subTextile: A Construction Kit for Computationally
Enabled Textiles

by
Sajid H. Sadi
B.S. Columbia University in the City of New York, New York, USA (2003)

Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning
In partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the [MASSAGHUSETTS NGTITUTE]

OF TECHNOL
MASSACHUSETTS INSTITUTE OF TECHNOLOGY = oav
Coeemon s SEP 1.4 2006

August 2006
LIBRARIES
© Massachusetts Institute of Technology 2006. All rights reserved.
L ARCHIVES
AULROT .t esssssssssesssssssassasessssssasssassnss R0 - S obherens T ieeet ettt enveses

Program in Media Arts and Sciences, School of Architecture and Planning
August 11, 2006

Certified by............ vevusrasersasrsrassasssassassens T N
Patricia Maes
Associate Professor of Media Arts and Sciences
Program in Media Arts and Sciences, School of Architecture and Planning
Thesis Supervisor
7 .
ACCEPLEA DY courevenvenriscenrrnrssssssassssssessersssasssassssnens LA . e R

Chair, Departmental Committee on Graduate Students
Program in Media Arts and Sciences, School of Architecture and Planning

subTextile: A Construction Kit for
Computationally Enabled Textiles

by
Sajid H. Sadi
Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
on September, 2006, in partial fulfillment of the
requirements for the degree of
Masters of Science in Media Arts and Sciences

abstract

As technology moves forward, electronics have enmeshed with every aspect of daily life. Some
pioneers have also embraced electronics as a means of expression and exploration, creating the
fields of wearable computing and electronic textiles. While wearable computing and electronic
textiles seem superficially connected as fields of investigation, in fact they are currently widely
separated. However, as the field of electronic textiles grows and matures, it has become
apparent that better tools and techniques are necessary in order for artists and designers
interested in using electronic textiles as a means of expression and function to be able to use
the full capabilities of the available technology.

It remains generally outside the reach of the average designer or artist to create e-textile
experiences, thus preventing them from appropriating the technology, and in turn allowing
the general public to accept and exploit the technology. There is clearly a need to facilitate this
cross-pollination between the technical and design domains both in order to foster greater
creativity and depth in the field of electronic textiles, and in order to bring greater social
acceptability to wearable computing. This thesis introduces behavioral textiles, the intersection
of wearable computing and electronic textiles that brings the interactive capability of wearable
electronics to electronic textiles. As a means of harnessing this capability, the thesis also
presents subTextile, a powerful and novel visual programming language and development.
Design guidelines for hardware that can be used with the development environment to create
complete behavioral textile systems are also presented. Using a rich, goal-oriented interface,
subTextile makes it possible for novices to explore electronic textiles without concern for
technical details. This thesis presents the design considerations and motivations that drove the
creation of subTextile. Also presented are the result of a preliminary evaluation of the
language, done with a sample chosen to represent users with varying capabilities in both the
technical and design domains.

Thesis supervisor; Pattie Maes, Associate Professor of Media Arts and Sciences

subTextile: A Construction Kit for
Computationally Enabled Textiles
by
Sajid H. Sadi

Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning
In partial fulfillment of the requirements for the degree of
Master of Science in Media Arts and Sciences
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2006

Thesis Reader
oapna Berzowska
Assistant Professor of Design and Coimputation Arts
Concordia University, Montreal
Thesis Reader verersssessastasasnessseensrsasasssessenarasans

Joseph A. Paradiso
Associate Professor of Media Arts and Sciences
Program in Media Arts and Sciences, School of Architecture and Planning

acknowledgements

“It is not so much our friends’ help that helps us as the confident knowledge that they will help us.”
— Epicurus (341 - 270 BC)

Many people have contributed to this work. Their friendship, understanding, help, and critique
was invaluable in making shaping this thesis and the thoughts that precipitated it. Therefore, I
would like to acknowledge their help, and the confidence they gave my with their presence:

Pattie Maes, my advisor, for accepting me into the Ambient Intelligence Group; for letting me
get away with doing what 1 wanted; and for always encouraging me to reach further and
higher.

Joanna Berzowska, for showing me that electronic textiles can be more than what I had seen
before, and for taking away the jadedness that kept me back.

Joe Paradiso, for his help, encouragement, and confidence; and for showing me that the
difference between theory and practice, between ideas and reality, is merely will and passion.

A special thanks to the members of Ambient Intelligence. In particular, thanks to David
Bouchard, Enrico Costanza, and David Merrill for stimulating discussions in a too-cramped
office about everything under the sun. Thanks for Orit Zuckerman for helping me think about
art and the needs of artists, for letting me collaborate on some great projects, and of course for
putting up with me as an officemate. Thanks to Hugo Liu and James Teng for interesting and
inspiriting discussions. Thanks to Polly Guggenheim for working her magic and taking care of
us through thick and thin.

Thomas Hayes, for teaching me process and patience for electronics, and showing me what is
possible with dedication and persistence. All I truly understand of electronics, I owe to him.

Bill Mitchell, for showing me what it is like to boldly state the vision of things that others only
dare whisper.

Federico Casalegno, for letting me work on interesting projects on my own terms, and putting
up with my somewhat bigoted dislike of sociology.

Thanks to the eLens crew, and in particular Enrico Costanza, Jon Gips, Mirja Leinss, and Aaron
Zinman, for being themselves. There can be no others, and there can be no recovery from zero-
chi.

Assaf Feldman, for teaching me how to swim in the Media Lab ocean, for being my first
“colleague,” and for getting me through my first year here.

David Gatenby, for showing me how to “noodle around” while getting things done.
Adam Boulanger, for his crazy schemes to build gigantic things far beyond our capabilities.

Jason Alanso, for letting me meddle with his projects, and for being the quintessential MIT guy.
So this is what it means to be responsible, huh?

Ari Benbasat, for timely and appropriate sarcasm, encouragement, and actual sage advice.

Orkan Telhan, for sticking around too late into the night to talk about philosophy, design, and
other things that are too difficult to talk about when alert. A special thanks also goes to Arzu
for putting her husband out on loan for us.

Thanks to my friends and colleagues at the Media Lab, a community of incredible people. In
particular, thanks to Vincent Leclerc, Oren Zuckerman, Cory Kidd, Christine Liu, Nick Knouf,
Gemma Shusterman, and Ayah Bdeir.

Thanks to all the UROPs and subjects of my study who worked with me at various times.

Linda Peterson and Pat Solakoff, for making sure that all the administrative wheels kept rolling
when I wasn’t paying attention, and for the extra magic for when they threatened to run over
me.

Thanks to the sponsor relations folks: Sarah Page, Felice Gardner, Deb Widener, Lisa Lieberson,
and others for keeping the sponsors at bay, and waiting patiently while I ran over time.

The Media Lab sponsors, without whose resources, encouragement, and dedication the Media
Lab and this thesis could not exist.

And finally, a very special thanks to my parents and my sister, for their tireless support; for
their faith; for their prayers and hopes; for carrying the heavy burdens when my eyes were
fixed on my dreams; and for making me the person I am today. You are always in my heart.

Thank you!

table of contents

abstract 3
acknowledgements 7
table of contents 11
1 introduction 13
1.1 contributions and roadmap 15
2 state of field 17
2.1 electronic textiles as materials 17
2.2 electronic textiles as expression 18
2.3 wearable computing 20
2.4 review of other related work 22
3 the subTextile system 29
3.1 development environment 30
3.2 hardware 31
3.3 software-hardware interaction 32
3.4 interface description 33
3.5 prototype application: ambient remote awareness pillow 37
4 design considerations 41
4.1 designing a toolkit for electronic textiles 42
4.2 aspects of the design of subTextile 43
4.3 design goals 44
4.4 prototypes 47
5 software environment 55
5.1 language goals 57
5.2 language description 61
5.3 language design choices 67
5.4 uidesign choices 69
6 physical layer guidelines 71
6.1 communication 72
7 evaluation....... 77
7.1 experimental method 78
7.2 results 80

8 conclusions and future work

9 bibliography.

appendix a: supported operators

appendix b: evaluation documents

9.1 documentation attachments provided
9.2 tasks
9.3 post-task questionnaire

83
87
91

93
93
95
96

| introduction

With the advent of computationally-enabled textiles or “electronic textiles,” it is becoming
possible for textiles to have expression and a “mind” of their own. While a number of groups
both commercial and academic have proposed solutions for applications as widely separated as
fashion and battlefield biomonitoring, prototypes thus far have been limited to one-off systems
with limited customizability, or systems which differentiate only in form, but not in concept or
function. The wearables field is currently fragmented between material sciences, fashion &
expression, and wearable computing & biomonitoring. However, the space between expression
and wearable computing has seen virtually no exploration. Little work has been done in making
the behavior of e-textiles easily changeable by designers and artists, and to allow expressive e-
textiles to have computational behaviors.

E-textiles applications continue to be one-shot applications. There already exist many
examples of such single-shot applications, but other than wearable computing platforms, very
few examples that can be customized or programmed have been explored. Much of the work in
the field of wearable systems, which is split between the camps of “computation that is
wearable” (ie, “wearable computing” in the sense of the ISWC conference) and “wearables that
can compute” (ie, “computationally-enabled fabrics” or “e-textiles”), is either highly general or
highly specialized, but difficult to modify in either case whether due to design or due to the
complexity of the programming environment. Of course, good designs should in fact be highly
specialized, not merely blank chalkboards of capability. It is therefore a challenge to provide
capability which encourages creativity, without producing constraints that turn designs into
cookie-cutter copies lacking real substance.

It may be best to describe the problem by analogy. The current state of e-textiles is such that if
regular textiles were in the same state, one would be required to weave cloth from fibers, die
and cut them to fit, and sew them, in order to have a shirt to wear. Moreover, there is very
limited crosstalk between the fields of wearable computing and e-textiles, and resultantly, a
lack of programmable e-textile components. It remains generally outside the reach of the
average designer or artist to create e-textile experiences, thus preventing them from
appropriating the technology, and in turn allowing the general public to accept and exploit the
technology. There is clearly a need to facilitate this cross-pollination between the technical and
design domains both in order to foster greater creativity and depth in the field of electronic
textiles, and in order to bring greater social acceptability to wearable computing. The term
“behavioral textiles” will be used in this thesis to describe this intersection.

The term “behavioral textiles” applies the definition of “behavior” more strictly than is used in
the vernacular. Instead of simply suggesting reactivity, behavior requires that the action be in
response to stimuli. This in turn suggests a dependence on input and more complex processing
of internal and external state. While it is entirely possible to demonstrate computational
expression through the use of randomization [1], ultimately moving beyond the prototype
stages to more widespread use requires a deeper foundation in real-world input and true
behavior-oriented interactivity that comes from complex programmed behaviors.

The gaps between the wearable computing and electronic textile fields extend in multiple
directions. Clearly, there is a technical gap that needs to be filled. However, this is perhaps the
most superficial of fissures. More importantly, there is a sizable gap in access to the technology.
“Access” is a deceptive term, because it does not merely require physical access, but also a
“conceptual interface” that matches the capability of the user to the technology required to
make ideas become reality. Lastly, the deepest fissures exist at the level of “knowledge of
capability.” In working with designers and artists, the author has found that consistently, the
problem is not merely the technical knowledge and capability, but rather the knowledge of the
possibilities afforded them through their collaboration with the author. Often, the most
difficult task in collaboration has been to convince collaborators to expand their creativity to
fill the entire length and breadth of the technology, while at the same time understanding the
boundaries presented by the technology. In most cases, the boundaries have only been
expanded by these encounters. This suggests a deep need to show artists and designers what is
truly possible and feasible, not merely to show them tools to access technology.

This thesis presents subTextile, a system that supports the entire workflow within the domain
of behavioral textiles, addressing interfaces to allow motivated but novice users to modify and
behaviorally program computationally-enabled fabrics, a task previously considered the
domain of wearable computing. The goal of the work presented is to nurture creativity without
the distractions of technical details that are relatively uninteresting in context. The subTextile
consists of two components: a visual language and associated development environment, and a
hardware specification for creating hardware that can be controlled by the language. The
subTextile language is designed to be as expressive as traditional programming using standard
textual languages, while providing high-level primitives that succinct and easy to learn. The
language allows extension to any hardware device that follows the specifications, but does not
require creation of binary extensions to do so, thus allowing the user to operate independent of
the design of language internals. The hardware specification is centered on a master node that
is capable of running the subTextile virtual machine and capable of communicating to attached
devices. Devices can be created to do as much as the user wishes, and do not demand any
particular choice of hardware.

In order to motivate the thesis, a lifecycle scenario for the system is helpful: Ralph is a creator
of e-textiles. His company produces a number of textiles incorporating the subTextile hardware
specifications. This not only simplifies design of the hardware interfaces for the textiles, but
allows artists and designers to use his textiles and systems, and program the textile in a
uniform way instead of having to learn about the minutia of the programming interface and

14

hardware each time. Lauren, an artist starting off with e-textiles as a way of portraying self-
knowledge, picks up several of Ralph’s textile components, and once she has created a dress
with the components, she connects the parts together, and then simply connects the system to
her computer, which runs the development environment, and programs the textile to express
her own ideas. These same components can be used by Brad, a designer, to create a new cubicle
wall which can remember the visitors who came by, without any “deep” hardware
modification. All these people are essentially using components of the same system, and are
able to work seamlessly through it.

To provide contrast, the current workflow essentially requires that Ralph, Lauren, and Brad all
operate independently, except in the unlikely event that they know each other already and
have technology that can be reused. Each of them must develop the electronics themselves, or
collaborate with someone who can do so. The materials are very raw (ie, conductive ink and
thread, organza, etc.), and even for more finished products, there is no standard. Each must
develop the necessary software, and though most of their software will be boilerplate code,
they will have to write it again themselves and spend time debugging and correcting the code,
taking time away from the actual task. Also, unless they are capable of doing the hardware and
software work themselves, they must spend time communicating their vision to their
collaborators, instead of playing with ideas with their own hands. Once the pieces are complete,
the hardware and software will likely be one-offs, since it takes more effort and resources to
create reusable code and hardware. Moreover, since the hardware is monolithic, any problems
that are discovered late would require building new circuitry and software that accomplishes
the new goals.

As the scenarios suggests, there is need for both a uniform hardware subsystem and a software
development environment, as well as generalized support for a wide variety of electronic
textiles. As such, the subTextile system is divided into two distinct yet interrelated
components. The subTextile hardware specification describes the protocols and execution
environment that allows behavioral control over electronic textiles. More importantly, the
subTextile visual language (and integrated development environment), the primary focus of
the work presented herein, allows the creation of programs that make behavioral textiles
accessible and simple to create. This language and development environment forms the other
half of the equation, bringing with it not only access to the technological capabilities of the
hardware subsystem, but providing an avenue for the user to discover the true creative
boundaries of behavioral textiles by easing the translation of concept into reality.

I.l contributions and roadmap

The contributions of this thesis are outlined below, approximating the layout of the thesis
itself. This work presents:

m A definition of a specific subclass of electronic textiles geared towards deeper and more
interesting interactivity and reactivity

m A survey of the state of wearable computing and electronic textiles

A survey of existing techniques used in order to create behavioral textiles

A set of prototypes created in order to discover the needs of electronic textiles
hardware and software

Needs analysis for the creation of behavioral textiles

An analysis of programming techniques for novice audiences, with particular focus on
approaches for analyzing visual languages

A novel visual language and development environment for programming electronic
textiles with particular focus on fit-to-problem and ease of use

A detailed specification for a hardware environment for the execution of
aforementioned language

A goals-oriented approach to the creation of toolkits that foster creativity and
behavior-oriented design, while empowering adults to understand the true outer limits
of available technology without becoming mired in technical minutiae

A study of the design strengths and weaknesses of the proposed toolkit

An evaluation of the design correctness of the language and analysis of shortcomings
and capabilities is also presented.

16

2 state of field

This chapter, as well as the following one, will present a short overview of related work in this
field. This chapter is primarily concerned with addressing the state of the field of electronic
textiles and on-body computing, while discussion of languages and approaches is delayed to the
next chapter. Despite the relative youth of the field of wearable computing and electronic
wearables, the area has been the subject of considerable discussion as of late. In addition to an
overview of the existing work, each subsection offers a critique of the current approach with
particular attention to the both the ability of the design community to appropriate the
technology in a meaningful way, and the ability of the general public to accept and appropriate
a product designed on these bases.

2.1 electronic textiles as materials

Research into wearable computing has been accompanied by considerable advances in material

sciences. Textiles, as electronic materials, exist as a bridge between the fringe technologies of
the wearable computing world and the more concrete needs of commercial technologies.
Pioneering work in the field of electronic textiles was done by Post, Orth, and others at the MIT
Media Lab as early as 1997 [3]. Though the work eventually turning toward expression, it
initially focused on the material aspects of integrating electronics into textiles. The Firefly

—

Figure 1 a. Firefly Dress by Maggie Orth (source: [2]) b. Music Balls by Post et al (source: [2])

Dress by Maggie Orth demonstrated the use of the material qualities of electronic textile for
expression [2]. While the dress did not include true input processing, other works from the
same time included the Music Balls, which served as inputs to a substantial music system that
could be easily manipulated via a fabric interface [4]. At the same time, commercial ventures
began investigation of embedded circuitry in textiles [2]. While many of the discoveries in the
commercial sector remain highly confidential, the military has consistently shown a vested
interest in technology embedded in combat-wear, and the materials technology continues to be
pushed forward by commercial forces along this path.

More recently, a number of commercial concerns such as Sensatex [5] and Softswitch [6] have
started marketing textile systems bases on innovations in this field. Sensatex offers custom
sensing fabrics capable of monitoring various biological activity of the wearer, while Softswitch
incorporates functional controls for portable music players and similar devices into clothing. A
number of groups have also begun work on integrating high-density pixel-oriented addressable
displays into textiles. One example of this is a textile from Philips Research with integral output
capability integrated into a pillow [7]. For the time, most of these projects do not include
collocated input capabilities, thought that is certain to change as the technology improves.

It should also be noted that a large body of research also exists in the field of biomedicine in
terms of wearable devices, sensors for biomonitoring, and the use of e-textiles in that context,
and is summarized by Capri et al. [8]. Additionally, innovative work in being done which is
expected to remove the need for hard circuit boards and create clothing which is truly capable
of native computation. Attempts are being made to both create circuits into fibers used to
create textile [9] and to create flexible substrates that can be seamlessly sewn or concealed in
textiles with no outward side effects from their inclusion [10]. Additionally, interfaces that
allow input and actuation to and from these “integrally smart” textiles are being developed by
a number of teams [11-14].

While these latter technologies will doubtless have a great impact on the future of wearable
devices and behavioral textiles, they for the most part remain in their infancy in terms of
computation power. The actuation and sensing technologies have been investigated for a
longer time, and are somewhat more mature. Though of much more immediate utility,
actuation and sensing textiles form only half of the equation of behavioral textiles. Indeed,
without the computation portion of the equation, behavioral textiles become merely “reactive”
in their behavior. Until greater robustness is possible, it is difficult to include technologies for
embedding computation in textile in either wearable computing or behavioral textile systems,.
As such, much of the electronics used to drive electronic textiles continue to use traditional
materials and designs [15].

2.2 electronic textiles as expression

As previously stated, expression through electronic textiles began with the research into
electronic textiles as material substrates for electronics. In the pioneering work by Post, Orth,
and others, expression becomes quickly intertwined with the original material science aspects

of the research [2]. However, as the field of electronic textiles matured, the two have diverged
considerably. More recently, however, these has been some convergence in the field with the
work from XS Labs [16], Hexgram Institute [17] and individual artists and designers. The artistic
process of fabric workmanship is once again being investigated alongside the intricacies of
interactive textiles design. As the field matures into the mainstream, the artificial divide
between electronic textiles as materials vs. as expressive medium is closing, mirroring the
world of traditional textile work, where the two are intrinsically connected.

