specifically, we compare the outpot rate of non-



synchronous arborescent and sequential systems for two different models of systems'

stations.

The first model assumes stations with identical quantitative characteristics, in

particular independent and identically distributed processing times. The purpose of

this first set of simulations is to evaluate the difference in the output rates of

arborescent and sequential production systems and study how that difference varies

as a function of the coefficient of variation of the processing-time distribution, the type

of distribution and the buffer size between the successive stages.

The second model assumes a balanced system with no buffers and two types of

stations: stations with deterministic processing times and stations with exponentially

distributed processing times. The purpose of this second set of simulations is to study

how the two types of systems attenuate the processing time variability of isolated

stations, as well as to develop intuition for the structural differences in the two types

of systems.

The basic conclusion of the simulation of these two models is that arborescent and

sequential systems do not differ greatly in their ability to attenuate processing time

variability. While one configuration or another may be preferable depending on the

location and the number of sources of variabilities, no structure is clearly always

advantageous. Certainly, the relative output rate of the two types of systems should

not be a factor in deciding what kind of system structure to use. That is not to say,

however, that arborescent and sequential systems are equivalent, however.



This third chapter of the thesis is meant to mark the beginning of a comprehensive

study of the quantitative impact of subassembly use in assembly and production

systems.

To facilitate such a study, we present, in Chapter IV, a method to determine the most

arborescent and most sequential assembly sequences possible for a given product.

Our work is based on the algorithmic liaison sequence generation method of De Fazio

and Whitney (1986). This algorithm, which is a simplification of Bourjault's

"Elaboration Automatique des Sequences Op6ratoires,"(1984) generates all of the

physically possible liaison sequences for a product by collating the answers to a

series of questions, which the engineer must answer regarding the assembly

opportunities between related parts.(Whitney et al, 1986)

Finally in Chapter V, we discuss possible extensions to the comparison of sequential

and arborescent systems. We also mentioned ways in which quantitative techniques

developed in the area of modular design, cannibalization, group technology, inventory

management and testing could be used to further our understanding of the impact of

subassembly use.



CHAPTER II

QUALITATIVE RATIONALE FOR THE USE OF SUBASSEMBLIES IN
ASSEMBLY AND PRODUCTION SYSTEMS

2.1) INTRODUCTION, DEFINITIONS AND CONVENTIONS

A subassembly, as defined in Webster's New Collegiate Dictionary [32], is "an

assembled unit designed to be incorporated in a finished product". In mathematical

terms, we might define a subassembly as a non-empty subset of parts that either has

only one element (i.e. only one part), or is such that every part has at least one

surface contact with another part in the subset.19] However, a random set of touching

parts does not necessarily constitute a subassembly for our purposes. A

subassembly should possess some element of functionality, which can be identified

and tested. It should also be stable, or at least conditionally stable. A subassembly is

said to stable if its parts maintain their relative position and do not break contact

spontaneously.[ 9] It is said to be conditionally stable if it becomes stable with the

help of fixtures or orientation. In some sense, the essence of a subassembly is its

identifiability, its functionality and its stability.

One consequence of the functionality requirement for a subassembly is that, if one

builds a product in a sequential line, i.e. by adding parts one at a time to the main

assembly, there does not necessarily exist a subassembly at every stage of the

assembly. Subassemblies exist only at those stages, where the assembled parts

form a functional unit.



In our work we focus on the multiple and separate subassembly assemblies rather

than on the one-subassembly assembly. In other words, we are concerned with

assemblies, where there exists at some point in the assembly two or more disjoint

subassemblies. The reason for this focus is that most of the reasons for use of

subassemblies apply to the multiple subassembly case.

The term "multiple and separate subassemblies" does not imply the existence of

physically separated stations. In fact, even the assembly of product in a sequential

line could include multiple subassemblies. Only in Chapter III do we assume that

separate subassemblies are assembled or produced in physically distinct stations,

apart from the main assembly. Though in many cases, in a modular system for

instance, that will be the case.

In this chapter, we sometimes use "subassemblies" to refer to the production entity

where subassemblies are put together. This negligence on our part is due to the fact

that it is sometimes difficult to distinguish between the product and the process. The

impact of the decision to partition a product into subassemblies only manifests itself in

the assembly systems that emanate from the product design.

2.2 ) DESCRIPTION OF LITERATURE SEARCH METHODOLOGY

The word "subassembly" has many synonyms in various fields: module, subsystem,

subroutine, etc,...We try to take full advantage of the large number of these

subassembly-like entities in the literature search.

Our search was as exhaustive as possible and covered literature in :



* Mechanical Engineering, more specifically in:

product design, mechanical design, design theory, automated assembly,

manufacturing and production systems, inspection and gaging,

standardization and group technology, etc...

* Operations Research and Management Science, more specifically in the areas

of : modular design, cannibalization and commonality

* Computer Science, more specifically in the area of:

centralization/decentralization of computer systems and information

systems, architecture and structure of computer programs.

This sweeping approach was particularly necessary, since we found no comprehensive

study of rationale for subassemblies, with a few exceptions: for example, Shaftel

(1972) in the area of modular design, and Leventer (1976) in the area of decentralized

information systems, have established lists of the pros and cons of particular types of

subassemblies. In the conventional manufacturing and assembly engineering

literature, advantages of subassemblies are only mentioned in passing in the midst of

the discussion of other topics.

This chapter presents the advantages of subassembly-like entities, which are

applicable to subassemblies in assembly and production systems, as well as the

extrapolation of comments mentioned sporadically in the manufacturing and assembly

engineering literature.



In the course of our literature review, we realized the need to differentiate between

two different types of subassemblies:

* Subassemblies in a single-product manufacturing environment, i.e.

subassemblies in a single application

* Subassemblies in a multi-product manufacturing environment, i.e.

subassemblies with multiple uses

An initial study of subassemblies in a single-product manufacturing environment is

important, because it allows us to focus on the intrinsic structural advantages and

disadvantages of using subassemblies. The joint study of subassemblies in a multi-

product environment and the benefits of commonality, modularity and cannibalization

that emanate from such a structural organization would only muddle our initial

analysis.

2.3) Subassemblies in a single-product manufacturing environment

2.3.1) Advantages:

a) Simplification and reduction of the problem:

The partitioning of a product into subassemblies simplifies and reduces the problem.

Many assemblies are far too complex to make complete in one pass, therefore it is

more efficient to break them down into subassemblies.[ 2 0] Fewer production entities

result in a simpler, better production system. In fact, Frank Riley (1983) recommends

that complex products be designed so that they consist of subassemblies of no more

than 12 or 13 parts, which can be combined into final assembly. Furthermore, by

considering the decomposition of a product into functional subassemblies at the design



stage of a product, one may be able to combine a number of parts together to form one

new composite part.[1 9] The resulting lower part count thus reduces the complexity of

the product and contributes to a shorter assembly time and a more reliable product.[1]

b)Ease of overall system optimization

Subdivision of a production system into well-defined, functionally meaningful

subassemblies can ease the overall system optimization and planning. Beyond a

certain size, a system becomes inefficient and unwieldy. In huge sequential system,

there is tendency to optimize locally. However, the combination of optimal

subsystems need not result in an optimal performance. The use of subassemblies

facilitates the determination and setting of the production load and inventory policy

and material requirement for each part of the system that will maximize the overall

results. [4],[29]

c) Ease of assembly

Certain products are simply easier to assemble through the use of subassemblies:.[ 2]

* In stacked assembly for instance, where the parts are placed on top of

each other in a layered fashion, it is a good idea to group the parts which are going to

form a whole layer together in a subassembly.[ 5]

* Subassemblies may be a good ground to implement the extreme

symmetry or extreme asymmetry of groups of components, which is recommended by

designers for ease of positioning and holding.[1 9]



* Also, it is often useful to isolate sets of components, which form a

functional unit. Kahler and Ahm (1984) recommend for instance, that the adjustment

components of a product be designed as subassemblies.

d)Enhancement of product quality through facilitation of testing

and maintenance

In small functional subassemblies, with accessible components and well defined input

and output, faulty components are more easily identified.

* There is thus incentive for early and frequent testing of parts. Not

only is it more economical to discover defective units in early stages of manufacturing,

many times it is impossible to test defective workmanship buried inside a product.

Early inspection, as facilitated by separate, functional subassemblies with accessible

components can help prevent the cumulation of defects in products.[ 15]

* The quicker diagnosis of faults is crucial, considering (it is estimated

by Starr (1964) ) that for complex systems about 50 percent of the system's downtime

is devoted solely to locating faults.

* In addition, there are lower scrap and diagnosis costs, since fewer

parts are directly implicated by a failure.

e) Independence of parts of the systems:



If the system can be subdivided into independent subassemblies with well defined

inputs, outputs and interface with the rest of the production systems, the advantages

are considerable. Such a disaggregation:

* Facilitates the isolation of reworks and of new and special processes:

If part of the assembly line is more problem-prone, or simply newer and more

experimental than the rest of the assembly line, it is advantageous to isolate it so as

to limit its impact on the rest of the system.

* Entices local control and facilitates the determination, isolation and

rapid response to local needs. It may enable the use of less-versatile, more specific,

cheaper machines, which are closer to the local subassembly's needs. Generally

speaking in a single-product manufacturing environment, isolation of subassemblies

enables the use of less-formal methods specific to local needs.[ 16 ]

* Results in a more flexible, expandable and reliable system, because of

the possible decoupling of subassemblies. Deficient machines are more readily

replaceable. The capacity of bottlenecks can be increased by the addition of extra

machines. Entire subassemblies can be substituted by supply from stock or from a

subcontractor. The overall system is more suited to face changes in product

specifications, product demands, quality requirements, input and machine availability

as well as unexpected changes in the production environment. [24]

* Eliminates many communication and correlation problems. The task

of communication is not difficult when components are few and relations among them

are simple.[ 12]



* Increases worker motivation. In a smaller group, it is easier to

arouse group spirit. Brainstorming becomes more efficient. Workers are more creative

because they can focus their attention on a well-defined system, large enough to be

interesting, small enough to be concrete.[ 16],[12]

2.3.2) Disadvantages:

a) Natural subassemblies may not exist and to create some may require the addition

of non-functional parts and unnecessary operations [6]

b) The only possible subassemblies may be awkward with tangling and nested

components. Subassemblies may be difficult to grab and handle. Bringing large

subassemblies into correct alignment may be considerably more complicated than

adding pieces one part at a time. Furthermore, it may not be possible to keep the

orientation of subassemblies constant throughout the assembly sequence.[ 19],[7]

c) Subassemblies are not always structurally sound. They may be more prone to

damage. Once placed in the assembly, the parts of the subassemblies should be

designed to stay in position until the assembly is completed without the aid of

external "fingers" or locaters, which complicate the assembly.[11 ] This is not always

possible however.

d) The part transfer between separate subassemblies is quite complex and is more

likely to be a source of problems.



e) The use of physically separated subassemblies may result in higher costs of

overhead items such as storage, material handling, floor space, electricity, air

conditioning, etc.., especially so if use of subassemblies results in a multi-facility

production system.

f) Use of physically separated subassemblies may result in a less integrated system.

The coordination of all the activities may be quite complex. Fewer people contribute

new ideas to the overall system and plant-wide construction and manufacturing

practice are not as easy to implement. It is harder to make use of cross-trained

workers, as it is difficult to use people idle in one subassembly in a second

subassembly.[16]

2.4) Subassemblies in a multi-product manufacturing environment

In a multi-product environment, by designing a product with a large number of

subassemblies, a manufacturer can reap the benefits of modularity, commonality and

cannibalization

Modularity consists of the use of different variants of a subassembly in several

products, where usually the total number of variants is smaller than the number of

products.

Commonality refers to the common use by several products of the one same

subassembly.



Finally cannibalization is the practice of stripping a malfunctioning product of its

functioning subassemblies for the emergency maintenance of other products.[ 8]

It is rare to find a firm that produces only a single type of product. Today, competition

is so keen and the market so segmented that most manufacturers produce a variety of

products.[ 2 5] Commonality, modularity and cannibalization stem from a growing

interest on the part of manufacturers to minimize the overall manufacturing, inventory

and maintenance cost of a line of products.[ 22]

The underlying assumption in the use of these three techniques is that subassemblies

are going to be standardized in order to meet a greater variety of functional and

physical requirements.[ 30] There is therefore a trade-off involving the disutility of not

providing each product/customer with a subassembly/item fitting its exact

requirements versus economies of scale achieved in producing and inventorying a

common item with multiple applications.[28]

The advantages and disadvantages of standard subassemblies, modularity,

commonality and cannibalization are listed below:

2.4. 1)Advantages

a) Economies of scale result from the reduction in product variety. Increased

production volume of fewer types of different products opens the possibility for large-

scale machinery. The use of large-scale machineries will in many industries lead to a

decrease of the manufacturing costs per unit.



b) If the same machinery had been used for the production of several variants of a

subassembly, the move to standard subassemblies will decrease the number of set-

ups and change-overs needed and considerably lower the costs per unit [3]

c) If the same machinery can still be used, after a switch to standard subassemblies,

lower (or equal) capital cost will result. If machines of type x were used in n different

production systems, less than n machines may be needed if the operations of type x

are consolidated. [3]

d) Addition to the production line is simplified. Products are rarely produced from

scratch; they are usually modifications and synthesis of previous design. The repeated

use of certain subassemblies in products of different generations results in lower

product and process design time

e) Similarly, a greater product mix is possible.[3 0] Consider a plant that produces k

different subassemblies and three varieties of each . In an idealized setting where a

product can be made from any combination of any type of subassemblies, the total

number of products would be 3 k, i.e. 531,441 if k = 12. While obviously there are

never so many theoretically possible products, the flexibility gained from use of

standard subassemblies or modules is often substantial.[2 8],[3 1]

f) Fewer items or subassemblies must be inventoried in any plant. The management

of inventory is simplified. In addition, less room is required, since the storage space

for a few subassemblies is much smaller than space for storing several complete

products.[25]



g) Consolidation of the inventory of standard subassemblies results in lower overall

safety stock, because the uncertainty of the level of prrt-duction diminishes. The

inventory costs are thus lower.

h) Fewer types of standard parts result in a steeper learning curve, tighter quality

control and standard testing procedures.[ 2 5]

i) Repair is simplified by ease of replacement. Repairman need only carry a few types

of standard parts to quickly repair products. [25],[26]

j) Cannibalization is also simplified. Consequently, scrap costs are lowered and the

vulnerability of the system to machine failures and variability in processing

diminishes.

2.4.2) Disadvantages:

a) More parts than required may be used. These excess parts increase the cost of

production, transportation and handling.[25]

b) Production scheduling and interconnecting of production modules may be more

complicated.

2.51 Conclusion:

In this chapter, we have presented the results of our study on qualitative

rationale for subassembly.



In a multi-product environment, the quantitative advantages of subassembly

use are clear. Commonality, modularity and cannibalization result in substantial

savings in inventory and production costs, as well as design time.

While there are definite qualitative reasons for use of subassemblies in a

single-product environment, it is less clear that there are substantial quantitative

advantages to do so.

In an effort to quantify the possible impact of using subassemblies in a single-

product environment, in the next chapter, we compare the output rate of the two types

of configurations, which display the most extreme use of subassemblies: the

arborescent and the sequential configurations.
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CHAPTER III

COMPARISON OF THE OUTPUT RATE OF
ARBORESCENT AND SEQUENTIAL SYSTEMS

3.1) PROBLEM PRESENTATION AND SIMULATION ENVIRONMENT DESCRIPTION

3.1.1) Introduction

In Chapter II, we pointed out that, while there are definite qualitative reasons for use of

subassemblies in a single-product environment, it is less clear though that there are

substantial quantitative advantages to do so.

In this chapter, in an effort to quantify the possible impact of using subassemblies in a

single-product environment, we compare the two types of production system

configurations which display the most extreme use of subassemblies: the sequential

and arborescent configurations.

In a sequential system, the production system has a linear structure and components

are added to the main assembly one at a time. In a purely arborescent system, the

production system takes on a tree-like structure, where pairs of components are

combined into subassemblies, which are then joined together two at time until the

assembly is completed. While the use of subassemblies is kept to a minimum in the

sequential configuration, it is maximized in the arborescent configuration.

For ease of reference, we define:

* AS to be the purely Arborescent System

* SS to be the purely Sequential System
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Our analysis is limited to purely arborescent and purely sequential production system.

The number of parts will thus always be a power of 2 greater or equal to 4 (i.e. 4, 8,

16,32, etc...). What we take to be an AS is actually an arborescent system of order 2.

Few systems are purely arborescent. However, consideration of hybrid systems, i.e.

systems that are partially arborescent and partially sequential would only muddle, at

least at this time, our analysis of the differences between the two extreme

configurations.

