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ABSTRACT

Metabolic Flux Analysis (MFA) has emerged as a tool of great significance for metabolic
engineering and the analysis of human metabolic diseases. An important limitation of MFA,
as cartied out via stable isotope labeling and GC/MS measutements, is the large number of
isotopomer equations that need to be solved. This restriction reduces the ability of MFA to
fully utilize the power of multiple isotopic tracers in elucidating the physiology of complex
biological networks. Here, we present a novel framework for modeling isotopic distributions
that significantly reduces the number of system variables without any loss of information.
The elementary metabolite units (EMU) framework is based on a highly efficient
decomposition algorithm identifies the minimum amount of information needed to simulate
isotopic labeling within a reaction network using knowledge of atomic transitions occurring
in the network reactions. The developed computational and experimental methodologies

were applied to two biological systems of major industrial and medical significance.

First, we describe the analysis of metabolic fluxes in E. ¢/ in a fed-batch fermentation for
overproduction of 1,3-propanediol (PDO). A dynamic 13C-labeling expetiment was
performed and nonstationary intracellular fluxes (with confidence intervals) were determined
by fitting labeling patterns of 191 cellular amino acids and 8 external fluxes to a detailed
network model of E. co/i. We established for the first time detailed time profiles of in vivo
fluxes. Flux results confirmed the genotype of the organism and provided further insight
into the physiology of PDO overproduction in E. co/.



Second, we describe the analysis of metabolic fluxes in the pathway of gluconeogenesis in
cultured primary hepatocytes, i.e. isolated liver cells. We applied multiple 13C and 2H-labeled
tracers and measured isotopomer distributions of glucose fragments. From this
overdetermined data set we estimated net and exchange fluxes in the gluconeogenesis
pathway. We identified limitations in current methods to estimate gluconeogenesis in vivo,
and developed a novel [U-13C,2Hs]glycerol method that allows accurate analysis of
gluconeogenesis fluxes independent of the assumption of isotopic steady-state and zonation
of tracers. The developed methodologies have wide implications for in vivo studies of
glucose metabolism in Type II diabetes, and other metabolic diseases.
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Chapter 1

Introduction

1.1 Metabolic network and flux analysis

Metabolic fluxes of pathways provide a key to quantifying physiology in fields ranging from
metabolic engineering to the analysis of human metabolic diseases. Understanding the
regulation of cellular processes and intervening in these processes affords insight into
treating disease and achieving other biotechnological objectives. Living cells are complex
biological entities that are regulated at many levels, e.g. transcription, translation, protein
modification, etc. A large number of reactions, comprising a well-organized system of
enzymatic activities, accomplish the conversion of relatively simple molecules such as
glucose into a wide vatiety of small- and macromolecules. The conversion of each individual
reaction may be overseen easily, however, the result of the overall system of reactions is
often not ttivial. Identification of targets for pathway manipulation and determining the
required magnitude of biological changes requites an enhanced, quantitative understanding
of cellular metabolism and regulation. Metabolic flux analysis (MFA) has emerged as an
important tool to assess the metabolic state of living cells and to evaluate the effects of
genetic and environmental manipulations. Fluxes of metabolic pathways are considered
fundamental determinants of cell physiology and informative parameters in evaluating
cellular mechanisms, regulation and causes of disease. The key to quantifying metabolic
fluxes is to analyze biological systems as integrated and interacting networks, rather than a

set of individual components.
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1.2  Metabolite flux balancing

Tools for estimating metabolic fluxes are fundamentally different from the tools for
obtaining static measurements such as metabolite concentration and transcript levels, which
provide relatively little insight into the dynamics of cellular metabolism. Initially, metabolic
flux analysis relied solely on balancing fluxes around metabolites within an assumed network
stoichiometry. Assuming metabolic steady-state, fluxes (v) are constrained by the

stoichiometry matrix (S).
S:v=0 (1.1)

Stoichiometric constraints can be combined with the flux measurements matrix (R) that
contains a row with a unity entry for each measured external flux. The combined
stoichiometry and measurement matrices are then used to obtain the generalized solution to
the metabolite flux balancing problem by solving a set of linear equations. The solution to

this problem is given by the following expression:

_s"“‘" 0+lls‘- 1.2
v—R .Vm nuR B (1.2)

Here, ‘pinv’ denotes the pseudo inverse, and ‘null’ is the null space of the combined
stoichiometry and measurement matrix. Vector B contains the linear coefficients of the
columns that span the null space. In most practical situations, however, stoichiometric
constraints and external flux measurements did not provide enough information to estimate
all fluxes of interest in complex biological systems with reversible reactions, parallel

pathways and internal cycles. This limitation let to the development of isotopic tracer

techniques to determine fluxes.
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1.3  Estimating fluxes from stable isotope measurements

A more powerful method for flux determination in complex biological systems is based on
the use of stable isotopes. Figure 1-1 shows schematically the procedure for quantifying
metabolic fluxes from stable isotope experiments. The first two important decisions are the
choice of the isotopic tracer and the structure of the metabolic network model (steps 1 and
6). Methods for experiment design are aimed at finding the most informative tracer(s) for a
given set of stable isotope measurements using criteria from linearized statistics and
sensitivity analysis (Mollney et al., 1999). Metabolic flux studies further require some prior
knowledge of the biochemical reactions involved in the pathway of interest. The decision
which reactions and metabolites to include in the network model is still mainly driven by the
investigators’ insight into the physiology and may in some cases be somewhat arbitrary.
However, we will illustrate in Chapter 3 that proper statistical analysis of isotopomer data
can be instrumental in identifying the most likely network structure. Steps 2-4 are
expetimental in nature and require good laboratory skills. In labeling experiments, metabolic
conversion of isotopically labeled substrates generates molecules with distinct labeling
patterns (i.e. isotopomers) that can be detected by mass spectrometry (MS) and nuclear
magnetic resonance (NMR) spectroscopy (Szyperski, 1995; Des Rosiers, 2004) (step 4). In
general, the NMR technique requires expensive equipment and a fairly large amount of
sample, which limits the use of this technique to a few expert groups. On the other hand,
GC/MS analysis is a more rapid and sensitive technique that is teadily accessible to many
research labs. Raw data from both techniques needs to be further processed before it can be
used for flux determination. In both cases, data processing consists of the detection of
metabolite peaks in NMR and MS spectra and integration of peak intensities (step 5). The
isotope measurements provide many additional independent constraints for MFA.
Quantitative interpretation of the isotopomer data requites the use of large-scale
mathematical models that describe the relationship between metabolic fluxes and
isotopomer abundances (step 7). Schmidt developed an elegant method for automatically
generating the complete set of isotopomer balances for any given network using a matrix
based method (Schmidt et al., 1997), and more recently Wiechert et al. (1999) provided an

efficient method for solving these isotopomer models using the cumomer framework.
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Experimental steps Modeling steps

(1. Choose isotopic tracer, i.e.
which metabolite @  [--------- !
L and what labeling pattern

y

[ 2. Perform isotopic tracer experiment}

v 6. Set up model for the
3. Harvest biomass and pathway'of interest, i.e.  lg----------. ,
collect medium samples identify relevant

reactions and metabolites

h 4

4. Measure labeling distribution —
in cellular components and excreted 7. Set up mathematical model to
metabolites by GC-MS and/or NMR simulate isotopomer distributions
v 2
5. Analyze measured data. 8. Calculate fluxes by least-squares
Transfer data to suitable format regression, i.e. minimize deviations
and estimate measurement errors. between observed and simulated data

v

9. Evaluate goodness-of-fit | __
and calculate confidence | ......._._.!
intervals of estimated fluxes

v

[10. Report fluxes, confidence intervals]

and network structure

Figure 1-1: A schematic of metabolic flux estimation from tracer experiments. Metabolic
flux analysis is charactetized by both experimental and analytical steps. The dotted lines
indicate that MFA is an iterative process that requires reevaluation of metabolic network

assumptions and the choice of optimal tracer.
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In the forward calculation, these isotopomer models simulate a unique profile of isotopomer
abundances for given steady-state fluxes. In MFA we solve the more challenging inverse
problem, i.e. determining the cell’s flux state from measurements of isotopomer
distributions. Analytical solutions to this inverse problem are only available for very simple
systems. Therefore, fluxes in complex biological systems have to be determined by iterative
least-squares fitting procedures, where the objective is to evaluate a set of feasible fluxes that
best accounts for the observed isotopomer measurements (step 8). At convergence, the
goodness-of-fit is evaluated using statistical critetia and confidence intervals of fluxes are
determined (step 9). The final result of this whole process is a detailed flux map (with
confidence intervals) that describes the contribution of various metabolic reaction pathways
to the overall cellular metabolism. The dotted lines in Figure 1-1 illustrate that metabolic flux
analysis is an iterative process that requires constant reevaluation of metabolic network

assumptions and the choice of optimal tracer.

1.4 Previous work

A range of stable isotopes such as 13C, 2H , 1*N; and 80 can be used to trace metabolic
pathways using GC/MS and NMR measurements. Currently, methods based on carbon-13
tracing are most widely used. In this section we provide a short review of the most
important concepts currently used in metabolic tracer analysis, i.e. isotopomers, fractional

enrichments, NMR fine spectra, mass isotopomers, and cumomers.

141 Isotopomers

Positional isotopomers (ot simply isotopomers) are isomers of a metabolite that differ only
in the labeling state of their individual atoms, for example, 13C vs. 12C in carbon-labeling
studies, and 2H vs. 'H in hydrogen-labeling studies. For a metabolite comprising N atoms
that may be in one of two (labeled or unlabeled) states, 2N isotopomers ate possible. Thus, a
molecule consisting of 3 atoms can exist in 8 specific labeling states (see Figure 1-2). We can
represent the labeling patterns of isotopomers as sequences of ones and zeros that can be

interpreted as binary numbers that provide a unique way of ordering the 2V isotopomers.
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The isotopomer distribution vector (IDV) contains the molar fractions of the 2V
isotopomers. For example, the first element in the IDV contains the molfraction of the
isotopomer with labeling pattern 000, i.e. unlabeled molecule. The second element
cotresponds to labeling pattern 001, i.e. molecule with a single labeled atom at the third
position, and so forth. Note that by definition, the sum of all elements of IDV equals one. In
practice, isotopomer fractions are not measured directly. Instead, available measurements are
expressed as functions of isotopomer fractions. The two most widely used techniques for
measuring labeling distribution are nuclear magnetic resonance (NMR) spectroscopy and

mass spectrometry (MS), which are discussed next.

Isotopomers
000 A
000
m Alll)l
w Al)ll)
oo Dy =| Y IDV =1
| 00 A
[ o A,
@80 A,
000 A

Figure 1-2: Isotopomers of a 3-atom molecule. The 8 (=23) isotopomers are shown on the
left. The spheres represent labeled (full) and unlabeled (open) atoms. The isotopomer
distribution vector (IDV) contains the molfractions of all isotopomers. By definition, the

sum of all isotopomer fractions equals one.
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1.4.2 Fractional enrichments

The NMR technique detects magnetic interaction between 3C-nuclei and adjacent nuclei
with magnetic spins, e.g. 'H and adjacent 1*C nuclei. NMR analysis provides two types of
labeling information. First, one can determine the fractional abundance of 13C at a specific
carbon atom position, which is called the fractional enrichment (FE) measutement.
Determination of fractional enrichments is based on the fact that the 'H-12C interaction
gives rise to a different peak in the 'H-NMR spectrum than the 1H-13C interaction.
Fractional enrichments of individual carbon atoms can be interpreted as linear functions of
isotopomer fractions. For example, consider the fractional enrichment of the first atom of
the 3-atom molecule A, i.e. A#1, which is simply the sum of the four isotopomer fractions
for which the first atom is labeled (i.e. Ao, A101, At10, and Ann). Figure 1-3 shows the linear
relationship between fractional enrichments and isotopomer fractions. Note that the term
fractional enrichment is somewhat misleading, i.e. one doesn’t actually measure the
enrichment of 13C. The term ‘positional abundance of 3C’ would have been more

appropriate.

Fractional enrichments

n

=

Am)o
Al)l)l
Ay An  Ag A
A, 00001111 A‘"”
FE=|A,|=/0 0 1 100 1 1|{ ™
Aum
A 01010101
A
A
A

"$888
-§8%8
-$3%8

Figure 1-3: Fractional enrichments are linear functions of isotopomer fractions.
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1.4.3 NMR fine spectra

Adjacent 13C-13C nuclei influence each others NMR signal by peak splitting (a phenomenon
called J-coupling), which is observed in the 13C-NMR spectrum. Peak splitting leads to the
formation of multiple fine structures in the NMR spectrum, e.g. singlets, doublets, triplets,
doublets of doublets, etc. The telative contribution of individual multiplets to the resulting
overall multiplet pattern provides not only information on the labeling state of individual
carbon atoms of a molecule, but also detailed positional information. For example, consider
a molecule consisting of 2 carbon atoms. The 3C-multiplet peak areas can be expressed as a
nonlinear function of three isotopomer fractions. Eq. 1.3 converts 3C-multiplet peak areas

to relative areas, in this case two singlets and a doublet in the *C-NMR spectrum.

singlet 2 A
singlet1 | = | Ay |- (A +A,+A,)" (1.3)
doublet 12 A

Eq. 1.4 shows the relationships for a secondary carbon atom, where we also take into

account long range 3C-13C interactions.
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1.4.4 Mass isotopomers

Mass spectrometry (MS) is an analytical technique where molecules are separated according
to their mass to electric charge ratio, i.e. m/z ratio. Isotopomers that have incorporated the
same number of labeled atoms, called mass isotopomers, contribute to the intensity of the

same ion peak in a mass spectrum. Mass isotopomer distribution reflects the relative

amounts of each mass isotopomer (including the unlabeled fraction). Mass isotopomer

distribution (MID) can be interpreted as a linear mapping of isotopomer fractions, as is

illustrated in Figure 1-4. Note that the sum of the mass isotopomer distribution vector is by

definition one.

Mass isotopomers

AM-v-O AM*'I AM+‘.’

Ay

000

B%8
88%

Figure 1-4: Mass isotopomer abundances are linear functions of isotopomer fractions. By

definition the sum of all mass isotopomer fractions is one.

1.4.5 Cumomets
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Wiechert et. al. (1999) introduced the concept of cumomers, i.e. short for cumulative

isotopomers, as a method to simplify isotopomer simulations (see section 1.6). In essence,

cumomers are simply a linear mapping of isotopomers. For example, consider a 3-atom

molecule A. The so called 0-cumomer fraction is the sum of all isotopomer fractions, and is

therefore by definition one.
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1
AL =D A=t (1.4)
ij,k=0

Here, subscript ‘%’ has the meaning ‘0 or 7°. Using the same convention, the 1-camomer

fractions are defined as follows:

1 1 1
Alxx = Z ‘Aljk ) Axlx = Z Ailk ’ Axxl = ZAiil (15)
j»k=0 i,k=0

Thus, the 1-cumomer fractions are sums of those isotopomer fractions that are labeled at
least at the position indicated by the index 1. By this definition, 1-cumomer fractions are
identical to fractional enrichments, i.e. Ag1=A |, A#2=Axix, and Auz=A. Following the
same convention, the 2-cumomer fractions are sums of those isotopomer fractions where at

least two of the three atoms are labeled indicated by the index 1:

A=A, Ay=2Ay, A =2 A (16)

1 1
k=0 =0 i=0

Finally, the 3-cuamomer fraction A1 corresponds to the fully labeled isotopomer fraction

A
A=Ay, Q.7

Wiechert showed that there is always a linear one-to-one relationship between cumomer and
isotopomer fractions. For an N atom molecule, the transformation from its 2V isotopomer
fractions to the corresponding 2V cumomer fractions is given by the transformation matrix

T, which is constructed recursively in the following manner.

T, T,
T, =1, T =
0 T,

i-1

,fori=1,.,N (1.8)
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Thus, for a 3-atom molecule the transformation from isotopomer fractions to cumomer

fractions is given by Eq. 1.9.

AT [T 11 1)1 11 1] [Ay]
Ayl 101 0 110 1 0 1| |Ay
Ayl 1001 110 0 1 1| Ay
Ayl 000 1100 0 1| |Ay, (1.9)
Aol oo o001 1 1 1] A,
Ayl [00000f0 1 0 1] |A,,
Al 000 0{0 0 1 1| [A,
Ay, ] |0 00 0j0 00 1] [Ay]

The reverse transformation, i.e. from cumomer fractions to isotopomer fractions, is achieved
by inverting the transformation matrix. Wiechert showed that the transformation matrix of

any size is always full rank, i.e. invertible.

1.5  Simulating labeling distributions by isotopomer balancing

Here, we describe the method that is currently used for simulating labeling distributions in
reaction networks. This method was originally based isotopomer balancing, but has been
replaced more recently by cumomer balancing. Consider the simple netwotk model shown in
Figure 1-5 that consists of 4 metabolites, 3 extracellular fluxes and 3 intracellular reactions.
Here, the third reaction is considered reversible and is modeled by separate forwatd and
backward reactions. Metabolite A is the network substrate with known labeling and
metabolites C and D are the two products whose labeling pattern we would like to predict
for given fluxes. Figure 1-5 (right panel) also shows the assumed atom transitions for the
reactions in this network. Similar to metabolite balancing, we can set up matetial balances for
all 12 unknown isotopomers in this system. The complete set of isotopomer balances is

shown below.
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Reaction stoichiometry Atom transitions
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Figure 1-5: Simple metabolic network model used as example for generating isotopomer
balances. Reaction stoichiometry is shown in the left panel and the assumed atom transitions

are shown in the right panel.
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0 = vi-age + vprdoo — (Vartvz)-boo (1.102)
0 = vy-a01 + vap-dor — (vartva)-bor (1.10b)
0 = vy-aio + vap-dio — (Vartvz)-bio (1.10¢)
0 = vran + vadin — (vartva)-bn (1.10d)
0 = v2+(200'boo + a00-bot + a01-boo + a01-bor) — wa-coo (1.10e)
0 = v2-(a00'b1o + a00-b11 + 201-b1o + 201°b11) — warcm (1.101)
0 = v2:(a10-boo + a10-bor + a11-boo + a11-bor) — wa-co (1.10g)
0 = va-(aio-bio + aio-b11 + ayr-bio + a1-biy) — warenr (1.10h)
0 = vi-(a0o-boo + a00-b1o + a10-boo + a10-b1g) + varboo— (vap+ws)-doo (1.109)
0 = vi-(aoo-bor + ao'b11 + aio-bor + a10-b1r) + vaebor — (vap+ws)-dn (1.105)
0 = vi-(a01-boo + a01-b1o + a11-boo + a11-b1g) + varbio— (vap+ws)-dio (1.10k)
0 = vi-(an1-bor + aoi*bi1 + air-bor + ar-bir) + vaebi — (vab+ws)-dnr (1.100)

For given fluxes and labeling input, the isotopomer balances provide 12 nonlinear equations
in 12 unknown isotopomer fractions, which can be solved using Newton’s iterative method.
As the result we obtain the isotopomer fractions for all 12 unknown isotopomers in this

system.

1.6  Simulating labeling distributions by cumomer balancing

Wiechert et. al. (1999) recently showed that the complete set of nonlinear isotopomer
balances can be converted into a corresponding set of cumomer balances. It was shown that
cumomer balances are less strongly coupled then isotopomer balances, which allows
cumomer balances to be solved explicitly as a cascade of linear subproblem, from which the
1-, 2-, ... cumomer fractions are successively computed. The cumomer fractions are then
transformed to isotopomer fraction as described in section 1.4.5. The major difference
between cumomer and isotopomer balances is the fact that camomer balances are always
linear in the unknown variables. Thus, each subproblem can be solved using linear algebra

techniques, which significantly reduces computational time. Note, however, that the total
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size of the problem is same for both methods, i.e. there are always as many cumomer

balances as there are isotopomer balances.

1.7 Aim and outline of thesis

Our reseatch group has actively participated in the development of experimental and
computational methods for MFA based on stable isotope experiments. The first general
mathematical model for interpreting of fractional enrichments was developed by Zupke and
Stephanopoulos (1995). In the last decade MFA has reached a state of relative maturity. The
expetiments themselves have become a routine procedure, measurement techniques such as
GC/MS are widely used, and advanced mathematical procedures are available for

quantitative interpretation of stable isotope measurements.

The most important limitation of current methodology for MFA, as carried out via stable
isotope labeling and GC-MS measurements, is the large number of isotopomer/cumomer
equations that need to be solved, especially when multiple isotopic tracers are used for the
labeling of the system. This reduces the ability of MFA to fully utilize the power of multiple
isotopic tracers (i.e. 13C and 2H tracers) in elucidating the physiology of realistic situations
comprising complex bioreaction networks. As such, the realm of tracer experiments is
currently limited to carbon-13 tracers only. Therefore, the main goal of this thesis work was
the development of a novel methodology for comptehensive analysis of metabolic pathways

through the combined use of multiple isotopic tracers.

= Chapter 2 describes the novel framework for modeling isotopic disttibutions that
significantly reduces the number of system variables without any loss of
information. The elementary metabolite unit (EMU) framework is based on a highly
efficient decomposition algorithm that identifies the minimum amount of
information needed to simulate isotopic labeling within a reaction network using the
knowledge of atomic transitions occurring in the network reactions. For a typical

carbon labeling system the total number of equations that needs to be solved is
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reduced by one order-of-magnitude (100s EMUs vs. 1000s cumomers). As such, the
EMU framework is most efficient for the analysis of labeling by multiple isotopic
tracers. For example, analysis of the gluconeogenesis pathway with 2H, 3C, and 8O

tracers required only 300 EMUs compated to 3,000,000 isotopomets/cumomets.

*  Chapter 3 describes novel methodologies for flux determination and statistical
analysis that have been developed. A serious drawback of the flux estimation
method in current use is that it does not produce confidence limits for the estimated
fluxes. Without this information it is difficult to interpret flux results and expand the
physiological significance of flux studies. To address this shortcoming we derived
analytical expressions of flux sensitivities with respect to isotope measurements and
measurement errors. These tools allow determination of local statistical properties
of fluxes and relative importance of measurements. Furthermore, we developed an
efficient algorithm to determine accurate nonlinear confidence intetvals of fluxes
and demonstrated that confidence intervals obtained with this method closely

approximate true flux uncertainty.

* Chapters 4 and 5 describe experimental protocols that were developed for accurate
and precise measurement of labeling distributions by GC/MS. In the context of this
thesis work, the main focus was on accurate measurement of mass isotopomer
distributions of cellular amino acids and glucose. Based on preliminary simulations
and sensitivity analysis of realistic metabolic networks we determined that errors in
mass isotopomer abundances should be less than 0.5 mol%. The main result of our
work is a detailed procedure for the assessment of mass isotopomer distributions of
cellular amino acids and glucose with an accuracy of 0.4 mol% and precision of 0.2

mol%, ot better.

*  Chapter 6 describes analysis of metabolic fluxes in a nonstationary biological
system of with industrial relevance, i.e. microbial fed-batch fermentation of E. co4
for the overproduction of 1,3-propanediol (PDO). A drawback of current methods

tor MFA is the requirement of isotopic steady state. To address this shortcoming
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and to extend the scope of flux determination from stationary to nonstationary
systems we developed a novel modeling strategy that combines key ideas from
isotopomer spectral analysis (ISA) and stationary MFA. In this study, metabolic
fluxes wete determined at multiple time points duting a fed-batch culture, and as
such we established for the first time detailed time profiles of intracellular fluxes in a

fermentation.

= Chapters 7 and 8 describe analysis of fluxes in the gluconeogenesis pathway from
cultured primary hepatocyes, i.e. isolated liver cells. We applied multiple 3C-, and
2H-labeled tracers and analyzed the resulting mass isotopomer distributions of
glucose fragments. From this overdetermined data we estimated, for the first time,
both net and exchange fluxes in the gluconeogenesis pathway and calculated
confidence intervals for fluxes. We identified limitations in current methods to
estimate gluconeogenesis fluxes in vivo, and developed a novel multiple-tracer
method for accurate and quantitative analysis of this pathway independent of the

isotopic steady-state assumption.
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Elementary Metabolite Units (EMU):
a novel framework for modeling isotopic

distributions

2.1 Introduction

2.1.1 Metabolic flux analysis

Accurate flux determination is of great importance for the analysis of cell physiology in fields
ranging from metabolic engineering to the study of human metabolic diseases (Brunengraber
et al., 1997; Hellerstein, 2003; Stephanopoulos, 1999). Initially, metabolic flux analysis (MFA)
relied solely on balancing fluxes around metabolites within an assumed network
stoichiometry. However, stoichiomettic constraints and external flux measurements often
cannot provide enough information to estimate all fluxes of interest. A mote powerful
method for flux determination in complex biological systems is based on the use of stable
isotopes (Wiechert et al., 2001). Metabolic conversion of isotopically labeled substrates
generates molecules with distinct labeling patterns, i.e. isotope isomers (isotopomers), that
can be detected by mass spectrometry (MS) and nuclear magnetic resonance (NMR)
(Szyperski et al., 1995). Isotope measurements provide many additional independent
constraints for MFA. It has been shown that at metabolic and isotopic steady state the

isotopomer composition of metabolic intermediates is fully determined by the cell’s flux
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state and the administered isotopic label. Quantitative interpretation of isotopomer data
requires the use of mathematical models that describes the relationship between metabolic
fluxes and the observed isotopomer abundances. Similar to metabolite balancing, balances
can be set up around all isotopomers of a particular metabolite. Schmidt described an elegant
method for automatically generating the complete set of isotopomer balances using a matrix
based method (Schmidt et al., 1997). More recently, Wiechert introduced the concept of
cumulative isotopomers (cumomers) and provided and efficient procedure for solving
isotopomer models (Wiechert et al., 1999). In the forward calculation, isotopomer models
are used to simulate a unique profile of isotopomer abundances for given steady-state fluxes.
In MFA we are concetned with the more challenging inverse problem, i.e. to determine the
flux state of the cell from measurements of isotopomer distributions. Analytical solutions to
the inverse problem are only available for very simple systems. Thus, in general, fluxes in

complex biological systems will be determined by iterative least-squares fitting procedures.

2.1.2 Limitations of isotopomer modeling method

Isotopomerts are defined as isomers of a metabolite that differ only in the labeling state of
their individual atoms, for example, '3C vs. 12C in carbon-labeling studies, and 2H vs. 'H in
hydrogen-labeling studies. For a metabolite comprising N atoms that may be in one of two
(labeled or unlabeled) states, 2N isotopomers are possible. Consequently, the number of
isotopomers can increase quickly when multiple tracers are applied. Consider for example
glucose (CsH120¢). There are only 64 (=2) carbon atom isotopomers of glucose and 4096
(=2'2) hydrogen atom isotopomers, but there are 2.6x103 (=26x212) isotopomers of glucose
carbon and hydrogen atoms, and 1.9x108 (=26x212x36) isotopomers of glucose carbon,
hydrogen and oxygen atoms. Note that oxygen may be present in one of three stable forms,
i.e. 160, 170, and 180. Thus, a typical isotopomer model may contain thousands or even
millions of isotopomers for multiple isotopic tracers. The number of isotopomers may be
reduced somewhat by omitting unstable carboxyl and hydroxyl hydrogen atoms from the
model, which exchange with the solvent at rates much faster than biochemical reactions and
are also lost in chemical detivatization in preparation for GC/MS analysis. For example, if

we consider only the seven stable (i.e. carbon bound) hydrogen atoms of glucose, then there
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are 128 (=27) hydrogen atom isotopomers, 8192 (=26x27) isotopomers of glucose carbon
and hydrogen atoms, and 6x106 (=26x27x39) isotopomers of glucose catbon, hydrogen and
oxygen atoms. Thus, even with this reduction there are still too many isotopomers to
simulate labeling distributions efficiently for multiple isotopic tracers. Note that the
cumomer method suffers from the same problem, because thete ate always as many
cumomers as isotopomers, i.e. there is a one-to-one relationship between cumomers and
isotopomers (Chapter 1). As such, the realm of tracer expetiments is currently limited solely
to 13C-tracers. However, multiple isotopic tracers are more powerful in elucidating the
physiology of realistic situations comprising complex bioreaction netwotks (see Chapters 7
and 8). Therefore, the development of a methodology that extends the capability of MFA

beyond the use of a single isotopic tracer is the main goal of this work.

2.1.3 Alternative modeling methods

The isotopomer/cumomer modeling framework is a genetic top-down modeling strategy. It
provides the most detailed description of the labeling state of a system given by the
isotopomer fractions of all metabolites. However, the large number of variables generated in
this modeling approach limits its application and has driven the development of alternative
modeling methods for specific isotope measurements. For example, it is well know that
fractional enrichments of carbon atoms can be simulated efficiently using atom mapping
matrices, the method that was originally proposed by Zukpe et al. (1994). More recently, Van
Winden et al. (2002) developed the concept of bondomers that allows efficient simulation of
NMR fine spectra and MS data without the use of isotopomers. However, the bondomer
method is only valid for 3C-labeling data from experiments where a single uniformly 13C-
labeled substrate is applied. If multiple carbon soutces are present, then all substrates need
to be uniformly '3C-labeled with the same enrichment. This requirement significantly limits
the applicability of the bondomer method. As such, there is still no general method for
simulating mass isotopomer distributions in complex biological systems that avoids the use

of isotopomers/cumomers.
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2.1.4 A novel framework for modeling isotopic tracer systems

Here, we present a novel framework for modeling isotopic tracer systems that significantly
reduces the number of system variables without any loss of information. The elementary
metabolite units (EMU) framework is a bottom-up modeling approach that is based on a
highly efficient decomposition algorithm that identifies the minimum amount of information
needed to simulate isotopic labeling within a reaction network. The functional units
generated by the decomposition algorithm, called elementary metabolite units, form the new
basis for generating system equations that describe the relationship between fluxes and
isotopomer abundances. Isotopomer abundances simulated using the EMU framework are
identical to those obtained using the isotopomer and cumomer methods, howevet, require
significantly fewer vatiables. For a typical carbon labeling system the total number of
vatiables and equations that needs to be solved is reduced by one order-of-magnitude (100s
EMUs vs. 1000s isotopomers/cumomers). As such, the EMU framework is most efficient
for the analysis of labeling by multiple isotopic tracers. For example, analysis of the
gluconeogenesis pathway probed with ?H and 3C tracers required only 145 EMUs compared

to more than 4x10* isotopomers/cumomers.

2.2 Theory

2.2.1 Elementary Metabolite Units (EMU)

We define elementary metabolite units as distinct subsets of metabolite’s atoms. For
example, consider metabolite A consisting of 3 atoms. An EMU is a subset of any number
of these 3 atoms. The size of an EMU is defined as the number of atoms that are included in
the EMU. There are 7 possible EMUs for metabolite A: 3 EMUs of size 1 (A, Az, A3), 3
EMUSs of size 2 (A2, A3, Azs), and 1 EMU of size 3 (A123), where the subscript denotes the
atoms that are included in the EMU (see Figure 2-1). Note that atoms in an EMU are not
necessarily connected by chemical bonds, for example consider EMU Ajys. In general, for a

metabolite comprising N atoms 2¥-1 EMUs are possible.
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. . NN N
Theoretical maximum number of EMUs = Z Ni =2"-1 2.1)
i=1 -1

In this Chapter, we will illustrate that the EMU framework can be used for simulation of
isotopic labeling within a reaction network using the minimum number of variables, all of
which are expressed in terms of EMUs. In most cases, only a small number of all possible
EMU is required to simulate the isotopic labeling. In the next section, we will illustrate the
EMU approach for simulating MS measurements, and in section 2.2.8 we will show how

NMR measurements can be simulated using EMUs.

2.2.2 EMU reactions

First, we need to introduce the concept of an EMU reaction. Figure 2-2 shows three types of
biochemical reactions that we can distinguish: a condensation reaction, a cleavage reaction,
and a unimolecular reaction. For each reaction type in Figure 2-2 we would like to determine
the minimum amount of information that is needed to determine the mass isotopomer
distribution (MID) of product C, i.e. EMU Ciz23. For the condensation reaction, MID of Ci23
is fully determined by the MIDs of EMUs A1 and B1. For example, the M+0 abundance of
Ciz3 is equal to the product of M+0 abundances of A1z and By, i.e. Cizzm+0=A1zm+0'B1m+o.
The full MID of C23 is obtained from the convolution (or Cauchy product, denoted by x’)
of MIDs of Ajz and By, i.e. C123=A12xBy. For the cleavage and unimolecular reactions, MID
of Ciz3 is equal to MID of the EMU Aj23. Note that for the cleavage reaction atoms of A
that are not transferred to Ci23 are not considered in the EMU reaction, i.e. their labeling
doesn’t affect the labeling state of C. Note also that EMU reactions are always size balanced,
i.e. the EMU product is formed either from EMUs of the same size, or by condensation of
smaller EMUs such that the total size of substrate EMUs equals the size of the EMU
product. Thus, there can only be only two types of EMU reactions: condensation and
unimolecular EMU reactions. Table 2-1 shows the EMU reactions corresponding to the

biochemical reactions in Figure 2-2.
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Elementary Atoms included
metabolite unit in the EMU EMU size

= 3

Figure 2-1: Elementary metabolite units (EMU) are defined as distinct subsets of
metabolite’s atoms. There are 7 EMUs for a 3-atom metabolite A. The subscript in the first
column denotes the atoms that are included in the respective EMU. The EMU size is

defined as the number of atoms included in the EMU.
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A) Condensation reaction

Ci23 = Ay x B,

e
! Craamo = Azmeo Biwo
A C123 Cizamer = Arzmeo Biwer + Appper Bipo
12

12ame2 = Aamer Bamer + Azez Bieo

1233 = Arzaz* Bipes

B) Cleavage reaction

Ci23 = Aszg
A _T > C Cizammo = Arzameo
123 123 Corzamer = Arza et
O Cizzmz = Arzamez

Cirzams = Arzams

C) Unimolecular reaction

Cis = A

A —_ C Cizzmeo = Arzameo
123 123 Cizzm = Az et
Cizzmmz = Arzamez

123me3 = Aizamea

Figure 2-2: Three types of biochemical reactions and the corresponding EMU reactions.
Shaded areas indicate atoms included in the EMUs. The mass isotopomer disttibution
(MID) of product C is fully determined by MIDs of substrate EMUs. Thus, for the
condensation reaction, MID of Ci23 is obtained from the convolution (or Cauchy product,
denoted by ‘x’) of MIDs of A1z and Bs. For the cleavage reaction and unimolecular reaction

MID of Ci23 equals MID of Ajzs.
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Table 2-1
EMU reactions cortesponding to the three reactions shown in Figure 2-2. Note that EMU
reactions are always EMU size balanced, i.e. the size of the EMU product always equals the

total size of substrate EMUSs.

Reaction type Biochemical reaction EMU reaction EMU size balance
Condensation A+B-oC Ap+B; = Cis 2+1=3
Cleavage A—>B+C Az = Cizs 3=3
Unimolecular A>C Aizz —> Cizs 3=3

2.2.3 Decomposing metabolic networks into EMU reactions

We will now desctibe the algorithm that systematically decomposes any biochemical reaction
network into EMU reactions using the knowledge of atomic transitions occutring in the
network reactions. These EMU reactions will then form the basis for generating model
equations for isotopic simulations (see section 2.2.4). Consider the example network shown
in Figure 2-3 that will be used to illustrate the theory behind EMU modeling. In this
network, metabolite A is the sole substrate and metabolites E and F ate two network
products. The intermediary metabolites B, C and D are assumed to be at metabolic and
isotopic steady state. The stoichiometry and atom transitions for the five reactions are given
in Table 2-2, and the assumed flux distribution is shown in Figure 2-3. The structural input

that is required for the EMU decomposition is threefold:
1. The assumed metabolic network stoichiometry

2. Atom transitions for all reactions in the network

3. List of metabolites/metabolite fragments that need to be simulated
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Figure 2-3: Simple metabolic network used to illustrate the decomposition of a metabolic
system into EMU reactions. The assumed steady-state fluxes have arbitrary units. The
network substrate A is fully labeled on the second atom. Atom transitions for the reactions

in this model are given in Table 2-2.
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Table 2-2

Stoichiometry and atom transformations for reactions in the example metabolic network.

This simple metabolic network is used to illustrate the decomposition of a metabolic system

into EMU reactions.

Reaction Reaction stoichtometry Atom transformations*
number

1 A—B abc — abc

2 B D abc > abc

3 B—->C+E abc — bc + a

4 B+C—>D+E+E abc + AB—>bcA+a+B
5 D—>F

abc — abc

* For each compound atoms are identified using lower case letters to represent successive atoms of

each compound. Uppercase letters represent a second compound in the reaction.
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In this example, we would like to set up the simplest possible model to simulate the MID of
metabolite F, i.e. EMU Fi23. The following algorithm systematically identifies all EMU
reactions that are needed for this simulation model. First, we identify in the network model
all EMU reactions that form EMU Fi2s. In this case, Fi23 is formed only in reaction 6 from
EMU Di2;. We record this EMU reaction and the newly identified EMU(s), and repeat this
process for all newly identified EMUs starting with the largest size EMU, i.e. Di2s. Here,
Di2; is formed in two reactions, i.e. in reaction 2 from B3, and in reaction 5 from Ba3+C;.
Next, Bi23 is formed in reactions 1 and 3 from Aiz3 and D123, respectively. Note that Ajzs is a
network substrate, i.e. it is not produced by any reaction in the network, and D23 was
already considered in the previous step. Thus, we have identified all EMUs of size 3 that
need to be considered. Next, we proceed with EMUs of size 2 that were previously
identified, i.e. Bos, which is formed in reaction 1 and 3 from Az, and Das, respectively, etc.
We complete this process for EMUs of size 2 and 1, until all the EMUs have been traced
back to EMUs of network substrate A, or EMUs that were already visited. Table 2-3 shows
schematically the complete EMU decomposition for this network. In this case, 18 EMU
reactions were identified connecting 14 EMUs. Of these 14 EMUs, 10 EMUs cortespond to
intermediary metabolites whose labeling is unknown, and 4 EMUs are fully defined by the
choice of substrate labeling of metabolite A. The complete list of EMUs for this example is
shown in Table 2-4. It should be clear that the described decomposition algorithm is
exhaustive, unsupervised, and always identifies the minimal set of EMUs that need to be
considered in the simulation model. Furthermore, this algorithm is easy to implement and is
computationally efficient, i.e. it converges within seconds even for the largest network model
that we have considered. The main advantage of the EMU decomposition is that metabolites
are never broken into smaller pieces than is strictly required to describe the labeling state of
the selected metabolite(s). In contrast, the isotopomer frameworks always uses all 2N
isotopomers per metabolite to simulate the system. In this case, the complete set of 36
isotopomers describe the system (i.e. 28 unknown isotopomers and 8 substrate
isotopomers). Thus, in this example the number of system vatiables was reduced by more
than 50% using the EMU framework. Figure 2-4 shows schematically the complete
algorithm for the decomposition of metabolic networks into EMU reaction networks (see

sections 2.2.4-2.2.7 for further details).
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Table 2-3

Complete list of EMU reactions generated for metabolite F. The complete set of EMU
reactions for molecule F was identified using the described decomposition algorithm. The
subscripts denote the atoms that are included in the respective EMUs. Note that EMU

reactions are always size balanced.

Reaction No. EMU reaction EMU reaction size balance
6 Dis > Fin 3=3
2 Bi2s = Dixs 3=3
5 Bas + Ci — Do 2+1=3
1 Az —> Bins 3=
3 Dz — B 3=3
1 A» — Bos 2=2
3 D2; — Bas 2=2
2 Bos — Dos 2=2
5 B;+ C; = D 1+41=2
4 B, — C 1=1
1 As — B» 1=1
3 D, —> B, 1=1
2 B> D 1=1
5 B;—>D: 1=1
1 As = B; 1=1
3 D;— B; 1=1
2 B; — D; 1=1
5 Ci > D; 1=1
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Table 2-4
Complete list of EMUs generated for metabolite F from network decomposition. The
complete molecule F corresponds to EMU Fi23. The subsctipt denotes the atoms that are

included in the respective EMUs.

EMU size

size 1 size 2 size 3
C B2 Fizs
B: D2 Diz
D, Ax Bizs
Bs Atz
Ds
Az
As
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Create a list of metabolites and/or
metabolite fragments that need to be simulated

Make a list of corresponding EMUs, and
sort them according to EMU size

!

Locate the largest unvisited EMU on the list, |
and identify all equivalent EMUs

!

For each equivalent EMU
record all EMU reaction(s) that produce the EMU

|

For all EMUs that were involved in the above reactions
identify all equivalent EMUs

!

Check if these EMUs are already present on the list.
If not, then add them to the list.

Have all EMUs on the list been traced back
to EMUs of network substrates, and/or EMUs
that were already visited ? No

Yes

Separate EMU reactions into independent EMU reaction networks:

(i) based on EMU size
(ii) based on network connectivity of EMUs

For each decoupled EMU network:

(1) set up EMU balances for all unknown EMUs
(2) calculate and store matrices dA/dv and dB/dv
(3) record the identity of EMUs in matrices X and Y

Figure 2-4: Schematic overview of the algorithm for decomposition of metabolic networks
into EMU reaction networks. This algorithm systematically identifies the minimal set of
EMUs that need to be considered in the simulation model. The algorithm is exhaustive,

unsupervised, and efficient (see sections 2.2.4-2.2.7 for further details).
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2.2.4 Setting up EMU balances and simulating labeling distribution

The EMU reactions obtained from the decomposition algorithm form the new basis for

generating system equations. EMU reactions are much less connected than corresponding

isotopomer reactions. Thus, we can group EMU reactions into independent reaction

networks based on: (i) the EMU size, and (ii) network connectivity (see section 2.3.4 for an

example). For the example network we obtain three independent teaction networks of EMU

size 1, 2, and 3, respectively. Figure 2-5 shows the independent EMU reaction networks.

Similar to metabolite and isotopomer balancing, we can set up balances around all unknown

EMU:s.

EMU balances for reaction network of EMU sige 1
veCi = vaB2
(vitvy)-Ba = vi-Az + v Dy
vs+vy)-Da = vs'Bs + vo- B
(vi+v3)-Bs = vi-As + v3:Ds

(vstvo)-Ds = vs:Cy + v2-Bs

EMU balances for reaction network of EMU sige 2
(vs+v2)-Das = vs:(BsxCy) + vaBos

(v1+v3)-Bas = vi-Ags + v3 Do

EMU balances for reaction network of EMU sige 3
Ve F12s = veDi2s
(vs+v2):-Di23 = v5(B23sxCy) + v2-Buas

(v1+v3)-Bizs = virA1zs + v3-Dias
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Reaction network for EMU size 1
R

v
vsl 3

Reaction network for EMU size 2

Vs
B;+C, — D,

vzllv3

A23 B 23
1

Reaction network for EMU size 3

a4 ', v,
- By + G, > Dy Fi23
v, [ l vy
A o Bi2s

Figure 2-5: Independent EMU reaction networks generated for metabolite F.
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In general, EMU balances can be written as a set of linear equations in matrix form:

Ark(¥) - Xik = Bri(v) - Yix(n?) (2.32)
Aok(¥) - Xog = Box(v) - Yak(y2, X1) (2.3b)
Azx(v) - X = Bag(v) - Yak(ysn, Xa, X1) (2.3¢)

Here, the first subscript denotes the EMU size and the second the subnetwork number, i.e.
in case there are multiple independent EMU networks of the same EMU size. For now we
will omit the second subscript. The EMU balances written in matrix corresponding to the

EMU networks in Figure 2-5 are shown below.

(v, v, 0 17¢c] TJo |
0 -v,-v, v, 0 0 B, -v, A
0 v,  v,-v, v, D,| = : [AZ} (2.42)
0 0 0 v,-v, v, B, v, ’
RA 0 0 v, v,-vs| | Ds] i 0 ]
_—Vs -V, v, } - [DB} _ {-Vi 0 } ' |:B3 XC1:| (2.4b)
L Vs Vi-V; B, 0 - Ay
E7E 0 E,, 0 B, xC.
0 -v,-v, v, A D | = f-vy 0 - [ A } (2.4¢)
| 0 v, V-V, B, 0 -v, 1

In Eq. 2.3, matrices Y; and X represent the known and unknown EMUs, respectively, and
yir are EMUs of the network substrate(s). Each row in matrix Y; and X; contains the MID
for the corresponding EMU. The product term B3;xC; in Eq. 2.4b represents the

convolution (or Cauchy product) of MIDs of B3 and C; (see section 2.2.2). Matrices Xz and

Y> written out in full for the example network are shown below.
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2.5)

_D’.’_‘ﬁ] _ l:Dm,Mw Dy DB,M+2:|
B

23, M+0 B23,M+1 BB,M+2

A23,M+() A

_Bs X Cl:l - [Bs,mu “Ciao Biareo “Crait T B "Crase) Ban” Cx,.\mjl 2.6)
23,M+1 Ay e '

The size matrix A; depends on the number of unknown EMUs for the corresponding EMU

network, and the size of matrix B; depends on the number of known input EMUs. Thus, for

7 unknown and 7 known EMUSs, A; is an # X # matrix and B; is an # X » matrix. Note that

matrices A; and B; are always strictly linear functions of fluxes. We can therefore easily

compute A; and B; for given steady-state fluxes from first derivative matrices dAi/dv; and

dB;/dvj, which ate constant for a given network:

dA,
A =) [d—vf)vi @.7)

dB,
B = [d—v?]-v.‘ 2.8)

To simulate isotopic labeling distribution in the network, EMU balances are solved
sequentially starting with the smallest size EMU network(s). Since matrix Y} is always

known, i.e. it is fully determined by EMUs of network substrate A, we can easily calculate X,

using standard matrix algebra techniques:
Xi=Ar"-Bi-Yi 2.9)

For subsequent EMU networks, matrices Y; may depend on previously determined EMUs of

smaller size. Thus, for larger EMU sizes we must first update matrix Y; and then calculate Xi.
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X2=As1-B2- Y2 2.10)
X3 = A3‘1 . B3 . Y3 (2.11)

After all unknown EMUs have been computed we can simply read out the simulated MIDs
for the metabolites of interest from the rows of matrices X;. For example, MID of Fi23 is

found in the first row of matrix X3.

2.2.5 Calculating first order derivatives of simulated measurements

Here, we present analytical expressions for calculating first order derivatives of simulated
measurements with respect to fluxes. Knowledge of these detivatives is important for
calculating the optimal search direction of fluxes in least-squares fitting algorithms (Chapter

3). In general, EMU balances are expressed in the following matrix form:
A-Xi=Bi-Yi 2.12)
Where, matrices A; and B; are strictly linear functions of fluxes and matrices X; and Y; are

nonlinear functions of fluxes. To determine dXi/dv (which is 2 3D-matrix), we take the first

order detivative of Eq. 2.12:

Sax) = (o) @1

dv
After applying the product rule we obtain the following expression:

BAix va K o8By g @.14)
v dv dv dv

Note that matrices dA;/dvj and dB;/dv; are constant for a given network (because A; and B;
are strictly linear functions of fluxes). After rearrangement of Eq. 2.14 we obtain the

following general exptession for dX;/dv:
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2.15)

The above expression may be simplified for the smallest size EMU network. For EMU-seize

1 all terms in matrix Y are constant, i.e. dY1/dv=0. Thus, the solution to the first EMU

problem is given by:

X, = A"-B,"Y, 2.16)
dX .+ (dB dA

R S @1

For each next EMU network of larger EMU size, matrices Y; may depend on previously

determined EMUs of smaller size, e.g. for the example network model Y, was given by:

B, xC,
Y, = 2.18)
A23

Where, B; and C; are EMUs of size 1 that are calculated from EMU-size 1 balances. By
applying the product rule, we derive the following expression for the first order derivative of

the convolution of B; and C;:

B
dB,xc) = Loxc, +B,x 2.19)
dv dv dv

Where, dC/dv and dB3/dv matrices that are obtained from dX;/dv. Note that the second

row of Y2 contains Ax; which is a network substrate EMU, i.e. it is considered known and

constant (dA23/dv=0). Thus, we obtain the following expression for dY>/dv:
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dc,
= | dv dv (2.20)

Where, (dBs/dv)xC; denotes the 2D-convolution of matrix (dBs/dv) and vector C;. First
order derivatives for any EMU size can be obtained this way. Figure 2-6 summarizes the
general procedure for simulating labeling distributions and calculating first order derivatives

of simulated measurements with respect to fluxes, using the EMU framework.

2.2.6 Global stability and computation time of EMU simulations

It should be clear that for non-zero fluxes matrices A; are diagonally dominant, and using
Gerhorgin’s eigenvalue theorem we can easily prove that therefore matrices A; are always
invertible. In other words, the EMU approach will always compute a unique and stable
solution for the unknown EMUs. The most time consuming computation involved in
solving EMU balances and calculating first order detivatives is the inversion of matrices A,
or rather LU decomposition of Ai. In general, the computational time for LU decomposition
increases with the size of the matrix, i.e. the number of unknown EMUs. We found
empirically that for sparsely connected EMU networks, such as the ones shown in

Figure 2-5, the computation time incteased lineatly with the number of unknown EMUs, i.e.
O(n). For more highly connected networks, for example the EMU networks corresponding
to central carbon metabolism of E. co/i (Chapter 6), the computational time increased as
O(#%). Therefore, it is often worthwhile to reduce the number of EMUs by eliminating EMU
nodes that only have a single influx, i.e. lumping linear EMU pathways. This will be

illustrated in detail in section 2.3.2.
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Start with:
EMU size: i =1
Subnetwork: k=1

Calculate A, and B,
Steady-state quxesH ik i kJ
< (Egs. 2. 7land 2.8) [ update
k— k+1 \
EMU network model ——
< Calculate Y;, and

< Substrate |abe|ing>-—k i k/dv J¢

J’ update
[Calculate and store X;, (Eq. 2.9)] i— i+1

v

[Calculate and store dX; /dv (Eq. 2.15)]

Is this the last subnetwork
of current EMU size ?

‘V

< Is this the largest EMU-size ?

‘L

Extract simulated measurements from X;
and first order derivatives of measurements from dX; /dv

Figure 2-6: A schematic of the algorithm for simulating labeling distributions and
calculating sensitivities using EMU balances. EMU balances are solved sequentially starting
with the smallest EMU-size networks up to the largest EMU-size netwotk. Simulated

measurements and sensitivities are extracted from the matrices X and dX/dv, respectively.
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2.2.7 Identifying equivalent EMUs of metabolites

There are a number considerations regarding the chemical structure of metabolites that need
to be taken into account to make sure that EMU simulation models are accurate. Here, we
will discuss in detail how to account for chiral, prochiral and rotationally symmettic
metabolites, and how biochemically equivalent hydrogen and oxygen atoms should be
modeled within the EMU framework. These considerations are equally important for the
construction of isotopomer models, however, until now they have not received proper

attention.

Chiral and prochiral metabolites

Tetrahedral carbon atoms with four different ligands are called chiral, whereas the term
prochiral applies to a carbon atoms that hold two stereoheterotopic groups. In other words,
prochiral carbon atoms are one step removed from being chiral (Moss, 1996). Many
biological metabolites contain one or more chiral and/or prochiral carbon atoms. It is well
known that biochemical reactions are highly stereospecific, i.e. enzymes can differentiate
between prochiral atoms and prochiral atom groups. Therefore, it is important to keep track
of individual prochiral atoms in a network model and assign stereospecific atom transitions
to all biochemical reactions. Consider for example the enzymatic reaction catalyzed by
aconitase that converts cirate to isocitrate (Figure 2-7). Three of the six carbon atoms of
citrate are prochiral, i.e. C2, C3 and C4. The enzyme aconitase stereospecifically transfers the
pro-R hydrogen from the pro-R arm (i.e. C1-C2) of citrate to C3 of isocitrate, and produces
only one of four possible stereoisomers of isocitrate, i.e. (2R,3S)-isocitrate. Note also that
the prochirality of C4 is not altered by aconitase. The absolute stereochemistry for most
bioreactions has been worked out in detail and can be found in many biochemistry books,

and other general literature.
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( ?H (l)H
pro R-arm < =0 Q"—‘O
T |
\p'°'SH—C—Hp'°'F;)H ............................. HO—C—H on
—_—— ~ ———>m‘ —|— <
| HO—C—G H=C—¢,
pro-R H_C4_Hpro-s pro-R H_Q—Hpro-s
pro S-arm < és=o C|)5=O
| |
§ OH OH
Citrate (2R,3S)-Isocitrate

Figure 2-7: Stereospecific atom transitions for the reaction catalyzed by aconitese. Aconitase
stereospecifically transfers the pro-R hydrogen from the pro-R arm of citrate to C3 of
isocitrate, and produces only one of four possible stereoisomers of isocitrate, i.e. (2R,3S)-

isocitrate.
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Equivalent hydrogen and oxygen atoms

Biological molecules often contain groups of atoms that are biochemically indistinguishable.
Consider for example the chemical structure of pyruvate shown in Figure 2-8. The three
hydrogen atoms at C3 are biochemically equivalent, i.e. enzymes cannot distinguish between
these atoms. Furthermore, the two oxygen atoms at C1 are biochemically equivalent due to
resonance stabilization. Thus, not all of pyruvate’s EMUs are independent. For example,
there are six equivalent EMUs of pyruvate that contain three carbon atoms, two of the three
hydrogen atoms at C3, and one of two oxygen atom at C1. Figure 2-8 shows the six

equivalent EMUs. We can predict the number of equivalent EMUs for any EMU as follows:

No. of equivalent EMUs =

(no. of equivalent atoms)! )

for each group of [ (no. of atoms in EMU)! X (no. of equivalent atoms)!

equivalent atoms

When setting up EMU balances, we need to consider equivalent EMUs. We propose to do
that as follows. First, whenever a new EMU is generated duting EMU network
decomposition, we identify all equivalent EMUs for that EMU. Then, for each equivalent
EMU we find the EMU reaction(s) that produce that EMU, and divide the contribution
from each reaction by the total number of equivalent EMUs. Note that this way we only
introduce one unknown EMU variable for each set of equivalent EMUs. For example,
consider the enzymatic reaction catalyzed by malic enzyme that converts malate to pyruvate
shown in Figure 2-9 (arbitrary numbering of atoms). The six equivalent EMUs of pyruvate

from Figure 2-8 are produced by the following six EMU reactions:

Malis47s + H — Pyrisse7s (2.22a)
Mali34780 = Pyrisagrso (2.22b)
Maliza79 + H —> Pyrisasso (2.22¢)
Maliz47s + H —> Pyriaers (2.22d)
Mali24789 — Pytiz46789 (2.22¢)
Mali2s79 + H — Pyriaacs (2.22f)
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Figure 2-8: Equivalent EMUs of pyruvate. The three hydrogen atoms of pyruvate at C3 are
biochemically equivalent. The two oxygen atoms at C1 are also equivalent (due to resonance
stabilization). There are six equivalent EMUs of pyruvate containing all three carbon atoms,
two of the three hydrogen atoms at C3, and one of two oxygen atom at C1. Shaded areas

indicate the atoms that included in the EMUs.
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Figure 2-9: Malic enzyme converts malate to pyruvate. Note that one of the three hydrogen

atoms at Cys of pyruvate is derived from the solvent. The two prochiral hydrogen atoms of

malate at Cy7 (which are biochemically distinct) become indistinguishable after malate is

converted to pyruvate.
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Next, we determine that Malis47s and Mali247s; Malizaz0 and Maliz479; and Mali34780 and
Mali24789 ate equivalent EMUs. Taken together, we obtain the following overall EMU

reaction:

Pytisims
Pyri34679
Pyt s _ 1 (Nlalums} < H + 1 (Malu‘woJ < H + 1 (Nhhww] (2.23)
Pyt 3\ Mal,, . 3\ Mal,, 3\ Mal,

Pyt 4670

Py14650

Note that the two prochiral hydrogen atoms of malate that are initially biochemically distinct

become indistinguishable after malate is converted to pyruvate.

Rotationally symmetric metabolites

A number of metabolites of central carbon metabolism are also rotationally symmetric, i.e.
they are superposable on themselves by rotation. In isotopic labeling studies these molecules
cause scrambling of isotopic labeling. We should note that there is a clear difference between
molecules with a center of inversion and molecules with a rotation axis. The two types of
symmetry have different characteristics. Only molecules with a rotation axis are superposable
on themselves. Figure 2-10 shows the structures of (25,3R)-butane-1,2,3 4-tetraol (i.e.
erythriol) which has a center of inversion, and (2R,3R)-butane-1,2,3,4-tetraol which has a
rotation axis. Carbon atoms C1 and C4, and C2 and C3 of erythriol are chemically equivalent
(react identically in chemical reactions and have the same chemical properties), however, in
enzymatic reactions these atoms are biochemically distinct. In contrast, carbon atoms C1 and
C4, and C2 and C3 of (2R,3R)-butane-1,2,3 4-tetraol are both chemically and biochemically

equivalent, i.e. they are not distinguished by enzymes.
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CH3OH
1
|
HO— (% H
I
H— (.2 —OH
I
CH3OH
4
Name : (2R,3R)-butane-1,2,3,4-tetraol
Symmetry : Rotation axis
C1lvs.C4: Chemically equivalent

C2vs. C3 Biochemically equivalent

CH3OH
H— é OH
H— é OH

gon

(2S,3R)-butane-1,2,3,4-tetraol
(i.e. erythritol)

Center of inversion

Chemically equivalent

Biochemically different

Figure 2-10: Differences between molecules with a rotation axis and center of inversion.

(2S,3R)-butane-1,2,3,4-tetraol (i.e. erythritol) has a center of inversion; it is not superposable

on itself. Therefore, carbon atoms C1 and C4, and C2 and C3 of erythritol are biochemically

distinct. (2R,3R)-butane-1,2,3,4-tetraol, on the other hand, has a rotation axis and is

superposable on itself. Therefore, carbon atoms C1 and C4, and C2 and C3 are

biochemically indistinguishable, which results in scrambling of isotopic labeling.
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The most important examples of rotationally symmetric molecules in metabolism are
fumarate, succinate, and D-mannitol. Figure 2-11 shows the structure of fumarate (with
arbitrary numbering of atoms). It should be clear that fumarate has a rotation axis, i.e. after
rotating 180° fumarate superposes on itself. Furthermore, the two oxygen atoms at first
carbon and the two oxygen atoms at the last carbon atom of fumarate are biochemically
equivalent. These additional characteristics of fumarate need to be considered when we
identify equivalent EMUs. The number of equivalent EMUs may increase due to rotational
symmetry, i.e. EMUs of rotationally symmetric molecules may have twice as many equivalent

EMUs as nonsymmetric molecules:

(no. of equivalent atoms)!

No. of equivalent EMUs < 2x

for cach groupof \ (0O. Of atoms in EMU)! X (no. of equivalent atoms)!

equivalent atoms

(2.24)

For example, Figure 2-11 shows the four equivalent EMUs of fumarate Fumiass7. However,
fumarate EMU Fiy6s has no equivalent EMUs, because its rotational equivalent is Fiags itself.
Thus, when enumerating equivalent EMUs it is very important that we separate the effect of
rotational symmetry, which is a global characteristic of a molecule, from the effect of
equivalent hydrogen and oxygen atoms, which are local characteristics of a molecule. To
bettet illustrate this, consider hydrogen atoms #5 and #7 of fumarate. These atoms cannot
be treated as equivalent atoms, because that would incorrectly identify Fumiasss as being

equivalent to Fumiasr.
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Figure 2-11: Equivalent EMUs of the rotationally symmetric fumarate. Shaded areas indicate
atoms included in the EMUs. The following four EMUs are equivalent: Fumiaser, Fumi3467,

Fumyseso, and Fumuses 10 (numbeting of fumarate atoms is arbitrary).
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2.2.8 Simulating NMR measurements using EMUs

Thus far, we have shown how MS measurements can be simulated using the EMU approach.
We will now illustrate the method for simulating NMR measutrements, in particular we will

show how fractional enrichment measurements, and NMR fine spectra are simulated.

Simulation of fractional enrichments

Fractional enrichments measure the fractional abundance of 3C-atoms at specific carbon
positions in a molecule. For example, Wiechert et al. measured fractional enrichments of 25
carbon atoms of amino acids (Wiechert et al., 1997). Each fractional enrichment
measurement provides exactly one flux constraint. In the EMU framework fractional
enrichments are modeled by EMUs of size 1 that contain a single carbon atom. In other
words, to simulate fractional enrichments we only have to solve EMU balances of size 1.
Network decomposition is accomplished with same algorithm as was described before
(section 2.2.3). In the EMU balances (Eq. 2.3), however, X; and Y] are now vectors (not
matrices) that contain values for fractional labeling of carbon atoms. Note that the EMU
simulation model for simulating fractional enrichments is very similar to the atom mapping
matrix model that was originally proposed by Zupke and Stephanopoulos (1994), and the

weight-1 cumomer model as proposed by Wiechert et al. (1999).

