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Abstract

The accuracy of component mode synthesis is investigated

experimentally for substructures coupled by non-ideal joints. The work is

based upon a segmented experimental beam for which the free-interface

frequency response matrices are measured for each segment. These

measurements are used directly in component mode synthesis to predict

the behavior of the assembled structure; the segments are then physically

joined and the resulting frequency response of the superstructure is

compared to the prediction. Rotational freeplay is then introduced into

the connecting joint and the new superstructure frequency response is

compared to the original linear CMS prediction. The level of accuracy to

be expected in component mode synthesis is discussed in terms of a non-

dimensional parameter that reflects the degree of nonlinearity in the

joints, mode number and mode shapes. Issues important to experimental

component mode synthesis are reviewed in order to assess the

applicability of this procedure to the analysis of more complicated

structures.
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Chapter 1

Introduction

The ground testing of large spacecraft structures becomes more

complicated as the size of the flight structures increases. For instance, air

damping and the interference of suspension systems with low frequency

structural modes must be considered. For those structures too large to test

on the ground at full scale, scale models have been proposed 1 to validate

on-orbit dynamic behavior. The accuracy of scaling could become

questionable, however, particularly when nonlinear joint dynamics such

as deadband or hysteresis become important. Structures that will certainly

include such "sloppy" joints are deployable trusses, such as the proposed

NASA COFS I MAST flight structure2.

One alternative to testing the entire structure is to test small

individual pieces--joints, truss members--and to use these static and

dynamic test results to predict the behavior of the assembled structure via

finite element analysis 3. Such an approach would be at the other end of

the "test spectrum" from full scale testing, and one might expect sizeable

errors to accrue as hundreds or thousands of elements are assembled

analytically. Ikegami et. al.4 even found this to be the case for the

prediction of the static response of a multi-bay truss, and recommended

using several joints and truss members in series to account for the effects

of the joints. Figure 1-1 lists options in such a "test spectrum".
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Figure 1-1: Options for Ground Testing of Spacecraft Structures

Another alternative would be to ground-test full-scale components

of a size as large as possible (limited by laboratory space and by component

strength requirements), and to assemble these test results analytically.

Such an approach would be in the center of the "test spectrum"--in

between testing the entire structure and testing small pieces. For a

deployable truss structure this might mean one or several bays out of a

total of dozens for the entire structure. For a spacecraft consisting of a

central bus and flexible appendages, each appendage might constitute a

component and be ground tested. The measured dynamic behavior of the

components can then, in principle, be used to predict the dynamic

response of the entire assembly. The analytical extrapolation would be

minimized since the components are chosen to be as large in size, and as

few in number, as possible.

0
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A common procedure for performing analytic assembly of

component dynamics is to construct a component model from spatial

quantities (mass, stiffness, and damping matrices), validate this

component model through experimental testing, and then perform

standard matrix assembly. Other substructuring procedures based on

modal models are known as component mode synthesis (CMS) and can be

implemented using time domain or frequency domain methods5s 6. Some

of these procedures incorporate component dynamic measurements from

the outset and are known as experimental component mode synthesis

methods. Each of these techniques, however, assumes both linear

behavior of components as well as compatibility of deflection at the

interface degrees of freedom. These assumptions may be violated, to

varying degrees, by deployable truss structures in which the joints exhibit

some freeplay or other amplitude-dependent stiffness.

This study was motivated by the desire to predict the on-orbit

dynamics of the COFS I MAST 2 deployable truss by testing components of

the structure--one or more full-scale bays--in the laboratory. The

measured dynamics of these components would be used to predict the

dynamics of the entire truss. Structures such as the COFS I MAST will

present problems for experimental modal testing and component mode

synthesis. These structures may be characterized by heavy joints and light

truss members, will be coupled at many degrees of freedom, have

significant nonlinear joint behavior (deadband, hysteresis, nonlinear

force-deflection curves), and exhibit closely-space internal resonances at

frequencies will below bending or torsional modes of one or several of the



bays. Features such as these will strain the accuracy of component mode

synthesis, which up to this point has been applied to analytical models and

to relatively simple components and coupling.

An experimental coupled beam was constructed to simulate one of

these problems--the effects that a joint with freeplay would have on the

accuracy of component mode synthesis. Two beam-like components with

"variable" joints are built and dynamically tested. The joints are designed

to behave either rigidly or to exhibit a variable amount of rotational

freeplay. The accuracy of frequency domain CMS is evaluated for this

experimental structure using experimentally determined frequency

response functions. In a departure from experimental CMS case studies

already in the literature6,7,8,9, 10 in which component linearity and full

compatibility are assumed, this study relaxes the assumption of

compatibility by the introduction of freeplay in the physical joint between

components. The component experimental frequency response functions

(FRFs) are used with component mode synthesis to predict the behavior of

the coupled structure. The beams are then physically connected and the

actual frequency response of the superstructure is compared to the CMS

prediction.

Results of this study indicate that reasonable levels of accuracy can

be expected from component mode synthesis, given a stiff joint and correct

component measurements. This result is consistent with other

experimental studies conducted by Ewins and Martinez, Carne and Miller7.

Even so, the joint does contribute some error to the linear CMS prediction;

this is especially so if the joint displays any deadband nonlinearity.



Results of the frequency response measurement of a structure with

varying amounts of joint deadband are also presented in terms of a non-

dimensional parameter. Cases were studied in which the number of

components and the level of force excitation were varied when joint

deadband was present. Lastly, the issues and accuracies associated with

experimental component mode synthesis for both linear and nonlinear

structures are discussed.
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Chapter 2

Theory and Literature Review

2.1 Overview

Component mode synthesis (CMS) is a means of determining the

dynamics of coupled structures based on the analysis of individual

substructures or components. Mathematical descriptions of component

dynamics are developed from either analytical models, experimental

measurements or both. Component dynamics are represented as a

superposition of flexible modes augmented with suitable rigid body and

static constraint modes. Compatibility and equilibrium are enforced at

component interfaces in order to analytically assemble the global structure.

CMS is also a useful means to reduce the set of coordinates that represent

the components and coupled structure.

Component mode synthesis is only one form of coupled structure

analysis. Ewins 6 identifies three different substructuring categories--spatial

model analysis, modal model analysis, and response model analysis--of

which the last two are referred to in the literature as component mode

synthesis. A subset of component mode synthesis is experimental

component mode synthesis, involving techniques that can directly

incorporate experimental measurements. An overview of these three

substructuring methods is presented in this section, followed later in the

chapter by more detailed discussions of the different CMS techniques.



Spatial model analysis is a straightforward substructuring technique

that combines the component mass and stiffness matrices using standard

matrix assembly to arrive at the global structure. Such methods are used

for static and dynamic finite element analyses. Mass and stiffness matrices

are typically derived from finite element models, and are usually verified

by, rather than determined from, experimental measurements. Because of

this, spatial model analysis is rarely used directly in experimental

modelling6, but rather is used as a complementary analysis.

The next category, modal model analysis, is often referred to as

"time domain" component mode synthesis in the literature. Work

presented in the literature to date has been mostly analytical, although

some methods have been explored that are based on quantities that can be

experimentally determined7 ,11. In finite element studies, modal model

analysis is used for the determination of coupled structure dynamics and

is utilized to reduce the number of degrees of freedom in a large system

model. Components are represented by state-space modal models that

neglect high frequency dynamics, usually with little loss of accuracy. The

effects of the higher modes are accounted for in a residual stiffness matrix

for the component 12. A number of coupling techniques presented by

Craig5 are used to augment component dynamic modes--free or fixed

interface--by appropriate static deflection shapes--rigid body, constraint,

attachment, or inertia-relief modes. All of these various techniques,

whether analytical or experimental, require mass normalization of

component eigenvectors and the solution of the eigenvalue problem for

the global structure.

16



The third form of substructure analysis, response model analysis, is

also known as frequency domain component mode synthesis. This

method employs experimentally determined component frequency

response functions, either raw or after curve-fitting to a modal model, in

order to predict the frequency response of a coupled structure. Instead of

representing components in abstract spatial form (mass or stiffness

matrices), the component descriptions are left in terms of a response

model (natural frequencies, damping and mode shapes). Response

matrices are inverted and coupled as "impedances" to assemble the global

impedance and response matrices. This method is well suited to

experimental modelling, since the response models of components are

immediately available and it is usually the response model of the coupled

structure which is desired. There are similarities between this method

and the experimental time domain CMS methods, since the same

measurement information is used in both procedures. These two CMS

techniques--frequency domain and time domain--will now be presented in

greater detail, with particular attention given to those methods with

experimental applications.

2.2 Frequency Domain Component Mode Synthesis

Ewins' frequency domain method6, 10,13 was used in this research

work, and this CMS formulation is now presented. Refer to the diagram

of Figure 2-1, which shows typical components and a coupled structure.

The frequency response matrix of component A can be written as



S= Ha f a (2-1)Ex, a hmm hm -fm(2-2)
=1f1 (2-2)L hom 1ho [foJ

where Xm is a displacement vector of interior degrees of freedom (DOF)

and xo is a displacement vector of boundary DOF used in coupling. Forces

fm and fo act upon the interior and boundary DOF, respectively. Similar

expressions can be written for component B. It is important to note that

these frequency response function (FRF) matrices are written for free-

interface components, a test configuration which enforces no constraints

on any of the component degrees of freedom. This condition is

approximated in the laboratory by suspending the component by very soft

springs or by long cables that permit motion in the horizontal plane;

suspension stiffness will then be low and suspension resonant frequencies

will in most cases be well below those of the components.

When components A and B are rigidly connected at interface (o),

compatibility and force equilibrium conditions can be written as

S= )a = (2-3)

a b= + (24)
=o + f

18



Aa

xfm

C CXmIfm

a a xb fb b b
0o 0p

c CX0oI fo Xp, f

Figure 2-1: Coupling of Hypothetical Substructures.
Two hypothetical components A and B are coupled at interface (o) to form

superstructure C. Points (m) and (p) are arbitrary interior degrees of freedom.

The force vectors are written in terms of the displacement vectors as

S= [Ha x a = Za

f= Hb b= Zbxb

Eqs. (5) and (6) can be substituted into Eq. (4) to obtain, after matrix

assembly,

19
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a a b b
-- 0  Z0+ Zc p_

0 z bp pp

Ha (2-7)
[xp

or

fc = Zc x (2-8)

The desired FRF of the superstructure can then finally be determined by

the inversion

H = [Zc] (2-9)

Individual point and transfer FRFs of interest are elements of this

superstructure transfer function. Since Zc is a function of frequency it

must be assembled and inverted at each frequency point of interest.

In his work Ewins6 showed the importance of including all interface

coordinates, including rotational degrees of freedom, in the compatibility

conditions for coupling. Care must be taken to measure the FRFs at the

exact interface points. In addition, he showed that the best assembly of the

superstructure FRF occurs when "unified FRFs" for the components,

derived from a consistent modal model, are used instead of individually

acquired mobilities. In such a model, all the measured frequency

responses for any one component have the same modal frequencies and

damping. Modal residues are calculated from a consistent set of mode

shapes. These "unified" quantities are still based on experimental

20
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measurements. The effects of out-of-range modes, or residual stiffness

terms, must be included for these modal models to be correct. These

issues and others of importance to experimental CMS will be discussed in

greater detail in Chapter 7 and in the remainder of the thesis as they arise.

2.3 Time Domain Component Mode Synthesis

Time domain component mode synthesis is used with spatial

descriptions of components--mass, stiffness, and damping matrices--to

assemble a system model. A set of elastic and static mode shapes is used to

reduce the component physical coordinates to a set of generalized

coordinates. The elastic mode shapes--either free or fixed interface--are

determined either by experiment or from an analytical model. Static

portions of subsystem modes are also determined by finite element model

or test, when possible. As with frequency domain CMS, compatibility and

equilibrium are enforced at component interfaces in order to assemble the

global system matrices. The eigenvalue problem is then solved using the

assembled global mass and stiffness matrices.

Hurty14 is credited with the first work on time domain component

mode synthesis in 1965. Since then his paper has been extended by several

authors--Craig and Bampton 15, Rubin 16, Craig and Chang17, Benfield and

Hruda 18, MacNealll, among others--to include various forms of static

deflection shapes. Martinez et. al.7 have adapted Craig-Chang component

mode synthesis techniques to free-interface testing of components by

utilizing residual flexibility measurements to supplement dynamic mode



shapes. Kammer and Baker 19 have compared the equivalence of Craig-

Bampton and residual flexibility techniques; CMS of damped structures

(involving complex eigenvectors) has been studied by Craig et. al.20,

Hasselman and Kaplan21, Geering22, and others.

Craig 5 provides a detailed summary of these various techniques and

generalizes the different methods and proposed deflection shapes. Craig

derives all of these static mode shapes from the component stiffness

matrix subject to the constraints for each type of mode shape. These mode

shapes are combined with the flexible mode shapes to define statically and

dynamically complete mode supersets, which span the full deflection

space of the component. Several formulations of these supersets are

possible, all of which are described by Craig to be equivalent to the residual

attachment mode superset. The latter superset is attractive because it can

be easily determined by experimental testing. An overview of Craig's

paper is presented in order to give a framework for analytical time domain

CMS; the residual attachment mode superset is later described in detail

because of its application to experimental component measurements. The

reader is referred to References 5 and 7 for more complete presentations of

these methods.

Craig describes a hypothetical structure, in this case a beam,

comprised of coupled substructures as shown in Figure 2-2. The

component physical coordinates, each with two DOF in this example, are

partitioned according to interior degrees of freedom I and boundary

degrees of freedom B. The boundary degrees of freedom are further

partitioned into the coordinates R necessary to make the substructure

22



statically determinate (sufficient to restrain rigid body motions) and its

complement E which are "excess" boundary DOF. The total coordinate set

is represented by P and has np elements.

coupled structure

I

B=R+E

Figure 2-2: Substructure Used in Craig's Coupling Analysis.
Coordinates are divided into interior and boundary coordinates; the latter

is further divided into restraint coordinates (necessary to prevent rigid
body motion) and the complementary "excess" coordinates.

The standard linear equation of motion can be written for the

component

MR + Cx +Kx = F (2-10)

where M, C and K are the familiar mass, stiffness, and damping matrices

for the component, and x is the vector of physical DOF of length np. It is

desirable to represent the physical coordinates in terms of the generalized

coordinates q by the transformation

23



x = •p (2-11)

where the columns of Y are linearly independent dynamic, rigid body and

static mode shapes that completely span the deflection space of the

component. Craig terms this matrix a "dynamic mode superset". The

mode shapes which comprise the dynamic mode superset will now be

presented.

Orthogonal Dynamic Natural Modes

The free-interface dynamic modes are calculated from the

eigenvalue problem

(K- cO2M) =0 (2-12)

The modes are defined to not include any rigid body modes and are

normalized and assembled into a modal matrix of size npxnp that is

partitioned according to interface and boundary degrees of freedom

n = l1 (2-13)

Usually only a subset of these modes are retained as dynamic modes; this

subset of "kept" modes is denoted Ok. Fixed-interface normal modes can

be calculated in the same manner by solving the eigenvalue problem

using M, C, and K matrices that are modified to reflect the fixed interface

conditions.



Rigid Body Modes

Craig provided a rigorous derivation of rigid body modes given the

stiffness matrix and the boundary coordinates. These modes can also be

determined solely from geometrical considerations, and will be

represented by Tr.

Redundant Constraint Modes

A set of constraint coordinates C is set equal to the set E of

redundant interface coordinates in order to define constraint modes.

These mode shapes result from imposing a unit displacement on one

coordinate of the C set of physical coordinates and zero displacement on

the remainder of the C set. The resulting deflection shape is redundant

constraint mode IPc and can be determined solely from the above

constraints and the stiffness matrix K. Experimental determination of this

mode is difficult to achieve.

Attachment Modes

A similar set A of physical coordinates are also defined to be the set

E of redundant interface coordinates, but the attachment modes are

defined somewhat differently from the constraint modes. The attachment

modes are defined by applying a unit force at one of the coordinates of an

A set and zero at all others. These modes are termed a-.

Inertia Relief Modes

Two types of inertia relief modes are defined for components that

undergo rigid body motion, and are necessary to define the complete static

response. One form is calculated by the static displacement of a

25



component due to D'Alembert forces; the component is supported such

that the stiffness matrix is not singular. The other form is derived by

applying unit forces at all the boundary DOF and using D'Alembert forces

to equilibrate the structure. These two types of inertia relief modes are

termed Ym and Pb, respectively.

Dynamic Mode Supersets

In order to make a complete transformation between physical and

generalized coordinates in Eq. (2-11), it is necessary that the columns of the

transformation matrix P span the full deflection space of the component.

Of course, the deflection space is spanned completely and simply by 0 n if

this vector matrix contains all dynamic and rigid body modes. However,

only some natural modes are retained in • k and these must be

supplemented with static and rigid body modes. The transformation '

needs to be what Craig terms a "dynamic mode superset", of which he

defines four types: constraint, attachment, inertia relief, and dynamic

residual attachment. These four are shown in Eqs (2-14).

pC = ['Pr 'Pc ~Pm k] (2-14a)

Ya [Pr 'Pa 'Pm k] (2-14b)

'b = ['Pr '•b k] (2-14c)

Yd P r 'd Y ] (2-14d)

26



One important requirement of these mode supersets is that the

columns be linearly independent. This requirement may be violated if

most or all of the dynamic modes are contained in Ok; • m and Y•a would

then be linearly dependent on Ok. This can be circumvented by removing

the contributions of the dynamic modes from YIm and Ya. The residual

attachment mode superset of Eq. (2-14d) is equivalent to the other dynamic

supersets since it spans the same deflection space as the others. This

superset and the residual flexibility matrix ~d will now be presented in

greater detail because of their relevance to experimental component mode

synthesis.

