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Abstract

Variable dimension algorithms are a class of algorithms for computation of
fixed points. They normally start at a single point and generate a path of
simplices of varying dimension until a simplex that contains an approximation
of a fixed point is found.

This thesis analyzes, compares, and contrasts five duality models for variable
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Introduction

In 1910 the Dutch mathematician L.E.J. Brouwer proved that every

continuous map of a closed unit ball to itself has a fixed point. This started the

systematic development of fixed point theory. Today, the study of fixed points of

maps is important not just in topology, but in other areas of mathematics. For

instance, fixed point theorems are commonly used in the proofs of existence

theorems in optimization and complementarity, as well as in the theory of

differential equations.

It is only recently, however, that constructive procedures for computation of

fixed points have been developed. Variable dimension algorithms are a class of

such algorithms. They normally start at a single point and generate a path of

simplices of varying dimension until a simplex that contains an approximation

of a fixed point is found.

In this thesis we will analyze, compare, and contrast four duality models for

variable dimension fixed point algorithms. In Chapter I we will define and give

example of a primal-dual subdivided manifold. In Chapter II we will discuss the

construction of a primal-dual pseudomanifold. In Chapter III we compare these

two frameworks with each other. In Chapter IV we look at V-complexes and

H-complexes. In Chapter V we discuss the relation between a V-complex and an

H-complex with a primal-dual subdivided manifold and a primal-dual

pseudomanifold. In Chapter VI we consider the framework K, and show its

relation with a primal-dual pseudomanifold. In Chapter VII we define the

notion of an antiprism and show that it may be considered as a geometric

version of a special case of a primal-dual pseudomanifold. In Chapter VIII we

give a summary of what we covered in this thesis.
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Chapter I

Primal-Dual Submanifolds

This chapter discusses the concept of a primal-dual pair of subdivided

manifolds. This structure was developed by Kojima and Yamamoto [9] for

studying variable dimension fixed point algorithms. As is shown in [9], several

algorithms in complementarity theory, such as Lemke's algorithm [10] for

linear complementarity problem, can be interpreted in terms of this model.

We will start by reviewing some definitions that provide a basis for the

material discussed in this chapter. Next, we will study the structure of a

primal-dual submanifold, and finally remark on why this model gives rise to

variable dimension fixed point algorithms.

1.1. Definitions

A cell or a polyhedral set in some Euclidean space Rk is defined to be the

intersection of a finite number of closed half spaces. Therefore, a cell is

necessarily a convex set. The dimension of a cell C, denoted dim C, is the

dimension of the affine subspace spanned by C. A cell of dimension m is often

referred to as an m-cell.

Given a finite or a countable collection of r-cells Mo in Rk, Let M = IM0o be

the union of all the m-cells in Mo. Also, define M = {B:B is a face of C, C E M}.

The following definition of a subdivided-manifold is due to Eaves [3]:

M is called a subdivided-manifold if:



(i) IfA and B belong to M, then AnB = 0 or AnB is a common face of

both A and B.

(ii) Every (m-1)-cell of M lies in at most two cells of M.

(iii) M is locally finite, i.e., each point in Mo has a neighborhood that

intersects only a finite number of cells in M.

If M is a subdivided-manifold, then we call it a subdivision for Mo.

If M is a subdivided-manifold, then the boundary of M, denoted 8M, is defined

to be the collection of all (m-1)-cells of M which lie in exactly one m-cell of M.

dMo= jaM| is the union of all (m-1)-cells in aM.

1.2 Basic Framework: Primal-Dual Subdivided Manifolds

In this section we will examine the structure of a primal-dual pair of

subdivided manifolds.

Let P and D be a pair of subdivided-manifolds. For any positive integer m,

(P, D;d) is called a primal-dual pair of subdivided manifolds with degree m and

duality operator d:P U D -. P U D, denoted by PDM.

1. X E P, implies that Xd = 0 orXd D

1'. .Y E D, implies that yd = 0 or yd E P

2. IfZ PUD andZd # 0, then (Zd)d = Z

3. If X1 and X2 belong to P, X, is a face of X2, Xld # O and X 2d # 0, then X2d

is a face of Xd

-8-



3: IfY1 and Y2 belong to D, Y1 is a face of Y2, Y 1d f 0 and Y2d # 0, then Y2d

is a face of Y,d

4. IfZ PUDand Zd 0, then dim Z + dim Zd = m.

If (P, D; d) is a PDM, then P and D are called the primal and dual subdivided

manifolds respectively.

The following are examples of primal-dual submanifolds:

Xo Yo

P = {Xo}

P= Xo, X0 , X21

Xl d = Yo0
X 0 d = X2d = 0

= {Yo}

0= {Yo,, Y 2 }

0 d = X1
Y d = Y2d =

(P, D; d) is a PDM of degree 1.

1' . P, P,D, D are the same as in example 1.

Xl d - YO

X0d = Y1

X 2 d = 0

(P, D; d) is a PDM of degree 1.

yOd = X 1

YId = X o

Y,2d = 0

__ I _I Ib - - -"-



X1 X3 X0  X4 X2

Y,1

{X3, X4}
{Xo, xp, X 2, X 3, X X4

{Yo}f0oY Y2, Y34 Y5, Y 56 Y61

Yod

3 d

Y4d

Y1d

=Xo
= X3
= X4

= y2 d = Y5 d = Y6 =

(P, D; d) is a PDM of degree 2.