Simulation of NMR fine spectra

Data obtained from 2D [13C1H] COSY spectra, also known as NMR fine spectra, provide
information on the relative amount of PC-13C and BC-12C carbons at specific carbon
positions, where the observed carbon atom is always '*C-labeled and the adjacent carbon
atoms are either labeled or unlabeled (Szyperski, 1995). For a secondary carbon atom, NMR

fine spectra are expressed as ratios of four isotopomer fractions.
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singlet Ao
doublet 3 A _
o = S (Aom Ayt A, +A111) 1 (2.25)
doublet 1 A
double doublet A

We can obtain these four isotopomer fractions from cumomer fractions Aix, Axi1, Ai1x, and
At11, as was shown previously by van Winden et al. (2002). Alternatively, we have derived
that these isotopomer fractions can also be obtained from the following four EMUs A, A,
A12, and A123.

-1 -1

Ay, 11 11 A 1111 A,
A | _ |0 1 01 A | _ |01 01 A, 226
A, 00 11 Ay 0011 A,
A 0001 A 000 1] |A

11 11 123
In Eq. 2.26, Ay denotes the weight-1 cumomer fraction for which the second atom is 13C-
labeled and the other two atoms are labeled or unlabeled (i.e. x = 0 or 7). We can easily
show that the camomer fraction Axiy is equal to the M+1 abundance of EMU A..
Furthermore, weight-2 cumomer fractions A11x and A1 are equal to the M+2 abundances of
EMUs Az; and Ay, respectively (i.e. fully labeled EMUs); and finally, weight-3 cumomer
fraction Aiyy is equal to the M+3 abundance of EMU A (i.e. fully labeled EMU). Thus, we
can simulate NMR fine spectra either by solving weight-1, 2, and 3 cumomer balances (van
Winden et al., 2002), or alternatively by solving EMU balances for the EMUs Ay, Azs, A1z,
and Aizs. In this case, in the EMU balances X; and Y; are now vectors (not matrices) that
contain the fractional abundances of fully labeled EMUs. It should be clear that the number
of EMUs generated for the EMUs of size 1, 2, and 3, will always be smaller, or equal to the
number of weight-1, 2, and 3 cumomers. Therefore, it is always more efficient to simulate

NMR fine spectra using the EMU framework.

71 -



CHAPTER 2. ELEMENTARY METABOLITE UNITS

The EMU framework can be further extended to include NMR fine spectra for tertiaty
carbon atoms, and to describe long-range 13C-13C couplings. In that case, the following eight
EMUs of size 1, 2, 3, and 4 are needed: Az, A1z, Az, Azs, A123, Azzs, Ar2s, and Aj23e. We can
convert the simulated fractional abundances of fully labeled EMUs to isotopomer fractions

using Eq. 2.27, and then obtain the NMR signal intensities using Eq. 2.28.

Ae] 1111111 1]" [4,]
Auon 01010101 A,
Ao 00110011 Az
Aps| _ {000 100 01 Ay 27
Ao 00001 1 11 Ay
Ay 00000101 A
A 00000011 A
Ayl 1000000 0 1] [Ay,]
singlet ] —Amm ]
doublet 4 Ay
doublet 3 Ao
doubledoublet 341 _ | Auit | ) A A+ Au + Arn + Apy +Are Ay )
doublet 1 A““U 0100 (U] 0110 0111 o 111 1o 1111
double doublet 14 Ay
double doublet 13 Ay
| quadruple doublet | LA
(2.28)

Note that in Eqgs. 2.27 and 2.28 we assume the observed carbon atom is C2.
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2.3 Practical applications

2.3.1 Simple network model

In this example we will compare the EMU framework for simulating mass isotopomer

distributions with the isotopomer and cumomer frameworks. Consider the simple network

model that was introduced in section 2.2.3 (Figure 2-3). The assumed steady-state fluxes and

labeling of substrate A are shown in Figure 2-3. The solution to the EMU balances from Eq.

2.4 are shown below.

Solution of EMU balances for reaction network of EMU size 1

1

C, 20 20 0 0 0 0 0 0.0667 0.9333
B, 0 -150 50 0 0 -100 0 0 1 0.0667 0.9333
D,l=10 110 -130 20 0 -0 0 |- [1 :| = 10.2000 0.8000
B, 0 0 0 -150 50 0 -100 0.9333  0.0667
D, 20 O 0 110 -130 0 0 0.8000 0.2000

Solution of EMU balances for reaction network of EMU size 2

Dy| _ |-130 110 -1 20 0 0.0622 0.8756 0.0622| | 0.0133 0.9733 0.0133
B |50 150 0 -100 0 1 0 0.0044 0.9911 0.0044

23

Solution of EMU balances for reaction network of EMU size 3

-1

F,, 80 80 0 0 0.0001 0.8008
0.0003 0.0702 0.9253 0.0041

Dyy| = |0 30 10| 120 0 |- . . o | = | 00001 08008

B,,, 0 50 -150 0 -100 0.0000 0.9336

Thus, we find that the simulated MID of F is: 0.0 mol% (M+0), 80.1 mol% (M+1), 19.8
mol% (M+2), and 0.1 mol% (M+3), i.e. the first row in mattix Xs. These simulated
abundances were identical to those obtained using the isotopomer and cumomer methods.
The main difference between the methods was the number of equations that needed be
solved to simulate the labeling. For the isotopomer method, 28 nonlinear isotopomer

balances were solved using Newton’s iterative method. For the cumomer method, 4 linear
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problems of size 4, 11, 10, and 3, respectively, were solved using standard linear algebra
techniques. Note that the total number of cumomers was the same as the number of
isotopomers, as expected. Table 2-5 summarizes the main differences between the three

modeling methods for this simple example.

2.3.2 Tricarboxylic acid cycle

The second example that we consider is the simplified model of tricarboxylic acid (TCA)
cycle shown in Figure 2-12. The stoichiometry and atom transitions for the eight reactions
are given in Table 2-6. In this network, acetyl coenzyme A and aspartate are two substrates,
and glutamate and carbon dioxide are the products. Here, we simulated the steady-state
labeling distribution of glutamate assuming a mixture of 25% [2-13C]AcCoA and 25% [1,2-
1BCJAcCoA as the tracer input. The assumed flux distribution is shown in Figure 2-12. In
this example, we only consider the labeling of carbon atoms and for simplicity we ignore
natural isotope entrichments. The algorithm described in section 2.2.3 decomposed the TCA
cycle network into 4 independent EMU reaction networks that are shown in Figure 2-13.
The total number of unknown EMUs was 24, i.e. 8 EMUs in the first network (EMU size 1),
5 EMUs in the second (EMU size 2), 8 EMUs in the third (EMU size 3), and 3 EMUs in the
fourth network (EMU size 5). The EMU balances for the four decoupled networks are
shown in Figure 2-14. The rotational symmetric molecules fumarate and succinate were
modeled as described in section 2.2.7. The following groups of EMUs were identified as
equivalent: Fum; and Fums; Suc; and Sucs; Fumia; and Fumoass; Sucizs and Sucasy. The 24
unknown EMUs constituted a significant reduction from the complete set of 176
isotopomers that wete required to describe this system (a reduction of 86%). Here, the
cumomer model consisted of seven subproblems of size 6, 28, 53, 52, 28, 8, and 1,
respectively. As expected, all three modeling methods (i.e. EMU, isotopomer, and cumomer)
predicted identical mass isotopomer abundances for glutamate: 34.64 mol% (M+0), 26.95

mol% (M+1), 8.07 mol% (M+2), 2.86 mol% (M+4), and 0.39 mol% (M+5).
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Table 2-5

Comparison of three modeling approaches for simulating mass isotopomer labeling. MID of
F in the example network (Figure 2-3) was simulated using the EMU, isotopomer, and
cumomer methods. The simulated abundances were identical for all methods. The EMU
method required only 10 variables to simulate the labeling, as opposed to 28 variables for the

isotopomer and cumomer methods (a reduction of 64%).

isotopomer cumomer EMU

model model model

Simulated mass isotopomer M+0 0.0001 0.0001 0.0001

distribution (MID) of M+1 0.8008 0.8008 0.8008

metabolite F (molfractions) M+2 0.1983 0.1983 0.1983

M+3 0.0009 0.0009 0.0009

Type of model equations nonlinear linear linear

Number of variables in each subproblem 28 4,11,10,3 52,3
Total number of variables 28 28 10
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Figure 2-12: Simplified model of the tricarboxylic acid cycle. Abbreviations of metabolites:
OAC, oxaloacetate; Asp, aspartate; AcCoA, acetyl coenzyme A; Cit, citrate; AKG, a-

ketoglutarate; Glu, glutamate; Suc, succinate. The assumed fluxes have arbitrary units.
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Table 2-6
Stoichiometry and atom transformations for the reactions of the TCA cycle. This network

model was used simulate the mass isotopomer distribution of glutamine.

Reaction  Reaction stoichiometry Atom transformations*
number
1 OAC + AcCoA — Cit abed + AB — dcbBAa
2 Cit > AKG + CO; abcdef — abede + f
3 AKG — Glu abcde —» abede
4 AKG - Suc + CO2 abcde — bede + 2
5 Suc - Fum 12 abed + Y2 dcba — V2 abed + Y2 dcba
6 Fum — OAC Y2 abed + Y2 dcba — abed
7 OAC — Fum abcd — Y2 abed + Y2 dcba
8 Asp - OAC abed — abed

* For each compound atoms are identified using lower case letters to represent successive atoms of
each compound. Uppercase letters represent a second compound in the reaction. Abbreviations of
metabolites: OAC, oxaloacetate; Asp, aspartate; AcCoA, acetyl coenzyme A; Cit, citrate; AKG, a-

ketoglutarate; Glu, glutamate; Suc, succinate.
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Reaction network for EMU size 1 Reaction network for EMU size 2

/Asp2 ASD /Asp% =, OAC,, \
: Vg l Vg l Vy l T Vg

Yov, Vg

OAC, — Fum, — OAC, Fump,
Vg v5' Yav, T vy

Suc, Sucy,

v, v, / \'/é v, T v,
AKG, AKG, AKG,,

V2 ] V2 ] T v,

— Cit, Cit, City,

. v I T Vi
K AcCoA, \_ OACz+AcCoAy

Reaction network for EMU size 3 Reaction network for EMU size 5

/. N e
ASD, 3 ASP,q, G345
: Vg l " v, v, Ve l T V3
OAC,,; —— Fum,,; —— OACy, AKG 2345
Vg v, I 1/2V-, T v,
SUC, 54 Citpa45
% VV’ \Va v, T v,
AKG,s, AKG,, OAC,,;+AcCOA,,
NS /
v, | v |
Cityg, City,g
l vl

Vi
\OA023+ACCOA2 OAC,+AcCOA

Figure 2-13: EMU reaction networks generated for glutamate from EMU network
decomposition. The complete molecule of glutamine cotresponds to EMU Gluyaass.
Subscripts denote carbon atoms that are included in the EMUs. Abbreviations of

metabolites are the same as in Figure 2-12.
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Vg -V v, . . . . . . OAC, -V,
FACIEE PR RS A FRNN Fum,
A V-V . . . . . OAC, .-V A
v, $v, 3Iv Suc P2
4 274 274 ° * . 2 - ASp
-V, R AKG, ’
AcCoA,
v, .V, AKG,
v, . . . . T Cit,
-V, Cit, . .V
V-V, v, . . . OAC,, Vg
v, V.-V, Vs . . Fum,, . . Asp
v, v, .| Suc, | = | . | 2
OAC, X AcCoA,
-V, ¥, AKG,,
v, Cit,, .Y
V-V, v, . . . . . . OAC,,, | -V
1 1
IV, V-V, 3V, v . . . . Fum,,,
v, V-V . . . . . OAC,,, P . Asp,,,
1 1
Ve 3V 3V - . Suc,, | | - . . - Asp,,,
v, A AKG,,, . . . . OAC,; X AcCoA,
vV, .V, AKG . . . . OAC, x AcCoA,,
v, Cit,,, . .y
] v, | | Citys | | - . vy
v,V Glu, s, .
v, V,|-|AKG | = | . |- [OAC,,; X AcCoA,, ]
L Vi Cit 3 vy

Figure 2-14: EMU balances for the EMU networks of the TCA cycle. Subsctipts denote
carbon atoms that are included in the EMUSs. Abbreviations of metabolites are the same as

in Figure 2-12. A dot denotes a zero entty.
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2.3.3 Reducing EMU balances

In section 2.2.6 we indicated that the computational effort for solving EMU balances
depends on the number of unknown EMUs. It is often possible to reduce the number of
unknown EMU variables in decomposed EMU networks by eliminating EMU nodes with a
single influx. Note that no information is lost in this process. We applied this strategy the
simplify the EMU networks for the TCA cycle example from the previous section. The
reduced EMU networks are shown in Figure 2-15. In this case, the number of EMUs was
reduced from 24 to only 9 unknown EMUs, i.e. 95% reduction compared to the complete

set of 176 isotopomets. The corresponding EMU balances are shown below.

Vg -V, v 0 OAC, vy, 0 0 Asp,
Tv,+tv, wvg-v,  fv, || Fum, [ = | 0 0 -%v Asp,
0 \F vy -v, | | OAGC, 0 v, O AcCoA,
Vg -V, Ve . OAC,, | N 0 ) Asp,,
v, -V -V, Fum,, 0 -v OAC, X AcCoA,
ASpy
Vg -V, v, 0 OAC,,, v, 0 0 0 A
iv, wvg-v, Zv, |[+|Fum, | =0 0 -3v, -dv |- *Pasy
' B - - y OAC,; X AcCoA,
0 v -V -V, OAC,,, 0 -v, 0 0
OAC, X AcCoA,

Glu,,,, = OAC,, XAcCoA,,

With the reduced EMU model we can simulate the labeling of glutamate in this system for
any steady-state fluxes and any substrate labeling by solving four very simple linear problems
of size 3, 2, 3, and 1, respectively. The solutions to the EMU balances for the assumed
steady-state fluxes and labeling of acetyl-CoA are shown below. As expected, the simulated
MID of glutamate was identical to the one obtained with the full EMU model and the
isotopomer and cumomer methods. Table 2-7 summarizes the main advantages of the EMU

method for the TCA cycle example.
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Reaction network for EMU size 1

4 )

Asp, Asp,

Vg 1 A l
Yav, Vg

OAC, — Fum, — OAC,

i
H

Vg I Yav,
Yo vy Y2 vg

AcCoA,

N J

Reaction network for EMU size 3

ASp; 53 Asp,g,
Vg 1 A l
Yav, Vg

OAC ;3 —— Fum,y,, —— OACy,

Vg Vo \F:

Yavg

Va vy
OAC,+AcCoA,

\ OAC,+AcCoA,, /

Reaction network for EMU size 2

\"

Asp,, —— OAC,,

wllv
Fum,,
] Vs

OAC,+AcCoA,

/

Reaction network for EMU size 5

Gluy g5

[ v

OAC,,,+AcCoA,,

Figure 2-15: Simplified EMU reaction networks for glutamate. EMU networks from

Figure 2-13 were simplified by lumping linear EMU nodes, i.e. having only one influx.

Abbreviations of metabolites are the same as in Figure 2-12.
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Solution of EMU balances for reaction network of EMU sige 1

OAC, 175 125 0 50 0 O 1 0 0.8333 0.1667
Fum, | = | 623 -125 37L1| -| 0 0 -25|-f{ 1 0| =]07667 02333
OAC, 0 125 -175 0 -50 0 05 05 0.8333 0.1667

Solution of EMU balances for reaction network of EMU size 2
OAC, | _ [-175 125 ) 1 0 0 _|0.7083 0.2500 0.0417
Fum,, 75 -125 0 -50 0.4167 0.5000 0.0833 0.5917 0.3500 0.0583

Solution of EMU balances for reaction network of EMU size 3

q 1 0 0 0

OAC,, 175 125 0 50 0 0 0 1 0 0 0 0.6927 01927 0.0990 0.0156

Fum,, | = (374 125 374| -| 0 O 25 -25|- = 105698 02698 0.1385 0.0219
_ 03542 04792 0.1458 0.0208

OAG,,, 0 125 -175 0 5 0 0 0.6927 0.1927 0.0990 0.0156

04167 02917 02500 0.0417

Solution of EMU balance for reaction network of EMU sizge 5

[Gluyn,s ] = [0.3464 02695 02708 0.0807 0.0286 0.0039]

2.3.4 Central carbon metabolism of E. coli

In this example we have applied the EMU framework to the realistic metabolic network
model of E. co/i central carbon metabolism. The network is comprised of 73 reactions (with
corresponding carbon transitions) utilizing 76 metabolites (5 substrates, 65 balanced
intracellular metabolites, and 6 products). The network model included reactions for
glycolysis, pentose phosphate pathway, Entner-Doudoroff pathway, TCA cycle, product
formation, amphibolic reactions, one-carbon metabolism, and amino acid biosynthesis
reactions (see Chapter 6 for details). For this network we simulated the mass isotopomer
distributions of 26 amino acid fragments that can be measured experimentally by GC/MS.
Table 2-8 provides an overview of the simulated amino acid fragments. To simulate the
labeling distribution of the 26 amino acid fragments, the network model was decomposed
into 14 independent EMU reaction networks of EMU size 1 to 9. Table 2-9 summarizes the

details of the EMU decomposition. The largest EMU subnetwork was the EMU size-1
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Table 2-7

Comparison of modeling approaches for simulating mass isotopomer labeling. MID of
glutamate in the TCA cycle model (Figure 2-12) was simulated using the EMU, isotopomert,
and cumomer methods. The assumed fluxes are shown in Figure 2-12. The assumed labeling
of AcCoA was 25% [2-13CJAcCoA and 25% [1,2-13CJAcCoA. The simulated abundances
were identical for all methods. The reduced EMU model required only 9 EMU variables to
simulate the labeling of glutamate, as opposed to 176 variables for the isotopomer and

cumomer models (a reduction of 95%).

isotopomer cumomer EMU EMU
model model full reduced

model model

Simulated mass istopomet M+0 0.3464 0.3464 0.3464 0.3464
distribution (MID) of M+1 0.2695 0.2695 0.2695 0.2695
glutamate (molfractions) M+2 0.2708 0.2708 0.2708 0.2708
M+3 0.0807 0.0807 0.0807 0.0807

M+4 0.0286 0.0286 0.0286 0.0286

M+5 0.0039 0.0039 0.0039 0.0039

Type of model equations nonlinear linear linear linear
Number of variables in each subproblem 176 6, 28, 53, 52, 8,538,3 3,2,3,1

28, 8,1
Total number of variables 176 176 24 9

-83 -



CHAPTER 2. ELEMENTARY METABOLITE UNITS

Table 2-8
lon fragments of TBDMS derivatized amino acids simulated using the EMU framework.

The identity of amino acid ion fragments was verified previously (Chapter 4).

Amino Monitored intensities ~ Amino acid carbon atoms Fragmentation

acid

Ala 232 -239 2-3 M - C5HsO
260 — 268 1-2-3 M — C4Ho

Gly 218 — 224 2 M - CsHoO
246 — 253 1-2 M — C4Ho

Val 260 — 269 2-3-4-5 M - C:HoO
288 — 298 1-2-3-4-5 M - CiHy

Leu 274 — 283 2-3-4-5-6 M - GHyO

Ile 274 — 283 2-3-4-5-6 M - CsHyO

Ser 288 — 296 2-3 M — GH50581
362 — 370 2-3 M — CsHoO
390 — 399 1-2-3 M - CyH,

Thr 376 — 382 2-3-4 M - CsHoO
404 — 414 1-2-3-4 M - CsHo

Met 292 — 298 2-3-4-5 M — GHO
320 - 327 1-2-3-4-5 M - C4Hy

Phe 302 - 307 1-2 M - C:H>
308 - 316 2-3-4-5-6-7-8-9 M - CsHO
336 ~ 345 1-2-3-4-5-6-7-8-9 M - C4Hy

Asp 302 - 309 1-2 M — CgH-O,Si
376 — 382 1-2 M — CeH,,O
390 — 397 2-3-4 M - CHyO
418 — 428 1-2-3-4 M - CsHy

Glu 330 - 336 2-3-4-5 M — CHy5048i
404 — 411 2-3-4-5 M — CsHyO
432 — 443 1-2-3-4-5 M — CsHy

Tyr 302 - 307 1-2 M - Cy3H2 0681
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subnetwork that contained 141 unknown EMUs (i.e. one carbon EMUs). The total number

of unknown EMUs was 307, which could be further reduced to 223 unknown EMUs by

eliminating EMU nodes with a single influx. In comparison, there were 4,612

isotopomers/cumomers required to simulate the same amino acid fragments, i.e. a reduction

of 93-95%. It is interesting to note that there were 241 carbon atoms in this network model,

but only 141 EMUs of size 1 were required. Thus, clearly not all individual carbon atoms

needed to be simulated in this network. In contrast, the cumomer method required balancing

of all 241 weight-1 cumomers. The simulated mass isotopomer distributions from the three

methods (i.e. EMU, isotopomer, cumomer) were identical.

Table 2-9

Comparison of modeling approaches to simulate the labeling of 26 amino acid fragments in

the E. co/i network model. With the EMU method, the E. co# network model was

decomposed 14 EMU networks with 307 unknown EMUs (223 EMUs after further model

reduction), compared to 4,612 isotopomers/cumomets, i.e. a reduction of 93-95%.

isotopomer cumomer EMU EMU
model model full model reduced model
Type of model  nonlinear linear linear linear
Number of 4,612 54 ,241,527,771, (EMU size 1): 141 (EMU size 1): 101
variables 876, 832, 655, 404, (EMU size 2): 87 (EMU size 2): 62
in each 183,57, 11, and 1 (EMU size 3): 46 (EMU size 3): 32
subproblem (EMU size 4): 12,8, 1, 1 (EMU size 4):9,7,1,1
(EMU size 5):5,1,1,1,1  (EMUssize 5):4,1,1,1, 1
(EMU size 6): none (EMU size 6): none
(EMU size 7): none (EMU size 7): none
(EMU size 8): 1 (EMU size 8): 1
(EMU size 9): 1 (EMU size 9): 1
Total number
of variables 4,612 4,612 307 223
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2.3.5 Gluconeogenesis pathway

In this final example we consider the pathway of gluconeogenesis shown in Figure 2-16. We
constructed a detailed biochemical network model for this pathway, where we considered all
carbon, hydrogen, and oxygen atom transitions. This pathway is suitable for probing with
multiple isotopic tracers, i.e. °C, 2H, and '#O. In this example, we simulated the mass
isotopomer distribution of glucose. Glucose is the main product of gluconeogenesis and is
easily analyzed by GC/MS. The gluconeogenesis network model was comprised of 24
reactions utilizing 21 metabolites, with 5 substrates (oxaloacetate, glycerol, glycogen, NADH,
and water), 14 balanced intracellular metabolites, and 2 product (glucose, and COy) (see
Chapter 7 for details). Table 2-10 shows the number of carbon, hydrogen, and oxygen atoms
for each of the 21 metabolites in this system. Here, we only considered stable, i.c. carbon-
bound, hydrogen atoms for each metabolite (see section 2.1.2). Simulation of this system
using isotopomer and cumomer methods is impossible, because that would require
2,637,120 variables. With the EMU approach, however, the network was decomposed into
60 independent EMU reaction networks of EMU size 1 to 19, with only 493 unknown
EMUs, which was further reduced to 354 unknown EMUs by eliminating EMU nodes with
a single influx. Table 2-11 shows the details of the EMU decomposition. The largest EMU
network contained only 12 unknown EMUs (9 for the reduced EMU model). The simulation
of the mass isotopomer distribution of glucose for given fluxes and labeling input took less
than 0.1 sec. Thus, in this example we have reduced the computational problem of
simulating the gluconeogenesis pathway from an impossible problem to solve, to a problem
that is trivial to solve. In Table 2-12 we compare the EMU method vs. the
isotopomer/cumomer methods, where we consider alternative labeling strategies. In all cases

the EMU method was superior compated to the isotopomer/cumomer method.
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Glucose
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Figure 2-16: Reactions of the gluconeogenesis pathway used to simulate the labeling of

glucose.
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Table 2-10
Metabolites in the gluconeogenesis pathway. For each metabolite we only considered the

stable (i.e. carbon-bound) hydrogen atoms.

Metabolite name Carbon Hydrogen Oxygen Total
atoms atoms atoms atoms
Balanced metabolites
Glucose 6-phosphate (G6P) 6 7 6 19
Fructose 6-phosphate (FGP) 6 7 6 19
Fructose 1,6,-bisphosphate (FBP) 6 7 6 19
Dihydroxyacetone phosphate (DHAP) 3 4 3 10
Glyceraldehyde 3-phosphate (GAP) 3 4 3 10
1,3-Bisphosphoglycerate (BPG) 3 3 4 10
3-Phosphoglycerate (3PG) 3 3 4 10
2-Phosphoglycerate 2PG) 3 3 4 10
Phosphoenolpyruvate (PEP) 3 2 3 8
Glucose 1-phosphate (G1P) 6 7 6 19
Mannose 6-phosphate (M6P) 6 7 6 19
Glycerol 3-phosphate (Glyc3P) 3 5 3 11
Erythrose 4-phosphate (E4P) 4 5 4 13
Transketolase+C2-unit (E-C2) 2 2 2 6
Products
Glucose 6 7 6 19
Carbon dioxide 1 0 2 3
Substrates
Oxaloacetate 4 2 5 11
Glycerol 3 5 3 11
Glycogen 6 7 6 19
NADH 0 1 0 1
Water 0 2 1 3
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Table 2-11

Complete list of EMUs generated for glucose from EMU network decomposition of the

gluconeogenesis pathway. The EMU method was used to simulate the mass isotopomer

distribution of glucose, including all carbon, hydrogen, and oxygen atoms. This required only
493 EMUs (354 EMUs after further model reduction). In comparison 2,637,120

isotopomers/cumomers would have been required with the camomer modeling approach.

In this example, we only considered stable (i.e. carbon-bound) hydrogen atoms for each

metabolite.
EMU EMU
full model reduced model

(EMU size 1): 11, 8

(EMU size 2): 12, 11,9

(EMU size 3): 11, 11, 11, 10, 9

(EMU size 4): 12,11, 11,11,9,9,9, 6, 1

(EMU size 5): 12, 12, 11,10, 9,9,9,9, 5,6, 1, 1, 1

(EMU size 6): 12, 10, 10, 10, 10,9,9,9,5,1, 1
(EMU size 7): 11, 10, 10, 10, 9, 8
(EMU size 8): 10,9, 8

(EMU size 9): 9, 5

(EMU size 10): 5

(EMU size 11): none

(EMU size 12): none

(EMU size 13): 6

(EMU size 14): none

(EMU size 15): none

(EMU size 16): none

(EMU size 17): 5

(EMU size 18): 5, 4

(EMU size 19): 6

(EMU size 1): 8,5

(EMU size 2): 9,8, 6

(EMU size 3): 8,8,8,7,6

(EMU size 4): 9, 8, 8, 8,6, 6,6, 4, 1
(EMU size 5):9,9,8,7,6,6,06,6,4,4,1,1,1
(EMU size 6):9,8,7,7,7,6,6,6,4,1, 1
(EMU size 7):9,7,7,7,6,6

(EMU size 8):7,7,6

(EMU size 9): 7,3

(EMU size 10): 3

(EMU size 11): none

(EMU size 12): none

(EMU size 13): 4

(EMU size 14): none

(EMU size 15): none

(EMU size 16): none

(EMU size 17): 4

(EMU size 18): 4, 4

(EMU size 19): 4

Total number of EMUs = 493

Total number of EMUs = 354
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Table 2-12

Comparison of modeling approaches for simulating glucose labeling in the gluconeogenesis
pathway. A range of stable isotopes can be used to trace this pathway. Here, we considered
13C-catbon tracers, 2H-hydrogen tracers, and/or '#O-oxygen tracers. The total number of
variables required to simulate the labeling of glucose was determined for the EMU method

and the isotopomer/cumomer methods.

Total number of variables

Tracer isotopomer/cumomer EMU EMU
used model full model reduced model

13C 396 51 35

’H 768 121 84

180 420 88 61

13C +H 42,224 206 145
1BC + 18O 21,392 142 100
180 + 2H 42416 379 268
3C + 180 + 2H 2,637,120 493 354
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Determination of fluxes and confidence

intervals from stable isotope measurements

3.1 Introduction

Fluxes of metabolic pathways are fundamental determinants of cell physiology and
informative parameters in evaluating cellular mechanisms and causes of disease
(Brunengraber et al., 1997; Hellerstein, 2003; Stephanopoulos, 1999). The tools for
estimating metabolic fluxes are fundamentally different from the tools for obtaining static
measurements, such as concentration profiles or transcript levels. Currently, the most
powerful method for metabolic flux determination in complex biological systems is based on
the use of stable isotopes (Wiechert et al., 2001). Metabolic conversion of isotopically labeled
substrates generates molecules with distinct labeling patterns (i.e. isotopomers) that can be
detected by mass spectrometry (MS) and nuclear magnetic resonance (NMR) (Klapa et al.,
2003; Szyperski, 1995). The isotopic abundances of metabolites in a metabolic system are
strongly dependent on relative flux values. Different flux patterns result in significant tracer

redistribution and yield different labeling profiles.

Comprehensive mathematical models that describe the relationship between metabolite
labeling patterns and fluxes allow one to simulate isotopic abundances of all metabolites in a
network for any set of steady state fluxes. These models are nonlinear because the full set of
isotopomer equations contains product terms of fluxes with isotope abundances, and

product terms of abundances with abundances due to linear and condensation reactions in
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the system (Schmidt et al., 1997). The goal of Metabolic Flux Analysis (MFA) is to find the
set of fluxes that minimizes the difference between observed and simulated isotope
measurements. In essence, flux determination is a large-scale nonlinear parameter estimation
problem. Various iterative search strategies, for example, gradient-based Newton methods,
ot evolutionary search algorithms may be employed to find the optimal metabolic fluxes
(Schmidt et al., 1999; Wiechert et al., 1997). Metabolic flux analysis of this type has been
successfully applied to determine fluxes in various prokaryotic and eukaryotic systems
(Christensen and Nielsen, 2000; Kelleher, 2004; Malloy et al., 1988; Park et al., 1999; Sauer et
al,, 1997). However, rigotous statistical analysis of estimated flux has received much less
attention. Linearized statistics have been used to describe the uncertainty of fluxes (Arauzo-
Bravo and Shimizu, 2003; Dauner et al., 2001; Wiechert et al., 1997). Most often, however,
flux estimates are not accompanied by a corresponding range of accuracy/precision, which
makes such results difficult to interpret. For example, when the measured isotope abundance
is not very different from the simulated abundance, does this mean that the measurement is
reliable or does it simply results from a lack of redundancy in the measurement set? A
common mistake in assessing the benefit of flux estimation in over-determined systems is to
believe that a large redundancy in the measurement set necessarily results in reliable
estimates for all fluxes. To address these questions proper nonlinear statistical techniques are
needed, otherwise metabolic flux analysis will remain a black box whose inner workings are

hard to decipher.

Here, we describe here techniques that can be applied a posteriori to gain insight into the
statistical significance of flux estimation results. The same tools may then also be applied a
prioti for optimal design of tracer experiments. We show how accurate flux confidence
intervals are efficiently calculated, and we quantify the relative importance of measurements.
We show that approximated confidence intervals obtained from local estimates of standard
deviations do not accurately describe the true uncertainty of fluxes. We have applied these
tools to analyze the statistical significance of gluconeogenesis fluxes determined from human
studies probed with [U-13C]glucose as tracer. We calculated accurate confidence intervals for
all fluxes in this system and identified potental flaws in experimental setup that may prevent

accurate determination of the gluconeogenesis flux in vivo. The methods presented here are
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general in scope and may also be applied to other parameter estimation problems.
Furthermore, these algorithms are easily implemented into already developed software

platforms for flux estimation.

3.2 Methods

3.2.1 Flux estimation

The methods desctibed here are appropriate for metabolic systems investigated with isotopic
tracers at metabolic steady state. Thus, fluxes are required to satisfy the following

stoichiomettic constraints:

S-v =0 G.1)

Here, S is the stoichiometry mattix and v is the flux vector. For a reaction network with m

intermediary metabolites and k fluxes, the stoichiometry matrix is an m X k matrix.
Reversible reactions are normally modeled as separate forward and backward fluxes, such
that all fluxes are additionally required to be non-negative. From a computational standpoint,
it is more convenient to work with independent flux variables, also called free fluxes
(Schmidt et al., 1997; Wiechert et al., 1997), rather than with all individual fluxes. The
number of independent fluxes is usually much smaller than the number of individual fluxes,
which significantly reduces the computational time of simulations. Independent fluxes are

obtained from the general solution to Eq. 3.1:

v = N-u (3.2)

Here, N is the null space matrix of S, and u is the vector of independent fluxes. There ate
many methods to calculate a valid null space matrix (Foster, 1986), and in general there is
not a unique null space mattix for any given stoichiometry matrix. The size of the null space
mattix and the number of independent flux variables, however, are fully determined by the

rank of the stoichiometry matrix. With r = rank(S) < m, the null space matrix is a k X k-r
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matrix and the number of independent fluxes equals k-r. Note that Eq. 3.2 may be used to

translate results expressed in terms of independent fluxes into individual fluxes.

At least k-r measurements are needed to determine the k-r independent flux variables.
External flux measurements often do not provide enough constraints to estimate all fluxes in
complex biological systems containing reversible reactions, parallel pathways and internal
cycles (Schmidt et al.,, 1998). In these cases, isotopic tracer experiments can provide
additional constraints from the measurement of isotope incorporation into metabolite pools
by techniques such as GC/MS and NMR. The fate of isotopic tracers in a metabolic system
is determined by the atoms transitions occurring in biochemical reactions. These transitions
are well established for the majority of metabolic pathways and have been documented in
biochemical textbooks. Assuming metabolic and isotopic steady state, the mathematical
model that is used for isotopic simulations comprises the complete set of isotopomer
balances, which may be derived using a matrix based method as desctibed by Schmidt et al.
(1997). More recently, alternative modeling strategies were proposed by other authors based
on the concept of cumomer balances and bondomer balances (van Winden et al., 2002;
Wiechert et al,, 1999). In Chapter 2 we described a novel strategy for modeling isotopic
distributions based on the concept of elementary metabolite units (EMU). All modeling
strategies are equivalent in the sense that they produce the same numerical results, i.c.
isotopomer abundances, for a given set of fluxes and substrate labeling. The sensitivity
matrix of simulated measurements with respect to flux values, i.e. (dx/du), may be obtained
either by approximation using finite differences, or from algebraic such as the ones derived
in Chapter 2 (section 2.2.5). Metabolic fluxes are estimated from labeling data by minimizing
the difference between the observed and simulated measurements. Flux estimation is in

essence a large-scale constrained least-squares minimization problem:

X

min® = (x(w)-x") %" (x@-x") (3.3)
s.t. N-uz0
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The objective function @ is the covariance-weighted sum of squared residuals, x(u) is the
vector of simulated measurements , x°b is the vector of experimental data containing both
labeling measurements and extracellular rate measurements, and Zy is the measurement
covariance matrix with measurement variances located on the diagonal. Eq. 3.3 requires an
iterative solution scheme, where at each iteration Eq. 3.3 is transformed into a
corresponding quadratic programming (QP) subproblem (Gill et al., 1991). First, the
simulated measutements are formally expressed as a function of free fluxes using Taylor

series expansion:

x=x + [?]-Au + O(Au?) (3.4)

u

Here, x" is the vector of simulated measurements for the current set of fluxes, (dx/du) is the
matrix of sensitivities of the simulated measurements with respect to fluxes, and Au is the
vector of flux changes. Substituting Eq. 3.4 into Eq. 3.3 and neglecting second and higher
order terms, we obtain the following expression for the objective function as a function of

flux changes:

T dx )" ax )" 4
rrglnd) - (X* _XObS) 28 '(X* _XObs) t 2 (ﬁ) -z '(X* -—XObS) + Au” (ﬁ) ! '(ﬁ)-Au

s.t. N-u=0

(3.5)

Note that the first term in Eq. 3.5 is the value of the objective function for the current

fluxes. We define the change in the objective function as:

AD = - (x' —x™) =1 (x —x™) (3.6)
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With this, we obtain the following QP subproblem at each iteration:

min AD = 2-Au” -]+ Au'-H-Au

3.7)
s.t. N-u=>0
with  ]= (ﬂ’i)l‘ 2 (x-x™) (3.82)
du ! )
;
and H= [3] 2 (d—xj (3.8b)
du : du

The Hessian matrix H and the Jacobian J are evaluated at each iteration for the current
fluxes. Differentation of the objective function in Eq. 3.7 with respect to flux changes

yields:

d(AD)

= 2. .H-Au 3.9
A 2-J+2-H-A (3.9

The minimum of Eq. 3.7 occurs when d(A®)/d(Au) = 0 (Gill et al., 1991), which is the
solution to the system of linear equations given in Eq. 3.9. Thus, the optimal search direction

for the independent fluxes at each iteration is:

Au=-H") (3.10)

A numerically stable form for the inverse of H may be obtained from singular value
decomposition of H (see Appendix 3.A). The following updated flux vector is obtained at

each iteration:

w1 = u + Au (3.11)
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Inequality constraints on fluxes, i.e. N-u = 0, can be included without difficulty to this
general scheme, and all kinds of step controlling strategies can be applied (Byrd et al., 1999;
Gill et al., 1991). Flux estimation is generally initiated with random values for all fluxes and
the estimation algorithm continues until a predefined convergence criterion is met. The final
vector of independent fluxes is then transformed using Eq. 3.2 to obtain the optimal values
for all metabolic fluxes in the system. The complete algorithm for covariance-weighted flux

estimation is outlined in Appendix 3.B.

3.2.2 Goodness-of-fit analysis

The fact that MFA yields a set of fluxes that minimize the difference between the observed
and simulated measutrements does not mean that the flux model is adequate. At
convergence, the minimized vatiance-weighted sum of squared residuals, as defined in Eq.
3.3, is a stochastic variable with y2-distribution with the number of degrees of freedom equal
to the number of independent measurements (n) minus the number of estimated free fluxes
p = k-r. The expected value for the minimized sum of squared residuals equals the number
of degrees of freedom of the x2-distribution. To test the goodness of fit, we test the null

hypothesis that the model is adequate:
P(02 0@ | ©~y’(n-p)) >« (3.12)

Here, G are the fluxes at the optimal solution. The null hypothesis is rejected when the
calculated P-value is smaller than a certain chosen threshold value ., for example 0.05. If
previous investigations have excluded the possibility of gross errors in the measurements,

then it must be concluded that the model is not adequate, and thus should be reevaluated.

Individual residuals should also be analyzed at convergence. If the flux model is correct, then
the standard deviation-weighted residuals are expected to be normally distributed with a
mean of zero and standard deviation of one, i.e. N(0,1). A normal probability plot is a useful

tool for assessing whether the residuals are indeed normally distributed. Alternatively, one
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can use the Kolmogorov-Smirnov and Lilliefors tests to evaluate the hypothesis that the
residuals are normally distributed (Conover, 1999). If the standard deviation of the weighted
residuals is significantly different from one, then that indicates that the residuals have been

improperly weighted, which may result in biased flux estimates.

3.2.3 Local linearized statistical properties

The first goal of MFA is to improve our knowledge of internal fluxes, however, assessing the
reliability of flux estimates is also important. Without this information it is difficult to
interpret flux results and expand the physiological significance of flux studies. At
convergence, a number of local statistical properties of fluxes ate easily detived. First, we
calculate the inverse of the Hessian, which gives the local estimate for the covariance matrix

of the estimated independent fluxes (Hartmann and Hartwig, 1996):
¥, =H' (3.13)

Combining Eqs. 3.2 and 3.13 we obtain the following covariance matrix for all individual

fluxes in the system:
£, =N-Z -N"=N-H'-N' (3.14)

We can then calculate local estimates for standard deviations of metabolic fluxes, i.e. the
square roots of the diagonal elements of X,. The local approximation for the 95%

confidence interval of flux i is thus given by:
Approx. 95% confidence interval, = flux, * 2- /X (3.15)

Similarly, we may also calculate covariance matrices and confidence intervals for other
system variables. For example, the covatiance matrix for the simulated measurements is

given by:
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X = (EJ-ZH [d_x] (3.16)
du du

3.2.4 Calculating accurate flux confidence intervals

Confidence intervals of fluxes obtained from estimated local standard deviations may not
accurately describe the true flux uncertainty due to inherent nonlinearities of isotopomer
balances. In addition, flux constraints, e.g. v 2 0, may be violated within the approximated
confidence interval resulting in overestimation of flux uncertainty. To address these issues
we propose an alternative strategy for determination of more accurate flux confidence
intervals. This technique is an extension to the flux estimation procedure described in
section 3.2.1. In the proposed method, confidence intervals are calculated for each flux
individually. The goal is to determine the sensitivity of the objective function, i.e. the
minimized sum of squared residuals, as a function of the flux value. Small sensitivities, i.e.
large changes in the flux value resulting in small changes in the minimized sum of squared
residuals, indicate that the flux cannot be estimated precisely. Large sensitivities, on the other
hand, indicate that the flux is well determined. The optimization problem associated with
minimizing the sum of squared residuals as a function of one particular flux has n-p-1
degrees of freedom, compared to n-p degrees of freedom for the original MFA problem.
The difference between the objective function evaluated at the optimal solution and the
objective function when one flux is fixed follows a y2-distribution with one degree of

freedom:

(@], -, - ®®@) ~ £’ (317

It should be noted that Eq. 3.17 assumes that the residuals are correctly weighted. If

measurement errors are unknown, or the residuals are incorrectly weighted then Eq. 3.17
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may produce inaccurate results. In these cases, the following alternative F-statistic is

preferred:

O, _,, — P®
(&) / (n-p)

~ F(1,n-p) (3.18)

In the above equations, ®(u) jvi=vio indicates the value of the objective function for the model
where one flux i is fixed at vi, and the other degrees of freedom have been used to minimize
the objective function. The 1-a confidence interval for flux i is given by all flux values for

which the following statement is true:

ow)| . < (0@ + x\,0) (3.19)

VTV

The threshold values for %21.4(1) corresponding to 80%, 90%, 95% and 99% confidence
intervals are 1.64, 2.71, 3.84, and 6.63, respectively. Thus, in otrder to obtain accurate
confidence intervals of fluxes we need to determine the minimized sum of squared residuals
as a function of the flux value. Here, we describe an efficient algorithm for this purpose.
Starting at the optimal solution, the value of one flux whose sensitivity we seek to determine
is increased step-by-step, while the other fluxes are determined by minimizing the objective

function. We obtain the following QP subproblem at each iteration:

nlinACD = Z-AuT=] + Au"-H-Au

s.t. N,-Au = h (3.20)
N-u=>0

Eq. 3.20 is similar to Eq. 3.7, with the additional constraint that flux v; is required to increase
with a step size ‘h’. In the above equation N; denotes the i row of matrix N. The above
constrained optimization problem is transformed to a problem without equality constraints

using the Lagrange formulation (Byrd et al., 1999; Gill et al., 1991):
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minL = 2-Au”-J + Au"-H-Au + (N, -Au—h)- AL
Au, 5 (3.21)

s.t. N-uz=20

Here, A is the Lagrange multiplier. The minimum of Eq. 3.21 occurs when the following

stationaty conditions are satisfied:

( dL ]:0 N 2:J+2-H-Au+N"-AL=0 (3.22)

d(Auw)

(;‘L_) ~0 > N-Au-h=0 (3.23)
d(an)

We define a square matrix A and vectors b and Ad as follows:

A= [Z'H NiT] (3.242)
N, 0
_|72]
b -[ - } (3.24b)
T 3.24
=l m (3.24¢)

The stationary conditions from Eqs. 3.22 and 3.23 can be written as follows:

A-Ad=b (3.25)

Thus, the optimal adjustment of the variables in vector d, i.e. independent fluxes and the

Lagrange multiplier, that minimizes the objective function is given by:
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Ad=A"b (3.26)
and we obtain the following updated vatiables vector at each iteration:
d., =d +Ad (3.27)

The flux value is increased this way until either the flux reaches infinity, ot the objective
function has increased by 3.84 compared to the value at the optimal solution, which then
cotresponds to the upper bound of the 95% flux confidence intetval. The above procedure
is then repeated starting at the optimal solution, but now the flux value is gradually

decreased, i.e. the linear constraint in Eq. 3.20 is changed to:
-N;-Av = h (3.28)

Eqgs. 3.21 to 3.24 are also changed accordingly. The selected flux is decreased until either the
flux reaches the lower bound, or the objective function has increased by 3.84 compared to
the value at the optimal solution, thus corresponding to the lower bound of the 95% flux
confidence interval. If the flux model was linear, then the profile of the minimized sum of
squared residuals versus the flux value would be a parabola. However, because of the
inherent nonlinearities of isotopomer models observed profiles will often deviate from the
parabola-shape. In section 3.3.1 we show that confidence intervals of metabolic fluxes
obtained with the above described method accurately reflect the true uncertainty of flux
estimates. Note that additional fluxes constraints, i.e. N-u 2 0, and step controlling strategies
are again easily applied to this general scheme (see Appendix 3.C). The complete algorithm

for accurate determination of confidence intervals of fluxes is outlined in Appendix 3.D.
3.2.5 Relative importance of measurements

Next, we address the question how the precision of estimated fluxes is influenced by

measurement uncertainty. In particular, we wish to identify measurements that conttibute
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significantly to the variance of estimated fluxes. This will allow us to quantify the relative
importance of measurements and identify key measurements, i.c. measurements for which an
enhancement of precision would result in significant improvement in the quality of flux
estimates (Heyen et al., 1996). These measurements should be carried out with special
attention and it may prove wise to measure them more precisely. First, we rewrite Eq. 3.14

as follows:
», =N-H'"'N" =N-H'-H-H'-N' (3.29)

Substitution of the definition for the Hessian matrix from Eq. 3.8 into Eq. 3.29 yields an
expression that directly links measurement variances, i.e. on the diagonal of matrix X,, with

flux variances, i.e. on the diagonal of matrix X

(A=Y o (dx) o
. =N-H'.|=|.2'|=]|-H"N (3.30)
du du

We can use Eq. 3.30 to construct the contribution matrix. Elements in this matrix reflect the

fractional contribution of the variance of measurement j to the local vatiance of flux i:

T
N-H! (gj
du (&)
Conttibution, = (3.31)
(§)]
] Zoey " T

2

The sum of each row in the contribution matrix equals one. Matrix elements with large
values indicate important measurements. From the contribution matrix we can easily
determine the number of redundant measurements for each individual flux. In general, it is
desirable that more than one measurement significantly contributes to the flux estimation.
Fluxes that depend only on one measurement are very sensitive to errors in that one
measurement. We can use this as a criterion to determine the quality of tracer experiment

design. For example, a tracer experiment is considered pootly designed if a significant

-103 -



CHAPTER 3. DETERMINATION OF FLUXES AND CONFIDENCE INTERVALS

number of estimated fluxes have little or no redundant measurements. Note that this
situation may occur even if the total number of measurements is much greater than the
number of unknown fluxes. On the other hand, we may also encounter expetiments that are
specifically designed to determine only a subset of fluxes which are of interest. In that case,
the overall flux estimation problem can be underdetermined, as long as the fluxes of interest
are over-determined. Thus, in general there is not a single optimal tracer experiment.
Instead, depending on the fluxes that need to be determined, different experimental designs
may be optimal. Note that our method for evaluating experiment design places emphasis
redundant measurements, which sets it apart from the methods used by other investigators

which are based on the D-ctitetion (Mollney et al., 1999).

In addition to the contribution matrix, we also derived the following expressions for local
sensitivities of estimated fluxes with respect to changes in measurement values and assumed

measurement errots:

T
& _ N (d_") PR (3.32)
dx du )
T
dv _ , 5 [dx BERET A obs
o 2-N-H '(EJ 2,1 - diag (x(@) - x™) (3.33)

These two expressions indicate how much flux estimates are affected by a change in a
particular measurement. It is clear that different measured values will result in different
estimated fluxes. However, the significance of assumed measurement errors on flux
estimates is often overlooked. The assumed measurement errors determine the relative
weighting of residuals in the objective function, and have a significant impact on flux
estimation results. This is particulatly true for measurements with very small assumed errors,
which may introduce a bias towards these measurements. Therefore, as part of a postetioti
analysis it is important to analyze the sensitivity of fluxes with respect to changes in

measurement values a#d measurement errors. In particular, high sensitivities with respect to
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changes in measurement errors indicate disagreement between the measurement and the
network model that should be further investigated. This inconsistency may be caused by
measutement gross errors, inapproptiate weighting of residuals, or errors in the metabolic

network model.

3.3 Results

To illustrate the developed methods two examples are provided. The first example is a
simple metabolic system with only six fluxes, where we compare flux confidence intervals
calculated by the described method to ‘true’ confidence intetvals obtained using an
exhaustive grid search and by Monte Carlo simulations. The second system is taken from
human physiology literature, i.e. mammalian glucose metabolism evaluated by constant

infusion of [U-13C]glucose.

3.3.1 Simple example network

Consider the simple network shown in Figure 3-1. This system will setve as the test case for
our method of calculating accurate confidence intervals. We will simulate data from this
system and then use the simulated data to estimate fluxes and calculate flux confidence
intervals as we described in sections 3.2.1 and 3.2.4. In this network, metabolite A is the sole
substrate and metabolites E and F are two final products. The intermediary metabolites B, C
and D are assumed to be at metabolic and isotopic steady state. Atom transitions for the five
reactions ate given in Table 3-1. The assumed flux disttibution is shown in Figure 3-1. All
fluxes are expressed as percentages of the substrate uptake rate, which is fixed at 100. In this
example, 100% [2-13C]A is chosen as the isotopic tracer and the mass isotopomer
distribution (MID) of product F is measured. At isotopic steady state the following MID for
metabolite F is obtained, 0.01 mol% (M+0), 80.08 mol% (M+1), 19.83 mol% (M+2), and
0.09 mol% (M+3).
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D OOO" 20 E

Vg= 801

F OOO

Figure 3-1: Simple metabolic network used hete to illustrate the computation of confidence
intervals of metabolic fluxes. The assumed steady-state fluxes have arbitrary units. The
network substrate A is fully labeled on the second atom. Atom transitions for the reactions

in this network are shown in Table 3-1.
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Table 3-1
Stoichiometty and atom transformations for reactions in the example metabolic network in
Figure 3-1.

Reaction  Reaction stoichiometry Atom transformations*

number

1 A—->B abc — abc

2 BoD abc > abc

3 B—>C+E abc—>bc+a

4 B+C—>D+E+E abc + AB—>bcA+a+B

5 D->F abc — abc

* For each compound atoms are identified using lower case letters to represent successive atoms of

each compound. Uppetcase letters represent a second compound in the reaction.
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3.3.2 Grid search

With the substrate uptake rate fixed at 100 this metabolic system has two remaining degrees
of freedom. Here, we choose fluxes v2 and v4 as the independent fluxes. For this simple
problem it is computationally feasible to apply a grid search strategy to determine the
sensitivity of the objective function as a function of flux values, from which the uncertainty
of fluxes can then be calculated as desctibed in section 3.2.4. Here, we evaluated all
combinations of fluxes v» ranging from 0 to 500 (with step size 0.5) and v4 ranging from 0 to
100 (with step size 0.1), i.e. one million flux combinations were evaluated. For each flux
combination we calculated the sum of squared residuals assuming a measurement etror of
0.3 mol% for all mass isotopomer fractions. Figure 3-2 provides a one-dimensional
representation of this 2D-grid search. The dots in Figure 3-2A correspond to the minimal
sum of squared residuals for fixed value of v3, but variable value of v4. In Figure 3-2B flux v4
was fixed and v varied. Note that for this simple example with two degrees of freedom, the
grid search method for calculating flux confidence intervals is closely related to our

proposed method described in section 3.2.4.

3.3.3 Monte Catlo simulations

Confidence intervals were also determined using Monte Carlo simulations. For this purpose,
we generated 10,000 simulated data sets corrupted with noise with a standard deviation of
0.3 mol%. Metabolic fluxes were estimated from this data and we obtained 10,000 estimates
of fluxes vz and v4. It is expected that the estimated fluxes will differ somewhat from the true
flux values (i.e. v2rc=110 and v4.=20) due to measutement errors. Furthermore that the
spread in the estimated fluxes corresponds to the flux uncertainty. Figure 3-3 shows the
histogram of estimated fluxes vz and v4. To determine flux confidence intervals, flux
estimates were first sorted in ascending order. The 80% confidence interval was then
obtained by discarding the top 10% and bottom 10% of flux estimates; the 90% confidence
interval was obtained by discarding the top 5% and bottom 5% of flux estimates, etc. The

calculated confidence intervals for v» and v4 are summarized in Table 3-2.
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Figure 3-2: Determination of confidence intervals of metabolic fluxes. The minimized sum
of squared residuals is plotted against the flux value for fluxes v2 and vi. Circles represent the
smallest sum of squared residuals observed for a given flux value from the exhaustive grid
search. The solid line represents the profile determined with our method, and the dashed
line represents the profile obtained assuming linearized statistics. The dashed horizontal lines
represent the threshold values for the 80%, 90% and 95% confidence intervals, respectively

(see section 3.2.4 for details).
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Figure 3-3: Histogram of estimated fluxes v2 and v4 from 10,000 Monte Catlo simulations.
For each simulation isotopomer data was corrupted with random noise with a standard
deviation of 0.3 mol% abundance, and fluxes were estimated by least-square optimization.
Estimated fluxes were then collected into bins with a width of 2 for v2, and 1 for v4 (shown
here). The estimated fluxes are different from the true flux values due to the introduced

measurement errors, i.e. v2,rue=110 and v4re=20.

-110 -



E DETERMINATI ND CONFIDENCE R

3.3.4 Linearized statistics

Approximated confidence intetvals were obtained from estimated standard deviations of

fluxes after linearization, as desctibed in sections 3.2.1 and 3.2.3. The following optimal

solutions for fluxes v, and v were obtained: v, = 110+86.4; and v4 = 20£5.5 (best fit + SD).

3.3.5 Comparison of methods for calculating flux confidence intervals

Next, confidence intervals of fluxes were determined with our method using the algorithm
described in section 3.2.4. The calculated 80%, 90% and 95% confidence intervals for fluxes
v2 and v obtained with all four methods ate summarized in Table 3-2. The values obtained
using the grid search method, the Monte Carlo simulations and our method agreed well.
Howevet, values obtained from linearized statistics differed significantly. In Figure 3-2 we
visualize the confidence intervals obtained with the grid search method, linear approximation
and our method. It is clearly seen that the confidence intervals in this system are non-
symmetric and highly nonlinear. As such, confidence intervals approximated from local
estimates of standard deviations agreed well only in a small area surrounding the optimal
solution. The lower and upper bounds for flux v, were significantly underestimated, and for
flux vy the size of the 95% confidence intetval was overestimated by almost a factor of 2.
Note that most metabolic systems of interest will have more than two degrees of random,
which limits the use of grid search and Monte Catlo simulations due to computational
limitations. Even for this simple example network, the grid search method and Monte Carlo
simulations required houts of calculations. In contrast, our method took less than one
second. It should be noted that the above observations are specific to our particular network
structute, substrate labeling, measurements and assumed measurement errors. However, it is
clearly illustrated that for reasonable values of measurement errors, highly nonlinear
confidence intervals can be expected. In summary, we have shown that approximated flux
confidence intervals do not accurately describe true uncertainty of estimated fluxes.
Thetefore, mote accurate flux confidence intervals must be determined using nonlinear
tools. We have developed an efficient technique for calculating these intervals without the

need to perform computationally demanding grid searches, or Monte Carlo simulations.
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Table 3-2

Comparison of methods for the calculation of confidence intervals of fluxes. Confidence

intervals were calculated for fluxes v2 and v4 in the example network model shown in Figure

3-1.
Confidence intervals for flux v, Confidence intervals for flux vy
Method 80% 90% 95% 80% 90% 95%
Grid search 67.0-253 66.5 — 323 66.5 — 405 16.5-25.6 164-271 16.4-283
Monte Catrlo 66.7 — 251 66.5 - 317 66.4 — 407 165-25.6 164-270 164-284
Our method 66.5 — 252 66.4 — 322 66.3 — 403 164-256 163-27.1 163-283
Lineatization* (-0.6)—220  (-31.8)-252  (-62.8) — 283 129-271 11.0-290 9.0-31.0

* Confidence intervals were approximated from local estimates of standard deviations for the fluxes

after linearization.
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3.3.6 Mammalian gluconeogenesis

As the second metabolic system we chose mammalian gluconeogenesis at metabolic and
isotopic steady state evaluated by constant infusion of [U-13C]glucose. Figure 3-4 shows the
metabolic model for mammalian glucose metabolism, which is described in more detail in
Appendix 3.E. Investigation of glucose metabolism is of major physiological and clinical
significance in the study of obesity, diabetes and other disease (Groop et al., 1989; Landau et
al., 1996). Of particular interest are the rates of glucose production and utilization, and the
pathways by which glucose is formed during fasting. Tayek and Katz were the fitst to
propose a method for estimating several parameters of glucose metabolism in human from
the mass isotopomer distributions of plasma glucose and lactate upon constant infusion of
[U-13C]glucose as the single isotopic tracer (Tayek and Katz, 1996). However, since the
introduction of this method several authors raised questions regarding the reliability of flux
estimates from this system (Kelleher, 1999; Landau et al., 1998; Radziuk and Lee, 1999).

Here, we address these questions using the developed tools.

We selected two studies from recent literature where the [U-13C]glucose method was applied
to study glucose metabolism in vivo. Tayek et al. investigated glucose metabolism in healthy
and diabetic subjects (Tayek and Katz, 1996). Human subjects were infused with [U-
13C]glucose for 3 hours at a rate of 0.59 wmol/kg/min. Mass isotopomer disttibutions (MID)
of plasma glucose and plasma lactate were measured at the end of the infusion petiod and
several parameters of glucose metabolism were estimated. The authors found a near linear
cotrelation between hepatic glucose production and plasma glucose levels suggesting a key
role of liver metabolism in diabetes. In a more recent publication, Sunehag investigated the
effects of supply of parental lipids and amino acids to very premature infants (Sunehag,
2003). After an 8 hr infusion with [U-13C]glucose at a rate of 17 pmol/kg/min, MID of
plasma glucose and lactate were measured and the rate of gluconeogenesis was estimated.
This study revealed the primary role of lipids in supporting gluconeogenesis in very low
birthweight infants. The key difference between the two studies was the rate of tracer

infusion. In the study by Tayek [U-1*C]glucose was infused at a rate corresponding to 4% of
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Figure 3-4: Metabolic model of mammalian glucose metabolism evaluated by constant
infusion of [U-13C]glucose. Abbreviations of metabolites: G6P, glucose-6-phosphate; R5P,
tibose-5-phosphate; Pyr, pyruvate; OAC, oxaloacetate; SucCoA, succinyl coenzyme A; Fum,
fumarate; AcCoA, acetyl coenzyme A; FA, fatty acids; PEP, phosphoenolpyruvate; TP,
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Table 3-3
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Stoichiometry and carbon transformations for the reactions in the network of mammalian

glucose metabolism. Abbreviations of metabolites are the same as in Figure 3-4.