2.4 CMS Using Measured Residual Flexibility

The definition of a dynamic mode superset is that it spans the full

deflection space of the component and can therefor serve as a complete

transformation between generalized and physical coordinates. This

deflection space would be completely spanned by the rigid body modes and

the dynamic modes if all the dynamic modes were contained in In.

Usually the modelled dynamic modes are only a subset of the total; the

remaining higher modes will contribute stiffness-like terms at frequencies

well below their resonance. Their collective influence is called the

residual flexibility, and is defined by the matrix G

27



1

G = 1 2.i (2-15)
i = + i J

The static deflection mode shapes TYd are columns GB of the residual

flexibility matrix corresponding to the boundary degrees of freedom, and

are effectively "residual flexibility attachment modes" at the interface DOF.

G is partitioned consistent with the defined interior and boundary degrees

of freedom

G =[G GB] G,4G d ] G[ GIB (2-16)

GBI GBB

The notation GB will be retained from here so that the residual term will

"stand out" from the other mode shapes in the generalized mass and

stiffness equations. Note that the requirement of linear independence of

static and dynamic basis vectors is satisfied by the definition of G, which is

determined from a superposition of orthogonal dynamic modes. Thus G

is orthogonal to both Ok and Pr.

Eq. (2-10) will now be transformed to generalized coordinates by the

dynamic residual mode superset

x = ['Pr Ik G sq = Tlq (2-17)

28



x [Xi =
(DBk

GIBi q
G q

With this transformation the undamped component equations become

MRq + KRq= F (2-

where

F-

0R

L.

MR =

0

0

hirr

0

0

0

I

0

0
0

GJ

gBi]

(2-20)

(2-21)

2 Takk k

GBB = GTKGBB B B

T
Ikk = •TMD k

T
11BB = GBMGB

T

One interesting result is that the residual stiffness at the boundary degrees

of freedom, GBB, is retained in the generalized stiffness matrix. These are

the "residual stiffness" terms associated with the static deflection shapes

due to residual flexibility, and include diagonal and off-diagonal terms.
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The residual mass term is traditionally neglected at this point, since

it is difficult to measure experimentally and its omission greatly simplifies

the analysis. Martinez et. al. have shown that the error incurred in this

step is very small 7. The residual stiffness term is important however, and

can be determined from modal tests.

At this point the system equations are almost ready for coupling--

but first the physical degrees of freedom of the boundary coordinates must

be recovered to permit the enforcement of compatibility. Eq. (2-19) can be

solved for

q = GBB[XB - QBkqk - IBrqr (2-22)

A second, and final, set of generalized coordinates is then introduced as

Ti = XkB (2-23)

The generalized coordinates are given by the transformation

Irr 0 0 qr-

q = T2 0 I 0 qk (2-24)

-1 -B 1 -1 x BBB Br BB Bic BB
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This transformation is substituted into Eq. (2-20) to obtain new generalized

mass and stiffness matrices that are suitable for coupling. The new

component dynamic equation and generalized matrices are

RM FR (2-25)
M 2+ K2 i = F (2-25)

T -1 T -1 iT -1
Br GB Br BrGBBBk Br BB

T -1 -21 -1
(BkGBB'PBr k 4BkG BBBk BkG BB

-1 -1 -1"GBB• Br -GBB IBk BB

(2-26)

Mr[ 0 0

MR= E I (2-27)

The coupled system equations may now be assembled by standard

matrix assembly. The eigenvalue problem is solved for the system mass

and stiffness matrices; the physical coordinates can be recovered from the

generalized coordinates by the appropriate transformations presented

above.

The elements of the matrices of Eqs. (2-26) and (2-27) can be

determined from measurements, or by measurements and analysis. The

necessary quantities are component rigid body modes, natural frequencies

of k retained dynamic modes, and the residual flexibility at the interface

degrees of freedom. Each of these can be determined from frequency

response measurements of the components 7; rigid body terms and
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residual flexibility are determined from the residual terms in the FRF

measurement. While the work in this thesis is based upon frequency

domain CMS, the procedures just outlined could easily be implemented

using the measurements taken in this study.

2.5 Experimental Work in the Literature

As was pointed out earlier, there are three general categories of

substructure analysis--spatial model, modal model, and response model

analysis, of which the latter two are commonly referred to as component

mode synthesis. Little experimental work has been done in component

mode synthesis, although a significant amount of experimental work can

be found in the literature regarding spatial model substructuring. These

studies have mostly entailed updating component mass and stiffness

matrices to reflect static and dynamic test results, and it is not the purpose

of this thesis to review the body of work in spatial model analysis.

Studies in time domain CMS have been almost exclusively

analytical, and rightly so--the problem of experimentally measuring

attachment, constraint, inertia-relief or fixed interface modes is difficult if

not impossible for most structures. However, Martinez et. al.7 have

conducted an experimental study in which they determine static deflection

shapes from experimentally measured residual flexibilities. The

"coupled" structure that was used was a continuous beam with point

masses; two components were later "created" by cutting the superstructure

in two. Modal tests using impact hammer were conducted to measure
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natural modes and residual terms. Three superstructure modes were

accurately predicted; experimental results were also coupled to a finite

element model. A sensitivity analysis was performed that showed that

acceptably small errors are introduced by neglecting residual mass and off-

diagonal residual flexibility terms from the component generalized mass

and stiffness matrices.

Ewins has done a number of experimental studies6,9, 23 in frequency

domain component mode synthesis, most of which involved two

components of beam-like behavior, and were conducted in frequency

ranges above 30-50 Hertz. One study involved a helicopter carriage

assembly with multiple components. Brassard and Massoud8 coupled two

beam structures by frequency domain CMS but apparently failed to include

rotational coupling in their analysis, leading to poor predictions of

superstructure modes.

Other relevant experimental work in spatial substructuring has

been conducted by Crawley and O'Donnell 3 , in which a linearized joint

model was developed from experimental force-state mapping and used in

a finite element analysis of a truss structure with joints. This procedure

was used by the authors to predict the contribution of the joints to the

damping in the truss structure. Bohlen and Gaul24 identify the parameters

of a nonlinear joint model by experiment, and use this model in finite

element analysis to predict the dynamics of two and three member beam

structures connected by pinned joints. Accuracies between 1% and 4%

were achieved between predicted and measured superstructure modal

frequencies.



Chapter 3

Experimental Work

3.1 Experimental Design

A set of experimental beam structures was constructed in order to

investigate the effect of nonlinear joint dynamics on the accuracy of

component mode synthesis. This section will give an overview of the

experimental structures, followed by a discussion of the criteria used to

select this design. Presented later in the chapter will be the experimental

results of static and dynamic tests of components, joints, and linearly

coupled structures. Chapters 5 and 6 cover the dynamic tests of structures

that are coupled with a nonlinear joint.

Four identical beam components were built, with lengths of 25.4

inches and tip masses that serve as joint connections to other members.

One of these components is pictured in Figure 3-1. The component

dynamics are dominated by bending modes; there are five below 1000

Hertz, the lowest of which is at 55 Hertz. Figure 3-2 is a photograph of

superstructure C, which is formed when two identical components A and

B are coupled. Relevant dimensions of the structures are presented in

Figure 3-3.
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Figure 3-1: Photograph of One Substructure.
One of the identical beam components used to form coupled
structures. The beam dynamics are dominated by bending;

fundamental mode is at 55 Hertz.

Figure 3-2: Photograph of Coupled Structure--Two Components.
Two identical components A and B are connected for form

superstructure C. The components are rigidly clamped by the joint
assembly.
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An adjustable joint is used to connect the two components. Figures

3-4 and 3-5 display a photograph of the joint along with the important

joint geometry. This joint has been designed and built to simulate certain

dynamics and coupling of interest, rather than to represent any particular

joint that would be used in space or for any other application. In

particular, the joint is designed to provide either a clamped coupling

between the components or to exhibit "slop" (deadband or freeplay) in

another configuration. The joint is made rigid by tightening the bolts

(which are tapped into only one component) against the lips of the

adjoining component (refer to Figure 3-5). Thin shimstock maintains the

alignment of the neutral axis and provides shear stiffness. Rotational

freeplay, or deadband, can be produced by loosening the bolts and letting

the joint rotate about the shimstock, which is moderately stiff in shear but

weak in bending compared to the beam or joint. The joint can assume

three states--component lips touching (or saturated) on either side of the

joint, or a pseudo-rigid body rotation between the two saturation limits. It

is important to realize that the joint does not display any deadband in

shear deflection--this two degree of freedom joint exhibits deadband in

only rotation. The superposition of multiple gap dynamics would only

make the analysis more complicated.

The experimental design was chosen in order to satisfy several

requirements for this study:

1) linear behavior of component.

2) coupled structure modes well above pendulum suspension
modes.



Figure 3-4: Photograph of Adjustable Joint Used to Connect
Components.

The joint is moderately stiff in shear and can be made either stiff
in bending or be made to exhibit rotational freeplay by loosening

bolts on the lips of the joint.

38



joint gap introduced

11

Its and
:e here

n bolts

10-32 Allen bolt thin steel plate

Figure 3-5: Joint Dimensions.
Shimstock maintains orientation of neutral axis and provides moderate

shear stiffness.

3) beam dynamics dominated by bending modes, without
interference from torsional modes.

4) straightforward coupling conditions at interface of linear
structure in order to highlight the effects of joint freeplay of
nonlinear structure.

5) joint exhibits freeplay in only one degree of freedom.

In order to satisfy the first requirement, each component was

machined and assembled carefully, making certain there were no loose

bolts or small gaps in the joint assembly. Special care was taken to

machine the joint assemblies to close tolerances (+/- 1 mil) in order to

ensure a tight fit. Lock washers were used to prevent nuts and bolts from

loosening during dynamic tests, which would have adverse effects on the

measured transfer functions. The beam and joint assemblies were

39

__ __



constructed from aluminum because it is much easier to machine than

steel.

The overall size of the component was selected to be as large as

possible subject to laboratory size constraints for the linearly coupled

structure. A length of approximately two feet was felt to be sufficient.

Beam dimensions, however, were determined by requirements (2) and (3):

the placement of torsional modes at high frequencies dictated the ratio of

beam height to beam length, while selection of bending mode frequencies

was based on the ratio of beam thickness to length. A simple design

analysis was based on the eigenfrequencies of a free-free uniform beam in

order to arrive at approximate dynamic properties of the component,

which in reality includes significant tip masses.

It was desired to have at least three bending modes below the first

torsional mode to help simplify the modal analysis and coupling

procedure for this experiment. In future experiments that more carefully

simulate large space structural dynamics, high modal density and modal

coupling will need to be included, but for this simple study these effects

would only obfuscate the essential dynamics under investigation.

Torsional modes were kept higher than the three lowest bending modes

by maintaining a given beam length and reducing the rotational inertia of

the beam along the longitudinal axis of the beam--in other words, a

longer, more slender component. The first torsional mode was placed in

between the third and fourth bending modes, and has apparently had little

deleterious effect on measured beam dynamics.
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The third requirement dictates that bending modes of the coupled

structure (possibly three or four components) be above the pendulum

modes of the suspension--one rotational and one translational mode.

Given a suspension length of 48 inches, these modes were calculated to be

on the order of 0.5 Hertz. One rule of thumb is to place suspension modes

at least one decade below the lowest structural mode of interest in order to

achieve a high degree of modal separation. Component with dimensions

of 25.4 inches length and 1/4" thickness, including tip masses, have a

fundamental mode at 57 Hertz; a 3-component structure has a

fundamental mode at 6.7 Hertz. These dynamics were felt to be

satisfactory.

The design of the joint presented special problems. The joint must

be reasonable stiff when in the clamped configuration, yet be easily

modified to exhibit rotational freeplay. The joint must carry bending

moment and shear loads between components. Referring to Figure 3-5,

the bending moment is transmitted through compression in the joint lips

and tension in' the shimstock, which is tightly secured in the joint

assembly. Shear is carried through the shimstock. Four bolts, two in each

lip assembly, are used to transmit compression load between the lips. A

thin metal sheet is fastened to the surface of impact for the bolts in order

to prevent wear of the softer aluminum. Lock nuts are used to secure the

bolts in their lip assemblies.

When in the clamped configuration, the joint provides additional

local bending stiffness to the beam, but adds to local shear flexibility. This

added shear flexibility does not appear to affect the mode shapes of the
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coupled structure, one of which is presented in Figure 3-6. To prevent any

slop from occurring in the shear coupling, extreme care was taken to

machine an excellent clamped-clamped boundary condition for the

shimstock in the joint assemblies (see Figures 3-4 and 3-5).

Figure 3-6: Mode Shape Displaying Joint Shear Stiffness.
Second mode of two-component structure, with antinode of shear at the joint.

3.2 Joint Behavior

A simple test rig was used to determine the static behavior of the

joint. As shown in Figure 3-7, the beam was suspended vertically and

clamped at the top. Lever arms were clamped to the structure below the

joint and were used to apply a moment to the beam by means of hanging

weights. Just below this point, magnetic positions sensors measure the

slope of the beam (see Appendix A for equipment specifications). In this

manner rotation was measured as a function of applied moment. A plot

of the moment-rotation is shown in Figure 3-8 for the rigidly clamped

joint; the curve represents both loading and unloading of the beam/joint

assembly. Note the linearity and the lack of measurable hysteresis. The

diagram in Figure 3-7 indicates that both joint and beam flexibility are

included in this plot.

42



rigid clamp

Lt

joint

moment application
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position sensors

Figure 3-7: Test Rig for Static Test of Joint.
Joint and beam section are clamped and are subject to applied moment from hanging

weights. Position sensors measure rotation of beam. While there could be many definitions
of joint length, the chosen convention will be Lj for this chapter.

Figure 3-9 shows the moment deflection curve for the joint with

deadband. Hysteresis is again small or unmeasurable; a small stiffening

effect can be seen on the linear portion of the moment-rotation curve.

The curve could be shifted horizontally by a redefinition of the zero angle,

but it is noteworthy that a small moment is necessary to swing the joint

from one saturation point to another. This is an indication of the small

amount of shimstock bending stiffness or of possible joint asymmetries.
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Figure 3-9: Moment Rotation Curve for Nonlinear Joint.
Deadband nonlinearity is introduced by loosening the lip bolts

and letting the joint rotate about the shimstock. The joint
retains shear stiffness.
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The tendency of the joint to remain saturated against one lip, a small but

measurable effect, may have been responsible for some of the observed

behavior at low amplitude dynamic forcing presented in Chapter 5.

One unresolved problem in the joint measurements of Figures 3-8

and 3-9 is that the slopes of the linear regions of the nonlinear and linear

curves are in disagreement by as much as 30%. The discrepancy may be

due to the fact that the bolt tips were not "flattened" and were left pointed,

giving less definitive impact or saturation conditions. A more likely

explanation is that during the nonlinear test, both bolts on the lip may not

have contacted the adjoining lip at the same load level, perhaps resulting

in a different load relationship and the observed stiffening effect in the

nonlinear plot. Both of these problems detract from the overall accuracy

of this study.

The joint is measured to be stiffer than an equal section of beam. If

the measured beam stiffness is written as (EI)b, and the unknown joint

stiffness as kj then the total rotational deflection at the measurement

location of Figure 3-7 can be written as a contribution of rotations of the

beam section and the joint section

8Eo =  Ea + 8.nt (3-1)tot beam pzt

[ L t - L"  1

tot = (EI)b . M (3-2)
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where M is the applied moment and Lt and Lj define beam and joint

lengths over which rotation occurs. While the definition of "joint" length

is arbitrary, here it is chosen as that length over which the beam is

reinforced with the joint assembly, a distance of 2.56 inches. From Figure

3-9, the slope of the measured moment-rotation curve of the joint/beam

section was calculated to be 407 Newton-meters/radian. The total

deflection of this section due to a moment M is written as

@tt t 1M = - rad/Nm (3-3)M 1 407

The joint stiffness is calculated by

For a value of Lt of 4.75 inches and measured beam stiffness of 33.8 Nm2,

the ratio of joint stiffness to beam stiffness was calculated to be

L. k.
= 2.3 (3-5)

(EI)b

While the specific value of this joint stiffness is not important to the

study, it does indicate the stiffening effect that might be expected in the

dynamic tests of the coupled structures. Most importantly, the linear

moment-deflection curve of the clamped joint gives confidence that the
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joint will be well-behaved for the linear case, which will serve as a good

basis for comparison when the joint is given deadband rotation.

3.3 Dynamic Tests of Components

A modal analysis was conducted for the components and coupled

structures in order to determine a mathematical description of their

dynamic behavior. There are generally two parts to a modal analysis--the

first involves accurate measurement of the experimental frequency

response functions, and the second consists of post-test determination of

modal parameters (modal frequencies, damping, and modal residues). A

further step is to determine spatial quantities of mass, stiffness and

damping matrices based on these modal parameters in order to validate

finite element models. Often modal parameters are sufficient as they are

for this study. This chapter will be concerned with the experimental issues

pertaining to the accurate measurement of the FRFs; Chapter 4 will

address the analytical issues of parameter identification.

