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ABSTRACT

Metabolic Flux Analysis (MFA) has emerged as a tool of great significance for metabolic
engineering and the analysis of human metabolic diseases. An important limitation of MFA,
as carried out via stable isotope labeling and GC/MS measurements, is the large number of
isotopomer equations that need to be solved. This restriction reduces the ability of MFA to
fully utilize the power of multiple isotopic tracers in elucidating the physiology of complex
biological networks. Here, we present a novel framework for modeling isotopic distributions
that significantly reduces the number of system variables without any loss of information.
The elementary metabolite units (EMU) framework is based on a highly efficient
decomposition algorithm identifies the minimum amount of information needed to simulate
isotopic labeling within a reaction network using knowledge of atomic transitions occurring
in the network reactions. The developed computational and experimental methodologies
were applied to two biological systems of major industrial and medical significance.

First, we describe the analysis of metabolic fluxes in E. coli in a fed-batch fermentation for
overproduction of 1,3-propanediol (PDO). A dynamic 13C-labeling experiment was
performed and nonstationary intracellular fluxes (with confidence intervals) were determined
by fitting labeling patterns of 191 cellular amino acids and 8 external fluxes to a detailed
network model of E. coli. We established for the first time detailed time profiles of in vivo
fluxes. Flux results confirmed the genotype of the organism and provided further insight
into the physiology of PDO overproduction in E. coli.
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Second, we describe the analysis of metabolic fluxes in the pathway of gluconeogenesis in

cultured primary hepatocytes, i.e. isolated liver cells. We applied multiple 13C and 2H-labeled

tracers and measured isotopomer distributions of glucose fragments. From this

overdetermined data set we estimated net and exchange fluxes in the gluconeogenesis

pathway. We identified limitations in current methods to estimate gluconeogenesis in vivo,
and developed a novel [U- 13C,2H8]glycerol method that allows accurate analysis of

gluconeogenesis fluxes independent of the assumption of isotopic steady-state and zonation

of tracers. The developed methodologies have wide implications for in vivo studies of

glucose metabolism in Type II diabetes, and other metabolic diseases.

Thesis Supervisor: Gregory Stephanopoulos

Title: Professor of Chemical Engineering
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Chapter 1

Introduction

1.1 Metabolic network and flux analysis

Metabolic fluxes of pathways provide a key to quantifying physiology in fields ranging from

metabolic engineering to the analysis of human metabolic diseases. Understanding the

regulation of cellular processes and intervening in these processes affords insight into

treating disease and achieving other biotechnological objectives. Living cells are complex

biological entities that are regulated at many levels, e.g. transcription, translation, protein

modification, etc. A large number of reactions, comprising a well-organized system of

enzymatic activities, accomplish the conversion of relatively simple molecules such as

glucose into a wide variety of small- and macromolecules. The conversion of each individual

reaction may be overseen easily, however, the result of the overall system of reactions is

often not trivial. Identification of targets for pathway manipulation and determining the

required magnitude of biological changes requires an enhanced, quantitative understanding

of cellular metabolism and regulation. Metabolic flux analysis (MFA) has emerged as an

important tool to assess the metabolic state of living cells and to evaluate the effects of

genetic and environmental manipulations. Fluxes of metabolic pathways are considered

fundamental determinants of cell physiology and informative parameters in evaluating

cellular mechanisms, regulation and causes of disease. The key to quantifying metabolic

fluxes is to analyze biological systems as integrated and interacting networks, rather than a

set of individual components.
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CHAPTER 1. INTRODUCTION

1.2 Metabolite flux balancing

Tools for estimating metabolic fluxes are fundamentally different from the tools for

obtaining static measurements such as metabolite concentration and transcript levels, which

provide relatively little insight into the dynamics of cellular metabolism. Initially, metabolic

flux analysis relied solely on balancing fluxes around metabolites within an assumed network

stoichiometry. Assuming metabolic steady-state, fluxes (v) are constrained by the

stoichiometry matrix (S).

S-v = 0 (1.1)

Stoichiometric constraints can be combined with the flux measurements matrix (R) that

contains a row with a unity entry for each measured external flux. The combined

stoichiometry and measurement matrices are then used to obtain the generalized solution to

the metabolite flux balancing problem by solving a set of linear equations. The solution to

this problem is given by the following expression:

v = . )+ null ( P (1.2)

Here, 'pinv' denotes the pseudo inverse, and 'null' is the null space of the combined

stoichiometry and measurement matrix. Vector 0 contains the linear coefficients of the

columns that span the null space. In most practical situations, however, stoichiometric

constraints and external flux measurements did not provide enough information to estimate

all fluxes of interest in complex biological systems with reversible reactions, parallel

pathways and internal cycles. This limitation let to the development of isotopic tracer

techniques to determine fluxes.
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CHAPTER 1. INTRODUCTION

1.3 Estimating fluxes from stable isotope measurements

A more powerful method for flux determination in complex biological systems is based on

the use of stable isotopes. Figure 1-1 shows schematically the procedure for quantifying

metabolic fluxes from stable isotope experiments. The first two important decisions are the

choice of the isotopic tracer and the structure of the metabolic network model (steps 1 and

6). Methods for experiment design are aimed at finding the most informative tracer(s) for a

given set of stable isotope measurements using criteria from linearized statistics and

sensitivity analysis (Mollney et al., 1999). Metabolic flux studies further require some prior

knowledge of the biochemical reactions involved in the pathway of interest. The decision

which reactions and metabolites to include in the network model is still mainly driven by the

investigators' insight into the physiology and may in some cases be somewhat arbitrary.

However, we will illustrate in Chapter 3 that proper statistical analysis of isotopomer data

can be instrumental in identifying the most likely network structure. Steps 2-4 are

experimental in nature and require good laboratory skills. In labeling experiments, metabolic

conversion of isotopically labeled substrates generates molecules with distinct labeling

patterns (i.e. isotopomers) that can be detected by mass spectrometry (MS) and nuclear

magnetic resonance (NMR) spectroscopy (Szyperski, 1995; Des Rosiers, 2004) (step 4). In

general, the NMR technique requires expensive equipment and a fairly large amount of

sample, which limits the use of this technique to a few expert groups. On the other hand,

GC/MS analysis is a more rapid and sensitive technique that is readily accessible to many

research labs. Raw data from both techniques needs to be further processed before it can be

used for flux determination. In both cases, data processing consists of the detection of

metabolite peaks in NMR and MS spectra and integration of peak intensities (step 5). The

isotope measurements provide many additional independent constraints for MFA.

Quantitative interpretation of the isotopomer data requires the use of large-scale

mathematical models that describe the relationship between metabolic fluxes and

isotopomer abundances (step 7). Schmidt developed an elegant method for automatically

generating the complete set of isotopomer balances for any given network using a matrix

based method (Schmidt et al., 1997), and more recently Wiechert et al. (1999) provided an

efficient method for solving these isotopomer models using the cumomer framework.
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Experimental steps Modeling steps

{1.
Choose isotopic tracer, i.e.

which metabolite
and what labeling pattern

Perform isotopic tracer experiment

3. Harvest biomassand
collect medium samples

4. Measure labeling distribution
in cellular components and excreted
metabolites by GC-MS and/or NMR

5. Analyze measured data.
Transfer data to suitable format

and estimate measurement errors. `r

6. Set up model for the
pathway of interest, i.e.

identify relevant
reactions and metabolites

7. Set up mathematical moc
simulate isotopomer distribut

8. Calculate fluxes by least-sq
regression, i.e. minimize devi•

between observed and simulate

lelto

el to
ions

uares
ati'
ed

ons
data

9. Evaluate goodness-of-fit
and calculate confidence

intervals of estimated fluxes

10. Report fluxes, confidence intervals
and network structure

Figure 1-1: A schematic of metabolic flux estimation from tracer experiments. Metabolic

flux analysis is characterized by both experimental and analytical steps. The dotted lines

indicate that MFA is an iterative process that requires reevaluation of metabolic network

assumptions and the choice of optimal tracer.
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CHAPTER 1. INTRODUCTION

In the forward calculation, these isotopomer models simulate a unique profile of isotopomer

abundances for given steady-state fluxes. In MFA we solve the more challenging inverse

problem, i.e. determining the cell's flux state from measurements of isotopomer

distributions. Analytical solutions to this inverse problem are only available for very simple

systems. Therefore, fluxes in complex biological systems have to be determined by iterative

least-squares fitting procedures, where the objective is to evaluate a set of feasible fluxes that

best accounts for the observed isotopomer measurements (step 8). At convergence, the

goodness-of-fit is evaluated using statistical criteria and confidence intervals of fluxes are

determined (step 9). The final result of this whole process is a detailed flux map (with

confidence intervals) that describes the contribution of various metabolic reaction pathways

to the overall cellular metabolism. The dotted lines in Figure 1-1 illustrate that metabolic flux

analysis is an iterative process that requires constant reevaluation of metabolic network

assumptions and the choice of optimal tracer.

1.4 Previous work

A range of stable isotopes such as 13C, 2H, 15N, and 180 can be used to trace metabolic

pathways using GC/MS and NMR measurements. Currently, methods based on carbon-13

tracing are most widely used. In this section we provide a short review of the most

important concepts currently used in metabolic tracer analysis, i.e. isotopomers, fractional

enrichments, NMR fine spectra, mass isotopomers, and cumomers.

1.4.1 Isotopomers

Positional isotopomers (or simply isotopomers) are isomers of a metabolite that differ only

in the labeling state of their individual atoms, for example, 13C VS. 12C in carbon-labeling

studies, and 2H vs. 1H in hydrogen-labeling studies. For a metabolite comprising N atoms

that may be in one of two (labeled or unlabeled) states, 2" isotopomers are possible. Thus, a

molecule consisting of 3 atoms can exist in 8 specific labeling states (see Figure 1-2). We can

represent the labeling patterns of isotopomers as sequences of ones and zeros that can be

interpreted as binary numbers that provide a unique way of ordering the 2N isotopomers.
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The isotopomer distribution vector (IDV) contains the molar fractions of the 2N

isotopomers. For example, the first element in the IDV contains the molfraction of the

isotopomer with labeling pattern 000, i.e. unlabeled molecule. The second element

corresponds to labeling pattern 001, i.e. molecule with a single labeled atom at the third

position, and so forth. Note that by definition, the sum of all elements of IDV equals one. In

practice, isotopomer fractions are not measured directly. Instead, available measurements are

expressed as functions of isotopomer fractions. The two most widely used techniques for

measuring labeling distribution are nuclear magnetic resonance (NMR) spectroscopy and

mass spectrometry (MS), which are discussed next.

Isotopomers

000

060

OS

amO

IDV =

A001

AM))

AIM

Allo

IDV = 1

Figure 1-2: Isotopomers of a 3-atom molecule. The 8 (=23) isotopomers are shown on the

left. The spheres represent labeled (full) and unlabeled (open) atoms. The isotopomer

distribution vector (IDV) contains the molfractions of all isotopomers. By definition, the

sum of all isotopomer fractions equals one.
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1.4.2 Fractional enrichments

The NMR technique detects magnetic interaction between 13C-nuclei and adjacent nuclei

with magnetic spins, e.g. 1H and adjacent 13C nuclei. NMR analysis provides two types of

labeling information. First, one can determine the fractional abundance of 13C at a specific

carbon atom position, which is called the fractional enrichment (FE) measurement.

Determination of fractional enrichments is based on the fact that the 1H-' 2C interaction

gives rise to a different peak in the 1H-NMR spectrum than the 1H-13C interaction.

Fractional enrichments of individual carbon atoms can be interpreted as linear functions of

isotopomer fractions. For example, consider the fractional enrichment of the first atom of

the 3-atom molecule A, i.e. A#1, which is simply the sum of the four isotopomer fractions

for which the first atom is labeled (i.e. A1oo, Ao10 , Allo0, and A111). Figure 1-3 shows the linear

relationship between fractional enrichments and isotopomer fractions. Note that the term

fractional enrichment is somewhat misleading, i.e. one doesn't actually measure the

enrichment of 13C. The term 'positional abundance of t3C' would have been more

appropriate.

Fractional enrichments
AoOO

A#1  A#2  A#3  A
A 00001111

O)O 06OO 8 FE A#2  0 0 1 1 0 0 1 1 - A01

S Oft A#3, 0 1 0 1 0 1 0 1 A

4+ A11

Figure 1-3: Fractional enrichments are linear functions of isotopomer fractions.
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1.4.3 NMR fime spectra

Adjacent 13C-13C nuclei influence each others NMR signal by peak splitting (a phenomenon

called J-coupling), which is observed in the 13C-NMR spectrum. Peak splitting leads to the

formation of multiple fine structures in the NMR spectrum, e.g. singlets, doublets, triplets,

doublets of doublets, etc. The relative contribution of individual multiplets to the resulting

overall multiplet pattern provides not only information on the labeling state of individual

carbon atoms of a molecule, but also detailed positional information. For example, consider

a molecule consisting of 2 carbon atoms. The 13C-multiplet peak areas can be expressed as a

nonlinear function of three isotopomer fractions. Eq. 1.3 converts 13C-multiplet peak areas

to relative areas, in this case two singlets and a doublet in the 13C-NMR spectrum.

singlet 2
singlet 1

doublet 12)

Ao - (A,, + Ato +A )

A A,

(1.3)

Eq. 1.4 shows the relationships for a secondary carbon atom, where we also take into

account long range 13C-13C interactions.

singlet 2

doublet 24

doublet 23

double doublet 234

doublet 12

double doublet 124

double doublet 123

quadruple doublet 1234

A0101

A01 0

A111c
Alo

A1101
A

Alill
AllO

q Allll

S(A,,oo + A01l +A,,010 + A,0 11 +A 11,,, 1+A +A1+110 +A 1111)-

(1.4)
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1.4.4 Mass isotopomers

Mass spectrometry (MS) is an analytical technique where molecules are separated according

to their mass to electric charge ratio, i.e. m/z ratio. Isotopomers that have incorporated the

same number of labeled atoms, called mass isotopomers, contribute to the intensity of the

same ion peak in a mass spectrum. Mass isotopomer distribution reflects the relative

amounts of each mass isotopomer (including the unlabeled fraction). Mass isotopomer

distribution (MID) can be interpreted as a linear mapping of isotopomer fractions, as is

illustrated in Figure 1-4. Note that the sum of the mass isotopomer distribution vector is by

definition one.

Mass isotopomers
Ai,)l

Amo Am-, AM+2  AM 3  A+ '  1 0 0 0 0 O A100

000 0 C"C MID = 0 1 1 0 1 0 0 0 A MID - 1A M+2  0 0 1 0 1 1 0 A,)OA 0 0 0 0 0 0 0 1 A1
S00066 M00

A,,

Figure 1-4: Mass isotopomer abundances are linear functions of isotopomer fractions. By

definition the sum of all mass isotopomer fractions is one.

1.4.5 Cumomers

Wiechert et. al. (1999) introduced the concept of cumomers, i.e. short for cumulative

isotopomers, as a method to simplify isotopomer simulations (see section 1.6). In essence,

cumomers are simply a linear mapping of isotopomers. For example, consider a 3-atom

molecule A. The so called 0-cumomer fraction is the sum of all isotopomer fractions, and is

therefore by definition one.
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(1.4)
1

Ax = AA ik - 1
i,j,k=0

Here, subscript 'x' has the meaning '0 or 1'. Using the same convention, the 1-cumomer

fractions are defined as follows:

1

AIXX= -Alik ,
j,k=0

1

A x =, Ailk ,
i,k=0

(1.5)
1

A• = - Ai,
i,j=0

Thus, the 1-cumomer fractions are sums of those isotopomer fractions that are labeled at

least at the position indicated by the index 1. By this definition, 1-cumomer fractions are

identical to fractional enrichments, i.e. A#1 =Ai, A#2=Ax,x, and A#3=Axx1. Following the

same convention, the 2-cumomer fractions are sums of those isotopomer fractions where at

least two of the three atoms are labeled indicated by the index 1:

Al x = Allk ,
k=O

1

AIx, = EAl,
i=0

(1.6)AXl, = Ai1M
i=o

Finally, the 3-cumomer fraction A11 corresponds to the fully labeled isotopomer fraction

All1.

A I -- AllI  (1.7)

Wiechert showed that there is always a linear one-to-one relationship between cumomer and

isotopomer fractions. For an N atom molecule, the transformation from its 2-N isotopomer

fractions to the corresponding 2N cumomer fractions is given by the transformation matrix

T, which is constructed recursively in the following manner.

(1.8)
0 Ti]1
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Thus, for a 3-atom molecule

fractions is given by Eq. 1.9.

A xxaXX

Alx,

AxlAxx

AlxX

All _

the transformation from isotopomer fractions to cumomer

A000

A001

A010

A011

A101
A110

All_Alll

(1.9)

The reverse transformation, i.e. from cumomer fractions to isotopomer fractions, is achieved

by inverting the transformation matrix. Wiechert showed that the transformation matrix of

any size is always full rank, i.e. invertible.

1.5 Simulating labeling distributions by isotopomer balancing

Here, we describe the method that is currently used for simulating labeling distributions in

reaction networks. This method was originally based isotopomer balancing, but has been

replaced more recently by cumomer balancing. Consider the simple network model shown in

Figure 1-5 that consists of 4 metabolites, 3 extracellular fluxes and 3 intracellular reactions.

Here, the third reaction is considered reversible and is modeled by separate forward and

backward reactions. Metabolite A is the network substrate with known labeling and

metabolites C and D are the two products whose labeling pattern we would like to predict

for given fluxes. Figure 1-5 (right panel) also shows the assumed atom transitions for the

reactions in this network. Similar to metabolite balancing, we can set up material balances for

all 12 unknown isotopomers in this system. The complete set of isotopomer balances is

shown below.

- 33 -
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Reaction stoichiometry

A - - B

Atom transitions

AB--------------------------------------

I V3b

C D

W , W37, , 23
S3----- ---

2 3

Figure 1-5: Simple metabolic network model used as example for generating isotopomer

balances. Reaction stoichiometry is shown in the left panel and the assumed atom transitions

are shown in the right panel.
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0 = vlyaoo + V3b'doo - (v3f+v2)-boo (1.10a)

0 = vl-aol + V3b'd01 - (v3 f+v2)'bo0 (1.10b)

0 = vlalo + V3b'dl0 - (v3f+v2)-blo (1.10c)

0 = vlall + V3b'dl - (v3f+v2)-'bl (1.10d)

0 = v2-(aoo0boo + aoo-bo1 + aor-boo + ao-bol) - w2-C00 (1.10e)

0 = v2-(aoob00o + aoo-bil + aol-bio + aol-bil) - w2"CO (1.10f)

0 = v2-(aio-boo + aiobol + aiboo + allbol) - w2-C0 (1.1Og)

0 = v2-(aio-bio + a0o-bi, + al-bio + ali-bi) - w2-CI (1.10h)

0 = vl-(aoo-boo + aoo-blo + alo-boo + alo-blo) + v3fboo- (v3b+W3)-doo (1.10i)

0 = vl-(aoo-bo1 + aoo-bi1 + alo-bol + alo-bi) + v3f-bol- (V3b+W3)-do0 (1.10j)

0 = vy-(ao-boo + aoi'blo + ailboo + ali-bio) + v3f-bo- (v3b+W3)-d0o (1.10k)

0 = vl'(aol-boi + aol'bil + all-boi + aull-bi) + v3f-bi- (v3b+w3)-dul (1.101)

For given fluxes and labeling input, the isotopomer balances provide 12 nonlinear equations

in 12 unknown isotopomer fractions, which can be solved using Newton's iterative method.

As the result we obtain the isotopomer fractions for all 12 unknown isotopomers in this

system.

1.6 Simulating labeling distributions by cumomer balancing

Wiechert et. al. (1999) recently showed that the complete set of nonlinear isotopomer

balances can be converted into a corresponding set of cumomer balances. It was shown that

cumomer balances are less strongly coupled then isotopomer balances, which allows

cumomer balances to be solved explicitly as a cascade of linear subproblem, from which the

1-, 2-, ... cumomer fractions are successively computed. The cumomer fractions are then

transformed to isotopomer fraction as described in section 1.4.5. The major difference

between cumomer and isotopomer balances is the fact that cumomer balances are always

linear in the unknown variables. Thus, each subproblem can be solved using linear algebra

techniques, which significantly reduces computational time. Note, however, that the total
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size of the problem is same for both methods, i.e. there are always as many cumomer

balances as there are isotopomer balances.

1.7 Aim and outline of thesis

Our research group has actively participated in the development of experimental and

computational methods for MFA based on stable isotope experiments. The first general

mathematical model for interpreting of fractional enrichments was developed by Zupke and

Stephanopoulos (1995). In the last decade MFA has reached a state of relative maturity. The

experiments themselves have become a routine procedure, measurement techniques such as

GC/MS are widely used, and advanced mathematical procedures are available for

quantitative interpretation of stable isotope measurements.

The most important limitation of current methodology for MFA, as carried out via stable

isotope labeling and GC-MS measurements, is the large number of isotopomer/cumomer

equations that need to be solved, especially when multiple isotopic tracers are used for the

labeling of the system. This reduces the ability of MFA to fully utilize the power of multiple

isotopic tracers (i.e. 13C and 2H tracers) in elucidating the physiology of realistic situations

comprising complex bioreaction networks. As such, the realm of tracer experiments is

currently limited to carbon-13 tracers only. Therefore, the main goal of this thesis work was

the development of a novel methodology for comprehensive analysis of metabolic pathways

through the combined use of multiple isotopic tracers.

Chapter 2 describes the novel framework for modeling isotopic distributions that

significantly reduces the number of system variables without any loss of

information. The elementary metabolite unit (EMU) framework is based on a highly

efficient decomposition algorithm that identifies the minimum amount of

information needed to simulate isotopic labeling within a reaction network using the

knowledge of atomic transitions occurring in the network reactions. For a typical

carbon labeling system the total number of equations that needs to be solved is
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reduced by one order-of-magnitude (100s EMUs vs. 1000s cumomers). As such, the

EMU framework is most efficient for the analysis of labeling by multiple isotopic

tracers. For example, analysis of the gluconeogenesis pathway with 2H, 13C, and 180

tracers required only 300 EMUs compared to 3,000,000 isotopomers/cumomers.

* Chapter 3 describes novel methodologies for flux determination and statistical

analysis that have been developed. A serious drawback of the flux estimation

method in current use is that it does not produce confidence limits for the estimated

fluxes. Without this information it is difficult to interpret flux results and expand the

physiological significance of flux studies. To address this shortcoming we derived

analytical expressions of flux sensitivities with respect to isotope measurements and

measurement errors. These tools allow determination of local statistical properties

of fluxes and relative importance of measurements. Furthermore, we developed an

efficient algorithm to determine accurate nonlinear confidence intervals of fluxes

and demonstrated that confidence intervals obtained with this method closely

approximate true flux uncertainty.

* Chapters 4 and 5 describe experimental protocols that were developed for accurate

and precise measurement of labeling distributions by GC/MS. In the context of this

thesis work, the main focus was on accurate measurement of mass isotopomer

distributions of cellular amino acids and glucose. Based on preliminary simulations

and sensitivity analysis of realistic metabolic networks we determined that errors in

mass isotopomer abundances should be less than 0.5 mol%. The main result of our

work is a detailed procedure for the assessment of mass isotopomer distributions of

cellular amino acids and glucose with an accuracy of 0.4 mol% and precision of 0.2

mol%, or better.

* Chapter 6 describes analysis of metabolic fluxes in a nonstationary biological

system of with industrial relevance, i.e. microbial fed-batch fermentation of E. coli

for the overproduction of 1,3-propanediol (PDO). A drawback of current methods

for MFA is the requirement of isotopic steady state. To address this shortcoming
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and to extend the scope of flux determination from stationary to nonstationary

systems we developed a novel modeling strategy that combines key ideas from

isotopomer spectral analysis (ISA) and stationary MFA. In this study, metabolic

fluxes were determined at multiple time points during a fed-batch culture, and as

such we established for the first time detailed time profiles of intracellular fluxes in a

fermentation.

Chapters 7 and 8 describe analysis of fluxes in the gluconeogenesis pathway from

cultured primary hepatocyes, i.e. isolated liver cells. We applied multiple 13C-, and
2H-labeled tracers and analyzed the resulting mass isotopomer distributions of

glucose fragments. From this overdetermined data we estimated, for the first time,

both net and exchange fluxes in the gluconeogenesis pathway and calculated

confidence intervals for fluxes. We identified limitations in current methods to

estimate gluconeogenesis fluxes in vivo, and developed a novel multiple-tracer

method for accurate and quantitative analysis of this pathway independent of the

isotopic steady-state assumption.
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Elementary Metabolite Units (EMU):

a novel framework for modeling isotopic

distributions

2.1 Introduction

2.1.1 Metabolic flux analysis

Accurate flux determination is of great importance for the analysis of cell physiology in fields

ranging from metabolic engineering to the study of human metabolic diseases (Brunengraber

et al., 1997; Hellerstein, 2003; Stephanopoulos, 1999). Initially, metabolic flux analysis (MFA)

relied solely on balancing fluxes around metabolites within an assumed network

stoichiometry. However, stoichiometric constraints and external flux measurements often

cannot provide enough information to estimate all fluxes of interest. A more powerful

method for flux determination in complex biological systems is based on the use of stable

isotopes (Wiechert et al., 2001). Metabolic conversion of isotopically labeled substrates

generates molecules with distinct labeling patterns, i.e. isotope isomers (isotopomers), that

can be detected by mass spectrometry (MS) and nuclear magnetic resonance (NMR)

(Szyperski et al., 1995). Isotope measurements provide many additional independent

constraints for MFA. It has been shown that at metabolic and isotopic steady state the

isotopomer composition of metabolic intermediates is fully determined by the cell's flux
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state and the administered isotopic label. Quantitative interpretation of isotopomer data

requires the use of mathematical models that describes the relationship between metabolic

fluxes and the observed isotopomer abundances. Similar to metabolite balancing, balances

can be set up around all isotopomers of a particular metabolite. Schmidt described an elegant

method for automatically generating the complete set of isotopomer balances using a matrix

based method (Schmidt et al., 1997). More recently, Wiechert introduced the concept of

cumulative isotopomers (cumomers) and provided and efficient procedure for solving

isotopomer models (Wiechert et al., 1999). In the forward calculation, isotopomer models

are used to simulate a unique profile of isotopomer abundances for given steady-state fluxes.

In MFA we are concerned with the more challenging inverse problem, i.e. to determine the

flux state of the cell from measurements of isotopomer distributions. Analytical solutions to

the inverse problem are only available for very simple systems. Thus, in general, fluxes in

complex biological systems will be determined by iterative least-squares fitting procedures.

2.1.2 Limitations of isotopomer modeling method

Isotopomers are defined as isomers of a metabolite that differ only in the labeling state of

their individual atoms, for example, 13C vs. 12C in carbon-labeling studies, and 2H vs. 1H in

hydrogen-labeling studies. For a metabolite comprising N atoms that may be in one of two

(labeled or unlabeled) states, 2N'' isotopomers are possible. Consequently, the number of

isotopomers can increase quickly when multiple tracers are applied. Consider for example

glucose (C6H 120 6). There are only 64 (=26) carbon atom isotopomers of glucose and 4096

(=212) hydrogen atom isotopomers, but there are 2.6x10 5 (=26x2 12) isotopomers of glucose

carbon and hydrogen atoms, and 1.9x108 (=2 6x2 12x3 6) isotopomers of glucose carbon,

hydrogen and oxygen atoms. Note that oxygen may be present in one of three stable forms,

i.e. 160, 170, and 180. Thus, a typical isotopomer model may contain thousands or even

millions of isotopomers for multiple isotopic tracers. The number of isotopomers may be

reduced somewhat by omitting unstable carboxyl and hydroxyl hydrogen atoms from the

model, which exchange with the solvent at rates much faster than biochemical reactions and

are also lost in chemical derivatization in preparation for GC/MS analysis. For example, if

we consider only the seven stable (i.e. carbon bound) hydrogen atoms of glucose, then there
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are 128 (=2D) hydrogen atom isotopomers, 8192 (=26x2D isotopomers of glucose carbon

and hydrogen atoms, and 6x106 (=2 6x27x3 6) isotopomers of glucose carbon, hydrogen and

oxygen atoms. Thus, even with this reduction there are still too many isotopomers to

simulate labeling distributions efficiently for multiple isotopic tracers. Note that the

cumomer method suffers from the same problem, because there are always as many

cumomers as isotopomers, i.e. there is a one-to-one relationship between cumomers and

isotopomers (Chapter 1). As such, the realm of tracer experiments is currently limited solely

to 13C-tracers. However, multiple isotopic tracers are more powerful in elucidating the

physiology of realistic situations comprising complex bioreaction networks (see Chapters 7

and 8). Therefore, the development of a methodology that extends the capability of MFA

beyond the use of a single isotopic tracer is the main goal of this work.

2.1.3 Alternative modeling methods

The isotopomer/cumomer modeling framework is a generic top-down modeling strategy. It

provides the most detailed description of the labeling state of a system given by the

isotopomer fractions of all metabolites. However, the large number of variables generated in

this modeling approach limits its application and has driven the development of alternative

modeling methods for specific isotope measurements. For example, it is well know that

fractional enrichments of carbon atoms can be simulated efficiently using atom mapping

matrices, the method that was originally proposed by Zukpe et al. (1994). More recently, Van

Winden et al. (2002) developed the concept of bondomers that allows efficient simulation of

NMR fine spectra and MS data without the use of isotopomers. However, the bondomer

method is only valid for 13C-labeling data from experiments where a single uniformly 13C_

labeled substrate is applied. If multiple carbon sources are present, then all substrates need

to be uniformly 13C-labeled with the same enrichment. This requirement significantly limits

the applicability of the bondomer method. As such, there is still no general method for

simulating mass isotopomer distributions in complex biological systems that avoids the use

of isotopomers/cumomers.
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2.1.4 A novel framework for modeling isotopic tracer systems

Here, we present a novel framework for modeling isotopic tracer systems that significantly

reduces the number of system variables without any loss of information. The elementary

metabolite units (EMU) framework is a bottom-up modeling approach that is based on a

highly efficient decomposition algorithm that identifies the minimum amount of information

needed to simulate isotopic labeling within a reaction network. The functional units

generated by the decomposition algorithm, called elementary metabolite units, form the new

basis for generating system equations that describe the relationship between fluxes and

isotopomer abundances. Isotopomer abundances simulated using the EMU framework are

identical to those obtained using the isotopomer and cumomer methods, however, require

significantly fewer variables. For a typical carbon labeling system the total number of

variables and equations that needs to be solved is reduced by one order-of-magnitude (100s

EMUs vs. 1i000s isotopomers/cumomers). As such, the EMU framework is most efficient

for the analysis of labeling by multiple isotopic tracers. For example, analysis of the

gluconeogenesis pathway probed with 2H and 13C tracers required only 145 EMUs compared

to more than 4x10 4 isotopomers/cumomers.

2.2 Theory

2.2.1 Elementary Metabolite Units (EMU)

We define elementary metabolite units as distinct subsets of metabolite's atoms. For

example, consider metabolite A consisting of 3 atoms. An EMU is a subset of any number

of these 3 atoms. The size of an EMU is defined as the number of atoms that are included in

the EMU. There are 7 possible EMUs for metabolite A: 3 EMUs of size 1 (A1, A2, A3), 3

EMUs of size 2 (A12, A13, A23), and 1 EMU of size 3 (A123), where the subscript denotes the

atoms that are included in the EMU (see Figure 2-1). Note that atoms in an EMU are not

necessarily connected by chemical bonds, for example consider EMU A13. In general, for a

metabolite comprising N atoms 2" -1 EMUs are possible.
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Theoretical maximum number of EMUs = = 2N - 1 (2.1)

In this Chapter, we will illustrate that the EMU framework can be used for simulation of

isotopic labeling within a reaction network using the minimum number of variables, all of

which are expressed in terms of EMUs. In most cases, only a small number of all possible

EMUs is required to simulate the isotopic labeling. In the next section, we will illustrate the

EMU approach for simulating MS measurements, and in section 2.2.8 we will show how

NMR measurements can be simulated using EMUs.

2.2.2 EMU reactions

First, we need to introduce the concept of an EMU reaction. Figure 2-2 shows three types of

biochemical reactions that we can distinguish: a condensation reaction, a cleavage reaction,

and a unimolecular reaction. For each reaction type in Figure 2-2 we would like to determine

the minimum amount of information that is needed to determine the mass isotopomer

distribution (MID) of product C, i.e. EMU C123. For the condensation reaction, MID of C123

is fully determined by the MIDs of EMUs A12 and B1. For example, the M+O abundance of

C123 is equal to the product of M+0O abundances of A12 and B1, i.e. C123,M+o=A12,M+o'B1,M+o.

The full MID of C123 is obtained from the convolution (or Cauchy product, denoted by 'x)

of MIDs of A12 and B1, i.e. C123=A12xB 1.For the cleavage and unimolecular reactions, MID

of C123 is equal to MID of the EMU A123. Note that for the cleavage reaction atoms of A

that are not transferred to C123 are not considered in the EMU reaction, i.e. their labeling

doesn't affect the labeling state of C. Note also that EMU reactions are always size balanced,

i.e. the EMU product is formed either from EMUs of the same size, or by condensation of

smaller EMUs such that the total size of substrate EMUs equals the size of the EMU

product. Thus, there can only be only two types of EMU reactions: condensation and

unimolecular EMU reactions. Table 2-1 shows the EMU reactions corresponding to the

biochemical reactions in Figure 2-2.
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Elementary Atoms included
metabolite unit in the EMU EMU size

A,1 O 1

A2  Oo 1

A3  1

A12  KD 2

A13  D 2

A23  2

A 1 2 3  O____ 3

Figure 2-1: Elementary metabolite units (EMU) are defined as distinct subsets of

metabolite's atoms. There are 7 EMUs for a 3-atom metabolite A. The subscript in the first

column denotes the atoms that are included in the respective EMU. The EMU size is

defined as the number of atoms included in the EMU.
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A) Condensation reaction

A12 C123A 1 2

C123 = A12 x B1

C 123,M+O = A12,M+0 B1,M+O

C123,M+1 = A12,M+O. B1,M+1 + A12,M+1" 1,M+O

C 1 23,M+2 = A12,M+1 B,M+1 + A12 ,M+2 Bl,M+o

C123,M+3 = A12,M+2* B1,M+1

B) Cleavage reaction

A123 C123

0

C) Unimolecular reaction

A123 -
S C123

C123 = A123

C123,M. o = Ai23,M+0
C123,M+1 = A123,M+ 1
C123,M+2 = A123,M+

2

C123,M+3 = A123,M+3

C123 = A123

C123,M+O = A123,M+O
C 123,M+1 = A123,M+1

C 123,M+2 = A123,M+2
C123 ,M+3 = A123,M+3

Figure 2-2: Three types of biochemical reactions and the corresponding EMU reactions.

Shaded areas indicate atoms included in the EMUs. The mass isotopomer distribution

(MID) of product C is fully determined by MIDs of substrate EMUs. Thus, for the

condensation reaction, MID of C123 is obtained from the convolution (or Cauchy product,

denoted by 'x') of MIDs of A12 and B1. For the cleavage reaction and unimolecular reaction

MID of C123 equals MID of A123.
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Table 2-1

EMU reactions corresponding to the three reactions shown in Figure 2-2. Note that EMU

reactions are always EMU size balanced, i.e. the size of the EMU product always equals the

total size of substrate EMUs.

Reaction type Biochemical reaction EMU reaction EMU size balance

Condensation A + B - C A12 + B1 - C123  2 + 1 = 3

Cleavage A B + C A1 23 -C 123  3 = 3

Unimolecular A - C A123 - C123  3 = 3

2.2.3 Decomposing metabolic networks into EMU reactions

We will now describe the algorithm that systematically decomposes any biochemical reaction

network into EMU reactions using the knowledge of atomic transitions occurring in the

network reactions. These EMU reactions will then form the basis for generating model

equations for isotopic simulations (see section 2.2.4). Consider the example network shown

in Figure 2-3 that will be used to illustrate the theory behind EMU modeling. In this

network, metabolite A is the sole substrate and metabolites E and F are two network

products. The intermediary metabolites B, C and D are assumed to be at metabolic and

isotopic steady state. The stoichiometry and atom transitions for the five reactions are given

in Table 2-2, and the assumed flux distribution is shown in Figure 2-3. The structural input

that is required for the EMU decomposition is threefold:

1. The assumed metabolic network stoichiometry

2. Atom transitions for all reactions in the network

3. List of metabolites/metabolite fragments that need to be simulated
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A 060
V1= 100 O E

B C000 (D C
v2= 110 V 50 = 205=

D CCO 20 E
V6 = 80j

F 000

Figure 2-3: Simple metabolic network used to illustrate the decomposition of a metabolic

system into EMU reactions. The assumed steady-state fluxes have arbitrary units. The

network substrate A is fully labeled on the second atom. Atom transitions for the reactions

in this model are given in Table 2-2.
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Table 2-2

Stoichiometry and atom transformations for reactions in the example metabolic network.

This simple metabolic network is used to illustrate the decomposition of a metabolic system

into EMU reactions.

Reaction Reaction stoichiometry Atom transformations*

number

1 A --+ B abc --+ abc

2 B - D abc <- abc

3 B - C + E abc -> bc + a

4 B + C - D+ E + E abc + AB -- bcA + a + B

5 D -+ F abc -+ abc

* For each compound atoms are identified using lower case letters to represent successive atoms of

each compound. Uppercase letters represent a second compound in the reaction.
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In this example, we would like to set up the simplest possible model to simulate the MID of

metabolite F, i.e. EMU F123. The following algorithm systematically identifies all EMU

reactions that are needed for this simulation model. First, we identify in the network model

all EMU reactions that form EMU F123. In this case, F123 is formed only in reaction 6 from

EMU D 123. We record this EMU reaction and the newly identified EMU(s), and repeat this

process for all newly identified EMUs starting with the largest size EMU, i.e. D 123. Here,

D 123 is formed in two reactions, i.e. in reaction 2 from B123, and in reaction 5 from B23+C 1.

Next, B123 is formed in reactions 1 and 3 from A123 and D 123, respectively. Note that A123 is a

network substrate, i.e. it is not produced by any reaction in the network, and D 123 was

already considered in the previous step. Thus, we have identified all EMUs of size 3 that

need to be considered. Next, we proceed with EMUs of size 2 that were previously

identified, i.e. B23, which is formed in reaction 1 and 3 from A23, and D 23, respectively, etc.

We complete this process for EMUs of size 2 and 1, until all the EMUs have been traced

back to EMUs of network substrate A, or EMUs that were already visited. Table 2-3 shows

schematically the complete EMU decomposition for this network. In this case, 18 EMU

reactions were identified connecting 14 EMUs. Of these 14 EMUs, 10 EMUs correspond to

intermediary metabolites whose labeling is unknown, and 4 EMUs are fully defined by the

choice of substrate labeling of metabolite A. The complete list of EMUs for this example is

shown in Table 2-4. It should be clear that the described decomposition algorithm is

exhaustive, unsupervised, and always identifies the minimal set of EMUs that need to be

considered in the simulation model. Furthermore, this algorithm is easy to implement and is

computationally efficient, i.e. it converges within seconds even for the largest network model

that we have considered. The main advantage of the EMU decomposition is that metabolites

are never broken into smaller pieces than is strictly required to describe the labeling state of

the selected metabolite(s). In contrast, the isotopomer frameworks always uses all 2N

isotopomers per metabolite to simulate the system. In this case, the complete set of 36

isotopomers describe the system (i.e. 28 unknown isotopomers and 8 substrate

isotopomers). Thus, in this example the number of system variables was reduced by more

than 50% using the EMU framework. Figure 2-4 shows schematically the complete

algorithm for the decomposition of metabolic networks into EMU reaction networks (see

sections 2.2.4-2.2.7 for further details).
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Table 2-3

Complete list of EMU reactions generated for metabolite F. The complete set of EMU

reactions for molecule F was identified using the described decomposition algorithm. The

subscripts denote the atoms that are included in the respective EMUs. Note that EMU

reactions are always size balanced.

Reaction No. EMU reaction EMU reaction size balance

6 D123 - F123 3 = 3

2 B123 -- D12 3  3 = 3

5 B 23 + C1 - D123  2 + 1 = 3

1 A123 - B123  3 = 3

3 D123 - B123  3 = 3

1 A23 - B23  2 = 2

3 D23 - B23 2 = 2

2 B23 - D23 2 = 2

5 B3 + C- D23  1 + 1 = 2

4 B2->CA 1=1

1 A -+ B2  1 = 1

3 D- - B, 1 = 1

2 B2- D 2  1 = 1

5 B3 - D2 1 = 1

1 A3 -> B3  1 = 1

3 D3 -> B3  1 = 1

2 B3 D3 1 -1

5 CI -> D3 1
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Table 2-4

Complete list of EMUs generated for metabolite F from network decomposition. The

complete molecule F corresponds to EMU F123. The subscript denotes the atoms that are

included in the respective EMUs.

EMU size

size 1 size 2 size 3

C1  B23  F123

B2  D23 D123

D2 A23  B123

B3  A123

D3

A2

A3
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Create a list of metabolites and/or
metabolite fragments that need to be simulated

Make a list of corresponding EMUs, and
sort them according to EMU size

Locate the largest unvisited EMU on the list, 4
and identify all equivalent EMUs

For each equivalent EMU
record all EMU reaction(s) that produce the EMU

For all EMUs that were involved in the above reactions
identify all equivalent EMUs

Check if these EMUs are already present on the list.
If not, then add them to the list.

Have all EMUs on the list been traced back
to EMUs of network substrates, and/or EMUs

that were already visited ? No

I Yes

Separate EMU reactions into independent EMU reaction networks:

(i) based on EMU size
(ii) based on network connectivity of EMUs

For each decoupled EMU network:

(1) set up EMU balances for all unknown EMUs
(2) calculate and store matrices dAldv and dB/dv

(3) record the identity of EMUs in matrices X and Y

Figure 2-4: Schematic overview of the algorithm for decomposition of metabolic networks

into EMU reaction networks. This algorithm systematically identifies the minimal set of

EMUs that need to be considered in the simulation model. The algorithm is exhaustive,

unsupervised, and efficient (see sections 2.2.4-2.2.7 for further details).
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2.2.4 Setting up EMU balances and simulating labeling distribution

The EMU reactions obtained from the decomposition algorithm form the new basis for

generating system equations. EMU reactions are much less connected than corresponding

isotopomer reactions. Thus, we can group EMU reactions into independent reaction

networks based on: (i) the EMU size, and (ii) network connectivity (see section 2.3.4 for an

example). For the example network we obtain three independent reaction networks of EMU

size 1, 2, and 3, respectively. Figure 2-5 shows the independent EMU reaction networks.

Similar to metabolite and isotopomer balancing, we can set up balances around all unknown

EMUs.

EMU balances for reaction network of EMU site 1

v4-C1 -= v4-B2 (2.2a)

(vi+v 3)'B2 
= V-A2 + v3-D 2  (2.2b)

(v5+v2)-D2 = v 5"B3 + V2-B2 (2.2c)

(vl+v3)'B 3 v= v-A3 + v3-D 3  (2.2d)

(v5+v2)-D 3 
= v 5"C1 + v2-B 3  (2.2e)

EMU balances for reaction network of EMU site 2

(vs+v2)-D23 
= v 5 (B3XC1) + v2'B 23  (2.2f)

(vl+v3)-B23 = V1A23 + V3-D 23  (2 .2 g)

EMU balances for reaction network of EMU site 3

v6-F1 23 
= V6"D123  (2.2h)

(v5+v2)-D123 
= v5'(B 23XCi) + v2B 123  (2.2i)

(vl+v3).B123 = V1-A123 + V3-D123 (2.2j)
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Reaction network for EMU size 1

V 1

A3

A 2

V
2

B3

V5 1 V3

D2 V5

211 V3

V
4

Reaction network for EMU size 2

Reaction network for EMU size 3

Figure 2-5: Independent EMU reaction networks generated for metabolite F.
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In general, EMU balances can be written as a set of linear equations in matrix form:

Al,k(V) Xl,k 
= 

Bl,k(V) Yl,k(yl in)  (2.3a)

A2,k(V) X2,k= B2,k(v) Y2,k(y2 in , Xt) (2.3b)

A3,k(V) " X3,k = B3,k(V) YV3,k(y3 in, X2, X1) (2.3c)

Here, the first subscript denotes the EMU size and the second the subnetwork number, i.e.

in case there are multiple independent EMU networks of the same EMU size. For now we

will omit the second subscript. The EMU balances written in matrix corresponding to the

EMU networks in Figure 2-5 are shown below.

-v 4  V4  0 0 0 C O0 0

0 -v, - V3  v 3  0 0 B 2  -v1  0

0 v2  -V2 - v5 v5 0 D2  = 0 [ - (2.4a)
0 0 0 -vi -v 3  v3  B3  0 -vi
V5 0 0 v 2 -V2 -v 5 D3 0 0

[-V5V- - V2 V32 [D 23 ] = [-5- 01 [B3 xC 1] 
(2.4b)

V3 -v 1 -v 3] B23  
0  v A23

A1230 -V5V2 235 123 L.1(2.4c)0 v 3  -v -v 3  B123  0 -vT

In Eq. 2.3, matrices Yi and Xi represent the known and unknown EMUs, respectively, and

yiin are EMUs of the network substrate(s). Each row in matrix Yi and Xi contains the MID

for the corresponding EMU. The product term B3xC 1 in Eq. 2.4b represents the

convolution (or Cauchy product) of MIDs of B3 and Ct (see section 2.2.2). Matrices X2 and

Y2 written out in full for the example network are shown below.
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[D D23,M+O D23,l+l D23,M+2  (2.5)
B 23  23,M+ 23,M++1 23,M+2

B, xCI B3,h[o -CI,M+O (B3,MCO + B3,XI -C1,V+)) B3, * C (26)
23 23,M+A 23,N+1 A3,MI+2

The size matrix Ai depends on the number of unknown EMUs for the corresponding EMU

network, and the size of matrix Bi depends on the number of known input EMUs. Thus, for

n unknown and m known EMUs, Ai is an n x n matrix and Bi is an n x m matrix. Note that

matrices Ai and Bi are always strictly linear functions of fluxes. We can therefore easily

compute Ai and Bi for given steady-state fluxes from first derivative matrices dAi/dvi and

dBi/dvj, which are constant for a given network:

Ai dA(j vi (2.7)

dB,
Bi • I dBi i (2.8)

dv)

To simulate isotopic labeling distribution in the network, EMU balances are solved

sequentially starting with the smallest size EMU network(s). Since matrix Y1 is always

known, i.e. it is fully determined by EMUs of network substrate A, we can easily calculate X1

using standard matrix algebra techniques:

Xi = A-' - B1 - Yi (2.9)

For subsequent EMU networks, matrices Yi may depend on previously determined EMUs of

smaller size. Thus, for larger EMU sizes we must first update matrix Yi and then calculate Xi.
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X2 = A2-1 - B2 Y2 (2.10)

X3 = A3-1 - B3 'Y3 (2.11)

After all unknown EMUs have been computed we can simply read out the simulated MIDs

for the metabolites of interest from the rows of matrices Xi. For example, MID of F123 is

found in the first row of matrix X3.

2.2.5 Calculating first order derivatives of simulated measurements

Here, we present analytical expressions for calculating first order derivatives of simulated

measurements with respect to fluxes. Knowledge of these derivatives is important for

calculating the optimal search direction of fluxes in least-squares fitting algorithms (Chapter

3). In general, EMU balances are expressed in the following matrix form:

Ai - Xi = Bi - Yi (2.12)

Where, matrices Ai and Bi are strictly linear functions of fluxes and matrices Xi and Yi are

nonlinear functions of fluxes. To determine dXi/dv (which is a 3D-matrix), we take the first

order derivative of Eq. 2.12:

d d-(Ai Xi) = (Bi -Y) (2.13)
dv dv

After applying the product rule we obtain the following expression:

dA + A dX _ dB dY
- Xi + A d d Yi + B- (2.14)

dv i dv dv i dv

Note that matrices dAi/dv i and dBi/dvi are constant for a given network (because Ai and Bi

are strictly linear functions of fluxes). After rearrangement of Eq. 2.14 we obtain the

following general expression for dXi/dv:
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dX dB dY dA.dXi _ A " "di + Bi dY (2.15)
dv , dv +  dv dv

The above expression may be simplified for the smallest size EMU network. For EMU-seize

1 all terms in matrix Y1 are constant, i.e. dYi/dv=0O. Thus, the solution to the first EMU

problem is given by:

X, = A,'- B,"Y ,  (2.16)

dX, A (dB, dA. (2.17)

dv ~dv dv

For each next EMU network of larger EMU size, matrices Yi may depend on previously

determined EMUs of smaller size, e.g. for the example network model Y2 was given by:

Y2 B=  A (2.18)

Where, B3 and C1 are EMUs of size 1 that are calculated from EMU-size 1 balances. By

applying the product rule, we derive the following expression for the first order derivative of

the convolution of B3 and Ci:

d dB dC(
(B, xC ) = C, + B3 x (2.19)

dv dv dv

Where, dCl/dv and dB3/dv matrices that are obtained from dX1/dv. Note that the second

row of Y2 contains A23 which is a network substrate EMU, i.e. it is considered known and

constant (dA23/dv=0O). Thus, we obtain the following expression for dY2/dv:
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dY2  d-3-xC + B 3 x 1d2  dv- C dv (2.20)
dv 0

Where, (dB3/dv)xCi denotes the 2D-convolution of matrix (dB3/dv) and vector C1. First

order derivatives for any EMU size can be obtained this way. Figure 2-6 summarizes the

general procedure for simulating labeling distributions and calculating first order derivatives

of simulated measurements with respect to fluxes, using the EMU framework.

2.2.6 Global stability and computation time of EMU simulations

It should be clear that for non-zero fluxes matrices Ai are diagonally dominant, and using

Gerhorgin's eigenvalue theorem we can easily prove that therefore matrices Ai are always

invertible. In other words, the EMU approach will always compute a unique and stable

solution for the unknown EMUs. The most time consuming computation involved in

solving EMU balances and calculating first order derivatives is the inversion of matrices Ai,

or rather LU decomposition of Ai. In general, the computational time for LU decomposition

increases with the size of the matrix, i.e. the number of unknown EMUs. We found

empirically that for sparsely connected EMU networks, such as the ones shown in

Figure 2-5, the computation time increased linearly with the number of unknown EMUs, i.e.

O(n). For more highly connected networks, for example the EMU networks corresponding

to central carbon metabolism of E. coli (Chapter 6), the computational time increased as

O(n3). Therefore, it is often worthwhile to reduce the number of EMUs by eliminating EMU

nodes that only have a single influx, i.e. lumping linear EMU pathways. This will be

illustrated in detail in section 2.3.2.
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Start with:
EMU size: i =1

Subnetwork: k=1
L

Steady-state fluxes Calculate Ai,k and Bi, k<t (Eqs. 2.7 and 2.8 ) I update
k->

EMU network model
Calculate Yk and

Substrate labeling dYik/dv

[Calculate and store Xi,k (Eq. 2.9)

SCalculate and store dXi,k/dv (Eq. 2.15)

Is this the last subnetwork
of current EMU size ? No

Yes

Extract simulated measurements from Xi,k
and first order derivatives of measurements from dXi,k/dv

Figure 2-6: A schematic of the algorithm for simulating labeling distributions and

calculating sensitivities using EMU balances. EMU balances are solved sequentially starting

with the smallest EMU-size networks up to the largest EMU-size network. Simulated

measurements and sensitivities are extracted from the matrices X and dX/dv, respectively.
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2.2.7 Identifying equivalent EMUs of metabolites

There are a number considerations regarding the chemical structure of metabolites that need

to be taken into account to make sure that EMU simulation models are accurate. Here, we

will discuss in detail how to account for chiral, prochiral and rotationally symmetric

metabolites, and how biochemically equivalent hydrogen and oxygen atoms should be

modeled within the EMU framework. These considerations are equally important for the

construction of isotopomer models, however, until now they have not received proper

attention.

Chiral and prochiral metabolites

Tetrahedral carbon atoms with four different ligands are called chiral, whereas the term

prochiral applies to a carbon atoms that hold two stereoheterotopic groups. In other words,

prochiral carbon atoms are one step removed from being chiral (Moss, 1996). Many

biological metabolites contain one or more chiral and/or prochiral carbon atoms. It is well

known that biochemical reactions are highly stereospecific, i.e. enzymes can differentiate

between prochiral atoms and prochiral atom groups. Therefore, it is important to keep track

of individual prochiral atoms in a network model and assign stereospecific atom transitions

to all biochemical reactions. Consider for example the enzymatic reaction catalyzed by

aconitase that converts cirate to isocitrate (Figure 2-7). Three of the six carbon atoms of

citrate are prochiral, i.e. C2, C3 and C4. The enzyme aconitase stereospecifically transfers the

pro-R hydrogen from the pro-R arm (i.e. C1-C2) of citrate to C3 of isocitrate, and produces

only one of four possible stereoisomers of isocitrate, i.e. (2R,3S)-isocitrate. Note also that

the prochirality of C4 is not altered by aconitase. The absolute stereochemistry for most

bioreactions has been worked out in detail and can be found in many biochemistry books,

and other general literature.
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OH OH
I I

pro R-arm C=O C0=O
1 1
I Ipro-S H_ Hpro-R ... HO-C-H

- ..... 2

HO-C--C
13 6 0O

pro-R H-C-Hpro-S
pro S-arm =O

5

OH

SH--C-C '
1 3 6 O

pro-R H- -Hpro-S

C= O
5

OH

Citrate (2R,3S)-Isocitrate

Figure 2-7: Stereospecific atom transitions for the reaction catalyzed by aconitese. Aconitase

stereospecifically transfers the pro-R hydrogen from the pro-R arm of citrate to C3 of

isocitrate, and produces only one of four possible stereoisomers of isocitrate, i.e. (2R,3S)-

isocitrate.
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Equivalent hydrogen and oxygen atoms

Biological molecules often contain groups of atoms that are biochemically indistinguishable.

Consider for example the chemical structure of pyruvate shown in Figure 2-8. The three

hydrogen atoms at C3 are biochemically equivalent, i.e. enzymes cannot distinguish between

these atoms. Furthermore, the two oxygen atoms at C1 are biochemically equivalent due to

resonance stabilization. Thus, not all of pyruvate's EMUs are independent. For example,

there are six equivalent EMUs of pyruvate that contain three carbon atoms, two of the three

hydrogen atoms at C3, and one of two oxygen atom at C1. Figure 2-8 shows the six

equivalent EMUs. We can predict the number of equivalent EMUs for any EMU as follows:

EMo. o X e (.fv qvent aoms)!
No. of equivalent EMUs = H (no. of equivalent atoms)! (2.21)

for each groupf (no. of atoms in EMU) x (no. of equivalent atoms)!
equivalent atoms

When setting up EMU balances, we need to consider equivalent EMUs. We propose to do

that as follows. First, whenever a new EMU is generated during EMU network

decomposition, we identify all equivalent EMUs for that EMU. Then, for each equivalent

EMU we find the EMU reaction(s) that produce that EMU, and divide the contribution

from each reaction by the total number of equivalent EMUs. Note that this way we only

introduce one unknown EMU variable for each set of equivalent EMUs. For example,

consider the enzymatic reaction catalyzed by malic enzyme that converts malate to pyruvate

shown in Figure 2-9 (arbitrary numbering of atoms). The six equivalent EMUs of pyruvate

from Figure 2-8 are produced by the following six EMU reactions:

Mal1 3478 + H -- Pyr134678 (2.22a)

Mal134789 -- Pyr1346789 (2.22b)

Ma113479 + H - Pyr134689 (2.22c)

Mal12478 + H -> Pyr12 4678  (2.22d)

Mal124789 - Pyr1246789 (2.22e)

Mal1 24 79 + H -> Pyr124689 (2.22f)
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O-H O-H O-H
I I I

H-

-H

=0

=0

-H H-

Figure 2-8: Equivalent EMUs of pyruvate. The three hydrogen atoms of pyruvate at C3 are

biochemically equivalent. The two oxygen atoms at C1 are also equivalent (due to resonance

stabilization). There are six equivalent EMUs of pyruvate containing all three carbon atoms,

two of the three hydrogen atoms at C3, and one of two oxygen atom at C1. Shaded areas

indicate the atoms that included in the EMUs.
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OH
2
I
C=O

1 3

HO-C-H
5 4 6

pro-R H-C- H pro-S
8 7 9

C=O
10 12

OH
11

Malate

H
Do

OH
2

C=O
1 3

C= O
4 5

H-C-H
7 6 9

Pyruvate

+ 0=0=0

CO2

Figure 2-9: Malic enzyme converts malate to pyruvate. Note that one of the three hydrogen

atoms at C# 6 of pyruvate is derived from the solvent. The two prochiral hydrogen atoms of

malate at C#7 (which are biochemically distinct) become indistinguishable after malate is

converted to pyruvate.

- 65 -



CHAPTER 2. ELE'MENTARY METABOLITE UNITS

Next, we determine that Mal 3478 and Mall 2478; Ma113479 and Ma112479; and Mall34789 and

Ma1124789 are equivalent EMUs. Taken together, we obtain the following overall EMU

reaction:

Pyrl34678

Pyr 134679

Pyr 3468) 1 Ma 3478  1 a134 9  1 Ma134789x H + M- , H + - 134 (2.23)
Pyr 246 8  3 Ma247 3 Ma2479 3 Ma1, 489 ,

PYV 2467 9

PVr1 24689

Note that the two prochiral hydrogen atoms of malate that are initially biochemically distinct

become indistinguishable after malate is converted to pyruvate.

Rotationally symmetric metabolites

A number of metabolites of central carbon metabolism are also rotationally symmetric, i.e.

they are superposable on themselves by rotation. In isotopic labeling studies these molecules

cause scrambling of isotopic labeling. We should note that there is a clear difference between

molecules with a center of inversion and molecules with a rotation axis. The two types of

symmetry have different characteristics. Only molecules with a rotation axis are superposable

on themselves. Figure 2-10 shows the structures of (2S,3R)-butane-1,2,3,4-tetraol (i.e.

erythriol) which has a center of inversion, and (2R,3R)-butane-l ,2,3,4-tetraol which has a

rotation axis. Carbon atoms C1 and C4, and C2 and C3 of erythriol are chemically equivalent

(react identically in chemical reactions and have the same chemical properties), however, in

enzymatic reactions these atoms are biochemically distinct. In contrast, carbon atoms C1 and

C4, and C2 and C3 of (2R,3R)-butane-l ,2,3,4-tetraol are both chemically and biochemically

equivalent, i.e. they are not distinguished by enzymes.
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CH3OH

HO-C-H
2
I

H-C-OH
3

CH30H

(2R,3R)-butane-1,2,3,4-tetraol

Rotation axis

Chemically equivalent

Biochemically equivalent

I

H-C-OH
2
I

H-C-OH
3

CH3OH

(2S,3R)-butane-1,2,3,4-tetraol
(i.e. erythritol)

Center of inversion

Chemically equivalent

Biochemically different

Figure 2-10: Differences between molecules with a rotation axis and center of inversion.

(2S,3R)-butane-l1,2,3,4-tetraol (i.e. erythritol) has a center of inversion; it is not superposable

on itself. Therefore, carbon atoms C1 and C4, and C2 and C3 of erythritol are biochemically

distinct. (2R,3R)-butane-l ,2,3,4-tetraol, on the other hand, has a rotation axis and is

superposable on itself. Therefore, carbon atoms C1 and C4, and C2 and C3 are

biochemically indistinguishable, which results in scrambling of isotopic labeling.
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The most important examples of rotationally symmetric molecules in metabolism are

fumarate, succinate, and D-mannitol. Figure 2-11 shows the structure of fumarate (with

arbitrary numbering of atoms). It should be clear that fumarate has a rotation axis, i.e. after

rotating 1800 fumarate superposes on itself. Furthermore, the two oxygen atoms at first

carbon and the two oxygen atoms at the last carbon atom of fumarate are biochemically

equivalent. These additional characteristics of fumarate need to be considered when we

identify equivalent EMUs. The number of equivalent EMUs may increase due to rotational

symmetry, i.e. EMUs of rotationally symmetric molecules may have twice as many equivalent

EMUs as nonsymmetric molecules:

K (no. of equivalent atoms)!
No.of equivalent EMUs 2x ch group of (no. of atoms in EURJ)D! x (no. of equivalent atoms)!

equivalent atoms

(2.24)

For example, Figure 2-11 shows the four equivalent EMUs of fumarate Fum12467. However,

fumarate EMU F1468 has no equivalent EMUs, because its rotational equivalent is F146 8 itself.

Thus, when enumerating equivalent EMUs it is very important that we separate the effect of

rotational symmetry, which is a global characteristic of a molecule, from the effect of

equivalent hydrogen and oxygen atoms, which are local characteristics of a molecule. To

better illustrate this, consider hydrogen atoms #5 and #7 of fumarate. These atoms cannot

be treated as equivalent atoms, because that would incorrectly identify Fum12465 as being

equivalent to Fum1246 7.
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Figure 2-11: Equivalent EMUs of the rotationally symmetric fumarate. Shaded areas indicate

atoms included in the EMUs. The following four EMUs are equivalent: Fum1 2467, Fum13467,

Fum45689, and Fum 4568,10 (numbering of fumarate atoms is arbitrary).
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2.2.8 Simulating NMR measurements using EMUs

Thus far, we have shown how MS measurements can be simulated using the EMU approach.

We will now illustrate the method for simulating NMR measurements, in particular we will

show how fractional enrichment measurements, and NMR fine spectra are simulated.