Reaction  Reaction Carbon transformations*
number
1 [UBC|Gluc = Gluc abcdef — abcdef
2 Gluc - G6PM] abcdef — abcdef
3 G6PM] - TPM] + TPM] abcdef — cba + def
4 G6PM] — R5PM] + CO2 abcdef — bedef + a
5 R5P[M] + R5P[M] — S7P[M] + TP[M] abede + ABCDE — abABCDE + cde
6 S7PM] + TPM] — G6P[M] + E4P[M] abcdefg + ABC — abcABC + defg
7 R5PM] + E4P[M] — G6P{M] + TP[M] abcde + ABCD — abABCD + cde
8 TPM] — Pyr[M] ach — abc
9 Pye[M] — Lact abc — abc
10 Lact[O] — Lact abc — abc
1 Lact — other abc — abc
12 Lact — Pyr[L] abc — abc
13 Pyr[L] + CO3[L] —» OAC[L] abc + A > abcA
14 OAC[L] + AcCoA[L] = SucCoA[L} + 2 CO: abcd + AB —> ABbc +a +d
15 SucCoA[L] = Fum[L] abcd — (V2 abed + V2 dcba)
16 Fum[L] &> OAC[L] (Y2 abed + Y2 dcba) ¢ abed
17 FA[L] = AcCoA[L] ab — ab
18 AcCoA[L] + AcCoA[L] — ketone[L] ab + AB — abAB
19 OAC[L] — PEP[L] + CO; abed — abe +d
20 PEP[L] — Pyr[L] abc — abc
21 PEP[L] - TP[L] abc — abe
22 Glycerol[O] — TP[L] abc — abe
23 TP[L] + TP[L] - G6P[L] abc + ABC — cbaABC
24 Glycogen[L] - G6P[L] abedef — abedef
25 GO6P[L] = Gluc abcdef — abcdef
26 Gluc —> other abcdef — abedef

* For each compound carbon atoms are identified using lower case letters to represent successive

carbon atoms of each compound. Uppercase letters represent a second compound in the reaction.

Because fumarate is a rotationally symmetric molecule no distinction can be made between carbon

atoms 1 and 4, and carbon atoms 2 and 3.
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glucose turnover, whereas in the study by Sunehag tracer infusion contributed very

significantly to the total rate of glucose appearance (~58%).

The MIDs of plasma glucose and lactate from these two studies are shown in Table 3-4.
One representative data set was selected from each study. The data was corrected for natural
isotope enrichments of 13C and other stable isotopes. In keeping with pervious conventions,
we represent mass isotopomers of glucose as M; and mass isotopomets of lactate as m;. We
fitted both data sets to the glucose metabolic model assuming measurement errors of 0.1
mol% abundance for all measured abundances. In both cases a good fit was obtained,
tesulting in a minimized sum of squared residuals of 0.3 and 0.5 for the Tayek and Sunehag
data, respectively. We then calculated accurate confidence intervals for all fluxes in the

network. The results are summatized in Table 3-5.

One of the key fluxes in this model is the rate of gluconeogenesis, i.e. de novo glucose
synthesis from precursors such as lactate, amino acids and glycerol. The calculated
confidence intervals for this flux from the two studies were significantly different

(see Figure 3-5). For the study by Tayek et al,, the observed flat profile of the confidence
interval indicates that gluconeogenesis flux cannot be determined precisely. There was a wide
range of equally likely solutions for the gluconeogenesis flux, ranging between 3.6 and 14.4
pmol/kg/min, for which the minimized sum of squared residuals was the same. Other fluxes
in this model display similar flat profiles. Thus, in this case we could not identify a unique
optimal solution for fluxes, but rather a range of optimal solutions as is indicated in

Table 3-5. In cases like this, it is informative to determine the search direction of fluxes at
the optimal solution, i.e. Ad from Eq. 3.26. This vector reveals metabolic pathways that
cannot be determined independently of one another. Considering the gluconeogenesis flux,
we found that it was not possible to distinguish between hepatic glycerol intake and
glycogenolysis. Indeed, several authors recently raised concerns regarding the [U-3C]glucose
method. Based on physiological insight Landau and colleagues concluded that the only
fluxes that can be determined from this system are hepatic glucose output (HGO) and the

fractional contribution of pyruvate to gluconeogeneis (Landau et al., 1998).
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Table 3-4
Measured and fitted mass isotopomer abundances. Mass isotopomer of plasma glucose (M;)
and plasma lactate (m;) were measured after constant infusion of [U-13C]glucose (molar

abundances, mol%). Mass isotopomer abundances were cotrected for natural isotope

enrichments.
Tayek study* Sunehag study**
Mass isotopomer Measured Fitted Measured Fitted
M, 95.20 95.20 28.90 28.91
M, 0.29 0.31 4.40 4.39
M; 0.22 0.19 3.36 3.38
M; 0.33 0.33 3.65 3.66
M, 0.00 0.00 0.80 0.82
Ms 0.00 0.00 0.47 0.42
Mg 3.96 3.96 58.42 58.43
mo 98.07 98.07 57.78 57.78
my 0.38 0.36 5.48 5.50
ma 0.19 0.22 5.23 5.21
m3 1.36 1.36 31.51 31.51

* Data was taken from Tayek et al. (1996) for diabetic subject no. 5 (D5). Tracer infusion rate was
0.59 pmol/kg/min [U-13C]glucose.

** Data was taken from Sunehag et al. (2003) for the infant receiving supplementation of glucose,
amino acids and parental lipids (g + AA + IL). Tracer infusion rate was 17 umol/kg/min [U-
13C]glucose.
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Table 3-5

Estimated glucose metabolic fluxes and their 95% confidence intetvals. Fluxes

(wmol/kg/min) were estimated from mass isotopomers of glucose and lactate using the

network model of mammalian glucose metabolism in Figure 3-4.

Tayek study (1996) Sunehag study (2003)
Tissue Flux Best fit* 95% Conf. Best fit* 95% Conf.
Plasma  Tracer infusion rate 0.59 0.59 17.0 17.0
Influx of unlabeled lactate 0-32 0-49 5.6 - 36.1 51-36.4
Muscle  Cori cycle** 1.8-15.0 1.1-15.6 45-29.2 42-293
Pentose pathway 0 0-85 3.6-23.2 3.1-238
Liver Hepatic glucose output (HGO) 14.3 13.7-15.0 12.2 121-123
Glycogenolysis (GL) 0-10.7 0-115 5.3 43-56
Gluconeogenesis (GNG) 3.6-144 25-15.0 6.9 6.6-79
Glycerol uptake 0-21.5 0-23.1 0.3 0-31
Unlabeled anaplerotic sources 0-9.0 0-26.6 0.3 0-31
TCA Cycle 10-22 0.2-180 18.0 143-211
Pyruvate carboxylase (PC) 15.1 5.3-239 135 12.6 -14.4
Pyruvate kinase (PK) 6.0-12.1 0-222 0 0-038
Backward flux of fumarase 6-19 0-550 40.0 28.9-56.0
Ketogenesis 0 —Inf 0 —Inf 0 - Inf 0 - Inf

* Best fit’ denotes flux value at the optimal solution, or the region of flux values with the same

minimized sum of squared residuals.

** Cori cycle refers to the total flux from plasma glucose to plasma lactate.
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Figure 3-5: Confidence intervals of gluconeogenesis flux for selected studies by Tayek and
Sunehag. The minimized sum of squared residuals minus the optimal solution value is
plotted against the gluconeogenesis flux. The solid line represents the profile determined
with our method, and the dashed line tepresents the profile obtained from the local estimate
of standard deviation. The dashed horizontal line represents the threshold values for the

95% confidence interval of gluconeogenesis flux.
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Our results support their conclusions for the Tayek study. Note that the only two fluxes that
were uniquely determined were HGO and the pyruvate carboxylase flux, which is the first

step in the pathway from pyruvate to glucose.

We also calculated local standard deviations for fluxes at the optimal solution to compare
approximated confidence intervals with the results obtained by our method. For most fluxes
the approximated values did not agree with the true confidence intervals. The only exception
was HGO flux for which the local standard deviation reasonably described the true
uncertainty (14.3 = 0.4 pmol/kg/min). We also determined the most important
measurements for the estimated gluconeogenesis flux. The two most important
measurements were glucose mass isotopomers Ms, Ms. However, in this study neither of
these isotopomers were formed in significant abundance. We can therefore conclude that in
order to estimate the gluconeogenesis flux in this system one must either find a more precise
technique to measure glucose isotopomers M4 and Ms, or find a alternative method to

quantify either hepatic glycerol uptake or hepatic glycogenolysis.

In contrast, Sunehag applied a significantly higher tracer infusion rate, i.e. 17 umol/kg/min
vs. 0.59 pumol/kg/min as employed by Tayek et al. Consequently, glucose isotopomers M
and Ms were formed in significant abundance, i.e. 0.80 and 0.47 mol% respectively. In this
case, MFA produced 2 unique solution for the gluconeogenesis flux (6.9 umol/kg/min) with
a narrow 95% confidence interval (6.6 — 7.9 pmol/kg/min). Here, glucose mass isotopomers
M., Ms and M;s were the most important measurements for estimating gluconeogenesis flux
with telative contributions of 59%, 18% and 9% respectively. Other fluxes in this system
were also estimated more precisely than in the Tayek study (see Table 3-5). Here, most fluxes
had a well defined optimal flux value, with the notable exceptions of the influx of unlabeled
lactate, the Cori cycle flux, the pentose pathway in muscle, and hepatic ketogenesis.
Comparing the overall quality of flux results from both studies it is clear that high tracer
infusion rates are desirable in order to obtain reliable flux estimates in this system. The main
concetn is, however, that high infusion rates of glucose may alter endogenous glucose
metabolism. Therefore, the optimal infusion rate will depend on the desired precision of

fluxes and the ability to measure glucose mass isotopomers My, M3 and M; precisely.
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3.4 Discussion

Metabolic flux analysis based on the application of stable isotopes and subsequent
measurement of labeling patterns is a powerful technique for measuring metabolic fluxes in
vivo. However, reliable physiological knowledge can only be obtained from these studies if
the statistical significance of estimated fluxes is determined as well. This is complicated by
the highly nonlinear relationships inherent to isotopic systems. Unfortunately, detailed
statistical analysis of estimated metabolic fluxes is still not common practice. Most often,
fluxes obtained from stable isotope studies are reported without any statistical significance.
In some cases, lineatized statistics have been used to desctibe the uncertainty (Arauzo-Bravo
and Shimizu, 2003; Wiechert et al., 1997). Wiechett et al. showed that linearized statistical
propetties are inappropriate for large exchange fluxes. A nonlinear mapping of exchange flux
improved the approximation for an example network probed with NMR measurements
(Wiechert et al., 1997). In this contribution, however, we have shown that even for very
simple systems probed with MS measurements confidence intervals of net and exchanges
fluxes are highly nonlinear and non-symmetric. The true confidence intervals of fluxes may
be much smaller, or much larger than the linearized confidence intervals suggest. For
example, van Winden et al. determined the 90% confidence interval for the split ratio
between glycolysis and the pentose phosphate pathway in yeast from MS measurements of
intracellular metabolites (van Winden et al., 2005). The 90% confidence interval ranged from
0.05 to 0.52, indicating that the split ratio could not be determined precisely due to a
correlation with the glycogen flux. In this study, we have also provided examples of fluxes
with very large confidence intervals. The gluconeogenesis flux determined from experiments
with low [U-13C]glucose infusion could not be determined accurately resulting from a
correlation between hepatic glycerol influx and glycogenolysis. These types of problems
cannot be detected by MFA alone, or using linearized statistics. To eliminate these problems,

. nonlinear statistical tools are required for careful design of tracer experiments.
In summary, in this contribution we have presented comprehensive techniques that allow

accurate determination of the significance of fluxes obtained from stable isotope

measurements. The advantage of our approach is that it provides an efficient method to
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calculate nonlinear confidence intervals that reflect the true uncertainty of estimated fluxes.

It allows the construction of confidence intervals in underdetermined and over-determined
systems. The derived analytical expressions for sensitivities of fluxes with respect to
measurements and measurement errors allow the identification of key measutements for
specific fluxes. We applied these methods to re-analyze the statistical significance of
estimated gluconeogenesis fluxes from two human studies with [U-13C]glucose as tracer. As a
result, we identified a theoretical limitation to estimate the gluconeogeneis flux in one of the
studies. We confirmed concerns raised by several authors and identified the soutce of the
limitations, i.e. low isotopic abundance of key mass isotopomers resulting in the inability to
distinguish between hepatic glycerol intake and glycogenolysis. Through these examples we
have demonstrated the importance of rigorous design and analysis of tracer experiments and
the importance of calculating accurate flux confidence intervals for reliable interpretation of

physiological studies.
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APPENDIX 3.A
Numerically stable form for matrix inverse using singular value decomposition
Inversion of Hessian matrix H may be numerically unstable if H is singular, or ill

conditioned. A numerically stable from for the inverse may be obtained from singular value

decomposition of H (Foster, 1986):
H=U-S-V" (3.A1)

'The diagonal elements of mattix S correspond to the eigenvalues of H. Eigenvalues smaller
than a given tolerance, for example tol = 1019, are considered insignificant. Matrix V is then
split into two matrices, V1 and V2. The columns of V1 form an orthogonal basis for the

column space of H, while V2 provides an orthogonal basis for the null space of H.
Vv =[V1]| V2] (3.A2)
A numerically stable from for the inverse is then given by:

H' ~ (H + w/-V2-V2")’ (3.A3)
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APPENDIX 3.B

Algorithm for covariance-weighted flux estimation

e Choose starting values for free fluxes, in general random values are preferred.

e Set the iteration counter k = 0.

e Ateach iteraton k:

1.

2
3.
4
5

6.
7.

Simulate measurements x for current fluxes.

Calculate the sensitivity matrix dx/du.

Calculate the Hessian matrix H and the Jacobian ] using Eq. 3.8.

Calculate Au using Eq. 3.10. Additional inequality constraints may be included here.
Check for convergence. If the error in the necessary condition is smaller than the
desired tolerance, then stop. Otherwise, go to step 6.

Update the fluxes using Eq. 3.11.

Set the iteration counter k < k + 1, and go to step 1.

e Transform the free fluxes into individual metabolic fluxes using Eq. 3.2.
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APPENDIX 3.C

Controlling the step size for determination of accurate flux intervals

In order to calculate accurate confidence intetvals the step size ‘h’ in Eq. 3.20 needs to be
carefully controlled. Using very small step size increases the number of iterations and is
computationally demanding. On the other hand, using a step size that is too large results in
significant loss of accuracy due to the inability to follow nonlinearities in the system. Using
Taylor seties expansion, we can express the increase in the objective function formally as 2

polynomial function of the step size:

A® =a,-h +a,-h® +a,-h° + .. (3B1)

The first two coefficients a1 and a2 are given by:

a, = 2-Au"-] (3.B2)

a, = Au"-H-Au (3.B3)

Higher order coefficients are normally not calculated, because that would require
computation of higher order detivatives of simulated measurements with respect to fluxes,
i.e. d2x/du2, d3x/du?, which is computationally demanding and requires large amounts of
memory to store multidimensional matrices. However, we can approximate the third
coefficient a; computationally at each iteration. For this purpose, we calculate the actual
increase in the objective function A@Q=wd for the flux map given by (u + h-Au) and compate
this to the predicted increase in the objective function using the quadratic approximation, i.e.
AQzprox = 25-h + ay-h2. The value for a3 is then approximated from the difference between

A@actual 3nd Adapprox;
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A(Dactual _ A(anpmx
~ (3.B4)

a ~
3 3
h

If the difference is too large then the step size needs to be decreased and if the difference is

very small then we may increase the step size without loss of accuracy. For our calculations

we require the difference to be less than 104 at each iteration. The step size h is updated at

each iteration according to the following formula:

4
h = 4&. (3.B5)
a3
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APPENDIX 3.D

Algorithm for accurate determination of confidence intervals of fluxes

e  Calculate the variance-weighted sum of squared residuals at the optimal solution @ (%).

e  Choose a confidence level (1-a), and calculate the corresponding threshold value

X1-(1), €.g. Y2095(1) = 3.84 for the 95% confidence interval.

e For each flux #

Initialize all fluxes at the optimal solution obtained from flux estimation, ug = 4.

Initialize the Lagrange multiplier at Ag) = 0.

Initialize the variables vector dg) = [ug) Ag]™-

Set the iteration counter k = 0.

At each iteration k:

1
2
3
4.
5
6

9.

Simulate measurements x for cutrent fluxes.

Calculate the sensitivity mattix dx/du.

Calculate the variance-weighted sum of squared residuals ®(u).

Calculate the Hessian matrix H and the Jacobian J using Eq. 3.8.

Calculate matrix A and vector b using Eq. 3.24.

Calculate Ad using Eq. 3.26. Additional inequality constraints may be included
here.

Update the step size h as described in Appendix 3.C.

Check for convergence. If the flux value for flux 7 reaches the upper bound, or
if ®(u)— D) > %1-o(1) then stop. Otherwise, go to step 9.

Update the variables vector d using Eq. 3.27.

10. Transform the free fluxes into individual metabolic fluxes using Eq. 3.2.

11. Recotd current value for flux 7 and the cotresponding @(u).

12. Set the iteration counter k <~ k + 1, and go to step 1.

Initialize all fluxes at the optimal solution obtained from flux estimation, ugy = 4.

= Initialize the.Lagrange multiplier at A = 0.

Initialize the vatiables vector dgy = [ug) Ap)]™.
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= Set the iteration counter k = 0.

= At each iteration k:

1
2
3
4.
5
6

9.

Simulate measurements x for current fluxes.

Calculate the sensitivity matrix dx/du.

Calculate the variance-weighted sum of squared residuals ®(u).

Calculate the Hessian matrix H and the Jacobian ] using Eq. 3.8.

Replace —N; for N in Eq. 3.24, and calculate matrix A and vectot b.

Calculate Ad using Eq. 3.26. Additional inequality constraints may be included
here.

Update the step size h as described in Appendix 3.C.

Check for convergence. If the flux value for flux 7 reaches the lower bound, or
if ®(u)— O(1) > %21.4(1) then stop. Otherwise, go to step 9.

Update the variables vector d using Eq. 3.27.

10. Transform the free fluxes into individual metabolic fluxes using Eq. 3.2.

11. Record curtent value for flux 7 and the corresponding @ (u).

12. Set the iteration counter k <~k + 1, and go to step 1.
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APPENDIX 3.E

Metabolic model of mammalian glucose metabolism

We constructed a detailed metabolic model for mammalian glucose metabolism in which we
consider all major pathways that affect the obsetved labeling patterns of plasma lactate and
glucose (Figure 3-4). Here, [U-13Cjglucose is infused into the blood, taken up by the tissues
and metabolized by glycolysis and pentose phosphate pathway to form lactate, which is then
released into circulation. While the infused glucose is comprised of the fully labeled Ms
isotopomer, the action of the glycolysis pathway and scrambling in the pentose pathway
produces both fully labeled ms, and partially labeled m1 and m; lactate molecules. The
labeling of plasma lactate is additionally diluted by unlabeled endogenous sources, such as
from glycogen breakdown in the muscle and amino acid oxidation. This dilution of plasma
lactate labeling is modeled hete by one lumped dilution flux. Lactate then enters the liver
where it is converted to pyruvate. We assume that plasma lactate and hepatic pyruvate are at
isotopic equilibrium, which has been experimentally validated by several authors (Wykes et
al., 1998). In the conversion to glucose, pyruvate undergoes carboxylation to form
oxaloacetate that is shared with the TCA cycle. Scrambling of labeling may occur at the point
of fumarate since fumarate is rotationally symmetric. The conversion of amino acids to
glucose without pyruvate as an intermediate, such as from aspartate and glutamine, is
modeled by one lumped dilution flux into the succinyl-CoA pool. Fatty acid oxidation,
ketogenesis and the possibility for pyruvate recycling through the action of pyruvate kinase
are also considered in the model. Glycerol is another potential gluconeogenic precursor that
we consider. Finally, the labeling of hepatic glucose-6-phosphate pool is diluted by
glycogenolysis pathway, i.e. the release of unlabeled glucose molecules from glycogen
storages. In our model, the reaction between oxaloacetate and fumarate is the only
observable revetsible reaction. The remaining reactions in the model may therefore be
considered itreversible without affecting flux calculations. The list of all reactions in this

model together with the corresponding carbon transitions are shown in Table 3-3.

-129 -



-130 -



Chapter 4

GC/MS analysis of amino acids

4.1 Introduction

411 Flux analysis requires accurate data

Accurate assessment of isotopomer distributions of cellular amino acids is of great
importance for quantitative analysis of cell physiology. In carbon labeling experiments 13C-
distributions measured by gas chromatography / mass spectrometry (GC/MS) and nuclear
magnetic resonance (NMR) provide rich information for estimating metabolic fluxes in
complex biological systems. The NMR technique requires expensive equipment and fairly
high concentration of metabolites. In contrast, GC/MS is a rapid and much more sensitive
technique. Powerful computational tools have been developed for quantitative interpretation
of mass isotopomer data; however, the statistical significance of carbon-13 tracer studies has
been limited due to inaccuracies and imprecision in isotopomer data. Metabolic flux analysis
is very sensitive to measurement errors due to the highly nonlinear relationships of models
that link fluxes and isotopomer abundances. Thus, small errors in isotopomer data may
result in large errors in estimated fluxes. It is therefore essential that isotopomer data are
accurate and precise. Based on preliminary sensitivity analysis of realistic metabolic networks
we determined that etrots in mass isotopomer abundances should be less than 0.5 mol% for
most systems. The required accuracy depends mainly on the complexity of the network
model (i.e. degrees of freedom), and the number of redundant measurements. In general,
complex networks with fewer redundant measurements will requitre more precise data than

more simple systems with large number of measurements.
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CHAPTER 4. GC/MS ANALYSIS OF AMINO ACIDS

4.1.2 Potential sources of error

GC/MS analysis of cellular components provides rich information on isotopomer
distributions of common metabolites. However, several studies have shown that mass
isotopomer data may under-, or overestimate true enrichments. For example, it was reported
that metabolite concentration may affect the accuracy of GC/MS data for fatty acid methyl
esters (Fagerquist et al., 2001; Patterson & Wolfe, 1993). It was shown that isotopomer ratios
deviated significantly from expected natural abundance ratios with increasing metabolite
concentration. Although it is uncertain what the exact cause is of this concentration
dependence, gas phase ion/molecule chemistry in the ionization chamber appears to be a
significant factor (Fagerquist et al., 2001). Klapa et al. reported that mass spectra obtained
with ion trap mass spectrometers may suffer from hydrogen abstraction and other artifacts,
resulting in inaccurate mass isotopomer ratios and significant M-1 abundances (Klapa et al.,
2003). Empirical corrections were proposed to reduce the effect of these artifacts; however,
it is unclear how accurate these corrections are for labeled samples. Furthermore, etrors may
be introduced due to incomplete resolution of mass spectra in time, or in the m/z domain.
For example, if compounds are not completely resolved by gas chromatography, co-eluting
compounds will conttibute to the observed mass spectra. Mass spectra may also ovetlap in
the m/z domain. For example, electron impact ionization typically generates more than 20
ion fragments for each metabolite and some of these fragments may be overlapping. Thus,
even if compounds are well separated by chromatography, mass isotopomer distributions of
adjacent fragments may still be unresolved. In practice, it is not be possible to deconvolute
unresolved mass spectra with the desired accuracy of 0.5 mol%. In is important to identify
these situations a priori. Finally, errors may be introduced during integration of mass
chromatograms due to inaccurate integration algorithms, or failure to account for

background noise in MS data.

4.1.3 Reported accuracy and precision in literature

Detailed assessment of accuracy and precision of MS data has received limited attention in
the literature. Mass isotopomer abundances from tracer studies are often reported without

any indication of error. Dauner and Sauer (2000) were the first to analyze the accuracy of MS
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data from TBDMS derivatized amino acid by comparing mass isotopomer abundances of
unlabeled amino acids with theoretical abundances. They reported differences between
observed and theoretical abundances up to 6 mol%. Of the 38 accepted amino acid
fragments, 8 fragments had errors <0.5 mol%, 20 fragments had errors 1-2 mol%, 13
fragments had errors 2-3 mol%, and 10 fragments had errors >2 mol%. Klapa et al. (2003)
reported standard deviations for mass isotopomer abundances of TBDMS detivatized amino
acids ranging between 0.2 and 4 mol%, with the majority of standard deviations larger than
0.5 mol%. Here, we repott our findings from an extensive study of GC/MS analysis of
TBDMS detivatized amino acids. In this study we validated the identity of amino acid
fragments using 3C-labeled standards, identified potential sources of inaccuracy and
imprecision in MS data, and established a technique to minimize these errors. The main
result of this work is a procedute for accurate and precise assessment of mass isotopomer
distributions of cellular amino acids, with an accuracy of 0.3 mol% and precision of 0.2

mol%, or better.

4.2 Materials and methods

4.2.1 Labeled amino acid standards

A mixture of [U-13C]algal amino acids (99+ At% 13C) and [4-13C]aspattic acid (99 At% 13C)
were purchased from IsoTec Inc. (Miamisburg, OH). [5-3C|glutamic acid (99 At% 13C) was

purchased from Cambridge Isotope Laboratories Inc. (Andover, MA).

42.2 Cellular amino acids

Cellular amino acids were obtained hydrolyzed biomass samples taken from batch cultures
of E. coki. In one culture no tracers were used (as control), and in a separate culture a mixture
of [1-13C]glucose and [U-1*C]glucose was provided as carbon-13 input. Samples from these
cultures were centrifuged and the supernatant separated from the biomass pellet. About 20
mg of wet biomass pellet was transferred to 700 uL of 6 N HCl and heated at 110°C for 24

hrs in a closed vacuum hydrolysis tube. After cooling to room temperature the solvent was
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evaporated and the residue dissolved in 150 pL of distilled water and filtered through a 0.2

pm pore size filter to remove cell debris. The filtrate was then evaporated to dryness.

4.2.3 TBDMS derivatization

Amino acids were dissolved in 50 uL pyridine followed by addition of 70 wL. N-methyl-N-
(tert-butyldimethyl-silyl)-trifluoroacetimide (MTBSTFA). The mixture was heated at 60°C

for 30 min, allowed to cool to room temperature and transfetred to injection vial for

GC/MS analysis.

4.2.4 GC/MS Analysis

Gas Chromatography-Mass Spectrometry (GC/MS) analysis was petformed using HP 5890
Series I1 GC (Gas Chromatograph) equipped with a DB-1701 [30 m x 0.25 mm (inner
diameter) x 0.25 pum)] capillary column, connected to HP 5971 quadrupole MSD (Mass
Selective Detector) operating under ionization by electron impact (EI) at 70 eV. The mass
spectrometer was calibrated using the ‘Max Sensitivity Autotune’ setting. The injection
volume was 1 uL and samples were injected in purged splitless mode. The amount of sample
analyzed was controlled by varying the purge activation time between 1 sec and 1.5 min.
Helium flow was maintained at 0.74 mL/min via electronic pressure control. The injection
port temperature was 270°C. The temperature of the column was started at 100°C for 1.5
min, increased to 130°C at 20°C/min and increased to 220°C at 10°C/min and held for 3
min. The tempetature was then increased to 280°C at 5°C/min and held for 3 min. The
interface temperature was maintained at 300°C. Mass spectra were analyzed in the mass
range 195-445 atom mass units (amu) at a rate of 2.7 scans/sec. Measured intensities were
corrected for the contribution of noise (baseline correction), and mass isotopomer
distributions were obtained by integration. Mass isotopomer values for each fragment were
expressed as fractional abundances, i.e. for each fragment the sum of all mass isotopomers

equals one.
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4.2.5 Natural isotope abundances

Most elements of biological interest (including C, H, O, N, and S) have two or more stable
isotopes. Relatively large variations occur for the 13C isotope in nature, varying between
1.097 At% for C4-plants and 1.082 At% for C3-plants (Coplen et al., 2002). This small
difference may contribute to significant differences in the calculated natural isotopomer
distributions of molecules containing large number of carbon atoms, such as TBDMS
derivatized amino acids. For our calculations we used 1.082 At% for the natural abundance
of 13C. For other elements we assumed the following isotope abundances: 2H (0.0156 At%),
15N (0.366 At%), 170 (0.038 At%), 180 (0.204 At%), 29Si (4.69 At%), 9Si (3.09 At%), 38
(0.749 At%), S (4.197 At%), 36S (0.015 At%) (Coplen et al. 2002).

4.3 Results

4.3.1 TBDMS derivatization of amino acids

Amino acids are not volatile enough to be analyzed by GC/MS directly. Therefore, chemical
modification of the polar side groups, e.g. -OH, -NH,, -COOH, is required. Here, amino
acids were chemically modified to their respective tert-butyldimethylsilyl (TBDMS)
detivatives for GC/MS analysis (see Figure 4-1)

4.3.2 Gas chromatography of TBDMS derivatized amino acids

Figure 4-2 shows a representative total ion chromatogram from GC/MS analysis of TBDMS
derivatized amino acids from hydrolyzed biomass samples. The retention times of the
detected amino acids are reported in Table 4-1. We detected 15 of the 20 amino acids in the
hydrolyzed biomass samples. Cysteine and tryptophan were lost in hydrolysis due to
oxidation, and glutamine and asparagine were deamidated to glutamate and aspartate,
respectively. Histidine was not detected. The insert in Figure 4-2 shows the obsetved mass
spectrum of TBDMS derivatized aspartic acid that eluted at 17.1 min. TBDMS detivatized

amino acid displayed characteristic fragmentation patterns resulting from electron impact
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Figure 4-1: Schematic of TBDMS derivatization of polar side groups. Amino acids and
other biological metabolites are easily derivatized to their respective TBDMS derivatives in

preparation for GC/MS analysis.
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Figure 4-2: Representative total ion chromatogram from GC/MS analysis of TBDMS
derivatized amino acids from hydrolyzed biomass. The total ion chromatogram corresponds
to the sum of ion intensities measured at each scan. The insert shows the electron ionization

mass spectrum of TBDMS derivatized aspartic acid.
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Table 4-1

Gas chromatography retention times and main jon fragments of TBDMS derivatized amino

acids. Cellular amino acids from hydrolyzed biomass samples were derivatized with TBDMS

and analyzed by electron impact GC/MS.

Amino acid Retention time Molecular weight*  Main ion fragments (m/z)
Alanine 9.3 min 317 232,260

Glycine 9.7 min 303 218,246

Valine 10.5 min 345 260, 288, 302

Leucine 10.9 min 359 200, 274, 302

Isoleucine 11.3 min 359 200, 274, 302

Proline 11.8 min 343 258, 286

Serine 14.1 min 447 230, 288, 302, 362, 390
Threonine 14.4 min 461 376, 404, 417

Methionine 14.6 min 377 218, 244,292, 320
Phenylalanine 16.4 min 393 234, 302, 308, 336
Aspartate 17.1 min 475 244, 258, 302, 316, 376, 390, 418
Glutamate 19.1 min 489 272, 330, 358, 404, 432
Lysine 20.3 min 488 329,431

Arginine 22.5 min 515 340, 442

Tyrosine 24.7 min 523 302, 364

* Molecular weight of TBDMS detivatized amino acids.
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ionizaton (EI). Characteristic for TBDMS derivatized amino acids were ion fragments at m-

57, m-85 and m-159, whete ‘m’ denotes the molecular weight of the detivatized amino acid.

4.3.3 Integration of mass chromatograms

To obtain accurate mass isotopomer distributions (MIDs) from raw GC/MS data, mass
chromatograms have to be integrated over the full peak range of the corresponding amino
acid. Mass isotopomer ratios obtained at each scan have a much lower signal-to-ratio and
may not reflect the true isotopomer distribution. For example, it is well known that mass
isotopomers may separate on the GC column and elute at slightly different times. This effect
is generally more significant for 2H-labeled compounds than for 13C-labeled compounds. In
either case, the observed mass isotopomer ratios will be different at the beginning and the
end of a metabolite peak. Several software packages allow one to integrate mass
chromatograms and calculate mass isotopomer distributions. However, we found that
different integration algorithms often produced significantly different integrated mass
isotopomer distributions. Here, we will illustrate two potential sources of etror due to
incorrect integration. First, it is important that all mass chromatograms of a particular
metabolite are integrated over the same scan range, i.e. time interval. If peak detection
algorithms are applied to each mass chromatogram individually then slightly different
integration bounds may be identified for each ion, resulting in biased integrated intensities.
Furthermore, it is necessaty to correct measured intensities for background noise. This
correction should be applied to each mass chromatogram individually, because the level of
background noise may be different at each scanned ion. In our expetience, good calibration
of the mass spectrometer reduced the level of background noise, and the use of high
electron multiplier voltages (EMV) increased background noise. To illustrate these effects we
quantified the mass isotopomer distribution of glycine ion fragment at m/z 246-250 in the
unlabeled biomass sample. Three integration methods were used. In Method 1, fixed
integration bounds were used for each mass chromatogram and baseline correction was
applied. In Method 2, each mass chromatogram was integrated independently, which could
result in slightly different integration bounds for each mass chromatogram. Correction for

baseline was applied. In Method 3, fixed integration bounds were used for each mass
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chromatogram, but no baseline correction was applied. Figure 4-3 cleatly shows the
differences between the integration methods. The shaded areas in Figure 4-3 cotrespond to
the integrated intensities. Fractional abundances were obtained from the integrated
intensities by dividing the integrated intensity by the sum of all intensities. In Table 4-2 we
compare the calculated MID for glycine-246 to the theoretical MID. Overall, the first
integration method produced mass isotopomer abundances that corresponded best with
theoretical abundances, i.e. less than 0.1 mol% deviation. The second method overestimated
M+0 abundance slightly (+0.4 mol%), and underestimated M+1 and M+2 abundances (-0.1
and -0.2 mol% caused by slightly smaller integration bounds for the M+1 and M+2 mass
chromatograms. The third method, i.e. no baseline correction, produced the largest errots.
The M+0 abundance was underestimated by 2.2 mol% and other abundances were
overestimated by 0.3-0.7 mol%. It should be clear that without baseline correction low
abundance isotopomers will always be overestimated, and the most abundant mass
isotopomer will be underestimated. Analysis of other amino acid fragments supported all of
these findings. Taken together, our results indicate that the first integration method is the
most accurate one: using fixed integration bounds for all mass chromatograms and applying

baseline correction. This integration method was used in the remainder of this work.

4.3.4 Concentration dependence of mass isotopomer distributions

We found significant correlation between measured mass isotopomer abundances and the
amount of amino acid that was analyzed. In this study, all amino acid samples were analyzed
35 times at varying concentrations. The observed abundances varied up to 2 mol%
depending on the amount of amino acid analyzed. Figure 4-4 shows the observed mass
isotopomer abundances for glycine fragment at m/z 218 plotted against the total ion counts
for this fragment (i.e. sum of integrated intensities at m/z 218-222). The dashed hotizontal
line in Figure 4-4A represents the expected abundances for unlabeled glycine. We found
good agreement between the observed and theoretical abundances for low concentrations of
the sample, however, the M+0 abundance of unlabeled glycine decreased with increasing
glycine concentration and M+1 and M+2 abundances increased. We found a near linear

relationship for this concentration effect. All other fragments of TBDMS detivatized amino
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Figure 4-3: Comparison of three methods for integration of mass chromatograms. Mass

isotopomer distribution of glycine ion fragment at m/z 246 was determined using three

integration methods: (1) fixed integration bounds for all mass chromatograms, and baseline

correction; (2) independent integration of each mass chromatogram, resulting in slightly

different integration bounds, and baseline correction; (3) fixed integration bounds, but no

baseline correction. Shaded areas indicate integrated intensities for each method.
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Table 4-2

Effect of integration method on the accuracy of calculated mass isotopomer distributions.
MID of glycine fragment at m/z 246-250 was determined by integration using three
different integration methods. The calculated isotopomer abundances were compated to

theoretical natural isotope abundances (molar abundances, mol%).

METHOD 1 METHOD 2 METHOD 3

Fixed integration bounds Independent integration Fixed integration bounds

and baseline correction and baseline correction no baseline correction

Ion Fig. 4.3 (1) Fig. 4.2 (2) Fig. 4.2 (3)
m/z  Theory Data Error Data Error Data Error
246 75.4 75.4 0.0 75.8 +0.4 73.2 -22
247 16.5 16.4 -0.1 16.4 -0.1 16.8 +0.3
248 69 7.0 +0.1 6.7 -0.2 7.4 +0.5
249 1.0 1.1 +0.1 1.0 0.0 1.7 +0.7
250 0.2 0.2 0.0 0.1 -0.1 0.9 +0.7
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Figure 4-4: Concentration dependence of mass isotopomer abundances of TBDMS
derivatized glycine. Glycine samples were analyzed 35 times at different concentrations.
Mass isotopomer distributions were obtained by integration of mass chromatograms. Peak
area (plotted on the x-axis) denotes the sum of integrated intensities at m/z 218-222. (A)
Mass isotopomer abundances for unlabeled glycine. The dashed horizontal line represents
the theoretical mass isotopomer abundances; (B) abundances for glycine from 13C-labeled
biomass sample; (C) abundances for [U-3C]glycine standard. Glycine ion fragment at m/z

218 contains only the second carbon atom of glycine.
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acid fragments displayed a similar linear correlation (see Appendix A). Figure 4-4B shows the
concentration dependence for glycine from a 13C-labaled biomass sample, and Figure 4-4C
shows the concentration dependence for [U-13C]glycine standard. In all three samples we
observed a linear relationship between mass isotopomer abundances and metabolite
concentration. We identified the following pattern for this concentration effect: the intensity
of the most abundant mass isotopomers always decreased with increasing concentration,
whereas intensities of the other mass isotopomers increased. Furthermore, the magnitude of
this effect became smaller for less abundant mass isotopomers. Further investigation
revealed that this sample effect could not be explained by nonlinearities of the detector.
When we re-analyzed the samples at increasing electron multiplier voltages (EMV) for the
detector, the ion counts increased up to 10-fold, however, the observed mass isotopomer
distributions did not change significantly (less than 0.3 mol% difference) and the
concentration effect remained. Taken together, these findings indicate that this effect is most
likely caused during ion formation/fragmentation. A similar effect of sample concentration
on the accuracy of GC/MS data was reported for fatty acid methyl esters (Fagerquist et al.
2001; Patterson & Wolfe 1993). To our best knowledge, this is the first time that a sample
size effect is reported for TBDMS derivatized amino acids. After careful analysis of all data
we concluded that mass isotopomer abundances extrapolated to a theoretical zero
concentration (i.e. infinite dilution) correlated best with theoretical abundances. Mass
isotopomer abundances obtained this way deviated less than 0.3 mol% from theoretical
abundances for all accepted amino acid ion fragments (see section 4.3.6). We found that
extrapolation produced more accurate and precise MIDs than could be obtained solely from
diluted samples. This was caused by the low signal-to-noise ratio at low concentrations, i.e.
the standard deviation of measurements was as high as 0.6 mol% for diluted samples
compared to <0.2 mol% for samples at high concentrations. In addition, we observed a
slight underestimation of low abundance mass isotopomers in the diluted samples, again
caused by low signal-to-noise rato. Therefore, we strongly recommend that MIDs are always
obtained using the extrapolation technique. The main disadvantage of using this method is
that it requires multiple injections of samples at different concentrations, which is time
consuming. However, MIDs obtained this way are both very accurate (<0.3 mol% error) and

very precise (SD <0.2 mol%), which is trequired for detailed analysis of metabolic fluxes. In
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the remainder of this work mass isotopomer abundances of TBDMS derivatized amino acids

were always obtained using the extrapolation technique.

4.3.5 Validating identity of ion fragments using “C-standards

'TBDMS derivatized amino acids have characteristic fragmentation patterns resulting from
electron impact jonization (EI). The most common ion fragment (m-57) results from the
loss of a tert-butyl group (C4Hy) of the derivatizing agent. This fragment contains the
complete carbon backbone of the amino acid. Ion fragments at m-85 and m-159 are formed
from cleavage of tert-butyl-CO (CsHsO) and CO.-TBDMS (C7H150:Si) groups, respectively,
where the carboxyl group of the amino acid is lost. Another common ion fragment is found
at m/z 302. This fragment is formed by cleavage of the carbon bond between a- and B-
carbon atoms, i.e. this fragment retains the first two carbon atoms of the amino acid. To
validate the assumed identity of ion fragments of TBDMS derivatized amino acids we
measured mass spectra for unlabeled and [U-'3C]labeled amino acids. For example, consider
the mass spectrum of unlabeled and [U-13Cjalanine shown in Figure 4-5. Ala-232 (m-85) ion
fragment in unlabeled alanine corresponded to Ala-234 in [U-13Clalanine, which was
consistent with cleavage of the carboxyl group of alanine. Ala-260 (m-47) ion fragment in
unlabeled alanine corresponded to Ala-263 in [U-13CJalanine, which was in agreement with
cleavage of just the tert-butyl group of the derivatizing agent. However, Ala-302 in unlabeled
alanine corresponded to Ala-305 in [U-13C]alanine, which was not in agreement with the
cleavage of the bond between a- and P-carbon atoms. This fragment cleatly contained all
three carbon atoms of alanine, and must have been formed by an alternative fragmentation
where the methyl group of the derivatizing agent was cleaved. This example clearly illustrates
the importance of validating the assumed identity of fragments using 13C-labeled standards
to avoid mistakes in the interpretation of mass isotopomer data for metabolic flux analysis.
In Appendix A we show the mass spectra for all TBDMS derivatized unlabeled and [U-

13CJlabeled amino acids.
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Figure 4-5: Electron ionization mass spectra of TBDMS derivatized alanine. Top spectrum
was obtained for unlabeled alanine, and the bottom spectrum for [U-13CJalanine standard
99+ At% 13C).
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We identified three amino acids where the ion at m/z 302 was formed from multiple
fragmentations, i.e. Val-302, Leu-302 and Ile-302. Val-302 in unlabeled valine corresponded
to two peaks in [U-13Clalanine mass spectrum, i.e. Ala-304 and Ala-306. Two ion fragments
of valine were cleatly ovetlapping here, one fragment containing the first two carbon atoms
of valine (m/z 302—304) and a second fragment containing four of the five carbon atoms
of valine (m/z 302—306), i.e. either Ci234 or Ci235. Leu-302 and Ile-302 ion fragments
cotresponded to two peaks in [U-13C]labeled amino acid standards, i.e. at m/z 304 and 308.
The peak m/z 304 resulted from a fragmentation in which the first two carbon atoms of the
respective amino acid wete retained (i.e. cleavage of the bond between a.- and B-carbon
atom), whereas the peak at m/z 308 resulted from the loss of the tert-butyl group of the
detivatizing agent, i.e. all carbon atoms of the amino acid were retained. Data from these
fragments cannot be used for flux analysis, because we have no means of deconvoluting

individual mass isotopomer disttibutions from the observed mass spectrum.

Fragments of aspartate and glutamate required additional validation with specifically labeled
standards. Aspartate and glutamate each have two carboxyl groups, and it was not known a
prioti which of the two carboxyl groups was cleaved in the m-159 (Asp-316 and Glu-330)
and m-85 (Asp-390 and Glu-404) fragmentations. Therefore, we measured mass spectta for
[4-13Claspattic acid and [5-13C]glutamic acid. For [4-13CJaspartic acid we observed peaks at
m/z 317 and 391, and no peaks were obsetved at m/z 316 and 390. Thus, we concluded that
only the first carboxyl group of aspartate was cleaved in these fragmentations. For [5-
13C]glutamic acid we observed peaks at m/z 331 and 405, and no peaks were observed at

m/z 330 and 404. Thus, only the first carboxyl group of glutamate was cleaved.

4.3.6 Validating accuracy of mass isotopomer distributions

Next, we determined the accuracy of measured mass isotopomer distributions for all
accepted amino acid ion fragments by comparing the observed mass isotopomer
distributdons from unlabeled and [U-13C]labeled amino acids to theotretical distributions.
Table 4-3 compares the measured and theoretical abundances for alanine ion fragment at

m/z 260. Abundances in Table 4-3 were normalized with respect to the most abundant ion.
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Table 4-3

Comparison of measured and theoretical mass isotopomer distribution of TBDMS
derivatized alanine. Shown are the measured and theoretical mass isotopomer abundances
for unlabeled and [U-13Clalanine (99+ At% 1BC), for the alanine ion fragment at m/z 260.

Abundances were normalized to the most abundant ion.

Ala-260 [U-B3C]-Ala

Formula : CanGOzNSiz

Exact mass : 260.150

C-atoms : 1-2-3
m/z theory data  difference m/z theory data  difference
259 0.0 0.0 0.0 259 0.0 0.0 0.0
260 100.0 100.0 00 260 0.0 0.3 +0.3
261 23.0 23.2 +0.2 261 0.0 0.4 +0.4
262 9.4 9.4 0.0 262 31 33 +0.2
263 14 1.4 0.0 263 100.0 100.0 0.0
264 0.3 0.2 -0.1 264 19.9 20.5 +0.6
265 0.0 0.0 0.0 265 8.7 9.0 +0.3
266 0.0 0.0 0.0 266 1.1 1.2 +0.1
267 0.0 0.0 0.0 267 0.2 0.1 -0.1
268 0.0 0.0 0.0 268 0.0 0.0 0.0
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We found very good agreement for the Ala-260 fragment. The maximum difference between
measured and theoretical abundances was less than 0.2 mol%. As expected, we observed
larger differences for [U-13Clalanine standard, which was caused mainly by incomplete 1*C-
labeling (99 At% 13C-labeling according to manufacturers’ specifications). Taking into
account potentially incomplete labeling of [U-13CJalanine, the observed agreement for [U-
13CJlabeled alanine was acceptable. In Appendix A we show tables for all 47 amino acid
fragments that were analyzed in detail where we compare measured and theoretical
distributions. For our purposes, amino acid fragments for which the observed abundances
deviated more than 0.5 mol% from theoretical abundances (for unlabeled amino acids) were
considered inaccurate. The following fragments were rejected: for Leu-200 M+0 was too
high (+0.9 mol%), for Asp-316 M+3 was too high (+0.7 mol%), and for Glu-404 M+0 was
too low (-0.6 mol%). In general, we did not observe M-1 peaks for most amino acid
fragments (<0.1 mol%), indicating that hydrogen abstraction was not a problem in our
GC/MS analysis. Only two fragments displayed significant M-1 peaks: for Glu-358 M-1 was
1.8% of M+0, and for Lys-431 M-1 was 1.7% of M+0. Proline fragments were omitted from
further analysis because proline co-eluted with other compounds that contributed to the
measured intensities resulting in inaccurate mass isotopomer abundances. Lys-329 and Tyr-
364 wete omitted due to low signal-to-noise ratio. Finally, we could not validate the identity
of the following fragments: Ser-230, Thr-417, Met-244, Asp-244, Asp-258, and Glu-272.

Taken together, of the 47 amino acid fragments that were analyzed in detail, 29 fragments
satisfied our strict criteria, i.e. they had acceptable accuracy (<0.3 mol% etror for 28 of the
29 fragments) and acceptable precision (<0.2 mol% SD). The 29 accepted fragments provide
110 independent constraints for carbon-13 flux analysis. Tables 4-4 and 4-5 summarize the
results from this extensive study. For the 29 accepted amino acid fragments, Table 4-4
shows the recommended mass range for measuring intensities, the identity of retained
carbon atoms, the specific fragmentation mechanism, the maximum observed error between
theoretical and measured abundances, and the maximum observed measurement precision.
For the 18 rejected amino acid fragments, Table 4-5 shows the scanned mass range, the
identity of the retained carbon atoms (if known), the main reason for rejection, and any

alternative ion fragments that may be used to obtain the same isotopomer information.
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Table 4-4

Overview of accepted amino acid fragments. TBDMS derivatized amino acids wete analyzed

by electron impact GC/MS. Using 13C-labeled standards we validated the identity of all

fragments. Measured mass isotopomer distributions were then analyzed for accuracy and

precision.
Max. deviation Precision of
Amino  Mass Amino acid from theoretical measurements

acid range carbon atoms Fragmentation abundances (mol%) (mol%)
Ala 232-238  2-3 M -GCsHyO 0.1 0.1
260 — 267 1-2-3 M - CHy 0.1 0.1
Gly 218-223 2 M - CsHyO 0.1 0.1
246 ~252  1-2 M - CHy 0.1 0.1
Val 260 -268  2-3-4-5 M - G:HyO 0.3 0.1
288 — 297 1-2-3-4-5 M - C4Hy 0.1 0.1
Leu 274283  2-3-4-5.-6 M — CsHyO 0.1 0.1
Ile 200-208  2-3-4-5-6 M - G7H150,81 0.2 0.1
274-283  2-3-4-5-6 M - CsHsO 0.1 0.1
Ser 288-294 23 M - C7H50,Si 0.1 0.1
302-308 1-2 M - C-Hy,0Si 0.2 0.2
362-369 23 M - CsHoyO 0.3 0.2
390-398 1-2-3 M - C;Hy 0.5 0.2
Thr 376 -382  2-3-4 M - GsHyO 0.3 0.2
404 — 413 1-2-3-4 M — CsHo 0.3 0.2
Met 218 -226  2-3-4-5 M - G/H 50581 0.2 0.1
292 -298  2-3-4-5 M - CsHyO 0.2 0.2
320-327  1-2-3-4-5 M — C4H, 0.2 0.2
Phe 234 -243  2-3-4-5-6-7-8-9 M - G7H;50,51 0.3 0.1
302 - 307 1-2 M - GHy 0.3 0.2
308 - 316  2-3-4-5-6-7-8-9 M - GHoO 0.1 0.1
336 — 345 1-2-3-4-5-6-7-8-9 M — C4Hy 0.1 0.1
Asp 302-308 1-2 M — CgH,70,S1 0.1 0.1
376 -382 12 M - GH1O 0.3 0.2
390-398  2-34 M - GHoO 0.3 0.1
418 — 427 1-2-3-4 M- C4Hy 0.3 0.1
Glu 330 ~336  2-34-5 M — C/H;50,81 0.1 0.1
432 — 442 1-2-3-4-5 M = C4Ho 0.1 0.1
Tyr 302 — 305 1-2 M — Ci3H,OSi 0.3 0.1
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‘Table 4-5

Overview of rejected amino acid fragments. TBDMS derivatized amino acids were analyzed

by electron impact GC/MS. Measured mass isotopomer distributions were analyzed for

accuracy and precision. The following 18 amino acid fragments failed to satisfy our criteria

for accuracy and precision.

Amino  Mass Amino acid Alternative
acid range carbon atoms Reason for tejection fragment
Val 302-308  1-2and 1-2-3-4/5 Overlapping fragments n/a
Leu 200--208  2-3-4-5-6 Inaccurate. M+2 too high (+0.9 mol%) Leu-274
Leu 302-312  1-2and 1-2-3-4-5-6  Ovetlapping fragments n/a
Ile 302-312  1-2and 1-2-34-5-6  Ovetlapping fragments n/a
Pro 258 -266  2-3-4-5 Co-eluting with other compounds Glu-330
Pro 286-295  1-2-34-5 Co-eluting with other compounds Glu-432
Ser 230-237  unknown Unknown fragmentation unknown
Thr 417 -424  unknown Inaccurate. M+0 too low (-4.0 mol%) unknown
Met 244-250  unknown Unknown fragmentation unknown
Asp 244-249  unknown Unknown fragmentation unknown
Asp 258 -266  unknown Inaccurate. M-1 too high (4.4 % of M+0) unknown
Asp 316~-323  2-34 Inaccurate. M+3 too high (+0.7 mol%) Asp-390
Glu 272-280  unknown Unknown fragmentation unknown
Glu 358 -367  1-2-34-5 Inaccurate. M-1 too high (1.8 % of M+0) Glu-432
Glu 404 - 408  2-3-4-5 Inaccurate. M+0 too low (-0.6 mol%) Glu-330
Lys 329-336  2-3-4-5-6 Low signal-to-noise ratio none
Lys 431 -441  1-2-3-4-5-6 Inaccurate. M-1 too high (1.7 % of M+0) none
Tyr 364-375  2-3-4-5-6-7-8 Low signal-to-noise ratio Phe-308
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Chapter 5

GC/MS analysis of glucose

5.1 Introduction

In the pathway of gluconeogenesis labeled hydrogen atoms are incorporated into glucose
from medium containing deuterated water. The amount of label incorporated at each carbon
position depends on the deutetium enrichment in the medium, the relative activity of
gluconeogenesis (GNG) and glycogenolysis (GL), and the extent of equilibration of
reactions in the gluconeogenesis pathway, i.e. phosphoglucose isomerase (PGI) and triose
phosphate isomerase (TPI). It has been suggested that the relative contribution of GNG to
hepatic glucose production (HGP) can be determined from the ratio of deutetium labeling
on C5 vs. C2 of glucose, and that deuterium labeling on C6 vs. C2 corresponds to the
contribution of PEP to HGP. Assessment of positional isomers of glucose can be
accomplished either by NMR or by GC/MS methods. The NMR technique requires
expensive equipment and a fairly large amount of sample. In contrast, GC/MS is a rapid and
more sensitive technique. Electron impact (EI) or chemical ionization (CI) of glucose
derivatives generates ion fragments containing different carbon and hydrogen atoms of the
glucose molecule resulting from carbon bond cleavage at different positions. Mass
isotopomer analysis of ion fragments allows determination of 2H, or 13C-labeling at each
position in the glucose molecule. Guo et al. (1992) presented a GC/MS method for
quantitative assessment of the 2H-labeling pattern of glucose from measurements of eight
selected ion fragments obtained by two glucose derivatization methods. The aldonitrile
pentaacetate detivative of glucose yielded ion fragments at m/z 328, 242, 217, 212, 187, and

145; and the pentaacetate derivative of glucose yielded ion fragments at m/z 331 and 169.
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The authors derived expressions to calculate the enrichment of positional isomers of
glucose. However, the proposed method required the use of calibration curves and
correction factors to account for artifacts in the isotopomer data. For example, significant
deuterium-hydrogen exchange was obsetved for m/z 187 fragment. The authors also
reported isotope discrimination for m/z 169 and 328 fragments in samples containing 2H-
labeled glucose diluted with unlabeled glucose. Furthermore, the mass spectrum of m/z 145
fragment contained a constant contaminating ion amounting to 30% of the total ion counts.
The authors proposed to correct for this by dividing the obsetved entichment at m/z 145 by
0.7 to obtain the ‘true’ enrichment. However, even after all these corrections the estimated
?H-enrichments of glucose deviated up to 25% from the expected enrichments for mixtures
of glucose standard. Desage et al. (1989) presented a procedure to determine the 1*C-labeling
pattern of glucose based on 6 methyloxime ttimethylsilyl ion fragments of glucose at m/z
103, 160, 205, 217, 262, 319, and the assumption that glucose molecules are labeled
symmetrically. Beylot et al. (1993) provided an improved method for analysis of 13C-labeling
of glucose based on 21 selected ion fragments from four glucose derivatives, i.e. m/z 314,
242,225,217, 212, 200, and 187 from aldonitrile pentaacetate; m/z 319, 217, 205, 160, 117,
and 103 from methyloxime trimethylsilyl; m/z 297, 210, 181, and 168 from
bisbuthylboronate acetate; and m/z 149, 101, 88, and 75 from permethyl glucose. However,
both methods relied on ion fragments that were previously identified as inaccurate. Here, we
present an improved protocol for measuring the labeling of glucose by GC/MS. In this
study, we ctitically evaluated the accuracy and precision of more than 200 ion fragments
from 18 glucose derivatives. In addition to four widely used derivatization methods we
synthesized 14 novel derivatives of glucose that have not been reported previously. We
tested all ion fragments for accuracy and validated the assumed fragmentation patterns using
BC- and 2H-labeled standards, and by carefully prepared mixtures of glucose standards. The
accuracy was assessed by comparing the observed mass isotopomer distributions to
theoretical abundances for glucose standards. The vast majority of fragments that were
analyzed were inaccurate, including a number of the most widely used ion fragments. From
the 200+ analyzed ion fragments, we selected six most accurate ion fragments that provided
sufficient information for quantitative assessment of deuterium labeling of glucose. The

selected fragments were derived from three novel glucose derivatives, i.e. aldonitrile
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pentapropionate, di-O-isopropylidene propionate, and methyloxime pentapropionate. The
main result of this wotk is a detailed procedure for accurate assessment of deuterium
labeling in glucose for the entire range of enrichments (0 to 100 mol% entichment), with an

accuracy of 0.3 mol% and precision of 0.2 mol%, or better.

5.2 Materials and methods

5.2.1 Materials

[1-2H]glucose (97 At% 2H), [2-2H]glucose (97 At% 2H), and [6,6-?H]glucose (98 At% 2H)
wete purchased from IsoTec Inc. (Miamisburg, OH). [3-2H]glucose (98 At% 2H), [4-
2H]glucose (94 At% 2H), [5-2H]glucose (98 At% 2H) were purchased from Omicron
Biochemicals (South Bend, IN). [U-13Cg]glucose (99 At% 13C) and [1,2,3,4,5,6,6-H7]glucose
(98 At% 2H) were purchased from Cambridge Isotope Laboratories Inc. (Andover, MA).
Stock solutions of unlabeled and specifically labeled glucose standards were prepared at 10
mM in distilled water. For each derivatization procedure 50 uL of glucose standard was
evaporated to dryness under aitflow. Tissue culture media for hepatocyte cultures were

obtained from Sigma (St. Louis, MO).

5.2.2 Hepatocyte isolation and cell culture

The procedure for hepatocyte isolation and cell culture was described in detail elsewhere
(Chapter 7). Briefly, hepatocytes were isolated from C57BL/6 mice fed ad libitum by
modified two step-collagenase perfusion as described by Seglen (1976). Purified cells were
suspended in Hepatocyte Attachment Medium (HAM) and seeded in 6-well plates (1.3x106
cells/well) for 90 minutes at 37°C. Attached cells were washed once and cultured overnight
in Hepatocyte Growth Medium (HGM). After 18 hr incubation at 37°C and 5% CO, the
attached hepatocytes were washed once and cultured in glucose-free HGM enriched with
gluconeogenic carbon sources, i.e. 1mM glycerol, 10 mM lactate, 1 mM pyruvate, 5 mM
glutamine, and 2 mM acetate. The cells were incubated for 2, 5, ot 8 hr at 37°C and 5% CO;
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in medium containing 2H,O at 10% enrichment. At the end of the incubation petiod

medium samples were collected and stored at -80°C prior to analysis.

5.2.3 Preparation of experimental samples for glucose derivatization

Deutetium labeling of glucose from experimental samples was determined by GC/MS
analysis of glucose aldonitrile pentapropionate, methyloxime pentapropionate and di-O-
isopropylidene propionate derivatives. For each derivatization procedure, 100 uL of medium
sample (~1 mM glucose) was deproteinized by addition of 300 L of cold acetone, followed
by vortexing vigorously for 30 sec, and centrifugation at 2000xg for 1 min. The supernatant

was evaporated to dryness under airflow and the residue derivatized as described next.

5.2.4 GC/MS analysis

Gas Chromatography/Mass Spectrometry (GC/MS) analysis was performed using HP 5890
Series II gas chromatograph (GC) equipped with a DB-XL.B (30 m x 0.25 mm i.d. x 0.25
um) capillaty column, interfaced with a HP 5971 mass selective detector (MSD) operating
under ionization by electron impact (EI) at 70 eV. The mass spectrometer was calibrated
using the ‘Max Sensitivity Autotune’ setting. The injection volume was 1 pL and samples
were injected in purged splitless mode. Helium flow was maintained at 0.88 mL/min via
electronic pressure control. The injection port temperature was 250°C. The temperature of
the column was started at 80°C for 1 min, increased to 280°C at 20°C/min, and held for 4
min. The interface temperature was maintained at 300°C. Mass spectra wete recorded over
the range of m/z 100-500 at a rate of 2.0 scans/sec. Measured intensities were corrected for
the contribution of background noise (baseline correction), and mass isotopomer
distributions were obtained by integration. Mass isotopomer values for each fragment were
expressed as fractional abundances, i.e. for each fragment the sum of all mass isotopomers
equals one. Reported rﬁass isotopomer abundances are averaged values from at least four

injections per sample.
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5.2.5 Preparation of glucose esters

This procedure is based on that introduced by Biemann et al. (1963). Evaporated glucose
samples were dissolved in 50 uL pyridine, followed by addition of 100 pL of acetic,
propionic, or butanoic anhydride to obtain the respective acetate esters, or 70 uL of N-
methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) + 1% trimethylchlorosilane (TMCS) to
obtain the trimethylsilyl (TMS) ether. After 30 min incubation at 60°C, samples were
evaporated to dryness, dissolved in 100 pL of ethyl acetate and transferred to injection vials
for GC/MS analysis.

5.2.6 Preparation of aldonitrile esters of glucose

This procedure is based on that introduced by Szafranek et al. (1974). Evaporated glucose
samples were dissolved in 50 pL of hydroxylamine hydrochloride solution (20 mg/mL in
pyridine), heated at 90°C for 60 min, followed by addition of 100 pL of acetic, propionic, or
butanoic anhydride to obtain the respective aldonitrile acetate esters, or 70 pL. of MSTFA +
1% TMCS to obtain the aldonitrile TMS ether. After 30 min incubation at 60°C, samples
were evaporated to dryness, dissolved in 100 pL of ethyl acetate and transferred to injection

vials for GC/MS analysis.