As electronic textiles move into the mainstream, there have been increasing attempts by both
fashion designers and interested academic groups to include electronics as a means of
expression. These forays can be roughly divided into conceptual pieces and pieces geared
towards expression or fashion, though of course large overlaps exist. To a large extent, the
fashion industry has been slow in its uptake of technology into the mainstream, though the
novelty value of technology in fashion has not escaped notice. As the surge of electronic
fashion shows in technology-oriented conferences such as the International Symposium on
Wearable Computers (ISWC) and ACM SIGGRAPH indicate, this has of recent become a bridging
area. Technology-oriented conferences receive the glamour of the runway in exchange for the
novelty in design introduced into the fashion industry with the inclusion of electronics in
fabrics. At the same time, the resultant injection of futurism into the field has in effect made it
difficult to reconcile the vision of electronic textiles with current realities in the public psyche.

It is also interesting to note that the number of participants in this field are numerous, ranging
from traditionally-trained designers experimenting with new forms to cross-disciplinary artists
and technologists birthed on these technologies, as well as material scientists, researchers from
the area of wearable computing, and of course those interested in fashion. Each of these groups
brings their own views to the table, creating a chaotic field. Nonetheless, guidelines and
analysis for the overall needs and capabilities of computationally-enabled textiles are now
emerging. Baurley presents an overview of the field and its points out the facets it shares with
information technology [18]. A recent publication by McCann et al. also presents an overall
design methodology and concerns at each stage of the design process particularly for “smart
clothing.” It discusses not only the requirements for technological systems, but also for the
human body itself [19]. Technologies such as Zuf [20] and bYOB [21] have also begun to address
the need for extensibility and behavioral complexity in the domain.

A number of groups are currently involved in various aspects of augmentation of expression
through textiles. The Topological Media Lab [22] is currently exploring the interaction between
augmented spaces and augmented clothing [23]. Reach [24] and urbanheremes [25], as well as
the iBand [26] explore the social-aspects of computationally-enabled apparel. These projects
give insight into wearable technology and suggest implications for e-textiles both on-body and
in the environment. Apart from these pragmatic applications, e-textiles are also suited for their
original artistic uses. At this intersection of computation and art, the “role of random” can vary
from simple generative actions to lifelike “unexplainable” actions which show patterns of
action while defying simple logical deduction [1]. It is no longer merely a method of
introducing variability into programmatic structure, but a method of expressing the variability

19

found in art and nature. Berzowska’s group has produced a series of dresses which emphasize
such expression via incorporation of electronics in fashion in more playful ways [13, 27]. Such
designs are also found plentifully in the fashion industry’s forays into e-textiles [28, 29]. While
powerful in their own right, these designs nonetheless leave ample room for more complex and
deep behaviors that imbue textiles not only with animation, but with a form of will and
intelligence.

Despite the relatively wide participation from a number of communities, the threshold for
entry remains quite high for the average designer or artist interested in entering this field,
mostly due to the need to “reinvent the wheel” in order to get anything done at all. The
components that are used in electronic fashion are essentially the same parts one might use to
build any other electronic circuit, and thus the information about these parts is designed for
engineers. It becomes necessary, therefore, for traditionally trained designers and artists to
seek collaboration in order to implement their ideas. Having collaborated on a number of such
occasions, it is clear that this solution is not optimal. Ultimately, the imagination of the artist is
bound by pragmatism, and oftentimes, this pragmatism is misplaced. In short, the beliefs of the
artists about what is possible is bounded by what the artist feels he or she can accomplish, and
thus oftentimes it is a tedious process to attempt to get an understanding of how much of the
artist’s dream is feasible, as opposed to how much of the artist’s pragmatic guidelines are
feasible. In practical cases, it has always been that while technology is hardly even sufficient to
realize all of the artist’s dream, it is capable of realizing far more than what the artist
pragmatically believed was possible within a given time or budget. This limitation is perhaps
the true shackles that hold back the field of electronic textiles in expressive terms, and is the
problem that we hope to attack with this thesis.

2.3 wearable computing

The field of wearable computing started in the 1970’s and has since established itself as its own
branch of computing. The field of wearable computing is concerned with the technology and
interface of devices that rest within the personal sphere. The ideas behind wearable computing
have been variously reformulated in terms of human augmentation, with a focus on creating a
mental prosthesis that can give the user “sixth senses” about their environment using the
sensing and computational faculties of computers. Steve Mann, one of the pioneers of the field,
has termed this “humanistic computing,” wherein he describes this form of wearable
computing as a human-machine system where the human is integrated into the control loop
[30]. He has also described wearable computing systems as “smart clothing” which forms a
conceptual middle-ground between device-centric world of personal computing and the space-
centric approach of ubiquitous computing [31].

A different view of the field is outlined by Bradley Rhodes, another pioneer in the field. The
wearable remembrance agent system proposed by Rhodes again augments the human being
wearing it, but in the capacity of a personal assistant or librarian who not only catalogues but
also intelligently considers and presents information [32]. At the same time, Alex Pentland has
taken the idea of wearable computing in a further direction that is perhaps more aligned with

20

Mann, in using wearable devices in order to gain insight into social behavior in group
situations, thus giving the wearer a social sixth sense based on the insights of the wearable
device [33]. While all three authors suggest a change in the way that computers interact with
humans, Mann suggests a more visceral modification of the senses than Rhodes, whose
approach focuses on an improvement over existing user interface paradigms that focus on
causal input-output relationships. Pentland splits the difference by allowing the wearer a sixth
sense from an autonomous wearable inspector.

While the aforementioned investigators hope to alter the role of computing in daily life, there
is also a large amount of research geared toward improving the technology of wearable
computing itself. While wearable computing has goals that are different from the average
desktop computer at the application level, these same applications essentially demand the
same level of computational capability as desktop applications. The MIThril project is a
particular incarnation of this family of wearable computing platforms [34]. A similar system,
the aptly named Georgia Tech Wearable Motherboard, also focuses on similar abilities to
provide a distributed on-body computing system capable of supporting a wide variety of
wearable computing [35]. Perhaps not surprisingly, with the advent of more powerful portable
devices such as PDAs and cellular phones, the importance of custom on-body computation has
itself waned, with the focus now shifting to accessibility and interface technologies [34].

When considering wearable computing in the context of behavioral textiles, it is necessary to
consider the ability of the designers and the general public to appropriate it. Even while the
field has matured, the involved individuals have remained highly technically proficient and
focused on moderate-to-long term goal of birthing a new paradigm for the interaction between
humans and computers. Additionally, while social acceptance has always been an issue within
the field, it has generally remained a secondary goal. More recently, this has started to change
to an extent [36], though uptake remains relatively slow. Additionally, most of the applications
created by the wearable computing community remain non-trivial to use, while requiring
wearable devices that are generally difficult to disguise or integrate into everyday clothing and
situations.

In technical terms, it is perhaps more sensible to speak of integrating, utilizing, or developing
on wearable technology platforms than to speak of appropriating such systems, since in some
sense they are the wearable counterparts to the average desktop system. Insofar as one may
appropriate a device via personal markings, programming, and physical modification, wearable
computing devices are reasonable appropriable. However, due to the relatively crude grafting
of electronics to the wearable substrate, any changes require an understanding of the system at
a software and hardware level, thus making them inaccessible to most of the design
community. The threshold for entry into the field is heightened by the additional hurdle of
creating hardware and software for the environment, a considerable task even for those versed
in the technological underpinnings. Perhaps the greatest issue with considering wearable
computing devices as an underpinning for behavioral textiles is that the devices are general in
software capability while remaining fairly special purpose in hardware, which is essentially
contrary to the requirements of a toolkit for generalizing behavioral textiles, which demands

21

fairly special-purpose software running on generalized hardware that can produce a plethora
of effects with minimal engineering requirements for designers and users. Additionally, there is
a subtle but critical divergence with particular segments of the wearable computing
community due to the treatment of the hardware as a goal in-and-of itself as opposed to a
means to achieving a conceptual or expressional end, which in turn leads back to the issues
mentioned previously.

2.4 review of other related work

As stated in the last section, subTextile is not the first system to attempt to address the
problem of assisting in the creation of behavioral textiles. In fact, many systems in existence
today make no use of programmed elements at all. Many others make use of microcontrollers
programmed using traditional circuit design and programming methods to create one-off
circuits particular to one textile design. However, some forays have also been made into the
field of programming tools, and will be described in the following subsections.

24.1 systems specific to textiles

Zuf, a system designed by Megan Galbraith, is perhaps the system that is most directly related
to subTextile, and shares the same goals of allowing designers to transform conceptual
expectations into tangible results [20]. The system uses “fuzzy logic,” or algorithmic learning
techniques, to transform natural language descriptions of input and output states into
equivalent input and output on the textile itself. An example of the input can be seen in Figure
2. Zuf essentially uses a loosely constrained input parameter set to generate a set of rules for
mapping inputs to outputs statistically. The advantage of this approach is its extreme
simplicity. In fact, in the parlance of pattern recognition, what takes place is not programming
but rather training of a linear system. Additionally, the web-based design, with upload of the
“program” via TCP/IP allows for a user experience which is very different from the popular
vision of what programming entails. This can be used to “trick” users wary of being able to
program into programming textiles.

Unfortunately, the same algorithmic learning system that gives Zuf its capabilities also robs it
of expressive power. Without a self-training system, it is nearly impossible for Zuf to handle
state or memory. The behaviors that can be programmed via the highly template-oriented
natural language selection system are also essentially unitary, allowing one input to affect one
output. Of course, this can be overcome via the use of multiple rules that affect the same end-
effectors, but the interaction between the rules in such a case are unclear, and can easily lead
to user confusion when the system does not match the user’s mental model of what the system
should do in practice. Additionally, the Zuf system is biased toward continuous output methods
which map better to the probabilistic outputs of the learning system than binary outputs
would. While this does to some extent cause a bias towards binary inputs, properly
manipulating the values assigned to input states can be used to correct for the problem. The
cost of the flexibility is paid in greater requirement for user input and a requirement for users
to have a better understanding of the system internals. As such, while highly empowering in

22

terms of electronic textiles as they exist today, the Zuf system is not well-suited to the creation
of behavioral textiles as defined in the context of this thesis. A simple example of these
shortcomings would be control over a grid of LEDs, which would be quite difficult due to the
lack of proper primitive types within the Zuf “fuzzy logic.” Likewise, it would be quite difficult
to create a system that smoothly animates a fabric flower (as is done with Kukkia [13]), while
adding a behavior to the flower to close when the user attempts to touch the flower.

While the Zuf system focused almost exclusively on software innovation, the bYOB system
shown in Figure 3 chose hardware as the focus instead [21]. The bYOB system allows the
creation of textile pieces that have a variety of capabilities using a quilting-like approach. The
test case is a handbag. The bag is made up of patches that encapsulate particular behaviors. As
the patches constituting the bag are changed, the capabilities of the bag also change. The
approach taken by the bYOB system focused on accessorizing and physical construction and
manipulation as primitives for creating an electronic textile that had malleable properties.
Additionally, the thesis focused more on the end user and on preprogrammed behaviors built
into physical elements than on freeform creation of behaviors by the designers of electronic
textiles. The system used an ad-hoc networking approach to the problem of customization,

Describe how device 18,85,23.190 behaves.

Whenthe (% pieeon Is C near

C light sensor C middle
@ distance sensor © far

thenthe & [ooor shouldbe ¢ ooy
C Leo © slow
C fase

Would you like to set this rule?
When the distance sensor is far then the motor should be slow.

The following rules have been set:

Figure 2 Zuf Screen, 3" stage, showing the assignment of rules to input and output conditions (source: [20])

23

with the electronic textile being
constructed out of elements that each added
their own capabilities to the whole in the
form of a prepackaged behavior. While
powerful in its simplicity and ease of use,
the bYOB system is also faced with the
critical problem of allowing appropriation
when the lowest accessible level of
primitives is highly designed in both form
and function. In fact, the tight coupling of
physical form with behavioral capabilities
only highlighted the issue by tying not only
physical but also reactive functionality to
the physical form. Additionally, the
behaviors offered by the system, while
technically limitless, essentially break down
into the creation of hardware and software
using standard tools, thus providing
relatively little aid to those seeking to
create new behaviors. While these issues do not pose a problem to the use of electronic textiles
as accessories, they are incompatible with the idea of a truly flexible behavioral textile system.

Figure 3 bYOB module (Source: [21])

242 physical construction systems

Physical construction systems outside of the domain of textiles have existed for some time. The
lowly Lego block and its analogues are perhaps the oldest, which are now available with built-in
electronic and programming capabilities. One of the older systems in this field are the
Programmable Lego Bricks [37]. These bricks are not so much building blocks as multipurpose
development systems with built-in sensing and actuation. They are programmed in the Logo
programming language, providing for a simple interface to the capabilities. For those
interested in learning the language, the Bricks allowed reasonable capability. Several different
“flavors” of bricks were made available, within the context of allowing student to carry out
simple physical tasks or experiments, and capabilities were chosen appropriately. In some
sense, the Bricks are the closest siblings of subTextile, in that they provided a focused set of
functionalities geared towards a particular problem. In the case of the Bricks, the particular
problem being addressed was the problem of allowing youngsters to experiment with
programming fairly generic blocks to perform tasks within a simple experiment. The validation
of such “behavior construction kits” [37] for children shows the value of creating similar
technologies geared towards adults facing problems not relating not merely the nurturing of
creativity, but also the expression of creative inspiration in tangible and faithful form.

Since the time of the Programmable Brick, several other systems such as the Crickets [38] and
the Flow Blocks [39] have been created with similar focus and premises. Of the two, Crickets are
a direct descendent of the Programmable Bricks, while flow blocks have diverged to use the

24

topology of the blocks themselves in the description of the language. Flow blocks use the layout
of blocks with special functions as a method of teaching concepts like repetition [39]. An
interesting hybrid use of the concept of blocks as both programming and processing elements
was made by John Harrison in his thesis work, SoundBlocks [40]. In addition, the SoundBlocks
system fed back to a visual programming system named SoundScratch that depicted the
processing element organization in the Scratch programming language described in the next
section. Also worthy of mention is the Nylon system developed by the Aesthetics and
Computation Group at the MIT Media Lab [41]. Nylon is a device/programming system
combination similar to the Programmable Brick, and is programmed using a simplified textual
language with high-level primitives for various hardware input and output tasks. Nylon shares
similar goals with the Bricks as well, though it is geared more towards adults and is more
general purpose than the Brick.

243 programming languages and systems

There are a number of programming systems that have a basis in pedagogy and share traits
with subTextile. They include both visual and textual languages, though in general textual
languages have been considered too syntax-intensive to be introduced at as early an age as is
possible with visual languages. Among the textual languages used for this purpose, Basic and
Logo are possibly the oldest. The simple syntax of these languages belies their capability. While
Basic was not originally designed for use with physical devices, with the advent of
microcontrollers with integral Basic interpreters [42], they have made some headway in the
field of hardware. The primitives offered by basic, however, tend to be at a fairly low level due
to the generalized design of Basic. Nonetheless, the syntactic simplicity of the language has
drawn a sizable community to it.

Logo [43], on the other hand, was originally designed explicitly to control hardware, much as
subTextile is. Since then, Logo has been used as both a visual programming language and a
language without hardware control capabilities. A variant of the language offered as a visual
programming system, LogoBlocks [44], offers a fully visual development environment for Logo
that does not require typing code. A more recent development with similar goals is Scratch, a
visual programming language created in the Lifelong Kindergarten group at the MIT Media Lab
[45]. Scratch support not only a fully-visual development environment, but also a large number
of visual manipulation and animation primitives borrowed from Squeak [46], the language in
which it is written. However, due to their educational bias, LogoBlocks and Scratch focus on the
exposition of programming structures to young children. As such, a priority is placed on
generation of control structures that mirror real textual programs, and focus on creating visual
constraints that give the user a quick sense of correct and incorrect syntax, without necessarily
exposing the underlying theory that defines linguistic syntax. As such, the languages are both
visually “verbose”, in effect mirroring the symbol-level verbosity of the textual languages
being represented. Additionally, while visual programming techniques are used to reduce
errors and provide a more intuitive interface, the power of the paradigm is restrained in order
to achieve the aforementioned mirroring effect with the textual version. As such these

languages serve as excellent introductions to programming as a whole, but do not necessarily
serve the needs of behavioral textiles well.

Processing [47] and its relatives, Nylon [41] and Wiring [48] are all textually-based languages
very similar to the Java programming language in form, though using higher level primitives
tuned for artistic uses. Processing in particular is geared towards visual primitives, while Nylon
and Wiring both concentrate on physical sensing and actuation. All variants are fairly general
purpose, providing great flexibility at the cost of time needed to learn the language.
Additionally, the library-focused design increases the syntactic vocabulary, thus increasing the
apparent complexity of the languages. Lastly, Nylon and Wiring do not have a focused domain.
As such, they expose the functionality of microcontrollers at a very low level. This approach
produces a language that is concerned with the hardware at a very low-level, and leaves much
of the boilerplate work to the end user. Lacking these limitation, Processing has been a great
success in interactive visual art, and is widely used.

In terms of dataflow languages with hardware interface capabilities, the most commonly used
within this category is Max/MSP [49] and its video processing extension, Jitter. Max/MSP is
currently the de-facto standard for musical effects processing, though it has been used for
many other purposes. The architecture is based solely on dataflow, with no intrinsic support
for branching or flow control. Additionally, the state memory of the language is highly biased
to waveforms. While this is sufficient for creating audio effects, it is quite difficult to use it for
generative tasks. Lacking any real alternatives to Max, artists have nonetheless learned to work
around the limitations of the language. With respect to the interface, Max/MSP does not
enforce any rules for placement and connection, leading to extremely messy flow graphs for
even programs of minimal complexity. Furthermore, no assistance is provided to assist in error
correction or functionality gisting. This, combined with its need for myriad workarounds
makes Max/MSP difficult for newcomers to start with. Max/MSP is capable of controlling
hardware over MIDI, and there is a device available that translates to and from MIDI levels. This
approach the bus specification-centric design of subTextile, and allows for great flexibility in
peripheral constructions. The requirements of Max, combined with its reliance of MIDI, makes
it nearly impossible to use in size-constrained applications.

In closing, it is also necessary to mention some of the remaining programming paradigms. One
of these, already mentioned in the description of Zuf, is programming by example. While the
approach of Zuf was to use a fairly textual system, the same ideas have been explored using
tangible input and output in Topobo [50]. Topobo is a system that uses mimicry combined with
collocated input and output systems to replay activity. However, as mentioned in the
discussion of Zuf, this is in fact a subset (and not necessarily a majority subset) of the behaviors
imaginable in behavioral textiles. In the realm of more straightforward and expressive
approaches, electronic textiles thus far have been programmed using traditional languages
such as C/C++ or assembly. While these languages are extremely powerful and expressive, they
require a very low-level understanding of the components, as well as a large amount of syntax.
The syntax is also biased in favor of the compiler rather than the end user, thus increasing the

barrier to entry and oftentimes limiting the imagination of the designers and artists involved
by obscuring the forest of capabilities behind the myriad and rigid trunks of syntax.