Before starting this simulation work, we expected that purely arborescent systems

would yield a higher output rate. We wanted to verify that supposition, in order to see

if the extensive use of subassemblies in a non-synchronous and reliable system

actually raised the overall output rate. Only if that supposition happened to be true

would it be necessary to consider hybrid systems, to check if the output rate should be

a criterion in the decision to use physically separate subassemblies.

Our goal in this chapter is two fold:

1. To compare the output rate of AS and SS as a function of the number of parts, for

different buffer allocation schemes (including the case where no buffer is allocated) and

for different stochastic models of the operations.

2. To study the relative capability of the two types of systems to attenuate the

variability of isolated stations.

3.1.2) Examples of products, that are both sequential and arborescent
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The comparison of purely AS and purely SS is an intermediate step in the possible

establishment of output rate as a criterion in the decision to use subassemblies. For,

as mentioned earlier, if the output rate of AS is indeed greater than SS then we will

evaluate the output rate of hybrid systems.

One should, therefore, not be concerned with the fact that few products can actually be

produced in both purely arborescent and purely sequential systems. These types of

products do exist though. We present two of them now. Readers, not familiar with the

notion of liaisons and parts-trees, may wish to skim Section 4.1 and Section 4.2.1a) for

a brief introduction to liaisons, liaison diagrams and parts-tree diagram

representations.

a) Example #1: 4-part electrical socket

The 4-part electrical socket, shown in Figures 3.1a and 3.ib and represented by the

liaison diagram and the precedence relations list shown in Figures 3.1c and 3.1d, can

be assembled in either purely sequential or purely arborescent systems. Specifically,

it can be assembled in five different ways, i.e. in four purely sequential and one purely

arborescent. The parts-tree diagram representation of the five possible configurations

are shown in Figure 3.le.

b) Example #2: 8-part product

The 8-part product, shown in 3.2a and represented by the liaison diagram and the

precedence relations list shown in Figures 3.2b and 3.2c, can also be built in both

types of systems. The parts-tree diagram representation of one purely sequential and

one purely arborescent configuration are shown in Figure 3.2d.
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Figure3.3a: Schematic representation
This 4-part product is the first of two
sequarborescen table products presented.

Base (BA)

Porcelaine Insulating Base (PIB)

Body (BO)

Tightening Ring (TR)

Figure 3.3b: Representation of the component parts of the electrical

socket example shown in Figure 3a.

of an electrical socket.
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BO

PIB TR

BA

Figure3.3c: Liaison diagram
in Figure 3a

of the electrical socket example shown

* 1 >2

532!5 3>2

* 412

"542

Figure3.3d: List of precedence relations between the liaisons of the
liaison diagram shown in Figure 3c.
i 2 j means that Liaison i must precede or be done
simultaneously with Liaison j
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Figure 3.1.e.1:

PIB3

Eigure31.e.2*

80 PIB

1&5

I Oi1Oi3 W

Figure 3.1.e.4: Figure 3.1.e.5:

Figure 3.1.e: Parts tree representation of the electrical socket shown in Figures 3.1a and
3. 1b and described in the liaison diagram and the precedence relations of Figures 3. 1c
and 3.1d. The parts tree in Figure 3.1e.1 represents a purely arborescent assembly,
whereas the other parts trees represent purely sequential assemblies.
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Figure 3.2a:

E

Figure 3.2b:

Figure 3.2a,b: Schematic and liaison diagram of a simplified version of the
example of Assembly From Industry (A.F.I.) of De Fazio and
Whitney (1986).
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12&3&4
1l4&7& 12
1 9 8.13
1 7& 12& 13
1 >6&8
2 Ž. 3 & 4
2>11 & 13
2>4&8& 11 & 12
3Ž2
3 11
4Ž1&2&3
4>2&3&8
4>1 &9& 10
4 >_8&9& 10
42 11 & 13
422&3& 13
4_2&8& 12
5>1 &2&3&4&6
526&8
5> 1 &9& 13
621 &7&8&9& 12& 13
721
7Ž6
821
8_2&3&4
8 > 4& 12
8 > 9 & 138>12&13
8 Ž 12 & 13
922
924&8& 12
9>13
10> 11
10 2 2 & 3
10 2 4
11 2
11 2 & 4
12 1 &2&3&4
12 > 8
12Ž >1 & 9 & 13
13_ 4
13 21 &9
13 2 8 & 9
13 > 2 & 8 & 12

Figure 3.2c: Precedence relations for the modified version of the example of
Assembly From Industry (A.F.I.), described in the schematic of Figure 3.2a and in the
liaison diagram of Figure 3.2b. i 2 j means that Liaison i must precede or be done
simultaneously with Liaison j

38



11

Figure 3.2d.l:

5&12

6 &12

1&8

9& 13

4 & 10

Figure 3.2d.2:

Figure 3.2d: Parts tree representation of the product described in Figures 3.2a, 3.2b
and 3.2c. We have represented two ways of assembling the product: one purely
arborescent (Figure 3.2d.1) and one purely arborescent (Figure 3.2d.2)
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3.1.3) Modelling Assumptions

In our work here, we make the following assumptions about AS and SS:

* All assembly operations are conducted at different workstations. This

assumption insures that the two systems will have the same number of workstations.

In this section where we assume that each of the operations is performed at a different

workstation, we will use the "production system as seen from above" type of

representation shown in Figure 3.3. The squares/rectangles represent stations, the letters

inside the squares/rectangles represent the assembly operation performed at the station,

and the arrows or arcs represent part transfers or flows. We sometimes refer to the

station where Oi is conducted, as station Oi.

* Whenever possible, we assume that all n assembly operations in both AS and SS

are attributed the same quantitative characteristics, in particular the same processing

time distribution. For all assembly operations, we let t denote the stochastic processing

time to complete the operation, EVT denote the expected value of the processing time,

and VPT denote the variance of the processing time.

We make the assumption of identical assembly operations for simplicity and ease

of analysis. We realize that in actuality, individual operations are functionally different in

the two systems and it is difficult to establish a one to one correspondence between them.

Oi in AS does not necessarily correspond to Oi in SS. We can see for instance that 04 in

Figure 3.3a is a very different operation from 04 in Figure 3.3b. In Figure 3.3b, it

combines parts 5 and 6; in Figure 3.3a, it adds parts 5 to parts 1, 2, 3 and 4. The

40



assumption of identical assembly operations permits the study of the differences between

the two types of configurations, all other factors being the same.

Figure 3.3a: Figure 3.3b:
Figure 3.3a.b: "Production system as seen from above" representation of a sequential

(Figure 3.3a) and of an arborescent system (Figure 3.3b) for an 8-part
product.

In the latter part of our modelling work, we relax the assumption of stations with

independent identically distributed processing times in order to observe the nuances of

the structural differences of AS and SS, in particular to study the relative capability of the

two types of systems to attenuate the effect of isolated sources cf variability
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* We assume non-synchronous part-transfer, i.e. each workpiece is allowed to

-love to the next station as soon as processing at the current station has been completed

assuming the buffer at the receiving station is not full). The case of synchronous part

cransfer, which assumes simultaneous transfer of all the parts in the assembly system,

,ould not be insightful, since it would yield identical results for the two types of systems.

For instance, for both systems, the expected interarrival time, i.e. the time between the

completion of parts at the last station, would simply be E(max(T1, T2, ...,Tn)), where Ti

is the processing time for the assembly operation at the ith station. The interarrival time

is in fact the time between successive part transfers in a synchronous system.

3.1.4) Description of the mechanics of part transfer through the

production system

a) When no buffer is allowed between stations:

In AS, each of the stations has two inputs and consequently also two input slots. An

input slot is a term we introduce to facilitate the description of the mechanics of part

transfer through the production system. A given input slot of a station is full and thus

cannot receive further input from the station upstream (which may therefore eventually be

blocked) in three different states of the station:

1. The station has already received the input corresponding to this slot, but is still

awaiting the arrival of its other input. In this state, the station is inactive and is said to be

partially starved.

2. The station has received its two inputs and is processing them. In this state,

the station is said to be active.
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3. The station has finished processing the unit corresponding to its two present

input slot parts, but cannot empty its input slots by transferring its finished unit

downstream. This occurs, because the station downstream has not emptied the targeted

input slot. In this state, the station is inactive and is said to be blocked. Note that as

soon as the station downstream empties the targeted slot, the station will transfer the

subassembly and be totally starved until the instant it receives the input parts from the

two upstream stations. The station will then become partially starved (if it receives only

one input) or active (if it receives two inputs).

In SS, the stations operate in a similar manner with the exception that they cannot be

partially starved, since stations in SS only have one input and consequently only one input

slot.

The station, which performs the last operation in the final assembly, i.e 07 in Figures 3.3a

and 3.3b for instance, is never blocked in either system.

Furthermore, the stations, which are the most upstream - i.e. the stations that assemble

parts, rather than subassemblies of parts - can only be in two possible states: the active

state and the blocked state. We assume these stations are always supplied with the

necessary raw material or input parts. Consequently they can never be starved. These

stations are station 1 in Figure 3.3a and stations 1, 2, 4 and 5 in Figure 3.3b.

Our systems operate in a dual "push"and "pull" mode. They can be interpreted as "push"

systems with unlimited availability of raw materials or input parts for the stations and

unlimited demand for the finished product. The material always moves forward as soon as

43



an input slot is available; in that sense, the material is not "pulled" by demand. However,

the systems can also be interpreted as operating in a "pull mode", where stations are

blocked until notice from stations downstream.

b) When buffer is allowed between stations

Buffers are often added between stations to alleviate the dependencies (and the resulting

mutual slowing down) between the system's stations, as well as to minimize the effect of

the uncertainty (variance) of the operations' processing times. Buffers can attenuate

short transients, but are incapable of overcoming long-term imbalances.

If we have a buffer of size n after every station, we are in effect adding n spaces to the

stations' targeted input slots for a total of n+l space input slots. The implications of such

a measure for our system are the following:

* When a station is partially starved (i.e. it has only received one of its two

input parts), then the upstream station, which has already submitted one piece

and completed the next one, is no longer blocked. In fact, this station is not

blocked until the n+l spaces of its targeted slot are full and it is ready to

dispose of another unit.

* Similarly when a station is active or blocked, the stations directly upstream are

no longer blocked if they are done processing the next unit and won't be until the

n+l spaces of their targeted slot are full and they are ready to dispose of another

unit.
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3.1.5) Literature Review

This chapter of the thesis compares the production rate of sequential and arborescent

production systems with reliable stations with stochastic processing times for different

buffer allocation schemes. To date, no such comparison has been conducted.

a) Sequential systems

The literature on sequential systems - otherwise referred to as "series of workstations",

"serial production lines", "serial assembly lines"- is quite vast. Of particular interest to

us, the output rate and the effect of buffer on the output rate of sequential systems with

reliable stations with stochastic processing times has been studied extensively.

Past work on such sequential systems has involved analytical solutions as well as

simulation studies and the development of empirical formulas.

As mentioned by Muth (1973), most of the analytical work has used an approach in which

the system is described at any time t by its state vector X(t), which contains information

about the systems' stations and buffers. The state of a station can be either 0 (idle or

starved), 1 (busy/active) or 2 (blocked), whereas the state of a buffer is simply the

number of items in the buffer. These state-based models assume that all the processing

times are exponentially distributed, so that the process X(t) is a Markov Process whose

state probabilities, in equilibrium, satisfy a system of linear equations. The equilibrium

state probabilities can be obtained by solving this system of equations either analytically

as done by Hatcher (1969), Hunt(1956), and Patterson (1964), or numerically as done by

Hillier and Bolling(1967).

There are two problems with this approach:
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1. Solutions are restricted to the case of stations with exponential processing

times

2. The number of states, and consequently the number of simultaneous equations

to be solved, in systems with no buffer at all, grows asymptotically as nm , where m = (3

+ "15)/2= 2.62. A bufferless, 10-station system, for instance, has 6765 states. The

problem worsens when buffers are allowed since the number of states grows rapidly with

buffer sizes. Because of this size problem, analytical solutions have only been obtained

for n < 3 (Hunt 1956) and numerical solutions for n <6 (Hillier and Boilling 1967).

Simulation offers a way to overcome these weaknesses. Many have taken this approach

and not limited themselves to exponential distribution: Anderson and Moodie (1969),

Barten (1962), Knott(1970) and Muth(1973) for instance. Muth's 1973 work is

particularly relevant to this thesis. He finds lower and upper bounds for the output rate of

n-station sequential system and shows how the difference between the two bounds

increases with the number of stations and with the coefficient of variation (COV). The

COV, a measure of the variability and the lack of memory of the processing time, is

defined as the ratio of the standard deviation and expected value of the processing time.

He also illustrates the fact that the loss of capability due to interference between

workstations, in an non-synchronous line, occurs in the first few stations, long lines being

only slightly worse than short ones. His later work (1979) confirmed Yamazaki and

Sakasegawa's (1975) assertion that any serial line has a dual line which is identical

except that the direction of material flow is reversed- the first workstation in the primal

line is the last in the dual line, etc...- and the output rate of a line and its dual line are

identical.
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Simulations have also been widely used to study the effect of the size and the location of

buffer spaces in a production system. Buffer space is often used to compensate for the

variability of the processing times. While many, including Muth (1973) and Hatcher

(1969), have studied this issue, Conway et al. (1988) provide the most extensive

coverage of the matter. Their work can be summarized as follows:

1. For balanced systems with identical stations,

* To achieve a given target production capacity, the buffer capacity should

be proportional to the coefficient of variation. Buffer capacity equal to 10 times the

coefficient of variation recovers 80 to 85% percent of the capability lost due to variability in

these systems. As shown earlier by Hatcher (1969), the improvement diminishes

rapidly with increased buffer size.

* The best buffer allocation is symmetrical and evenly distributed if

possible. In cases where the buffer cannot be allocated evenly, center placement, i.e.

allocation of buffer spaces in the center of the production line, is significantly better than

end-placement, i.e. allocation of buffer spaces at the end of the production line . Near-

center placement, though, is almost as good as exact-center placement.

2. For unbalanced systems, buffers provide less increase in capacity. The

preferable position for buffers is around the bottleneck stations.

Incidentally, in the course of these experiments, Conway et al. found that the output rate

of the line was sensitive to the form of the probability distribution of the processing times,

but that the optimal allocation was only sensitive to the standard deviation.

b) Arborescent systems
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While the literature on sequential systems is abundant, there is little relevant literature

on arborescent systems.

Researchers, such as Freeman and Jucker (1967), Svetska and Nair (1972), Buxey

(1974) and Pinto et al (1981) all studied multi-stage parallel systems and the production

gains and labor cost reduction associated with use of parallel stations. These systems,

though, are radically different from arborescent systems, because the stations in parallel

systems produce identical outputs. The station downstream from two parallel stations is

"unstarved" as soon as one of the two stations (not both) has completed the processing of

its current piece. In an arborescent system, both upstream station need to have

completed their tasks, in order for the station downstream to be "unstarved".

Similarly, all the work in the area of open queueing networks, even Smith and Daskakaki's

"Buffer Space Allocation in Automated Assembly Lines" (1987), which compares the

output rate of series, merging and splitting topologies for different buffer allocation

schemes is not relevant to this thesis. This is because, the stations in these open

queueing networks have decoupled inputs, i.e. a station can start service on an input

piece, even if it has not received pieces from all of its input sources.

The only work with some relevance to our arborescent systems has been done in the area

of Assembly/Disassembly networks. In particular, Ammar and Gershwin's "Equivalence

Relations in Queueing Models of Assembly/Disassembly Networks" (1987) gives us

insight on the comparison of three-station sequential and arborescent systems.

After introducing the notion of structural equivalence - two systems are structurally

equivalent if the corresponding stations have the same processing rate, the same buffer
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capability and corresponding buffers are connected to corresponding stations, although

parts do not necessarily move in the same directions - Ammar and Gerschwin proved that

structurally equivalent systems behave almost identically in a probabilistic sense.

Ammar and Gerschwin showed the equivalence of the systems shown in Figure 3.4a and

3.4b. While the Figure 3.4b system is different from the arborescent equivalent of the

system, shown in Figure 3.4c, we can draw interesting conclusions from this equivalence

of the Figure 3.4a and Figure 3.4b systems. In particular, if stations two and three are

identical, then the three-station sequential and arborescent systems should have very

closely related output rates.

Figure 3.4a: Figure 3.4b:

Figure 3.4c:

Eigure 3.4: Ammar and Gershwin (1987) showed that the behavior of the systems
in Figures 3.4a and 3.4b are closely related. Consequently, if 02 and 03 are
identical, then the behavior of systems in Figures 3.4a and 3.4c must also be
closely related.