5.2.7 Preparation of methyloximé esters of glucose

The basic procedure for preparing methyloxime esters of glucose is based on that introduced
by Laine and Sweeley (1971), and is essentially identical to the aldonitrile method, except that
methylhydroxylamine hydrochloride solution (20 mg/mL in pyridine) is used in the first

reaction instead of hydroxylamine hydrochloride solution.

5.2.8 Preparation of di-O-isopropylidene esters of glucose

This procedure is based on that presented by Hachey et al. (1999). Glucose samples were
transferred to a 10 mL screw-cap culture tube and evaporated to dryness. 500 pL of 0.38 M

sulfuric acid in acetone was added, and samples were incubated at room temperature for 60
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min. 400 pL of 0.44 M sodium carbonate was added to neutralize the reaction, followed by
addition of 1 mL of saturated sodium chloride. The di-O-isopropylidene derivatives wete
extracted by partitioning with 1 mL of ethyl acetate. The uppet, organic layer was evaporated
to dryness. 100 uL of acetic, propionic, or butanoic anhydride was added to obtain the
respective acetate esters, or 70 pL. of MSTFA + 1% TMCS to obtain the respective TMS
ether. After 30 min incubation at 60°C, samples were evaporated to dryness, dissolved in 100

uL of ethyl acetate and transferred to injection vials for GC/MS analysis.

5.2.9 Preparation of permethyl and perethyl derivatives of glucose

This procedure is based on that introduced by Ciucanu and Kerek (1984) and recently
updated by Ciucanu and Caostello (2003). A cloudy suspension of NaOH powder in DMSO
was prepared (0.25 g/mL), vortexed vigorously, and 100 uL of the suspension was added to
the glucose samples, followed by incubation at room temperature for 3 min. 75 pL of
iodomethane, or iodoethane was then added to the samples, and the samples were incubated
at room temperatute for 6 min to obtain the respective permethyl and perethyl derivatives. 1
mL of chloroform and 2 mL of distilled water were added, and the samples were vortexed
vigorously. The top, aqueous layer was removed and the organic layer washed at least three
times with 2 mL of distilled water, or until the aqueous layer was no longer basic. The
organic layer was then evaporated to dryness, dissolved in 100 pL of ethyl acetate and

transferred to injection vials for GC/MS analysis.

5.2.10 Data analysis

The amount of deutetium entichment at each carbon position was determined using a least-
squares approach. First, we constructed a simulation model that predicts the mass
isotopomer distributions of selected ion fragments for a given isotopomer disttibution of
glucose hydrogen atoms. Isotopomers are isomers of a metabolite that differ only in the
labeling state of their individual atoms, i.e. 2H vs. 'H in deuterium labeling studies. For the
seven stable (i.e. carbon bound) hydrogen atoms of glucose that may be in one of two

(labeled or unlabeled) states, we have 128 (=27) possible isotopomers. Our simulation model
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predicts mass isotopomer abundances of glucose fragments taking into account natural

isotope enrichments of carbon, oxygen, hydrogen, nitrogen and silicon atoms.
x = [ midso1, midy4s, midi73, midasy, midzss, midsn] = {IDV) (5.1)
In Eq. 5.1, mida/. denotes the simulated mass isotopomer distributions of a particular ion

fragment, and IDV is the isotopomer distribution vector. To determine IDV from

experimental data we solve the following least-squares regression problem:

min ® = (x — xobs) - (x — xobs)T (.3)
st.  x= {IDV)
0<IDV;<1
2IDVi=1

Whete the objective function @ is the sum of squared residuals, x is the vector of simulated
mass isotopomer abundances, and x°bs is the vector measured (i.e. uncorrected) mass
isotopomer abundances. From the estimated IDV, we then calculated positional deuterium

enrichments via a linear transformation:

[D1, Dz, D3, D4, D5, Dss] =T -IDV (52)
Where T is a constant transformation matrix. We identify the deuterium enrichment of C-H
in carbon 1 as Dy, the enrichment in carbon 2 as D5, and so forth. Since there are two

hydrogen atoms at catbon 6 that cannot be distinguished, we only determined the average

enrichment at carbon 6, i.e. Ds = Dgs/2.
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5.3 Results

5.3.1 Synthesis and evaluation of glucose derivates

We synthesized 18 glucose derivatives and analyzed them in detail by electron impact
GC/MS. We created four families of related glucose derivatives based on four commonly
used derivatization methods, i.e. aldonitrile pentaacetate, pentaacetate, methyloxime
trimethylsilyl, and permethyl glucose. Figure 5-1 illustrates the basic two step procedure for
generating all glucose derivatives. In the first step, we derivatized the carbonyl group at C1
of glucose to produce aldonitrile and methyloxime detivatives via reaction with
methylhydroxylamine and hydroxylamine, respectively. Alternatively we produced the di-O-
isopropylidene derivate via reaction with acetone. In the second step, we detivatized the
hydroxyl groups of glucose with acetic, propionic, or butanoic anhydride to obtain the
respective esters, or with iodomethane, iodoethane, or N-methyl-N-
trimethylsilyltrifluoroacetamide to obtain the permethyl, perethyl, and trimethylsilyl ethers of
glucose, respectively. We successfully generated 18 of the 24 possible glucose detivatives
based on this two step procedure. We obtained electron impact mass spectra for all 18
glucose derivatives for unlabeled and specifically labeled glucose standards. The 18 mass
spectra for unlabeled glucose are shown in Appendix B. For each glucose derivative we
identified the most abundant ion fragments (shown in Table 5-1), and quantified the mass
isotopomer distributions. To assign structural positions of glucose carbon and hydrogen
atoms to each ion fragment, mass spectra of specifically labeled glucose standards were
analyzed: [1-2H}-, [2-H]-, [3-2H]-, [4-H]-, [5-2H]-, |6,6-*Ha]-, [1,2,3,4,5,6,6-*H]-, and [U-
13Cg]glucose. For example, the mass spectrum of aldonitrile pentapropionate glucose was
characterized by fragments arising from bond cleavage at C5-C6 (m/z 240 and 370), C4-C5
(m/z 173 and 284), C3-C4 (m/z 259), and C2-C3 (m/z 345) positions. These assignments
were apparent from increases in m/z for specifically labeled glucose standards. Based on
these assignments we postulated chemical formulae for all ion fragments and calculated
theoretical mass isotopomer distributions. We then compated the observed mass isotopomer
abundances for unlabeled and singly labeled glucose standards to theoretical abundances.

Fragments with abundances deviating more than 0.4 mol% were considered inaccurate.
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Figure 5-1: Schematic of the two step procedure for generating glucose derivatives. In the
first reaction step the catbonyl group at C1 of glucose is derivatized, and in the second
reaction step hydroxyl groups of glucose are derivatized. Based on this procedure 18

different glucose derivatives were successfully synthesized and analyzed by GC/MS.

-161 -



CHAPTER 5. GC/MS ANALYSIS OF GLUCOSE

Table 5-1

Overview of 18 derivatives of glucose that were synthesized and analyzed by electron impact

GC/MS. For each derivative, the most abundant ion fragments (m/z) were identified and

mass isotopomer distributions were analyzed for accuracy. The six most accurate ion

fragments are shown in bold and underlined.

15t reaction step —> none Isopropylidene Aldonitrile Methyloxime
1 204 reaction step

Acetate 98, 103, 109, 115, 109, 113,127, 143, 103, 115, 127, 141, 85, 89, 115, 127,

140, 145, 157,169, 169, 185, 201, 229, 145,157,187, 212, 131, 145,155, 173,

200, 242, 331 287 217,225,242,272, 187,197,215, 226,

314 257,286, 289, 331

Propionate 109, 129, 131, 154, 109,113,127, 157, 129, 131, 141, 155, 89, 112, 141, 145,

183, 185,187,210, 183, 215,243,301 173,185, 187,197, 155, 198, 201, 215,

227, 284, 387 215,240, 253,259, 254, 328, 345, 384,

284, 345, 370, 384 387, 416

Butanoate 98,110, 127, 143, 109, 113,127,171, 112,143,155,159, 89,112, 124,138,

159,168, 186,198,  197,229,257,315 169,193,201, 211, 155, 159, 212, 229,

213, 229, 255, 302, 213,229, 243,268, 243, 282, 370, 401,

326, 444 281, 301, 326, 370, 443

426, 440

Trimethylsilyl 103,117,129, 133, 129, 131, 143,145, 103,117,129, 133, 103,117, 129, 133,

147,191,204, 217, 173, 185, 201, 231, ;g; g; ;gg ;g} 147, 160, 189, 205,

305 259, 317 319 217, 229, 291, 319,

364

Permethyl* 75, 88, 101, 149 n/a n/a n/a

Perethyl* 103, 116, 129, 191 n/a n/a n/a

* ‘n/a’ indicates that we were unable to synthesize this particular derivative of glucose.
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Figure 5-2: Overview of positional information obtained from the selected glucose
fragments. Glucose carbon and hydrogen positions included in the selected ion fragments
are: m/z 173 (Cs.6, Hs), m/z 259 (Cs6, Hag), m/z 284 (Ci.4, Ha4), and m/z 370 (Cy.5, Ha.5)
all detived aldonitrile pentapropionate glucose; m/z 301 (Ci.s, Hi.¢) derived from di-O-
isopropylidene propionate glucose; and m/z 145 (Ci.2, Hi.2) detived from methyloxime

pentapropionate glucose.
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Figure 5-3: Electron impact mass spectra of the selected glucose derivatives. The three
panels show the electron impact mass spectra of aldonitrile pentapropionate (top), di-O-

isopropylidene propionate (middle), and methyloxime pentapropionate glucose (bottom).
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‘Table 5-2

Evaluation of accuracy of selected glucose fragments. We compared measured and

theoretical mass isotopomer abundances of the selected ion fragments at m/z 301 (di-O-

isopropylidene propionate), m/z 145 (methyloxime pentapropionate), and m/z 173, 259,

284, and 370 (aldonitrile pentapropionate) for unlabeled glucose. Data shown are mean + SD

(n=6) (molar percentages, mol%).

m/z C-H
(formula) positions M+0 M+1 M+2 M+3 M+4
301 1,2,3,4,5,6,6 measured 84.1+0.15 135+0.11 22+010 02+0.08 0.010.01
(C1sH207) theoty 84.2 13.4 2.2 0.2 0.0
145 1.2 measured 923+0.05 6.8+003 08+001 0.1+001 0.0%0.00
(CsHnOsN) theory 92.5 6.7 0.8 0.0 0.0
173 5,6,6 measured  90.6+0.02 82+002 1.1+002 01+£001 0.0%0.00
(CsHi30) theory 90.6 8.3 1.1 0.1 0.0
259 4566 measured  862+0.09 11.7+0.07 18+002 02+001 0.0%0.00
(C12H150%) theory 86.2 11.8 1.8 0.2 0.0
284 234 measured  852+0.10 127+0.05 19+003 02+004 001002
(C13H1506N) theory 85.0 12.8 1.9 0.2 0.0
370 23,45 measured  81.1+£0.02 157+0.05 29+001 03+003 0.0%0.01
(Ci7H24OgN) theory 80.9 15.9 2.8 0.4 0.0

Data shown are the observed mass isotopomer abundances obtained from mass chromatogram

integration, i.e. not corrected for natural isotope enrichments.
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We evaluated over two hundred ion fragments. From these fragments, we then selected the
six most accurate fragments that provided sufficient information for quantitative assessment
of deuterium labeling at all carbon positions of glucose. These selected fragments were
derived from three novel glucose derivatives: aldonitrile pentapropionate ion fragments at
m/z 173 (Cs.s, Hs), m/z 259 (Ca6, Hag), m/z 284 (Ci-4, Ha.e), and m/z 370 (Cy.s, Haos); di-
O-isopropylidene propionate ion fragment at m/z 301 (Ci.6, Hi.s); and methyloxime
pentapropionate ion fragment at m/z 145 (Ci.2, Hi.2). Figure 5-2 shows schematically the
positional information that is obtained from these fragments. The electton impact mass
spectra of the three glucose derivatives are shown in Figure 5-3. In Table 5-2 we compare
the measured and theoretical mass isotopomer distributions for the selected ion fragments.
As expected, we obsetved very good agreement between the theoretical and observed
abundances, i.e. the maximum deviation was 0.2 mol%, and the measurement precision

better than 0.15 mol% (i.e. standard deviation of 6 repeated injections).

5.3.2 Determining deuterium labeling of glucose standards

To assess the accuracy of our method for determining positional enrichments of singly
labeled glucose, we obtained mass spectra for specifically 2H-labeled glucose standards, i.e.
[1-2H]-, [2-2H]-, [3-2H]-, [4-2H]-, [5-2H]-, and [6,6-2H>}-glucose, and quantified the mass
isotopomer distributions for the selected ion fragments. Table 5-3 shows the observed mass
isotopomer distributions (data not cotrected for natural isotope enrichments). The
deutetium enrichments at the six glucose carbon positions were determined by least-squares
regression as desctibed in the Methods section. Table 5-4 shows the estimated enrichments
at each carbon position for the purchased glucose standards. The estimated values
corresponded well with the expected enrichments based on manufacturers’ specifications for
isotopic purity. All singly labeled glucose standards showed slight contaminations at various
carbon positions. The least pure of the glucose standards was [4-2H]glucose, which was
92.3% labeled at C4 and had significant contaminations at C1 and C2 (2.9 mol% and 1.9
mol% enrichment, respectively), compared to 94 At% 2H-labeling according to
manufacturers’ specifications. The most pure of the glucose standards was [5-2H]glucose,

which was 99.8% labeled at C5 and had only a small contamination at C1 (0.8 mol%
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Table 5-3
Mass isotopomer distributions of selected ion fragments from 2H-labeled glucose standards.
Specifically labeled glucose standards were derivatized and analyzed by electron impact

GC/MS. Data shown have not been corrected for natural isotope enrichments.

m/z C-H positions M+0 M+1 M+2 M+3 M+4
[1-2H]glucose
301 1,2,3,4,5,6,6 0.0 82.1 15.1 25 0.3
145 1,2 0.2 89.4 9.4 1.0 0.1
173 5,6,6 90.6 8.2 1.1 0.1 0.0
259 4,5,6,6 86.5 11.6 1.8 0.2 0.0
284 234 82.7 14.9 2.2 0.2 0.1
370 2,345 78.8 17.5 33 0.4 0.0
[2-2H]glucose
301 1,2,3,4,5,6,6 0.0 83.1 14.3 24 0.2
145 1,2 0.8 90.4 7.8 0.9 0.1
173 5,6,6 90.5 83 1.1 0.1 0.0
259 4,5,6,6 86.3 11.7 1.9 0.2 0.0
284 234 0.8 84.6 12.6 1.9 0.2
370 2,345 0.8 80.7 15.4 2.8 0.4
[3-2H]glucose
301 1,2,3,4,5,6,6 1.3 81.3 14.7 24 0.3
145 1,2 90.0 89 1.0 0.1 0.0
173 5,6,6 90.5 83 11 0.1 0.0
259 4,5,6,6 86.3 11.6 1.9 0.2 0.0
284 234 1.1 83.3 13.3 20 0.2
370 2,345 0.9 79.8 16.1 3.0 0.4
[4-*H]glucose
301 1,2,3,4,5,6,6 4.1 80.8 12.7 21 0.2
145 12 87.5 11.2 1.2 0.1 0.0
173 56,6 90.4 8.3 1.1 0.1 0.0
259 45.6.6 6.1 81.1 109 1.7 0.2
284 234 5.1 80.9 12.0 1.8 02
370 2345 45 775 15.0 27 0.3
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Table 5-3 (continued)

Mass isotopomer distributions of selected ion fragments from 2H-labeled glucose standards.

Specifically labeled glucose standards were derivatized and analyzed by electron impact

GC/MS. Data shown have not been cotrected for natural isotope enrichments (molar

percentages, mol%b).

m/z C-H positions M+0 M+1 M+2 M+3 M+4
|5-*H]glucose
301 1,2,3,45,6,6 0.0 84.1 13.4 22 0.2
145 12 91.3 7.7 1.0 0.1 0.0
173 566 0.0 90.6 8.3 1.1 0.1
259 4,5,&,6 0.0 86.4 11.6 1.8 0.2
284 234 85.0 12,9 1.9 0.2 0.0
370 2,3,;’5 0.0 81.0 15.7 2.9 04
16,6-2Ha]glucose
301 1234566 01 2.9 793 149 2.6
145 , 12 91.3 7.0 1.6 0.2 0.0
173 5,(’, 6 0.6 1.5 86.2 10.4 1.3
259 4,5’; 6 0.3 2.3 81.8 13.5 2.2
284 2’3’; 84.8 12.8 2.2 0.2 0.0
370 2345 78.6 17.5 33 0.4 0.2

Data shown are integrated mass isotopomer abundances not corrected for natural isotope

enrichments.
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Table 5-4

Estimated deuterium enrichments of glucose standards. Deuterium enrichments (mol%
enrichment) at the six glucose carbon positions were determined by least-squares regression
of mass isotopomer disttibutions of selected glucose fragments as described in the Methods

section. Numbets in parentheses denote manufacturers’ specifications of isotopic purity.

Glucose standard

(2 poH-  BoHF @HF BHE (667

glucose glucose glucose glucose glucose glucose unlabeled
Position (97 At%) (97 At%) (98 At%) (94 At%) (98 At%) (98 At%) glucose
Dy 99.7 2.1 14 2.9 0.8 0.8 0.1
D, 2.6 98.2 1.6 1.9 0.2 0.2 0.0
D; 0.2 1.0 97.8 0.0 0.0 0.0 0.0
Dy 0.0 0.0 0.0 92.3 0.0 0.2 0.0
Ds 0.0 0.0 0.0 0.1 99.8 24 0.0
Dgs/2 0.0 0.0 0.0 0.0 0.1 95.8 0.0
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Table 5-5
Mass isotopomer distributions of mixtures of glucose standards. Solution of [2-2H]- and [5-
2H]glucose was prepared (1:1 mol/mol) and diluted with unlabeled glucose solution to

obtain final deuterium enrichments at C2 and C5 of 1%, 5%, 10%, and 50%, respectively.

m/z C-H positions M+0 M+1 M+2 M+3 M+4
[2-2H]glucose + [5-?H]glucose (50:50)
301 123.45.6,6 0.0 83.1 143 2.4 03
145 ’ 12 46.6 48.7 42 0.5 0.0
173 566 445 50.1 48 0.6 0.0
259 4,;,;,6 42.3 49.8 6.9 1.0 0.1
284 234 44.1 478 7.1 1.0 0.1
370 2345 0.1 81.0 15.7 2.9 0.3

[2-2H]glucose + |5-2H]glucose + unlabeled glucose (10:10:80)

301 1,2,3,4,5.6,6 68.4 20.7 4.3 0.6 0.0
145 ’ i,; ’ 83.3 15.1 1.4 0.1 0.0
173 5.6.6 81.3 16.7 1.9 0.2 0.0
259 4,;,é,6 77.4 19.4 2.8 0.3 0.0
284 2,34 77.0 19.5 29 0.4 0.1
370 23,45 65.4 284 53 0.8 0.1

|2-2H]glucose + [5-2H]glucose + unlabeled glucose (5:5:90)

301 1,2,3,4,5,6,6 76.0 20.2 3.3 0.4 0.0
145 12 87.6 1.2 1.1 0.1 0.0
173 5.6.6 85.7 12.6 1.5 0.1 0.0
259 4,;’2,,6 81.9 15.6 2.3 0.3 0.0
284 234 80.8 16.1 2.5 0.4 0.2
370 2345 72.9 223 4.1 0.6 0.1

|2-3H]glucose + [5-*H]glucose + unlabeled glucose (1:1:98)

301 1234566 82.4 149 25 0.3 0.0
145 ’ 1’; 91.5 7.7 0.7 0.1 0.0
173 566 89.6 9.1 1.2 0.1 0.0
259 4566 85.2 127 2.0 0.2 0.0
284 234 84.2 133 2.2 0.2 0.1
370 2,;,‘;’5 79.2 17.2 3.2 0.4 0.0
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Table 5-6

Estimated deuterium entrichments of mixtures of glucose standards. Deutetium entichments
(mol% enrichment) at the six glucose catbon positions were determined by least-squares
regression of mass isotopomer distributions of selected glucose fragments. The estimated
enrichments corresponded well with the expected enrichments at C2 and C5 of 0%, 1%, 5%,

10%, and 50%, respectively.

Mixture of standards
[2-2H]glucose + [5-°H]glucose + unlabeled glucose

Position 0:0:100 1:1:98 5:5:90 10:10:80 50:50:0
D, 0.1 0.1 0.3 0.2 1.5
D, 0.0 1.0 4.9 9.6 48.7
Ds 0.0 0.0 0.0 0.0 0.0
D4 0.0 0.1 0.0 0.0 0.0
Ds 0.0 1.0 5.0 9.8 51.0

Des/2 0.0 0.0 0.0 0.1 0.0

-171 -



CHAPTER 5. GC/MS ANALYSIS OF GLUCOSE

enrichment). The estimated enrichments for the unlabeled glucose standard were not
significantly different from zero, i.e. the highest estimated enrichment was 0.1 mol% at C1.
These results clearly illustrate the validity of our method and the high accuracy and precision

of MS data obtained from the selected ion fragments.

To assess the accuracy of determining deuterium labeling specifically at C2 and C5 positions
of glucose, a standard mixture of [2-2H]glucose and [5-?H]glucose was prepared in the
proportion 1:1 (mol/mol). Solution of the standard mixture was then diluted with unlabeled
glucose solution to obtain final deuterium enrichments at C2 and C5 positions of 1%, 5%,
10%, and 50% (undiluted), respectively. Table 5-5 shows the measured mass isotopomer
distributions for the 4 mixtures of glucose standards. Table 5-6 shows the estimated
entichments at each carbon position. The estimated enrichments at C2 and C5 corresponded
well with the true enrichments of the prepared mixtures. The deviation from the expected
enrichments was less than 0.3 mol%. Furthermore, the estimated enrichments at C1, C3, C4
and C6 positions were not statistically different from zero for three of the four mixtures.
The observed 1.5 mol% enrichment at C1 in the 50/50% mixture could be explained by

small contaminations at C1 in the [2-2H]glucose and [5-2H]glucose standards (see Table 5-4).

5.3.3 Study of gluconeogenesis

Incorporation of deuterium into glucose in experiments with 2H>O depends on a number of
biochemical reactions where hydrogen atoms are exchanged with, or incorporated from the
solvent. Incorporation at C2 occurs mainly via PGI. It is generally assumed that there is
rapid exchange between F6P and GOP catalyzed by PGI, and thus we would expect that the
labeling at C2 is equal to the enrichment of the solvent. If that is indeed the case, then the
overall flux of hepatic glucose production can be measured by the incorporation of
deuterium at C2. Incorporation at C5 occurs in the gluconeogenesis pathway, in particular in
the reactions catalyzed by enolase and TPIL. Deuterium incorporation at C1 and C6 positions
occuts via the pyruvate — oxaloacetate — PEP pathway. Therefore, the ratio of enrichment
of C5 to that of C2 is a measure of gluconeogenesis relative to glucose production, and the

ratio of entichment of C6 to that of C2 is a measure of the contribution of PEP to glucose
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production. The difference between incorporation at C5 and C6 relative to C2 represents the
amount of glucose produced from trioses (including glycerol). In a previous study with
cultured primary hepatocytes we applied [U-13Clglycerol, PHs]glycerol and 2H,O tracers to
estimate net and reversible fluxes in the gluconeogenesis pathway (Chapter 7). Our results
suggested that TPI and PGI reactions were not fully equilibrated. In particular, we estimated
that the PGI reaction was only 80-86% equilibrated. Based on our flux results we predicted
that the labeling of GAP-C2 (which eventually becomes C5 of glucose) would be >95%
equilibrated with the solvent (mainly via the enolase reaction), and that C2 of glucose would
only be 80% equilibrated with the solvent. To validate these predictions we re-analyzed our
samples from 2H,O experiments (10% enrichment) using the newly identified glucose
fragments, and estimated the amount of deuterium at each carbon position of glucose.

Table 5-7 shows the measured mass isotopomer distributions for three experimental samples
taken at 2, 5, and 8 ht, respectively, and Table 5-8 shows the estimated deuterium
enrichments at all carbon positions. In all three samples the deuterium labeling at C2 was
incomplete. The measured deuterium labeling at C2 varied between 8.1 and 8.6%, indicating
81-86% equilibrium between the solvent and C2 hydrogen of glucose. Thus, these results
fully support our previous finding that the PGI reaction was not fully equilibrated. Table 5-9
shows the fractional contributions of gluconeogenesis, glycogenolysis, glycerol, and PEP to
glucose production, as we estimated from the deuterium labeling of glucose. Here,
gluconeogenesis (GNG) was estimated as the ratio of enrichment of C5 relative to that of
the solvent, glycogenolysis (GL) was estimated as 100 — GNG, the flux of PEP to glucose as
2 x enrichment of C6 relative to that of the solvent, and the flux of glycerol to glucose as 2 x
GNG - flux of PEP to glucose. Fractional equilibration of the PGI reaction was estimated
from the ratio of enrichment of C2 relative to that of the solvent. Table 5-9 compatres these
estimated fluxes to the previously determined fluxes based on comprehensive analysis of
isotopomer data from [U-13C]glycerol, ?Hs]glycerol, and 2H>O experiments. We found good
agreement between fluxes estimated from deuterium incorporation and our previous results.
Compared to the previous results GNG was slightly underestimated (by about 10%), and
GL slightly overestimated. Note that if we used the C5/C2 ratio as a measure of GNG, then
we would have overestimated GNG at 85%, 106%, and 105% for the 2, 5, and 8 hr samples,

respectively.
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Table 5-7

Mass isotopomer distributions of experimental samples. Hepatocytes were cultured in
medium containing 2H,O at 10% enrichment. Samples collected after 2, 5, and 8 hrs of
incubation were derivatized and analyzed by GC/MS. Shown are mass isotopomer

distributions of selected glucose fragments (molar percentages, mol%).

m/z C-H positions M+0 M+1 M+2 M+3 M+4
Sample collected after 2 hr of incubation
301 1,2,3,4,5,6,6 56.3 31.5 9.8 2.2 0.2
145 1,2 81.1 16.6 21 0.2 0.0
173 56,6 76.5 19.7 33 0.4 0.1
259 4566 69.1 24.7 5.3 0.8 0.1
284 234 70.4 237 5.0 0.9 0.0
370 2345 62.0 29.1 7.6 1.3 0.1

Sample collected after 5 hr of incubation

301 123.456.6 54.1 32.8 10.5 23 04
145 " 1’2 ” 80.2 17.6 2.1 0.2 0.0
173 5,6,6 75.7 20.7 3.2 04 0.0
259 45 ; 6 68.0 25.6 5.4 0.9 0.1
284 é,;,:; 69.3 249 4.9 0.8 0.1
370 2345 60.5 29.8 8.0 1.5 0.2

Sample collected after 8 hr of incubation

W 1234566 531 333 10.9 24 04
145 12 79.8 17.9 21 0.2 0.0
73 566 75.0 211 34 04 0.0
25 4566 67.3 26.2 5.6 0.9 0.1
o84 034 60.0 25.1 49 0.9 0.1
370 2345 60.1 303 79 15 02
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Table 5-8

Estimated deuterium enrichments of experimental samples. Deuterium enrichments (mol%
entichment) at the six glucose carbon positions were determined for three experimental

samples from hepatocyte cultures with 2HO at 10% enrichment.

Length of incubation time
Position 2hr 5hr 8 hr
Dy 4.2 5.7 6.1
D, 8.6 8.1 8.2
Ds; 5.4 6.4 6.6
D4 5.0 5.6 5.7
Ds 7.3 8.6 8.6
Dee/2 5.0 4.6 5.1
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Table 5-9

Comparison of previously estimated fluxes and fluxes determined from deuterium
incorporation. Metabolic fluxes in the gluconeogenesis pathway were previously estimated
by fitting experimental data from [U-13C]glycerol, [?Hs]glycerol, and 2H>O experiments to a
detailed flux model (Chapter 7). In this study, fluxes were estimated from the incorpotation

of deuterium into specific carbon positions of glucose from 2H,O experiments.

2hr 5 hr 8 hr
This  Previous This  Previous This  Previous
Flux study study study study study study
Glucose production (fixed at 100) 100 100 100 100 100 100
Gluconeogenesis (GNG) 73 81 86 90 86 90
Glycogenolysis (GL) 27 18 14 10 14 10
Glycerol to glucose flux 46 70 80 72 70 67
PEP to glucose flux 100 92 92 108 102 114
Equilibration of PGI (%) 86% 79% 81% 81% 82% 86%

* ‘Previous study’ refers to flux results from Chapter 7

*GNG =2H-C5 / 10%

*GL = 100 - GNG

* PEP to glucose flux = 2H-C6 / 10%

* Glycerol to glucose flux = 2 x GNG — (flux of PEP to glucose)
* Equilibration of PGI = 2H-C2 / 10%
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5.4 Discussion

Measured mass isotopomer distributions may deviate from true isotopomer abundances for
many teasons, e.g. unresolved metabolite peaks, overlapping mass spectra of adjacent ion
fragments, hydrogen abstraction, deutetium-hydrogen exchange, gas phase ion/molecule
chemistry in the ionization chamber, isotope discrimination during ionization and detection,
sample size effects, and imprecision due to low signal-to-noise ratio and background noise.
Mass isotopomer data may therefore underestimate, or overestimate true enrichments.
Because positional enrichments are determined from differences in enrichments of different
ion fragments, small errors in data propagates to the calculated positional enrichments as
large deviations. Thus, mass isotopomer data of individual ion fragments should be as
accurate as possible. In this study, we developed a novel protocol for accurate determination
of positional deuterium labeling of glucose that avoids the use of calibration cutves and
correction factors by ensuring that data from the selected ion fragments are very accurate
and precise. In order to find the most accurate ion fragments we synthesized 18 different
glucose derivatives and evaluated over 200 ion fragments. We used specifically labeled
standards for structural assignments and for validating the accuracy of mass isotopomer
distributions. The six selected ion fragments provided sufficient information to determine
positional 2H-labeling of glucose hydrogen atoms with precision. Comprehensive analysis of
mass isotopomer distributions by least-squares regression allowed quantitative determination
of glucose labeling from pure glucose standards, mixtures of glucose standards, and from
experimental samples. Our method determines positional enrichments of deuterium with
accuracy better than 0.3 mol% and precision better than 0.2 mol%. An example of
quantification of deuterium incorporation into glucose was provided in a study of
gluconeogenesis in cultured ptimary hepatocytes. We found that 42-61% deuterium atom
was incorporated into C1, 81-86% into C2, 54-66% into C3, 50-57% into C4, 73-86% into
C5, and 46-51% into C6 of glucose. These deuterium enrichments indicated that 14-27% of
glucose was derived from glycogenolysis and that gluconeogenesis accounted for the
remaining 73-86%. In support of our previous finding that suggested incomplete
equilibration of PGI, we found that deutetium labeling at C2 of glucose in 2H,O

experiments was incomplete.
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Chapter 6

Nonstationary metabolic flux analysis

of E. coli

6.1 Introduction

Isotopic tracer experiments are routinely used to quantify fluxes in biochemical networks
(Stephanopoulos, 1999). In a typical carbon-13 labeling experiment, a labeled substrate, e.g.
[1-13*C]glucose, is introduced to the metabolic system where it is taken up and metabolized by
the cells. Atoms of the specifically labeled substrate are biochemically rearranged generating
molecules with specific labeling patterns that can be detected by nuclear magnetic resonance
(NMR) and mass spectrometry (MS) (Klapa, 2003; Szyperski 1995). The labeling patterns of
cellular components provide rich information for the estimation of metabolic fluxes. The
goal of metabolic flux analysis (MFA) is to extract as much flux information as possible from
stable isotope measurements and external flux measurements. Currently, MFA requires that
the system is at metabolic and isotopic steady state, i.e. that the labeling of the substrate and
the labeling of the sampled pools are equilibrated (Wiechert et al. 2001). For example, this
condition is approximated in continuous culture experiments after four or more residence
times. The isotopic steady state assumption simplifies the computational problem that needs
to be solved for flux determination from a problem with differential-algebraic equations
(DAE) to a problem involving only algebraic equations (Wiechert et al., 2005). In this
contribution, we extend the scope of MFA to nonstationary systems, i.e. systems that do not
approximate isotopic steady state, without increasing the complexity of computations. The

extension of MFA to nonstationary systems is important because many systems of industrial
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and medical importance never reach isotopic steady state (Drysch et al. 2003; Kelleher 2001).
To account for isotopic transients we have developed a novel modeling strategy that
combines key ideas from isotopomer spectral analysis (ISA) and stationary MFA. ISA was
initially introduced as a general method for modeling polymerization biosynthesis reactions
in systems that do not approximate isotopic steady state (Kelleher and Mastetson, 1992). In
analogy with the ISA method we introduce two dilution parameters to account for the
observed isotopic transients. These parameters are the dilution of the tracer before it is
metabolized by cells (the D-parameter), and the dilution of labeled products in the sampled
pools (the G-parameter). We illustrate the new modeling strategy with a nonstationary
system that closely resembles industrial production conditions, i.e. microbial fed-batch
fermentation of E. e/ that overproduces 1,3-propanediol (PDO). In this experiment neither
the labeling of the tracer, nor the labeling of the sampled biomass pools were at isotopic
steady state. Metabolic fluxes were estimated in this system by fitting labeling profiles of
cellular amino acids (measured by GC/MS) and external flux measutements to a detailed
model of E. co/ metabolism that included the additional dilution parameters. We obtained an
over-determined system with 66 redundant measurements from which we calculated
metabolic fluxes and confidence intervals of fluxes. With the additional D and G parameters
we successfully modeled the observed isotopic transients and for the first time determined
time profiles of in vivo fluxes during a fed-batch fermentation. The fits were statistically
acceptable as judged by the small magnitude of the sum of squared tesiduals. Flux results
provided insights into the physiology of industrial overproduction of PDO. The results
indicated that intracellular fluxes were relatively constant during the fed-batch fermentation.
The intracellular flux associated with production of PDO increased only by 10% during 20
hr of fermentation, which was in contrast with the efflux of PDO that fluctuated
significantly. We observed only a slight decrease in the split ratio at the branch point
between glycolysis and pentose phosphate pathway. The TCA cycle flux, on the other hand,
remained constant throughout the fermentation. The general modeling strategy that is
introduced here is not limited to fed-batch fermentations, but may be used to analyze other

metabolic systems that ate not at isotopic steady state.
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6.2 Materials and methods

6.2.1 Stable isotope tracers

Isotopically labeled glucose tracets, i.e. [1-13C]glucose (99 At% 13C) and [U-13C]glucose (99
At% 13C) were purchased from IsoTec Inc. (Miamisburg, OH) and Cambridge Isotope

Laboratories Inc. (Andover, MA), respectively.

6.2.2 Medium

Defined mineral salts medium was used for the fermentation. The unlabeled feed contained
46.2 wt% glucose as the catbon source. The 13C-labeled feed was chemically identical, but
contained 75 wt% [1-13C]glucose and 25 wt% [U-13C]glucose instead of unlabeled glucose.

6.2.3 Strain and growth conditions

In this study, we used an E. ¢o/ K12 strain that was metabolically engineered to overproduce
1,3-propanediol (Nakamura, 2003). The cultivation was performed as a fed-batch
fermentation (see Figure 6-1). E. w/ was cultured in an aerobic fermentor with a working
volume of 1 L. The pH was controlled at 6.8 & 0.04 by addition of NH4OH, the temperature
was controlled at 34 °C, and the dissolved oxygen was controlled at 10% + 0.7 of saturation
by adjusting the stirrer speed. The aeration rate was constant at 0.5 standard liters per minute
(SLPM). The batch phase was initiated with 45.1 g of unlabeled glucose medium. Glucose
feed was initiated after 16.3 hr and controlled such that glucose concentration in the medium
was maintained at 45 £ 5 mM. After 18.6 hr, unlabeled glucose feed was replaced with 13C-
labeled glucose feed containing 75 wt% [1-13C]glucose and 25 wt% [U-13C]glucose. After
30.0 hr, labeled glucose feed was replaced with unlabeled glucose feed and the fermentation

was continued for 14.6 hr.
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Figure 6-1: A schematic of fed-batch fermentation setup and measurement points. The fed-

batch fermentation was performed in an aerobic fermentor with a working volume of 1 L.

The pH was controlled at 6.8, the dissolved oxygen at 10% of saturation, and glucose

concentration at 45 mM. Online measurements included: weight of the fermentor and feed

bottles (scales), flow rate of the inlet air stream (flow meter), the composition of the inlet

and outlet air streams (MS). Medium samples were periodically taken for offline analysis:

metabolite concentrations (HPLC), biomass concentration (optical density at 550 nm),

isotopic labeling of glucose in the medium (GC/MS), and isotopic labeling of cellular amino

acids (GC/MS) were measured.
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6.2.4 Off-gas analysis

Molfractions of oxygen, carbon dioxide and nitrogen in both the inlet and outlet air streams
were measured online by a Prima 600S mass spectrometer (VG Gas, Manchester, UK). The
flow rate of the inlet ait stream was measured in standard liters per minute (SLPM defined at
1 Atm and 25°C) using a Brooks 5850 series mass flow controller. Fractional labeling of CO,
in the off-gas was determined from relative intensities of 12CO; (m/z 44) and 1*CO; (m/z
45).

6.2.5 Sampling and sample processing

Medium samples were periodically taken during the fed batch fermentation for HPLC and
GC/MS analysis. In total 21 samples of 11-21 mL were collected between time points 15.4
hr and 44.6 ht. Samples were centrifuged, and the supernatant separated from the biomass
pellet. The biomass pellet was stored at -80 °C and the supernatant at -20 °C prior to
analysis.

6.2.6 Biomass concentration

Biomass concentration was determined by measuring the optical density at 550 nm (ODsso),
assuming 3.0 g/L/ODss cell dry weight. The molecular weight of dry biomass was assumed
to be 25.3 g/C-mol.

6.2.7 HPLC analysis

The concentrations of glucose, glycerol, 1,3-propanediol (PDO), acetate, citrate, and
pyruvate in the medium samples were measured by high-performance liquid chromatography
(Waters HPLC, Shodex SH1011 sugar column, RI detector).
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6.2.8 GC/MS analysis

Gas Chromatography-Mass Spectrometry (GC/MS) analysis was petformed using HP 5890
Series II GC (Gas Chromatograph) equipped with a DB-1701 [30 m x 0.25 mm (inner
diameter) x 0.25 um] capillary column, connected to HP 5971 quadrupole MSD (Mass
Selective Detector) operating under jonization by electron impact (EI) at 70 eV. The mass
spectrometer was calibrated using the ‘Max Sensitivity Autotune’ setting. Measured
intensities were corrected for the contribution of noise (baseline correction), and mass
isotopomer distributions were obtained by integration. Mass isotopomer values for each
fragment were expressed as fractional abundances, i.e. for each fragment the sum of all mass

isotopomers equals one.

6.2.9 GC/MS analysis of cellular amino acids

Labeling patterns of cellular amino acids were determined by GC/MS analysis of their tert-
butyldimethylsilyl (TBDMS) detivatives. For each detivatization, about 20 mg of wet
biomass pellet was transferred to 700 pL. of 6 N HCl and heated at 110 °C for 24 hrina
closed vacuum hydrolysis tube. After cooling to room temperature the solvent was
evaporated and the residue was dissolved in 150 uL of distilled water, which was then
filtered through a 0.2 um pore size filter to remove cell debris. The filtrate was evaporated to
dryness. The dried hydrolysate was dissolved in 50 L of pyridine followed by addidon of 70
uL of N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA). The mixture
was heated at 60 °C for 30 min and transferred to an injection vial for GC/MS analysis. The
injection volume was 1 uL and samples were injected in purged splitless mode. The amount
of sample analyzed was controlled by varying the purge activation time between 1 sec and
1.5 min. Helium flow was maintained at 0.74 mL/min via electronic pressute control. The
injection port temperature was 270 °C. The temperature of the column was started at 100°C
for 1.5 min, increased to 130 °C at 20°C/min and increased to 220 °C at 10 °C/min and
held for 3 min. The temperature was then increased to 280°C at 5 °C/min and held for 3
min. The interface temperature was maintained at 300 °C. Mass spectra were analyzed in the
mass range 195-445 atom mass units at a rate of 2.7 scans/sec. Figure 6-2 shows a

representative total ion chromatogram of TBDMS derivatized amino acids from hydrolyzed
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Figure 6-2: Representative total ion chromatogram. Cellular amino acids from hydrolyzed
biomass were detivatized by TBDMS and analyzed by electron impact GC/MS. The total
ion chromatogram corresponds to the sum of the ion intensities measured at each time point

in the analysis. The insert shows the electron ionization mass spectrum for TBDMS
derivatized aspartic acid.
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Table 6-1

Ion fragment of TBDMS derivatized amino acids used for flux analysis. The identity of

amino acid ion fragments was verified previously (Chapter 4). Assignment of precursor

metabolites reflects the metabolic network model of E. co/i shown in Appendix 6.A.

Amino  Monitored Amino acid Fragmentation Precursor metabolite(s)
acid ions carbon atoms
Ala 232 -239 2-3 M - CsHyO Pyre.s
260 — 268 1-2-3 M-C4Hy Pyraas
Gly 218 - 224 2 M - CsHyO multiple pathways*
246 — 253 1-2 M — C4Hy multiple pathways*
Val 260 — 269 2-3-4-5 M - CsHyO Pyrps + Py
288 — 298 1-2-3-4-5 M- C4Hy Pyruas + Pyras
Leu 274 - 283 2-3-4-5-6 M - CsHyO ACCOA(?_) + Pyr(g.3) + Pyr(z.3)
Ile 274 — 283 2-3-4-5-6 M - CsHyO OACp.3.4 + Pyros
Ser 288 — 296 2-3 M- C/HisO-8i  multiple pathways*
362 — 370 2-3 M - GHyO multiple pathways*
390 — 399 1-2-3 M- C4Ho multiple pathways*
Thr 376 — 382 2-3-4 M - CGHyO OAC3.4
404 — 414 1-2-3-4 M-CHy OAC(1.234
Met 292 — 298 2-3-4-5 M - CHyO OAC34 + C-1
320 — 327 1-2-3-4-5 M- CHy OAC(234 + C-1
Phe 302 - 307 1-2 M-GH, PEP(.3
308 - 316 2-3-4-5-6-7-8-9 M -GCsHyO PEP3 + PEPp 3 + E4APp 5.
336 — 345 1-2-3-4-5-6-7-8-9 M —C4Hy PEP(.23 + PEPp 3 + E4Pq 2.y
Asp 302 — 309 1-2 M- CgHi7O81  OACq.z
376 — 382 1-2 M - C¢H11O OAC(.2
390 - 397 2-3-4 M - CsHyO OACp3.4
418 — 428 1-2-3-4 M - CHy OAC12.3.9
Glu 330 - 336 2-3-4-5 M-CHis0:81 AKGg3.45
404 — 411 2-3-4-5 M - CsHyO AKGg3.45
432 — 443 1-2-3-4-5 M- CHy AKG1.2.5.45
Tyt 302 — 307 1-2 M - Ci3H2 081 PEPg.y

Abbreviations: 3PG, 3-phosphoglycerate; PEP, phosphoenolpyruvate; Pyr, pyruvate; E4P, erythrose-

4-phosphate; AKG, a-ketoglutarate; OAC, oxaloacetate; AcCoA, acetyl coenzyme-A; R5P, ribose-5-

phosphate; C-1, one-carbon unit.

* Glycine and serine are produced by multiple pathways (see Metabolic Network in Appendix 6.A).

The labeling of these fragments depends on the relative contribution of these pathways.
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biomass. We detected 15 of the 20 amino acids in hydrolyzed biomass samples.

Table 6-1 shows the 26 amino acid ion fragments that were used for metabolic flux analysis.
All samples were injected 35 times at vatying concentrations. For each fragment the
integrated mass isotopomer abundances were plotted as a function of total ion counts and
extrapolated to a theoretical infinite dilution to correct for the concentration effect of

electron impact GC/MS analysis (see Chapter 4).

6.2.10 GC/MS analysis of glucose

Labeling of glucose was determined by GC/MS analysis of aldonitrile pentapropionate
detivative of glucose. For each derivatization, 20 pL of medium sample was deproteinized by
addition of 300 uL of acetone (~4 °C). The mixture was centrifuged and the supernatant
evaporated to dryness. 50 uL of 2 wt% hydroxylamine hydrochloride in pyridine was added
to the dry residue and the mixture was heated at 90 °C for 60 min. This was followed by
addition of 100 pL of propionic anhydride and heating at 60 °C for another 30 min. After
cooling, the sample was evaporated to dryness and dissolved in 100 pL of ethyl acetate and
transferred to an injection vial for GC/MS analysis. The injection volume was 1 pL and
samples were injected in purged splitless mode. Helium flow was maintained at 0.88
mL/min via electronic pressure control. The injection port temperature was 250 °C. The
temperature of the column was started at 80 °C for 1 min, increased to 280 °C at 20 °C/min,
and held for 4 min. The interface temperature was maintained at 300 °C. Mass spectra were
analyzed in the mass range 150-450 atom mass units at a rate of 2.3 scans/sec. Labeling of
glucose was determined from the ion fragment at m/z 370 (C17H24OsN) that contained
carbon atoms C1-C5 of glucose. Measured mass isotopomer distributions were corrected for
natural isotope enrichments as described by Fernandez et al. (1996). The corrected intensity
at m/z 370 cortesponded to the fraction of naturally labeled glucose, the intensity at m/z
371 cotresponded to the fraction of [1-3C]glucose, and the sum of intensities at m/z 374

and 375 corresponded to the fraction of [U-13Clglucose.
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6.2.11 Calculating external fluxes

Cumulative consumption of glucose and citrate, and cumulative production of biomass,
glycerol, PDO and acetate were calculated from the measured concentrations and fermentor
weight, after accounting for losses due to sampling. Consumption and production rates
(mol/h) were then determined by fitting a smooth curve through the data points. Rates of
total oxygen uptake (TOUR) and total carbon dioxide production (TCER) were calculated

from off-gas analysis as follows:

X .
TOUR (mol/h) = [xoz’m ~Xo, o —”—] -SLPM,_ - 2.454 6.1)
N, ,out
X,
TCER (mol/h) = Lxcozm — xcog,i.,] -SLPM;, - 2.454 6.2)
N, ,out

The above equations assume that nitrogen is not consumed, produced or accumulated in the
system. These equations inherently correct for temperature and pressure differences between

the inlet and outlet air streams.

6.2.12 Metabolic network model

A detailed netwotk model for E. co/i was constructed (see Appendix 6.A). The model was
comptised of 73 reactions (with corresponding carbon transitions) utilizing 76 metabolites,
with 5 substrates (i.e. glucose, citrate, Oz, NH3, SO4), 5 products (i.e. 1,3-propanediol,
biomass, CO,, acetate, and ATP), and 65 balanced intracellular metabolites. Glycerol was
allowed to be either a substrate or a product depending on the calculated external flux. The
network model included reactions of glycolysis, pentose phosphate pathway, Entner-
Doudoroff pathway, TCA cycle, PDO biosynthesis pathway, amphibolic reactions, one-
carbon metabolism, and amino acid biosynthesis reactions. Reversible reactions were

modeled as separate forward and backward fluxes. Net and exchange fluxes were determined
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S Vnet = Vi— Vb} Vexch — min(vg, vi). All forward and backward fluxes were required to be

non-negative at the final solution.

6.2.13 Flux determination and statistical analysis

Metabolic fluxes were determined by fitting 8 external fluxes and 191 mass isotopomer
abundances of cellular amino acid to the metabolic network model of E. ¢/ including
additional flux parameters to account for isotopic transients (see section 6.3.5). The
minimized objective function was the vatiance-weighted sum of squared deviations between
the observed and simulated measurements. The iterative algorithm that was used for least-
squares optimization was based on successive quadratic programming (see Chapter 3). At
convergence, accurate confidence intervals of fluxes were calculated by evaluating the
sensitivity of the objective function with respect to fluxes as desctibed previously (Chapter
3). Flux validation was accomplished by a statistical test for the goodness-of-fit (chi-square
test for model adequacy), and a normality test for the weighted residuals. To ensutre a global
optimum, flux estimation was repeated at least four times starting with random initial values
for all fluxes. Sensitivity analysis was used to determine the relative importance of

measurements for the estimation of individual fluxes as described previously (Chapter 3).

6.3 Results

6.3.1 External fluxes

Figure 6-3A shows the calculated external fluxes as a function of fermentation time. The
calculated external fluxes were consistent, i.e. the carbon balance closed within 2% and
degree of reduction balance closed within 4%. Figure 6-3B shows the consumption and
production rates expressed as specific fluxes (mmol/h/gDW). The specific fluxes decreased
significantly during the fermentation. This indicates that the cells were either becoming less
metabolically active, or that the fraction of metabolically active cells decteased, i.e. fraction
of dead cells increased. We did not measure cell viability in this experiment, thus the exact
cause for the decreased specific fluxes remains uncertain. External fluxes normalized to

glucose uptake rate shown in Figure 6-3C. The flux of glucose to biomass decreased in time
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Figure 6-3: Characterization of external fluxes in the fed-batch culture. Top panel shows the
observed absolute external fluxes (mmol/h) as a function of fermentation time. Negative
fluxes correspond to consumption rates. Bottom panel shows specific external fluxes

(mmol/h/gDW) that significantly decreased in time.
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Figure 6-3 (continued): Characterization of external fluxes in the fed-batch culture. Shown
are external fluxes normalized to glucose uptake rate that was fixed at -100 (i.e. uptake rate

of 100).
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and flux towards PDO gradually increased. Note that glycerol was initially produced by the
cells, but after 25 hr glycerol was taken up by the cells and co-metabolized with glucose as a
carbon source. The rates of acetate production and citrate uptake were negligible compared

to the other fluxes (not shown in Figure 6-3; see Appendix 6.E).

6.3.2 Characterization of glucose feed

Based on preliminary simulations and sensitivity analysis of the metabolic system we
determined that the optimal labeling of glucose in this study would be 75% [1-13C]glucose
and 25% [U-13CJglucose. The composition of the labeled feed was validated by GC/ MS
analysis. First, we validated the isotopic purity of the putrchased tracers. We measured 99.7 £
0.2 At% isotopic purity for the [1-13C]glucose tracer, and 99.4 + 0.1 At% isotopic purity for
the [U-13C]glucose tracer. These enrichments were higher than 99 At% isotopic purity
according to manufactures’ specifications. The two tracers were mixed as follows: 105 g [1-
B3Clglucose + 35 g [U-13C]glucose (i.e. 75/25 wt/wt, or 75.5/24.5 mol/mol). The
composition of labeled glucose feed was then validated by GC/MS analysis. The measured
composition was 75.4 * 0.2 mol% [1-13C]glucose and 24.6 * 0.2 mol% [U-13C]glucose.

6.3.3 Dynamics of glucose labeling

Figure 6-4 shows the observed isotopic composition of glucose in the medium as a function
of fermentation time. Labeled glucose feed was initiated at 18.6 hr and continued until 30.0
hr, when it was replaced with unlabeled glucose feed. The labeling of glucose underwent a
transient phase of about 5 hr after the introduction of the tracer (between 18.6 - 23.6 hr),
and a second transient phase of about 5 hr after the switch to unlabeled glucose feed
(between 30.0 - 35.0 hr). The isotopic composition was constant for samples taken between
23.6 and 29.6 hr, with 75.4% [1-13C]glucose and 24.6% [U-13C]glucose (measured by
GC/MS). The length of the observed isotopic transients is determined by glucose
concentration in the reactor and the rate of glucose feed and uptake. In this study, glucose
concentration was maintained at 45 £ 5 mM, i.e. much higher than the typical limiting levels

of glucose achieved in continuous cultures.
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Figure 6-4: Measured isotopic composition of glucose in the medium as a function of time.
The isotopic composition of glucose in medium samples was determined by GC/MS
analysis. Isotopically labeled glucose was introduced at 18.6 hr. The labeling of glucose
approached isotopic steady state at ~24 hr. The isotopic composition of glucose was
constant for samples between 23.6 and 29.6 hr, with 75.4% [1-3C]glucose and 24.6% [U-
BClglucose. After 30.0 hr the feed was switched back to unlabeled glucose feed. The dashed

lines represents the predicted composition of glucose based on the balance model in Eq. 6.7.
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To describe the observed labeling transients quantitatively, we constructed a simple material
balance model assuming ideally mixed reactor. The equations for total glucose concentration

and glucose labeling are:

d(V-c,.)

_.—(-ltL = F ) cgluc,in - Ilglux: (6'3)
dV-c, -X

(V_diluc'_) = F- Cgluc,in ‘X T tigluc ‘X (64)

Here, F (L/hr) is the flow rate of feed to the reactor, cgu (mmol/L) is glucose concentration
in the reactot, Cyucin (mmol/L) is the glucose concentration in the feed, V (L) is the reactor
volume, ty, (mmol/hr) is glucose uptake rate, x is the molfraction of labeled glucose in the
reactor, and Xi, is the molfraction of labeled glucose in the feed. In this experiment, glucose
concentration and reactor volume were relatively constant during the observed isotopic
transients, however, the feed rate changed significantly. Assuming constant glucose

concentration and reactor volume, Eq. 6.3 simplifies to:

r‘gluc E- cgluc,in (65)
Substitution of Eq. 6.5 into Eq. 6.4 yields:

1y
At (x, ~) (6.6)

dt V-c

gluc

During the first transient phase, glucose uptake rate increased linearly from 21.7 mmol/h at
18.3 hr to 50.2 mmol/hr at 23.6 hr, i.e. fyuc = 5.40-t — 77 (linear fit, R2=0.99), while glucose
concentration and reactor volume were 43 mmol/L and 0.98 L, respectively. During the

second transient phase, glucose uptake rate decreased lineatly from 68.7 mmol/h at 30.6 hr

to 54.7 mmol/h at 35.0 br, i.e. fy.c = —3.25-t + 169 (linear fit, R2=0.99), while glucose
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concentration and reactor volume were 48 mmol/L and 1.06 L, respectively. Integration of
Eq. 6.6 assuming a linear function for glucose uptake as a function of time (tguc=2+b-t)

yields the following expression for the labeling of glucose as a function of time:

( a b 2
- t - -t
X = x, + (Kg-xy)ee o 6.7

The dashed lines in Figure 6-4 represent the predicted isotopic composition of glucose based
on Eq. 6.7. We found good agreement between the predicted and the observed isotopic

transients.

6.3.4 Dynamics of fed-batch fermentation

Atoms of 13C-glucose pass through multiple extracellular and intracellular pools in the
pathway from glucose to cellular amino acids. Metabolites in this pathway undergo a
transient labeling phase similar to the one observed for glucose labeling in the medium. The
characteristic time that describes this process is given by the ratio of the pool size (mmol/L)
telative to the turnover rate of the pool (mmol/L/hr). Metabolite pools with short
characteristic times relative to the length of the experiment reach isotopic steady state
quickly, whereas pools with long characteristic times may never reach isotopic steady state.
Figure 6-5 shows time profiles of enrichment for four intermediate metabolite pools in the
pathway from glucose to biomass. The first panel shows the labeling of glucose feed that
was changed instantaneously from unlabeled glucose to 13C-labeled glucose at 18.6 hr, and
visa versa at 30.0 hr. The second panel shows the observed labeling profile of glucose that
was discussed in detail in the previous section. The characteristic time for glucose was about
1 hr. The third panel shows the observed enrichment of carbon dioxide in the off-gas, which
is a measure of the labeling of intracellular metabolites, i.e. carbon dioxide is produced in the
pentose pathway and the TCA cycle from intracellular metabolites. We found that CO;
enrichment in the off-gas closely followed the profile of glucose labeling in the medium.
This suggested that intracellular metabolite pools approximate isotopic steady state, as was

expected since intracellular pools are relatively small. The estimated characteristic time for
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Figure 6-5: Time profiles of isotopic enrichment of four intermediate metabolite pools in
the pathway from glucose to biomass. ’C-Labeled glucose was introduced between 18.6 hr
and 30.0 hr. We observed the first isotopic transient for glucose in the reactor with a
characteristic time of about 1 hr. The labeling of carbon dioxide in the off-gas reflects the
labeling state of intracellular metabolites, which followed closely the labeling state of glucose
in the medium, which suggested pseudo steady state for intracellular metabolites. The
labeling of biomass components never reached isotopic steady state. The characteristic time

for cellular amino acids was about 10 ht.
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intracellular metabolites was on the otder of minutes. The last panel in Figure 6-5 shows the
enrichment of cellular amino acids as a function of time, where we plotted the time profiles
of four representative mass isotopomers. Similar profiles were observed all other amino acid
fragments. In this experiment cellular amino acids never reached isotopic steady state. We

estimated a characteristic ime of about 10 hr for cellular amino acids.

6.3.5 Nonstationary model for fed-batch fermentation

Based on these obsetvations we propose the following nonstationary model for fed-batch
fermentation, which is shown in Figure 6-6. This model builds on the classical stationary
MFA model with the addition of two dilution parameters, i.e. D and G parameters, that were
initially proposed by Kelleher and Masterson (1992) for isotopomer spectral analysis (ISA).
ISA is a general method for modeling polymetization biosynthesis reactions in systems that
do not approximate isotopic steady state. Here, we distinguish between two dilution effects:
dilution of the tracer (i.e. glucose), and dilution of the product (i.e. cellular amino acids).
Glucose labeling that is observed by cells during the labeling period is a mixture of 13C-
glucose and unlabeled glucose. In this framework, parameter D(t) describes the apparent
fractional labeling of glucose during the labeling phase. Thus, the D value is zero if there are
no tracers in the system, and is one at isotopic steady state for glucose. The parameter G(t)
desctibes the fraction of 13C-labeled biomass in the sampled biomass pool, while 1-G(t)
corresponds to the fraction of unlabeled biomass. We could introduce one G parameter for
all biomass components, ot separate G parameters for each measured amino acid. In the
absence of protein turnover we expect the same G value for all cellular amino acids.
However, protein turnover may cause differences between G values for proteinogenic amino
acids. In our initial model we used a separate G parameters for each amino acid pool. The
nonstationary model for fed-batch fermentation closely resembles classical isotopic steady
state model. Here, the D and G parameters were included in the model as additional fluxes
that were estimated together with the other fluxes. Thus, we could apply the already
developed flux estimation tools for stationary MFA to estimate all flux parameters in this

system without increasing the complexity of calculations.
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Figure 6-6: Two parameter model for modeling nonstationary tracer experiments. We
distinguish two dilution effects: the dilution of the tracer (i.e. glucose), and the dilution of
the sampled product (i.e. cellular amino acids). The apparent labeling of glucose observed by
the cells during the labeling period is a mixture of '3C-glucose and unlabeled glucose. The
value of parameter D(t) reflects the average labeling of glucose during the labeling period.
The value of parameter G(t) corresponds to the fraction of total biomass that is 13C-labeled,
and 1-G(t) is the fraction of unlabeled biomass.
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6.3.6 Metabolic flux analysis

We estimated metabolic fluxes for 18 sample points, corresponding to biomass samples
taken between 18.3 hr and 40.7 hr. Fluxes were estimated for each sample point individually.
For each sample point we fitted 8 external fluxes and 191 mass isotopomer abundances (95
independent mass isotopomers) to a detailed flux model. The minimized objective function
was the weighted sum of squared deviations residuals (SSRES) between the observed and
simulated measurements. For each sample point we estimated 37 independent flux
parameters, i.e. we had 95+8-37 = 66 redundant measurements. At convergence, the
goodness-of-fit was assessed by statistically evaluating SSRES. The maximum allowed value
for SSRES was 86 (at 95% confidence level with 66 degrees of freedom; see Chapter 3). Fits
where SSRES was larger than 86 were considered statistically not acceptable. To illustrate
that both D and G parameters were required, we fitted data using models without D and G
parameters. The SSRES values for these fits were statistically not acceptable as is shown in
Figure 6-7. Only the model that included both parameters produced statistically acceptable
fits for all sample points. The small magnitude of SSRES, the high accuracy and precision of
MS data (0.3 mol%), and the large number of redundant measurements gave us very high
degree of confidence in the fidelity of the calculated fluxes for all sample points. Table 6-2
shows the optimally-fitted mass isotopomer distributions for sample #12 (taken at 29.6 hr).
We found excellent agreement between the observed and predicted mass isotopomer
abundances with SSRES=65.2. The maximum deviation between the measured and fitted
mass isotopomer abundances was 0.3 mol%. At convergence, nonlinear confidence intervals
of estimated fluxes were determined using the method described in Chapter 3. Figure 6-8

shows the estimated fluxes for sample point #12.