-10-
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Y2

Xod

X,3 d

X 4d

X1 d

Syo

Y3

SY4
X 2d -



Yo

Xo X 2

Y4

{Xo}
{Xo, X0, X2}

{Y3}
Yi- i = 0, ... , 61

Yod = X o

Yl d = X1

Y2d = X2

Y3d = Y4 d = Y5d = Y6d =

(P, D; d) is a PDM of degree 1.

-11-
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Xo

X1

Y5

X2 Y4

X5

P = {X6}
P = {Xi: i =0, ... , 6}

13

X d = Y.

X 6d = 0

{Y 6 }

{Y i = o}

Yid = X i

Y6 d =

(P, D; d) is a PDM of degree 1.

Consider a PDM, (P, D; d), of degree m and let

L = <P,D;d> = {YdXY:YEDandyd # 0}.

Condition (2) from the definition of a PDM states that if Y ED, the product yd X y

can also be written as XX Xd where X EP and Xd E D. Hence, L may

equivalently be defined as, L = {XX Xd: X E P and Xd # }.

-12-



From condition (4) we know that if z E P U D and zd t 0, then

dim z + dim zd = m. Furthermore, ifB = XXY is an (m-1) cell of , then any

m-cell of L that has B as its face must be of the form X X Xd or yd X Y. Therefore,

it is clear that L is a subdivided manifold of dimension m.

Recall that aL is defined to be the collection of all (m-1)-cells of L that lie in

exactly one m-cell of L. So, from the above observations it follows that the (m-1)-

cell B = X X Y, is in the boundary of L if and only if either Xd = 0 or yd = 0.

We now illustrate L and a L in each of the examples of the primal-dual pair of

submanifolds given above.

X2

Y2

- 1

D = {Y0 }

X XY1

X1 1

L = {X, x Yo}

aL = {X IxY 1, Xi Y2}

-13-
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Xo X2

P = {xo}

XI x Y2

X1 x Y2

Xi x YI

vi

Y2

YO

I

D = {Yo

X2 xY1

L= {XX Yo,XoxY 1 }

aL= {X2 Y, X xY2}

-14-
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X 1

X3

Xo

AX
P= {X3, X4}

Y3

Y 6

Y

Y,

7
X1 xY 3

Y × xY,Y YY6

Y4 x Y6

A2 14

X, x Y

Y5

L = {X0X Y0 , Y3X Y3, X Y4}

aL = {X× x Y,, X3 x Y6, X3 x Y, X4 xY ,, X4x , X2 ,X Y, XoX Y5}

-15-
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Y4

Yo Y4

Y3

Y5

D = {Y3}

V

X 1X Y0 \

Xo xY

2 xY

0o

k

X1 x Y1
!8

,/X 1X Y4

0

Y2> x T
2

L=Y2 {XY5

L= {Xo X Yo, X, XY1, X2 1Y2

aL= {X1 xY 4, X2 xY}

-16-
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Xo Y5

SX
""2 A4 3

X5  Yo
P = {X6} D = {Y6}

x0 xY0

X, X •

X, x

4 X Y4

?× Y2

Ys 5

L = {Xi  Yi: i= O,..., 5}

dL= 0

-17-
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We will end this section by showing that for any PDM (P, D; d), we can

construct a refinement of L from any refinement of P. But first we define the

refinement of a subdivided manifold.

Definition 1.1 Let M and M' be subdivisions of an m-dimensional manifold in

Rk. M is said to be a refinement of M if each m-cell in M' lies in some cell in M.

Given a refinement P* of P, note that for any k-dimensional cell X E P, the

collection P*IX = {o EP*: a E X and dim a = k} subdivides X. Therefore if we let

K = {o X Y: YED, yd # 0, a E P*1 Yd}, K will clearly be a refinement ofL.

1.3 PDM: A Model for Variable Dimension Algorithms

In [91, Kojima and Yamamoto show that a PDM provides a model for variable

dimension algorithms. We therefore, conclude our discussion of PDM's by

explaining this variable nature of PDM's.

Given a PDM (P, D; d) of degree m, Let CI and C2 be two cells in L with the

(m-1) cell, B = XX Y (XEP, YED), as their common face. Hence, C'= XX Xd and

C2 = yd X y where X and yd are in P and Xd and Y are in D.

From the definition of a PDM we note the following facts:

C1' is an m-cell, therefore dim X + dim Xd = m (1)

B is an (m-1)-cell, therefore dim X + dim Y = m-i (2)

C2 is an m-cell, therefore dim yd + dim Y = m (3)

Conditions (1) and (2) imply that dim Y = dim Xd-1. Similarly, conditions (2)

and (3) imply that dim yd = dim X + 1. Each time we move from C' to C2, we go

-18-



from X to yd in P and from Xd to Y in D. So, the dimension of the c.lls in P

increase by one, while the dimension of the cells in D decrease by one.