Modal analysis is typically performed for a variety of reasons--

machine diagnostics, model verification, or model identification. Flight

structures, such as the Galileo spacecraft 25, usually undergo a modal test in

order to validate analytical finite element models that are used for load

prediction analyses. When modelling uncertainty is high, as it may well

be for future spacecraft, a modal test of the superstructure or components

may itself be used to identify a mathematical model. In this spirit, the

experimental components in this study are dynamically tested in the

laboratory. This approach will hopefully help to identify test
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considerations and constraints, even for these simple structures, that

could affect the accuracy of the component mode synthesis procedure.

In most modal tests a great deal of care is taken to avoid corruption

the true dynamics of the test article due to mass loading of sensors, and to

avoid stiffness and damping interference from suspension and excitation

mechanisms. Techniques already exist for removing or compensating for

most of these corrupting influences--vacuum testing26, freefall testing26,

zero spring rate devices27, modal isolation of suspension 13, compensation

for mass loading13--and will therefor not be addressed in detail in this

study. Similar source of FRF corruption exist in the present experimental

study, but for simplicity most of their effects will be defined "into" the

component and thus will not need to be subtracted out of the final results.

In particular, the mass of sensors will be included in the component and

additional damping from air and suspension wires will be assumed to be

part of the component damping. Stinger effects, however, will be

removed by curve-fitting. The influence of these effects on the overall

dynamics of the component is small, and probably has little or no

influence on the results of this study.

3.3.1 Experimental Setup and Equipment

The experimental setup for modal testing is pictured in Figure 3-10;

the diagram in Figure 3-11 also shows the spectrum analyzer and

computers used. A complete list of equipment is provided in Appendix A.

Components are tested in a "free-free" or "free-interface" configuration by

suspending the structures from long piano wires. The 48" length of cables
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places the suspension modes more than a decade below the fundamental

modes of test specimens, so that these pendulum modes appear as rigid

body modes (one rotational and one translational mode) in the dynamic

range of the structures. Free interface testing is a commonly used

technique because of its ease and good quality of measurements. Fixed-

interface modal testing has also been used, but the condition that one or

more degrees of freedom be grounded is difficult to enforce and often leads

to poor results. A third option is to test "in situ", as is often done with

machine diagnostics, and involves the use of compliant mounts.

A Signology® SP20 spectrum analyzer acts as the nucleus of the test

equipment. The SP20 generates an analog signal--sine wave, random, or

other--which is amplified by a Crown ® amplifier and sent to a Bruel &

Kjaer ® electromechanical shaker. The shaker generates an axial force up

to +/- 12 pounds on the structure. The shaker is coupled to the structure

by a thin member called a stinger which is axially stiff but weak in flexure.

The stinger helps to ensure that only an axial force is transmitted to the

structure. A Kistler@ load cell measures the actual force applied to the

structure, which can have a frequency content different from that of the

excitation signal sent to the shaker. PCB® Structcel accelerometers, which

have a dynamic range between 1 and 1000 Hz and masses of .11 grams,

measure the acceleration response at any points of interest on the

structure. Charge amplifiers convert the charge signals from the load cell

and accelerometers to voltages, which are then measured by the spectrum

analyzer. The SP20 is supported by an IBM® XT. Data is later sent to a

DEC® MicroVax II for analysis and plotting.
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Accelerometers are calibrated prior to each test, and display

sensitivity changes of +/- 5% on a daily basis. The load cell was calibrated

only once because of the difficulty (the stiffness of the compression bolt

changes the manufacturer's conversion factor) and may be a source of

error in the measurements.

Figure 3-10: Photograph of Experimental Setup for Modal Tests.
Superstructure C is shown in the free interface test configuration,

suspended by four feet of piano wire. The structure is excited by an
electromechanical shaker through a flexible stinger coupling.
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3.3.2 Selection of Force Excitation

The selection of forcing function is an important step in the modal

analysis procedure. Four general types of excitation are commonly used in

modal analysis--steady state, random, periodic, and transient. Table 3-1

summarizes some of the strengths and weaknesses associated with each of

these forms. In addition, there are four general means of applying these

forms of excitation--shaker, impact hammer, step relaxation, or actual

operating load. Each of these excitation methods and means of

implementation have their advantages and areas of application, but no

method is best for all situations.

Most recent modal testing is conducted using an electromechanical

shaker which is attached to the structure through a flexible stinger.

Usually, single shaker testing is used, but recent algorithms have been

developed to permit the multiple-shaker tests which have the advantage

of evenly distributing energy about the structure and help to provide

better parameter estimation in the presence of closely spaced modes28.

One drawback to shaker testing is that the applied force level drops to near

zero at resonance for lightly damped structures, leading to measurement

problems at the structural modes. Impact hammer testing is also

commonly used but has the disadvantage of inconsistent results and noise

sensitivity. A disadvantage of the step relaxation method is that it

requires special test apparatus. A thorough modal test would compare

measured FRFs using different methods to provide confidence in the test

results.
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Table 3-1: Possible Excitation Methods for Modal Testing.

Excitation Strengths Weaknesses
Method

Random Easy, fast, after initial Low force level only,
setup for single input low damping may not

be measured correctly
due to leakage

Burst Random Same as random, no Low force level only
leakage more complicated

input

Sine Sweep Variable force level, Long test time
variable freq. resoltion
good for nonlinear systems

Normal Mode Forces a single normal Requires precise
Excitation mode tuning to isolate mode

Chirp No leakage Requires special
hardware for input
signal

Transient Easy, quick to set up Not good for complex
structures or high
damping

Burst random testing, sine sweep and normal mode excitation were

all used in this experimental study because of their availability and their

ease of implementation. Burst random was used to produce the transfer

functions because of the short test time required, while the sine sweep was

used to verify the accuracy of the random tests. Mode shapes were verified

and measured using normal mode excitation. One aspect of random

testing is that it can provide a "best" linear estimate of a mildly nonlinear

structure, as discussed by Goyder 29, and has the effect of smoothing out
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discontinuous jump phenomena. This feature was considered important

for the tests of the nonlinear beam-joint assembly. One disadvantage to

random testing is that moderate to high levels of nonlinearity lead to

substantial noise in the measurement of the frequency response function.

A problem called leakage can occur when a discrete Fourier

transform is calculated from the measured force time history. The

problem arises because of the need to measure a finite time record of a

process which is assumed to be periodic with infinite time length,

distorting the true frequency content of the measured frequency over a

range of frequency lines in the DFT. A solution to this problem is to use a

window such as the Hanning window to force the time history to zero at

either end of the time record. Another solution is to use a burst random

or chirp signal with no window, which is also zero at the beginning and

end of the time record. Burst random excitation was required by the

spectrum analyzer to determine transfer functions suitable for a recursive

parameter identification algorithm, and was therefor selected as the most

suitable form of excitation.

The force time history for the burst random signal is shown in

Figure 3-12. The time record length of 1600 milliseconds is determined by

the number of points in the time record (4096 were selected for maximum

resolution) and the sampling rate. Note that the signal begins about 3%

into the time record, and ends at 1300 milliseconds. These limits were

determined by trial and error along with operator judgement to produce

the most "clean" transfer functions. Coherence measurements were not

available due to analyzer software error, but should be measured in future
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Figure 3-12: Burst Random Load Signal Used for Excitation.

The structure is forced using broadband random excitation applied
by the shaker, connected to the joint lip by a thin flexible stinger.

A load cell measures the actual force applied and is plotted above.
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Figure 3-14: Discrete Fourier Transform of Load Time Signal.
The load excitation is "pink" and not white; deep zeros appear at
the structural resonances (two-component structure in this case).
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experiments. Fifteen averages were used to compute transfer functions.

The burst random signal is on for 1300 milliseconds and off for 10000

milliseconds; the off-time allows the structural vibrations to damp out

and let the structure achieve zero initial conditions before the next

random burst.

Force amplitude was selected to be small, as to not excite any

extraneous vibrations of the suspension. A white noise signal was output

from the spectrum analyzer in order to drive the electromechanical

shaker. The autocorrelation of the measured load signal is shown in

Figure 3-13 to be almost a white noise signal; the rms value of the force

level is approximately 0.7 Newtons. Figure 3-14 shows the discrete Fourier

transform force time signal in Figure 3-14, which is corrupted by dynamics

of the test specimen. Zeros appear at the structural modes and are deep

because of the low damping. A clever technique, not used in this study, to

compensate for this problem is to create a time signal with more energy at

the zero frequencies and less energy at the poles, based on a previously

measured transfer function. This produces more accurate measurements

of the structural response near the resonances and anti-resonances.

3.3.3 Forcing Stinger

The most difficult, and frustrating, part of the modal testing was the

accurate use of the stinger. Three problems persisted:
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1) interference of stinger-structure resonances with structural
modes.

2) wear and tear of the stinger from repeated repositioning of the
shaker for different modal tests.

3) orientation of shaker and stinger such that only an axial force
was applied-a requirement for the modal tests.

The first two problems were surmounted by the design of Figure 3-15,

which shows the latest stinger. A photograph of an earlier, similar stinger

is shown in Figure 3-16. A 3/4" section of 25 mil wire was used to provide

the flexural stiffness. The wire was press fit into short sections of 3/8"

aluminum rod, one of which was used to place the load cell into

compression by a bolt which passes through the annular load cell and is

bolted into the lip. This stinger section would wear after repeated use (as

the stinger and shaker were unbolted and moved) and would have to be

remachined. The other end of the stinger is shown in Figure 3-15 to

interface to a reverse-threaded rod, which is then connected to the shaker.

Attachment of the shaker then requires no torque on the thin wire

section, which prolongs its longevity and preserves its dynamic behavior.

A superior design would have been to construct the stinger assembly from

steel. The shaker sits on a table top that is not connected to the suspension

system for the test article.
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Figure 3-15: Diagram of Forcing Stinger.
Coupled shaker-beam resonances are below the structural modes. A compression bolt places

the load cell into compression so that it can measure both compression and tension. Lock
nuts, not shown, secure the turnbuckle assembly against stinger and shaker.
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Figure 3-16: Photograph of Forcing Stinger.
The shaker is connected to the structure via a thin flexible stinger.
Load cell and accelerometer are used to measure force applied and

linear response at the interface.
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A stinger-beam resonance occurs when the beam mass oscillates

axially with the flexural stiffness of the stinger wire to produce motion

perpendicular the axial forcing direction. The motion causes cross-

coupling measurements in the load cell and accelerometers and leads to a

corrupted transfer function. These effects are exacerbated when this

stinger mode occurs near a structural mode. This problem is overcome by

machining a longer stinger, which locates the stinger-beam resonance in a

frequency range below the test range.

3.3.4 Force Application and Response Measurement

Figure 3-17 shows the two configurations used to apply forces to the

test structures, for reasons which will be presented in Section 3.4.1. A force

and moment must be applied at the interface of the components, which in

this case is at the very ends of the members. The force was achieved by

exciting parallel the joint lip as in Figure 3-17; moment was applied by

forcing perpendicular to the joint lip and using the lip as a lever arm.

Lever arm dynamics were assumed to be neglible in the frequency range

below 1000 Hertz. An important requirement for most modal tests is that

only one force or moment be applied to the structure at any one time,

otherwise superposition effects would corrupt the measurement of the

modal parameters. This condition required the use of a stinger to remove

non-axial force components or reaction moments from the excitation.

Multi-shaker testing can be conducted only if the excitation signals are

uncorrelated. The results of transfer function measurements in the

present study were found to be satisfactory.
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One important note is that these forcing locations were not at the

exact interface, but were in error by 13/32" or 1.6% of the beam length. In

retrospect the test article should have been designed differently; this

measurement problem, however, is generic in modal analysis of actual

structures. Calculations indicate that this position error induces a 4.5%

error in the estimate for the first component eigenvector at 55 Hertz; this

error increases to 30% at the third mode above 325 Hertz. Modal

frequencies are still measured correctly. Accelerometers, on the other

hand, were placed at or very close to the actual point of interface. The

error in forcing location is not serious and can be compensated for. Rather

than detract from the results, this event has elucidated a problem worthy

of future attention.

Accelerometers were attached to the structure with wax.

Manufacturer's specifications for the accelerometers and wax indicate a

nearly linear response of these two items in the frequency range of 1 to

1000 Hertz, the range in which most tests were conducted. Accelerometers

measured linear acceleration at the beam tips (interface points) as is shown

in Figure 3-17. Tip rotation of the beam was also measured by placing two

accelerometers on the joint lips and assuming the lip to be "rigid" enough

to deduce the beam rotation at the tip. This configuration is shown in the

third figure of Figure 3-17.



electromechanical
shaker

stinger attachment
load cell

accelerometer 1 accelerometer 2../
point measurement transfer measurement

electromechanical
shaker

uWIWurutItIutur I transfer measurementpoint measurement

f stinger attachment

I · ·· · · · · ·· ·II·'·····

accelerometers
rotation measurement

accelerometers
rotation measurement

Figure 3-17: Geometry of Force Application on Structure.
Structure is shown from above; it is tested in a free-free configuration. 3-17(a) shows

force/deflection test; 3-17(b) shows moment/deflection test; 3-17(c) shows
moment/rotation test.
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3.3.5 Determination of Frequency Response Function

Time histories of force and response are used to estimate the

transfer function relating the two. 4096 points are measured in each time

record which are transformed to the frequency domain by the fast Fourier

transform (FFT). Complex conjugate symmetry reduces the length of the

frequency domain block to 2049 points (including the Nyquist frequency

point). Low pass anti-aliasing filters are used to filter out high frequencies

from the time histories, and since they are not perfectly efficient still have

some distortion of high frequency components in the measured data.

Accordingly, only 78% of the frequency vectors, or 1601 points, are retained

and are free from aliased high-frequency data down to a level of -75 dB.

The spectrum analyzer calculates the complex-to-complex FFT as:

X(k) = x(i) exp k = 0,1,2,...,N-1 (3-6)
i=0

where x(i) is a time history and X(k) is a complex frequency vector of the

same size. The power spectral densities (PSD) are calculated from the FFT

by the relation

Sxx(k) = x*(k) X(k) k = 0,1,2,...,(N/2)-1 (3-7)

where P is the time record length (1600 milliseconds) and T is the time

increment (P=NT). The T2 term is included since it was left out in the FFT

computation. The transfer function is determined from the averaged
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auto-spectrum of the force Sff(k) and the averaged cross-spectrum of force

and acceleration Sxf(k) by

Sxf(k)
xf(k)- S(k) k = 0,1,2,...,N/2-1

3.4 Experimentally Measured Frequency Response Functions

3.4.1 The Complete Frequency Response Matrix

A definition of the sign conventions used for the measurement of

component transfer functions is presented in Figure 3-18. Two responses

(translational and rotational deflections) and two forces (force and

moment) are defined at each of two points.

Um, fn
4+

Uo,4

E-,K

Figure 3-18: Sign Conventions for Single Component
Deflections and Forces

The frequency response matrix that relates the forces to deflections is

given by
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Eq. (3-9) is a receptance matrix since it relates force to displacement. The

measured component FRFs that will be presented are termed inertances,

which relate force to acceleration. Chapter 4 will address the simple

conversion of inertances to receptances; the following discussion can be

left in terms of receptances with no loss of generality since the results

apply to inertances as well.

The objective of dynamic testing is to determine each entry of the

FRF matrix of Eq. (3-9). Typically, any one row or column of the matrix is

measured--usually by exciting at one degree of freedom and measuring

responses at all degrees of freedom--which is sufficient to determine all

the remaining entries of the FRF matrix. For the test structure of this

study, two assumptions provide possible ways to reduce the number of

FRF measurements:

1) reciprocity

2) structural symmetry

Reciprocity is typically assumed in modal analysis, given by
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X. X.
1 = (3-10)

f. f.J 1

The second assumption is that due to structural symmetry, the point and

transfer FRFs should be the same no matter which side of the structure is

subject to excitation--a reasonable assumption given the construction of

the components. This assumption dictates that the diagonal blocks of Eq.

(3-9) are identical, given the chosen sign conventions. Thus, only two 2x2

blocks need to be determined. If the structure were truly symmetric, then

the eigenvectors calculated from the measurements should be perfectly

symmetric and anti-symmetric. The analysis of Chapter 4 and Appendix B

shows this to be the case to within a few percent.

Thus, only two blocks corresponding to the two left columns of Eq.

(3-9) need to be measured. However, this number can again be reduced10

by looking at the upper block

u h12  f
S h = (3-11)21 h 22

or

x = h(jo) f (3-12)

Given a modal model, each of the receptances in Eq. (3-11) can be rewritten

as
N . .