27

28

3 the subTextile system

This chapter describes the components of the subTextile system and gives an overview of
approach and actions needed for program creation, execution flow, and interaction with
hardware. The subTextile solution consists of two components. The development environment
(subTextile DE, shown in Figure 4) is used to visually lay out the behavioral software. T he
subTextile visual programming language is highly integrated into the development
environment, requiring no intermediate forms to be generated for compilation. While this may
change at a later date, the current approach uses a virtual machine to run the compiled code.
User “code” is compiled into bytecode which can then uploaded to the hardware via the
proposed on-the-fly update mechanism. The software becomes active immediately upon
completion of transmission, and the behavior can be tested in the actual fabric. For this thesis,
the development environment has been implemented for testing and analysis of approach,
while a comprehensive hardware specification has been created that acts as a counterpart, and

% Devices _ N f(x)/ VY AYA VA VSIS

St = device i1 switchgrid user event DEL
in event_1
[=[Ely

UBAS 125N MaU 2783,

(Add~][Delete T« s S e T S S e B R

Figure 4 subTextile Development environment

29

will be completed in the upcoming months. The plan is to produce a central node containing
the communication and debugging subsystems, as well as a processor running the virtual
machine and non-volatile storage for the bytecode. A number of devices that may find common
use in textiles will also be created to provide a starting point for users of the system.

3.1 development environment

It is generally more convenient to consider the subTextile language and the development
environment in which it exists as a unit rather than separate entities. Due to the nature of
visual languages, there is in fact little to differentiate the two conceptually. In fact, unlike
textual languages, the subTextile DE is integral to providing the low floor and intuitive interface
that allows subTextile to reach for its goals.

The subTextile language is completely event-oriented, where all actions are taken on the basis
of some event. Events may be triggered by other events, and can be used to form arbitrary
state-machine-like code paths. This decision was based on analysis of existing textile-based
systems, as well as the hardware prototype designs done by the author for this particular
purpose. Also of note is the relatively small number of primitives provided. Since this language
is designed for adult users, the software makes use of components such as freeform expression.
Additionally, no distinction is made between functions, if/else statements, and switch
statements, which are all supported via a generic switch statement that supports all of the
above seamlessly. In keeping with the event-oriented design, the language also does not uses
zero-cost event firing in lieu of looping operators. The goal with all these choices is to remove
“syntactical sugar” from the language in order to allow the translation of concepts to behaviors
in the most direct and uniform way possible. By reducing the number of primitives, the prima
fascia complexity of the language is curbed. Though the vocabulary of subTextile is rich, it is
also succinct enough to allow the user to rapidly break down high-level concepts or behaviors
into the subTextile vocabulary. The details of the language and design decisions made in its
creation will be discussed in the chapter dedicated to this matter.

The development environment uses only a single window, with captive windows that exist only
within the main window of the program. Internal windows can only be removed in prescribed
ways, overcoming issues of occlusion. This allows for more subtle control of window behavior,
and stems difficulties resulting from interactions with the window manager of the operating
system. The window is divided into device, variable, and event panes. Device descriptions,
written as simple XML files, can be loaded into the environment dynamically in order to add
their events to the main event area. In addition, it is possible to create timer events for periodic
tasks, as well as custom events that the user can use as callable functions. Internal windows are
used to add and edit variables, but more importantly, to contain the switch expressions which
allow for decision making capabilities within the language. These windows do not prevent
interactions from taking place between windows, thus allowing drag-and-drop functionality
between windows.

30

The Ul design of subTextile DE breaks with common Ul layouts intentionally and systematically
in order to establish its own visual language and identity (see Figure 4). This is meant to allow
users to easily recognize when the Ul demands interactions particular to subTextile vs. when a
standard GUI interaction is expected. This is particularly evident in the docking bars of the
event area, as well as the tear-off ribbon near the top of the event area that is a source of new
primitives. At the same time, similar actions are reinforced by reuse of the same visually
distinctive patterns. For example, each component that is subject to drag-and-drop (DnD) or
editing actions has a depth component, while the UI components tend to meld into a plane,
thus reinforcing the separateness of the DnD components. Likewise, the same custom button is
used to indicate a location where the user may create new docking bars for primitives., The
strong and consistent visual grammar is used to allow the user to easily understand new areas
of the interface. Additionally, the interface avoids the use of context menus, which tend to hide
functionality, and instead encodes these actions using visual means and by consistent use of
gestures such as double-clicks.

The software component is written in the Java programming language (version 1.5). The choice
of language is motivated by a number of issues. Java is a well-supported, widely used language
available on all major desktop operating system platforms in use. It is also one of the languages
that the author has a low-level understanding of, which was integral to the creation of the
prototype within the time constraints of the thesis. Finally, Java offers a very complete set of Ul
primitives with good support for programmatically guided layout and display, which makes it
an excellent candidate for the task. Graph oriented layouts, found in many other visual
programming language to depict control and/or data flow, and not used within subTextile.
Instead, the automated layout capabilities of Java are leveraged for the task. This is essence
allows the subTextile interface to be directly translated into bytecode without the more usual
approach of translating to an intermediate form and then compiling to final machine code.

3.2 hardware

The subTextile hardware specification calls for a main board with a powerful microcontroller
that manages behavioral and communication activities, as well as input and output (1/0) boards
that follow a particular specification and can be used to gather input and output according to
the specification. The 1/0 modules are connected to the main board via a 5-wire serial bus that
can be daisy-chained up to the limits of the microcontrollers used. However, this limit can be
extended with an additional repeater board. An additional limit in this matter is the capability
of the main board to power the number of devices connected to the bus. However, it is possible
for devices to be self-powered with only a shared ground line as long as all devices on the bus
are tolerant to the 1/0 voltages of all other devices. The devices use an extension of I’C two-
wire protocol developed by Philips for communication [51]. Additionally, the main board is
capable of discovering and assigning addresses to the I/O boards even in the presence of
multiple copies of the same device on the bus using a single-ended token passing scheme
controlled by the fifth wire on the bus. This scheme was utilized due to the clear necessity for
an addressing scheme with completely deterministic behavior.

31

The main board must support sufficient RAM and flash memory in order to run the virtual
machine that executes the bytecode produced by the subTextile DE. It must be noted that while
the bytecode itself is quite compact, the language promotes the use of variables which can at
times become sizable. In addition, there is a fixed per-device and per-event overhead that must
be taken into account. These constraints demand that the main board have relatively large
amounts of RAM relative to the average microcontroller. Despite the sacrifice made in terms of
raw speed, several limitations of physical hardware can be ignored by using a virtual machine
instead of raw machine code in implementing the hardware layer of subTextile, including
limits in stack size, limitation in interrupts and number of timers, and interference between the
behavioral user code and the core communication and control code that handles event queuing
and dispatch. This in turn allows for a highly robust system where the code can be updated
quickly on-demand without resetting the system, which would in turn require a time-
consuming re-discovery of connected devices.

The specification supports the transmission of any number of variables with an event, as well
as the transmission of full grids of values in an encapsulated form without the use of individual
input and output types. TAs mentioned above, devices are represented to the software
environment using XML files which fully describe these behaviors and associated identifiers.
There is no constraint on the number of input or output events a single device may include,
though realistically this is limited by the logical segmenting of devices by function. It should
also be noted that subTextile does not espouse the idea of creating one module which contains
a large number of functions, but instead promotes the creation of small single-purpose modules
that can carry out one task well. In addition to simplifying hardware and software design, it
promotes systematic approaches to problem-solving instead of the grassroots approach often
used in microcontroller-based designs today.

Lastly, in order to allow partial device sets to be debugged, it is possible have devices in the
physical hardware network that are not described in the software. Such devices are catalogued,
but are not used. If there are multiple of the same device on a network, the first n devices
references by the subTextile program will be used, where order is defined as monotonically
increasing from the closest to the farthest unit relative to the main board on the daisy chain.
Commands sent to nonexistent devices are simply ignored. This can serve as an important
debugging aid, where some parts of the module chain is disconnected in order to isolate a
problem in the behavior or hardware.

3.3 software-hardware interaction

The software must be able to interact quickly and efficiently with the hardware in order to
maintain the feedback loop between user action and textile behavior. At the same time, the
constraints of textiles require that the connection be simple, efficient, and low-profile. With
the gradual disappearance of serial ports and its replacement by USB interfaces, USB is a
preferred candidate for connectivity. The choice of USB is bolstered by single chip USB to serial
interface chips from a variety of sources. However, this is not explicitly a part of the hardware

32

specification, since the actual communication method is essentially immaterial as long as the
instance of subTextile DE is able to contact the hardware.

Once properly connected and configured, the subTextile DE is capable of interrupting the VM
and updating the bytecode directly. Once the bytecode is uploaded, the VM is re-initialized and
execution continues immediately. Currently, there are no explicit debugging services available
within the VM or the DE. However, it is entirely possible to include a “debug” block on the
hardware bus which is capable of either directly examining the bus, or capable of outputting
values sent to it for debugging. Such a block is described in the hardware sections, and can help
in debugging complex behavioral conditions which require understanding of the change in
values.

As with any language, debugging support is an important requirement. Debugging support in
subTextile is planned at a hardware level. The debugger device will be designed to attach to the
main module and listen on the bus for particular messages. The software environment will
support setting the message filter to any number of messages. By allowing in-place debugging,
problem situations can be more easily found. The debug device will also be capable of receiving
messages directed to it, thus allowing debugging of internal values. By focusing on messages,
the multi-threaded nature of the software can be hidden, allowing for easier comprehension.
The software specifically avoids synchronization and syntax issues at compile-time, thus
reducing the runtime error to errors of intent in most cases, and the in-place debugging is well-
suited to targeting this family of error conditions.

3.4 interface description

This section will fully describe all of the interface components of subTextile DE. The interface
can be broken down into three sections: the left sidebar (Figure 5), the object ribbon (Figure 6),
and the main event area. Each of these areas serve to compartmentalize functional units of the
programming interaction. The left sidebar contains the least-used portions of the language: the
variable and device declarations. While it is used more during the initial setup, afterwards the
area can be collapsed to dedicate the entire window to the event area, which is the primary
user workspace. The ribbon serves as a constant companion to the event area, and provides a
“tear-off” capability to create new program primitives.

3.4.1 sidebar

The sidebar is divided into two sections: the device list and the variable list. The device list
shows all devices currently loaded into the environment. Each device is described by a XML file
which specifies the device name and numeric identifier, as well as the name and identifiers of
all events that can be produced or consumed by the device, and their parameters. The user may
add new devices by clicking the add button, which opens a operating system-dependent file
dialog to select the device file. In addition to devices that will be added via the communication
bus, timers can be added as devices. The delay between timer ticks is specified by the user at
creation time.

33

&% Devices | The variable list contains the
B i user-defined variables for the

current program. Three types of
variables are supported in the

remove selected device .
current version: scalars (denoted

add timer device
dd duvies from e ‘: by a floating point value), graphs,
@ Timer... pelte 9| and grids. Graphs are essentially

&;w\i;ﬁa‘l;lesm ~ one-dimensional arrays with
i integrated cursors, useful is

creating animations, but not
writable within the program.
Grids are essentially grayscale
| , images (range = 0..255). They can
| also be used as arrays. The size of
a grid can be specified at creation
time, or edited within the
interface.

Each variable type can be edited
by double-clicking the visual

| representation. Under no

(A (¢ peiete | Circumstances can the type of a

R 7" /’ variable change within the
S g Y program. Editors for variable are

Figure 5 The left sidebar of subTextile DE showing functionality of displayed in popup windows, and
various components. The sidebar can be collapsed when not in use, |ock the rest of the interface.

providing more space for the adjacent main event area. Since there are no semantically

feasible operations that require
the operation of the variable editor in tandem with other popup window, this helps reduce
clutter without reducing functionality.

3.4.2 object ribbon

The object ribbon is analogous to a toolbar in that it holds diagrammatic representations of
objects to be created. However, a different presentation was necessary since the primary
interaction with the ribbon is a “tear-off” dragging action. Since the interface presents multiple
locations where a operation object (primitive) can be inserted, a click interaction would in
general tend to produce incorrect results. By using a dragging action, the user can place the
object correctly on the first try, reducing the number of steps to the desired result. Once the
primitive is dragged onto the event area, an insertion mark is shown where the object would
appear. The primitives supported are shown in Figure 6.

34

wait for a given time

post message or event
select based on expression
freeform expression

object ribbon

o B N

Figure 6 The object ribbon, showing primitives that can be created by “tearing off” icons from the ribbon

343 choice of operations

This subsection describes the capabilities of all primitives supported by subTextile. The
primitives can be roughly subdivided into expression, message, flow control, and variable
manipulation types, and the types will be noted after the names of each primitive. The
parameters for each primitive. An expanded version of this section is available in section 5.2.3
with notes on parameters and operational details.

Operation: Expression
Description: Evaluates freeform expressions
Parameters: Expression string

Operation: Switch/select
Description: Evaluates a series of freeform expressions and interprets the
results as boolean values. If the expression is a boolean truth, then the
corresponding primitive stack are executed. If none of the expressions match,
the default primitive stack (if present) is executed.
Parameters: Expression strings, primitives

Operation: Message
Description: Causes the firing of an event
Parameters: Event to fire, as well as parameters. Parameters may be variables
or constant values.

Operation: Stop
Description: Stops the evaluation of an event handler
Parameters: none

Operation: Wait
Description: Waits for the given number of milliseconds
Parameters: Variable or constant (selectable)

Operation: Copy
Description: Copies one variable to another
Parameters: Two variables. Typing is forward-enforced, allowing graphs to be
treated as scalars for assignment to scalars, but requiring that the source be a
graph if the destination is a graph.

35

device name (or user event designation)
event name
variables updated by this event (and type)
event handler stack
create new user event stack
:{7 delete the user event
device i1 sv@thgrid) user event r d .

in o event_1 handler object
=By &
— 2
device-generated event user-created event
«

Figure 7 The main event area, showing event hander stack. The object ribbon above the event area is not shown.

Operation: Step graph
Description: Moved the graph cursor in the specified manner
Parameters: Specify how the cursor should be moved. If required, a variable to
set the value from or a user-specified constant value is prompted for.

Operation: Paint Grid
Description: Programmatically paint a location on a grid to a particular value
Parameters: The grid to paint, x and y coordinate, and new value. All can be
specified as user-supplied constant values, or as variables that evaluate to
scalars (scalar and graph type).

3.44 main event area

The main event area is the primary workspace for the user, and is scrollable in vertically and
horizontally as needed. As shown in Figure 7, the area consists of any number of event handler
stacks. Each stack can contain any number of primitives stacked vertically. The primitives in a
stack are executed top-to-bottom. Device events (caused by external conditions) and timer
events are listed on the left. Execution can only be triggered by these device-generated events.
A vertical button for creating user event follows the device events, and any user-created events
are placed to the right of the button. User events serve as a method of code reuse, and allow the
same code to be executed via various input paths. Icons from the object ribbon can be dragged
onto this area to form new primitives. Primitives can also be dragged freely between all event
handler stacks.

Of particular note are the event variables shown on device event handler stacks. These appear
only when an incoming event provides data in addition to notification of an update. User
events cannot have such variables. Once the device is added, the variables appear in the global
variable namespace in decorated form. For example, if a device names switchGrid has an event
name switchPressed with variables x and y, the variables would appear in lists as

36

switchGrid_switchPressed_x and switchGrid_switchPressed_y. The decoration allows the user to
determine where the variable comes from and which particular device and event the data
belongs to. These variables are available from all event handler stacks, and retain their values
at all times. The values are merely updated by events, not created in the scope of the events as
is the case with most imperative languages. In essence, this provides persistent state for all
events, remembering what their condition was at the last event arrival. This matches the
planar view of the language the interface provides, and simplifies many common tasks while
reducing the number of temporary or state variables the user has to create.

Event execution is atomic at the primitive level and parallel across event handler stacks.
Additionally, there is no concept of “calling” an event. When the message primitive is used to
fire an internal event, the execution of the event begins immediately and in parallel with the
handler stack that launched the event. If the launching stack has unexecuted primitives
remaining, it will continue execution in parallel. Execution of primitives is round-robin across
handler stacks.

3.5 prototype application: ambient remote awareness pillow

While the above sections provide an abstract overview of the language, it does not fully
demonstrate the use of language per se. To better illustrate the mental process model and
interactions the language is designed around, this section will walk through the creation of a
subTextile program to run an ambient awareness pillow. This pillow was created in actuality as
a prototype project, and is described fully in section 4.4.3. The hardware used in this scenario
matches as closely as possible the actual capabilities of the hardware created for the prototype,
and the division of labor between components is maintained.

Problem statement: Create the software to drive the ambient awareness pillow. The pillow has
a switch grid containing a 16 x 16 grid of switches. A grid of 16 x 16 LEDs is layered on the
switches. When a switch in the grid is pressed, the matching LED should be toggled. The pillow
has a communication device, which connects it to another pillow. The pillow should notify the
other pillow of any change in state. When buttons 1 and 2 on the first row are held down, the
display should be saved. When button 1 and 3 on the first row are held, the display should be
restored to the last saved state.

Device details: The switch grid sends a notification event for each button. The button specifies
the x and y coordinate of the press. When buttons are held down, the same event is repeated at
intervals. The LED grid has an internal representation of its state. On power-up, this state is set
to “all off.” The grid can be asked to toggle a given point. Additionally, the internal state can be
read back as a grid data type by sending a read event, to which the LED grid will respond with
an event containing the values. An entire grid can also be written to the LED grid. The
communication device sends and receives messages with either 2 values or a grid.

Expected mental task breakdown: First, the devices need to be added. After that, various
conditions need to be taken care of. Since subTextile is geared towards breaking down tasks in

37

terms of conditions or inputs taking place, that is the place to begin. In this case, the user can
press a button, choose to save, or choose to recall. The remote user can do the same.

3.5.1 device setup

There are 3 devices necessary: a switch grid, a LED grid, [& Devices
and communication device. The device definition files in m’gﬁﬁd
this scenario are pre-created, though if these devices were
designed by the user, the user would write the definition
files. As such, the add button in the device section is used Figure 8 Device list with devices added
to create the devices. The device list at this point is shown

in Figure 8. At this point, the event area has the necessary event handler stacks from the device

added automatically as shown in Figure 9.

I 5 handle user button press

When the user presses a button, a the switch grid will send an event with the position. This
event must toggle the correct LED, and communicate the press to the other pillow via the
communication device. The message primitive is used to take care of both of these functions.
The first toggles the LED grid using the updated values from the event. The second sends a
message to the communication device. The configuration of handlers is shown in the first event
handler stack of Figure 9.

3153 handle button press from other pillow

When the other user presses a button, this pillow receives a communication event. The
appropriate LED must be toggled by messaging the LED grid. This is shown on the right side of
Figure 9. Thus far, the variables passed in via the events themselves are used. As shown, the
event and variable names are decorated with contextual information to allow the user to
distinguish the source and destinations.

B o S /G O 77

device :: switchGrid device :: ledgrid
doneReadingGrid
[5] vane
K R T N L S A e i R T e s A e e R T O W A T A P R T »

Figure 9 Main event area with local and remote user button presses handled, showing all device handler stacks.

38

3.5.4 handle local button combinations

When two buttons are pressed down, their values will be
repeated continuously. Even though we don’t know when
two buttons are pressed simultaneously, the buttons are
correctly handled, if we “remember” one, we can wait for
the other to happen again. Note that this portion of the
task requires critical thinking about the problem domain,
and is essentially “algorithm discovery” that cannot be
easily simplified by merely linguistic means.

First, we need to remember one button press. This requires
a variable (a flag). Next, we must use an expression to
evaluate when the first button on the first row is pressed,
and set the flag. Once the flag is set, if the other button is

& Variables - .