Unfortunately, we cannot extrapolate from Ammar and Gershwin's work for systems with

more than three stations. The arborescent and sequential systems have radically

different structures for n greater than three. A sequential system with n stations only has
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two stations which are either never starved or never blocked for instance, whereas there

are (n+3)/2 such stations in a n-station arborescent system.

3.1.6) Simulation tool

In order to overcome the size problem and the restrictive assumptions of the analytical

solutions available for the study of non-synchronous systems, we decided to resort to

simulation to help us quantify and analyze the differences between AS and SS. Once it

was decided to simulate dynamic, stochastic models of sequential and arborescent

production systems, a simulation language needed to be chosen. We chose to use PC

SIMCRIPT 11.5 on the AT&T 386.

SIMSCRIPT 11.5 is an event-oriented or process-oriented simulation language considered

by many to be one of the most powerful simulation language available. [16] It presents

many advantages over other simulation languages, such as SIMAN and general-purpose

languages such as FORTRAN:

* it is the only major simulation language with a package for performing statistical

analysis of simulation output data.

* its English-like and free-form syntax make its programs easy to read and almost

self-documenting.

* it provides a natural framework for simulation modeling, which facilitates the

modification of models. Its building blocks are more closely akin to simulation modeling

than those in a language like FORTRAN. [15]
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* it automatically provides all the features needed in programming a simulation,

resulting in a considerable savings in programming time. These features include:

1. Generating random numbers from a uniform distribution

2. Generating random variables from a specified distribution

3. Advancing simulation time

4. Determining the next event from the event list and passing control to

the appropriate block of code. Languages like FORTRAN are inadequate,

for instance, for process-oriented simulation, which require a co-routine

structure.

5. Adding records to, or deleting records from, a list

6. Collecting and analyzing data

7. Reporting the results. It is equipped with an animated interactive

graphics called SIMGRAPHICS [4]

8. Detecting error condition. Its on-line debugger, which makes full use

of the system's multi-tasking and multi-window environment is an

amazing time saver

* Because of the diversity of the statements available, SIMSCRIPT maintains a

level of flexibility, unusual for a simulation language. Normally one gives up a certain

amount of flexibility in using a simulation language instead of a general-programming

language like FORTRAN. But that proved not be the case.

* Finally, the PC version of SIMSCRIPT 11.5 is available to universities for $500.

This proved to be a deciding factor, because even if one has access to a simulation

language on a mainframe, the cost of mainframe simulations is usually prohibitive.

51



3.1.7) Simulation conditions

In our simulation work, we adhere to the following running conditions to insure the

comparability of the runs and the validity of our results:

* We select 10 time units as the standard mean processing time for all the

stations in the balanced systems and for the bottleneck stations in the

unbalanced systems. Consequently, we will always be able to compare r(AS)

and r(SS), the output rates of AS and SS to their theoretical capability of 0.1

unit/time unit.

* We start every run with an initialization period at the end of which we will

reset the output counters but keep the state of the system (input slots and

buffers). This measure eliminates the transient difference in production rate of AS

and SS due to their different assembly branch lengths. It also limits the bias due

to the starting conditions. In the systems with no buffer, the number of possible

states of the stations is limited. The initialization period should thus be

proportional to (n-1), the number of operations/ stations. In the systems with

buffer, the transient period should be longer and its length proportional to (n+b-1),

where b is the total number of buffer spaces. The initialization period should be

long enough to exclude observations from the transient period and short enough to

limit the number of wasted observations. After experimenting with different

initialization period lengths and studying the sensitivity of the results to the length

of the initialization period, we decided for simplicity of bookkeeping to set the

length of the initialization period to be equal to the length of a single subrun or

batch.
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* Similarly, we decided to set the length of the "data collection period" of each

batch to be 5,000 time units long for cases with no buffer or with 1 buffer space

between stations and 10,000 time units for cases with 3 or more buffer spaces

between stations.

* Each simulation run consists of 20 batches.

In our simulation work,

stochastic models of the

simulation is a sampling

framework of statistics.

confidence interval for the

we estimate the production rate r(AS) and r(SS) for various

operations and for various buffer allocation schemes. Since

experiment, it is important to interpret our results within the

Therefore for each of our simulations, we must specify a

estimate of the mean output rate, r of the form:

E(X) - H < r 5 E(X) + H

E(X) is the observed sample mean and H is the interval half width, which is required to

provide a confidence level of 1-a, say. That is, with probability 1-a, the true value of r falls

within the range E(X) -H to E(X)+H. The half width depends on the standard deviation

of the mean sample output rate, which in turn depends on the sample size. [18]

We use a Sequential Batch Means procedure to determine experimental values of the

output rate. After the initialization period, there is a data collection period of length M,

which is divided into K(=20) runs (batches) of length L(=5,000 or 10,000) (M=KL). Xj,

the value of the production rate of batch j (Xj = # of arrivals during the jth batch / L) is

used as an experimental value.[16] We choose this procedure over the Replication-

Deletion Approach, which consist of replicating a run K times. Although this latter
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method insures the independence of the runs, it is quite wasteful in terms of computer

time since it requires discarding observations at the beginning of each run.

Once we have obtained the K experimental values of X, we calculate the sample average
- K
X= xj/K

j=1

and the sample variance:
K

s2(X)= (Xj-X) 2 / (K-l)
j=1

If the Xj's are independent, the sample variance of X is:

S2(X) = S2 (X) / K

And consequently a (1-a) confidence interval for the output rate is:

X - S(X) tK-1, (/2 < r _ X+ S(X) tK-1, o/2

,where tK-1, a/2 is the upper a /2 point of the t distribution with N-1 degrees of freedom.

The above confidence interval assumes normally distributed and independent Xj 's. The

assumption of normality, in this case, is reasonably based on the central limit theorem,

since the Xj's are averages (i.e. average number of workpieces produced in L units of

time). Anyway, for a reasonably large sample sizes (like K=20), the violation of

normality should not significantly affect the results. We must verify though, that the Xj's

are in deed independent. We do so for every simulation by computing the test statistic

Cb, which for large values of K is an estimate of the correlation between adjacent

batches.
K K

Cb = 1- C (Xj-Xj+1) 2/ (2 * 1 (Xj-X)2)
j=1 j=l
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If the Xj's are in deed independent and normally distributed, then Cb is approximately

normal with a mean of zero and a variance equal to (K-2)/(K 2 -1) for K as small as 8.

Thus to test the independence of the batches, we conduct the two-sided hypothesis test:

H0: Cb=O versus H1: Cb#0

We reject Ho (i.e. independence) in favor of H 1 (i.e. correlated batches), if the absolute

value of z is greater than Z(a/2), where z(a/2) is the upper a/2 point on the standard normal

and where:

z = Cb/l[(K-2)/K 2-1)]

3.2) SIMULATION OF MODELS ASSUMING STATIONS WITH INDEPENDENT AND

IDENTICALLY DISTRIBUTED PROCESSING TIMES

3.2.1) Introduction:

In this section we present the first of two simulation studies. This first study is based on

a model assuming stations with identical quantitative characteristics, in particular

independent and identically distributed processing times. Its goal was to evaluate the

difference in the output rates of arborescent and sequential production systems and study

how that difference varies as a function of the coefficient of variation of the distribution,

the type of distribution, the buffer size and the number of stations.

3.2.2) Scenarios considered

To study how the difference between AS and SS varied as a function of n, we ran

simulations of 3, 7, 15 and 31 station AS and SS for all the scenarios considered.
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To study how the AS and SS vary in their ability to attenuate variability, as well as to

study how this relative ability varies as a function of the buffer size, we considered the

cases of:

* stations with exponentially distributed processing time (i.e. COV =1) and buffer

sizes of 0, 1, 3, 5 and 10.

* stations with uniformly distributed processing time with COV =0.5 and buffer

sizes of 0, 1, 3, 5 and 10.

* stations with uniformly distributed processing time with COV =0.3 and buffer

sizes of 0, 1, 3, 5 and 10.

As mentioned earlier, the expected value of all the distributions considered is 10 time

units.

Finally, to study whether any difference in the output rate of AS and SS is dependent on

the type of distribution, we considered the cases of systems with no buffer and with:

* stations with lognormally distributed processing time with COV of 1, 0.5 and 0.3

* stations with Bernoulli processing time distributions with COV of 1, 0.5 and 0.3

We compared these results to the cases of systems with no buffer involving uniform and

exponential distributions.

3.2.3) Expected results

Before conducting simulations, we presumed that the simulations would prove the

superiority of arborescent characterization The stations in the arborescent system

seemed to be more decoupled from one another than stations in the sequential systems.

The AS - because of its shorter production branches, n - ln2(n) shorter than the sequential

systems- appeared to have a higher capability to attenuate variability in the system. In
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particular, fewer stations in the AS seemed to be directly affected by a disruption in the

system.

If for instance, the station 01 in the 8-part AS and SS shown Figure 3.10 is

experiencing a temporary slow down, the effect of the slow-down will propagate more

rapidly in the SS. All the stations in SS soon become starved whereas only 01, 03 and

07, the stations in 01's branch are ever starved in the AS. The effect of the slow-down on

the other operations/stations in the AS is delayed until the moment their input slots are

full and they become blocked.

Despite Ammar and Gershwin's finding that three-station AS and SS should have

closely related behavior, the qualitative analysis of the three-station system, shown in

Figure 3.10, seemed to confirm a superiority of the arborescent system:

* the two systems behave identically when 03 is lagging behind 01 and 02,

* neither system is clearly advantageous when 01 is lagging behind 02 and 03 by

one piece (When both 02 and 03 have completed their pieces, in the arborescent

systems 02 proceeds with the next piece, whereas in the sequential systems 03

proceeds with its next piece),

* arborescent systems are clearly advantageous when 02 is lagging behind 01 and

03 by one piece. Because, as soon as 01 and 03 have completed their pieces, in

arborescent systems 01 can proceed with the next piece, whereas it is blocked

until 02 finishes processing in the sequential systems.

We expected this arborescent advantage to grow proportionally with n, i.e. proportionally

with the degree of arborescence of the AS.
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3.2.4) Presentation of the results

The simulations indicated otherwise:

* As summarized in Figures 3.5a and 3.5b, there is no statistically significant

difference between the output rate of arborescent and sequential systems

* the AS seems slightly advantageous when small values of n (n = 3 and n =7), but

as n increases, the SS actually has a slight edge

* any relative difference is attenuated by buffer spaces. We plotted the ratio of

r(AS) and r(SS) in Figures 3.6, 3.7 and 3.8 for various buffer space allocation schemes.

And we observed that the ratio r(AS)/ r(SS) tends to 1 as the number of buffer spaces

between stations grows.

* any relative difference is inversely proportional to the coefficient of variation

(COV) of the stations' processing time distribution. We can see in Figures 3.6, 3.7 and

3.8 thai the range of values of the r(AS)/r(SS) ratio decreased as the COV diminishes

from 1 to 0.5 and finally to 0.3

* wh;,le the output rate of both AS and SS can vary considerably for different types

of processing time distributions with the same COV- for instance, r(AS) and r(SS) are

considerably higher for Bernoulli distribution than for lognormal distributions (as

illustrated in the table in Figure 3.10)- the difference does not vary considerably as a

function of the type of distribution .
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Cases w/ no buffer I

S E RIES ARBORESCENT
N = 3 I r = 0.0563 I r = 0.0578
N = 7 I r = 0.0453 I r = 0.0458 I
N = 15 I r = 0.0410 I r = 0.0404 1
N = 31 I r = 0.0390 I r = 0.0375 I

Cases w/ buffer= 1 I

SER IE S ARBORESCENT
N = 3 I r = 0.0672 1 r = 0.0676 I
N = 7 I r = 0.0577 I r = 0.0574 I
N = 15 I r = 0.0543 I r = 0.0530 I
N = 31 1 r = 0.0526 I r = 0.0505 I

Cases w/ buffer= 3 I1

SERIES ARBORESCENT
N = 3 I r = 0.0775 1 r = 0.0779
N = 7 I r = 0.0707 I r = 0.0702 I
N = 15 I r = 0.0679 I r = 0.0669 I
N = 31 1 r = 0.0669 I r = 0.0648 I

Figure 3.6b: Output rate of arborescent and sequential systems with identical
stations with exponentially distributed processing times
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Cases w/ buffer= 5 I

SERIES
N=3 I r = 0.0830
N=7 I r = 0.0778
N = 15 I r = 0.0753
N = 31 I r = 0.0741

ARBORESCENT
I r = 0.0832
I r = 0.0769
I r = 0.0740
I r = 0.0725

Cases w/ buffer= 10 1

SERIES ARBORESCENT
N = 3 I r = 0.0894 I r = 0.0895
N = 7 I r = 0.0860 I r = 0.0852
N = 15 I r = 0.0841 I r = 0.0830
N = 31 I r = 0.0834 I r = 0.0822

Figure 3.6b(Cont'd): Output rate of arborescent and sequential systems with
identical stations with exponentially distributed processing times
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Cases w/ no buffer I

Uniform w/
SERIES
I r = 0.0716
I r = 0.0655

r = 0.0634
I r = 0.0626

COV = .5 Uniform w/ COV =
ARBORESCENT SERIES
I r = 0.0726 1 I r = 0.0806
I r = 0.0659 l I r = 0.0760
Ir = 0.0626 1 | r = 0.0743
Ir = 0.0610 I I r = 0.0737

.3
ARBORESCENT
Ir = 0.0814 I
Sr = 0.0763 I
Ir = 0.0730 I
Ir = 0.0711 [

Cases w/ buffer= 1 |

Uniform w/ COV = .5 Uniform w/ COV = .3
SERIES ARBORESCENT SERIES ARBORESCENT

N= 3 3 r = 0.0842 Ir = 0.0842 1 Ir = 0.0922 Ir = 0.0922 1
N= 7 I r = 0.0806 Ir = 0.0803 I r = 0.0902 Ir = 0.0898 1
N = 15 | r = 0.0789 Ir = 0.0783 | r = 0.0889 Ir = 0.0885 I
N = 31 I r = 0.0783 I r = 0.0774 1 I r = 0.0885 I r = 0.0879 1

Cases w/ buffer= 3 1

Uniform w/
SERIES
| r = 0.0916

r = 0.0895
I r = 0.0882
I r = 0.0878

COV = .5 Uniform w/ COV =
ARBORESCENT SERIES
i r = 0.0916 1 I r = 0.0964

I r = 0.0892 ! I r = 0.0954
| r = 0.0877 I r = 0.0948
I r = 0.0870 1 I r = 0.0946

.3
ARBORESCENT
|r = 0.0965 |
|r = 0.0953 I
|r = 0.0944 I
Ir = 0.0942 |

Figure 3.7b: Output rate of arborescent and sequential systems with identical
stations with uniformly distributed processing times
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Cases w/ buffer= 5 1

3
7
15
31

Cases

3
7
15
31

Uniform w/ COV = .5 Uniform w/ COV = .3
SERIES ARBORESCENT SERIES ARBORESCENT
I r = 0.0942 Ir = 0.0942 1 I r = 0.0977 Ir = 0.0978 1
Ir = 0.0926 Ir = 0.0926 1 I r = 0.0970 Ir = 0.0969 1
Ir = 0.0918 Ir = 0.0913 I I r = 0.0965 Ir = 0.0963 1
I r = 0.0915 Ir = 0.0910 1 I r = 0.0964 Ir =- 0.0963 1

w/ buffer= 10 1

Uniform w/ COV = .5 Uniform w/ COV = .3
SERIES ARBORESCENT SERIES ARBORESCENT
I r = 0.0968 Ir = 0.0969 1 I r = 0.0988 Ir = 0.0987 1
I r = 0.0957 Ir = 0.0956 | I r = 0.0983 Ir = 0.0982 I
I r = 0.0951 r = 0.0949 1 I r = 0.0979 Jr = 0.0978 1
I r = 0.0948 Ir = 0.0949 1 I r = 0.0977 Ir = 0.0980 1

Figure 3.7b (Cont'd): Output rate of arborescent and sequential systems with
identical stations with uniformly distributed processing times
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w/ Coefficient of Variance = 1 |

Lognormal w/ COV = 1 Bernoulli w
SERIES ARBORESCENT SERIES

r = 0.0581 r = 0.0592 I r = 0.0582
r = 0.0459 r = 0.04651 I r = 0.0518
r = 0.0407 r = 0.0403 r = 0.0505
r = 0.0379 r = 0.0360 r = 0.0501

11ememmmememmmemmememmememememe

v/ COV = 1
ARBORESCENT
Ir = 0.0589

r = 0.0519
r = 0.0499
Ir = 0.0491

wi/ Coefficient of Variance = 0.5 1
m m m m m m m m m e w m m m m m e e e m e m m e a m e m e m m m m m e m e

Lognormal
SERIES

r = 0.0713
r = 0.0626
r = 0.0588
r = 0.0571

ememememmwe

w/ COV = .5
ARBORESCENT
Ir = 0.0724

r = 0.0633
Ir = 0.0584

r = 0.0550

Bernoulli v
SERIES

r = 0.0738
r = 0.0683
r = 0.0671
r = 0.0668

v COV = .5
ARBORESCENT

r = 0.0743 |
r = 0.0684
r = 0.0660
r = 0.0645 I

Coefficient of Variance = 0.3 I

Lognormal w/ COV = .3 Bernoulli w
SERIES ARBORESCENT SERIES

r = 0.0803 r = 0.0811 I r = 0.0824
r = 0.0740 r = 0.0746 r = 0.0782
r = 0.0714 r = 0.0706 I r= 0.0772
r = 0.0702 r = 0.0680 r = 0.0770

/ COV = .3
ARBORESCENT

r = 0.0828
r = 0.0783

Ir = 0.0756
Ir = 0.0738

Figure 3.9: Output rate of arborescent and sequential systems with
identical stations with lognormal or Bernoulli processing times
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3.2.5) Interpretation of the results

While some of these results were predictable, other are quite surprising.