2 n q (3-13)
1 r=1 4 + 2jrP - o02)
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where N is the number of modes, 2 r is the natural frequency of the rth

mode and or is the mass-normalized eigenvector of the rth mode. The

product of eigenvector entries in the numerator is known as the modal

constant, and usually is determined from the curve-fitting of transfer

functions. Given this modal model, we can rewrite h(jw) of Eqs. (3-11) and

(3-12) as

x xf M N 1 Ar Cr (314)
L J r=1 + 2j• - 2) L Br Dr (3-14)

where
2Ar = r

Br = r20rl

Dr = rl 2

D r2 (3-15)

It can be seen that Br = Cr and that Dr = Cr2/Ar, thus all four parameters can

be deduced from Ar and Cr. Physically, this means that no rotational

deflections need to be measured-simply deflection at the interface must be

measured for both force and moment excitation at the interface. This

analysis holds also for the transfer FRFs for uo and 0o; thus only h11, h12,

h31 , and h32 need to be measured to determine the complete FRF matrix of

Eq. (3-7). Eq. (3-9) is rewritten below and shaded to reflect the entries that

are necessary to measure in order to define the entire matrix, subject to the

stated assumptions. "Boxed" entries were also measured and are discussed

in the following section.
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3.4.2 Single Component Frequency Response Function Measurements

Figures 3-19 presents the measured FRFs for one of the components

in the range 10 to 1000 Hertz. This range was chosen on the basis that five

modes were felt to be sufficient for the component mode synthesis

procedure; it was hoped that the first three modes could be identified

accurately and that the last two would provide information on residual

terms resulting from higher modes. The "accurately modelled" range

would then be some fraction, perhaps as little as one-half, of the measured

range. Although Section 3.1 discussed the simplification that only four

FRFs needed to be measured to define the entire FRF matrix, two

additional ones--0m/Mm and O0/Mm--were measured anyway and used in

the CMS coupling with raw data.

Several typical characteristics of point and transfer inertances can be

seen in these plots (otherwise known as collocated and noncollocated

inertances). The point inertance has zeros in between each of the

measured modes, which results from the fact that each of the modal

residues has the same sign (refer to Eq. (3-13)). In the region between the

modes, the relative signs of the entire modal terms are opposite and will

68

b



add to zero at some frequency. For the transfer inertances there are no

zeros present--modal residues are of alternating sign, causing the modal

terms to have the same sign in the frequency region between modes and

thus constructively add. Had these plots been receptances rather than

inertances, the pole-zero structure would have been the same but the

overall FRF would have dropped off at -40 dB/decade. This is a result of

the o2 term that scales inertances to receptances.

The quality of these measurements were felt to be good. The shaker

was repositioned slightly until the no further improvements in modal

response or cleanliness of the FRF were possible. Usually the measure of

coherence is used to assess the quality of the measurements. Higher

quality transfer functions were determined when the maximum number

of points was used in the FRF calculation (4096); use of a fewer number

led to poorer resolution of poles and zeros. Zoom measurements were

taken to confirm the location and damping of the poles; the extra time and

effort required for the zoom measurements was not justified by the

moderate increase in resolution, since the broadband measurements were

felt to be sufficient for the purposes of this study. Note the interference of

stinger-beam resonance at about 10 to 18 Hertz, depending on the forcing

configuration. The effects of the errors in the location of force and

moment excitation are somewhat evident in the measurements, and are

manifested in the attenuation of modal peak responses at the fourth and

fifth modes. Modes above the seventh, while they do exist for the

structure, are difficult to measure because they are not being properly

excited-at these high frequencies, a node line exists at or near the forcing

and measurement locations.
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Figure 3-19: Six Experimental Inertances for Single
Component.

These are used to define the full FRF matrix for the component.
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3.4.3 Two-Component Configuration

Two components were rigidly clamped together by the variable

joint of Figure 3-4 and were subject to a modal test similar to the one for

the single component. At first the forcing stinger interfered with the first

mode but this problem was later alleviated by a new stinger design. Figure

3-20 lists the conventions for deflections and forces for the two-component

FRFs presented in Figure 3-21. For simplicity only the point and transfer

inertances for force/translation measurements are presented; stinger

interference can be seen at the first mode in Figures 3-21(a) and (b).

um,ý Up,
4 c 4

Figure 3-20: Sign Conventions for Two-Component
Structure.
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3.4.4 Three-Component Configuration

Sign conventions for a three-component structure are given in

Figure 3-22. Measured frequency response functions (force/translation

only) are given in Figure 3-23, and are presented on the same scales as the

FRFs for the one- and two-component structures. Unfortunately the first

mode at 6 Hertz is below the plotting scale; the first mode can be seen in

Figure 3-23(c) and (d) which are plotted from 2 to 200 Hertz. Once again,

stinger interference can be seen near the first mode. Another observation

worth pointing out is that the modes above 900 Hertz are seriously

attenuated due to the fact that node lines of the higher modes move

directly to the forcing location, which is positioned slightly in from the

end of the beam.

4 D .

u o P

Figure 3-22: Sign Conventions for Three-Component Structure.
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3.4.5 Measured Mode Shapes

The single- and double-component structures were forced with a

sine wave exactly at their natural frequencies--a "normal mode"

excitation--and the corresponding modes shapes were then measured.

The structures were forced in a configuration identical to the first setup of

Figure 3-17. Accelerations were measured by moving an accelerometer

along the length of the beam, defining the mode shapes. Mode shapes for

the first three modes of the single component are presented in Figure 3-24,

and those for the two-component structure are given in Figure 3-25. The

plots resemble typical free-free modes shapes for a beam.
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Mode 1 at 55 Hertz

'-.

Mode 2 at 156 Hertz

Mode 3 at 325 Hertz

Figure 3-24: Measured Mode Shapes for Single Component.
(first three bending modes)
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Mode 1 at 18 Hertz

Mode 2 at 44 Hertz

Mode 3 at 83 Hertz

Figure 3-25: Measured Mode Shapes for Two-Component Structure
(first three bending modes)
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Chapter 4

Linear Component Mode Synthesis

4.1 Application of Component Mode Synthesis to Experimental Structure

In this section the theoretical frequency domain component mode

synthesis procedure outlined in Chapter 2 will be applied to the

experimental structure, with one minor difference. Whereas the

theoretical derivation of Chapter 2 dealt with receptances hij(j>),

representing displacements due to force, the experimental CMS procedure

utilizes inertances acij(jc), or accelerations due to force, because of readily

available sensor measurements. The receptances can be recovered by

hi.(ja) = 2(4-1)

The CMS procedure can otherwise be implemented as previously

described. For simplicity of notation, Hij(jco) and hij(jw) will hereafter refer

to inertances rather than receptances.

Figure 4-1 defines the sign conventions used in the coupling

procedure for this case study. Two identical components A and B are

rigidly connected at point (o). Points (m) and (p) are arbitrary points that

define interior degrees of freedom, though in this case these points are

chosen to be points of interface at the opposite end of each component.

This convention facilitates multiple-component coupling; a second



advantage is that one frequency response matrix can be used to define both

components since the components are assumed to be identical to within

machining tolerances. While it would be better to measure the FRF

matrix for each component, in practice this may not always be possible, as

for the repeatable (and nearly identical) bays of a truss structure.

um, n uoI o ,,o up,@
4 A 4 B

Om, 1 o %,Mp

Figure 4-1: Sign Conventions Used in Coupling.
Components A and B are rigidly coupled at point (o) to form superstructure

C. Points (m) and (p) are arbitrary interior degrees of freedom.

At each point there are two degrees of freedom--one translation and one

rotation. Both a force and moment also act at these points. The inertance

matrix Hij(jco) that relates the displacement and force vectors for

component A is given in Eq. (4-2). The vectors for force and deflection, as

well as the inertance matrix, are partitioned according to the interior and

interface degrees of freedom. The inertance matrix for component B is

assumed to be identical to that of component A, and is given by Eq. (4-3).
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The coupling at interface point (o) must include compatibility of

both translation and rotation because the joint is assumed to be rigidly

clamped. Naturally, a pinned joint would require only compatibility of

deflection. The clamped compatibility condition is written to be consistent

with the defined sign conventions to be

[uol [uo, uo
Los] Leo] =-o

(4-4)

Similarly, the force equilibrium is written as

Ic a b
fo fO F o
I = [ I +[

LMo LN Lo -No
(4-5)
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Za and Zb are computed as the inverses of the component inertance
matrices Ha and Hb of Eq. (4-2) and Eq. (4-3). Matrix assembly, as shown in
Figure 4-2, is used to assemble the inverse inertance matrix Zc for the
coupled structure C.

Zc
6x6

E

interface DOF

Figure 4-2: Matrix Assembly of Inverse Inertance Matrix of
Coupled Structure.

Shaded areas show nonzero matrix entries; the overlap at the interface
DOF is shown in dark shade. This overlap region corresponds to degrees of

freedom uo and 0o for a clamped joint.

The desired inertance matrix for the coupled structure C is obtained by the
inverse of Zc . This set of procedures--component matrix inversion,
assembly, and superstructure matrix inversion--is carried out at each
frequency point of interest, or at each frequency point available in the
measured FRFs if experimental data is used.
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4.2 CMS Results Using Raw Frequency Response Functions

The component mode synthesis can be performed using

experimentally determined frequency response functions at each

frequency point in the measurements. A difficult step in this process is

the construction of the complete inertance matrix Hij(jco) as outlined in

section 3.4.1. While all the measurements are available, some effort and

judgement are required to make the data consistent with the sign

conventions. In particular, the FRFs measured by the spectrum analyzer

sometimes required a sign change in order to achieve the correct relative

phase between point and transfer inertances. In this simple experiment

these errors were relatively easy to identify since the relative phase of the

measurements were known in advance, but in practice these errors may

not be so easy to spot.

Figure 4-3(a) compares a CMS prediction of the transfer inertance

uo/fm to the actual inertance measurement of the coupled two-component

structure. 1600 frequency points were used in the range 0 to 1000 Hertz,

giving a frequency resolution of 0.625 Hertz. The prediction matches the

true FRF well in terms of the damping, frequency, and modal amplitudes

near the superstructure modes (except the first). However, several "ghost"

modes and zeros are present in the prediction, and occur near the

frequencies of the component modes. These errors are due to

inconsistencies in the measured data. Figure 4-3(b) shows a component

transfer function for purposes of comparison. Were the superstructure

measurements not available for comparison, it may be difficult to label

some of the predicted modes as "true" and others as "incorrect". These re-

85



10 100 Frequency (Hz)

6B

40

38

20

10

-10

-20

(a) CMS Prediction uo/fm

1ee Frequency(Hz) 1222

(b) component FRF umrn/fm for comparison

Figure 4-3: Results of CMS Using Raw Measurements.
This procedure predicts superstructure modes but also creates several

"ghost" resonances near the component modes, one of which is shown for
comparison in 4-3 (b).
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suits are consistent with the experimental results of Ewins6. The

following section describes a means to overcome these prediction

problems.

4.3 CMS Using Unified Frequency Response Functions

4.3.1 Modal Model

Ewins has shown that a better CMS estimate is possible by careful

curve-fitting and adjustment of the measured frequency response

functions by means of a consistent modal model. Two sources of error are

removed by this procedure. Firstly, the low frequency contributions of

suspension and forcing stinger dynamics can be eliminated. Secondly, the

inconsistencies between different experimental FRFs are removed by

using a consistent set of modal frequencies, damping values, and mode

shapes.

The generic modal model for an inertance frequency response

function is given by

M M+N C0 D. 0 0 . .
1 TI Y - 4)

J r=1 r=M+1 ri + 24i4r4 - CT r=M+N+1L 9

where M is the number of rigid bod modes, N is the number of kept

dynamic modes, and Qr and Cr are the natural frequency and damping of

87



the rth mode. <ri is the mass-normalized eigenvector for the rth mode, and

the product of the eigenvector entries in the numerator is known as the

modal constant, Ar. The summation in Eq. (4-6) is represented graphically

in Figure 4-4. The first term in Eq. (4-6) is a residual inertance with units

of inverse mass, and results from rigid body modes, or any mode below

the measured frequency range. The third term arises from the

contribution of higher modes to the frequency range of interest, and

corresponds to a residual flexibility. The second term is the familiar

dynamic response. Note that each mode in this term has a low frequency

and high frequency behavior: at frequencies well below the natural

frequency (o << dr) a mode contributes virtually nothing to the response

of the structure. At frequencies well above the natural frequency (Co >> Or)

each mode contributes a constant term to the response; this asymptote is

termed the residual inertance of that mode.

4.3.2 Determination of Modal Parameters

The individually acquired FRFs must be curve fit in order to extract

the necessary modal parameters--natural frequencies, damping ratios and

modal residues, from which the eigenvectors may be determined. A total

of four FRFs need to be fit, as these are all that are necessary to define the

FRF matrix for one of the components (see section 3.4.1). There are modal

analysis software packages available that can perform multi-degree-of-

freedom analyses to fit a modal model to several measured transfer

functions simultaneously. Techniques such as SDRC's polyreference

algorithm28 are effectively used to identify closely spaced modes and to
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Figure 4-4: Contribution of Dynamic and Residual Terms
to Modal Model.

Dynamic Modes are augmented by low-frequency residual terms
resulting from rigid body modes, and also by the residual contributions

from high-frequency modes, which in practice may or may not be
measured.
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develop modal models for complex systems. For the purposes of this

study, for which experimental modes are well separated and the number

of measured transfer functions are low, a simple identification procedure

based on Eq. (4-6) is sufficient.

The identification procedure that was used in this study involves

fitting a second order model to each mode in the transfer function

separately and including a constant term based on analytical rigid body

modes. Each transfer function was curve fit in the region from 0 to 1000

Hertz, in which five dynamic modes and constant inertances from rigid

body modes were present. The curve fit algorithm uses a frequency

domain approach based on Chebychev polynomials. The analytical

derivation of the rigid body modes--rotation and translation--was based on

mass and geometry measurements of the component, and is presented in

full in Appendix B. These rigid body terms can also be determined by the

low-frequency residual terms of the measured FRFs of Figure 3-19, which

agreed well with the analytical predictions. Contributions from higher

out-of-range modes, corresponding to the third term of Eq. (4-6), were

neglected, which will necessarily reduce the accuracy of the model above

approximately 800 Hertz. The modal model for the particular FRF is

simply the sum of these dynamic and rigid body contributions. A typical

curve fit is compared to the measured FRF in Figure 4-5--note the stinger

dynamics that are removed in the neighborhood of 10 to 18 Hertz.

The curve-fit algorithm produces a pair of complex conjugate poles

and a residue for each mode that is fit, and from these quantities the

modal parameters are extracted. The poles given by the algorithm are
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A T jB (4-7)

The poles of a second order system are given by

2 (4-8)

An excellent approximation for the damping and natural frequency,

given that the damping is on the order of fractions of one percent of

critical, is given by

A
r A- (4-9)B

Qr = B (4-10)

The eigenvectors can be determined from the modal constants, which are

shown in Eq. (4-6) to be the product of two eigenvector entries for a given

mode--one entry corresponding to forcing location, and the other to

response location. Thus, given forcing at one location and response at

several locations (as was the case for this study) the eigenvectors may be

determined if any one of the measurements involves a collocated force

and response. The corresponding eigenvector value is then simply the

square root of the modal constant. Note that in order to determine the

eigenvector at any point, one is required to measure either a force or

response at that location, a requirement that cannot always be met.
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Figure 4-5: Typical Curve-Fit of Component FRF.
Note that stinger resonances at approx 19 Hertz are removed.
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4.3.3 Unified Modal Model of Component

The identification of modal properties for the four frequency

response functions has naturally led to inconsistencies in estimates for

these parameters, which now need to be adjusted for consistency. In each

case the corrections were only a few percent, and were derived by taking

the arithmetic averages of the available estimates. Although structural

symmetry was assumed in order to set equal the diagonal blocks of the

component FRF matrix in Eq. (3-9) the calculated eigenvectors were not

forced to be symmetric and antisymmetric, although Table 4-2 and Figure

3-23 show that this is almost the case. During the determination of

eigenvectors from modal constants, the assumption of reciprocity (xi/fj =

xj/fi) allowed two estimates for two of the eigenvector entries. The

unification procedure is presented more fully in Appendix C, and the

modal model for the standard component is summarized below.

Table 4-1: Measured Natural Frequencies and Damping Ratio
for Modal Model of Component

Mode (Hertz) (%)

1 54.4 .184
2 156.8 .095
3 325.8 .104
4 556.4 .123
5 804.6 .148

The eigenvector matrix is composed of two rigid body modes

(translation and rotation) and five dynamic modes.
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(4-11)S=[o 0 , D 2 03 04 .5
4x7

Note that the row length of four corresponds to the displacement vector

for each component. The experimentally determined eigenvectors are

listed in Table 4-2; these were calculated from the modal residues that

were fit to the measured transfer functions (see Appendix C). Given the

consistent modal model, the entire 4 by 4 frequency response function

Hij(jco) can be recalculated by Eq. (4-6) by letting i,j go from 1 to 4.

Table 4-2: Experimentally Determined Eigenvectors for Two
Rigid Body and Five Bending Modes.

Units Rigid Body Modes Dynamic Modes

00, (D(2 01 02 03 D4 05

unm (kg) 0.914 1.553 1.350 0.963 0.793 0.672 0.508

~m rrikg) 0.0 4.813 16.507 26.194 34.999 53.023 78.469

iU. (ku) n oIA 1 52 1 2A7 1 nA 1 0n aQ _n ra n 57

4.3.4 CMS Using Unified Modal Model-Clamped Joint

Component mode synthesis is carried out at 1600 frequency points

using the frequency response functions developed from the consistent

modal model. The CMS prediction is compared in Figure 4-6 to the actual
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measured transfer function of the two-component structure for the point

inertance u,/fm and the transfer inertance uo/f,.

Figure 4-6 demonstrates the dramatic improvement in component

mode synthesis when the unified modal model of the component is used.