Figure 10 Variables needed for scenario
are now added.

pressed, action is taken. Since we can’t read the LED array in one step, we must send the read
message, and then handle storage in the correct handler stack. Storage requires another
variable of the grid type. In order to restore, we must send the stored grid to both the LED grid
and the communication device. The flag must be cleared when any other button is pressed. The
flag management is done using the expression primitive. When the LED grid’s state is received,
it is copied to storage using the copy primitive. Figure 11 shows the result of the operations.
Note that the switch is edited in a popup window with its own per-expression stacks and

device :: comm

AL SRR B AT SR e e

)

I exoression

Eﬂ

n_x==288.. | [buttoniPr

_nx==38&... | default action

B A —

buttoniPressed ¥

)

L

Figure 11 Switch/select editor showing setup for handling local user button combinations for saving and restoring

the display.

39

ribbon. The ribbon metaphor is carried through as the resting place of primitives, while the
reason for execution of each stack is as again given at the top. The add button in this case adds
another expression to be evaluated. If all expressions fail, the default expression shown on the
right of the add button is executed (in this case, to clear the flag). Note that in the expressions,
the values from the event variables are used.

355 handle the case of the remote user restoring the display

When the remote user restores the —
display, the display state is sent via the (Y veae

communication device. This must be
handled in the correct event handler
stack, and the resulting grid must be
sent to the LED array. The resulting
change is shown in Figure 12. Since all
the grid sized match, the data can be
sent directly to the LED array from the
communication device. At this point,
the entire task is complete.

mmmmnm

Figure 12 Incoming restoration event is handled

While this task is relatively simple, the replication of the prototype system’s behavior provides
some insight into the model of mental behavior, or metacognitive model, on which subTextile
is based. The design is intended to simplify the initial approach to the problem by providing a
clear framework for thinking about a problem from the point of view of the environment
causing some change to the system which the system then must react to. This is echoed by the
event-oriented architecture of subTextile, allowing for a systematic and clean breakdown of
interaction responses into event handlers and execution paths. Though the finer details of
specific primitives and the justification for design choices is outside the purview of this
chapter, these details will be discussed in detail in the following chapters.

4 design considerations

To preface the following general discussion of the goals and design considerations of
subTextile, it is perhaps proper to discuss the state of electronic textiles and how subTextile
hopes to change the status quo. Certainly, to discuss the state of things and to design is in effect
to proffer opinion. A certain subjective quality thus pervades this chapter. In this chapter, we
attempt to state the motivations behind the design choices that will be detailed in the next two
chapters.

To begin with a simple premise, the state of electronic textiles has “settled.” Conceptual flux,
while present, appears to be failing to penetrate the community at large. This is certainly not to
be construed as disregard for the excellent work still being done, but it must be admitted that
the vista has overflowed with sound-sensitive skirts, “defensive” garments, and parades of
models outlined by swirling fogs of LEDs as electronic textiles have both attempted to breach
the mainstream and failed to do so. After the initial burst of activity, change has been slow
despite relatively high interest from a variety of sources. The reason for this can be stated in
terms of the background needed to work in the field. To become a clothier, one can go to school
and study the properties of clothes and the intricacies of stitches and design principles. The
same cannot be said of electronic textiles. To work with electronic textiles, one must
simultaneously be a programmer, an electrical engineer, a materials technician, and still fit in
an interest in design. Of course, it is not necessary to be very good at all of these fields, but
while it is possible to enter into e-textile, to create behavior-oriented, interactive textiles
ultimately requires a deeper understanding of one or more of these fields.

At the same time, electronic textiles, unlike regular textile, requires an unusually high pre-
commitment before the results can be seen. It is difficult to see how things look with the parts
just pinned in place, because the textile must be whole both physically and electrically. This
cripples the feedback loop between the hand and the eye, raising the cost of iteration and
increasing the distance between cause and effect. With electronic textile, in short, it is difficult
to “just try things out.” This break in the feedback loop particularly affects any form of design,
be it aesthetic, hardware, or software. All designers must rely on the ability to try out ideas in
order to refine them, and this condition remains true regardless of the level of mastery.

Put simply, subTextile is an attempt to reduce the “background requirements” of electronic
textiles. Just as languages like Fortran, COBOL, and LISP and others changed not only the way
that computers were programmed, but what was even considered possible from the days of
machine and assembly language, subTextile is an attempt to change the possibilities open with

41

electronic textiles regardless of level of skill, though with particular regard to non-technologist
users. The hope is that by removing many of the hurdles to ease of learning and rapid
prototyping of interactive and complex behaviors for electronic textiles, subTextile can change
not only how people develop electronic textiles, but what they do with it. By allowing experts
to design hardware devices to suite their needs using common standards for communication,
subTextile decouples the behavior from the end-effectors and allows endless variety and
creativity in physical implementation. At the same time, by providing a fast and efficient
environment for describing behaviors, it allows for rapid prototyping of ideas, thus renewing
the connection between tweaks in behavior and their realization in fabric.

In the long term, the goal of subTextile is to encourage development of behaviorally complex
electronic textiles in both expressive and interactive domains. That said, even given fairly wide
adoption, the chances of these initial iterations of the design being the correct one are low,
simply due to the nature of the endeavor. However, the goal is to achieve a sufficient design
thoroughness to allow users to experience the positive effects of the system and thus incite
discussion which in turn guides the evolution of subTextile not via fiat but rather by feedback.
The prototypes, research, and evaluations of the system are therefore explicitly geared towards
gaining this level of completeness in the portions tested for this thesis.

With these general considerations in mind, the high level system design is articulated in this
chapter. The following chapters discuss the general design goals, hardware prototypes created
to probe the topic, and the lessons learned from these prototypes. The results of the probe
become relevant to the ensuing chapters on the finer details of the hardware and software
components of subTextile.

4.1 designing a toolkit for electronic textiles

One of the interesting aspects of designing a behavior construction tool is that ultimately, the
actions taken in fabric, though modified by the medium, essentially can be generalized to any
other medium as well. This brings up the obvious question: why call it a toolkit for textiles at
all? This question can be addressed in several ways. Firstly, the inspiration for subTextile came
from the field of electronic textiles, and the needs seen within it. Working with electronic
textiles also provided the insights into the design, especially of the hardware, that is embodied
in this thesis. The hardware specification was intentionally created to be extremely open
ended, with explicit awareness of the fact that while subTextile has the potential to open doors
for behavioral textiles, it also has the potential to closes them. The hardware specification is
meant to be open-ended enough to be infinitely extensible without any need for intervention
from the author of subTextile. Additionally, the experience in working in the field showed that
construction is a large part of the effort, and can easily subsume all other tasks. The modular
design was created to allow maximum encapsulation, so that each piece could be tested
individually as needed. Additionally, as the hardware evolves, the most specialized modules
are expected to be best suited to use with electronic textiles, and the form factors will reflect
this.

42

However, intent alone does not define the function of a product. As with any other human
creation, subTextile exists as a conversation between creator and users. As has happened with
almost every programming system, toolkit, and utility, subTextile will be appropriated by its
users to whatever they see fit as its best use. At times, it will certainly also be used for cases
where the fit is ultimately poor. These factors cannot be controlled for via declarations or inner
intent. That is not to say, though, that intent is unimportant. A study of existing special-
purpose languages clearly shows that the declaration that a language is meant to address a
particular need is instrumental in honing the language to the domain, as well as helping to
coalesce a community around the language that is capable of holding a much larger volume of
experience and knowledge than any single document. This community, in turn, can help to
truly explore and guide the path of future developments.

As such, subTextile is by intent and origin, a system for creating behavioral textiles. The
language in itself is designed to be as expressive at the behavioral level as lower level systems,
and is essentially a high-level hardware control language at heart. The design philosophy,
however, prioritizes condition that are more likely to be found in interactive and expressive
behavioral textiles. As the goals of the user deviate further from these roots, tasks become
progressively harder. The hardware design is likewise inspired localized designs found in
electronic textiles. As the language evolves, the hope is that the choices made are flexible
enough for longevity, while rigid enough to guide the user towards solutions.

4.2 aspects of the design of subTextile

The primary design goals of subTextile are simplicity of use and clarity of design. This goal is
more easily reached in the hardware design than in the design of the language designed to
control that hardware, particularly in highly specific contexts. Designing a language is
inherently different from other design tasks in that in language design there are very few
absolute “right answers” a priori. This problem stems from the fact that, even among what may
be considered general purpose languages, the choice of emphasis and the expected usage
deeply affects the constructs used. Simply put, a language is designed around principles and
goals, instead of empirical formulae.

In addition to the language design issues, visual languages introduce also an integral user
interface and interaction design component into the fray. While at first glance this may appear
to negate the impact of syntax, in fact this simply moves syntax from the literal to the
conceptual realm, in that instead of knowing and spelling correctly the commands that make
up a language, the user is now required to understand the interconnections between
components and the flow of information between them. This requires careful design of data
and control flow, a requirement that does not exist in imperative languages due to the implicit
flow of control and explicit flow of data within a program.

Lastly, an important part of the overall experience with subTextile is the interaction with the
hardware itself. As stated previously, and noted by Berzowska in her analysis of computational
expression in general, an artist or designer operates in a closed loop between action and

43

outcome [1]. While the initial concept is important, it is this feedback loop that allows for
mistakes to become brilliant flourishes, and for accidents to morph into inspiration. It is
therefore important to maintain this loop and provide as short a path between the creative
action and its output in the physical world as possible. This brings into consideration the ideas
of emulation and continuous update, and benefits and pitfalls of this approach.

4.3 design goals

4.3.1 interaction design criteria

In designing interactions for subTextile, the intent was to retain a low floor while providing a
high ceiling, or in other words, to allow the user to produce meaningful output as quickly and
intuitively as possible while allowing ample room for growth of skills, proficiency, and
complexity of design. As with any learning exercise, proficiency in the use of software is an
investment, and in the long term it is therefore essential to provide a high enough upper bound
that the user does not fear outgrowing the language. Traditionally, however, interfaces with
high ceilings have generally, though often unintentionally, been at odds with the concept of a
low floor. An example of this is Microsoft Word, where the growth of features has led to no less
than 20 predefined toolbars and 9 menu trees, disregarding dialogs and modal behaviors [52].
While the goal is no doubt to allow the average office worker to easily use the software, the
floor has been raised to the point that it is now commonplace to find certification courses for
the use of MS Word. This is caused by two interdependent problems, one more subtle than the
other.

At first glance, the problem is caused by the endless addition of features that allows Word to
function as everything from a drawing program to a spreadsheet, as long as the user is willing
to work around the hodgepodge of functionalities. This suggests a need for careful design and
integration of the feature set so that the users can accomplish what they intend, without
needless “workarounds” for deficits. For the sake of brevity, I call this “expressional clarity.”
Expressional clarity demands that the user be able to translate goals into representation as
cleanly as possible. If there is a common operation that requires a trick, then that operation
should be supported natively as a primitive.

While requiring brevity, expressional clarity also requires that composite operations break
down into primitive actions cleanly. As Bonar points out, this clean translation of expectations
to syntax is essential for quick acquisition [53]. This is, in some sense, contrary to the hybrid
approach that most modern imperative languages take by declaring large foundational libraries
of commonly used code snippets. This leaves the user to deal with low-level code in the gaps,
thus forming sharp transitions between high level function calls and low-level “glue code.”
While snippet libraries are needed for general purpose low-level programming, reducing the
number of black boxes is certainly more effective in a language designed for beginners [54]. As
an added benefit, expressional clarity also lowers the barrier to entry by reducing the initial
cost of learning syntax and the foundational library contents.

At a deeper level, the proliferation of features and associated toolbars indicate unplanned
“feature creep,” or the addition of incremental features that do not integrate into the workflow
and purpose of a program. This process is not self-limiting, and eventually leads to the product
we see today. Feature creep is a pitfall that is difficult to avoid with a library-oriented approach
to managing components. The monolithic construction of libraries discourages interconnected
structure required for integration of features. However, by rejecting libraries, changes to
subTextile become not changes to an ancillary library, but changes to the language proper.
This, along with the principle of expressional clarity, forces cognizance of additions to the
language that tend to introduce code-snippet-like features into the language. It also demands
that there be a well-defined way of extending the capabilities of the language, as well as a
definition of what can be extended and in what ways.

Despite its interface, MS Word does have an implicit advantage in terms of initially perceived
and expected functionality. The functionality of a word processor is well known and
understood, thus allowing users to immediately grasp at least the basics of the interface like the
large typing area immediately. This ensures that a first-time user is never fully lost, and that is
an advantage that subTextile does not enjoy, especially in light of the expected audience. As
such, it must endure a tenuous introductory period while the user is acquainted to the system.
This introductory period must be taken into account in the design of the interaction, thus
further putting limits on the complexity initially presented, while opening the gates of the
user’s imagination with a simple demo or tutorial.

Content aside, it is important for the environment itself to be “clean.” When placed in a new
environment, whether physical or virtual, one of the first approaches used to assess the
conditions is a visual survey. The human perceptual system is well designed to segment and
cluster surfaces by complexity, which in turn is ascertained using contrast and the frequency of
contrast change [55]. Modern UT’s often run afoul of this by using a “nested boxes” approach to
display, with a tendency to blindly highlight not only the edges of importance, but also the
edges that exist incidentally due to the rectilinear layout. In order to reduce visual complexity,
the subTextile interface therefore must use this principle and reduce visual noise and clutter to
provide an interface that suggests freedom and simplicity. Admittedly, aesthetic concerns tend
to a low priority in much of technical research. A visual language, though, provides no
distinction between visual and internal considerations, and thus for the beginning users, it is
important to consider all factors in easing adoption.

As mentioned earlier, a large part of the final form of subTextile will be the interaction between
the software and hardware platforms. Nominally, the goal is shorten the loop between creative
action and its outcome. At the same time, it is necessary to remember that unlike painting or
computer-aided modeling, where the relation of action to outcomes is closer to unity, using
subTextile DE is really a form of remote control, where there is mental dissociation between
action and effect. Additionally, the remote control is not singular, in that multiple actions and
primitives on subTextile DE combine into one conceptual action on the hardware. With this in
mind, an on-the-fly, but on-demand update mechanism is desirable. This has the advantage of
not transmitting incomplete actions to the hardware device, but at the same time allowing the

45

user to update very quickly to test micro-changes and experiment with parameters once the
action is complete.

A final consideration in interaction design is the design of the primitives and the interaction
surrounding them. The goal in designing the interaction is to allow the user to easily
manipulate units, while maintaining a strong concept of chaining and self-containment within
units. As stated previously, expressional clarity is meant to ensure that each primitive is
effectively indivisible as a side effect. This in turn suggests visual and action semantics for
primitives that implicitly convey the conceptual qualities of the object. In terms of interactions,
the goal is to lean towards well-designed, consistent defaults over configurable options. While
the design choices of the author may not be optimal for everyone, practical experience shows
that a consistent and effective interaction mode will be successful regardless of optimality,
since consistency allows for ease of learning and deduction of functionality. An excellent
example of this is CAD programs, where interfaces have traditionally remained very
idiosyncratic, with the “goodness” of an interface being based on consistency over prima fascia
complexity. Consistency allows for a fast learning curve and fulfillment of expectations, both
important considerations in allowing a user to gain proficiency and efficacy quickly within and
interface. Additionally, emulation was considered as an alternative to immediate feedback.
However, upon further consideration, this idea was discarded in favor of the technical design
criteria described in section 4.3.2. While emulation has the possibility of shortening the
feedback path, the problem remains that it can, at best, only show the electronic components
of the electronic textile in isolation, while in the actual case these components often work in
unison physically and conceptually. Additionally, the disparity between generic emulation and
the actual effect only serves to highlight the discontinuity between the software and hardware
environment, while the benefits can be alternately realized with an efficient on-demand, on-
the-fly update system as described previously.

4.3.2 technical design criteria

The technical design can be split into two parts, the physical hardware specifications and the
subTextile DE development environment. While the hardware layer is designed to be as generic
as possible, this generality is a liability to the software environment. For the hardware layer, a
generic interface specification allows for flexibility in material design, which is the forte of the
primary audience of designers with limited technical background. If this were translated
directly into the software environment, though, a complex plug-in would be required to depict
the unit. Since it is the expectation that the end-designer would be greatly involved in
designing the textile components of the system, the onus of creating the plug-in would fall on
the designer, adding a complex and ultimately unnecessary step to the development process.
Therefore, the goal of the technical design prototypes is to summarize the wide possible variety
of input and output systems into a small and convergent set of primitive types that can support
open-ended development. This convergence is further supported by the fact that there are
relatively few ways for driving and sampling the myriad actuators and sensors that are possible
to incorporate into fabric. Ultimately, however, the final level of constraint is provided by the
fact that subTextile is not a system which treats textile as a carrier, but rather as an active

46

composite material that is itself the sensor or actuator. This in the realistic case suggests a level
of sparseness and simplicity. Although it is certainly possible to incorporate traditional displays
into fabric, it is my belief that such displays are best served by much more general purpose
systems than subTextile claims to be.

In terms of software, the goal is to have a system that can operate on multiple OS with minimal
changes, and this guides choices of languages and techniques. Fortunately, this requirement is
more easily met today than even 5 years ago. In addition, the software must be modular and
maintainable, due to the expected lifespan of programming languages relative to most software
tools. It is also necessary for the software to be able to interface easily to the hardware
components. In order to allow greater flexibility in hardware design, the language needs to be
fairly agnostic of the actual hardware. While this is achievable using pluggable back-end
modules in much the same way as the GNU Compiler Collection (GCC), it requires an increase in
complexity of the internal architecture of the software system. An alternative to this is a
virtual machine where the actual hardware is abstracted. With the advent of high speed
microcontrollers with substantial on-board RAM and non-volatile storage capacities, it is now
conceivable to implement such a system. It should also be noted that behavioral textiles
operate not on machine time scales, but on human ones. Therefore, extreme speed can be de-
prioritized in relation to other gains. While emulation does require a second level of
abstraction, the more limited and yet more high-level nature of the subTextile language lends
itself well to this form of abstraction, while simplifying software architecture considerably.

4.4 prototypes

In preparation for the work to be done for this thesis, some hardware prototypes were created
in order to explore the needs of the area of behavioral electronic textiles, as well as to gain an
understanding of the technologies and capabilities within the field. Two technologically
different, but conceptually similar prototypes were created, and the design and programming
process was analyzed in order to identify requirements. While books, papers, and journals can
provide technical and conceptual guidance, it is also necessary to have an understanding of the
practical difficulties of a field in order to be able to successfully craft a solution, Particularly in
an exploratory domain, this problem is compounded by the lack of ability among expected
users to articulate needs. Therefore it is further necessary to ferret out details and analyze
lessons learned from personal, hands-on experiences. In this section, these initial prototypes,
the concepts driving the creation of behavioral textiles, and the lessons learned will be
discussed.

44.1 ilo fabrics

In deciding on the particular form of electronic textiles to investigate, there is a wide range of
possibilities, though these possibilities are not equivalent in value as probes into the field. The
intent was to choose a prototype that allows for a greater understanding of the intricacies of
the goals and requirements for textiles that were designed for expression, and yet supported
interaction, which can evolve into behaviors as the complexity of the interaction grows. This

47

differs from purely expressional uses of electronic fabrics in that it implies an explicit use of
input. I classify these set of electronic textiles as 1/0 fabrics, a terminology meant to separate
the use of textiles for practical purposes or for expression from the use of electronic textiles as
interaction devices.