Simulation of fractional enrichments

Fractional enrichments measure the fractional abundance of 13C-atoms at specific carbon

positions in a molecule. For example, Wiechert et al. measured fractional enrichments of 25

carbon atoms of amino acids (Wiechert et al., 1997). Each fractional enrichment

measurement provides exactly one flux constraint. In the EMU framework fractional

enrichments are modeled by EMUs of size 1 that contain a single carbon atom. In other

words, to simulate fractional enrichments we only have to solve EMU balances of size 1.

Network decomposition is accomplished with same algorithm as was described before

(section 2.2.3). In the EMU balances (Eq. 2.3), however, Xi and Yi are now vectors (not

matrices) that contain values for fractional labeling of carbon atoms. Note that the EMU

simulation model for simulating fractional enrichments is very similar to the atom mapping

matrix model that was originally proposed by Zupke and Stephanopoulos (1994), and the

weight-1 cumomer model as proposed by Wiechert et al. (1999).

Simulation of NMR fine spectra

Data obtained from 2D [13C, 1H] COSY spectra, also known as NMR fine spectra, provide

information on the relative amount of 13C_13C and 13C-12C carbons at specific carbon

positions, where the observed carbon atom is always 13C-labeled and the adjacent carbon

atoms are either labeled or unlabeled (Szyperski, 1995). For a secondary carbon atom, NMR

fine spectra are expressed as ratios of four isotopomer fractions.
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singlet Ao010
doublet 3 A01  (A, 0  A0 + A0 A1,1 )- (2.25)

doublet 1 A ]1o

double doublet Al,,

We can obtain these four isotopomer fractions from cumomer fractions Axix, Ax11, Allx, and

All 1, as was shown previously by van Winden et al. (2002). Alternatively, we have derived

that these isotopomer fractions can also be obtained from the following four EMUs A2, A23,

A12, and A123.

a °  10 1 1 1  Al 1  1 1  A

Al 0 o 0 1 0 1 Axl O 1 0 1 A23  (2.26)
A011  0 0 1 1 Allx 0 0 1 1 A12

AAt11  0 0 1 Ali, O [ 00 1 LA123

In Eq. 2.26, Axlx denotes the weight-1 cumomer fraction for which the second atom is 13C_

labeled and the other two atoms are labeled or unlabeled (i.e. x = '0 or 1 ). We can easily

show that the cumomer fraction Ax1x is equal to the M+1 abundance of EMU A2.

Furthermore, weight-2 cumomer fractions Allx and Axli are equal to the M+2 abundances of

EMUs A23 and A12, respectively (i.e. fully labeled EMUs); and finally, weight-3 cumomer

fraction Alll is equal to the M+3 abundance of EMU A123 (i.e. fully labeled EMU). Thus, we

can simulate NMR fine spectra either by solving weight-I, 2, and 3 cumomer balances (van

Winden et al., 2002), or alternatively by solving EMU balances for the EMUs A2, A23, A12,

and A1 23. In this case, in the EMU balances Xi and Yi are now vectors (not matrices) that

contain the fractional abundances of fully labeled EMUs. It should be clear that the number

of EMUs generated for the EMUs of size 1, 2, and 3, will always be smaller, or equal to the

number of weight-I, 2, and 3 cumomers. Therefore, it is always more efficient to simulate

NMR fine spectra using the EMU framework.
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The EMU framework can be further extended to include NMR fine spectra for tertiary

carbon atoms, and to describe long-range 13C-13C couplings. In that case, the following eight

EMUs of size 1, 2, 3, and 4 are needed: A2, A1 2, A23, A24, A123, A234, A124, and A1234. We can

convert the simulated fractional abundances of fully labeled EMUs to isotopomer fractions

using Eq. 2.27, and then obtain the NMR signal intensities using Eq. 2.28.

A1n1)
A0101

.A0110

A0111

Al 100

A111

ALlol

1 0 1

0 1 1

0 0 1
1 1 1

1 0 1

0 1 1

0 0 1

A 2

A24
A,

A 234

Ai,

A124

A 123

A1234

(2.27)

singlet

doublet 4

doublet 3

double doublet 34

doublet 1

double doublet 14

double doublet 13

quadruple doublet

A0101
AoO

A liA0110

Al111

Alll_A1101

Ali
A1111

(A ) + A0101 + + All01 + At( +Alll)-1

(2.28)

Note that in Eqs. 2.27 and 2.28 we assume the observed carbon atom is C2.
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2.3 Practical applications

2.3.1 Simple network model

In this example we will compare the EMU framework for simulating mass isotopomer

distributions with the isotopomer and cumomer frameworks. Consider the simple network

model that was introduced in section 2.2.3 (Figure 2-3). The assumed steady-state fluxes and

labeling of substrate A are shown in Figure 2-3. The solution to the EMU balances from Eq.

2.4 are shown below.

Solution of EMU balances for reaction network of EMU site 1

C,  -20 20 0 0 0 - 0 0 0.0667 0.9333
B2  0 -150 50 0 0 -100 00.0667 0.9333
D 2  = 110 -130 20 0 0 0 1 0 = 0.2000 0.8000
B3  0 0 0 -150 50 0 -100 0.9333 0.0667

D3_ 20 0 0 110 -130 0 0 0.8000 0.2000

Solution of EMU balances for reaction network of EMU site 2

[D23] = [-130 110 - 1 [-20 0] .[0.0622 0.8756 0.0622] = [0.0133 0.9733 0.0133]

B23  50 -150] -10 0 1 0 0.0044 0.9911 0.0044

Solution of EMU balances for reaction network of EMU site 3

F123  -80 80 0 -1 0 0 00003 0.0702 0.9253 0.0041 0.0001 0.8008 0.1983 0.00091
D123  0 -130 110 • -20 0 0 1 0 0 = 0.0001 0.8008 0.1983 0.0009
B123  0 50 -150 0 -100 0.0000 0.9336 0.0661 0.0003

Thus, we find that the simulated MID of F is: 0.0 mol% (M+0), 80.1 mol% (M+1), 19.8

mol% (M+2), and 0.1 mol% (M+3), i.e. the first row in matrix X3. These simulated

abundances were identical to those obtained using the isotopomer and cumomer methods.

The main difference between the methods was the number of equations that needed be

solved to simulate the labeling. For the isotopomer method, 28 nonlinear isotopomer

balances were solved using Newton's iterative method. For the cumomer method, 4 linear
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problems of size 4, 11, 10, and 3, respectively, were solved using standard linear algebra

techniques. Note that the total number of cumomers was the same as the number of

isotopomers, as expected. Table 2-5 summarizes the main differences between the three

modeling methods for this simple example.

2.3.2 Tricarboxylic acid cycle

The second example that we consider is the simplified model of tricarboxylic acid (TCA)

cycle shown in Figure 2-12. The stoichiometry and atom transitions for the eight reactions

are given in Table 2-6. In this network, acetyl coenzyme A and aspartate are two substrates,

and glutamate and carbon dioxide are the products. Here, we simulated the steady-state

labeling distribution of glutamate assuming a mixture of 25% [2-13C]AcCoA and 25% [1,2-

13C]AcCoA as the tracer input. The assumed flux distribution is shown in Figure 2-12. In

this example, we only consider the labeling of carbon atoms and for simplicity we ignore

natural isotope enrichments. The algorithm described in section 2.2.3 decomposed the TCA

cycle network into 4 independent EMU reaction networks that are shown in Figure 2-13.

The total number of unknown EMUs was 24, i.e. 8 EMUs in the first network (EMU size 1),

5 EMUs in the second (EMU size 2), 8 EMUs in the third (EMU size 3), and 3 EMUs in the

fourth network (EMU size 5). The EMU balances for the four decoupled networks are

shown in Figure 2-14. The rotational symmetric molecules fumarate and succinate were

modeled as described in section 2.2.7. The following groups of EMUs were identified as

equivalent: Fum2 and Fum 3; Suc 2 and Suc3; Fum123 and Fum234; Suc123 and Suc 234. The 24

unknown EMUs constituted a significant reduction from the complete set of 176

isotopomers that were required to describe this system (a reduction of 86%). Here, the

cumomer model consisted of seven subproblems of size 6, 28, 53, 52, 28, 8, and 1,

respectively. As expected, all three modeling methods (i.e. EMU, isotopomer, and cumomer)

predicted identical mass isotopomer abundances for glutamate: 34.64 mol% (M+0), 26.95

mol% (M+1), 8.07 mol% (NM+2), 2.86 mol0 (oM+4), and 0.39 mol% (M+5).
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Table 2-5

Comparison of three modeling approaches for simulating mass isotopomer labeling. MID of

F in the example network (Figure 2-3) was simulated using the EMU, isotopomer, and

cumomer methods. The simulated abundances were identical for all methods. The EMU

method required only 10 variables to simulate the labeling, as opposed to 28 variables for the

isotopomer and cumomer methods (a reduction of 64%).

isotopomer cumomer EMU

model model model

Simulated mass isotopomer M+0 0.0001 0.0001 0.0001

distribution (MID) of M+1 0.8008 0.8008 0.8008

metabolite F (molfractions) M+2 0.1983 0.1983 0.1983

M+3 0.0009 0.0009 0.0009

Type of model equations nonlinear linear linear

Number of variables in each subproblem 28 4, 11, 10, 3 5, 2, 3

Total number of variables 28 28 10
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AcCoA

V8 = 50

SOAC v,= o100

V7= 75 ( V6= 125 V2

Cit

= 100 C02

Fum AKG - Glu
V3= 50

50 v4 =v=

Suc co2

Figure 2-12: Simplified model of the tricarboxylic acid cycle. Abbreviations of metabolites:

OAC, oxaloacetate; Asp, aspartate; AcCoA, acetryl coenzyme A; Cit, citrate; AKG, Ia-

ketoglutarate; Glu, glutamate; Suc, succinate. The assumed fluxes have arbitrary units.
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Table 2-6

Stoichiometry and atom transformations for the reactions of the TCA cycle. This network

model was used simulate the mass isotopomer distribution of glutamine.

Reaction Reaction stoichiometry Atom transformations*

number

1 OAC + AcCoA -, Cit abcd + AB -+ dcbBAa

2 Cit -- AKG + CO 2  abcdef -+ abcde + f

3 AKG -- Glu abcde - abcde

4 AKG -Suc +C0 2  abcde - bcde + a

5 Suc - Fum 1/2 abcd + /2 dcba - 1/2 abcd + 1/2 dcba

6 Fum -> OAC 1/2 abcd + '/2 dcba -+ abcd

7 OAC - Fum abcd - 1/2 abcd + /2 dcba

8 Asp -+ OAC abcd -abcd

* For each compound atoms are identified using lower case letters to represent successive atoms of

each compound. Uppercase letters represent a second compound in the reaction. Abbreviations of

metabolites: OAC, oxaloacetate; Asp, aspartate; AcCoA, acetyl coenzyme A; Cit, citrate; AKG, a-

ketoglutarate; Glu, glutamate; Suc, succinate.
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Reaction network for EMU
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Figure 2-13: EMU reaction networks generated for glutamate from EMU network

decomposition. The complete molecule of glutamine corresponds to EMU Glu1 2345.

Subscripts denote carbon atoms that are included in the EMUs. Abbreviations of

metabolites are the same as in Figure 2-12.

- 78 -

Reaction network for EMU size 2

V8
Asp23 - OAC23

V7 1j V6

Fum 23

I V5

Suc23

V4

AKG3

I V2
Cit 34

t v1
OAC2+AcCoA2

Reaction network for EMU size 5

Glu 12345

tV3

AKG 12345

SV2
Cit12345

t 1
OAC 123+AcCoA12



CHAPTER 2. ELEMENTARY METABOLITE UNITS

-V 6 -V 8  V 6

I 1
TV7 -V5 -V 7  V 7  V 5

V 6  -V 6 -V 8

-V 1V 4-4 7v4

-V
2

.v 4

V 2

-V 2  V 2

-V
1

-V 1

OAC
2

Fum2

OAC 3

Suc2

AKG 3
AKG

4

Cit
3

Cit 4

-V
8

-VI

-vy -v, 6  OAC23 -8

V7 -v vV5 Fum 23  A23
Asp23-V 4 V 4  Su3 OAC2x AcCoA2

-v2 V2  AKG 34

-vI Cit34 -

V
6

-V5 - v 7  •Jv V5

V
6  -V6 -V

8

-V 4 1V 4

-V
2

IV4

V
2

-V 2  V 2

-V
1

-VI

OAC 123

Fumr123
OAC2

34

Suc123

AKG 234

AKG 345

Cit 234

Cit345

-V
8

-V
8

-V
1

-V
1

-v3  v3  Glu12345
-V2 V2  AKG12345 ] . [OAC123 xAcCoA12]

-VJ Cit12345j -V1

Figure 2-14: EMU balances for the EMU networks of the TCA cycle. Subscripts denote

carbon atoms that are included in the EMUs. Abbreviations of metabolites are the same as

in Figure 2-12. A dot denotes a zero entry.
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2.3.3 Reducing EMU balances

In section 2.2.6 we indicated that the computational effort for solving EMU balances

depends on the number of unknown EMUs. It is often possible to reduce the number of

unknown EMU variables in decomposed EMU networks by eliminating EMU nodes with a

single influx. Note that no information is lost in this process. We applied this strategy the

simplify the EMU networks for the TCA cycle example from the previous section. The

reduced EMU networks are shown in Figure 2-15. In this case, the number of EMUs was

reduced from 24 to only 9 unknown EMUs, i.e. 95% reduction compared to the complete

set of 176 isotopomers. The corresponding EMU balances are shown below.

-v - v0], v6 O OAC, -v O 01 Asp2
V+-v v -V V,  v' Fum = 0 0 -v5  Asp 3

0 v 6, -v8 - v6, OAC, O -v,8  0 AcCoA,

-V[-V v6 6 . [OAC23] [- 8 0 Asp23
v7 -v- v Fum, -v -v- OAC2 x AcCoA 2

v -v v, O OAC1 2 3 0 0 01

1v -v 1 . Fum 0 0 -- v - I vSV7 v5 -v 28 v F AC 23  0 -v 2 5 0

vL v 6 8 -8 v 6 OAC34 J L -v8 0 0

Glul2345 = OAC 23 AcCoA12

With the reduced EMU model we can simulate the labeling of glutamate in this system for

any steady-state fluxes and any substrate labeling by solving four very simple linear problems

of size 3, 2, 3, and 1, respectively. The solutions to the EMU balances for the assumed

steady-state fluxes and labeling of acetyl-CoA are shown below. As expected, the simulated

MID of glutamate was identical to the one obtained with the full EMU model and the

isotopomer and cumomer methods. Table 2-7 summarizes the main advantages of the EMU

method for the TCA cycle example.
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Reaction network for EMU

Asp2

1/2 V7  V6

OAC2 - Fum2 -
6 1/2 V7

12 v/2 V5

AcCoA2
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Reaction network for EMU size 2
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Figure 2-15: Simplified EMU reaction networks for glutamate. EMU networks from

Figure 2-13 were simplified by lumping linear EMU nodes, i.e. having only one influx.

Abbreviations of metabolites are the same as in Figure 2-12.
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Solution of EMU balances for reaction network of EMU site 1

OAC2  -175 125 0 -50 0 0 1 0 0.8333 0.1667
Fum2  = 62- -125 37j - 0 0 -25 l 1 0 =0.7667 0.2333

OAC3  O 125 -175 0 -50 0 0.5 0.5 0.8333 0.1667

Solution of EMU balances for reaction network of EMU site 2

OAC23] = [-175 125 '.[-50 0 1 0 0 [0.7083 0.2500 0.0417]
Fum 23 75 -125 0 -50  0.4 167 0.5000 0.0833 L0.5917 0.3500 0.0583

Solution of EMU balances for reaction network of EMIU size 3

1 0 0 0
OAC123 -175 125 0 -50 0 0 0 0.6927 0.1927 0.0990 0.0156
Fum,, 371 -125 37 0 0 -25 -25 - = 0.5698 0.2698 0.1385 0.02191 2 2 0.3542 0.4792 0.1458 0.0208
OAC4_ 0 125 -175 0 -50 0 0 0.6927 0.1927 0.0990 0.0156

0.4167 0.2917 0.2500 0.0417

Solution of EMU balance for reaction network of EMU size 5

[Glu,345] = [0.3464 0.2695 0.2708 0.0807 0.0286 0.0039]

2.3.4 Central carbon metabolism of E. coli

In this example we have applied the EMU framework to the realistic metabolic network

model of E. coli central carbon metabolism. The network is comprised of 73 reactions (with

corresponding carbon transitions) utilizing 76 metabolites (5 substrates, 65 balanced

intracellular metabolites, and 6 products). The network model included reactions for

glycolysis, pentose phosphate pathway, Entner-Doudoroff pathway, TCA cycle, product

formation, amphibolic reactions, one-carbon metabolism, and amino acid biosynthesis

reactions (see Chapter 6 for details). For this network we simulated the mass isotopomer

distributions of 26 amino acid fragments that can be measured experimentally by GC/MS.

Table 2-8 provides an overview of the simulated amino acid fragments. To simulate the

labeling distribution of the 26 amino acid fragments, the network model was decomposed

into 14 independent EMU reaction networks of EMU size 1 to 9. Table 2-9 summarizes the

details of the EMU decomposition. The largest EMU subnetwork was the EMU size-1
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Table 2-7

Comparison of modeling approaches for simulating mass isotopomer labeling. MID of

glutamate in the TCA cycle model (Figure 2-12) was simulated using the EMU, isotopomer,

and cumomer methods. The assumed fluxes are shown in Figure 2-12. The assumed labeling

of AcCoA was 25% [2- 13C]AcCoA and 25% [1,2- 13C]AcCoA. The simulated abundances

were identical for all methods. The reduced EMU model required only 9 EMU variables to

simulate the labeling of glutamate, as opposed to 176 variables for the isotopomer and

cumomer models (a reduction of 95%).

isotopomer cumomer EMU EMU

model model full reduced

model model

Simulated mass istopomer M+0 0.3464 0.3464 0.3464 0.3464

distribution (MID) of M+1 0.2695 0.2695 0.2695 0.2695

glutamate (molfractions) M+2 0.2708 0.2708 0.2708 0.2708

M+3 0.0807 0.0807 0.0807 0.0807

M+4 0.0286 0.0286 0.0286 0.0286

M+5 0.0039 0.0039 0.0039 0.0039

Type of model equations nonlinear linear linear linear

Number of variables in each subproblem 176 6, 28, 53, 52, 8, 5, 8, 3 3, 2, 3, 1

28, 8, 1

Total number of variables 176 176 24 9
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Table 2-8

Ion fragments of TBDMS derivatized amino acids simulated using the EMU framework.

The identity of amino acid ion fragments was verified previously (Chapter 4).

Amino Monitored intensities Amino acid carbon atoms Fragmentation

acid

Ala 232 - 239 2-3 M - C 5H 90

260 - 268 1-2-3 M - C4H9

Gly 218 - 224 2 M - C5H90

246 - 253 1-2 M - C4H9

Val 260 - 269 2-3-4-5 M - C5HO90

288 - 298 1-2-3-4-5 M - C4H 9

Leu 274 - 283 2-3-4-5-6 M - CsH 90

Ile 274 - 283 2-3-4-5-6 M - C5H90

Ser 288 - 296 2-3 M - CH11502Si

362 - 370 2-3 M - C5H90

390 - 399 1-2-3 M - C4H 9

Thr 376 - 382 2-3-4 M - C-sHO

404 - 414 1-2-3-4 M - C4H9

Met 292 - 298 2-3-4-5 M - C5H90

320 - 327 1-2-3-4-5 M - C4H9

Phe 302 - 307 1-2 M - C-H-

308 - 316 2-3-4-5-6-7-8-9 M - C5H 9O

336 - 345 1-2-3-4-5-6-7-8-9 M - C4H9

Asp 302 - 309 1-2 M -- CsH 1-OaSi

376 - 382 1-2 M - C6HIIO

390 - 397 2-3-4 M - C5H 90

418 - 428 1-2-3-4 M - C4H 9

Glu 330 - 336 2-3-4-5 M -. C-Hi j50Si

404 - 411 2-3-4-5 M - C5H90

432 - 443 1-2-3-4-5 M - C4H9

Tyr 302 - 307 1-2 M - CI3H-2 OSi
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subnetwork that contained 141 unknown EMUs (i.e. one carbon EMUs). The total number

of unknown EMUs was 307, which could be further reduced to 223 unknown EMUs by

eliminating EMU nodes with a single influx. In comparison, there were 4,612

isotopomers/cumomers required to simulate the same amino acid fragments, i.e. a reduction

of 93-95%. It is interesting to note that there were 241 carbon atoms in this network model,

but only 141 EMUs of size 1 were required. Thus, clearly not all individual carbon atoms

needed to be simulated in this network. In contrast, the cumomer method required balancing

of all 241 weight-1 cumomers. The simulated mass isotopomer distributions from the three

methods (i.e. EMU, isotopomer, cumomer) were identical.

Table 2-9

Comparison of modeling approaches to simulate the labeling of 26 amino acid fragments in

the E. coli network model. With the EMU method, the E. coli network model was

decomposed 14 EMU networks with 307 unknown EMUs (223 EMUs after further model

reduction), compared to 4,612 isotopomers/cumomers, i.e. a reduction of 93-95%.

isotopomer cumomer EMU EMU

model model full model reduced model

Type of model nonlinear linear linear linear

Number of 4,612 54, 241, 527, 771, (EMU size 1): 141 (EMU size 1): 101

variables 876, 832, 655, 404, (EMU size 2): 87 (EMU size 2): 62

in each 183, 57, 11, and 1 (EMU size 3): 46 (EMU size 3): 32

subproblem (EMU size 4): 12, 8, 1, 1 (EMU size 4): 9, 7, 1, 1

(EMU size 5): 5, 1, 1, 1, 1 (EMU size 5): 4, 1, 1, 1, 1

(EMU size 6): none (EMU size 6): none

(EMU size 7): none (EMU size 7): none

(EMU size 8): 1 (EMU size 8): 1

(EMU size 9): 1 (EMU size 9): 1

Total number

of variables 4,612 4,612 307 223

- 85 -



CHAPTER 2. ELEMENTARY METABOLITE UNITS

2.3.5 Gluconeogenesis pathway

In this final example we consider the pathway of gluconeogenesis shown in Figure 2-16. We

constructed a detailed biochemical network model for this pathway, where we considered all

carbon, hydrogen, and oxygen atom transitions. This pathway is suitable for probing with

multiple isotopic tracers, i.e. 13C, 2H, and 180. In this example, we simulated the mass

isotopomer distribution of glucose. Glucose is the main product of gluconeogenesis and is

easily analyzed by GC/MS. The gluconeogenesis network model was comprised of 24

reactions utilizing 21 metabolites, with 5 substrates (oxaloacetate, glycerol, glycogen, NADH,

and water), 14 balanced intracellular metabolites, and 2 product (glucose, and C02) (see

Chapter 7 for details). Table 2-10 shows the number of carbon, hydrogen, and oxygen atoms

for each of the 21 metabolites in this system. Here, we only considered stable, i.e. carbon-

bound, hydrogen atoms for each metabolite (see section 2.1.2). Simulation of this system

using isotopomer and cumomer methods is impossible, because that would require

2,637,120 variables. With the EMU approach, however, the network was decomposed into

60 independent EMU reaction networks of EMU size 1 to 19, with only 493 unknown

EMUs, which was further reduced to 354 unknown EMUs by eliminating EMU nodes with

a single influx. Table 2-11 shows the details of the EMU decomposition. The largest EMU

network contained only 12 unknown EMUs (9 for the reduced EMU model). The simulation

of the mass isotopomer distribution of glucose for given fluxes and labeling input took less

than 0.1 sec. Thus, in this example we have reduced the computational problem of

simulating the gluconeogenesis pathway from an impossible problem to solve, to a problem

that is trivial to solve. In Table 2-12 we compare the EMU method vs. the

isotopomer/cumomer methods, where we consider alternative labeling strategies. In all cases

the EMU method was superior compared to the isotopomer/cumomer method.
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Glucose

t
G6P-+ G1P+- Glycogen

EC2 + E4P 4-- F6P -+ M6P

FBP

DHAP
NADH
NAD+

Glyc3P

G
Glycerol

GAP
NAD+
NADH

BPG

t
Oxaloacetate

Figure 2-16: Reactions of the gluconeogenesis pathway used to simulate the labeling of

glucose.
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Table 2-10

Metabolites in the gluconeogenesis pathway. For each metabolite we only considered the

stable (i.e. carbon-bound) hydrogen atoms.

Metabolite name Carbon Hydrogen Oxygen Total

atoms atoms atoms atoms

Balanced metabolites

Glucose 6-phosphate (G6P) 6 7 6 19

Fructose 6-phosphate (F6P) 6 7 6 19

Fructose 1,6,-bisphosphate (FBP) 6 7 6 19

Dihydroxyacetone phosphate (DHAP) 3 4 3 10

Glyceraldehyde 3-phosphate (GAP) 3 4 3 10

1,3-Bisphosphoglycerate (BPG) 3 3 4 10

3-Phosphoglycerate (3PG) 3 3 4 10

2-Phosphoglycerate (2PG) 3 3 4 10

Phosphoenolpyruvate (PEP) 3 2 3 8

Glucose 1-phosphate (G1P) 6 7 6 19

Mannose 6-phosphate (M6P) 6 7 6 19

Glycerol 3-phosphate (Glyc3P) 3 5 3 11

Erythrose 4-phosphate (E4P) 4 5 4 13

Transketolase+C2-unit (E-C2) 2 2 2 6

Products

Glucose 6 7 6 19

Carbon dioxide 1 0 2 3

Substrates

Oxaloacetate 4 2 5 11

Glycerol 3 5 3 11

Glycogen 6 7 6 19

NADH 0 1 0 1

Water 0 2 1 3
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Table 2-11

Complete list of EMUs generated for glucose from EMU network decomposition of the

gluconeogenesis pathway. The EMU method was used to simulate the mass isotopomer

distribution of glucose, including all carbon, hydrogen, and oxygen atoms. This required only

493 EMUs (354 EMUs after further model reduction). In comparison 2,637,120

isotopomers/cumomers would have been required with the cumomer modeling approach.

In this example, we only considered stable (i.e. carbon-bound) hydrogen atoms for each

metabolite.

EMU EMU

full model reduced model

(EMU size 1): 11, 8 (EMU size 1): 8, 5

(EMU size 2): 12, 11, 9 (EMU size 2): 9, 8, 6

(EMU size 3): 11, 11, 11, 10, 9 (EMU size 3): 8, 8, 8, 7, 6

(EMU size 4): 12, 11, 11, 11, 9, 9, 9, 6, 1 (EMU size 4): 9, 8, 8, 8, 6, 6, 6, 4, 1

(EMU size 5): 12, 12, 11, 10, 9, 9, 9, 9, 5, 6, 1, 1, 1 (EMU size 5): 9, 9, 8, 7, 6, 6, 6, 6, 4, 4, 1, 1, 1

(EMU size 6): 12, 10, 10, 10, 10, 9, 9, 9, 5, 1, 1 (EMU size 6): 9, 8, 7, 7, 7, 6, 6, 6, 4, 1, 1

(EMU size 7): 11, 10, 10, 10, 9, 8 (EMU size 7): 9, 7, 7, 7, 6, 6

(EMU size 8): 10, 9, 8 (EMU size 8): 7, 7, 6

(EMU size 9): 9, 5 (EMU size 9): 7, 3

(EMU size 10): 5 (EMU size 10): 3

(EMU size 11): none (EMU size 11): none

(EMU size 12): none (EMU size 12): none

(EMU size 13): 6 (EMU size 13): 4

(EMU size 14): none (EMU size 14): none

(EMU size 15): none (EMU size 15): none

(EMU size 16): none (EMU size 16): none

(EMU size 17): 5 (EMU size 17): 4

(EMU size 18): 5, 4 (EMU size 18): 4, 4

(EMU size 19): 6 (EMU size 19): 4

Total number of EMUs = 493 Total number of EMUs = 354
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Table 2-12

Comparison of modeling approaches for simulating glucose labeling in the gluconeogenesis

pathway. A range of stable isotopes can be used to trace this pathway. Here, we considered
13C-carbon tracers, 2H-hydrogen tracers, and/or 180-oxygen tracers. The total number of

variables required to simulate the labeling of glucose was determined for the EMU method

and the isotopomer/cumomer methods.

Total number of variables

Tracer

used
13C

2H
180

13C + 2H
13C + 180

180 + 2H

13C + 180 + 2H

isotopomer/cumomer

model

396

768

420

42,224

21,392

42,416

2,637,120

EMU

full model

51

121

88

206

142

379

493

EMU

reduced model

35

84

61

145

100

268

354
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Chapter 3

Determination of fluxes and confidence

intervals from stable isotope measurements

3.1 Introduction

Fluxes of metabolic pathways are fundamental determinants of cell physiology and

informative parameters in evaluating cellular mechanisms and causes of disease

(Brunengraber et al., 1997; Hellerstein, 2003; Stephanopoulos, 1999). The tools for

estimating metabolic fluxes are fundamentally different from the tools for obtaining static

measurements, such as concentration profiles or transcript levels. Currently, the most

powerful method for metabolic flux determination in complex biological systems is based on

the use of stable isotopes (Wiechert et al., 2001). Metabolic conversion of isotopically labeled

substrates generates molecules with distinct labeling patterns (i.e. isotopomers) that can be

detected by mass spectrometry (MS) and nuclear magnetic resonance (NMR) (-Klapa et al.,

2003; Szyperski, 1995). The isotopic abundances of metabolites in a metabolic system are

strongly dependent on relative flux values. Different flux patterns result in significant tracer

redistribution and yield different labeling profiles.

Comprehensive mathematical models that describe the relationship between metabolite

labeling patterns and fluxes allow one to simulate isotopic abundances of all metabolites in a

network for any set of steady state fluxes. These models are nonlinear because the full set of

isotopomer equations contains product terms of fluxes with isotope abundances, and

product terms of abundances with abundances due to linear and condensation reactions in
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the system (Schmidt et al., 1997). The goal of Metabolic Flux Analysis (MFA) is to find the

set of fluxes that minimizes the difference between observed and simulated isotope

measurements. In essence, flux determination is a large-scale nonlinear parameter estimation

problem. Various iterative search strategies, for example, gradient-based Newton methods,

or evolutionary search algorithms may be employed to find the optimal metabolic fluxes

(Schmidt et al., 1999; Wiechert et al., 1997). Metabolic flux analysis of this type has been

successfully applied to determine fluxes in various prokaryotic and eukaryotic systems

(Christensen and Nielsen, 2000; Kelleher, 2004; Malloy et al., 1988; Park et al., 1999; Sauer et

al., 1997). However, rigorous statistical analysis of estimated flux has received much less

attention. Linearized statistics have been used to describe the uncertainty of fluxes (Arauzo-

Bravo and Shimizu, 2003; Dauner et al., 2001; Wiechert et al., 1997). Most often, however,

flux estimates are not accompanied by a corresponding range of accuracy/precision, which

makes such results difficult to interpret. For example, when the measured isotope abundance

is not very different from the simulated abundance, does this mean that the measurement is

reliable or does it simply results from a lack of redundancy in the measurement set? A

common mistake in assessing the benefit of flux estimation in over-determined systems is to

believe that a large redundancy in the measurement set necessarily results in reliable

estimates for all fluxes. To address these questions proper nonlinear statistical techniques are

needed, otherwise metabolic flux analysis will remain a black box whose inner workings are

hard to decipher.

Here, we describe here techniques that can be applied a posteriori to gain insight into the

statistical significance of flux estimation results. The same tools may then also be applied a

priori for optimal design of tracer experiments. We show how accurate flux confidence

intervals are efficiently calculated, and we quantify the relative importance of measurements.

We show that approximated confidence intervals obtained from local estimates of standard

deviations do not accurately describe the true uncertainty of fluxes. We have applied these

tools to analyze the statistical significance of gluconeogenesis fluxes determined from human

studies probed with [U- 13 C]glucose as tracer. We calculated accurate confidence intervals for

all fluxes in this system and identified potential flaws in experimental setup that may prevent

accurate determination of the gluconeogenesis flux in vivo. The methods presented here are
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general in scope and may also be applied to other parameter estimation problems.

Furthermore, these algorithms are easily implemented into already developed software

platforms for flux estimation.

3.2 Methods

3.2.1 Flux estimation

The methods described here are appropriate for metabolic systems investigated with isotopic

tracers at metabolic steady state. Thus, fluxes are required to satisfy the following

stoichiometric constraints:

S-v = 0 (3.1)

Here, S is the stoichiometry matrix and v is the flux vector. For a reaction network with m

intermediary metabolites and k fluxes, the stoichiometry matrix is an m x k matrix.

Reversible reactions are normally modeled as separate forward and backward fluxes, such

that all fluxes are additionally required to be non-negative. From a computational standpoint,

it is more convenient to work with independent flux variables, also called free fluxes

(Schmidt et al., 1997; Wiechert et al., 1997), rather than with all individual fluxes. The

number of independent fluxes is usually much smaller than the number of individual fluxes,

which significantly reduces the computational time of simulations. Independent fluxes are

obtained from the general solution to Eq. 3.1:

v = N-u (3.2)

Here, N is the null space matrix of S, and u is the vector of independent fluxes. There are

many methods to calculate a valid null space matrix (Foster, 1986), and in general there is

not a unique null space matrix for any given stoichiometry matrix. The size of the null space

matrix and the number of independent flux variables, however, are fully determined by the

rank of the stoichiometry matrix. With r = rank(S) • m, the null space matrix is a k x k-r
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matrix and the number of independent fluxes equals k-r. Note that Eq. 3.2 may be used to

translate results expressed in terms of independent fluxes into individual fluxes.

At least k-r measurements are needed to determine the k-r independent flux variables.

External flux measurements often do not provide enough constraints to estimate all fluxes in

complex biological systems containing reversible reactions, parallel pathways and internal

cycles (Schmidt et al., 1998). In these cases, isotopic tracer experiments can provide

additional constraints from the measurement of isotope incorporation into metabolite pools

by techniques such as GC/MS and NMR. The fate of isotopic tracers in a metabolic system

is determined by the atoms transitions occurring in biochemical reactions. These transitions

are well established for the majority of metabolic pathways and have been documented in

biochemical textbooks. Assuming metabolic and isotopic steady state, the mathematical

model that is used for isotopic simulations comprises the complete set of isotopomer

balances, which may be derived using a matrix based method as described by Schmidt et al.

(1997). More recently, alternative modeling strategies were proposed by other authors based

on the concept of cumomer balances and bondomer balances (van Winden et al., 2002;

Wiechert et al., 1999). In Chapter 2 we described a novel strategy for modeling isotopic

distributions based on the concept of elementary metabolite units (EMU). All modeling

strategies are equivalent in the sense that they produce the same numerical results, i.e.

isotopomer abundances, for a given set of fluxes and substrate labeling. The sensitivity

matrix of simulated measurements with respect to flux values, i.e. (dx/du), may be obtained

either by approximation using finite differences, or from algebraic such as the ones derived

in Chapter 2 (section 2.2.5). Metabolic fluxes are estimated from labeling data by minimizing

the difference between the observed and simulated measurements. Flux estimation is in

essence a large-scale constrained least-squares minimization problem:

min D (x(u) -_x ' bs )T .- _ (X(U)- Xobs)
U N(3.3)

s.t. N-u>20
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The objective function (1 is the covariance-weighted sum of squared residuals, x(u) is the

vector of simulated measurements , xo
bs is the vector of experimental data containing both

labeling measurements and extracellular rate measurements, and x, is the measurement

covariance matrix with measurement variances located on the diagonal. Eq. 3.3 requires an

iterative solution scheme, where at each iteration Eq. 3.3 is transformed into a

corresponding quadratic programming (QP) subproblem (Gill et al., 1991). First, the

simulated measurements are formally expressed as a function of free fluxes using Taylor

series expansion:

x = x + - ).Au + O(Au 2) (3.4)

Here, x* is the vector of simulated measurements for the current set of fluxes, (dx/du) is the

matrix of sensitivities of the simulated measurements with respect to fluxes, and Au is the

vector of flux changes. Substituting Eq. 3.4 into Eq. 3.3 and neglecting second and higher

order terms, we obtain the following expression for the objective function as a function of

flux changes:

T T

a( X (du (du)
s.t. N-u2O

(3.5)

Note that the first term in Eq. 3.5 is the value of the objective function for the current

fluxes. We define the change in the objective function as:

Aq =- - (x* - obs) .- 1 (* - xObs) (3.6)
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With this, we obtain the following QP subproblem at each iteration:

minAO - 2 -Au T .J + AuT H. AuAu (3.7)
s.t. N -u 0

with J dx-•-2- .(x -x bs) (3.8a)J du

_(dx •T-du . (dxu
and H -) (3.8b)

The Hessian matrix H and the Jacobian J are evaluated at each iteration for the current

fluxes. Differentiation of the objective function in Eq. 3.7 with respect to flux changes

yields:

d(A) = 2 J + 2-H-Au (3.9)
d(Au)

The minimum of Eq. 3.7 occurs when d(AcD)/d(Au) = 0 (Gill et al., 1991), which is the

solution to the system of linear equations given in Eq. 3.9. Thus, the optimal search direction

for the independent fluxes at each iteration is:

Au = -H-' J (3.10)

A numerically stable form for the inverse of H may be obtained from singular value

decomposition of H (see Appendix 3.A). The following updated flux vector is obtained at

each iteration:

Uk+l = uk + Au (3.11)
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Inequality constraints on fluxes, i.e. N-u _ 0, can be included without difficulty to this

general scheme, and all kinds of step controlling strategies can be applied (Byrd et al., 1999;

Gill et al., 1991). Flux estimation is generally initiated with random values for all fluxes and

the estimation algorithm continues until a predefined convergence criterion is met. The final

vector of independent fluxes is then transformed using Eq. 3.2 to obtain the optimal values

for all metabolic fluxes in the system. The complete algorithm for covariance-weighted flux

estimation is outlined in Appendix 3.B.

3.2.2 Goodness-of-fit analysis

The fact that MFA yields a set of fluxes that minimize the difference between the observed

and simulated measurements does not mean that the flux model is adequate. At

convergence, the minimized variance-weighted sum of squared residuals, as defined in Eq.

3.3, is a stochastic variable with X2-distribution with the number of degrees of freedom equal

to the number of independent measurements (n) minus the number of estimated free fluxes

p = k-r. The expected value for the minimized sum of squared residuals equals the number

of degrees of freedom of the X2-distribution. To test the goodness of fit, we test the null

hypothesis that the model is adequate:

P((O ( (i) (- X2 (n-p)) > cx (3.12)

Here, ii are the fluxes at the optimal solution. The null hypothesis is rejected when the

calculated P-value is smaller than a certain chosen threshold value a, for example 0.05. If

previous investigations have excluded the possibility of gross errors in the measurements,

then it must be concluded that the model is not adequate, and thus should be reevaluated.

Individual residuals should also be analyzed at convergence. If the flux model is correct, then

the standard deviation-weighted residuals are expected to be normally distributed with a

mean of zero and standard deviation of one, i.e. N(0,1). A normal probability plot is a useful

tool for assessing whether the residuals are indeed normally distributed. Alternatively, one
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can use the Kolmogorov-Smirnov and Lilliefors tests to evaluate the hypothesis that the

residuals are normally distributed (Conover, 1999). If the standard deviation of the weighted

residuals is significantly different from one, then that indicates that the residuals have been

improperly weighted, which may result in biased flux estimates.

3.2.3 Local linearized statistical properties

The first goal of MFA is to improve our knowledge of internal fluxes, however, assessing the

reliability of flux estimates is also important. Without this information it is difficult to

interpret flux results and expand the physiological significance of flux studies. At

convergence, a number of local statistical properties of fluxes are easily derived. First, we

calculate the inverse of the Hessian, which gives the local estimate for the covariance matrix

of the estimated independent fluxes (Hartmann and Hartwig, 1996):

2E = H' (3.13)

Combining Eqs. 3.2 and 3.13 we obtain the following covariance matrix for all individual

fluxes in the system:

NE = N - -N ' = N H -N' r  (3.14)

We can then calculate local estimates for standard deviations of metabolic fluxes, i.e. the

square roots of the diagonal elements of ,E. The local approximation for the 95%

confidence interval of flux i is thus given by:

Approx. 95% confidence intervala)= flux() +± 2- (3.15)

Similarly, we may also calculate covariance matrices and confidence intervals for other

system variables. For example, the covariance matrix for the simulated measurements is

given by:

- 98-



CHAPTER 3. DETERMINATION OF FLUXES AND CONFIDENCE INTERVALS

Y - d E d (3.16)

3.2.4 Calculating accurate flux confidence intervals

Confidence intervals of fluxes obtained from estimated local standard deviations may not

accurately describe the true flux uncertainty due to inherent nonlinearities of isotopomer

balances. In addition, flux constraints, e.g. v 2 0, may be violated within the approximated

confidence interval resulting in overestimation of flux uncertainty. To address these issues

we propose an alternative strategy for determination of more accurate flux confidence

intervals. This technique is an extension to the flux estimation procedure described in

section 3.2.1. In the proposed method, confidence intervals are calculated for each flux

individually. The goal is to determine the sensitivity of the objective function, i.e. the

minimized sum of squared residuals, as a function of the flux value. Small sensitivities, i.e.

large changes in the flux value resulting in small changes in the minimized sum of squared

residuals, indicate that the flux cannot be estimated precisely. Large sensitivities, on the other

hand, indicate that the flux is well determined. The optimization problem associated with

minimizing the sum of squared residuals as a function of one particular flux has n-p-1

degrees of freedom, compared to n-p degrees of freedom for the original MFA problem.

The difference between the objective function evaluated at the optimal solution and the

objective function when one flux is fixed follows a X2-distribution with one degree of

freedom:

(((U)i=v - (I()) X2(1) (3.17)

It should be noted that Eq. 3.17 assumes that the residuals are correctly weighted. If

measurement errors are unknown, or the residuals are incorrectly weighted then Eq. 3.17
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may produce inaccurate results. In these cases, the following alternative F-statistic is

preferred:

0 (u) • - d (u)

p) F(1,n- p) (3.18)S(^) / (n-p)

In the above equations, (D(u) Ivi=-io indicates the value of the objective function for the model

where one flux i is fixed at vio, and the other degrees of freedom have been used to minimize

the objective function. The 1-a confidence interval for flux i is given by all flux values for

which the following statement is true:

(u)Iv , '_(^u) + X2(1)) (3.19)

The threshold values for X7•,(1) corresponding to 80%, 90% , 95% and 99% confidence

intervals are 1.64, 2.71, 3.84, and 6.63, respectively. Thus, in order to obtain accurate

confidence intervals of fluxes we need to determine the minimized sum of squared residuals

as a function of the flux value. Here, we describe an efficient algorithm for this purpose.

Starting at the optimal solution, the value of one flux whose sensitivity we seek to determine

is increased step-by-step, while the other fluxes are determined by minimizing the objective

function. We obtain the following QP subproblem at each iteration:

min A) - 2. AuT .J + Au -H -Au
Au

s.t. Ni Au = h (3.20)

N-u>0

Eq. 3.20 is similar to Eq. 3.7, with the additional constraint that flux vi is required to increase

with a step size 'h'. In the above equation N, denotes the ith row of matrix N. The above

constrained optimization problem is transformed to a problem without equality constraints

using the Lagrange formulation (Byrd et al., 1999; Gill et al., 1991):
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minL = 2 -AuT .J + AuT H Au + (Ni -Au-h)-· .

s.t. N-u>O
(3.21)

Here, X is the Lagrange multiplier. The minimum of Eq. 3.21 occurs when the following

stationary conditions are satisfied:

-> 2.J + 2-H-Au + NiT .A = 0dL 0
d(Au.)
Cd 

0DdLAX

(3.22)

(3.23)-> Ni 'Au - h = 0

We define a square matrix A and vectors b and Ad as follows:

A = [2 HN i

INi
Ni]
0

b = -2 J
b=h]

Ad =

The stationary conditions from Eqs. 3.22 and 3.23 can be written as follows:

A-Ad = b

(3.24a)

(3.24b)

(3.24c)

(3.25)

Thus, the optimal adjustment of the variables in vector d, i.e. independent fluxes and the

Lagrange multiplier, that minimizes the objective function is given by:
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Ad = A' -b (3.26)

and we obtain the following updated variables vector at each iteration:

dk+1 = dk + Ad (3.27)

The flux value is increased this way until either the flux reaches infinity, or the objective

function has increased by 3.84 compared to the value at the optimal solution, which then

corresponds to the upper bound of the 95% flux confidence interval. The above procedure

is then repeated starting at the optimal solution, but now the flux value is gradually

decreased, i.e. the linear constraint in Eq. 3.20 is changed to:

-N i " Av = h (3.28)

Eqs. 3.21 to 3.24 are also changed accordingly. The selected flux is decreased until either the

flux reaches the lower bound, or the objective function has increased by 3.84 compared to

the value at the optimal solution, thus corresponding to the lower bound of the 95% flux

confidence interval. If the flux model was linear, then the profile of the minimized sum of

squared residuals versus the flux value would be a parabola. However, because of the

inherent nonlinearities of isotopomer models observed profiles will often deviate from the

parabola-shape. In section 3.3.1 we show that confidence intervals of metabolic fluxes

obtained with the above described method accurately reflect the true uncertainty of flux

estimates. Note that additional fluxes constraints, i.e. N-u > 0, and step controlling strategies

are again easily applied to this general scheme (see Appendix 3.C). The complete algorithm

for accurate determination of confidence intervals of fluxes is outlined in Appendix 3.D.

3.2.5 Relative importance of measurements

Next, we address the question how the precision of estimated fluxes is influenced by

measurement uncertainty. In particular, we wish to identify measurements that contribute
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significantly to the variance of estimated fluxes. This will allow us to quantify the relative

importance of measurements and identify key measurements, i.e. measurements for which an

enhancement of precision would result in significant improvement in the quality of flux

estimates (Heyen et al., 1996). These measurements should be carried out with special

attention and it may prove wise to measure them more precisely. First, we rewrite Eq. 3.14

as follows:

v, = N H-1 . N  = N -H -H -' 1.N (3.29)

Substitution of the definition for the Hessian matrix from Eq. 3.8 into Eq. 3.29 yields an

expression that directly links measurement variances, i.e. on the diagonal of matrix Ex, with

flux variances, i.e. on the diagonal of matrix Ev:

E = N-H-1'- .- E-1 -- I H-' NT (3.30)
(du) x du

We can use Eq. 3.30 to construct the contribution matrix. Elements in this matrix reflect the

fractional contribution of the variance of measurement j to the local variance of flux i:

N -H-' -1 )
Contribution 0, ( = ,i) (3.31)

v(i,i) x,Ji)

The sum of each row in the contribution matrix equals one. Matrix elements with large

values indicate important measurements. From the contribution matrix we can easily

determine the number of redundant measurements for each individual flux. In general, it is

desirable that more than one measurement significantly contributes to the flux estimation.

Fluxes that depend only on one measurement are very sensitive to errors in that one

measurement. We can use this as a criterion to determine the quality of tracer experiment

design. For example, a tracer experiment is considered poorly designed if a significant
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number of estimated fluxes have little or no redundant measurements. Note that this

situation may occur even if the total number of measurements is much greater than the

number of unknown fluxes. On the other hand, we may also encounter experiments that are

specifically designed to determine only a subset of fluxes which are of interest. In that case,

the overall flux estimation problem can be underdetermined, as long as the fluxes of interest

are over-determined. Thus, in general there is not a single optimal tracer experiment.

Instead, depending on the fluxes that need to be determined, different experimental designs

may be optimal. Note that our method for evaluating experiment design places emphasis

redundant measurements, which sets it apart from the methods used by other investigators

which are based on the D-criterion (Mollney et al., 1999).

In addition to the contribution matrix, we also derived the following expressions for local

sensitivities of estimated fluxes with respect to changes in measurement values and assumed

measurement errors:

dv N H' . - (3.32)
dx (du)

dv dx2 N -H-' - - E - ding x(^r)-Xobs) (3.33)
dax (du)

These two expressions indicate how much flux estimates are affected by a change in a

particular measurement. It is clear that different measured values will result in different

estimated fluxes. However, the significance of assumed measurement errors on flux

estimates is often overlooked. The assumed measurement errors determine the relative

weighting of residuals in the objective function, and have a significant impact on flux

estimation results. This is particularly true for measurements with very small assumed errors,

which may introduce a bias towards these measurements. Therefore, as part of a posteriori

analysis it is important to analyze the sensitivity of fluxes with respect to changes in

measurement values and measurement errors. In particular, high sensitivities with respect to
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changes in measurement errors indicate disagreement between the measurement and the

network model that should be further investigated. This inconsistency may be caused by

measurement gross errors, inappropriate weighting of residuals, or errors in the metabolic

network model.

3.3 Results

To illustrate the developed methods two examples are provided. The first example is a

simple metabolic system with only six fluxes, where we compare flux confidence intervals

calculated by the described method to 'true' confidence intervals obtained using an

exhaustive grid search and by Monte Carlo simulations. The second system is taken from

human physiology literature, i.e. mammalian glucose metabolism evaluated by constant

infusion of [U- 13C]glucose.

3.3.1 Simple example network

Consider the simple network shown in Figure 3-1. This system will serve as the test case for

our method of calculating accurate confidence intervals. We will simulate data from this

system and then use the simulated data to estimate fluxes and calculate flux confidence

intervals as we described in sections 3.2.1 and 3.2.4. In this network, metabolite A is the sole

substrate and metabolites E and F are two final products. The intermediary metabolites B, C

and D are assumed to be at metabolic and isotopic steady state. Atom transitions for the five

reactions are given in Table 3-1. The assumed flux distribution is shown in Figure 3-1. All

fluxes are expressed as percentages of the substrate uptake rate, which is fixed at 100. In this

example, 100% [2- 13C]A is chosen as the isotopic tracer and the mass isotopomer

distribution (MID) of product F is measured. At isotopic steady state the following MID for

metabolite F is obtained, 0.01 mol% (M+O), 80.08 mol% (M+1), 19.83 mol% (M+2), and

0.09 mol% (M+3).
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Figure 3-1: Simple metabolic network used here to illustrate the computation of confidence

intervals of metabolic fluxes. The assumed steady-state fluxes have arbitrary units. The

network substrate A is fully labeled on the second atom. Atom transitions for the reactions

in this network are shown in Table 3-1.
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Table 3-1

Stoichiometry and atom transformations for reactions in the example metabolic network in

Figure 3-1.

Reaction Reaction stoichiometry Atom transformations*

number

1 A -+ B abc -+ abc

2 B ++ D abc ++ abc

3 B-+C+E abc -- bc + a

4 B + C -+>D + E + E abc +AB - bcA + a + B

5 D - F abc -+ abc

* For each compound atoms are identified using lower case letters to represent successive atoms of

each compound. Uppercase letters represent a second compound in the reaction.
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3.3.2 Grid search

With the substrate uptake rate fixed at 100 this metabolic system has two remaining degrees

of freedom. Here, we choose fluxes v2 and v4 as the independent fluxes. For this simple

problem it is computationally feasible to apply a grid search strategy to determine the

sensitivity of the objective function as a function of flux values, from which the uncertainty

of fluxes can then be calculated as described in section 3.2.4. Here, we evaluated all

combinations of fluxes v2 ranging from 0 to 500 (with step size 0.5) and v4 ranging from 0 to

100 (with step size 0.1), i.e. one million flux combinations were evaluated. For each flux

combination we calculated the sum of squared residuals assuming a measurement error of

0.3 mol% for all mass isotopomer fractions. Figure 3-2 provides a one-dimensional

representation of this 2D-grid search. The dots in Figure 3-2A correspond to the minimal

sum of squared residuals for fixed value of v2, but variable value of v4. In Figure 3-2B flux v4

was fixed and v2 varied. Note that for this simple example with two degrees of freedom, the

grid search method for calculating flux confidence intervals is closely related to our

proposed method described in section 3.2.4.

3.3.3 Monte Carlo simulations

Confidence intervals were also determined using Monte Carlo simulations. For this purpose,

we generated 10,000 simulated data sets corrupted with noise with a standard deviation of

0.3 mol%. Metabolic fluxes were estimated from this data and we obtained 10,000 estimates

of fluxes v2 and v4. It is expected that the estimated fluxes will differ somewhat from the true

flux values (i.e. v2,tm,A=110 and v4,true=20) due to measurement errors. Furthermore that the

spread in the estimated fluxes corresponds to the flux uncertainty. Figure 3-3 shows the

histogram of estimated fluxes v2 and v4. To determine flux confidence intervals, flux

estimates were first sorted in ascending order. The 80% confidence interval was then

obtained by discarding the top 10% and bottom 10% of flux estimates; the 90% confidence

interval was obtained by discarding the top 5% and bottom 5% of flux estimates, etc. The

calculated confidence intervals for v2 and v4 are summarized in Table 3-2.
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Flux v2

0 5 10 15 20 25 30 35

Flux v4

Figure 3-2: Determination of confidence intervals of metabolic fluxes. The minimized sum

of squared residuals is plotted against the flux value for fluxes v2 and v4. Circles represent the

smallest sum of squared residuals observed for a given flux value from the exhaustive grid

search. The solid line represents the profile determined with our method, and the dashed

line represents the profile obtained assuming linearized statistics. The dashed horizontal lines

represent the threshold values for the 80%, 90% and 95% confidence intervals, respectively

(see section 3.2.4 for details).
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Figure 3-3: Histogram of estimated fluxes v2 and v4 from 10,000 Monte Carlo simulations.

For each simulation isotopomer data was corrupted with random noise with a standard

deviation of 0.3 mol% abundance, and fluxes were estimated by least-square optimization.

Estimated fluxes were then collected into bins with a width of 2 for v2, and 1 for v4 (shown

here). The estimated fluxes are different from the true flux values due to the introduced

measurement errors, i.e. v2,true=110 and v4,true=20.
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3.3.4 Linearized statistics

Approximated confidence intervals were obtained from estimated standard deviations of

fluxes after linearization, as described in sections 3.2.1 and 3.2.3. The following optimal

solutions for fluxes v2 and v4 were obtained: v2 = 110+86.4; and v4 = 20±5.5 (best fit ± SD).

3.3.5 Comparison of methods for calculating flux confidence intervals

Next, confidence intervals of fluxes were determined with our method using the algorithm

described in section 3.2.4. The calculated 80%, 90% and 95% confidence intervals for fluxes

v2 and v4 obtained with all four methods are summarized in Table 3-2. The values obtained

using the grid search method, the Monte Carlo simulations and our method agreed well.

However, values obtained from linearized statistics differed significantly. In Figure 3-2 we

visualize the confidence intervals obtained with the grid search method, linear approximation

and our method. It is clearly seen that the confidence intervals in this system are non-

symmetric and highly nonlinear. As such, confidence intervals approximated from local

estimates of standard deviations agreed well only in a small area surrounding the optimal

solution. The lower and upper bounds for flux v2 were significantly underestimated, and for

flux v4 the size of the 95% confidence interval was overestimated by almost a factor of 2.

Note that most metabolic systems of interest will have more than two degrees of random,

which limits the use of grid search and Monte Carlo simulations due to computational

limitations. Even for this simple example network, the grid search method and Monte Carlo

simulations required hours of calculations. In contrast, our method took less than one

second. It should be noted that the above observations are specific to our particular network

structure, substrate labeling, measurements and assumed measurement errors. However, it is

clearly illustrated that for reasonable values of measurement errors, highly nonlinear

confidence intervals can be expected. In summary, we have shown that approximated flux

confidence intervals do not accurately describe true uncertainty of estimated fluxes.

Therefore, more accurate flux confidence intervals must be determined using nonlinear

tools. We have developed an efficient technique for calculating these intervals without the

need to perform computationally demanding grid searches, or Monte Carlo simulations.
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Table 3-2

Comparison of methods for the calculation of confidence intervals of fluxes. Confidence

intervals were calculated for fluxes v2 and v4 in the example network model shown in Figure

3-1.

Confidence intervals for flux v2 Confidence intervals for flux v4

Method 80% 90% 95% 80% 90% 95%

Grid search 67.0 - 253 66.5 - 323 66.5 - 405 16.5 - 25.6 16.4 - 27.1 16.4 - 28.3

Monte Carlo 66.7 - 251 66.5 - 317 66.4 - 407 16.5 - 25.6 16.4 - 27.0 16.4 - 28.4

Our method 66.5 - 252 66.4 - 322 66.3 - 403 16.4 - 25.6 16.3 - 27.1 16.3 - 28.3

Linearization* (-0.6) - 220 (-31.8) - 252 (-62.8) - 283 12.9 - 27.1 11.0 - 29.0 9.0 - 31.0

* Confidence intervals were approximated from local estimates of standard deviations for the fluxes

after linearization.
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3.3.6 Mammalian gluconeogenesis

As the second metabolic system we chose mammalian gluconeogenesis at metabolic and

isotopic steady state evaluated by constant infusion of [U- 13C]glucose. Figure 3-4 shows the

metabolic model for mammalian glucose metabolism, which is described in more detail in

Appendix 3.E. Investigation of glucose metabolism is of major physiological and clinical

significance in the study of obesity, diabetes and other disease (Groop et al., 1989; Landau et

al., 1996). Of particular interest are the rates of glucose production and utilization, and the

pathways by which glucose is formed during fasting. Tayek and Katz were the first to

propose a method for estimating several parameters of glucose metabolism in human from

the mass isotopomer distributions of plasma glucose and lactate upon constant infusion of

[U- 13C]glucose as the single isotopic tracer (Tayek and Katz, 1996). However, since the

introduction of this method several authors raised questions regarding the reliability of flux

estimates from this system (Kelleher, 1999; Landau et al., 1998; Radziuk and Lee, 1999).

Here, we address these questions using the developed tools.

We selected two studies from recent literature where the [U-13C]glucose method was applied

to study glucose metabolism in vivo. Tayek et al. investigated glucose metabolism in healthy

and diabetic subjects (Tayek and Katz, 1996). Human subjects were infused with [U-
13C]glucose for 3 hours at a rate of 0.59 pImol/kg/min. Mass isotopomer distributions (MID)

of plasma glucose and plasma lactate were measured at the end of the infusion period and

several parameters of glucose metabolism were estimated. The authors found a near linear

correlation between hepatic glucose production and plasma glucose levels suggesting a key

role of liver metabolism in diabetes. In a more recent publication, Sunehag investigated the

effects of supply of parental lipids and amino acids to very premature infants (Sunehag,

2003). After an 8 hr infusion with [U-13C]glucose at a rate of 17 l±mol/kg/min, MID of

plasma glucose and lactate were measured and the rate of gluconeogenesis was estimated.

This study revealed the primary role of lipids in supporting gluconeogenesis in very low

birthweight infants. The key difference between the two studies was the rate of tracer

infusion. In the study by Tayek [U- 13C]glucose was infused at a rate corresponding to 4% of
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Figure 3-4: Metabolic model of mammalian glucose metabolism evaluated by constant

infusion of [U-13C]glucose. Abbreviations of metabolites: G6P, glucose-6-phosphate; R5P,

ribose-5-phosphate; Pyr, pyruvate; OAC, oxaloacetate; SucCoA, succinyl coenzyme A; Fum,

fumarate; AcCoA, acetyl coenzyme A; FA, fatty acids; PEP, phosphoenolpyruvate; TP,

triose phosphates.
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Table 3-3

Stoichiometry and carbon transformations for the reactions in the network of mammalian

glucose metabolism. Abbreviations of metabolites are the same as in Figure 3-4.

Reaction Reaction Carbon transformations*

number

1 [U13C]Gluc -- Gluc abcdef -+ abcdef

2 Gluc -> G6P[M] abcdef-+ abcdef

3 G6P[M] - TP[M] + TP[M] abcdef - cba + def

4 G6P[M] -+ R5P[M] + C02 abcdef - bcdef + a

5 R5P[M] + R5P[M] - S7P[M] + TP[M] abcde + ABCDE -> abABCDE + cde

6 S7P[M] + TP[M] - G6P[M] + E4P[M] abcdefg + ABC -+ abcABC + defg

7 R5P[M] + E4P[M] -- G6P[M] + TP[MI abcde + ABCD -> abABCD + cde

8 TP[M] - Pyr[M] acb -+ abc

9 Pyr[M] - Lact abc -> abc

10 Lact[O] -+ Lact abc - abc

11 Lact -+ other abc -> abc

12 Lact - Pyr[L] abc -+ abc

13 Pyr[L] + C0 2[L] - OAC[L] abc + A -> abcA

14 OAC[L] + AcCoA[L] -+ SucCoA[L] + 2 CO 2  abcd + AB -+ ABbc + a + d

15 SucCoA[L] - Fum[L] abcd -+ (/2 abcd + 1/2 dcba)

16 Fum[L] <- OAC[L] (/2 abcd + /2 dcba) ++ abcd

17 FA[L] -+ AcCoA[L] ab -> ab

18 AcCoA[L] + AcCoA[L] - ketone[L] ab + AB - abAB

19 OAC[L] -4 PEP[L] + CO 2  abcd -> abc + d

20 PEP[L] -> Pyr[L] abc -> abc

21 PEP[L] -+ TP[L] abc -> abc

22 Glycerol[O] -+ TP[L] abc -+ abc

23 TP[L] + TP[L] -+ G6P[L] abc + ABC -- cbaABC

24 Glycogen[L] -+ G6P[L] abcdef - abcdef

25 G6P[L - Gluc abcdef-+ abcdef

26 Gluc -+ other abcdef-+ abcdef

* For each compound carbon atoms are identified using lower case letters to represent successive

carbon atoms of each compound. Uppercase letters represent a second compound in the reaction.