Several discrepancies still exist, however. The first predicted mode

(dashed line) is strongly influenced by the rigid body asymptotic

adjustments made to the component FRFs, and remains in disagreement

with the measured first mode. Since the rigid body modes were based on

an analytical model and the dynamic modes were based on experimental

measurements, any error in sensor calibration would lead to this type of

low-frequency error. The problem of identifying or including the correct

out-of-range residual terms, such as the rigid body modes, is a typical and

recurring problem in modal analysis. An example of the sensitivity of the

CMS prediction to changes in the magnitudes of the rigid body modes is

presented at the end of this chapter. Note also the poor superstructure

prediction above 800 Hertz; this is a result of not including high frequency

residual terms in the component modal model.

Modes 7 to 10 show errors in frequency estimates that are likely due

to errors in positioning the force transducer and the accelerometers

precisely at the point of interface, as documented in Figures 3-15 and 3-16.

This difficulty is generic in modal analysis and experimental component

mode synthesis. If significant deflections occur between the measurement

location and the actual interface, the measured component FRFs will be in

error. Eigenvector estimates derived from these measurement will also be

in error. This measurement error will increase with frequency, since the
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Figure 4-6: Results of Unified CMS--Two Components.
Prediction is compared with actual measurement of coupled structure.
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higher mode shapes have more closely spaced nodes and antinodes. It is

worth noting that in Section 3.4.4 it was discussed that at 50 Hertz the

eigenvector entries were likely to be in error by only 4.5%, but that this

error had grown to 30% at 325 Hertz. The seventh superstructure mode, at

around 400 Hertz, shows the first signs of significant frequency prediction

error, and may be due to this problem in eigenvector identification.

4.3.5 CMS Using Unified Modal Model--Pinned Joint

The component modal models can be used to predict the dynamics

of a superstructure for any interface compatibility. In particular, these

models are used to predict the behavior of two identical components

coupled by only deflection at the interface--a pinned joint. Procedures for

CMS are carried out as before, except that the compatibility and

equilibrium equations are modified to reflect the new coupling conditions:

= ua = ub (4-12)

f = f' + b (4-13)

Matrix assembly represented by Figure 4-2 is altered to accommodate the

coupling of only one degree of freedom. The results of the pinned

coupling are presented in Figure 4-7; note that the former even modes

(shear coupling) of Figure 4-6 are still present, but that the former odd

modes (bending coupling) have changed. Instead, modes are present that
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Shear modes remain in addition to individual component
resonances.
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occur at the natural frequencies of the individual components and are

thus internal resonances. Since the model assumes two "identical"

components, these modes are actually two modes superposed; in an actual

structure the modes would be closely-spaced and not identical.

4.3.6 CMS of Three-Component Structure--Clamped Joint

The component mode synthesis procedure is easy to implement for

coupled structures consisting of more than one component, although the

matrix inversions will eventually become unwieldy as the number of

components becomes very large. The coupling of a three-component

structure is compared to the measurement of the physical structure in

Figure 4-8 for two different frequency scales.

Agreement between prediction is good but shows low and high

frequency estimation errors similar to those of the two-component case.

In this case the two lowest modes are predicted poorly; obviously the CMS

procedure has limitations to accurately predicting low superstructure

modes. Further investigations will need to be conducted to determine the

cause of the low frequency estimation error in this study.
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4.4 Compensation for Effects of Transducer Positioning Error

In retrospect the eigenvector estimation error could have been

prevented by designing the experiment such that the component was

excited at the "exact" interface. As was pointed out earlier, the problem of

measuring the exact interface inertances is generic to experimental

substructuring and modal analysis. Given the current configuration, the

eigenvectors could have been better identified by using a more physically

correct modal model from which to estimate the vectors. A reasonable

approximation of the desired quantities was achieved by the method of

Appendix C, which assumes that a point inertance was measured at point

(m). In reality, the forcing location was slightly offset from the beam tip

(where the accelerometer was located) and therefor the point inertances

are actually slightly noncollocated. By placing an accelerometer at exactly

the forcing location, all the necessary information (for this model) can be

obtained to estimate the true eigenvector entries at the interface, at least

for the deflection degrees of freedom. This procedure was checked to

assess the accuracy of the eigenvectors as determined by Appendix C; these

corrections were not incorporated into the present analysis. Significant

improvements in the prediction of higher coupled structure frequencies

would be expected. Unfortunately neither rotation nor moment were

measured or applied at the exact interface and no estimates of the

corresponding eigenvectors can be "backed out" of the available data. One

can make the assumption, however, that negligible rotation occurs

between the joint lips and the exact interface and that the "approximate"

eigenvectors already determined are nearly correct. This assumption may
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be well justified by examining the experimental mode shapes of Figures 3-

24 and 3-25.

4.5 Problems in Repeatability

The results of the component mode synthesis prediction of Figure

4-6 were extremely encouraging. A second set of FRF measurements was

obtained of the coupled structure using a new stinger which did not

interfere with the first mode. Unfortunately, the coupled structure had

been separated and reassembled since the time of the initial

measurements of Figures 3-19. Figure 4-9 displays a comparison of the

new FRF with the CMS prediction in the range 5-500 Hertz. The new two-

component FRF, while displaying a "healthy" first mode clear of stinger

corruption, is now in some disagreement with the CMS prediction.

Two explanations are offered. A likely cause of the error is that the

joint clamp holding the shimstock had loosened, resulting in a joint that

was less stiff. In addition, the components were reconnected in a fashion

that left more space between the joint assemblies. This produced a longer

coupled beam and lower natural frequencies. These events place a limit

on the accuracy of this study. Accordingly, the use of FRFs from the

"reassembled" beam was limited to the determination of joint rotation in

Chapter 5, and were used only as a basis of comparison in the nonlinear

measurements of Chapter 6.
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Figure 4-9: Comparison of CMS Prediction to Two-
Component Structure After Reassembly.

The coupled structure was separated and reassembled; the natural
frequencies of the resulting structure are lower and in error with the

CMS prediction.
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Figure 4-10: Sensitivity of CMS Results to Errors in the
Rigid Body Modes (Two-Component Structure).

The rigid body modal residues were all multiplied by 2.5 in order to
simulate a structure with less inertia, corresponding to a 58% error
in each rigid body eigenvector. The true measurement is shown for

comparison.
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The task of accurately predicting low frequency modes of the

coupled structure has been difficult, and it was desired to assess what

impact the magnitudes of the rigid body modes had in this region. Figure

4-10 shows the attempt to modify the rigid body modes in order to place

the first predicted superstructure mode at the measured modal frequency.

It turns out that a 58% change in rigid body modal vector magnitude was

required, but that in the process all higher modes were inaccurately

predicted. It is unlikely that a simple scaling error on the load cell is

responsible for the observed discrepancies, and further investigation is

needed.
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Chapter 5

Introduction of Joint Freeplay Into Coupled Structure

This chapter presents the effects on the measured transfer function

of the coupled structure when a gap nonlinearity is introduced into the

coupling joint. These results will remain case-specific unless a

generalization can be made about the size of the gap relative to the

relevant deflections and geometry of the structure. Before the transfer

function results are presented, therefor, it is worthwhile to review

relevant experimental work in the literature and to develop a

nondimensional parameter that references the gap size to the local linear

rotational deformation near the joint.

5.1 Relevant Experimental Work in the Literature

Structural nonlinearity is usually something to avoid when

conducting modal tests. Amplitude scaling, superposition, single valued

solutions--all these "linear" assumptions are violated by a nonlinear

system. Since modal analysis is based on these linear assumptions, even

small amounts of nonlinearity can corrupt transfer function

measurements. The questions become: is nonlinearity present in the test

specimen, and is it "small" enough to ignore given the linear

assumptions?
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Unfortunately almost all structures and systems exhibit some

nonlinear behavior outside of some "linear" range, usually defined by

assumptions of small displacements about some operating or reference

point. Some work has been done in the modal analysis of nonlinear

systems, but it has chiefly involved identifying the presence of

nonlinearity from the test data and then taking steps to avoid it. Busby et.

al.32 presents a good review of current work regarding modal analysis of

nonlinear systems. Of course, many experimental studies of nonlinear

systems tend to be case-specific by their very nature; however some

analytical studies of simple mass-spring systems with deadband or

clearance nonlinearity have been conducted 33,34 that demonstrate the

attenuation, multiple solution, and frequency shift phenomena observed

in this thesis. Averaging and describing function techniques are also

available for the linearization of simple nonlinear models, and have

been implemented in experimental and analytical case studies3 ,24,30 using

state space or spatial model analysis. Relevant papers of analytical and

experimental studies of nonlinear systems are presented in the

bibliography.

5.2 Development of Non-Dimensional Deadband

The chosen non-dimensionalization of the joint is a ratio of the

joint rotation (due to deadband) to the local rotational deformation near

the linear joint. If this parameter is small, the structure could be assumed

to be quasi-linear; that is, the structural deflections are due almost entirely

to linear flexibility. If the nonlinear deflection size were known to be of
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the same magnitude as the local deflection of the linear structure, then it

might be assumed that the structure would not behave linearly at all.

Linear, rather than nonlinear, joint rotation was chosen as a reference

because this quantity was relatively easy to measure, and only needed to be

measured once. The local rotation near the nonlinear joint may be

significantly different and difficult to measure.

In Figure 3-9 the measured load deflection curve of the nonlinear

beam joint assembly was presented. No hysteresis was observed, and the

slopes of the saturated portions of the load deflection curve appeared

reasonably linear. The general model of the joint with deadband is

presented in Figures 5-1(a) and (b). Note that as the points (q) and (s) are

brought closer to the actual interface point (o), the flexibility of the beam is

removed and the slope m of the moment-rotation curve approaches the

limit set by the steel compression bolts and the steel shimstock. In practice

the joint deadband was measured by saturating the joint against each lip

and measuring the deflection change with a micrometer.

The local rotational deflection near the linear joint is measured as

shown in Figure 5-2. Forcing is applied to the structure in the same

manner as for the nonlinear tests--broadband random excitation at point

(m). Transfer functions between ul-4 and fm were measured; a third-order

polynomial was fit to these measurements to determine the transfer

function relating joint curvature 0' to force excitation fm.
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Figure 5-1(b)
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Figure 5-1: Convention Used to Define Joint Deadband.
As points (q) and (s) move towards interface point (o), the slope m changes.

Thus the stiffness of the joint depends somewhat arbitrarily on the distance
"d" chosen as the joint length.
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Load Cell

I1 '1
Accelerometers

u2 u3

Figure 5-2: Sensor Placement for Measurement of Joint
Rotation.

Structure is excited by burst random force at point (m).

In order to calculate the desired magnitude of joint curvature, and

hence rotation, the 0'/fm transfer function needs to be scaled by the

appropriate force level used in each test. Accordingly, the averaged force

time histories were recorded in each test of the linear and nonlinear

structures and were used to calculate the discrete Fourier transform (DFT)

of the force given by

N-1 _ - k)

X(k) = x(i) exp[N k = 0,1,2,...,N-1 (5-1)
i=0

where N is the number of time points, x(i) is value at time index i, and

X(k) is the spectral value at frequency index k. The frequency resolution is

given by Ao0 = 2n/T, where T is the length of the time record. For the case

study N=4096, T=1.6 sec, and Ao= 0.625 Hertz or 3.93 sec-1. The value X(k)

can be interpreted as the random complex amplitude of the measured

force time signal with frequency k*Aon. Joint curvature is scaled by the
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magnitude of the force DFT at each frequency point; approximate joint

rotation is determined by the product of the curvature 0' and the chosen

distance d.

Linear joint rotation is assumed to be a linear function of forcing

amplitude. A reference forcing level is chosen to be that presented

previously in Figure 3-12, for which the rms value of the force is

approximately 0.7 Newtons. This reference level will hereafter be referred

to as Fo. Figure 5-3 shows the magnitude of joint rotation calculated using

the reference force level. This spectral representation of joint rotation, in

effect a DFT, needs to be scaled to reflect the actual forcing level F of any

individual test. Table 5-1 lists the reference values of linear joint rotation

calculated from Figure 5-3. Note in Figure 5-3 that at the frequencies

pertaining to the even modes--44, 143, and 306 Hertz--the rotation is nearly

zero. This of course is consistent with the measured even mode shapes,

for which a point of inflection exists at the joint interface.

Table 5-1: Linear Rotational Deformation Near Joint
Calculated with Reference Force Level Fo.

Mode Toint Rotation (radians)

1 .005
3 .0026
5 .0006
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The joint nondimensionalization is proposed to be

8

ed
(5-2)

and is a function of gap size, forcing amplitude and mode number. The

denominator represents the rotational deformation across the joint of the

linear structure, and is interpreted as a peak sine amplitude. The value is

taken from Table 5-1 and is scaled according to the force level F/Fo. For a

given gap size and forcing amplitude, a different 8e* is calculated for each

mode.
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5.3 Effect of Gap Size on Measurement of Frequency Response Function

Various amounts of joint rotational freeplay 8e are introduced by

loosening the bolts between the lips of the joint, and are measured by

saturating the deadband and measuring the deflection change of the joint

lips with a micrometer. Special care was taken to back each of the bolts off

by the same distance, although this was difficult to enforce rigorously. The

frequency response of the superstructure with loose joints is then

measured, subject to burst random force excitation at point (m) with a

normalized force level F/Fo of 1.7 The forcing amplitude is kept constant

for all the tests shown in Figures 5-4 and 5-5.

The requirement that the structure be linear for modal test methods

to be applicable is waived for the purpose of identifying the effect of

deadband on FRF measurement. One result of using burst random

excitation is that the measured FRFs will appear noisy, due to the effect

that the deadband has on the measured power spectral densities and

calculation of the transfer function, as shown in Eq. (3-8). However,

Goyder 29 has shown that one advantage of testing by random excitation is

that the resulting FRFs may be interpreted as the approximate linear

response of the nonlinear structure, free of discontinuous jump

phenomena. Another advantage to this mode of testing is the short time

duration of tests.

The accuracy of the random test was confirmed by testing the

structure using sine sweep excitation. This measured transfer function

agreed well with the former--for those modes that were not affected by the
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gap nonlinearity, there was a close match in the shape and magnitudes of

the FRF. However, those modes that appeared excessively noisy in the

random test exhibited typical jump behavior during the sine sweep,

though the general response amplitude and mode location were

approximately the same as in the random tests.

Several interesting effects can be seen in Figure 5-4. Firstly, the

destruction of the FRF due to the gap occurs first at high modes, while the

lower modes appear unaffected and still "linear". The destruction

advances down in frequency as the gap size increases. The high frequency

effect is understandable, since the rotational deflection of the high modes

across the joint is less, and thus the joint nonlinearity will be saturated

less of the time. Hunterl 5 demonstrated a similar destructive effect on

inertance measurements for a four DOF mass spring model. Secondly, the

modes appear to be more highly damped, not a surprising result given

that significant rattling was heard during the testing, and that the

spectrum analyzer has a difficult time constructing a transfer function

from noisy and nonlinear data. Thirdly, the mode peaks shift lower in

frequency--an effect observed previously in other analytical and

experimental studies35, 36. However, only the odd modes gain damping

and shift in frequency, since the odd mode shapes have an antinode of

rotation at the joint and thus excite the deadband. These are the same

modes that demonstrate the typical jump phenomena in the sine sweep

test. The even mode shapes have a rotational node point at the joint; here

the components are coupled only by shear force. These mode shapes do

not excite the deadband and therefor the modes are not affected

significantly, except when the noise from the other modes becomes
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excessive and interferes at the even mode frequencies. This dependance

on mode shape is consistent with the experimental results of Bohlen and

Gaul24. Lastly, when the deadband is very large, the FRF resembles noise--

a result of a severe breakdown in the assumption of linearity and the

superposition principle. Modal analysis is not defined in this regime of

structural response.

Figure 5-4b shows a comparison between the linear FRF, a highly

nonlinear FRF, and the predicted linear FRF for two components coupled

by pinned coupling. The modes of the nonlinear structure, coupled with a

less stiff joint due to deadband, appear to shifting to those of the pinned

joint FRF.

Figures 5-6 and 5-7 display the same information as Figures 5-4a and

5-5, but represent the information in a three-dimensional perspective.

Shown are the modes 2, 3, and 4; mode 3 is the only one of the three to

have an antinode of rotation at the joint. Accordingly, it is this mode that

clearly demonstrates a shift to lower frequency and a decrease in

amplitude, as well as in modal resolution, as the size of the deadband

increases. The phase plot shows a measured increase in damping for

mode three as a function of gap size.

5.4 Effect of Excitation Amplitude on FRF Measurement

The "dual" of the last series of measurements, in which gap size is

varied at a constant excitation level, is to maintain the gap size and force
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Figure 5-4: Effect of Gap Size on FRF Magnitude
Measurement--Two Component Strucuture.

The superstructure inertances are shown for increasing sizes of
deadband in the joint; a constant force level of F/Fo = 1.7 was used

for each of these measurements.
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Figure 5-4 (b)
The structure with large joint deadband is compared to the linear

structure (clamped joint) to the CMS prediction of the structure
connected by pinned joint.
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Figure 5-5: Effect of Gap Size on FRF Phase
Measurement--Two Component Structure.

The superstructure inertances (corresponding to Figure 5-4) for
increasing sizes of deadband in the joint; a constant force level of

F/Fo = 1.7 was used for each measurement.
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Figure 5-6: Perspective View of Effect of Gap Size on
FRF Magnitude Measurement--Two Components.

Modes 2,3, and 4 are shown for increasing values of gap size in the
joint (into the page). Only mode 3 has bending coupling at the joint,

and only mode 3 displays attenuation and frequency shift.
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Figure 5-7: Perspective View of Effect of Gap Size on
FRF Phase Measurement--Two Components.