An important aspect of this research is the strict definition of behavior used throughout this
thesis. Behavior is not defined merely as activity, but activity that involves response to
interaction, however indirect. Since interaction is such an important concept within this work,
it seemed appropriate to investigate its presence in electronic textiles further. However, the
probes conducted for this thesis were not meant to be, in and of themselves, behavioral pieces.
While such an accomplishment would have been personally interesting to the author,
ultimately the goal was not the creation of individual artifacts. Rather, the goal was to discover
hurdles and difficulties in creating relatively simple software and hardware. The relative
behavioral simplicity of the prototypes is also an artifact of the author’s limited experience
with the design of electronics explicitly for the field of textiles prior to embarking on this
endeavor. Therefore, the development of a technically complex textile system allowed for
maximum exposure to the field before venturing into the creation of a design aid for the field.

Lastly, while the 1/0 fabrics were incorporated as a technical probe into the field of electronic
textiles at a later stage, it also proved to be an interesting avenue of augmenting objects with
digital capabilities and behaviors, which has been the interest of the author for some time. This
intersection of expression and digital behavior instigated the creation of the subTextile system
and provided many insights into the shortcomings of existing electronic textile systems in
terms of behaviors and complexity.

4.4.2 use of collocated ilo as bridge towards greater interaction

One of the problems faced with simple interactive systems meant to bring digital behaviors to
an existing physical object is the placement of input and output nodes. In general, it is simpler
to use “invisible” input systems due to the difficulties in placing traditional input systems on
fabrics. Additionally, even if a traditional input device such as a keypad could be placed on an
existing artifact, the matching of the input device to the surrounding textile would be difficult,
since such electronics continue to be fairly rigid in design. At the same time, if the input device
is made invisible in the immediate sense, it is necessary to provide some sort of indication
within the design to allow the end user to locate the input device. Though the input device may
in fact be completely ambient in its activities, this also adds the additional problem of creating
a behavior where the apparent cause is invisible, and thus apparently random. This has
interesting repercussions for expressive uses of electronic textiles [1], but does not serve well
the purposes of this prototype.

A solution to these issues is the use of collocated input and output, with the input system
completely hidden. Since the input and output are collocated, it is possible for the output
system to signal the location of the input system without additional help from terms of textile
markings, etc. Such a device then becomes inherently interaction oriented, since the output
invites the user to interact and provide input. Additionally, sensors and actuators can be
layered used to increase the density of 1/0 assemblies. This also allows for modular materials
that mirror the modular design of subTextile hardware by bundling related functions. Lastly,
this large scale functionality exposes needs for control structures that can support large
numbers of input and output units efficiently within the subTextile language and hardware
systems. Collocated 1/0 therefore provides a specific avenue of electronic textile designs that
can be examined using prototypes for valuable lessons in the design of interactive and
behavior-oriented textiles. Two prototypes were created in order in order to gain
understanding of the needs that subTextile was eventually designed to fulfill.

443 first prototype: intimate messaging pillow

The first of these prototypes is a set of augmented pillows (Figure 13). The purpose of the pillow
was to allow for a low-demand, “ignorable” line of communication and interpersonal
awareness that borrowed intimacy and camouflage from the textile aspects. Two pillows can be
connected at a distance via the internet, and reflect each other’s displays. Interaction is
provided via touch, with collocated output. Touching each point toggles its state from on to off,
or vice versa. It is also possible to send a number of pre-designed messages by pressing key
combinations. Since the pillows can behave as regular throw pillows when off, and can be
deformed freely, it is possible for the devices to blend into the environment, and provide an

Figure 13 Pillow created with /0 textiles

49

ambient means of communication.

The pillows use a collocated array of light emitting diodes (LEDs) and contact switches which
can sense pressure. Each pillow has a total of 256 /0 positions at 0.75” intervals. Each pillow is
capable of being paired with another pillow over any form of available networking connected
to the pillow, and causes the other to mirror its own display. Therefore, a low-fidelity
communication channel is opened between the two locations, allowing for a low-demand,
background method of communication. By incorporating the design inside a pillow, it is
possible to exploit the perception of a pillow as being a soft, inviting, personal artifact that is
normally outside the realm of conscious notice. At the same time, it provides a different form of
communication than most digital communication channels, such as cell phones, email, and
pagers. Unlike these more common systems, it does not demand foreground attention and
provides plausible deniability, which suppresses the sender’s implicit expectation of receiving
immediate attention. A similar project [7] has recently been completed by Philips research that
uses the pillow merely as a deformable display for pager messages instead of capitalizing this
alternate, more personal and yet less-demanding form of communication.

The internal structure of the pillow can be seen in Figure 14. The pillow uses a flexible LED
matrix permanently bonded to a stretch-resistant fabric layer in order to reduce wear on the
matrix wires. This layer is placed on the switching layer, which is created out of furniture-
grade foam. The foam is perforated by conductive stiffeners which allow the pillow to both
deform easily in all dimensions, and support bulk compression or displacement without
accidental switching. The aperture in the foam above the stiffener allows an ultra-light steel
mesh above the foam to make electric contact with the conductive stiffeners, forming a switch.
The mesh itself is supported and kept under tension by the foam, which prevents it from
accidentally sagging and contacting the stiffeners when pressure is removed. This design was
arrived upon after much experimentation, and created a surface that was soft and yet damage-
resistant and produced the minimum number of accidental switching events.

The pillow electronics consists of three modules, which each support a particular purpose. The
first module is dedicated to scanning the display at 30 kHz dot rate, and contains the constant

flexible sub
(non-stretch cloth)
Jrammininse cathode
ad -
,—— cathodes
(deformable mesh)
foam substrate
- \———anode N\ acrylic
L stiffener =

Figure 14 Internal structure of pillow, display and sensing layers

50

current sources and power management electronics to accommodate the matrix, which can
draw pulse currents up to 0.5 amperes in operation. A second module scans the switch matrix
and provides de-bounce and communication facilities. The switch sensor module can be
connected to an optional network module that can transmit the data via whatever network
protocol it chooses. In addition to this, the network module also provides power to the other
boards. This design decision was made in anticipation of possible use of Power-over-Ethernet
(PoE). In the absence of a network module, a simple crossover cable with a connected power
jack can be used to connect nearby pillows. In this case, the power is supplied from a bench
power supply. Each module contains its own self-contained microcontroller running code
asynchronously. The display and switch modules communicate over serial peripheral interface
(SP1), while the switch module communicates with the communication module over a 115.2
kilobaud bidirectional serial interconnect.

The design of the pillow exposed many of the benefits of modular and layered designs both for
1/0 devices and control electronics. In the original prototypes produced, the electronics were
combined, requiring complex layout and code. Performance was poor due to the interleaving of
various pieces of code at arbitrary intervals. The high current drain of the LED drive electronics
also caused complicated circuit design, since the drivers are easily capable of creating ground
bounce (and increase of the ground voltage above zero volts) sufficient to corrupt
microcontroller memory and cause it to enter an arbitrary state. With the decoupling of the
various segments, not only did the code for each segment become considerably simpler, but
each circuit could be designed according to its own needs.

As to be expected of any project at this level of hardware abstraction, the code for the
microcontroller is written at a very low level. It is therefore advantageous to limit complexity
in order to promote the stability of the code. The idea of modular interconnected units was
envisioned in analyzing the code of each of the units. While the pillow does not use a very
complex internal network, the ability to divide module firmware into communication and drive
sections simplified the program flow. Without the benefits provided by an operating system,
this is a boon since this eliminates the need for emulated threading in the code. The primary
program loop can be dedicated to the operation of the module, while communications can be
hardware accelerated and handled with interrupts.

In terms of interactive portions of the software, the level of complexity is quite low. However,
it became immediately clear that the behavioral code was event-oriented, with the main
program loop scanning the switch matrix for user input, and then accessing a code path when
such an event occurred. The code could be easily and cleanly separated by this criterion, with
the behavior acting upon the event with access to a set of variables that could be clearly
defined as an interface. Additionally, the actions of the behavior code could be defined as the
creation of events such as a notification over SPI to the display and communication module
conveying the change. In the final iteration, this was enhanced with the ability to send
predefined icons for common messages in response to particular combinations of presses. In
this case, the switch module sends a different kind of event (a command) to the other modules
to cause the loading of the same icon on the display and the remote pillow. This exemplified

51

the need for individual modules to support both multiple incoming and outgoing event types.
The design of the pillows have been completed, thought further work remains in perfecting the
switching matrix and overall robustness.

444 second prototype: textured wall

The second prototype was designed as an attempt to use an all-textile display surface for a
structural rather than mobile use. Textiles have been used since ancient times as wall hangings
as well as structural upholstery, and provide a natural elegance to a space. While LEDs as used
in the pillow can be visually pleasing, it involves introducing a new visual component that
interferes with the nature of the textile in isolation. While this served to highlight activity in
the context of the pillow, on a wall the same technique was far too invasive. At the same time,
in the architectural context allows considerably more space for electronics and actuators,
which in turn allows for more complex actuation scheme which can be used to produce
repeatable fold pattern in a “wall” of textile to denote “pixels” (Figure 15). The wall can be used
as a large-scale interactive or reactive architecture, capable of acting either as a simple larger-
scale version of a single-sided pillow, or as an artistic installation actuated by some other
program.

The surface of the wall is made of a highly stretchable textile which can both support
numerous deformations and can expand by a large percentage in order to allow adjacent pixels
to activate. A pulley system is used to distribute the force evenly along the surface in order to
produce a reproducible deformation that folds the cloth along the perforations of the
connecting threads. Like the pillow, the wall supports collocated input and output. Switches

Figure 15 Structural wall clad in I/0 textiles

52

2inches ;

pulley

control thead

fabric

pressure switch
mounted flush
with fabric

to actuator

Figure 16 Interior structure of wall

embedded in the backplane of the structure provide input capability. Unlike the pillow, though,
the wall is designed with much more demanding driving electronics (solenoid or shape
memory alloy actuators) in mind. The use of these actuators, along with an order-of-magnitude
less 1/0 dots, demands a different method of approaching the problem.

The wall prototype is constructed of a single input module and several output modules. The
input module can be connected to the same communication module as the pillow in order to
provide remote connectivity. Unlike the pillow’s display module, which shares its energy
source with the other modules completely, the high-current drives use an auxiliary 24 volt
power supply to provide current to the actuators. This suggests that the communication
criteria among boards needs to include 1/0 voltage tolerance as opposed to a fixed voltage,
since it becomes apparent that not only may some of the boards require an alternate voltage,
but each board may also need to operate at a different voltage (such as 3.3 volts) in order to
accommodate all parts used.

The output modules are connected to the input/control unit via SPI. Each output device carries
a unique ID which allows the input unit to address the boards. However, the inconvenience of
programming each board individually with their own unique identifiers suggested the need for
an automated discovery which was deterministic in its assignment. When using highly modular
electronics, the possibility of having multiple units of the same type also becomes quite high,
which requires that it be possible not only to address units, but separate identification from
addressing where possible. Lastly, this suggests the need for a bus which is capable of multiple
drops (or multiple connections to the same bus) and capable of arbitration among multiple
senders. While that particular issue is skirted by the fact that each of the modules is dedicated
to only input or only output, the sharing of the bus among modules of many types requires that

53

all modules be able to share the bus efficiently. The texture wall is currently in a prototype
stage, with a minimal number of pixels to test out actuation and control schemes. A larger,
more complex version is planned once the design is validated.

Designing, programming, and modifying these prototypes formed the basis for many of the
design choices made in the design of subTextile. It was clear from these experiences that even
without the hurdles of hardware and software issues, electronic textiles remained a highly
challenging field, requiring a great deal of experimentation of effort in order to achieve even
relatively simple effects. For example, the design of the soft switching matrix for the pillow
required at least four major re-designs, of which three were fully or almost completely
implemented, only to be discarded for one reason or another. Given the time cost of
experimentation, it is doubly clear that systems such as subTextile are required to
compartmentalize the hardware code and allow for prototyping if behaviors are to exist to any
real extent in the field of electronic textiles.

54

5 software environment

At its core, subTextile is a system meant to empower novice users, not only in terms of
capability, but also in terms of creativity, and the subTextile language is specifically designed to
support this. Before delving into the details of the language, it is instructive to first consider
the gamut of approaches taken over the years by language designers to meet these goals.
Kelleher and Pausch provide a highly comprehensive analysis of approaches taken to simplify
programming, along with case studies for systems that exemplify particular approaches. A
summation of their findings is shown in diagrammatic form in Figure 17 and Figure 18. The
treelike subdivision of capabilities in Figure 17, though nicely structured, is in fact highly
deceiving. In reality, it is nearly impossible to create a language that is a “leaf node,” just as it is
impossible to create a language that empowers novice users without also taking into account
the ability of the user to acquire the language, thus including a teaching dimension to the
problem. When the diagram is restated as a dimensional view of the space of programming
languages for novices, the structure becomes considerably clearer. As the dimensional view
(Figure 18) suggests, the goals of the language are in fact better mapped as biases or escalations
along multiple continua. While there are certain to be other dimensions that need to be
simplfy langusge

prevent errors
visual construction

simplify coding

expressing

alternatives to coding physical construction

storyboard construction

use interface actions

new models of programming

mechanics

skl

structuring
2\

king new dels acc

tracing execution
understanding / relate to microworld (ie, physical effect)
microworld as metaphor for program

teaching systems

learning together
support |/ learning over distances
\ provide motivating context

demonstrate actions
code is too difficult / demonstrate conditions and acti

systems for. novices)

g \ specify actions
mechanics
improve understandability
improve language itself [improve interaction environment
empowering systems envir t and | are one

entertainment

support (motivation) education
application

Figure 17 Taxonomy of approaches to programming and behavior creation for novices (summarized from [54])

55

make model interactive

make new model better 4

<

change the language model 4

make entry easier 4 ~ make learning socially impactful

simplify syntax 4
teach

~= make learning social

e teach a language
empower

Figure 18 Approaches to programming and behavior creation for novices, reinterpreted as escalation along
dimensions (original taxonomy suggested by [54])

considered, at the end of the day the given dimensions hold regardless of the addition of
dimensions.

Within the taxonomy of languages designed for novices, subTextile can be easily classified as a
system designed to empower users in order to make a social impact via its contributions.
Admittedly, it also has the effect of teaching the user how to program (or at the very least, to
create behaviors). However, pedagogy is a means towards the end of empowering users who
are already proficient in the conceptual realm and allowing them to convert concept into
reality. On the other hand, it is not quite as clear where subTextile falls on the vertical axis.
While it certainly does define a new language model, it does not yet quite make the language
interactive, though that is part of the near-term goals. It is unclear whether the language
design makes the language model accessible and understandable to the end user. This
particular question with be answered to some extent by the assessments that are described
later in this thesis.

While the depiction of the taxonomy in Figure 17 does not help in classifying a language, it does
provide a menu of tools that are at the disposal of language designers in creating languages
that are accessible to newcomers. However, as Gross points out, many of these tools are
themselves unproven to a large extent [56]. In fact, it has been suggested that standard HCI
methods for analysis of interfaces and interface dynamics are of limited value when dealing
with the wide scope and difficulty in encapsulating particular changes that characterize
programming languages [57]. Regardless, progress in being made in analyzing some of
metacognitive assumptions made by language designers, with some interesting results. In
particular, studies suggest that metaphor, long used as a justification in design choices in visual
and textual languages, may not be an aid to the learning of languages [58]. At least part of this
may be attributable to the issues outlined by Bonar in examining “bugs” in common
programming languages that cause a disconnect between what the user thinks is the case (ie,
how matters are handled in natural languages) and what the structural requirements of the

56

language demand [53]. This disconnect can also cause metaphors to be in some sense harmful
to the construction of a novice language, since an immense number of assumptions must be
included in the language as “hidden dependencies,” and these dependencies must be agreeable
to all users of the language, or will themselves prove to be a pitfall [57].

With visual languages, an additional consideration is the visual design of the language itself. In
general, each language encountered in reviewing the state of the field approaches this issue in
a slightly different way. Burnett et al. suggest a classification system for visual languages,
which breaks down the visual depiction into diagrammatic, iconic, and pictorial-sequence types
[59]. Dataflow and control flow languages, such as Max/MSP [49], tend to visualize the flow of
the primary element, which in their cases in the data that is being managed, and are thus quite
diagrammatic. Form-based languages, on the other hand, focus on the static data itself, in most
cases hiding the “program” underneath the form structure, and are essentially equivalent to
textual languages. Constructivist languages such as LogoBlocks [44] and Scratch [45] have a
completely different focus of allowing the user to transfer the knowledge gained in the
environment to textual languages, and therefore the focus is on low-level primitives and the
way in which parts fit (or do not fit) together to form a program. In general, this class uses an
iconic representation. Lastly, in the realm of special-purpose languages, programming by visual
example is also quite common, and tend to use depictions based on pictorial sequences of
expected effects. This class of languages is closer to Zuf [20] than subTextile in approach and
goals.

The goal of this chapter is to describe the details of the subTextile in relation to the overall
goals of subTextile. In particular, this chapter goes into much greater detail in terms of
language features and reasons for their selection while to some extent ignoring hardware
interactions, which are further detailed in the next chapter. The first section describes the
technical design goals and inspirations for the subTextile language. The next sections are
dedicated to describing the language, the design choices made in the selection of features, and
the tradeoffs and motivations for those choices. While all of these sections will tend to discuss
the graphical user interface of subTextile DE to some extent, the last section is dedicated to the
design choices made in terms of the user interface in particular, in light of the inherent
intertwining of user interface and language in a visual programming language.

5.1 language goals

In designing a language such as subTextile with very specific goals, it is helpful to have an
understanding of the cognitive and design tradeoff dimensions involved. Green et al. present
such a set of such dimensions with respect to the usability of visual programming languages
[57]. While the work itself is agnostic to the goal and approach dimensions presented by
Kelleher [54] and outlined in the introduction of this chapter, it has many of the same base
assumptions inherent in the domain of subTextile, and thus provides highly relevant principles
for the design. In terms of the psychological and cognitive underpinnings of language, the first
and perhaps most important truism is that all notational formats are tradeoffs [57]. Since it is
impossible to highlight all information, by definition all notations must highlight some

57

information and obscure others. For example, the structure of imperative languages highlights
instructional and causal flow, while dataflow languages such as Max/MSP highlight the flow of
information. As a corollary to this, Green also points out that understanding presupposes a fit
between mental model and notation, and that understanding is hampered by the lack of this fit
[57]. This is also clearly suggested by the escalations outlined in Kelleher’s taxonomy as a
increase in the conceptual depth of assistance provided by a language [54]. These maxims
require that the choice of primitives and notation within a language be consistent with the
mental model that the language wishes to proffer.

In terms of the mental model of programming, programming itself requires the same feedback
loop between mental and syntactical representation that art or design requires [1, 57]. A
program is essentially a mapping from concept to syntax, and the language must effortlessly
support this mapping not only in the forward direction, but also in the reverse direction.
Without this reverse translation, it becomes extremely difficult to evaluate the execution of the
plan or mental model that the user forms of the solution. The problem is made worse if the
language makes it difficult for the user to see the results of an entire conceptual block without
extensive searching, or if the language demands that that the blocks be expressed in a
particular order [57). As such, it is extremely important to support out-of-order editing
combined with a syntax that matches the conceptual actions the user may be using in order to
map the conceptual solution into the syntactic space of the language.

With these considerations in mind, Green proposes a set of cognitive dimensions that should be
maximized in order to produce a language that is cognitively optimal. These dimensions are
outlined in Table 1. Of course, when applied to real languages, these dimensions need to be
traded off in order to meet other constraints. The domain, design constraints, usability
concerns, level of complexity, skill of users, and countless other factors affect how well a
language can adhere to the dimensions. Regardless, they form a set of ideal measures which can
be used as underpinnings for various design decisions in creating a new language.