AS and SS behave identically in the case of stations with deterministic processing times.

Consequently, any difference in the output rate of AS and SS will exist because of any

difference in the ability of the two systems to attenuate processing time variability. It

therefore seems logical that any difference increases as a function of the COV, the

parameter which reflects the variability of the stations. Similarly, since the buffer size

attenuates the system variability, it is also expected that any difference decreases with

an increasing buffer size.

The relative equality of r(AS) and r(SS) for all n and for any type of distribution was

considerably more surprising. We were able to formulate some explanations based on the

three-station example, that partially explained the minimization of the arborescent

advantage:

* First, 02 does not lag behind both 01 and 03 a large percentage of the time,

maybe 20% of time since Pr(t2<tl & t2<t3) = 0.334, where tl, t2 and t3 are the

random variables associated with the processing time distributions of a single

piece at stations 1, 2 and 3.

* Second, the actual time saved, i.e. the time from the completion of processing on

both 01 and 03 to the time of completion processing on 02 or (of the next unit) on

01, is small.
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* Third, no additional time is saved when 02 is lagging 01 by more than one unit

(in the case where there is no buffer spaces)

* Fourth, the time saved may not actually contribute to an increase in output rate, if

03 subsequently lags behind 01 by more that the saved amount

We remained puzzled by these results, though. We were particularly frustrated by the

lack of nuance in these results. Consequently we decided to run a second batch of

simulations to study the relative capability of the two types of systems to attenuate the

processing time variability of isolated stations and develop intuition for the structural

differences of AS and SS.

3.3) Simulation of models with bottleneck stations (i.e. stations with higher

variability)

3.3.1) Introduction & Basic Definitions

a) Introduction

In this section, we relax the assumption of stations with independent, identically

distributed processing times. We study bufferless, balanced systems with bottlenecks to

get additional insight on the difference between arborescent and sequential systems. We

are particularly interested in the relative capability of the two types of systems to

attenuate the processing time variability of isolated stations. Unless otherwise

mentioned,

* the bottlenecks will have exponentially distributed processing times with

expected value of 10 time units,
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* the systems' other stations will have deterministic processing times with the

same expected value, namely 10 time units.

Note that, since all the stations in our system have the same expected values, what we

refer to as bottlenecks are not bottlenecks in the traditional sense of the word. We use

the term bottleneck to emphasize the fact that these stations with variable completion

times are directly responsible for any loss in system capacity.

b) Basic definitions

In a sequential system, Station i is said to lag behind Station i-1, where Station i

is directly downstream from station i-1 and it finishes its kth piece after Station i-1 has

completed its k+lst piece. Similarly Station i-1 is said to lag behind Station i if it finishes

its k+1 th piece after Station i has completed its kth piece.

In an arborescent system, Station i is said to lag behind Station j, where Station j

is directly upstream from Station i and it finishes its kth piece after Station j has

completed its k+lth piece. Similarly, Station j is said to lag behind Station i, where Station

i is directly downstream from Station j and it finishes its k+lth piece after Station i has

completed its kth piece.

3.3.2) First class of systems: systems with one bottleneck

a) Case # 1: Bottleneck at Station 1 (as shown in Figure 3.10)

i) Arborescent systems with a bottleneck at Station 1

Let us first consider the three-station arborescent system with a bottleneck at Station 1.

Let t1 and t2 be the processing time of the kth piece on Station 1 (01) and Station 2

(02), respectively, and let t3 be the processing time of the k-lst piece on Station 3.
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Assume that 01 and 03 start processing their kth and k-lst piece (respectively) at the

same time. Note that both t2 ant t3 are deterministic, and t2 = t3 = 10.

If tl < 10, i.e tl< t3, 01 is blocked for t3 - tl units of times, since it cannot dispose of the

kth processed piece.

If tl > 10, i.e. tl >t3, 03 is starved for tl - t3 because it has received only one of the two

necessary inputs.

Example: Assume that at t=0, 01 and 03 start processing their kth and k-lth

piece respectively

If tl =7:

At t = 7, 01 completes its kth piece and becomes blocked, as it cannot

dispose of the processed piece.

At t= 10, 03 completes its k-lth piece (02 may have finished earlier as

it may have starting processing before 03 if 03 was starved by 01 on the

previous piece) and 01, 02, 03 start processing the next piece.

If tl = 13:

At t = 10, 03 completes the k-lst piece and becomes starved. If 03 was

also starved by 01 on the previous piece, 02 started processing before 03

and completed it before t = 10. In this case 02 is blocked until t = 10. If 03

was not starved by 01 on the previous piece, 02 started processing at the

same time as 03 and also completes it at t= 10. In either case, 02 starts

processing its next piece at t = 10.
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At t =13, 01 finishes the kth piece. 01 and 03 start working on the next

piece.

02 never slows down the system, i.e. 03 is never starved because of 02. Consequently,

this three-station arborescent system has the same output rate as a two-station (01-03)

balanced, sequential system, where the first station is a bottleneck and the second

station has deterministic processing times. In fact as a result of the reversibility of

sequential systems, we can conclude that this three-station arborescent system has the

same output rate as a balanced, two-station, sequential system, where one station is a

bottleneck and the other has deterministic processing times.

Similarly, in larger arborescent systems with one bottleneck at Station 1, such as the

seven station system in Figure 3.10, 03 is neither blocked nor slowed down by

downstream stations or by stations in other branches. Consequently, a balanced, n-

station, arborescent system with n-1 stations with deterministic processing times and a

bottleneck at Station 1 has the same output rate as a balanced,two-station, sequential

system, where one station is a bottleneck and the other has a deterministic processing

time.

ii) Sequential systems with a bottleneck at Station 1

Similarly in these sequential systems, Station 2 is never slowed down by stations down-

stream. Oi+2 (where i > 0) always starts and completes the processing of its (k-i)th

piece before or at the same time as 02 starts and completes the processing of its kth

piece. Consequently, balanced, n-station, arborescent and sequential systems with n-1

stations with deterministic processing times and a bottleneck at Station 1 have the same
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output rate as a balanced, two-station, sequential system, where one station is a

bottleneck and the other has a deterministic processing time.

b) Case # 2: Bottleneck at Station n (as shown in Figure 3.10)

i) Arborescent systems with a bottleneck at Station n

Let Station U1 and Station U2 be the two stations directly up-stream from Station n in an

n-station arborescent system. Station Ul and Station U2 always complete the processing

of the kth piece at the same time as the stations one stage up-stream complete their

k+lth piece. Thus, all of Station n 's input can be represented by one station with

deterministic processing time of 10. Consequently as a result of reversibility, a balanced

n-station arborescent system with n-1 stations with deterministic processing times and a

bottleneck at Station n has the same output rate as a balanced, two-station, sequential

system, where one station is a bottleneck and the other has a deterministic processing

time.

ii) Sequential systems with a bottleneck at Station n

We have already concluded that a balanced n-station arborescent system with n-i

stations with deterministic processing times and one bottleneck at Station 1, has the

same output rate as a balanced, two-station, sequential system, where one station is a

bottleneck and the other has a deterministic processing time. Because of the reversibility

of sequential systems, we can also conclude that balanced n-station sequential and

arborescent system with n-1 stations with deterministic processing times and a

bottleneck at Station n has the same output rate as a balanced, two-station, sequential

system, where one station is a bottleneck and the other has a deterministic processing

time.
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Arborescent
System

Arborescent
System

Sequential
System

Sequential
System

Alternative # 1

OsL 01't021

Alternative # 2 for
cases 8 thru 11

0,.

0o0s

Case # 1: 01 -
Case # 2: On ,i.e. 07 if n = 7 and 03 if n = 3
Case # 3: On-i ,i.e. 06 if n = 6 and 02 if n = 2
Case # 4: O1 & 02
Case #5: 01 & O(n+1)/2 ,i.e. 01 & 04 f n = 7 and 01 &O 03 ifn =3
Case #6: 01 & On , i.e. 01 & 07 if n = 7 and 01 & 03 ifn =3
Case #7: 01 & On-1 ,i.e. 01 & 6 ifn = 7 and O & 02 ifn =3
Case #8: All the first stage stations, i.e. 01 &02&04&05 if n =7 and 01&O2 if n=3
Case #9: All the stations of the 2nd to last stage, i.e. 03&06 if n =7 and Ol&O2 if

n=3
Case #10: All the non-first stage stations, i.e. 03 & 06 & 07 if n =7 and 03 if n=3
Case #11: All the stations of one branch, i.e. 01 & 03& 07 if n =7 and 01 &03 if n=3

Figure 3.10a: Representation of 3 and 7 station arborescent and sequential systems
and listing of the bottlenecks used in section 3 of Chapter II to compare the relative
ability of AS and SS to attenuate the effect of isolated source of variability.
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Figure 3.11: Simulation results for cases involving bottlenecks
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Figure 3.11 (cont'd): Simulation results for cases involving
bottlenecks
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c) Case # 3: Bottleneck at Station i where n/2<i<n (as shown in

Figure 3.10)

Here i is between n/2 and n, rather than between 1 and n, because if i < n/2 in the

arborescent case, this problem becomes identical to the one solved in section 1).

For reasons similar to those mentioned in Case # 1 and Case #2, we can conclude

that balanced n-station arborescent and sequential systems with n-1 stations with

deterministic processing time and a bottleneck at Station i (where n/2 < i < n) have the

same output rate as balanced, three-station sequential systems, where the second

station is a bottleneck and where the other two stations have deterministic processing

times. In fact since the starvation of the downstream station always occurs

simultaneously with the blockage of the upstream station, we can even say that balanced

n-station arborescent and sequential systems with n-1 stations with deterministic

processing time and a bottleneck at Station i (where n/2 < i < n) have the same output

rate as balanced, two-station sequential systems where one station is a bottleneck and

the other has a deterministic processing time.

d) Summary of the single bottleneck scenario

Any balanced, n-station arborescent or sequential system with n-1 stations with

deterministic processing times and one bottleneck has the same output rate as a

balanced, two-station sequential system where one station is a bottleneck and the other

has a deterministic processing time, regardless of where the bottleneck is.

In fact any balanced, n-station (where n > 1) system with n-1 stations with deterministic

processing times and with one bottleneck has the same output rate as a balanced, two-

station sequential system where one station is a bottleneck and the other has a
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deterministic processing time, regardless of the value of n , the location of the bottleneck

and the structure of the system .

The completion interarrival time for such a system is described by the maximum of 10 and

X, where X is an exponential random variable with mean 10. The expected interarrival

time can be calculated to be 13.6786. Thus the output rate should be reasonably close to

1/ 13.6786, i.e. 0.0731.

g) Simulation work for the single bottleneck scenario

The simulation work for systems with one bottleneck summarized in Figure 3.11

confirmed that balanced arborescent systems and balanced, sequential systems with one

bottleneck have the same output rate, regardless of the value of n and the location of the

bottleneck.

3.3.3) Second class of systems: systems with two bottlenecks

a) Case # 4: Bottlenecks at Station 1 and 2 (as shown in Figure

3.5)

i) Expected results

Balanced, n-station systems with bottlenecks at Station 1 and Station 2 are never

slowed down by Station 4 through n, since these stations work in unison with Station 3.

Consequently, any balanced, n-station arborescent system with bottlenecks at

Stations 1 and 2 has the same output rate as a balanced, 3-station arborescent system

with bottlenecks at Stations 1 and 2. And, any balanced, n-station sequential system with
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bottlenecks at Stations 1 and 2 has the same output rate as a balanced, 3-station

sequential system with bottlenecks at Stations 1 and 2.

Intuitively, the three-station arborescent systems should have a considerably

larger output rate than the three-station sequential systems, because:

* the two systems behave identically when 03 is lagging behind 01 and 02,

* neither system has a clear advantage when 01 is lagging behind 02 and 03 by

one piece (When both 02 and 03 have completed their pieces, 02 proceeds with the next

piece in arborescent systems, whereas in sequential systems 03 proceeds with the next

piece),

* arborescent systems have an advantage when 02 is lagging behind 01 and 03

by one piece. Because, as soon as 01 and 03 have completed their pieces, in the

arborescent systems 01 can proceed with the next piece, whereas it is blocked until 02

finishes processing its piece in the sequential systems. This difference should be

especially significant, since 02 is a bottleneck in this case.

ii) Simulation results

As shown in Figure 3.11, simulations confirmed that the output rate of systems with

bottlenecks at Stations 1 and 2 was independent of the number of deterministic stations in

the systems. Surprisingly though, the output rate of the arborescent systems proved to be

only 2% greater than the output rate of the sequential systems. Several explanations are

possible.

First, 02 does not lag behind both 01 and 03 a large percentage of the time, maybe 20%

of time since Pr(t2<tl & t2<t3) = 0.334.
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Second, the actual time saved, i.e. the time from the completion of processing on both 01

and 03 to the time of completion processing on 02 or (of the next unit) on 01, is small.

Third, the time saved may not actually contribute to an increase in output rate, if 03

subsequently lags behind 01 by more that the saved amount.

b) Case # 5: Bottlenecks at Station 1 and (N+1)/2

(as shown in Figure 3.10)

i) Expected results

Intuitively, the difference between arborescent and sequential systems should

increase in this case, because of the higher degree of independence of the bottlenecks in

the arborescent systems. The effect of the occasional lag of 02 behind 01 and 03 should

be minimized considerably in the arborescent systems.

In both types of systems, the output rate should increase with n because as n

grows the bottlenecks are further isolated.

ii) Simulation results

As shown in Figure 3.11, simulations confirmed that in both types of systems the output

rate of systems with bottlenecks at Station 1 and (N+1)/2 increased with n. The

difference between the output rate of arborescent and sequential systems increased to 3%

when n=7. However, for n = 15 the sequential systems turned to be just as productive as

the arborescent systems. Several explanations are possible.

First, we may have undermined the isolation of the bottlenecks in the sequential systems.

Small fluctuations in the production rate of Station 1 are attenuated by the deterministic
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stations between the bottlenecks. Given that there is at least one deterministic station

between the bottlenecks, adding other deterministic stations between the bottlenecks

further decouples the bottlenecks. The added deterministic stations act as buffer spaces

and contribute to an increase in output rate. This effect is particularly significant in large

sequential systems and thus limits the potential disadvantage of a sequential

configuration.

Second, the sequential configuration is at a disadvantage when the bottleneck is lagging

behind the preceding and succeeding stations. But this situation only occurs for the

second bottleneck in the system.

c) Case # 6: Bottlenecks at Station 1 and Station n

i) Expected Results

When n = 3, the arborescent systems should be better than the sequential systems for

the reasons mentioned in Case #4, i.e.:

* the two systems behave identically when 03 is lagging behind 01 and 02,

* neither system has a clear advantage when 01 'is lagging behind 02 and 03 by

one piece (When both 02 and 03 have completed their pieces, 02 proceeds with the next

piece in arborescent systems, whereas in sequential systems 03 proceeds with the next

piece),

* arborescent systems are clearly advantageous when 02 is lagging behind 01 and

03 by one piece. Because, as soon as 01 and 03 have completed their pieces, in the

arborescent systems, 01 can proceed with the next piece whereas in the sequential

systems 01 is blocked until 02 finishes its piece.
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When n > 3, i.e. when there is at least one stage between Station 1 and Station n, the

sequential systems are clearly advantageous.