Modes 2, 3, and 4 are shown for increasing values of gap size (into
the page). Mode 3 displays corruption and increase in damping.
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the structure at different force levels. Similar effects should be observed,

and if the nondimensional parameter has been chosen correctly, the shifts

in natural frequency should correlate for similar values of 8e*. All force

levels are referenced to Fo given by Figure 3-12.

Figure 5-8 shows the effect that various levels of forcing have on

the measured transfer function, for a gap size (.00095 radians) that is

"moderate" by comparison to those of Figure 5-4. One immediate

observation is that despite rather high levels of forcing, the smooth linear

transfer function is not recovered at all--symptoms that the gap still

corrupts the calculation of the transfer function. Otherwise, for decreasing

levels of excitation the odd modes do shift lower in frequency, become

more highly damped and generally less defined. This effect is again more

pronounced at high frequency. In all of these measurements, the joint gap

saturates for at least one mode, as confirmed by the extreme rattling noise

heard during testing.

A striking and unexpected result occurs at extremely low levels of

forcing--so low that the joint does not saturate at all--and is shown in the

last plot of Figure 5-8. A relatively "clean" transfer function is observed,

with even modes at the expected locations, but with odd modes at

frequencies somewhere between the clamped and pinned mode locations.

It is surmised that the structure has achieved a new linear mode of

vibration, one in which the joint, whether due to friction or a small bias

in construction, remains saturated in a new configuration. In particular,

the joint was observed to carry the bending moment through the lips on

one side (which remain saturated) and the shimstock in the "center" of
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Figure 5-8: Effect of Gap Size on FRF Magnitude
Measurement at Different Forcing Amplitudes.

A constant gap size of .0095 radians was used at different forcing
levels, each referenced to Fo of Figure 3-12.
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the joint. If the neutral axis of the beam were slightly biased towards this

half of the joint, the observed behavior would become possible. Certainly

this observation is strictly case-specific, but should serve as a warning that

unusual effects may occur when testing "sloppy" joints at low amplitude.

5.5 Effect of Gap Size on Accuracy of Component Mode Synthesis

The effect of this deadband on the accuracy of the component mode

synthesis prediction is now investigated, since the coupling procedure

assumed a linear, fully compatible joint. The compatibility of Eq. (4-4) is

known to be in error in the presence of joint deadband, in which case 80a

does not equal -0o b. Force equilibrium, given by Eq. (4-5), still holds.

Figure 5-9 compares the CMS prediction of Chapter 4 (dashed line) to the

measured transfer function of the coupled structure for two different sizes

of joint deadband. In general, good predictions are made of those modes

with rotation antinodes at the joint, and poor predictions are made of the

others. One suspects that an improvement in CMS could be achieved if

the joint dynamics could be accounted for in the coupling procedure, by an

averaging or describing function technique, keeping in mind the effects of

gap size, joint rotation, and the participation of modal vectors.

Assuming that the CMS prediction of Figure 4-6 is used to define

linear prediction errors E0 for the modal parameters (damping, residues,

natural frequencies), the change in error AEo can be calculated by

measuring the shift of these parameters for the nonlinear FRF

measurements. The percent error in CMS modal frequency prediction due
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Figure 5-9: Qualitative Effects of Deadband Effect on
CMS Accuracy.

The CMS prediction is compared to a coupled structure with gap in
the joint.
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to varying the gap size at constant amplitude is plotted versus

nondimensional gap size in Figure 5-10. Errors for the even modes were

very near zero and are not plotted; only modes 1 and 3 are shown. The

shift in frequency for both modes 1 and 3 are approximately the same for

similar values of s6e. The shift in natural frequencies of the nonlinear

structure, represented by the error in CMS prediction, would not increase

indefinitely--eventually the gap size would become so large that the

structure would exhibit resonances typical of a pinned joint coupling, as

shown in Figure 5-4b. These experimental results are consistent with the

analytical results of Bowden 30, who conducted an analytical study of

MDOF spring-mass systems coupled by joints of varying stiffness and

nonlinear behavior.

Plotted also in Figure 5-10 are the analytical results of Schaffer 31 for

the frequency shift of a single DOF spring-mass system with deadband.

The non-dimensional parameter used by Schaffer is the ratio of gap size to

the linear sine wave amplitude of the displacement of the mass. The

experimental results of this thesis would not necessarily be expected to

agree closely with those of Schaffer because of the somewhat arbitrary

choice of parameters to normalize the gap size by the joint rotation.

However similar trends are observed and the good agreement of the two

studies gives confidence that a reasonable normalization was chosen for

this thesis work.

Figure 5-11 shows a plot of CMS error versus non-dimensional gap

size for the cases in which forcing amplitude was varied for constant gap

size. Figures 5-10 and 5-11 are plotted together in Figure 5-12 and
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Figure 5-12: Composite Plot of CMS Modal Frequency
Estimation Error Versus Normalized Deadband.

Figures 5-11 and 5-12 are plotted together.
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unfortunately do not show good agreement. The data points should lie on

a similar curve if the non-dimensionalization was chosen correctly.

Points from the two curve are closest to one another at high values of 80';

for low values of 80* the forcing amplitude was very high for some of the

data points, allowing the possibility of other nonlinear effects or energy

dissipation. Nonlinear systems are typically difficult to normalize; a

"Reynolds Number" is unlikely to exist for this nonlinear system.

Data from mode 5 was not plotted in either Figure 5-10 or 5-11

because it did not agree at all with the other modes--it displayed a

frequency shift comparable to that of mode three in most of the FRFs for

much greater values of 80*. Table 5-1 shows that the linear joint rotation

for this mode is indeed small; given this value the value of 80* was

usually greater than one, meaning that the gap size was larger than the

maximum joint rotation for this mode. Perhaps the small frequency shift

of mode 5 is due to some energy transfer from the extreme rattling of

modes 1 and 3. The prospect of identifying effects on higher modes of a

highly nonlinear structure may be unrealistic.
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Chapter 6

Multi-Component Structures With Nonlinear Joints

In chapter 5 experimental frequency response measurements were

presented showing what effect a joint with rotational freeplay had on the

dynamics of a coupled structure consisting of two identical components.

How "nonlinear" the structure was, or how much its behavior deviated

from the linear case, depended on gap size, force amplitude and mode

shape. The more interesting case, however, is how such a joint or several

such joints affect the dynamics of a multi-component structure. While

the complete treatment of this issue is beyond the scope of this thesis, it is

worthwhile to present preliminary measurements for a three-component

structure with one and two nonlinear joints.

An experimental FRF for a linear three-component structure has

already been presented in Section 3.4.4, and is repeated for the sake of

reference in Figure 6-1. A "moderate" amount of deadband (relative to the

tests of Chapter 5) of .00095 radians was introduced into first only one

joint, and then the second. The effects that the single and compound joint

nonlinearity have on the coupled structure dynamics can be seen in

Figures 6-1. Forcing amplitude was also moderate (F/Fo = 1.7).

Effects similar to those for the two-component structure are

evident--corruption of the FRF especially at high frequency, shift in

frequency of the natural modes, and attenuation of amplitude response.

Unlike the two-component structure, all modes display these effects to
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varying degrees, since each mode has some rotational coupling at the

joint. Modes three and six are least affected since for these modes a point

of inflection exists near the joint. Matters are worsened considerably

when a deadband is added to the second joint in the structure. As the

number of components and joints increase, the nonlinear effects would be

expected to "average out" even further, since all mode shapes would excite

a number of joints that exhibit deadband nonlinearity.
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Figure 6-1: Effect of Joint Deadband on Multi-
Component Structures.

A three-component structure is shown with one and two joints
exhibiting rotational freeplay. Deadband size is .00095 rad and

forcing level is F/Fo = 1.7. First mode of the linear case is corrupted
by stinger resonances.

131

linear

one nonlinear
joint

two nonlinear
joints

50

50

40

30

20

10

0

-10

-20

60

50

40

30

20

10

0

"-10

-20



Chapter 7

Important Issues in Experimental Component Mode Synthesis

This chapter summarizes the important issues that must be

considered when undertaking component mode synthesis using

experimentally derived modal parameters. Some of these concerns have

been presented by previous authors6,7,13; these issues will now be discussed

in terms of relevance to the present experiment and to the testing of more

complicated structures, such as components of large space structures.

7.1 Linear Component Mode Synthesis

Choice of Coupling Components

The coupling coordinates are those degrees of freedom for which

compatibility is enforced when analytically coupling the component

frequency response functions. In this study both deflection and rotation

were required for the coupling of the beam structures; coupling of only

deflection at the interface (an equivalent pinned joint) produced a very

different FRF as shown in Figure 4-7. Naturally these points and degrees

of freedom occur along component interfaces--no measurement of

interior degrees of freedom is required unless one is interested in response

at some point other than the interface. The identification of coupling

coordinates for the bay of a three-dimensional truss would be a more

significant task, since joints may be coupled in six or more degrees of

freedom. In addition, there would be many joints at the interface.
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Rotational coupling is less important for structures that are coupled at

many degrees of freedom, but it remains to be seen how important the

rotational terms are for a truss-like structure. It may be that the rotational

terms are unimportant, which would greatly simplify the measurement

requirements. Clearly some experimental work is required in this area.

Measurement of the Necessary FRFs

Once the coupling coordinates have been identified, the "hard

work" begins--the measurement of the frequency response functions at

these points in order to determine the complete FRF matrix defined by

these coordinates. In other words, the system modal frequencies and

damping must be measured, along with the appropriate modal constants

from (which the eigenvectors are determined) at each degree of freedom

used in coupling. Theoretical CMS requires that the exact interface

inertances (or mobilities or receptances) be measured, a very difficult task

in practice. Approximate quantities can be measured, since there is

usually a discrepancy in distance between sensor or load application and

the true interface coordinate. The measured modal constants and

calculated eigenvector estimates will thus be in error, a problem which

increases with frequency as nodes and anti-nodes become more closely

spaced and nearer to the interface.

While some simplifications can be made from the modal model to

reduce the number of required measurements (see Chapter 3), it is

typically necessary to measure a collocated force, linear deflection, and

rotational quantity (moment or rotational deflection) at an interface

coordinate. Rotational quantities are traditionally difficult to measure, as
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special hardware may be required to exert a pure moment at the interface,

and finite difference schemes are often required to calculate interface

rotation based on linear displacement measurements. In addition, the

identification of modal parameters based on modal analysis requires that

each force is applied independently; that is, only one force or moment is to

be applied to any degree of freedom during any one test. (Multi-shaker

tests are possible, but each force excitation must be uncorrelated from the

others). A stinger was used to meet this single-force requirement during

the present study, although this requirement would be more difficult to

enforce during modal testing of a truss bay. It would be feasible to

measure the required inertances of a three-dimensional truss by

conventional modal analysis techniques, but the measurement issues

discussed here would have to be considered and addressed during the

testing.

Residual Terms

The measured component dynamic modes must be augmented

with the static contributions from out of range modes--both higher and

lower--in order to accurately represent the component response. An

experimental frequency response function already includes this

information; during the development of the component modal model

these terms must be correctly identified and included. If they are omitted,

the resulting CMS prediction of superstructure frequency response will be

in error. Higher frequency residual terms can be included by analyzing the

component FRFs, or simply by measuring dynamic modes well beyond

(1.5 or 2 times) the frequency range of interest for the CMS study. The

latter technique was used with some success in the present study.
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Analytical rigid body modes (actually low frequency suspension

pendulum modes) were used to complete the component FRF models.

These modes agreed well with the low frequency residual terms from the

component FRFs. Unfortunately CMS prediction was poor in the low

frequency range, but has been successful in other studies in the literature.

The cause of this discrepancy has yet to be determined.

Necessity to Produce a Unified Modal Model

Both time domain and frequency domain CMS require a consistent

set of component modal parameters from which to predict superstructure

response. Discrepancies in the measured modal parameters--small but

significant differences in the modal frequencies, damping, and modal

constants--contribute to poor CMS prediction. The extension of CMS to

more complicated truss structures which may exhibit internal resonances

and very closely spaced modes may require the use of special software to

identify the required modal model. Experimental CMS has not yet been

applied to such structures; the accuracy of the procedure will need to be

validated for such structures in future research.

Range of Linear CMS Accuracy

Experimental CMS is very accurate in the frequency range for which

good component dynamic behavior is available. Near the "edges" of this

region accuracy is sacrificed if the correct residual terms are not correctly

included. The analytical low frequency residual corrections in the present

study are somehow in error relative to the measured dynamic modes.

Sensor calibration error may be a factor, or additional reaction forces from

the stinger could have corrupted the true FRF measurements. It is
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noteworthy that the "raw" CMS estimate for the first superstructure

modal frequency was better than that using the unified modal model--

apparently the correct residual terms were present in the measured data.

This problem may yet be corrected by a more careful analysis of the

measured data.

The most stringent constraint on CMS accuracy is the identification

of correct eigenvector entries for the true interface degrees of freedom, a

result of limitations on the placement of sensors and force application.

Errors in this step place an upper limit on the frequency range of CMS

accuracy, which may not be too much of a problem since lower frequency

superstructure modes are usually of interest. Awareness of this source of

error, and perhaps steps to correct for the error in the analysis stage, are

definitely required in any experimental CMS study.

Choice of CMS Coupling Procedure

Both time domain (using measured residual flexibilities) and

frequency domain CMS are satisfactory procedures for performing

experimental component mode synthesis. The methods are very similar

in that the same measurement information is used in both, although no

formal comparison of the techniques has been conducted to assess relative

accuracy given the same measurement base. Time domain CMS is

somewhat easier to interface to analytical finite element models.

136



7.2 Consideration of Nonlinear Issues

This thesis will certainly not be the last word on experimental

measurement of nonlinear structures, and it is recognized that each real-

world system that displays nonlinear behavior such as joint deadband will

have to be addressed individually and with new case-specific non-

dimensionalizations. Some observations will now be made regarding

CMS and modal analysis that will extend beyond the case study at hand.

Error in CMS Accuracy Due to Toint Deadband

Linear CMS has been demonstrated to accurately predict

superstructure frequency response, though not without some problems.

CMS accuracy is greatly reduced when deadband nonlinearity is present in

the coupling between components, which has the effect of relaxing or

violating the assumption of compatibility of deflection at the interface

coordinates. Even small amounts of gap can alter the coupled structure

modes (see Figures 5-4 and 5-9) which may at first inspection appear to

behave linearly. Results from this and other studies indicate that the

deviation of the actual structural response from the linear case depends on

several things: the size of the gap relative to the local linear elastic

deformations (a function of gap size, forcing amplitude and mode

number) as well as whether the degree of freedom that exhibits the gap is

important in the coupling of a particular mode (a function of mode

shape). For instance, the "even" modes of the two-component structure

did not display corruption due to the nonlinear joint because they were

coupled only in shear at the joint interface.
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These effects are evident once again in the three-component

structure with nonlinear joints. A multi-component structure including

many such joints would display a different behavior--the aforementioned

effects would be more distributed or averaged out among all the structural

modes, because a typical mode shape would likely excite several nonlinear

joints. The deviation from the linear response would be more a function

of gap size, number of joints, and forcing amplitude. Bowden 30 develops a

"joint participation factor" which attempts to describe a nonlinear jointed

structure in this fashion.

Forcing Amplitude

Wada 37 has warned of the dangers of extending models of coupled

structural behavior to cases involving extremely low levels of force

excitation--the "micro-g" level--since unusual or unmodelled effects may

occur here. Indeed, unusual effects were observed when the structure

with nonlinear joint was forced at extremely low force levels. In

particular, the structure appeared to achieve a new linear equilibrium.

While this observation is strictly case-specific, it should serve as a warning

that unexpected and unmodelled effects may occur when testing "sloppy"

joints at low amplitude.

Compensation for Nonlinear Joint Dynamics in CMS

Results from this study seem to encourage the application of

averaging or describing function techniques to account for the deadband

behavior in the joints directly in the component mode synthesis

procedure. Bowden 30 has used describing functions to approximate the

nonlinear behavior of joints in a state-space model. A proposal not
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Chapter 8

Conclusions and Recommendations for Future Work

Linear component mode synthesis has been conducted for two- and

three-component structures using experimentally determined component

frequency response functions. Superstructure natural frequencies,

damping values and response amplitudes were successfully predicted

using a consistent modal model based on the measured component FRFs,

validating work previously done in the literature. Incorporation of correct

residual terms and difficulty in measuring exact interface inertances,

resulting in incorrect eigenvector estimates, were identified as likely

sources of error to be encountered in experimental component mode

synthesis. Since joints are usually located at component interface, they

may contribute to errors in CMS because their geometry can prohibit

accurate measurement of the necessary interface dynamics. Rotational

freeplay introduced in the joint between components resulted in

significant shifts in coupled structure response and hence error in linear

CMS prediction; these effects were discussed in terms of a non-

dimensional gap size referenced to the local linear rotational deformation

near the joint. The effect of deadband nonlinearity on the measured

frequency response was also demonstrated. Modification of compatibility

conditions by an appropriate describing function may be an avenue worth

pursuing in order to account for nonlinear joint behavior directly in the

component mode synthesis procedure.
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Significant amounts of work can be done to extend the

experimental component mode synthesis procedure from the analysis of

"clean" laboratory structures to more realistic flight structures.