5.1.1 expressivity

As previously mentioned, subTextile is designed to be as expressive as the imperative C
language it replaces as a vehicle of creating behavioral programs for microcontrollers. This goal
can be broken down into several different scopes. First, the language must be effect-complete,
or be able to carry out the same end effects that C can achieve within the context of
programming behavioral textiles. The latter clause is an important caveat, in that subTextile is
not designed to flip bits in registers or control hardware interrupts, but for the specific and
particular task of dealing with creating programs that have to do with the behavior of a set of
modules that are programmed in a lower-level language and capable of such low-level control
of end actuators. This avoid the hard mental mapping issues encountered in attempting to code
behavior in a constrained environment, while providing greater expressiveness and viscosity
within the design domain.

58

Abs » ; What is the 1 minimum & maximum level of abstractlon" What is encapsulated"

Closeness of mapping What tricks are needed to get the effects the user envisions?

Conéistency o ?1 _How much of the language can be inferred from partial knowledge"

Diffuseness ' How verbose is the language?

Propensity for errors ‘ What parts of the notation are prone to mducmg careless mistakes?

Hard mental operations ; Are there conditions where the user requlred aids to map a conceptual operation
' to language notation?

Hiddeh dependenciés ' Areall dependencxes indicated?

Premature Commitment | Does the user have to make dec151ons with incomplete mformatnon”

Progressive evaluatlon Cana partlally completed program be tested?

Role-expressweness 7 Can the user see how the parts fit into the whole?

Secondary notation Can the user armotate the language beyond the notational semantics?

Viscosity How much effort is required to make changes

Visibility Can the entire program be viewed smultaneously (on an infinite dlsplay)? When

the code is dispersed, does the user know in which order to read the code?
Table 1 Usability dimensions for visual languages (summarized from Green et al, [57])

At the same time, it is necessary for the language to be complete in terms of mappings and
abstractions. For example, Max/MSP has no operation that can function as a loop, and
therefore an internal capability is lacking which the user may want in order to achieve a goal.
This does not mean that the same end results are not reachable within the context of the
problem that Max/MSP deals with. However, it requires resorting to tricks when the required
action is in fact a loop. Lastly, a language may need to be complete in terms of extensibility of
core features. In this sense, Max/MSP and C provide examples of the extremes. Max/MSP
provides only the very lowest level infrastructure and leaves all primitives to be created as
extensions, while C has a strongly defined set of core features and syntax, with libraries that
build upon it without affecting the core features themselves. The extension facilities need to be
carefully managed when a language is based around extension (as hardware-oriented languages
need to be at some level) in order to maintain coherence.

While subTextile aims to be as effect-complete as possible, the determination of whether it
needs to in fact be operations-complete is more indistinct. SubTextile is not meant to become a
generic language, and thus choices were made based on its domain. Along with these choices
comes the inevitable outcome that some operations become more fluent and simple, while
others are made relatively more complicated in order to provide the appropriate level of
abstraction. The choices in design are made in order to present a coherent language model and
promote best practices for the language. At the same time, the design explicitly attempts to
avoid over-abstracting and adding functions which do the same action in multiple ways,
instead opting for clear solutions to problem which do not burden the user with selection of
syntax.

In terms of extensibility, the intent is to not require the end user to write complex extensions
to extend core functionality, while still allowing the user to use a variety of devices, whether
custom-made or not, seamlessly. This suggests the need for a strong core language that is lean

59

and yet capable of dealing with a wide variety of scenarios. The extension mechanism must also
be sufficiently simple so that the hardware designer does not need to delve into the innards of
subTextile and its internal APIs in order to be able to support new devices. In the initial
mockup pilot tests of subTextile, it also became quite clear that the ability to modify the name
of devices and variables was quite important. Since generic modules can oftentimes be used for
wildly different purposes, and the ambiguity in names poses a significant hurdle to the novice
user in terms of ability to reason quickly and efficiently about the problem. Concepts such as
abstraction (ie, a thing is not what it says it is) have seldom, in the experience of the author in
working with artist, been well received by them. Indeed, such abstraction is often contrary to
the physically-situated realities in which these professions function, a fact that has been noted
to the author multiple times by different pilot subjects. It is therefore ultimately necessary to
natively support the ability to abstract naming from low-level information that allows the
language to function in order to achieve the higher-level goal of simplicity and clarity of
expression that subTextile strives for.

5.1.2 expectation management

When discussing a language with a low floor, or one meant to simplify development in a
particular domain, it is common to confound simplification with simplicity. Indeed, most
languages dealing with complex domains (such as Max/MSP or Squeak) are in fact complex
languages that do have a learning curve. The goal is to reduce the learning curve, though it
cannot be completely eliminated. On the other hand, there is considerable room for
improvement in simplifying the development of the application types that the language is
geared towards by using methodology well-suited to the task at hand and operations that
complement the effects desired. That said, the goal with subTextile is to have as much
simplicity as possible while simplifying development tasks. This simplicity can be achieved, for
example, by streamlining variable types and primitives in order to reduce ambiguities and
remove overlap. The outcome of this streamlining can then be supported with appropriate
training to overcome the initial cost of using the language. Lastly, it is possible to portray
simplicity regardless of the deep-level complexities of the language. This initial simplicity helps
to create a high ceiling so that experts can create more complex behaviors without excluding
the neophyte.

Aside from expectations of the language itself, expectations inside the user interface are also an
important consideration. With a textual language, these expectations normally do not surface
in dialogue, since the expectations are essentially conceptual. For example, a user may perhaps
wish for simpler syntax within makefiles, or a particular way of managing code in a
development environment. However, with visual languages, the possibility exists to articulate,
understand, and manage these expectations about the interface integrally with the language
instead of as a separate case. This can, for example, be used to reduce mistakes by highlighting
particular blocks or constructs by semantic importance within a layout, or prevent the use of
incorrect types. At the same time, this exposes a mapping problem where it is possible to write
code which attempts to outsmart the user. In the particular domain that subTextile exists, it is
in fact particularly important to prevent the user from feeing powerless, since oftentimes the

60

user will already be quite insecure about his or her abilities. With careful design, the visual
nature can be exploited to achieve this balance through the integration of language and UL

513 complexity management

Last but not least are the considerations with respect to complexity. As stated in the previous
subsection, it is not logical to claim the ability to reduce complexity arbitrarily, and within the
domain there exists a theoretical lower limit on simplification beyond which the expressive
capabilities of the system are compromised for simplicity. Complexity for the particular case of
subTextile can be broken down into syntax complexity and perceptual complexity. As discussed
in the previous sections, the syntax complexity is a natural part of the requirements of learning
the language, and can be attacked by minimizing and honing primitives. While this will not
eliminate syntax, within visual language it can provide reasonable containment.

Perceptual complexity, on the other hand, stems from several factors in textual languages,
including but not limited to code nesting, intricacies of the execution path, and variable scope.
Since the user has to perceive and envision these factors in order to be able to understand the
functions of a program, complexity in these areas negatively affect the efficiency with which
the user can understand or formulate solutions. Most of these issues apply to visual languages
as well in the general sense, though most visual languages tend to flatten one of more of the
domains in order to achieve a simpler, more homogeneous visual representation. As suggested
earlier, it is possible to directly visualize these problems, though in practical experience these
techniques provide limited assistance since the visualizations themselves becomes as complex
as the problem cases. With this in mind, the goal for subTextile is to create a visualization of
the language that neatly encapsulates the complex segments and provides a method of
exploring these segments in a uniform and intuitive way.

5.2 language description

5.2.1 event handling

SubTextile is an event-oriented language, and thus the only way for execution to be initiated in
subTextile is via an event. Therefore, a large portion of the user interface and dynamics is
dedicated to the management and processing of events. Events can come from one of three
sources. They may be externally triggered events caused by devices connected to the main
board, they may originate from a user-created timer, or they may be user-created. Of these
three types, only the external and timer events can begin processing. The user events are used
in a manner similar to invocations of functions in traditional languages, in order to allow code
reuse and encapsulation. External events, in general, are the result of some change in a sensor
reading or other change of state in a device, while user-created events serve more as function
calls, aggregating behavior that is executed as a result of multiple incoming hardware events.
User-created events allow for code reuse within the event framework. It should also be noted
that device events can be “synthesized” to establish equivalence between various events.

6l

execution time quantum

e oo ,___'m
e —
ack event handler 1 event handler 2 event handler 3
1o i . e L
event
dmz—_—>
ack

re-entrant event call

£ ao/5 R

@ - ==r i 2> PN -~ v 2

5 |

Figure 19 Thread execution and external event interaction in the subTextile visual language

All events exist in a flat top-level namespace, and can be triggered via software. The existence
of an input event is signified by the presence of an event stack in the event area of the UL The
stack is identified by its source (ie, device name, timer name, etc), the name of the event, and
the list of values passed in during an event. Each event can carry an arbitrary number of
variables with it. These variables created by the execution of events are pre-allocated and exist
in a top-level global namespace. This is in fact equivalent to persistence of state. Once the
system has declared its state via an event (before which that state is accessible but undefined),
the state is remembered and made accessible without any further effort towards storage or
querying. It should be noted that user events cannot have any variables attached to them.
However, this is in fact not an issue, since the variables from the event source are defined. It is
also important to note the difference between an event handler and a callback. Unlike a
callback function, which operates like a normal function called outside the normal flow of a
program, activation of an event handler is a one-way operation. Once activated, the event
handler essentially operates in a vacuum and in parallel with other handlers, and does not
provide any indication of completion per se. Also, since event handlers are essentially like
threads in most other programming language, the semantics accommodate multiple executions
of the same code path at the same time.

The event handling model for subTextile, more conveniently thought of as a threading model
for the rest of this subsection, is atomic and fully synchronous. Unlike languages such as Java or
C that require intricate locking methodologies for managing thread interactions, subTextile
automatically guarantees that all state modifications will happen synchronously. The
interaction between external events, thread processing, and timing is shown in Figure 19. As
indicated in the figure, all primitives in subTextile are atomic. While devices do operate
asynchronously, this is handled at a hardware level by “locking” the data bus for input, but

62

deferring input acceptance until the current event is complete. If the current primitive
requires access to the bus, time is “turned back” in order to free the bus first, and the event is
re-executed after the bus is serviced. This requirement is necessary since the state variables
created by events exist in the global namespace which can also be modified by an incoming
event, and thus poses a danger to unsynchronized operations taking place at the same time
that may use the same variables.

Since there is no stack associated with events, the scheduler simply maintains a set of index
pointers into the bytecode that specify the location of the next execution point. This essentially
allows for zero-cost event firing, since the event queue is pre-allocated. In addition, event
triggers appearing at the end of an event handler are scheduled in 0(1), allowing the use of
events as loops. Additionally, these semantics make the creation of arbitrarily long and
complex state machines simple and intuitive. Unlike many languages used for the purpose of
creating behavior for electronic textiles, the subTextile language does not have implicit return
semantics (ie, transitions in the program’s state machine are by default unidirectional), thus
removing the need to keep track of states or return paths. This has the effect of allowing the
user to treat the program itself as the state machine, instead of emulating a state machine with
the program. This task-oriented approach is designed to further simplify complex behavior
development within subTextile.

The scheduling quantum in subTextile is therefore of variable length, but always encompasses
the execution of one primate operation from each event handler currently active. The quantum
may be extended by the arrival of external events, which are handled between the atomic
executions of primitives on an as-needed basis. The response time for events in this model is
effectively the same as response time in a cooperatively multithreaded environment. In
particular, it is possible for user expressions to take considerable time to execute. Therefore,
there are no real-time guarantees on timer and sleep statements, which can only cause the
queuing of addition threads to be serviced. However, in practice this has not proven to be a
major problem for behavioral segments of code. Since the subTextile model separates effectors
and sensors from the behavior-oriented main board, it is unlikely to affect the functionality of
the system as a whole in any case. With exception of wait statements, all other events are
treated equivalently. Wait statements are always scheduled as the next event to be processed
since they are considered “altruistic” in terms of processing time consumption. The
performance of wait statements is considerably improved by this scheduling method, since
their execution is only deferred to the end of the current atomic operation, instead of the start
of the next scheduling quantum. Except for the exceptions described above, all other new
events are added to the end of the event queue, thus ensuring that their first instructions will
be executed within the same execution frame. Completed handlers are marked dead if
necessary during the processing time quantum.

Due to the constraints of microcontroller environments, it is necessary to use O(n) techniques
in manipulating the scheduler queue. Dead handlers are discarded at the end of each time
quantum to reduce processing overhead. While the hardware specification does not limit the
number of concurrently-executing handlers, in the general case it can be expected that there is

63

a limit imposed due to the cost of supporting an arbitrary number of handlers in a
microcontroller environment. Additionally, it is expected that the performance will drop below
acceptable limits long before the handler limit is reached. For the sake of processor efficiency,
subTextile does not provide facilities for detecting these conditions, though they would be
fairly apparent in physical debugging. Despite these limitations, the event oriented nature of
subTextile allows it fluent access to capabilities without requiring additional effort.

522 data types

SubTextile uses two primitive and one hybrid data type. The first primitive type is a scalar
value, and is represented by either an integer or floating point value. Floating point values are
available for convenience. While the floating point functions can be emulated on a
microcontroller, the performance is extremely slow, and their use is not recommended. For
most normal mathematical operations, integer-only variants are available. The second
primitive type is a two-dimensional array. The size of the array must be declared in advance,
and cannot be changed programmatically. The primary purpose of the grid type is to hold a
large number of preset values in a concise form. However, they can be used as arrays to store
calculation results from expressions as well.

The only hybrid type available to subTextile is the graph type. The graph is a linear array of
values accompanied by a cursor. The cursor can be manipulated programmatically to point at
any valid position. In addition, the value at the cursor can be read back as a scalar. The purpose
of the graph type is to simplify animations. Instead of writing loop-like structures, the user is
free to create a graph of the animation that is automatically interpolated smoothly. The
availability of the graph type not only allows for easy animations, but the flexible
programmatic capability to manipulate the cursor allows the user to support a interactive
behaviors that can be easily tweaked using methods and an environment that is simple and
familiar to the user from exposure to drawing programs in the desktop world.

As stated previously, all variables in subTextile occupy the same global scope, including state
variables introduced by incoming events. This is a natural side effect of using stack-less event
handlers, which in turn leaves no place for scope to reside. The high-level nature of subTextile
precludes the use of most variables that one would normally consider as candidates for use in
local scope, such as loop variables. With subTextile’s high-level primitives, variables are meant
to be used as overall program state, and as such the global scope is a good match for the
expected usage pattern. It should also be noted that subTextile does not use named constants,
though the user is free to treat any variable as a constant. The graph type is essentially
constant within the program, but only in that the actual graph cannot be modified. This
functionality can be easily duplicated using the grid type. For memory efficiency, static analysis
is used to tag grids that are written to, and these grids are copied to RAM. Grids which are not
written internally become constants and are not copied to RAM.

523

choice of operations

This subsection describes the capabilities of all primitives supported by subTextile, before
delving into the particular peculiarities of the more complicated primitives. The primitives can
be roughly subdivided into expression, message, flow control, and variable manipulation types,
and the types will be noted after the names of each primitive. The parameters for each

primitive

Operation:

Operation:

Operation:

Operation:

Expression

Description: Evaluates freeform expressions

Parameters: Expression string

Notes: Details of the supported functions in expressions and syntax is discussed
separately in section 5.2.4. The freeform expression operates on all existing
variables. The expression is pre-parsed and validated at compile-time.

Switch/select

Description: Evaluates a series of freeform expressions and interprets the
results as boolean values. If the expression is a boolean truth, then the
corresponding primitive stack are executed. If none of the expressions match,
the default primitive stack (if present) is executed.

Parameters: Expression strings, primitives

Notes: This primitive can be used as a switch statement (as seen in C, Java, etc)
or as an if/else-if/else statement. In practice, it resembles the latter to a greater
extent. It has the effect of selecting a primitive stack and inserting that stack
into the handler stack at its own position. Depending on size, this primitive can
be quite expensive, since the selection of primitive stack (and therefore the
evaluation of expressions) takes place in the scheduling quantum of in which
the primitive is invoked. More than one expression may be true at a given call,
but the first expression to evaluate to true is used. The expression may be
either a boolean or scalar expression. If the expression produces a scalar, zero
is interpreted as false and all other values as true.

Message

Description: Causes the firing of an event

Parameters: Event to fire, as well as parameters. Parameters may be variables
or constant values.

Notes: If the event is an outgoing event, the parameters need to be defined. If
the event is internal, the parameters are assumed regardless of whether the
event is user-created or device-generated. The message primitive does not
surrender its execution context like a function call in an imperative language.
The operation following the message primitive is executed in the next
scheduling quantum. As previously noted, an internal exception is made if this
is the last primitive in a handler, but this does not affect the perceived effect.

Stop

65

Operation:

Operation:

Operation:

Operation:

5.2.4

Description: Stops the evaluation of an event handler

Parameters: none

Notes: The stop primitive only affects the hander it is in. Since there is no caller
or return semantics in subTextile, this is the only logical option.

Wait

Description: Waits for the given number of milliseconds

Parameters: Variable or constant (selectable)

Notes: The wait statement causes the current event to give up execution.
Handler stacks returning from waits are given increased priority to provide
better timing.

Copy

Description: Copies one variable to another

Parameters: Two variables. Typing is forward-enforced, allowing graphs to be
treated as scalars for assignment to scalars, but requiring that the source be a
graph if the destination is a graph.

Notes: The function of this primitive can be emulated for scalar values by the
expression primitive. However, since the function is sufficiently common, a
dedicated primitive is provided. For graph types, the primitive copies the
values from one graph to another. This is the primary function of the primitive,
since doing so by emulating a loop is not an encouraged practice. For graph
types, the primitive causes the destination graph to have the same cursor value
as the source.

Step graph
Description: Moved the graph cursor in the specified manner

Parameters: Specify how the cursor should be moved. If required, a variable to
set the value from or a user-specified constant value is prompted for.

Notes: The step function allows forward and backward wraparound cursor
manipulation. The cursor can also be set to a specific value specified by either a
variable or but with a user-specified constant number.

Paint Grid

Description: Programmatically paint a location on a grid to a particular value
Parameters: The grid to paint, x and y coordinate, and new value. All can be
specified as user-supplied constant values, or as variables that evaluate to
scalars (scalar and graph type).

Notes: The use of this primitive causes the grid to become internally “writable”
and copies it to RAM. This function allows the use of a grid as a 2-dimensional
array for various array-based storage needs.

freeform expressions

In subTextile, freeform expressions were chosen over fully-visual layout for both switch/select
operations and for the expression primitive. The purpose of freeform expressions is

66

constrained to the modification of a scalar variable, which is specified separately in order to
further reinforce the constraint. This is departure from a completely visual environment, in
that there is relatively little visual layout assistance provided to the user in creating these
expressions, and marks an intermediate path between the approaches taken by fully-visual
languages such as scratch and visual layout languages such as Max/MSP. The choice of
freeform expressions is perhaps the most significant and powerful design tradeoff in the design
of subTextile.

The power of freeform expressions is that mathematical formulae can be entered in a familiar
form without additional work imposed by creating an equivalent syntax tree in the way that
Scratch demands. This allows for complex effects to be calculated on the fly without devolving
the language into scripting. In addition, the use of freeform expressions prevents the clutter of
low-level operators from entering the language, which keeps the primitive operators simple
and elegant. However, in terms of prima fascia perceived complexity, these freeform units are
perhaps the most challenging to the user. To some extent, the complexity is mitigated by using
a special editor that assists the user in selecting variable names and operations. Additionally, as
the user gains experience in the environment, these expressions gain the advantage of speed
and simplicity over visual expression assembly techniques, which can be difficult to manipulate
rapidly, and in general takes longer to transcribe from the common written forms. In addition,
as the expression gains in complexity, visual layout gains sufficient complexity to overcome the
initial gain in construction ease due to visual verbosity caused by the tree-like growth pattern
inherent to closed-form expressions. Therefore, in the long run, function-constrained freeform
expressions provide a reasonable compromise in ease of construction and comprehension.