Notice, however, that if K is a refinement of L resulting from P*, a

refinement of P, then every m-cell of K in C' is of the form oX Xd where o~P*IX,

and every m-cell in C2 has the form tX Y where I;(P*IYd. Hence as we cross m-

cells in C', the dimension of the o's remain the same as dim X. But as we move

into a new m-cell in C2, the dimension oft-'s will equal dim yd. Since

dim yd = dim X + 1, every time we go from an m-cell of L into a new m-cell in L,

the dimension of the cells we cross in P* varies by plus one. This explains the

variable nature of PDM's.

-19-



Chapter II

Primal-Dual Pseudomanifolds

In this chapter we will examine the structure of a primal-dual

pseudomanifold. This model was introduced by Yamamoto [11], and consists of

a pair of pseudomanifolds and an operator that relates them. In contrast to the

primal-dual subdivided manifold of Kojima and Yamamoto [9], this structure is

combinatorial and not geometric, and therefore, suitable for studying

combinatorial theorems in topology. In fact, Freund [7] and Yamamoto [111

generalize Sperner lemma on a general convex polytope by using primal-dual

pseudomanifolds.

2.1 Definitions

This section is concerned with defining concepts that are central in the

development of the material covered in this chapter.

Let S = {v1, ..., vm} be a set ofm affinely independent points in R n. The

convex hull of S is called an m-dimensional simplex, or more simply an m-

simplex. If R is any subset of S consisting of k (a - k 5 m) points, then the

convex hull of R is said to be a k-dimensional or a k-face of S.

Given an m-dimensional convex set C in Rn, set K of m-simplices a together

with all their faces is said to be a triangulation of C if:

(i) C= U o,
of K

(ii) a, i E k imply ao- is a face of both a and -

-20-



(iii) If a is an (m- l)-simplex of K, a is a face of at most two m-

simplices of K.

An m-dimensional abstract simplex a consists of a set of(m + 1) points, i.e.,

a = {(v, ..., vm+l}. Any subset of a is called a face of a. A set L of abstract m-

simplices together with all their faces is called an m-pseudo manifold if and only

if each (m-1)-simplex of L is contained in at most two m-simplices in L. An m-

pseudomanifold L is finite if it consists of a finite number of m-simplices; it is

locally finite if each vertex in L is contained in a finite number of m-simplices of

L. The boundary of L denoted 8L, is the set of all simplices in L that are

contained in an (m-1)-simplex u in L, and i is a face of exactly one m-simplex in

L.

Given an m-dimensional convex set C in Rn together with a triangulation K

of C, the set K' = U {v: v is the vertex of o} is an m-pseudomanifold.
oEK

The primal-dual structure that we will discuss in the next section is based on the

pseudomanifold corresponding to a triangulation of a convex polyhedral set.

2.2 Basic Model

In this section we will define a primal-dual pseudomanifold as in Yamamoto

[11]. We will give examples of primal-dual pseudomanifolds and characterize

their boundaries.

As the concept of a partition of a pseudomanifold is used in the construction

of a primal-dual pseudomanifold, we will start by giving a precise definition of

such a partition.

-21-



Definition 2.1. A partition of an m-pseudomanifold K, is a decomposition of K

into m-pseudomanifolds such that every m-simplex of K is in exactly one of the

m-pseudomanifolds.

Let K and L be pseudomanifolds with dimensions p and d respectively. Let

P be a finite partition of K into a p-pseudomanifolds. For each k E {0, ..., p-l},

let Pk be a finite partition of U RP into k-dimensional pseudomanifolds such
PEPk+l

that if P, and P2 are in Pk+1, then P na0P 2 is also partitioned by Pk. Similarly,
A' A

we define Do, ..., Dd for L. Let

A P

P= U Pk
k=D

and

dA

D= UD
e=o

Given a set C C PUD\{0} and a positive integer n, (P, D, C, *, n) is called an n-

primal-dual pseudomanifold (abbreviated by n-pdpm) with operator (*) if:

1. P E Pk l C(D E Dk n C) where 0< k - n, implies that P * ( Dn-k.1

(D* E Pn-k-)

So, each k-pseudomanifold in C corresponds to an

(n-k-1)-pseudomanifold.

2. IfP E C and P* # 0, then (P*)* = P.

3. If P, Q E C and P c dQ, then Q* C aP*.

-22-



This condition states that (*) is inclusion reversing.

4. P E Pn- AC (D E D fn n C) implies that there is at most one Q E P n C

(RE Dn n C) such that P c aQ (DC aR).

This condition implies that any (n-1)-dimensional partition

in C is contained in the boundary of at most one n-dimensional

partition in C.

A A

Note that for fixed P and D we can obtain different pseudomanifolds by varying

C.

Examples:

1.

Poi1 p02 DoI

P = (Po' 2, P 1} D= {Do1, D0
2, D1}

C = {P0',D,}

(Pol)* = D1

A A
(P, D, C, *) is a 2-pdpm.

(Dd)* = Po1

-23-
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P and D are the same as in example 1.

C = {Po1, P1, Dol, D1}

(Po1)* = D1
(P,)* = DoI

AA
(P, D, C, *) is a 2-pdpm.

P 11 Po1 P,2 P03

Do3

D,3

P = {Po Po32, P 3 P 1 P, P 2}

C = {Po, P 1
1, P1

2 , D', D1
2 , D2}

(Pol)* = D2

(Pi' 1)* = D1I

(pi2)* _ D12

(P, D, C, *) is a 3-pdpm.