Accordingly, it is appropriate to suggest several possible areas worthy of

exploration in component mode synthesis:

1) extension of experimental CMS to truss-like structures
characterized by closely spaced modes and multiple degree-of-
freedom coupling.

2) further work is needed in the present study to address the low-
frequency error in CMS prediction, and to determine the
sensitivity of the predicted first modal frequency to changes in
various parameters in the modal model.

3) the proposed "corrections" on the estimated eigenvectors should
be carried out in order to assess the possible improvement in
accuracy of the high-frequency mode predictions.

4) describing functions could be used to account for the nonlinear
joint stiffness or compatibility conditions directly in the CMS
procedure.

5) other types of nonlinearity--cubic stiffening, hysteresis--could be
introduced into the coupling joint in order to assess CMS
accuracy.

140



References

1. Ashley, H, "Some Considerations on Earthbound Dynamic Testing of Large Space
Structures", AIAA Paper # 86-0908.

2. Card, M. F., Anderson, M. S., Walz, J. E., "Dynamic Response of a Flexible Space
Beam", NASA Technical Memorandum 86441, May 1985.

3. Crawley, E. F., and O'Donnell, K. J., "A Procedure for Calculating the Damping in
Multi-Element Space Structures", Acta Astronautica, Vol. 15, No. 12, 1987, pp. 987-996.

4. Ikegami, R., Church, S. M., Keinholz, D. A., and Fowler, B. L., "Experimental
Characterization of Deployable Trusses and Joints", Structural Dynamics and Control
Interaction of Flexible Structures, NASA Conference Publication 2467, April 1986, pp.
1271-1287.

5. Craig, R.R., "A Review of Time-Domain and Frequency-Domain Component Mode
Synthesis Method", Combined Experimental Analytical Modeling of Dynamic
Structural Systems, ASME, AMD-Vol. 67, June 1985, pp. 1-30.

6. Ewins, D. J., "Modal Test Requirements for Coupled Structure Analysis Using
Experimentally-Derived Component Models", Combined Experimental Analytical
Modeling of Dynamic Structural Systems, ASME, AMD-Vol.67, June 1985, pp. 31-47.

7. Martinez, D.R., Came, T. G., and Miller, A. K., "Combined Experimental/Analytical
Modeling Using Component Mode Synthesis", AIAA/ASME/ASCE/AHS 25th
Structures, Structural Dynamics, & Materials Conference, May 1984, pp. 140-152.

8. Brassard, J., and Massoud, M., "Identification of a Complete Mobility Matrix of a
Synthesized System From Component Mobility Measurements", Proceedings of 5th
International Modal Analysis Conference, April 1987, pp. 319-323.

9. Ewins, D.J., and Sainsbury, M.G. "Mobility Measurements for the Vibration Analysis of
Connected Structures." Shock and Vibration Bulletin 42, No. 1, January 1972, pp. 105-
122.

10. Ewins, D. J., and Gleeson, P.T., "Experimental Determination of Multidirectional
Mobility Data for Beams", Shock and Vibration Bulletin 45, #5, June 1975, pp.153-174 .

11. MacNeal, R. H., "A Hybrid Method of Component Mode Synthesis." Computers and
Structures, Vol. 1, No. 4, Dec. 1971, pp. 581-601.

12. Bathe, K-J. "Finite Element Procedures in Engineering Analysis." Englewood Cliffs:
Prentice-Hall, Inc., 1982.

13. Ewins, D. J., Modal Testing: Theory and Practice. New York: Research Studies Press
Ltd., 1984.

14. Hurty, W.P. "Dynamic Analysis of Structural Systems using Component Modes." AIAA
Journal, Vol. 3, No. 4, April 1965, pp. 678-685.

141



15. Craig, R.R., and Bampton, M.C.C. "Coupling of Substructures for Dynamic Analysis."
AIAA Journal, Vol. 6, No. 7, July 1968, pp. 1313-1319.

16. Rubin, S., "Improved Component-Mode Representation for Structural Dynamic
Analysis." AIAA Journal, Vol. 13, No. 8, August 1975, pp. 995-1006.

17. Craig, R.R. Jr., and Chang, C-J., "On the Use of Attachment Modes in Substructure
Coupling for Dynamic Analysis," Proceedings of the AIAA/ASME 18th Structures,
Structural Dynamics and Materials Conference, Vol. B, 1977, pp. 89-99.

18. Benfield, W.A., and Hruda, R.F., 'Vibration Analysis of Structures by Component Mode
Substitution." AIAA Journal, Vol. 9, No.7, July 1971, pp. 1255-1261.

19. Kammer, D.C., and Baker, M., "A Comparison of the Craig-Bampton and Residual
Flexibility Methods for Component Substructure Representation."
AIAA/ASME/ASCE/AHS 26th Structures, Structural Dynamics and Materials
Conference, April 1985, pp. 699-705.

20. Craig, R.R., Bachmeyer, R,C., and Howsman, T.G., "Some Approaches to Substructure
Coupling with Damping." Proceedings of 4th International Conference on Applied
Numerical Modeling, Vol. 63, December 1984, pp. 172-177.

21. Hasselman, T.K., and Kaplan, K., "Dynamic Analyis of Large Systems by Complex
Mode Synthesis." Journal of Dynamic Systems, Measurement, and Control, Vol. 96, No.
3, September 1974, pp. 327-333.

22. Geering, H. P., "New Methods in Substructuring", AIAA/ASME/ASCE/AHS 21st
Structures, Structural Dynamics, and Materials Conference, May 1980, pp. 801-808.

23. Imregun, M., Robb D.A. and Ewins, D.J., "Structural Modification and Coupling
Dynamic Analysis Using Measured FRF Data." Proceedings fo the 5th International
Modal Analysis Conference, Vol. 2, April 1987, pp. 1136-1141.

24. Bohlen, S., and Gaul, L., "Vibrations of Structures Coupled by Nonlinear Transfer
Behaviour of Joints; A Combined Computational and Experimental Approach",
Proceedings of 5th International Modal Analysis Conference, April 1987, pp. 86-91.

25. Chen, J.C., and Hunt D.L., "Application of Multiple Input Random and
Polyreference Analysis Techniques to the Galileo Spacecraft Modal Test."
AIAA/ASME/ASCE/AHS 25th Structures, Structural Dynamics and Materials
Conference, May 1984, pp. 554-556.

26. Sarver, G., "Energy Transfer and Dissipation in Structures With Discrete
Nonlinearities". Doctoral thesis dissertation, Massachusetts Institute of Technology,
November 1987.

27. Rogers, L.C., and Richards, K.E., "Pacoss Program Overview and Status." NASA/DOD
Control/Structures Interaction Technology, NASA Conference Publication 2447, Part 1,
November 1986, pp. 85-109.

28. Crowley, S.M., Brown, D.L., and Allemeng, R.J., "The Extraction of Valid Residue
Terms using the Polyreference Technique." 3rd International Modal Analysis
Conference, 1985, pp. 80-85.

142



29. Goyder, H.G.D., "Foolproof Methods for Frequency Response Measurements", 2nd
International Conference on Recent Advances in Structural Dynamics, University of
Southhampton, England, 1984.

30. Bowden, M., and Dugundji, J., "Effects of Joint Damping and Joint Nonlinearity on the
Dynamics of Space Structures." 29th AIAA/ASME/ASCE/AHS Structures, Structural
Dynamics, and Materials Conference, April 1988, pp. 1764-1773.

31. Schaffer, S.E., and von Flotow, A. H., "Torturing Recursive Parameter Identification
Algorithms with a Gap Nonlinearity." 29th AIAA/ASME/ASCE/AHS Structures,
Structural Dynamics, and Materials Conference, April 1988, pp. 1711-1718.

32. Busby, H.R., Nopporn, C,. and Singh, R. "Experimental Modal Analysis of Non-Linear
Systems: A Feasibility Study." Journal of Sound and Vibration, 1986, pp. 415-427.

33. Tomlinson, G.R., and Lam, J. "Frequency Response Characteristics of Structures with
Single and Multiple Clearance-Type Non-Linearity." Journal of Sound and Vibration,
1984, pp. 111-125.

34. Hunter, N. F., "An Investigation of the Time History and Modal Responses of Some
Simple Linear and Nonlinear Systems", Proceedings of 3rd International Modal
Analysis Conference, Orlando, FL, 1985, pp. 410-418.

35. Mertens, M., et al., "Detection of Nonlinear Dynamic Behaviour of Mechanical
Structures", Proceedings of 4th International Modal Analysis Conference, Los Angeles,
CA, February 1986, pp.712-7 19 .

36. Coyner, J. V., and Bachtell, E. E., "Box Truss Antenna Technology Status", NASA/DOD
Control/ Structures Interaction Technology, Norfolk, VA, November 1986, pp. 717-736.

37. Wada, B. Panel discussion at the USAF/NASA Workshop on Model Determination for
Large Space Structures, Pasadena CA, March 1988.

38. Gelb, A., and Vander Velde, W.E., Multiple-Input Describing Functions and Nonlinear
System Design. New York: McGraw-Hill Inc., 1968, pp. 67-71.

143



Bibliography

Component Mode Synthesis

Allen, J.J. "Techniques for Implementing Statically Complete Component Mode
Synthesis for Forced Response." Proceedings of 5th International Modal
Analysis Conference, April 1987, pp. 42-48.

Baker, M. "Component Mode Synthesis Methods for Test-based, Rigidly Connected,
Flexible Components." AIAA/ASME/ASCE/AHS 25th Structures, Structural
Dynamics and Materials Conference, May 1984, pp. 153-163.

Benfield, W.A., and Hruda, R.F. "Vibration Analysis of Structures by Component
Mode Substitution." AIAA Journal, Vol. 9, No.7, July 1971, pp. 1255-1261.

Blackwood, G. H. "Experimental Component Mode Synthesis of Structures with
Sloppy Joints." AIAA/ASME/ASCE/AHS 29th Structures, Structural
Dynamics and Materials Conference, April 1988, pp. 1565-1575.

Brassard, J., and Massoud, M. "Identification of a Complete Mobility Matrix of a
Synthesized System from Component Mobility Measurements." Proceedings of
5th International Modal Analysis Conference, April 1987, pp. 319-323.

Charron, F., Lapierre, H., Jha, V.K., Sorocky, S.J., and Vigneron, F.R.
"Demonstration of Modal Synthesis on an Experimental Structure and its
Application to Large Spacecraft." Proceedings of Spacecraft Structures
Conference, CNES, December 1983, pp. 185-190.

Craig, R.R. "A Review of Time-Domain and Frequency-Domain Component Mode
Synthesis Method." ASCE/ASME Mechanics Conference, June 1985, Vol. 67,
pp. 1-30.

Craig, R.R. "A Study of Modal Coupling Methods." Proceedings of Spacecraft
Structures Conference, CNES, December 1985, pp. 75-80.

Craig, R.R., Bachmeyer, R,C., and Howsman, T.G. "Some Approaches to
Substructure Coupling with Damping." Proceedings of 4th International
Conference on Applied Numerical Modeling, Vol. 63, December 1984, pp. 172-
177.

Craig, -R.R., and Bampton, M.C.C. "Coupling of Substructures for Dynamic
Analysis." AIAA Journal, Vol. 6, No. 7, July 1968, pp. 1313-1319.

Craig, R.R. Jr., and Chang, C-J., "On the Use of Attachment Modes in Substructure
Coupling for Dynamic Analysis." Proceedings of the AIAA/ASME 18th
Structures, Structural Dynamics and Materials Conference, Vol. B, 1977, pp.
89-99.

Craig, R.R., and Chung, Y. "Generalized Substructure Coupling Procedure for
Damped Systems." AIAA Journal, Vol. 20, No. 3, March 1982, pp. 442-444.

144



Craig, R.R., and Zhenhua, N. "Component Mode Synthesis for Model Order
Reduction of Non-Classically-Damped Systems." Proceedings of AIAA
Guidance, Navigation, and Control Conference, August, 1987, pp. 1-10.

Crawley, E.F., and O'Donnell, W.J. "A Procedure for Calculating the Damping in
Multi-Element Space Structures." Acta Astronautica, Vol. 15, No. 12, 1987,
pp. 987-996.

Dowell, E.H. "On Some General Properties of Combined Dynamical Systems."
Journal of Applied Mechanics, Vol. 46, No. 1, March 1979, pp. 206-209.

Dowell, E.H. "Component Mode Analysis of Nonlinear and Nonconservative
Systems." Journal of Applied Mechanics, Vol. 47, No. 1, March 1980, pp. 172-
175.

Dowell, E.H. "On the Modal Approach to Structural Modification." Journal of the
American Helicopter Society, January 1984, pp. 75-77.

Ewins, D.J. "Modal Test Requirements for Coupled Structure Analysis using
Experimentally-Derived Component Models." ASCE/ASME Mechanics
Conference, June 1985, Vol. 67, pp. 31-47.

Ewins, D.J., and Gleeson, P.T. "Experimental Determination of Multidirectional
Mobility Data for Beams." Shock and Vibration Bulletin 45, No. 5, June 1975,
pp. 31-47.

Ewins, D.J., and Sainsbury, M.G. "Mobility Measurements for the Vibration
Analysis of Connected Structures." Shock and Vibration Bulletin 42, No. 1,
January 1972, pp. 105-122.

Geering, H.P. "New Methods in Substructuring." AIAA/ASME/ASCE/AHS 21st
Structures, Structural Dynamics and Materials Conference, May 1980, pp. 801-
808.

Hale, A.L. "Substructure Synthesis and its Iterative Improvement for Large
Nonconservative Vibratory Systems." AIAA Journal, Vol. 22, No. 2, February
1984, pp. 265-272.

Hasselman, T.K., and Kaplan, K. "Dynamic Analyis of Large Systems by Complex
Mode Synthesis." Journal of Dynamic Systems, Measurement, and Control,
Vol. 96, No. 3, September 1974, pp. 327-333.

Hintz, R.M. "Analytical Methods in Component Modal Synthesis." AIAA Journal,
Vol. 13, No. 8, August 1975, pp. 1007-1016.

Howsman, T.G., and Craig, R.R. "A Substructure Coupling Procedure Applicable to
General Linear Time-Invariant Dynamic Systems."
AIAA/ASME/ASCE/AHS 25th Structures, Structural Dynamics and
Materials Conference, May 1984, pp. 164-171.

Hurty, W.P. "Dynamic Analysis of Structural Systems using Component Modes."
AIAA Journal, Vol. 3, No. 4, April 1965, pp. 678-685.

145



Imregun, M. , Robb, D.A., and Ewins, D.J. "Structural Modification and Coupling
Dynamic Analysis using Measured FRF Data." Proceedings of 5th
International Modal Analysis Conference, April 1987, pp. 1136-1141.

Kammer, D.C., and Baker, M. "A Comparison of the Craig-Bampton and Residual
Flexibility Methods for Component Substructure Representation."
AIAA/ASME/ASCE/AHS 26th Structures, Structural Dynamics and
Materials Conference, April 1985, pp. 699-705.

Klein, L.R., and Dowell, E.H. "Analysis of Modal Damping by Component Modes
Method using Lagrange Multipliers." Journal of Applied Mechanics, Vol. 41,
No. 2, June 1974, pp. 527-528.

Lu, Y., and Ma, Z. "A New Method of Component Modal Synthesis with High
Accuracy Computational Efficiency Synthesis Flexibility and
Adaptability." Proceedings of 3rd International Modal Conference, January
1985, pp. 291-298.

MacNeal, R. H., "A Hybrid Method of Component Mode Synthesis." Computers
and Structures, Vol. 1, No. 4, Dec. 1971, pp. 581-601.

Martinez, D.R., Came, T.G., and Miller, A.K. "Combined Experimental/Analytical
Modeling Using Component Mode Synthesis." AIAA/ASME/ASCE/AHS
25th Structures, Structural Dynamics and Materials Conference, May 1984,
pp. 140-151.

Meirovitch, L. "Substructure Synthesis." Computational Methods in Structural
Dynamics, Maryland: Sijthoff and Noordhoff, 1980, pp. 385-409.

Meirovitch, L., and Hale, A.L. "A General Dynamic Synthesis for Structures with
Discrete Substructures." AIAA/ASME/ASCE/AHS 21st Structures, Structural
Dynamics and Materials Conference, May 1980, pp. 790-800.

Rubin, S. "Improved Component-Mode Representation for Structural Dynamic
Analysis." AIAA Journal, Vol. 13, No. 8, August 1975, pp. 995-1006.

Song-Nian, G., Wen-Jie, Y., and Jie-Sheng, J. "An Experimental Mode Synthesis
Technique." Proceedings of 5th International Modal Analysis Conference,
April 1987, pp. 1198-1206.

Tongue, B.H., and Dowell, E.H. "Component Mode Analysis of Nonlinear,
Nonconservative Systems." Journal of Applied Mechanics, Vol. 50, No. 1,
March 1983, pp. 204-209.

Xiangjun, Q. "Reduction of DOF in Component Mode Synthesis by using Inter-Force
Quasi-Compatability Constraint." Proceedings of 5th International Modal
Analysis Conference, April 1987, pp. 307-314.

Zhu, S. "Modal Synthesis of Component with Gaps." Proceedings of 4th
International Modal Analysis Conference, February 1986, pp. 264-269.

146



Modal Analysis

Allemang, R.J. "Modal Analysis: Twenty Years Back - Twenty Years Ahead."
Sound and Vibration, January 1987, pp. 10-16.