Because fumarate is a rotationally symmetric molecule no distinction can be made between carbon

atoms 1 and 4, and carbon atoms 2 and 3.

-115-



CHAPTER 3. DETERMINATION OF FLUXES AND CONFIDENCE INTERVALS

glucose turnover, whereas in the study by Sunehag tracer infusion contributed very

significantly to the total rate of glucose appearance (- 58%).

The MIDs of plasma glucose and lactate from these two studies are shown in Table 3-4.

One representative data set was selected from each study. The data was corrected for natural

isotope enrichments of 13C and other stable isotopes. In keeping with pervious conventions,

we represent mass isotopomers of glucose as Mi and mass isotopomers of lactate as mi. We

fitted both data sets to the glucose metabolic model assuming measurement errors of 0.1

mol% abundance for all measured abundances. In both cases a good fit was obtained,

resulting in a minimized sum of squared residuals of 0.3 and 0.5 for the Tayek and Sunehag

data, respectively. We then calculated accurate confidence intervals for all fluxes in the

network. The results are summarized in Table 3-5.

One of the key fluxes in this model is the rate of gluconeogenesis, i.e. de novo glucose

synthesis from precursors such as lactate, amino acids and glycerol. The calculated

confidence intervals for this flux from the two studies were significantly different

(see Figure 3-5). For the study by Tayek et al., the observed flat profile of the confidence

interval indicates that gluconeogenesis flux cannot be determined precisely. There was a wide

range of equally likely solutions for the gluconeogenesis flux, ranging between 3.6 and 14.4

ýLmol/kg/min, for which the minimized sum of squared residuals was the same. Other fluxes

in this model display similar flat profiles. Thus, in this case we could not identify a unique

optimal solution for fluxes, but rather a range of optimal solutions as is indicated in

Table 3-5. In cases like this, it is informative to determine the search direction of fluxes at

the optimal solution, i.e. Ad from Eq. 3.26. This vector reveals metabolic pathways that

cannot be determined independently of one another. Considering the gluconeogenesis flux,

we found that it was not possible to distinguish between hepatic glycerol intake and

glycogenolysis. Indeed, several authors recently raised concerns regarding the [U-13C]glucose

method. Based on physiological insight Landau and colleagues concluded that the only

fluxes that can be determined from this system are hepatic glucose output (HGO) and the

fractional contribution of pyruvate to gluconeogeneis (Landau et al., 1998).
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Table 3-4

Measured and fitted mass isotopomer abundances. Mass isotopomer of plasma glucose (Mi)

and plasma lactate (mi) were measured after constant infusion of [U- 13C]glucose (molar

abundances, mol%/o). Mass isotopomer abundances were corrected for natural isotope

enrichments.

Tayek study* Sunehag study**

Mass isotopomer Measured Fitted Measured Fitted

Mo 95.20 95.20 28.90 28.91

Mt 0.29 0.31 4.40 4.39

M2 0.22 0.19 3.36 3.38

M3 0.33 0.33 3.65 3.66

M4  0.00 0.00 0.80 0.82

Ms 0.00 0.00 0.47 0.42

M6 3.96 3.96 58.42 58.43

mo 98.07 98.07 57.78 57.78

mi 0.38 0.36 5.48 5.50

m2 0.19 0.22 5.23 5.21

m3 1.36 1.36 31.51 31.51

* Data was taken from Tayek et al. (1996) for diabetic subject no. 5 (D5). Tracer infusion rate was

0.59 jmol/kg/min [U- 13C]glucose.

** Data was taken from Sunehag et al. (2003) for the infant receiving supplementation of glucose,

amino acids and parental lipids (g + AA + IL). Tracer infusion rate was 17 ýLmol/kg/min [U-

13C]glucose.
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Table 3-5

Estimated glucose metabolic fluxes and their 95% confidence intervals. Fluxes

(p[mol/kg/min) were estimated from mass isotopomers of glucose and lactate using the

network model of mammalian glucose metabolism in Figure 3-4.

Tayek study (1996) Sunehag study (2003)

Tissue Flux Best fit* 95% Conf. Best fit* 95% Conf.

Plasma Tracer infusion rate 0.59 0.59 17.0 17.0

Influx of unlabeled lactate 0 - 32 0 - 49 5.6 - 36.1 5.1 - 36.4

Muscle Cori cycle** 1.8 - 15.0 1.1 - 15.6 4.5 - 29.2 4.2 - 29.3

Pentose pathway 0 0 - 8.5 3.6 - 23.2 3.1 - 23.8

Liver Hepatic glucose output (HGO) 14.3 13.7 - 15.0 12.2 12.1 - 12.3

Glycogenolysis (GL) 0 - 10.7 0- 11.5 5.3 4.3 - 5.6

Gluconeogenesis (GNG) 3.6 - 14.4 2.5 - 15.0 6.9 6.6 - 7.9

Glycerol uptake 0 - 21.5 0 - 23.1 0.3 0 - 3.1

Unlabeled anaplerotic sources 0 - 9.0 0 - 26.6 0.3 0 - 3.1

TCA Cycle 10 - 22 0.2 - 180 18.0 14.3 - 21.1

Pyruvate carboxylase (PC) 15.1 5.3 -23.9 13.5 12.6 - 14.4

Pyruvate kinase (PK) 6.0 - 12.1 0 - 22.2 0 0 - 0.8

Backward flux of fumarase 6 - 19 0 - 550 40.0 28.9 - 56.0

Ketogenesis 0 - Inf 0 - Inf 0 - Inf 0 - Inf

* 'Best fit' denotes flux value at the optimal solution, or the region of flux values with the same

minimized sum of squared residuals.

** Cori cycle refers to the total flux from plasma glucose to plasma lactate.
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Figure 3-5: Confidence intervals of gluconeogenesis flux for selected studies by Tayek and

Sunehag. The minimized sum of squared residuals minus the optimal solution value is

plotted against the gluconeogenesis flux. The solid line represents the profile determined

with our method, and the dashed line represents the profile obtained from the local estimate

of standard deviation. The dashed horizontal line represents the threshold values for the

95% confidence interval of gluconeogenesis flux.
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Our results support their conclusions for the Tayek study. Note that the only two fluxes that

were uniquely determined were HGO and the pyruvate carboxylase flux, which is the first

step in the pathway from pyruvate to glucose.

We also calculated local standard deviations for fluxes at the optimal solution to compare

approximated confidence intervals with the results obtained by our method. For most fluxes

the approximated values did not agree with the true confidence intervals. The only exception

was HGO flux for which the local standard deviation reasonably described the true

uncertainty (14.3 ± 0.4 p~mol/kg/min). We also determined the most important

measurements for the estimated gluconeogenesis flux. The two most important

measurements were glucose mass isotopomers M4, Ms. However, in this study neither of

these isotopomers were formed in significant abundance. We can therefore conclude that in

order to estimate the gluconeogenesis flux in this system one must either find a more precise

technique to measure glucose isotopomers M4 and Ms, or find a alternative method to

quantify either hepatic glycerol uptake or hepatic glycogenolysis.

In contrast, Sunehag applied a significantly higher tracer infusion rate, i.e. 17 ptmol/kg/min

vs. 0.59 ýtmol/kg/min as employed by Tayek et al. Consequently, glucose isotopomers M4

and M5 were formed in significant abundance, i.e. 0.80 and 0.47 mol%/ respectively. In this

case, MFA produced a unique solution for the gluconeogenesis flux (6.9 .Lmol/kg/min) with

a narrow 9 5 % confidence interval (6.6 - 7.9 ptmol/kg/min). Here, glucose mass isotopomers

M4, M3 and M5 were the most important measurements for estimating gluconeogenesis flux

with relative contributions of 59%, 18% and 9 % respectively. Other fluxes in this system

were also estimated more precisely than in the Tayek study (see Table 3-5). Here, most fluxes

had a well defined optimal flux value, with the notable exceptions of the influx of unlabeled

lactate, the Cori cycle flux, the pentose pathway in muscle, and hepatic ketogenesis.

Comparing the overall quality of flux results from both studies it is clear that high tracer

infusion rates are desirable in order to obtain reliable flux estimates in this system. The main

concern is, however, that high infusion rates of glucose may alter endogenous glucose

metabolism. Therefore, the optimal infusion rate will depend on the desired precision of

fluxes and the ability to measure glucose mass isotopomers M 4, M3 and Ms precisely.
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3.4 Discussion

Metabolic flux analysis based on the application of stable isotopes and subsequent

measurement of labeling patterns is a powerful technique for measuring metabolic fluxes in

vivo. However, reliable physiological knowledge can only be obtained from these studies if

the statistical significance of estimated fluxes is determined as well. This is complicated by

the highly nonlinear relationships inherent to isotopic systems. Unfortunately, detailed

statistical analysis of estimated metabolic fluxes is still not common practice. Most often,

fluxes obtained from stable isotope studies are reported without any statistical significance.

In some cases, linearized statistics have been used to describe the uncertainty (Arauzo-Bravo

and Shimizu, 2003; Wiechert et al., 1997). Wiechert et al. showed that linearized statistical

properties are inappropriate for large exchange fluxes. A nonlinear mapping of exchange flux

improved the approximation for an example network probed with NMR measurements

(Wiechert et al., 1997). In this contribution, however, we have shown that even for very

simple systems probed with MS measurements confidence intervals of net and exchanges

fluxes are highly nonlinear and non-symmetric. The true confidence intervals of fluxes may

be much smaller, or much larger than the linearized confidence intervals suggest. For

example, van Winden et al. determined the 90% confidence interval for the split ratio

between glycolysis and the pentose phosphate pathway in yeast from MS measurements of

intracellular metabolites (van Winden et al., 2005). The 90% confidence interval ranged from

0.05 to 0.52, indicating that the split ratio could not be determined precisely due to a

correlation with the glycogen flux. In this study, we have also provided examples of fluxes

with very large confidence intervals. The gluconeogenesis flux determined from experiments

with low [U- 13C]glucose infusion could not be determined accurately resulting from a

correlation between hepatic glycerol influx and glycogenolysis. These types of problems

cannot be detected by MFA alone, or using linearized statistics. To eliminate these problems,

nonlinear statistical tools are required for careful design of tracer experiments.

In summary, in this contribution we have presented comprehensive techniques that allow

accurate determination of the significance of fluxes obtained from stable isotope

measurements. The advantage of our approach is that it provides an efficient method to
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calculate nonlinear confidence intervals that reflect the true uncertainty of estimated fluxes.

It allows the construction of confidence intervals in underdetermined and over-determined

systems. The derived analytical expressions for sensitivities of fluxes with respect to

measurements and measurement errors allow the identification of key measurements for

specific fluxes. We applied these methods to re-analyze the statistical significance of

estimated gluconeogenesis fluxes from two human studies with [U- 3C]glucose as tracer. As a

result, we identified a theoretical limitation to estimate the gluconeogeneis flux in one of the

studies. We confirmed concerns raised by several authors and identified the source of the

limitations, i.e. low isotopic abundance of key mass isotopomers resulting in the inability to

distinguish between hepatic glycerol intake and glycogenolysis. Through these examples we

have demonstrated the importance of rigorous design and analysis of tracer experiments and

the importance of calculating accurate flux confidence intervals for reliable interpretation of

physiological studies.
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APPENDIX 3.A

Numerically stable form for matrix inverse using singular value decomposition

Inversion of Hessian matrix H may be numerically unstable if H is singular, or ill

conditioned. A numerically stable from for the inverse may be obtained from singular value

decomposition of H (Foster, 1986):

H = U-S.V T  (3.A1)

The diagonal elements of matrix S correspond to the eigenvalues of H. Eigenvalues smaller

than a given tolerance, for example tol = 10-10, are considered insignificant. Matrix V is then

split into two matrices, V1 and V2. The columns of V1 form an orthogonal basis for the

column space of H, while V2 provides an orthogonal basis for the null space of H.

V = [V1 I V2] (3.A2)

A numerically stable from for the inverse is then given by:

H- (H + to/.V2. V2T) (3.A3)
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APPENDIX 3.B

Algorithm for covariance-weighted flux estimation

* Choose starting values for free fluxes, in general random values are preferred.

* Set the iteration counter k = 0.

* At each iteration k:

1. Simulate measurements x for current fluxes.

2. Calculate the sensitivity matrix dx/du.

3. Calculate the Hessian matrix H and the Jacobian J using Eq. 3.8.

4. Calculate Au using Eq. 3.10. Additional inequality constraints may be included here.

5. Check for convergence. If the error in the necessary condition is smaller than the

desired tolerance, then stop. Otherwise, go to step 6.

6. Update the fluxes using Eq. 3.11.

7. Set the iteration counter k <- k + 1, and go to step 1.

* Transform the free fluxes into individual metabolic fluxes using Eq. 3.2.
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APPENDIX 3.C

Controlling the step size for determination of accurate flux intervals

In order to calculate accurate confidence intervals the step size 'h' in Eq. 3.20 needs to be

carefully controlled. Using very small step size increases the number of iterations and is

computationally demanding. On the other hand, using a step size that is too large results in

significant loss of accuracy due to the inability to follow nonlinearities in the system. Using

Taylor series expansion, we can express the increase in the objective function formally as a

polynomial function of the step size:

Ac = aI .h + a2 .h
2 + a 3 h3 + ... (3.B1)

The first two coefficients al and a2 are given by:

al = 2 Au T . J (3.B2)

22 = Au T H - Au (3.B3)

Higher order coefficients are normally not calculated, because that would require

computation of higher order derivatives of simulated measurements with respect to fluxes,

i.e. d2x/du2, d3x/du3, which is computationally demanding and requires large amounts of

memory to store multidimensional matrices. However, we can approximate the third

coefficient a3 computationally at each iteration. For this purpose, we calculate the actual

increase in the objective function A(Daact u for the flux map given by (u + h-Au) and compare

this to the predicted increase in the objective function using the quadratic approximation, i.e.

A(tapprox = al h + a2-h 2. The value for a3 is then approximated from the difference between

ADca •l and A)approx:

-125-



CHAPTER 3. DETERMINATION OF FLUXES AND CONFIDENCE INTERVALS

a3 • 3 (3.B4)

If the difference is too large then the step size needs to be decreased and if the difference is

very small then we may increase the step size without loss of accuracy. For our calculations

we require the difference to be less than 10-4 at each iteration. The step size h is updated at

each iteration according to the following formula:

h=o- (3.4 5)h = - (3.B5)
a3
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APPENDIX 3.D

Algorithm for accurate determination of confidence intervals of fluxes

* Calculate the variance-weighted sum of squared residuals at the optimal solution ((i).

* Choose a confidence level (1-a), and calculate the corresponding threshold value

X21_-(l), e.g. X20.95(1) = 3.84 for the 95% confidence interval.

* For each flux i:

* Initialize all fluxes at the optimal solution obtained from flux estimation, u() =  .

* Initialize the Lagrange multiplier at X(o) = 0.

* Initialize the variables vector d(o) = [u(o) X(0)]T.

* Set the iteration counter k = 0.

* At each iteration k:

1. Simulate measurements x for current fluxes.

2. Calculate the sensitivity matrix dx/du.

3. Calculate the variance-weighted sum of squared residuals ((u).

4. Calculate the Hessian matrix H and the Jacobian J using Eq. 3.8.

5. Calculate matrix A and vector b using Eq. 3.24.

6. Calculate Ad using Eq. 3.26. Additional inequality constraints may be included

here.

7. Update the step size h as described in Appendix 3.C.

8. Check for convergence. If the flux value for flux i reaches the upper bound, or

if (D(u)- #(f) > X21-a(1) then stop. Otherwise, go to step 9.

9. Update the variables vector d using Eq. 3.27.

10. Transform the free fluxes into individual metabolic fluxes using Eq. 3.2.

11. Record current value for flux i and the corresponding (I(u).

12. Set the iteration counter k -- k + 1, and go to step 1.

* Initialize all fluxes at the optimal solution obtained from flux estimation, u(o) = u.

* Initialize the Lagrange multiplier at X(o) = 0.

* Initialize the variables vector d(o) = [u(o) ,(o)]T .
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* Set the iteration counter k = 0.

* At each iteration k:

1. Simulate measurements x for current fluxes.

2. Calculate the sensitivity matrix dx/du.

3. Calculate the variance-weighted sum of squared residuals D(u).

4. Calculate the Hessian matrix H and the Jacobian J using Eq. 3.8.

5. Replace -Ni for Ni in Eq. 3.24, and calculate matrix A and vector b.

6. Calculate Ad using Eq. 3.26. Additional inequality constraints may be included

here.

7. Update the step size h as described in Appendix 3.C.

8. Check for convergence. If the flux value for flux i reaches the lower bound, or

if (D(u)- d(ui) > X 2 1_-(1) then stop. Otherwise, go to step 9.

9. Update the variables vector d using Eq. 3.27.

10. Transform the free fluxes into individual metabolic fluxes using Eq. 3.2.

11. Record current value for flux i and the corresponding D(u).

12. Set the iteration counter k <- k + 1, and go to step 1.
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APPENDIX 3.E

Metabolic model of mammalian glucose metabolism

We constructed a detailed metabolic model for mammalian glucose metabolism in which we

consider all major pathways that affect the observed labeling patterns of plasma lactate and

glucose (Figure 3-4). Here, [U- 13C]glucose is infused into the blood, taken up by the tissues

and metabolized by glycolysis and pentose phosphate pathway to form lactate, which is then

released into circulation. While the infused glucose is comprised of the fully labeled NM

isotopomer, the action of the glycolysis pathway and scrambling in the pentose pathway

produces both fully labeled m3, and partially labeled mi and m2 lactate molecules. The

labeling of plasma lactate is additionally diluted by unlabeled endogenous sources, such as

from glycogen breakdown in the muscle and amino acid oxidation. This dilution of plasma

lactate labeling is modeled here by one lumped dilution flux. Lactate then enters the liver

where it is converted to pyruvate. We assume that plasma lactate and hepatic pyruvate are at

isotopic equilibrium, which has been experimentally validated by several authors (Wykes et

al., 1998). In the conversion to glucose, pyruvate undergoes carboxylation to form

oxaloacetate that is shared with the TCA cycle. Scrambling of labeling may occur at the point

of fumarate since fumarate is rotationally symmetric. The conversion of amino acids to

glucose without pyruvate as an intermediate, such as from aspartate and glutamine, is

modeled by one lumped dilution flux into the succinyl-CoA pool. Fatty acid oxidation,

ketogenesis and the possibility for pyruvate recycling through the action of pyruvate kinase

are also considered in the model. Glycerol is another potential gluconeogenic precursor that

we consider. Finally, the labeling of hepatic glucose-6-phosphate pool is diluted by

glycogenolysis pathway, i.e. the release of unlabeled glucose molecules from glycogen

storages. In our model, the reaction between oxaloacetate and fumarate is the only

observable reversible reaction. The remaining reactions in the model may therefore be

considered irreversible without affecting flux calculations. The list of all reactions in this

model together with the corresponding carbon transitions are shown in Table 3-3.
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Chapter 4

GC/MS analysis of amino acids

4.1 Introduction

4.1.1 Flux analysis requires accurate data

Accurate assessment of isotopomer distributions of cellular amino acids is of great

importance for quantitative analysis of cell physiology. In carbon labeling experiments 13C-

distributions measured by gas chromatography / mass spectrometry (GC/MS) and nuclear

magnetic resonance (NMR) provide rich information for estimating metabolic fluxes in

complex biological systems. The NMR technique requires expensive equipment and fairly

high concentration of metabolites. In contrast, GC/MS is a rapid and much more sensitive

technique. Powerful computational tools have been developed for quantitative interpretation

of mass isotopomer data; however, the statistical significance of carbon-13 tracer studies has

been limited due to inaccuracies and imprecision in isotopomer data. Metabolic flux analysis

is very sensitive to measurement errors due to the highly nonlinear relationships of models

that link fluxes and isotopomer abundances. Thus, small errors in isotopomer data may

result in large errors in estimated fluxes. It is therefore essential that isotopomer data are

accurate and precise. Based on preliminary sensitivity analysis of realistic metabolic networks

we determined that errors in mass isotopomer abundances should be.less than 0.5 mol% for

most systems. The required accuracy depends mainly on the complexity of the network

model (i.e. degrees of freedom), and the number of redundant measurements. In general,

complex networks with fewer redundant measurements will require more precise data than

more simple systems with large number of measurements.
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4.1.2 Potential sources of error

GC/MS analysis of cellular components provides rich information on isotopomer

distributions of common metabolites. However, several studies have shown that mass

isotopomer data may under-, or overestimate true enrichments. For example, it was reported

that metabolite concentration may affect the accuracy of GC/MS data for fatty acid methyl

esters (Fagerquist et al., 2001; Patterson & Wolfe, 1993). It was shown that isotopomer ratios

deviated significantly from expected natural abundance ratios with increasing metabolite

concentration. Although it is uncertain what the exact cause is of this concentration

dependence, gas phase ion/molecule chemistry in the ionization chamber appears to be a

significant factor (Fagerquist et al., 2001). Klapa et al. reported that mass spectra obtained

with ion trap mass spectrometers may suffer from hydrogen abstraction and other artifacts,

resulting in inaccurate mass isotopomer ratios and significant M-1 abundances (Klapa et al.,

2003). Empirical corrections were proposed to reduce the effect of these artifacts; however,

it is unclear how accurate these corrections are for labeled samples. Furthermore, errors may

be introduced due to incomplete resolution of mass spectra in time, or in the m/z domain.

For example, if compounds are not completely resolved by gas chromatography, co-eluting

compounds will contribute to the observed mass spectra. Mass spectra may also overlap in

the m/z domain. For example, electron impact ionization typically generates more than 20

ion fragments for each metabolite and some of these fragments may be overlapping. Thus,

even if compounds are well separated by chromatography, mass isotopomer distributions of

adjacent fragments may still be unresolved. In practice, it is not be possible to deconvolute

unresolved mass spectra with the desired accuracy of 0.5 mol%. In is important to identify

these situations a priori. Finally, errors may be introduced during integration of mass

chromatograms due to inaccurate integration algorithms, or failure to account for

background noise in MS data.

4.1.3 Reported accuracy and precision in literature

Detailed assessment of accuracy and precision of MS data has received limited attention in

the literature. Mass isotopomer abundances from tracer studies are often reported without

any indication of error. Dauner and Sauer (2000) were the first to analyze the accuracy of MS
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data from TBDMS derivatized amino acid by comparing mass isotopomer abundances of

unlabeled amino acids with theoretical abundances. They reported differences between

observed and theoretical abundances up to 6 mol0/o. Of the 38 accepted amino acid

fragments, 8 fragments had errors <0.5 mol0/o, 20 fragments had errors 1-2 mol%, 13

fragments had errors 2-3 mol0/o, and 10 fragments had errors >2 mol%. Klapa et al. (2003)

reported standard deviations for mass isotopomer abundances of TBDMS derivatized amino

acids ranging between 0.2 and 4 mol%, with the majority of standard deviations larger than

0.5 mol0/o. Here, we report our findings from an extensive study of GC/MS analysis of

TBDMS derivatized amino acids. In this study we validated the identity of amino acid

fragments using 13C-labeled standards, identified potential sources of inaccuracy and

imprecision in MS data, and established a technique to minimize these errors. The main

result of this work is a procedure for accurate and precise assessment of mass isotopomer

distributions of cellular amino acids, with an accuracy of 0.3 mol% and precision of 0.2

mol%, or better.

4.2 Materials and methods

4.2.1 Labeled amino acid standards

A mixture of [U-13C]algal amino acids (99+ At% 13C) and [4-13C]aspartic acid (99 At% 13C)

were purchased from IsoTec Inc. (NMiamisburg, OH). [5- 13C]glutamic acid (99 At% 13C) was

purchased from Cambridge Isotope Laboratories Inc. (Andover, MA).

4.2.2 Cellular amino acids

Cellular amino acids were obtained hydrolyzed biomass samples taken from batch cultures

of E. coli. In one culture no tracers were used (as control), and in a separate culture a mixture

of [1- 13C]glucose and [U- 13 C]glucose was provided as carbon-13 input. Samples from these

cultures were centrifuged and the supernatant separated from the biomass pellet. About 20

mg of wet biomass pellet was transferred to 700 p.L of 6 N HCl and heated at 110 0 C for 24

hrs in a closed vacuum hydrolysis tube. After cooling to room temperature the solvent was
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evaporated and the residue dissolved in 150 jpL of distilled water and filtered through a 0.2

pLm pore size filter to remove cell debris. The filtrate was then evaporated to dryness.

4.2.3 TBDMS derivatization

Amino acids were dissolved in 50 jpL pyridine followed by addition of 70 pL N-methyl-N-

(tert-butyldimethyl-silyl)-trifluoroacetimide (MTBSTFA). The mixture was heated at 60'C

for 30 min, allowed to cool to room temperature and transferred to injection vial for

GC/MS analysis.

4.2.4 GC/MS Analysis

Gas Chromatography-Mass Spectrometry (GC/MS) analysis was performed using HP 5890

Series II GC (Gas Chromatograph) equipped with a DB-1701 [30 m x 0.25 mm (inner

diameter) x 0.25 pmn] capillary column, connected to HP 5971 quadrupole MSD (Mass

Selective Detector) operating under ionization by electron impact (EI) at 70 eV. The mass

spectrometer was calibrated using the 'Max Sensitivity Autotune' setting. The injection

volume was 1 [L and samples were injected in purged splitless mode. The amount of sample

analyzed was controlled by varying the purge activation time between 1 sec and 1.5 min.

Helium flow was maintained at 0.74 mL/min via electronic pressure control. The injection

port temperature was 2700C. The temperature of the column was started at 100 0C for 1.5

min, increased to 1300C at 20 0C/min and increased to 2200C at 100C/min and held for 3

min. The temperature was then increased to 2800C at 50C/min and held for 3 min. The

interface temperature was maintained at 3000 C. Mass spectra were analyzed in the mass

range 195-445 atom mass units (amu) at a rate of 2.7 scans/sec. Measured intensities were

corrected for the contribution of noise (baseline correction), and mass isotopomer

distributions were obtained by integration. Mass isotopomer values for each fragment were

expressed as fractional abundances, i.e. for each fragment the sum of all mass isotopomers

equals one.
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4.2.5 Natural isotope abundances

Most elements of biological interest (including C, H, O, N, and S) have two or more stable

isotopes. Relatively large variations occur for the 13C isotope in nature, varying between

1.097 At%/o for C4-plants and 1.082 At%/o for C3-plants (Coplen et al., 2002). This small

difference may contribute to significant differences in the calculated natural isotopomer

distributions of molecules containing large number of carbon atoms, such as TBDMS

derivatized amino acids. For our calculations we used 1.082 At%/o for the natural abundance

of 13C. For other elements we assumed the following isotope abundances: 2H (0.0156 At%/o),

'5N (0.366 At%/o), 170 (0.038 At%/o), 180 (0.204 At%/o), 29Si (4.69 At%), 30Si (3.09 At/), 33S

(0.749 AtO/o), 34S (4.197 At%), 36S (0.015 At%/o) (Coplen et al. 2002).

4.3 Results

4.3.1 TBDMS derivatization of amino acids

Amino acids are not volatile enough to be analyzed by GC/MS directly. Therefore, chemical

modification of the polar side groups, e.g. -OH, -NH2, -COOH, is required. Here, amino

acids were chemically modified to their respective tert-butyldimethylsilyl (TBDMS)

derivatives for GC/MS analysis (see Figure 4-1)

4.3.2 Gas chromatography of TBDMS derivatized amino acids

Figure 4-2 shows a representative total ion chromatogram from GC/MS analysis of TBDMS

derivatized amino acids from hydrolyzed biomass samples. The retention times of the

detected amino acids are reported in Table 4-1. We detected 15 of the 20 amino acids in the

hydrolyzed biomass samples. Cysteine and tryptophan were lost in hydrolysis due to

oxidation, and glutamine and asparagine were deamidated to glutamate and aspartate,

respectively. Histidine was not detected. The insert in Figure 4-2 shows the observed mass

spectrum of TBDMS derivatized aspartic acid that eluted at 17.1 min. TBDMS derivatized

amino acid displayed characteristic fragmentation patterns resulting from electron impact

- 135 -



CHAPTER 4. GC/MS ANALYSIS OF AMINO ACIDS
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Figure 4-1: Schematic of TBDMS derivatization of polar side groups. Amino acids and

other biological metabolites are easily derivatized to their respective TBDMS derivatives in

preparation for GC/MS analysis.
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100 12,0 14100 1600 180 20800 22010 24110

Figure 4-2: Representative total ion chromatogram from GC/MS analysis of TBDMS

derivatized amino acids from hydrolyzed biomass. The total ion chromatogram corresponds

to the sum of ion intensities measured at each scan. The insert shows the electron ionization

mass spectrum of TBDMS derivatized aspartic acid.
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Table 4-1

Gas chromatography retention times and main ion fragments of TBDMS derivatized amino

acids. Cellular amino acids from hydrolyzed biomass samples were derivatized with TBDMS

and analyzed by electron impact GC/MS.

Amino acid Retention time Molecular weight* Main ion fragments (m/z)

Alanine 9.3 min 317 232, 260

Glycine 9.7 min 303 218, 246

Valine 10.5 min 345 260, 288, 302

Leucine 10.9 min 359 200, 274, 302

Isoleucine 11.3 min 359 200, 274, 302

Proline 11.8 min 343 258, 286

Serine 14.1 min 447 230, 288, 302, 362, 390

Threonine 14.4 min 461 376, 404, 417

Methionine 14.6 min 377 218, 244, 292, 320

Phenylalanine 16.4 min 393 234, 302, 308, 336

Aspartate 17.1 min 475 244, 258, 302, 316, 376, 390, 418

Glutamate 19.1 min 489 272, 330, 358, 404, 432

Lysine 20.3 min 488 329, 431

Arginine 22.5 min 515 340, 442

Tyrosine 24.7 min 523 302, 364

* Molecular weight of TBDMS derivatized amino acids.
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ionization (EI). Characteristic for TBDMS derivatized amino acids were ion fragments at m-

57, m-85 and m-159, where 'm' denotes the molecular weight of the derivatized amino acid.

4.3.3 Integration of mass chromatograms

To obtain accurate mass isotopomer distributions (MIDs) from raw GC/MS data, mass

chromatograms have to be integrated over the full peak range of the corresponding amino

acid. Mass isotopomer ratios obtained at each scan have a much lower signal-to-ratio and

may not reflect the true isotopomer distribution. For example, it is well known that mass

isotopomers may separate on the GC column and elute at slightly different times. This effect

is generally more significant for 2H-labeled compounds than for 13C-labeled compounds. In

either case, the observed mass isotopomer ratios will be different at the beginning and the

end of a metabolite peak. Several software packages allow one to integrate mass

chromatograms and calculate mass isotopomer distributions. However, we found that

different integration algorithms often produced significantly different integrated mass

isotopomer distributions. Here, we will illustrate two potential sources of error due to

incorrect integration. First, it is important that all mass chromatograms of a particular

metabolite are integrated over the same scan range, i.e. time interval. If peak detection

algorithms are applied to each mass chromatogram individually then slightly different

integration bounds may be identified for each ion, resulting in biased integrated intensities.

Furthermore, it is necessary to correct measured intensities for background noise. This

correction should be applied to each mass chromatogram individually, because the level of

background noise may be different at each scanned ion. In our experience, good calibration

of the mass spectrometer reduced the level of background noise, and the use of high

electron multiplier voltages (EMV) increased background noise. To illustrate these effects we

quantified the mass isotopomer distribution of glycine ion fragment at m/z 246-250 in the

unlabeled biomass sample. Three integration methods were used. In Method 1, fixed

integration bounds were used for each mass chromatogram and baseline correction was

applied. In Method 2, each mass chromatogram was integrated independently, which could

result in slightly different integration bounds for each mass chromatogram. Correction for

baseline was applied. In Method 3, fixed integration bounds were used for each mass
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chromatogram, but no baseline correction was applied. Figure 4-3 clearly shows the

differences between the integration methods. The shaded areas in Figure 4-3 correspond to

the integrated intensities. Fractional abundances were obtained from the integrated

intensities by dividing the integrated intensity by the sum of all intensities. In Table 4-2 we

compare the calculated MID for glycine-246 to the theoretical MID. Overall, the first

integration method produced mass isotopomer abundances that corresponded best with

theoretical abundances, i.e. less than 0.1 mol% deviation. The second method overestimated

M+0 abundance slightly (+0.4 mol0 /o), and underestimated M+1 and M+2 abundances (-0.1

and -0.2 mol%) caused by slightly smaller integration bounds for the M+1 and M+2 mass

chromatograms. The third method, i.e. no baseline correction, produced the largest errors.

The M+0 abundance was underestimated by 2.2 mol%/o and other abundances were

overestimated by 0.3-0.7 mol%. It should be clear that without baseline correction low

abundance isotopomers will always be overestimated, and the most abundant mass

isotopomer will be underestimated. Analysis of other amino acid fragments supported all of

these findings. Taken together, our results indicate that the first integration method is the

most accurate one: using fixed integration bounds for all mass chromatograms and applying

baseline correction. This integration method was used in the remainder of this work.

4.3.4 Concentration dependence of mass isotopomer distributions

We found significant correlation between measured mass isotopomer abundances and the

amount of amino acid that was analyzed. In this study, all amino acid samples were analyzed

35 times at varying concentrations. The observed abundances varied up to 2 mol%

depending on the amount of amino acid analyzed. Figure 4-4 shows the observed mass

isotopomer abundances for glycine fragment at m/z 218 plotted against the total ion counts

for this fragment (i.e. sum of integrated intensities at m/z 218-222). The dashed horizontal

line in Figure 4-4A represents the expected abundances for unlabeled glycine. We found

good agreement between the observed and theoretical abundances for low concentrations of

the sample, however, the M+0 abundance of unlabeled glycine decreased with increasing

glycine concentration and M+1 and M+2 abundances increased. We found a near linear

relationship for this concentration effect. All other fragments of TBDMS derivatized amino
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Figure 4-3: Comparison of three methods for integration of mass chromatograms. Mass

isotopomer distribution of glycine ion fragment at m/z 246 was determined using three

integration methods: (1) fixed integration bounds for all mass chromatograms, and baseline

correction; (2) independent integration of each mass chromatogram, resulting in slightly

different integration bounds, and baseline correction; (3) fixed integration bounds, but no

baseline correction. Shaded areas indicate integrated intensities for each method.
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Table 4-2

Effect of integration method on the accuracy of calculated mass isotopomer distributions.

MID of glycine fragment at m/z 246-250 was determined by integration using three

different integration methods. The calculated isotopomer abundances were compared to

theoretical natural isotope abundances (molar abundances, mol%).

METHOD 1 METHOD 2 METHOD 3

Fixed integration bounds Independent integration Fixed integration bounds

and baseline correction and baseline correction no baseline correction

Ion Fig. 4.3 (1) Fig. 4.2 (2) Fig. 4.2 (3)

m/z Theory Data Error Data Error Data Error

246 75.4 75.4 0.0 75.8 +0.4 73.2 -2.2

247 16.5 16.4 -0.1 16.4 -0.1 16.8 +0.3

248 6.9 7.0 +0.1 6.7 -0.2 7.4 +0.5

249 1.0 1.1 +0.1 1.0 0.0 1.7 +0.7

250 0.2 0.2 0.0 0.1 -0.1 0.9 +0.7
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Figure 4-4: Concentration dependence of mass isotopomer abundances of TBDMS

derivatized glycine. Glycine samples were analyzed 35 times at different concentrations.

Mass isotopomer distributions were obtained by integration of mass chromatograms. Peak

area (plotted on the x-axis) denotes the sum of integrated intensities at m/z 218-222. (A)

Mass isotopomer abundances for unlabeled glycine. The dashed horizontal line represents

the theoretical mass isotopomer abundances; (B) abundances for glycine from 13C-labeled

biomass sample; (C) abundances for [U-13C]glycine standard. Glycine ion fragment at m/z

218 contains only the second carbon atom of glycine.
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acid fragments displayed a similar linear correlation (see Appendix A). Figure 4-4B shows the

concentration dependence for glycine from a 13C-labaled biomass sample, and Figure 4-4C

shows the concentration dependence for [U-13C]glycine standard. In all three samples we

observed a linear relationship between mass isotopomer abundances and metabolite

concentration. We identified the following pattern for this concentration effect: the intensity

of the most abundant mass isotopomers always decreased with increasing concentration,

whereas intensities of the other mass isotopomers increased. Furthermore, the magnitude of

this effect became smaller for less abundant mass isotopomers. Further investigation

revealed that this sample effect could not be explained by nonlinearities of the detector.

When we re-analyzed the samples at increasing electron multiplier voltages (EMV) for the

detector, the ion counts increased up to 10-fold, however, the observed mass isotopomer

distributions did not change significantly (less than 0.3 mol% difference) and the

concentration effect remained. Taken together, these findings indicate that this effect is most

likely caused during ion formation/fragmentation. A similar effect of sample concentration

on the accuracy of GC/MS data was reported for fatty acid methyl esters (Fagerquist et al.

2001; Patterson & Wolfe 1993). To our best knowledge, this is the first time that a sample

size effect is reported for TBDMS derivatized amino acids. After careful analysis of all data

we concluded that mass isotopomer abundances extrapolated to a theoretical zero

concentration (i.e. infinite dilution) correlated best with theoretical abundances. Mass

isotopomer abundances obtained this way deviated less than 0.3 mol% from theoretical

abundances for all accepted amino acid ion fragments (see section 4.3.6). We found that

extrapolation produced more accurate and precise MIDs than could be obtained solely from

diluted samples. This was caused by the low signal-to-noise ratio at low concentrations, i.e.

the standard deviation of measurements was as high as 0.6 mol% for diluted samples

compared to <0.2 mol% for samples at high concentrations. In addition, we observed a

slight underestimation of low abundance mass isotopomers in the diluted samples, again

caused by low signal-to-noise ratio. Therefore, we strongly recommend that MIDs are always

obtained using the extrapolation technique. The main disadvantage of using this method is

that it requires multiple injections of samples at different concentrations, which is time

consuming. However, MIDs obtained this way are both very accurate (<0.3 mol% error) and

very precise (SD <0.2 mol%), which is required for detailed analysis of metabolic fluxes. In
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the remainder of this work mass isotopomer abundances of TBDMS derivatized amino acids

were always obtained using the extrapolation technique.

4.3.5 Validating identity of ion fragments using DC-standards

TBDMS derivatized amino acids have characteristic fragmentation patterns resulting from

electron impact ionization (EI). The most common ion fragment (m-57) results from the

loss of a tert-butyl group (C4H-I9) of the derivatizing agent. This fragment contains the

complete carbon backbone of the amino acid. Ion fragments at m-85 and m-159 are formed

from cleavage of tert-butyl-CO (C5H90) and C0 2-TBDMS (C7H150 2Si) groups, respectively,

where the carboxyl group of the amino acid is lost. Another common ion fragment is found

at m/z 302. This fragment is formed by cleavage of the carbon bond between ac- and 3-

carbon atoms, i.e. this fragment retains the first two carbon atoms of the amino acid. To

validate the assumed identity of ion fragments of TBDMS derivatized amino acids we

measured mass spectra for unlabeled and [U-13C]labeled amino acids. For example, consider

the mass spectrum of unlabeled and [U- 13C]alanine shown in Figure 4-5. Ala-232 (m-85) ion

fragment in unlabeled alanine corresponded to Ala-234 in [U- 13C]alanine, which was

consistent with cleavage of the carboxyl group of alanine. Ala-260 (m-47) ion fragment in

unlabeled alanine corresponded to Ala-263 in [U- 13C]alanine, which was in agreement with

cleavage of just the tert-butyl group of the derivatizing agent. However, Ala-302 in unlabeled

alanine corresponded to Ala-305 in [U-13C]alanine, which was not in agreement with the

cleavage of the bond between a- and 3-carbon atoms. This fragment clearly contained all

three carbon atoms of alanine, and must have been formed by an alternative fragmentation

where the methyl group of the derivatizing agent was cleaved. This example clearly illustrates

the importance of validating the assumed identity of fragments using 13C-labeled standards

to avoid mistakes in the interpretation of mass isotopomer data for metabolic flux analysis.

In Appendix A we show the mass spectra for all TBDMS derivatized unlabeled and [U-

13C]labeled amino acids.
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Figure 4-5: Electron ionization mass spectra of TBDMS derivatized alanine. Top spectrum

was obtained for unlabeled alanine, and the bottom spectrum for [U- 13C]alanine standard

(99+ At% 13C).
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We identified three amino acids where the ion at m/z 302 was formed from multiple

fragmentations, i.e. Val-302, Leu-302 and Ile-302. Val-302 in unlabeled valine corresponded

to two peaks in [U-13C]alanine mass spectrum, i.e. Ala-304 and Ala-306. Two ion fragments

of valine were clearly overlapping here, one fragment containing the first two carbon atoms

of valine (m/z 302->304) and a second fragment containing four of the five carbon atoms

of valine (m/z 302->306), i.e. either C1,2,3,4 or C1,2,3,5. Leu-302 and Ile-302 ion fragments

corresponded to two peaks in [U-13qlabeled amino acid standards, i.e. at m/z 304 and 308.

The peak m/z 304 resulted from a fragmentation in which the first two carbon atoms of the

respective amino acid were retained (i.e. cleavage of the bond between ax- and 0-carbon

atom), whereas the peak at m/z 308 resulted from the loss of the tert-butyl group of the

derivatizing agent, i.e. all carbon atoms of the amino acid were retained. Data from these

fragments cannot be used for flux analysis, because we have no means of deconvoluting

individual mass isotopomer distributions from the observed mass spectrum.

Fragments of aspartate and glutamate required additional validation with specifically labeled

standards. Aspartate and glutamate each have two carboxyl groups, and it was not known a

priori which of the two carboxyl groups was cleaved in the m-159 (Asp-316 and Glu-330)

and m-85 (Asp-390 and Glu-404) fragmentations. Therefore, we measured mass spectra for

[4-13C]aspartic acid and [5- 13 C]glutamic acid. For [4- 13C]aspartic acid we observed peaks at

m/z 317 and 391, and no peaks were observed at m/z 316 and 390. Thus, we concluded that

only the first carboxyl group of aspartate was cleaved in these fragmentations. For [5-

13C]glutamic acid we observed peaks at m/z 331 and 405, and no peaks were observed at

m/z 330 and 404. Thus, only the first carboxyl group of glutamate was cleaved.

4.3.6 Validating accuracy of mass isotopomer distributions

Next, we determined the accuracy of measured mass isotopomer distributions for all

accepted amino acid ion fragments by comparing the observed mass isotopomer

distributions from unlabeled and [U-13C]labeled amino acids to theoretical distributions.

Table 4-3 compares the measured and theoretical abundances for alanine ion fragment at

m/z 260. Abundances in Table 4-3 were normalized with respect to the most abundant ion.
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Table 4-3

Comparison of measured and theoretical mass isotopomer distribution of TBDMS

derivatized alanine. Shown are the measured and theoretical mass isotopomer abundances

for unlabeled and [U- 13C]alanine (99+ At%/o 13C), for the alanine ion fragment at m/z 260.

Abundances were normalized to the most abundant ion.

Ala-260 [U- 13C]-Ala
Formula : Cn H2602NSi2
Exact mass : 260.150

C-atoms : 1-2-3

m/z theory data difference

259 0.0 0.0 0.0

260 100.0 100.0 0.0

261 23.0 23.2 +0.2

262 9.4 9.4 0.0

263 1.4 1.4 0.0
264 0.3 0.2 -0.1

265 0.0 0.0 0.0

266 0.0 0.0 0.0

267 0.0 0.0 0.0

268 0.0 0.0 0.0

m/z theory data difference

259 0.0 0.0 0.0

260 0.0 0.3 +0.3

261 0.0 0.4 +0.4

262 3.1 3.3 +0.2

263 100.0 100.0 0.0
264 1.9.9 20.5 +0.6
265 8.7 9.0 +0.3

266 1.1 1.2 +0.1

267 0.2 0.1 -0.1

268 0.0 0.0 0.0
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We found very good agreement for the Ala-260 fragment. The maximum difference between

measured and theoretical abundances was less than 0.2 mol%. As expected, we observed

larger differences for [U-13C]alanine standard, which was caused mainly by incomplete 13C-

labeling (99 At%/o 13C-labeling according to manufacturers' specifications). Taking into

account potentially incomplete labeling of [U- 13C]alanine, the observed agreement for [U-

13C]labeled alanine was acceptable. In Appendix A we show tables for all 47 amino acid

fragments that were analyzed in detail where we compare measured and theoretical

distributions. For our purposes, amino acid fragments for which the observed abundances

deviated more than 0.5 mol% from theoretical abundances (for unlabeled amino acids) were

considered inaccurate. The following fragments were rejected: for Leu-200 M+O was too

high (+0.9 mol%), for Asp-316 M+3 was too high (+0.7 mol%), and for Glu-404 M+0 was

too low (-0.6 mol0 /o). In general, we did not observe M-1 peaks for most amino acid

fragments (<0.1 mol%), indicating that hydrogen abstraction was not a problem in our

GC/MS analysis. Only two fragments displayed significant M-1 peaks: for Glu-358 M-1 was

1.8% of M+O, and for Lys-431 M-1 was 1.7% of M+0. Proline fragments were omitted from

further analysis because proline co-eluted with other compounds that contributed to the

measured intensities resulting in inaccurate mass isotopomer abundances. Lys-329 and Tyr-

364 were omitted due to low signal-to-noise ratio. Finally, we could not validate the identity

of the following fragments: Ser-230, Thr-417, Met-244, Asp-244, Asp-258, and Glu-272.

Taken together, of the 47 amino acid fragments that were analyzed in detail, 29 fragments

satisfied our strict criteria, i.e. they had acceptable accuracy (<0.3 mol% error for 28 of the

29 fragments) and acceptable precision (<0.2 mol% SD). The 29 accepted fragments provide

110 independent constraints for carbon-13 flux analysis. Tables 4-4 and 4-5 summarize the

results from this extensive study. For the 29 accepted amino acid fragments, Table 4-4

shows the recommended mass range for measuring intensities, the identity of retained

carbon atoms, the specific fragmentation mechanism, the maximum observed error between

theoretical and measured abundances, and the maximum observed measurement precision.

For the 18 rejected amino acid fragments, Table 4-5 shows the scanned mass range, the

identity of the retained carbon atoms (if known), the main reason for rejection, and any

alternative ion fragments that may be used to obtain the same isotopomer information.
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Table 4-4

Overview of accepted amino acid fragments. TBDMS derivatized amino acids were analyzed

by electron impact GC/MS. Using 13C-labeled standards we validated the identity of all

fragments. Measured mass isotopomer distributions were then analyzed for accuracy and

precision.

Max. deviation Precision of

Amino Mass Amino acid from theoretical measurements

acid range carbon atoms Fragmentation abundances (mol%) (mol%)

Ala 232 - 238 2-3 M - CsH90 0.1 0.1
260 - 267 1-2-3 M- C4 H9  0.1 0.1

Gly 218 - 223 2 M - C5H90 0.1 0.1
246 - 252 1-2 M - C4H9  0.1 0.1

Val 260 - 268 2-3-4-5 M - C5H90 0.3 0.1
288 - 297 1-2-3-4-5 M - C4 H9  0.1 0.1

Leu 274 - 283 2-3-4-5-6 M - C5H9s0 0.1 0.1

Ile 200 - 208 2-3-4-5-6 M - C7H1sO 2Si 0.2 0.1
274 - 283 2-3-4-5-6 M - C5H 90 0.1 0.1

Ser 288 - 294 2-3 M - C7H15O2Si 0.1 0.1
302 - 308 1-2 M - C7H 17OSi 0.2 0.2

362 - 369 2-3 M - C5H90 0.3 0.2

390 - 398 1-2-3 M - C4H9  0.5 0.2

Thr 376 - 382 2-3-4 M - C5H90 0.3 0.2

404 - 413 1-2-3-4 M - C4H9  0.3 0.2

Met 218 - 226 2-3-4-5 M - C7H1502 Si 0.2 0.1
292 - 298 2-3-4-5 M - C5H 90 0.2 0.2

320 - 327 1-2-3-4-5 M - C4H 9  0.2 0.2

Phe 234 - 243 2-3-4-5-6-7-8-9 M - C7H 1502Si 0.3 0.1

302 - 307 1-2 M - C7H7 0.3 0.2

308 - 316 2-3-4-5-6-7-8-9 M - C5H90 0.1 0.1

336 - 345 1-2-3-4-5-6-7-8-9 M - C4H9  0.1 0.1

Asp 302 - 308 1-2 M - C8H1 70 2Si 0.1 0.1

376 - 382 1-2 M - C6H1 10 0.3 0.2

390 - 398 2-3-4 M - C5H90 0.3 0.1
418 - 427 1-2-3-4 M - C4H9  0.3 0.1

Glu 330 - 336 2-3-4-5 M - C7H1502Si 0.1 0.1
432 - 442 1-2-3-4-5 M - C4H9  0.1 0.1

Tvr 302 - 305 1-2 M - C13H210Si 0.3 0.1
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Table 4-5

Overview of rejected amino acid fragments. TBDMS derivatized amino acids were analyzed

by electron impact GC/MS. Measured mass isotopomer distributions were analyzed for

accuracy and precision. The following 18 amino acid fragments failed to satisfy our criteria

for accuracy and precision.

Amino Mass At

acid range ca

Val 302 - 308 1-;

Leu 200 - 208 2-.

Leu 302 - 312 1-:

Ile 302 - 312 1-:

Pro 258 - 266 2-.

Pro 286 - 295 1-;

Ser 230 - 237 un

Thr 417 -424 un

Met 244 -250 ur

Asp 244 - 249 ur

Asp 258 - 266 ur

Asp 316 - 323 2-.

Glu 272 - 280 ur

Glu 358 - 367 1-.

Glu 404 -408 2-.

Lys 329 - 336 2-.

Lys 431 - 441 1-

Tyr 364 - 375 2-

nino acid

rbon atoms

2 and 1-2-3-4/5

3-4-5-6

2 and 1-2-3-4-5-6

2 and 1-2-3-4-5-6

3-4-5

2-3-4-5

Lknown

Lknown

Lknown

Lknown

iknown

3-4

iknown

2-3-4-5

3-4-5

3-4-5-6

2-3-4-5-6

3-4-5-6-7-8

Reason for rejection

Overlapping fragments

Inaccurate. M+2 too high (+0.9 mol%)

Overlapping fragments

Overlapping fragments

Co-eluting with other compounds

Co-eluting with other compounds

Unknown fragmentation

Inaccurate. M+0 too low (-4.0 mol%)

Unknown fragmentation

Unknown fragmentation

Inaccurate. M-1 too high (4.4 % of M+0)

Inaccurate. M+3 too high (+0.7 mol%)

Unknown fragmentation

Inaccurate. M-1 too high (1.8 % of M+0)

Inaccurate. M+0 too low (-0.6 mol%)

Low signal-to-noise ratio

Inaccurate. M-1 too high (1.7 % of M+0)

Low signal-to-noise ratio

- 151 -

Alternative

fragment

n/a

Leu-274

n/a

n/a

Glu-330

Glu-432

unknown

unknown

unknown

unknown

unknown

Asp-390

unknown

Glu-432

Glu-330

none

none

Phe-308
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Chapter 5

GC/MS analysis of glucose

5.1 Introduction

In the pathway of gluconeogenesis labeled hydrogen atoms are incorporated into glucose

from medium containing deuterated water. The amount of label incorporated at each carbon

position depends on the deuterium enrichment in the medium, the relative activity of

gluconeogenesis (GNG) and glycogenolysis (GL), and the extent of equilibration of

reactions in the gluconeogenesis pathway, i.e. phosphoglucose isomerase (PGI) and triose

phosphate isomerase (TPI). It has been suggested that the relative contribution of GNG to

hepatic glucose production (HGP) can be determined from the ratio of deuterium labeling

on C5 vs. C2 of glucose, and that deuterium labeling on C6 vs. C2 corresponds to the

contribution of PEP to HGP. Assessment of positional isomers of glucose can be

accomplished either by NMR or by GC/MS methods. The NMR technique requires

expensive equipment and a fairly large amount of sample. In contrast, GC/MS is a rapid and

more sensitive technique. Electron impact (EI) or chemical ionization (CI) of glucose

derivatives generates ion fragments containing different carbon and hydrogen atoms of the

glucose molecule resulting from carbon bond cleavage at different positions. Mass

isotopomer analysis of ion fragments allows determination of 2H, or 13C-labeling at each

position in the glucose molecule. Guo et al. (1992) presented a GC/MS method for

quantitative assessment of the 2H-labeling pattern of glucose from measurements of eight

selected ion fragments obtained by two glucose derivatization methods. The aldonitrile

pentaacetate derivative of glucose yielded ion fragments at m/z 328, 242, 217, 212, 187, and

145; and the pentaacetate derivative of glucose yielded ion fragments at m/z 331 and 169.
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The authors derived expressions to calculate the enrichment of positional isomers of

glucose. However, the proposed method required the use of calibration curves and

correction factors to account for artifacts in the isotopomer data. For example, significant

deuterium-hydrogen exchange was observed for m/z 187 fragment. The authors also

reported isotope discrimination for m/z 169 and 328 fragments in samples containing 2H-

labeled glucose diluted with unlabeled glucose. Furthermore, the mass spectrum of m/z 145

fragment contained a constant contaminating ion amounting to 30 % of the total ion counts.

The authors proposed to correct for this by dividing the observed enrichment at m/z 145 by

0.7 to obtain the 'true' enrichment. However, even after all these corrections the estimated
2H-enrichments of glucose deviated up to 25% from the expected enrichments for mixtures

of glucose standard. Desage et al. (1989) presented a procedure to determine the 13C-labeling

pattern of glucose based on 6 methyloxime trimethylsilyl ion fragments of glucose at m/z

103, 160, 205, 217, 262, 319, and the assumption that glucose molecules are labeled

symmetrically. Beylot et al. (1993) provided an improved method for analysis of 13C-labeling

of glucose based on 21 selected ion fragments from four glucose derivatives, i.e. m/z 314,

242, 225, 217, 212, 200, and 187 from aldonitrile pentaacetate; m/z 319, 217, 205, 160, 117,

and 103 from methyloxime trimethylsilyl; m/z 297, 210, 181, and 168 from

bisbuthylboronate acetate; and m/z 149, 101, 88, and 75 from permethyl glucose. However,

both methods relied on ion fragments that were previously identified as inaccurate. Here, we

present an improved protocol for measuring the labeling of glucose by GC/MS. In this

study, we critically evaluated the accuracy and precision of more than 200 ion fragments

from 18 glucose derivatives. In addition to four widely used derivatization methods we

synthesized 14 novel derivatives of glucose that have not been reported previously. We

tested all ion fragments for accuracy and validated the assumed fragmentation patterns using

13C- and 2H-labeled standards, and by carefully prepared mixtures of glucose standards. The

accuracy was assessed by comparing the observed mass isotopomer distributions to

theoretical abundances for glucose standards. The vast majority of fragments that were

analyzed were inaccurate, including a number of the most widely used ion fragments. From

the 200+ analyzed ion fragments, we selected six most accurate ion fragments that provided

sufficient information for quantitative assessment of deuterium labeling of glucose. The

selected fragments were derived from three novel glucose derivatives, i.e. aldonitrile
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pentapropionate, di-O-isopropylidene propionate, and methyloxime pentapropionate. The

main result of this work is a detailed procedure for accurate assessment of deuterium

labeling in glucose for the entire range of enrichments (0 to 100 mol% enrichment), with an

accuracy of 0.3 mol0/o and precision of 0.2 mol%, or better.

5.2 Materials and methods

5.2.1 Materials

[1- 2H]glucose (97 At% 2H), [2- 2 H]glucose (97 At% 2H), and [6,6-2H2]glucose (98 At% 2H)

were purchased from IsoTec Inc. (Miamisburg, OH). [3-2H]glucose (98 At% 2H), [4-

2H]glucose (94 At%/o 2H), [5- 2H]glucose (98 At%/0 2H) were purchased from Omicron

Biochemicals (South Bend, IN). [U-13C6]glucose (99 At% 13C) and [1,2,3,4,5,6,6- 2H7]glucose

(98 At%/o 2H1-) were purchased from Cambridge Isotope Laboratories Inc. (Andover, MA).

Stock solutions of unlabeled and specifically labeled glucose standards were prepared at 10

mM in distilled water. For each derivatization procedure 50 tL of glucose standard was

evaporated to dryness under airflow. Tissue culture media for hepatocyte cultures were

obtained from Sigma (St. Louis, MO).

5.2.2 Hepatocyte isolation and cell culture

The procedure for hepatocyte isolation and cell culture was described in detail elsewhere

(Chapter 7). Briefly, hepatocytes were isolated from C57BL/6 mice fed ad libitum by

modified two step-collagenase perfusion as described by Seglen (1976). Purified cells were

suspended in Hepatocyte Attachment Medium (HAM) and seeded in 6-well plates (1.3x10 6

cells/well) for 90 minutes at 37 0C. Attached cells were washed once and cultured overnight

in Hepatocyte Growth Medium (HGM). After 18 hr incubation at 37 0C and 5% CO 2 the

attached hepatocytes were washed once and cultured in glucose-free HGM enriched with

gluconeogenic carbon sources, i.e. 1mM glycerol, 10 mM lactate, 1 mM pyruvate, 5 mM

glutamine, and 2 mM acetate. The cells were incubated for 2, 5, or 8 hr at 370C and 5% CO 2
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in medium containing 2H 20 at 10% enrichment. At the end of the incubation period

medium samples were collected and stored at -800 C prior to analysis.

5.2.3 Preparation of experimental samples for glucose derivatization

Deuterium labeling of glucose from experimental samples was determined by GC/MS

analysis of glucose aldonitrile pentapropionate, methyloxime pentapropionate and di-O-

isopropylidene propionate derivatives. For each derivatization procedure, 100 iL of medium

sample (-1 mM glucose) was deproteinized by addition of 300 pL of cold acetone, followed

by vortexing vigorously for 30 sec, and centrifugation at 2000xg for 1 min. The supernatant

was evaporated to dryness under airflow and the residue derivatized as described next.

5.2.4 GC/MS analysis

Gas Chromatography/Mass Spectrometry (GC/MS) analysis was performed using HP 5890

Series II gas chromatograph (GC) equipped with a DB-XLB (30 m x 0.25 mm i.d. x 0.25

ipm) capillary column, interfaced with a HP 5971 mass selective detector (MISD) operating

under ionization by electron impact (EI) at 70 eV. The mass spectrometer was calibrated

using the 'Max Sensitivity Autotune' setting. The injection volume was 1 [LL and samples

were injected in purged splitless mode. Helium flow was maintained at 0.88 mL/min via

electronic pressure control. The injection port temperature was 2500 C. The temperature of

the column was started at 800 C for 1 min, increased to 2800 C at 200 C/min, and held for 4

min. The interface temperature was maintained at 3000 C. Mass spectra were recorded over

the range of m/z 100-500 at a rate of 2.0 scans/sec. Measured intensities were corrected for

the contribution of background noise (baseline correction), and mass isotopomer

distributions were obtained by integration. Mass isotopomer values for each fragment were

expressed as fractional abundances, i.e. for each fragment the sum of all mass isotopomers

equals one. Reported mass isotopomer abundances are averaged values from at least four

injections per sample.
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5.2.5 Preparation of glucose esters

This procedure is based on that introduced by Biemann et al. (1963). Evaporated glucose

samples were dissolved in 50 p.L pyridine, followed by addition of 100 jiL of acetic,

propionic, or butanoic anhydride to obtain the respective acetate esters, or 70 g[L of N-

methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) + 1% trimethylchlorosilane (TMCS) to

obtain the trimethylsilyl (TMS) ether. After 30 min incubation at 600 C, samples were

evaporated to dryness, dissolved in 100 PL of ethyl acetate and transferred to injection vials

for GC/MS analysis.

5.2.6 Preparation of aldonitrile esters of glucose

This procedure is based on that introduced by Szafranek et al. (1974). Evaporated glucose

samples were dissolved in 50 jtL of hydroxylamine hydrochloride solution (20 mg/mL in

pyridine), heated at 900 C for 60 min, followed by addition of 100 piL of acetic, propionic, or

butanoic anhydride to obtain the respective aldonitrile acetate esters, or 70 [iL of MSTFA +

1% TMCS to obtain the aldonitrile TMS ether. After 30 min incubation at 600 C, samples

were evaporated to dryness, dissolved in 100 liL of ethyl acetate and transferred to injection

vials for GC/MS analysis.

5.2.7 Preparation of methyloxime esters of glucose

The basic procedure for preparing methyloxime esters of glucose is based on that introduced

by Laine and Sweeley (1971), and is essentially identical to the aldonitrile method, except that

methylhydroxylamine hydrochloride solution (20 mg/mL in pyridine) is used in the first

reaction instead of hydroxylamine hydrochloride solution.

5.2.8 Preparation of di-O-isopropylidene esters of glucose

This procedure is based on that presented by Hachey et al. (1999). Glucose samples were

transferred to a 10 mL screw-cap culture tube and evaporated to dryness. 500 ýiL of 0.38 M

sulfuric acid in acetone was added, and samples were incubated at room temperature for 60
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min. 400 jiL of 0.44 M sodium carbonate was added to neutralize the reaction, followed by

addition of 1 mL of saturated sodium chloride. The di-O-isopropylidene derivatives were

extracted by partitioning with 1 mL of ethyl acetate. The upper, organic layer was evaporated

to dryness. 100 iL of acetic, propionic, or butanoic anhydride was added to obtain the

respective acetate esters, or 70 41L of MSTFA + 1% TMCS to obtain the respective TMS

ether. After 30 min incubation at 600 C, samples were evaporated to dryness, dissolved in 100

ptL of ethyl acetate and transferred to injection vials for GC/MS analysis.