Metabolic fluxes were determined at multiple time points during the fed-batch culture. As
such we established for the first time detailed time profiles of intracellular fluxes. Fluxes
were normalized to glucose uptake rate, which was given the value 100. Figure 6-9 shows
time profiles of selected intracellular fluxes, where we plotted the optimally-fitted flux value
and 68% confidence interval as a function of fermentation time. The time profiles in Figure

6-9 clearly illustrate that intracellular fluxes were relatively constant during the fed-batch
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fermentation. The split ratio between glycolysis and pentose phosphate pathway decreased
only slightly from 60/40 at 20 hr to about 50/50 at 40 hr. The flux of lower glycolysis
(GAP—Pyr) decreased from 7012 to 50+2 in the same period of time. On the other hand,
the TCA flux remained constant at 4712 throughout the fermentation. The intracellular flux
towards PDO and glycerol increased by about 10% from 1186 to 130+6. An interesting
finding was that this intracellular flux was relatively constant compared to the large
fluctuations in the efflux of PDO, i.e. PDO efflux increased from 78 (at 18.6 hr) to 137 (at
28.6 ht), and to 130 (at 40.7 ht). Our results further indicated that the Entner-Doudoroff
pathway was inactive, i.e. the estimated flux of 0.0+0.5 was not statistically different from
zero. This result confirmed the known genotype of this organism, i.e. phosphogluconate
dehydratase a key enzymes of the Entner-Doudoroff pathway was knocked-out in this strain
of E. wli. Our flux results revealed the presence of a futile cycle between oxaloacetate and
phosphoenolpyruvate. The estimated phosphoenolpyruvate carboxylase and
phosphoenolpyruvate carboxykinase fluxes were 1442 and 5£2, respectively. The
simultaneous activity of these two reactions created a futile cycle where 1 ATP was lost at
each turn of the cycle. It is not clear what the physiological significance is of this futile cycle.
The total activity of malic enzyme was estimated at 5+1; we could not distinguish between
the two isoforms of malic enzyme, i.e. NADH and NADPH dependent malic enzyme. Thus,
only the combined malic enzyme flux was determined. We estimated only a slightly positive
net transhydrogenase flux (i.e. NADH — NADPH) of about 20£15, which was not
statistically different from zero. Finally, we estimated significant net production of ATP of
210£18, which was not accounted for by the ATP consuming reactions in our model.
Potential sinks for this ATP are cell maintenance, transport of metabolites across cell

membrane, and futile cycles.
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Figure 6-7: Evaluation of goodness-of-fit for models with a D-parameter, a G-parameter
and both parameters. Mass isotopomer data from 18 biomass samples were fitted
independently to the three models. Shown are the minimized vatiance-weighted sum of
squared residuals for the 18 sample points. Shaded area indicates the statistically acceptable
95% confidence region for the sum of squared residuals. Models lacking the D or G
parameters were statistically not acceptable. Only the model that included both parameters

produced statistically acceptable fits for all sample points.
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Table 6-2

Measured and fitted mass isotopomer abundances. Mass isotopomer abundances of cellular

amino acid were measured by GC/MS, after TBDMS derivatizaton. Data shown ate the

uncorrected mass isotopomer abundances (molar percentages, mol%) for biomass sample

#12 (taken at 29.6 hr) (mean * SD). The optimally fitted mass isotopomer distributions

(‘Calc’) corresponded well with the measured values (‘Exp’).

Fragment M+0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8
Ala232  Bxp 491202 243402 206402 44+02 14202 02+01
Cale 49.1 244 205 44 14 0.2
Ala260 Exp 466%02 244+02 110402 140%02 29%02 11402 0101
Cale 467 2455 10.7 14.1 29 1ol
Gly-218 Exp 625103 271402 82+02 19402 03%0.1
Cale 622 273 8.2 20 0.3
Gly-246  Exp 574%03 198402 179402 36+02 12402 02+0.1
Cale 577 19.7 17.7 3.5 12 0.2
Val260  Exp 359402 225402 232402 11.1£02 57402 13+02 03+0.1
Cale 362 2.7 23.1 10.9 5.6 13 0.3
Val288 Lxp 35.01+02 222402 174402 13802 63+02 40+02 09+0.1 03%0.1
Cale 348 223 17.6 13.7 6.4 40 0.9 0.3
Leu274 Exp 285%02 227402 218+02 154402 7802 31+02 07+01 02+0.1
Cale 285 25 219 155 7.8 3.1 0.7 0.2
Ne274 Exp 287+02 226402 218+02 153£02 78%02 30+02 07+01 02+0.1
Cale 287 225 219 154 77 3.0 0.7 0.2
Ser288 Exp 456402 20702 184+02 48%02 13402 02+0.1
Calc 456 29.6 185 48 13 0.2
Ser362 Exp 409%02 208+02 201402 65402 21+02 04101 0.1+0.1
Cale 410 297 20.1 6.5 2.1 0.4 0.1
Ser300  Exp 390102 272402 155402 126402 3902 14402 03401 0.1+0.1
Cale 389 271 158 125 3.9 1.4 0.3 0.1
Thr376  Exp 317402 289%02 221+02 120402 40402 12402 03+0.
Cale 318 289 220 11.9 3.9 12 0.3
Thr404 Exp 28102 261+02 218+02 139+02 71402 23+02 07+01 0.1+0.1
Cale 280 26.1 218 13.9 7.1 23 0.7 0.1
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Table 6-2 (continued)

Measured and fitted mass isotopomer abundances.

Fragment M+0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8
Met-292 Exp 275202 259+02 234%02 144%02 63+02 19+02 05%0.1
Calc 277 25.9 23.4 14.3 6.2 1.9 0.5
Met-320 Exp 251%02 229+02 222%02 15502 91£02 37102 1102 03%0.1
Calc 250 228 22.4 15.7 9.0 3.7 1.1 0.3
Phe-302 Exp 583103 18302 179%02 4002 13+02 02%0.1
Calc 581 18.3 18.0 4.1 1.3 0.2
Phe-308 Exp 27.7+0.2 183%02 17.8+02 125%£02 100+x02 64%02 43%02 20%02 09%0.1
Calc 279 18.0 17.8 125 10.0 6.4 4.3 2.0 0.9
Phe-336 Exp 27.3%02 179+02 141402 129402 103+02 7.5+02 48+02 29+02 1402
Calc 272 179 14.3 13.1 104 7.6 47 2.8 13
Asp-302 Exp 457102 283+02 194%02 50%02 14%02 02101
Calc 458 28.2 19.4 5.0 1.4 0.2
Asp-376 Exp 413%+02 284%02 208*02 67+02 23%02 05%01 0101
Cale 412 284 20.8 6.7 23 0.5 0.1
Asp-390  Exp 317102 289%02 220%02 11.9%02 4.0+02 1.2+02 02%0.1
Calc 317 28.9 22.1 11.9 4.0 1.2 0.3
Asp-418 Exp 27.8+02 261%02 21.8%02 140%+02 7.1%£02 23%£02 07Xx01 01X01
Calc 278 26.1 219 139 7.1 23 0.7 0.2
Glu-330  Exp 29.6%02 261102 230+02 135%02 58%x02 15%02 04%01 0.1%01
Cale 295 26.1 23.2 13.4 5.8 1.5 0.4 0.1
Glu-404 Exp 26702 254%02 236+02 146+02 68+02 22+02 06%01 01%0.1
Cale  26.6 25.5 23.6 14.5 6.9 2.2 0.6 0.1
Glu-432 Exp 235102 221+02 224+02 166+02 94+02 42+02 13202 04201 0101
Cale 237 222 22.4 16.6 9.3 4.1 1.3 0.4 0.1
Tyr-302 Exp 581x03 183+02 180+0.2 40+02 13+02 02101
Calc 581 18.3 18.0 4.1 13 0.2
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Figure 6-8: Metabolic fluxes of E. cv/i grown in carbon-limited fed-batch culture. Metabolic
fluxes were determined by fitting 8 external fluxes and 191 mass isotopomer abundances to a
detailed flux model of E. e/. Fluxes were normalized to glucose uptake rate. Shown are
estimated fluxes for sample point #12 (at 29.6 hr). The top number is the estimated net flux
and the bottom number (in #alics and between brackets) is the estimated exchange flux,

where ‘n/d’ indicates that the flux could not be estimated.
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Figure 6-9: Time profiles of selected intracellular fluxes. The best fit (solid line) and the
68% confidence interval (shaded area) are shown as a function of time for the 18 sample

points. Fluxes were normalized to glucose uptake rate.
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Figure 6-9 (continued): Time profiles of selected intracellular fluxes. The pentose

phosphate flux increased slightly in time. The TCA flux was constant at 47 + 2,
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Figure 6-9 (continued): Time profiles of selected intracellular fluxes. The intracellular flux
towards glycerol and PDO increased by 10% from 118+6 to 13046, whereas the efflux of
PDO fluctuated significantly. The transhydrogenase flux was not significantly different from

Zero.
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6.3.7 Evaluation of estimated D and G parameters

As indicated eatlier, the key to successful flux determination in this nonstationary system was
the introduction of two dilution parameters, the D parameter to account for the dilution of
the tracer and the G parameter to account for the dilution of biomass components. Values
for both parameters were estimated together with fluxes from mass isotopomer distributions
of sampled biomass pools. Our initial model contained 12 individual G parameters, i.e. one
G parameter for each of the 12 measured amino acids. The estimated G values for the 12
amino acids were not significantly different from one another, indicating that one G value
could be used for all biomass components. When we repeated flux estimation with a single
G parameter we obtained the same flux results. The sum of squared residuals increased
slightly compared to the model with 12 individual G parameters, however the SSRES was
still within statistically acceptable limits, especially when we took into account the fewer
number of free flux parameters that were fitted. Time profiles of the estimated D and G
parameters are shown in Figure 6-10. We can explain the observed profiles as follows. The
G parameter reflects the fraction of biomass that is labeled. Biomass produced before the
introduction of tracers was unlabeled, and thus the G value was zero. The observed increase
in G value after 18.6 hr reflects the production of labeled biomass, i.e. the fraction of labeled
biomass increased. The G value decreased after tracer was depleted reflecting the fact that
unlabeled biomass was again produced, i.e. the fraction of labeled biomass decreased. Note
that there was a delay between the switch to unlabeled feed at 30.0 h and the first noticeable
decrease in the G value at 31.6 hr. This delay reflect the fact that labeled glucose was still
present in the reactor for several hours after the feed was switched to unlabeled glucose feed
(see Figure 6-5). The D value describes the average entichment of glucose from which
labeled biomass is produced. Figure 6-10 shows that the D value increased starting at 18.6
hr, i.e. reflecting the approach to isotopic steady state of the glucose pool. Note that the D
value never reaches unity, because there was always a fraction of biomass that was produced
from partially labeled glucose. After the tracer was removed the D value first dropped
slightly, i.e. reflecting the second glucose transient, and then remained constant at about 0.9.

At that point only unlabeled biomass was produced, which was accounted for by the G
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parameter. The constant D value after 31.6 hr indicates biomass turnover was not

significant. We set up the following theoretical model for the D and G parameters.

/3001000 -t
D) = . (6.8)
[ 3@ -dr

}8(t)~;.L(t)-dt

Gt = Lt—— (6.9)
Iu(t)'dt
. {0 if L()<0.2
with  8() = , (6.10)
1 ifL©>02

Here, 1(¢v) is fractional labeling of glucose in the medium (i.e. which corresponds directly to
the measured glucose labeling shown in Figutre 6-4), u(t) is the biomass growth rate, and 5(t)
formally defines what we mean by ‘the labeling phase’. In this case, we define the labeling
phase as the timeframe when fractional glucose labeling is at least 20% of isotopic steady
state value. This definition was required, otherwise the D and G parameters became highly
correlated at low glucose enrichments. In this experiment, 6(t) was unity between 19.0 h and
31.3 h, and zero everywhere else. We used Eqs. 6.7 and 6.8 to predict time profiles of D and
G parameters based on measured labeling of glucose and growth rate as a function time. The
predicted time profiles are plotted in Figure 6-10. We found good agreement between the

predicted and estimated D and G values, which result further supports the validity of our

assumptions and this modeling approach.
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Figure 6-10: Time profiles of estimated and predicted D and G parameters. The dots
represent estimated D and G parameters from MFA. The solid line represent the predicted
parameters based on Eqgs. 6.8 and 6.9. We found good agreement between the predicted and
estimated parameter values, in support of the validity of our modeling method. The dashed
line in the left panel shows the fractional labeling of glucose, i.e. L(t) in Eq. 6.8. The G
values for individual amino acids (dashed lines in right panel) were not significantly different

from one another, indicating that one G value could be used for all biomass components.
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6.4 Discussion

In this contribution, we presented a novel modeling strategy for metabolic flux analysis in
nonstationary systems. Isotopic transients of precursor (i.e. glucose) and products (i.c.
sampled biomass components) were captured by two dilution parameters, i.e. D and G
parameters, respectively. We applied this modeling strategy to estimate intracellular fluxes of
E. ¢o/i in a fed-batch fermentation. Fluxes were determined by fitting an over-determined
data set of external flux measurements and labeling patterns of cellular amino acids to a
detailed model of E. /. We obtained highly consistent fits with 66 redundant
measurements, which gave us a high degree of confidence in the estimated flux parameters.
Metabolic fluxes were determined for multiple time points, and as such we established for
the first time detailed time profiles of intracellular fluxes during a fed-batch fermentation.
The estimated fluxes provided insight into the overproduction of PDO by E. s/ and
confirmed the genotype of this organism. The additional D and G parameters were
estimated together with the fluxes. We related the D and G parameter values to the labeling
history of sampled biomass. The G value was the fraction of labeled biomass in the total
biomass pool, and the D value was the biomass-averaged glucose labeling. The predicted

values for D and G parameters corresponded well with the estimated parameter values from

MFA.
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APPENDIX 6.A

Metabolic network model of E. coli

Glycolysis

Vi GOP (abcdef) <> FGP (abedef)

V2 FG6P (abcdef) + ATP — FBP (abcdef)

V3 FBP (abcdef) <> DHAP (cba) + GAP (def)
V4 DHARP (abc) <> GAP (abc)

Vs GAP (abc) ¢> 3PG (abc) + ATP + NADH
Ve 3PG (abc) <> PEP (abc)

V7 PEP (abc) — Pyr (abc) + ATP

Pentose Phosphate Pathway

Vg GOP (abcdef) = 6PG (abedef) + NADPH

Vo 6PG (abedef) — Ru5P (bedef) + CO2 (a) + NADPH
vio  Ru5P (abcde) <> X5P (abcde)

vit  Ru5P (abcde) <> R5P (abcede)

viz X5P (abede) + R5P (fghij) «> S7P (abfghij) + GAP (cde)
Vi3 S7P (abedefg) + GAP (hij) <> FGP (abchij) + E4P (defg)
vis  X5P (abede) + E4P (fghi) <> FOP (abfghi) + GAP (cde)

Entner-Doudoroff Pathway
vis  6PG (abcdef) - KDPG (abedef)
vis  KDPG (abcdef) — Pyr (abc) + GAP (def)

TCA Cycle

V17 Pyr (abc) = AcCoA (bc) + CO2 (2) + NADH
vis.  OAC (abed) + AcCoA (ef) — Cit (dcbfea)

vie  Cit (abcdef) <> ICit (abedef)
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[Cit (abedef) <> AKG (abede) + CO2 (f) + NADPH
AKG (abede) = SucCoA (bede) + CO2 (a) + NADH

SucCoA (abed) <> Suc (V2 abed + Y2 decba) + ATP

v Suc (Y2 abed + V2 decba) ¢ Fum (V2 abed + Y2 deba) + FADH2
¥4 Fum (% abcd + Y2 dcba) <> Mal (abed)

vz Mal (abed) <> OAC (abed) + NADH

Amphibolic Reactions

v Mal (abed) = Pyr (abe) + CO2 (d) + NADPH

vz Mal (abed) = Pyr (abe) + CO2 (d) + NADH

vy PEP (abc) + CO2 (d) > OAC (abced)

vy OAC (abcd) + ATP — PEP (abc) + CO2 (d)

Acetic Acid Formation

vio  AcCoA (ab) <> Ac (ab) + ATP

PDO Biosynthesis

V3 DHAP (abc) + NADH <> Glyc3P (abc)

vz Glyc3P (abc) = Glyc (abc)

v33  Glyc (abc) = HPA (abc)

vss  HPA (abc) + NADPH — PDO (abc)

Amino Acid Biosynthesis

v3s  AKG (abede) + NADPH + NH3 — Glu (abcede)

vis  Glu (abede) + ATP + NH3 — Gln (abede)

Vi1 Glu (abede) + ATP + 2 NADPH — Pro (abede)

vis  Glu (abede) + CO2 (f) + Gln (ghijk) + Asp (Imno) + AcCoA (pq) + 5 ATP + NADPH —
Arg (abedef) + AKG (ghijk) + Fum (Imno) + Ac (pq)

vio  OAC (abed) + Glu (efghi) = Asp (abed) + AKG (efghi)

Vi Asp (abed) + 2 ATP + NH3 — Asn (abcd)
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Va1

Va2

V43

Va4

Va5

V46

V47

V48

V49

Vs0

Vst

V53

V54

Vs5

Vs6

Vs7

Pyr (abc) + Glu (defgh) — Ala (abc) + AKG (defgh)

3PG (abc) + Glu (defgh) — Ser (abc) + AKG (defgh) + NADH

Ser (abc) «> Gly (ab) + MEETHF (c)

Gly (ab) &> CO2 (a) + MEETHF (b) + NADH + NH3

Thr (abed) — Gly (ab) + AcCoA (cd) + NADH

Ser (abc) + AcCoA (de) + 3 ATP + 4 NADPH + SO4 — Cys (abc) + Ac (de)

Asp (abed) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) + ATP + 2 NADPH —
LL-DAP (abcdgfe) + AKG (hijkl) + Suc (Y2 mnop + ¥2 ponm)

LL-DAP (abcdefg) — Lys (abcdef) + CO2 (g)

Asp (abed) + 2 ATP + 2 NADPH — Thr (abed)

Asp (abed) + METHEF (e) + Cys (fgh) + SucCoA (jjkl) + ATP + 2 NADPH —

Met (abede) + Pyr (fgh) + Suc (V2 ijkl + Y2 lkji) + NH3

Pyt (abc) + Pyr (def) + Glu (ghijk) + NADPH — Val (abcef) + CO2 (d) + AKG (ghijk)
AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijklm) + NADPH —

Leu (abdghe) + CO2 (c) + CO2 (f) + AKG (jjklm) + NADH

Thr (abed) + Pyr (efg) + Glu (hijkl) + NADPH — Ile (abfedg) + CO2 (e) + AKG (hijkl) + NH3
PEP (abc) + PEP (def) + E4P (ghij) + Glu (kimno) + ATP + NADPH —

Phe (abcefghij) + CO2 (d) + AKG (klmno)

PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH —

Tyt (abcefghij) + CO2 (d) + AKG (klmno) + NADH

Ser (abc) + R5P (defgh) + PEP (ijk) + E4P (Imno) + PEP (pqr) + Gln (stuvw) + 3 ATP + NADPH —
Trp (abcedklmnoj) + CO2 (i) + GAP (fgh) + Pyr (pqr) + Glu (stuvw)

R5P (abede) + FTHF (f) + Gln (ghijk) + Asp (Imno) + 5 ATP —

His (edcbaf) + AKG (ghijk) + Fum (Imno) + 2 NADH

One-Carbon Metabolism

Vs8

V39

MEETHF (2) + NADH — METHF (a)
MEETHF (2) - FTHF (a) + NADPH
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Oxidative Phosphorylation
veo  NADH + Y2 O2 > 3 ATP
Ve FADH2 + %202 — 2 ATP

Transhydrogenation

vez  NADH < NADPH

ATP Hydrolysis
ves  ATP — ATPext

Transport

Ver  Gluc:ext (abedef) + ATP — GGP (abedef)
ves  Cit:ext (abedef) — Cit (abedef)

ves  Glyc (abc) > Glyc:ext (abe)

ver  PDO (abc) = PDO:ext (abc)

ves  Ac (ab) = Aciext (ab)

Voo CO2 (a) = CO2:ext (a)

vio  O2:ext —> O2

Vi NH3:ext — NH3

V72 SO4:ext = SO4

Biomass Formation*

vz 0.488 Ala + 0.281 Arg + 0.229 Asn + 0.229 Asp + 0.087 Cys + 0.250 Glu + 0.250 Gln + 0.582 Gly +
0.090 His + 0.276 Ile + 0.428 Leu + 0.326 Lys + 0.146 Met + 0.176 Phe + 0.210 Pro + 0.205 Ser + 0.241
Thr + 0.054 Trp + 0.131 Tyr + 0.402 Val + 0.205 G6P + 0.071 F6P + 0.754 R5P + 0.129 GAP + 0.619
3PG + 0.051 PEP + 0.083 Pyr + 2.510 AcCoA + 0.087 AKG + 0.340 OAC + 0.443 MEETHF + 33.247
ATP + 5.363 NADPH — 39.68 Biomass + 1.455 NADH

* The biomass formation reaction is based on precursor and cofactor requirements for E. o/

as described by Neidhardt.
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APPENDIX 6.B

Validation of carbon balance and degree of reduction balance

External fluxes were checked for gross errors by validating the carbon balance and the

degree of reduction balance. The carbon balance is given by:

carbonm — Zci Vi _ 6 V glucose +6- V citrate (6 Bl)
Carbonout Zci : Vi‘out Vbiomass + 3 *Vepo + 3 : vglyceml + VC02 +2- V acetate
The degree of reduction balance is given by:

free ClCthOnSin _ Z Yi Vi,in _ 24- Vglucosc +18- Vitcate 4- VOZ (6 B2)
fl'ee ClethOﬂSout Z Yi : vi,out 4'2 ' vbiomass + 16 "Vepo +14- Vglycerol +8: vacetate

In the above equations ¢; is the number of carbon atoms, v; is the rate of production, and ¥;
is the degtee of reduction for metabolite i. The degree of reduction corresponds to the
number of free electrons, defined such that y;=0 for the following small molecules: HO, H*,
COz, HCOs5, NHy4*, SO, PO#*. These metabolites are therefore not included in Eq. 6.B2.
In general, the degree of reduction for any arbitrary metabolite CcHHOoNxSsPp(charge) is

calculated as follows:

y=4-C+H-2.0-3N+6-S + 5-P —charge (6.B3)
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APPENDIX 6.C

Fermentation data

Unlabeled Labeled Reactor Sample
Sample Time  Feed Feed Volume Volume ODssy Glucose Glycerol Acetate PDO  Citrate
@ @ ©® O @) O @M @M @M @) (@M
0 0.1 45.1 0.0 0.99 11 0.1 112.2 0.0 0.0 1.5 9.2
1 15.4 471 0.0 0.98 11 3.2 55.3 75.4 0.0 N/A 14.6
2 18.3 56.4 0.0 0.98 21 6.3 40.5 109.3 0.0 283 14.1
3 19.6 65.6 10.6 0.97 11 8.1 47.0 114.5 0.0 57.4 13.8
4 20.6 65.6 22,6 0.97 11 9.8 46.9 120.6 1.3 88.1 13.6
5 22.6 65.6 51.6 1.00 15 14.0 374 133.4 1.8 175.0 13.0
6 23.6 65.6 71.9 0.99 11 16.1 411 135.7 24 221.7 12,6
7 24.6 65.6 93.8 0.99 11 18.8 43.0 137.9 3.2 281.8 12.2
8 25.6 65.6 118.6 1.00 11 20.8 47.8 137.4 39 350.3 11.5
9 26.6 65.6 145.3 1.01 12 220 52.8 132.8 3.8 4249 10.8
10 27.6 65.6 169.0 1.02 1" 235 45.6 124.8 4.2 499.7 10.2
11 28.6 65.6 197.7 1.03 11 24.7 50.7 114.5 3.8 577.3 9.6
12 29.6 65.6 2272 1.04 16 26.0 56.9 103.7 4.4 657.7 9.4
13 30.6 76.8 240.0 1.01 11 27.2 464 96.8 4.2 742.4 9.1
14 316 1048 240.0 1.07 12 282 48.5 89.8 4.6 800.1 8.7
15 32,6 130.4 240.0 1.06 11 28.8 44.5 80.8 4.0 872.0 8.3
16 33.6 1542 240.0 1.07 11 30.0 45.6 84.9 5.6 9324 7.9
17 35.0 1852 240.0 1.10 11 30.4 43.9 82.0 5.7 1006.6 7.5
18 36.6 2204 240.0 1.11 11 312 49.3 80.8 5.4 1070.8 7.3
19 40.7 2882 240.0 1.16 11 33.0 47.8 75.8 59 1246.4 6.9
20 426 3159 2400 117 11 3.8 529 745 50 13041 6.9
21 44.6  345.1 240.0 1.19 17 312 62.0 70.3 4.5 1312.0 6.7

* The specific gravity of medium was 1.030 g/mL.

** Citrate data may be inaccurate, ie. citrate co-eluted with another metabolite in the HPLC analysis.

** Unlabeled feed contains 46.2 wt%o glucose. Labeled feed contains 46.2 wt% glucose (75 wt% [1-

13Clelucose and 25wt% [U-13Clglucose).
g g )
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APPENDIX 6.D
Off-gas analysis data

Sample Time  FlowRate Oz N2;n 2CO20u  BCOz0u O2,0ut N2 out

#) (hr) SLPM)™ (%) (7o) (7o) (%) (o) ()
0 0.1 0.500 20.88 78.19 0.02 0.00 20.87 78.21
1 154 0.500 20.86 78.21 1.24 0.01 20.05 77.80
2 18.3 0.500 20.87 78.20 2.77 0.06 19.30 76.98
3 19.6 0.500 20.88 78.19 2.79 0.85 18.89 76.58
4 20.6 0.500 20.87 78.20 2.84 1.48 18.57 76.23
5 22,6 0.500 20.87 78.20 3.33 2.50 17.81 75.49
6 23.6 0.500 20.87 78.21 3.60 2.90 17.53 75.10
7 24.6 0.500 20.87 78.20 3.93 3.28 17.24 74.69
8 25.6 0.500 20.87 78.20 4.23 3.59 17.02 74.31
9 26.6 0.500 20.87 78.20 4.48 3.83 16.85 73.98
10 27.6 0.500 20.87 78.20 4.04 3.98 16.76 73.75
1 28.6 0.500 20.87 78.20 4.74 4.11 16.74 73.56
12 29.6 0.500 20.87 78.21 4.73 4.20 16.75 73.47
13 30.6 0.500 20.87 78.20 6.05 2.61 16.87 73.62
14 31.6 0.500 20.88 78.19 7.57 0.80 17.00 73.77
15 32.6 0.500 20.87 78.20 7.59 0.40 17.19 73.97
16 33.6 0.500 20.86 78.21 7.30 0.26 17.35 74.23
17 35.0 0.500 20.86 78.21 6.72 0.18 17.64 74.59
18 36.6 0.500 20.88 78.20 6.09 0.17 17.90 74.98
19 40.7 0.500 20.87 78.20 4.79 0.12 18.42 75.78
20 42.6 0.500 20.87 78.20 4.30 0.09 18.63 76.11
21 44.6 0.500 20.87 78.20 3.91 0.07 18.78 76.35

* SLPM (standard liters per minute) defined at 1 Atm and 25°C.
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APPENDIX 6.E

Calculated external fluxes

Sample  Time  Glucose 02 cO2 Biomass  Glycerol  Acetate PDO Citrate
#) (tht)  (mmol/h) (mmol/h) (mmol/h) (mCmol/h) (mmol/h) (mmol/h) (mmol/h) (mmol/h)
2 18.3 =217 -15.5 35.3 17.5 9.4 0.2 17.1 -0.1
3 19.6 -29.2 -19.6 45.6 22,6 8.4 0.4 291 -0.1
4 20.6 -33.3 -22.3 54.4 25.0 6.6 0.5 354 -0.1
5 22.6 -45.3 -29.6 74.1 316 5.8 0.6 49.8 -0.2
6 236 -50.2 -32.1 83.1 329 4.3 0.7 58.9 -0.3
7 24.6 -54.8 -34.7 92.5 31.6 23 0.6 68.2 -0.4
8 25.6 -59.4 -36.4 100.9 29.4 0.0 0.5 77.9 -0.4
9 26.6 -63.0 -37.5 107.8 26.0 -3.2 0.2 84.9 -0.4
10 276 -65.6 380 1122 244 -6.2 0.2 89.7 0.3
11 28.6 -68.0 -37.7 115.4 21.6 -8.0 0.2 88.6 -0.3
12 29.6 -68.6 -37.2 116.5 232 -7.1 0.2 94.3 -0.2
13 30.6 -68.7 -36.3 112.8 220 -5.2 0.2 93.0 -0.2
14 31.6 -67.0 -35.1 108.9 223 -2.8 0.3 90.9 -0.2
15 32,6 -63.3 -33.0 103.5 21.8 -1.0 0.5 89.5 -0.1
16 33.6 -60.2 -31.6 97.7 16.4 -0.8 0.4 77.8 -0.2
17 35.0 -54.7 -29.0 88.8 15.8 -0.1 0.4 73.6 -0.1
18 36.6 -49.2 -27.2 80.1 13.5 -0.1 0.1 68.0 0.0
19 40.7 -37.2 -229 62.2 5.4 -0.3 -0.1 521 0.0
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Chapter 7

Quantification of net and reversible
hepatic fluxes through the combined use

of BC and *H-tracers

7.1 Introduction

Flux determination in mammalian systems is of great importance for detailed analysis of cell
physiology. The most powerful method for metabolic flux determination in complex
biological systems is based on the use of stable isotopes that, unlike radioisotopes, can be
administrated safely to subjects in high-risk population groups such as infants, children and
pregnant women, making them suitable for in vivo studies. Metabolic conversion of
isotopically labeled substrates generates molecules with distinct labeling patterns (i.e.
positional isotopomers, or simply isotopomers) that can be detected by gas chromatography
mass spectrometry (GC/MS) and nuclear magnetic resonance (NMR). To interpret these
data we use large-scale mathematical models that describe the relationship between
metabolic fluxes and the observed isotopomer abundances. In the forward calculation, these
models simulate a unique profile of isotopomer abundances for given steady-state fluxes. In
metabolic flux analysis we solve the more challenging inverse problem, i.e. calculating
metabolic fluxes from the enrichments of metabolites using nonlinear least-squares
procedures. Powerful mathematical and statistical tools have been developed for quantitative
interpretation of isotopomer data. Recently, a generic flux analysis tool was developed,
Metran (see Chapter 3), that accepts as input observed isotopomer profiles of metabolites

and returns estimated fluxes and their confidence intervals. The accuracy and precision of
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estimated fluxes depends on the choice of isotopic tracer, the quality of isotopomer data,
and the number of redundant measurements. Methods for experiment design aim at finding
the most informative tracer(s) using criteria from linearized statistics (Chapter 3). To
maximize the number of redundant measurements, labeling patterns of multiple metabolite
pools are sampled. For example, metabolic fluxes have been estimated in cultured cells and
in perfused organs by measuring isotopomer distributions of intracellular metabolites such as
citrate, alpha-ketoglutarate, succinate, malate, and amino acids by GC/MS (Fernandez, 1995;
Khairallah et al., 2004). As powerful as current computational methods may be, many fluxes
are still unobservable due to insufficient flux constraints. To address this problem we
developed a novel framework for estimating fluxes in complex biological systems through
the combined analysis of multiple tracer experiments. Data from experiments with different
isotopic tracers are combined and analyzed simultaneously, taking full advantage of the flux
information content from each experiment. We illustrate this approach with the detailed
analysis of the gluconeogenesis pathway in cultured primary hepatocytes. Here, we applied
three isotopic tracers, i.e. [U-13Cs|glycerol, [2Hs|glycerol, and 2H20, and measured mass
isotopomer distributions of two glucose fragments by GC/MS. From comprehensive
analysis of the combined data allowed us to calculate net and reversible fluxes in the

gluconeogenesis pathways, which were otherwise unobsetvable.

7.2 Methods

7.2.1 Metabolic network model

Figure 7-1 shows the gluconeogenesis model used in this study to calculate fluxes. Table 7-1
provides the stoichiometry and atomic transitions for the 21 network reactions. The model
contains two explicit gluconeogenic precursors, i.e. oxaloacetate and glycerol. Oxaloacetate is
the intrahepatic precursor to glucose that is derived from lactate, pyruvate, glutamine, and
other related metabolites. In the metabolic route to glucose oxaloacetate is first converted to
phosphoenolpytyvate by the irreversible reaction catalyzed by phosphoenolpyryvate
carboxykinase (PEPCK) (reaction 16). The second gluconeogenic precursor, glycerol, enters

the gluconeogenesis pathway via DHAP (reactions 10-11). Reactions 8 and 9, i.e.
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phosphorylase and phosphoglucomutase, describe glycogenolysis, i.e. breakdown of
endogenous glycogen as the second major pathway for glucose production in hepatocytes.
Reaction reversibilities and absolute stereochemistry for carbon and hydrogen atom
transitions in the model were assigned based on current knowledge. For example, it is
known that phosphoglocose isomerase (PGI) transfers specifically the pro-R hydrogen at C1
of fructose 6-phosphate (F6P) to the C2 position of glucose 6-phosphate (G6P). Hydrogen
exchange with the solvent was also observed for PGI (Malaisse, 1990; Malaisse, 1991;
Seeholzer, 1993). Malaisse et al. (1990, 1991) reported for a single passage in the direction
F6P—GGP, 65% intramolecular hydrogen transfer and 35% hydrogen exchange, and for a
single passage in the direction G6P—FG6P, 72% intramolecular hydrogen transfer and 28%
hydrogen exchange. It is also known that triose phosphate isomerase (TPI) has the same
stereochemistry as PGI. Phosphomannose isomarase (PMI), on the other hand, has the
opposite stereochemistry, i.e. PMI specifically abstracts the pro-S hydrogen of F6P and
exchanges it with the solvent. No intramolecular hydrogen transfer was observed for this
reaction, i.e. the hydrogen at C2 of mannose 6-phosphate (M6P) always originates from the
solvent. The last five reactions in the model (reactions 17-21) account for hydrogen
incorporation/metabolism of oxaloacetate and NADH. Oxaloacetate may incorporate
hydrogen atoms at C3 from the solvent in reactions of the tricarboxylic acid cycle, e.g.
fumarase, or via alanine aminotransferase. Reactions 17-18 describe hydrogen exchange of
the pro-S and pro-R hydrogen atoms, respectively. Our model further includes three explicit
soutces for NADH hydrogen, i.e. 1,3-biphosphoglycerate via GAPDH (reaction 11),
hydrogen exchange with the solvent (reaction 19), and from unlabeled endogenous sources
(reaction 20). In this model, all fluxes are expressed as percentages of the glucose output
flux, which was fixed at 100. There are 17 unknown independent fluxes in this model: flux of
glycerol and oxaloacetate to glucose (reactions 10 and 16), hydrogen exchange of pro-S and
pro-R hydrogen atoms of oxaloacetate with the solvent (reactions 17-18), fractional
contribution of the solvent and unlabeled endogenous sources to NADH (reactions 19-20),

and 11 reversible reactions.
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Glucose

T

G6P «—» G1P +— Glycogen

H+

Ec,+ E4P > F6P <> M6P

H+
DHAP <«—» GAP

NADH é k NAD+
NAD+ NADH
Glyc3P BPG
t {
Glycerol ¢
i
T

Oxaloacetate

Figure 7-1: Reactions of the gluconeogenesis network model used for flux calculations. The
corresponding reaction stoichiometry and atomic transitions for network reactions are given

in Table 7-1.
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Table 7-1

Stoichiometry and atom transitions for reactions in the gluconeogenesis network model. For

each compound carbon atoms are identified using lower case letters to represent successive

carbon atoms of each compound. Atom transitions for hydrogen atoms are same as for the

corresponding catbon atoms, unless otherwise indicated.

No. Enzyme

Reaction stoichiometry

Atom transformations

Upper gluconeogenesis

1 Glucose 6-phosphatase G6P — Gluc abcdef — abcdef
2 Phosphoglucose isomerase F6P + 03 H <> G6P + 0.3 H abedef <> abcdef
(70%) C1-HpR &> C2-H
(30%) C1-HpR + H¢> H + C2-H
3 Fructose 1,6-bisphosphatase FBP — FoP abcdef — abedef
4 Aldolase DHAP + GAP & FBP + H abc + def > cbadef

(DHAP)C1-HerS <> H

5 Triose phosphate isomerase

DHAP+03H & GAP+03H

abc <> abc
(70%) C1-HproR ¢ C2-H
(30%) C1-HeR + H <> H + C2-H

6  Phosphomannose isomerase

F6P + H <> M6P + H

abcdef <> abcdef
C1-HpoS + He> H + C2-H

7 Transketolase

F6P <> E-C2 + E4P

abcdef <> ab + cdef

Glycogenolysis
8  Phosphorylase Glycogen = G1P abcdef — abedef
9  Phosphoglucomutase G1P & G6P abcdef <> abcdef
Glycerol metabolism
10 Glycerol kinase Glyc — Glyc3P abc ~> abc
11 Glycerol 3-phosphate Glyc3P <> DHAP + NADH abc > abc
dehydrogenase C2-H & NADH
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Table 7-1 (continued)

Stoichiometry and atom transitions for reactions in the gluconeogenesis network model.

Lower gluconeogenesis

12

Glyceraldehyde 3- BPG + NADH > GAP abc <> abc
phosphate dehydrogenase NADH & C1-H
13 Phosphoglycerate kinase 3PG & BPG abc <> abc
14 Phosphoglycerate mutase 2PG & 3PG abc > abc
15 Enolase PEP + H > 2PG abc > abc
H & C2-H
16 Phosphoenolpyruvate OAC — PEP + CO2 abcd — abe + d
carboxykinase

Hydrogen incorporation into oxaloacetate and NADH

17 OAC+H—->O0OAC+H abcd — abed

C3-HrS + H «> H + C3-Hpos
18 - OAC+H—->OAC+H abed — abced

C3-HpPR + H <> H + C3-HproR
o - H — NADH H — NADH "
20 - unlabeled > NADH Hunlabded 5 NADH
21 - NADH — other NADH —» Heother
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7.2.2 Estimating gluconeogenesis fluxes using MIDA

Mass isotopomer distribution analysis (MIDA) was proposed as a method for estimating
fractional gluconeogenesis from measurements of glucose labeling after incorporation of
[13Clglycerol, ['3C]lactate, or other 13C-labeled precursors (Neese, 1995). In MIDA, glucose is
considered a dimer of two triose phosphate molecules. [1*C]Glucose produced by
gluconeogenesis may be diluted by unlabeled glucose molecules from glycogenolysis. The
mass isotopomer disttibution (MID) of glucose is fully determined by the fractional
contribution of GNG to glucose production and the labeling of triose phosphates. For
example, consider the synthesis of [13C]glucose from [U-13C]glycerol. Assuming there is no
scrambling of 13C-labeling via the TCA cycle, or reactions of the pentose phosphate

pathway, the steady-state MID of glucose is given by:

M, = [ (1—m3,DHAP) : (l_ms,GAP) + 1A= (7.1)
M, = f- ( M ppap (1= My gap) + (1-Mypyap) Mygap ) (7.2)
M, = f - mypue Mieu (7.3)

Here, f is the fraction of glucose produced by GNG, M; ate the mass isotopomers of
glucose, and m; are mass isotopomers of the two triose phosphate pools, i.e. DHAP and
GAP. Assuming that TP pools may be unequally labeled, we can introduce the parameter o

to describe the extent of equilibration of triose phosphates:

o = m3GAp / M3 DHAP (7-4)
Note that a=1 assumes complete equilibrium of the TP pools. We can solve Eqgs. 7.2, 7.3,
and 7.4 for the unknown vatiables msprap, mscar, and f, and obtain the following

expression for fractional GNG as a function of glucose mass isotopomers M3 and Mg, and

the parameter o:
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o (M,+2-M,)

R M, 72

/

From the overall 1*C-labeling balance we can additionally derive the following expression for

the total flux of [U-13C]glycerol to glucose:

Flux [U13C]glycerolsglucose — (1\11 + 2-Mp + 3-Ms + 4-My + 5-Ms + 6-Ms ) /3 (76)

7.2.3 Simulating isotopomer distributions for °C and *H tracer experiments

For given steady state fluxes a unique profile of isotopomer abundances can be calculated
for all metabolites (Chapter 2). This is done by first enumerating material balances for all
possible positional isotopomers, thus generating a comprehensive mathematical model
relating isotopomer abundances to fluxes. Positional isotopomers (termed isotopomers from
now on) are isomers of a metabolite that differ only in the labeling state of their individual
atoms, for example, *C vs. °C in carbon-labeling studies, and 2H vs. 'H in hydrogen-
labeling studies. For a metabolite comprising N atoms that may be in one of two (labeled or
unlabeled) states, 2V isotopomers are possible. Consequently, the number of isotopomers
becomes prohibitively large when we consider both carbon and hydrogen atoms. For
example, there are only 64 (=2%) carbon atom isotopomers of glucose and 128 (=27)
hydrogen atom isotopomers, but there are 8192 (=2+7) isotopomers of glucose carbon and
hydrogen atoms. Note that only the seven stable (i.e. carbon-bound) hydrogen atoms of
glucose are considered, i.e. carboxyl and hydroxyl hydrogen atoms of metabolites exchange
rapidly with the solvent and are lost during chemical detivatization in preparation for
GC/MS analysis. Thus, a typical mathematical model may contain thousands of isotopomers
of carbon and hydrogen atoms. To reduce the computational burden of isotopomer
simulations we constructed two isotopomer simulation models for the gluconeogenesis
network model (Figure 7-1), one isotopomer model where we consider only carbon atom
isotopomers, and a model where we consider only hydrogen atom isotopomers. The first

model will be used for carbon-labeling simulations, in our case to simulate the [U-
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13C]Jglycerol experiment, and the second model for hydrogen-labeling simulations, in this

case for [?Hs]glycerol and 2H>O experiments.

7.2.4 Analysis of a single tracer experiment

The goal of Metabolic Flux Analysis (MFA) is to estimate metabolic fluxes from measured
entichments of metabolites. Previously we described the MFA algorithm for the analysis of a
single tracer expetiment (Chapter 3). In short, fluxes are estimated by minimizing the
difference between the observed and simulated measurements using a least-squares
minimization procedure. The objective of this routine is to evaluate a set of feasible fluxes

that best accounts for the observed isotopomer and flux measurements:
. _ obs. T -1 obs
min® = (x(u)—x ‘X7 x(w—-x 7.7)

Here, the objective function ® is the covariance-weighted sum of squared residuals, x(u) is
the vector of simulated measurements , x°bs is the vector of experimental data, ¥ is the
measurement covariance matrix, and u is the vector of independent flux parameters. Eq. 7.7
is nonlinear and requires an iterative solution scheme, where at each iteration the following

quadratic programming (QP) subproblem is solved (see Chapter 3):

rriinACD=2'AuT-]+ Au"-H-Au (7.8)
dx Y dx ' dx

ith == =" —x* d H= —J-z*-ﬂ—) 9

wi ][mj J(x@-x")  an (@ Sl 7.9)

In other words, ] is the Jacobian and H is the Hessian matrix. The optimal search direction

for the fluxes (Au) at each iteration is given by:

Au=-H"-] (7.10)
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Thus, to determine Au at each iteration we first simulate the measurements x(u), calculate

the sensitivity matrix of the simulated measurements with respect to fluxes (dx/du), and then

evaluate J and H (Eq. 7.9).

7.2.5 Simultaneous analysis of multiple tracer experiments

The above procedure was generalized to allow simultaneous analysis of isotopomer data
trom multiple experiments for the calculation of the search direction of fluxes at each

iteration. In this scheme | and H are constructed as follows:

T

dx,/du S5 0 0 0] [x@-x™
dx,/du 0 £, 0 0 X, () — x5

= : 1o o -~ ol : (7.11)
dx_/du 0 0 0 = X, () —x
dx/du]” [z, 0 0o 07" [dg/du
dx,/d 0 %, 0 0 dx,/d

o | A =T “ (7.12)
dx_/du 0 0 0 X dx_/du

Here, xi(u) and dx;/du are the simulated measurements and measurement sensitivities for
experiments i=1,..m; and X are the corresponding measurement covariance matrices. The
two underlying assumptions are: (i) measurements from each experiment are independent,
and (i) metabolic fluxes are identical in each experiment. The first assumption is trivial, and
the second assumption is easily validated experimentally by demonstrating reproducible
results from multiple experiments for the same conditions. Figure 7-2 shows schematically
the proposed algorithm for flux determination through combined analysis of multiple tracer
experiments. Flux estimation is initiated with random values for all fluxes. At each iteration,
measurements and sensitivities are simulated for each experiment individually, using the

same fluxes for each simulation. The simulated isotopomer distributions are then used to
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Figure 7-2: A schematic of the algorithm for flux determination through combined analysis

of multiple tracer experiments.
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construct the Jacobian and Hessian matrices using Eqgs. 7.11 and 7.12. The optimal search
ditection for fluxes is calculated using Eq. 7.10, and the flux vector is updated. The flux
estimation algorithm continues until a predefined convergence criterion is met. At
convergence, confidence intervals for all fluxes are determined using nonlinear statistical
techniques. A nice feature the described method is that the computational effort for
calculating J and H increases only linearly with the number of experiments that are included
in the analysis. Note that inequality constraints on fluxes can be included without difficulty
in this general scheme, and all kinds of step controlling strategies can be applied (Byrd et al,,
1999; Gill et al., 1991). This generalized algorithm for MFA was incorporated into our flux

analysis software Metran.

7.2.6 Statistical analysis

After the fluxes were calculated, nonlinear statistical techniques were applied to obtain
confidence intervals of fluxes by evaluating the sensitivity of the objective function with
respect to fluxes as described by previously (Chapter 3). Flux validation was accomplished by
a statistical test for the goodness-of-fit (i.e. chi-square test for model adequacy), and a
normality test for the weighted residuals. To ensure a global optimum, flux estimation was
repeated at least four times starting with random initial values. Sensitivity analysis was
employed to determine the relative importance of measurements for individual fluxes as

described previously (Chapter 3).

7.2.7 Materials

Biochemicals were obtained from Sigma Chemicals (St. Louis, MO). [U-13Cjglycerol, and [U-
3Clglutamine were obtained from Cambridge Isotope Laboratories (Andover, MA).
[2Hs]glycerol was obtained from Isotec (Miamisburg, OH). Tissue culture media were
obtained from Sigma (St. Louis, MO). Hepatocyte Medium Base was DMEM powder
(Sigma) supplemented with 3.7 g/L. NaHCO3, 30 mg/L proline, 100 mg/I. ornithine, 610
mg/L niacinimide, 0.544 mg/L ZnCl, 0.75 mg ZnSO4.7H,0, 0.2 mg/L CuSO4.5H,0, 0.025
mg/L MnSOs, 2 g/L bovine setum albumin, 100,000 U penicillin, and 100,000 U
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streptomycin. Hepatocyte Attachment Medium consisted of Hepatocyte Medium Base
supplemented with 5 nM insulin, 100 nM dexamethasone and 20 mM glucose. Hepatocyte
Growth Medium consisted of Hepatocyte Medium Base supplemented with 1 nM insulin,
100 nM dexamethasone and 20 mM glucose.

7.2.8 Hepatocyte isolation and cell culture

Hepatocytes were isolated from C57BL/6 mice fed ad libitum by modified two step-
collagenase perfusion as described by Seglen (1976). The cell yield was between 1.0-1.5x10¢
cells/g mouse with viabilities between 85-90% (Trypan Blue staining). Crude cell suspension
was scraped from the liver sac and purified by coarse 100 pum filtration, a second 70 um
filtration, and Percoll fractionation for hepatocytes. Purified cells were suspended in
Hepatocyte Attachment Medium (HAM) and seeded in 6-well plates (1.3x106 cells/well) for
90 minutes at 37°C. Attached cells were washed once with PBS and cultured overnight in
Hepatocyte Growth Medium (HGM). After 18 hr incubation at 37°C and 5% CO; the
attached hepatocytes were washed once with PBS, and subsequently cultured in glucose-free
HGM enriched with gluconeogenic carbon sources: 1mM glycerol, 10 mM lactate, 1 mM
pyruvate, 5 mM glutamine, and 2 mM acetate. Four chemically identical isotopically-labeled
media were prepared, containing either [U-13Clglycerol, [2Hs]glycerol, 10% 2H,O, ot no
tracers (as control). The cells were then incubated for 2, 5, or 8 hr at 37°C and 5% CO; in
the labeled media. At the end of the incubation period medium samples were collected and

stored at -80°C prior to analysis.

7.2.9 Derivatization of glucose

Glucose labeling patterns were determined by GC/MS analysis of aldonitrile pentaacetate
(Szafranek, 1974) and di-O-isopropylidene acetate derivatives of glucose (Hachey, 1999). For
each derivatization 200 pL of sample was deproteinized by addition of 500 uL of acetone
(~4°C). The mixture was centrifuged and the supernatant evaporated to dryness under air

flow. For aldonitrile pentaacetate derivatization, 50 pL of 2 wt% hydroxylamine
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hydrochloride in pyridine was added to the dry residue and the sample was heated at 90°C
for 60 min. This was followed by addition of 100 L of propionic anhydride and heating at
60°C for additional 30 min. The sample was then evaporated to dryness, dissolved in 100 uL
of ethyl acetate and transferred to an injection vial for GC/MS analysis. For di-O-
isopropylidene acetate derivatization, 500 uL of 0.38 M sulfuric acid in acetone was added to
the dry residue and the sample incubated at room temperature for 60 min. 400 pL of 0.44 M
sodium carbonate was added to neutralize the reaction, followed by addition of 1 mL of
saturated sodium chloride. Di-O-isopropylidene derivatives were extracted by partitioning
with 1 mL of ethyl acetate. The upper, organic layer was evaporated to dryness, followed by
addition of 150 uL of acetic anhydride in pyridine (2:1 v/v) and heating at 60°C for 30 min.
The sample was then evaporated to dryness, dissolved in 100 pL of ethyl acetate and

transferred to an injection vial for GC/MS analysis.

7.2.10 GC/MS analysis

Gas Chromatography-Mass Spectrometry (GC/MS) analysis was performed using HP 5890
Series II GC (Gas Chromatograph) equipped with a DB-1701 {30 m x 0.25 mm (inner
diameter) x 0.25 um] capillary column, connected to HP 5971 MSD (Mass Selective
Detector) operating under ionization by electron impact (EI) at 70 eV. The mass
spectrometer was calibrated using the ‘Max Sensitivity Autotune’ setting. Helium flow was
maintained at 0.737 mL/min by electronic control. The temperatures of the injector and the

detector were kept at 250°C and 300°C, respectively. The temperature of the column was

started at 80°C for 1 min, increased to 280°C at 20°C/min, and held for 4 min. For analysis
of aldonitrile pentaacetate glucose, mass spectra were tecorded in the mass range 314-322 at
12 scans/sec. The fragment at m/z 314 (C13H;s0sN) corresponded to C1-C5 carbon atoms,
and H2-H5 hydrogen atoms of glucose. For the analysis of di-O-isopropylidene acetate
glucose, mass spectra were recorded in the mass range 287-292 at 12 scans/sec. The
fragment at m/z 287 (Ci3H19O5) corresponded to all six carbon and all seven carbon-bound
hydrogen atoms of glucose. Measured intensities were corrected for noise (baseline

correction), and mass isotopomer distributions were obtained by integration. All mass
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isotopomer values were expressed as fractional abundances, i.e. for each fragment the sum

of all mass isotopomers equals one. Reported mass isotopomer distributions are averaged

values from at least six injections per sample.

7.2.11 Measurement of metabolite concentrations

Glucose and lactate concentrations wete determined by YSI 2300 Stat Plus glucose /lactate
analyzer (YSI Inc., Yellow Springs, OH). Glycerol and glutamine concentrations were
determined by GC/MS analysis with internal standards. We prepared 1:1 mixtures of the
medium sample and a standard with known concentration, in this case either [U-
13C]glutamine (10 mM), [U-13C]glycerol (1 mM), or unlabeled glycerol (1 mM), which were
then derivatized to yield the respective TBDMS derivatives (Chapter 4). Measured intensities
for glutamine (m/z 432-444) and glycerol (m/z 173-200) were corrected for natural isotope
enrichments, and glutamine and glycerol concentrations were determined from the fractions

of labeled/unlabeled molecules.

7.3 Results

7.3.1 External fluxes

Figure 7-3 shows the dynamics of glucose and lactate production, and glycerol and glutamine

consumption by cultured hepatocytes over 8 hr period. A linear fit of the data (R2>0.99)
yielded the following values (in mM/ht/106 cells): glucose production 0.2041+0.005, lactate
production 0.263+0.029, glycerol uptake 0.13310.006, and glutamine uptake 0.333+0.026.
Fluxes expressed as percentages of glucose production were 129+14 for lactate production,

6513 for glycerol uptake, and 163113 for glutamine uptake. No glycerol was detected in the
samples taken at 8 hr. Based on the linear fit shown in Figure 7-3 we estimated that glycerol

was depleted after about 7-7.5 hrs.
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Figure 7-3: Time profiles of glucose, glycerol, lactate and glutamine in hepatocytes cultutes.
Glucose and lactate accumulated in the medium, while glycerol and glutamine were taken up

by hepatocytes and served as precursors for glucose production.
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7.3.2 Reproducibility of cell experiments

To charactetize the well-to-well variability in our experiments, hepatocytes were incubated in
three wells in medium containing 2H>O at 10% enrichment, and a control well with no
tracers. Table 7-2 shows the mass isotopomer distribution of two glucose detivatives assayed
by GC/MS. The MIDs from three replicate wells were not statistically different from one
another (P>0.1), but were significantly different from the experiment with no tracers
(P<0.001). This confirmed that biological variability between wells was small in our

experiments.

7.3.3 Characterization of glycerol

Figure 7-4 shows the measured mass isotopomer distributions (MIDs) of glycerol in the
medium at 0, 2 and 5 hr from [U-13C]glycerol, [2Hs|glycerol, and 2H>O experiments (data
shown were corrected for natural isotopes). The MID of glycerol from the [U-13C]glycerol
expetiment at time zero was characterized by 97% M+3 and 3% M+2 isotopomers. The
M+2 isotopomer resulted from incomplete labeling of the tracer, i.e. 99 At% 13C-labeling
according to manufacturers’ specifications. The MID of [?Hs|glycerol at time zero was
characterized by 96% M+5 and 4% M+4 isotopomers, which was slightly more labeled than
98 At% 2H-labeling according to manufacturers’ specifications. The enrichment of both
glycerol tracers decreased after 5 hr to 75% M+3 enrichment for [U-13C]glycerol, and 79%
M+5 enrichment for [2Hs]glycerol. The decrease in enrichment occutred mostly due to the
release of unlabeled glycerol in the [U-13Cjglycerol experiment, and release of M+0, M+1,
M+2, and M+3 isotopomers in the [2Hs]glycerol expetiment. Figure 7-5 shows in more
detail the accumulation of M+0 to M+4 glycerol isotopomers in the medium in the
[?Hs]glycerol experiment. The release of unlabeled/partially labeled glycerol isotopomers
corresponded to about 8-10% of glycerol uptake rate. In the 2H>O experiment we observed
a small but significant incorporation of deutetium into glycerol, i.e. the M+1 entichment of
glycerol increased from 0.240.2 mol% at time zeto to 3.740.2 mol% at 5 hr (after correction

for natural isotope enrichments).

-237 -



CHAPTER 7. QUANTIFICATION OF HEPATIC FLUXES FROM 3C AND 2H-TRACERS

Table 7-2

Assessment of biological variability in cell culture experiments. Mass isotopomer abundances
(mol%) of aldonitrile pentaacetate and di-O-isopropylidene acetate detivatives of glucose
from hepatocyte experiments were measured by GC/MS. Experiments were performed in
separate wells in a 6-well plate in medium containing 10% 2H,O (wells 1-3), ot no tracers
(well 4). Mass isotopomer abundances were not significantly different between the three
replicate 2H>O experiments, but were significantly different from the experiment with no

tracers.

Aldonitrile pentaacetate glucose (m/ 3 314)

m/z 10% *H>O (well 1) 10% 2H,O (well 2) 10% 2H>O (well 3) no tracers (well 4)
287 543 + 05 538 * 05 534 * 05 845 + 05
288 327 £ 04 329 £ 04 332 + 04 13.0 + 04
289 104 = 03 106 + 0.3 107 £ 03 22 £ 02
290 22 + 0.2 23 + 02 23 £ 02 0.2 = 0.1
291 04 = 02 04 £ 02 04 + 02 0.0 £ 0.1
292 0.0 £ 0.1 00 = 01 00 £ 0.1 0.0 £ 01

Di-O-isopropylidene acetate glucose (m/ 3 287)

m/z 10% H,O (well 1) 10% 2HAO (well 2) 10% 2H,O (well 3) no tracers (well 4)
314 628 * 04 624 + 04 624 * 04 84.9 + 0.4
315 289 + 03 292 + 03 292 + 03 128 + 03
316 71 + 02 72 £ 02 72 £ 02 22 + 02
317 12 + 02 12 + 02 12 £ 02 0.1 + 01
318 0.1 % 0.1 00 + 0.1 01 + 01 0.0 * 0.1
319 0.0 + 0.1 00 * 0.1 00 * 0.1 0.0 + 0.1
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Figure 7-4: Mass isotopomer distributions of glycerol in the medium. Labeling distribution
of glycerol from [U-B3C]glycerol (top), [*Hs]glycerol (middle), and 2H>O (bottom)
experiments was analyzed by GC/MS, after TBDMS derivatization. Data shown were

corrected for natural isotope enrichments.
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Figure 7-5: Loss of 2H from [2Hs]glycerol in cultured hepatocytes. Mass isotopomer
distributions of TBDMS derivatized glycerol were measured by GC/MS. Data shown were

corrected for natural isotope enrichments.
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7.3.4 Incorporation of deuterium into lactate and ketone bodies

We identified two metabolites in the medium that incorporated significant amounts of
labeling from [?Hs]glycerol and 2H2O, i.e. lactate and 3-hydroxybutyrate. Figure 7-6 shows
the enrichment of lactate and 3-hydroxybutyrate, respectively (entichment = X M;xi). Lactate
incorporated labeling from [2Hs]glycerol and 2H>O, but not from [U-13C]glycerol. The
amount of labeling incorporated from 2H>O (at 10% enrichment) could not be explained
solely by de novo synthesis of lactate, indicating that there was significant exchange between
intracellular pyruvate pool and extracellular lactate pool. Pyruvate can incorporate deuterium
at C3 in the reaction catalyzed by alanine aminotransfererase and lactate can incorporate
deuterium at C2 from NADH via lactate dehydrogenase. The amount of labeling
incorporated from [2Hs]glycerol was about 6 times less than from 10% 2H>O. However, we
should note that [2Hs]glycerol can only transfer deuterium atoms to lactate via [2Hs]glycerol
— [PH]NADH — [2H]lactate catalyzed by glycerol-3-phosphate dehydrogenase and lactate
dehydrogenase, respectively. Taking into account that lactate was present at 10 mM at time
zero and the concentration increased to 12.8 mM at 8 hr, and that lactate enrichment
increased from 0.0% to 2.94+0.6%, we estimated that about 1315% of NADH atoms were
derived from glycerol (=2.9%x12.8/(12.8-10)). In contrast, we found that 3-hydroxybutyrate
incorporated labeling only from 2H>O, and not from [2Hs]glycerol or [U-13C]glycerol. In
these expetiments, 3-hydroxybutyrate was derived solely from de now synthesis, i.e. there was
no 3-hydroxybutyrate at time zero (validated by GC/MS analysis). In the 10% 2H>O
experiments the enrichment of 3-hydroxybutyrate was more or less constant over 8-hrs at
about 22% indicating that on average 2.2 of the 5 hydrogen atoms of 3-hydroxybutyrate

were derived from the solvent.