D = {Do, D0
2 , D0

3 , D11, D1
2, D1

3, D2 }

-24-
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Do1

~ --- ~-- 'L

Po2

A
P = {Polpo2 , Pl} D = {D 1

, Do2 , Do3, DI 1, D1
2 , D1

3 , D2}

C={olIpP02,1P1, D0
1, D1

1,1D1
2 1

(Po0 )* = Di
(P,)* = Doi

(Po2)* = D12

(Di1)* = Po i

(Do)* = P 1

(Di2)* = P 0
2

AA
(P, D, C, *) is a 2-pdpm.

-25-
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Po1

Po3 PO2 Do2

P13

P = {Po, Po2, P 03 P 11, P1 2, P 13, P2}

C = {Poi , P i , Do', D i , P2, D,: i= 1,...,3 }

(Pij)* = Dil-i

(p2)* = 0

AA
(P, D, C, *) is a 2-pdpm.

For any P E

D = {D0
1,D 0

2 , D0
3, D1

1, D1
2, D1

3, D2}

(Dij)* = Pil-i
(D2)* = 0

A
P A C we define

PoP* = {oa U NI P, N E P*}

Note that PoP* = P**oP ifP* 0. . With this definition we have:

(i) PoP* is an n-pseudomanifold.

-26-



(ii) a(PoP*) = (aPoP*) U (PoaP*)

A
(iii) If P, Q E P and P = Q, then PoP* and QoQ* have no n-simplices in

common.

A A
Condition (iii) implies that ifP E Pk n C and Q E P, n C (e - k), are two distinct

A
partitions in P, then PoP* and QoQ* share a common (n-1)-simplex if and only if

k=e+1 and Q C P.

Now if we define

M(PEYfCPoP*)U( PEYncP )u(DEYfCD)
P*=O P =0 D*=O

The above conditions imply that M is an n-pseudomanifold.

The boundary of M, aM, can be characterized as follows: An (n-1) simplex
A

t U y E aM if and only ift U y is an (n-1)-simplex in PoP* for some P ( Pk9

P* E be ( e= n-k-1) and one of the following conditions is satisfied:

1. k > 0, TO E P and if-u E Q C P, then Q F C.

2. e > O, y E aP* and ify ( DC aP*, then D f C.

3. k = 0, t = 0 and ifP* C_ aD, then D f C.

4. e= , y= OandifPCaQ, then Q C.

We will conclude this chapter by identifying M and aM for the examples of

primal-dual pseudomanifolds given above:

-27-



a b d c

Po0 pi Po2 Do' Di DI

P 1 -PL/
a c

M = PoloD 1

aM = { {a}, {d}, {c}, {d,a}, {d,c}, {c,a} }
(a,d} and {a,d} are of type (2)
{c,d} if of type (3).
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p

Po1 P02 Do1 Di I

M = (PoloD 1 ) U (PloDo1)

aM = { {a}, {b}, {c}, {d}, {a,d}, {d,c}, {c,b}, {a,b} }
{a,d} is of type (2)
{d,c} is of type (3)
{c,b} is of type (1)
{a,b} is of type (4).

M = (PoloD2) U (P1
1oD11) U (P,20oD 2)

aM = (P20oD 1
1) U (P1

1 oDo2) U (P 1
1 oDo0 ) U (P12oD 3) U (Po03oD 1

2) U

(PI2oDo1) U (Po0 oD 1
3) U D2

The (n-1)-simplices in P0
2oDi1 and P30oD 1

2 are of type (1). Those in P1 IoDo2

PIloDo3, p 1
2oDo3, p 1

2oDo0 and PoloD1
3 are of type (2) and the one in D2 are of type

(3).

-29-



a b c d e h /Dol

P0 p p

f

Dil~k

f

a b c d e

M = (PoloDl,) U (P1oDo') U (Po0 2oD12)

aM = { {a,f}, {f,g}, {g,h}, {h,i}, {ij}, {j,e}, {a,b}, {b,c}. {c,d}, {d,e}, {a}, {b}, {c}, {d},

{e}, {f}, {g}, {h}, {i}, {j} }

{a,f} and (ej} are of type (1)

{f,g}, {g,h}, (h,i}, {ij} are of type (3)

{a,b}, {b,c}, {c,d}, {d,e} are of type (4).

-30-
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h VP°Ie VD°3

c d
c d

Po0 3 po3 0D2 02 D01

e f

d a

c

M= U IU pJoD ,]U ý2 UD2
M=1 1=0

aM = 0.

-31-

a f



Chapter III

A Comparison of Primal-Dual Subdivided Manifolds and

Primal-Dual Pseudomanifolds

In the last two chapters we discussed the construction of primal-dual

subdivided manifolds of Kojima and Yamamoto [9] and the primal-dual

pseudomanifolds of Yamamoto [111. In this chapter, we analyze, compare, and

contrast these two models.

3.1 Review of Major Results

This section presents a review of the major results concerning primal-dual

pseudomanifolds and primal-dual subdivided manifolds.