5.2.9 Preparation of permethyl and perethyl derivatives of glucose

This procedure is based on that introduced by Ciucanu and Kerek (1984) and recently

updated by Ciucanu and Caostello (2003). A cloudy suspension of NaOH powder in DMSO

was prepared (0.25 g/mL), vortexed vigorously, and 100 p.L of the suspension was added to

the glucose samples, followed by incubation at room temperature for 3 min. 75 pL of

iodomethane, or iodoethane was then added to the samples, and the samples were incubated

at room temperature for 6 min to obtain the respective permethyl and perethyl derivatives. 1

mL of chloroform and 2 mL of distilled water were added, and the samples were vortexed

vigorously. The top, aqueous layer was removed and the organic layer washed at least three

times with 2 mL of distilled water, or until the aqueous layer was no longer basic. The

organic layer was then evaporated to dryness, dissolved in 100 4tL of ethyl acetate and

transferred to injection vials for GC/MS analysis.

5.2.10 Data analysis

The amount of deuterium enrichment at each carbon position was determined using a least-

squares approach. First, we constructed a simulation model that predicts the mass

isotopomer distributions of selected ion fragments for a given isotopomer distribution of

glucose hydrogen atoms. Isotopomers are isomers of a metabolite that differ only in the

labeling state of their individual atoms, i.e. 2H vs. IH in deuterium labeling studies. For the

seven stable (i.e. carbon bound) hydrogen atoms of glucose that may be in one of two

(labeled or unlabeled) states, we have 128 (=27 ) possible isotopomers. Our simulation model
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predicts mass isotopomer abundances of glucose fragments taking into account natural

isotope enrichments of carbon, oxygen, hydrogen, nitrogen and silicon atoms.

x = [mid 301, midi45, mid 173, mid 259, mid2 84, mid 370 ] = f(IDV) (5.1)

In Eq. 5.1, midmiz denotes the simulated mass isotopomer distributions of a particular ion

fragment, and IDV is the isotopomer distribution vector. To determine IDV from

experimental data we solve the following least-squares regression problem:

min = (X - Xobs) . (X - obs)T (5.3)

s.t. x = f(IDV)

0 • IDVi < 1

Z IDVi = 1

Where the objective function (D is the sum of squared residuals, x is the vector of simulated

mass isotopomer abundances, and Xobs is the vector measured (i.e. uncorrected) mass

isotopomer abundances. From the estimated IDV, we then calculated positional deuterium

enrichments via a linear transformation:

[ D 1, D2, D3, D4, D 5, D66 ] = T IDV (5.2)

Where T is a constant transformation matrix. We identify the deuterium enrichment of C-H

in carbon 1 as D1, the enrichment in carbon 2 as D 2, and so forth. Since there are two

hydrogen atoms at carbon 6 that cannot be distinguished, we only determined the average

enrichment at carbon 6, i.e. D6 = D66/2.
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5.3 Results

5.3.1 Synthesis and evaluation of glucose derivates

We synthesized 18 glucose derivatives and analyzed them in detail by electron impact

GC/MS. We created four families of related glucose derivatives based on four commonly

used derivatization methods, i.e. aldonitrile pentaacetate, pentaacetate, methyloxime

trimethylsilyl, and permethyl glucose. Figure 5-1 illustrates the basic two step procedure for

generating all glucose derivatives. In the first step, we derivatized the carbonyl group at C1

of glucose to produce aldonitrile and methyloxime derivatives via reaction with

methylhydroxylamine and hydroxylamine, respectively. Alternatively we produced the di-O-

isopropylidene derivate via reaction with acetone. In the second step, we derivatized the

hydroxyl groups of glucose with acetic, propionic, or butanoic anhydride to obtain the

respective esters, or with iodomethane, iodoethane, or N-methyl-N-

trimethylsilyltrifluoroacetamide to obtain the permethyl, perethyl, and trimethylsilyl ethers of

glucose, respectively. We successfully generated 18 of the 24 possible glucose derivatives

based on this two step procedure. We obtained electron impact mass spectra for all 18

glucose derivatives for unlabeled and specifically labeled glucose standards. The 18 mass

spectra for unlabeled glucose are shown in Appendix B. For each glucose derivative we

identified the most abundant ion fragments (shown in Table 5-1), and quantified the mass

isotopomer distributions. To assign structural positions of glucose carbon and hydrogen

atoms to each ion fragment, mass spectra of specifically labeled glucose standards were

analyzed: [1- 2H]-, [2- 2H]-, [3- 2H]-, [4- 2H]-, [5- 2H]-, [6,6- 2H2]-, [1,2,3,4,5,6,6- 2H7]-, and [U-

13C6]glucose. For example, the mass spectrum of aldonitrile pentapropionate glucose was

characterized by fragments arising from bond cleavage at C5-C6 (m/z 240 and 370), C4-C5

(m/z 173 and 284), C3-C4 (m/z 259), and C2-C3 (m/z 345) positions. These assignments

were apparent from increases in m/z for specifically labeled glucose standards. Based on

these assignments we postulated chemical formulae for all ion fragments and calculated

theoretical mass isotopomer distributions. We then compared the observed mass isotopomer

abundances for unlabeled and singly labeled glucose standards to theoretical abundances.

Fragments with abundances deviating more than 0.4 mrol% were considered inaccurate.
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Figure 5-1: Schematic of the two step procedure for generating glucose derivatives. In the

first reaction step the carbonyl group at C1 of glucose is derivatized, and in the second

reaction step hydroxyl groups of glucose are derivatized. Based on this procedure 18

different glucose derivatives were successfully synthesized and analyzed by GC/MS.
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Table 5-1

Overview of 18 derivatives of glucose that were synthesized and analyzed by electron impact

GC/MS. For each derivative, the most abundant ion fragments (m/z) were identified and

mass isotopomer distributions were analyzed for accuracy. The six most accurate ion

fragments are shown in bold and underlined.

1St reaction step -- none Isopropylidene Aldonitrile Methyloxime

J, 2nd reaction step

Acetate 98, 103, 109, 115, 109, 113, 127, 143, 103, 115, 127, 141, 85,89, 115, 127,

140,145,157,169, 169, 185,201,229, 145,157,187,212, 131,145,155,173,

200, 242, 331 287 217, 225, 242, 272, 187, 197, 215, 226,

314 257,286,289,331

Propionate 109, 129, 131,154, 109, 113, 127,157, 129,131,141,155, 89,112, 141,145,

183,185,187,210, 1.83,215, 243, 301 173, 185, 187,197, 155,198,201,215,

227, 284, 387 215, 240, 253, 259, 254, 328, 345, 384,

284, 345, 370, 384 387,416

Butanoate 98, 110,127,143, 109,113,127,171, 112,143,155,159, 89,112, 124, 138,

159, 168, 186, 198, 197,229,257,315 169, 193, 201, 211, 155, 159,212,229,

213, 229, 255, 302, 213, 229, 243, 268, 243, 282, 370, 401,

326,444 281,301,326,370, 443

426, 440

Trimethylsilyl 103,117,129,133, 129,131,143,145, 103,117,129,133, 103, 117,129,133,

147,191,204,217, 173, 185,201,231, 147,157,189,191, 147,160,189,205,205,217,229,291,
305 259,317 319 217,229,291,319,

364

Permethyl* 75, 88, 101, 149 n/a n/a n/a

Perethyl* 103,116,129,191. n/a n/a n/a

* 'n/a' indicates that we were unable to synthesize this particular derivative of glucose.
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H
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145 H-C-OH
HO-C-H

259 H- C - OH

284

1731 H- C-OH

370

I

HO- C-H
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Figure 5-2: Overview of positional information obtained from the selected glucose

fragments. Glucose carbon and hydrogen positions included in the selected ion fragments

are: m/z 173 (C5-6, H5-6), m/z 259 (C4-6, H4-6), m/z 284 (C1-4, H2-4), and m/z 370 (Cl-s, H2-5)

all derived aldonitrile pentapropionate glucose; m/z 301 (C1-6, H1-6) derived from di-O-

isopropylidene propionate glucose; and m/z 145 (C1-2, H1-2) derived from methyloxime

pentapropionate glucose.
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Figure 5-3: Electron impact mass spectra of the selected glucose derivatives. The three

panels show the electron impact mass spectra of aldonitrile pentapropionate (top), di-O-

isopropylidene propionate (middle), and methyloxime pentapropionate glucose (bottom).
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Table 5-2

Evaluation of accuracy of selected glucose fragments. We compared measured and

theoretical mass isotopomer abundances of the selected ion fragments at m/z 301 (di-O-

isopropylidene propionate), m/z 145 (methyloxime pentapropionate), and m/z 173, 259,

284, and 370 (aldonitrile pentapropionate) for unlabeled glucose. Data shown are mean ± SD

(n=6) (molar percentages, mol%).

m/z C-H
(formula) positions M+0 M+1 M+2 M+3 M+4

301 1,2,3,4,5,6,6 measured 84.1 ± 0.15 13.5 ± 0.11 2.2 ± 0.10 0.2 ± 0.08 0.0 ± 0.01

(C14H210 7) theory 84.2 13.4 2.2 0.2 0.0

145 1,2 measured 92.3 ± 0.05 6.8 ± 0.03 0.8 ± 0.01 0.1 ± 0.01 0.0 ± 0.00

(C6H1103N) theory 92.5 6.7 0.8 0.0 0.0

173 5,6,6 measured 90.6 ± 0.02 8.2 ± 0.02 1.1 ± 0.02 0.1 ± 0.01 0.0 ± 0.00

(CSH 130 4) theory 90.6 8.3 1.1 0.1 0.0

259 4,5,6,6 measured 86.2 ± 0.09 11.7 ± 0.07 1.8 ± 0.02 0.2 ± 0.01 0.0 ± 0.00

(C12H190 6) theory 86.2 11.8 1.8 0.2 0.0

284 2,3,4 measured 85.2 ± 0.10 12.7 ± 0.05 1.9 ± 0.03 0.2 ± 0.04 0.0 ± 0.02

(C13Ht 80 6N) theory 85.0 12.8 1.9 0.2 0.0

370 2,3,4,5 measured 81.1 ± 0.02 15.7 ± 0.05 2.9 ± 0.01 0.3 ± 0.03 0.0 ± 0.01

(C17H24 08N) theory 80.9 15.9 2.8 0.4 0.0

Data shown are the observed mass isotopomer abundances obtained from mass chromatogram

integration, i.e. not corrected for natural isotope enrichments.
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We evaluated over two hundred ion fragments. From these fragments, we then selected the

six most accurate fragments that provided sufficient information for quantitative assessment

of deuterium labeling at all carbon positions of glucose. These selected fragments were

derived from three novel glucose derivatives: aldonitrile pentapropionate ion fragments at

m/z 173 (C5-6, H 5-6), m/z 259 (C4-6, H4-6), m/z 284 (C1-4, H2-4), and m/z 370 (C1_s, H2-5); di-

O-isopropylidene propionate ion fragment at m/z 301 (C1-6, HI-6); and methyloxime

pentapropionate ion fragment at m/z 145 (CI-2, H 1-2). Figure 5-2 shows schematically the

positional information that is obtained from these fragments. The electron impact mass

spectra of the three glucose derivatives are shown in Figure 5-3. In Table 5-2 we compare

the measured and theoretical mass isotopomer distributions for the selected ion fragments.

As expected, we observed very good agreement between the theoretical and observed

abundances, i.e. the maximum deviation was 0.2 mol%, and the measurement precision

better than 0.15 mol% (i.e. standard deviation of 6 repeated injections).

5.3.2 Determining deuterium labeling of glucose standards

To assess the accuracy of our method for determining positional enrichments of singly

labeled glucose, we obtained mass spectra for specifically 2H-labeled glucose standards, i.e.

[1- 2H]-, [2-2H]-, [3- 2H]-, [4- 2H]-, [5- 2H]-, and [6,6-2H2]-glucose, and quantified the mass

isotopomer distributions for the selected ion fragments. Table 5-3 shows the observed mass

isotopomer distributions (data not corrected for natural isotope enrichments). The

deuterium enrichments at the six glucose carbon positions were determined by least-squares

regression as described in the Methods section. Table 5-4 shows the estimated enrichments

at each carbon position for the purchased glucose standards. The estimated values

corresponded well with the expected enrichments based on manufacturers' specifications for

isotopic purity. All singly labeled glucose standards showed slight contaminations at various

carbon positions. The least pure of the glucose standards was [4- 2H]glucose, which was

92.3% labeled at C4 and had significant contaminations at C1 and C2 (2.9 mol% and 1.9

mol% enrichment, respectively), compared to 94 At% 2H-labeling according to

manufacturers' specifications. The most pure of the glucose standards was [5-2H]glucose,

which was 99.8% labeled at C5 and had only a small contamination at C1 (0.8 mol%
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Table 5-3

Mass isotopomer distributions of selected ion fragments from 2H-labeled glucose standards.

Specifically labeled glucose standards were derivatized and analyzed by electron impact

GC/MS. Data shown have not been corrected for natural isotope enrichments.

m/z C-H positions M+0 M+1 M+2 M+3 M+4

-... -.......... ........... [1- 2-- -g --UCOS
301 1,2,3,4,5,6,6 0.0 82.1 15.1 2.5 0.3

145 1,2 0.2 89.4 9.4 1.0 0.1

173 5,6,6 90.6 8.2 1.1 0.1 0.0

259 4,5,6,6 86.5 11.6 1.8 0.2 0.0

284 2,3,4 82.7 14.9 2.2 0.2 0.1

370 2,3,4,5 78.8 17.5 3.3 0.4 0.0

[2- 2 -]glucose

301 1,2,3,4,5,6,6 0.0 83.1 14.3 2.4 0.2

145 1,2 0.8 90.4 7.8 0.9 0.1

173 5,6,6 90.5 8.3 1.1 0.1 0.0

259 4,5,6,6 86.3 11.7 1.9 0.2 0.0

284 2,3,4 0.8 84.6 12.6 1.9 0.2

370 2,3,4,5 0.8 80.7 15.4 2.8 0.4

................................... 3 O.............
301 1,2,3,4,5,6,6 1.3 81.3 14.7 2.4 0.3

145 1,2 90.0 8.9 1.0 0.1 0.0

173 5,6,6 90.5 8.3 1.1 0.1 0.0

259 4,5,6,6 86.3 11.6 1.9 0.2 0.0

284 2,3,4 1.1 83.3 13.3 2.0 0.2

370 2,3,4,5 0.9 79.8 16.1 3.0 0.4

301 1,2,3,4,5,6,6 4.1 80.8 12.7 2.1 0.2

145 1,2 87.5 11.2 1.2 0.1 0.0

173 5,6,6 90.4 8.3 1.1 0.1 0.0

259 4,5,6,6 6.1 81.1 10.9 1.7 0.2

284 2,3,4 5.1 80.9 12.0 1.8 0.2

370 2,3,4,5 4.5 77.5 15.0 2.7 0.3
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Table 5-3 (continued)

Mass isotopomer distributions of selected ion fragments from 2H-labeled glucose standards.

Specifically labeled glucose standards were derivatized and analyzed by electron impact

GC/MS. Data shown have not been corrected for natural isotope enrichments (molar

percentages, mol%).

m/z C-H positions M+0 M+1 M+2 M+3 M+4

[5- 2H]glucose

301 1,2,3,4,5,6,6 0.0 84.1 13.4 2.2 0.2

145 1,2 91.3 7.7 1.0 0.1 0.0

173 5,6,6 0.0 90.6 8.3 1.1 0.1

259 4,5,6,6 0.0 86.4 11.6 1.8 0.2

284 2,3,4 85.0 12.9 1.9 0.2 0.0

370 2,3,4,5 0.0 81.0 15.7 2.9 0.4

[6,6-2H2]glucose

301 1,2,3,4,5,6,6 0.1 2.9 79.3 14.9 2.6

145 1,2 91.3 7.0 1.6 0.2 0.0

173 5,6,6 0.6 1.5 86.2 10.4 1.3

259 4,5,6,6 0.3 2.3 81.8 13.5 2.2

284 2,3,4 84.8 12.8 2.2 0.2 0.0

370 2,3,4,5 78.6 17.5 3.3 0.4 0.2

Data shown are integrated mass isotopomer abundances not corrected for natural isotope

enrichments.
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Table 5-4

Estimated deuterium enrichments of glucose standards. Deuterium enrichments (mol%

enrichment) at the six glucose carbon positions were determined by least-squares regression

of mass isotopomer distributions of selected glucose fragments as described in the Methods

section. Numbers in parentheses denote manufacturers' specifications of isotopic purity.

Glucose standard

[1-2H]- [2-2H]- [3-2H]- [4-2H]- [5-2H]- [6,6-2H2]-

glucose glucose glucose glucose glucose glucose unlabeled

Position (97 At%) (97 At%) (98 At%) (94 At%) (98 At%) (98 At%) glucose

D1  99.7 2.1 1.4 2.9 0.8 0.8 0.1

D2 2.6 98.2 1.6 1.9 0.2 0.2 0.0

D3 0.2 1.0 97.8 0.0 0.0 0.0 0.0

D4 0.0 0.0 0.0 92.3 0.0 0.2 0.0

Ds 0.0 0.0 0.0 0.1 99.8 2.4 0.0

D66/2 0.0 0.0 0.0 0.0 0.1 95.8 0.0
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Table 5-5

Mass isotopomer distributions of mixtures of glucose standards. Solution of [2-2H]- and [5-

2H]glucose was prepared (1:1 mol/mol) and diluted with unlabeled glucose solution to

obtain final deuterium enrichments at C2 and C5 of 1%, 5%, 10%, and 50%, respectively.

m/z C-H positions M+0

[2- 2H]glucose

301

145

173

259

284

370

1,2,3,4,5,6,6

1,2

5,6,6

4,5,6,6

2,3,4

2,3,4,5

0.0

46.6

44.5

42.3

44.1

0.1

M+1 M+2

+ [5-2H]glucose (50:50)

M+3 M+4

83.1 14.3

48.7 4.2

50.1 4.8

49.8 6.9

47.8 7.1

81.0 15.7

12- 2HIglucose + 15- 2Hglucose + unlabeledglucose (10:10:80)...................................................................... 2 ........................................... ................................. ................................................................................................... ............................ ................................................................................ ...................................
301 1,2,3,4,5,6,6 68.4 26.7 4.3 0.6 0.0

145

173

259

284

370

1,2

5,6,6

4,5,6,6

2,3,4

2,3,4,5

83.3

81.3

77.4

77.0

65.4

15.1

16.7

19.4

19.5

28.4

....................................................................................... ......... ...............................................................................
301 1,2,3,4,5,6,6 76.0 20.2 3.3 0.4 0.0

145 1,2 87.6 11.2 1.1 0.1 0.0

173 5,6,6 85.7 12.6 1.5 0.1 0.0

259 4,5,6,6 81.9 15.6 2.3 0.3 0.0

284 2,3,4 80.8 16.1 2.5 0.4 0.2

370 2,3,4,5 72.9 22.3 4.1 0.6 0.1

.._.._..._......Hg.......... -?H ucose + 15-2 -]glucose + unlabeled lucose (1:1:98)

301 1,2,3,4,5,6,6 82.4 14.9 2.5 0.3 0.0

145 1,2 91.5 7.7 0.7 0.1 0.0

173 5,6,6 89.6 9.1 1.2 0.1 0.0

259 4,5,6,6 85.2 12.7 2.0 0.2 0.0

284 2,3,4 84.2 13.3 2.2 0.2 0.1

370 2,3,4,5 79.2 17.2 3.2 0.4 0.0
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Table 5-6

Estimated deuterium enrichments of mixtures of glucose standards. Deuterium enrichments

(mol% enrichment) at the six glucose carbon positions were determined by least-squares

regression of mass isotopomer distributions of selected glucose fragments. The estimated

enrichments corresponded well with the expected enrichments at C2 and C5 of 0%, 1%, 5%,

10%, and 50%, respectively.

Mixture of standards

[2- 2H]glucose + [5- 2H]glucose + unlabeled glucose

Position 0:0:100 1:1:98 5:5:90 10:10:80 50:50:0

D1  0.1 0.1 0.3 0.2 1.5

D2 0.0 1.0 4.9 9.6 48.7

D3 0.0 0.0 0.0 0.0 0.0

D4 0.0 0.1 0.0 0.0 0.0

Ds 0.0 1.0 5.0 9.8 51.0

D66/2 0.0 0.0 0.0 0.1 0.0
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enrichment). The estimated enrichments for the unlabeled glucose standard were not

significantly different from zero, i.e. the highest estimated enrichment was 0.1 mol% at C1.

These results clearly illustrate the validity of our method and the high accuracy and precision

of MS data obtained from the selected ion fragments.

To assess the accuracy of determining deuterium labeling specifically at C2 and C5 positions

of glucose, a standard mixture of [2- 2H]glucose and [5- 2H]glucose was prepared in the

proportion 1:1 (mol/mol). Solution of the standard mixture was then diluted with unlabeled

glucose solution to obtain final deuterium enrichments at C2 and C5 positions of 1%, 5%,

10%, and 50% (undiluted), respectively. Table 5-5 shows the measured mass isotopomer

distributions for the 4 mixtures of glucose standards. Table 5-6 shows the estimated

enrichments at each carbon position. The estimated enrichments at C2 and C5 corresponded

well with the true enrichments of the prepared mixtures. The deviation from the expected

enrichments was less than 0.3 mol%. Furthermore, the estimated enrichments at C1, C3, C4

and C6 positions were not statistically different from zero for three of the four mixtures.

The observed 1.5 mol% enrichment at C1 in the 50/50% mixture could be explained by

small contaminations at C1 in the [2-2H]glucose and [5- 2H]glucose standards (see Table 5-4).

5.3.3 Study of gluconeogenesis

Incorporation of deuterium into glucose in experiments with 2H20 depends on a number of

biochemical reactions where hydrogen atoms are exchanged with, or incorporated from the

solvent. Incorporation at C2 occurs mainly via PGI. It is generally assumed that there is

rapid exchange between F6P and G6P catalyzed by PGI, and thus we would expect that the

labeling at C2 is equal to the enrichment of the solvent. If that is indeed the case, then the

overall flux of hepatic glucose production can be measured by the incorporation of

deuterium at C2. Incorporation at C5 occurs in the gluconeogenesis pathway, in particular in

the reactions catalyzed by enolase and TPI. Deuterium incorporation at C1 and C6 positions

occurs via the pyruvate -> oxaloacetate -4 PEP pathway. Therefore, the ratio of enrichment

of C5 to that of C2 is a measure of gluconeogenesis relative to glucose production, and the

ratio of enrichment of C6 to that of C2 is a measure of the contribution of PEP to glucose

- 172 -



CHAPTER 5. GC/MS ANALYSIS OF GLUCOSE

production. The difference between incorporation at C5 and C6 relative to C2 represents the

amount of glucose produced from trioses (including glycerol). In a previous study with

cultured primary hepatocytes we applied [U- 13C]glycerol, [2Hs]glycerol and 2H20 tracers to

estimate net and reversible fluxes in the gluconeogenesis pathway (Chapter 7). Our results

suggested that TPI and PGI reactions were not fully equilibrated. In particular, we estimated

that the PGI reaction was only 80-86% equilibrated. Based on our flux results we predicted

that the labeling of GAP-C2 (which eventually becomes C5 of glucose) would be >95%

equilibrated with the solvent (mainly via the enolase reaction), and that C2 of glucose would

only be 80% equilibrated with the solvent. To validate these predictions we re-analyzed our

samples from 2H 20 experiments (10% enrichment) using the newly identified glucose

fragments, and estimated the amount of deuterium at each carbon position of glucose.

Table 5-7 shows the measured mass isotopomer distributions for three experimental samples

taken at 2, 5, and 8 hr, respectively, and Table 5-8 shows the estimated deuterium

enrichments at all carbon positions. In all three samples the deuterium labeling at C2 was

incomplete. The measured deuterium labeling at C2 varied between 8.1 and 8.6%, indicating

81- 8 6 % equilibrium between the solvent and C2 hydrogen of glucose. Thus, these results

fully support our previous finding that the PGI reaction was not fully equilibrated. Table 5-9

shows the fractional contributions of gluconeogenesis, glycogenolysis, glycerol, and PEP to

glucose production, as we estimated from the deuterium labeling of glucose. Here,

gluconeogenesis (GNG) was estimated as the ratio of enrichment of C5 relative to that of

the solvent, glycogenolysis (GL) was estimated as 100 - GNG, the flux of PEP to glucose as

2 x enrichment of C6 relative to that of the solvent, and the flux of glycerol to glucose as 2 x

GNG - flux of PEP to glucose. Fractional equilibration of the PGI reaction was estimated

from the ratio of enrichment of C2 relative to that of the solvent. Table 5-9 compares these

estimated fluxes to the previously determined fluxes based on comprehensive analysis of

isotopomer data from [U-13C]glycerol, [2Hs]glycerol, and 2H20 experiments. We found good

agreement between fluxes estimated from deuterium incorporation and our previous results.

Compared to the previous results GNG was slightly underestimated (by about 10%), and

GL slightly overestimated. Note that if we used the C5/C2 ratio as a measure of GNG, then

we would have overestimated GNG at 85%, 106%, and 105% for the 2, 5, and 8 hr samples,

respectively.
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Table 5-7

Mass isotopomer distributions of experimental samples. Hepatocytes were cultured in

medium containing 2H20 at 10% enrichment. Samples collected after 2, 5, and 8 hrs of

incubation were derivatized and analyzed by GC/MS. Shown are mass isotopomer

distributions of selected glucose fragments (molar percentages, mol%/).

m/z C-H positions M+0 M+1 M+2 M+3 M+4

Sample collected after 2 hr of incubation

301 1,2,3,4,5,6,6 56.3 31.5 9.8 2.2 0.2

145 1,2 81.1 16.6 2.1 0.2 0.0

173 5,6,6 76.5 19.7 3.3 0.4 0.1

259 4,5,6,6 69.1 24.7 5.3 0.8 0.1

284 2,3,4 70.4 23.7 5.0 0.9 0.0

370 2,3,4,5 62.0 29.1 7.6 1.3 0.1

Sample collected after 5 hr of incubation

301 1,2,3,4,5,6,6 54.1 32.8 10.5 2.3 0.4

145 1,2 80.2 17.6 2.1 0.2 0.0

173 5,6,6 75.7 20.7 3.2 0.4 0.0

259 4,5,6,6 68.0 25.6 5.4 0.9 0.1

284 2,3,4 69.3 24.9 4.9 0.8 0.1

370 2,3,4,5 60.5 29.8 8.0 1.5 0.2

............................................................................................................................ .... ........... . . .... . . . . ........................................................................................
301 1,2,3,4,5,6,6 53.1 33.2 10.9 2.4 0.4

145 1,2 79.8 17.9 2.1 0.2 0.0

173 5,6,6 75.0 21.1 3.4 0.4 0.0

259 4,5,6,6 67.3 26.2 5.6 0.9 0.1

284 2,3,4 69.0 25.1 4.9 0.9 0.1

370 2,3,4,5 60.1 30.3 7.9 1.5 0.2
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Table 5-8

Estimated deuterium enrichments of experimental samples. Deuterium enrichments (mol%/o

enrichment) at the six glucose carbon positions were determined for three experimental

samples from hepatocyte cultures with 2H20 at 10% enrichment.

Length of incubation time

Position 2 hr 5 hr 8 hr

D, 4.2 5.7 6.1

D2 8.6 8.1 8.2

D3  5.4 6.4 6.6

D4 5.0 5.6 5.7

D5  7.3 8.6 8.6

D66/2 5.0 4.6 5.1
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Table 5-9

Comparison of previously estimated fluxes and fluxes determined from deuterium

incorporation. Metabolic fluxes in the gluconeogenesis pathway were previously estimated

by fitting experimental data from [U-13C]glycerol, [2H5]glycerol, and 2H 20 experiments to a

detailed flux model (Chapter 7). In this study, fluxes were estimated from the incorporation

of deuterium into specific carbon positions of glucose from 2H20 experiments.

2 hr 5 hr 8 hr

This Previous This Previous This Previous

Flux study study study study study study

Glucose production (fixed at 100) 100 100 100 100 100 100

Gluconeogenesis (GNG) 73 81 86 90 86 90

Glycogenolysis (GL) 27 18 14 10 14 10

Glycerol to glucose flux 46 70 80 72 70 67

PEP to glucose flux 100 92 92 108 102 114

Equilibration of PGI (%) 86% 79% 81% 81% 82% 86%

* 'Previous study' refers to flux results from Chapter 7

* GNG = 2H-C5 / 10%

* GL = 100 - GNG

* PEP to glucose flux = 2H-C6 / 10%

* Glycerol to glucose flux = 2 x GNG - (flux of PEP to glucose)

* Equilibration of PGI = 2H-C2 / 10%
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5.4 Discussion

Measured mass isotopomer distributions may deviate from true isotopomer abundances for

many reasons, e.g. unresolved metabolite peaks, overlapping mass spectra of adjacent ion

fragments, hydrogen abstraction, deuterium-hydrogen exchange, gas phase ion/molecule

chemistry in the ionization chamber, isotope discrimination during ionization and detection,

sample size effects, and imprecision due to low signal-to-noise ratio and background noise.

Mass isotopomer data may therefore underestimate, or overestimate true enrichments.

Because positional enrichments are determined from differences in enrichments of different

ion fragments, small errors in data propagates to the calculated positional enrichments as

large deviations. Thus, mass isotopomer data of individual ion fragments should be as

accurate as possible. In this study, we developed a novel protocol for accurate determination

of positional deuterium labeling of glucose that avoids the use of calibration curves and

correction factors by ensuring that data from the selected ion fragments are very accurate

and precise. In order to find the most accurate ion fragments we synthesized 18 different

glucose derivatives and evaluated over 200 ion fragments. We used specifically labeled

standards for structural assignments and for validating the accuracy of mass isotopomer

distributions. The six selected ion fragments provided sufficient information to determine

positional 2H-labeling of glucose hydrogen atoms with precision. Comprehensive analysis of

mass isotopomer distributions by least-squares regression allowed quantitative determination

of glucose labeling from pure glucose standards, mixtures of glucose standards, and from

experimental samples. Our method determines positional enrichments of deuterium with

accuracy better than 0.3 mol% and precision better than 0.2 mol%. An example of

quantification of deuterium incorporation into glucose was provided in a study of

gluconeogenesis in cultured primary hepatocytes. We found that 42-61% deuterium atom

was incorporated into C1, 81-86% into C2, 54-66% into C3, 50-57% into C4, 73-86% into

C5, and 46-51% into C6 of glucose. These deuterium enrichments indicated that 14-27% of

glucose was derived from glycogenolysis and that gluconeogenesis accounted for the

remaining 7 3 -8 6 %. In support of our previous finding that suggested incomplete

equilibration of PGI, we found that deuterium labeling at C2 of glucose in 2H20

experiments was incomplete.
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Chapter 6

Nonstationary metabolic flux analysis

of E. coli

6.1 Introduction

Isotopic tracer experiments are routinely used to quantify fluxes in biochemical networks

(Stephanopoulos, 1999). In a typical carbon-13 labeling experiment, a labeled substrate, e.g.

[1- 13C]glucose, is introduced to the metabolic system where it is taken up and metabolized by

the cells. Atoms of the specifically labeled substrate are biochemically rearranged generating

molecules with specific labeling patterns that can be detected by nuclear magnetic resonance

(NMR) and mass spectrometry (MS) (Klapa, 2003; Szyperski 1995). The labeling patterns of

cellular components provide rich information for the estimation of metabolic fluxes. The

goal of metabolic flux analysis (MFA) is to extract as much flux information as possible from

stable isotope measurements and external flux measurements. Currently, MFA requires that

the system is at metabolic and isotopic steady state, i.e. that the labeling of the substrate and

the labeling of the sampled pools are equilibrated (Wiechert et al. 2001). For example, this

condition is approximated in continuous culture experiments after four or more residence

times. The isotopic steady state assumption simplifies the computational problem that needs

to be solved for flux determination from a problem with differential-algebraic equations

(DAE) to a problem involving only algebraic equations (Wiechert et al., 2005). In this

contribution, we extend the scope of MFA to nonstationary systems, i.e. systems that do not

approximate isotopic steady state, without increasing the complexity of computations. The

extension of MFA to nonstationary systems is important because many systems of industrial
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and medical importance never reach isotopic steady state (Drysch et al. 2003; Kelleher 2001).

To account for isotopic transients we have developed a novel modeling strategy that

combines key ideas from isotopomer spectral analysis (ISA) and stationary MFA. ISA was

initially introduced as a general method for modeling polymerization biosynthesis reactions

in systems that do not approximate isotopic steady state (Kelleher and Masterson, 1992). In

analogy with the ISA method we introduce two dilution parameters to account for the

observed isotopic transients. These parameters are the dilution of the tracer before it is

metabolized by cells (the D-parameter), and the dilution of labeled products in the sampled

pools (the G-parameter). We illustrate the new modeling strategy with a nonstationary

system that closely resembles industrial production conditions, i.e. microbial fed-batch

fermentation of E. coli that overproduces 1,3-propanediol (PDO). In this experiment neither

the labeling of the tracer, nor the labeling of the sampled biomass pools were at isotopic

steady state. Metabolic fluxes were estimated in this system by fitting labeling profiles of

cellular amino acids (measured by GC/MS) and external flux measurements to a detailed

model of E. coli metabolism that included the additional dilution parameters. We obtained an

over-determined system with 66 redundant measurements from which we calculated

metabolic fluxes and confidence intervals of fluxes. With the additional D and G parameters

we successfully modeled the observed isotopic transients and for the first time determined

time profiles of in vivo fluxes during a fed-batch fermentation. The fits were statistically

acceptable as judged by the small magnitude of the sum of squared residuals. Flux results

provided insights into the physiology of industrial overproduction of PDO. The results

indicated that intracellular fluxes were relatively constant during the fed-batch fermentation.

The intracellular flux associated with production of PDO increased only by 10% during 20

hr of fermentation, which was in contrast with the efflux of PDO that fluctuated

significantly. We observed only a slight decrease in the split ratio at the branch point

between glycolysis and pentose phosphate pathway. The TCA cycle flux, on the other hand,

remained constant throughout the fermentation. The general modeling strategy that is

introduced here is not limited to fed-batch fermentations, but may be used to analyze other

metabolic systems that are not at isotopic steady state.
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6.2 Materials and methods

6.2.1 Stable isotope tracers

Isotopically labeled glucose tracers, i.e. [1-a 3C]glucose (99 AtO/ 13C) and [U- 13C]glucose (99

At%/o 13C) were purchased from IsoTec Inc. (Miamisburg, OH) and Cambridge Isotope

Laboratories Inc. (Andover, MA), respectively.

6.2.2 Medium

Defined mineral salts medium was used for the fermentation. The unlabeled feed contained

46.2 wt/o glucose as the carbon source. The '3C-labeled feed was chemically identical, but

contained 75 wt%/o [1- 13C]glucose and 25 wt%/o [U-13 C]glucose instead of unlabeled glucose.

6.2.3 Strain and growth conditions

In this study, we used an E. coli K12 strain that was metabolically engineered to overproduce

1,3-propanediol (Nakamura, 2003). The cultivation was performed as a fed-batch

fermentation (see Figure 6-1). E. co/i was cultured in an aerobic fermentor with a working

volume of 1 L. The pH was controlled at 6.8 ± 0.04 by addition of NH40H, the temperature

was controlled at 34 oC, and the dissolved oxygen was controlled at 10% ± 0.7 of saturation

by adjusting the stirrer speed. The aeration rate was constant at 0.5 standard liters per minute

(SLPM). The batch phase was initiated with 45.1 g of unlabeled glucose medium. Glucose

feed was initiated after 16.3 hr and controlled such that glucose concentration in the medium

was maintained at 45 ± 5 mM. After 18.6 hr, unlabeled glucose feed was replaced with 13C-

labeled glucose feed containing 75 wt0 /o [1- 13C]glucose and 25 wt% [U-13C]glucose. After

30.0 hr, labeled glucose feed was replaced with unlabeled glucose feed and the fermentation

was continued for 14.6 hr.
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Figure 6-1: A schematic of fed-batch fermentation setup and measurement points. The fed-

batch fermentation was performed in an aerobic fermentor with a working volume of 1 L.

The pH was controlled at 6.8, the dissolved oxygen at 10% of saturation, and glucose

concentration at 45 mM. Online measurements included: weight of the fermentor and feed

bottles (scales), flow rate of the inlet air stream (flow meter), the composition of the inlet

and outlet air streams (MS). Medium samples were periodically taken for offline analysis:

metabolite concentrations (HPLC), biomass concentration (optical density at 550 nm),

isotopic labeling of glucose in the medium (GC/MS), and isotopic labeling of cellular amino

acids (GC/MS) were measured.

- 182-



CHAPTER 6. NONSTATIONARY METABOLIC FLUX ANALYSIS OF E. COL

6.2.4 Off-gas analysis

Molfractions of oxygen, carbon dioxide and nitrogen in both the inlet and outlet air streams

were measured online by a Prima 600S mass spectrometer (VG Gas, Manchester, UK). The

flow rate of the inlet air stream was measured in standard liters per minute (SLPM defined at

1 Atm and 250 C) using a Brooks 5850 series mass flow controller. Fractional labeling of CO 2

in the off-gas was determined from relative intensities of 12C0 2 (m/Z 44) and 13C0 2 (m/z

45).

6.2.5 Sampling and sample processing

Medium samples were periodically taken during the fed batch fermentation for HPLC and

GC/MS analysis. In total 21 samples of 11-21 mL were collected between time points 15.4

hr and 44.6 hr. Samples were centrifuged, and the supernatant separated from the biomass

pellet. The biomass pellet was stored at -80 OC and the supernatant at -20 OC prior to

analysis.

6.2.6 Biomass concentration

Biomass concentration was determined by measuring the optical density at 550 nm (OD550),

assuming 3.0 g/L/OD55o cell dry weight. The molecular weight of dry biomass was assumed

to be 25.3 g/C-mol.

6.2.7 HPLC analysis

The concentrations of glucose, glycerol, 1,3-propanediol (PDO), acetate, citrate, and

pyruvate in the medium samples were measured by high-performance liquid chromatography

(Waters HPLC, Shodex SH1011 sugar column, RI detector).
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6.2.8 GC/MS analysis

Gas Chromatography-Mass Spectrometry (GC/MS) analysis was performed using HP 5890

Series II GC (Gas Chromatograph) equipped with a DB-1701 [30 m x 0.25 mm (inner

diameter) x 0.25 jtm] capillary column, connected to HP 5971 quadrupole MSD (Mass

Selective Detector) operating under ionization by electron impact (EI) at 70 eV. The mass

spectrometer was calibrated using the 'Max Sensitivity Autotune' setting. Measured

intensities were corrected for the contribution of noise (baseline correction), and mass

isotopomer distributions were obtained by integration. Mass isotopomer values for each

fragment were expressed as fractional abundances, i.e. for each fragment the sum of all mass

isotopomers equals one.

6.2.9 GC/MS analysis of cellular amino acids

Labeling patterns of cellular amino acids were determined by GC/MS analysis of their tert-

butyldimethylsilyl (TBDMS) derivatives. For each derivatization, about 20 mg of wet

biomass pellet was transferred to 700 ýtL of 6 N HC1 and heated at 110 OC for 24 hr in a

closed vacuum hydrolysis tube. After cooling to room temperature the solvent was

evaporated and the residue was dissolved in 150 tiL of distilled water, which was then

filtered through a 0.2 jim pore size filter to remove cell debris. The filtrate was evaporated to

dryness. The dried hydrolysate was dissolved in 50 tL of pyridine followed by addition of 70

[L of N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA). The mixture

was heated at 60 OC for 30 min and transferred to an injection vial for GC/MS analysis. The

injection volume was 1 pL and samples were injected in purged splitless mode. The amount

of sample analyzed was controlled by varying the purge activation time between 1 sec and

1.5 min. Helium flow was maintained at 0.74 mL/min via electronic pressure control. The

injection port temperature was 270 OC. The temperature of the column was started at 1000C

for 1.5 min, increased to 130 OC at 200C/min and increased to 220 OC at 10 oC/min and

held for 3 min. The temperature was then increased to 2800C at 5 OC/min and held for 3

min. The interface temperature was maintained at 300 OC. Mass spectra were analyzed in the

mass range 195-445 atom mass units at a rate of 2.7 scans/sec. Figure 6-2 shows a

representative total ion chromatogram of TBDMS derivatized amino acids from hydrolyzed
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Figure 6-2: Representative total ion chromatogram. Cellular amino acids from hydrolyzed

biomass were derivatized by TBDMS and analyzed by electron impact GC/MS. The total

ion chromatogram corresponds to the sum of the ion intensities measured at each time point

in the analysis. The insert shows the electron ionization mass spectrum for TBDMS

derivatized aspartic acid.
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Table 6-1

Ion fragment of TBDMS derivatized amino acids used for flux analysis. The identity of

amino acid ion fragments was verified previously (Chapter 4). Assignment of precursor

metabolites reflects the metabolic network model of E. coli shown in Appendix 6.A.

Amino Monitored Amino acid Fragmentation Precursor metabolite(s)
acid ions carbon atoms

Ala 232 - 239 2-3 M - C5 H 90 Pyr(2-3)
260-268 1-2-3 M-C 4 H 9  Pyr

Gly 218 - 224 2 M - CsH 90 multiple pathways*

246-253 1-2 M-C 4 H 9  multiple pathways*...................................................................................................................................................................................................... ............... . . . ............................... ................. . ....................... ..............................................................
Val 260 - 269 2-3-4-5 M - C5H90 Pyr(2-3) + Pyr(2-3)

288 - 298 1-2-3-4-5 M -C 4 H9  Pyr( 2 3) + Pyr(23)

Leu 274 - 283 2-3-4-5-6 M -C 5 90 AcCoA(2) + Pr(2-3) + Pyr(2-3)

Ile 274 - 283 - 2-3-4-5-6 M- C5H90 OAC(2 3 - + Pyr(23)

Ser 288 - 296 2-3 M - C 7H 15O2 Si multiple pathways*

362 - 370 2-3 M - C5H90 multiple pathways*

............ . ....................................... ..... . ............................. . ..-.. . ... ..... ................................. ............................. .-... ... ................ . ................. .. . ... . ................................................................
Thr 376 - 382 2-3-4 M - C5H9O OAC(2-3-4)

404-414 1-2-3-4 M-C 4 H 9  O 1 ---. . . . . . O

Met 292 - 298 2-3-4-5 M - C5H 90 OAC(2-3-4) + C-1
320 - 327 1-2-3-4-5 M - C4H 9  OAC 1-2-3-4) + C-1

Phe 302 - 307 1-2 M - C7H7  PEP(_2)

308 - 316 2-3-4-5-6-7-8-9 M - CsHO9  PEP(2-3) + PEP(2.3) + E4P(1-2-3-4)

336 -345 123-4-5-6-7-8-9 M-C 4H9  PEP(,-, 3) + PEP(23) + E4P(1 2 -3 -4 ).............................. .............. .. .- .... ..... . ... ...... ......... . ... . ................................ ...........__........ .................... . . . . . . . . . . . . . . ...
Asp 302 - 309 1-2 M - C8H 17O2Si OAC(I.2)

376 - 382 1-2 M - C6HIO1  OAC(..2)

390 - 397 2-3-4 M - C5H90 OAC(2-3-4)

418 -428 1-2-3-4 MI - C4H9  OAC(1-2-34)

Glu 330 - 336 2-3-4-5 M - C7H50s2Si AKG(2-3-4- 5)

404 - 411 2-3-4-5 M - C5H90 AKG(2-3-4-5)

432 - 443 1-2-3-4-5 M - C4H9  AKG(1-2-3-4-5)

Tyr 302 - 307 1-2 M - C13H21OSi PEP(..2)
Abbreviations: 3PG, 3-phosphoglycerate; PEP, phosphoenolpyruvate; Pyr, pyruvate; E4P, erythrose-

4-phosphate; AKG, a-ketoglutarate; OAC, oxaloacetate; AcCoA, acetyl coenzyme-A; R5P, ribose-5-

phosphate; C-I, one-carbon unit.

* Glycine and serine are produced by multiple pathways (see Metabolic Network in Appendix 6.A).

The labeling of these fragments depends on the relative contribution of these pathways.
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biomass. We detected 15 of the 20 amino acids in hydrolyzed biomass samples.

Table 6-1 shows the 26 amino acid ion fragments that were used for metabolic flux analysis.

All samples were injected 35 times at varying concentrations. For each fragment the

integrated mass isotopomer abundances were plotted as a function of total ion counts and

extrapolated to a theoretical infinite dilution to correct for the concentration effect of

electron impact GC/MS analysis (see Chapter 4).

6.2.10 GC/MS analysis of glucose

Labeling of glucose was determined by GC/MS analysis of aldonitrile pentapropionate

derivative of glucose. For each derivatization, 20 [IL of medium sample was deproteinized by

addition of 300 p.L of acetone (-4 oC). The mixture was centrifuged and the supernatant

evaporated to dryness. 50 [IL of 2 wt% hydroxylamine hydrochloride in pyridine was added

to the dry residue and the mixture was heated at 90 OC for 60 min. This was followed by

addition of 100 [tL of propionic anhydride and heating at 60 OC for another 30 min. After

cooling, the sample was evaporated to dryness and dissolved in 100 [IL of ethyl acetate and

transferred to an injection vial for GC/MS analysis. The injection volume was 1 [IL and

samples were injected in purged splitless mode. Helium flow was maintained at 0.88

mL/min via electronic pressure control. The injection port temperature was 250 OC. The

temperature of the column was started at 80 oC for 1 min, increased to 280 oC at 20 OC/min,

and held for 4 min. The interface temperature was maintained at 300 oC. Mass spectra were

analyzed in the mass range 150-450 atom mass units at a rate of 2.3 scans/sec. Labeling of

glucose was determined from the ion fragment at m/z 370 (C17H240 8sN) that contained

carbon atoms C1-C5 of glucose. Measured mass isotopomer distributions were corrected for

natural isotope enrichments as described by Fernandez et al. (1996). The corrected intensity

at m/z 370 corresponded to the fraction of naturally labeled glucose, the intensity at m/z

371 corresponded to the fraction of [1-1 3C]glucose, and the sum of intensities at m/z 374

and 375 corresponded to the fraction of [U-13C]glucose.
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6.2.11 Calculating external fluxes

Cumulative consumption of glucose and citrate, and cumulative production of biomass,

glycerol, PDO and acetate were calculated from the measured concentrations and fermentor

weight, after accounting for losses due to sampling. Consumption and production rates

(mol/h) were then determined by fitting a smooth curve through the data points. Rates of

total oxygen uptake (TOUR) and total carbon dioxide production (TCER) were calculated

from off-gas analysis as follows:

TOUR (mol/h) = o,,n - x0o,,out X,,in SLPMin • 2.454 (6.1)
X N,,out

TCER (mol/h) = Xco,,out  N,i--- - XCO,in SLPMR -2.454 (6.2)
X N,out

The above equations assume that nitrogen is not consumed, produced or accumulated in the

system. These equations inherently correct for temperature and pressure differences between

the inlet and outlet air streams.

6.2.12 Metabolic network model

A detailed network model for E. coli was constructed (see Appendix 6.A). The model was

comprised of 73 reactions (with corresponding carbon transitions) utilizing 76 metabolites,

with 5 substrates (i.e. glucose, citrate, 02, NH 3, SO 4), 5 products (i.e. 1,3-propanediol,

biomass, CO2, acetate, and ATP), and 65 balanced intracellular metabolites. Glycerol was

allowed to be either a substrate or a product depending on the calculated external flux. The

network model included reactions of glycolysis, pentose phosphate pathway, Entner-

Doudoroff pathway, TCA cycle, PDO biosynthesis pathway, amphibolic reactions, one-

carbon metabolism, and amino acid biosynthesis reactions. Reversible reactions were

modeled as separate forward and backward fluxes. Net and exchange fluxes were determined
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as: vnet = Vf - Vb; Vexch = min(vf, Vb). All forward and backward fluxes were required to be

non-negative at the final solution.

6.2.13 Flux determination and statistical analysis

Metabolic fluxes were determined by fitting 8 external fluxes and 191 mass isotopomer

abundances of cellular amino acid to the metabolic network model of E. coli including

additional flux parameters to account for isotopic transients (see section 6.3.5). The

minimized objective function was the variance-weighted sum of squared deviations between

the observed and simulated measurements. The iterative algorithm that was used for least-

squares optimization was based on successive quadratic programming (see Chapter 3). At

convergence, accurate confidence intervals of fluxes were calculated by evaluating the

sensitivity of the objective function with respect to fluxes as described previously (Chapter

3). Flux validation was accomplished by a statistical test for the goodness-of-fit (chi-square

test for model adequacy), and a normality test for the weighted residuals. To ensure a global

optimum, flux estimation was repeated at least four times starting with random initial values

for all fluxes. Sensitivity analysis was used to determine the relative importance of

measurements for the estimation of individual fluxes as described previously (Chapter 3).

6.3 Results

6.3.1 External fluxes

Figure 6-3A shows the calculated external fluxes as a function of fermentation time. The

calculated external fluxes were consistent, i.e. the carbon balance closed within 2% and

degree of reduction balance closed within 4%. Figure 6-3B shows the consumption and

production rates expressed as specific fluxes (mmol/h/gDW). The specific fluxes decreased

significantly during the fermentation. This indicates that the cells were either becoming less

metabolically active, or that the fraction of metabolically active cells decreased, i.e. fraction

of dead cells increased. We did not measure cell viability in this experiment, thus the exact

cause for the decreased specific fluxes remains uncertain. External fluxes normalized to

glucose uptake rate shown in Figure 6-3C. The flux of glucose to biomass decreased in time
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Figure 6-3: Characterization of external fluxes in the fed-batch culture. Top panel shows the

observed absolute external fluxes (mmol/h) as a function of fermentation time. Negative

fluxes correspond to consumption rates. Bottom panel shows specific external fluxes

(mmol/h/gDW) that significantly decreased in time.
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Figure 6-3 (continued): Characterization of external fluxes in the fed-batch culture. Shown

are external fluxes normalized to glucose uptake rate that was fixed at -100 (i.e. uptake rate

of 100).
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and flux towards PDO gradually increased. Note that glycerol was initially produced by the

cells, but after 25 hr glycerol was taken up by the cells and co-metabolized with glucose as a

carbon source. The rates of acetate production and citrate uptake were negligible compared

to the other fluxes (not shown in Figure 6-3; see Appendix 6.E).

6.3.2 Characterization of glucose feed

Based on preliminary simulations and sensitivity analysis of the metabolic system we

determined that the optimal labeling of glucose in this study would be 75% [1- 13C]glucose

and 25% [U-13C]glucose. The composition of the labeled feed was validated by GC/MS

analysis. First, we validated the isotopic purity of the purchased tracers. We measured 99.7 +

0.2 At% isotopic purity for the [1-1 3C]glucose tracer, and 99.4 ± 0.1 At% isotopic purity for

the [U- 13C]glucose tracer. These enrichments were higher than 99 At% isotopic purity

according to manufactures' specifications. The two tracers were mixed as follows: 105 g [1-
13C]glucose + 35 g [U-13C]glucose (i.e. 75/25 wt/wt, or 75.5/24.5 mol/mol). The

composition of labeled glucose feed was then validated by GC/MS analysis. The measured

composition was 75.4 ± 0.2 mol% [1-1 3C]glucose and 24.6 ± 0.2 mol% [U-13C]glucose.

6.3.3 Dynamics of glucose labeling

Figure 6-4 shows the observed isotopic composition of glucose in the medium as a function

of fermentation time. Labeled glucose feed was initiated at 18.6 hr and continued until 30.0

hr, when it was replaced with unlabeled glucose feed. The labeling of glucose underwent a

transient phase of about 5 hr after the introduction of the tracer (between 18.6 - 23.6 hr),

and a second transient phase of about 5 hr after the switch to unlabeled glucose feed

(between 30.0 - 35.0 hr). The isotopic composition was constant for samples taken between

23.6 and 29.6 hr, with 75.4% [1-1 3C]glucose and 24.6% [U- 13C]glucose (measured by

GC/MS). The length of the observed isotopic transients is determined by glucose

concentration in the reactor and the rate of glucose feed and uptake. In this study, glucose

concentration was maintained at 45 + 5 mM, i.e. much higher than the typical limiting levels

of glucose achieved in continuous cultures.
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Figure 6-4: Measured isotopic composition of glucose in the medium as a function of time.

The isotopic composition of glucose in medium samples was determined by GC/MS

analysis. Isotopically labeled glucose was introduced at 18.6 hr. The labeling of glucose

approached isotopic steady state at -24 hr. The isotopic composition of glucose was

constant for samples between 23.6 and 29.6 hr, with 75.4% [1- 13 C]glucose and 24.6% [U-
13C]glucose. After 30.0 hr the feed was switched back to unlabeled glucose feed. The dashed

lines represents the predicted composition of glucose based on the balance model in Eq. 6.7.

- 193 -



CHAPTER 6. NONSTATIONARY METABOLIC FLUX ANALYSIS OF E. Co!I

To describe the observed labeling transients quantitatively, we constructed a simple material

balance model assuming ideally mixed reactor. The equations for total glucose concentration

and glucose labeling are:

d(V- cgiu)c 

(6
dt gluc,in - gluc

d(V -Cguc .x)
dt = F Cgluc,in . Xin - g1uc . X  (6.4)dt

Here, F (L/hr) is the flow rate of feed to the reactor, cgluc (mmol/L) is glucose concentration

in the reactor, cgluc,in (mmol/L) is the glucose concentration in the feed, V (L) is the reactor

volume, rgluc (mmol/hr) is glucose uptake rate, x is the molfraction of labeled glucose in the

reactor, and xin is the molfraction of labeled glucose in the feed. In this experiment, glucose

concentration and reactor volume were relatively constant during the observed isotopic

transients, however, the feed rate changed significantly. Assuming constant glucose

concentration and reactor volume, Eq. 6.3 simplifies to:

rluc = F'Cglucin (6.5)

Substitution of Eq. 6.5 into Eq. 6.4 yields:

dx luc (Xin - X) (6.6)
dt V -cgu

glue

During the first transient phase, glucose uptake rate increased linearly from 21.7 mmol/h at

18.3 hr to 50.2 mmol/hr at 23.6 hr, i.e. rgluc = 5.40-t - 77 (linear fit, R2=0.99), while glucose

concentration and reactor volume were 43 mmol/L and 0.98 L, respectively. During the

second transient phase, glucose uptake rate decreased linearly from 68.7 mmol/h at 30.6 hr

to 54.7 mmol/h at 35.0 hr, i.e. rglui = -3.25-t + 169 (linear fit, R2=0.99), while glucose
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concentration and reactor volume were 48 mmol/L and 1.06 L, respectively. Integration of

Eq. 6.6 assuming a linear function for glucose uptake as a function of time (rgluc=a+b.t)

yields the following expression for the labeling of glucose as a function of time:

-a It b .t2

x(t) = xin + (xo- xx). e( V- c, (6.7)

The dashed lines in Figure 6-4 represent the predicted isotopic composition of glucose based

on Eq. 6.7. We found good agreement between the predicted and the observed isotopic

transients.

6.3.4 Dynamics of fed-batch fermentation

Atoms of 13C-glucose pass through multiple extracellular and intracellular pools in the

pathway from glucose to cellular amino acids. Metabolites in this pathway undergo a

transient labeling phase similar to the one observed for glucose labeling in the medium. The

characteristic time that describes this process is given by the ratio of the pool size (mmol/L)

relative to the turnover rate of the pool (mmol/L/hr). Metabolite pools with short

characteristic times relative to the length of the experiment reach isotopic steady state

quickly, whereas pools with long characteristic times may never reach isotopic steady state.

Figure 6-5 shows time profiles of enrichment for four intermediate metabolite pools in the

pathway from glucose to biomass. The first panel shows the labeling of glucose feed that

was changed instantaneously from unlabeled glucose to 13C-labeled glucose at 18.6 hr, and

visa versa at 30.0 hr. The second panel shows the observed labeling profile of glucose that

was discussed in detail in the previous section. The characteristic time for glucose was about

1 hr. The third panel shows the observed enrichment of carbon dioxide in the off-gas, which

is a measure of the labeling of intracellular metabolites, i.e. carbon dioxide is produced in the

pentose pathway and the TCA cycle from intracellular metabolites. We found that CO 2

enrichment in the off-gas closely followed the profile of glucose labeling in the medium.

This suggested that intracellular metabolite pools approximate isotopic steady state, as was

expected since intracellular pools are relatively small. The estimated characteristic time for
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Figure 6-5: Time profiles of isotopic enrichment of four intermediate metabolite pools in

the pathway from glucose to biomass. 13C-Labeled glucose was introduced between 18.6 hr

and 30.0 hr. We observed the first isotopic transient for glucose in the reactor with a

characteristic time of about 1 hr. The labeling of carbon dioxide in the off-gas reflects the

labeling state of intracellular metabolites, which followed closely the labeling state of glucose

in the medium, which suggested pseudo steady state for intracellular metabolites. The

labeling of biomass components never reached isotopic steady state. The characteristic time

for cellular amino acids was about 10 hr.
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intracellular metabolites was on the order of minutes. The last panel in Figure 6-5 shows the

enrichment of cellular amino acids as a function of time, where we plotted the time profiles

of four representative mass isotopomers. Similar profiles were observed all other amino acid

fragments. In this experiment cellular amino acids never reached isotopic steady state. We

estimated a characteristic time of about 10 hr for cellular amino acids.

6.3.5 Nonstationary model for fed-batch fermentation

Based on these observations we propose the following nonstationary model for fed-batch

fermentation, which is shown in Figure 6-6. This model builds on the classical stationary

MFA model with the addition of two dilution parameters, i.e. D and G parameters, that were

initially proposed by Kelleher and Masterson (1992) for isotopomer spectral analysis (ISA).

ISA is a general method for modeling polymerization biosynthesis reactions in systems that

do not approximate isotopic steady state. Here, we distinguish between two dilution effects:

dilution of the tracer (i.e. glucose), and dilution of the product (i.e. cellular amino acids).

Glucose labeling that is observed by cells during the labeling period is a mixture of 13C-

glucose and unlabeled glucose. In this framework, parameter D(t) describes the apparent

fractional labeling of glucose during the labeling phase. Thus, the D value is zero if there are

no tracers in the system, and is one at isotopic steady state for glucose. The parameter G(t)

describes the fraction of 13C-labeled biomass in the sampled biomass pool, while 1-G(t)

corresponds to the fraction of unlabeled biomass. We could introduce one G parameter for

all biomass components, or separate G parameters for each measured amino acid. In the

absence of protein turnover we expect the same G value for all cellular amino acids.

However, protein turnover may cause differences between G values for proteinogenic amino

acids. In our initial model we used a separate G parameters for each amino acid pool. The

nonstationary model for fed-batch fermentation closely resembles classical isotopic steady

state model. Here, the D and G parameters were included in the model as additional fluxes

that were estimated together with the other fluxes. Thus, we could apply the already

developed flux estimation tools for stationary MFA to estimate all flux parameters in this

system without increasing the complexity of calculations.
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Figure 6-6: Two parameter model for modeling nonstationary tracer experiments. We

distinguish two dilution effects: the dilution of the tracer (i.e. glucose), and the dilution of

the sampled product (i.e. cellular amino acids). The apparent labeling of glucose observed by

the cells during the labeling period is a mixture of 13C-glucose and unlabeled glucose. The

value of parameter D(t) reflects the average labeling of glucose during the labeling period.

The value of parameter G(t) corresponds to the fraction of total biomass that is 13C-labeled,

and 1I-G(t) is the fraction of unlabeled biomass.
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6.3.6 Metabolic flux analysis

We estimated metabolic fluxes for 18 sample points, corresponding to biomass samples

taken between 18.3 hr and 40.7 hr. Fluxes were estimated for each sample point individually.

For each sample point we fitted 8 external fluxes and 191 mass isotopomer abundances (95

independent mass isotopomers) to a detailed flux model. The minimized objective function

was the weighted sum of squared deviations residuals (SSRES) between the observed and

simulated measurements. For each sample point we estimated 37 independent flux

parameters, i.e. we had 95+8-37 = 66 redundant measurements. At convergence, the

goodness-of-fit was assessed by statistically evaluating SSRES. The maximum allowed value

for SSRES was 86 (at 95% confidence level with 66 degrees of freedom; see Chapter 3). Fits

where SSRES was larger than 86 were considered statistically not acceptable. To illustrate

that both D and G parameters were required, we fitted data using models without D and G

parameters. The SSRES values for these fits were statistically not acceptable as is shown in

Figure 6-7. Only the model that included both parameters produced statistically acceptable

fits for all sample points. The small magnitude of SSRES, the high accuracy and precision of

MS data (0.3 mol%/o), and the large number of redundant measurements gave us very high

degree of confidence in the fidelity of the calculated fluxes for all sample points. Table 6-2

shows the optimally-fitted mass isotopomer distributions for sample #12 (taken at 29.6 hr).

We found excellent agreement between the observed and predicted mass isotopomer

abundances with SSRES=65.2. The maximum deviation between the measured and fitted

mass isotopomer abundances was 0.3 mol%. At convergence, nonlinear confidence intervals

of estimated fluxes were determined using the method described in Chapter 3. Figure 6-8

shows the estimated fluxes for sample point #12.