7.3.5 Incorporation of “C and *H into glucose

Table 7-3 shows the mass isotopomer distributions of two glucose fragments measured at 2,
5 and 8 hr from [U-13C]glycerol, [2Hs]glycerol, and 2H>O experiments, and Table 7-4 shows

the corresponding corrected MIDs. The last column in Table 7-4 shows the total enrichment

of glucose, i.e. enrichment = X Mixi. The di-O-isopropylidene acetate derivative of glucose

-241 -



CHAPTER 7. QUANTIFICATION OF HEPATIC FLUXES FROM '3C AND 2H-TRACERS

-@®- [U13C]glycerol |
-v- [D5]glycerol N
g 15}- -a- Dzo .........
I
@
£
<
© 10
c
o
2
8
g st
| ]
R
Li/g ——
0 2 4 6 8
Time (hr)
30 :
2 -@- [U13C]glycerol
2 ,:| -¥- [DS|glycerol o
6 25 -m- D20 )
E i/'
£ L
_220.. o |
c
o
o
-oé 15 F.. oo PRI C e e s e e e s e e e e
>
=]
_g 10F . . J
X
o
T osl ]
T
™ S —
0 2 4 6 8

Figure 7-6: Incorporation of deuterium from [2Hs]glycerol and 2H,O into lactate and 3-
hydroxybutyrate. Mass isotopomer distributions of TBDMS derivatized lactate and 3-
hydroxybutyrate were measured by GC/MS, and isotope enrichment was calculated after

correcting for natural isotope enrichments.
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Table 7-3
Incorporation of labeling from [*C]glycerol, PH]glycerol and 2H,O into glucose. Shown are
the uncorrected mass isotopomer distributions of glucose (molar abundances; mol%), for

aldonitrile pentaacetate (m/z 314) and di-O-isopropylidene acetate (m/z 287) derivatives.

Time of Glucose mass isotopomers
Tracer Sample M+0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8
m/z 287 ion fragment (C1-6, H1-6)
[U-13C)glycerol 2hr 42.5 7.3 30 295 4.0 1.8 109 0.9 0.1
5hr 41.8 7.3 32 307 41 1.8 101 0.9 0.1
8 hr 48.8 8.5 33 262 35 1.4 7.6 0.6 0.1
[2Hs]glycerol 2hr 43.1 174 202 111 5.7 2.2 0.3 0.0 0.0
5hr 422 180 208 111 5.4 2.1 0.5 0.1 0.0
8 hr 458 186 195 9.6 4.4 1.6 0.4 0.1 0.0
2H,O 2hr 569 312 9.6 21 0.2 0.0 0.0 0.0 0.0
5hr 547 325 102 2.2 0.4 0.0 0.0 0.0 0.0
8 hr 537 330 106 2.3 0.3 0.0 0.0 0.0 0.0
no tracers 2hr 852 126 21 0.2 0.0 0.0 0.0 0.0 0.0
5hr 845 130 2.2 0.2 0.0 0.0 0.0 0.0 0.0
8 hr 839 135 23 0.3 0.0 0.0 0.0 0.0 0.0

m/z 314 ion fragment (C1-5, H2-5)

[U-13C]glycerol 2hr 431 7.5 14.0 19.7 33 111 1.0 0.2 0.0
5hr 423 7.6 148 205 34 103 0.9 0.2 0.0
8 hr 49.4 88 132 173 2.8 7.7 0.7 0.1 0.0
2Hs|glycerol 2hr 652 253 8.0 14 0.1 0.0 0.0 0.0 0.0
5hr 645 258 8.1 1.4 0.1 0.0 0.0 0.0 0.0
8 hr 67.0 244 7.2 12 0.1 0.0 0.0 0.0 0.0
2H,0O 2hr 650 274 6.5 1.0 0.1 0.0 0.0 0.0 0.0
5hr 63.0 2838 6.9 1.1 0.2 0.0 0.0 0.0 0.0
8 hr 62.6 291 71 1.1 0.1 0.0 0.0 0.0 0.0
no tracers 2hr 85.2 12.6 21 0.1 0.0 0.0 0.0 0.0 0.0
5hr 849 128 21 0.1 0.0 0.0 0.0 0.0 0.0
8 hr 846 130 2.2 0.1 0.0 0.0 0.0 0.0 0.0
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‘Table 7-4

Corrected mass isotopomer distributions of glucose fragments. Total enrichment of glucose

was calculated from mass isotopomer data after correction for natural isotope enrichments.

Time of Glucose mass isotopomers Enrichment*
Tracer Sample M+0 M+1 M+2 M+3 M+4 M+5 M+6 %)
m/z 287 ion fragment (C1-6, H1-6)

[U-13C]glycerol 2 hr 49.9 1.2 21 331 0.7 1.3 11.8 184.5+ 0.8
5hr 49.1 1.3 2.3 345 0.6 1.2 10.9 183.7 + 0.8

8 hr 57.3 1.5 22 293 0.5 0.9 8.2 149.9 £ 0.8

[2Hs]glycerol 2 hr 50.6 13.0 20.6 9.6 4.7 1.6 0.0 109.6 £ 0.7
5hr 49.5 13.8 21.2 9.4 44 1.5 0.2 110.8 £ 0.7

8 hr 53.8 13.9 19.5 7.9 3.5 1.1 0.2 97.4+0.7

2H,0O 2 hr 66.8  26.7 5.7 0.8 0.0 0.0 0.0 40.5+ 0.6
5hr 642 287 6.2 0.8 0.1 0.0 0.0 439+0.6

8 hr 63.1 29.5 6.6 0.9 0.0 0.0 0.0 451 +0.6

no tracers 2hr 100.0 0.0 0.0 0.0 0.0 0.0 0.0 00+0.3
5hr 99.4 0.6 0.0 0.0 0.0 0.0 0.0 06+0.3

8 hr 98.8 1.2 0.0 0.0 0.0 0.0 0.0 12403

m/z 314 jon fragment (C1-5, H2-5)

[U-13C]glycerol 2hr 50.9 1.1 147 205 1.0 11.8 1549 £ 0.8
5hr 49.9 1.4 156 212 1.0 109 154.6 + 0.8

8 hr 58.3 1.5 13.5 17.8 0.7 8.1 125.4 + 0.8

[?Hs]glycerol 2hr 76.9 18.2 4.6 0.2 0.0 0.0 28.1+05
5hr 76.2 18.9 4.6 0.2 0.0 0.0 289 %05

8 hr 79.2 16.9 3.8 0.2 0.0 0.0 249105

H,O 2 hr 76.8 20.7 25 0.0 0.0 0.0 25.7+0.5
5hr 744 228 27 0.1 0.1 0.0 28.6%05

8 hr 739 232 2.9 0.0 0.0 0.0 29.0+0.5

no tracers 2 hr 100.0 0.0 0.0 0.0 0.0 0.0 0.0+03
5hr 99.6 0.4 0.0 0.0 0.0 0.0 0.4+0.3

8 hr 99.3 0.7 0.0 0.0 0.0 0.0 07403

* Enrichment = £ M;xi.
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(m/z 287) contained all six carbon atoms and all seven carbon-bound hydrogen atoms of
glucose, and the aldonitrile pentaacetate derivative (m/z 314) contained carbon atoms C1-C5
of glucose and hydrogen atoms at positions C2-C5. In hepatocytes incubated with [U-
13C]glycerol the main labeled glucose isotopomers were M+3 (~30 mol%) and M+6 (~10
mol%), with much lower abundances of the other labeled isotopomers (<2.5 mol%). The
presence of M+1, M+2, M+4 and M+5 isotopomers can be explained by transketolase
activity as suggested by Kutland et al. (2000), or by scrambling of glycerol labeling in the
TCA cycle as suggested by Previs et al. (1995). In light of our previous observation that
lactate was not labeled from [U-1*Cjglycerol, we concluded the cycling between glycerol and
TCA cycle was not significant in our experiments. Thus, there must be some residual
transketolase activity in cultured hepatocytes. The higher abundance of M+3 (20.5 mol%; i.e.
C1-C3 of glucose) compared to M+2 (14.7 mol%; i.e. C4-C5 of glucose) in the aldonitrile
pentaacetate derivative of glucose indicated that DHAP was more labeled than GAP, i.e. the
two triose phosphate pools wete only at 72% equilibrium (=14.7/20.5). The enrichment of
glucose from [U-13C]glycerol was constant over the first 5 hrs, indicating a constant
contribution of [U-13Cglycerol to glucose production. The lower enrichments at 8 hr can be
explained by the depletion of [U-13C]glycerol after about 7 hr (see section 7.3.1). To interpret
the data more quantitatively we applied MIDA equations to estimate fractional contribution
of GNG to glucose production and the net flux of [U-13C]glycerol to glucose. Table 7-5
shows that fractional contribution of GNG was estimated at 66%, 71%, and 63% at 2, 5, and
8 hr, respectively. The value at 8 hr is likely to be an underestimation of GNG due to the

depletion of the [U-B3Cjglycerol tracer after 7 hr, i.e. MIDA assumes isotopic steady-state.

In experiments with [2H;|glycerol we observed significant production of glucose mass
isotopomers M+1 to M+5. Similar to the [U-13C]glycerol experiment, we found that the
fractional contribution of [2H;|glycerol to glucose production remained constant over the
first 5 hrs (i.e. constant enrichment of glucose), and then declined due to [2Hs|glycerol
depletion. The amount of deuterium incorporated into glucose from [PHs]glycerol provided
rich information on the relative activity of various gluconeogenic reactions. Deutetium

atoms of [2Hs|glycerol may be lost at various points in the pathway from glycerol to glucose.
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Table 7-5

Metabolic fluxes estimated by mass isotopomer distribution analysis (MIDA). Glucose mass
isotopomers from [U-13C]glycerol experiments were measured by GC/MS and corrected for
natural isotope enrichments. MIDA equations were used to estimate fluxes of

gluconeogenesis pathway. Fluxes shown are expressed as percentages of glucose production

rate.

Flux* 2hr 5hr 8 hr
Glucose production (fixed at 100) 100 100 100

Gluconeogenesis (parameter f) 66.3 71.0 62.5
Glycogenolysis 33.7 29.0 375

Glycerol to glucose flux 61.5 61.2 50.0
Oxaloacetate to glucose flux 711 80.8 75.0
Triose phosphate equilibration (%o) 72 % 74 % 76 %

* Parameter { was calculated from Eq. 7.5.

* Glycogenolysis = 100 — {.

* Glycerol to glucose flux was calculated from Eq. 7.6.

* Oxaloacetate to glucose flux = 2-f — (glycerol to glucose flux).

* Triose phosphate equilibration (o in Eq. 7.5) was estimated from the ratio of mass isotopomers

(m/z 316)/(m/z317)x100% of aldonitrile pentaacetate derivative of glucose (after cotrection).
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For example, the deuterium at C2 is transferred to NADH in the reaction catalyzed by
glycerol-3-phosphate dehydrogenase. The pro-R hydrogen at C1 may be lost in the reaction
catalyzed by TPI, and the pro-S hydrogen in reactions catalyzed by aldolase and GAPDH.
Finally, the pro-R hydrogen at C3 may be lost in the reaction catalyzed by PGI, and the pro-
S hydrogen by PMI and glucose-6-phosphate dehydrogenase reactions. In other words, the
presence of M+1 to M+5 mass isotopomers of glucose indicated that one or more of the
above reactions were not fully equilibrated. Howevert, without a proper mathematical model
it is difficult, if not impossible, to interpret the isotopomer data from [2Hs]glycerol

experiments quantitatively.

In 2H,0 expetiments deuterium enrichment of glucose increased from 40.5% to 43.9% and
45.1% at 2, 5, and 8 hr, respectively, indicating that gluconeogenesis flux increased by about
11% over the course of the experiment. On average 4.0 to 4.5 of the 7 atoms of glucose
were detived from the solvent. The enrichment of the aldonitrile pentaacetate fragment of
glucose increased from 25.5% to 28.6% and 29.0% (an increase of 13%), i.e. on average 2.6
to 2.9 of the 4 hydrogen atoms at C2-C5 were derived from the solvent. Note that in the
control experiment with no tracers we found a slight increase in glucose enrichment that

could not be explained by natural isotope abundances, i.e. from 0.0+0.3 at time zero to

1.240.3 at 8 hr. One potential explanation was cross-contamination between adjacent wells

in the 6-well plate, i.e. the unlabeled wells were adjacent to the wells with 2H,O.

To summarize, qualitative analysis of glucose enrichment data revealed that the flux of
glycerol to glucose was constant over the first 5 hrs of the experiment, and that the
contribution of non-glycerol precursors to glucose increased by about 10-13%. Finally, we

found evidence of some residual transketolase activity in the cultured hepatocytes.

7.3.6 Flux estimation and model validation

To better characterize metabolic fluxes in this system we performed comprehensive analysis
of the observed MIDs with the network model shown in Figure 7-1 and Metran software.

Fluxes and their confidence intervals ware estimated from three data sets individually and
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using the combined data of all three experiments. Table 7-6 compares the information
content of the data sets. For example, [U-13C]glycerol experiments provided 13 mass
isotopomers of glucose from which 4 independent fluxes could be estimated, i.e. net fluxes
of glycerol and oxaloacetate to glucose, and exchange fluxes of TPI and TK teactions. Thus,
there were 9 (=13-4) redundant measurements in the [U-13C]glycerol data. We found
excellent agreement between the observed mass isotopomer abundances and abundances
predicted by the model for the optimally fitted fluxes, as judged by the small magnitude of
the sum of squared residuals, i.e. 1.8, which was smaller than the critical value 19.0 for the
statistical test of model adequacy (at 95% confidence level with 9 degrees of freedom), which
indicated that the fit was statistically acceptable. Fits for the [2Hs]glycerol and 2H,O data sets
were also statistically acceptable. However, our initial attempts to reconcile data from all
three experiments failed. The sum of squared residuals was consistently larger than the
critical value for the statistical test. Further analysis revealed that MIDs of glucose from the
[U-13C]glycerol and [*Hs|glycerol experiments were incompatible with the MIDs of glucose
from the 2H>O experiment. Previously, Previs et al. (1998) showed that glycerol and lactate
tracers consistently underestimated GNG by 10-30% in isolated hepatocytes. This effect
could not be explained from lack of equilibrium of triose phosphates, zonation of glycerol
kinase, or differences in substrate concentrations. The authots concluded that there must be
different cell populations of hepatocytes that utilize glycerol and lactate/pyruvate to different
extent for the production of glucose. The net observed effect was an increased abundance of
unlabeled glucose and decreased abundances of labeled glucose isotopomerts, resulting in
underestimation of GNG. To account for this effect in our model we introduced dilution
parameters for glucose labeling from [U-13C]glycerol and [2Hs]glycerol experiments, i.e. these
parameters quantify the apparent dilution of labeled glucose isotopomers due to differential
metabolism of cell populations. Note that these parameters also capture the apparent
dilution due to depletion of tracers. Further analysis revealed that no dilution parameter was
required for the 2H,O data, i.e. the goodness-of-fit was not statistically improved by adding a
dilution parameter for the 2H,O data. Therefore, our model included only two dilution
parameters, i.e. for [U-13C]glycerol and [*Hs]glycerol experiments. With the updated model

we successfully fitted the combined data from all thee experiments and estimated fluxes.
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Table 7-6

Comparison of information content of experimental data. Individual data sets from [U-
13CJglycerol, [2Hs]glycerol, and 2H,O experiments were fitted to a detailed model of glucose
metabolism. Fluxes wete estimated and confidence intervals were evaluated. Analysis of the
combined data required two additional parameter to describe the apparent glucose labeling
when glycerol tracers were used. The flux results were then statistically evaluated to test for

goodness-of-fit.

Combined analysis of

10% 2H,O  [®Hs]glycerol  [U-13Clglycerol  all three experiments

No. of fitted mass isotopomers 7 9 13 29
No. of estimated fluxes * 2 6 4 11 + 2%
No. of redundant measurements*** 5 3 9 16
Sum of weighted squared residuals 1.2 1.8 2.7 12.1
Fit statistically acceptable Yes Yes Yes Yes

* Number of estimated fluxes equals the number of independent fluxes that were statistically different
from zero, as judged by the 95% confidence interval.
** Combined analysis of all three expetiments required two additional parameters to account for

apparent dilution of glucose labeling from glycerol tracers.

*+% Number of redundant measurements = (no. of fitted isotopomers) — (no. of estimated flux)
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The minimized sum of squared residuals of 12.1 was smaller than the critical value of 24.8
(at 95% confidence level with 13 degrees of freedom) indicating a statistically acceptable fit.
The apparent fractional labeling of glucose was estimated at 87%+3 and 86%%3 for the [U-
BClglycerol and [*Hs]glycerol experiments, respectively, indicating that for both glycerol
tracers there was an apparent dilution of glucose by about 13% (i.e. a value of 100% would
indicate no dilution). Table 7-7 shows the 95% confidence intervals for the estimated fluxes

for the 2-hr experiments.

After comparing the information content of separate data sets with the combined data
(Table 7-6), two advantages of our method become apparent: (i) we can estimate more
fluxes, and (ii) the number of redundant measurements is significantly increased. Here, 11
tluxes were estimated from the combined data, compared to 2 fluxes from the H,O
experiment, 6 fluxes from [?Hs]glycerol experiment, and 4 fluxes from [U-13Clglycerol
experiment. The number of redundant measurements for the combined data was 16
compared to 5, 3, and 9 for °HxO, [?Hs|glycerol, and [U-1*Cjglycerol data, respectively.
Redundant measurements are important for metabolic flux analysis, because they allow more
accurate estimation of fluxes, validation of modeling assumptions, and identification of
missing reactions in the network model. In this study, many modifications to the initially
assumed network model were examined for their ability to accurately account for the
observed isotopomer data. 1f a modification explained the data significantly better, i.e.
resulted in a statistically smaller magnitude of sum of squared residuals, it was accepted. Such
a posteriori changes to the model were the inclusion of the transketolase (TK) and
phosphomannose isomerase (PMI) reactions, resulting in a reduction of the sum of squared
residuals by more than 80%. The results is shown in Table 7-7 further illustrate that the
different isotopic tracers provide different flux information. For example, exchange fluxes of
TK and TPI were estimated precisely from [U-PClglycerol data, however, PGI and PMI
exchange fluxes could not be determined. On the other hand, [2Hs|glycerol data provided
sufficient information to estimate PGI, TPI and PMI exchange fluxes, however, the
estimated TK exchange flux was less precise. Note that ?H>O data alone did not provide
enough information to determine net and exchange fluxes in this system with precision,

however, when supplemented with data from [U-3Cjglycerol and [2Hs]glycerol tracers, the
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Table 7-7

Estimated 95% confidence intervals of fluxes for the samples taken at 2 hr. Metabolic fluxes

and their confidence intervals were estimated by fitting glucose mass isotopomer

distributions to detailed gluconeogenesis model using Metran software.

Combined analysis of

Net fluxces 10% D,O [*Hslglycerol  [U-13CJglycerol  all three experiments
Glucose production (fixed at 100) 100 100 100 100
Gluconeogenesis (GNG)* 53-100 63 - 80 69-73 7587
Glycogenolysis (GL)* 0-47 20-37 27-31 13-25
Glycerol to glucose flux 0-150 57-64 60 — 62 65-75
Oxaloacetate to glucose flux 29-183 65-102 77 -85 85-100
Exchange fluxces™*

Phosphoglucose isomerase (PGI) nd 140 — 380 nd 262 728
Aldolase nd nd nd nd
Triose phosphate isomerase (TPI) nd 180 - 510 230 - 360 280 — 405
Phosphomannose isomerase (PMI) nd 0-27 nd 0-41
Transketolase (TK) nd 7-83 5-9 6-10
Phosphoglucomutase (PGM) nd nd nd nd
Glycerol 3-phosphate dehydkr. nd nd nd nd
Glyceraldehyde 3-phosphate dehydr. nd nd nd nd
Cycling between GAP and PEP nd nd nd nd
Additional model parameters

Apparent fractional glucose labeling - - - 87% + 3
in [U-13Clglycerol experiment

Apparent fractional glucose labeling - - - 86% + 5

in [?Hs|glycerol experiment

* GNG and GL are not independent fluxes, .e. GNG = (Vglycerol T Voxaloaceate)/ 2; GL = 100-GNG.

** ‘nd” (=not determined) indicates that the exchange flux could not be determined, as judged by

having a 95% confidence interval from zero to infinity.
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2H,0 experiment provided the most informative mass isotopomers for accurate estimation

of the gluconeogenesis flux (results based on sensitivity analysis).

7.3.7 Evaluation of estimated fluxes

Table 7-8 shows the estimated fluxes for the 2, 5, and 8-hr samples obtained from analysis of
combined isotopomer data for each time point. The small magnitude of the sum of squared
residuals and the large number of redundant measurements gave us very high degree of
confidence in the fidelity of the calculated fluxes. The estimated fluxes provided important
insight into the physiology of cultured hepatocytes. Our results suggest that the
phosphoglucose isomerase (PGI) reaction and triose phosphate isomerase (TPI) were not
fully equilibrated. The estimated PGI exchange flux of 38015 corresponds to 79%+4
labeling equilibrium between FOP and GG6P. Furthermore, the estimated TPI exchange flux
of 330£32 corresponds to 76%*2 labeling equilibrium between DHAP and GAP. These
results are surprising, because it is generally assumed that the PGI and TPI reactions are fully
equilibrated. For example, these assumptions are crucial for the widely used 2H>O method
for estimating the contribution of gluconeogenesis to hepatic glucose production, as was
initially proposed by Landau and colleagues (1995). In this method, fractional
gluconeogenesis is determined from the ratio of deuterium labeling at C5 vs. C2 of glucose
in experiments with 2HO. Deuterium is incorporated at C5 of glucose in reactions catalyzed
by enolase and TPI, whereas deuterium is incorporated at C2 of glucose via PGI reaction.
Our flux results indicated that the labeling of GAP-C2 (that eventually becomes C5 of
glucose) is >95% equilibrated with the solvent mainly via enolase reaction, but G6P-C2 (that
becomes C3 of glucose) is only 80% equilibrated with the solvent. Thus, in our experiments

the C5/C2 ratio would overestimate fractional gluconeogenesis by 20%.

7.3.8 Comparing estimated fluxes vs. MIDA

The estimated fluxes shown in Table 7-8 were significantly different from the fluxes
determined by MIDA shown in Table 7-5. MIDA underestimated fractional GNG and the

conrribution of oxaloacetate to glucose by 18-31%, and overestimated glycogenolysis flux.
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‘Table 7-8

Metabolic fluxes in the gluconeogenesis pathway estimated by combined analysis of multiple
tracer data. Fluxes and their confidence intervals (shown as best fit + SD) were estimated for

the 2, 5, and 8-hr samples by fitting all data for each sample point with Metran.

Net fluxes 2hr 5hr 8 hr
Glucose production (fixed at 100) 100 100 100
Gluconeogenesis (GNG) 81%3 90+ 4 91+4
Glycogenolysis (GL) 19+3 10+ 4 9t4
Glycerol to glucose flux 70+3 72+3 67+3
Oxaloacetate to glucose flux 92+ 4 108 £5 114 %5

Exchange fluxes and percent equilibration™

380+ 115 390 + 150 527 + 200
Phosphoglucose isomerase (PGI)

(79% £ 4) (81% £ 4) (86% £ 5)
Aldolase nd nd nd

330+ 32 380 + 40 394 £ 46
Ttiose phosphate isomerase (TPI)

(76% % 2) (79% £ 2) (80% = 2)
Phosphomannose isomerase (PMI) 10£10 13t 14 13+18
Transketolase (TK) 82+1 9.6t1 1121
Phosphoglucomutase (PGM) nd nd nd
Glycerol 3-phosphate dehydr. nd nd nd
Glyceraldehyde 3-phosphate dehydr. > 295 > 300 > 385
Cycling between GAP and PEP nd nd nd
Additional model parameters
Apparent fractional glucose labeling

) 87%+3 85% + 3 75% + 3

in [U-13C]glycerol experiment
Apparent fractional glucose labeling

86% + 5 84% 5 82% 6

in [?Hs]glycerol experiment

* Values in parentheses for PGI and TPI reactions denote the estimated degree of equilibration.

* Percent equilibration = 100% x (exchange flux) / (100 + exchange flux).
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The difference was most striking for the 5-hr and 8-hr samples, where we estimated 90%+4
contribution of GNG to glucose production, whereas MIDA estimated 71% and 63%,
respectively. Note that our method correctly accounted for the depletion of glycerol tracers,
as is indicated by the lower estimate for fractional glucose labeling at 8 hr, i.e. 75% at § hr vs.
85% at 2 and 5 hr for the [U-13C]glycerol experiments. The estimated GNG flux at 8 hr
(90%z=4) as identical to the estimated flux at 5 hr (91%14).

7.3.9 Sources of NADH

The flux results further allowed us to predict the contribution of various sources to the
production of NADH. Table 7-9 shows the predicted fractional contribution of glycerol,
water, and unlabeled sources to NADH. We estimated that 10% of NADH hydrogen atoms
were derived from glycerol, 30-37% from the solvent via hydrogen exchange, and 52-60%
from other unlabeled endogenous sources, presumably mainly from lactate via lactate
dehydrogenase. The estimated contribution of glycerol to NADH of 10% corresponded well

with our previous observation that [2Hs|glycerol transferred deuterium atoms to lactate, from

which we estimated that about 1315% of NADH was derived from glycerol.

Table 7-9
Predicted fractional contribution of glycerol, water, and unlabeled sources to NADH
hydrogen atoms. From the estimated fluxes shown in Table 7-8 we determined the various

sources of NADH hydrogen atoms and calculated the following fractional contributions.

2 hr 5ht 8 hr
Glycerol 10+3% 9£3% 10+3%
Water 30£3% 39+3% 374+3%
Unlabeled sources 60+3% 5243%, 53+3%
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7.4 Discussion

To our best knowledge, this is the first detailed analysis of net and reversible fluxes in the
gluconeogenesis pathway in cultured hepatocytes. We demonstrated that an over-determined
data set of mass isotopomer abundances obtained from '*C and 2H-labeling experiments
fitted to a detailed model of gluconeogenesis pathway provides precise fluxes, and allows
validation of model assumptions using redundant measurements. Our results have wide
implications for in vivo studies of glucose metabolism from 3C- and 2H-tracers. MIDA was
originally introduced by Neese et al. (1995) as a method for analysis of the gluconeogenesis
pathways from '3C-labeled substrates. This method treats glucose as a dimer of triose
phosphates with a constant labeling. Neese et al. showed that lack of equilibrium between
the enrichments of triose phosphates had a small impact on the calculation of fractional
gluconeogenesis. However, one of the disadvantages of the MIDA framework is that it
requited the use of 13C-tracers, i.e. it cannot be applied for analysis of mass isotopomer data
from 2H-labeling experiments. Furthermore, MIDA does not accurately capture scrambling
of 13C-labeling in the TCA cycle and pentose phosphate pathway reactions resulting in
underestimation of the gluconeogenesis pathway. Here, we have developed novel
comprehensive analysis tools for analysis of experimental data from multiple tracer
expetiments. In this contribution, [U-13C]glycerol, [?Hs]glycerol, and 2H,O tracer
experiments was accomplished with a detailed model of glucose metabolism and rigorous
methods for balancing of isotopomers within a reaction network. Analysis of the combined
data revealed that MIDs of glucose from glycerol tracers were incompatible with MIDs of
glucose from 2H,O experiments. We demonstrated that glycerol tracers consistently
underestimated GNG in our experiments. Previs et al. (1995, 1998) reported the same
finding from experiments with perfused livers and isolated hepatocytes from starved rats.
They attributed the underestimation of GNG to the presence of different cell populations
that utilize glycerol to different extent for the production of glucose. Our results support this
hypothesis. We concludes that any tracer method that requires the formation of labeled
glucose isotopomers from the condensation of two labeled triose phosphate molecules will
always underestimate GNG due to differences in enrichments of triose phosphates, and due

to zonation and depletion of isotopic tracers. The extent of underestimation of GNG cannot
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be determined from MIDA analysis. Here, we applied 2H2O in addition to [U-13C]glycerol
and [?Hs]glycerol tracers to quantfy the underestimation of GNG from glycerol tracers. We

showed that in our experiments [*Clglycerol and [*H]glycerol tracers consistently

underestimated GNG by about 14%.

Previs et al. used [2H;s]glycerol in experiments with perfused livers and noted release of M+0
to M+4 mass isotopomers of glycerol from [?Hs|glycerol. However, without a detailed
mathematical model they could only provide qualitative interpretation of the observed mass
isotopomers. Based on the release of the M+1 mass isotopomer of glycerol they concluded
that there must be cycling between glycerol, PEP, oxaloacetate and pyruvate. In our
[2Hs]glycerol experiments we also observed release of M+0 to M+3 mass isotopomers of
glycerol from [?Hs|glycerol tracer. However, our results provided a different explanation for
the release of M+1 to M+3 isotopomers. The estimated fluxes indicated that there is not any
significant cycling between [?Hs]glycerol and pyruvate. In contrast, the presence of M+1 of
glycerol was fully explained from deuterium incorporation via [2Hs|glycerol - NAD|?H] —
[H]glycerol (M+1), catalyzed by glycerol-3-phosphate dehydrogenase. In support of this
result we found that deuterium atoms from [?Hs|glycerol were incorporated into lactate,
presumably via lactate dehydrogenase (i.e. [*Hs|glycerol — NAD[?H] — [2H]lactate), and
that no BC-Jabeling was incorporated into lactate from [U-3*Ciglycerol. Thus, we concluded
that in cultured hepatocytes glycerol contributed significantly to the production of NADH.
We estimated that about 10% of NADH was derived from glvcerol, 30% from the solvent
via hydrogen exchange, and 60% from other unlabeled endogenous sources. Our results
further indicated that there was rapid exchange between the A- and B-hydrogen atoms of
NADH, which was in agreement with the result published by Vind et al. (1987), where the
authors showed that in isolated hepatocytes that there is near-equilibrium between the A-

and B-hydrogen atoms of NADH.

Our results indicated that the 2H>O method has the best potential to provide an unbiased
estimate of GNG flux in vivo. However, the 2H>O method is not without assumptions. For
example, it is generally assumed that there rapid incorporation of deuterium at C2 position

of glucose via PGI, and at C5 via TPI and enolase. In practice, the extent of equilibration of
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these reactions is not easily validated in vivo. In this study, we validated the equilibrium
assumptions for the 2H>O method explicitly by estimating reaction reversibilities for PGI
and TPI reactions, mainly from the [2Hs]glycerol data. We found that the PGI and TPI
reactions wete only 80-86% equilibrated. We estimated that the C2 hydrogen of glucose was
no more than 80% equilibrated with the solvent, but the C2 hydrogen of GAP (that
eventually becomes C5 of glucose) was more than 95% equilibrated with the solvent, mainly
via enolase reaction. Thus, the ratio of deuterium labeling at C5 vs. C2 resulted in 20%
overestimation of GNG in our experimental setup. To summarize, we have demonstrated
that through combined analysis of mass isotopomer data from [13C]glycerol, [2H]glycerol and
2H,O tracers we can estimate unbiased net and reversible fluxes in the gluconeogenesis
pathways and correctly accounted for lack of complete equilibration of reversible reactions
in the gluconeogenesis pathway. Furthermore, we provided a method to account for the
appatent dilution of glucose labeling from glycerol tracers due to inhomogeneity of

hepatocyte populations and depletion of tracers.
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Chapter 8

Application of elementary metabolite
units and [U-"C,’Hj]glycerol to estimate

fluxes of gluconeogenesis

8.1 Introduction

Methods for measuring the metabolic rate of gluconeogenesis (GNG) in vivo, relative to
hepatic glucose production (HGP), rely on the use of stable isotopes (1*C and 2H) and the
assessment of glucose labeling distribution by gas chromatography mass spectrometry
(GC/MS) and nuclear magnetic resonance (NMR) spectroscopy. It has been argued that the
algebraic relationships based on the [U-13C]glucose tracing method underestimate
gluconeogenesis in vivo. A major reason is the failure to consider the exchange of labeled
precursors in the TCA cycle and the contribution of glycerol to gluconeogenesis. In the early
1990s condensation polymerization methods offered a new approach to estimating
biosynthesis. [13C]Glycerol tracets were used for quantifying gluconeogenesis using mass
isotopomer distribution analysis (MIDA). However, the possibility of zonation of the tracer
across the liver has led to questions about the validity of this method. Several studies with
isolated hepatocytes, perfused livers, and in whole animals have shown that mass isotopomer
distribution (MID) of glucose from [3C]glycerol tracers are incompatible with a single
constant pool of triose phosphates, presumably due to multiple cell populations with
differential preference for various gluconeogenic precursors. Malloy and colleagues (1998)

proposed a quantitative approach based on the fate of [U-13C]propionate and the analysis of
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hepatic glutamate and glucose. This method uncovered a discrepancy between the analyses
of different compounds indicative of compartmentation of metabolism. This important
finding further complicated the search for a clear quantitative method for estimating hepatic
fluxes from carbon labeling data. Recently, we have applied [?Hs]glycerol, [U-13Clglycerol
and 2H,O to measure net and exchange fluxes in the gluconeogenesis pathway (Chapter 7).
From detailed analysis mass isotopomer distributions of glucose fragments we estimated the
extent of equilibration of phosphoglucose isomerase (PGI) and triose phosphate isomerase
(TPI) reactions with precision, i.e. 80-86% equilibration for PGI and 79-81% equilibration
for TPI in isolated hepatocytes. However, our results also suggested that [2H;|glycerol and
[U-13C]glycerol underestimated the flux of GNG by about 15% in our experiments.
Currently, the most widely used method for measuring GNG in vivo is the 2H,O method
that was proposed by Landau et al. (1995). It has been argued that this method provides an
unbiased estimate of the GNG flux. However, currently this method assumes complete
equilibration of PGI and TPI reactions, which is not true in all situations. For example, we
have shown previously in isolated hepatocytes that lack of complete equilibration of PGI
resulted in 20% overestimation of GNG with the 2H,O method (Chapters 5 and 7). Thus,
despite many decades of experiments, the seatch for a well-accepted method for quantifying

gluconeogenesis from stable isotope tracers continues.

Here, we present a novel two-tracer method for accurate determination of net and reversible
fluxes in the gluconeogenesis pathway in vivo. Our method builds on Landau’s 2H>O
method with the addition of a novel doubly-labeled glycerol tracer, i.e. [U-13C,2Hg]glycerol.
In this method we apply the two tracers, i.e. ZH>O and [U-13C,2Hg]glycerol, simultaneously
and measure the incorporation of 2H from 2H,O, and 2H and '3C from [U-13C,2H;]glycerol
into glucose. Here, we make use of GC/MS analysis to measure the labeling disttibutions of
six fragments of glucose based on three glucose derivatives that were recently introduced, i.e.
aldonitrile pentapropionate ion fragments at m/z 173, 259, 284, and 370; methyloxime
pentapropionate ion fragment at m/z 145; and di-O-isopropylidene propionate ion fragment
at m/z 301. The mass isotopomer distributions of these fragments provide an over-
determined data set with 25 redundant measurements from which accurate metabolic fluxes

and their confidence intervals are determined. Quantitative interpretation of the complex

- 260 -



CHAPTER 8. APPLICATION OF [U-*C 2Hg]GLYCEROL TO ESTIMATE GNG FLUXES

labeling patterns was accomplished through the use of rigorous mathematical tools based on
the elementary metabolite units (EMU) framework, which was recently developed and
shown to be the most efficient method for analyzing mass isotopomer data from labeling
experiments. We will illustrate that the proposed two-tracer method allows measurement of
net fluxes and the extent of equilibration of reactions in the gluconeogenesis pathway.
Furthermore, we show that fluxes estimated with this method are independent of the

isotopic steady-state assumption and independent of any potential zonation of glycerol.

8.2 Methods

8.2.1 Metabolic network model

The gluconeogenesis network model that we used for flux calculations was described
previously (see Chapter 7; Figure 7-1 and Table 7-1). In sort, the network model is
comptised of 24 reactions utilizing 26 metabolites, with 5 substrates (oxaloacetate, glycerol,
glycogen, water, and NADH from endogenous sources), 3 products (glucose, CO;, and a
metabolic sink for NADH), and 18 balanced intracellular metabolites. Stereospecific atom

transitions were assigned for all reactions in the model based on current knowledge.

8.2.2 Simulating isotopomer distributions using elementary metabolite units

Quantitative interpretation of isotopomer data requires the use of mathematical models that
describe the relationship between metabolic fluxes and isotopomer abundances. Recently, we
presented a novel framework for the modeling of isotopic tracer systems that significantly
reduces the number of system variables without any loss of information. The elementary
metabolite units (EMU) framework is based on a highly efficient decomposition method that
identifies the minimum amount of information needed to simulate isotopic labeling within a
reaction network using the knowledge of atomic transitions occurring in the network
reactions. Here, the gluconeogenesis network model was decomposed into 60 independent
EMU reaction networks with a total of 204 EMU variables, as opposed to the complete set

of 42,224 camomers that would be required to simulate this system using the traditional
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cumomer modeling strategy (i.e. a reduction of 99.5%). The functional units generated by
the decomposition algorithm, called EMUs, formed the new basis for generating system
equations that described the relationship between fluxes and isotopomer abundances
(Chapter 2). To simulate the isotopic labeling of glucose, the EMU networks can be solved
sequentially starting with the smallest EMU-size network up to the largest EMU-size

network. The mathematical simulation model was constructed with the Metran software.

8.2.3 Computational methods

Metabolic fluxes and their confidence intervals were determined by fitting mass isotopomer
abundances of glucose fragments to the detailed gluconeogenesis metabolic network model
using Metran software. In short, Metran estimates fluxes by minimizing the difference
between the observed and simulated measurements using an iterative least-squares
minimization procedure. The objective of this routine is to evaluate a set of feasible fluxes
that best accounts for the observed isotopomer measurements. After metabolic fluxes were
calculated, statistical analysis was automatically performed to obtain accurate standard
deviations and confidence intervals of fluxes by evaluating the sensitivity of the objective
function with respect to fluxes as described in Chapter 3. Flux validation was accomplished
by a statistical test for the goodness-of-fit (i.e. chi-square test for model adequacy), and a
normality test for the weighted residuals. To ensure a global optimum, flux estimation was
repeated at least four times starting with random initial values. Sensitivity analysis was
employed to determine the relative importance of measurements for the estimation of

individual fluxes as described previously (Chapter 3).

8.2.4 Determining deuterium enrichment of glucose

The amount of deuterium enrichment at each carbon position of glucose from 2H>O
experiments was determined using a least-squares approach that was previously described in
Chapter 5. In shott, we constructed a simulation model that predicts the mass isotopomer
distributions of selected ion fragments of glucose for given isotopomer distribution of

glucose hydrogen atoms, while taking into account natural isotope enrichments. The
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isotopomer distribution was determined from experimental data by solving a least-squares
regression problem, where the objective was to minimize the sum of squared deviations
between simulated and measured mass isotopomer abundances. From the estimated
isotopomer distribution we then obtained positional deutetium enrichments via linear
transformation. We identify the deutetium enrichment of C-H in catbon 1 as Dy, the
enrichment in carbon 2 as D5, and so forth. Since there are two hydrogen atoms at catbon 6
that cannot be distinguished by GC/MS, we could only determine the average enrichment at
carbon 6, i.e. Dg = Dgs/2.

8.2.5 Materials

Biochemicals were obtained from Sigma Chemicals (St. Louis, MO). The custom synthesized
glycerol tracer [U-13C,2Hg|glycerol (99+ At% 13C, 98+ At% 2H) was purchased from
Omicron Biochemicals (South Bend, IN). The isotopic putity was of the tracer validated by
GC/MS analysis. Tissue cultute media wete obtained from Sigma (St. Louis, MO).
Hepatocyte medium was DMEM powder (Sigma) supplemented with 3.7 g/L NaHCOs3, 30
mg/L proline, 100 mg/L otnithine, 610 mg/L niacinimide, 0.544 mg/L ZnCl,, 0.75 mg
ZnS0,4.TH20, 0.2 mg/L CuSO4.5H20, 0.025 mg/L MnSO4, 2 g/L bovine serum albumin,
100,000 U penicillin, and 100,000 U streptomycin, and further enriched with gluconeogenic
carbon sources: 1mM glycerol, 10 mM lactate, 1 mM pyruvate, 5 mM glutamine, and 2 mM
acetate. Four chemically identical labeling media were prepared, containing either 2H>O (at
10% entichment); [U-13C,2Hg]glycerol + unlabeled glycerol (1:3 mol/mol, i.e. 25%
enrichment of tracer); [U-13C,2Hs]glycerol + unlabeled glycerol (1:3 mol/mol, i.e. 25%
enrichment) prepared in 2H>O (at 10% enrichment); and medium with no tracets (as

control).

8.2.6 Hepatocyte isolation and hepatocyte suspension experiments

Hepatocytes were isolated from C57BL/6 mice by modified two step-collagenase perfusion
as described by Seglen (1976). Two mice (~25 gram) were fed ad libitum, and two mice (~25

gram) were fasted 12 hrs prior to hepatocyte isolation. The mice were anesthetized with
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tribromoethanol (500 mg/kg IP) for the duration of the procedute. In shott, the surgeon
exposed the intrapetitoneal abdominal contents including the liver, portal vein and inferior
vena cava. The portal vein was cannulated with a 24.5G catheter, and the liver was perfused
for 15 minutes at a rate of 7 mL/min with calcium-free perfusion buffer to remove blood
from the fibrous liver sac. Mouse euthanasia followed exsanguinations after cutting the
inferior vena cava to complete the perfusion circuit. The blanched liver was perfused with
collagenase solution (200U/mL) for 10 minutes at 7 mL/min to release hepatocytes from
the extracellular matrix. The digested liver was excised and placed in preservation buffer,
where the digested cells were gently scraped from the liver sac, washed and purified with
Percoll to remove dead cells and enrich the hepatocyte fraction. At this point cells wetre
counted and viability assessed by Trypan Blue exclusion. Typical viabilities were between 85-
90%, with cell yields of 1.0-1.5x10¢ cells/g mouse (25-40x106 cells). Purified cells were
suspended in media with isotopic tracers and seeded in 6-well plates (106 cells/well) and
incubated for 30 minutes at 37°C and 5% COa. At the end of the incubation petiod medium
samples were collected (approx. 1 mL), centrifuged for 10 sec, and the supernatant separated

from cells pellet. Cells and supernatant were stored at -80 °C prior to analysis.

8.2.7 Derivatization of glucose

Mass isotopomer distributions of glucose were determined from three glucose detivatives,
i.e. aldonitrile pentapropionate, methyloxime pentapropionate and di-O-isopropylidene
propionate glucose. For each derivatization procedure, 100 uL of medium sample was
deproteinized by addition of 300 uL of cold acetone, followed by vortexing vigorously for 30
sec, and centrifugation at 2000xg for 1 min. The supernatant was evaporated to dryness
under airflow and the residue derivatized as previously desctibed (Chapter 5). In shott, for
the aldonitrile pentapropionate and methyloxime pentapropionate derivatizations, 50 uL of 2
wt% hydroxylamine hydrochloride in pyridine, or 2 wt% methoxylamine hydrochloride in
pyridine, respectively, was added to the dry residue and the sample heated at 90°C for 60
min. This was followed by addition of 100 pL of propionic anhydride and heating at 60°C

for additional 30 min. The sample was then evaporated to dryness, dissolved in 100 pL of
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ethyl acetate and transfetred to an injection vial for GC/MS analysis. For di-O-
isopropylidene propionate derivatization, 500 uL of 0.38 M sulfuric acid in acetone was
added to the dry residue and the sample incubated at room temperature for 60 min. 400 uL
of 0.44 M sodium carbonate was added to neutralize the reaction, followed by addition of 1
mL of saturated sodium chloride. Di-O-isopropylidene derivatives were extracted by
partitioning with 1 mL of ethyl acetate. The upper, organic layer was evaporated to dryness,
followed by addition of 150 pL of propionic anhydride in pyridine (2:1 v/v) and heating at
60°C for 30 min. The sample was then evaporated to dryness, dissolved in 100 pL of ethyl

acetate and transferred to an injection vial for GC/MS analysis.

8.2.8 GC/MS analysis

Gas Chromatography-Mass Spectrometry (GC/MS) analysis was petformed using HP 5890
Series II GC (Gas Chromatograph) equipped with 2 DB-1701 [30 m x 0.25 mm (inner
diameter) x 0.25 pm] capillary column, connected to HP 5971 MSD (Mass Selective
Detector) operating under ionization by electron impact (EI) at 70 eV. The mass
spectrometer was calibrated using the ‘Max Sensitivity Autotune’ setting. Helium flow was

maintained at 0.737 mL/min by electronic control. The temperatures of the injector and the
detector were kept at 250°C and 300°C, respectively. The temperature of the column was

started at 80°C for 1 min, increased to 280°C at 20°C/min, and held for 4 min. For the
analysis of aldonitrile pentapropionate glucose, ion intensities were recorded for the
following four ion fragments: m/z 173-178 (Cs.s, Hs.g), m/z 259-265 (Cas, Ha.), m/z 284-
289 (Ci4, Ha.g), and m/z 370-379 (Cy.s, Hz.5). For di-O-isopropylidene propionate glucose,
ion intensities were recorded at m/z 145-149 (Ci.2, Hi.2). For methyloxime pentapropionate
glucose, ion intensities wete recorded at m/z 301-313 (Cy.s, Hi.¢). Measured intensities were
corrected for noise (baseline correction), and mass isotopomer distributions wete obtained
by integration. All mass isotopomer values were expressed as fractional abundances, i.e. for
each fragment the sum of all mass isotopomers equals one. Samples were injected at least six
times and the measured mass isotopomer abundances wete averaged. Ions at m/z 148, 149,
178, 288, and 289 contained constant contaminating ions amounting to 0.03, 0.05, 0.27, 0.18,

and 0.25 mol% enrichment, respectively, which was corrected by subtraction. In experiments
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with [U-13C,2Hs]glycerol, intensities of ions at m/z 145, 146, and 147 could be inaccurate (up
to 2 mol% inaccuracy) due by ovetlapping mass spectra from smaller ion fragments. To
exclude these data from flux determination we assigned relatively high measurement errors
to these ions, i.e. 2 mol% assumed measurement error (compared to <0.4 mol% for all other
ions). We should note that sensitivity analysis revealed that ions 145-147 were not impottant
for flux determination, i.e. only the ratio of m/z 148 relative to m/z 149 contained flux

information. Thus, inaccuracies in ions 145-147 did not affect flux results.

8.3 Results

8.3.1 Incorporation of deuterium into glucose from *H,0

In the pathway of gluconeogenesis labeled hydrogen atoms are incotporated into glucose
from medium containing deuterated water. The amount of deutetium incorporated at each
carbon position depends on the deuterium enrichment of the solvent, and relative activity of
various reversible reactions in the gluconeogenesis pathway. In this study, fresh hepatocytes
isolated from fasted and fed mice were incubated in medium containing 2H>O at 10%
enrichment. All experiments were performed in triplicate, i.e. hepatocytes were cultured in 6-
well plates for 30 min (10¢ cells/well). At the end of the incubation period medium samples
were collected and glucose was analyzed by GC/MS. The amount of deuterium incorporated
at each carbon position was determined by regression analysis of mass isotopomer
distributions of six glucose fragments as described previously (Chapter 5). As control,
hepatocytes were also cultured in medium with no tracers. Tables 8-1 and 8-2 show the
measured mass isotopomer distributions of the six selected glucose fragments from
experiments with fasted and fed hepatocytes, respectively. The observed mass isotopomer
abundances from the triplicate experiments were not statistically different (P>0.10). This
confirmed that biological variability between wells was small in our experiments. Table 8-3
shows the deuterium enrichments at all six carbon positions of glucose for the experiments

with fasted and fed hepatocytes.
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Table 8-1

Mass isotopomer distributions of glucose fragments from 2H>O experiments with isolated

hepatocytes from fasted mice. Hepatocytes were cultured in 6-wells plates in medium

containing 2H>O at 10% enrichment for 30 min, and one control well with no tracers (well

#4). Glucose labeling was analyzed by GC/MS. Shown are measured mass isotopomer

distributions of six selected glucose fragments (molar percentages, mol%o).

m/z C-H
(formula) positions Well # M+0 M+1 M+2 M+3 M+4
301 1,2,3,4,5.6,6 1 50.2 34.7 119 2.7 0.5
(C14H2109) 2 50.4 34.5 11.9 27 0.5
3 50.2 34.6 11.9 2.7 0.5
4 84.1 13.4 24 0.1 0.0
145 1,2 1 79.1 18.5 22 0.2 0.0
(CsH1103N) 2 78.8 18.8 22 0.2 0.0
3 78.9 18.7 2.2 0.2 0.0
4 92.5 6.7 0.8 0.0 0.0
173 5,6,6 1 72.3 234 3.8 0.4 0.0
(CsH1304) 2 72.2 235 38 0.4 0.0
3 72.3 234 3.8 0.4 0.0
4 90.7 8.1 1.1 0.1 0.0
259 4,5,6,6 1 64.4 28.1 6.4 1.0 0.0
(Ci2H19O¢) 2 64.3 281 6.4 1.1 0.0
3 64.4 282 6.3 1.0 0.1
4 86.3 11.6 1.9 0.2 0.0
284 234 1 68.4 25.7 5.1 0.8 0.0
(C13H1s06N) 2 68.2 258 5.4 0.7 0.0
3 68.1 26.0 5.2 0.7 0.0
4 85.1 12.6 2.1 0.2 0.0
370 2,345 1 58.5 311 8.5 1.7 0.2
(C17H2406N) 2 58.3 31.2 8.6 1.7 0.3
3 58.4 31.1 8.6 1.7 0.2
4 81.2 15.6 29 0.4 0.0

Data shown are the integrated mass isotopomer disttibutions not corrected for natural isotope

enrichments. Measurements errors were <0.3 mol%. Data from the triplicate wells were not

statistically different.
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Table 8-2

Mass isotopomer distributions of glucose fragments from 2H>O expetiments with isolated

hepatocytes from fed mice. Hepatocytes were cultured in 6-wells plates in medium

containing 2H>O at 10% enrichment for 30 min, and one control well with no tracers (well

#4). Glucose labeling was analyzed by GC/MS. Shown are measured mass isotopomer

distributions of six selected glucose fragments (molar percentages, mol%).

m/z C-H
(formula) positions Well # M+0 M+1 M+2 M+3 M+4
301 1,2,3,4,5,6,6 1 66.0 252 7.1 1.5 0.2
(C14H2,07) 2 65.0 25.8 7.5 1.6 0.2
3 65.9 25.3 7.2 1.5 0.2
4 84.2 13.3 2.3 0.2 0.0
145 1,2 1 84.5 13.7 1.7 0.2 0.0
(CsH11O3N) 2 84.5 13.7 1.6 0.1 0.0
3 84.3 139 1.7 0.1 0.0
4 92.4 6.7 0.9 0.0 0.0
173 5,6,6 1 82.6 149 22 0.2 0.0
(CsH1304) 2 81.9 15.5 23 0.2 0.0
3 82.2 15.3 2.3 0.2 0.0
4 90.7 8.0 1.1 0.1 0.0
259 4,5,6,6 1 76.2 19.3 3.8 0.6 0.1
(Ci2H,9O0g) 2 75.4 19.8 40 0.6 0.1
3 75.6 19.7 4.0 0.6 0.1
4 86.3 11.6 1.9 0.2 0.0
284 234 1 75.2 20.3 3.8 0.6 0.0
(Ci13H1s8O6NN) 2 74.7 20.7 39 0.6 0.0
3 75.1 20.4 38 0.6 0.0
4 84.9 12.7 2.1 0.2 0.0
370 2,345 1 68.5 24.4 6.0 1.1 0.1
(Ci7H240:N) 2 68.0 247 6.1 1.1 0.1
3 68.3 24.5 6.0 1.1 0.1
4 81.1 15.6 2.9 0.3 0.0

Data shown are the integrated mass isotopomer distributions not corrected for natural isotope

enrichments. Measurements errors were <0.4 mol%. Data from the triplicate wells were not

statistically different.
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Table 8-3

Deuterium enrichment of glucose from 2H>O expetiments with hepatocytes isolated from

fasted and fed mice. Hepatocytes isolated from fasted and fed mice were cultured in 6-wells

plates in medium containing 2H>O at 10% enrichment for 30 min, and one control well with

no tracers (well #4). Deuterium enrichment at all six glucose carbon position was

determined by least-squares regression as described in the Methods section. Results shown

are molar percent enrichments (best fit + SD).

Hepatocytes from fasted mouse

Hepatocytes from fed mouse

Carbon well #1 well #2 well #3 well #4 well #1 well #2 well #3 well #4
position 2H,0 2H,0 H,O  no tracers 2H,O 2H,0 2H,O  no tracers
Dy 73+04 63104  68+04 01x02 41+03 43+03 3703 00+02
D. 79+£04 91+04  85%04 0.0£0.2 49%+03 46+03 54%03 00£02
D; 65+03 5803 64+03 0.0+02 43+04 49+04 36+04 00+02
D, 66+02 67+02  65%02 00+02 34+£02 36402 37+£02 01102
Ds 106+02 105+02 105%02 0.0%0.2 50+02 50+02 51+02 00%02
Dys/2 57+02 5802  57%02 0.0+02 23+02 27+03 25+02 0.0%0.2
Total 50303 50003 50.1+0.3 0.1+0.2 264%03 277+04 265%+03  01+02
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To better interpret these results consider Figure 8-1 that schematically illustrates the
reactions involved in hydrogen exchange/incorporation into glucose. For example, it is well
known that PGI stereospecifically transfers the pro-R hydrogen at C1 of fructose 6-
phosphate (F6P) to the C2 position of glucose 6-phosphate (G6P), however, hydrogen
exchange with the solvent has also been observed for the PGI reaction (Malaisse, 1990;
Malaisse, 1991; Seeholzer, 1993). Malaisse et al. (1990, 1991) reported for a single passage in
the direction F6P—>G6P, 65% intramolecular hydrogen transfer and 35% hydrogen

exchange, and for a single passage in the direction G6P—F6P, 72% intramolecular hydrogen
transfer and 28% hydrogen exchange. It is generally assumed that there is rapid exchange
between F6P and GGP, in which case we would expect that the labeling at C2 of glucose is
equilibrated with the solvent. However, in our experiments the deuterium enrichment at C2
deviated significantly from 10%, i.e. solvent enrichment. In experiments with hepatocytes
isolated from fasted and fed mice we found 7.9-9.1% and 4.6-5.4% deuterium enrichment
at C2, respectively. These results clearly indicated that the PGI reaction was not fully

equilibrated.

Incorporation at C5 of glucose occurs in the gluconeogenesis pathway, mainly via the
reactions catalyzed by enolase and TPI (see Figure 8-1). Therefore, the ratio of enrichment
of C5 to that of the solvent is a measure of gluconeogenesis relative to total glucose
production. In expetiments with fasted hepatocytes we found 10.5-10.6% enrichment at C5,
indicating that 100% of glucose was produced by GNG, as expected in glycogen-deprived
hepatocytes. The observed 0.5 mol% difference between the solvent entichment and C5
enrichment may have been caused by measurement errors, inaccuracies in our media
preparation, or due to a slight isotope effect. In experiments with fed hepatocytes we found
5.0-5.1% enrichment at C5, indicating that about 50% of glucose was produced by GNG.
This result is in line with the expected contribution of GNG in hepatocytes isolated from
fed mice. Note that in both cases the C5/C2 ratio would overestimate fractional GNG
significantly, i.e. if we had used the C5/C2 ratio as a measure of fractional GNG, as
proposed by Landau, we would have obtained 123% and 100% for fractional GNG in fasted

and fed hepatocytes, respectively, which ate both irrational results.

-270 -



CHAPTER 8. APPLICATION OF [U-13C 2Hg]GLYCEROL TO ESTIMATE GNG FLUXES

GLUCOSE

+
I
‘
I
Q.
(]
<
=

H
H
Hg
“H
Glycogen
\
HH)_
H
Pyruvate

+ ! H
o = o
I ©o 3 o
o ! HHF
i H P oa I —
i i ‘ Q
" " " =t
' 1 ' N
+ + +
............................. o
v <(

G

FBP/F6P
DHAP

Glycerol

Figure 8-1: A schematic of reactions involved in hydrogen exchange and hydrogen

incorporation into glucose in the gluconeogenesis pathway.

sl =



CHAPTER 8. APPLICATION OF [U-BC 2Hg]GLYCEROL TO ESTIMATE GNG FLUXES

Deuterium incorporation at C1 and C6 positions occurs in the pyruvate — oxaloacetate —>
PEP pathway, more precisely, in reactions catalyzed by alanine aminotransferase and
fumarase. Deuterium is additionally incorporated at C1 via reactions catalyzed by
phosphomannose isomerase (PMI) and glucose 6-phosphate dehydrogenase (G6PDH).
Thus, deuterium enrichment at C6 relative to the solvent enrichment is a measure of the
contribution of PEP to glucose production, and the difference between C1 and C6
enrichments is indicative of the combined activity of PMI and G6PDH. In our experiments
with fasted hepatocytes we found 5.7-5.8% enrichment at C6 and 6.3-7.3% enrichment at
C1, indicating that 57% of glucose was derived from PEP, and that PMI/GG6PDH reactions
resulted in additional ~1% deuterium incorporation at C1. In expetiments with fed
hepatocytes we found 2.3-2.7% enrichment at C6 and 3.7-4.3% enrichment at C1,

indicating that about 25% of glucose was derived from PEP and that also here there was

some PMI/G6PDH actvity.

8.3.2 Incorporation of labeling into glucose from [U-"C,’H,]glycerol

Isolated hepatocytes were also incubated with [U-12C,2Hg]glycerol at 25% entichment, i.e. in
medium containing a mixture of [U-BC,2Hs|glycerol and unlabeled glycerol in the proportion
of 1:3. Tables 8-4 and 8-5 show the measured mass isotopomer distributions of glucose from
experiments with fasted and fed hepatocytes, respectively. Measured mass isotopomet
abundances from triplicate experiments were not statistically different, i.e. the maximum
observed deviation between teplicate wells was 0.2 mol%. Qualitative interpretation of mass
isotopomer distributions from these experiments is more difficult than from 2H>O
experiments, thus we will only highlight a few important observations. Detailed quantitative
analysis will be performed in section 8.3.4, where we apply rigorous flux analysis tools to
calculate fluxes and confidence intervals from this data. It is important to note that mass
isotopomer abundances from [U-13C2Hgjglycerol experiments cannot be corrected for
natural isotope enrichments as is often done for other tracer experiments, because here two
different isotopes ('*C and ?H) are incorporated into glucose simultaneously. Thus, we must

always analyze the uncorrected data directly.
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‘Table 8-4

Mass isotopomer distributions of glucose from [U-13C 2Hg]glycerol labeling experiments with

isolated hepatocytes from fasted mice. Hepatocytes were cultured in 6-wells plates in

medium containing [U-13C,2Hsg]glycerol at 25% enrichment for 30 min. Glucose labeling was

analyzed by GC/MS. Shown are mass isotopomer distributions of six selected glucose

fragments (molar percentages, mol%).

m/z Well
(positions) # M+0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8 M+9 M+10 M+11
301 1 712 130 25 1.3 2.8 6.1 23 04 0.1 0.2 0.2 0.1
(Ci-s, Hi-6) 2 711 131 2.6 1.3 29 6.0 23 0.4 0.1 0.2 0.2 0.1
3 71.2 131 25 1.3 2.8 6.0 2.3 04 0.1 0.2 0.2 0.0
145* 1 82.5 7.7 3.0 4.2 2.7
CipH) 2 823 77 30 42 28
3 824 7.7 29 41 2.8
173 1 85.8 8.0 1.1 04 42 0.5
(Cs.6, Hs.6) 2 85.8 79 12 05 42 05
3 85.8 8.0 1.1 0.4 42 0.5
259 1 80.1 125 21 0.4 0.3 3.7 1.0
(Cas, Hag) 2 80.0 125 21 04 0.3 3.7 1.0
3 80.1 123 21 04 0.3 3.7 1.0
284 1 725 166 3.7 2.7 3.1 14
(Cr4, Haog) 2 727 16.6 3.7 2.6 3.0 1.4
3 726 166 37 27 30 14
370 1 694 152 6.4 3.6 32 1.6 0.5 0.1 0.0 0.0
(Ci.s, Hz5) 2 69.6 15.1 6.5 3.6 32 1.5 0.4 0.1 0.0 0.0
3 69.6 15.1 6.5 3.6 32 1.5 0.4 0.1 0.0 0.0

Data shown are the integrated mass isotopomer disttibutions not corrected for natural isotope

enrichments. Measurements errors were <0.3 mol%. Data from the triplicate wells were not

statistically different.