Recall that a primal-dual pair of subdivided manifolds (PDM) of degree m

and operator d is denoted by (P, D;d) where P and D are subdivided manifolds in

a Euclidean space Rn, and d relates their faces as stated in Section 1.2. Given a

PDM (P, D;d) of degree m, we define P = {B: B is a face of C, C E P} and let

L = <PD;d> =JydxY:Y (• Tandyd # 0} = (XXXd: X E PandXd # 0}. Lis

an m-dimensional subdivided manifold. Given a refinement P* of P,

K = {oXT: Y ED and yd # 0, a belongs to the restriction of P* to yd ) is a

refinement of L.

The construction of a primal-dual pseudomanifold (pdpm) is based on two

pseudomanifold K and L of dimensions p and d respectively. We partition K(L)
A A

into pseudomanifold Pe (De) of dimension k(e), where 0 5 k 5 p (0 < e 5 d), as

specified in Section 2.2. We denote

P= Upkk
k=O
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and

d
U 6e.
e=O

CAAA A

Given a set CCPUD and an operator (*) relating the members of P and D, we call

(P, D, C, *) an m-pdpm if it satisfies the conditions given in Section 2.2. Given

an m-pdpm (P, D, C, *), the set

M = ( U PoP*)U( U P) U( U D) is an m-pseudomanifold.
EPncC PEinc DEbnC

P* "0 P*= D*=O

3.2 A Comparison Between PDM's and PDPM's

In this section we start by analyzing the primal-dual subdivided manifold

framework in Kojima and Yamamoto [9]. Then we will look at the primal-dual

pseudomanifold of Yamamoto [11] and compare its characteristics with the first

model.

Given a PDM (P, D; d) of degree m, we observe the following:

1. The structure is based on a primal and a dual subdivided manifold each

imbedded in a Euclidean space Rn.

2. The underlying polytopes for both P and D are general polytopes and not

restricted to be simplices.

3. The partitions in both subdivided manifolds P and D are restricted to be

the faces of the cells in the subdivisions.

-33-



4. IfX E P(YED) has dimension 0 <- k ` m, and if Xd # 0 (Yd = 0), then

Xd (yd) must have dimension m-k.

5. Each member of L is the cross-product of an element in P with an element

in D, therefore the structure is geometric and the resulting subdivided

manifold depend on the facet structure of P and D. Furthermore, even if P

and D are simplicial, in general L will not be simplicial. Thus there is no

way of representing L combinatorially.

6. The structure is based on subdivided manifolds and the notion of a

triangulated manifold is not used.

AA
Now let (P, D, C, *) be on m-pdpm. In comparing this model with a subdivided

manifold we see:

1. The construction of a pdpm is based on two pseudomanifolds, and

therefore free of imbedding in any Euclidean space R".

2. As in a PDM, the underlyng polytopes for both the primal and dual

pseudomanifolds (K and L) in a pdpm are not restricted to be simplices.

3. In a pdpm, the members of both P and D are not restricted to be the faces

of the subdivisions. The following example illustrates this point:
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Example:

Dl

Po Pi Po2

_ 2, x D_2

YO ' - "l

= {Po0 ,p 1,O} D = {Do1 , Do2 , D 1
1, D 1

2 , D2}

Dil and D1
2 are valid partitions.

4. As we are considering pseudomanifolds in Yamamoto [11], the structure

is combinatorial and the facet structure of the underlying subdivided

polytopes does not necessarily affect the structure of the resulting pdpm.

5. In a pdpm, if P belongs to a k-dimensional partition with P* * 0, then P*

has dimension m-k-l, i.e., 1 less than the dimension of the matched

element in a PDM.

In view of the above observations, we conclude therefore, that the pdpm

framework in Yamamoto [11] is a more general model than the subdivided

manifold framework of Kojima and Yamamoto [9].
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Chapter IV

V-Complexes and H-Complexes

The notion of a V-complex was introduced in Freund [4] [5], where it was

used to develop constructive proofs for combinatorial analogs of certain fixed

point theorems such as Sperner lemma. Later in [6], the same framework was

used to extend similar results on the simplotope which is the coss-product of

simplices.

4.1 Definitions

This section reviews the basic definitions that are necessary for the

construction of a V-complex.

Given a set of vertices K°, an abstract complex is a set of finite non-empty

subsets of K°, denoted by K, such that the following conditions are satisfied:

(i) Ifv E K°, then {v} j K,

(ii) 0 # xcy E K implies that x E K.

If in addition the set K' is finite, then K is called a finite abstract complex. Any

element of K is referred to as a(n) (abstract) simplex. Letting I " I denote

cardinality, x E K is defined to be an n-simplex if Ixj = n + 1. An abstract

complex is locally finite if each element of K0 is contained in a finite number of

simplices of K.

A complex K, is called an n -dimensional pseudo manifold or an n-

pseudomanifold (n -: 1) if each simplex of K is contained in an n-simplex of K,

and each (n-1)-simplex is contained in at most two n-simplices. For an n-
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pseudomanifold (n > 1), K, the boundary of K, denoted 8K, is defined to be the set

of simplices that are contained in an (n-1)-si•lplex which in turn is contained in

exactly one n-simplex of K.

In the case where n =0, the following definition for a 0-pseudomanifold is

given in Freund [ ]:

K is a 0-pseudomanifold if one of the following two conditions holds:

(i) K° = {(v, K = {0. {v} }.