Metabolic fluxes were determined at multiple time points during the fed-batch culture. As

such we established for the first time detailed time profiles of intracellular fluxes. Fluxes

were normalized to glucose uptake rate, which was given the value 100. Figure 6-9 shows

time profiles of selected intracellular fluxes, where we plotted the optimally-fitted flux value

and 68% confidence interval as a function of fermentation time. The time profiles in Figure

6-9 clearly illustrate that intracellular fluxes were relatively constant during the fed-batch
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fermentation. The split ratio between glycolysis and pentose phosphate pathway decreased

only slightly from 60/40 at 20 hr to about 50/50 at 40 hr. The flux of lower glycolysis

(GAP--Pyr) decreased from 70±2 to 50±2 in the same period of time. On the other hand,

the TCA flux remained constant at 47±2 throughout the fermentation. The intracellular flux

towards PDO and glycerol increased by about 10% from 118+_6 to 130±6. An interesting

finding was that this intracellular flux was relatively constant compared to the large

fluctuations in the efflux of PDO, i.e. PDO efflux increased from 78 (at 18.6 hr) to 137 (at

28.6 hr), and to 130 (at 40.7 hr). Our results further indicated that the Entner-Doudoroff

pathway was inactive, i.e. the estimated flux of 0.0±0.5 was not statistically different from

zero. This result confirmed the known genotype of this organism, i.e. phosphogluconate

dehydratase a key enzymes of the Entner-Doudoroff pathway was knocked-out in this strain

of E. coli. Our flux results revealed the presence of a futile cycle between oxaloacetate and

phosphoenolpyruvate. The estimated phosphoenolpyruvate carboxylase and

phosphoenolpyruvate carboxykinase fluxes were 14±2 and 5+2, respectively. The

simultaneous activity of these two reactions created a futile cycle where 1 ATP was lost at

each turn of the cycle. It is not clear what the physiological significance is of this futile cycle.

The total activity of malic enzyme was estimated at 5+1; we could not distinguish between

the two isoforms of malic enzyme, i.e. NADH and NADPH dependent malic enzyme. Thus,

only the combined malic enzyme flux was determined. We estimated only a slightly positive

net transhydrogenase flux (i.e. NADH -- NADPH) of about 20±15, which was not

statistically different from zero. Finally, we estimated significant net production of ATP of

210+18, which was not accounted for by the ATP consuming reactions in our model.

Potential sinks for this ATP are cell maintenance, transport of metabolites across cell

membrane, and futile cycles.
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Figure 6-7: Evaluation of goodness-of-fit for models with a D-parameter, a G-parameter

and both parameters. Mass isotopomer data from 18 biomass samples were fitted

independently to the three models. Shown are the minimized variance-weighted sum of

squared residuals for the 18 sample points. Shaded area indicates the statistically acceptable

95% confidence region for the sum of squared residuals. Models lacking the D or G

parameters were statistically not acceptable. Only the model that included both parameters

produced statistically acceptable fits for all sample points.
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Table 6-2

Measured and fitted mass isotopomer abundances. Mass isotopomer abundances of cellular

amino acid were measured by GC/MS, after TBDMS derivatization. Data shown are the

uncorrected mass isotopomer abundances (molar percentages, mol%) for biomass sample

#12 (taken at 29.6 hr) (mean + SD). The optimally fitted mass isotopomer distributions

('Calc') corresponded well with the measured values ('Exp').

Fragment M+0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8

Ala-232 Exp 49.1 ±+0.2 24.3_+0.2 20.6 +0.2 4.4 ± 0.2 1.4±+0.2 0.2± 0.1

Calc 49.1 24.4 20.5 4.4 1.4 0.2

Ala-260 Exp 46.6+0.2 24.4+0.2 11.0+0.2 14.0+0.2 2.9 +0.2 1.1 +0.2 0.1 +0.1

Calc 46.7 24.5 10.7 14.1 2.9 1.1 0.1

Gly-218 Exp 62.5 0.3 27.1 ±+0.2 8.2 ± 0.2 1.,9± 0.2 0.3 +0.1

Calc 62.2 27.3 8.2 2.0 0.3

Gly-246 Exp 57.4 +0.3 19.8 +0.2 17.9 ±0.2 3.6 0.2 1.2+0.2 0.2 +0.1

Calc 57.7 19.7 17.7 3.5 1.2 0.2

Val-260 Exp 35.9 0.2 22.5 +0.2 23.2+0.2 11.1 0.2 5.7 +0.2 1.3 ± 0.2 0.3 ± 0.1

Calc 36.2 22.7 23.1 10.9 5.6 1.3 0.3

Val-288 Exp 35.1 +0.2 22.2 +±0.2 17.4 +0.2 13.8 0.2 6.3 +0.2 4.0 + 0.2 0.9 0.1 0.3 (

Calc 34.8 22.3 17.6 13.7 6.4 4.0 0.9 0.3

Leu-274 Exp 28.5 0.2 22.7+ 0.2 21.8 +0.2 15.4+0.2 7.8 ± 0.2 3.1 +0.2 0.7 +0.1 0.2+ (

Calc 28.5 22.5 21.9 15.5 7.8 3.1 0.7 0.2

Ile-274 Exp 28.7±0.2 22.6+0.2 21.8±0.2 15.3 +0.2 7.8 +0.2 3.0 ± 0.2 0.7 ± 0.1 0.2 +

Calc 28.7 22.5 21.9 15.4 7.7 3.0 0.7 0.2

Ser-288 Exp 45.6 0.2 29.7 +0.2 18.4+0.2 4.8 +0.2 1.3 ± 0.2 0.2 ± 0.1

Calc 45.6 29.6 18.5 4.8 1.3 0.2

Ser-362 Exp 40.9 +0.2 29.8 +0.2 20.1 +0.2 6.5 ± 0.2 2.1 +0.2 0.4 0.1 0.1 +±0.1

Calc 41.0 29.7 20.1 6.5 2.1 0.4 0.1

Ser-390 Exp 39.0 +0.2 27.2 +0.2 15.5 0.2 12.6 ± 0.2 3.9 +0.2 1.4 0.2 0.3 +0.1 0.1 +

Calc 38.9 27.1 15.8 12.5 3.9 1.4 0.3 0.1

Thr-376 Exp 31.7 +0.2 28.9 0.2 22.1 + 0.2 12.0+0.2 4.0 + 0.2 1.2 +0.2 03 + 0.1

Calc 31.8 28.9 22.0 11.9 3.9 1.2 0.3

Thr-404 Exp 28.1 ±+0.2 26.1 +0.2 21.8 0.2 13.9 +0.2 7.1 +0.2 2.3 +0.2 0.7 ±0.1 0.1 +'

Calc 28.0

).1

0.1

0.1

0.1

0.1

26.1 21.8 13.9 7.1 2.3 0.7 0.1
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Table 6-2 (continued)

Measured and fitted mass isotopomer abundances.

Fragment M+O M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8

Met-292 Exp 27.5 0.2 25.9 0.2 23.4 0.2 14.4 +0.2 6.3 ± 0.2 1.9±0.2 0.5± 0.1

Calc 27.7 25.9 23.4 14.3 6.2 1.9 0.5

Met-320 Exp 25.1 0.2 22.9 0.2 22.2 0.2 15.5 +0.2 9.1± 0.2 3.7 ± 0.2 1.1 ±0.2 0.3 ±0.1

Calc 25.0 22.8 22.4 15.7 9.0 3.7 1.1 0.3

Phe-302 Exp 58.3±0.3 18.3±0.2 17.9±0.2 4.0 ± 0.2 1.3+0.2 0.2 ±0.1

Calc 58.1 18.3 18.0 4.1 1.3 0.2

Phe-308 Exp 27.7±0.2 18.3±0.2 17.8±0.2 12.5±0.2 10.0±0.2 6.4± 0.2 4.3 ± 0.2 2.0 ± 0.2 0.9 ± 0.1

Calc 27.9 18.0 17.8 12.5 10.0 6.4 4.3 2.0 0.9

Phe-336 Exp 27.3 0.2 17.9 +0.2 14.1 0.2 12.9 +0.2 10.3 0.2 7.5 ± 0.2 4.8 ± 0.2 2.9 ± 0.2 1.4± 0.2

Calc 27.2 17.9 14.3 13.1 10.4 7.6 4.7 2.8 1.3

Asp-302 Exp 45.7±0.2 28.3±0.2 19.4±0.2 5.0 ± 0.2 1.4± 0.2 0.2 ± 0.1

Calc 45.8 28.2 19.4 5.0 1.4 0.2

Asp-376 Exp 41.3±0.2 28.4±0.2 20.8±0.2 6.7 ± 0.2 2.3 ± 0.2 0.5 ± 0.1 0.1 ± 0.1

Calc 41.2 28.4 20.8 6.7 2.3 0.5 0.1

Asp-390 Exp 31.7±0.2 28.9±0.2 22.0±0.2 11.9±0.2 4.0 + 0.2 1.2±+ 0.2 0.2 + 0.1

Calc 31.7 28.9 22.1 11.9 4.0 1.2 0.3

Asp-418 Exp 27.8 0.2 26.1 0.2 21.8 +0.2 14.0 +0.2 7.1 ± 0.2 2.3 ± 0.2 0.7 ± 0.1 0.1 ±0.1

Calc 27.8 26.1 21.9 13.9 7.1 2.3 0.7 0.2

Glu-330 Exp 29.6±0.2 26.1±0.2 23.0±0.2 13.5±0.2 5.8 ± 0.2 1.5 ± 0.2 0.4 +0.1 0.1 ±0.1

Calc 29.5 26.1 23.2 13.4 5.8 1.5 0.4 0.1

Glu-404 Exp 26.7±0.2 25.4±0.2 23.6±0.2 14.6±0.2 6.8 ± 0.2 2.2 ± 0.2 0.6 +0.1 0.1 ± 0.1

Calc 26.6 25.5 23.6 14.5 6.9 2.2 0.6 0.1

Glu-432 Exp 23.5±0.2 22.1±0.2 22.4±0.2 16.6±0.2 9.4 ± 0.2 4.2 ± 0.2 1.3 ± 0.2 0.4 ± 0.1 0.1 ± 0.1

Calc 23.7 22.2 22.4 16.6 9.3 4.1 1.3 0.4 0.1

Tyr-302 Exp 58.1±0.3 18.3±0.2 18.0±0.2 4.0 ± 0.2 1.3 ± 0.2 0.2 ± 0.1

Calc 58.1 18.3 18.0 4.1 1.3 0.2
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Figure 6-8: Metabolic fluxes of E. coli grown in carbon-limited fed-batch culture. Metabolic

fluxes were determined by fitting 8 external fluxes and 191 mass isotopomer abundances to a

detailed flux model of E. coli. Fluxes were normalized to glucose uptake rate. Shown are

estimated fluxes for sample point #12 (at 29.6 hr). The top number is the estimated net flux

and the bottom number (in italics and between brackets) is the estimated exchange flux,

where 'n/d' indicates that the flux could not be estimated.
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Figure 6-9: Time profiles of selected intracellular fluxes. The best fit (solid line) and the

68% confidence interval (shaded area) are shown as a function of time for the 18 sample

points. Fluxes were normalized to glucose uptake rate.
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Figure 6-9 (continued): Time profiles of selected intracellular fluxes. The pentose

phosphate flux increased slightly in time. The TCA flux was constant at 47 ± 2.
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PDO biosynthesis

140

120
x

100

80

15 20 25 30 35 40 45
Time (hr)

Transhydrogenase
100

k
50 ......

Xx
L 0 .FL

-50

-100
15 20 25 30 35 40 45

Time (hr)

Figure 6-9 (continued): Time profiles of selected intracellular fluxes. The intracellular flux

towards glycerol and PDO increased by 10% from 118±6 to 130+6, whereas the efflux of

PDO fluctuated significantly. The transhydrogenase flux was not significantly different from

zero.
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6.3.7 Evaluation of estimated D and G parameters

As indicated earlier, the key to successful flux determination in this nonstationary system was

the introduction of two dilution parameters, the D parameter to account for the dilution of

the tracer and the G parameter to account for the dilution of biomass components. Values

for both parameters were estimated together with fluxes from mass isotopomer distributions

of sampled biomass pools. Our initial model contained 12 individual G parameters, i.e. one

G parameter for each of the 12 measured amino acids. The estimated G values for the 12

amino acids were not significantly different from one another, indicating that one G value

could be used for all biomass components. When we repeated flux estimation with a single

G parameter we obtained the same flux results. The sum of squared residuals increased

slightly compared to the model with 12 individual G parameters, however the SSRES was

still within statistically acceptable limits, especially when we took into account the fewer

number of free flux parameters that were fitted. Time profiles of the estimated D and G

parameters are shown in Figure 6-10. We can explain the observed profiles as follows. The

G parameter reflects the fraction of biomass that is labeled. Biomass produced before the

introduction of tracers was unlabeled, and thus the G value was zero. The observed increase

in G value after 18.6 hr reflects the production of labeled biomass, i.e. the fraction of labeled

biomass increased. The G value decreased after tracer was depleted reflecting the fact that

unlabeled biomass was again produced, i.e. the fraction of labeled biomass decreased. Note

that there was a delay between the switch to unlabeled feed at 30.0 h and the first noticeable

decrease in the G value at 31.6 hr. This delay reflect the fact that labeled glucose was still

present in the reactor for several hours after the feed was switched to unlabeled glucose feed

(see Figure 6-5). The D value describes the average enrichment of glucose from which

labeled biomass is produced. Figure 6-10 shows that the D value increased starting at 18.6

hr, i.e. reflecting the approach to isotopic steady state of the glucose pool. Note that the D

value never reaches unity, because there was always a fraction of biomass that was produced

from partially labeled glucose. After the tracer was removed the D value first dropped

slightly, i.e. reflecting the second glucose transient, and then remained constant at about 0.9.

At that point only unlabeled biomass was produced, which was accounted for by the G
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parameter. The constant D value after 31.6 hr indicates biomass turnover was not

significant. We set up the following theoretical model for the D and G parameters.

f (t) - L(t) -p(t) -dt

D(t) = (6.8)

S8(t)- p(t)-dt

8(t)- l(t)-dt

G(t) = (6.9)

fj (t) dt

0 if L(t) < 0.2
with 8(t) ifL(t)<0.2 (6.10)

1 if L(t) > 0.2

Here, L(t) is fractional labeling of glucose in the medium (i.e. which corresponds directly to

the measured glucose labeling shown in Figure 6-4), p(t) is the biomass growth rate, and 6(t)

formally defines what we mean by 'the labeling phase'. In this case, we define the labeling

phase as the timeframe when fractional glucose labeling is at least 20% of isotopic steady

state value. This definition was required, otherwise the D and G parameters became highly

correlated at low glucose enrichments. In this experiment, 6(t) was unity between 19.0 h and

31.3 h, and zero everywhere else. We used Eqs. 6.7 and 6.8 to predict time profiles of D and

G parameters based on measured labeling of glucose and growth rate as a function time. The

predicted time profiles are plotted in Figure 6-10. We found good agreement between the

predicted and estimated D and G values, which result further supports the validity of our

assumptions and this modeling approach.
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D parameter G parameter

0.75

0.25

20 25 30 35 40 45

Time (hr)
20 25 30 35 40

Time (hr)

Figure 6-10: Time profiles of estimated and predicted D and G parameters. The dots

represent estimated D and G parameters from MFA. The solid line represent the predicted

parameters based on Eqs. 6.8 and 6.9. We found good agreement between the predicted and

estimated parameter values, in support of the validity of our modeling method. The dashed

line in the left panel shows the fractional labeling of glucose, i.e. L(t) in Eq. 6.8. The G

values for individual amino acids (dashed lines in right panel) were not significantly different

from one another, indicating that one G value could be used for all biomass components.
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6.4 Discussion

In this contribution, we presented a novel modeling strategy for metabolic flux analysis in

nonstationary systems. Isotopic transients of precursor (i.e. glucose) and products (i.e.

sampled biomass components) were captured by two dilution parameters, i.e. D and G

parameters, respectively. We applied this modeling strategy to estimate intracellular fluxes of

E. coli in a fed-batch fermentation. Fluxes were determined by fitting an over-determined

data set of external flux measurements and labeling patterns of cellular amino acids to a

detailed model of E. coli. We obtained highly consistent fits with 66 redundant

measurements, which gave us a high degree of confidence in the estimated flux parameters.

Metabolic fluxes were determined for multiple time points, and as such we established for

the first time detailed time profiles of intracellular fluxes during a fed-batch fermentation.

The estimated fluxes provided insight into the overproduction of PDO by E. coli and

confirmed the genotype of this organism. The additional D and G parameters were

estimated together with the fluxes. We related the D and G parameter values to the labeling

history of sampled biomass. The G value was the fraction of labeled biomass in the total

biomass pool, and the D value was the biomass-averaged glucose labeling. The predicted

values for D and G parameters corresponded well with the estimated parameter values from

MFA.
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APPENDIX 6.A

Metabolic network model of E. coi"

Glycolysis

vl G6P (abcdef) <- F6P (abcdef)

V2 F6P (abcdef) + ATP -* FBP (abcdef)

V3 FBP (abcdef) - DHAP (cba) + GAP (def)

v4 DHAP (abc) <-> GAP (abc)

vs5 GAP (abc) -+ 3PG (abc) + ATP + NADH

v6 3PG (abc) <- PEP (abc)

v7 PEP (abc) -> Pyr (abc) + ATP

Pentose Phosphate Pathway

vs8 G6P (abcdef) - 6PG (abcdef) + NADPH

v9 6PG (abcdef) -+ Ru5P (bcdef) + C02 (a) + NADPH

vio Ru5P (abcde) -+ X5P (abcde)

vll Ru5P (abcde) <- R5P (abcde)

V12 X5P (abcde) + R5P (fghij) <- S7P (abfghij) + GAP (cde)

V13 S7P (abcdefg) + GAP (hij) ++ F6P (abchij) + E4P (defg)

V14 X5P (abcde) + E4P (fghi) +- F6P (abfghi) + GAP (cde)

Entner-Doudoroff Pathway

v15 6PG (abcdef) - KDPG (abcdef)

V16 KDPG (abcdef) - Pyr (abc) + GAP (det)

TCA Cycle

v17 Pyr (abc) -+ AcCoA (bc) + C02 (a) + NADH

v18 OAC (abcd) + AcCoA (ef) - Cit (dcbfea)

v19 Cit (abcdef) +- ICit (abcdef)
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v20 ICit (abcdef) -> AKG (abcde) + C02 (f) + NADPH

v21 AKG (abcde) - SucCoA (bcde) + C02 (a) + NADH

v22 SucCoA (abcd) -> Suc (/2 abcd + /2 dcba) + ATP

v23 Suc (/2 abcd + /2 dcba) <- Fum (1/2 abcd + /2 dcba) + FADH2

v24 Fum (1/2 abcd + /2 dcba) <-> Mal (abcd)

v25 Mal (abcd) -> OAC (abcd) + NADH

Amphibolic Reactions

V26 Mal (abcd) - Pyr (abc) + C02 (d) + NADPH

v27 Mal (abcd) -+ Pyr (abc) + C02 (d) + NADH

v28 PEP (abc) + C02 (d) - OAC (abcd)

v29 OAC (abcd) + ATP -> PEP (abc) + C02 (d)

Acetic Acid Formation

v30 AcCoA (ab) -> Ac (ab) + ATP

PDO Biosynthesis

v31 DHAP (abc) + NADH -> Glyc3P (abc)

v32 Glyc3P (abc) -> Glyc (abc)

v33 Glyc (abc) -> HPA (abc)

v34 HPA (abc) + NADPH -> PDO (abc)

Amino Acid Biosynthesis

v35 AKG (abcde) + NADPH + NH3 -- Glu (abcde)

V36 Glu (abcde) + ATP + NH3 -- Gin (abcde)

V37 Glu (abcde) + ATP + 2 NADPH - Pro (abcde)

v38 Glu (abcde) + C02 (f) + Gin (ghijk) + Asp (1mno) +- AcCoA (pq) + 5 ATP + NADPH -+

Arg (abcdef) + AKG (ghijk) + Fum (Imno) + Ac (pq)

v39 OAC (abcd) + Glu (efghi) -> Asp (abcd) + AKG (efghi)

v4oU Asp (abcd) + 2 ATP + NH3 -> Asn (abcd)
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v41 Pyr (abc) + Glu (defgh) -+ Ala (abc) + AKG (defgh)

V42 3PG (abc) + Glu (defgh) -+ Ser (abc) + AKG (defgh) + NADH

V43 Ser (abc) ++ Gly (ab) + MEETHF (c)

V44 Gly (ab) ++ C02 (a) + MEETHF (b) + NADH + NH3

V45 Thr (abcd) -> Gly (ab) + AcCoA (cd) + NADH

v46 Set (abc) + AcCoA (de) + 3 ATP + 4 NADPH + S04 -4 Cys (abc) + Ac (de)

V47 Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) + ATP + 2 NADPH -+

LL-DAP (abcdgfe) + AKG (hijkl) + Suc (/2 mnop + /2 ponm)

v48 LL-DAP (abcdefg) - Lys (abcdef) + C02 (g)

V49 Asp (abcd) + 2 ATP + 2 NADPH -+ Thr (abcd)

v50 Asp (abcd) + METHF (e) + Cys (fgh) + SucCoA (ijkl) + ATP + 2 NADPH --

Met (abcde) + Pyr (fgh) + Suc (/2 ijkl + /2 lkji) + NH3

Vsl Pyr (abc) + Pyr (def) + Glu (ghijk) + NADPH -+ Val (abcef) + C02 (d) + AKG (ghijk)

V52 AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijklm) + NADPH -

Leu (abdghe) + C02 (c) + C02 (f) + AKG (ijklm) + NADH

v53 Thr (abcd) + Pyr (efg) + Glu (hijkl) + NADPH -- Ile (abfcdg) + C02 (e) + AKG (hijkl) + NH3

V54 PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH -+

Phe (abcefghij) + C02 (d) + AKG (klmno)

V55 PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH -

Tyr (abcefghij) + C02 (d) + AKG (klmno) + NADH

V56 Ser (abc) + R5P (defgh) + PEP (ijk) + E4P (lmno) + PEP (pqr) + Gin (stuvw) + 3 ATP + NADPH -+

Trp (abcedklmnoj) + C02 (i) + GAP (fgh) + Pyr (pqr) + Glu (stuvw)

V57 R5P (abcde) + FTHF (f) + Gin (ghijk) + Asp (lmno) + 5 ATP e

His (edcbaf) + AKG (ghijk) + Fum (Imno) + 2 NADH

One-Carbon Metabolism

v58 MEETHF (a) + NADH 4 METHF (a)

vs59 MEETHF (a) --> FTHF (a) + NADPH
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Oxidative Phosphorylation

v60 NADH + /2 02 -- 3 ATP

v61 FADH2 + /2 02 - 2 ATP

Transhydrogenation

V62 NADH <- NADPH

ATP Hydrolysis

v63 ATP -> ATP:ext

Transport

v64 Gluc:ext (abcdef) + ATP -+ G6P (abcdef)

V65 Cit:ext (abcdef) -- Cit (abcdef)

v66 Glyc (abc) +<- Glyc:ext (abc)

V67 PDO (abc) -+ PDO:ext (abc)

v68 Ac (ab) -> Ac:ext (ab)

V69 C02 (a) -> C02:ext (a)

V70 02:ext -- 02

V71 NH3:ext -+ NH3

v72 SO4:ext -) S04

Biomass Formation*

V73 0.488 Ala + 0.281 Arg + 0.229 Asn + 0.229 Asp + 0.087 Cvs + 0.250 Glu + 0.250 Gin + 0.582 Gly +

0.090 His + 0.276 Ile + 0.428 Leu + 0.326 Lys + 0.146 Met + 0.176 Phe + 0.210 Pro + 0.205 Ser + 0.241

Thr + 0.054 Trp + 0.131 Tyr + 0.402 Val + 0.205 G6P + 0.071 F6P + 0.754 R5P + 0.129 GAP + 0.619

3PG + 0.051 PEP + 0.083 Pyr + 2.510 AcCoA + 0.087 AKG + 0.340 OAC + 0.443 MEETHF + 33.247

ATP + 5.363 NADPH --> 39.68 Biomass + 1.455 NADH

* The biomass formation reaction is based on precursor and cofactor requirements for E. coli

as described by Neidhardt.
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APPENDIX 6.B

Validation of carbon balance and degree of reduction balance

External fluxes were checked for gross errors by validating the carbon balance and the

degree of reduction balance. The carbon balance is given by:

carbonin _ ci Vi,in
carbonout ci Vi,out

6 -glucose 6 -citrate

Vbiom.ass 3- vPDO +3-V glycerol VCO 2 + 2 vacetate

The degree of reduction balance is given by:

free electronsin _ i ' Vi,in _

free electronsout Yi vi,out

2 4- Vglucose + 1 8- citrate -4 - o2
4.2 -v biomass +16VD o +14 - glycerol +8 -vacetate

In the above equations ci is the number of carbon atoms, vi is the rate of production, and Ti

is the degree of reduction for metabolite i. The degree of reduction corresponds to the

number of free electrons, defined such that yi=0 for the following small molecules: H20, H +,

C0 2, HCO 3-, NH4
+ , SO 42-, PO 43-. These metabolites are therefore not included in Eq. 6.B2.

In general, the degree of reduction for any arbitrary metabolite CcHHOoNNS sPp(charge) is

calculated as follows:

y = 4-C + H - 20 - 3N + 6-S + 5-P -charge (6.B3)
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APPENDIX 6.C

Fermentation data

Unlabeled Labeled Reactor Sample

Sample Time Feed Feed Volume Volume OD 55o Glucos

(#) (hr) (g)"' (g) (L) (mL) (-) (mM)

0 0.1 45.1 0.0 0.99 11 0.1 112.2

1 15.4 47.1 0.0 0.98 11 3.2 55.3

2 18.3 56.4 0.0 0.98 21 6.3 40.5

3 19.6 65.6 10.6 0.97 11 8.1 47.0

4 20.6 65.6 22.6 0.97 11 9.8 46.9

5 22.6 65.6 51.6 1.00 15 14.0 37.4

6 23.6 65.6 71.9 0.99 11 16.1 41.1

7 24.6 65.6 93.8 0.99 11 18.8 43.0

8 25.6 65.6 118.6 1.00 11 20.8 47.8

9 26.6 65.6 145.3 1.01 12 22.0 52.8

10 27.6 65.6 169.0 1.02 11 23.5 45.6

11 28.6 65.6 197.7 1.03 11 24.7 50.7

12 29.6 65.6 227.2 1.04 16 26.0 56.9

e Glycerol Acetate PDO Citrate

(mM) (mM-) (mM) (mM)*

0.0

75.4

109.3

114.5

120.6

133.4

135.7

137.9

137.4

0.0

0.0

0.0.

0.0

1.3

1.8

2.4

3.2

3.9

1.5

N/A

28.3

57.4

88.1

175.0

221.7

281.8

350.3

9.2

14.6

14.1

13.8

13.6

13.0

12.6

12.2

11.5

132.8 3.8 424.9 10.8

124.8 4.2 499.7

114.5 3.8 577.3

103.7 4.4 657.7

10.2

9.6

9.4

13 30.6 76.8

14 31.6 104.8

15 32.6 130.4

16 33.6 154.2

17 35.0 185.2

18 36.6 220.4

19 40.7 288.2

20 42.6 315.9

21 44.6 345.1

240.0

240.0.

240.0

240.0

2 40....................

240.0

240.0

240.0240.0
240.0

1.01 11 27.2

1.07 12 28.2

1.06 11 28.8

1.07 11 30.0

1.10 11 30.4

1.11 11 31.2

1.16 11 33.0

1.17 11 31.8

1.19 17 31.2

46.4 96.8 4.2

48.5 89.8 4.6

44.5 86.8 4.0

45.6 84.9 5.6

43.9 82.0 5.7

49.3 80.8 5.4

47.8 75.8 5.9

52.9 74.5 5.0

62.0 70.3 4.5

742.4 9.1

806.1 8.7

872.0 8.3

932.4 7.9

1006.6 7.5

1070.8 7.3

1246.4 6.9

1304.1 6.9

1312.0 6.7

* The specific gravity of medium was 1.030 g/mL.

** Citrate data may be inaccurate, i.e. citrate co-eluted with another metabolite in the HPLC analysis.

*** Unlabeled feed contains 46.2 wt% glucose. Labeled feed contains 46.2 wt% glucose (75 wt% o1-

'3C]glucose and 25wt0 o [U-' 3C]glucose).
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APPENDIX 6.D

Off-gas analysis data

Sample Time Flow Rate O2,in N 2,in 12CO2,out 13CO2,out O2,out N 2,out

(hr) (SLPM)* (%)

0.1 0.500 20.88

15.4 0.500 20.86

18.3 0.500 20.87

19.6 0.500 20.88

20.6 0.500 20.87.

22.6 0.500 20.87

23.6 0.500 20.87

24.6 0.500 20.87.

25.6 0.500 20.87

26.6 0.500 20.87

27.6 0.500 20.87.

28.6 0.500 20.87
28.6 0.500 20.87
29.6 0.500 20.87

30.6 0.500 20.87

(%)
78.19

78.21

78.20

78.19

78.20.

78.20

78.21

78.20.

78.20

78.20

78.20.

78.20
78.20
78.21

78.20

(%)
0.02

1.24

2.77

2.79

2.84

3.33

3.60

3.93

4.23

4.48

4.64

4.74

4.73

6.05

(%) (%)
0.00 20.87

0.01 20.05

0.06 19.30

0.85 18.89

1.48 18.57

2.50 17.81

2.90 17.53

3.28 17.24

3.59 17.02

3.83 16.85

3.98 16.76

4.11 16.74

4.20 16.75

2.61 16.87

14 31.6 0.500 20.88 78.19 7.57 0.80 17.00 73.77

15 32.6 0.500 20.87 78.20 7.59 0.40 17.19 73.97

16 33.6 0.500 20.86 78.21 7.30 0.26 17.35 74.23

17 35.0 0.500 20.86 78.21 6.72 0.18 17.64 74.59

18 36.6 0.500 20.88 78.20 6.09 0.17 17.90 74.98

19 40.7 0.500 20.87 78.20 4.79 0.12 18.42 75.78

20 42.6 0.500 20.87 78.20 4.30 0.09 18.63 76.11

21 44.6 0.500 20.87 78.20 3.91 0.07 18.78 76.35

* SLPM (standard liters per minute) defined at 1 Atm and 250C.
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APPENDIX 6.E

Calculated external fluxes

Sample Time Glucose 02 C02 Biomass Glycerol Acetate PDO Citrate

(#) (hr) (mmol/h) (mmol/h) (mmol/h) (mCmol/h) (mmol/h) (mmol/h) (mmol/h) (mmol/h)

2 18.3 -21.7 -15.5 35.3 17.5 9.4 0.2 17.1 -0.1

19.6 -29.2 -19.6 45.6 22.6 8.4 0.4

20.6 -33.3 -22.3 54.4 25.0 6.6 0.5

29.1 -0.1

35.4 -0.1

-45.3 -29.6

-50.2 -32.1

74.1 31.6 5.8 0.6

83.1 32.9 4.3 0.7

24.6 -54.8

25.6 -59.4

-34.7 92.5 31.6 2.3 0.6 68.2

-36.4 100.9 29.4 0.0 0.5 77.9

-0.4

-0.4

9 26.6 -63.0 37.5 107.8 26.0 -3.2 0.2 84.9

10 27.6 -65.6 -38.0 112.2 24.4 -6.2 0.2 89.7 -0.3

11 28.6 -68.0 -37.7 115.4 21.6 -8.0 0.2 88.6 -0.3

12 29.6 -68.6 -37.2 116.5 23.2 -7.1 0.2 94.3 -0.2

13 30.6 -68.7

14 31.6 -67.0

15 32.6 -63.3

16 33.6 -60.2

-36.3 112.8 22.0 -5.2 0.2 93.0 -0.2

-35.1 108.9 22.3 -2.8 0.3 90.9 -0.2

-33.0 103.5 21.8

-31.6 97.7 16.4

-1.0 0.5 89.5 -0.1

-0.8 0.4 77.8 -0.2

17 35.0 -54.7 -29.0 88.8 15.8

18 36.6 -49.2 -27.2 80.1 13.5

19 40.7 -37.2 -22.9 62.2

0.4

0.1

73.6 -0.1

68.0 0.0

5.4 -0.3 -0.1 52.1 0.0
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Chapter 7

Quantification of net and reversible

hepatic fluxes through the combined use

of 13C and 2H-tracers

7.1 Introduction

Flux determination in mammalian systems is of great importance for detailed analysis of cell

physiology. The most powerful method for metabolic flux determination in complex

biological systems is based on the use of stable isotopes that, unlike radioisotopes, can be

administrated safely to subjects in high-risk population groups such as infants, children and

pregnant women, making them suitable for in vivo studies. Metabolic conversion of

isotopically labeled substrates generates molecules with distinct labeling patterns (i.e.

positional isotopomers, or simply isotopomers) that can be detected by gas chromatography

mass spectrometry (GC/MS) and nuclear magnetic resonance (NMR). To interpret these

data we use large-scale mathematical models that describe the relationship between

metabolic fluxes and the observed isotopomer abundances. In the forward calculation, these

models simulate a unique profile of isotopomer abundances for given steady-state fluxes. In

metabolic flux analysis we solve the more challenging inverse problem, i.e. calculating

metabolic fluxes from the enrichments of metabolites using nonlinear least-squares

procedures. Powerful mathematical and statistical tools have been developed for quantitative

interpretation of isotopomer data. Recently, a generic flux analysis tool was developed,

Metran (see Chapter 3), that accepts as input observed isotopomer profiles of metabolites

and returns estimated fluxes and their confidence intervals. The accuracy and precision of
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estimated fluxes depends on the choice of isotopic tracer, the quality of isotopomer data,

and the number of redundant measurements. Methods for experiment design aim at finding

the most informative tracer(s) using criteria from linearized statistics (Chapter 3). To

maximize the number of redundant measurements, labeling patterns of multiple metabolite

pools are sampled. For example, metabolic fluxes have been estimated in cultured cells and

in perfused organs by measuring isotopomer distributions of intracellular metabolites such as

citrate, alpha-ketoglutarate, succinate, malate, and amino acids by GC/MS (Fernandez, 1995;

KIhairallah et al., 2004). As powerful as current computational methods may be, many fluxes

are still unobservable due to insufficient flux constraints. To address this problem we

developed a novel framework for estimating fluxes in complex biological systems through

the combined analysis of multiple tracer experiments. Data from experiments with different

isotopic tracers are combined and analyzed simultaneously, taking full advantage of the flux

information content from each experiment. We illustrate this approach with the detailed

analysis of the gluconeogenesis pathway in cultured primary hepatocytes. Here, we applied

three isotopic tracers, i.e. [U-13C3]glycerol, [2Hlglycerol, and 2H20, and measured mass

isotopomer distributions of two glucose fragments by GC/MS. From comprehensive

analysis of the combined data allowed us to calculate net and reversible fluxes in the

gluconeogenesis pathways, which were otherwise unobservable.

7.2 Methods

7.2.1 Metabolic network model

Figure 7-1 shows the gluconeogenesis model used in this study to calculate fluxes. Table 7-1

provides the stoichiometry and atomic transitions for the 21 network reactions. The model

contains two explicit gluconeogenic precursors, i.e. oxaloacetate and glycerol. Oxaloacetate is

the intrahepatic precursor to glucose that is derived from lactate, pyruvate, glutamine, and

other related metabolites. In the metabolic route to glucose oxaloacetate is first converted to

phosphoenolpyryvate by the irreversible reaction catalyzed by phosphoenolpyryvate

carboxykinase (PEPCKI) (reaction 16). The second gluconeogenic precursor, glycerol, enters

the gluconeogenesis pathway via DHAP (reactions 10-11). Reactions 8 and 9, i.e.
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phosphorylase and phosphoglucomutase, describe glycogenolysis, i.e. breakdown of

endogenous glycogen as the second major pathway for glucose production in hepatocytes.

Reaction reversibilities and absolute stereochemistry for carbon and hydrogen atom

transitions in the model were assigned based on current knowledge. For example, it is

known that phosphoglocose isomerase (PGI) transfers specifically the pro-R hydrogen at C1

of fructose 6-phosphate (F6P) to the C2 position of glucose 6-phosphate (G6P). Hydrogen

exchange with the solvent was also observed for PGI (Malaisse, 1990; Malaisse, 1991;

Seeholzer, 1993). Malaisse et al. (1990, 1991) reported for a single passage in the direction

F6P->G6P, 65% intramolecular hydrogen transfer and 35% hydrogen exchange, and for a

single passage in the direction G6P-+F6P, 72% intramolecular hydrogen transfer and 28%

hydrogen exchange. It is also known that triose phosphate isomerase (TPI) has the same

stereochemistry as PGI. Phosphomannose isomarase (PMI), on the other hand, has the

opposite stereochemistry, i.e. PMI specifically abstracts the pro-S hydrogen of F6P and

exchanges it with the solvent. No intramolecular hydrogen transfer was observed for this

reaction, i.e. the hydrogen at C2 of mannose 6-phosphate (M6P) always originates from the

solvent. The last five reactions in the model (reactions 17-21) account for hydrogen

incorporation/metabolism of oxaloacetate and NADH. Oxaloacetate may incorporate

hydrogen atoms at C3 from the solvent in reactions of the tricarboxylic acid cycle, e.g.

fumarase, or via alanine aminotransferase. Reactions 17-18 describe hydrogen exchange of

the pro-S and pro-R hydrogen atoms, respectively. Our model further includes three explicit

sources for NADH hydrogen, i.e. 1,3-biphosphoglycerate via GAPDH (reaction 11),

hydrogen exchange with the solvent (reaction 19), and from unlabeled endogenous sources

(reaction 20). In this model, all fluxes are expressed as percentages of the glucose output

flux, which was fixed at 100. There are 17 unknown independent fluxes in this model: flux of

glycerol and oxaloacetate to glucose (reactions 10 and 16), hydrogen exchange of pro-S and

pro-R hydrogen atoms of oxaloacetate with the solvent (reactions 17-18), fractional

contribution of the solvent and unlabeled endogenous sources to NADH (reactions 19-20),

and 11 reversible reactions.
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Glucose

t
G6P G1 P *- Glycogen

H+

EC2+ E4P +- F6P -* M6P

t
FBP

DHAP
NADH
NAD+

Glyc3P

t
Glycerol

GAP
$ NAD+

NADH

BPG

Oxaloacetate

Figure 7-1: Reactions of the gluconeogenesis network model used for flux calculations. The

corresponding reaction stoichiometry and atomic transitions for network reactions are given

in Table 7-1.
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Table 7-1

Stoichiometry and atom transitions for reactions in the gluconeogenesis network model. For

each compound carbon atoms are identified using lower case letters to represent successive

carbon atoms of each compound. Atom transitions for hydrogen atoms are same as for the

corresponding carbon atoms, unless otherwise indicated.

No. Enzyme Reaction stoichiometry Atom transformations

Upper gluconeogenesis

1 Glucose 6-phosphatase G6P - Gluc abcdef -+ abcdef

2 Phosphoglucose isomerase F6P + 0.3 H <- G6P + 0.3 H abcdef <- abcdef

(70%) C1-HproR <- C2-H

(30%) C1-HproR + H -> H + C2-H

3 Fructose 1,6-bisphosphatase FBP -- F6P abcdef -+ abcdef

4 Aldolase DHAP + GAP +-+ FBP + H abc + def <- cbadef

(DHAP)C1-Hpros ++ H

5 Triose phosphate isomerase DHAP + 0.3 H +- GAP + 0.3 H abc +-> abc

(70%) C1-HproR <- C2-H

(30%) C1-HproR + H +- H + C2-H

6 Phosphomannose isomerase F6P + H -> M6P + H abcdef <+ abcdef

C1-Hpros + H <- H + C2-H

7 Transketolase F6P <- E-C2 + E4P abcdef + ab + cdef

Glycogenolysis

8 Phosphorylase Glycogen -- GIP abcdef - abcdef

9 Phosphoglucomutase GIP +~ G6P abcdef -> abcdef

Glycerol metabolism

10 Glycerol kinase Glyc -+ Glyc3P abc -4 abc

11 Glycerol 3-phosphate Glyc3P <- DHAP + NADH abc <- abc

dehydrogenase C2-H -+ NADH
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Table 7-1 (continued)

Stoichiometry and atom transitions for reactions in the gluconeogenesis network model.

Lower gluconeogenesis

12 Glyceraldehyde 3- BPG + NADH -> GAP abc +-> abc

phosphate dehydrogenase NADH -> Cl-H

13 Phosphoglycerate kinase 3PG -+ BPG abc +-> abc

14 Phosphoglycerate mutase 2PG <-> 3PG abc +-4 abc

15 Enolase PEP + H +-4 2PG abc --+ abc

H <- C2-H

16 Phosphoenolpyruvate OAC -4 PEP + C02 abcd -> abc + d

carboxykinase

Hydrogen incorporation into oxaloacetate and .NADH

17 - OAC + -> OAC + H

18 -

19 -

abcd - abcd

C3-Hpr' s + H -- H + C3-Hpros

OAC + H - OAC + H abcd - abcd

C3-HproR + H <- H + C3-HtproR

1- -> NADH H -+ NADH

unlabeled - NADH

NADH - other

Hunabe
l
cd -- NADH

NADH -- HFlther
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7.2.2 Estimating gluconeogenesis fluxes using MIDA

Mass isotopomer distribution analysis (MIDA) was proposed as a method for estimating

fractional gluconeogenesis from measurements of glucose labeling after incorporation of

[13C]glycerol, [13 C]lactate, or other 13C-labeled precursors (Neese, 1995). In MIDA, glucose is

considered a dimer of two triose phosphate molecules. [13 C]Glucose produced by

gluconeogenesis may be diluted by unlabeled glucose molecules from glycogenolysis. The

mass isotopomer distribution (MID) of glucose is fully determined by the fractional

contribution of GNG to glucose production and the labeling of triose phosphates. For

example, consider the synthesis of [13C]glucose from [U- 13C]glycerol. Assuming there is no

scrambling of 13C-labeling via the TCA cycle, or reactions of the pentose phosphate

pathway, the steady-state MID of glucose is given by:

M0 = f (1- m3,DHAP) (1-m3,GAP) + (l-) (7.1)

M3 =f (m3,DHAP (1 m3,GAP) + (1- m3,DHAP) * m3,GAP ) (7.2)

M 6  f m 3,DHAP m3,GAP  (7.3)

Here, f is the fraction of glucose produced by GNG, Mi are the mass isotopomers of

glucose, and mi are mass isotopomers of the two triose phosphate pools, i.e. DHAP and

GAP. Assuming that TP pools may be unequally labeled, we can introduce the parameter a

to describe the extent of equilibration of triose phosphates:

a = m3,GAP / m3,DHAP (7.4)

Note that a= 1 assumes complete equilibrium of the TP pools. We can solve Eqs. 7.2, 7.3,

and 7.4 for the unknown variables m3,DHAP, m3,GAP, and (, and obtain the following

expression for fractional GNG as a function of glucose mass isotopomers M3 and M 6, and

the parameter a:
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(c (M 3 +2-M 6)
2

f 2 1 (7.5)
(1 + )2 M6

From the overall 13C-labeling balance we can additionally derive the following expression for

the total flux of [U- 13C]glycerol to glucose:

Flux [
T
13C]glycerol-+glucos = (IMI1 + 2-M 2 + 3-M 3 + 4M 4 + 5·iMs + 6.fM6 ) / 3 (7.6)

7.2.3 Simulating isotopomer distributions for 13C and 2H tracer experiments

For given steady state fluxes a unique profile of isotopomer abundances can be calculated

for all metabolites (Chapter 2). This is done by first enumerating material balances for all

possible positional isotopomers, thus generating a comprehensive mathematical model

relating isotopomer abundances to fluxes. Positional isotopomers (termed isotopomers from

now on) are isomers of a metabolite that differ only in the labeling state of their individual

atoms, for example, 13C vs. 12C in carbon-labeling studies, and 2H vs. IH in hydrogen-

labeling studies. For a metabolite comprising N atoms that may be in one of two (labeled or

unlabeled) states, 2" isotopomers are possible. Consequently, the number of isotopomers

becomes prohibitively large when we consider both carbon and hydrogen atoms. For

example, there are only 64 (=26) carbon atom isotopomers of glucose and 128 (=27)

hydrogen atom isotopomers, but there are 8192 (=26+7) isotopomers of glucose carbon and

hydrogen atoms. Note that only the seven stable (i.e. carbon-bound) hydrogen atoms of

glucose are considered, i.e. carboxyl and hydroxyl hydrogen atoms of metabolites exchange

rapidly with the solvent and are lost during chemical derivatization in preparation for

GC/MS analysis. Thus, a typical mathematical model may contain thousands of isotopomers

of carbon and hydrogen atoms. To reduce the computational burden of isotopomer

simulations we constructed two isotopomer simulation models for the gluconeogenesis

network model (Figure 7-1), one isotopomer model where we consider only carbon atom

isotopomers, and a model where we consider only hydrogen atom isotopomers. The first

model will be used for carbon-labeling simulations, in our case to simulate the [U-
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13C]glycerol experiment, and the second model for hydrogen-labeling simulations, in this

case for [2H5]glycerol and 2H20 experiments.

7.2.4 Analysis of a single tracer experiment

The goal of Metabolic Flux Analysis (MFA) is to estimate metabolic fluxes from measured

enrichments of metabolites. Previously we described the MFA algorithm for the analysis of a

single tracer experiment (Chapter 3). In short, fluxes are estimated by minimizing the

difference between the observed and simulated measurements using a least-squares

minimization procedure. The objective of this routine is to evaluate a set of feasible fluxes

that best accounts for the observed isotopomer and flux measurements:

min (= (u-Xobs T x _1 ) X(() - xobs

Here, the objective function D is the covariance-weighted sum of squared residuals, x(u) is

the vector of simulated measurements , Xobs is the vector of experimental data, Ex is the

measurement covariance matrix, and u is the vector of independent flux parameters. Eq. 7.7

is nonlinear and requires an iterative solution scheme, where at each iteration the following

quadratic programming (QP) subproblem is solved (see Chapter 3):

min AC = 2- Au T J + Au T H Au (7.8)
Au

dx U b dx 1(dx)with J= T.du '-x(u) xob ) and H =_x 9)
\du) Kdu) ' du)

In other words, J is the Jacobian and H is the Hessian matrix. The optimal search direction

for the fluxes (Au) at each iteration is given by:

Au = -H - -J (7.10)

- 229 -



CHAPTE•R 7. QUANTIFICATION OF HEJPATIC FLiUXiS FROM 13C AND 2H-TRACERS

Thus, to determine Au at each iteration we first simulate the measurements x(u), calculate

the sensitivity matrix of the simulated measurements with respect to fluxes (dx/du), and then

evaluate J and H (Eq. 7.9).

7.2.5 Simultaneous analysis of multiple tracer experiments

The above procedure was generalized to allow simultaneous analysis of isotopomer data

from multiple experiments for the calculation of the search direction of fluxes at each

iteration. In this scheme J and H are constructed as follows:

dx,/du E, 0 0 0 x,(u-x bs

0 o . O
dxm/du 00 0 0 Y~m xm(u)- obs

dx,/du [ O o 0 0 o dx,/du
dx,/du 0 2 0 0 dx 2 /du

H = (7.12)
00 *. O

dxm/du 0 0 0 x m dxm/du-

Here, xi(u) and dxi/du are the simulated measurements and measurement sensitivities for

experiments i= 1,...m; and Zxi are the corresponding measurement covariance matrices. The

two underlying assumptions are: (i) measurements from each experiment are independent,

and (ii) metabolic fluxes are identical in each experiment. The first assumption is trivial, and

the second assumption is easily validated experimentally by demonstrating reproducible

results from multiple experiments for the same conditions. Figure 7-2 shows schematically

the proposed algorithm for flux determination through combined analysis of multiple tracer

experiments. Flux estimation is initiated with random values for all fluxes. At each iteration,

measurements and sensitivities are simulated for each experiment individually, using the

same fluxes for each simulation. The simulated isotopomer distributions are then used to
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Start with random
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and network structure

Figure 7-2: A schematic of the algorithm for flux determination through combined analysis

of multiple tracer experiments.
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construct the Jacobian and Hessian matrices using Eqs. 7.11 and 7.12. The optimal search

direction for fluxes is calculated using Eq. 7.10, and the flux vector is updated. The flux

estimation algorithm continues until a predefined convergence criterion is met. At

convergence, confidence intervals for all fluxes are determined using nonlinear statistical

techniques. A nice feature the described method is that the computational effort for

calculating J and H increases only linearly with the number of experiments that are included

in the analysis. Note that inequality constraints on fluxes can be included without difficulty

in this general scheme, and all kinds of step controlling strategies can be applied (Byrd et al.,

1999; Gill et al., 1991). This generalized algorithm for MFA was incorporated into our flux

analysis software Metran.

7.2.6 Statistical analysis

After the fluxes were calculated, nonlinear statistical techniques were applied to obtain

confidence intervals of fluxes by evaluating the sensitivity of the objective function with

respect to fluxes as described by previously (Chapter 3). Flux validation was accomplished by

a statistical test for the goodness-of-fit (i.e. chi-square test for model adequacy), and a

normality test for the weighted residuals. To ensure a global optimum, flux estimation was

repeated at least four times starting with random initial values. Sensitivity analysis was

employed to determine the relative importance of measurements for individual fluxes as

described previously (Chapter 3).

7.2.7 Materials

Biochemicals were obtained from Sigma Chemicals (St. Louis, MO). [U- 13C]glycerol, and [U-

13C]glutamine were obtained from Cambridge Isotope Laboratories (Andover, MA).

[2Hs]glycerol was obtained from Isotec (Miamisburg, OH). Tissue culture media were

obtained from Sigma (St. Louis, MO). Hepatocyte Medium Base was DMEM powder

(Sigma) supplemented with 3.7 g/L NaHCO 3, 30 mg/L proline, 100 mg/L ornithine, 610

mg/L niacinimide, 0.544 mg/L ZnCl2, 0.75 mg ZnSO 4.7H 20, 0.2 mg/L CuSO 4.5H20, 0.025

mg/L MnSO 4, 2 g/L bovine serum albumin, 100,000 U penicillin, and 100,000 U
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streptomycin. Hepatocyte Attachment Medium consisted of Hepatocyte Medium Base

supplemented with 5 nM insulin, 100 nM dexamethasone and 20 mM glucose. Hepatocyte

Growth Medium consisted of Hepatocyte Medium Base supplemented with 1 nM insulin,

100 nM dexamethasone and 20 mM glucose.

7.2.8 Hepatocyte isolation and cell culture

Hepatocytes were isolated from C57BL/6 mice fed ad libitum by modified two step-

collagenase perfusion as described by Seglen (1976). The cell yield was between 1.0-1.5x10 6

cells/g mouse with viabilities between 85-90% (Trypan Blue staining). Crude cell suspension

was scraped from the liver sac and purified by coarse 100 jpm filtration, a second 70 gm

filtration, and Percoll fractionation for hepatocytes. Purified cells were suspended in

Hepatocyte Attachment Medium (HAM) and seeded in 6-well plates (1.3x106 cells/well) for

90 minutes at 37 0C. Attached cells were washed once with PBS and cultured overnight in

Hepatocyte Growth Medium (HGM). After 18 hr incubation at 37 0C and 5% CO 2 the

attached hepatocytes were washed once with PBS, and subsequently cultured in glucose-free

HGM enriched with gluconeogenic carbon sources: 1mM glycerol, 10 mM lactate, 1 mM

pyruvate, 5 mM glutamine, and 2 mM acetate. Four chemically identical isotopically-labeled

media were prepared, containing either [U- 13C]glycerol, [zHs]glycerol, 10% 2H20, or no

tracers (as control). The cells were then incubated for 2, 5, or 8 hr at 370C and 5% CO 2 in

the labeled media. At the end of the incubation period medium samples were collected and

stored at -80 0C prior to analysis.

7.2.9 Derivatization of glucose

Glucose labeling patterns were determined by GC/MS analysis of aldonitrile pentaacetate

(Szafranek, 1974) and di-O-isopropylidene acetate derivatives of glucose (Hachey, 1999). For

each derivatization 200 piL of sample was deproteinized by addition of 500 IL of acetone

(-40 C). The mixture was centrifuged and the supernatant evaporated to dryness under air

flow. For aldonitrile pentaacetate derivatization, 50 tL of 2 wt%/o hydroxylamine
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hydrochloride in pyridine was added to the dry residue and the sample was heated at 90 0 C

for 60 min. This was followed by addition of 100 jiL of propionic anhydride and heating at

60 0 C for additional 30 min. The sample was then evaporated to dryness, dissolved in 100 iL

of ethyl acetate and transferred to an injection vial for GC/MS analysis. For di-O-

isopropylidene acetate derivatization, 500 p.L of 0.38 M sulfuric acid in acetone was added to

the dry residue and the sample incubated at room temperature for 60 min. 400 ýPL of 0.44 M

sodium carbonate was added to neutralize the reaction, followed by addition of 1 mL of

saturated sodium chloride. Di-O-isopropylidene derivatives were extracted by partitioning

with 1 mL of ethyl acetate. The upper, organic layer was evaporated to dryness, followed by

addition of 150 ptL of acetic anhydride in pyridine (2:1 v/v) and heating at 60 0 C for 30 min.

The sample was then evaporated to dryness, dissolved in 100 11L of ethyl acetate and

transferred to an injection vial for GC/MS analysis.

7.2.10 GC/MS analysis

Gas Chromatography-Mass Spectrometry (GC/MS) analysis was performed using HP 5890

Series II GC (Gas Chromatograph) equipped with a DB-1701 [30 m x 0.25 mm (inner

diameter) x 0.25 tpm] capillary column, connected to HP 5971 MSD (Mass Selective

Detector) operating under ionization by electron impact (EI) at 70 eV. The mass

spectrometer was calibrated using the 'Max Sensitivity Autotune' setting. Helium flow was

maintained at 0.737 mL/min by electronic control. The temperatures of the injector and the

detector were kept at 2500 C and 3000 C, respectively. The temperature of the column was

started at 80'C for 1 min, increased to 2800 C at 200C/min, and held for 4 min. For analysis

of aldonitrile pentaacetate glucose, mass spectra were recorded in the mass range 314-322 at

12 scans/sec. The fragment at m/z 314 (C13H 160 8N) corresponded to C1-C5 carbon atoms,

and H2-H5 hydrogen atoms of glucose. For the analysis of di-O-isopropylidene acetate

glucose, mass spectra were recorded in the mass range 287-292 at 12 scans/sec. The

fragment at m/z 287 (C13H1 90 7) corresponded to all six carbon and all seven carbon-bound

hydrogen atoms of glucose. Measured intensities were corrected for noise (baseline

correction), and mass isotopomer distributions were obtained by integration. All mass
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isotopomer values were expressed as fractional abundances, i.e. for each fragment the sum

of all mass isotopomers equals one. Reported mass isotopomer distributions are averaged

values from at least six injections per sample.

7.2.11 Measurement of metabolite concentrations

Glucose and lactate concentrations were determined by YSI 2300 Stat Plus glucose/lactate

analyzer (YSI Inc., Yellow Springs, OH). Glycerol and glutamine concentrations were

determined by GC/MS analysis with internal standards. We prepared 1:1 mixtures of the

medium sample and a standard with known concentration, in this case either [U-
13C]glutamine (10 mM), [U- 13C]glycerol (1 mM), or unlabeled glycerol (1 mM), which were

then derivatized to yield the respective TBDMS derivatives (Chapter 4). Measured intensities

for glutamine (m/z 432-444) and glycerol (m/z 173-200) were corrected for natural isotope

enrichments, and glutamine and glycerol concentrations were determined from the fractions

of labeled/unlabeled molecules.

7.3 Results

7.3.1 External fluxes

Figure 7-3 shows the dynamics of glucose and lactate production, and glycerol and glutamine

consumption by cultured hepatocytes over 8 hr period. A linear fit of the data (R2>0.99)

yielded the following values (in mM/hr/106 cells): glucose production 0.204±0.005, lactate

production 0.263±0.029, glycerol uptake 0.133+0.006, and glutamine uptake 0.333±0.026.

Fluxes expressed as percentages of glucose production were 129±14 for lactate production,

65±3 for glycerol uptake, and 163±13 for glutamine uptake. No glycerol was detected in the

samples taken at 8 hr. Based on the linear fit shown in Figure 7-3 we estimated that glycerol

was depleted after about 7-7.5 hrs.
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Figure 7-3: Time profiles of glucose, glycerol, lactate and glutamine in hepatocytes cultures.

Glucose and lactate accumulated in the medium, while glycerol and glutamine were taken up

by hepatocytes and served as precursors for glucose production.
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7.3.2 Reproducibility of cell experiments

To characterize the well-to-well variability in our experiments, hepatocytes were incubated in

three wells in medium containing 2H20 at 10% enrichment, and a control well with no

tracers. Table 7-2 shows the mass isotopomer distribution of two glucose derivatives assayed

by GC/MS. The MIDs from three replicate wells were not statistically different from one

another (P>0.1), but were significantly different from the experiment with no tracers

(P<0.001). This confirmed that biological variability between wells was small in our

experiments.

7.3.3 Characterization of glycerol

Figure 7-4 shows the measured mass isotopomer distributions (MIDs) of glycerol in the

medium at 0, 2 and 5 hr from [U-13C]glycerol, [2Hs]glycerol, and 2H20 experiments (data

shown were corrected for natural isotopes). The MID of glycerol from the [U-13C]glycerol

experiment at time zero was characterized by 97% M+3 and 3% M+2 isotopomers. The

M+2 isotopomer resulted from incomplete labeling of the tracer, i.e. 99 AtO/ 13C-labeling

according to manufacturers' specifications. The MID of [2H5]glycerol at time zero was

characterized by 96% M+5 and 4% M+4 isotopomers, which was slightly more labeled than

98 AtO/ 2H-labeling according to manufacturers' specifications. The enrichment of both

glycerol tracers decreased after 5 hr to 75% M+3 enrichment for [U- 13C]glycerol, and 79%

M+5 enrichment for [2Hs]glycerol. The decrease in enrichment occurred mostly due to the

release of unlabeled glycerol in the [U- 13C]glycerol experiment, and release of M+0, M+1,

M+2, and M+3 isotopomers in the [2Hs]glycerol experiment. Figure 7-5 shows in more

detail the accumulation of M+0 to M+4 glycerol isotopomers in the medium in the

[2Hs]glycerol experiment. The release of unlabeled/partially labeled glycerol isotopomers

corresponded to about 8-10% of glycerol uptake rate. In the 2H20 experiment we observed

a small but significant incorporation of deuterium into glycerol, i.e. the M+1 enrichment of

glycerol increased from 0.2±0.2 mol% at time zero to 3.7±0.2 mol%/o at 5 hr (after correction

for natural isotope enrichments).
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Table 7-2

Assessment of biological variability in cell culture experiments. Mass isotopomer abundances

(mol%) of aldonitrile pentaacetate and di-O-isopropylidene acetate derivatives of glucose

from hepatocyte experiments were measured by GC/MS. Experiments were performed in

separate wells in a 6-well plate in medium containing 10% 2H20 (wells 1-3), or no tracers

(well 4). Mass isotopomer abundances were not significantly different between the three

replicate 2H 20 experiments, but were significantly different from the experiment with no

tracers.

Aldonitrile pentaacetate glucose (m/ z 314)

m/z 10% 2 H20 (well 1) 10% 2H20 (well 2) 10% 2H 20 (well 3) no tracers (well 4)

287 54.3 ± 0.5 53.8 ± 0.5 53.4 ± 0.5 84.5 ± 0.5

288 32.7 ± 0.4 32.9 + 0.4 33.2 + 0.4 13.0 ± 0.4

289 10.4 ± 0.3 10.6 ± 0.3 10.7 ± 0.3 2.2 ± 0.2

290 2.2 ± 0.2 2.3 ± 0.2 2.3 + 0.2 0.2 + 0.1

291 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.0 ± 0.1

292 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1 0.0 + 0.1

Ii-O-isopropylidene acetate glucose (m/ Z 287)

m/z 10% 2H20 (well 1) 10% 2H20 (well 2) 10% 2H20 (well 3) no tracers (well 4)

314 62.8 ± 0.4

315 28.9 ± 0.3

316 7.1 ± 0.2

317 1.2 ± 0.2

318 0.1 + 0.1

319 0.0 + 0.1

62.4 ± 0.4

29.2 ± 0.3

7.2 ± 0.2

1.2 ± 0.2

0.0 ± 0.1

0.0 ± 0.1

62.4 ± 0.4

29.2 + 0.3

7.2 ± 0.2

1.2 ± 0.2

0.1 ± 0.1

0.0 ± 0.1

84.9 ± 0.4

12.8 ± 0.3

2.2 ± 0.2

0.1 ± 0.1

0.0 ± 0.1

0.0 ± 0.1
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Figure 7-4: Mass isotopomer distributions of glycerol in the medium. Labeling distribution

of glycerol from [U-13C]glycerol (top), [2H5]glycerol (middle), and 2H20 (bottom)

experiments was analyzed by GC/MS, after TBDMS derivatization. Data shown were

corrected for natural isotope enrichments.
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Figure 7-5: Loss of 2H from [2H5]glycerol in cultured hepatocytes. Mass isotopomer

distributions of TBDMS derivatized glycerol were measured by GC/MS. Data shown were

corrected for natural isotope enrichments.
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7.3.4 Incorporation of deuterium into lactate and ketone bodies

We identified two metabolites in the medium that incorporated significant amounts of

labeling from [2Hs]glycerol and 2H 20, i.e. lactate and 3-hydroxybutyrate. Figure 7-6 shows

the enrichment of lactate and 3-hydroxybutyrate, respectively (enrichment = Y Mixi). Lactate

incorporated labeling from [2Hs]glycerol and 2H20, but not from [U-13C]glycerol. The

amount of labeling incorporated from 2H 20 (at 10% enrichment) could not be explained

solely by de novo synthesis of lactate, indicating that there was significant exchange between

intracellular pyruvate pool and extracellular lactate pool. Pyruvate can incorporate deuterium

at C3 in the reaction catalyzed by alanine aminotransfererase and lactate can incorporate

deuterium at C2 from NADH via lactate dehydrogenase. The amount of labeling

incorporated from [2Hs]glycerol was about 6 times less than from 10% 2H20. However, we

should note that [2Hs]glycerol can only transfer deuterium atoms to lactate via [2H5]glycerol

-* [2H]NADH -> [2 H]lactate catalyzed by glycerol-3-phosphate dehydrogenase and lactate

dehydrogenase, respectively. Taking into account that lactate was present at 10 mM at time

zero and the concentration increased to 12.8 mM at 8 hr, and that lactate enrichment

increased from 0.0% to 2.9±0.6%, we estimated that about 13±5% of NADH atoms were

derived from glycerol (=2.9%x12.8/(12.8-10)). In contrast, we found that 3-hydroxybutyrate

incorporated labeling only from 2H 20, and not from [2Hs]glycerol or [U- 13C]glycerol. In

these experiments, 3-hydroxybutyrate was derived solely from de novo synthesis, i.e. there was

no 3-hydroxybutyrate at time zero (validated by GC/MS analysis). In the 10% 2H20

experiments the enrichment of 3-hydroxybutyrate was more or less constant over 8-hrs at

about 22% indicating that on average 2.2 of the 5 hydrogen atoms of 3-hydroxybutyrate

were derived from the solvent.