For arborescent systems with more than three stations, Station 2 does not affect the

overall output rate because once the first piece has been processed, it never lags behind

Station 3. Similarly, stations, not in Station 3's branch, never lag behind Stations 3 and n

and thus do not influence the production rate either. Consequently if n > 3, balanced, n-

station arborescent systems with bottlenecks at Stations 1 and n should have the same

output rate as a balanced, ln2(n+l) sequential systems with bottlenecks at Stations 1 and

ln2(n+l). 7-station and 15-station arborescent systems should have the same output rate

respectively, as 3-station and 4-station sequential systems with two bottlenecks.

Consequently, the output rate of 7-station and 15-station arborescent systems should be

less than the output rate of a 7-station sequential system, which in turn should be less

than the output rate of a 15-station sequential system. For, as mentioned in the previous

section, given that there is at least one deterministic station between the bottlenecks,

adding other deterministic stations between the bottlenecks further decouples them and

increases the output rate. Note that 3 station arborescent systems with bottlenecks at

Stations 1 and n do not behave as a ln2(3+1), i.e. 2 station sequential systems with

bottlenecks at Stations 1 and 2, because station 02 in the 3-station AS occasionally

slows down the system. (since there is no deterministic stations between the

bottlenecks).

ii) Simulations results

As shown in Figure 3.11, simulations for systems with bottlenecks at Station 1 and n

confirmed the findings of Case #4, i.e. that for 3-station systems the arborescent

configuration is only slightly more advantageous than the sequential configuration.
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As expected, when n>3, the output rate of these types of arborescent systems is

considerably smaller that the output rate of the corresponding sequential systems. The

output rate of 7-station and 15-station arborescent systems was indeed smaller than the

output rate of 7-station sequential systems. In fact, the 7-station arborescent system was

6% less productive than its sequential counterpart. The difference between the two

configurations increases with n, or more precisely with n - ln2(n). The output rate of the

15-station arborescent with bottlenecks at Stations 1 and n was 9% lower than the output

rate of the corresponding sequential system.

d) Case # 7: Bottlenecks at Station 1 and Station n-1

i) Expected results

For systems with more than three stations, the output rates should all be between the

rates found in Cases 5 and 6.

The sequential systems (with n >3) should have slightly smaller rates than in Case #6,

since the bottlenecks are now closer together. On the other hand, the output rate of

arborescent systems should increase slightly since the bottlenecks are now more

decoupled than in Case #6.

ii) Simulation results

As shown in Figure 3.11, simulations results were exactly as expected.

3.3.4) Third class of systems: systems where bottlenecks are all in the

same stage

a) Case # 8: Bottlenecks at all first stage stations
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(as shown in Figure 3.10)

i) Expected results

Let us call OU1 and OU2 the stations directly upstream from a station O.

In section 3.3.3 a), we mentioned than the arborescent configurations was particularly

advantageous, when OU2 was lagging behind OU1 and 0. Because, as soon as O and

OU1 have completed their pieces, in the arborescent systems OU1 can proceed with the

next piece where as in the sequential systems OU1 is blocked until OU2 finishes its

piece.

This advantage should thus be amplified if all the first stage stations in the arborescent

systems and the corresponding stations in the sequential stations are bottlenecks.

Consequently, as n increases the output rate of arborescent systems should be

considerably greater than the output rate of the corresponding sequential system.

There may be some questions as to what is in fact an equivalent sequential system. The

two possible alternatives are shown in Figure 3.10. Both alternatives were studied,

though the alternative # 1 system seems more fitting. For, if one has a choice between

sequential and arborescent configurations then one also has the choice between

alternative # 1 and alternative #2, and one would have to prefer alternative # 1, since its

bottlenecks are better separated.

ii) Simulation results

As shown in Figure 3.11, simulations confirmed the superiority of the arborescent

configuration when all the first stage station are bottlenecks.
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The 15-station arborescent system, for instance, had a 10% or 17% larger output rate than

the corresponding 15-station sequential system, depending on whether alternative #1 or

alternative #2 was chosen as the sequential system.

b) Case # 9: Bottlenecks at all stations of the second to last stage

(as shown in Figure 3.10)

i) Expected results

Let us call the two stations of the second to last stage, U1 and U2.

An n-station arborescent system with two bottlenecks in the second to last stage should

behave exactly like the n-station arborescent system with bottlenecks at Stations 1 and

2, studied in Case #4. The sequential system should be different, though, from its Case #4

analog.

For small values of n, the arborescent configuration has the advantage that if U2 lags

behind U1 and Station n, U1 can proceed with the next piece as soon U1 and Station n

have completed their pieces, whereas this is not possible in sequential configurations.

For n = 3, the arborescent system should have the 2% advantage it had in Case #4.

However, this potential advantage should be diminished for large systems because as n

increases, the bottlenecks in the (alternative # 1) sequential system become more and

more decoupled by the deterministic stations between the bottlenecks, which act as buffer

spaces.

ii) Simulation results

Simulation results confirmed the presence of two conflicting factors, which depending on

the values of n gave an advantage to one configuration or another. As expected, for
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relatively small values of n, the arborescent system was 2% more productive. However,

with increasing values of n, the advantage of partially decoupled bottlenecks in the

sequential configurations became significant. For n equal to 15, the sequential system

was 5% more productive.

3.3.5) Fourth class of systems: systems where there are least two

bottlenecks in each branch

a) ~ase # 10: Bottlenecks at all non-first stage stations (as shown

in Figure 3.10)

i) Expected results

If alternative #2 is used to represent the sequential systems, the two systems should

have practically identical output rate. Because, arborescent and sequential systems with

identical stations have the same output rate and if alternative # 2 is used, the (n-l)/2

bottlenecks can be thought of as a subsystem with all identical stations.

However, if one uses the more logical choice, i.e. alternative # 1, the sequential system

should have a higher output rate, because in this type of system the bottlenecks are

somewhat decoupled from one another.

ii) Simulation results (see Figure 3.10)

As expected, when alternative #2 was used to represent the sequential system, the two

types of systems had identical output rates.

When the more logical, alternative # 1 was used to represent the sequential system,

though, the sequential configuration was considerably more advantageous. The sequential

system was 10 % more productive for n equal to 15 for instance.
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b) Case # 11: Bottlenecks at all the stations of one branch i.e. at

Station 1. 3. 7. 15. etc..(as shown in Figure 3.10 and summarized in Figure 3.11b)

i) Expected results

This should be the case that gives the sequential configuration the greatest structural

advantage. It is because, while the bottlenecks are partially decoupled in the sequential

systems, they are directly connected and consequently pace, block and starve each other

in the arborescent systems.

The alternative sequential systems should yield identical results here, because they are

dual of one another in this case. In other words, Station 1 in alternative # 1 is equivalent

to Station n in the alternative # 2 system, or more generally, Station i in one system

alternative # 1 is equivalent to station n-i+1 in the other.

ii) Simulation results

As expected, the simulation illustrated the superiority of the sequential configuration for

this scenario. This advantage increased considerably with n. The sequential system was

respectively 6 and 15 % more productive for n=7 and n=15.

As expected the two alternative sequential systems yielded statistically equivalent

results.

3.3.6) Conclusions

The simulation work involving bottleneck stations (i.e. stations with variability) helped

us understand the nuances of the structural difference of the SS and the AS.
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After this second set of simulations, it became clear that while no structure is always

advantageous, depending on the location and the number of bottlenecks, one structure or

another may be preferable.

The arborescent structure has an advantage whenever a station OU2 is lagging behind

the station OU1 and the station O, where OU1 and OU2 are stations directly upstream

from a station O. Because, as soon as O and OU1 have completed their current pieces, in

the arborescent systems, OU1 can proceed with the next piece whereas in the sequential

systems OU1 is blocked until OU2 finishes its piece.

This"lateral" advantage is most significant when all the bottlenecks are in the first stage.

In that case, the arborescent system is at least 10 % more productive for systems with 15

or more stations. This "lateral" advantage does not propagate downstream when all the

bottlenecks are not in the first stage, however.

This is principally due to the "longitudinal" advantage of sequential systems. Given

that there is at least one deterministic station between bottlenecks, additional

deterministic stations between the bottlenecks act as buffer spaces and contribute to

an increase in output rate. This effect is particularly significant in large sequential

systems and thus limits the potential disadvantage of a sequential configuration. In

fact when there are bottlenecks at every stage of a given branch in the AS, the AS can

be as much as 15% less productive than the corresponding SS for systems of 15 or

less stations.

A generalization of this "longitudinal" advantage may exist for the models with i.i.d.

stations. Whenever two stations in the same production branch of the AS are
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experiencing temporary slow-downs, the effect of the slow-downs may be better

attenuated in the SS, where the stations in the SS are further apart.

Consequently, having production branches n station long instead of ln2(n) station long

may not necessarily be detrimental, especially since we know from Muth (1973) and

Conway (1988) that most of the loss of capability in balanced, sequential systems of

stations with stochastic processing time occurs in the first few stations.

3.4) OVERALL CONCLUSION OF THE OUTPUT RATE COMPARISON OF ARBORESCENT

AND SEQUENTIAL SYSTEMS

In an effort to quantify the impact of using subassemblies in a single-product environment,

we compared, in this chapter, the output rate of non-synchronous arborescent and

sequential systems for two different models of systems' station.

The first model assumed stations with identical quantitative characteristics, in

particular independent and identically distributed processing times. The purpose of

this first batch of simulations was to evaluate the difference in the output rates of

arborescent and sequential production systems and study how that difference varies

as a function of the coefficient of variation of the distribution, the type of distribution

and the buffer size.

The second model assumed bufferless, balanced systems with two types of stations:

stations with deterministic processing times and stations with exponentially

distributed processing times. The purpose of this second set of simulations was to

study the relative capability of the two types of systems to attenuate the processing
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time variability of isolated stations, as well as to develop intuition for the structural

differences of the two types of systems.

The basic conclusion of the simulation of these two models is that AS and SS do not differ

greatly in their ability to attenuate processing time variability. While one structure or

another may be preferable depending on the location and the number of sources of

variabilities, no structure is clearly always advantageous.

Certainly, any decision to use subassemblies in an assembly or production system should

not be based on the relative output rates of non-synchronous arborescent and sequential

systems. That is not to say, however, that arborescent and sequential are quantitatively

equivalent. Further study in such areas as testing should be pursued.

It is important at this time to put our results into perspective. Our work here assumed

non-synchronous systems. Consequently, the behavior of two types systems was not

expected to be so closely related.

For synchronous systems, identical results for the two types of configurations would not

have been surprising since the simultaneous transfer of all the parts in those systems is

paced by the slowest station. The expected interarrival time for both AS and SS would

simply have been E(max(TI, T2, ...,Tn)), where Ti is the processing time at the ith

station.

The comparison of the output rate of arborescent and sequential systems with stochastic

completion would be complete with a study of the output rate of infinite buffer synchronous

systems, where parts are transferred in batches between stations. In these types of
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systems, while no station would ever be blocked, the phenomenon of starving would

remain and in fact would be accentuated. Intuitively, this transfer mechanism would seem

likely to accentuate the "lateral advantage" of arborescent systems, while limiting the

"longitudinal advantage" of sequential systems.
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CHAPTER IV

GENERATION OF THE MOST ARBORESCENT

ASSEMBLY SEQUENCES

4.1) INTRODUCTION

In the previous chapter, we compared the output rate of asynchronous arborescent and

sequential production systems with reliable stations with stochastic processing times

for various buffer allocation schemes. This comparison of AS and SS assumed an

idealized product, which could be assembled via both types of configurations. In

reality, most products neither have a number of parts n+1 such that n+l= 2 k nor can

they be built using both purely AS and SS. For case studies of products from industry,

it would be most useful to know the most arborescent sequence possible for the

assembly of a given product.

In this chapter we outline a method to determine the most arborescent and the least

arborescent assembly sequence possible for a product using the Liaison Sequence

Analysis (LSA) software.

4.1.1) Algorithmic methods for assembly sequence generation

The Liaison Sequence Analysis is an algorithmic method developed by De Fazio and

Whitney for generating all the assembly sequences possible for a product. LSA is a

simplified version of Alain Bourjault's "Elaboration Automatique des S6quences

Op6ratoires", which introduced the notion of liaison and liaison diagram. A liaison

diagram is a network wherein nodes represent parts and a line or arc between two

nodes represents any user-defined relation between the two parts called a "liaison".
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User-defined relations of "liaison" in a general sense follow the literal definition, i.e. "a

close bond or connection" [1]. Examples of liaisons include physical part-to-part

contact or interference fit between parts, or pass through without touching, such as a

bolt through a hole.[ 3] A sample 6-part 5-liaison product and its liaison diagram are

shown in Figure 4.1.

BLTTON

IN WJK

CAP

':: lHEAD

BUTThON

CAP

Figure 4.1: Example of a six-part five-liaison product: A ballpoint pen

Source: Charles J. Klein, 1987

Both the Bourjault and the De Fazio-Whitney methods view component assembly as

the sequential completion of the liaisons between parts and determine all the possible

liaison assembly sequences through the use of rules or precedence constraints. The

two methods differ in the questions used to generate these precedence relations.
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The questions used by Bourjault are of two general forms:

Question 1: Is it true that liaison Li can be established if Liaisons (Lj... Lk)

have been established?

Question 2: Is it true that Liaison Li can be established if Liaisons (Lj... Lk)

have not been established?

The group (Li...Lk), called the body of the question, consists of one or more liaisons

and evolves overtime with the "yes" or "no" answers of the user.

The two questions asked by De Fazio and Whitney for each liaison Li are the

following:

Question 1: What liaisons must be established prior to establishing Li?

Question 2: What liaisons must not be established until after establishing

Li?

The answers directly correspond to the set of precedence relations for the assembly

system and are either in the form of "none" or a logical combination. A sample answer

could be: "3 &4 -> 6", which indicates that the establishment of both liaisons 3

and (&) 4 must precede (->) the establishment of liaison 6.

As mentioned previously the LSA software, currently implemented at Draper Labs, is

based on the De Fazio-Whitney method. The main asset of this method is that it

reduces the number of questions to be answered from a minimum of 2 (L2 + L) (to a

maximum of 2 L) required by Bourjault's method to 2 L, where L is the number of

liaisons. This reduction makes the generation of precedence relations practical for a

product with a large liaison count.[ 2] It is worth pointing out though, that Bourjault and

engineers at Draper Labs are currently working on a simplification ef the "Elaboration
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Automatique des Sequences Operatoires", which will decrease the difference in the

number of questions answered by the two methods.

4.1.2) Graphical representation of assembly sequences in the LSA

software

In the LSA software, the assembly sequences are represented graphically by liaison

sequence diagrams. These diagrams/graphs are networks of states, represented by

boxes, linked together by state transitions, represented by lines as shown in Figure

4.2. Each box is divided into cells that represent liaisons. A darkened cell indicates

the establishment of liaison. Every state is unique and represents an assembly state.

Every state transition represents the path from one state to another. There are

usually multiple state transitions to and from a state. A possible assembly sequence

is a path from the unassembled state (0th rank) to the final assembled state (last, i.e.

niLnaii

e

t1

I'lP

Eigure 4.2: A network of sequence graph that represents all valid assembly paths

Source: Max-Cheung Lui, 1988
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In our work here, we modify the state representation to ease the legibility of the

liaison sequence diagram. Instead of darkening cells to represent the establishment of

liaisons, we simply write in the cell the liaison number for all the liaisons completed.

4.2) CHARACTERIZATION AND QUANTITATIVE MEASUREMENT OF THE
ARBORESCENCE OF AN ASSEMBLY

In order to determine the most arborescent assembly sequence possible for a product,

we need to be able to differentiate between different levels of arborescence. In this

section, we characterize arborescence and find quantitative measures of the level of

arborescence for an assembly sequence.

4.2.1) Problem Setup

a) Basic definitions

In this chapter, we use parts-tree diagrams, such as the one shown in Figure 4.3, to

represent assembly systems. The Pi's represent the parts/components of the product.

The nodes represent the assembly operations, which each join two parts or

subassemblies and output a subassembly. The Li's next to the nodes represent the

liaison(s) established at the node.

6o,6

Figure 4.3: Sample parts-tree diagram

The length of a branch of a parts-tree is defined as the number of operations in that

branch. In the figure 4.4, the length of branch # 1 is 3 and the length of branch # 2 is 2,

for instance.
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Branch # 1

anch # 2

Figure 4.4: Sample Calculation of the Height and the Length of the branches of a parts-tree.
Length of Branch # 1 is 3. Length of Branch # 2 is 2. Therefore the Height of the tree is 3.

The height of a tree is defined to be the length of its longest branch. The height of the

tree shown above is therefore 3.

Two assembly sequences are said to have different levels of arborescence, if and only

if one of the sequences is more arborescent than the another. Subsequently, we will

characterize what is meant by "more arborescent."

b) Introduction

Whereas in a sequential assembly system all the operations are conducted in one

main production branch, in an arborescent assembly system a large number of

operations are conducted away from the main assembly, where they can be done and

tested in parallel. We try to convey this fact in our definition of levels of arborescence.