(ii) K = {u,v}, K = {0, {(u. {v} }.

In the first case a8K = {0}, and in the latter case aK = 0 .

4.2 Construction of A V-Complex

In this section we define and give examples of a V-complex.

Let N be a finite set called the label set, and choose t to be a collection of

subsets of N such that if S and T E t, then S n T (E . Starting with a locally

finite complex K, define A( • ): t - 2 K \{0} to be a mapping from t into the set of

all non-empty subsets of K. We call K a V-complex with admissible sets and

operator A( • ) if:

1. x ( K implies that x ( A(T) for some T E-.

So, for each element x in K, there must be some T E i such that x

belongs to A(T).

2. S, T Er -implies that A(SnT) = A(S) n A(T).
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3. If T E -, then A(T) is a pseudomanifold of dimension ITI.

4. T E t, T U {j} ( t (j ET) implies that A(T) is contained in the boundary of

A(TU {j}).

Examples:

1.

A(0) A(1) A(0)

N={1}

t = { , {1} }

A(0) A(1)

N={1}

S= {0, {1} }
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A(0)

N = {1,2}

S= {0,1, {1}, {1,2} }

A(M)

N = {1,2,3}
= {0, {1}, {2}, {1,2} }

-39-
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I~r

I

I
I

I

I

I

A();

A(0)

+
I

I

------------ - .A(2)

N = {1,2}

t = {0, {1}, {2}, {1,2} }

A(1,2)

N = {1,2,}

E = {0, {1}, {2}, {3}, {1,2}, {2,3}, {1,3} }
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Definition 4.1 Given a V-complex K, for each x E K, we define Tx to be the

smallest set T where x E A(T); mathematically:

T=x nT
TEt
xEA(T)

Example:

A(2)

d

t
A(M)

A(1)

T = {0, {1}, {2}, {1,2}}

T {a} = 0
T{a,b,c} = T{b,c} = T{e,d} = {1,2}

T{a,c} = T{d} = {1}

Definition 4.2 For a V-complex K, x E K is called full is Ixl = ITxl + 1.

In the above example, {a,c} is a full simplex.

Definition 4.3 Given a V-complex K with admissible sets I and operator A(-),

for each T E t we define:

a'A = {x E aA(T): T x = T}

Again, in our example, {d} = a'A(1) and {e}, {e,d} E a'A(1,4.3 H-Complexes
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As shown in Freund [4], a V-complex K, with label set N and admissible sets

t may be lifted into a pseudomanifold, K, of dimension INI. The procedure is as

follows:

Let Q = {q, ..., qn} be a set of"artificial vertices." For each x E K, define

Qx = {qi E Q: i E N \Tx}. Then K = {x U Q: x K, Q C Qx} is the H-complex

corresponding to the V-complex K.

Examples:

1.

N={1}

t = {, {1}}

a

A(0) A(1)

N={1}

u = {0, {1}}

a bA(0) A(1)

b

A(0)

-42-
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N={1,2}
= {0, {1}, {2}}

A(2) A(0) A(1) a b c

Definition 4.4 Given an H-complex, K, the boundary of K can be character:zed

as follows:

Let S, = {yUQy: y E d'A(Ty)}

S2 = {yUQy E K: N\{i: qi E Qy1 jf t}

Then aK = S1 U S2*

The boundaries of the H-complexes in the examples above are as follows:

d'A(O) = {0},

S, = {q,}, {b} },

K = { {q}, {b} }

a'A(1) = {b}

S,=9
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a'A(O) = {0},

S, = {0}, S2 = 0

K has no boundary.

a'A(O) = {0}, a'A(1) = {c}, a'A(2) = {a},

S1 = { {a, ql}, {q , q,}, {c, q2} },

s = { {a, b}, {b,c} }

aK = { {a, q},, {q, , q}, {c, q2}, {a,b}, {b,c} }.

-44-
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Chapter V

A Comparison of V-Complex and H-Complex
With

A PDM and PDPM

The main objective of this chapter is to study the relationship between a

V-complex and a primal-dual subdivided manifold (PDM), and to give an

interpretation of the H-complex in terms of the primal-dual pseudomanifold

(pdpm).

5.1 A Comparison Between a V-Complex and a PDM

Recall from the last chapter that given a locally finite complex K, the

construction of a V-complex is based on a label set N together with a collection

of its subsets T, and a map A( • ): t - 2k\{0 } from t to the set of all non-empty

subsets of K. The sets in - and the mapping A( • ) must satisfy the conditions

listed in Section 4.2.

We begin our discussion in this section by showing that a V-complex K, with

admissible sets t and operator A( • ), cannot necessarily identify all facets of the

geometric realization of a region A(T), where T E -.

Proposition 5.1 Let P be an n-dimensional polytope. then P has at least (n + 1)

facets.

Proof: see e.g., Brondsted [2].

In view of the above fact we can prove the following proposition:
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Proposition 5.2 Suppose P is an n-dimensional polytope. Let {FI } denote the

set of all facets of P. Consider a triangulation T of P that triangulates each face

of P, and let K be the pseudomanifold corresponding to T. We can cover at most

(n) facets of P with a V-complex with admissible sets - and operator A( • ).