In addition to perceived complexity, freeform expressions also have certain other caveats.
Perhaps most importantly, syntax errors in freeform expressions cannot be prevented
preemptively as is done in other subTextile primitives. While other primitives can use filtering
to prevent syntactical errors completely, expressions must be checked for correctness. This
problem can be mitigated with just-in-time checking, but compile-time checking is also
necessary in order to find errors caused by the deletion of variables after the creation of the
expression. Additionally, the evaluation of freeform expressions is an expensive task. In the
interpreted environment, it is necessary to pre-expand the expressions and evaluate the
expression is RPN form for efficiency. While more optimal solutions are possible, the
interpreted nature of subTextile demands a general solution. The evaluation may therefore
take considerable time to perform relative to most other functions, and the user needs to
cognizant of the issue and break apart operations as needed to compensate. Fortunately, this is
expected to be an issue with advanced users who will most likely have a reasonable
understanding of the language at that point.

5.3 language design choices

SubTextile borrows features from imperative, dataflow, and visual languages alike in order to
provide these features within one body. The dataflow aspect comes to fore in the event-
oriented design, which allows the processing to be interactive instead of busy-loop based. In

67

analyzing the software of the design prototype, it became clear that most of the effort was
spent in designing proper interleaving of actions and in gathering of data from input devices.
By automating these aspects of programming behavioral textiles, the complexity of the
boilerplate code is minimized or removed, leaving the end-user to focus on the behavior of the
system. The visual layout of the primitives and primitive stacks, on the other hand, allows the
user to quickly understand the program flow, again with a bias towards interaction and input
rather than on synthetic constructs such as classes or functions. Lastly, the freeform
expressions borrowed from imperative languages allows for powerful variable manipulation
without the time-consuming ritual of decomposing the common algebraic forms into visual
layouts. Each of these features has been selected for its demonstrable efficiency and power, and
is sometimes balanced by tradeoffs inherent to the techniques used. However, many of the
design choices were also made after considering the interaction of the various portions of the
language with each other, which led to changes as the language evolved into its present form.

In the preliminary design, subTextile was designed with handler stacks that were populated
with entities similar to functions. This model suggested a one-to-many sequential distribution
of events where the handler stacks were processed somewhat like callback functions. However,
in later analysis, it became clear that in light the event generation semantics, this approach
added additional overhead both in terms of interface and language semantics, without a
corresponding improvement in the expressivity of the language. Since these handlers acted as
functions (which were not used elsewhere in the language), they were essentially an anomaly
that disrupted the consistency of the language. Additionally, it required that each handler be
housed in its own popup editor, which significantly reduced the user’s ability to “skim” a
simple program, since much interaction was needed to delve into each handler and understand
its actions. The current model uses a single handler stack which contains primitives instead of
pseudo-callback functions, and allows for quick scanning without reducing the power of the
language. Additionally, the stop function could be simplified by this choice. In the previous
model, the stop function could either stop the current callback, of all processing for that event.
In the new model, it needs only to stop the event processing, thus simplifying flow analysis for
the user.

A similar choice was made with the switch/select primitive. Originally, separate if/then and
switch statements were planned. However, it became clear that in most cases, the most useful
clause was in fact and if/else-if/else clause. The implementation penalizes switch statements
(which are the least commonly used form) in favor of this more common form by requiring an
expression to be computer for each choice. In the end, the decision was made to support the
non-optimized form in order to both maintain consistency and provide a simpler, more
uniform solution. This choice also improves the legibility of the switch/select primitive over
traditional switch statements by explicitly stating the conditions under which an expression
stack is evaluated rather than requiring the user to recall the half of the expression that forms
a switch clause. As with each of these design choices, it is important to note that the choices
made were geared towards the goals that subTextile subscribes to, and the particular granular
choices were made based on secondary goals of simplicity and expressional clarity within the

language. It is therefore unlikely that the choices hold in the general context beyond the
reasoning that prompted them.

5.4 ui design choices

The Ul for the subTextile development environment is designed not only to ease development
of behavioral programs, but to limit the types of errors possible as much as possible. In the case
of a fully-graphical language such as Scratch, it is possible to remove syntactical errors
altogether, thus limiting the types of errors to purely logical errors, which in general can only
be discouraged, but not altogether eliminated using visual constructs. Since subTextile uses
imperative elements in some elements, it is not possible to completely prevent syntactic errors.
As explained in Section 5.2.4, errors in the free-form expressions are constrained in scope by
design. In addition, the UI provides the user with features that assist in creating robust
expressions. Additionally, in-place and compile-time checking is done in order to ensure error-
free bytecode. It should be noted that while visual construction cannot prevent logical errors
(ie, failure to handle a particular case or event), the dataflow features of subTextile are in fact
quite robust against such errors. The event-oriented design makes certain that the user
addresses or is at least cognizant of all events and cases that need to be handled. This limits the
possible errors to errors of intent or of conceptual understanding, where the user’s mental
model of the actions taken by the language is not congruent with the actual actions. Issues in
this domain can only by tested using experimental techniques, and the details of this testing is
available in the evaluation chapter.

In general, the only syntax errors in subTextile originate from the possible improper use of
variables. In order to prevent such errors, combo boxes containing matching types are
provided wherever possible. Where explicit input of value is required, the value is validated in-
place in order to reduce errors. Additionally, a centralized model is used to guarantee that any
changes or deletions to the variables list are propagated immediately. If a variable in use within
the program is deleted, the change is propagated to all primitives using the variable.
Additionally, instead of selecting an arbitrary value (which can easily lead to logical errors), a
null selection is set in order to force an error during compilation. In order to further enhance
robustness, variable types are set at the time of creation, and become immutable from that
point. This prevents an additional class of errors and simplifies the language’s handling of
variable types.

In order to improve coherence within the subTextile DE, the choice was made to create a single-
window tool with the ability to have multiple internal children windows. This model was
chosen over having multiple windows due to the inherent problems in keeping multiple
windows in focus in most normal window managers or desktop environments, which is
necessary to support drag-and-drop between editor windows used to edit switch/select
statements. Additionally, it allows the user to focus on the work being done by allowing more
fine grained control of window positioning and focus behavior than is possible using the
external window manager features alone.

69

Lastly, though the windows and Ul elements in subTextile are a part of the user interface, they
also are part of the language itself. In short, unlike textual languages, visual languages do not
have an alternate form per se. In addition to preventing user errors, it is therefore part of the
design goal of the Ul elements to reduce the possibility of inconsistencies and errors in
language and compilation backend. To this end, subTextile does not treat the visualization as a
rendering of an invisible data structure, but instead treats the visual elements as the data
structures themselves. This is in contrast to the model-view-controller (MVC) design pattern
where the representation and the visualization (model and view) are distinct. The two-phase
update of model and view is replaced instead with a hierarchy based approach, where
visualization is largely offloaded to an abstract base class, while individual primitives focus on
the handling of their own parameters and editor setup. This setup has the advantage of
discouraging errors in the code of the language itself, thus helping ensure that the platform
itself is consistent and error-free.

70

6 physical layer guidelines

The physical layer guidelines for subTextile are meant to provide sufficient guidance to an
implementer to allow them to reproduce the devices described on arbitrary architectures
(within the limitations of the design). The hardware specification supports communication of
all subTextile data types and event blocks, and incorporates features that allow the software to
operate efficiently at the protocol level. Additionally, it incorporates details of the virtual
machine and suggests implementation specifics that retain the execution characteristics of
subTextile and allow for easy reproduction of the subTextile environment on any platform
from a regular PC to a reasonably complete microcontroller. While physical boards were not
implemented for the work presented here, support is planned in the very near term. Once this
work is complete, a master node, as well a variety of sensor and actuator nodes will be available
for validation, testing, and to serve as examples for building other types of nodes.

While the communication system used for subTextile uses a multi-master daisy chain network
topology, the logical layer does in fact have a master unit. This topology was chosen in order to
minimize difficulties encountered in achieving connectivity in textile applications, where the
concealment of still electronic units as well as the creation of durable interconnects is difficult
to say the least. Additionally, the interconnect was chosen in order to minimize the number of
cables required, while still producing deterministic addressing behavior that allows for the use
of generic nodes. The purpose of the master unit, whose behavior has been described to some
extent in the preceding chapters, is to interact with the subTextile DE, run the virtual machine
that executes the subTextile bytecode, and manage address allocation on the interconnect bus.
The master node is designed to encapsulate the software complexity of the subTextile
hardware, thus allowing for other nodes to be implemented with much simpler hardware, since
they need only maintain a minimal amount of state in order to interact with the master node.

Since the master node must have the capability to connect in practice to most mainstream
systems, the communication to the master node must be uniform both on the computer and
the microcontroller side. In order to accommodate this restriction, the subTextile DE uses serial
communication to talk to an attached master node. The advantage of the serial connection is
that serial connections can be emulated over USB easily. Several single-chip solutions
encapsulating the entire USB protocol stack and providing a serial interface on both the
computer and MCU side are now available, and can be used in place of a traditional serial cable
connection. The data rates offered by serial connections are ample for the uploading of
programs to the master node, while the protocol itself is well documented and supported. It is
necessary for the microcontroller to support some method of self-programming or other non-

71

volatile storage in order to retain the subTextile program. Oftentimes, this can be handled by
writing to flash located on the microcontroller itself, though another option is to utilize an
external EEPROM or flash memory module to store the data.

The hardware guidelines presented in this chapter are intended to be agnostic to the selection
of MCU, though the Atmel AVR series of microcontroller unit (MCU) is referenced for platform-
agnostic details, in large part due to the author’s familiarity with the platform. Additionally,
certain features of the architecture are necessary in order to allow the system to operate
efficiently. Since subTextile is not directly executed as binary code on the MCU, proper
operation of the system requires that the subTextile main processing loop have a reasonable
share of the processing time, rendering polled communication solutions untenable. There is
also an additional memory cost associated with the use of the interpreter, and this should be
considered in the selection of the MCU. Fortunately, it is now fairly common to find low-power,
low profile, high speed MCUs that carry sizable amounts of RAM and flash memory on-board.
Most of these units can operate with nothing more than an additional decoupling capacitor,
though for maximum speed most will require a crystal or ceramic resonator and associated
parallel capacitors.

6.1 communication

6.1.1 ilo configuration

Communication is an integral part of the way that subTextile operates, and is thus a
requirement for any subTextile hardware node. All devices are connected to each other using a
five-wire bidirectional interconnect. The interconnect carries communication,
synchronization, and power cables. The maximum number of devices on the bus is
theoretically limited to 127 devices due to limitation in addressing. An additional limit is placed
by the maximum allowable bus capacitance, which makes for a practical maximum much lower
than the theoretical addressing limits. It is possible to create repeaters to extend the
limitations in addressing and bus capacitance, though it may be more prudent to support
additional bus channels on the master node.

Figure 20 Connection diagram for the subTextile module interconnect bus

72

MAsTER NODE

l send frame
no
enter slave
receive mode .
receive data
frame

Figure 21 State diagram of I'C mode transitions during communication (master node)

The subTextile interconnect uses a two-wire multi-master-capable Inter-Integrated Circuit (I°C)
bus originally pioneered by Philips Semiconductors [51]. The bus architecture is widely
documented and supports a number of advanced features such as collision-avoiding (as
opposed to merely collision detecting) multi-master arbitration and integral addressing
capabilities. While it is certainly not the only bus protocol with these capabilities, the
availability of the technology with considerable hardware-level acceleration on a number of
platforms was a strong motivation for this choice. Two additional wires on the bus are
dedicated to power and ground. The final wire is not a bus wire, but rather an inter-device
token passing wire used to allocate addresses to devices. The connection diagram for the bus is
shown in Figure 20. The token is not passed in a complete loop. Instead, the I*C bus is used to
detect the end of the token loop.

The choice of I’C over a single-wire technology such as the Dallas 1-Wire or iButton [60] was
based on the proven reliability and maturity of the I’C technology. While a single-wire power
and data bus would have reduced the interconnect by two wires (clock and separate power),
practical wisdom suggests that the single-wire technology is not sufficiently mature at this
point, either in terms of speed or robustness. Additionally, the wide scale availability of the I°C
implementation in microcontrollers and peripherals ensures a wider selection for MCUs than
would be afforded by the newer combined power and data solutions.

73

OTHER NODES

pa I receive frame | ; send notifier [——— I

acknowledge and l wait
enter slave mode
carry out action received 0
ack?
no
activated? yes
es send data frame
start event
processing

Figure 22 State diagram of I'C mode transitions during communication (device nodes)

The I’C transceiver can operate in one of 4 selectable modes under application control [51]. The
application can transition between master or slave, and transmitter or receiver, on demand.
The mode transitions during an interchange are shown in Figure 21. In general, after initial
address allocation, all nodes including the master node operate in slave receive mode, and
transition to master mode when outbound communication is needed. Regardless of operational
efficiency, it should be noted that the bus has practical limits in terms of the amount of data
that it can handle without causing erratic behavior. The design expectation is that there will
always be sufficient aggregate bandwidth on the bus over time for some inefficiency in
communication. While some level of redundancy is built into the specification, it is not
practical to support much buffering in the MCU execution environment, and it is left to user to
constrain themselves in terms of bandwidth use.

612 discovery

Discovery within subTextile is handled by the master node. Once powered up, the master node
should wait a sufficient amount of time to allow all other nodes to power up. All other nodes

74

must power up with their I’C units at standby (ie, not acknowledging data). The master node
initiates discovery by sending a pulse on the outgoing token line to transfer the addressing
token to the first device in the chain. The device in possession of the token changes its client
address to the global broadcast address (0x00). The master node then transmits the next
available client address (starting at 0x02, with the master itself being address 0x01) to the
global address. If the address is not acknowledged, it indicates the end of discovery, since no
further nodes are now in global receive mode. If an acknowledgement is received, the master
next reads from the address just assigned. The possessor of the token now transmits its device
type (a 16-bit value) to the master, and transfers the token to the next device in the chain by
pulsing the token line. Once a device has received an address and has given up ownership of the
addressing token, it immediately switches to slave receive mode. Once discovery is complete,
the master node communicates with each connected device and activates or deactivates the
device based on whether the device is used in the current subTextile program that is loaded.
While the deactivation of unused devices is optional, the activation of devices is not, in order to
ensure that arbitrary data from devices does not cause a failure in the discovery process.

The discovery protocol handshake not only assigns a unique address to the devices connected
to the master node, but allows the master node to deterministically associate connected
devices and their device types with addresses. If multiple copies of the same device are in use,
their order on the bus becomes the equivalent of their position in the device list within the
subTextile ED. In this way, the user can always receive predictable behavior from the system
without requiring modification to the firmware of each copy of a device connected to the
master node.

6.1.3 node constraints

Once discovery is completed, all nodes are constrained to only output data in accordance with
their event formats as set within the subTextile DE. Each outgoing packet is prefixed by the
device’s own address, the device type, and the event type as set in the device description used
while creating the program. This is followed by an arbitrary number of bytes determined by the
number of parameters and their types. All integer values are transmitted as 16-bit, while grid
type data is transmitted in row-major order. No bracketing of data is used. When the master
node sends an event to any other node, the master node uses its own address and device id of
zero (0x00). However, it uses the event ID specified in the device definition file, and passes data
in the same way as any other node. This uniformity allows for the easy addition of listening or
debugging nodes, which can simply treat all communications as equivalent.

If busy, the master node may choose to acknowledge the first byte of data, but then send a not-
acknowledge (NACK) to the second byte. This can happen, in particular, when the master node
is in the process of executing a primitive operation, which must happen atomically. Once the
operation is complete, the master will once again acknowledge data. If a non-master node
encounters this condition, it must not relinquish the bus. Instead, it must re-transmit the
second byte repeatedly with a fixed delay until the master has acknowledged it, and then
proceed to complete the transmission. The delay is at the discretion of the sender, though it

75

must be non-zero in order to reduce loading on the master caused by interrupt handling. This
ensures a form of interconnect bus locking, where the sending node and the bus itself become
locked until the master node is ready. This additionally prevents state loss in any connected
node within the subTextile system.

It should additionally be noted that the subTextile system does not explicitly provide a squelch
or automatic transmission rate control functionality. It is therefore the duty of all nodes to
operate at data rates that maintain the aforementioned aggregate bandwidth surplus. If a node
encounters state changes at a very high rate, it should either discard, average, or select values
for transmission at a rate that is not bus-saturating, as appropriate for the type of input. This
cooperative design requirement is necessary since the inclusion of additional bus arbitration
techniques in the subTextile system would generally negatively impact performance of the
master module in a network with high data throughput and require more time to be dedicated
to bus management on all nodes. Regardless, given the bandwidth of the I°C bus and limitations
in concealing electronics in textiles, it is expected that these issues will be seldom encountered
by a novice user. If it becomes necessary, the bus arbitration guidelines will be amended at a
later point to include further bus management strategies that prioritize outgoing messages
from the master node to allow it to function properly regardless of bus saturation.

76

7 evaluation

Evaluation methodology for programming languages remains a contentious issue in academia,
with the literature offering wildly different and yet logically valid experimental methods [56].
This fracture is mostly due to the complex interaction between reasoning and creativity that is
necessary in order to approach the particular method of problem solving known as
programming. Reitman introduced the term “ill-defined problem” to describe a class of
problems (including programming) that lacks deterministic procedures for solving a given
problem [61]. In particular, analysis of the application of HCI methodologies to the testing of
interactions have shown that the results are heavily influenced by prior experience [57].
Although relationships exist between efficiency at a task and the contributing factors that
precipitate the increase in efficiency, these relationships are apparently quite well obfuscated
[57]. Additionally, it appears that there are well-understood but generally ill-articulated
metacognitive reasons for the choices made within the field interested in the exploration of
visual languages, as demonstrated by the successes of visual languages and effectiveness of
stated metacognitive factors influencing design choices [62]. While an attempt has been made
to articulate such metacognitive reasoning within the context of subTextile, this does not
provide a prima fascia testable domain.

A side-effect of this lack of concrete methodology is the lack of concrete principles on which to
base the design of visual languages. Indeed, design is perhaps the best term used to describe the
process. in that there is an element of fiat influenced by the aforementioned diffuse
metacognitive knowledge that dominates the design of visual languages. Difficulties in
establishing reasonable baselines that apply across languages biased in different dimensions
further complicate matters [56]. This issue is further compounded by the design of subTextile,
which incorporates elements from multiple language classes, while eschewing diagrammatic
representations, which is perhaps the best-studied class of visual programming languages.
However, surveys of visual languages suggest that the presumptions made about the mappings
used by users in working with visual languages are often different from what the user actually
does [57). This disparity may well be the result of the diffuse and inarticulate nature of the
metacognitive factors as understood by researchers. As such, it is a prudent goal to attempt to
discover and test the designer’s expectations against a variety of users to determine flaws and
points of contention in the design.