7.3.5 Incorporation of 3C and 2H into glucose

Table 7-3 shows the mass isotopomer distributions of two glucose fragments measured at 2,

5 and 8 hr from [U- 13C]glycerol, [2Hs]glycerol, and 2H 20 experiments, and Table 7-4 shows

the corresponding corrected MIDs. The last column in Table 7-4 shows the total enrichment

of glucose, i.e. enrichment = I Mixi. The di-O-isopropylidene acetate derivative of glucose
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Figure 7-6: Incorporation of deuterium from [2Hs]glvcerol and 2H20 into lactate and 3-

hydroxybutyrate. Mass isotopomer distributions of TBDMS derivatized lactate and 3-

hydroxybutyrate were measured by GC/MS, and isotope enrichment was calculated after

correcting for natural isotope enrichments.
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Table 7-3

Incorporation of labeling from [13C]glycerol, 2H]glycerol and 2H20 into glucose. Shown are

the uncorrected mass isotopomer distributions of glucose (molar abundances; mol% ), for

aldonitrile pentaacetate (m/z 314) and di-O-isopropylidene acetate (m/z 287) derivatives.

Time of Glucose mass isotopomers

Tracer Sample M+0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8

m/z 287 ion fragment (C1-6, H1-6)

[U- 13C]glycerol 2 hr 42.5 7.3 3.0 29.5 4.0 1.8 10.9 0.9 0.1

5 hr 41.8 7.3 3.2 30.7 4.1 1.8 10.1 0.9 0.1

8 hr 48.8 8.5 3.3 26.2 3.5 1.4 7.6 0.6 0.1
.... . . . .......... . . .. . . .--- ---.- ------. ---- ---.. . . . . . . . . . . .. . . .. . . . .. .. .. .. . . .. . . .. .. . . .. .. .. .. ... . . . . .. ...... .. . . . . . . . . . . . . . . . .

[2Hs]glycerol 2 hr 43.1 17.4 20.2 11.1 5.7 2.2 0.3 0.0 0.0

5 hr 42.2 18.0 20.8 11.1 5.4 2.1 0.5 0.1 0.0

8 hr 45.8 18.6 19.5 9.6 4.4 1.6 0.4 0.1 0.0

2H20 2 hr 56.9 31.2 9.6 2.1 0.2 0.0 0.0 0.0 0.0

5 hr 54.7 32.5 10.2 2.2 0.4 0.0 0.0 0.0 0.0

8 hr 53.7 33.0 10.6 2.3 0.3 0.0 0.0 0.0 0.0

no tracers 2 hr 85.2 12.6 2.1 0.2 0.0 0.0 0.0 0.0 0.0

5 hr 84.5 13.0 2.2 0.2 0.0 0.0 0.0 0.0 0.0

8 hr 83.9 13.5 2.3 0.3 0.0 0.0 0.0 0.0 0.0

m/z 314 ion fragment (C1-5, H2-5)

[U-' 3C]glycerol 2 hr 43.1 7.5 14.0 19.7 3.3 11.1 1.0 0.2 0.0

5 hr 42.3 7.6 14.8 20.5 3.4 10.3 0.9 0.2 0.0

8 hr 49.4 8.8 13.2 17.3 2.8 7.7 0.7 0.1 0.0

2H5]glycerol 2 hr 65.2 25.3 8.0 1.4 0.1 0.0 0.0 0.0 0.0

5 hr 64.5 25.8 8.1 1.4 0.1 0.0 0.0 0.0 0.0

8 hr 67.0 24.4 7.2 1.2 0.1 0.0 0.0 0.0 0.0
...... .... . ..... ...... . .... . . ......... . . . . . . . . . . ...... .......... .. . . . . ... . . . . . .. ..... . . . ... . . . .. ... .. ... ... .... . ..... . . . ... . . ........ ...... ..... . .... . . . . . . . . . . . . . ... . . ...

2H20 2 hr 65.0 27.4 6.5 1.0 0.1 0.0 0.0 0.0 0.0

5 hr 63.0 28.8 6.9 1.1 0.2 0.0 0.0 0.0 0.0

8 hr 62.6 29.1 7.1 1.1 0.1 0.0 0.0 0.0 0.0

no tracers 2 hr 85.2 12.6 2.1 0.1 0.0 0.0 0.0 0.0 0.0

5 hr 84.9 12.8 2.1 0.1 0.0 0.0 0.0 0.0 0.0

8 hr 84.6 13.0 2.2 0.1 0.0 0.0 0.0 0.0 0.0
8 hr 84.6 13.0 2.2 0.1 0.0 0.0 0.0 0.0 0.0
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Table 7-4

Corrected mass isotopomer distributions of glucose fragments. Total enrichment of glucose

was calculated from mass isotopomer data after correction for natural isotope enrichments.

Time of Glucose mass isotopomers Enrichment*

Tracer Sample M+0 M+1 M+2 M+3 M+4 M+5 M+6 (%)

m/z 287 ion fragment (C1-6, H1-6)

[U-13C]glycerol 2 hr 49.9 1.2 2.1 33.1 0.7 1.3 11.8 184.5 ± 0.8

5 hr 49.1 1.3 2.3 34.5 0.6 1.2 10.9 183.7 ± 0.8

8 hr 57.3 1.5 2.2 29.3 0.5 0.9 8.2 149.9 ± 0.8

[2Hs]glycerol 2 hr 50.6 13.0 20.6 9.6 4.7 1.6 0.0 109.6 ± 0.7

5 hr 49.5 13.8 21.2 9.4 4.4 1.5 0.2 110.8 ± 0.7

8 hr 53.8 13.9 19.5 7.9 3.5 1.1 0.2 97.4 + 0.7
2H20 2 hr 66.8 26.7 5.7 0.8 0.0 0.0 0.0 40.5 ± 0.6

5 hr 64.2 28.7 6.2 0.8 0.1 0.0 0.0 43.9 ± 0.6

8 hr 63.1 29.5 6.6 0.9 0.0 0.0 0.0 45.1 ± 0.6

no tracers 2 hr 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.3

5 hr 99.4 0.6 0.0 0.0 0.0 0.0 0.0 0.6 ± 0.3

8 hr 98.8 1.2 0.0 0.0 0.0 0.0 0.0 1.2 ± 0.3

m/z 314 ion fragment (C1-5, H2-5)

[U-13C]glycerol 2 hr 50.9 1.1 14.7 20.5 1.0 11.8 154.9 ± 0.8

5 hr 49.9 1.4 15.6 21.2 1.0 10.9 154.6 ± 0.8

8 hr 58.3 1.5 13.5 17.8 0.7 8.1 125.4 ± 0.8

[2Hs]glycerol 2 hr 76.9 18.2 4.6 0.2 0.0 0.0 28.1 ± 0.5

5 hr 76.2 18.9 4.6 0.2 0.0 0.0 28.9 ± 0.5

8 hr 79.2 16.9 3.8 0.2 0.0 0.0 24.9 ± 0.5
2H20 2 hr 76.8 20.7 2.5 0.0 0.0 0.0 25.7 ± 0.5

5 hr 74.4 22.8 2.7 0.1 0.1 0.0 28.6 ± 0.5

8 hr 73.9 23.2 2.9 0.0 0.0 0.0 29.0 ± 0.5

no tracers 2 hr 100.0 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.3

5 hr 99.6 0.4 0.0 0.0 0.0 0.0 0.4 ± 0.3

8 hr 99.3 0.7 0.0 0.0 0.0 0.0 0.7 ± 0.3

* Enrichment = I Mixi.

- 244 -



CHAPTER 7. QUANTIFICATION OF HEPATIC FLUXES FROM 13C AND 2H-TRACERS

(m/z 287) contained all six carbon atoms and all seven carbon-bound hydrogen atoms of

glucose, and the aldonitrile pentaacetate derivative (m/z 314) contained carbon atoms C1-C5

of glucose and hydrogen atoms at positions C2-C5. In hepatocytes incubated with [U-

13C]glycerol the main labeled glucose isotopomers were M+3 (-30 mol%/o) and M+6 (-10

mol%/o), with much lower abundances of the other labeled isotopomers (<2.5 molO/). The

presence of M+1, M+2, M+4 and M+5 isotopomers can be explained by transketolase

activity as suggested by Kurland et al. (2000), or by scrambling of glycerol labeling in the

TCA cycle as suggested by Previs et al. (1995). In light of our previous observation that

lactate was not labeled from [U-13C]glycerol, we concluded the cycling between glycerol and

TCA cycle was not significant in our experiments. Thus, there must be some residual

transketolase activity in cultured hepatocytes. The higher abundance of M+3 (20.5 mol%; i.e.

C1-C3 of glucose) compared to M+2 (14.7 mol%/o; i.e. C4-C5 of glucose) in the aldonitrile

pentaacetate derivative of glucose indicated that DHAP was more labeled than GAP, i.e. the

two triose phosphate pools were only at 72% equilibrium (=14.7/20.5). The enrichment of

glucose from [U-13C]glycerol was constant over the first 5 hrs, indicating a constant

contribution of [U- 13C]glycerol to glucose production. The lower enrichments at 8 hr can be

explained by the depletion of [U- 13C]glycerol after about 7 hr (see section 7.3.1). To interpret

the data more quantitatively we applied MIDA equations to estimate fractional contribution

of GNG to glucose production and the net flux of [U- 13C]glycerol to glucose. Table 7-5

shows that fractional contribution of GNG was estimated at 66%, 71%, and 63% at 2, 5, and

8 hr, respectively. The value at 8 hr is likely to be an underestimation of GNG due to the

depletion of the [U-13Cqglycerol tracer after 7 hr, i.e. MIDA assumes isotopic steady-state.

In experiments with [2H5]glycerol we observed significant production of glucose mass

isotopomers M+1 to M+5. Similar to the [U-13C]glycerol experiment, we found that the

fractional contribution of [2Hs]glycerol to glucose production remained constant over the

first 5 hrs (i.e. constant enrichment of glucose), and then declined due to [2H5]glycerol

depletion. The amount of deuterium incorporated into glucose from [2Hs]glycerol provided

rich information on the relative activity of various gluconeogenic reactions. Deuterium

atoms of [2Hs5]glycerol may be lost at various points in the pathway from glycerol to glucose.
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Table 7-5

Metabolic fluxes estimated by mass isotopomer distribution analysis (MIDA). Glucose mass

isotopomers from [U- 13C]glycerol experiments were measured by GC/MS and corrected for

natural isotope enrichments. MIDA equations were used to estimate fluxes of

gluconeogenesis pathway. Fluxes shown are expressed as percentages of glucose production

rate.

Flux* 2 hr 5 hr 8 hr

Glucose production (fixed at 100) 100 100 100

Gluconeogenesis (parameter f) 66.3 71.0 62.5

Glycogenolysis 33.7 29.0 37.5

Glycerol to glucose flux 61.5 61.2 50.0

Oxaloacetate to glucose flux 71.1 80.8 75.0

Triose phosphate equilibration (%/o) 72 % 74 % 76 %

* Parameter f was calculated from Eq. 7.5.

* Glycogenolysis = 100 - f.

* Glycerol to glucose flux was calculated from Eq. 7.6.

* Oxaloacetate to glucose flux = 2-f - (glycerol to glucose flux).

* Triose phosphate equilibration (a in Eq. 7.5) was estimated from the ratio of mass isotopomers

(m/z 316)/(m/z317)x100% of aldonitrile pentaacetate derivative of glucose (after correction).
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For example, the deuterium at C2 is transferred to NADH in the reaction catalyzed by

glycerol-3-phosphate dehydrogenase. The pro-R hydrogen at C1 may be lost in the reaction

catalyzed by TPI, and the pro-S hydrogen in reactions catalyzed by aldolase and GAPDH.

Finally, the pro-R hydrogen at C3 may be lost in the reaction catalyzed by PGI, and the pro-

S hydrogen by PMI and glucose-6-phosphate dehydrogenase reactions. In other words, the

presence of M+1 to M+5 mass isotopomers of glucose indicated that one or more of the

above reactions were not fully equilibrated. However, without a proper mathematical model

it is difficult, if not impossible, to interpret the isotopomer data from [2H5]glycerol

experiments quantitatively.

In 2H20 experiments deuterium enrichment of glucose increased from 40.5% to 43.9% and

45.1% at 2, 5, and 8 hr, respectively, indicating that gluconeogenesis flux increased by about

11% over the course of the experiment. On average 4.0 to 4.5 of the 7 atoms of glucose

were derived from the solvent. The enrichment of the aldonitrile pentaacetate fragment of

glucose increased from 25.5% to 28.6% and 29.0% (an increase of 13%), i.e. on average 2.6

to 2.9 of the 4 hydrogen atoms at C2-C5 were derived from the solvent. Note that in the

control experiment with no tracers we found a slight increase in glucose enrichment that

could not be explained by natural isotope abundances, i.e. from 0.0±0.3 at time zero to

1.2±0.3 at 8 hr. One potential explanation was cross-contamination between adjacent wells

in the 6-well plate, i.e. the unlabeled wells were adjacent to the wells with 2H20.

To summarize, qualitative analysis of glucose enrichment data revealed that the flux of

glycerol to glucose was constant over the first 5 hrs of the experiment, and that the

contribution of non-glycerol precursors to glucose increased by about 10-13%. Finally, we

found evidence of some residual transketolase activity in the cultured hepatocytes.

7.3.6 Flux estimation and model validation

To better characterize metabolic fluxes in this system we performed comprehensive analysis

of the observed MIDs with the network model shown in Figure 7-1 and Metran software.

Fluxes and their confidence intervals ware estimated from three data sets individually and
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using the combined data of all three experiments. Table 7-6 compares the information

content of the data sets. For example, [U-13C]glycerol experiments provided 13 mass

isotopomers of glucose from which 4 independent fluxes could be estimated, i.e. net fluxes

of glycerol and oxaloacetate to glucose, and exchange fluxes of TPI and TK reactions. Thus,

there were 9 (=13-4) redundant measurements in the [U-' 3C]glycerol data. We found

excellent agreement between the observed mass isotopomer abundances and abundances

predicted by the model for the optimally fitted fluxes, as judged by the small magnitude of

the sum of squared residuals, i.e. 1.8, which was smaller than the critical value 19.0 for the

statistical test of model adequacy (at 95% confidence level with 9 degrees of freedom), which

indicated that the fit was statistically acceptable. Fits for the [2Hs]glycerol and 2H20 data sets

were also statistically acceptable. However, our initial attempts to reconcile data from all

three experiments failed. The sum of squared residuals was consistently larger than the

critical value for the statistical test. Further analysis revealed that MIDs of glucose from the

[U-' 3C]glycerol and [2Hs]glycerol experiments were incompatible with the MIDs of glucose

from the 2H20 experiment. Previously, Previs et al. (1998) showed that glycerol and lactate

tracers consistently underestimated GNG by 10-30% in isolated hepatocytes. This effect

could not be explained from lack of equilibrium of triose phosphates, zonation of glycerol

kinase, or differences in substrate concentrations. The authors concluded that there must be

different cell populations of hepatocytes that utilize glycerol and lactate/pyruvate to different

extent for the production of glucose. The net observed effect was an increased abundance of

unlabeled glucose and decreased abundances of labeled glucose isotopomers, resulting in

underestimation of GNG. To account for this effect in our model we introduced dilution

parameters for glucose labeling from [U-' 3C]glycerol and [2H5]glycerol experiments, i.e. these

parameters quantify the apparent dilution of labeled glucose isotopomers due to differential

metabolism of cell populations. Note that these parameters also capture the apparent

dilution due to depletion of tracers. Further analysis revealed that no dilution parameter was

required for the 2H20 data, i.e. the goodness-of-fit was not statistically improved by adding a

dilution parameter for the 2H20 data. Therefore, our model included only two dilution

parameters, i.e. for [U- 13C]glycerol and [2H5]glycerol experiments. With the updated model

we successfully fitted the combined data from all thee experiments and estimated fluxes.

- 248 -



CHAPTER 7. OUANTIFICATION OF HEPATIC FLUXES FROM 13C AND 2H-TRACERS

Table 7-6

Comparison of information content of experimental data. Individual data sets from [U-

13C]glycerol, [2Hs]glycerol, and 2H20 experiments were fitted to a detailed model of glucose

metabolism. Fluxes were estimated and confidence intervals were evaluated. Analysis of the

combined data required two additional parameter to describe the apparent glucose labeling

when glycerol tracers were used. The flux results were then statistically evaluated to test for

goodness-of-fit.

Combined analysis of

10% 2H20 [2Hs]glycerol [U-13C]glycerol all three experiments

No. of fitted mass isotopomers 7 9 13 29

No. of estimated fluxes * 2 6 4 11 + 2**

No. of redundant measurements*** 5 3 9 16

Sum of weighted squared residuals 1.2 1.8 2.7 12.1

Fit statistically acceptable Yes Yes Yes Yes

* Number of estimated fluxes equals the number of independent fluxes that were statistically different

from zero, as judged by the 95% confidence interval.

** Combined analysis of all three experiments required two additional parameters to account for

apparent dilution of glucose labeling from glycerol tracers.

*** Number of redundant measurements = (no. of fitted isotopomers) - (no. of estimated flux)
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The minimized sum of squared residuals of 12.1 was smaller than the critical value of 24.8

(at 95% confidence level with 13 degrees of freedom) indicating a statistically acceptable fit.

The apparent fractional labeling of glucose was estimated at 87%_±3 and 86%0+3 for the [U-

13C]glycerol and [2Hs]glycerol experiments, respectively, indicating that for both glycerol

tracers there was an apparent dilution of glucose by about 13% (i.e. a value of 100% would

indicate no dilution). 'Table 7-7 shows the 95% confidence intervals for the estimated fluxes

for the 2-hr experiments.

After comparing the information content of separate data sets with the combined data

(Table 7-6), two advantages of our method become apparent: (i) we can estimate more

fluxes, and (ii) the number of redundant measurements is significantly increased. Here, 11

fluxes were estimated from the combined data, compared to 2 fluxes from the 2H20

experiment, 6 fluxes from [2H5]glycerol experiment, and 4 fluxes from [U- 13C]glycerol

experiment. The number of redundant measurements for the combined data was 16

compared to 5, 3, and 9 for 2H20, [2Hs]glycerol, and [U-' 3C]glycerol data, respectively.

Redundant measurements are important for metabolic flux analysis, because they allow more

accurate estimation of fluxes, validation of modeling assumptions, and identification of

missing reactions in the network model. In this study, many modifications to the initially

assumed network model were examined for their ability to accurately account for the

observed isotopomer data. If a modification explained the data significantly better, i.e.

resulted in a statistically smaller magnitude of sum of squared residuals, it was accepted. Such

a posteriori changes to the model were the inclusion of the transketolase (TK) and

phosphomannose isomerase (PMI) reactions, resulting in a reduction of the sum of squared

residuals by more than 80%. The results is shown in Table 7-7 further illustrate that the

different isotopic tracers provide different flux information. For example, exchange fluxes of

TK and TPI were estimated precisely from ILL- 13C]glycerol data, however, PGI and PMI

exchange fluxes could not be determined. On the other hand, [2Hs]glycerol data provided

sufficient information to estimate PGI, TPI and PMI exchange fluxes, however, the

estimated TK exchange flux was less precise. Note that 2H20 data alone did not provide

enough information to determine net and exchange fluxes in this system with precision,

however, when supplemented with data from [U- 13C]glycerol and [2Hs]glycerol tracers, the
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Table 7-7

Estimated 95% confidence intervals of fluxes for the samples taken at 2 hr. Metabolic fluxes

and their confidence intervals were estimated by fitting glucose mass isotopomer

distributions to detailed gluconeogenesis model using Metran software.

Combined analysis of

Netfluxes 10% D20 [2Hs]glycerol [U-13C]glycerol all three experiments

Glucose production (fixed at 100) 100 100 100 100

Gluconeogenesis (GNG)* 53 - 100 63 - 80 69 - 73 75 - 87

Glycogenolysis (GL)* 0 - 47 20 - 37 27 - 31 13 - 25

Glycerol to glucose flux 0 - 150 57 - 64 60 - 62 65 - 75

Oxaloacetate to glucose flux 29 - 183 65 - 102 77 - 85 85 - 100

Exchange fluxes**

Phosphoglucose isomerase (PGI) nd 140 - 380 nd 262 - 728

Aldolase nd nd nd nd

Triose phosphate isomerase (TPI) nd 180 - 510 230 - 360 280 - 405

Phosphomannose isomerase (PMI) nd 0 - 27 nd 0 - 41

Transketolase (TK) nd 7 - 83 5 - 9 6 - 10

Phosphoglucomutase (PGM) nd nd nd nd

Glycerol 3-phosphate dehydr. nd nd nd nd

Glyceraldehyde 3-phosphate dehydr. nd nd nd nd

Cycling between GAP and PEP nd nd nd nd

Additional model parameters

Apparent fractional glucose labeling 87% ± 3

in [U-13C]glycerol experiment

Apparent fractional glucose labeling 86% ± 5
in [2Hs]glycerol experiment

* GNG and GL are not independent fluxes, i.e. GNG = (Vglycerol + voxaioacetate)/2; GL = 100-GNG.

** 'nd' (=not determined) indicates that the exchange flux could not be determined, as judged by

having a 95% confidence interval from zero to infinity.
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2H2 0 experiment provided the most informative mass isotopomers for accurate estimation

of the gluconeogenesis flux (results based on sensitivity analysis).

7.3.7 Evaluation of estimated fluxes

Table 7-8 shows the estimated fluxes for the 2, 5, and 8-hr samples obtained from analysis of

combined isotopomer data for each time point. The small magnitude of the sum of squared

residuals and the large number of redundant measurements gave us very high degree of

confidence in the fidelity of the calculated fluxes. The estimated fluxes provided important

insight into the physiology of cultured hepatocytes. Our results suggest that the

phosphoglucose isomerase (PGI) reaction and triose phosphate isomerase (TPI) were not

fully equilibrated. The estimated PGI exchange flux of 380±15 corresponds to 79%+4

labeling equilibrium between F6P and G6P. Furthermore, the estimated TPI exchange flux

of 330±32 corresponds to 76%±2 labeling equilibrium between DHAP and GAP. These

results are surprising, because it is generally assumed that the PGI and TPI reactions are fully

equilibrated. For example, these assumptions are crucial for the widely used 2H20 method

for estimating the contribution of gluconeogenesis to hepatic glucose production, as was

initially proposed by Landau and colleagues (1995). In this method, fractional

gluconeogenesis is determined from the ratio of deuterium labeling at C5 vs. C2 of glucose

in experiments with 2H20. Deuterium is incorporated at C5 of glucose in reactions catalyzed

by enolase and TPI, whereas deuterium is incorporated at C2 of glucose via PGI reaction.

Our flux results indicated that the labeling of GAP-C2 (that eventually becomes C5 of

glucose) is >95% equilibrated with the solvent mainly via enolase reaction, but G6P-C2 (that

becomes C3 of glucose) is only 80% equilibrated with the solvent. Thus, in our experiments

the C5/C2 ratio would overestimate fractional gluconeogenesis by 20%.

7.3.8 Comparing estimated fluxes vs. MIDA

The estimated fluxes shown in Table 7-8 were significantly different from the fluxes

determined by MIDA shown in Table 7-5. MIDA underestimated fractional GNG and the

contribution of oxaloacetate to glucose by 18-31%, and overestimated glycogenolysis flux.
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Table 7-8

Metabolic fluxes in the gluconeogenesis pathway estimated by combined analysis of multiple

tracer data. Fluxes and their confidence intervals (shown as best fit ± SD) were estimated for

the 2, 5, and 8-hr samples by fitting all data for each sample point with Metran.

Netfluxes 2 hr 5 hr 8 hr

Glucose production (fixed at 100) 100 100 100

Gluconeogenesis (GNG) 81 ± 3 90 ± 4 91 ± 4

Glycogenolysis (GL) 19 ± 3 10 ± 4 9 + 4

Glycerol to glucose flux 70 ± 3 72 ± 3 67 + 3

Oxaloacetate to glucose flux 92 ± 4 108 ± 5 114 ± 5

Exchange fluxes and percent equilibration*

Phosphoglucose isomerase (PGI)

Aldolase

Triose phosphate isomerase (TPI)

Phosphomannose isomerase (PMI)

Transketolase (TK)

Phosphoglucomutase (PGM)

Glycerol 3-phosphate dehydr.

Glyceraldehyde 3-phosphate dehydr.

Cycling between GAP and PEP

380 ± 115

(79% ± 4)

nd

330 ±+ 32

(76% ± 2)

10 ± 10

8.2 ± 1

nd

nd

> 295

nd

390 ± 150

(81% / 4)

nd

380 +± 40

(79% ± 2)

13 ± 14

9.6 ± 1

nd

nd

> 300

nd

527 ± 200

(86% ± 5)

nd

394 ± 46

(80% ± 2)

13± 18

11.2 ± 1

nd

nd

> 385

nd

Additional modelparameters

Apparent fractional glucose labeling
87% + 3 85% + 3 75% + 3

in [U-13C]glycerol experiment

Apparent fractional glucose labeling
86% + 5 84% ± 5 82% ± 6

in [2Hs]glycerol experiment

* Values in parentheses for PGI and TPI reactions denote the estimated degree of equilibration.

* Percent equilibration = 100% x (exchange flux) / (100 + exchange flux).
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The difference was most striking for the 5-hr and 8-hr samples, where we estimated 90%±4

contribution of GNG to glucose production, whereas MIDA estimated 71% and 63%,

respectively. Note that our method correctly accounted for the depletion of glycerol tracers,

as is indicated by the lower estimate for fractional glucose labeling at 8 hr, i.e. 75% at 8 hr vs.

85% at 2 and 5 hr for the [U-13C]glycerol experiments. The estimated GNG flux at 8 hr

(900%o±4) as identical to the estimated flux at 5 hr (91%±04).

7.3.9 Sources of NADH

The flux results further allowed us to predict the contribution of various sources to the

production of NADH. Table 7-9 shows the predicted fractional contribution of glycerol,

water, and unlabeled sources to NADH. We estimated that 10% of NADH hydrogen atoms

were derived from glycerol, 30-37% from the solvent via hydrogen exchange, and 52-60%

from other unlabeled endogenous sources, presumably mainly from lactate via lactate

dehydrogenase. The estimated contribution of glycerol to NADH of 10% corresponded well

with our previous observation that [2Hs]glycerol transferred deuterium atoms to lactate, from

which we estimated that about 13±5% of NADH was derived from glycerol.

Table 7-9

Predicted fractional contribution of glycerol, water, and unlabeled sources to NADH

hydrogen atoms. From the estimated fluxes shown in Table 7-8 we determined the various

sources of NADH hydrogen atoms and calculated the following fractional contributions.

2 hr 5 hr 8 hr

Glycerol 10±3% 9±3% 10±3%

Water 30±3% 39±3% 37±+3%

Unlabeled sources 60±3% 52±3% 53±3%
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7.4 Discussion

To our best knowledge, this is the first detailed analysis of net and reversible fluxes in the

gluconeogenesis pathway in cultured hepatocytes. We demonstrated that an over-determined

data set of mass isotopomer abundances obtained from 13C and 2H-labeling experiments

fitted to a detailed model of gluconeogenesis pathway provides precise fluxes, and allows

validation of model assumptions using redundant measurements. Our results have wide

implications for in vivo studies of glucose metabolism from 13C- and 2H-tracers. MIDA was

originally introduced by Neese et al. (1995) as a method for analysis of the gluconeogenesis

pathways from 13C-labeled substrates. This method treats glucose as a dimer of triose

phosphates with a constant labeling. Neese et al. showed that lack of equilibrium between

the enrichments of triose phosphates had a small impact on the calculation of fractional

gluconeogenesis. However, one of the disadvantages of the MIDA framework is that it

required the use of 13C-tracers, i.e. it cannot be applied for analysis of mass isotopomer data

from 2H-labeling experiments. Furthermore, MIDA does not accurately capture scrambling

of 13C-labeling in the TCA cycle and pentose phosphate pathway reactions resulting in

underestimation of the gluconeogenesis pathway. Here, we have developed novel

comprehensive analysis tools for analysis of experimental data from multiple tracer

experiments. In this contribution, [U- 13C]glycerol, [2H5]glycerol, and 2H20 tracer

experiments was accomplished with a detailed model of glucose metabolism and rigorous

methods for balancing of isotopomers within a reaction network. Analysis of the combined

data revealed that MIDs of glucose from glycerol tracers were incompatible with MIDs of

glucose from 2H20 experiments. We demonstrated that glycerol tracers consistently

underestimated GNG in our experiments. Previs et al. (1995, 1998) reported the same

finding from experiments with perfused livers and isolated hepatocytes from starved rats.

They attributed the underestimation of GNG to the presence of different cell populations

that utilize glycerol to different extent for the production of glucose. Our results support this

hypothesis. We concludes that any tracer method that requires the formation of labeled

glucose isotopomers from the condensation of two labeled triose phosphate molecules will

always underestimate GNG due to differences in enrichments of triose phosphates, and due

to zonation and depletion of isotopic tracers. The extent of underestimation of GNG cannot
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be determined from MIDA analysis. Here, we applied 2H20 in addition to [U- 13C]glycerol

and [2H5]glycerol tracers to quantify the underestimation of GNG from glycerol tracers. We

showed that in our experiments [13C]glycerol and [2H]glycerol tracers consistently

underestimated GNG by about 14%.

Previs et al. used [2H5]glycerol in experiments with perfused livers and noted release of M+0

to M+4 mass isotopomers of glycerol from [2Hs]glycerol. However, without a detailed

mathematical model they could only provide qualitative interpretation of the observed mass

isotopomers. Based on the release of the M+1 mass isotopomer of glycerol they concluded

that there must be cycling between glycerol, PEP, oxaloacetate and pyruvate. In our

[2Hs]glycerol experiments we also observed release of M+0 to M+3 mass isotopomers of

glycerol from [2H5]glycerol tracer. However, our results provided a different explanation for

the release of M+1 to M+3 isotopomers. The estimated fluxes indicated that there is not any

significant cycling between [2Hs]glycerol and pyruvate. In contrast, the presence of M+1 of

glycerol was fully explained from deuterium incorporation via [2Hs]glycerol -4 NADI2H] -4

[2H]glycerol (M+ 1), catalyzed by glycerol-3-phosphate dehydrogenase. In support of this

result we found that deuterium atoms from [2Hs]glycerol were incorporated into lactate,

presumably via lactate dehydrogenase (i.e. [2Hs]glycerol. 4- NAD[2H] - [2H]llactate), and

that no 13C-labeling was incorporated into lactate from [U- 13C]glycerol. Thus, we concluded

that in cultured hepatocytes glycerol contributed significantly to the production of NADH.

We estimated that about 10% of NADH was derived from glycerol, 30% from the solvent

via hydrogen exchange, and 60%/o from other unlabeled endogenous sources. Our results

further indicated that there was rapid exchange between the A- and B-hydrogen atoms of

NADH, which was in agreement with the result published by Vind et al. (1987), where the

authors showed that in isolated hepatocytes that there is near-equilibrium between the A-

and B-hydrogen atoms of NADH.

Our results indicated that the 2H20 method has the best potential to provide an unbiased

estimate of GNG flux in vivo. However, the 2H 20 method is not without assumptions. For

example, it is generally assumed that there rapid incorporation of deuterium at C2 position

of glucose via PGI, and at C5 via TPI and enolase. In practice, the extent of equilibration of
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these reactions is not easily validated in vivo. In this study, we validated the equilibrium

assumptions for the 2H 20 method explicitly by estimating reaction reversibilities for PGI

and TPI reactions, mainly from the [2H5]glycerol data. We found that the PGI and TPI

reactions were only 80-86% equilibrated. We estimated that the C2 hydrogen of glucose was

no more than 80% equilibrated with the solvent, but the C2 hydrogen of GAP (that

eventually becomes C5 of glucose) was more than 95% equilibrated with the solvent, mainly

via enolase reaction. Thus, the ratio of deuterium labeling at C5 vs. C2 resulted in 20%

overestimation of GNG in our experimental setup. To summarize, we have demonstrated

that through combined analysis of mass isotopomer data from [ 3C]glycerol, [2H]glycerol and

2H 20 tracers we can estimate unbiased net and reversible fluxes in the gluconeogenesis

pathways and correctly accounted for lack of complete equilibration of reversible reactions

in the gluconeogenesis pathway. Furthermore, we provided a method to account for the

apparent dilution of glucose labeling from glycerol tracers due to inhomogeneity of

hepatocyte populations and depletion of tracers.
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Chapter 8

Application of elementary metabolite

units and [U- 13C,2H ]glycerol to estimate

fluxes of gluconeogenesis

8.1 Introduction

Methods for measuring the metabolic rate of gluconeogenesis (GNG) in vivo, relative to

hepatic glucose production (HGP), rely on the use of stable isotopes (13C and 2H) and the

assessment of glucose labeling distribution by gas chromatography mass spectrometry

(GC/MS) and nuclear magnetic resonance (NMR) spectroscopy. It has been argued that the

algebraic relationships based on the [U-13C]glucose tracing method underestimate

gluconeogenesis in vivo. A major reason is the failure to consider the exchange of labeled

precursors in the TCA cycle and the contribution of glycerol to gluconeogenesis. In the early

1990s condensation polymerization methods offered a new approach to estimating

biosynthesis. [13C]Glycerol tracers were used for quantifying gluconeogenesis using mass

isotopomer distribution analysis (MIDA). However, the possibility of zonation of the tracer

across the liver has led to questions about the validity of this method. Several studies with

isolated hepatocytes, perfused livers, and in whole animals have shown that mass isotopomer

distribution (MID) of glucose from [3C]qglycerol tracers are incompatible with a single

constant pool of triose phosphates, presumably due to multiple cell populations with

differential preference for various gluconeogenic precursors. Malloy and colleagues (1998)

proposed a quantitative approach based on the fate of [U-' 3qpropionate and the analysis of
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hepatic glutamate and glucose. This method uncovered a discrepancy between the analyses

of different compounds indicative of compartmentation of metabolism. This important

finding further complicated the search for a clear quantitative method for estimating hepatic

fluxes from carbon labeling data. Recently, we have applied [2H5]glycerol, [U-13C]glycerol

and 2H 20 to measure net and exchange fluxes in the gluconeogenesis pathway (Chapter 7).

From detailed analysis mass isotopomer distributions of glucose fragments we estimated the

extent of equilibration of phosphoglucose isomerase (PGI) and triose phosphate isomerase

(TPI) reactions with precision, i.e. 80-86% equilibration for PGI and 79-81% equilibration

for TPI in isolated hepatocytes. However, our results also suggested that [2Hs]glycerol and

[U- 13C]glycerol underestimated the flux of GNG by about 15% in our experiments.

Currently, the most widely used method for measuring GNG in vivo is the 2H20 method

that was proposed by Landau et al. (1995). It has been argued that this method provides an

unbiased estimate of the GNG flux. However, currently this method assumes complete

equilibration of PGI and TPI reactions, which is not true in all situations. For example, we

have shown previously in isolated hepatocytes that lack of complete equilibration of PGI

resulted in 20% overestimation of GNG with the 2H20 method (Chapters 5 and 7). Thus,

despite many decades of experiments, the search for a well-accepted method for quantifying

gluconeogenesis from stable isotope tracers continues.

Here, we present a novel two-tracer method for accurate determination of net and reversible

fluxes in the gluconeogenesis pathway in vivo. Our method builds on Landau's 2H20

method with the addition of a novel doubly-labeled glycerol tracer, i.e. [U- 13C,2H8]glycerol.

In this method we apply the two tracers, i.e. 2H20 and [U- 13C, 2H8]glycerol, simultaneously

and measure the incorporation of 2H from 2H20, and 2H and 13C from [U- 13C,2H5]glycerol

into glucose. Here, we make use of GC/MS analysis to measure the labeling distributions of

six fragments of glucose based on three glucose derivatives that were recently introduced, i.e.

aldonitrile pentapropionate ion fragments at m/z 173, 259, 284, and 370; methyloxime

pentapropionate ion fragment at m/z 145; and di-O-isopropylidene propionate ion fragment

at m/z 301. The mass isotopomer distributions of these fragments provide an over-

determined data set with 25 redundant measurements from which accurate metabolic fluxes

and their confidence intervals are determined. Quantitative interpretation of the complex
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labeling patterns was accomplished through the use of rigorous mathematical tools based on

the elementary metabolite units (EMU) framework, which was recently developed and

shown to be the most efficient method for analyzing mass isotopomer data from labeling

experiments. We will illustrate that the proposed two-tracer method allows measurement of

net fluxes and the extent of equilibration of reactions in the gluconeogenesis pathway.

Furthermore, we show that fluxes estimated with this method are independent of the

isotopic steady-state assumption and independent of any potential zonation of glycerol.

8.2 Methods

8.2.1 Metabolic network model

The gluconeogenesis network model that we used for flux calculations was described

previously (see Chapter 7; Figure 7-1 and Table 7-1). In sort, the network model is

comprised of 24 reactions utilizing 26 metabolites, with 5 substrates (oxaloacetate, glycerol,

glycogen, water, and NADH from endogenous sources), 3 products (glucose, CO2, and a

metabolic sink for NADH), and 18 balanced intracellular metabolites. Stereospecific atom

transitions were assigned for all reactions in the model based on current knowledge.

8.2.2 Simulating isotopomer distributions using elementary metabolite units

Quantitative interpretation of isotopomer data requires the use of mathematical models that

describe the relationship between metabolic fluxes and isotopomer abundances. Recently, we

presented a novel framework for the modeling of isotopic tracer systems that significantly

reduces the number of system variables without any loss of information. The elementary

metabolite units (EMU) framework is based on a highly efficient decomposition method that

identifies the minimum amount of information needed to simulate isotopic labeling within a

reaction network using the knowledge of atomic transitions occurring in the network

reactions. Here, the gluconeogenesis network model was decomposed into 60 independent

EMU reaction networks with a total of 204 EMU variables, as opposed to the complete set

of 42,224 cumomers that would be required to simulate this system using the traditional
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cumomer modeling strategy (i.e. a reduction of 99.5%). The functional units generated by

the decomposition algorithm, called EMUs, formed the new basis for generating system

equations that described the relationship between fluxes and isotopomer abundances

(Chapter 2). To simulate the isotopic labeling of glucose, the EMU networks can be solved

sequentially starting with the smallest EMU-size network up to the largest EMU-size

network. The mathematical simulation model was constructed with the Metran software.

8.2.3 Computational methods

Metabolic fluxes and their confidence intervals were determined by fitting mass isotopomer

abundances of glucose fragments to the detailed gluconeogenesis metabolic network model

using Metran software. In short, Metran estimates fluxes by minimizing the difference

between the observed and simulated measurements using an iterative least-squares

minimization procedure. The objective of this routine is to evaluate a set of feasible fluxes

that best accounts for the observed isotopomer measurements. After metabolic fluxes were

calculated, statistical analysis was automatically performed to obtain accurate standard

deviations and confidence intervals of fluxes by evaluating the sensitivity of the objective

function with respect to fluxes as described in Chapter 3. Flux validation was accomplished

by a statistical test for the goodness-of-fit (i.e. chi-square test for model adequacy), and a

normality test for the weighted residuals. To ensure a global optimum, flux estimation was

repeated at least four times starting with random initial values. Sensitivity analysis was

employed to determine the relative importance of measurements for the estimation of

individual fluxes as described previously (Chapter 3).

8.2.4 Determining deuterium enrichment of glucose

The amount of deuterium enrichment at each carbon position of glucose from 2H 20

experiments was determined using a least-squares approach that was previously described in

Chapter 5. In short, we constructed a simulation model that predicts the mass isotopomer

distributions of selected ion fragments of glucose for given isotopomer distribution of

glucose hydrogen atoms, while taking into account natural isotope enrichments. The

- 262 -



CHAPTER 8. APPLICATION OF [U-13C,2H8 dGLYCEROL TO ESTIMATE GNG FLUXES

isotopomer distribution was determined from experimental data by solving a least-squares

regression problem, where the objective was to minimize the sum of squared deviations

between simulated and measured mass isotopomer abundances. From the estimated

isotopomer distribution we then obtained positional deuterium enrichments via linear

transformation. We identify the deuterium enrichment of C-H in carbon 1 as D1, the

enrichment in carbon 2 as D 2, and so forth. Since there are two hydrogen atoms at carbon 6

that cannot be distinguished by GC/MS, we could only determine the average enrichment at

carbon 6, i.e. D 6 = D66/2.

8.2.5 Materials

Biochemicals were obtained from Sigma Chemicals (St. Louis, MO). The custom synthesized

glycerol tracer [U-13C,2H8]glycerol (99+ At%/o 13C, 98+ Ato 2H) was purchased from

Omicron Biochemicals (South Bend, IN). The isotopic purity was of the tracer validated by

GC/MS analysis. Tissue culture media were obtained from Sigma (St. Louis, MO).

Hepatocyte medium was DMEM powder (Sigma) supplemented with 3.7 g/L NaHCO 3, 30

mg/L proline, 100 mg/L ornithine, 610 mg/L niacinimide, 0.544 mg/L ZnC12, 0.75 mg

ZnSO 4.7H 20, 0.2 mg/L CuSO 4.5H 20, 0.025 mg/L MnSO 4, 2 g/L bovine serum albumin,

100,000 U penicillin, and 100,000 U streptomycin, and further enriched with gluconeogenic

carbon sources: 1mM glycerol, 10 mM lactate, 1 mM pyruvate, 5 mM glutamine, and 2 mM

acetate. Four chemically identical labeling media were prepared, containing either 2H20 (at

10% enrichment); [U-13C,2H8]glycerol + unlabeled glycerol (1:3 mol/mol, i.e. 25%

enrichment of tracer); [U- 13C, 2H8]glycerol + unlabeled glycerol (1:3 mol/mol, i.e. 25%

enrichment) prepared in 2H20 (at 10% enrichment); and medium with no tracers (as

control).

8.2.6 Hepatocyte isolation and hepatocyte suspension experiments

Hepatocytes were isolated from C57BL/6 mice by modified two step-collagenase perfusion

as described by Seglen (1976). Two mice ('25 gram) were fed ad libitum, and two mice (-25

gram) were fasted 12 hrs prior to hepatocyte isolation. The mice were anesthetized with
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tribromoethanol (500 mg/kg IP) for the duration of the procedure. In short, the surgeon

exposed the intraperitoneal abdominal contents including the liver, portal vein and inferior

vena cava. The portal vein was cannulated with a 24.5G catheter, and the liver was perfused

for 15 minutes at a rate of 7 mL/min with calcium-free perfusion buffer to remove blood

from the fibrous liver sac. Mouse euthanasia followed exsanguinations after cutting the

inferior vena cava to complete the perfusion circuit. The blanched liver was perfused with

collagenase solution (200U/mL) for 10 minutes at 7 mL/min to release hepatocytes from

the extracellular matrix. The digested liver was excised and placed in preservation buffer,

where the digested cells were gently scraped from the liver sac, washed and purified with

Percoll to remove dead cells and enrich the hepatocyte fraction. At this point cells were

counted and viability assessed by Trypan Blue exclusion. Typical viabilities were between 85-

90%, with cell yields of 1.0-1.5x10 6 cells/g mouse (25-40x10 6 cells). Purified cells were

suspended in media with isotopic tracers and seeded in 6-well plates (106 cells/well) and

incubated for 30 minutes at 370 C and 5% CO 2. At the end of the incubation period medium

samples were collected (approx. 1 mL), centrifuged for 10 sec, and the supernatant separated

from cells pellet. Cells and supernatant were stored at -80 OC prior to analysis.

8.2.7 Derivatization of glucose

Mass isotopomer distributions of glucose were determined from three glucose derivatives,

i.e. aldonitrile pentapropionate, methyloxime pentapropionate and di-O-isopropylidene

propionate glucose. For each derivatization procedure, 100 tL of medium sample was

deproteinized by addition of 300 piL of cold acetone, followed by vortexing vigorously for 30

sec, and centrifugation at 2000xg for 1 min. The supernatant was evaporated to dryness

under airflow and the residue derivatized as previously described (Chapter 5). In short, for

the aldonitrile pentapropionate and methyloxime pentapropionate derivatizations, 50 pL of 2

wt%/o hydroxylamine hydrochloride in pyridine, or 2 wt0 /o methoxylamine hydrochloride in

pyridine, respectively, was added to the dry residue and the sample heated at 90 0C for 60

min. This was followed by addition of 100 pL of propionic anhydride and heating at 60 0 C

for additional 30 min. The sample was then evaporated to dryness, dissolved in 100 pL of
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ethyl acetate and transferred to an injection vial for GC/MS analysis. For di-O-

isopropylidene propionate derivatization, 500 [LL of 0.38 M sulfuric acid in acetone was

added to the dry residue and the sample incubated at room temperature for 60 min. 400 IiL

of 0.44 M sodium carbonate was added to neutralize the reaction, followed by addition of 1

mL of saturated sodium chloride. Di-O-isopropylidene derivatives were extracted by

partitioning with 1 mL of ethyl acetate. The upper, organic layer was evaporated to dryness,

followed by addition of 150 yL of propionic anhydride in pyridine (2:1 v/v) and heating at

60 0 C for 30 min. The sample was then evaporated to dryness, dissolved in 100 ptL of ethyl

acetate and transferred to an injection vial for GC/MS analysis.

8.2.8 GC/MS analysis

Gas Chromatography-Mass Spectrometry (GC/MS) analysis was performed using HP 5890

Series II GC (Gas Chromatograph) equipped with a DB-1701 [30 m x 0.25 mm (inner

diameter) x 0.25 pm] capillary column, connected to HP 5971 MSD (Mass Selective

Detector) operating under ionization by electron impact (EI) at 70 eV. The mass

spectrometer was calibrated using the 'Max Sensitivity Autotune' setting. Helium flow was

maintained at 0.737 mL/min by electronic control. The temperatures of the injector and the

detector were kept at 2500 C and 3000 C, respectively. The temperature of the column was

started at 80 0C for 1 min, increased to 2800 C at 200C/min, and held for 4 min. For the

analysis of aldonitrile pentapropionate glucose, ion intensities were recorded for the

following four ion fragments: m/z 173-178 (C5-6, H-6), m/z 259-265 (C4-6, H4-6), m/z 284-

289 (C1-4, H2-4), and m/z 370-379 (Cl-5, H2-5). For di-O-isopropylidene propionate glucose,

ion intensities were recorded at m/z 145-149 (C1-2, H 1-2). For methyloxime pentapropionate

glucose, ion intensities were recorded at m/z 301-313 (C1-6, Hi-6). Measured intensities were

corrected for noise (baseline correction), and mass isotopomer distributions were obtained

by integration. All mass isotopomer values were expressed as fractional abundances, i.e. for

each fragment the sum of all mass isotopomers equals one. Samples were injected at least six

times and the measured mass isotopomer abundances were averaged. Ions at m/z 148, 149,

178, 288, and 289 contained constant contaminating ions amounting to 0.03, 0.05, 0.27, 0.18,

and 0.25 mol% enrichment, respectively, which was corrected by subtraction. In experiments
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with [U- 13C,2H5]glycerol, intensities of ions at m/z 145, 146, and 147 could be inaccurate (up

to 2 mol% inaccuracy) due by overlapping mass spectra from smaller ion fragments. To

exclude these data from flux determination we assigned relatively high measurement errors

to these ions, i.e. 2 mol% assumed measurement error (compared to <0.4 mol% for all other

ions). We should note that sensitivity analysis revealed that ions 145-147 were not important

for flux determination, i.e. only the ratio of m/z 148 relative to m/z 149 contained flux

information. Thus, inaccuracies in ions 145-147 did not affect flux results.

8.3 Results

8.3.1 Incorporation of deuterium into glucose from 2H20

In the pathway of gluconeogenesis labeled hydrogen atoms are incorporated into glucose

from medium containing deuterated water. The amount of deuterium incorporated at each

carbon position depends on the deuterium enrichment of the solvent, and relative activity of

various reversible reactions in the gluconeogenesis pathway. In this study, fresh hepatocytes

isolated from fasted and fed mice were incubated in medium containing 2H20 at 10%

enrichment. All experiments were performed in triplicate, i.e. hepatocytes were cultured in 6-

well plates for 30 min (106 cells/well). At the end of the incubation period medium samples

were collected and glucose was analyzed by GC/MS. The amount of deuterium incorporated

at each carbon position was determined by regression analysis of mass isotopomer

distributions of six glucose fragments as described previously (Chapter 5). As control,

hepatocytes were also cultured in medium with no tracers. Tables 8-1 and 8-2 show the

measured mass isotopomer distributions of the six selected glucose fragments from

experiments with fasted and fed hepatocytes, respectively. The observed mass isotopomer

abundances from the triplicate experiments were not statistically different (P>0.10). This

confirmed that biological variability between wells was small in our experiments. Table 8-3

shows the deuterium enrichments at all six carbon positions of glucose for the experiments

with fasted and fed hepatocytes.
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Table 8-1

Mass isotopomer distributions of glucose fragments from 2H20 experiments with isolated

hepatocytes from fasted mice. Hepatocytes were cultured in 6-wells plates in medium

containing 2H 20 at 10% enrichment for 30 min, and one control well with no tracers (well

#4). Glucose labeling was analyzed by GC/MS. Shown are measured mass isotopomer

distributions of six selected glucose fragments (molar percentages, mol0/o).

m/z C-H

(formula) positions Well # M+0 M+1 M+2 M+3 M+4

301 1,2,3,4,5,6,6 1 50.2 34.7 11.9 2.7 0.5

(C14H 210 7) 2 50.4 34.5 11.9 2.7 0.5

3 50.2 34.6 11.9 2.7 0.5

4 84.1 13.4 2.4 0.1 0.0

145 1,2 1 79.1 18.5 2.2 0.2 0.0

(C6H11O3N) 2 78.8 18.8 2.2 0.2 0.0

3 78.9 18.7 2.2 0.2 0.0

4 92.5 6.7 0.8 0.0 0.0

173 5,6,6 1 72.3 23.4 3.8 0.4 0.0

(CsH 130 4) 2 72.2 23.5 3.8 0.4 0.0

3 72.3 23.4 3.8 0.4 0.0

4 90.7 8.1 1.1 0.1 0.0
.. . .................. . .. ............ . . ... .. .. . .. ..... .. ... .. ... .. .. ... .. ... .. ... .. .. ... .. .. . .. ..... .. ... . . ... ......... .............................. .. .. ..... .. . ..... .. ..

259 4,5,6,6 1 64.4 28.1 6.4 1.0 0.0

(C12H190 6) 2 64.3 28.1 6.4 1.1 0.0

3 64.4 28.2 6.3 1.0 0.1

4 86.3 11.6 1.9 0.2 0.0

284 2,3,4 1 68.4 25.7 5.1 0.8 0.0

(C13H1sO6N) 2 68.2 25.8 5.4 0.7 0.0

3 68.1 26.0 5.2 0.7 0.0

4 85.1 12.6 2.1 0.2 0.0

370 2,3,4,5 1 58.5 31.1 8.5 1.7 0.2

(C17H24 0sN) 2 58.3 31.2 8.6 1.7 0.3

3 58.4 31.1 8.6 1.7 0.2

4 81.2 15.6 2.9 0.4 0.0
Data shown are the integrated mass isotopomer distributions not corrected for natural isotope

enrichments. Measurements errors were <0.3 mol%. Data from the triplicate wells were not

statistically different.
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Table 8-2

Mass isotopomer distributions of glucose fragments from 2H20 experiments with isolated

hepatocytes from fed mice. Hepatocytes were cultured in 6-wells plates in medium

containing 2H 20 at 10% enrichment for 30 min, and one control well with no tracers (well

#4). Glucose labeling was analyzed by GC/MS. Shown are measured mass isotopomer

distributions of six selected glucose fragments (molar percentages, mol%).

m/z C-H

(formula) positions Well # M+0 M+1 M+2 M+3 M+4

301 1,2,3,4,5,6,6 1 66.0 25.2 7.1 1.5 0.2

(C14H210 7) 2 65.0 25.8 7.5 1.6 0.2

3 65.9 25.3 7.2 1.5 0.2

4 84.2 13.3 2.3 0.2 0.0

145 1,2 1 84.5 13.7 1.7 0.2 0.0

(C6H 10 3N) 2 84.5 13.7 1.6 0.1 0.0

3 84.3 13.9 1.7 0.1 0.0

4 92.4 6.7 0.9 0.0 0.0

173 5,6,6 1 82.6 14.9 2.2 0.2 0.0

(C8H 1304) 2 81.9 15.5 2.3 0.2 0.0

3 82.2 15.3 2.3 0.2 0.0

4 90.7 8.0 1.1 0.1 0.0

259 4,5,6,6 1 76.2 19.3 3.8 0.6 0.1

(C 12H190 6) 2 75.4 19.8 4.0 0.6 0.1

3 75.6 19.7 4.0 0.6 0.1

4 86.3 11.6 1.9 0.2 0.0

284 2,3,4 1 75.2 20.3 3.8 0.6 0.0

(C13H180 6N) 2 74.7 20.7 3.9 0.6 0.0

3 75.1 20.4 3.8 0.6 0.0

4 84.9 12.7 2.1 0.2 0.0

370 2,3,4,5 1 68.5 24.4 6.0 1.1 0.1

(C17 H2408N) 2 68.0 24.7 6.1 1.1 0.1

3 68.3 24.5 6.0 1.1 0.1

4 81.1 15.6 2.9 0.3 0.0
Data shown are the integrated mass isotopomer distributions not corrected for natural isotope

enrichments. Measurements errors were <0.4 mol%. Data from the triplicate wells were not

statistically different.
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Table 8-3

Deuterium enrichment of glucose from 2H20 experiments with hepatocytes isolated from

fasted and fed mice. Hepatocytes isolated from fasted and fed mice were cultured in 6-wells

plates in medium containing 2H 20 at 10% enrichment for 30 min, and one control well with

no tracers (well #4). Deuterium enrichment at all six glucose carbon position was

determined by least-squares regression as described in the Methods section. Results shown

are molar percent enrichments (best fit ± SD).

Hepatocytes from fasted mouse

Carbon well #1 well #2 well #3 well #4

position 2H20 2H20 2H20 no tracers

Di 7.3 + 0.4 6.3 + 0.4 6.8 + 0.4 0.1 + 0.2

D2 7.9 ± 0.4 9.1 ± 0.4 8.5 ± 0.4 0.0 ± 0.2

D3 6.5 ± 0.3 5.8 ± 0.3 6.4 ± 0.3 0.0 ± 0.2

D4 6.6 ± 0.2 6.7 ± 0.2 6.5 ± 0.2 0.0 ± 0.2

Ds 10.6 ± 0.2 10.5 ± 0.2 10.5 ± 0.2 0.0 ± 0.2

D66/2 5.7 ± 0.2 5.8 ± 0.2 5.7 ± 0.2 0.0 ± 0.2

well # 1
2H20

4.1 ± 0.3

4.9 ± 0.3

4.3 ± 0.4

3.4 ± 0.2

5.0 ± 0.2

2.3 ± 0.2

Hepatocytes from fed mouse

well #2 well #3
2H20 2H20

4.3 ± 0.3 3.7 ± 0.3

4.6 ± 0.3 5.4 ± 0.3

4.9 ± 0.4 3.6 ± 0.4

3.6 ± 0.2 3.7 ± 0.2

5.0 ± 0.2 5.1 ± 0.2

2.7 ± 0.3 2.5 ± 0.2

Total 50.3 ± 0.3 50.0 ± 0.3 50.1 ± 0.3 0.1 ± 0.2 26.4 ± 0.3 27.7 ± 0.4 26.5 ± 0.3 0.1 ± 0.2
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To better interpret these results consider Figure 8-1 that schematically illustrates the

reactions involved in hydrogen exchange/incorporation into glucose. For example, it is well

known that PGI stereospecifically transfers the pro-R hydrogen at C1 of fructose 6-

phosphate (F6P) to the C2 position of glucose 6-phosphate (G6P), however, hydrogen

exchange with the solvent has also been observed for the PGI reaction (Malaisse, 1990;

Malaisse, 1991; Seeholzer, 1993). Malaisse et al. (1990, 1991) reported for a single passage in

the direction F6P-+G6P, 65% intramolecular hydrogen transfer and 35% hydrogen

exchange, and for a single passage in the direction G6P--F6P, 72% intramolecular hydrogen

transfer and 28% hydrogen exchange. It is generally assumed that there is rapid exchange

between F6P and G6P, in which case we would expect that the labeling at C2 of glucose is

equilibrated with the solvent. However, in our experiments the deuterium enrichment at C2

deviated significantly from 10%, i.e. solvent enrichment. In experiments with hepatocytes

isolated from fasted and fed mice we found 7.9-9.1% and 4.6-5.4% deuterium enrichment

at C2, respectively. These results clearly indicated that the PGI reaction was not fully

equilibrated.

Incorporation at C5 of glucose occurs in the gluconeogenesis pathway, mainly via the

reactions catalyzed by enolase and TPI (see Figure 8-1). Therefore, the ratio of enrichment

of C5 to that of the solvent is a measure of gluconeogenesis relative to total glucose

production. In experiments with fasted hepatocytes we found 10.5-10.6% enrichment at C5,

indicating that 100% of glucose was produced by GNG, as expected in glycogen-deprived

hepatocytes. The observed 0.5 mol% difference between the solvent enrichment and C5

enrichment may have been caused by measurement errors, inaccuracies in our media

preparation, or due to a slight isotope effect. In experiments with fed hepatocytes we found

5.0-5.1% enrichment at C5, indicating that about 50% of glucose was produced by GNG.

This result is in line with the expected contribution of GNG in hepatocytes isolated from

fed mice. Note that in both cases the C5/C2 ratio would overestimate fractional GNG

significantly, i.e. if we had used the C5/C2 ratio as a measure of fractional GNG, as

proposed by Landau, we would have obtained 123% and 100% for fractional GNG in fasted

and fed hepatocytes, respectively, which are both irrational results.
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Figure 8-1: A schematic of reactions involved in hydrogen exchange and hydrogen

incorporation into glucose in the gluconeogenesis pathway.
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Deuterium incorporation at C1 and C6 positions occurs in the pyruvate -> oxaloacetate -+

PEP pathway, more precisely, in reactions catalyzed by alanine aminotransferase and

fumarase. Deuterium is additionally incorporated at C1 via reactions catalyzed by

phosphomannose isomerase (PMI) and glucose 6-phosphate dehydrogenase (G6PDH).

Thus, deuterium enrichment at C6 relative to the solvent enrichment is a measure of the

contribution of PEP to glucose production, and the difference between C1 and C6

enrichments is indicative of the combined activity of PMI and G6PDH. In our experiments

with fasted hepatocytes we found 5.7-5.8% enrichment at C6 and 6.3-7.3% enrichment at

C1, indicating that 57% of glucose was derived from PEP, and that PMI/G6PDH reactions

resulted in additional - 1% deuterium incorporation at C1. In experiments with fed

hepatocytes we found 2.3-2.7% enrichment at C6 and 3.7-4.3% enrichment at C1,

indicating that about 25% of glucose was derived from PEP and that also here there was

some PMI/G6PDH activity.