Proof: With no loss of generality let N = {1, ..., n} be the label set. Set To= N

and define A(To) = K. From the definition of a V-complex, we now

that for any T(u, A(T) must have dimension ITI. Furthermore, if S,

TE-, A(SnT) = A(S)nA(T). Therefore for each facet F. of P, there

must exist a subset T. of To with cardinality (n-1) such that

A(To) = F.. Since there are exactly n of these subsets, we can identify

at most n facets of P.

Q.E.D.

Since in the study of certain combinatorial theorems in topology, such as a

generalization of Sperner's lemma for a general polyhedral set, one usually

must identify all the facets, the V-complex is not an appropriate model for

studying such fixed point theorems.

With the PDM however, one can identify all facets of both the primal and the

dual polytopes. Furthermore, neither of the primal and dual subdivided

manifolds are required to be simplices, whereas in the construction of an

H-complex one considers the subsets (simplices) of the artificial set of vertices Q.

A short coming of the framework of Kojima and Yamamoto [9] is that its

construction is based on two subdivided manifolds that are imbedded in a

Euclidean space Rn. The V-complex is free of this imbedding since its structure

is combinatorial. Finally, we remark that in constructing an H-complex, each

xEA(T x) is matched with a subset of Q , Q. Note that as in the "pdpm" model,
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Q, has cardinality INI-ITxI, i.e., it is an (INI-1Tx -1)-simplex. We saw before that

this is one less than the dimension of the matched element in a PDM.

5.2 An Interpretation of an H-Complex In Terms of a PDPM

Let K be a V-complex with label set N and admissible sets t. Note that for

each TE -, A(T) is a pseudomanifold of dimension ITI. Let

[=U A(T)J U [U a'A(T)]
TEt TEt

Let Q = {(qI, ***, qNI} be an artificial set of vertices and note that Q together

with all its subsets is an (INI-1) dimensional pseudomanifold. For i= 1, ..., INI,

let i-1 be the set of all subsets of Q with cardinality i. Define

A INI-1 A
D= U Di

i=1

A
and let C= {A(T):TEt}.U) { {qiE Q: iE N\T, T E} } \ {0}. For each PEC nP let

AA
P* = {qi E Q: i E N\T}. Then (P, D, C, *, INI) is an INI-pdpm that corresponds to the

H-complex obtained from the V-complex K.
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Chapter VI

The Framework "K"

In [7] Freund gives generalizations of several combinatorial theorems such

as Scarf's Dual Sperner lemma, Sperner's lemma and a generalized Sperner

lemma on a general bounded polyhedral set. Each one of these theorems implies

the corresponding theorems on the simplex and the simplotope. In proving such

theorems, one usually needs to identify all facets of a given polytope. As we

noted in the last chapter, given an n-dimensional polytope, a V-complex can

cover at most n of its facets. hence the V-complex is not an appropriate

framework in these cases. To overcome this shortcoming of the V-complexes, a

new framework is developed in [7].

In this chapter we will define this new model and show its relationship with

the primal-dual pseudomanifold framework of Yamamoto [11].

6.1 Some Facts About Convex Polytopes

In this section we review some concepts from the theory of convex sets. This

material will be used in the development of the frameworks discussed in this

and the following chapter.

Let K be a nonempty set in Rn. The polar set K* of K is defined by

K* = ({y R: xTy - 1 for all xE K}. Note that K* is closed, convex, and contains

the origin. If in addition K is closed, convex, and contains the origin, then

(K*)* = K. Finally, if K is a compact convex set that contains the origin as an

interior point, then K* is also compact and the origin belongs to the interior of

K*.
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Given a polytope P, any polytope R is called dual to P if there exists a one-to-

one inclusion reversing correspondence between the set of faces of P and the set

of faces of R. Note that this definition implies that R is dual to P if any only if

their face lattices are anti-isomorphic. It can be shown that if P is an n-

dimensional polytope in Rn containing the origin in its interior, then the polar

set P* of P is an n-dimensional polytope dual to P (see e.g., Griinbaum [8] ). In

fact, for each face F of P, F* = {y EP*: yTF = 1} is the associated face of P*;

dim F* = n-l-dim F.

An n-dimensional polytope P is simplicial if each facet of P is a simplex. P is

called simple if each vertex of P is incident to precisely n facets. If P and R are

dual polytopes, then P is simple if and only if R is simplicial.

6.2 The Construction of K

Throughout this chapter, A and b are a given (m X n) matrix and an m-vector.

We denote the i-th row of A and i-th component of b by Ai and bi respectively.

Let P be a nonempty polytope in R n of the form P = {xE Rn: Ax : b}, where

none of the constraints are redundant. with no loss of generality assume that

the origin is an interior point of P. Consider a triangulation T of P and let K be

the pseudomanifold corresponding to T. Also, let Ko be the set of all vertices of

T, and let M = {1, ...,m} be the set of constraint row indices of A. Given a subset S

of P, the carrier of S, denoted C(S) is the set {iEM : Aix= b i for all xES}. K is

defined by

K = *{ 0:5 = , &5 C (oUC(a)), oa K}

and
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Ko = KOUM.