We distinguish between different level of arborescence lexicographically:

* first we use the ARBcount which is a measure inversely proportional to the

height of the tree. The bigger is the ARBcount, the more arborescent is the

system.
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* then in case of tie, we use the measure, described in Section 4.2.3, which is

proportional to the width of the parts-tree.

4.2.2) ARBcount and the ARBcount Computing Algorithm

a) Introduction and presentation of algorithm

The ARBcount calculates the number of operations "done away" from the longest

branch of the main assembly and "done away" from the longest branch of each of the

subassemblies (and their subsubassemblies).

It is calculated in a recursive manner:

ARBcount = (# ofoperations) - (length ofbiggest subassembly oftree) + ARBcount i (4.1)
i

where the summation is over the subassemblies left after excluding the longest

branch of the biggest subassembly. By bigger, we mean the subassemblies with the

most operations or parts.

We illustrate the definition of ARBcount with examples in Figure 4.5.

ARBcount is computed in the following manner:

* 1. Represent the assembly sequence using a parts-tree diagram

* 2. Initialize ARBcount to 0

* 3. Determine the larger of the two subtrees joined by the last operation in the

tree. Break ties arbitrarily.

* 4. Calculate (# of operations on the tree) - (length of the longest branch of the

biggest subtree). Add that number to the ARBcount.

* 5. Delete the the longest branch of the biggest subtree.
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* 6. Apply steps 3, 4 , 5 and 6 to each of the subtrees left on the "disintegrated

tree."

b) Sidenotes

Note that determining (# of operations on the tree) - (length of the longest branch of

the biggest subtree) in step 4 is equivalent to counting the number of operations in the

tree that are not done in the longest branch of the biggest subassembly.

As illustrated in Figure 4.6, breaking ties arbitrarily in step 2 does not affect the value

of the ARBcount.

Since ties are broken arbitrarily in step 2, the length of the biggest subassembly (used

in equation 4.1) may be different from the height (or depth) of the tree. This point is

illustrated in the left-most parts-tree in Figure 4.5. In that tree, the height of the tree

is four, whereas the length of the subassembly, chosen to be the biggest, is three.

We in fact will take full advantage of this flexibility in breaking ties in the Final

ARBcount Maximization Module of Section 4.4.

In equation 4.1, the summation is over subassembly left after the longest branch of the

biggest subassembly has been deleted rather than over subassemblies left after the

biggest subassembly has been deleted. As illustrated in Figure 4.7, there is a

difference between the two when the biggest subassembly has eight or more parts.

This difference enables us to account for the arborescence of the main subassembly.

The ARBcount of an assembly system is inversely related to the height (or depth) of

the parts-tree. For systems with seven or more operations though, the ARBcount
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contains more information than the Height. As illustrated in Figure 4.8, the ARBcount

enables us to distinguish more readily between systems (with the same part count)

that have identical heights and but differing levels of arborescence, i.e.

ARBcount(AS1) = ARBcount(AS2) => Height(AS1) = Height(AS2) but

Height(AS1) = H(AS2) #> ARBcount(AS1) = ARBcount(AS2)

where the height of a system is defined to be the length of the longest production

branch of a system

4.2.3) Distinguishing between systems with identical ARBcounts

If two assembly systems AS1 and AS2 have different ARBcounts, then the system

with the biggest ARBcount is the most arborescent. Having the same ARBcount does

not imply equivalent levels of arborescence, however.

Consider for instance the two assembly systems shown in Figure 4.9. They both have

the same ARBcount, i.e they both have one separate subassembly. In AS2 though,

the "separate" subassembly is incorporated into the main assembly at a later point in

time. Consequently, the operations in the main production branch of AS2 are more

decoupled from AS2's "separate" operation. The parts-tree of AS2 is wider than the

parts-tree of AS1 tree. AS2 is therefore more arborescent than AS1. Interestingly

enough we will see in Section 4.4 that ARBcount can also be used to implement this

tie-breaking measure.

To further illustrate the concepts of arborescence, ARBcount, width and height, we

have represented in Figure 4.10 all the assembly structures possible for 3, 4, 5, 6, 7-

part product in decreasing order of arborescence.
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ARBcount = (# of operations) - (length of biggest subassembly of tree) + C ARBcount i
i

=> ARBcount = 7 - 3 + I ARBcount i ARBcount = 7 - 3 + I ARBcount i

Figure 4.5a: Part-tree representation of two different eight-part, 7-operation
arborescent assembly systems. The value of the ARBcount of the trees
after the fourth step of the ARBcount computation algorithm is shown.
In both trees, we arbitrarily picked the left-most 4 part subassembly as
the biggest subassembly

w/ V

=> ARBcount = 4 + X ARBcount i ARBcount = 4 + Z ARBcount i

Figure 4,5b; Representation of the "disintegrated tree" of the two above eight-part
arborescent assembly systems, resulting from the fifth step of the
ARBcount computation algorithm

ARBcount = 4 + (1-1+0) + (3 - 2 + 0) = 5 ARBcount= 4 +(1-1+0) +(3-3+0)=4

Figure 4.5c: Representation of the "disintegrated tree" of the two above eight-part
arborescent assembly systems, resulting from steps 3, 4,5 and 6 of the
ARBcount computation algorithm have been applied to the trees of
Figure 4.5b.
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ARBcount = (# of operations) - (length of biggest subassembly of tree) + ARBcount i
i

=> ARBcount = 7 - 4 + Y ARBcount i ARBcount = 7 - 3 + I ARBcount i

Figure 4.6a: Two different part-tree representations of an eight-part 7-operation
ra borescent assembly s 

y

step 2 of the ARBcount Computing Algorithm does not affect the value of the
ARBcount, we assume that the left most 4-part subassembly is the biggest
subassembly in each of the two trees. The value of the ARBcount of the two trees
after step 4 is shown.

f \V

ARBcount = 3 + I ARBcount i ARBcount = 4 + I ARBcount i

Figure 4,6b: Representation of the "disintegrated tree" of the two part-trees from
Figure 4.6a, resulting from the fifth step of the ARBcount Computation
Algorithm

ARBcount = 3 + 1 = 4 <=> ARBcount = 4 + 0 = 4

Figure 4.6c: Representation of the "disintegrated tree" of the two above eight-part
arborescent assembly systems, after steps 3, 4, 5 and 6 of the
ARBcount computation algorithm have been applied to the disintegrated
trees of Figure 4.6b. As shown here, breaking ties arbitrarily in step 2
of the algorithm does affec: the final value of the ARBcount
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ARBcount = (# of operations) - (length of biggest subassembly of tree) + • ARBcount i
i

=> ARBcount = 9 - 4 + I ARBcount i ARBcount = 9 - 4 + - ARBcount i

Figure 4.7a: Duplication of the part-tree representation of a ten-part 9-operation
arborescent assembly system. The left-most tree is used to calculate the ARBcount
that would have resulted had we deleted the biggest subassembly in Step 5 of the
ARBcount Computation Algorithm (A.B.C.) . The right-most tree is used to calculate
the ARBcount as it is defined in Section 4.2.2. The value of the ARBcount of the two
trees after step 4 is shown.

>rV
Subassembly 1 Subassembly 1Subassembly 1

Subassembly 2

Subassembly 23

ARBcount 1= 1 - 1 + = 0 ARBcount 1 = 1 - 1 +0 = 0
ARBcount 2 = 3 -2 + 0 = 1
ARBcount 3 = 1 -1 + 0 = 0

ARBcount = 5 + I ARBcount i ARBcount = 5 + I ARBcount i
=> ARBcount = 5 + 0 = 5 ARBcount = 5 + 0 + 1 + 0 = 6

Figure 4.7b: Shown on the left is the "disintegrated tree", that would have resulted
from the fifth step of the A.B.C.had we decided to delete the biggest subassembly
instead of the longest branch of the biggest subassemblies. The "disintegrated tree"
on the right results from the A.B.C as it is defined in Section 4.2.2. The calculation of
the ARBcount of the subassemblies of the disintegrated trees is shown. The tree on
the right has a higher ARBcount. Deleting the longest branch of the biggest
subassembly instead of the whole biggest subassembly allows us to account for the
arborescence of the biggest subassembly.
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ARBcount = 5
Height =3

Figure 4.8a:

ARBcount = 4
Height = 4

Figure 4.8b:

ARBcount = 3
Height = 4

Figure 4.8c:

Figures 4.8a,b,c: Parts-tree diagram representation of three eight-part
arborescent systems with differing levels of arborescence. Note
that while the ARBcount makes a distinction between the level
of arborescence of the systems in Figure 4.8b and Figure 4.8c,
the Height does not.
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ARBcount = 1

Figure 4.9a: Parts tree diagram representation of a generic 7-operation
assembly system called AS1.

ARBcount = 1

Figure 4.9b: Parts tree
assembly

diagram representation of a generic 7-operation
system called AS2.

AS1 and AS2 have the same ARBcount. But since AS2's parts
tree is wider than AS1's, AS2 is the more arborescent of the two
trees.
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ARBcount = 0 (Height = 2)

(D

Figure 4.10a : Parts-tree diagram representation of the only assembly structure
possible for the assembly of 3-part products

N=4

(D

Q

Figure 4.10b:

ARBcount = 1 (Height = 2)

ARBcount = 0 (Height = 3)

Parts-tree diagram representation of all the assembly structures
possible for the assembly 4-part product, in decreasing order of
arborescence

ARBcount = 1 (Height = 3)

Q

AB]Icount = 0 (Height = 4)

0

Figure 4.10c: Parts-tree diagram representation of all the assembly structures
possible for the assembly 5-part product, in decreasing order of
arborescence
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ARBcount = 2 (Height = 3)

C2

ARBcount = 1 (Height = 4)

(

ARBcount = 0 (Height = 5)

(

Figure 4.10d: Parts-tree diagram representation of all the assembly structures
possible for the assembly 6-part product, in decreasing order of
arborescence

109

0

( (:



ARBcount = 3 (Height = 3)

ARBcount =2 -(Height =4)

G

S

ARBcount = 1 (Height= 5)

0 
/D

0

(

ARBcounjt = -(Height = 6)

©

F[jigjre 4.10.: Parts-tree diagram representation of all the assembly structures
possible for the assembly 7-part product, in decreasing order of arborescence
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4.2.4) Hints for implementation of the algorithm

(The reader, who only wants to get a broad understanding of the issues involved, may

wish to skip to section 4.3)

* When N is less that 5, then two systems with the same ARBcount necessarily

have the same level of arborescence.

* When N is less than 7, if we do not wish to use the ARBcount approach, we can

also distinguish between the level of arborescence of two systems by comparing the

size of the smallest subassembly of the main subassembly at each stage, starting

with the last stage, until either we find a stage where the two systems have differing

smallest subassembly size or until stage 1 is reached. The bigger the smallest

subassembly, the less disproportionate in size are the subassemblies being mated

and the more arborescent the system. For these cases, the ARBcount does not

necessarily need to be calculated. Unfortunately as illustrated in Figure 4.11, when N

2 7, a system could have a larger subassembly at the last stage and be less

arborescent. Consequently the ARBcount needs to be calculated for these values of n.

* When N is less than 8 or when the size of the largest "separate" subassembly is

less than 4, two systems have the same level of arborescence if and only if the size of

the smallest subassembly of the main subassembly of the two systems is the same at

every stage.

Unfortunately, if the largest "separate" subassembly is made up of four or more parts,

then two systems, with subassemblies of the same size at every stage, have the

same level of arborescence only if the "separate" subassemblies of more than four

parts have the same level of arborescence.
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ARBcount = 2

Figure 4.11a:

ARBcount = 1

Figure 4.11b:

Figures 4.11a.b: Parts tree diagram representation of two different arborescent
part groupings for a generic, seven part product. For products
with less than seven parts, if two systems have smallest
subassemblies of differing size at the last stage, the system
with the largest smallest subassembly is the most arborescent.
However, as illustrated here, for products with seven or more
parts, a system, like the one in Figure 4.11 b, could have a larger
subassembly in the last stage and be less arborescent.
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4.3) THE ARBORESCENT PURGE MODULE

4.3.1) Introduction and Motivations

There is a certain amount of redundancy in the LSA software in the generation of

assembly sequences which include multiple and separate subassemblies. Consider an

eight-part product, with parts P1, P2 ... P8. The purely arborescent assembly, shown

in Figure 4.12a, where P1 is mated with P2, P3 is mated with P4, P1&P2 are mated

with P3&P4, and where P5 is mated with P6, P7 is mated with P8, P5&P6 are mated

with P7& P8, and where finally PI&P2&P3&P4 is mated with P5&P6&P7&P8,

generates the 80 sequential assembly sequences described in Figure 4.12b. These

80 "sequences" essentially all describe the same part grouping, i.e. the same strategy

for assembling the product. Certainly, all 80 have the same level of arborescence. A

product designer using LSA should have the option of deleting the79 or so "redundant"

sequences.

Having this pruning option is especially crucial for large products since the Number of

Sequential assembly Sequences corresponding to a Purely Arborescent part grouping,

(call it NSSPA) rises faster than n/2!. For n=4, NSSPA = 2, for n =8, NSSPA = 80

and for n= 16, NSSPA >> 2 106 (i.e. >> 8! * 4! * 2! 1!)

Figure 4.12a: Part-tree representation of the eight-part, 7-liaison purely
arborescent assembly system, whose eighty sequential
assembly sequences are described in Figure 4.12b. Here, L1,
L2, L3 and L4 are the first-stage liaisons. L5 and L6 are the
second-stage liaisons.
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Assembly sequences where all the first stage liaisons are done first:

First stage Liasions
(L1, L2, L3, L4)

2nd Stage
Liaisons (L5, L6)

# of such sequences: (4 * 3 * 2 * 1) * ( 2 * 1) * 1 = 48

Assembly sequences where three first stage liaisons are done first and where the
first second stage liasion is done before the fourth first-stage liasion:

3 of the first stage
Liasions
(L1, L2, L3 or L4)

1st 2nd
Stage
Liaison

Last 1st stage
Liaison followed
by last 2nd stage
Liaison

# of such sequences: (4 * 3 * 2 ) * * (1 * 1) * 1 = 24

Assembly sequences where two first stage liaisons are done first and where the
second-stage liasion joining these two subassemblies is done before the other two
first-stage liasions:

2 first stage
Liasions

(L1&L2 or L3&L4)

1st 2nd
Stage

Liaison

Last 2 1st
Stage

Liaisons

2nd
2nd-stage
Liaison

3rd Stage
L7

# of such sequences: (4 * 1 ) * 1 * (2 * 1)

Total number of sequential sequences corresponding to
arborescent parts gouping shown in Figure 4.10a

*1 = 8

the
= 80

Figure 4.12b:Breakdown of all the sequential assembly sequences corresponding to the
arborescent parts grouping shown in Figure 4.12a
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Note that for a purely sequential assembly, no distinction needs to be made between

part groupings and assembly sequences, because each possible way of grouping parts

sequentially has one and only one corresponding sequential assembly sequence.

4.3.2) Description of the pruning algorithm

Before developing an algorithm to delete the "redundant" sequential sequences of an

arborescent part grouping, we needed to decide which one of the many sequential

sequences corresponding to each arborescent part grouping to keep. We explain our

decision in terms of parts-tree diagram representation.

We decided to keep the assembly sequence, which corresponds to the assembly of

parts and subassemblies from top-to- bottom, left-to-right as they are shown in a

parts-tree diagram, where the larger of any two subassemblies, to be mated by an

operation, is always represented on the left. The imDlication of this convention in the

liaison sequence diagram is the following.

In a liaison sequence diagram (e.g. Figure 4.13), if there exists an intermediate

assembly state, call it STi, consisting of multiple, distinct subassemblies, then we

only keep the assembly sequence leading to STi where all the subassemblies are built

one at a time from start to finish in decreasing order of size until state STi is reached.

In other words, we first build the biggest subassembly in its entirety, then we build

the second biggest subassembly in its entirety, and so on until we finally build the

smallest subassembly and reach STi.

Once the LSA software has generated the entire liaison sequence diagram, we

implement this pruning in the following manner:
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Consider a state STi, which consists of two or more subassemblies S1, S2 ...

Sk, for k 2 2

* we first identify Ss, the smallest subassembly in terms of number parts. If

there is a tie, we break the tie in a manner described below.

* we then delete all the transitions to state STi from parent states in which

the smallest subassembly of Ss is already established. This step insures that

Ss is the last of the k subassemblies done.