8.3.2 Incorporation of labeling into glucose from [U- 13C,2H,]glycerol

Isolated hepatocytes were also incubated with [U- 13C,2H8]glycerol at 25% enrichment, i.e. in

medium containing a mixture of [U- 13C,2Hs]glycerol and unlabeled glycerol in the proportion

of 1:3. Tables 8-4 and 8-5 show the measured mass isotopomer distributions of glucose from

experiments with fasted and fed hepatocytes, respectively. Measured mass isotopomer

abundances from triplicate experiments were not statistically different, i.e. the maximum

observed deviation between replicate wells was 0.2 mol/o. Qualitative interpretation of mass

isotopomer distributions from these experiments is more difficult than from 2H20

experiments, thus we will only highlight a few important observations. Detailed quantitative

analysis will be performed in section 8.3.4, where we apply rigorous flux analysis tools to

calculate fluxes and confidence intervals from this data. It is important to note that mass

isotopomer abundances from [U- 13C,2Hs]glycerol experiments cannot be corrected for

natural isotope enrichments as is often done for other tracer experiments, because here two

different isotopes (1 3C and 2H) are incorporated into glucose simultaneously. Thus, we must

always analyze the uncorrected data directly.
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Table 8-4

Mass isotopomer distributions of glucose from [U- 13C, 2Hs]glycerol labeling experiments with

isolated hepatocytes from fasted mice. Hepatocytes were cultured in 6-wells plates in

medium containing [U- 13C,2Hs]glycerol at 25% enrichment for 30 min. Glucose labeling was

analyzed by GC/MS. Shown are mass isotopomer distributions of six selected glucose

fragments (molar percentages, mol%/o).

m/z Well

(positions) # M+0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8 M+9 M+10 M+11

301 1 71.2 13.0 2.5 1.3 2.8 6.1 2.3 0.4 0.1 0.2 0.2 0.1

(C1-6, Hi-6) 2 71.1 13.1 2.6 1.3 2.9 6.0 2.3 0.4 0.1 0.2 0.2 0.1

3 71.2 13.1 2.5 1.3 2.8 6.0 2.3 0.4 0.1 0.2 0.2 0.0

145* 1 82.5 7.7 3.0 4.2 2.7

(C1- 2, H1-2) 2 82.3 7.7 3.0 4.2 2.8

3 82.4 7.7 2.9 4.1 2.8

173 1 85.8 8.0 1.1 0.4 4.2 0.5

(C5-6, H5-6) 2 85.8 7.9 1.2 0.5 4.2 0.5

3 85.8 8.0 1.1 0.4 4.2 0.5

259 1 80.1 12.5 2.1 0.4 0.3 3.7 1.0

(C4-6, H4-6) 2 80.0 12.5 2.1 0.4 0.3 3.7 1.0

3 80.1 12.3 2.1 0.4 0.3 3.7 1.0

284 1 72.5 16.6 3.7 2.7 3.1 1.4

(C1-4, H2-4) 2 72.7 16.6 3.7 2.6 3.0 1.4

3 72.6 16.6 3.7 2.7 3.0 1.4

370 1 69.4 15.2 6.4 3.6 3.2 1.6 0.5 0.1 0.0 0.0

(C-s5, H2-5) 2 69.6 15.1 6.5 3.6 3.2 1.5 0.4 0.1 0.0 0.0

3 69.6 15.1 6.5 3.6 3.2 1.5 0.4 0.1 0.0 0.0

Data shown are the integrated mass isotopomer distributions not corrected for natural isotope

enrichments. Measurements errors were <0.3 mol%. Data from the triplicate wells were not

statistically different.

* M+0 to M+2 mass isotopomer abundances of ion fragment at m/z 145 may be inaccurate due to

overlapping mass spectra.
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Table 8-5

Mass isotopomer distributions of glucose from [U- 13C,2Hs]glycerol labeling experiments with

isolated hepatocytes from fed mice. Hepatocytes were cultured in 6-wells plates in medium

containing [U- 13C,2Hs]glycerol at 25% enrichment for 30 min. Glucose labeling was analyzed

by GC/MS. Shown are mass

(molar percentages, mol%).

isotopomer distributions of six selected glucose fragments

m/z Well

(positions) # M+O M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8 M+9 M+10 M+11

301 1 77.3 13.1 2.4 0.9 1.6 3.4 1.1 0.1 0.0 0.0 0.0 0.0

(CI-6, H1-6) 2 77.3 13.1 2.4 0.9 1.6 3.4 1.1 0.2 0.0 0.1 0.0 0.0

3 77.3 13.1 2.4 0.9 1.6 3.3 1.1 0.2 0.0 0.0 0.0 0.0

145* 1 87.2 7.4 2.1 2.0 1.3

(C1-2, HI-2) 2 87.2 7.4 2.1 2.0 1.3

3 87.2 7.4 2.1 2.0 1.3

173 1 87.6 8.0 1.2 0.4 2.6 0.3

(C5-6, H5-6) 2 87.6 8.0 1.2 0.4 2.6 0.3

3 87.6 8.0 1.2 0.4 2.6 0.3

259 1 82.5 12.0 2.0 0.3 0.4 2.3 0.5

(C4-6, H4-6) 2 82.4 1.2.0 2.0 0.3 0.4 2.3 0.6

3 82.5 12.0 2.0 0.3 0.4 2.3 0.6

284 1 78.3 15.1 2.9 1.6 1.5 0.6

(C1-4, H2-4) 2 78.3 15.1 2.9 1.6 1.5 0.6

3 78.2 15.1 2.9 1.6 1.5 0.6

370 1 75.1 15.3 5.1 2.2 1.5 0.6 0.1 0.0 0.0 0.0

(Ci-5, H2-5) 2 75.2 15.3 5.1 2.1 1.5 0.7 0.2 0.0 0.0 0.0

3 75.1 15.3 5.1 2.1 1.5 0.7 0.1 0.0 0.0 0.0

Data shown are the integrated mass isotopomer distributions not corrected for natural isotope

enrichments. Measurements errors were <0.3 mol%. Data from the triplicate wells were not

statistically different.

* M+0 to M+2 mass isotopomer abundances of ion fragment at m/z 145 may be inaccurate due to

overlapping mass spectra.
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First, consider the mass isotopomer distribution of ion fragment at m/z 301 that contains all

carbon and hydrogen atoms of the glucose molecule. In fasted and fed hepatocyte

experiments we observed significant abundances of mass isotopomers up to M+6. These

isotopomers were formed from the incorporation of a single [U- 13C, 2H8]glycerol molecule

into glucose. To minimize probability of condensation of two labeled triose phosphates, we

used only 25% enrichment of the tracers in the medium that was further diluted from

unlabeled endogenous sources, i.e. oxaloacetate-+GAP. This reduced the chance of

condensation of two labeled TPs to less than 1%. Of the 8 deuterium atoms in [U-
13C,2H8]glycerol only 5 atoms are stable, i.e. hydroxyl hydrogen atoms are rapidly exchanged

with the solvent. Furthermore, the C2 hydrogen of glycerol is transferred to NADH in the

reaction catalyzed by glycerol 3-phosphate dehydrogenase. Thus, DHAP derived from [U-
13C,2Hs]glycerol is M+7 labeled. If we consider the fate of atoms of DHAP (that eventually

becomes the top half of glucose), we find that the pro-S hydrogen at C1 of DHAP is lost to

the solvent in the aldolase reaction (see Figure 8-1), and in the PGI reaction the pro-R

hydrogen at C1 of F6P may be exchanged with the solvent resulting in M+5 glucose, or

transferred to C2 of G6P via intramolecular transfer resulting in M+5 glucose. M+4 and

M+3 isotopomers of glucose may be formed via additional loss of deuterium atoms in the

TPI reaction (loss of C3 hydrogen of glucose), and in the PMI/G6PDH reactions (loss of

C1 hydrogen of glucose). In conclusion, the top half of the glucose molecule may be labeled

as M+3 to M+6 from [U- 13C, 2Hs]glycerol depending on the relative fluxes in the pathway

from glycerol to glucose. When we trace the path from glycerol to the bottom half of

glucose, i.e. glycerol->GAP--+glucose, we find that the bottom half of glucose may be

labeled as M+5, M+6, or M+7 depending on relative fluxes of TPI, GAPDH, and aldolase

reactions. Taken together, the significant abundances of M+5 and M+6 isotopomers

compared to the M+3 isotopomer indicated that one or more reactions in the

gluconeogenesis pathway was not fully equilibrated. Consider also the m/z 145 fragment of

glucose that contains the first two carbon and two hydrogen atoms of glucose. We observed

significant M+3 and M+4 abundances for this fragment from both fasted and fed

hepatocytes. The M+4 isotopomer is formed only if all four atoms are derived from [U-

13C,2Hs]glycerol, whereas M+3 reflects the fraction of glucose molecules where one of the

two deuterium atoms has been lost, i.e. either via PGI (loss of C2 hydrogen), or via
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PMI/G6PDH (loss of C1 hydrogen). Thus, the significant abundance of M+4 vs. M+3

provided further evidence that the PGI reaction was not fully equilibrated.

8.3.2 Labeling incorporation into glucose from [U-13C, 2H8]glycerol and 2H 20

Preliminary simulation experiments of the pathway suggested that a combination of [U-
13C, 2H8]glycerol and 2H20 tracers would provide much more detailed flux information than

could be obtained from either of these tracers alone. The two tracers provide

complementary information. With the 2H 20 tracer flux information is obtained from the

incorporation of 2H into glucose, whereas with the [U-13C, 2H8]glycerol tracer flux

information is obtained from the incorporation of 2H relative to '3C incorporation into

glucose. The 13C-carbon backbone of [U-13C, 2H8]glycerol is critical for this method, because

it provides a measure of the total amount of [U-13C,2Hs]glycerol incorporated into glucose,

i.e. 13C-labeling is not lost in the pathway from glycerol to glucose as opposed to 2H-labeling.

Thus, [2H8]glycerol would provides much less flux information than [U- 13C, 2H8]glycerol,

because the loss of all deuterium atoms from [2H8]glycerol yields M+O glucose, which cannot

be distinguished from endogenous glucose and glucose derived from glycogenolysis.

Preliminary simulation experiments further indicated that we would be able to estimate

fluxes in this system independent of the amount of [U-13C,2H8]glycerol that is incorporated

into glucose and independent of the isotopic steady state assumption, i.e. fluxes are strictly

derived from ratios of labeled mass isotopomers of glucose. Thus, endogenous M+O glucose

will not affect the estimation of fluxes. As such, this method for estimating is fundamentally

different from other methods to estimate gluconeogenesis fluxes, e.g. like MIDA, where

fluxes are estimated by measuring absolute incorporation of 13C-tracers into glucose and

assuming isotopic steady state.

Here, isolated hepatocytes were incubated in medium containing the two tracers, i.e. [U-
13C,2H8]glycerol at 25% enrichment and 2H20 at 10% enrichment. Tables 8-6 and 8-7 show

the measured mass isotopomer distributions of glucose fragments from triplicate

experiments with fasted and fed hepatocytes, respectively. Measured mass isotopomer

abundances from triplicate experiments were not statistically different, i.e. the maximum
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Table 8-6

Mass isotopomer distributions of glucose from [U- 13C,2H8]glycerol + 2H 20 labeling

experiments with isolated hepatocytes from fasted mice. Hepatocytes were cultured in 6-well

plates in medium containing [U-13C,2Hs]glycerol at 25% enrichment and 2H20 at 10%

enrichment for 30 min. Glucose labeling was analyzed by GC/MS. Shown are mass

isotopomer distributions of six selected glucose fragments (molar percentages, mol0 /o).

m/z Well

(positions) # M+0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8 M+9 M+10 M+11

301 1 42.6 30.1 10.8 3.2 2.6 5.1 3.6 1.2 0.3 0.2 0.2 0.1

(C1-6, HI-6) 2 42.4 30.2 10.9 3.2 2.6 5.1 3.6 1.3 0.3 0.2 0.2 0.1

3 42.5 30.1 10.8 3.2 2.6 5.1 3.6 1.2 0.3 0.2 0.2 0.1

145" 1 69.7 18.2 4.2 4.5 3.4

(C1-2, H1-2) 2 69.6 18.4 4.2 4.4 3.5

3 69.9 18.2 4.2 4.4 3.3

173 1 68.7 22.1 3.6 0.8 3.9 0.9

(C5-6, H5-6) 2 68.7 22.2 3.6 0.8 3.9 0.9

3 68.7 22.2 3.6 0.8 3.9 0.9

259 1 60.5 27.0 6.3 1.2 0.4 3.2 1.5

(C4-6, H4-6) 2 60.4 27.1 6.3 1.2 0.4 3.2 1.5

3 60.5 27.0 6.3 1.2 0.4 3.2 1.5

284 1 58.5 26.5 7.0 3.0 3.2 1.8

(C1-4, H2-4) 2 58.4 26.6 7.1 3.0 3.1 1.8

3 58.4 26.5 7.0 3.1 3.2 1.8

370 1 50.4 27.8 10.4 4.8 3.6 2.1 0.7 0.2 0.0 0.0

(C-s, H2-5) 2 50.4 27.7 10.4 4.8 3.6 2.2 0.7 0.2 0.0 0.0

3 50.3 27.7 10.4 4.9 3.7 2.1 0.8 0.2 0.0 0.0

Data shown are the integrated mass isotopomer distributions not corrected for natural isotope

enrichments. Measurements errors were <0.3 mol%. Data from the triplicate wells were not

statistically different.

* M+O to M+2 mass isotopomer abundances of ion fragment at m/z 145 may be inaccurate due to

overlapping mass spectra.
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Table 8-7

Mass isotopomer distributions of glucose from [U- 13C,2H8]glycerol + 2H20 labeling

experiments with isolated hepatocytes from fed mice. Hepatocytes were cultured in 6-well

plates in medium containing [U-13C, 2H8]glycerol at 25% enrichment and 2H20 at 10%

enrichment for 30 min. Glucose labeling was analyzed by GC/MS. Shown are mass

isotopomer distributions of six selected glucose fragments (molar percentages, mol%).

m/z Well

(positions) # M+0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8 M+9 M+10 M+11

301 1 61.8 22.7 6.5 1.8 1.5 2.9 1.9 0.6 0.1 0.1 0.1 0.0

(C1-6, HI-6) 2 62.1 22.7 6.4 1.7 1.5 2.9 1.8 0.6 0.1 0.1 0.1 0.0

3 62.0 22.8 6.6 1.8 1.5 2.9 1.9 0.5 0.0 0.0 0.0 0.0

145* 1 79.4 14.1 2.8 2.1 1.6

(C1i 2, HI 2) 2 79.3 14.1 2.8 2.1 1.6

3 79.1 14.3 2.8 2.2 1.6

173 1 80.1 14.2 2.2 0.5 2.4 0.6

(C5-6, H5-6) 2 80.1 14.3 2.2 0.5 2.4 0.5

3 80.1 14.2 2.2 0.5 2.5 0.5

259 1 73.6 18.6 3.9 0.7 0.4 2.0 0.9

(C46, H4-6) 2 73.6 18.6 3.9 0.7 0.4 2.0 0.9

3 73.5 18.7 3.9 0.7 0.4 2.0 0.9

284 1 69.9 21.0 4.8 1.8 1.6 0.8

(Ci-4, H2-4) 2 70.1 20.9 4.8 1.8 1.5 0.8

3 69.8 21.1 4.8 1.8 1.6 0.8

370 1 64.5 22.6 7.2 2.9 1.7 0.9 0.3 0.0 0.0 0.0

(Ci-3, Hs-) 2 64.5 22.5 7.2 2.9 1.8 0.9 0.3 0.0 0.0 0.0

3 64.3 22.5 7.2 2.8 1.8 0.9 0.3 0.0 0.0 0.0

Data shown are the integrated mass isotopomer distributions not corrected for natural isotope

enrichments. Measurements errors were <0.3 mol%. Data from the triplicate wells were not

statistically different.

* M+0 to M+2 mass isotopomer abundances of ion fragment at m/z 145 may be inaccurate due to

overlapping mass spectra.
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observed deviation was 0.3 mol%. Glucose produced in these experiments was significantly

more labeled than in experiments with [U-13C,2Hs]glycerol alone, which reflected additional

incorporation of 2H from 2H20 into glucose. For example, we found significant M+7 mass

isotopomers (up to 1.2 mol%/o) for the ion fragment at m/z 301 that contains all carbon and

hydrogen atoms of glucose, compared to 0.4 mol% for the experiment with [U-

13C,2H8]glycerol alone. Quantitative analysis of the over-determined mass isotopomer data

from these experiments is performed in the next section.

8.3.3 Flux estimation and model validation

To better characterize metabolic fluxes in this system we performed comprehensive analysis

of the observed mass isotopomer distributions using the network model shown in Figure 8-1

and Metran software. Fluxes and their confidence intervals ware estimated for all six

experimental data sets, i.e. fasted and fed hepatocytes incubated with either 2H 20, [U-
13C,2H8]glycerol, or 2H20+[U- 13C, 2H8]glycerol as tracers. Table 8-8 compares the

information content of the data sets. For example, the 2H20 experiment with fasted

hepatocytes provided 22 mass isotopomers of glucose from which 4 independent fluxes

were estimated. Thus, there were 18 (=22-4) redundant measurements in this data. We found

excellent agreement between the observed and predicted mass isotopomer abundances for

the optimally fitted fluxes, as judged by the small magnitude of the sum of squared residuals,

i.e. 2.1, which was smaller than the critical value of 31.5 for the statistical test of model

adequacy (at 95% confidence level with 18 degrees of freedom) indicating that the fit was

statistically acceptable. Fits for all six data sets were statistically acceptable. Note that 39

mass isotopomers from the [U- 13C,2Hs]glycerol experiment allowed estimation of 6 fluxes,

whereas the 39 mass isotopomers from the 2H20+[U- 13C,2H8]glycerol experiment provided

9 or 10 fluxes. Clearly, the combined use of 2H20 and [U- 13C,2H8]glycerol provided the most

informative data set, as was expected based on preliminary simulations.

8.3.4 Evaluation of fluxes in the gluconeogenesis pathway

Table 8-9 shows the estimated fluxes and standard deviations of fluxes for each of the six

data set. Fluxes obtained from the different isotopic tracers were in good agreements.
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Table 8-8

Comparison of information content of isotopomer data. Mass isotopomer distributions from

six labeling experiments were fitted to a detailed model of glucose metabolism. Fluxes and

confidence intervals were determined by nonlinear least-squares regression. The fits were

statistically evaluated for the goodness-of-fit.

Isotopic tracers

[U-13C, 2H5]glycerol

Mouse 2H20 [U-13C, 2Hs]glycerol and 2H20

Fasted 22 39 39
No. of fitted mass isotopomers

Fed 22 37 38

Fasted 4 6 10
No. of estimated fluxes*

Fed 2 6 9

Fasted 18 33 29
No. of redundant measurements "

Fed 20 31 29

Fasted 2.1 24.3 21.1
Sum of weighted squared residuals

Fed 2.2 17.3 13.0

Fasted Yes Yes Yes
Fit statistically acceptable

Fed Yes Yes Yes

* Number of estimated fluxes equals the number of independent fluxes that were statistically different

from zero, as judged by 95% confidence interval.

** Number of redundant measurements = (no. of fitted isotopomers) - (no. of estimated flux)
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For example, the GNG flux was estimated at 100±5 and 50±5 for fasted and fed

hepatocytes, respectively, based on 2H20 data, which was in good agreement with the values

of 95±2 and 42+2, respectively, estimated from the 2H20+ [U-13C,2H8]glycerol data. Note

that [U-13C,2Hs]glycerol data alone did not allow precise estimation of the GNG flux, i.e. the

68% confidence interval was 65-100 and 26-100, respectively. Thus, only a lower bound

could be determined. This limitation of [U-13C,2H8]glycerol tracer was anticipated based on

simulation experiments, which was one of the reasons to use the combination of [U-
13C,2Hs]glycerol and 2H20. Note that the fractional contribution of glycerol and oxaloacetate

to glucose was more precisely determined from the 2H20+ [U- 13C,2H8]glycerol data than

could be determined from either of the two tracers alone. It is clear from the results shown

in Table 8-9 that [U- 13C,2H8]glycerol primarily provides information regarding the

reversibility of reactions in the gluconeogenesis pathway. Reaction reversibilities were

accurately determined from both [U-13C,2Ha]glycerol and 2H20+ [U-13C, 2H8]glycerol

experiments, but not from 2H20 data alone. Fractional equilibration for the following four

reactions was estimated precisely: 63%+5 equilibration for PGI, 72%±4 equilibration for

TPI, 8%±3 equilibration for transketolase, and 18%±6 equilibration for the combined

activity of PMI and G6PDH reactions. It was interesting that the estimated reaction

reversibilities were identical for fasted and fed hepatocytes, suggesting that these fluxes may

have a physiological role. To our best knowledge, this is the first methods that allows the

estimation of reaction reversibilities in the gluconeogenesis pathway in vivo, which opens up

many opportunities for future research. For example, it would be interesting to compare

reaction reversibility of healthy hepatocytes with insulin-resistant hepatocytes, or with

hepatocytes responding to hormones.

8.3.5 Estimation of fluxes using extended model

In the previous analysis we assumed that all glucose was newly produced and that the

enrichment of the tracers was constant and known. These assumptions were clearly satisfied

in our well-controlled experiments, however, if we apply these tracers to larger systems, e.g.

perfused livers, or whole animal models then these assumptions may not be valid.
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Table 8-9

Metabolic fluxes estimated from labeling experiments. Metabolic fluxes and their confidence

intervals were estimated by fitting glucose mass isotopomer distributions to a detailed model

of gluconeogenesis. Values shown are estimated flux + SD, or the 68% confidence interval.

Isotopic tracers

[U- 13C, 2H 5]glycerol
Net fluxes Mouse 2H 20 [U-13C, 2Hs]glycerol and 2H0O

Glucose production (fixed at 100) Both [100] [100] [100]
Fasted 100 ± 5 65 - 100 95 ± 2

Gluconeogenesis (GNG)* Fed 0 ± 5 26 - 100 42 ± 2Fed 50 + 5 26 - 100 42 + 2
Fasted 0 + 5 0 - 35 5 + 2

Glycogenolysis (GL)* Fed 50 5 0 - 74 58 2Fed 50±5 0-74 58+2
Fasted 57 ± 25 52 ± 4 52 ± 1

Glycerol to glucose flux
Fed 33 + 20 29 + 1 29 ± 1
Fasted 137 ± 24 76 - 150 137 + 4

Oxaloacetate to glucose flux
Fed 67 + 22 24-173 55 2

Exchange fluxes and percent equilibration (%)**
Fasted 0 - 1000 (0 - 91%0) 173 ± 35 (63% + 4) 180 + 35 (64% + 4)

Phosphoglucose isomerase PGI) Fed 0 - 1250(0-- 56 1) ±64 3 D (62% ± 6) 145 ± 35 (59% ± 5)

Aldolase Fasted nd nd nd
Fed nd nd nd

Fasted 0 - 400 (0 - 80%) 295 + 60 (74% 0 4) 280 ± 45 (73% 0 3)
Triose phosphate isomerase (TPI)

Fed nd 260 .. 150 (72% ± 8) 240 ± 130 (71% 8....................................................... ........................... ............................ ............................ . . ........................ ............. I................. .d ......................................................... . .. ..0... .. ... ......... ....... .................. ... ..........
Phosphomannose isomerase (PMI) + Fasted 0 - 520 (0 - 83%) 20 ± 8 (16% + 6) 9 ± 7 (8% + 6)
Glucose 6-phosphate dehvdr. (G6PDH) Fed nd 24 .. 12 (190% 7) 25± 12 (20% ± 7

Fasted nd 10 ± 2 (9% 0 2) 8 ± 4 (7% + 3)
Transketolase (TK) Fed ndFed nd 10.. 4.(9% ± 3) . 8±5(7% 4).................................... ... ........... .................................................................................................... .................................................... .............................. ..... ...... + I - . ...- ... .................. ......... .+... .+ ...... ... ................

Fasted nd nd nd
Phosphoglucomutase (PGM) Fed nd nd ndFed nd nd nd

Glycerol 3-phosphate dehydr. Fed nd nd ndFed nd nd nd
Glyceraldehyde 3-phosphate dehydr. Fasted nd > 320 (>76%) > 260 (>75%)

Fasted nd nd nd
Cycling between GAP and PEP

Fed nd nd nd
* GNG and GL are not independent fluxes, i.e. GNG = (Vglycerol + voxailoacemte)/ 2 ; GL = 100-GNG.

** 'nd' (=not determined) indicates that the flux could not be determined, i.e. the confidence interval

was 0 -- infinity (i.e. 0 - 100% equilibration).

** Percent equilibration = 100% x (exchange flux) / (100 + exchange flux).
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Therefore, we tested the sensitivity of estimated fluxes with respect to these assumptions.

For that purpose we created an extended mathematical model that included three additional

parameters that were estimated: (i) fraction of newly produced glucose from tracers, as

opposed to endogenous unlabeled glucose; (ii) fractional enrichment of 2H 20, i.e. in our

experiments 10%; and (iii) fractional enrichment of [U-13C,2H8]glycerol tracer, i.e. in our

experiments 25%. Fluxes and confidence intervals were estimated for the extended model

using Metran. Table 8-10 compares the flux results obtained using the basic model from the

previous section with the flux results obtained using the extended model. For example, our

results indicate that with the extended model it is not possible to estimate the GNG flux

from 2H 20 data. The best estimate for the GNG flux was 100±6 for fasted hepatocytes and

44-100 for fed hepatocytes, thus only a lower bound could be determined in the latter

experiment. The fraction of newly synthesized glucose was accurately estimated at 100%±5

for fasted hepatocytes, but was less precisely estimated for fed hepatocytes, i.e. 1000/26.

The enrichment of 2H20 was slightly overestimated at 11%±0.4 and 10.9%±0.4 for fasted

and fed hepatocyte experiments, respectively, compared to 10% true enrichment. For the

[U- 13C,2H8]glycerol experiments the quality of flux results was not significantly affected using

the extended model, as we indeed expected based on preliminary simulation experiments.

For example, fractional equilibration of fluxes were determined with similar precision as with

the basic model. The additional model parameters could not be determined precisely, i.e. the

fraction of newly synthesized glucose was estimated at 1000/%±36 and 100%± 2 2 for fasted

and fed hepatocyte experiments, respectively, and the enrichment of [U-' 3C, 2H8]glycerol was

estimated at 16-100% and 8-100%, respectively (25% true enrichment). These results were

encouraging, because they illustrated that fluxes could be estimated from [U- 13C,2H8]glycerol

data independent of the amount of glycerol incorporated and independent of the presence of

unlabeled endogenous glucose. The same was true for the 2H20+[U- 13C,2H8]glycerol

experiments. Here, both the net and exchange fluxes were estimated precisely with the

extended model. For example, with the extended model the GNG flux was estimated at

93±4 and 43±5 for fasted and fed hepatocytes, respectively, which corresponded well with

95±2 and 42±2, respectively, as estimated using the basic model. The slight decrease in

precision was due to the reduced number of redundant measurement for the estimation of
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Table 8-10

Metabolic fluxes estimated using the basic and extended network models. The extended

model included three additional parameters that had to be estimated: fraction of newly

produced glucose, fractional enrichment of water, and fractional enrichment of glycerol

tracer. Values shown are estimated flux ± SD, or the 68% confidence interval.

Isotopic tracers
2H20 [U-13C, 2H5]glycerol JU- 13C, 2H5]glycerol

and 2H20
Basic Extended Basic Extended Basic Extended

Net fluxes Mouse Model Model Model Model Model Model
Glucose production (fixed at 100) Both 1100] [100] 1100] [100] [100] [100]

Fasted 100 5 100 ± 6 65-100 53-100 95 ± 2 93 ± 4
Fed 50 5 44-100 26-100 25-100 42 + 2 43 ± 5
Fasted 0+5 0+6 0 - 35 0 - 47 5+2 7+4

Glycogenolysis (GL Fed 50 5 0 - 56 0 - 74 0 - 75 58 2 57 + 5
Fasted 57 ± 25 66 + 30 52 + 4 13 - 92 52 ± 1 36 ± 12

Glycerol to glucose flux
Fed 33 + 20 51 ± 45 29 + 1 7 - 175 29 + 1 31 ± 12

Fasted 137 24 132 30 76-150 76-187 137 ± 4 157 ± 15
Oxaloacetate to glucose flux

Fed 67 ± 22 98 ± 40 24- 173 14- 193 55 + 2 73 ± 15

Percent equilibration 0/o)*

Phoshogucose soerase ) Fasted 0-91% 0 - 91% 63% ± 4 62% ± 5 64% + 4 62% ± 4
Fed 0 - 56% nd 62% + 6 63% ± 7 59% / 5 62% + 6

Fasted 0 - 80% 0 - 81% 74% + 4 75% + 3 73% 0 3 75% + 3
Triose phosphate isomerase (TPI) Fed nd 23 - 100% 72% ± 8 80% + 6 71% ± 8 74% ± 8

Phosphomannose isomerase (PMI) + Fasted 0 - 83% 0 - 83% 16% ± 6 16% ± 5 8% + 6 5% ± 4
Glucose 6-phosphate dehydr. (G6PDI) Fed nd nd 190/± 7 20% ± 8 200/% ±7 17% ± 8

Fasted nd nd 9% + 2 9% + 3 7% + 3 8% + 4
Transketolase (K Fasted nd nd 9% ± 3 9% ± 4 7% ± 4 8% + 5

Glyceraldehyde 3-phosphate dehydr. Fasted nd nd > 76% > 74% > 72% > 67%

Additional modelparameters

Fasted [100%] 100% + 5 [100%] 100% + 36 [1000/%] 87% ± 12
Fraction newly produced glucose Fed [100%] 100% ±26 10000 ± 22 10000 96 12
.................................................................................................................................................................................................... . ..... ................. . . .............................. - ........... .......... ........ ............... .............................. .- ...................... [ ...................... ........................... - .............

Fasted [100/%] 11.0% ± 0.5 [0% 1  [0%] [10%] 9.9% ± 0.4
Water enrichment Fed 0 ± 0.4
............................................................................................................................................................... . ......... .................. . 1.. ... .. './. [ . 1 ............. 1 .9 . + .5 ............ [ .......................... [0. .'.o ........ .................. 1. .o .............9 ..y ... ... 0........

Fasted [0%] [] [0%] [25%] 16 - 100% [25%] 22 - 100%
Glycerol enrichment Fed [0%] 10%] [25%] 8- 100% 125%] 13- 100%
* 'nd' (=not determined) indicates that the 68% confidence interval was 0 - 100%.

* Percent equilibration = 100% x (exchange flux) / (100 + exchange flux).
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the gluconeogenesis flux, i.e. three additional parameters were estimated in the extended

model from the same number of mass isotopomers.

8.4 Discussion

Previously we have shown that net and exchange fluxes in the gluconeogenesis pathway may

be estimated through the combined analysis of 2H20, [U-13 C]glycerol, and [2Hs]glycerol

experimental data (Chapter 7). Here, we provide a novel two-tracer strategy that allows

accurate estimation of the same fluxes from a single experiment. Quantitative analysis of

mass isotopomer distributions of glucose resulting from the incorporation of [U-
13C,2H8]glycerol into glucose required the use of the elementary metabolite units framework

for modeling isotopic distributions. The EMU method reduced the computational problem

of isotopic simulations from 42,224 variables, which could not be solved computationally, to

only 204 EMU variables that were easily computed. Using the Metran software fluxes and

confidence intervals were determined and the fits were statistically evaluated. The methods

developed in this study and the insight obtained from these experiments have wide

implications for in vivo studies of glucose metabolism in vivo. We have clearly shown that

PGI and TPI reactions are not fully equilibrated in isolated hepatocytes. In hepatocytes

isolated from fasted and fed mice we found that PGI was only 630/±5 equilibrated and TPI

was only 72%±4 equilibrated. This resulted in incomplete equilibration of hydrogen at C2 of

glucose and the solvent in 2H20 experiments, and thus overestimation of fractional GNG

from the ratio of deuterium enrichment at C5 vs. C2 of glucose, i.e. 123% for fasted

hepatocytes and 100% for fed hepatocytes, compared to the true values of 95% and 42%,

respectively. Furthermore, we have illustrated that using [U- 13C,2Hs]glycerol metabolic fluxes

can be determined independent of the isotopic steady state assumption and independent of

the amount of glycerol incorporated into glucose, i.e. independent of zonation of glycerol.

Thus, this method can be applied to perfused livers and whole animal models without

difficulty. And because this method does not require isotopic steady state, tracer experiments

can be much shorter (i.e. less expensive) than current experiments that require 4-5 hr

constant infusion of tracer to reach isotopic steady state of glucose labeling.
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Appendix A

GC/MS analysis of TBDMS derivatized

amino acids

GC/MS analysis of unlabeled and [U- 13C]-labeled (99 At%) amino acids was performed
using HP 5890 Series II GC (Gas Chromatograph) connected to HP 5971 MSD (Mass
Selective Detector). The mass spectrometer was calibrated using the 'Max Sensitivity
Autotune' setting.

Column Specifications
* Agilent Technologies 122-0732 DB-1701 (Serial No. US4823442H)
* Length: 30 m
* ID: 0.25 mm
* Film: 0.25 pm
* Temperature limits: -200 C to 2800 C

MSD
*

*0

*

*

Settings
Scan mode
7 min solvent delay
23 min recording time
Mass range: 195 to 445 amu (approx. 2.7 scans/sec)

GC Settings
* Constant flow 0.737 ml/min (= 6 psi at 80 0 C; 31.6 cm/sec)

* Injector temp: 2700 C

* Transferline temp: 3000 C
* Temperature program:

o 100 0C (hold 1.5 min)

o 200C/min to 130 0 C
o 100C/min to 2200 C (hold 3 min)

o 50C/min to 2800 C (hold 3 min)
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Total Ion Chromatogram

4e+006-

2e+006-

le+006s
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Leu
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+0gO
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APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Recommended fragment ions and corresponding precursor metabolites
(for E. colibiosynthesis pathways)

Amino Mass Carbon atoms Fragmentation Precursor metabolite(s)
acid Range
Ala 232 - 238 2-3 M - C5H90 Pyr(23)

260 - 267 1-2-3 M - C4H 9  Pyr(1-2-3)
Gly 218 - 223 2 M - CsH 90 3PG(2) and C-1 and OAC2

246 - 252 1-2 M - C4H 9  3PG(1-2) and 3PG(3) + CO2 and other
Val 260 - 268 2-3-4-5 M - CsH 9O Pyr(2-3) + Pyr(2-3)

288 - 297 1-2-3-4-5 M - C4H 9  Pyr(1-2-3) + Pyr(2-3)
Leu 274 - 283 2-3-4-5-6 M - C5H 90 AcCoA(2) + Pyr(2-3) + Pyr(2-3)

Ile 200 - 208 2-3-4-5-6 M - C7H 150 2Si OAC(2-3-4) + Pyr(2-3)
274 - 283 2-3-4-5-6 M - CsH 90 OAC(2-3-4) + Pyr(2-3)

Ser 288 - 294 2-3 M - C7H1 50 2Si 3PG(. 3) and Gly(2) + C-1 and other
302 - 308 1-2 M - C7H 17OSi 3PG(1-2) and Gly(_-2)
362 - 369 2-3 M - C5H 90 3PG(2-3) and Gly(2) + C-1 and other
390 - 398 1-2-3 M - C4H 9  3PG(1-2-3) and Gly(1-2) + C-1 and other

Thr 376 - 382 2-3-4 M - C5H90 OAC(2-3-4)
404 - 413 1-2-3-4 M - C4H9 OAC(1-2-3-4)

Met 218 - 226 2-3-4-5 M - C7H150 2Si OAC(2-3-4) + C-1
292 - 298 2-3-4-5 M - C5H 90 OAC(2 -3-4) + C-1
320 - 327 1-2-3-4-5 M - C4H 9  OAC(1-2-3-4) + C-1

Phe 234 - 243 2-3-4-5-6-7-8-9 M - C7H15O2Si PEP(2-3) + PEP(2-3) + E4P(1-2-3-4)
302 - 307 1-2 M - C7H7  PEP(1-2)
308 - 316 2-3-4-5-6-7-8-9 M - C5H 90 PEP(2-3) + PEP(2 -3) + E4P(1-2-3-4)

336 - 345 1-2-3-4-5-6-7-8-9 M - C4H 9  PEP(1-2-3) + PEP(2-3) + E4P(1-2-3-4)
Asp 302 - 308 1-2 M - C8H 170 2Si OACo(.2)

376 - 382 1-2 M - C6H110O OAC(1-2)
390 - 398 2-3-4 M - C5H 90 OAC(2 -3-4)
418 - 427 1-2-3-4 M - C4H 9  OAC(1-2-3- 4)

Glu 330 - 336 2-3-4-5 M - C7H 15O 2Si AKG(2 3.4- 5)
432 - 442 1-2-3-4-5 M - C4H9  AKG(1-2-3-4-5)

Tyr 302 - 305 1-2 M - C13H 210Si PEP(1-2)
3PG: 3-phosphoglycerate
PEP: phosphoenolpyruvate
Pyr: pyruvate
E4P: erythrose-4-phosphate
AKG: a-ketoglutarate
OAC: oxaloacetate
AcCoA: acetyl coenzyme-A
R5P: ribose-5-phosphate
C-1: One-carbon unit
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Rejected fragment ions and reason for rejection

Carbon atoms

1-2 and 1-2-3-4,5
2-3-4-5-6
1-2 and 1-2-3-4-5-6
1-2 and 1-2-3-4-5-6
2-3-4-5
1-2-3-4-5
unknown
unknown
unknown
unknown
unknown
2-3-4
unknown
1-2-3-4-5
2-3-4-5
2-3-4-5-6
1-2-3-4-5-6
2-3-4-5-6-7-8

Reason for rejection

Overlapping fragments
Inaccurate. M+2 too high (+0.9 mol%)
Overlapping fragments
Overlapping fragments
Co-eluting with other compounds
Co-eluting with other compounds
Unknown fragmentation
Inaccurate. M+0 too low (-4.0 mol%)/
Unknown fragmentation
Unknown fragmentation
Inaccurate. M-1 too high (4.4 % of M+0)
Inaccurate. M+3 too high (+0.7 mol0/o)
Unknown fragmentation
Inaccurate. M-1 too high (1.8 % of M+0)
Inaccurate. M+0 too low (-0.6 mol0/o)
Low signal-to-noise ratio
Inaccurate. M-1 too high (1.7 % of M+0)
Low signal-to-noise ratio

- 298 -

Amino
acid

Val
Leu
Leu
Ile
Pro
Pro
Ser
Thr
Met
Asp
Asp
Asp
Glu
Glu
Glu
Lys
Lys
Tvr

Mass
Range

302 - 308
200 - 208
302 - 312
302 - 312
258 - 266
286 - 295
230 - 237
417 - 424
244 - 250
244 - 249
258 - 266
316 - 323
272 - 280
358 - 367
404 - 408
329 - 336
431 - 441
364 - 375

Alternative
fragment

n/a
Leu-274

n/a
n/a

Glu-330
Glu-432

unknown
unknown
unknown
unknown
unknown
Asp-390
unknown
Glu-432
Glu-330

none
none

Phe-308
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APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Ala 232
76.5

76

755

74.5 "

Peak area 7.10O

M+3 M+4

0.5

2 3 0 1 2 3
Peak area 7 Peak area.,G0

0 1 2 3 0 1 2 3

7 Peak area 7 Peak area 75 Io10 1x i

[U-13C]-Ala 232

1.5

0.5

0 1 2 3

Peak area xx 10

M+1

P.5

0 1 2 3

Peak area 7.10

M+2 M+3 M+4

76 75
76 165

75.5

7515 * " _.. . . . .. . . . . 6.5

0 1 2 3 0 1 2 3 0 1 2 3
Peak area 7 Peak area 7 Peak area 7

105 . , .6

M+5 M+6 M+7

i 0.5.

55 1.5

S 1 2 3 0 1 2 0 1 2 3

Peak area 7
K 10

Peak area 7ý 1 0 Peak area 7x 10

Ala 232
Formula : CloH 26ONSi2
Exact mass : 232.155
C-atoms: 2-3
m/z theory data difference
231 0.0 0.0 0.0
232 100.0 100.0 0.0
233 21.9 22.1 0.2
234 9.0 9.1 0.1
235 1.3 1.3 0.0
236 0.2 0.2 0.0
237 0.0 0.0 0.0
238 0.0 0.0 0.0
239 0.0 0.0 0.0

This fragment can be used for quantitative analysis.

[U-13C]-Ala

m/z theory data difference
231 0.0 0.1 0.1
232 0.0 0.3 0.3
233 2.0 0.1 -1.9
234 100.0 100.0 0.0
235 19.8 20.8 1.0
236 8.5 8.9 0.4
237 1.1 1.2 0.1
238 0.2 0.2 0.0
239 0.0 0.0 0.0
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Ala 260
75.5

75

74 , ,.

73.5

0 1 2

Peak area 7

[U-13C]-Ala 260

0 0.5 1 15 2 2.5
Peak area x 107x 10

M+1

17.5

17 --

16,5

0 1 2 3

Peak area 7

M+1

M+2

7.5

65

0 1 2

Peak area 7
M11

M+2

Peak area 7 Peak area 7

M+3

0.5

o i 2 3

Peak area 7
xM+3

M+3

0 0.5 1 1.5 2 2.5
Peak area 7x 10

M+5 M+6

0 0.5 1 15 2 2.5 0 0.5 1 15 2 2.5
Peak area x 107 Peak area 7X 10 ý10

Ala 260
Formula : CiiH 260 2NSi2
Exact mass : 260.150
C-atoms: 1-2-3
m/z theory data difference
259 0.0 0.0 0.0
260 100.0 100.0 0.0
261 23.0 23.2 0.2
262 9.4 9.4 0.0
263 1.4 1.4 0.0
264 0.3 0.2 0.0
265 0.0 0.0 0.0
266 0.0 0.0 0.0
267 0.0 0.0 0.0
268 0.0 0.0 0.0

This fragment can be used for quantitative analysis.

[U- 13C]-Ala

m/z theory data difference
259 0.0 0.0 0.0
260 0.0 0.3 0.3
261 0.0 0.4 0.4
262 3.1 3.3 0.2
263 100.0 100.0 0.0
264 19.9 20.5 0.6
265 8.7 9.0 0.3
266 1.1 1.2 0.1
267 0.2 0.1 -0.1
268 0.0 0.0 0.0
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Gly 218

76.5 3
76 7

75.5 e

0 1 2 3

Peak area x 10
7

X 10

[U-13C]-Gly 218

M+1

165 .

16

15.515,5

0 1 2 3

Peak area x 
7

.10

M+2
7.5

7 •

6.5

, 1 2 3

Peak area 7
X 10

M+3

0.5

0 1 2 3

Peak area x 
7

X10

M+1

0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 25
Peak area 7 Peak area 7x 10 . , 0

0 005 1 1.5 2 2,5 0 0.5 1 1.5 2 25
Peak area 7 Peak area 7x 10 ý 10

M+4

0.5

0 1 2 3

Peak area 7

M+4

0.5

0 0.5 1 1.5 2 2.5
Peak area 7X10

M+5

o 0
0 0.5 1 e.5 2 2.5

Peak area 
7

X10

Gly 218
Formula : C9H240NSi2
Exact mass : 218.140
C-atoms : 2
m/z theory data difference
217 0.0 0.0 0.0
218 100.0 100.0 0.0
219 20.8 20.7 -0.1
220 8.8 8.7 -0.1
221 1.2 1.2 0.0
222 0.2 0.2 0.0
223 0.0 0.0 0.0
224 0.0 0.0 0.0

This fragment can be used for quantitative analysis.

[U-13C]-Gly

m/z theory data difference
217 0.0 0.9 0.9
218 1.0 0.0 -1.0
219 100.0 100.0 0.0
220 19.7 20.4 0.7
221 8.5 8.7 0.2
222 1.1 1.2 0.1
223 0.2 0.2 0.0
224 0.0 0.0 0.0
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Gly 246

76 ,

75.5

74.5 ,*

S2 3

Peak area 7x 10)

M+1

17.5

16

0 1 2 3

Peak area 7
x .o

M+2

7.5*

7

6.5

0 1 2 3

Peak area 7x io

[U-13C]-Gly 246 M+1 M+2

576

.i 7 5., • 7 5 5

05 .0.5 .

S - -- 74.5
o 5 1 1.5 2 0 0.5 1 1.5 , 0 0.5 1 1.5

Peak area 7 Peak area 7 Peak area 7

M+5 M+6 M+7

115 15

0.5 .05 0.5

Peak ---area 7
0 0.b 1 1.5 2 a 0.b 1 15 2 0 0.5 1 1.b 2

Peak area x 
7  

Peak area x 10
7  

Peak area x 
7

.10 . 1 0 xIa

M+3

10.5

0 i 2 30123

Peak area 7

M+3

16P5

16

155

0 o.5 1 1.5 2

Peakarea 10
7

M+4

05

0 4 1 * 2 3--,

Peak area 7

M+4

7.51

7

65

0o .5 1 1.5 2

Peak area 7X 10

Gly 246
Formula : CloH 240 2NSi2
Exact mass : 246.135
C-atoms : 1-2
m/z theory data difference

245 0.0 0.0 0.0
246 100.0 100.0 0.0
247 21.9 21.8 -0.1
248 9.2 9.1 -0.1
249 1.3 1.3 0.0
250 0.2 0.2 0.0
251 0.0 0.0 0.0
252 0.0 0.0 0.0
253 0.0 0.0 0.0

This fragment can be used for quantitative analysis.

[U-13C]-Gly

m/z theory data difference
245 0.0 0.0 0.0
246 0.0 0.4 0.4
247 2.0 0.6 -1.4
248 100.0 100.0 0.0
249 19.8 20.3 0.5
250 8.7 8.9 0.2
251 1.1 1.2 0.1
252 0.2 0.2 0.0
253 0.0 0.0 0.0
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Valine (Val)

d egarevS Scan : 553 tD 557100

200 250 300 34 450 /

00 Averaed Scan : 557 to 561 TIC : 1010105 BVP - 293072

45o m/a

CH 3 CH 3  0 CH3 CH3I I H i H I I
H3C-C-SiN-CC--O--Si-C-CH 3I I I I I

CH 3 CH 3  CH CH3 CH3
H3

C \CH3
C17H39NO2Si2

Exact Mass: 345.2519
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Val260

74.5

73.5 . *

73

72.5 X

72

Peak area 7

[U-13C]-Val 260

1.5

0 5 lo 15

Peak area 
6

M+5

15.5

i

15.5

0 5 10 15
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6

X If)
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7.5 a
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Peak area 7

M+2

00
S5 1 area

Peak area 
6

M+6 M+7
7.5

71.5

0.5

0 5 10 15 0 5 10 15

Peak area 6 Peak area

M+3

;_..- ....

P1 ar
Peak area 7

M+4

0.5

0120 1 2 3

Peak area 7feI

M+3 M+4

73

71.5

0 5 10 15 0 5 10 15

Peak area 
6

x 10

M+8

15 P

0 5 10 i

Peak area 6

Peak area X 10

M+9

0.5

0 5 10 15

Peak area

* Val 260
Formula: C12H3oONSi2
Exact mass : 260.187
C-atoms : 2-3-4-5
m/z theory data difference
259 0.0 0.0 0.0
260 100.0 100.0 0.0
261 24.2 24.7 0.5
262 9.5 9.6 0.1
263 1.5 1.5 0.1
264 0.2 0.3 0.1
265 0.0 0.0 0.0
266 0.0 0.0 0.0
267 0.0 0.0 0.0
268 0.0 0.0 0.0
269 0.0 0.0 0.0

This fragment can be used for quantitative analysis.
molO/) and M+1 is slightly too high (+0.2 molo).

[U- 13C]-Val

m/z theory data difference
259 0.0 0.0 0.0
260 0.0 0.4 0.4
261 0.0 0.2 0.2
262 0.0 0.2 0.5
263 4.1 4.9 0.8
264 100.0 100.0 0.0
265 20.0 21.1 1.1
266 8.5 8.9 0.4
267 1.1 1.1 0.0
268 0.2 0.2 0.0
269 0.0 0.0 0.0

Note, however, that M+0 is slightly too low (-0.3

- 306 -
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M+5

71.5

P 5 10
Peak area °.10

M+6

155

*
15

i.

14.5

o 5 10

Peak area 6
1lO

Val 288
Formula: C13H 300 2NSi 2
Exact mass : 288.182
C-atoms : 1-2-3-4-5
m/z theory data difference
287 0.0 0.0 0.0
288 100.0 100.0 0.0
289 25.3 25.2 -0.1
290 10.0 9.8 -0.2
291 1.7 1.6 -0.1
292 0.3 0.2 -0.1
293 0.0 0.0 0.0
294 0.0 0.0 0.0
295 0.0 0.0 0.0
296 0.0 0.0 0.0
297 0.0 0.0 0.0
298 0.0 0.0 0.0

This fragment can be used for quantitative analysis.

M+2

7.5

7:

6.5

o 0.5 1 1.5 2

Peak area 7X 10

M+3

S 0.5 1.5 2

Peak area 7
x 1O

M+3

1

0.5

o0
o 5 00

Peak area 6
× 10

M+4

0.5

o

0 0.5 1 1.5 2

Peak area 7

M+4

4.5

3.5

0 5 10

Peak area x 
6

X 10

M+7 M+8 M+9

1.5 1.5

*:.. -.. , I.

05 0.5

0 5 10 0 5 10 0 5 10
Peak area 6 Peak area 

6  
Peak area 6

X10 X 10 110

[U- 13C]-Val

m/z theory data difference
287 0.0 0.0 0.0
288 0.0 0.3 0.3
289 0.0 0.2 0.2
290 0.0 0.1 0.1
291 0.0 0.3 0.3
292 5.2 5.8 0.6
293 100.0 100.0 0.0
294 20.1 20.5 0.4
295 8.7 8.8 0.1
296 1.1 1.2 0.1
297 0.2 0.2 0.0
298 0.0 0.0 0.0

- 307 -

Val 288

72.5

72 °° 
°

P 0.5 1 1.5 2
Peak area 

7

M+1

175
0 0.5 1 1.5 2

Peak area x 
7

.10

[U-13C]-Val 288 M+1 M+2

0.5 05 0,5

P ae
10 0 5 10 0 5 10

Peak area 6 los Peak area x 1o
6

Peak area 6 1os
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Val 302

0 2 4 6 8 10 0 2 4 6 8 10
Peak area 6 Peak area 6X 10

0 2 4 6 8 10 0 2 4 6 9 10

Peak area a Peak area 
6

X 10 X 10

[U-13C]-Val 302 M+1 M+2 M+3 M+4
64.5

1.5 1.5 17
640 .

0.5 05 1651 .

63" . .'

. . .. . .. . .. .-- ... . . . . . . .... . . ..
0 2 4 6 0 2 4 6 0 2 4 0 2 6 6 0 2 4 6

Peak area C6 Peak area G Peak area 6 Peak area 6 Peak area o. 10 K 10 . 10 f o .,a1

M+6 M+7

. 0

0 o 2 4 6 0 2 a 6

Peak area lPeak area a Peak area 8
.10 410 X10

Val 302
Formula : C1 4H 3202NSi2
Exact mass : 302.197
C-atoms : unknown

m/z theory data difference
301 0.0 0.0 0.0
302 100.0 100.0 0.0
303 26.4 26.5 0.1
304 10.3 10.1 -0.2
305 1.8 1.7 -0. 1
306 0.3 0.3 0.0
307 0.0 0.5 0.5
308 0.0 0.1 0.1
309 0.0 0.0 0.0

[U-13C]-Val

m/z theory data difference
301 0.0 0.0 0.0
302 0.0 0.5 0.5
303 2.0 1.3 -0.7
304 100.0 100.0 0.0
305 24.3 25.4 1.1
306 9.7 22.4 12.7
307 1.5 4.6 3.1
308 0.3 1.5 1.2
309 0.0 0.2 0.2

This fragment should not be used. The presence of significant M+2 and M+4 abundances in IU-' 3C]-
valine suggests that two fragments are overlapping.

- 308 -
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Leucine (Leu)

oAveraed Sca : 616 to 622 TIC 2367657 BP = 163997 <

90 200.20

70

60

so50

40

30 274.20
302.20

20

10

S 20 2 . 300 35 40 4500 m/

9 Sveraged Scan : 621 it 624 TIC: 2926685 BP - 1451008 <

100
so

70

60
40-

200

CH3 CH 3  O CH3 CH3

I I I I I

CH 3 CH 3  CH2  CH3 CH3I
CH

H3C CH3
C18H41NO2Si2

Exact Mass: 359.2676

- 309 -
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3O.20
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Leu 200
32

815

80 .1

79.5

785[

Peak area 7

[U-13C]-Leu 200

1-n

-1

0.5

0

Peak area 7

M+5

79rs

P r

Peak area 
7

M+1

155

15

145

14

Peak area 7

M+1

05 Peak area 7

Peak area 7
, 10

M+6

M+2

.. w

4.5

35

3

Peak area 7

M+2

Peak area 7
1 11

M+3

0.5

024 8
Peak area 7

K 10

M+3 M+4

15 155

0.5 ' r- *-- 4.5

0  a 1

Peakarea 7 Peakarea 7

M+7

Peak area 7 Peak area 7XJU ý 10

Leu 200

Formula : CIIH26NSi
Exact mass : 200.183
C-atoms : 2-3-4-5-6
m/z theory data difference
199 0.0 0.0 0.0
200 100.0 100.0 0.0
201 17.9 18.2 0.3
202 4.8 5.7 0.9
203 0.5 0.7 0.2
204 0.0 0.1 0.1
205 0.0 0.0 0.0
206 0.0 0.0 0.0
207 0.0 0.0 0.0
208 0.0 0.0 0.0
209 0.0 0.0 0.0

[U-13C]-Leu

m/z theory data difference
199 0.0 0.0 0.0
200 0.0 0.3 0.3
201 0.0 0.1 0.1
202 0.0 0.1 0.1
203 0.0 0.6 0.6
204 5.2 5.9 0.7
205 100.0 100.0 0.0
206 12.5 13.8 1.3
207 3.9 4.1 0.2
208 0.3 0.3 0.0
209 0.0 0.0 0.0

This fragment should not be used. It has a significant bias, M+0 is too low (-1.0 mol%) and M+2 is
too high (+0.6mo1%). Fragment Leu-274 is preferred.

310

M+4

05

02468

Peak area 7X10

M+9M+815
0,

Peak area 7 Peak area

i.5

05

0 I
S 2 A 6
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Leu 274
74

73.5

72

715
0 1 2 3

Peak area 7

[U-13C]-Leu 274

0.5

01

Peak area x 7

M+5

72.5 r .

72

715

71 -
0 0.5 1 1.5 2

Peak area 
7

M+1

Is ."

0 1 2 3

Peak area 7

050 M+1

01

o 0 05 1 1.5 2

Peak area 7

M+6

15.5

15

o 0.5 1 1.5 2

Peak area 1
7

x 10

M+2

75

7

6.5

Peak area 7

M+2

1 5

0.5

0 0.5 1 1.5 2

Peak area 7

M+7

0 0.5 1 1.5 2
Peak area x 

7

.10

M+3

1.5

I

Peak area x lO7

0 1 10 .5 1 I 2

Peak area 7x10

M+8

0.5

0

0 0.5 1 1.5 2

Peak area 7x 10

M+4

0.5

1.'--- --

0123

Peak area 7

M+4

45 .

0 0.5 1 1.5 2

Peak area 7

M+9

1.5

1

0,5

0.5 1 1.5 2

Peak area 7X 10

Leu 274
Formula: C13H32ONSi 2
Exact mass : 274.202
C-atoms : 2-3-4-5-6
m/z theory data difference
273 0.0 0.0 0.0
274 100.0 100.0 0.0
275 25.3 25.2 -0.1
276 9.8 9.6 -0.2
277 1.6 1.6 0.0
278 0.3 0.3 0.0
279 0.0 0.0 0.0
280 0.0 0.0 0.0
281 0.0 0.0 0.0
282 0.0 0.0 0.0
283 0.0 0.0 0.0
284 0.0 0.1 0.1

This fragment can be used for quantitative analysis.

[U- 13C]-Leu

m/z theory data difference
273 0.0 0.0 0.0
274 0.0 0.3 0.3
275 0.0 0.2 0.2
276 0.0 0.1 0.1
277 0.0 0.3 0.3
278 5.2 6.0 0.8
279 100.0 100.0 0.0
280 20.1 20.7 0.6
281 8.5 8.6 0.1
282 1.1 1.1 0.0
283 0.2 0.2 0.0
284 0.0 0.0 0.0

-311 -
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Leu 302
73

72.5

72

71.5 f e"

71 . .

0 0.5 1 1.5 2 2.5

Peak area 7X 10

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Peak area 7 Peak area 7x 10 X 10

0 0.5 1 1.5 2 2.5
Peak area 7x 10

M+4

05

0 0.5 1 1.5 2 2.5

Peak area 7
110

[U-13C]-Leu 302 M+1

C

0o.5 0.5

0 5 10 15 0 5 io 15

Peak area x Peak area xx 10 fo1

M+2

5 -

45

0 5 10 15

Peak area xK fa

M+3 M+4

2

0.5

0 5 10 15 0 5 10 15

Peak area Peak area a. 10 x fo

M+6 M+7 M+8 M+9

665 1
14.5 6.5

14 a '. ,

65.5ee e 1
13.5 ' 5.5

0 5 10 15 0 10 15 D b 10 15 0 5 10 15

Peak area x 
6  

Peak area x lo
s  

Peak area x lo
6  

Peak area x l
6

. 10 X 10 . 10 X 10

Leu 302
Formula: C 14H320 2NSi 2
Exact mass : 302.197
C-atoms : 1-2 and 1-2-3-4-5-6
m/z theory data difference
301 0.0 0.0 0.0
302 100.0 100.0 0.0
303 26.4 26.6 0.2
304 10.3 10.2 -0.1
305 1.8 1.8 0.0
306 0.3 0.3 0.0
307 0.0 0.0 0.0
308 0.0 0.0 0.0
309 0.0 0.0 0.0
310 0.0 0.0 0.0
311 0.0 0.0 0.0
312 0.0 0.0 0.0
313 0.0 0.0 0.0

[U- 3C]-Leu

m/z theory data difference
301 0.0 0.0 0.0
302 0.0 0.3 0.3
303 0.0 0.3 0.3
304 0.0 8.1 8.1
305 0.0 2.6 2.6
306 0.0 1.3 1.3
307 6.3 7.2 0.9
308 100.0 100.0 0.0
309 20.2 20.6 0.4
310 8.7 8.8 0.1
311 1.1 1.2 0.1
312 0.2 0.2 0.0
313 0.0 0.0 0.0

This fragment should not be used. The presence of significant M+2 and M+6 abundances in [IU- 13C]-
leucine shows that two fragments with the same chemical formula are overlapping.

-312-
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Isoleucine (Ile)

Averaaed Scan: 669 to 673 TIC :2263202 BP = 1102080
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lie 200 M+1

Peak area 7 Peak area 7.'0 .10

M+2

41

3.5

0 2 4 6

Peak area 7X 10

[U-13C]-lIe 200 M+1 M+2

0.5 .5 0o.5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Peak area x 107 Peak area 107 Peak area 70

M+3

M+4

05

0 2 4 6

Peak area 7

M+4

0 1 2 3 4

Peak area 7 Peak area 7x 107. InI

0 .1 2 3 4 0 1 2 3 4
Peak area 7 Peak area 7x 10 x in

M+7

3.5
3 .

0 1 2 3 4

Peak area 7'10g

M+9

2 3 4 0 1 2 3 4
Peak area 7 Peak area 7ý10 .10

Ile 200
Formula: CI H26NSi
Exact mass : 200.183
C-atoms : 2-3-4-5-6
m/z theory data difference
199 0.0 0.0 0.0
200 100.0 100.0 0.0
201 17.9 17.9 0.0
202 4.8 5.0 0.2
203 0.5 0.6 0.1
204 0.0 0.1 0.0
205 0.0 0.0 0.0
206 0.0 0.0 0.0
207 0.0 0.0 0.0
208 0.0 0.0 0.0
209 0.0 0.0 0.0

This fragment can be used for quantitative analysis.

[U-13C]-Ile

m/z theory data difference
199 0.0 0.0 0.0
200 0.0 0.3 0.3
201 0.0 0.1 0.1
202 0.0 0.2 0.2
203 0.0 0.8 0.8
204 5.2 6.1 0.9
205 100.0 100.0 0.0
206 12.5 13.4 0.9
207 3.9 3.9 0.0
208
209

-314-
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lie 274
74

73 5  

-

73.5
72

0 0.5 1 1.5 2 2.5

Peak area 7
x 1o

[U-13C]-Ile 274

0.5

4L 0

o 5 10
Peak area 

6

M+5

19.5

17.5
0 0.5 1 1.5 2 2.5

Peak area 7

M+1

15

050 5 10

Peak area 6

M+6

M+2

75

0 0.5 i 1.5 2 25

Peak area 7

M+2

o

0.5

o 5 10

Peak area 
6

M+7

0 5Peak 10 5 10area
Peak area 

6  
Peak area 

6

x 10 x 10

Ile 274
Formula : C13H 32ONSi2
Exact mass : 274.202
C-atoms : 2-3-4-5-6
m/z theory data difference
273 0.0 0.0 0.0
274 100.0 100.0 0.0
275 25.3 25.4 0.1
276 9.8 9.6 -0.2
277 1.6 1.6 0.0
278 0.3 0.3 0.0
279 0.0 0.0 0.0
280 0.0 0.0 0.0
281 0.0 0.0 0.0
282 0.0 0.0 0.0
283 0.0 0.0 0.0
284 0.0 0.1 0.1

This fragment can be used for quantitative analysis.