The boundary of K, denoted OK, is the set {j3:3 = C(x) for some xE K}. It is shown

in Freund [7] that when P is a simple polytope, R is in fact an n-dimensional

pseudomanifold.

The following example illustrates the construction of K.

b

2

ca
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6.3 The Relationship Between K and PDPM

Let P be a polytope defined as in Section 6.2, and let P* be a dual to P. In the

case where P is a simplex polytope, K may be interperred as a special case of the

primal-dual pseudomanifold.

Consider a triangulation T of P, and let K be the corresponding

pseudomanifold. Also, let T* be a triangulation of P* that does not introduce

any new vertices. Note that since P is simple, P* is a simplicial polytope, and

therefore, its faces are already triangulated. Let K* be the pseudomanifold

corresponding to T*. For each face F(G) of P(P*), let PF(DG) denote the

pseudomanifold corresponding to the restriction of T(T*) to F(G). For k = 0,..., n

define

A

Pk = F{P: F is a k-face of P}

A
Dk = {DG : G is a k-face of P*}

A n A
P= U Pk

k=O

A n A
D= U Dk

k=O

Let D be a one-to-one inclusion-reversing map from the set of faces of P to

that of P* such that for any face F of P, dim 4(F) = n-i-dim F. For each oE K, let

Fo denote the lowest dimensional face of P containing o. Note that the set of all
A A A

subsets of C(o) corresponds to D(Fo). Now if we let C = PUD\( {0}UD n) and
Adefine by (P D, C, , n) becomes a pdpm corresponding to K.

define * by (PF)* = DitF), (•, D, C, *, n) becomes a pdpm corresponding to K.
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The above analysis was predicated on the fact that P is simple. If P is not

simple there is no automatic construction of a pdpm. However, using

perturbation methods such as "pulling" the vertices, it is possible to construct

such a pdpm; see Freund [7].
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Chapter VII

Antiprisms

In [1], Broadie suggested the structure of an antiprism for obtaining

subdivisions for piecewise-linear homotopy algorithms. In this chapter, we will

define the notion of an antiprism and show that it may be considered as a

geometric version of a special case of a primal-dual pseudomanifold.

7.1 Definition of An Antiprism

Let P be an n-dimensional polytope and let R be a polytope dual to P. Let 4 be

a one-to-one inclusion reversing function relating the set of faces of P with that

of R. For a set S, we let Cony (S) denote the convex hull of S. Then

Q(P,R) = Cony {PX {1}, R X {0}} is called an antiprism if the facets of Q(P,R) are

precisely those of the form Cony {F X {1}, 4(F) X {0}}, where F is a face of P. If

Q(P,R) is an antiprism, the sets of the form

Cony {F X {1}, (F) X {0}: F is a face of P} indeed form a subdivided manifold.
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Example

Q(P,R)

Recall from the last chapter that if P contains the origin in its interior, then

P*, the polar set of P, is a polytope dual to P. Furthermore, for each face F of P,

F* = {yE p: ytF = 1} is the corresponding dual face of P*, and dim F* = n-l-dim F.

In [1], Broadie considers the polar set P*, of such a polytope P, in the

construction of an antiprism: For each face F of P let

Q(F, F*) = Cony {FX {1}, F* X {0}}, then Q(P, P*) is an antiprism if the set of

facets of Q(P, P*) is {Q(F, F*): F is a face of P}. Broadie also shows that Q(P, P*)

-54-



is an antiprism if for each face F of P, the orthogonal projection of the origin onto

the affine hull ofF belongs to the relative interior ofF.

7.2 Antiprism as a Geometric Version of a PDPM

Let P be a polytope containing the origin in its interior, and let P* be the polar

set of P. Consider triangulations T of P, and T* of P*, that do not introduce new

vertices. Let K and K* be pseudomanifolds corresponding to T and T*

respectively. For each face F(G) of P(P*), let PF (DG) denote the pseudomanifold

corresponding to the restriction of T(T*) to F(G). For k= 0, ..., n define

A

Pk {PF: F is a k-face of P}

A
Dk = {DG: G is a k-face of P*}

A n A
P = U Pk

k=O

A n A

D= U Dk
k=O

A A A
Let C = PUD\{0} and define the operator * by (PF)* = DF*. (P, D, C, *, n) is a

pdpm with no boundary.

Note that in this construction, for each face F of P, the simplices in PF are

joined with those in DF,. So each facet, Q(F, F*), of the antiprism Q(P, P*),

corresponds to the underlying polytope in a geometric realization of PFoDF*, and

therefore, an antiprism may be considered as a geometric version of this pdpm.
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Chapter VIII

Concluding Remarks

In this thesis we have looked at four duality models, namely, PDM's, pdpm's,

V-complexes and H-complexes, and antiprisms. We showed that a pdpm is a

more general model than a PDM. In comparing V-complexes with PDM's we

demonstrated that a V-complex is neither a special case nor a more general case

of a PDM. We proved, however, that an H-complex may be interpreted as a

special case of a pdpm. We looked at the framework K, and showed that if we

start with a simple polytope, then this framework becomes a special case of the

pdpm framework. Finally, we discussed the concept of an antiprism and noted

that the collection of its facets may be considered as a geometric version of a

pdpm with no boundary.
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