1
I-1

Oth Rank

1st Rank

2nd Rank

3rd Rank

4th Rank

Fjicnr'eP IIn

Figure 13ab: The liaison diagram and the sequence diagram of a generic product are shown in Figures 13a
and 13b. In Figure 13b, the left-most state of the 3rd rank consists of one three-part subassembly and one
two-part subassembly. Consequently we only keep the transitions from the parent state, where the three part
subassembly is built in its entirety.
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By applying this technique to every state STi we insure, that we only keep those

assembly sequences leading to STi, where all the subassemblies are built one at a

time from start to finish in order of decreasing size.

Note that no sequential assembly sequence or partially sequential assembly sequence

is deleted accidentally, since only the states (in ranks 2 through n -1) with two or

more subassemblies are examined.

We have made no mention thus far of how to break off ties between subassemblies

with the same number of parts. Ties could be broken in any arbitrary way. However,

for reasons that will be apparent when we describe the Arborescence Maximization

Module, we have chosen the following tie-breaking rule, which is more

computationally intensive in the short run, but which is overall more efficient, since it

makes trivial the finding of the most arborescent assembly:

* if two subassemblies S1 and S2 are made up of the same number of parts, the

subassembly with the highest level of arborescence is built first. Here, S1 is said to

have a higher level of arborescence than S2 if Sl's most arborescent configuration is

more arborescent than S2's most arborescent configuration. We point this out, since

individual subassemblies are built in "subsequences" with varying levels of

arborescence.

- if the two subassemblies have the same level of arborescence, the tie is

broken in an arbitrary manner. The subassembly with the liaison with the highest

index is built last.

4.3.3) Implementation of the pruning algorithm
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For states with one smallest subassembly or with multiple smallest subassemblies of

less than four parts, the above pruning technique is straight forward to implement,

because in either case the level of arborescence is not a factor. In the one-smallest

subassembly case, there is no ambiguity about the identity of the smallest

subassembly. In the case of several smallest subassemblies of less than four parts,

i.e in case of smallest subassemblies of two or three parts, the level of arborescence

is necessarily the same in subassemblies of equal size.

For states with several smallest subassemblies of four or more parts, the

implementation of the technique requires the determination of the level of

arborescence of each of smallest subassemblies and is thus more computationally

intensive. The fewer the number of parent states, the quicker the determination of the

level of arborescence. Consequently, we postpone the determination of the level of

arborescence for these cases until the latest possible moment.

As shown in the flowcharts of Figures 4.14a and 4.14b , the Arborescent Purge

Module is thus divided in two sections:

* The Main Purge

* The Detailed Purge

In the Main Purge, we examine all the multiple-subassembly states of rank 2 thru n-1

with one smallest subassembly or with several smallest subassemblies of less than

four parts. For each of these states we identify the smallest subassembly and delete

all the transitions from parent states where the entire smallest subassembly is

assembled. A flowchart of the Main Purge is shown in Figure 4.14c.
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Arborescent Purge

Arborescence Maximization

119

Main Purge
Examine all the multiple-subassembly states of rank 2 thru n-1 whose
smallest and least arborescent subassembly can be determined without
examining parent states. For each state identify the smallest subassembly
and delete all the state transition with parent states where that
subassembly is fully assembled.

Detailed Purge

Examine all the multiple-subassembly states of rank 2 thru n-1 whose
smallest and least arborescent subassembly cannot be determined without
examining parent states. For each state identify the smallest and least
arborescent subassemblies and delete all the state transitions with parent
states where that subassembly is fully assembled

ARBcount Maximization
Starting at rank 3, for each state in every rank,

* Identify Sta, the parent state with the highest ARBcount
* Determine #Sub, the number of subassemblies in the state
* Set the state's ARBcount = Sta's ARBcount + #Sub -1
* Delete all the state transitions with the parent states, whose

ARBcount < Sta's ARBcount

Final Arborescence Maximization
Starting at rank 2, for every rank in the liaison state diagram,
- Compare the ARBcount of every state in the rank and identify

ARBstate, the state in the rank with the lowest ARBcount
- Delete any state in the rank whose ARBcount is not as small as

ARBstate's.

Figure 14a: Summary of the algorithm used to determine the most arborescent
assembly sequence possible for the assembly of a product.
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Arborescent purge

Figure 4.14b:Flowchart for the Arborescent Purge Module. This module deletes all the
"redundant" arborescent assembly sequences in a product's liaison
sequence diagram. The flowchart for the Main_Purge routine is shown
in Figure 4.14c, the one for the Detailed_Purge is shown in Figure 4.14d.
Note that r stands for rank.
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call MainPurge(u)
call MainPurge(1)



Main_Purge(r)

START)

Set Col = 1

Set ContRank(r) = No

if Col = Width(r)

No

Determine # of Subassemblies

Yes

in State(r,Col) I
Yes

# of Sub=
No

Determine SSS, the size of smallest
Subassembly of State (r,Col)

ContState(r) = Yes

Let the subassembly of size
SSS with the highest liaison

index be the smallest Sub

ContRanK(r) = Yes

Set Continue = Yes

Delete all the state transition from
the parent states of state( r,Col)
where the smallest Subassembly of
State(r,Col) is fully assembled

Set Col = Col + 1

Figure 4.14c: Flowchart for the Main_Purge routine, which is called from the Main Purge
Module shown in Figure 4.14b and described in Figure 4.14a. Note that Width

refers to the width of a rank, i.e. the number of states in the rank.
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Detail_Purge(r)

Set Colo= 1

SSif Col = Width() YES

Set Col = Col + 1 0O
YES f ContState

r,col) = NO
NO

Determine SSS, the size of smallest Subassembly of
State (r,Col) as well as #Subw/SSS, the number of
Subassemblies of size SSS in State (r,Col)

r T ore
smallest and least arborescent
subassembly, apply the
equivalent of the Arborescent
Maximization (without
deleting any state or state
transitions) to the states
upstream starting with the
states upstream in rank r - #of
Subw/SSS * SSS, i.e. the states
where the assembly of the
smallest subassemblies has
not even started but where the
assembly of all the other
subassemblies has beeen
completed.

if (# of sub of size SSS with
MaxParSub = minMaxParSub) = 1

* then the smallest and least arborescent
subassembly has been found

* otherwise
if SSS=4 or (SSS=5 and minMaxSub
>#Sub(r,col))

the smallest and least arborescent
subassemblies have been found

otherwise
By examining parent states of parent
states with minMaxParSub and counting
their # of subassemblies, determine the
smallest and least arborescent
subassemblies

If we are left with more than one smallest and least arborescent subassemblies.
Designated the one of those subassemblies with the highest liasion index to be the
smallest and least arborescent subassembly.

elete all the state transitions with the parent
tates in rank r-l where the smallest, least
arborescent subassembly is fully assembled

Figure 4.14d: Flowchart for the Detail_Purge routine, which is called from the Detailed
Purge Module shown in Figure 4.14b and described in Figure 4.14a.
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For each subassembly of size SSS, examine the
parent states where the subassembly is not fully
assembled and determine MaxParSub, the
maximum number of subassemblies of any state
among those parent states. Let minMaxParSub
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In the Detailed Purge, we examine all the multiple subassembly states of rank 6

through n-1 in which the smallest subassembly is not unique and has four or more

parts. For each of those states, we determine the level of arborescence of each of the

smallest subassemblies and identify the smallest and least arborescent subassembly.

We then proceed to delete all the transitions from parent states where the entire

smallest subassembly is done.

a)Hints for implementation

In the Detailed Purge, we distinguish between states whose smallest subassemblies

are less than than 7 parts and those with smallest subassemblies have more than 7

parts.

As mentioned in section 4.2.4, we can distinguish between the level arborescence of

two subassemblies of 7 or less parts by comparing the smallest subassemblies of

these subassemblies at each stage until either we find a stage where their smallest

subsubassemblies differ in size or until we reach the stage where they are totally

disassembled. However, for subassemblies of more than 7 parts, a subassembly,

such as the one shown in Figure 4.11, could have a larger subsubassembly at the last

stage and be less arborescent. We therefore need to calculate the ARBcount of these

subassemblies in order to distinguish between their level of arborescence. A flowchart

of the Detailed Purge is shown in Figure 4.14d

4.3.4) Example of the Arborescent Purge:

In Figure 4.15c thru 4.15g we have represented the liaison sequence diagram for a

generic product with the liaison diagram shown in Figure 4.15a, at different stages of

the Arborescence Purge.
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4

3

7

5

Fifure 4.15a:Liaison diagram for the generic eight-part. For the sake of simplicity, it
is assumed that the part grouping shown in Figure 4.15b is the only
possible part grouping for this product.

Figure 4.15b:Parts tree diagram representation of the only possible part grouping
possible for the product whose liaison diagram is shown in Figure
4.15a. The Liaison Sequence Diagram for this product is shown at
different stages of the Arborescent Purge in Figures 4.15c thru 4.15e

We also applied the Arborescent Purge Algorithm to the eight-part modified version of

the example of Assembly From Industry (A.F.I.) shown in Figure 4.16. Because of

the large number of liaisons and degrees of freedom in this example, the liaison

sequence diagram for this example is too large to be shown here. The impact of the

Arborescent Purge in this case is worth mentioning though. Whereas the original

liaison sequence diagram contained 1008 assembly sequences, only 81 were left after

the Main Purge and 71 after the Detailed Purge.
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Figure 4.15c: Liaison sequence diagram for the generic product whose liaison
diagram is shown in Figure 4.15a before any of the "redundant" arborescent assembly
sequences have been deleted. For the sake of simplicity, it assumed that the part
grouping shown in Figure 4.15b is the only possible parts grouping for this product.

In reality, there are probably other possible part groupings.
Consequently, during the arborescent purge we delete state transitions with parent
states - not the state themselves - where all the liasions of the smallest
subassembly are done.

In the above figure, the state
up of two subassemblies, one consisting of
Consequently, we delete the state transtion with
subassembly is fully assembled to insure that the

in the second to last figure is made
five parts, the other of three.

the parent state where the smalles;t
smallest subassembly is done last.
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Figure 4.15d: Liaison sequence diagram for the generic product whose liaison
diagram is shown in Figure 4.15a after the Arborescent Purge Algorithm has been
applied to the last two ranks.

In the above figure, the state in the third to last rank is made up
of two subassemblies, one consisting of five parts, the other of two. Consequently, we
delete the state transtion with the parent state where the smallest subassembly is
fully assembled to insure that the smallest subassembly is done last.
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Eigjure 4,15e:Liaison sequence diagram for the generic product whose liaison
diagram is shown in Figure 4.15a after the Arborescent Purge Algorithm has been
applied to the last three ranks.

In the above figure, the state in the fourth rank is made up of only one
subassembly, consequently this state is not even examined
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Figure 4.15f:Liaison sequence diagram for the generic product whose liaison
diagram is shown in Figure 4.15a after the Arborescent Purge Algorithm has been
applied to the last four ranks.

In the above figure, the state in the third rank is made up of two
subassemblies, one consisting of three parts, the other of two. Consequently, we
delete the state transtion with the parent state where the smallest subassembly is
fully assembled to insure that the smallest subassembly is done last.
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Figure 4,15g:Liaison sequence diagram for the generic product whose liaison

diagram is shown in Figure 4.15a after all the "redundant" arborescent

assembly sequences have been deleted.

129



H

Figure 4.16a:

E

L

J
Figure 4.16a,b: Schematic and liaison diagram of a simplified version

of the example of Assembly From Industry (A.F.I.) of
De Fazio and Whitney (1986).

Source: Baldwin, 1989

4.4) THE ARBORESCENCE MAXIMIZATION MODULE

Once all the "redundant" sequential sequences of the arborescent assemblies of a

product have been eliminated from the liaison state diagram, it is reasonably easy to

determine the most arborescent assembly sequence.

As shown in the flowchart of Figure 4.14a, the Arborescence Maximization Module is

divided into two parts:

# The ARBcount Maximization Submodule
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1 >=2&3&4&5
1 >=4& 7 & 12
1 >=5 &9& 13
1 >=7& 12 & 13
1 >= 6 & 8
2 >= 3 & 4
2>= 11 & 13
2 >= 4 & 8 & 11 & 12
3 >= 2
3 >= 11
4>= 1 &2&3
4>=2& 3& 8
4>= 1 &9& 10
4>= 8 & 9 & 10
4 >= 11 & 13
4>= 2 & 3 & 13
4>=2&8& 12
5>= 1 &2&3&4&6
5 >= 6 & 8
5>= 1 &9& 13
6 >= 5
6 >= I & 7 & 8 & 9 & 12& 13
7 >= 1
7 >= 6
8 >= 1
8 >= 2 & 3 &4& 5
8 >=4& 12
8 >= 5 & 9 & 13
8>= 12 & 13
9 >= 2
9>=4&8& 12
9 >= 13
10 >= 11
10 >= 2 & 3
10 >= 4
11 >=2
11 >= 3 & 4
12 >= 5
12>= 1 &2&3&4
12 >= 8
12 >= 1 & 9 & 13
13 >= 4
13 >= 1 & 9
13 >= 8 & 9
13>=2&8& 12

Figure 4.16c: Precedence relations for the modified version of example of Assembly
From Industry (A.F.I.) described in the schematic of Figure 4.16a and
in the liaison diagram of Figure 4.16b
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* The Final Arborescence Maximization Submodule (FAMS)

The ARBcount Maximization Submodule eliminates all the assembly sequences which

do not have the maximum possible ARBcount. The FAMS distinguishes between the

level of arborescence of the assembly systems with the same maximal ARBcount and

leaves us with the most arborescent sequences.

4.4.1) The ARBcount Maximization Submodule

We start by initializing the ARBcount of all the states in rank 1 to zero We then

apply the following steps to every state STr from rank 2 to rank n:

* 1. We identify STa, the parent state of STr with the highest ARBcount.

* 2. Set ARBcount(STr) to (ARBcount(STa) + #Sub(STr) -1), where #Sub is the

number of subassemblies.

* 3. Before moving to the next state, we delete the transitions from parent

states which have a lower ARBcount than STa, since these states represent

assembly sequences leading to STr, which are less arborescent than the sequence

going through STr.

We now explain why the succinct formula in step two calculates the correct

ARBcount:

* If STr has only one subassembly, (=> #Sub(STr) -1 = 0), we set STr's

ARBcount equal to STa's ARBcount, because the operation corresponding to the
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transition from STa to STr could not have possibly increased the number of operations

performed "away from" the main assembly.

* If STr has two subassemblies, (=> #Sub(STr) -1 = 1), then we set STr's

ARBcount to be one greater than STa's ARBcount, because the operation,

corresponding to the transition from STa to STr, was necessarily performed away from

the main assembly. If the last operation had been done in the main assembly, then Sr

could not possibly have had multiple subassemblies, since that would be a violation of

our practice of always completing the main assembly before starting any smaller and

less arborescent subassemblies.

* If STr has three subassemblies, (=> #Sub(STr) -1 = 2), the transition from

STa to STr was necessarily done in the third biggest subassembly (for the same

reasons as above). Furthermore, the third biggest subassembly is necessarily going

to be added to the second biggest subassembly, before being incorporated into the

main assembly. For, if the second biggest subassembly was supposed to be

incorporated into the main assembly without the third biggest subassembly, this

would have been done before even starting the third biggest subassembly, since we

always build the biggest subassembly in its entirety before starting on a new

subassembly. Thus we set STr's ARBcount to be two greater than STa's ARBcount

in order to account for the contribution of the transition from STa to STr to the

arborescence of both the second biggest subassembly and the biggest subassembly.

* Generally speaking, if STr has two or more subassemblies, we add the

(#Sub- 1) to the ARBcount in order to account for the fact that the operation done in

the transition from STr to Sta is performed away from the main production branch of

133



the main assembly and away from the main production branches of (#Sub -2)

"separate" subassemblies. This operation contributes to the arborescence of the

separate subassemblies and by the same token to the overall arborescence of the

system. This step corresponds to adding the number of operations left on the

"disintegrated tree" to the ARBcount after deleting the main branches of the separate

subassemblies, and doing so repeatedly until no operation is left on the "disintegrated

tree".

Only because all the separate subassemblies were assembled one at a time, in

decreasing order of size in the Arborescent Module does this algorithm compute the

correct ARBcount, i.e. the correct number of operations done away from the main

assemblies in such a succinct fashion. If the subassemblies had not been represented

in the assembly sequences in decreasing order of size, the subassemblies of each

sequence would have to be ranked in decreasing size and the ARBcount of each

sequence would have had to be computed individually one at a time. This last step

would have necessitated examining all the states in all the sequences, (and # of

sequences * # of state in each sequences >> total # of states in the liaison diagram),

before even starting to delete any liaison state transitions. Most important of all, we

would lose the efficiency of the Final Arborescence Maximization

4.4.2) Final Arborescence Maximization Submodule

All the assembly sequences left after the ARBcount Maximization Submodule have

the same, maximal ARBcount, i.e. in all these assembly systems the same number of

operations are done away from the main assembly branch and away from the main

production branches of the "separate" subassemblies. The Final Arborescence

Maximization Submodule therefore needs to check at what point the "separate"
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subassemblies are incorporated into the main assembly branch, in order to distinguish

between various level of arborescence within this class of systems. For, as

mentioned in Section 4.3, the later the "separate" subassemblies are incorporated

into the main assembly branch, the more decoupled are the operations in the main

production branch from the operations done away from the main subassembly, and

consequently the more arborescent the system.