Ashley, H. "Some Considerations on Earthbound Dynamic Testing of Large Space
Structures." AIAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics
and Materials Conference, 1986, pp. 362-373.

Bathe, K-J. "Finite Element Procedures in Engineering Analysis." Englewood
Cliffs: Prentice-Hall, Inc., 1982.

Beliveau, J.G., Massoud, M., Bourassa, P., Lauzier, C., Vigneron, F., and Soucy, Y.
"Statistical Identification of the Dynamic Parameters of an Astromast from
Finite Element and Test Results Using Bayesian Sensitivity Analysis."
Proceedings of 2nd International Modal Analysis Conference, April 1984, pp.
85-95.

Berman, A., Wei, F.S., and Rao, K.V. "Improvement of Analytical Dynamic Models
using Modal Test Data." AIAA/ASME/ASCE/AHS 21st Structures,
Structural Dynamics and Materials Conference, May 1980, pp. 809-814.

Brown, D.L., Allemang, R.J., Zimmerman, R., and Mergeay, M. "Parameter
Estimation Techniques for Modal Analysis." SAE Transactions, Vol. 88, 1980,
pp. 828-846.

Card, M. F., Anderson, M. S., Walz, J. E., "Dynamic Response of a Flexible Space
Beam", NASA Technical Memorandum 86441, May 1985.

Chen, J.C. "Evaluation of Modal Testing Methods." AIAA/ASME/ASCE/AHS 25th
Structures, Structural Dynamics and Materials Conference, May 1984, pp. 561-
572.

Chen, J.C., and Hunt D.L. "Application of Multiple Input Random and
Polyreference Analysis Techniques to the Galileo Spacecraft Modal Test."
AIAA/ASME/ASCE/AHS 25th Structures, Structural Dynamics and
Materials Conference, May 1984, pp. 554-556.

Clark, M. "Multi Shaker Modal Testing using a Modified Random Excitation."
Proceedings of 3rd International Modal Analysis Conference, January 1985,
pp. 553-557.

Clifton, M.A., Hanna, D.S., and Keller, J.M. "A Multiple Shaker Stepped Sine
Data Acquisition System." 3rd International Modal Analysis Conference,
1985, pp. 367-371.

Craig, R.R, and Blair, M.A. "A Generalized Multiple-Input,Multiple-Output
Modal Parameter Estimation Algorithm." AIAA/ASME/ ASCE/AHS 25th
Structures, Structural Dynamics and Materials Conference, May 1984, pp. 469-
477.

147



Crowley, S.M., Brown, D.L., and Allemeng, R.J. "The Extraction of Valid Residue
Terms using the Polyreference Technique." 3rd International Modal Analysis
Conference, 1985, pp. 80-85.

Dossing, O. "Bruel and Kjaer: Structural Testing - Part 1-Mechanical Mobility
Measurements." April 1987, pp. 1-47.

Ewins, D. J., Modal Testing: Theory and Practice. New York: Research Studies
Press Ltd., 1984.

Ewins, D.J. "Uses and Abuses of Modal Testing." Sound and Vibration, January 1987,
pp. 32-39.

Goyder, H.G., and Harwell U.K. "Foolproof Methods for Frequency Response
Measurements." 2nd International Conference on Recent Advances in
Structural Dynamics, 1984.

Gustaveson, D.K. "Direct Parameter Identification from Frequency Response
Measurements." Proceedings of 5th International Modal Analysis Conference,
April 1987, pp. 1352-1356.

Hamma, G.A., Smith, S., and Stroud, R.C. "An Evaluation of Excitation and
Analysis Methods for Modal Testing." SAE Transactions, Vol. 85, 1976, pp.
2770-2783.

Hu, P.Y. "Response of Linear Systems to Magnitude Limited Random Excitation."
SAE Transactions, No. 69, August 1969, pp. 1-8.

Hunt, D.L., Peterson, E.L., Vold, H., and Williams,R. "Optimal Selection of
Excitation Methods for Enhanced Modal Testing." AIAA/ASME/ASCE/AHS
25th Structures, Structural Dynamics and Materials Conference, May 1984,
pp. 549-553.

Hunt, D.L., Matthews, J., and Williams, R. "An Automated Tuning and Data
Collection System for Sine Dwell Modal Testing." AIAA/ASME/ASCE/AHS
25th Structures, Structural Dynamics and Materials Conference, May 1984,
pp. 507-509.

Ibrahim, S.R. "A Review of the Domain Modal Test Methods and Applications."
Proceedings of Spacecraft Structures Conference, CNES, December 1985, pp.
205-207.

Kitagawa, M., and Kubomura, K. "Transient Load Analysis Method for Large
Linear Structures with Local Nonlinearities and its Application to Space
Shuttle Payload Analysis." AIAA/ASME/ASCE/AHS 26th Structures,
Structural Dynamics and Materials Conference, April 1985, pp. 404416.

Kuo, C.P., and Wada, B.K. "System Identification of a Truss Type Space Structure
using the Multiple Boundary Condition Test (MBCT) Method."
AIAA/ASME/ASCE/AHS 28th Structures, Structural Dynamics and
Materials Conference, 1987, pp. 172-176.

148



Rao, D.K. "Electrodynamic Interaction Between a Resonating Structure and an
Exciter." Proceedings of 5th International Modal Analysis Conference, April
1987, pp. 1142-1150.

Robson, J.D. "Researches in Random Viobration." 2nd International Conference on
Recent Advances in Structural Dynamics, 1984.

Soni, M.L., and Agrawal, B.N. "Damping Synthesis for Flexible Space Structures
using Combined Experimental and Analytical Models."
AIAA/ASME/ASCE/AHS 26th Structures, Structural Dynamics and
Materials Conference, April 1985, pp. 552-558.

Soucy, Y., and Vigneron, F.R. "Identification of Structural Properties of a
Continuous Longeron Space Mast." AIAA/ASME/ASCE/ AHS 25th
Structures, Structural Dynamics and Materials Conference, May 1984, pp. 130-
139.

Vold, H., Kundrat, J., Rocklin, G.T., and Russell, R. "A Multi-Input Modal
Estimation Algorithm for Mini-Computers." SAE Transactions, Vol. 91, 1982,
pp. 815-821.

Weaver, H.J., and Pastrnak, J.W. "Multiple Shaker Excitation using Coherent
Signals." Proceedings of 3rd International Modal Analysis Conference, 1985,
pp. 117-123.

Nonlinear Systems

Bowden, M., and Dugundji, J., "Effects of Joint Damping and Joint Nonlinearity on
the Dynamics of Space Structures." 29th AIAA/ASME/ASCE/AHS
Structures, Structural Dynamics, and Materials Conference, April 1988, pp.
1764-1773.

Bohlen, S., and Gaul, S. "Vibrations of Structures Coupled by Nonlinear Transfer
Behavior of Joints; A Combined Computational and Experimental
Approach." Proceedings of 5th International Modal Analysis Conference,
April 1987, pp. 86-91.

Busby, H.R., Nopporn, C., and Singh, R. "Experimental Modal Analysis of Non-
Linear Systems: A Feasibility Study." Journal of Sound and Vibration, July
1986, pp. 415-426.

Chapman, J.M., Shaw, F.H., and Russell, W.C. "Dynamics of Trusses having
Nonlinear Joints." NASA Conference Publication 2467, Structural Dynamics
and Control Interaction of Flexible Structures, April 1986, pp. 540-565.

Crawley, E.F., and Aubert, A.C. "Identification of Nonlinear Structural Elements
by Force-State Mapping." AIAA Journal, Vol. 24, No. 1, January 1986, pp. 155-
162.

Crawley, E.F., and O'Donnell, K.J. "Force-State Mapping Identification of
Nonlinear Joints." AIAA Journal, Vol. 25, No. 7, July 1987, pp. 1003-1010.

149



Fillod, R., Piranda , J., and Bonnecase, D. "Taking Non Linearities into Account in
Modal Analysis by Curve Fitting of Transfer Functions." Proceedings of 3rd
International Modal Analysis Conference, January 1985, pp. 88-95.

Gelb, A., and Vander Velde, W.E. Multiple-Input Describing Functions and
Nonlinear Systems. New York: McGraw-Hill Inc., 1968.

He, J., and Ewins, D.J. "A Simple Method of Interpretation for the Modal Analysis
of Nonlinear Systems." Proceedings of 5th International Modal Analysis
Conference, April 1987, pp. 626-634.

Horta, L.G., and Juang, J.N. "Identifying Approximate LInear Models for Simple
Nonlinear Sytems." J. Guidance, Vol. 9, No. 4, July-August 1986, pp.385-390.

Hunter, N.F. "An Investigation of the Time History and Modal Responses of some
Simple Linear and Nonlinear Systems." Proceedings of 3rd International
Modal Analysis Conference, 1985, pp. 410-418.

Idelsohn, S.G., and Cardona, A. "Recent Advances in Reduction Methods in Non
Linear Structural Dynamics." 2nd International Conference on Recent
Advances in Structural Dynamics, 1984.

Ikegami, R., Church, S.M., Keinholz, D.A., and Fowler, B.L. "Experimental
Characterization of Deployable Trusses and Joints." NASA Conference
Publication 2467, Structural Dynamics and Control Interaction of Flexible
Structures, April 1986, pp. 1271-1287.

Mertens, M., Van der Auweraer, H., Vanherck, P., and Snoeys, R. "Detection of
Nonlinear Dynamic Behavior of Mechanical Structures." Proceedings of 4th
International Modal Analysis Conference, February 1986, pp. 712-719.

Sarver, G., "Energy Transfer and Dissipation in Structures With Discrete
Nonlinearities". Doctoral thesis dissertation, Massachusetts Institute of
Technology, November 1987.

Schaffer, S.E., and von Flotow, A. H., "Torturing Recursive Parameter
Identification Algorithms with a Gap Nonlinearity." 29th
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials
Conference, April 1988, pp. 1711-1718.

Tomlinson, G.R., and Kirk, N.E. "Modal Analysis and Identification of Structural
Non-Linearity." 2nd International Conference on Recent Advances in
Structural Dynamics, 1984.

Tomlinson, G.R., and Lam, J. "Frequency Response Characteristics of Structures with
Single and Multiple Clearance-Type Non-Linearity." Journal of Sound and
Vibration, 1984, pp. 111-125.

Zavodney, L.D. "Can the Modal Analyst Afford to be Ignorant of Nonlinear
Vibration Phenomena?" Proceedings of 5th International Modal Analysis
Conference, April 1987, pp.154-159.

150



Appendix A
Equipment List

Item

Bruel & Kjaer Vibration
Exciter

Crown D-150A Series II
Professional Power
Amplifier

Kistler Dual Mode Amplifier

Kistler Load Cell

pC/lbf

PCB 3 Channel Structcel
Conditioner

Structcel Accelerometer

PCB Petro Wax,

Bently Nevada
Proximeter

Model/SN

Model 4809
SN368271

Model 8176
SN063726

Model 5004
SN242700

Model 9001
SN283030

Model 433A03
SN183

Model 330A
SN2350

1910
2375
2338

Model 080A24

Series 7200

Specifications

45N,101bf, Sine Peak
Frequency Range:10Hz- 20 kHz

Max. Displacement: 8mm
Max. Input Current: 5A

Dual Channel
20Hz-20kHz

80 watts per channel

Output: Voltage +/- 10 V
Current +/- 5 mA
Impedance 100 +/- 5 Ohms

Power Supply: 100-130 V
Frequency: 60 Hz

Power Consumption: 8VA

Meas. Range: 1700 lbf
Sensitivity: approx. -19

Threshold: .002 lbf
Natural Frequency: 200 kHz
CapacityL: 8 pf
Weight: .1 oz.

115v
60 Hz

Nominal Sensitivity:200mv/g
Range: 10 g
Resolution: .001 g
Frequency Range:

+/- 5% sens. deviation
1-1000 Hz

< 5% phase shift
1-500 Hz

Resonant Frequency: 3000 Hz
Transverse Sensitivity: < 2%
Weight: 2 gm

Range 5mm
Sensitivity 200 Mv/mil
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Signology
Fourier Analyzer

Model SP20

simultaneous

4 channel input
1 channel output
Sample Rate: 51.2 kHz

Bancwidth: DC to 20 kHz
Antialising Filters 78% efficient
Dynamic Range: 75 dB
Resolution: 12 bits
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Appendix B

Determination of Rigid Body Modes

Analytical rigid body modes are determined for the component in

order to complete the modal model by providing the necessary low

frequency residual terms. "Rigid body modes" are a misnomer in this

study since no such modes actually exist; they are really low-frequency (0.4

Hertz) pendulum suspension modes. However, at frequencies well above

the suspension modes, the high-frequency residual of the suspension

modes is indistinguishable from the theoretical residual due to true rigid

body modes. A simple pendulum example will demonstrate that the

pendulum stiffness is negligible at high frequeny and that the inertia term

is dominant. For a mass m suspended from a massless cable of length 1,

the linearized differential equation for the mass displacement takes the

familiar form

gmR + -mx = f (B-l)

The undamped inertance transfer function (or frequency response

function) can be written as

1 02Sm - _(B-2)

f 02
1
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where g/1l is the square of the natural frequency. For frequencies much

greater then the natural frequency (a decade or more) the inertance is very

close to the inertia term 1/m, which is the rigid body term for the mass.

Two rigid body modes exist for the component in the "free-free" test

configuration of this study--one translational and one rotational mode.

Figure B-1 illustrates the sign and notation conventions used to define

deflections and forces on the component. Forces and moments are

assumed to be applied at the beam interfaces for the purposes of

derivation, although these forces were applied at a small distance from the

very tip. Negligible increases in accuracy at low frequency are gained by

considering this discrepancy and will therefor be omitted in the present

derivation.

umr, uo,1

Length L
Mass mb
Moment of Inertia J

Figure B-i: Sign Conventions for Single Component Deflections and
Forces.

The quantities that are desired are the rigid body inertances, from which

the rigid body modes can later be determined. The inertances are used

directly in the CMS procedure to augment the dynamic response model.
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Rigid body inertances are now determined using Newtonian

mechanics. Linear acceleration of the interface points is due to both rigid

body translation and rigid body rotation

Xm = mj fm + Jm (B-3)

= fm + (B-4)

f (B-4)

m- 1 + !(B-5)

Similarly

m (B-6)
mf m 4J

Linear deflection due to moment at the interface is given by

m = MM (B-7)

and the corresponding inertances terms are

•m LS(B-8)
Mm 2J

155



xo L
Mm 2J

Interface rotation due to applied moment is given by

m= 1

Mm J

Mm J

1 '
J I

(B-9)

(B-10)

(B-11)

These residual inertance terms can be used to adjust the four FRFs of the

component modal model that are used to develop the "complete" FRF

matrix of Section 3.4.1. A similar matrix representation can be made of the

rigid body modes by enforcing reciprocity and structural symmetry (the

latter dictates that the diagonal blocks of the FRF matrix are identical).

This rigid body inertance matrix is shown in Eq. (B-12)

:m

Xo

L90_

L2
4J mb)
L
2J

4J Mb)
L
2J

L
2J

1

J

L
2J-

sym.
V/ -.

= HRBf
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This FRF matrix is constructed from the two rigid body mode shapes

H RB =  
0 1  + oP02

T  (B-14)

where the two rigid body modes of Table 4-2 are given by

01

02

0

1

- 0 -

1L

L

2

1FJ

(B-15)

(B-16)

Numerical entries are calculated from a measured beam mass of .835 kg,

length of .645 m, and a moment of inertia J = .04316 kgm2. The mass and

moment of inertia take into account masses of bolts, joint assemblies, and

sensors.
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Appendix C

Unification of Modal Model

Curve-fitting was performed on each of the four measured transfer

functions, one mode at a time, to produce estimates for natural frequency,

damping, and modal constants. It is necessary to remove inconsistencies

in this data to develop a "unified" modal model for the CMS analysis.

The "unified" values of damping and natural frequencies for each mode

were determined by taking the numerical average of the four estimates.

Corrections on the order of only a few percent, or less, were required.

The determination of unified eigenvectors is now presented.

Entries of the "complete" FRF matrix that were actually measured were

presented previously as shaded regions in Eq. (3-16), and are presented

again for reference. Note that diagonal blocks are identical and that

elements within each 2x2 block display reciprocity in accordance with the

assumptions of Chapters 3 and 4.

1,

b
13 h14

h h 23 ha4

hi. h33 h

h 41 4i h 43 h44

fo

Mo

f p

Mp

(C-1)

As shown in Chapter 3, Eq. (C-1) can be rewritten in terms of the inertance

model to reflect the modal constants Arij in the matrix, with one

denominator common to all modal constants.
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(C-2)

The four measured modal constants can be written in terms of the modal

vectors:

A = 'I (C-3a)r11 rl

A 21 = I'r2rl (C-3b)

At31 = r3~rl (C-3c)

Ar32  r3 r2 (C-3d)

Given these four curve-fit modal constants for each mode, the eigenvector

entries can be determined as

~rl = (C-4)
A

r2 r= i (C-5)
r2

Two estimates are available for third eigenvector entry; the arithmetic

mean of these two estimates is used for the unified model.
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Y 3  (C-6a)r3 X
r32

S 32  (C-6b)r3 I

Two estimates are available for the fourth eigenvector entry because

reciprocity is assumed within each 2x2 block; once again the average of the

two estimates is used in the unified model.

- Ar32  (C-7a)
r4 Tr

rl

= - 12  (C-7b)
r460
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