P0 5 10 0 5 10
Peak area x 

6  
Peak area x lo

6

.10 .10
0 5 10

Peak area 
6

x 10

[U-13C]-Ile

m/z theory data difference
273 0.0 0.0 0.0
274 0.0 0.3 0.3
275 0.0 0.1 0.1
276 0.0 0.4 0.4
277 0.0 0.4 0.4
278 5.2 6.1 0.9
279 100.0 100.0 0.0
280 20.1 20.9 0.8
281 8.5 8.5 0.0
282 1.1 1.1 0.0
283 0.2 0.2 0.0
284 0.0 0.0 0.0
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lie 302

S 0 k5 1 1.5 2 2.5
Peak area 17X 10

M+1

195 Pa

19

185
Poa5 1 15 2 2.5

Peak area 
7

ý 10

M+2

0 0.5 1 5 2 2.5
Peak area x 107ý 10

M+3

e.5 a .ara_ 2

1 0 1.5 2 2.5

Peak area 7
x 10

M+4

0 .5 1 15 2 25
Peak area 7

[U-13C]-lIe 302 M+1 M+2 M+3 M+4

25 t

251
< 05a 24.5

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 P 5 Pe 1 15
Peak area 1 Peak area 6 Peak area l°0 Peak area 10

6  
Peak area X0

Pekae 106 r !06 x x0 x 106

3

or

M+5

Peak 15
Peak area 

6

X 10

M+6

5 10area 1
Peak area 1'10

0s95gi
o

Ile 302
Formula: C14H 320 2NSi2
Exact mass : 302.197
C-atoms : 1-2 and 1-2-3-4-5-6
m/z theory data difference
301 0.0 0.0 0.0
302 100.0 100.0 0.0
303 26.4 25.8 -0.6
304 10.3 10.0 -0.3
305 1.8 1.7 -0.1
306 0.3 0.3 0.0
307 0.0 0.0 0.0
308 0.0 0.0 0.0
309 0.0 0.0 0.0
310 0.0 0.0 0.0
311 0.0 0.0 0.0
312 0.0 0.0 0.0
313 0.0 0.0 0.0

M+7

Peak area 5xlrn

M+8

Peak area 6

M+9

Peak area 8

[U-' 3C]-Ile

m/z
301
302
303
304
305
306
307
308
309
310
311
312
313

theorv
0.0
0.0
0.0
0.0
0.0
0.0
6.3

100.0
20.2
8.7
1.1
0.2
0.0

data
0.0
0.5
1.1

54.6
14.0
5.8
8.0

100.0
20.3
8.8
1.2
0.2
0.0

difference
0.0
0.5
1.1

54.6
14.0
5.8
1.7
0.0
0.1
0.1
0.1
0.0
0.0

This fragment should not be used. The presence of significant ŽM+2 and M+6 abundances in [U- 13C]-
isoleucine shows that two fragments with the same chemical formula are overlapping.
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Proline (Pro)

d egarevA Scan : 757 to 761100

Ls ' -• .'a ' "' ' " . . . ,•o I .' . ." ..a o . . . I ' ' I• .• I4. I2260 2 03M 40 450im

Averaged Scan : 758 to 768 TIC : 52685 BP - 40475 <

CH3 CH3
H3C---Si 0 CH3 CH3

I H II I I
CH3 CH3 N-C-C-O-Si-C-CH3

H2C0 /CH 2  CH3 CH3

H2
C17H37NO2Si2

Exact Mass: 343.2363
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Pro 258 M+1 M+2 M+3 M+4

4 18" 7. °74s

C 73.5. 7 -- - - - "-

..5 0
72 5 176 ýi - - - -

O 5 10 15 0 5 10 15 0 5 10 5 0 5 10 i5 0 5 10 15

Peak area 
6  

Peak area 
6  

Peak area 
6  

Peak area 6 Peak area 6
X 10 .10 i 10x nI G

[U-13C]-Pro 258 M+1 M+2 M+3 M+4

3 · rI,, 1,725

' • · N 7P-- . ..'2 -2 ,

. . ... . . . .- 0.55 05% :. 0.. .05,1 0715

0~
2 4 6 0 2 4 G 0 2 4 0 0 2 4 6 0 2 4 5
Peak area 6 Peak area 6 Peak area s Peak area 6 Peak area 6

X 10 x 10 0 1) In

M+5 M+6 M+7 M+8 M+9

:1 -'

Peak area ý 10

Pro 258

Peak area 6 Peak area 6 Peak area 6 Peak area 6
10 ýim 10 , 10

[U- 13C]-Pro
Ci2H28ONSi 2
258.171
2-3-4-5

theory data difference
0.0 0.0 0.0

100.0 100.0 0.0
24.1 24.5 0.4

9.5 9.4 -0.1
1.5 1.4 -0.1
0.2 0.8 0.6
0.0 0.1 0.1
0.0 0.1 0.1
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

m/z
257
258
259
260
261
262
263
264
265
266
267

theory data difference
0.0 0.1 0.1
0.0 0.3 0.3
0.0 0.7 0.7
0.0 1.5 1.5
4.1 5.7 1.6

100.0 100.0 0.0
20.0 20.0 0.0

8.5 8.6 0.1
1.1 2.0 0.9
0.2 0.3 0.1
0.0 0.1 0.1

This fragment should be used with caution. Proline co-elutes with other compounds , which may
result in inaccurate values. M+0 is slightly too low (-0.5 mol%) and M+4 is slightly too high (+0.4
mol%). Fragment Glu-330 is preferred.
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Formula :
Exact mass :
C-atoms :

m/z
257
258
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Pro 286
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Exact mass :
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m/z
285
286
287
288
289
290
291
292
293
294
295
296
297

M+6
13.5

13

12.5

12

11.5

0 1 2 3 4 5

Peak area 6rlO

M+7

55*

0 1 2 3 4 5
Peak area 6

M+3

1.5

o.5 *

o 5 1o

Peak area 6
x1O

M+3

0 1 2 3 4 5
Peak area 6 °

M+8
14 a

13.5

13 5

125

0 1 2 3 4 5
Peak area 

6

M+4

4. o 5 lOPeak area 
6

M+4

S -.

3.5 a

0 1 2 3 4 5

Peak area 6* 10
M+9

Peak area 6
o10

[U- 13C]-Pro

theory
0.0

100.0
25.3
10.0
1.6
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0

C13H28NO 2Si2
286.166
1-2-3-4-5

data
0.0

100.0
25.2
9.9
1.7

25.4
6.3
2.4
0.5
0.0
0.0
0.0
0.0

lifference
0.0
0.0

-0.1
-0.1
0.1

25.1
6.3
2.4
0.5
0.0
0.0
0.0
0.0

m/z
285
286
287
288
289
290
291
292
293
294
295
296
297

theory
0.0
0.0
0.0
0.0
0.0

5.2
100.0
20.1
8.7
1.1
0.2
0.0
0.0

This fragment should not be used. Proline co-elutes with other compounds, which results in
inaccurate values. Here, M+4 is significantly too high. Fragment Glu-432 is preferred.
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data
0.0
0.2
0.3
0.2
0.9
6.4

100.0
20.2
10.1
29.2
5.9
2.7
0.3

difference
0.0
0.2
0.3
0.2
0.9
1.2
0.0
0.1
1.4

28.1
5.7
2.7
0.3

[U-13C]-Pro
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Serine (Ser)

1eraged Scan :1129 tn 1138 TIC :397575 BP - 119923

go 290.15

so

70 393.30
304.20

304.20

40

30

20 232.10

10 207.00 261.20

..Ill I .J I 1.1|4320.. . .

CH3 CH3  0 CH3 CH3I I H H I
H3C-C-Si-N-C-C-O-Si-C-CH 3I I I I I

CH 3 CH3  CH2  CH3 CH3

01
IH3C-Si-CH3

H 3C-COCH3

CH3

021 H49NO3Si3
Exact Mass: 447.302
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Ser 230

67

66.5

1 65.

64.5

Peak area 
6

[U-13C]-Ser 230

.05

Peak area 06x 10

M+1

22

21.5

21

205

Peak area x

M+1
2 P

05

Peak area oý10

M+5 M+6
3

2.5

S 1 2 3 4 0 1 2 3 4

Peak area 1
6  

Peak area 60Ser 23010

Ser 230
Formula:
Exact mass :
C-atoms :

M+2

10

9.5

0 1 2 3 4 5

Peak area o

M+2

66

65.5

55

64.5

0 1 2 3 4

Peak area 6
x10

M+7

0.5

0 1 2 3 4

Peak area ax10

unknown
unknown
unknown

m/z theory data difference
229 0.0
230 100.0
231 33.8
232 15.0
233 n/a 3.5 n/a
234 1.1
235 0.2
236 0.1
237 0.1

M+3

2 .5

M+3

20.5 a

20

Peak area 6

M+4

M+4

P a.50 . 4

Peak area 6o

[U-13C]-Ser

m/z theory data difference
229 0.0
230 0.3
231 2.9
232 100.0
233 n/a 31.8 n/a
234 14.5
235 3.4
236 1.0
237 0.1

This fragment cannot be used because the fragmentation is unknown. Furthermore, this fragment is
not very abundant and therefore somewhat noisy.
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Ser 288

72.5 2.

Peak area 72

71.5

S 0.5 1 1.5 2 2.,

Peak area 
7

X 10

[U-13C]-Ser 288

M+1

Peak 1 2 2.5
Peak area 

7

X 10

M+1

10 15 i s 1U 11
Peak area x Peak area 1

M+5 M+6

M+2

0 .5 1 1.5 2 2.5
Peak area 7

M+3

0 e.5 1 1.5 2 2
Peak area 7. 10

M+4

P i

0 05 1 15 2 25

Peak area 7
S10

M+3 M+4

18

S 5 10 15 a 105 10 15
Peak area

x 10
Peak area 

6
Peak area 

6

x Io

1 1;

So0.5 0 5

5 10 15 0 5 10 15 0 10 15

Peak area 6 Peak area 6 Peak area a

Ser 288
Formula: C14H 34NOSi2
Exact mass : 288.218
C-atoms : 2-3
m/z theory data difference
287 0.0 0.0 0.0
288 100.0 100.0 0.0
289 26.4 26.3 -0.1
290 10.1 10.0 -0.1
291 1.7 1.8 0.1
292 0.3 0.3 0.0
293 0.0 0.0 0.0
294 0.0 0.0 0.0
295 0.0 0.0 0.0

This fragment can be used for quantitative analysis.

[U-13C]-Ser

m/z theory data difference
287 0.0 0.0 0.0
288 0.0 0.6 0.6
289 2.0 1.7 -0.3
290 100.0 100.0 0.0
291 24.3 24.8 0.5
292 9.5 9.7 0.2
293 1.5 1.6 0.1
294 0.2 0.3 0.1
295 0.0 0.0 0.0
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Ser302

72.5 **
Ca

S 72 -- -

71.5

0 5 10 15

Peak area o

[U-13C]-Ser 302

0
0 2 4 6 8 10

Peak area 6
x 10

M+1

19.5

19 -

0 5 10 15

Peak area 
6

M+1

4

3.

0 2 4 6 8 10
Peakarea x 

6

X10

M+5 M+6

0< 5 o600 .s3 . ,.

0 2 4 6 8 10 0 2 4 8 10
Peak area x 

6  

Peak area x 1' 10 .10

Ser 302
Formula: C14H320 2NSi 2
Exact mass : 302.197
C-atoms : 1-2
m/z theory data difference
301 0.0 0.0 0.0
302 100.0 100.0 0.0
303 26.4 26.2 -0.2
304 10.3 10.2 -0.1
305 1.8 1.9 0.1
306 0.3 0.4 0.1
307 0.0 0.0 0.0
308 0.0 0.0 0.0
309 0.0 0.0 0.0

M+2

7.5

6.5

0 5 10 15

Peak area o

M+2
71

695

0 2 4 8 8 10

Peak area 6

M+7

05

0 2 4 6 8 10

Peak area 
6

X 10

M+3

0 5 10 15
Peak area x 

6

M+3

17.5

17

16.5

0 2 4 6 8 10

Peak area x 6X 10

M+4

0.5

0 5 10 15

Peak area 6
x.1

M+4

15

6.5

Peak area 61 00

[U-13C]-Ser

m/z theory data difference
301 0.0 0.0 0.0
302 0.0 0.5 0.5
303 2.0 4.5 2.5
304 100.0 100.0 0.0
305 24.3 24.8 0.5
306 9.7 10.1 0.4
307 1.5 1.7 0.2
308 0.3 0.3 0.0
309 0.0 0.0 0.0

This fragment can be used for quantitative analysis. Note, however, that M+2 of [U-'13C]-serine is
slightly higher than expected.
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Ser 362 M+1 M+2 M+3 M+4

65.5 22

4. 5 .. _ 21 .5 105 2
64521

0 055 1 15 2 05 1 2 1 .5 2 0.5 1 1.5 2 0 05 1 15 2

Peak area 7 Peak area 7 Peak area 7 Peak area 7 Peak area 7
K 10 .10 t1 211 210

[U-13C]-Ser 362 M+1

15  5

S 55 1 5 10

Peak area 
6  

Peak area cX 10 r10

M+5

M+2

Peak area
Peak area 6

Y1o

M+3

Peak area Peak 5 10
Peak area Peak area

S 10 x o10

M+6 1 11 i: I5
55 ,

Peak area Peak area Peak area Peak area
Peakarea Peak area 6 Peak area 6 Peak area 6are 0 lx

t
× l x lO x lO

C16H4002NSi3
362.237
2-3

theory data difference
0.0 0.0 0.0

100.0 100.0 0.0
33.8 33.5 -0.3
15.7 15.4 -0.3

3.5 3.5 0.0
0.8 0.8 0.0
0.1 0.2 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

[U-13C]-Ser

m/z theory data difference
361 0.0 0.0 0.0
362 0.0 0.3 0.3
363 2.2 1.5 -0.7
364 100.0 100.0 0.0
365 31.7 31.9 0.2
366 15.0 14.9 -0.1
367 3.2 3.2 0.0
368 0.7 0.7 0.0
369 0.1 0.1 0.0
370 0.0 0.0 0.0
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M+4

95~

Ser 362
Formula :
Exact mass :
C-atoms :
m/z
361
362
363
364
365
366
367
368
369
370

This fragment can be used for quantitative analysis.
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Ser 390
65

603.5 1

63
0 0.5 1 1.5 2

Peak area 7
X10

M+1 M+2

0 0.5 1 1.5 2 0 0.5 1 1.5 2

Peak area 7 Peak area 7
110 KIO

[U-13C]-Ser 390 M+1

- 0. 5 0.5

0 0
0 5 10 15 0 5 10 15

Peak area 
6  

Peak area 6.1. x IQ

M+2

3 .

1.5

0 5 10 15

Peak area a.10

M+4

Peak area 7 Peak area t
110 10

M+3 M+4

21.94.5

83D

0 5 10 15 0 5 10 15

Peak area x Peak areaxtO X to

M+5

10.5

10

9.5

0 5 10 15

Peak area e

M+6 M+7 M+8 M+9

1.5

0

f. ,to

5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Peak area a Peak area Peak area x Peak area 6
alO .10 X19 .10

Ser 390
Formula: C17H400O3NSi3

Exact mass : 390.232
C-atoms: 1-2-3
m/z theory data difference
389 0.0 0.0 0.0
390 100.0 100.0 0.0
391 35.0 34.3 -0.7
392 16.3 15.9 -0.4
393 3.8 3.7 -0.1
394 0.9 0.8 -0.1
395 0.1 0.1 0.0
396 0.0 0.0 0.0
397 0.0 0.1 0.1
398 0.0 0.0 0.0
399 0.0 0.0 0.0

This fragment can be used for quantitative analysis. Note, however, that M+0 is
(+0.5 mol%) and M+1 is slightly too low (-0.4 mol%/o).

slightly too high
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0 0.0 1 1.5 2

[U-13C]-Ser

data
0.0

difference
0.0

m/z
389
390
391
392
393
394
395
396
397
398
399

theory
0.0
0.0
0.0
3.1

100.0
31.8
15.2
3.3
0.8
0.1
0.0

0.3
0.3
3.3

100.0
31.9
15.1
3.3
0.8
0.1
0.0

0.3
0.3
0.2
0.0
0.1

-0.1
0.0
0.0
0.0
0.0

3

2.5

2

1.5

0

[U-lsC]-Ser
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0 0 veraed Scan : 1169 to 1178 TIC : 109162 BP - 55386

o30 303.20

70
so]

0 40

30 404.25

20 376.25

10 207.00 220.95 2410 2.10

0250 300 300 40 450 m
120. .. .2.. .&. . .

276Io 284157 10

CH3 CH3  0 CH3 CH3I I H H I I
H3C-COSi-N-C-C-O-Si-C-CH 3I I I I I

CH3 CH3  HC-CH3  CH CH3I
O

H3C-Si-CH3
I

H3 0-C-CH 3

CH3
C22H51NO3Si 3Exact Mass: 461.3177
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Thr 376
as i

05

P4a

0 1 2 3

Peak area• .10

0 0.5 1 1.5 2 2.5
Peak area x 10

M+1

23.5

22.5

22

21.5

21
0 1 2 3

Peak area 6
110

M+6

2.5

.9

1.5

0 0.5 1 1.5 2 2.5

Peak area 6.10

M+2
11.5

10.5

9.5

0 1 2 3

Peak area

M+2

as " ....

2 "

1.5

o o.5 1 1.5 2 2.5

Peak area x

M+7

1.5

0.5

0 0.5 1 1.5 2 2.5

Peak area a
.10

M+3

2.5

2

01230 1 2 3
Peak area a

M+3

9.5

as

0 0.5 1 1.5 2 25

Peak area
M10

M+8

13

0.5

0 0.5 1 1.5 2 2.5

Peak area ax 10

M+4

012.

0 1 2 3

Peak area 6oIG
M+4

21.5 "

21

20

19.5
0 0.5 1 1.5 2 2.5

Peak area a.10

M+9

0 0.5 1 1.5 2 2.5

Peak area 1

Thr 376
Formula: C17H420 2NSi3
Exact mass : 376.252
C-atoms: 2-3-4
m/z theory data difference
375 0.0 0.0 0.0
376 100.0 100.0 0.0
377 34.9 34.5 -0.4
378 16.1 15.9 -0.2
379 3.7 3.7 0.0
380 0.9 0.7 -0.2
381 0.1 0.0 -0.1
382 0.0 0.0 0.0
383 0.0 0.2 0.2
384 0.0 0.1 0.1
385 0.0 0.0 0.0

[U- 13C]-Thr

m/z theory data difference
375 0.0 0.0 0.0
376 0.0 0.1 0.1
377 0.0 0.5 0.5
378 3.1 2.8 -0.3
379 100.0 100.0 0.0
380 31.8 31.7 -0.1
381 15.0 14.8 -0.2
382 3.2 3.1 -0.1
383 0.7 0.9 0.2
384 0.1 0.1 0.0
385 0.0 0.0 0.0

This fragment can be used for quantitative analysis. Note, however, that this fragment is noisy at low
concentrations.
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[U-13C]-Thr 376 M+1
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Thr 404

64.5

625

Peak area 6

[U-13C]-Thr 404

Peak area 6

M+1

235

23

0 2 4 6

Peak area 
6

M+1

Pa a

Peak area
x 10

M+2

11

0 2 4 6

Peak area i t0

M+2

Peak area 6
x Io

M+3

2 2 4 6-

Peak area

aI : -- in
25

0 23 4

Peak area 6
Peak area 6

M+5 M+6 M+7 M+8 M+9

21"5 1 15

< 20 0 3 05

S 2 3 4 0 t 2 3 4 0 1 2 2 3 4 0 1 2 3 4

Peak area 6 Peak area 
6  

Peak area 6 Peak area 6 Peak area 6
11 10 10 110 11 0 ý 10

Thr 404
Formula: C18H420 3NSi 3
Exact mass : 404.247
C-atoms : 1-2-3-4
m/z theory data difference
403 0.0 0.0 0.0
404 100.0 100.0 0.0
405 36.1 35.8 -0.3
406 16.7 16.5 -0.2
407 4.0 3.9 -0.1
408 0.9 0.8 -0.1
409 0.2 0.1 -0.1
410 0.0 0.0 0.0
411 0.0 0.0 0.0
412 0.0 0.0 0.0
413 0.0 0.0 0.0
414 0.0 0.0 0.0

This fragment can be used for quantitative analysis.

[U- 13C]-Thr

m/z theory data difference
403 0.0 0.0 0.0
404 0.0 0.2 0.2
405 0.0 0.1 0.1
406 0.0 0.2 0.2

407 4.1 4.4 0.3
408 100.0 100.0 0.0
409 31.9 31.6 -0.3
410 15.2 15.2 0.0
411 3.3 3.0 -0.3
412 0.8 0.6 -0.2
413 0.1 0.0 -0.1
414 0.0 0.0 0.0
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Thr 417

a8 59

0 05 1 15 2 25

Peak area 6 1°
6

[U-13C]-Thr 41705

0 5 10 15

Peak area 105

M+5

56.5r0 0.5 1 1. 5 2 25Peak area x O

X 10

M+1

27.5 •
27 . ,.

26.5
25

25

245

24

23

0 05 1 15 2 2.5

Peak area o

M+1
2

1.5

1

0.5

0 5 10 15

Peak area 5

M+6

0 5 10 15
Peak area s. 10

M+2

12

11.5

S1 0

0 05 1 15 2 2.5

Peak area x

M+2
59 t

58.5

58 .

57+5

57

0 5 10 15

Peak area s
x10

M+7

1.5

0.5

0 s 10 15
Peak area 5× 10

M+3

4.5

4

3

2.5

0 0-5 1 15 2 25

Peak area x

M+3
22.5

22

21.5

21 *

2.5 ,

20

0 5 10 15

Peak area x lX10
M+8

0.5

0 5 10 15
Peak area 

5

X 10

M+4

0 05 1 15 2 2.5

Peak area x 6.10
M+4

15.5 k

15 e

14.5

14

13.5

0 5 10 15

Peak area x o
5

X 10

Thr 417
Formula: C20H47NO 2Si3
Exact mass : 417.292
C-atoms : unknown
m/z theory data difference
416 0.0 0.0 0.0
417 100.0 100.0 0.0
418 38.3 46.4 8.1
419 17.3 20.1 2.8
420 4.3 5.5 1.2
421 1.0 1.0 0.0
422 0.2 0.0 -0.2
423 0.0 0.0 0.0
424 0.0 0.0 0.0
425 0.0 0.1 0.1

[U- 13C]-Thr

m/z theory data difference
416 0.0 0.0 0.0
417 0.0 0.3 0.3
418 2.0 1.1 -0.9
419 100.0 100.0 0.0
420 36.2 35.5 -0.7
421 16.4 25.0 8.6
422 3.9 6.9 3.0
423 0.9 1.8 0.9
424 0.1 0.1 0.0
425 0.0 0.0 0.0

This fragment should not be used. M+0 is too low (-4 mol%) and M+1, M+2, and M+3 are too high.
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Met 218 M+1 M+2 M+3 M+4

9 14 75
78.5

7 .. . 55. .--
-0 77.5 13.5 n J.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Peak area a Peak area 6 Peak area 

6  
Peak area lPeak area x

X 10 X 10 X 10 610 X 10

[U-13C]-Met 218

Peak area x 6

M+5

10.5

10

Peak area 6x 10

M+1 M+2 M+3 M+4

4-5
76.5 -

75.5

05

0 2 4 6 8 0 2 4 6 8 0 2 4 68 0 2 4 6 8
Peak area 6 Peak area Peak area 

6  
Peak area 1

.10 X.10 X610 .10

M+6 M+7 M+8 M+9

15 1 1

65

0.5 05 05

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Peak area 
6  

Peak area 
6  

Peak area 
6  

Peak area 6
.10 .10 x 10 10

Met 218 [U-13C]-Met
Formula:
Exact mass :

CloH24NSiS
218.114

C-atoms : 2-3-4-5
m/z theory data difference
217 0.0 0.0 0.0
218 100.0 100.0 0.0
219 17.6 17.3 -0.3
220 9.1 9.0 -0.1
221 1.2 1.2 0.0
222 0.2 0.3 0.1
223 0.0 0.1 0.1
224 0.0 0.0 0.0
225 0.0 0.0 0.0
226 0.0 0.0 0.0
227 0.0 0.0 0.0

This fragment can be used for quantitative analysis.

m/z theory data difference
217 0.0 0.7 0.7
218 0.0 0.6 0.6
219 0.0 0.6 0.6
220 0.0 0.9 0.9
221 4.1 5.3 1.2
222 100.0 100.0 0.0
223 13.5 14.1 0.6
224 8.5 8.5 0.0
225 0.8 0.9 0.1
226 0.2 0.2 0.0
227 0.0 0.0 0.0
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Met 244 M+1

*69. 521.5 .

6 20: "2

19.5
59.5

0 2 4 6 8 10 0 2 4 6 10I

Peak area s Peak area s
x 10 .10

M+2 M+3

)i 4.5

9.5 .• .4

85 3

S 25.

0 2 4 6 a 10 1 2 4 6 8 10

Peak area 5 Peak area 5
x 10 ' 10

M+4

4

3.5

1.5

0 2 4 6 8 10

Peak area 5
O10

[U-13C]-Met 244 M+I M+2 M+3 M+4

15 15 4 65 165
3.5 16

1 I. 6765 .* 15.81as - 67.5

25 672515

S0.5 0.5 2 6545
2 "t

0 - - ." ..". -. -..- . .. ..... ... 1 4
0 0 5 10 0 0 5 10 0 0 5 10

Peak area 10o
5

Peak area 
s

Peak area x lo Peak area 5 Peak area x o
5

8.5 3. 3

3 33

25 .h 13

.1.5

0 5 10 0 5 10 0 5 10 0 b 10

Peak area 
5  

Peak area 
s  

Peak area x Peak area 5
X 10 x.10 .10 '10

Met 244
Formula: unknown
Exact mass : unknown
C-atoms : unknown

m/z theory data difference
243 0.1
244 100.0
245 34.4
246 15.5
247 n/a 5.5 n/a
248 5.1
249 3.5
250 1.2
251 0.2
252 0.3

[U-13C]-Met

m/z theory data difference
243 0.1
244 0.2
245 0.8
246 3.9
247 n/a 100.0 n/a
248 23.1
249 11.8
250 3.8
251 3.8
252 4.1

This fragment cannot be used because the fragmentation is unknown. However, the relatively high
M+ 1 (34% of M+0) suggests that two fragments are overlapping here.
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Met 292

71 r

69. [5-o..5 1
0 1 2 3 4 5

Peak area x 
6

S1O

[U-13C]-Met 292

1.5

I
C

< o.5

o-.va,

0 2 4 6

Peak area x 
6

X 10

M+1

185

17

0 1 2 3 4 5
Peak area x l

6

.10

M+2

0 1 2 3 4 5

Peak area xX 10

M+3

2

0 1 2 3 4 5

Peak area 6x 10

M+4

Pkr0 1 2 3 4 5

Peak area 
6

. 10

M+4

Peak area o
6

M+5 M+6

95

14.5 rP
85

0 2 4 6 0 2 4 6

Peak area x 
6  

Peak area 6X 10 .10

0 2 4 6 0 2 4 6

Peak area 
6  

Peak area 
6

M+7 M+8

0.5 r OL

0 2 4 6 0 2 4 6

Peak area 6 Peak area x 6.t x 10

Peak area 
6

. 10

M+9

0.5

0 2 4 6

Peak area x 10

Met 292
Formula : C12H 3oNOSi2S
Exact mass : 292.159
C-atoms : 2-3-4-5

m/z theory data difference
291 0.0 0.0 0.0
292 100.0 100.0 0.0
293 25.0 24.8 -0.2
294 14.1 14.0 -0.1
295 2.6 2.6 0.0
296 0.7 0.8 0.1
297 0.1 0.1 0.0
298 0.0 0.0 0.0
299 0.0 2.1 2.1
300 0.0 0.5 0.5
301 0.0 0.2 0.2

This fragment can be used for quantitative analysis.
from the mass range 292-298.

[U- 13C]-Met

m/z theory data difference
291 0.0 0.0 0.0
292 0.0 0.1 0.1
293 0.0 0.2 0.2
294 0.0 0.2 0.2
295 4.1 5.1 1.0
296 100.0 100.0 0.0
297 20.9 21.1 0.2
298 13.1 12.8 -0.3
299 2.1 2.0 -0.1
300 0.6 0.5 -0.1
301 0.1 0.0 -0.1

Mass isotopomer distributions should be obtained
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Met 320

[U-i 3C]-Met 32070.5

69

6M8.5

68

Peak area 
6

[U-13C]-Met 320

Peak area o

M+5

68,5

(8

Peak area 5
IQ0

Met 320
Formula :
Exact mass :
C-atoms :

m/z
319
320
321
322
323
324
325
326
327
328
329
330
331

theory
0.0

100.0
26.1
14.6
2.8
0.8
0.1
0.0
0.0
0.0
0.0
0.0
0.0

M+1

1985

18

17.5

17

0 1 2 3 4

Peak area 6
x 10

M+1

05

0 1 2 3 4 5

Peak area

M+2

1o 0

95

0 1 2 3
Peak area 6

X10

M+2

05

0 1 2 3 4 5

Peak area 6
K I

M+3
25

2
Paaa

1.5

S1 2 34

Peak area 6
.10

M+3

1

0

Peak area 6*10

0 1 2 3 1 5 0 1 2 3 4 5 0 1 2 3 4 5
Peak area 6 Peak area 6 Peak area 6

S10 !0 ý 10

[U-13 C]-Met
C13H3oNO2Si2S
320.154
1-2-3-4-5

data d
0.0

100.0
25.9
14.5
2.8
0.8
0.1
0.0
0.0
0.3
0.1
0.2
0.1

ifference
0.0
0.0

-0.2
-0.1
0.0
0.1
0.0
0.0
0.0
0.3
0.1
0.2
0.1

m/z
319
320
321
322
323
324
325
326
327
328
329
330
331

theory
0.0
0.0
0.0
0.0
0.0
5.2

100.0
21.1
13.3
2.1
0.6
0.1
0.0

This fragment can be used for quantitative analysis. Mass isotopomer distributions should be obtained
from the mass range 320-327.
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15 
i

5

1)4

Peak area x!°0

data difference
1.4
0.5
0.3
0.1
0.3
6.2

100.0
21.4
13.4
2.1
0.6
0.0
0.0

1.4
0.5
0.3
0.1
0.3
1.0
0.0
0.3
0.1
0.0
0.0

-0.1
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Phenylalanine (Phe)

Averaged Scan: 1470 to 1477 TIC :467545 BP = 117371

90 234.20 302.20

00

70

560

335.20

10 L ,

204.0 21.15 287.15 378.25 419.10
,I .. , ' .' .... . . '' ' ' ' . .' ' '3d0' I 

'...... i.. Io 20 0 25 30 3 400 4so /

Averaged Scan : 1480 to 1498 TIC : 240314 BP - 62306

I4n 0 342n

CH 3 CH3  0 CH3 CH3I I H IIH
H3 -C-Si-N-C-C-O--Si-C-CH 3I I I I I

CH 3 CH 3  CH2  CH3 CH3

I C21H39NO2Si2Exact Mass: 393.2519
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Phe 234

0 0.5 1 1.5 2 2.5 0.5 1 15 2 2.5
Peak area 7 Peak area 7

× 10 , 10

M+2

45·a

S0.5 1 1. 2 2.5
Peak area 7

x10

[U-13C]-Phe 234 M+1 M+2 M+3 M+4

2 • s 15

''4

0 0.5 1 15 2 0 0.5 1 15 2 0 .5 1 1.5 05 1 0 05 1 15 2

Peak area 7 Peak area 7 Peak area 7 Peak area 7 Peak area 7
.10 C )i 0 10 10

M+5

76 "I 11

15. 5 "25.5 10*

7 

5 

5 

10L

075 'O

_ _ _ a __ K. _
O 0.5 1 1 2 0 0.5 1 15 2 0 0.5 1 1 2 0 1 1 15 2 0

Peak area 7 Peak area 7 Peak area 7 Peak area 7
110 110 110 110

Phe 234

M+9

Peak area 1

[U- 13C]-Phe

theory
0.0

100.0
21.1
5.4
0.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

C14H24NSi
234.168
2-3-4-5-6-7-8-9

data difference
0.0 0.0

100.0 0.0
21.3 0.2

5.7 0.3
0.8 0.1
0.1 0.1
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.1 0.1
0.5 0.5
3.7 3.7
1.4 1.4

m/z
233
234
235
236
237
238
239
240
241
242
243
244
245
246

theory
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8.6

100.0
12.6
3.9
0.3
0.0

data
4.1
1.7
0.5
0.1
0.0
0.0
0.1
0.8
9.2

100.0
13.7
4.2
0.6
0.6

difference
4.1
1.7
0.5
0.1
0.0
0.0
0.1
0.8
0.6
0.0
1.1
0.3
0.3
0.6

This fragment can be used for quantitative analysis. Mass isotopomer distributions should be obtained
from the mass range 234-243.
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M+4

0 05 1 15 2 2.5
Peak area ý1
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Formula :
Exact mass :
C-atoms :
m/z
233
234
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246

· · · · · · "

I

-- ---



APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Phe 302
72.5 1 .

a23
Peak area 17x lo

[U-13C]-Phe 302

Peak area 7.10

M+1

195

19

01233
Peak area 7

x 10

M+1

is

o.5

o 0.5 1 1.5 2

Peakarea 
7

M+2

7.5

-A

7

Peak area 7

M+2

73

72

71.5
S 0.5 1 1.5 2

Peak area 
7

x 10

M+3

S 2 3

Peak area 7
x1o

M+3

0 0.5 1 1.5 2
Peak area 7

710

M+4

0.5

Peak area 7

M+4

75

65
5 0.5 1 1.5 2

Peak area 7X 10

M+5

0 0.5 1 1.5 2
Peak area 1X10

Phe 302
Formula: C14H 3202NSi2
Exact mass : 302.197
C-atoms : 1-2
m/z theory data difference
301 0.0 0.0 0.0
302 100.0 100.0 0.0
303 26.4 26.1 -0.3
304 10.3 9.9 -0.4
305 1.8 1.7 -0.1
306 0.3 0.3 0.0
307 0.0 0.0 0.0

This fragment can be used for quantitative analysis.

[U- 13C]-Phe

m/z theory data difference
301 0.0 0.0 0.0
302 0.0 0.3 0.3
303 2.0 0.6 -1.4
304 100.0 100.0 0.0
305 24.3 25.0 0.7
306 9.7 9.9 0.2
307 1.5 1.6 0.1
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Phe 308

71

0 5 10 15

Peak area a

[U-13C]-Phe 308

'5

o 5 10

Peak area .10r

M+1

20.5

0 5 10 15

Peak area 6

M+1

1.5

0.5

0 5 10

Peak area 10
b

K10

M+2

0 5 10 15

Peak area o
6

.10

M+3

0 5 10 15

Peak area 6.10

M+4

0 5 10 i5

Peak area s

M+2 M+3 M+4

1 1 1

0.5 0.5 0.5

0 • . ..... 0 m-. . . . 3 - . . .
S 5 10 0 5 10 5 10

Peak area s Peak area o Peak areax 10 .10 x 10

M+6

Peak area lX10 Peak area as Peak area o
KO X10

Phe 308
Formula : C16H 300NSi2
Exact mass : 308.187
C-atoms : 2-3-4-5-6-7-8-9
m/z theory data difference
307 0.0 0.0 0.0
308 100.0 100.0 0.0
309 28.5 28.8 0.3
310 10.6 10.6 0.0
311 1.9 2.0 0.1
312 0.3 0.4 0.1
313 0.0 0.0 0.0
314 0.0 0.0 0.0
315 0.0 0.0 0.0
316 0.0 0.0 0.0
317 0.0 0.4 0.4
318 0.0 0.3 0.3
319 0.0 0.1 0.1
320 0.0 0.2 0.2
321 0.0 0.1 0.1

This fragment can be used for
from the mass range 308-316.

71

15.5

70

14.5r

0 b 110 0 10

Peak area Peak area a
X lO 10

[U-13C]-Phe

m/z
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

theory
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8.5

100.0
20.2
8.5
1.1
0.2
0.0

data difference
3.5
0.8
0.2
0.1
0.0
0.0
0.1
0.4
8.7

100.0
21.1
8.8
1.3
0.2
0.0

3.5
0.8
0.2
0.1
0.0
0.0
0.1
0.4
0.2
0.0
0.9
0.3
0.2
0.0
0.0

quantitative analysis. Mass isotopomer distributions should be obtained
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Phe 336
7.5*

70

0 5 10 15

Peak area 6
x1O

[U-13C]-Phe 336
15.5

15

14.

0 5 10

Peak area 
6

x 10

M+5

Peak area 
6

x 10

M+1

20.5

0 5 10 15

Peak area 6
x 10

M+1
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Peak area 
6

M+6

e.5

D 5 to

Peak area 
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M+2

7.5
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0 5 10 15

Peak area o
x To

M+2
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o.s

Peak area 
6

M+7

51 a

o 5 1o

Peak area 6X 10

Phe 336

M+3

1 6

0 5 10 15

Peak area x 
6.10

M+3

0.5 a

, ,i

0 5 10

Peak area x 
6

.10o

M+8

Peak area 
6

. 10

M+4

0.5

0 -
0 5 o10 15

Peak area 6
x1o

M+4

0 5 10

Peak area x

M+9

5.5

56

55,5 •

Peak area l
6

X 10

[U-' 3C]-Phe
C17H 300 2NSi2
336.182
1-2-3-4-5-6-7-8-9

data difference
0.0 0.0

100.0 0.0
29.4 -0.3
11.1 -0.1
2.1 0.0
0.4 0.0
0.1 0.1
0.1 0.1
0.0 0.0
0.0 0.0
0.1 0.1
0.1 0.1
0.1 0.1
0.0 0.0
0.4 0.4

Phenylalanine must not be M+9 or M+8 labeled
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Formula :
Exact mass :
C-atoms :
m/z
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

theory
0.0

100.0
29.7
11.2

2.1
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

m/z
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

theory
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9.7

100.0
20.3
8.7
1.1
0.2

data
108.4
26.4
10.9
1.8
0.3
0.0
0.1
0.1
0.7
9.8

100.0
20.8
8.9
1.3
0.2

difference
108.4
26.4
10.9
1.8
0.3
0.0
0.1
0.1
0.7
0.1
0.0
0.5
0.2
0.2
0.0

This fragment can be used for quantitative analysis.
for this fragment to be accurate.
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Aspartate (Asp)

0 veraged Scan : 15899 to 1596 TIC :594406 BP - 232054 c

302.20

70

316.25 418.25

40

30 244.10
390.30

20

10 202.10 216.15 258 206.15 37.25

2"Ol ..... ' . 400 4 .0 m/4

30420
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378.25
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CH 3 CH3  CH2  CH3 CH3
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O

H3C-Si-CH3

H3 C-C-CH3

CH3
C22H49NO4Si3Exact Mass: 475.2969
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Asp 244

0066

0 5 10 15

Peak area 6
x10

[U-13C]-Asp 244

o 5 1o

Peak area 6

M+5

3*6

Peak area x to

M+1 M+2

Peak area 6 Peak area 6
S10 x10

M+1

0.5

0 5 10

Peak area 
6

M+6

P .k..

6 Pa

0 5 10

Peak area 
6

X 10

M+3 M+4

0 5 10 15
Peak area 6

x 10
Peak area 6x 10

M+3 M+4

8.5

7.5 -

0 5 10

Peak area 
6

M+7

1

0.5

P 5 10
Peak area xx1O

0 5 10 0 5 10
Peak area 

6  
Peak areax1O r 10

M+8

Peak area
Peak area 6

X10

Asp 244
Formula: unknown
Exact mass : unknown
C-atoms: unknown
m/z theory data difference
243 0.0
244 100.0
245 27.2
246 18.3
247 n/a 3.6 n/a
248 1.6
249 0.7
250 0.2
251 0.0
252 0.0

[U- 13C]-Asp

m/z theory data difference
243 0.1
244 0.3
245 1.8
246 100.0
247 n/a 27.2 n/a
248 11.7
249 3.2
250 8.2
251 1.9
252 0.8

This fragment should not be used. The relatively high M+2 (18% of M+0) suggests that two
fragments are overlapping. [4- 13C]-aspartate contains peaks at 244 and 247, which further suggests
that two fragments are overlapping.
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Asp 258

Peak area

M+1 M+2

Peak area 6 Peak area 6
x 10 ,10

[U-13C]-Asp 258 M+1

1'%

o 2 3 0 2 3
Peak area 

6  
Peak area a10 10

M+6

2Peak area
Peak area 6. 10

2
Peak area

M+2

4.5

3 2 3
Peak area a• o

=

M+7

M+3

0 1 2 3 4 5 0 1 2 3 4 5

Peak area 6 Peak area
K 10 x10

M+3 M+4

645 1" "

S,1 4
63 P

Peak area a Peak areax 10 10

M+9

05~

3 2 3 0 2
6 Peak area a Peak area a6 Peak area a,C) r10 0 O 10

Asp 258
Formula: unknown
Exact mass : unknown
C-atoms : unknown
m/z theory data difference
257 4.4
258 100.0
259 25.6
260 16.0
261 n/a 3.3 n/a
262 2.1
263 1.8
264 0.5
265 0.0
266 0.0
267 0.0

[U-13C]-Asp

m/z theory data difference
257 1.8
258 1.0
259 2.4
260 7.6
261 n/a 100.0 n/a
262 23.2
263 16.6
264 4.2
265 0.8
266 0.1
267 0.0

This fragment should not be used. M-1 is too high (4.4 mol%) and the fragmentation is unknown. [4-
13C]-aspartate contains a peak at 259 but not at 258, thus this fragment contains C-4.
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Asp 302

14• 72.s 3.s.TIS

0 1 2 3 4

Peak area 7

[U-13C]-Asp 302

012
0 1 2 3

Peak area 10x1O

M+1
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Peak area 7
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Peak area 1
7
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M+2

71.6

71

0 1 2 3
Peak area 

7

x1O

M+4

0.5

01 340 1 2 3 4

Peak area 7XIC

M+3 M+4

rs
7-5

is I 4
17.5 1
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Peak area 7 Peak area 7X 10 x 10

MN5 M+6 M+7

1.5 1.5

1.5

0123 0123 0123
0 1 2 3 0 1 2 3 0 1 2 3

Peak area 107 Peek area 7 Peak area 710
110 110 110

Asp 302
Formula: C14H320 2NSi2
Exact mass : 302.197
C-atoms: 1-2
m/z theory data difference
301 0.0 0.0 0.0
302 100.0 100.0 0.0
303 26.4 26.4 0.0
304 10.3 10.2 -0.1
305 1.8 1.8 0.0
306 0.3 0.3 0.0
307 0.0 0.0 0.0
308 0.0 0.0 0.0
309 0.0 0.0 0.0

[U-13C]-Asp

m/z theory data difference
301 0.0 0.0 0.0
302 0.0 0.5 0.5
303 2.0 3.1 1.1
304 100.0 100.0 0.0
305 24.3 24.7 0.4
306 9.7 9.8 0.1
307 1.5 1.6 0.1
308 0.3 0.4 0.1
309 0.0 0.0 0.0

This fragment can be used for quantitative analysis. [4-13C]-aspartate contains a peak at 302 but not at
303, thus this fragment does not contain C-4.
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Asp 316

7-15

ID
W 71

[

< 700

o 0.5 1 1.5 2 2.5

Peak area 7

[U-13C]-Asp 316

0I5

P we

Peak area 6
010

M+5

5 10 15
Peak area 1°

M+1
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Peak area 7

05

i
0. , '

2,5

10 15 L
Peak area 6

M+6

0.

0 5 10 15 0
Peak area

Asp 316
Formula: C 15H34NO 2Si2
Exact mass : 316.213
C-atoms: 2-3-4
m/z theory data difference
315 0.0 0.0 0.0
316 100.0 100.0 0.0
317 27.5 27.3 -0.2
318 10.6 10.5 -0.1
319 1.9 2.6 0.7
320 0.3 0.6 0.3
321 0.0 0.1 0.1
322 0.0 0.0 0.0
323 0.0 0.0 0.0
324 0.0 0.0 0.0

[U- 13C]-Asp

m/z theory data difference
315 0.0 0.0 0.0
316 0.0 0.2 0.2
317 0.0 0.6 0.6
318 3.1 3.7 0.6
319 100.0 100.0 0.0
320 24.4 24.5 0.1
321 9.7 10.3 0.6
322 1.5 1.9 0.4
323 0.3 0.4 0.1
324 0.0 0.1 0.1

This fragment should not be used. It has a significant bias, M+0 is too low (-0.3 mol%/o) and M+3 is
too high (4-0.7 mol%).[4--1 C]-aspartate contains a peak at 317 but not at 316, thus this fragment
contains C-4.
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Asp 376
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Asp 376
Formula: C16H380 3NSi3
Exact mass : 376.216
C-atoms : 1-2
m/z theory data difference
375 0.0 0.1 0.1
376 100.0 100.0 0.0
377 33.8 33.5 -0.3
378 15.9 15.8 -0.1
379 3.6 3.4 -0.2
380 0.8 0.7 -0.1
381 0.1 0.0 -0.1
382 0.0 0.0 0.0
383 0.0 0.1 0.1
384 0.0 0.0 0.0

This fragment can be used for quantitative analysis.
377, thus this fragment does not contain C-4.

[U-UC]-Asp

m/z theory data difference
375 0.0 0.0 0.0
376 0.0 0.2 0.2
377 2.0 3.2 1.2
378 100.0 100.0 0.0
379 31.7 31.7 0.0
380 15.2 15.0 -0.2
381 3.3 3.1 -0.2
382 0.8 0.5 -0.3
383 0.1 0.0 -0.1
384 0.0 0.0 0.0

[4- 13C]-aspartate contains a peak at 376 but not at
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Asp 390
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Asp 390
Formula : C 17H 4003NSi 3
Exact mass : 390.232
C-atoms : 2-3-4
m/z theory data difference
389 0.0 0.0 0.0
390 100.0 100.0 0.0
391 35.0 34.8 -0.2
392 16.3 16.1 -0.2
393 3.8 3.7 -0.1
394 0.9 0.8 -0.1
395 0.1 0.0 -0.1
396 0.0 0.0 0.0
397 0.0 0.0 0.0
398 0.0 0.0 0.0
399 0.0 0.0 0.0

[U-13C]-Asp

m/z theory data difference
389 0.0 0.0 0.0
390 0.0 0.2 0.2
391 0.0 0.3 0.3
392 3.1 3.1 0.0
393 100.0 100.0 0.0
394 31.8 31.8 0.0
395 15.2 15.0 -0.2
396 3.3 3.2 -0.1
397 0.8 0.7 -0.1
398 0.1 0.0 -0.1
399 0.0 0.0 0.0

This fragment can be used for quantitative analysis. [4- 3C]-aspartate contains a peak at 391 but not at
390, thus this fragment contains C-4.
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Asp 418
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Asp 418
Formula : C18H 400 4NSi3
Exact mass : 418.227
C-atoms : 1-2-3-4
m/z theory data difference
417 0.0 0.0 0.0
418 100.0 100.0 0.0
419 36.1 35.8 -0.3
420 16.9 16.7 -0.2
421 4.0 3.9 -0.1
422 1.0 0.9 -0.1
423 0.2 0.1 -0.1
424 0.0 0.0 0.0
425 0.0 0.0 0.0
426 0.0 0.0 0.0
427 0.0 0.0 0.0
428 0.0 0.0 0.0

[U- 13C]-Asp

m/z theory data difference
417 0.0 0.0 0.0
418 0.0 0.2 0.2
419 0.0 0.1 0.1
420 0.0 0.6 0.6
421 4.1 4.7 0.6
422 100.0 100.0 0.0
423 31.9 31.9 0.0
424 15.4 15.3 -0.1
425 3.3 3.3 0.0
426 0.8 0.8 0.0
427 0.1 0.1 0.0
428 0.0 0.0 0.0

This fragment can be used for quantitative analysis. [4- 13C]-aspartate contains a peak at 419 but not at
418, thus this fragment contains C-4.
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Glu 272
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Glu 272
Formula: unknown
Exact mass : unknown
C-atoms : unknown
m/z theory data difference
271 0.0
272 100.0
273 24.4
274 11.5
275 n/a 2.2 n/a
276 0.6
277 0.1
278 0.0
279 0.1
280 0.0

[U- 13C]-Glu

m/z theory data difference
271 0.0
272 0.2
273 0.1
274 0.4
275 n/a 4.9 n/a
276 100.0
277 20.8
278 10.5
279 1.7
280 0.5

This fragment cannot be used because the fragmentation is unknown. [5-' 3C]-glutamine contains a
peak at 273 but not at 272, thus this fragment contains C-5. Fragment Glu-432 is preferred.
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Glu 330 M+1
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Glu 330
Formula: C16H3602NSi2
Exact mass : 330.228
C-atoms : 2-3-4-5
m/z theory data difference
329 0.0 0.0 0.0
330 100.0 100.0 0.0
331 28.7 28.5 -0.2
332 10.9 10.9 0.0
333 2.0 2.1 0.1
334 0.3 0.3 0.0
335 0.0 0.0 0.0
336 0.0 0.0 0.0
337 0.0 0.4 0.4
338 0.0 0.1 0.1
339 0.0 0.1 0.1

P 5 10 i5
Peak area 6.10O

0 5 10 iS

Peak area 6 Peak area 6I'Ux 10

[U- 13C]-Glu

m/z theory data difference
329 0.0 0.0 0.0
330 0.0 0.2 0.2
331 0.0 0.1 0.1
332 0.0 0.8 0.8
333 4.1 4.8 0.7
334 100.0 100.0 0.0
335 24.5 25.0 0.5
336 9.7 10.0 0.3
337 1.6 1.7 0.1
338 0.3 0.3 0.0
339 0.0 0.0 0.0

This fragment can be used for quantitative analysis. Mass isotopomer distributions should be obtained
from the mass range 330-336. [5-' 3C]-glutamine contains a peak at 331 but not at 330, thus this
fragment contains C-5.
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Glu 358
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Glu 358
Formula : C17H36NO 3Si2
Exact mass : 358.223
C-atoms : 1-2-3-4-5
m/z theory data difference
357 0.0 1.8 1.8
358 100.0 100.0 0.0
359 29.8 30.0 0.2
360 11.4 11.9 0.5
361 2.2 2.5 0.3
362 0.4 0.8 0.4
363 0.0 0.1 0.1
364 0.0 0.0 0.0
365 0.0 0.0 0.0
366 0.0 0.0 0.0
367 0.0 0.0 0.0
368 0.0 0.0 0.0

[U- 13C]-Glu

m/z theory data difference
357 0.0 0.2 0.2
358 0.0 0.0 0.0
359 0.0 0.0 0.0
360 0.0 0.1 0.1
361 0.0 2.9 2.9
362 5.2 6.6 1.4
363 100.0 100.0 0.0
364 24.5 25.4 0.9
365 9.9 10.9 1.0
366 1.6 1.4 -0.2
367 0.3 0.2 -0.1
368 0.0 0.0 0.0

This fragment should not be used. M-1 is too high (1.8 mol%). Fragment Glu-432 is preferred. [5-
13C]-glutamine contains a peak at 359 but not at 358, thus this fragment contains C-5.
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Glu 404
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Glu 404
Formula: Cs 8H420 3NSi3
Exact mass : 404.247
C-atoms : 2-3-4-5
m/z theory data difference
403 0.0 0.0 0.0
404 100.0 100.0 0.0
405 36.1 35.7 -0.4
406 16.7 16.4 -0.3
407 4.0 3.9 -0.1
408 0.9 0.8 -0.1
409 0.2 1.3 1.1
410 0.0 0.3 0.3
411 0.0 0.0 0.0
412 0.0 0.0 0.0
413 0.0 0.0 0.0

[U- 13C]-Glu

m/z theory data difference
403 0.0 0.0 0.0
404 0.0 0.0 0.0
405 0.0 0.0 0.0
406 0.0 0.1 0.1
407 4.1 3.8 -0.3
408 100.0 100.0 0.0
409 31.9 31.7 -0.2
410 15.2 14.6 -0.6
411 3,3 2.7 -0.6
412 0.8 0.5 -0.3
413 0.1 0.0 -0.1

This fragment should be used with caution. It is not very abundant and therefore noisy. Fragment
Glu-330 is preferred. [5- 13C]-glutamine contains a peak at 405 but not at 404, thus this fragment
contains C-5.
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Glu 432
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Glu 432
Formula: C19H420 4NSi3
Exact mass : 432.242
C-atoms : 1-2-3-4-5
m/z theory data difference
431 0.0 0.0 0.0
432 100.0 100.0 0.0
433 37.2 37.1 -0.1
434 17.3 17.5 0.2
435 4.2 4.4 0.2
436 1.0 1.1 0.1
437 0.2 0.2 0.0
438 0.0 0.0 0.0
439 0.0 0.0 0.0
440 0.0 0.0 0.0
441 0.0 0.0 0.0
442 0.0 0.0 0.0
443 0.0 0.0 0.0

[U- 13C]-Glu

m/z theory
431 0.0
432 0.0
433
434
435
436
437
438
439
440
441
442
443

0.0
0.0
0.0
5.2

100.0
32.0
15.4
3.3
0.8
0.1
0.0

13C]-glutamine contains a peak at 433 but not
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This fragment can be used for quantitative analysis. [5-
at 432, thus this fragment contains C-5.
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Lysine (Lys)
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Exact Mass: 488.365
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Lys 329 M+1 M+2 M+3 M+4
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U-13C]-Lys
C17H41N 2Si2
329.2808
2-3-4-5-6

data difference
0.6 0.6

100.0 0.0
29.9 -0.2
11.3 0.4
2.2 0.2
0.5 0.2
0.0 0.0
0.0 0.0
0.0 0.0
0.3 0.3
0.1 0.1

m/z theory
328 0.0
329 0.0
330 0.0
331 0.0
332 0.0
333 5.2
334 100.0
335 24.8
336 9.4
337
338

1.5
0.2

data difference
0.0 0.0
0.5 0.5
0.1 0.1
1.8 1.8
2.5 2.5
9.4 4.2

100.0 0.0
25.7 0.9
10.5 1.1
3.8 2.3
0.9 0.7

This fragment should be used with caution. Lysine peak is not very abundant and therefore very
noisy.
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Lys 431
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This fragment should not be used. M-1
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APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Tyrosine (Tyr)

d~ ergý scan I 27 2 o 8lot '~a3"••_• ::'-:u •o. .. ., -~-'u . -, __ _ __ _ __,._ __ _ __ _ _ __ _ _

302.20
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10 207.00 221.15 I 364.30
S 245.05 1 43.25

4,. Mn ' ail ACI1 ifl

veraged Scan : 2894 to 2907 TIC: 1322981 BP - 1322550
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, , , .1 . i . . . . . . . . . . . .4..0

CH3 CH3  0 CH3 CH3I I H I I
H3C-C-Si-N-C-C-O-Si-C-CH 3I I I I I

CH3 CH3  CH2  CH3 CH3

0

H3C-Si-CH3I
H3 C-C-CH3

CH3

C27H53 NO3Si3
Exact Mass: 523.3333

- 357 -

U-' ' ' ' ' ~ ' ' ' ' ' ' ' ' ' ' ' ' ` ' ' "''

7 7 TIC 42461 BP 
2

450 m

1



APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Tyr 302

72

71.5

71 "
S70.5 *

70

0 2 4 6

Peak area 7

[U-13C]-Tyr 302

15

1

o L.

Peak area 7
.10

Peak area 7.10

M+1

19

18.5

0 2 4 6

Peak area 7

M+1

0.5

0 1 2 3
Peak area o

7

Peak area 7
x.0

M+2

I .

0 2 4 6

Peak area 7

M+2
72.5

72

71.5

705

0 1 2 3

Peak area x 1.'0o

M+3

0 2 4 6

Peak area

M+3

185

17.5

0 1 2 3

Peak area 7.10

M+4

0.5 -

0 2 4 6

Peak area 7

M+4

0 1 2 3
Peak area 7.,a

Peak area 7
x 10

Tyr 302
Formula: C 14 H 320 2NSi2
Exact mass : 302.197
C-atoms : 1-2
m/z theory data difference
301 0.0 0.0 0.0
302 100.0 100.0 0.0
303 26.4 26.3 -0.1
304 10.3 10.1 -0.2
305 1.8 1.7 -0.1
306 0.3 0.6 0.3
307 0.0 0.8 0.8
308 0.0 0.5 0.5
309 0.0 0.2 0.2

This fragment can be used for quantitative analysis.
from the mass range 302-305.

[U-13C]-Tyr

m/z theory data difference
301 0.0 0.1 0.1
302 0.0 0.4 0.4
303 2.0 1.8 -0.2
304 100.0 100.0 0.0
305 24.3 24.9 0.6
306 9.7 9.7 0.0
307 1.5 1.6 0.1
308 0.3 0.3 0.0
309 0.0 0.0 0.0

Mass isotopomer distributions should be obtained
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Tyr 364
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Tyr 364
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Exact mass :
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363
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376
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S 0.5 1 1.5 2
Peakarea x o

M+2

75

o 1 2 3 4 5

Peak area 6

M+2

05
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Peak area 6

M+7
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Peak area x 11

M+3
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0 1 2 3 4 5

Peak area x 
6

M+3
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Peak area x lo
6

X 1
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Peak area x 1

6
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M+4
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Peak area

M+9

17,5 s
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16

15.5
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[U- 13C]-Tyr

theory
0.0

100.0
33.0
12.0

2.4
0.4
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

C20H38NOSi2
364.249
2-3-4-5-6-7-8

data
0.5

100.0
33.1
12.7
3.0
0.7
0.1
0.0
0.0
0.0
0.0
0.2
0.0
0.8
0.3

difference
0.5
0.0
0.1
0.7
0.6
0.3
0.0
0.0
0.0
0.0
0.0
0.2
0.0
0.8
0.3

m/z
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

theory
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

8.5
100.0
24.6
9.5
1.5
0.2
0.0

data
0.1
0.4
0.2
3.6
1.0
0.3
0.0
1.3

10.1
100.0

25.9
9.9
1.6
0.2
0.0

difference
0.1
0.4
0.2
3.6
1.0
0.3
0.0
1.3
1.6
0.0
1.3
0.4
0.1
0.0
0.0

It is not very abundant and therefore very noisy. Fragment Phe-
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APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Histidine (His)

Histidine fragments were not investigated in detail because of low signal-to-noise ratio.
Histidine was not found in all samples.

d egareva Scan : 
7100lo-- -- - -- -- ------ , ..... . .. .-....... . ....
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70
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200 . 250 300 350 400 450 m

eragaed Scan : 3448 tD 3463 TIC: 86445 8P 68014 <

446.30
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CH3 CH3  0 CH3 CH3I I H H I I
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CH3 CH3  OH2  CH3 CH3

H -C CH CH3ICe \ III N-Si-C-CH3N / I I
H CH3

C H3
C24H51 N302 Si3

Exact Mass: 497.3289
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APPENDIX A. GC/MS ANALYSIS OF AMINO ACIDS

Arginine (Arg)

veaged Scan : 3113 to 3127 TIC : 55567 BP = 50393 <

44830

345.25

70

360

20

5140

10' 315.15 3 BU1 419.20

200

CH3 H3  0 CH3 CH3I I H H 11 1 I
H3C-C-Si-N-C-C-0-Si-C-CH 3I I I I I

CH 3 CH3  CH2  CH3 CH3

CH2

NH

OCH CH3II I /%
H3C-C-Si-N NHI I H

CH3 CH3

C24H55N40 2Si3Exact Mass: 515.363

Arginine peak is found at 22.5 min with peaks at m/z 442 (M-57-16) and m/z 340 (M-159-
16). The arginine derivative corresponds to a nitrile form derived from loss of a guanidino
nitrogen (see Petterson BW et al., Biol Mass Spectrom, 22(9), 518-523). Arginine fragments
were not investigated in detail because of low signal-to-noise ratio.
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Appendix B

GC/MS analysis of glucose derivatives

GC/MS analysis of unlabeled glucose derivatives was performed using HP 5890 Series II
GC (Gas Chromatograph) connected to HP 5971 MSD (Mass Selective Detector). The mass
spectrometer was calibrated using the 'Max Sensitivity Autotune' setting.

Column Specifications
* Agilent Technologies 122-1262 DB-XLB (Serial No. 8758214)
* Length: 30 m
* ID: 0.25 mm
* Film: 0.25 im
* Temperature limits: 30 0C to 340 0C

MSD Settings
* Scan mode
* 5 min solvent delay
* 10 min recording time
* Mass range: 100 to 500 amu (approx. 2.0 scans/sec)

GC Settings
* Constant flow 0.88 mL/min
* Injector temp: 2500C
* Transferline temp: 3000C
* Temperature program:

o 800C (hold I min)
o 200C/min to 2800C (hold 4 min)

- 363 -
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Pentaacetate glucose

Averaged Scan : 719 to 735 TIC : 1670270 BP = 1203500
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APPENDIX B. GC/MS ANALYSIS OF GLUCOSE

Pentatrimethylsilyl glucose

I

Permethyl glucose

Scan886 to 896 TIC: 103201 8P - 1844793

101.05'70

20

10 127.1 1410

Perethyl glucose

I
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APPENDIx B. GC/MS ANALYSIS OF GLUCOSE

Di-O-isopropylidene acetate glucose

\veraged Scan : 373 in 381 TIC : 562007 BP = 955353
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APPENDIX B. GC/MS ANALYSIS OF GLUCOSE

Di-O-isopropylidene trimethylsilyl glucose

nArm l rl 17 1 In m1 TIC 1 72914 se - 751574
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APPENDIX B. GC/MS ANALYSIS OF GLUCOSE

Aldonitrile pentabutanoate glucose
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APPENDIXB. GC/MS ANALYSIS OF GLUCOSE

Methyloxime pentapropionate glucose
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"Until you measure the fluxes, you don't even know
if a cell is dead or alive !"
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