We are comparing assembly sequences with the same overall ARBcount in this

section. Consequently if one sequence has a lower ARBcount at an earlier rank, then

the ARBcount in that sequence is incremented at a later point time. The operations

done away from the main subassembly must therefore be incorporated into the main

assembly at a later point in time, since subassemblies are started and completed in

decreasing order of size and arborescence. Thus, a system with a lower ARBcount at

an earlier rank is more arborescent. The ARBcount gives a measure of both the width

and the height of a tree, when one considers how it grows over an assembly sequence.

The above conclusions enable us to distinguish between sequences with the same

ARBcount but with different levels of arborescence. We:

* 1. start at rank 2 of the liaison state diagram

* 2. compare the ARBcount of each state in the rank and identify ARBstate, the

state in the rank with the lowest ARBcount

* 3. and, before moving to the next rank , delete any state in the rank whose

ARBcount is not as small as ARBstate's, since these states represent assembly

sequences which are necessarily less arborescent than the sequences going through

ARBstate.
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4.4.3) Arborescence Minimization

A manufacturing engineer, who wants to use a sequential assembly sequence but

can't because of constraining liaisons precedence relations, may wish to find out the

most sequential or least arborescent assembly sequence possible for the assembly of

a given product.

With just a few simple modifications, the Arborescence Maximization method outlined

in sections 4.4.1 and 4.4.2 can be transformed into the Arborescence Minimization

Method, which determines the least arborescent sequences. We have italicized the

necessary changes below.

ARBcount Minimization
* 1. We identify STs, the parent state of STr with the lowest ARBcount.
* 2. ARBcount(STr) = ARBcount(STs) + #Sub(STr) -1, where #Sub is the
number of subassemblies.
* 3. Finally, before moving to the next state, we delete the transitions from
parent states wh -'- ave a higher ARBcount than STs, since these states
represent assembli sequences leading to STr, which are more arborescent
than the sequence going through STr.

Final Arborescence Minimization
* 1. starting at rank 2 of the liaison state diagram
* 2. comparing the ARBcount of each state in the rank and identify ARBstate,
the state in the rank with the highest ARBcount
* 3. and, before moving to the next rank, deleting any state in the rank whose
ARBcount is not as high as ARBstate's, since these states represent
assembly sequences which are necessarily more arborescent than the
sequences going through ARBstate.

4.4.4) Examples

In Figures 4.17c thru 4.17e we have represented the liaison sequence diagram for a

generic product with the liaison diagram shown in Figure 4.17a, at different stages of

the Arborescence Maximization.
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Figure 4.17a: Liaison diagram for the generic product. For the sake of
simplicity, it is assumed that the six part groupings shown in
Figure 4.17b are the only possible parts groupings for this
product.

It is now interesting to reconsider the eight-part modified version of the example of

Assembly From Industry (A.F.I.) introduced in Section 4.2.4 and shown in Figure

4.16, to study the impact of our various modules. Whereas the original liaison

sequence diagram contained 1008 assembly sequences, only 81 were left after the

Main Purge, 71 after the Detailed Purge and 55 after the ARBcount Maximization.

Finally, 3 assembly sequences remained after the Final Arborescence Maximization

4.5) CONCLUSION

In this chapter, we have presented a method to determine the most arborescent and

most sequential sequences possible for the assembly of a product, based on the

algorithmic liaison sequence generation method of De Fazio and Whitney (1986). The

algorithm consists of two parts: the deletion of redundant arborescent sequences

generated by the Draper Laboratory's LSA software and the deletion of assembly

sequences which did not have the maximum level of arborescence. It is based on an

"arborescent classification," generated by calculating the ARBcount, a measure of

both the height and the width of a parts-tree.
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The deletion of redundant arborescent sequences will facilitate the choice of assembly

sequence using the LSA software. For products with an average number of potential

subassemblies, the number of assembly sequences will be reduced by a factor of 10 for

products with about 8 parts and by a factor of 10 5 for products with about 16 parts.
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ARBcount = 3

Figure 4,17b.1:

ARBcount = 3

Figure 4.17b.2:

ARBcount = 3

Figure 4.17b.3:

ARBcount = 2

Eigmare 4,17.4.

Lr7

4.6

ARBcount =YIL
Figure 4,17b.5:
Figure 4.17b:

ARBcount = 0
Figure 4.17b.6:

Parts-tree diagram representation of the six possible parts
groupings for the generic product shown in Figure 4.17a
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Figure 4.17c:Liaison sequence diagram for the generic product whose liaison
diagram is shown in Figure 4.17a after all the "redundant" arborescent
assembly sequences have been deleted. For the sake of simplicity, it
is assumed that the six part groupings shown in Figure 4.17b are the
only possible parts groupings for this product.
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Figure 4.17d:Liaison sequence diagram for the generic product whose liaison
diagram is shown in Figure 4.17a after all the assembly sequences
which do not have the maximum, possible ARBcount have been deleted.
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Figure 4,17e:Liaison sequence diagram for the generic product whose liaison
diagram is shown in Figure 4.17a after all the assembly sequences
which do not have the maximum possible level of arborescence have
been deleted. The two assembly sequences left correspond to the part
groupings represented in Figures 4.17bl and 4.17b2.
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CHAPTER V

RECOMMENDATIONS FOR FUTURE WORK

This thesis was meant to mark the beginning of a comprehensive study of qualitative

and quantitative rationale for the use of subassemblies. Consequently many

extensions of this thesis are possible.

5.1 FURTHER COMPARISON OF SEQUENTIAL AND ARBORESCENT SYSTEMS

5.1.1. Comparison of the Output Rate of Systems with Batch Part
Transfers

As mentioned at the end of chapter III, we could further our comparison of the

sequential and arborescent systems by studying the output rate of infinite buffer

systems, where parts are transferred in batch between stations. In these types of

systems, while no station would ever be blocked, the phenomenon of starving would

remain and in fact would be accentuated. Intuitively, this transfer mechanism would

seem likely to accentuate the "lateral advantage" of arborescent systems, while

limiting the "longitudinal advantage" of sequential systems.

5.1.2. Study of the impact of delayed testing

We could extend our comparison of sequential and arborescent systems to the area of

testing. The goal would be to capture what is arguably the essence of the

"subassembly edge" in a single-product environment, i.e. early and frequent testing. It

would be interesting to model the impact of the trade-off between early and delayed

testing, specifically to quantify the impact of this trade-off on scrap, diagnosis and

repair costs.
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5.1.3 Conclusion to the comparison of sequential and arborescent
systems

The comparison of arborescent and sequential systems broadens our understanding of

the two types of configurations, which display the most extreme use of

subassemblies. We now know that for all practical purposes, reliable arborescent and

sequential system have identical output rate. Certainly, their relative output rate

should not be a decisive factor in the decision to use subassemblies.

The impact of the comparison of AS and SS, though, is restricted by the difficulty of

establishing one to one correspondence between operations in the two systems.

Because of this difficulty, as well as for simplicity and ease of analysis, we had to

initially make the assumption of stations with identical quantitative characteristics.

Any meaningful conclusion therefore is bound to be quite limited.

The fundamental problem is that a modification in system configuration changes the

functionality of the individual operations. For instance in a three station system, the

sequential equivalent of

could be

as well as
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, where A+B corresponds to the mating of parts of A and B, and where C consist of an

operation performed on the product of A+B. The only real way to overcome these

problems is to work with real data.

5.2 APPLICATION OF O.R. TECHNIQUES TO PRODUCT CASE STUDIES

While the modelling of the use of subassemblies is restricted in an academic setting,

where one is forced to make idealized assumptions, quantitative techniques could still

be instrumental in our study of rationale for subassemblies.

A formal case study of two or three products in different industries, for which actual

data is available should be undertaken. Its goal would be to point out and quantify the

savings and costs implication of subassembly use in all aspects of product and

process design: production and inventory, capital investment, design time, testing,

diagnosis, repair and scrap costs, etc.. Ideally this work would be conducted by an

operation researcher, with a mechanical engineering background, in joint collaboration

with local manufacturers.

The first step in such a project would involve the collection of quantitative tools and

techniques available. Much work has been done in relevant areas, in particular in

determining optimal:

* testing strategies

* standardization of subassemblies and modules, as discussed in the

modular design, standardization and cannibalization literature

* grouping of parts with similar features, as discussed in the group

technology literature
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References to relevant literature in those research areas are included in the

bibliography.

Judicious use of these quantitative tools would yield a better appreciation for the pros

and cons of use of subassemblies, especially since no comprehensive study of

rationale for subassemblies have never been conducted.

In addition, this exercise of studying product design from the eye of a "subassembly

decision maker" would help us to develop a methodological approach to the choice of

subassemblies.

5.3 DEVELOPMENT OF RULE-BASED EXPERT SYSTEM FOR USE OF SUBASSEMBLIES

The ultimate goal of the product case study project could be to develop a Rule-Based

expert-system for Choice Of Subassembly (RBCOS), that could be integrated in the

sets of computer-tools of the Strategic Approach to Product Design.

5.3.1 Questions and rules

RBCOS would be based on the rules emanating from the product cases studies and

the list of pros and cons list of Chapter II. Some of the relevant questions to be asked

when considering a subassembly would be:

* How many parts does this subassembly have? Is the number of parts limited
to 12 or 13 as suggested by Riley (1983)?

* Does this subassembly have a well defined function(s) that can be tested?

* How quickly can the various functions of the subassemblies be tested?
How difficult and costly are the diagnosis and the repair of the subassembly?

* Is the subassembly stable? Conditionally stable?

* How easily is the subassembly grabbed, handled or oriented?

146



* How sSmmetric or asymmetric is the subassembly? The most extreme, the
symmetry or asymmetry the better.

* How experimental or problem-prone is the subassembly? How likely is it to
slow-down the system?

* How variable is the production volume of this subassembly? Do "redundant"
machines need to be added at certain times or seasons?

* Is this subassembly similar to ones used in previous designs or in other
products?

* Can the subassembly be standardized to be used in other products?
* Is the interface of this subassembly with the rest of the system well defined?

5.3.2 Linkage to the LSA software

RBCOS should be linked to the LSA software. In considering a subassembly, one

should be able to study the impact of the use of that subassembly on the rest of the

assembly. Consequently, the LSA should have a built-in module, that erased all the

assembly sequences, where the parts, specified by a user, are not built as a

subassembly. When one has decided on using a certain subassembly, the sequences,

that don't include this subassembly, become irrelevant and should thus be eliminated-

5.3.3 Linkage to a Group-Technology based database

RBCOS should also be linked to a Group-Technology type database that includes:

* a classification of parts used in the industry

* a classification of proprietary parts

* a classification of standard subassemblies, used in previous designs

* a list of the precedence relations and liaison diagrams for previously
considered assembly and subassembly sequences

Products are rarely produced from scratch; they are usually modifications and

synthesis of previous designs. A designer should be able to reap the full benefits of

those previous designs.
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He should be able to make an educated selection of parts, study the impact of that

choice on the assembly sequence and modify his selection of parts repeatedly, until

the final product and the final assembly sequence have been chosen. Concurrently, he

should be able to consider a wide range of subassemblies and study their impact on

the assembly sequence.

The stored information on parts would insure that no part is overlooked in the part

selection process. Similarly, the stored information on previously used assemblies

and subassemblies would enable the designer to quickly prune the set of potentially

optimal assembly sequences. Finally, the stored information on previously considered

assembly sequences and subassemblies would limit the number of questions that the

designer must answer to generate all the assembly sequences possible.

This integrated computer-aided approach would result in quicker, better quality

product design. It would certainly fit nicely within the framework of the Draper

Laboratory's Strategic Approach to Product Design.
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CHAPTER VI

CONCLUSION

This thesis is meant to mark the beginning of an extensive study on rationale for the

use of subassemblies in assembly and production systems.

We first presented a study of qualitative advantages and disadvantages of

subassembly use. This survey was based on a broad literature search, which covered

the conventional manufacturing and assembly literature as well as areas, which

exhibit subassembly-like-entities. Since no comprehensive study of rationale for

subassemblies had been conducted, we listed the advantages of subassembly-like

entities, which are applicable to subassemblies in the manufacturing and assembly

sense of the word, as well extrapolations of comments on the subassemblies in the

sparse manufacturing and assembly literature.

In this initial work, we felt the need to distinguish between two types of

subassemblies: subassemblies in a single-product manufacturing environment and

subassemblies in a multi-product manufacturing environment.

In a multi-product environment, the quantitative advantages of subassembly use are

clear. Commonality, modularity, cannibalization and standardization contribute to

substantial savings in inventory and production costs, as well as decrease in design

time. While there are definite qualitative reasons for use of subassemblies in a single-

product environment, it is less clear that there are substantial quantitative advantages

to do so.
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In an effort to quantify the impact of using subassemblies in a single-product

environment, we compared the output rate of the two types of configurations, which

display the most extreme use of subassemblies: the arborescent and the sequential

configurations. Specifically, we simulated non-synchronous arborescent and

sequential systems for two different models of the systems' stations. One model

assumed stations with identical quantitative characteristics, in particular independent

and identically distributed processing times. The other assumed bufferless, balanced

systems with two types of stations: stations with deterministic processing times and

stations with exponentially distributed processing times.

We concluded that for all practical purposes sequential and arborescent systems with

stations, with independent and identically distributed processing times have

equivalent output rates. Any relative difference between the two types of

configurations is attenuated by buffer space and is inversely proportional to the

coefficient of variation. Furthermore, while r(AS) and r(SS), the output rates of AS

and SS can vary considerably for different types of processing time distributions with

same COV, - for instance, r(AS) and r(SS) are considerably higher for bernoulli

distribution than for lognormal distributions - any difference between the two does not

vary considerably as a function of the type of distribution.

The simulation of the second type of models did not really alter our conclusions. AS

and SS do not differ greatly in their ability to attenuate the processing time variability

of isolated stations. While one configuration or another may be preferable depending

on the location and the number of sources of variabilities, no structure is clearly

always advantageous. We were able to distinguish a "lateral advantage" of the
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arborescent systems, when the bottlenecks (i.e. more variable stations) were in the

same stage of production and a "longitudinal advantage" of sequential systems, when

the bottlenecks were in the same branches of production. These so-called "lateral "

and "longitudinal" advantages do not reflect a fundamental difference between the two

types of structures, but rather they reflect a difference in the "separation" of the

sources of variability in the two systems.

Certainly, any decision to use subassemblies in an assembly or production system

should not be based on the relative output rates of non-synchronous arborescent and

sequential systems. That is not to say, however, that arborescent systems and

sequential systems are equivalent. Further study, in such areas as testing and

commonality, should be pursued.

For case studies of products from industry, it would be most useful to know the most

arborescent sequence possible for a product. In Chapter IV, we presented a method

to determine the most arborescent and most sequential assembly sequences possible

for a product, based on the algorithmic liaison sequence generation method of De

Fazio and Whitney (1988). The algorithm presented consists of two parts: the

deletion of redundant arborescent sequences generated by the Draper Laboratory's

LSA software and the deletion of assembly sequences which did not have the

maximum level of arborescence. It is based on an "arborescent classification,"

generated by calculating the ARBcount, a measure of the height and the width of a

tree. The deletion of redundant arborescent sequences will facilitate the choice of

assembly sequence using the LSA software. For products with an average number of

potential subassemblies, the number of assembly sequences will be reduced by a
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factor of 10 for products with about 8 parts and by a factor of 10 5 for products with

about 16 parts.

This thesis has taken a first step in the study of the rationale for the use of

subassemblies in production systems. As mentioned in Chapter V, several possible

quantitative extensions are possible. The most insightful continuation of this thesis,

though would consist of a formal case study of two or three different products, for

which actual data are available. The initial goal would be to make judicious use of

O.R. techniques to point out and quantify the savings and cost implications of

subassembly use in all aspects of product and process design, as well as to develop a

methodological approach to the choice of subassemblies. Such a project, while

logistically complex, would be useful, as it would culminate in a Rule-Based expert-

system for the Choice Of Subassemblies (RCOS), that could be integrated in the sets

of computer-tools for the Strategic Approach to Product Design.
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