* M+0 to M+2 mass isotopomer abundances of ion fragment at m/z 145 may be inaccurate due to

ovetlapping mass spectra.
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Table 8-5

Mass isotopomer distributions of glucose from [U-13C2Hjs|glycerol labeling expetiments with

isolated hepatocytes from fed mice. Hepatocytes were cultured in 6-wells plates in medium

containing [U-13C,2Hs|glycerol at 25% entichment for 30 min. Glucose labeling was analyzed

by GC/MS. Shown are mass isotopomer distributions of six selected glucose fragments

(molar percentages, mol%).

m/z Well
(positions) # M+0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8 M+9 M+10 M+I11
301 1 773 131 24 09 1.6 34 11 0.1 00 00 0.0 0.0
(Ci6, Hig) 2 773 131 24 09 1.6 34 1.1 02 00 01 0.0 0.0
3 773 131 24 09 1.6 33 1.1 02 00 00 0.0 0.0
145* 1 87.2 74 21 2.0 1.3
(Ci2, Hiz) 2 87.2 7.4 2.1 2.0 1.3
3 87.2 74 21 2.0 1.3
173 1 87.6 8.0 12 04 26 03
(Cs.6, Hs.) 2 87.6 8.0 12 04 26 03
3 87.6 8.0 12 04 26 03
259 1 825 120 20 03 04 23 0.5
(Cas, Hye) 2 824 120 20 03 04 23 0.6
3 825 120 20 03 04 23 0.6
284 1 783 151 29 1.6 1.5 06
(Ci.4, Hay) 2 783 151 29 1.6 1.5 06
3 782 151 29 1.6 15 06
370 1 751 153 5.1 2.2 1.5 06 01 0.0 00 0.0
(Cis, H25) 2 752 153 5.1 2.1 1.5 07 02 00 00 00
3 751 153 5.1 2.1 15 07 0t 00 00 00

Data shown are the integrated mass isotopomer distributions not corrected for natural isotope

entichments. Measurements errors were <0.3 mol%. Data from the triplicate wells were not

statistically different.

* M+0 to M+2 mass isotopomer abundances of ion fragment at m/z 145 may be inaccurate due to

overlapping mass spectra.
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First, consider the mass isotopomer distribution of ion fragment at m/z 301 that contains all
catbon and hydrogen atoms of the glucose molecule. In fasted and fed hepatocyte
experiments we observed significant abundances of mass isotopomers up to M+6. These
isotopomers were formed from the incorporation of a single [U-13C,2Hs]glycerol molecule
into glucose. To minimize probability of condensation of two labeled triose phosphates, we
used only 25% entichment of the tracers in the medium that was further diluted from
unlabeled endogenous sources, i.e. oxaloacetate—GAP. This reduced the chance of
condensation of two labeled TPs to less than 1%. Of the 8 deuterium atoms in [U-
13C,2Hg]glycerol only 5 atoms are stable, i.e. hydroxyl hydrogen atoms are rapidly exchanged
with the solvent. Furthermore, the C2 hydrogen of glycerol is transferred to NADH in the
reaction catalyzed by glycerol 3-phosphate dehydrogenase. Thus, DHAP detived from [U-
13C,2Hg]glycerol is M+7 labeled. If we consider the fate of atoms of DHAP (that eventually
becomes the top half of glucose), we find that the pro-S hydrogen at C1 of DHAP is lost to
the solvent in the aldolase reaction (see Figure 8-1), and in the PGI reaction the pro-R
hydrogen at C1 of F6P may be exchanged with the solvent resulting in M+5 glucose, or
transferred to C2 of GG6P via intramolecular transfer resulting in M+5 glucose. M+4 and
M+3 isotopomers of glucose may be formed via additional loss of deuterium atoms in the
TPI reaction (loss of C3 hydrogen of glucose), and in the PMI/G6PDH teactions (loss of
C1 hydrogen of glucose). In conclusion, the top half of the glucose molecule may be labeled
as M+3 to M+6 from [U-13C,2Hs]glycerol depending on the relative fluxes in the pathway
from glycerol to glucose. When we trace the path from glycerol to the bottom half of
glucose, i.e. glycerol->GAP->glucose, we find that the bottom half of glucose may be
labeled as M+5, M+6, or M+7 depending on relative fluxes of TPI, GAPDH, and aldolase
reactions. Taken together, the significant abundances of M+5 and M+6 isotopomers
compared to the M+3 isotopomer indicated that one or mote reactions in the
gluconeogenesis pathway was not fully equilibrated. Consider also the m/z 145 fragment of
glucose that contains the first two carbon and two hydrogen atoms of glucose. We observed
significant M+3 and M+4 abundances for this fragment from both fasted and fed
hepatocytes. The M+4 isotopomer is formed only if all four atoms are derived from [U-
13C,2Hjs]glycerol, whereas M+3 reflects the fraction of glucose molecules where one of the

two deuterium atoms has been lost, i.e. either via PGI (loss of C2 hydrogen), or via
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PMI/G6PDH (loss of C1 hydrogen). Thus, the significant abundance of M+4 vs. M+3

provided further evidence that the PGI reaction was not fully equilibrated.

8.3.2 Labeling incorporation into glucose from [U-"C,’H,]glycerol and *H,0

Preliminary simulation experiments of the pathway suggested that a combination of [U-
13C,?Hs|glycerol and 2H,O tracers would provide much more detailed flux information than
could be obtained from either of these tracers alone. The two tracers provide
complementary information. With the 2H>O tracer flux information is obtained from the
incorporation of 2H into glucose, whereas with the [U-13C,2Hs]glycerol tracer flux
information is obtained from the incorporation of 2H relative to *C incorporation into
glucose. The BC-carbon backbone of [U-13C2Hg]glycerol is critical for this method, because
it provides a measure of the total amount of [U-13C,2Hs|glycerol incorporated into glucose,
i.e. 13C-labeling is not lost in the pathway from glycerol to glucose as opposed to ZH-labeling.
Thus, [?Hs|glycerol would provides much less flux information than [U-13C,2Hg]glycerol,
because the loss of all deuterium atoms from [2Hs]glycerol yields M+0 glucose, which cannot
be distinguished from endogenous glucose and glucose derived from glycogenolysis.
Preliminary simulation experiments further indicated that we would be able to estimate
fluxes in this system independent of the amount of [U-13C,2Hs]glycerol that is incotporated
into glucose and independent of the isotopic steady state assumption, i.e. fluxes are strictly
derived from ratios of labeled mass isotopomers of glucose. Thus, endogenous M+0 glucose
will not affect the estimation of fluxes. As such, this method for estimating is fundamentally
different from other methods to estimate gluconeogenesis fluxes, e.g. like MIDA, where
fluxes are estimated by measuring absolute incorporation of 3C-tracers into glucose and

assuming isotopic steady state.

Here, isolated hepatocytes were incubated in medium containing the two tracers, i.e. [U-
13C,2Hg]glycerol at 25% enrichment and 2H>O at 10% enrichment. Tables 8-6 and 8-7 show
the measured mass isotopomer distributions of glucose fragments from triplicate
experiments with fasted and fed hepatocytes, respectively. Measured mass isotopomet

abundances from triplicate experiments were not statistically different, i.e. the maximum
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Table 8-6

Mass isotopomer distributions of glucose from [U-13C,2Hs]glycerol + 2H>O labeling
experiments with isolated hepatocytes from fasted mice. Hepatocytes were cultured in 6-well
plates in medium containing [U-13C,2Hs|glycerol at 25% enrichment and 2H>O at 10%
enrichment for 30 min. Glucose labeling was analyzed by GC/MS. Shown are mass

isotopomer distributions of six selected glucose fragments (molar percentages, mol%).

m/z Well
(positions) # M+0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8 M+9 M+10 M+11
301 1 426 301 108 32 26 51 36 12 03 02 0.2 0.1
(Ci, Hi) 2 424 302 109 32 26 5.1 36 13 03 02 0.2 0.1
3 425 301 10.8 32 26 51 36 12 03 02 0.2 0.1
145* 1 69.7 182 42 4.5 34
(Ci12, Hi) 2 69.6 184 4.2 4.4 35
3 69.9 182 4.2 4.4 33
173 1 68.7 221 3.6 0.8 39 09
(Cs., Hs.) 2 687 222 3.6 0.8 39 09
3 687 222 3.6 0.8 39 09
259 1 605 270 6.3 1.2 04 32 1.5
(Cas, Hag) 2 604  27.1 6.3 1.2 04 32 1.5
3 60.5 270 6.3 1.2 0.4 32 1.5
284 1 585 265 7.0 3.0 32 18
(Ci4, H24) 2 584 266 71 3.0 31 1.8
3 584 265 7.0 31 32 138
370 1 504 278 104 4.8 36 21 07 02 00 00
(Ci-s, Haus) 2 504 277 104 48 36 22 07 02 00 00
3 503 27.7 104 49 37 21 08 02 00 00

Data shown are the integrated mass isotopomer distributions not corrected for natural isotope
enrichments. Measurements errors were <0.3 mol%. Data from the triplicate wells were not
statistically different.

* M+0 to M+2 mass isotopomer abundances of ion fragment at m/z 145 may be inaccurate due to

ovetlapping mass spectra.
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Table 8-7

Mass isotopomer distributions of glucose from [U-13C,2Hs]glycerol + 2H,O labeling
experiments with isolated hepatocytes from fed mice. Hepatocytes wete cultured in 6-well
plates in medium containing [U-13C,2Hs]glycerol at 25% entichment and 2H>O at 10%
enrichment for 30 min. Glucose labeling was analyzed by GC/MS. Shown are mass

isotopomer distributions of six selected glucose fragments (molar percentages, mol%).

m/z Well
(positions) # M+0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8 M+9 M+10 M+11
301 1 61.8 227 6.5 1.8 1.5 29 1.9 0.6 0.1 0.1 0.1 0.0
(Cis, Hig) 2 62.1 22.7 6.4 1.7 1.5 29 1.8 0.6 0.1 0.1 0.1 0.0
3 620 228 6.6 1.8 1.5 29 1.9 0.5 0.0 0.0 0.0 0.0

145* 1 794 1441 2.8 2.1 1.6

CizHiz) 2 793 141 28 21 16

3791 143 28 22 16
173 1 8.1 142 22 05 24 06
Cse,Hsg) 2 801 143 22 05 24 05

3 801 142 22 05 25 05
259 1 736 186 39 07 04 20 09
CoeHeg 2 736 186 39 07 04 20 09

3 735 187 39 07 04 20 09
284 1699 210 48 18 16 08
CiyHay) 2 701 209 48 18 15 08

3 698 211 48 18 16 08

370 1 645 22.6 7.2 29 1.7 0.9 0.3 0.0 0.0 0.0
(Ci5, Has) 2 645 225 7.2 29 1.8 0.9 0.3 0.0 0.0 0.0
3 643 225 7.2 2.8 1.8 0.9 0.3 0.0 0.0 0.0

Data shown are the integrated mass isotopomer distributions not cotrected for natural isotope
enrichments. Measurements etrors were <0.3 mol%. Data from the triplicate wells were not
statistically different.

* M+0 to M+2 mass isotopomer abundances of ion fragment at m/z 145 may be inaccurate due to

overlapping mass spectra.
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observed deviation was 0.3 mol%. Glucose produced in these experiments was significantly
more labeled than in experiments with [U-13C,2Hs]glycerol alone, which reflected additional
incorporation of 2H from 2H>O into glucose. For example, we found significant M+7 mass
isotopomers (up to 1.2 mol%) for the ion fragment at m/z 301 that contains all carbon and
hydrogen atoms of glucose, compared to 0.4 mol% for the experiment with [U-
13C,2Hgglycerol alone. Quantitative analysis of the over-determined mass isotopomer data

from these experiments is performed in the next section.

8.3.3 Flux estimation and model validation

To better characterize metabolic fluxes in this system we performed comprehensive analysis
of the observed mass isotopomer distributions using the network model shown in Figure 8-1
and Metran software. Fluxes and their confidence intervals ware estimated for all six
experimental data sets, i.e. fasted and fed hepatocytes incubated with either 2H,0, [U-
13C,2Hs|glycerol, or ZH>O+[U-13C,2Hs]glycerol as tracers. Table 8-8 compares the
information content of the data sets. For example, the 2H,O experiment with fasted
hepatocytes provided 22 mass isotopomerts of glucose from which 4 independent fluxes
were estimated. Thus, there were 18 (=22-4) redundant measurements in this data. We found
excellent agreement between the observed and predicted mass isotopomer abundances for
the optimally fitted fluxes, as judged by the small magnitude of the sum of squared residuals,
ie. 2.1, which was smaller than the critical value of 31.5 for the statistical test of model
adequacy (at 95% confidence level with 18 degrees of freedom) indicating that the fit was
statistically acceptable. Fits for all six data sets were statistically acceptable. Note that 39
mass isotopomers from the [U-13C,2Hs|glycerol experiment allowed estimation of 6 fluxes,
whereas the 39 mass isotopomers from the 2H,O+[U-13C,2Hg]glycerol experiment provided
9 or 10 fluxes. Cleatly, the combined use of 2H20 and [U-13C,2Hs]glycerol provided the most

informative data set, as was expected based on preliminary simulations.

8.3.4 Evaluation of fluxes in the gluconeogenesis pathway

Table 8-9 shows the estimated fluxes and standard deviations of fluxes for each of the six

data set. Fluxes obtained from the different isotopic tracers were in good agreements.
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Table 8-8

Comparison of information content of isotopomer data. Mass isotopomer distributions from
six labeling experiments were fitted to a detailed model of glucose metabolism. Fluxes and
confidence intervals were determined by nonlinear least-squates regression. The fits were

statistically evaluated for the goodness-of-fit.

Isotopic tracers

[U-13C,2Hs]glycerol

Mouse ’H:0 [U-1BC,*Hs]glycerol and 2H,O

Fasted 22 39 39
No. of fitted mass isotopomers

Fed 22 37 38

Fasted 4 6 10
No. of estimated fluxes*

Fed 2 6 9

Fasted 18 33 29
No. of redundant measurements™

Fed 20 31 29

. ) Fasted 2.1 24.3 21.1

Sum of weighted squared residuals Fed 20 173 13.0

Fasted Yes Yes Yes
Fit statistically acceptable

Fed Yes Yes Yes

* Number of estimated fluxes equals the number of independent fluxes that were statistically different

from zero, as judged by 95% confidence interval.

** Number of redundant measurements = (no. of fitted isotopomers) — (no. of estimated flux)

- 280 -



CHAPTER 8. APPLICATION OF [U-13C 2Hg]GLYCEROL TO ESTIMATE GNG FLUXES

For example, the GNG flux was estimated at 100£5 and 5015 for fasted and fed
hepatocytes, respectively, based on 2H,O data, which was in good agreement with the values
of 9512 and 4212, respectively, estimated from the ZH>O+[U-13C 2Hs]glycerol data. Note
that [U-13C,2Hg]glycerol data alone did not allow precise estimation of the GNG flux, i.e. the
68% confidence interval was 65-100 and 26-100, respectively. Thus, only a lower bound
could be determined. This limitation of [U-13C,2Hjs]glycerol tracer was anticipated based on
simulation experiments, which was one of the reasons to use the combination of [U-
13C,2Hgglycerol and 2H2O. Note that the fractional contribution of glycerol and oxaloacetate
to glucose was more precisely determined from the 2H,O+[U-13C,2Hjs|glycerol data than
could be determined from either of the two tracets alone. It is clear from the results shown
in Table 8-9 that [U-13C,2Hs]glycerol primarily provides information regarding the
reversibility of reactions in the gluconeogenesis pathway. Reaction reversibilities were
accurately determined from both [U-13C,2Hs]glycerol and 2H,O+[U-13C,2Hg]glycerol
experiments, but not from 2H,O data alone. Fractional equilibration for the following four

reactions was estimated precisely: 63%z5 equilibration for PGI, 72%z4 equilibration for

TPI, 8%+3 equilibration for transketolase, and 18%=*6 equilibration for the combined
activity of PMI and G6PDH reactions. It was interesting that the estimated reaction
reversibilities were identical for fasted and fed hepatocytes, suggesting that these fluxes may
have a physiological role. To our best knowledge, this is the first methods that allows the
estimation of reaction reversibilities in the gluconeogenesis pathway in vivo, which opens up
many opportunities for future research. For example, it would be interesting to compare
reaction reversibility of healthy hepatocytes with insulin-resistant hepatocytes, or with

hepatocytes responding to hormones.

8.3.5 Estimation of fluxes using extended model

In the previous analysis we assumed that all glucose was newly produced and that the
enrichment of the tracers was constant and known. These assumptions were clearly satisfied
in our well-controlled experiments, however, if we apply these tracers to larger systems, e.g.

perfused livers, or whole animal models then these assumptions may not be valid.
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Table 8-9

Metabolic fluxes estimated from labeling experiments. Metabolic fluxes and their confidence

intervals were estimated by fitting glucose mass isotopomer disttibutions to a detailed model

of gluconeogenesis. Values shown are estimated flux + SD, or the 68% confidence interval.

Isotopic tracers

[U-13C,>Hs|glycerol

Net fluxces Mouse 2H,O [U-13C 2H;lglycerol and 2H,O
Glucose production (fixed at 100) Both [100} [100] [100]
Fasted 1005 65 - 100 95+2
~ 1 3 PAT
Gluconeogenesis (GNG) Fed 50 + 5 26— 100 4249
Fasted 0£5 0-~35 5£2
“1er e (AT V%
Glycogenolysis (GL) Fed 50 +5 0-74 58 +2
Glveerol to slucose fl Fasted 57125 524 52+ 1
ryeeroTio glucose fux Fed 33420 29+ 1 29+1
Oxal cate to olucose fl Fasted 137+ 24 76 — 150 137+ 4
xaloacetate T glucose Tux Fed 67 +22 24 173 5542

Exchange fluxes and percent equilibration (Yo)**

Phosphool . Gl Fasted 0-1000(0-91%)  173£35(63% +4) 180 £ 35 (64% + 4)
osphoglucose isomerase (PG) Fed  0-125(0—56%) 164%54(62%+6) 145+ 35 (59% * 5)
Fasted nd nd nd
Aldolase Fed nd nd nd
. . Fasted 0 - 400 (0 — 80%) 295+60 (74% £ 4) 280 £ 45 (73% + 3)
Triose phosphate isomerase (IP1) Fed nd 260 + 150 (72% £8) 240 + 130 (71% * 8)
Phosphomannose isomerase (PMI) + Fasted 0~ 520 (0 —83%) 20+ 8 (16% £ 6) 917 (8% t0)
Glucose 6-phosphate dehydr. (G6PDH) Fed nd 24+12(19% £ 7) 25+ 12 20% = 7)
? B Fasted nd 1042 (9% + 2) 8 +4 (7% + 3)
Transketolase (TK) Fed nd 10+ 4 (9% + 3) 845 (7% £ 4)
Fasted nd nd nd
Phosphoglucomutase (PGM) Fed nd od od
. Fasted nd nd nd
Glycerol 3-phosphate dehydr. Fed od od od
Glyceraldehyde 3-phosphate dehydr. Fasted nd > 320 (>76%) > 260 (>75%)
(GAPDH) Fed nd > 65 (>39%) > 14 (>12%)
Fasted nd nd nd
i > D
Cycling between GAP and PEF Fed od od od

* GNG and GL are not independent fluxes, i.e. GNG = (Vyyeerol T Voxaloaceure) /25 GL = 100-GNG.

** ‘nd” (=not determined) indicates that the flux could not be determined, i.e. the confidence interval

was 0 — infinity (i.e. 0 — 100% equilibration).

** Percent equilibration = 100% x (exchange flux) / (100 + exchange flux).
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Therefore, we tested the sensitivity of estimated fluxes with respect to these assumptions.
For that purpose we created an extended mathematical model that included three additional
parameters that were estimated: (i) fraction of newly produced glucose from tracers, as
opposed to endogenous unlabeled glucose; (i) fractional enrichment of 2H;O, i.e. in our
expetiments 10%; and (iii) fractional enrichment of [U-13C,2Hg]glycerol tracer, i.e. in our
experiments 25%. Fluxes and confidence intervals were estimated for the extended model
using Metran. Table 8-10 compares the flux results obtained using the basic model from the
previous section with the flux results obtained using the extended model. For example, our
results indicate that with the extended model it is not possible to estimate the GNG flux
from 2H>O data. The best estimate for the GNG flux was 10026 for fasted hepatocytes and
44-100 for fed hepatocytes, thus only a lower bound could be determined in the latter
experiment. The fraction of newly synthesized glucose was accurately estimated at 100%=5

for fasted hepatocytes, but was less precisely estimated for fed hepatocytes, i.e. 100%+26.

The enrichment of 2ZH>O was slightly overestimated at 11%+0.4 and 10.9%+0.4 for fasted
and fed hepatocyte expetiments, respectively, compared to 10% true entichment. For the
[U-13C,2Hs]glycerol experiments the quality of flux results was not significantly affected using
the extended model, as we indeed expected based on preliminary simulation expetiments.
For example, fractional equilibration of fluxes were determined with similar precision as with
the basic model. The additional model parameters could not be determined precisely, i.e. the
fraction of newly synthesized glucose was estimated at 100%+36 and 100%2122 for fasted
and fed hepatocyte experiments, respectively, and the enrichment of [U-3C,2Hs|glycerol was
estimated at 16-100% and 8-100%, respectively (25% true enrichment). These results were
encouraging, because they illustrated that fluxes could be estimated from [U-13C 2Hgs]glycerol
data independent of the amount of glycerol incorporated and independent of the presence of
unlabeled endogenous glucose. The same was true for the 2HO+[U-13C,2Hsjglycerol
experiments. Here, both the net and exchange fluxes were estimated precisely with the
extended model. For example, with the extended model the GNG flux was estimated at
9314 and 4315 for fasted and fed hepatocytes, respectively, which corresponded well with
9512 and 4212, respectively, as estimated using the basic model. The slight decrease in

precision was due to the reduced number of redundant measurement for the estimation of
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Table 8-10

Metabolic fluxes estimated using the basic and extended network models. The extended

model included three additional parametets that had to be estimated: fraction of newly

produced glucose, fractional enrichment of water, and fractional entichment of glycerol

tracer. Values shown are estimated flux + SD, or the 68% confidence interval.

Isotopic tracers

|U-1BC,2Hs]glycerol

2H,0 [U-13C,?Hs]glycerol and 2H,0
Basic Extended Basic  Extended  Basic  Extended
Net fluxces Mouse  nfodel  Model  Model  Model  Model  Model
Glucose production (fixed at 100) Both  [100] (100] [100] (100] [100] [100]
. o Fasted 100x5 1006 65-100 53-100 95+£2 93+4
Gluconeogenesis (GNG) Fed 505 44-100 26-100 25-100 42+2  43%5
. Fasted 0x5 06 0-35 0-47 512 74
Glycogenolysis (GL) Fed  50+5 0-56  0-74 0-75 58+2 57+5
Glycerol to glucose flux Fasted 57125 66 = 30 52+ 4 13-92 52+1 3612
Fed 33+20 51 +45 29+ 1 7-175 29+1 3112
Oxaloacetate to ghicose flux Fasted 137+24 132130 76-150 76-187 137+4 157%15
Fed 67 £22 98+40 24-173 14-193 55+2 73+ 15
Percent equilibration (Yo)*
Phosphoglucose isomerase (PGI) Fasted 0-91% 0-91% 63%+4 62% %5 64%+t4 62%=*4
Fed 0 —56% nd 62%+6 63%x7 59%+5 62%+6
Triose phosphate isomerase (TPI) Fasted 0-80% 0-81% 74%+4 75%%3 73%+3 75%+3
Fed nd 23-100% 72%+8 80%x6 71%+8 74%=+8
Phosphomannose isomerase (PMI) +  Fasted 0-83% 0-83% 16%*6 16%*5 8%*6 5%t4
Glucose 6-phosphate dehydr. (G6PDH) Fed nd nd 19%+7 20%+8 20%+t7 17%=x8
Fasted nd nd 9% +2 9%+£3 T7%*3 8%zx4
Transketolase (TK) Fed nd nd 9% +3 9% +4  T%+4  8%t5
Glyceraldehyde 3-phosphate dehydr. Fasted nd nd > 76% > 74% > 72% > 67%
(GAPDH) Fed nd nd > 39% > 53% > 12% > 80%
Additional model parameters
Fraction newly produced glucose Fasted [100%] 100% %5 [100%] 100% =36 [100%] 87% 12
Fed [100%] 100% £ 26 [100%] 100% +22 [100%] 96% 12
Water enrichment Fasted (10%] 11.0%+05  [0%] [0%] [10%] 9.9% + 0.4
Fed (10%] 10.9%+0.5  [0%] [0%] [10%]  9.0% % 0.4
Glycerol ensichment Fasted  [0%] [0%] [25%]  16-100% [25%] 22-100%
Fed [0%) [0%] [25%] 8-100%  [25%] 13 —100%

* ‘nd’ (=not determined) indicates that the 68% confidence interval was 0 — 100%.

* Percent equilibration = 100% x (exchange flux) / (100 + exchange flux).
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the gluconeogenesis flux, i.e. three additional parameters were estimated in the extended

model from the same number of mass isotopomers.

8.4 Discussion

Previously we have shown that net and exchange fluxes in the gluconeogenesis pathway may
be estimated through the combined analysis of 2H>O, [U-13C]glycerol, and [2Hs]glycerol
experimental data (Chapter 7). Here, we provide a novel two-tracer strategy that allows
accurate estimation of the same fluxes from a single experiment. Quantitative analysis of
mass isotopomer distributions of glucose resulting from the incorporation of [U-
13C,2Hg]glycerol into glucose required the use of the elementary metabolite units framework
for modeling isotopic disttibutions. The EMU method reduced the computational problem
of isotopic simulations from 42,224 variables, which could not be solved computationally, to
only 204 EMU variables that were easily computed. Using the Metran software fluxes and
confidence intervals were determined and the fits were statistically evaluated. The methods
developed in this study and the insight obtained from these expetiments have wide
implications for in vivo studies of glucose metabolism in vivo. We have cleatly shown that

PGI and TPI reactions are not fully equilibrated in isolated hepatocytes. In hepatocytes
isolated from fasted and fed mice we found that PGI was only 63%z+5 equilibrated and TPI
was only 72%+4 equilibrated. This resulted in incomplete equilibration of hydrogen at C2 of

glucose and the solvent in 2H>O expetiments, and thus overestimation of fractional GNG
from the ratio of deuterium enrichment at C5 vs. C2 of glucose, i.e. 123% for fasted
hepatocytes and 100% for fed hepatocytes, compared to the true values of 95% and 42%,
respectively. Furthermore, we have illustrated that using [U-3C,2Hs]glycerol metabolic fluxes
can be determined independent of the isotopic steady state assumption and independent of
the amount of glycerol incorporated into glucose, i.e. independent of zonation of glycerol.
Thus, this method can be applied to perfused livers and whole animal models without
difficulty. And because this method does not require isotopic steady state, tracer expetiments
- can be much shorter (i.e. less expensive) than current experiments that require 4-5 hr

constant infusion of tracer to reach isotopic steady state of glucose labeling.
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Appendix A

GC/MS analysis of TBDMS derivatized

amino acids

GC/MS analysis of unlabeled and [U-13C}-labeled (99 At%) amino acids was performed
using HP 5890 Series II GC (Gas Chromatograph) connected to HP 5971 MSD (Mass
Selective Detector). The mass spectrometer was calibrated using the ‘Max Sensitivity
Autotune’ setting.

Column Specifications

Agilent Technologies 122-0732 DB-1701 (Serial No. US4823442H)
Length: 30 m

ID: 0.25 mm

Film: 0.25 ym

Temperature limits: -20°C to 280°C

MSD Settings

Scan mode

7 min solvent delay

23 min recording time

Mass range: 195 to 445 amu (approx. 2.7 scans/sec)

GC Settings

Constant flow 0.737 ml/min (= 6 psi at 80°C; 31.6 cm/sec)
Injector temp: 270°C
Transferline temp: 300°C
Temperature program:
o 100°C (hold 1.5 min)
o 20°C/min to 130°C
o 10°C/min to 220°C (hold 3 min)
o 5°C/min to 280°C (hold 3 min)
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APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Total Ion Chromatogram
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APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Recommended fragment ions and corresponding precursor metabolites
(for E. colibiosynthesis pathways)

Amino  Mass Carbon atoms Fragmentation Precursor metabolite(s)
acid Range
Ala 232 - 238 2-3 M- CngO Pyr(z.3)
260 — 267 1-2-3 M -CiHo Pyri-23
Gly 218 - 223 2 M - GsHsO 3PGg and C-1 and OAC;
246 — 252 1-2 M- C4Hy 3PGq.y and 3PGg) + CO; and other
Val 260 — 268 2-3-4-5 M - G;HsO Pyr(z_3) + Pyr(2_3)
288 -_— 297 1-2-3-4—5 M- C4H9 Pyr(1_2_3) =+ Pyr(g.3)
Leu 274 — 283 2-3-4-5-6 M - CsHyO AcCoAp + Pyrp.s + Pyrp s
Ile 200 — 208 2-3-4-5-6 M - GH;505581 OAC(z.3.4) + Pyr(2_3)
274 - 283 2-3-4—5-6 M- CngO OAC(2_3.4) + Pyt(2_3)
Ser 288 — 294 2-3 M- C7H1 5OZSi 3PG(2.3) and GIY(Z) + C-1 and other
302 - 308 1-2 M - C7H 7081 3PGq.z and Glyg.z
362 - 369 2-3 M - CsHyO 3PG.3 and Glyg + C-1 and other
390—-398  1-2-3 M - CsHo 3PG-2.3) and Glyg.z) + C-1 and other
Thr 376 — 382 2-3-4 M - GsHyO OAC34
404 — 413 1-2-3-4 M - C4Hy OAC(.2.3.4
Met 218 - 226 2-3-4-5 M — CH150:51 OACpi4+ C-1
292 - 298 2-3-45 M - GHyO OACg34 + C-1
320 - 327 1-2-3-4-5 M - CyHy OAC(1.2‘3_4) +C-1
Phe 234 — 243 2-3-4-5-6-7-8-9 M - GH50,51 PEP(3 + PEP(3 + E4P2.3.4
302 - 307 1-2 M- GHy PEP(3
308 - 316 2-3-4-5-6-7-8-9 M - CsHoO PEPg.3) + PEPp.3) + E4P123.9
336 — 345 1-2-3-4-5-6-7-8-9 M - C4Hpy PEP(1.2.3 + PEPp.3) + E4Pq.5.3.4)
Asp 302 - 308 1-2 M — CgH170,81 OACq.y
376 - 382 1-2 M -GCsHi1O OACq.y
390 - 398 2-3-4 M - GsHyO OACg.3.49
418 — 427 1-2-3-4 M - CHy OAC(-2.3.4
Glu 330 - 336 2-3-4-5 M- C7H1 5025i AKG(z.3.4.5)
432 — 442 1-2-3-4-5 M -CsHo AKG.2.345
Tyr 302-305 1-2 M - Ci3H»0OSi  PEPq.y

3PG: 3-phosphoglycerate

PEP: phosphoenolpyruvate

Pyr: pyruvate

EAP: erythrose-4-phosphate

AKG: a-ketoglutarate
OAC: oxaloacetate

AcCoA: acetyl coenzyme-A

R5P: ribose-5-phosphate
C-1: One-carbon unit
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APPENDIX A, GC/MS ANALYSIS OF AMINO ACIDS

Rejected fragment ions and reason for rejection

Amino  Mass Carbon atoms Reason for rejection Alternative
acid Range fragment
Val 302-308  1-2and 1-2-3-4,5 Opverlapping fragments n/a
Leu 200-208  2-3-4-5-6 Inaccurate. M+2 too high (+0.9 mol%) Leu-274
Leu 302-312  1-2and 1-2-3-4-5-6  Overlapping fragments n/a

Ile 302-312  1-2and 1-2-3-4-5-6  Ovetlapping fragments n/a
Pro 258 —-266  2-3-4-5 Co-eluting with other compounds Glu-330
Pro 286-295  1-2-3-4-5 Co-eluting with other compounds Glu-432
Ser 230-237  unknown Unknown fragmentation unknown
Thr 417 -424  unknown Inaccurate. M+0 too low (-4.0 mol%) unknown
Met 244 -250  unknown Unknown fragmentation unknown
Asp 244 -249  unknown Unknown fragmentation unknown
Asp 258 -266  unknown Inaccurate. M-1 too high (4.4 % of M+0) unknown
Asp 316-323 2-3-4 Inaccurate. M+3 too high (+0.7 mol%) Asp-390
Glu 272-280  unknown Unknown fragmentation unknown
Glu 358 -367  1-2-3-4-5 Inaccurate. M-1 too high (1.8 % of M+0) Glu-432
Glu 404 —408  2-3-4-5 Inaccurate. M+0 too low (0.6 mol%) Glu-330
Lys 329-336  2-3-4-5-6 Low signal-to-noise ratio none
Lys 431 - 441 1-2-3-4-5-6 Inaccurate. M-1 too high (1.7 % of M+0) none
Tyr 364375  2-3-4-5-6-7-8 Low signal-to-noise ratio Phe-308
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APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Alanine (Ala)
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APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Ala 232 M+1 M+2 M+3 M+4
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Ala 232 [U-13C]-Ala
Formula : CioH26ONSia
Exact mass : 232.155
C-atoms : 2-3
m/z theory data  difference m/z theory data  difference

232 100.0 100.0 0.0 232 0.0 0.3 0.3
233 21.9 22.1 0.2 233 2.0 0.1 -1.9
234 9.0 9.1 0.1 234 100.0 100.0 0.0
235 1.3 1.3 0.0 235 19.8 20.8 1.0
236 0.2 0.2 0.0 236 8.5 8.9 0.4
237 0.0 0.0 0.0 237 11 1.2 0.1
238 0.0 0.0 0.0 238 0.2 0.2 0.0
239 0.0 0.0 0.0 239 0.0 0.0 0.0

This fragment can be used for quantitative analysis.
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APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Ala 260 M+1 M+2 M+3 M+4
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Ala 260 [U-13C]-Ala
Formula : C11H2602NSiz
Exact mass : 260.150
C-atoms : 1-2-3
m/z theory data  difference m/z theory data  difference
259 0.0 0.0 00 259 0.0 0.0 0.0
260 100.0 100.0 0.0 260 0.0 0.3 0.3
261 23.0 232 0.2 261 0.0 0.4 0.4
262 94 9.4 0.0 262 31 33 0.2
263 1.4 1.4 0.0 263 100.0 100.0 0.0
264 0.3 0.2 0.0 264 19.9 20.5 0.6
265 0.0 0.0 0.0 265 8.7 9.0 0.3
266 0.0 0.0 0.0 266 1.1 1.2 0.1
267 0.0 0.0 0.0 267 0.2 0.1 -0.1
268 0.0 0.0 0.0 268 0.0 0.0 0.0

This fragment can be used for quantitative analysis.
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APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Glycine (Gly)
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s 200 250 300 350 400 430 m/z
\opiEraged Scan ; 417 10 424 TIC 65255 8P = 394898 <
a0 21918 24815
80
70
& 60
z
g so
2
3 40
0
20
10
290[.!5
e 200 250 e aso 400 450 m/z
CHs CHs 0 CHs CHs
| | v H |l | |
H;C—C—Si—N—C —C—0—Si—C—CHj3
| | C14H33NO,Si,
CH3 CH3 CH3 CH3 Exact Mass: 303.205

- 302 -



APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Gly 218 M+1 M+2 M+3 M4
- 77 , 165 - ;‘,: , o 1
%7&5“ b} - « o 1
E o 7» 7777777 ! 7.; 777777777 65 "‘.i‘ _______ B e
< s ’-;. . 6 e vty ma
° ‘ Peak aiea Sx ‘07 ° ‘ Peak azrea i 107 ’ ' Peak aiea JX o ° ‘ Peak azrea :1 ‘07 ° 1 Peak azrea i ‘07
[U-13C]-Gly 218 M+1 M+2 M+3 M+4
_ 15 765} 4 e 75 5
;g ' * ) ‘:,3;. 16 - s{"‘-:' 7 aer T '!“ ¢ Amvw
° F:‘eakwjrea ? 3.17 °o F:eakijrea ? :,507 o l;eak‘:rea ’ j;} o F:eak‘;rea ? j ‘507 ° I;eak':rea ? f"sov
M+5 M+6
g 1 1
° * I;eak‘aﬁrea ’ :‘1507 ’ * F:eak':rea : :.‘507
Gly 218 [U-8C]-Gly
Formu.la : C9H24ONSi2
Exact mass : 218.140
C-atoms : 2
m/z theory data  difference m/z theory data  difference
217 0.0 0.0 0.0 217 0.0 0.9 0.9
218 100.0 100.0 0.0 218 1.0 0.0 -1.0
219 20.8 20.7 -0.1 219 100.0 100.0 0.0
220 8.8 8.7 -0.1 220 19.7 20.4 0.7
221 1.2 1.2 0.0 221 8.5 8.7 0.2
222 0.2 0.2 0.0 222 11 1.2 0.1
223 0.0 0.0 0.0 223 0.2 0.2 0.0
224 0.0 0.0 0.0 224 0.0 0.0 0.0

This fragment can be used for quantitative analysis.
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Gly 246 M+1 M+2 M+3 M+d
g 7 175 '..;‘ 75 . -=' 15 .
g 75-%..-; -------- \esr:-‘l—_,_.j‘_‘___ 7“-_‘_:_--- l'é’.‘_'ﬁ_"‘."“d—‘
< 7" .‘;- 1% o s 4 e
° ‘Peak are: N m: ’ 1F’eak are: N m: ’ ‘Peak arez m: ’ ‘Peak are: ’ ‘Peek ar:n m:
[U-13C]-Gly 246 M+t M+2 M+3 M+4
g 15 15 65 e
g -'} ' 755 . . . !:.. 7 ) N
E os"l v o5 s e A - ¥ !
LA w13 "
“I. - . - ole o Loadls 5L - - ——
° Peak area 0 * Peak a::a ’ oo e Peak a::a : o ° Pe‘ak a::a - °o Pe‘ak a:éa ? 10
M+5 M+6 M+7
i . e B
s? "si' 1.5 15
E 1 1 1
é [ - P
’ ” Pe'ak a:':a : . m7 ? ” P;ak a‘resa : " 107 ’ * P;ak a::a : m?
Gly 246 [U-3C]-Gly
Formula : C10H240:NSiz
Exact mass : 246.135
C-atoms : 1-2
m/z theory data  difference m/z theory data  difference
246 100.0 100.0 0.0 246 0.0 0.4 0.4
247 21.9 21.8 -0.1 247 20 0.6 -1.4
248 9.2 9.1 0.1 248 100.0 100.0 0.0
249 1.3 1.3 0.0 249 19.8 20.3 0.5
250 0.2 0.2 0.0 250 8.7 8.9 0.2
251 0.0 0.0 0.0 251 1.1 1.2 0.1
252 0.0 0.0 0.0 252 0.2 0.2 0.0
253 0.0 0.0 0.0 253 0.0 0.0 0.0

This fragment can be used for quantitative analysis.
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Valine (Val)
1op AVeraged Gcan : 55310 557 TIC : 1334668 6P = 446192 <
o0 26015
a0 288.15
7
Y 6o
5u
2 40 302.20
30
20
" 21608 2515 |f | 33}.20
e 200 2%0 300 3do 400 450 /7
10qAVeraged Scan : 557 10 561 TIC : 1010105 3P = 233072 <
90 264.20
80 203.20
70
g 60
g s0
3w
30
20
lf 207.00220.05 24115 J LJ‘ I 33520 i
E 200 230 300 330 Tato 430 /2
CHj CHs 0 CHj CH,
| | v ow |l | |
H3C—C|)—S||-—-N—(|'3—C—O—Sll—(ll—CH3
CH; CH CH CH; CH .
TR N 2 Cy7H3gNO,Siy
H;C CH; Exact Mass: 345.2519
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Val 260

M+1 M+2 M+3 M+4
745 b - r
= - '_."" 75 o 5 1
& My, 185 |y ,
& ns ! L 4 o
3 . g S |35 ¢ e
§ 73 i . f 05
2 s \o' ‘.\-. 175 65 o et s
’ ‘Peak areza . ':7 ’ ‘Peak ar:a . '27 ? ‘Peak ar:a N 1:7 ° 'Peak an:a N r:7 ’ 'Peak areza ‘17
[U-13C]-Val 260 M+1 M2 M+3 M+4
g . "f
g 1 1 e P
§ ssf, b 3 AN ; 2 T
) I | B Hos e : s
° : Feak1a°rea 15‘“’3 ° ? Peak‘:nea ’5" ° ’ ) Peak:rea ‘5’ W® ’ : Peak‘ac:rea !5“05 ’ ) Peak:rea IS' ms
M+5 ”s M+6 M+7 M+8 M+9
g ) : i £f sl < £ gt ! T " o ! ‘ !
§ 188 .. H 05 95 a5
15 v N e e v e
° ’ Peak‘aurea * [ ’ ; F'eak‘:rea ‘5”05 ° ’ Peak:rea ‘Sm’s ’ Peak‘:rea 15‘“’6 ° ? Peak:rea ‘5“03
. Val 260 [U-13C]-Val
Formula M C12H3()ONSi2
Exact mass : 260.187
C-atoms : 2-3-4-5
m/z theory data  difference m/z theory data  difference
260 100.0 100.0 0.0 260 0.0 0.4 04
261 24.2 24.7 0.5 261 0.0 0.2 0.2
262 9.5 9.6 0.1 262 0.0 0.5 0.5
263 1.5 1.5 0.1 263 4.1 4.9 0.8
264 0.2 03 0.1 264 100.0 100.0 0.0
265 0.0 0.0 0.0 265 20.0 211 1.1
266 0.0 0.0 0.0 266 8.5 8.9 04
267 0.0 0.0 0.0 267 1.1 1.1 0.0
268 0.0 0.0 0.0 268 0.2 0.2 0.0
269 0.0 0.0 0.0 269 0.0 0.0 0.0

This fragment can be used for quantitative analysis. Note, however, that M+0 is slightly too low (-0.3
mol%) and M+1 is slightly too high (+0.2 mol%).
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Val 288 M+1 M+2 M+3 M+4
g P oo oo - WL T 7—?-" T T T T AT
é 725 - :.J 18 1
72 A 65 Sttty
° * Pe;k areLa5 ;07 ’ ° Pe;k ar;: f|o7 ’ * Pet‘ak are‘: j|o7 ’ o Per‘ik are‘: f|o7 ’ o Pe:ak are‘ja5 :‘07
[U-13C]-Val 288 M+1 M+2 M+3 M+d
£ . > 4 AN
e PR N i e e ‘ . . $3 e u e as
0 0 a L hd bl i 0
i ;eak area‘D K‘oe ° ;eak areaw “05 ’ Fieak area‘o X‘Us ° :‘eak area‘o “05 ? Fs'eak area‘O xms
M+5 M+6 M+7 M+8 M+9
g 72 b b . w3 - E "‘:.4 Tie o 2 vea !
é 75 * ! .' ’ i 05 05
14.5 - 8 . . $s - »-: -
‘ F:eak area'o " me ° ;eak area‘o B ‘US ° lieak areaw « ‘US ’ ;eak area‘o x '06 ’ :’eak areaw B ‘US
Val 288 [U-BC]-Val
Formula : C] 3H3oOzNSi2
Exact mass : 288.182
C-atoms : 1-2-3-4-5
m/z theory data  difference m/z theory data  difference
287 0.0 0.0 0.0 287 0.0 0.0 0.0
288 100.0 100.0 0.0 288 0.0 0.3 0.3
289 25.3 252 -0.1 289 0.0 0.2 0.2
290 10.0 9.8 -0.2 290 0.0 0.1 0.1
291 1.7 1.6 -0.1 291 0.0 0.3 0.3
292 0.3 0.2 -0.1 292 52 5.8 0.6
293 0.0 0.0 0.0 293 100.0 100.0 0.0
294 0.0 0.0 0.0 294 20.1 20.5 0.4
295 0.0 0.0 0.0 295 8.7 8.8 0.1
296 0.0 0.0 0.0 296 11 1.2 0.1
297 0.0 0.0 0.0 297 0.2 0.2 0.0
298 0.0 0.0 0.0 298 0.0 0.0 0.0

This fragment can be used for quantitative analysis.
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Val 302

M+ M2 M+3 M4
§ 725 . 19s}° N J g I_‘
'§ IZ.__’. ______ _‘ m‘_——"—-—-—-- __“VA‘-.:%._ _':'l-*'u:.‘:.'_.‘-_‘_-l 05
< 7" . ":\-.:-p ? 1 ,.':_ o —mete |
v I:eak :rea ’ ::s ° I:eak :naa ’ ‘::6 e I:eak :rea * “::s ° F:eak :rea ) To" v F"‘eak :rea ’ ::)s
[U-13C]-Val 302 M+1 M+2 M+3 M+4
645 |
g : e CL |
g os! - astt t . e B : :. h "': .'
< 'l:‘ . ¢ e - : . N 16 u.s!h
ol IR 0 DU e I . RN
Peak ar;a W 2Peak ar;a Wo® ° Peak an:a . :o 2Peak ar;a " :3"6 ° 2P68k ar;a :’s
M+5 M+6 M7
g S, 3 .t N 'l
é 25 2 as . o
. : I's N v
° zPeak ar;a . 1:5 ° ZPEaK ar;a :suﬁ ° 2Peak ar;a « ‘aoﬂ
Val 302 [U-3C]-Val
Formula : C14H3202N5i2
Exact mass : 302.197
C-atoms : unknown
m/z theory data  difference m/z theory data  difference
302 100.0 100.0 0.0 302 0.0 0.5 0.5
303 26.4 26.5 0.1 303 2.0 1.3 -0.7
304 10.3 10.1 0.2 304 100.0 100.0 0.0
305 1.8 1.7 0.1 305 24.3 254 1.1
306 0.3 0.3 0.0 306 9.7 224 12.7
307 0.0 0.5 0.5 307 1.5 4.6 31
308 0.0 0.1 0.1 308 0.3 1.5 1.2
309 0.0 0.0 0.0 309 0.0 0.2 0.2

This fragment should not be used. The presence of significant M+2 and M+4 abundances in [U-13C]-
valine suggests that two fragments are overlapping.
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Leucine (Leu)
‘m_w Scan : 616 o 622 TIC : 2367657 BP = 1638997 <
90 200.20
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Y so
§ 50
Zw
30 27420
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100 Averaged Scan : 621 10 624 TIC : 2926685 BP = 1451008 <
90 205.20
Y 6o
3 40
20 27925
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o muL 2% S T e prr /2
CH; CHg 0 CH3; CHjy
| | v ow |l | |
H3C—C|)—SII—N—?—C—O—SII—(l:—CH;;
CH; CHj4 ?Hz CH; CH4
CH .
/7 '\ C1gH41NOLSI,
HsC CHj3 Exact Mass: 359.2676

- 309 -



APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Leu 200 M+1 M+2 M+3 M+4.
. ss| 155 .‘:-.' s . A."..‘- . s
% a1 15 » ol 1
§ 805 i “-' atee .
g w v s — — - - - &~ o o ___1 05 i - 05
é 797; N . 1 35 - S i
’ : Pt:akar:a ’ 107 ’ : P;akar:a ax‘07 ’ P;akaria ’ ‘07 ’ ? Pe‘akafea ’ ‘07 ’ : Pe‘akarZa ’ m7
[U-13C]-Leu 200 Me+1 M+2 M+3 M+4
g : : 55j
§ 1 1 1 1 5} . ~
E e T
’ 2F’eak a:ea ° 7 ’ : Peak a:ea 5'07 ’ Peak a:ea jm‘f ° : Peak a:ea jm’ ° : Peak a:ea ¢ 107
M+5 M+6 M+7 M+8 M+9
e ‘ ‘: |.5! 1_5}»
E M ll* "s f: . ‘
2 als i 3 : ! 05!t {‘ 05
o A A R R A B PO
’ ’ Peak a:ea :’ ‘07 ’ ! Peak a:ea 5‘07 Peak a:ea ‘5‘ ’ 2Peak a:ea :’w7 ’ : Peak a:ea f‘07
Leu 200 [U-8C]-Leu
Formula : C] 1H3()N5i
Exact mass : 200.183
C-atoms : 2-3-4-5-6
m/z theory data  difference m/z theory data  difference
199 0.0 0.0 00 199 00 00 00
200 100.0 100.0 0.0 200 0.0 0.3 0.3
201 17.9 18.2 0.3 201 0.0 0.1 0.1
202 4.8 57 0.9 202 0.0 0.1 0.1
203 0.5 0.7 0.2 203 0.0 0.6 0.6
204 0.0 0.1 0.1 204 5.2 5.9 0.7
205 0.0 0.0 0.0 205 100.0 100.0 0.0
206 0.0 0.0 0.0 200 12.5 13.8 1.3
207 0.0 0.0 0.0 207 39 4.1 0.2
208 0.0 0.0 0.0 208 0.3 0.3 0.0
209 0.0 0.0 0.0 209 0.0 0.0 0.0

This fragment should not be used. It has a significant bias, M+0 is too low (-1.0 mol%) and M+2 is
too high (+0.6mol%). Fragment Leu-274 is preferred.
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Leu 274 M+1 M+2 M+3 M+4
735 ."“" 75 ~ 1
g mrte _' ______ 155_5..L L 77:.ﬁ S hee A amrtea |
< . b R . 18 o5 Lt o e ]
R ‘Peak :rea 3”07 ° ‘Peak :rea 3”07 ° ‘Peak azrea 3“ 7 ‘Peak azrea 3“07 ’ II’-’eak azvea 3”07
[U-13C]-Leu 274 M+1 M+2 M+3 M+
g 1 1 1 1 45 :‘; = : Inp
205 N e 05 05 05 o e e .
o o L = il ol2 Ll 3 [} :
v Pe‘akar;: 2”07 ° o Pe'ak a:a 2”07 T P;akar;: 2“07 * Pe‘akar;: 2”07 ° Pe‘ak ar;: 2“07
M+5 M+6 M+7 M+8 M+9
g : ¢ '.': o8 L4 N -’: ::-:' * ‘y "‘ ! :":I ‘ [ = A aed ‘
3 75 s s . : - 6 e 05 05
Yo wm e e
o P(-;akar;: zm? o Pe‘ak ar:i 2”07 P Pe‘akar;:u 2“07 * Pe‘a\kar;: : o ° Pe‘ak ar;; 2“07
Leu 274 [U-3C]-Leu
Formula : C13H320N5i2
Exact mass : 274.202
C-atoms : 2-3-4-5-6
m/z theoty data  difference m/z theory data  difference
23 00 00 00 273 00 00 00
274 100.0 100.0 0.0 274 0.0 0.3 0.3
275 253 252 -0.1 275 0.0 0.2 0.2
276 9.8 9.6 -0.2 276 0.0 0.1 0.1
277 1.6 1.6 0.0 277 0.0 0.3 0.3
278 0.3 0.3 0.0 278 5.2 6.0 0.8
279 0.0 0.0 0.0 279 100.0 100.0 0.0
280 0.0 0.0 0.0 280 201 20.7 0.6
281 0.0 0.0 0.0 281 8.5 8.6 0.1
282 0.0 0.0 0.0 282 1.1 1.1 0.0
283 0.0 0.0 0.0 283 0.2 0.2 0.0
284 0.0 0.1 0.1 284 0.0 0.0 0.0

This fragment can be used for quantitative analysis.
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Leu 302 M+ M+2 M+3 M+4
z 725 195}« . -._:\..;;‘ B PRRE s '
g = - . _"' ________ » ’!.': - ) i TR WL S S
:’-, st LS ; 05
< " -, .. 18.5 1 pse —o wwmestoa
D% beakaea o Peskama g Peskwea .7 Pakaea g Peskwea 7
[U-13C]-Leu 302 M+l M+2 M+3 M+d
g 15 15 ; ) 151
g ' ' *n M P ‘!;31 PR
= Y - e - . '( LU ol . .
° ’ Peakwarea * 1 ’ ? Peal:?;rea * ol ° ° Peak“;rea " il ° ’ Psak“;na * e1o? ’ Psakmarea * i
. WS Mt M s s
: 5‘ |: 15 65 b
g "} T e % * ) 3 i 1 R 6 K L U - v
g s s u,.:. ' R ; “ ‘ FH -
< . 135 ';: 55 ' os:
. . ol
’ : Peal::rea * ”05 ? : Peakmarea * Hne ° ’ Peakmarea " xme ° * Peakmarea * “ns ° : Peak“;rea " nos
Leu 302 [U-1C]-Leu
Formula : Ci14H3202NS12
Exact mass : 302.197
C-atoms : 1-2 and 1-2-3-4-5-6
m/z theory data _ difference m/z theory data  difference
302 100.0 100.0 0.0 302 0.0 0.3 0.3
303 26.4 26.6 0.2 303 0.0 0.3 0.3
304 10.3 10.2 -0.1 304 0.0 8.1 8.1
305 1.8 1.8 0.0 305 0.0 2.6 2.6
306 0.3 0.3 0.0 306 0.0 1.3 1.3
307 0.0 0.0 0.0 307 6.3 7.2 0.9
308 0.0 0.0 0.0 308 100.0 100.0 0.0
309 0.0 0.0 0.0 309 20.2 20.6 0.4
310 0.0 0.0 0.0 310 8.7 8.8 0.1
311 0.0 0.0 0.0 3 1.1 1.2 0.1
312 0.0 0.0 0.0 312 0.2 0.2 0.0
313 0.0 0.0 0.0 313 0.0 0.0 0.0

This fragment should not be used. The presence of significant M+2 and M+6 abundances in [U-3C]-

leucine shows that two fragments with the same chemical formula are overlapping.
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Isoleucine (Ile)
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lie 200 M+1 M+2 M+3 M+4
82
~ 155 s - ’ 1
g S " a5 . - >
@ 8ifs % " e
g | L
g 8038 , 145 -f-" ———————— I - T osfta w =t 35!
- LN 5 L |
75 L .
» H 3 o N VL L
0 2 4 6 0 2 4 L a 2 4 6 o 2 4 6 o 2 4 6
Peak area 7 Peak area 7 Peak area 7 Peak area 7 Peak area 7
10 x10 x10 x10 x10
[U-13C]~lle 200 M+1 M+2 M+3 M+4
15 15 18 15 55 I
|
g 1 1 s
g ' *oe t - w3
B I N :
3 Y - e
Qo5 ] 25 05 05 15
- - <
e - i Te o - o~ be - e ‘
o o a [ L
o 1 2 3 4 o 1 2 3 4 a 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Peak area 7 Peak area 7 Peak area 7 Peak area 7 Peak area 7
x10 x10 x10 x10 x10
M+5 M+6 M+7 M+8 M+9
12
I 3 1.5 ‘ 15 }
. i
;f, s l 15 I }
3 35
g ".A_. n { < | !
E: ' ‘ 3l 05 ust
75 sl e Ty !
- . . . 25 . . gl . . ol.. PR
o 1 2 3 4 0 1 2 3 4 o 1 2 3 L] 0 2 3 4 1 2 3 4
Peak area 7 Peak area 7 Peak area 7 Peak area 7 Peak area 7
w 0 10 *10 10
Ile 200 [U-8C]-Ile
Formula : C][H%NSi
Exact mass : 200.183
C-atoms : 2-3-4-5-6
m/z theory data  difference m/z theoty data  difference
19 .00 00 0.0 1% 00 00 0.0

200 - 100.0

201 17.9
202 4.8
203 0.5

204
205
206

0.0
0.0
0.0

207 0.0
208 0.0
209 0.0

17.9
5.0
0.6
0.1
0.0
0.0
0.0
0.0
0.0

0.0 200

0.0 201
0.2 202
0.1 203
0.0 204
0.0 205
0.0 206
0.0 207
0.0 208
0.0 209

0.0
0.0
0.0
0.0
5.2
100.0
12.5
3.9
0.3
0.0

0.3
0.1
0.2
0.8
0.9
0.0
0.9
0.0
0.0
0.0

0.3
0.1
0.2
0.8
6.1
100.0
13.4
39
0.3
0.0

This fragment can be used for quantitative analysis.

-314-



APPENDIX A, GC/MS ANALYSIS OF AMINO ACIDS

lle 274 M+1 M42 M+3 M+4
< o, 18 - i o e ]
Y oveawes g eeakaes 7 peakaea g peskasa g pekawa 7
[U-13C]-lle 274 M1 M2 M43 M+d
é ! 1 ! ! =it R N
2 os " S 05 “- 05 - e 05 oo . n
0 o !l * - 9 0
’ 5Peﬁk are‘ao « ‘06 ° |5°eak are;o N IDS ’ speak are: . mﬁ ’ :'eak are: " ‘06 ° :’eak are:;o « ‘06
M+5 M+6 M+7 M+8 M+9
z 72 155 <k * : 1 1
8 » '-'; - . \ -: ¥ .‘.; Sy v ¢ ‘f.’
7 8 s o I . era
’ :’eak areé0 . ‘06 ’ ;eak ETE;O 'os ’ :'eak are: ‘De ’ :’sak aret‘io N mﬁ ’ :’eak areE‘lrJ . me
Ile 274 [U-53C]-Tle
Formula : C13H320N5i2
Exact mass : 274.202
C-atoms : 2-3-4-5-6
m/z theoty data  difference m/z theory data  difference
273 00 00 0.0 273 00 00 0.0
274 100.0 100.0 0.0 274 0.0 0.3 0.3
275 25.3 25.4 0.1 275 0.0 0.1 0.1
276 - 9.8 9.6 -0.2 276 0.0 0.4 04
277 1.6 1.6 0.0 277 0.0 0.4 0.4
278 0.3 0.3 0.0 278 52 6.1 0.9
279 0.0 0.0 0.0 279 100.0 100.0 0.0
280 0.0 0.0 0.0 280 20.1 20.9 0.8
281 0.0 0.0 0.0 281 8.5 8.5 0.0
282 0.0 0.0 0.0 282 1.1 1.1 0.0
283 0.0 0.0 0.0 283 0.2 0.2 0.0
284 0.0 0.1 0.1 284 0.0 0.0 0.0

This fragment can be used for quantitative analysis.
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lle 302

M+1 M+2 M+3 M+4
;\o: ‘ 19.5 ,‘_ : s 1
% . .f 77777 ‘L - 7.5‘.._ ; b —._“ _ a— —"T:'..:tt-. -
é “ 19 . - t‘ . ‘ 05
J -J* . Avier.me &
3 ‘ 185 — 0 —
b I;eak‘.:rea2 i5m7 P ;eak1 ;rea2 2:(5107 v F"eak‘ ;ea2 2:07 e l;eai: :rea2 2:’07 ° F"eak‘ ;rea2 sz‘ov
[U-13C]-lle 302 M+1 M+2 M+3 M+4
g . ol : \
g ‘ ” =i ' it " ©u s |
’ Peak ;?ea ‘:ms ° ’ Peak e:;)ea (jmﬁ ’ ) Peak a‘?ea ‘:ma ’ JPeaK a:?ea 1:‘08 ’ ’ Peak a::ea ‘:m&
M+5' M+6 M+? M*B' M+? }
> J 75 13 I
@ | u e Y e 3
5 R v ‘ ! . e ot o ! l
| 9% : I
’ Peak ;:)ea ‘j o ! E.Peank a‘:ea ‘?ma ’ aPeak a‘:ea ‘jma ’ s’Ps;ak .%:ea ‘:ms ‘ Peak ;fea 'jms
Ile 302 [U-BC]-Ile
Formula N C14H3203N5i3
Exact mass : 302.197
C-atoms : 1-2 and 1-2-3-4-5-6
m/z theory data  difference m/z theory data  difference
301 0.0 00 00 31 00 00 00
302 100.0 100.0 0.0 302 0.0 0.5 0.5
303 26.4 25.8 -0.6 303 0.0 11 1.1
304 10.3 10.0 -0.3 304 0.0 54.6 54.6
305 1.8 1.7 -0.1 305 0.0 14.0 14.0
3006 0.3 0.3 0.0 306 0.0 5.8 5.8
307 0.0 0.0 0.0 307 6.3 8.0 1.7
308 0.0 0.0 0.0 308 100.0 100.0 0.0
309 0.0 0.0 0.0 309 20.2 20.3 0.1
310 0.0 0.0 0.0 310 8.7 8.8 0.1
311 0.0 0.0 0.0 311 1.1 1.2 0.1
312 0.0 0.0 0.0 312 0.2 0.2 0.0
313 0.0 0.0 0.0 313 0.0 0.0 0.0

This fragment should not be used. The presence of significant M+2 and M+6 abundances in [U-13C]-
isoleucine shows that two fragments with the same chemical formula are overlapping.
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Proline (Pro)
100 Averaged Scan : 757 10 761 TIC : 189213 ’_EP = 119816 <
a0 25815 :
80 286.15
70
Y s0
% 50
§ 40
30
20
o e |l
= 200 250 300 400 450 m/2
lwﬁvera_ged&m:?Sﬁﬂ:l?ﬁB TIC : 52685 BP = 40475 <
a0 262.20
80
70 291.15
Y 60
3 a0
30
20
10 207.00 v‘m
Al ||. zaglm 248‘.25 A ] 33’3‘,20
E 0 250 300 400 ) n/z
e
H3C—CIJ—Si\ ?Hs (|3H3
H
CH;, éH3 /N—C—C—O——Si—(I)—CH
H,C_ LM CH; CHj _
C C17H37NO,Si;
H, Exact Mass: 343.2363
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Pro 258 M+1 M+2 M+3 M+4
g 735 R |s;_: ——————— —e—— T »‘.‘-‘— e ST ‘
g ¢ M 17.5 N ) ! : . °® § b
g 7 ,.,_{ i !
’ sPeak ar‘eoa 'la ’ 5F'eak ar‘:a '15 ’ 5Peak a::a xia SPeak ar:a :‘505 ’ sPeak ar‘ga |‘505
[U-13C]-Pro 258 M+1 M+2 M+3 M+4
[
A I
§ ; 1 " ' ;? <. . + ¥ Il 7,‘-" -
é 0.5 as 5, b4 L 0 " sl ‘ !
S S A e
’ 2;’eak are; ‘ﬂz ° 2F'eak areda ‘065 ’ 2Peak are; Z i‘-’eak are; . ~r; ’ i’eak are; o Z
M+5 M+6 M+7 M+8 M+9
; ° 5 l 1.5
j%j ) Lo [ 85 . | R -' .. |
% A ‘- | 6 " : l 1 Ty i
2 asye ] os . Os\t:.
. 1 > . | ” . S . @ .‘"‘ Di" RIS K. o S
’ 2F'eak are; mz ° ?Peak are; ‘9: ’ Peak are; ‘UZ 7Peak are; ‘OZ ° ;’eak are; , wz
Pro 258 [U-8C]-Pro
Formula : C12H230ONS1,
FExact mass : 258171
C-atoms : 2-3-4-5
m/z theory data  difference m/z theory data  difference
257 00 00 00 2 00 __or 0L
258 100.0 100.0 0.0 258 0.0 0.3 0.3
259 241 24.5 0.4 259 0.0 0.7 0.7
260 9.5 9.4 -0.1 260 0.0 1.5 1.5
261 1.5 1.4 0.1 2061 4.1 5.7 1.6
262 0.2 0.8 0.6 262 100.0 100.0 0.0
203 0.0 0.1 0.1 263 20.0 20.0 0.0
264 0.0 0.1 0.1 264 8.5 8.6 0.1
265 0.0 0.0 0.0 265 1.1 2.0 0.9
266 0.0 0.0 0.0 266 0.2 0.3 0.1
267 0.0 0.0 0.0 267 0.0 0.1 0.1

This fragment should be used with caution. Proline co-elutes with other compounds , which may
result in inaccurate values. M+0 is slightly too low (0.5 mol%) and M+4 is slightly too high (+0.4
mol%). Fragment Glu-330 is preferred.
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Pro 286 M+1 M+2 M+3 M+4
g e ’ N :
e R Rt N PN PR T
U Peaes s Peaes s Pekaes s eaea s Peskaws s
[U-13C]-Pro 286 M+1 M+2 M+3 M+4
é 05 05 05 05 ) . R~ 35|
I B -
0’ ° M olat - 3 a 3
T e e e e T
M+5 M+6 M+7 M+8 M+3
Z .. ., . ssf " s . -
O S N O R
Pro 286 [U-3C]-Pro
Formula : Ci3H2sNO,Siz
Exact mass : 286.166
C-atoms : 1-2-3-4-5
m/z theory data  difference m/z theory data  difference
285 0.0 0.0 0.0 285 0.0 0.0 0.0
286 100.0 100.0 0.0 286 0.0 0.2 0.2
287 25.3 25.2 -0.1 287 0.0 0.3 0.3
288 10.0 9.9 -0.1 288 0.0 0.2 0.2
289 1.6 1.7 0.1 289 0.0 0.9 0.9
290 0.3 25.4 25.1 290 5.2 6.4 1.2
291 0.0 6.3 6.3 291 100.0 100.0 0.0
292 0.0 2.4 24 292 20.1 20.2 0.1
293 0.0 0.5 0.5 293 8.7 10.1 1.4
294 0.0 0.0 0.0 294 1.1 29.2 28.1
295 0.0 0.0 0.0 295 0.2 5.9 5.7
296 0.0 0.0 0.0 296 0.0 2.7 2.7
297 0.0 0.0 0.0 297 0.0 0.3 0.3

This fragment should not be used. Proline co-elutes with other compounds, which results in
inaccurate values. Here, M+4 is significantly too high. Fragment Glu-432 is preferred.
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Serine (Ser)

Averaged Scan : 1120 to 1123 TIC : 840390 BP = 181845

100
%0 288.15
B0
70 390.30
Y g0 36220
50 302.20
§ 40
30
20 230.10
lf Zlﬂ'ﬁ.ﬂll .I L II 255[.15 | ‘ll L ‘II . ‘3?.',. '
e 200 T g 300 350 T 450 /2
LooAveraged Scan : 1129 t0 1138 TIC: 397575 6P = 119923
a0 290.15
80
w 364.20 33330
Y s0
g 5 304.20
3 a0
30
20 232.10
10 207.00 L 261.20
o | R | | 435
200 250 3do 350 400 450
CHj, CHj 0 CHj3 CH,
| | v ow |l | |
H3C—Cl:—Sll—N—?—-C—O—Sll—CI:——-CH3
CHj CHs (|3H2 CH; CHs
I
HyC—Si—CH;
HyC—C—CH;
| Ca1H4gNO3Sig
CHz Exact Mass: 447.302
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Ser 230 M+1 M+2 M+3 M+4
25
67 .
% s = ‘o 10 . il . ! :
. 215 h, - ’ . > o
§ 66 u v . : . . . .P - iy
E wsp . o 2}, - 051,
< ve . 205 95" <
65|
2
845
o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 a3 4 5 o 2 3 a4 s
Peak area & Peak area & Peak area & Peak area 6 Peak area 6
x10 x10 x10 x 10
[U-13C]-Ser 230 M+ M+2 M+3 M+4
2 2f . 15
15 . 665
T sl 66 . 215 "
Y . . & .~
§ s 655 < " I sy L
§ 1} i . - . : -3 ofe, . -
E - 205 : 7 :
2 os): s . a5 a5
o 3 20 g
W v R o 8 .
% 1 2 3 4 o 1 2 3 4 0 2 3 4 0 1 2 3 4 0 1 2 3 4
Peak area 6 Peak area 6 Peak area 8 Peak area & Peak area 8
x10 0 x10 10 x10
M+5 M+6 M+7
sy
15 15
g., 25
SR Twm | ‘
2 o2} 4 .
é ostd N P 05
15 .
0 olad s
) 1 2 3 4 ] 1 2 3 4 0 2 3 4
Peak area 6 Peak area 5 Peak area 8
x10 o x10
Ser 230 [U-3C]-Ser
Formula : unknown
Exact mass : unknown
C-atoms : unknown
m/z theory data  difference m/z theory data  difference
229 0.0 229 0.0
230 100.0 230 0.3
231 338 231 2.9
232 15.0 232 100.0
233 n/a 35 n/a 233 n/a 31.8 n/a
234 1.1 234 14.5
235 0.2 235 34
236 0.1 236 1.0
237 0.1 237 0.1

This fragment cannot be used because the fragmentation is unknown. Furthermore, this fragment is

not very abundant and therefore somewhat noisy.
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Ser 288

M+1 M+2 M+3 M+4
a r
73 !
o~ i
oy 195 [ . o i
3 e * e d_ "2 ] . i
5 5 w9 fe e UYL ‘
S . 1 7t 05
5 EOR
a RN )
< s = 185 }‘
s 4= e, A
< .
0 0.5 1 15 2 25 Q s 1 15 2 25 Q 0.5 1 1.5 2 25 i a5 1 15 2 25 a a5 1 1.5 2 25
Peak area 7 Peak area 7 Peak area Peak area 7 Peak area 7
x10 x10 x 10 x 10
[U-13C]-Ser 288 M+1 M+2 M+3 M+d
78 19 i e
15 15 |
— i
B l - | .
5 | PR . b . y
I i 7
5 s o ” e : !
205l - * 95 . : i
‘ M, i v ‘
‘e i 6.
ol ol I e DU e
a 5 10 15 0 5 10 15 o 0 15 o 5 10 15 o 10 15
Peak area 6 Peak area 6 Peak area 6 Peak area 8 Peak area 6
x 1y o X110 x 10
M+5 M+6 M+7
‘|
} 15 15
—
&£ 13 \ |
8 . i
§ (a0 5 e~ I
B ot |
3 |
2 | 05 05
as| L. - e
‘ 0 1
9 5 10 15 D) 5 10 15 0 L] 1 15
Peak area 6 Peak area 6 Peak area &
x10 10 x10
Ser 288 [U-3C]-Ser
Formula : C14H34NOSlz
Exact mass : 288.218
C-atoms : 2-3
m/z theory data  difference m/z theory data  difference

287
288
289
290
291
292
293
294
295

0.0
100.0
26.4
10.1
1.7
0.3
0.0
0.0
0.0

0.0

26.3
10.0
1.8
0.3
0.0
0.0
0.0

0.0

0.0
288
289
290
291
292
293
294
295

-0.1
-0.1
0.1
0.0
0.0
0.0
0.0

287

0.0
2.0
100.0
24.3
9.5
1.5
0.2
0.0

00

0.6
1.7
100.0
24.8
9.7
1.6
0.3
0.0

00
0.6
0.3
0.0
0.5
0.2
0.1
0.1
0.0

This fragment can be used for quandtative analysis.
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Ser 302 M1 M2 M43 M+4
'E P ol B e Al Is::-." ﬂﬂﬂ | "_ ' 5 4 Remea 0s
s 185, - . 1 il A M
’ i’eak ars;ao ”D:: ’ ;eak ave: “D:: ° s:"eak ave‘ao “0;5 ° ;eak are‘a0 m:is ° ;eak are: “D':
[U-13C]-Ser 302 M+1 M+2 M+3 M+4
é ' Ll @ I ol : '," " ” " ~ "- R Y}
é LA T PR k4
° ’ F:sak :rea ° x“:S ’ : l;eak :ma ° ;‘:6 ? : l;eak :rea ° x:is ° ’ I:eak :rea ’ x::ﬁ ’ ? F;eak :rea ’ “:)6
M+5 M+6 M7
% " '] 1 1
§ ) F Y
os o r o2 .
’ ? P‘eak :rea ’ “:)a ’ ? F:eak :rea ’ ":]6 ’ ’ F"eak :rea ’ X:ZG
Ser 302 [U-3C]-Ser
Formula . C14H3202N5i2
Exact mass : 302.197
C-atoms : 1-2
m/z theory data  difference m/z theoty data  difference
301 ~ 00 00 0.0 301 00 0.0 0.0
302 100.0 100.0 0.0 302 0.0 0.5 0.5
303 26.4 26.2 -0.2 303 2.0 4.5 25
304 10.3 10.2 -0.1 304 100.0 100.0 0.0
305 1.8 1.9 0.1 305 243 24.8 0.5
306 0.3 0.4 0.1 306 9.7 10.1 0.4
307 0.0 0.0 0.0 307 1.5 1.7 0.2
308 0.0 0.0 0.0 308 0.3 0.3 0.0
309 0.0 0.0 0.0 309 0.0 0.0 0.0

This fragment can be used for quantitative analysis. Note, however, that M+2 of [U-13C]-serine is
slightly higher than expected.
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Ser 362 M+1 M+2 M+3 M+4
B \ |
655+ ;225 H
g b - s "
< Lot 105 . 25 |
§ 85 Rt - —— = = 22 . 2
- R > v - et
i —_ —at e ]
o o S m * b e . N
© H P
S &5 o5 ¥
a 25| 10 "
< 2
B4
21 0
0 0.5 1 15 2 L] 25 1 15 2 o 05 1 15 2 0 05 1 15 2 o 25 1 1.5 2
Peak area 7 Peak area 7 Peak area 7 Peak area 7 Peak area 7
x 10 %10 x 10 x 14 x10
{U-13C]-Ser 362 M+t M2 M+3 M+4
l ‘ ‘
15 5 TN 2
—_ H Bl
c\° Ped 105
" 215 ‘e
o 1 855 . ',-'d
=4 .. A - kN
g * o w0t
e . <
. 21 1
g 05 a5 66
. o v 5
H ’ .~ X B N 9:[
Py S ol } . BASL . 0.5 S I .
bl 5 10 Q 5 10 0 5 10 0 3 10 a 5 10
Peak area 6 Peak area 5 Peak area & Peak area § Peak area §
x 10 x 10 ¥ 10 x10 x10
M+5 M+6 M+7 M+8
5 15 15
25

i ' ' 1

ast= ¥ - wsy 0.5 0.5

15 ' .
S N ol > . e

0 B 10 0 5 10 0 5 10 0 5 10

Peak area & Peak area 8 Peak area 5 Peak area 5
x10 x10 x10 x10

Abundance (%)

Ser 362 [U-13C]-Ser

Formula : Ci6H10O2NS13

Exact mass : 362.237

C-atoms : 2-3

m/z theory data  difference m/z theory data  difference

36 0000 00 31 00 00 00
362 100.0 100.0 0.0 362 0.0 0.3 0.3
363 33.8 33.5 -0.3 363 2.2 1.5 0.7
364 15.7 15.4 -0.3 364 100.0 100.0 0.0
365 3.5 3.5 0.0 365 31.7 31.9 0.2
366 0.8 0.8 0.0 366 15.0 14.9 -0.1
367 0.1 0.2 0.0 367 3.2 3.2 0.0
368 0.0 0.0 0.0 368 0.7 0.7 0.0
369 0.0 0.0 0.0 369 0.1 0.1 0.0
370 0.0 0.0 0.0 370 0.0 0.0 0.0

This fragment can be used for quantitative analysis.
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Ser 390 M+1 M2 M43 M+4
£ us W T . s . '
é ...‘. ———————— 28 . - st T .-_..:’_:‘__ z5::_.__....,.,..5'__
£ L4 - . "::—;__ - == ;E_ N ::‘ - n.s-:‘-(--w-f»’w-«
Q 83.5 .‘- * .
U ke g peakama g peskama g Pekawe g Peskama g
[U-13C]-Ser 390 M+t M+2 M+3 M+d
g 5 15 3 “: f :. .
g 1 1 25 . .I.,' * g : B . :-. e
E 05 05 2 ) = ' .5-; 205[1, t T
= f‘ - » 4 ’; - ~ .o &3
T S
M5 . Me6 M7 M+ Me9
e 105 . - -
2 95 :‘. ’ 5[ W v A 05 05
" emasa .+ Pemkasa o Pekama s Pesasa s Peama s
Ser 390 [U-3C]-Ser
Formula : C17HaoO3NSi3
Exact mass : 390.232
C-atoms : 1-2-3
m/z theory data  difference m/z theory data  difference
389 0.0 0.0 0.0 389 0.0 0.0 0.0
390 100.0 100.0 0.0 390 0.0 0.3 0.3
391 35.0 343 -0.7 391 0.0 0.3 0.3
392 16.3 15.9 -04 392 31 33 0.2
393 3.8 37 0.1 393 100.0 100.0 0.0
394 0.9 0.8 -0.1 394 31.8 31.9 0.1
395 0.1 0.1 0.0 395 15.2 15.1 0.1
396 0.0 0.0 0.0 396 33 33 0.0
397 0.0 0.1 0.1 397 0.8 0.8 0.0
398 0.0 0.0 0.0 398 0.1 0.1 0.0
399 0.0 0.0 0.0 399 0.0 0.0 0.0

This fragment can be used for quantitative analysis. Note, however, that M+0 is slightly too high
(+0.5 mol%) and M+1 is slightly too low (-0.4 mol%).
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Threonine (Thr)

100 2veraged Scan ; 1160 tp 1178 TIC: 109162 BP = 55386 <
o iz
80
70
g 60
50
P
30 404.25
20 37625
Sl mmames MY ﬁJm b bl . |
E 200 250 300 350 ato 450 m/z
100 AVEraged Scan ;: 1162 tn 1190 TIC : 196084 BP = 82201 - <
90 30520 ‘
80
Y s0
g
3 40
30
» 40825
379.25
" TlPmies  2E awserens m L L
I "2k e % Tk ‘ pen Wz
CH; CH; CH; CH,
| 1w ow | |
Hsc—cI:—sl,u—N——clz—c—o—sln—cl:—CH3
CH3 CH3 H?'—CHs CH3 CH3
]
H3C_S|—CH3
HsC—C—CH;
| CooH51NO3Siy
CHj Exact Mass: 461.3177
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Thr 376 M+l M2 M+3 M+4
gws' 33:‘ 1 1
I I P S ¢ 10 . M osf s ‘.':-_"""‘""'_ R
g :r
’ Peakzarea : na° ’ ' Peakaarea “os ° Peakzarea : na’ ’ ' Peakzarea : mo‘ ° Paakzama ? 10
[U-13C]-Thr 376 M+1 M+2 M+3 M+4
g | 25 Y “: ': z‘: .
i ' 23 I P (i AL
R TIER I .
DY peakama g Peakama s peskaea s peakwea s Peskama 8
M5 M+6 M7 M8 M9
g a5l v v'?.' z: 2z LR AL I . ' ‘
3 9' 5.- osf? ’: : 05 05
U bk e Pemkama e pemkama e Peaea s Peskama s
Thr 376 [U-83C]-Thr
Formula : C17H4202N5i3
Exact mass : 376.252
C-atoms : 2-3-4
m/z theory data  difference m/z theory data difference
375 0.0 0.0 0.0 375 0.0 0.0 0.0
376 100.0 100.0 0.0 376 0.0 0.1 01
377 34.9 34.5 04 377 0.0 0.5 0.5
378 16.1 15.9 -0.2 378 31 2.8 -0.3
379 3.7 3.7 0.0 379 100.0 100.0 0.0
380 0.9 0.7 -0.2 380 31.8 31.7 -0.1
381 0.1 0.0 -0.1 381 15.0 14.8 -0.2
382 0.0 0.0 0.0 382 32 31 -0.1
383 0.0 0.2 0.2 383 0.7 0.9 0.2
384 0.0 0.1 0.1 384 0.1 0.1 0.0
385 0.0 0.0 0.0 385 0.0 0.0 0.0

This fragment can be used for quantitative analysis. Note, however, that this fragment is noisy at low
concentrations.
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Thr 404

M+1 M+2 M+3 M+4
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<10 10 10 * 10
Thr 404 [U-C]-Thr
Formula : CisH42O3NS1;
Exact mass : 404.247
C-atoms : 1-2-3-4
m/z theory data  difference m/z theory data  difference

403 0.0

00 00 403 .90

100.0
36.1
16.7

4.0
0.9
0.2
0.0
0.0
0.0
0.0
0.0

404
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411
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0.0
-0.3
-0.2
-0.1
-0.1
-0.1

0.0

0.0

0.0
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100.0
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0.0
0.0
0.0
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0.0
0.0
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3.3
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0.1
0.0
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0.1
0.2
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100.0
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0.6
0.0
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0.2
0.1
0.2
0.3
0.0
-0.3
0.0
-0.3
-0.2
-0.1
0.0

This fragment can be used for quantitative analysis.
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Thr 417 M+1 M+2 M+3 M+4
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Thr 417 [U-3C]-Thr

Formula : C20H47N025i3
Exact mass : 417.292
C-atoms : unknown

m/z theory data  difference m/z theory data  difference

416 0.0 0.0 00  #416 00 00 0.0

417 100.0 100.0 0.0 417 0.0 0.3 0.3
418 38.3 46.4 8.1 418 2.0 1.1 -0.9
419 17.3 20.1 2.8 419 100.0 100.0 0.0
420 4.3 5.5 1.2 420 36.2 355 -0.7
421 1.0 1.0 0.0 421 16.4 25.0 8.6
422 0.2 0.0 -0.2 422 3.9 6.9 3.0
423 0.0 0.0 0.0 423 0.9 1.8 0.9
424 0.0 0.0 0.0 424 0.1 0.1 0.0
425 0.0 0.1 0.1 425 0.0 0.0 0.0

This fragment should not be used. M+0 is too low (-4 mol%) and M+1, M+2, and M+3 are too high.
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Methionine
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lm_mragg Scan: 1186 1o 1195 TIC : 58867 BP = 26272 <!
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S
l C17H3gNO,SSi,
CHj3 Exact Mass: 377.224
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Met 218 M+1 M2 " M+3 M+4
g 7:: s, 1a ], ". 75 1
R A B S A I STIE S, A0 B Pl LSty
é 77.5._. 135 ! ’ ! o : ° -
° ? F'eal:ama ? “0: ’ ‘ Paa:area ’ a1 ’ ’ Peal:area ° x10: ’ : Peal:area ’ x|0: ’ ’ Pea;area ’ x‘U:
[U-13C]-Met 218 M1 M+2 M+3 Med
g 1 1 " . ' '. b oaa, " w
§ : : :"* r PR 76} - :
gospt g P 05 PR PN 05 u .
’ ? P;ak arsea ax 1 ° ’ P;ak ar:a 5”06 ’ : P;ak arza ’ ad® ’ ’ F':akareea ’ “06 ’ ? P;ak ar:a ’ o
M+5 M+6 M+7 M+8 M+9
g " 3 5 PR ' ' '
.% T : 65 : 1 M ‘ it r o
o ! . N B
’ ) Ps‘ak arsea ’ a1 ° ? Pt:ak ar:a ’ c1o® ’ ’ P;ak arZa ’ c1c® ’ : P;ak ar:a ’ c1e® ° ? P;ak ar:a ’ a1’
Met 218 [U-8C]-Met
Formula : C1oH24NSiS
Exact mass : 218.114
C-atoms : 2-3-4-5
m/z theory data  difference m/z theory data  difference
217 0.0 0.0 00 217 0.0 0.7 0.7
218 100.0 100.0 0.0 218 0.0 0.6 0.6
219 17.6 17.3 -0.3 219 0.0 0.6 0.6
220 9.1 9.0 -0.1 220 0.0 0.9 0.9
221 1.2 1.2 0.0 221 4.1 53 1.2
222 0.2 0.3 0.1 222 100.0 100.0 0.0
223 0.0 0.1 0.1 223 13.5 14.1 0.6
224 0.0 0.0 0.0 224 8.5 8.5 0.0
225 0.0 0.0 0.0 225 0.8 0.9 0.1
226 0.0 0.0 0.0 226 0.2 0.2 0.0
227 0.0 0.0 0.0 227 0.0 0.0 0.0

This fragment can be used for quantitative analysis.
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Met 244

M+1 M+2 M+3 M+4
2 o |.
62 05 5 ar "
r 215
g B1.5 X ” 10 45 35
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< &0 f 85 a af
195
585 8 2sf, sy
0 2 4 6 a 10 0 2 4 6 L] 10 o 2 4 6 a8 10 3 2 4 6 8 10 o 4 6 8 10
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x10 %10 x 10 10 x10
[U-13C])-Met 244 M+1 M+2 M+3 M+4
4
15 15 s 185
— 15
g ® . 1
_§ i ‘ ) O ¥ e R
g le . 25 67 15 .
2 os as . L4 2 .;;' of. 665 1% s
ol s i v o T 5 : ISR R A (7] S .
0 5 0 ) 5 10 o 5 10 0 5 10 ) 5 10
Peak area Peak area co® Peak area Peak area W° Peak area 0°
M+5 M+6 M+7 M+8
- - asf B a5 : - - T
e.s' as
- * 3 3
&£ 8
E 5'_ - 25 . 25 . ¢ f - .
R S % P T
g, ! 5 18 2t
1
8 ! 18
0 5 10 o 5 10 0 5 10 o 5 10
Peak area 5 Peak area 5 Peak area 5 Peak area 5
x10 x10 %10 x10
Met 244 [U-5C]-Met
Formula : unknown
Exact mass : unknown
C-atoms : unknown
m/z theory data  difference m/z theory data  difference
. .| S 2. S L S
244 100.0 244 0.2
245 34.4 245 0.8
246 15.5 246 3.9
247 n/a 5.5 n/a 247 n/a 100.0 n/a
248 51 248 23.1
249 35 249 11.8
250 1.2 250 3.8
251 0.2 251 3.8
252 0.3 252 4.1

This fragment cannot be used because the fragmentation is unknown. However, the relatively high
M+1 (34% of M+0) suggests that two fragments are overlapping here.
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Met 292 M+1 M+2 M+3 M+4
4 185
2705 . .- 'o.."__———.-..-— 2:}._.1.—:7;,__
‘gmt__ﬁ_"x_"_' 'HT__?—_-_- " ' 051 b — = fa )t eh
< [ 851 f.
v Fz'eaksarea4 :‘06 ° lf’eakaa('eaA :05 v ;eakaareaA :05 T ;eakaareal‘ :ms ° If't-:ak:’area4 j'oe
[U-13C]-Met 292 M+1 M+2 - M+3 M+4
% 1 1 1 ) 70
g sl [ ¢ LA
S ¥ LSNP ol ¢ A= o R L) ’ 60
° * Peak a‘rea ime ° : Peak ;rea ims ’ : Peak a‘rea i'os ° : Peak a:ea iwe ’ ) Peak ;rea sxme
M+5 M+6 M+7 M+8 M+3
é 145 :: 1 b P ¢ vas 05
° 2Peak a“rea ima ’ 2Peak a‘rea iws ’ 2Peak adrea 6"06 ° 2F'ezlk adrea iws ’ 2Peak adrea ims
Met 292 [U-8C]-Met
Formula : Ci2H30NOSi2S
Exact mass : 292.159
C-atoms : 2-3-4-5
m/z theory data  difference m/z theory data  difference
291 0.0 0.0 0.0 291 0.0 0.0 0.0
292 100.0 100.0 0.0 292 0.0 0.1 0.1
293 25.0 24.8 -0.2 293 0.0 0.2 0.2
294 141 14.0 -0.1 294 0.0 0.2 0.2
295 2.6 2.6 0.0 295 4.1 5.1 1.0
296 0.7 0.8 0.1 296 100.0 100.0 0.0
297 0.1 0.1 0.0 297 209 211 0.2
298 0.0 0.0 0.0 298 131 12.8 -0.3
299 0.0 2.1 2.1 299 2.1 2.0 -0.1
300 0.0 0.5 0.5 300 0.6 0.5 -0.1
301 0.0 0.2 0.2 301 0.1 0.0 -0.1

This fragment can be used for quantitative analysis. Mass isotopomer distributions should be obtained
from the mass range 292-298.
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Met 320 M+1 M+2 M+3 M+4
% i 185 ) " ) )
§ag.s ______ :,"_ L) e e S WET T RTE i il SR Pl § |
é 69:- 175
68.5 ot 0 1 L
680 1 2 3 4 0 1 2 3 a 0 1 2 3 4 Bl 1 2 3 4 00 1 2 3 4
Peak area . ‘06 Peak area R ‘05 Peak area R ‘Os Peak area . mﬁ Peak area . ms
[U-13C])-Met 320 M+1 M+2 M+3 M+4
% 1 ‘ 1 1 1 "5". .
| Peone
4:3 051, . l‘ a5 a5 05 “l"
g4 e . ;
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ols : ol old—» haliiebuil 5 I : . r‘ 3¢
’ ‘ Pzeak aarea ' e’ v Piak :rea ) ”:s P Piak aarea ) “Zs ’ ‘ Pzeaka::ea ' ”;s i Paeak a::ea ) “:s
M+5 M+6 M+7 M+8 M+3
% 59‘ 4 | 15 ° - - 1 |i
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2 145 . 1 05’,',- 3 e ree
o 1 2 3 4 5 o 1 2 3 4 5 i 1 2 3 a 5 G 1 2 3 4 5 il i 2 3 4 5
Peak area . ma Peak area . me Peak area it Peak area e Peak area ore®
Met 320 [U-BC]-Met
Formula : C13H3()N035i25
Exact mass : 320.154
C-atoms : 1-2-3-4-5
m/z theory data  difference m/z theory data  difference
319 00 00 00 319 001 14
320 100.0 100.0 0.0 320 0.0 0.5 0.5
321 26.1 259 -0.2 321 0.0 0.3 0.3
322 14.6 14.5 -0.1 322 0.0 0.1 0.1
323 2.8 2.8 0.0 323 0.0 0.3 0.3
324 0.8 0.8 0.1 324 52 6.2 1.0
325 0.1 0.1 0.0 325 100.0 100.0 0.0
326 0.0 0.0 0.0 326 211 214 0.3
327 0.0 0.0 0.0 327 13.3 13.4 0.1
328 0.0 0.3 0.3 328 2.1 2.1 0.0
329 0.0 0.1 0.1 329 0.6 0.6 0.0
330 0.0 0.2 0.2 330 0.1 0.0 -0.1
331 0.0 0.1 0.1 331 0.0 0.0 0.0

This fragment can be used for quantitative analysis. Mass isotopomer distributions should be obtained
from the mass range 320-327.
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Phenylalanine (Phe)

Averaged Scan : 1470 to 1477 TIC: 467545 BP = 117371
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g 50
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LT L
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Exact Mass: 393.2519
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Phe 234

M+1 M+2 M+3 M+4
% L] 17 :5 . . o . ,'; : 3 ée
é e % A 1557 oo B q . . 2' \7 . : bl o
775 ":Q s OLL_:“_:-—~
v P‘eak"asrea : 1507 v P‘eak‘asrea Pt j07 P F-“eak“asrea ’ j-;? v F:eak':rea ) f»i; v F:eak‘.asrea : jI:)Y
[U-13C}-Phe 234 M1 M+2 M+3 M+4
Zi 15 15 15 1 s‘
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088 e ol Ool,:f Bt ?‘51‘ s ola w o wes : GOL,,-A,,,,, ——
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M+5 M+6 M+7 M+8 M+9
i V ) ' 75 ‘ ) ' " ‘ V
I3 ‘ 5\[ * . 7% ‘ 1" A ‘
e i N | :
E I ! i b e e . I | sl 4 . ra E
é A hd Al 65 g “') ‘ ' 1
2 o0s 05
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P . 7 i
’ " Peal‘< area‘ ’ ”:7 ’ ” Pea; area1 ’ “:7 ’ PeaI: area‘: oo ! ” Peak area ’ x“:7 ! ” Peail alea‘ ’ ”:7
Phe 234 [U-C]-Phe
Formula : C14H24N8i
Exact mass : 234.168
C-atoms : 2-3-4-5-6-7-8-9
m/z theory data  difference m/z theory data  difference
233 00 0000 23 00 4l a1
234 100.0 100.0 0.0 234 0.0 1.7 1.7
235 21.1 213 0.2 235 0.0 0.5 0.5
236 5.4 57 0.3 236 0.0 0.1 0.1
237 0.7 0.8 0.1 237 0.0 0.0 0.0
238 0.0 0.1 0.1 238 0.0 0.0 0.0
239 0.0 0.0 0.0 239 0.0 0.1 0.1
240 0.0 0.0 0.0 240 0.0 0.8 0.8
241 0.0 0.0 0.0 241 8.6 9.2 0.6
242 0.0 0.0 0.0 242 100.0 100.0 0.0
243 0.0 0.1 0.1 243 12.6 13.7 1.1
244 0.0 0.5 0.5 244 3.9 4.2 0.3
245 0.0 3.7 3.7 245 0.3 0.6 0.3
246 0.0 1.4 1.4 246 0.0 0.6 0.6

This fragment can be used for quantitative analysis. Mass isotopomer distributions should be obtained
from the mass range 234-243.
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Phe 302 M+1 M+2 M+3 M+4
é AT w‘iz__————‘—_ 745.;;__.'.“.1.5—- L'g——;v—--é"‘—- 05
< s ';:.. B : 7 - ' ?L PP —
° ‘Feak ariea :07 ’ 'Peak ar:a 3‘07 ’ ‘Peak arzea :‘07 ’ 'Peak ar:a u3107 ? Peak aria :07
[U-13C]-Phe 302 M1 M+2 M+3 M4
g ) y ': 725 ‘: . . 65 . . L1 75) . . , o
° R .- [ g o N
T pekaea o peakaea 7 Peskaea o Peskase s Y
M+5
é 1
’ . Pe‘ak ar;; 2”07
Phe 302 [U-13C]-Phe
Formula : C14H3202N5i2
Exact mass : 302.197
C-atoms : 1-2
m/z theory data  difference m/z theory data  difference
301 0.0 0.0 0.0 301 0.0 0.0 0.0
302 100.0 100.0 0.0 302 0.0 0.3 0.3
303 26.4 26.1 -0.3 303 2.0 0.6 -1.4
304 10.3 9.9 -0.4 304 100.0 100.0 0.0
305 1.8 1.7 -0.1 305 24.3 25.0 0.7
300 0.3 0.3 0.0 306 9.7 9.9 0.2
307 0.0 0.0 0.0 307 1.5 1.6 0.1

This fragment can be used for quantitative analysis.
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Phe 308 M+t M+2 M+3 M+4
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Phe 308 [U-BC]-Phe
Formula : C16H300N5i2
Exact mass : 308.187
C-atoms : 2-3-4-5-6-7-8-9
m/z theory data  difference m/z theory data  difference
308 100.0 100.0 0.0 308 0.0 0.8 0.8
309 28.5 28.8 03 309 0.0 0.2 0.2
310 10.6 10.6 0.0 310 0.0 0.1 0.1
311 1.9 2.0 0.1 311 0.0 0.0 0.0
312 0.3 0.4 0.1 312 0.0 0.0 0.0
313 0.0 0.0 0.0 313 0.0 0.1 0.1
314 0.0 0.0 0.0 314 0.0 0.4 0.4
315 0.0 0.0 0.0 315 8.5 8.7 0.2
316 0.0 0.0 0.0 316 100.0 100.0 0.0
317 0.0 0.4 0.4 317 20.2 21.1 0.9
318 0.0 0.3 0.3 318 8.5 8.8 0.3
319 0.0 0.1 0.1 319 1.1 1.3 0.2
320 0.0 0.2 0.2 320 0.2 0.2 0.0
321 0.0 0.1 0.1 321 0.0 0.0 0.0

This fragment can be used for quantitative analysis. Mass isotopomer distributions should be obtained
from the mass range 308-316.
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Phe 336 M+1 M2 M3 M+4
b S W )
é o S zn.s'.' ; - . e
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Peak area e ;eak area e Peak area &£ Peak area ° Peak area . ms
Phe 336 [U-8C]-Phe
Formula : Ci7H30O2NSi,
Exact mass : 336.182
C-atoms : 1-2-3-4-5-6-7-8-9
m/z theory data  difference m/z theoty data  difference
335 0.0 0.0 0.0 335 0.0 108.4 108.4
336 100.0 100.0 0.0 336 0.0 26.4 26.4
337 29.7 294 -0.3 337 0.0 10.9 10.9
338 11.2 11.1 -0.1 338 0.0 1.8 1.8
339 21 21 0.0 339 0.0 0.3 0.3
340 0.4 0.4 0.0 340 0.0 0.0 0.0
341 0.0 0.1 0.1 341 0.0 0.1 0.1
342 0.0 0.1 0.1 342 0.0 0.1 0.1
343 0.0 0.0 0.0 343 0.0 0.7 0.7
344 0.0 0.0 0.0 344 9.7 9.8 0.1
345 0.0 0.1 0.1 345 100.0 100.0 0.0
346 0.0 0.1 0.1 346 20.3 20.8 0.5
347 0.0 0.1 0.1 347 8.7 8.9 0.2
348 0.0 0.0 0.0 348 1.1 1.3 0.2
349 0.0 0.4 0.4 349 0.2 0.2 0.0

This fragment can be used for quantitative analysis. Phenylalanine must not be M+9 or M+8 labeled

for this fragment to be accurate.
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Aspartate (Asp)

Averaged Scan : 1589 to 1596 TIC : 534406 BP = 232054
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Asp 244 M+1 M+2 M+3 M+4
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x 10 x10 x10 x 10
Asp 244 [U-BC]-Asp
Formula : unknown
Exact mass : unknown
C-atoms : unknown
m/z theory data  difference m/z theory data  difference
243 0.0 243 0.1
244 100.0 244 0.3
245 27.2 245 1.8
246 18.3 246 100.0
247 n/a 3.6 n/a 247 n/a 27.2 n/a
248 1.6 248 11.7
249 0.7 249 32
250 0.2 250 8.2
251 0.0 251 1.9
252 0.0 252 0.8

This fragment should not be used. The relatively high M+2 (18% of M+0) suggests that two
fragments are overlapping. [4-'3C]-aspartate contains peaks at 244 and 247, which further suggests
that two fragments are overlapping,
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Asp 258 M+1 M+2 M+3 M+4
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10 x 10 x10 x 10
Asp 258 [U-3C]-Asp
Formula : unknown
Exact mass : unknown
C-atoms : unknown
m/z theory data  difference m/z theory data  difference
257 A4 asrooooooo 18
258 100.0 258 1.0
259 25.6 259 24
260 16.0 260 7.6
261 n/a 3.3 n/a 261 n/a 100.0 n/a
262 21 262 23.2
263 1.8 263 16.6
204 0.5 264 4.2
265 0.0 265 0.8
266 0.0 266 0.1
267 0.0 267 0.0

This fragment should not be used. M-1 is too high (4.4 mol%) and the fragmentation is unknown. {4-
13C]-aspartate contains a peak at 259 but not at 258, thus this fragment contains C-4.
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Asp 302 M+1 M+2 M3 M4
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Asp 302 [U-B3C]-Asp
Formula : C14H3,0,NSiz
Exact mass : 302.197
C-atoms : 1-2
m/z theory data  difference m/z theory data  difference
301 0.0 0.0 0.0 301 0.0 0.0 0.0
302 100.0 100.0 0.0 302 0.0 0.5 0.5
303 26.4 26.4 0.0 303 20 31 1.1
304 10.3 10.2 -0.1 304 100.0 100.0 0.0
305 1.8 1.8 0.0 305 243 24.7 04
306 0.3 0.3 0.0 306 9.7 9.8 0.1
307 0.0 0.0 0.0 307 1.5 1.6 0.1
308 0.0 0.0 0.0 308 0.3 0.4 0.1
309 0.0 0.0 0.0 309 0.0 0.0 0.0

This fragment can be used for quantitative analysis. [4-13C]-aspartate contains a peak at 302 but not at
303, thus this fragment does not contain C-4.
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Asp 316 M1 M+2 M+3 M+4
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[U-13C]-Asp 316 M1 M+2 M43 M+4
é ) :: 05 : 175 ‘: . O
2 05 O51em o P~ ': o 17
W oz v - g .
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’ ’ Peak‘oarea * crc ’ ? Peak‘oarea * o ° ) Peakmarea * ol ’ ? Peak‘grea * s
Asp 316 [U-3C]-Asp
Formula : C15H34N038i3
Exact mass : 316.213
C-atoms : 2-3-4
m/z theory data  difference m/z theory data  difference
315 0.0 0.0 0.0 315 0.0 0.0 0.0
316 100.0 100.0 0.0 316 0.0 0.2 0.2
317 27.5 273 -0.2 317 0.0 0.6 0.6
318 10.6 10.5 -0.1 318 3.1 3.7 0.6
319 1.9 2.6 0.7 319 100.0 100.0 0.0
320 0.3 0.6 0.3 320 244 24.5 0.1
321 0.0 0.1 0.1 321 9.7 10.3 0.6
322 0.0 0.0 0.0 322 1.5 1.9 0.4
323 0.0 0.0 0.0 323 0.3 0.4 0.1
324 0.0 0.0 0.0 324 0.0 0.1 0.1

This fragment should not be used. It has a significant bias, M+0 is too low (-0.3 mol%) and M+3 is
too high (+0.7 mol%).[4-13C]-aspartate contains a peak at 317 but not at 316, thus this fragment
contains C-4.
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Asp 376 M+1 M+2 M+3 M+4
é 65. : ) .' ——-',.",'5:_—— R AR -‘TT__,Z_.:-;./‘“ sob 7 = et i
64.5 . ) !: ‘:
° ‘ Pe:k ave; :106 ° ‘ Pezk are: :105 ’ 1 Pe;k are: 4105 ’ ‘ Pe:k are: :‘06 ° Pe;k are; dms
[U-13C}-Asp 376 M#1 M+2 M+3 M+4
5 o . : . ' ad : 635 20
’ 'Peak :rea ’ 1 ’ ‘Peak azrea 3“05 ° ‘ Peak :vea Gx o ’ ‘ Peak :vea axmﬁ ’ Peak :rea ’ o
M+5 M+6 M+7 M+8
é N osf T 2 wt 05 05
! ' Peak :rea :: '05 ’ ' Peak :rea 3)( mﬂ * ‘ Peak :rea ax mﬁ ¢ ' Peak ;ea 3)( ‘06
Asp 376 [U-53C]-Asp
Formula : C15H3803N5i3
Exact mass : 376.216
C-atoms : 1-2
m/z theory data  difference m/z theory data  difference
375 0.0 0.1 0.1 375 0.0 0.0 0.0
376 100.0 100.0 0.0 376 0.0 0.2 0.2
377 33.8 335 -0.3 377 2.0 32 1.2
378 15.9 15.8 -0.1 378 100.0 100.0 0.0
379 3.6 34 -0.2 379 31.7 31.7 0.0
380 0.8 0.7 -0.1 380 15.2 15.0 -0.2
381 0.1 0.0 -0.1 381 33 31 -0.2
382 0.0 0.0 0.0 382 0.8 0.5 -0.3
383 0.0 0.1 0.1 383 0.1 0.0 -0.1
384 0.0 0.0 0.0 384 0.0 0.0 0.0

This fragment can be used for quantitative analysis. [4-1>C]-aspartate contains a peak at 376 but not at
377, thus this fragment does not contain C-4.
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Asp 390

M+1 M+2 M+3 M+4
T B e [ ek i TR L N
N - . Dl
:’eak are;o R ‘06 ’ ;'eak are;o . ? ;eak are‘a0 . ms ’ ;eak are:;;o it ’ ;eak are;:0 1k
[U-13C]-Asp 390 M1 M+2 M+3 M+4
| a8
& 25 ' 21
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P I;eakcareae * vt AF"eaKGamaa 10‘05 Pt ;eakireas "Oms vl }:eaksarea8 ‘:Ds Pt ;’eak areae 10"]6
M+5 M+6 M+7 M+8 M+9
105 1 1 1.5 i5
é as | ‘ o5t . EE o) 0.5 05
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. l:’ea\kﬁarea5 I(O‘UB ° }i-"eakuar(-:acx xoms T i:’eal’cﬁareag in‘ub vt ;eakﬁareas Lu‘oe °t ;eaksarea8 ‘ﬂws
Asp 390 [U-3C]-Asp
Fotrmula : Ci7H4O3NS1;3
Exact mass : 390.232
C-atoms : 2-3-4
m/z theory data  difference m/z theory data  difference
389 00 00 00 389 00 00 0.0
390 100.0 100.0 0.0 390 0.0 0.2 0.2
391 35.0 34.8 -0.2 391 0.0 0.3 0.3
392 16.3 16.1 -0.2 392 3.1 3.1 0.0
393 3.8 37 -0.1 393 100.0 100.0 0.0
394 0.9 0.8 -0.1 394 31.8 31.8 0.0
395 0.1 0.0 -0.1 395 15.2 15.0 -0.2
396 0.0 0.0 0.0 396 33 3.2 0.1
397 0.0 0.0 0.0 397 0.8 0.7 -0.1
398 0.0 0.0 0.0 398 0.1 0.0 -0.1
399 0.0 0.0 0.0 399 0.0 0.0 0.0

This fragment can be used for quantitative analysis. [4-'3C]-aspartate contains a peak at 391 but not at
390, thus this fragment contains C-4.
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Asp 418 M+1 M+2 M+3 M+4
S: ] 235 3 .
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§ 15 15 15 w 65 - .
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Asp 418 [U-3C]-Asp
Formula M C13H4004N513
Exact mass : 418.227
C-atoms : 1-2-3-4
m/z theory data  difference m/z theory data  difference
417 0.0 0.0 0.0 417 0.0 0.0 0.0
418 100.0 100.0 0.0 418 0.0 0.2 0.2
419 36.1 35.8 -0.3 419 0.0 0.1 0.1
420 16.9 16.7 -0.2 420 0.0 0.6 0.6
421 4.0 3.9 -0.1 421 41 4.7 0.6
422 1.0 0.9 -0.1 422 100.0 100.0 0.0
423 0.2 0.1 -0.1 423 31.9 319 0.0
424 0.0 0.0 0.0 424 15.4 15.3 -0.1
425 0.0 0.0 0.0 425 3.3 33 0.0
426 0.0 0.0 0.0 426 0.8 0.8 0.0
427 0.0 0.0 0.0 427 0.1 0.1 0.0
428 0.0 0.0 0.0 428 0.0 0.0 0.0

This fragment can be used for quantitative analysis. [4-13C]-aspartate contains a peak at 419 but not at
418, thus this fragment contains C-4.
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Glutamate (Glu)
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Glu 272 M+1 M+2 M+3 M+4
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Glu 272 [U-B3C]-Glu
Formula : unknown
Exact mass : unknown
C-atoms : unknown
m/z theory data  difference m/z theory data  difference
271 0.0 271 0.0
272 100.0 272 0.2
273 24.4 273 0.1
274 115 274 0.4
275 n/a 2.2 n/a 275 n/a 4.9 n/a
276 0.6 276 100.0
277 0.1 277 20.8
278 0.0 278 10.5
279 0.1 279 1.7
280 0.0 280 0.5

This fragment cannot be used because the fragmentation is unknown. [5-'3C]-glutamine contains a
peak at 273 but not at 272, thus this fragment contains C-5. Fragment Glu-432 is prefetred.
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Glu 330 M+1 M2 M+3 M+4
9 "; 205 .-*‘-".' al . Y !
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? 6.5 ‘C,_ 19.5 ' 7 , v [N — e
° ' Peak :rea i o ° ! Peak :vea 3x o ° ‘ Peak :rea ) 7 ’ 'Peak az!ea ) 107 ° ‘ Peak :rea 3‘ 10
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Glu 330 [U-BC]-Glu
Formula : Ci6H360OaNS12
Exact mass : 330.228
C-atoms : 2-3-4-5
m/z theory data  difference m/z theory data  difference
O.O 329 0-0 - 0.0 S —
. . 0.0 330 0.0 0.2 }
331 28.7 285 -0.2 331 0.0 0.1 0.1
332 10.9 10.9 0.0 332 0.0 0.8 0.8
333 2.0 21 0.1 333 4.1 4.8 0.7
334 0.3 0.3 0.0 334 100.0 100.0 0.0
335 0.0 0.0 0.0 335 245 25.0 0.5
336 0.0 0.0 0.0 336 9.7 10.0 0.3
337 0.0 0.4 0.4 337 1.6 1.7 0.1
338 0.0 0.1 0.1 338 0.3 0.3 0.0
339 0.0 0.1 0.1 339 0.0 0.0 0.0

This fragment can be used for quantitative analysis. Mass isotopomer distributions should be obtained
from the mass range 330-336. |5-13C]-glutamine contains a peak at 331 but not at 330, thus this
fragment contains C-5.
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Glu 358 M+1 M+2 M+3 M+4
ng.si ———————— D L s::___.__’.._._‘__ 15;'-—i:_-__
° Pzeak :rea ) “506 ° Pzeak :rea : :06 Y Pzeak :rea ' :05 ° Pzeak :rea ‘ :os ° l:eak :rea ) xjoa
[U-13C]-Glu 358 M+1 M+2 M+3 M+4
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Glu 358 [U-83C]-Glu
Formula : Ci7H3¢NO3Siz
Exact mass : 358.223
C-atoms : 1-2-3-4-5
m/z theory data  difference m/z theory data  difference
357 0.0 1.8 1.8 357 0.0 0.2 0.2
358 100.0 100.0 0.0 358 0.0 0.0 0.0
359 29.8 30.0 0.2 359 0.0 0.0 0.0
360 11.4 119 0.5 360 0.0 0.1 0.1
361 22 25 0.3 361 0.0 2.9 29
362 0.4 0.8 0.4 362 52 6.6 1.4
363 0.0 0.1 0.1 363 100.0 100.0 0.0
364 0.0 0.0 0.0 364 245 254 0.9
365 0.0 0.0 0.0 365 9.9 10.9 1.0
366 0.0 0.0 0.0 366 1.6 14 -0.2
367 0.0 0.0 0.0 367 0.3 0.2 -0.1
368 0.0 0.0 0.0 368 0.0 0.0 0.0

This fragment should not be used. M-1 is too high (1.8 mol%). Fragment Glu-432 is preferred. [5-
BC]-glutamine contains a peak at 359 but not at 358, thus this fragment contains C-5.
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Glu 404

M+2 M+3 M+4
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Glu 404 [U-5C]-Glu
Formula : C13H4303N5i3
Exact mass : 404.247
C-atoms : 2-3-4-5
m/z theory data  difference m/z theory data  difference
300 00 00 43 00 00 00
404 100.0 100.0 0.0 404 0.0 0.0 0.0
405 36.1 35.7 -0.4 405 0.0 0.0 0.0
406 16.7 16.4 -0.3 406 0.0 0.1 0.1
407 4.0 39 -0.1 407 4.1 3.8 -0.3
408 0.9 0.8 -0.1 408 100.0 100.0 0.0
409 0.2 1.3 1.1 409 319 31.7 -0.2
410 0.0 0.3 0.3 410 15.2 14.6 -0.6
411 0.0 0.0 0.0 411 33 27 -0.6
412 0.0 0.0 0.0 412 0.8 0.5 -0.3
413 0.0 0.0 0.0 413 0.1 0.0 -0.1

This fragment should be used with caution. It is not very abundant and therefore noisy. F'ragment
Glu-330 is preferred. |5-13C]-glutamine contains a peak at 405 but not at 404, thus this fragment

contains C-5.
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Glu 432 M+1 M+2 M+3 M+4
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[U-13C]-Glu 432 M+1 M+2 M+3 M+4
é 1 1 1 ! '.: ,. . g
é 05 05 05 05 -
o
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Glu 432 [U-5C]-Glu
Formula : C19H4204N8i3
Exact mass : 432.242
C-atoms : 1-2-3-4-5
m/z theory data  difference m/z theory data  difference
431 0.0 0.0 0.0 431 0.0 0.0 0.0
432 100.0 100.0 0.0 432 0.0 0.2 0.2
433 37.2 371 -0.1 433 0.0 0.1 0.1
434 17.3 17.5 0.2 434 0.0 0.1 0.1
435 4.2 4.4 0.2 435 0.0 0.3 0.3
436 1.0 1.1 0.1 436 52 5.8 0.6
437 0.2 0.2 0.0 437 100.0 100.0 0.0
438 0.0 0.0 0.0 438 32.0 325 0.5
439 0.0 0.0 0.0 439 154 15.4 0.0
440 0.0 0.0 0.0 440 33 3.4 0.1
441 0.0 0.0 0.0 441 0.8 0.8 0.0
442 0.0 0.0 0.0 442 0.1 0.1 0.0
443 0.0 0.0 0.0 443 0.0 0.0 0.0

This fragment can be used for quantitative analysis. [5-13C]-glutamine contains a peak at 433 but not
at 432, thus this fragment contains C-5.
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Lysine (Lys)
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Lys 329 M+1 M+2 M+3 M+4
£ ;o, 215 85 2 '
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Lys 329 [U-5C]-Lys
Formula . C17H41sti2
Exact mass : 329.2808
C-atoms : 2-3-4-5-6
m/z theory data  difference m/z theory data  difference
328 0.0 0.6 0.6 328 0.0 0.0 0.0
329 100.0 100.0 0.0 329 0.0 0.5 0.5
330 30.1 29.9 -0.2 330 0.0 0.1 0.1
331 10.9 11.3 0.4 331 0.0 1.8 1.8
332 2.0 22 0.2 332 0.0 25 2.5
333 0.3 0.5 0.2 333 5.2 9.4 4.2
334 0.0 0.0 0.0 334 100.0 100.0 0.0
335 0.0 0.0 0.0 335 24.8 25.7 0.9
336 0.0 0.0 0.0 336 9.4 10.5 1.1
337 0.0 0.3 0.3 337 1.5 3.8 23
338 0.0 0.1 0.1 338 0.2 0.9 0.7

This fragment should be used with caution. Lysine peak is not very abundant and therefore very

noisy.
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Lys 431
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Lys 431 [U-33C]-Lys
Formula : Con.wO:N:Sis
Exact mass : 431.295
C-atoms : 1-2-3-4-5-6
m/z theory data  difference m/z theory data  difference
431 100.0 100.0 0.0 431 0.0 0.0 0.0
432 38.7 383 -0.4 432 0.0 0.0 0.0
433 17.4 16.8 -0.6 433 0.0 0.0 0.0
434 4.3 4.3 0.0 434 0.0 0.0 0.0
435 1.0 1.0 0.0 435 0.0 1.4 1.4
436 0.2 0.0 -0.2 436 6.3 9.4 32
437 0.0 0.0 0.0 437 100.0 100.0 0.0
438 0.0 0.0 0.0 438 324 33.5 1.1
439 0.0 0.0 0.0 439 15.0 16.5 1.5
440 0.0 0.1 0.1 440 3.2 34 0.2
441 0.0 0.0 0.0 441 0.7 0.3 -0.4
442 0.0 0.0 0.0 442 0.1 0.0 -0.1
443 0.0 0.0 0.0 443 0.0 0.0 0.0

This fragment should not be used. M-1 is too high (1.7 mol%). Lysine peak is not very abundant and
therefore very noisy.
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Tyrosine (Tyr)
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M+1 M+2 M+3 M+4
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’ ‘Peak areza . 1:7 ° ‘Paak ar:a ‘:7 'Paak ar:a . ':7
Tyr 302 [U-BC]-Tyr
Formula : C14H320:NSiz
Exact mass : 302.197
C-atoms : 1-2
m/z theory data difference m/z theory data _ difference
302 100.0 100.0 0.0 302 0.0 0.4 0.4
303 26.4 26.3 -0.1 303 20 1.8 0.2
304 10.3 10.1 -0.2 304 100.0 100.0 0.0
305 1.8 1.7 -0.1 305 24.3 249 0.6
306 0.3 0.6 0.3 306 9.7 9.7 0.0
307 0.0 0.8 0.8 307 1.5 1.6 0.1
308 0.0 0.5 0.5 308 0.3 0.3 0.0
309 0.0 0.2 0.2 309 0.0 0.0 0.0

This fragment can be used for quantitative analysis. Mass isotopomer distributions should be obtained
from the mass range 302-305.
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Tyr 364 M+t M+2 M+3 M+4
é 6:: . 2| - -, asf ¥ D PR ) N
3 Y 20l IR RO R
° Ii‘eakaarea4 iws ° ;eakaare; ims v ;eakaare; Swe ' lieakaarea4 i‘os ° ;eakaarea“ 5'06
[U-13C]-Tyr 364 M+1 M+2 M+3 M+4
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Tyr 364 [U-3C]-Tyr
Formula : C20H38NOSi2
Exact mass : 364.249
C-atoms : 2-3-4-5-6-7-8
m/z theory data  difference m/z theory data  difference
363 0.0 0.5 0.5 363 0.0 0.1 0.1
364 100.0 100.0 0.0 364 0.0 0.4 0.4
365 33.0 33.1 0.1 365 0.0 0.2 0.2
366 12.0 12.7 0.7 366 0.0 3.6 3.6
367 24 3.0 0.6 367 0.0 1.0 1.0
368 0.4 0.7 0.3 368 0.0 0.3 0.3
369 0.1 0.1 0.0 369 0.0 0.0 0.0
370 0.0 0.0 0.0 370 0.0 1.3 1.3
371 0.0 0.0 0.0 371 8.5 10.1 1.6
372 0.0 0.0 0.0 372 100.0 100.0 0.0
373 0.0 0.0 0.0 373 24.6 259 1.3
374 0.0 0.2 0.2 374 9.5 9.9 0.4
375 0.0 0.0 0.0 375 1.5 1.6 0.1
376 0.0 0.8 0.8 376 0.2 0.2 0.0
377 0.0 0.3 0.3 377 0.0 0.0 0.0

This fragment should not be used. It is not very abundant and therefore very noisy. Fragment Phe-

308 is preferred.
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Histidine (His)

Histidine fragments were not investigated in detail because of low signal-to-noise ratio.

Histidine was not found in all samples.
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Arginine (Arg)
1poAveraged Scan : 3108 tn 3124 TIC: 90747 8P = 93089
= 34025 44225
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H
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V4

C24H55N405Si3
Exact Mass: 515.363

Arginine peak is found at 22.5 min with peaks at m/z 442 (M-57-16) and m/z 340 (M-159-
16). The arginine derivative corresponds to a nitrile form derived from loss of a guanidino
nitrogen (see Petterson BW et al., Biol Mass Spectrom, 22(9), 518-523). Arginine fragments
were not investigated in detail because of low signal-to-noise ratio.
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Appendix B

GC/MS analysis of glucose derivatives

GC/MS analysis of unlabeled glucose detivatives was performed using HP 5890 Series 11
GC (Gas Chromatograph) connected to HP 5971 MSD (Mass Selective Detector). The mass
spectrometer was calibrated using the ‘Max Sensitivity Autotune’ setting.

Column Specifications

Agilent Technologies 122-1262 DB-XLB (Serial No. 8758214)
Length: 30 m

ID: 0.25 mm

Film: 0.25 pm

Temperature limits: 30°C to 340°C

MSD Settings

Scan mode

5 min solvent delay

10 min recording time

Mass range: 100 to 500 amu (approx. 2.0 scans/sec)

GC Settings

Constant flow 0.88 mL./min
Injector temp: 250°C

Transfetline temp: 300°C
Temperature program:

o 80°C (hold 1 min)
o  20°C/min to 280°C (hold 4 min)
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Pentaacetate glucose

Averaged Scan @ 718 t0 735 TIC : 1670270 BP = 1203500 <!

g

115.05 i

98.10

g 3 8 8

157.10

ABUNDANCE
8 8 8

140.05 :

200.15
10 “
Ly Ll
i

100 150 200 250 300 350 400 m/g

Pentapropionate glucose

| Averaged Scan : 772t 785 TIC : 921379 BP = 638884 . : o - <

100

129.10

80 185.20

3
e

154.10

ABUNDANCE

8 88 &

109.05 2271.10

284.20

10 J 210.05 \‘
. " T ,I%L,LJ ] iLI.. |

100 150 200 250 300 350 400 m/z

£

Pentabutanoate glucose

Averaged 5can : 912 to 926 TIC : 411898 BP = 242772 <

w0 i98.10

0 143.15 166.15

40 255.10

“L ‘I.h Ll L . II‘. ’\ || Lo e O a0
00

h
1 130 200 250 300 350 400 m/z

- 364 -



APPENDIX B. GC/MS ANALYSIS OF GLUCOSE

Pentatrimethylsilyl glucose
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Di-O-isopropylidene acetate glucose

Averaged Scan : 373 D 381 TIC : 562097 BP = 955353
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Di-O-isopropylidene trimethylsilyl glucose
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Aldonitrile pentabutanoate glucose
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Methyloxime pentapropionate glucose
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"Until you measure the fluxes, you don’t even know
if a cell is dead or alive 1”
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