The particular method used in order to gather metacognitive information about the use of
subTextile was pioneered by Bell et al., and uses a programming walkthrough in order to
discover discrepancies and error-prone interactions between the metacognitive model used by

77

the designer and the cognitive model employed by a variety of end users by exposing the user
model [63, 64]. The programming walkthrough presents the user with a programming task
stated in terms of the expected behavior. The user is allowed any amount of questions of calls
for assistance during the performance of the task. As the user performs the task, he or she is
observed for signs of hesitation or confusion, and is asked to articulate the thought process.
The combination of observation and articulation, along with stress on a learning-oriented
scenario with plentiful available help, allows the observer to gain an understanding of the
user’s mental model of the language. This user model is then compared with the metacognitive
model of the user which the language is based around, or in other words, the stereotype of the
user’s thought process that was presumed during the design phase of the language. Any
discrepancies between the models indicate a false presumption, and suggest not only particular
interactions that cause the user to stumble, but also lower-level expectations that the user has
of the interface which are not fulfilled. The advantage of the technique is that it can be
employed at any stage of design. However, with subTextile, the method is used against a fairly
complete prototype in order to allow for a more complete evaluation and a better
understanding of issues stemming from visual and interaction design, as well as deeper issues
resulting from the low level language design choices themselves.

The particular capabilities measured are facility and expressiveness [64]. Facility is defined as
the ability to solve a problem, while expressiveness is defined as the ability to state that
solution in the terms provided by the language. A problem with facility, given a known-solvable
problem, is generally a problem in communicating the capabilities of the language to the user.
A problem with expressiveness, on the other hand, can be further compounded by the ability of
the user to think in terms of the language. In the case of subTextile, expressivity of the
language is of particular concern, especially in reference to the design itself. As a result, the
evaluation was modified to elicit more data for expressivity.

7.1 experimental method

For a programming walkthrough, the measurement is proposed with respect to a set of
problems and an overview the language. The test giver demonstrates the use of the interface in
general terms, as well as the location of device files and the basics of program flow. The subject
is then asked to complete a number of predefined problems, while thinking out aloud about the
approach to the problem. Problems were proposed in pairs, with a different set of devices and
activities for each pair. Example problems included re-creating the pillow created for the
prototype as a pure communication device, and then modifying the design to include the
ability to save messages; as well as creating a dress which is sound-sensitive, then modifying it
to allow the user to enable of disable the functionality based on the proximity of certain people.
Each problem is defined in terms of the set of inputs available, and the expected behavior. The
breakdown of the problems scale in difficulty to match learning about the system, with the first
focusing more on event handling, with the latter focusing on decision-making and
interactivity. The task pairs also force the use to create and then modify behaviors, giving an
understanding of problems caused during “tweaking” of behaviors.

78

In addition to documenting the thought process prior to the start of programming, the user is
also asked to externalize the rationale behind a change, or the thought process at any time
where the user is struggling with the next step. Once the user proposes a solution, the test
giver then outlines the actual effects of the program (acting as a human emulator). The user is
then free to continue the task. During the “implementation” portion of the exercise, the test
giver offers three levels of fallback. First, the appropriate section of the written document is
pointed out. If this does not prove to be sufficient, the test giver verbally explains the construct
further. If the problem occurs in the actual approach to the problem, or due to incorrect
breakdown of high-level tasks, the test giver then proceeds to help the subject reason through
the problematic segment and reduce to be understandable. In order to further elicit useful
information from the subjects, a freeform design exercise follows the predefined problems.
This provides an avenue allowing the user exploration of a free-form problem that the user has
defined, thus showing the flexibility of the language under ad hoc usage conditions. Once the
freeform section is complete, the subject is given a short survey allowing them to voice any
issues with the interface and the language in general, and to propose critiques of the
approaches taken.

The sample population for the evaluation was specifically chosen to represent a cross-section
of the possible combinations of skill and background that are most likely to affect an user’s
performance with subTextile: familiarity with technology and background in design-related
tasks. The combinations of parameters tested is described in Table 2. One person was chosen
for each pairing of competencies, resulting in 6 subjects. Since competency is gradated, each
factor was tested against multiple people, thus allowing for some cancellation of per-subject
variance. While this number is by no means statistically significant, the qualitative evaluation
does provide a good understanding of the top-level changes needed in the system without
delving into minutiae that would benefit from the statistical weight of more subjects. It should
be noted that subjects with design background all formally hold degrees in various design
fields. All subjects were in the age 20 - 30 bracket. Though the results of these evaluations are
not quantitative, the relatively polar selection of subject backgrounds allows for observable
gamut in user reactions.

Technical Background ~ Design Background . Description
Proficient No design background | Able to program in other languages
Understands hardware

Able to do advanced user tasks
Understands programming but not proficient

Capable but not proficientb " No de31gn background

Not proficient No design background : Able to do average user tasks
‘ i . .
Proficient Formally trained ; Trained in media/fine arts

Understands hardware and software
Capable but not proficient Formaily trained . Able to do advanced user tasks
* Understands programming but not proficient
Not proficient v Formally trained ' Trained in media/fine arts
Table 2 Subject selection by background

79

7.2 results

During the study, additional behavioral notes were taken, and later correlated with the audio
recording of the thought process. The users all successfully vocalized their internal problem
solution process, providing insight into the approaches to solving problems. The users were
evaluated offline along the various axes outlines in Table 1, and when possible their
performances were analyzed to note differentiation due a particular background trait by
excluding other backgrounds as being a factor.

In terms of understanding of abstractions used in subTextile, the primary effect came from
proficiency with programming. Greater understanding of low-level details of programming at
any level of proficiency caused subjects to initially disregard the abstractions provided by
subTextile. Interestingly, once these same users fully discovered the abstraction mechanisms,
they used the abstractions most successfully. This result is not entirely unexpected, since the
proficient users of technology generally do not attach themselves to one particular tool, but
instead try to determine the underlying principles that guide sets of tools. Closeness of
mapping, or the relative ease with which the user can translate their mental model of a
solution to the model used by subTextile, is closely dependent on the user’s understanding of
related abstractions, and the results echoed this correlation. It should be noted that as with any
language, there is always a learning curve. The subjects all indicated that the design of
subTextile allowed them to quickly achieve some effect. However, their performance clearly
indicated that more than with languages with verbose syntax, the succinct representation of
subTextile required a grasp of the underlying conceptual framework and ideals in order to
successfully map their internal mental representations to the programming environment.

Just as interesting is the finding that while users with a higher level of design training did not
necessarily find the abstraction as difficult to accept initially, they did have greater difficulty in
transforming from mental representations to subTextile primitives when, for whatever reason,
they had started from incorrect priors. In one particular example, one of the subjects came to
the conclusion that one of the input event slots was in fact an input-output slot, and spent
considerable time architecting a solution for the task at hand around this assumption. Once the
subject had begun to travel down this lane of thought, it was quite difficult to switch to the
correct path, even though the subject understood the problem correctly at a cognitive level.
This effect was completely unexpected, and clearly needs to be investigated further. All
subjects reported that subTextile was all time sufficiently changeable at the interface level,
which at first flush excludes that source of problems.

The post-task questionnaires and discussions indicated that all users were satisfied with the
level of consistency and verbosity in the language proper. However, the interface showed some
of its flaws in this analysis, indicating that the presence of the variables and devices on the left
side pane was inconsistent with the drag-and-drop operations that were used in the rest of the
system. Likewise, some subjects found it difficult to fathom the purpose of the variable and

operator lists in the expression editor, occasionally mistaking a selection within the lists to
mean the inclusion of that variable in the expression. Lastly, almost every subject attempted to
access details about the devices by attempting to manipulate the device list, showing a clear
need for some form of “device inspector.” In terms of verbosity, subjects uniformly commented
on the ability to accomplish tasks which they considered to be complex using only a minimum
number of primitive actions. In the cases of the more technically proficient users, it often
transpired that they made mistakes in performing a task simply because they expected the task
to be more complex than what the subTextile representation of the task actually was.

Propensity for errors, as expected, was highest in the primitives borrowed from imperative
languages. Users at all levels of proficiency spent more time determining how to use the
freeform expressions and switch/select statements than any other primitives. In general, the
number of errors was lowered by heavy use of assistive lists of variables and functions by all
users. However, it does suggest that perhaps a greater level of assistance should be provided for
the creation of freeform expression in order to reduce the cognitive loading of creating such
expressions.

The lack of visual representation of output devices also proved to be a hindrance to
performance for the subjects. Since outgoing messages depend on this “hidden” functionality,
the subjects felt the need to prematurely commit to sending messages with incomplete
understanding of the outcome, despite having full device descriptions on hand. Visual aids for
distinguishing output messages and parameters would clearly provide an improvement to the
user experience by allowing the user to forego recalling the exact details of particular attached
devices. On the other hand, this problem may be less significant in field deployment, when the
user would have much more intimate knowledge of the hardware in the system. On a related
note, all users with design backgrounds expressed preference for a physical instantiation of the
devices, indicating the clear importance of the interaction between input and output, but also
between development and testing in the field of design.

Though subTextile has been designed from the ground up to avoid some of the most difficult
mental operations in traditional programming, as previously pointed out, this has in some
sense moved the problems to the conceptual domain. Accordingly, the subjects were observed
to flounder while trying to understand how to attack the problem and break it down. However,
when the users accepted that the system essentially automatically broke the problem down by
providing events for relevant conditions, their efficiency improved dramatically regardless of
background. Those with the least technical competency gained the most in terms of efficiency
and performance speed from this understanding, and made these gains most quickly.
Interestingly, an intermediate level of skill seemed to inhibit acceptance of the conceptual
framework of subTextile, instead leading users to cling to their favorite approach to the
problem. This may be due to the lack of a fully generalized mental model of programming
capabilities within these individuals, and provides and interesting area of further investigation
in terms of language design. At the same time, it underscores the need for clear documentation
to accompany good language design, in order to afford the end user every chance to gain an
understanding of the underpinnings of a language.

As a final matter of interest, the least technically experienced subjects in general produced the
most elegant solutions in the least time, while the most technically experienced subjects
created solutions at a higher speed (discounting issues mentioned previously), but approached
the problem very incrementally, leading to more operations for the same problems. This
echoes the thought processes observed, with experienced subjects approaching the problem in
a much more sequential way than inexperienced subjects, who tended to think of the entire
problem as an unit. This result suggest a need for a secondary “thinking scaffold” in languages
like subTextile that allow users to create “skeletons” for behaviors. With the low number of
primitives that subTextile offers, this problem is fairly minimal. However, this remains an issue
for similar systems with more primitive operators.

82

8 conclusions and future work

In the immediate future, a number of improvements need to be completed in order to bring the
work done for the thesis to a stage where it can be considered complete as a development
environment. In addition to the issues discussed in the results section, the evaluation has
supplied several new directions for the interface to subTextile. First and foremost, the display
of device capabilities needs to be improved. As it stands, the device display, especially for
output devices, represents a hidden dependency that impedes the problem-solving capabilities
of the user to an extent. A new layout for the event area has already been formulated, and an
early sketch can be seen in figure x. The new layout clearly specifies the device-event mapping,
and allows in-place renaming and deleting of devices. To reinforce the fact that the event
handler stacks exist only for incoming events, a large inward arrow now reiterates the fact.
Lastly, outgoing events are also listed out under devices, causing output only devices to also
appear in the event area. While this consumes some additional space, the tradeoff is well worth
the gain in transparency. Outgoing events are marked with an outward facing arrow to
reiterate their direction, and carry the name and type of the variables needed for sending a
message to the device.

Additionally, it was noted that the semantics of the left-side vertical bar differed somewhat
from the language proper. While indeed it makes no sense to drag an entire device or variable,
their presence in a screen containing, for the most part, draggable components is somewhat
confusing. Additionally, the pane serves no purpose other than the creation and editing of
variables. It is unclear whether this pane should be moved to the less-dominant right side, or if
it should be removed completely to a different tab dedicated to variables, thus making the
viewing of variables separate from the viewing of the event area. Each method has its own

deviee woung [(500 | devlee waan
= W] (— (=]

"“'—‘
o~ o~ ‘

Figure 23 Preliminary sketch of changes to device and event handler stack representation

83

advantages and disadvantages, and it is likely that both need to be tested against users to
determine the correct option in this case. Another similar problem exists in attempting to show
the direction of flow of execution, which is left-to-right, and then top-to-bottom in the
switch/select primitive. A number of possibilities are as again available, though the correct
choice is far from certain.

The next most immediate task at hand is the completion of the hardware prototypes for the
subTextile physical implementation guideline. In order to help the adoption of subTextile, a
feature-complete hardware platform is planned. This platform will provide a complete master
module, as well as a set of commonly used input and output devices. It is expected that the
prototype boards will be completed within the next four months, along with remaining
implementation of the compiler. The language can then be tested in realistic conditions,
perhaps by loan to designers hoping to make use of such technologies. Studies [63] also show
that a language is hardly complete without the documentation that makes it accessible, and
documentation of languages is in itself a complex area to consider. While the participants in
the user study had the advantage of the author explaining the system to them, this is in fact
another form of dependency, at a higher level than the original dependence on technological
skill. In order to truly allow for open ended exploration, a comprehensive documentation must
also be created. As the hardware prototype moves forward, this will become of greater concern.

There are also a number of improvements that can be made to the user interface in order to
improve usability, adding features that make certain operations more simplistic. Currently, the
subTextile DE makes no accommodations for code reuse. The only possible way to reuse code is
to copy it visually. Code reuse has been found to be a double edged sword, creating passages of
code which are difficult to process due to their visual simplicity. Nonetheless, in realistic
scenarios where the number of attached devices is high, it is certain that code reuse will be less
error-prone than recreating the same code passages repeatedly. As such, the group select, cut,
copy, and paste operations need to be added to the UL Group select in particular is problematic,
since it requires adding a “hidden functionality” to the user interface, where either a key must
be used along with the mouse in order to extend a selection, or the drag operation must be
reloaded. Of these options, the drag operation is most likely more damaging to the user
interface, but the changes will need to be studied to determine the best course.

The addition of cut/copy/paste, which can succinctly called “clipboard functionalities,” also
suggests the possibility of having a “scrap book” of code, either copied from the current
program, or loaded as a library. These libraries, while supporting sharing and community
development, also add a level of complexity which increases the cost of entry. Essentially, as
tasks get subsumed into the library system, the user feels greater pressure to “learn the
community” before delving into the task at hand. Additionally, it is unclear whether such
capabilities will assist subTextile, which was intentionally designed to operate without libraries
and other encapsulations.

The expression editor also provides a venue for greater capabilities. In particular, the ability to
suggest completions and check for errors on the fly in the same way as a word processor would
be helpful in finding problems early on. Additionally, there is currently no reverse dependency

84

checking in the environment, which prevents user notification when the deletion of a device or
variable would affect expressions and primitives. This capability would reduce user frustration
at the compile phase by providing relevant just-in-time feedback.

After the additional work is completed, it is the my hope to publish the software and hardware
designs under a permissive license and foster a community which can freely use the system in
order to further the field of electronic textiles. Ultimately, the adoption of a language or system
is the true metric for its success. With a project such as this, it is only too common for the work
to be left by the wayside, in particular because there are no convincing applications to
highlight the capabilities of the system. It is therefore necessary to both create such
applications and foster development. As subTextile matures, the focus will shift to this use.

Even as the work on subTextile progressed, it became clear that codification implied constraint
and that as the design choices made in subTextile were a tradeoff that required discarding
many other possibilities. As with any design task, the hope is to maximize the gains without
curtailing liberties, and keeping overgeneralization at bay. It is perhaps best summed up by a
quote from Maggie Orth [65]:

I think that computers have managed to remain neutral beige for so long because
their function is based on their interiors, their software.

Though this research is geared towards bridging wearable computing and e-textiles for novices,
the generalization it engenders is a double-edged sword. If the language and interface designs
constrain in form or function, then they cannot be judged a success. The goal of this thesis is
not to generalize electronic textiles as a means of expression, but to generalize customization
and programming, and to imbue electronic textiles with greater interactivity. Stated from the
personal viewpoint, the purpose of this work is to make the author obsolete within the context
of behavioral textile as a technical collaborator, and in some sense transfer to subTextile the
capability to make ideas into reality. The work presented above is a first step towards
understanding and exposing the behavioral aspect of the world. 1t is hoped that as the ideas
behind subTextile, once developed, matured, and generalized, can be used to take a step
towards a world where personalization does not stop at skin depth, but instead engages the
behavior of smart objects and materials in order to create an environment is literally the
embodiment of our will.

85

86

(1]

[2]
(3]
4]
3

(7]
(8]

[10]
[11]

(12]
[13]
[14]
[15]
[16]

[17]
[18]

9 bibliography

J. M. Berzowska and W. Bender, “Computational Expressionism, or how the role of
random () is changing in computer art,” Human vision and electronic imaging IV, vol. 3644,
pp. 45-55, 1999.

E.R. Post, M. Orth, P. Russo, and N. Gershenfeld, “E-broidery: Design and fabrication of
textile-based computing,” IBM Systems Journal, vol. 39, pp. 840-860, 2000.

E.R. Post and M. Orth, “Smart Fabric, or Wearable Clothing,” presented at Proc. Intl.
Symp. on Wearable Computers, 1997.

G. Weinberg, “Interconnected Musical Networks: Toward a Theoretical Famework,”
Computer Music Journal, vol. 29, pp. 23-39, 2005.

Sensatex. http://www.sensatex.com/

SoftSwitch. http://www.softswitch.co.uk/

“An SMS at your pillow?,” in Password: Philips Research technology magazine, pp. 4.

F. Carpi and D. D. Rossi, “Electroactive polymer-based devices for e-textiles in
biomedicine,” Information Technology in Biomedicine, IEEE Transactions on, vol. 9, pp. 295-
318, 2005.

T. Healy, J. Donnelly, B. O'Neill, J. Alderman, A. Mathewson, F. Clemens, J. Heiber, T.
Graule, A, Ullsperger, W. Hartmann, and others, “Technology development for building
flexible silicon functional fibres,” presented at Wearable Computers, 2003. Proceedings.
Seventh IEEE International Symposium on, 2003.

B. K. Rakesh and X. Yong, “A Novel Intelligent Textile Technology Based on Silicon
Flexible Skins,” 2005.

R. Wijesiriwardana, T. Dias, and S. Mukhopadhyay, “Resistive fibre-meshed
transducers,” presented at Wearable Computers, 2003. Proceedings. Seventh IEEE
International Symposium on, 2003.

W. C.Bang, W. Chang, K. H. Kang, E. S. Choi, A. Potanin, and D. Y. Kim, “Self-contained
Spatial Input Device for Wearable Computers,” presented at Proc., 7th IEEE Int. Symp.
on Wearable Computers, 2003.

J. Berzowska and M. Coelho, “Kukkia and Vilkas: Kinetic Electronic Garments,”
presented at Wearable Computers, 2005. Proceedings. Ninth IEEE International
Symposium on, 2005.

E. Wade and H. H. Asada, “DC Behavior of Conductive Fabric Networks with Application
to Wearable Sensor Nodes,” presented at International Workshop on Wearable and
Implantable Body Sensor Networks (BSN'06), Cambridge, MA, USA, 2006.

M.]. Zieniewicz, D. C. Johnson, C. Wong, and J. D. Flatt, “The evolution of Army
wearable computers,” Pervasive Computing, IEEE, vol. 1, pp. 30-40, 2002.

XS Labs. http://www.xslabs.net/

Hexagram Institute. http://hexagram.org/

S. Baurley, “Interactive and experiential design in smart textile products and
applications,” Personal and Ubiquitous Computing, vol. 8, pp. 274-281, 2004.

87

[26]

[27]

[28]
[29]
[30]

(31]

[32]
(33]
[34]

[35]
[36]

[37]
[38]
[39]

[40]

J. McCann, R. Hurford, and A. Martin, “A design process for the development of
innovative smart clothing that addresses end-user needs from technical, functional,
aesthetic and cultural view points,” 2005.

M. L. Galbraith, “Computational Garment Design,” Massachusetts Institute of
Technology 2003.

G. Nanda, “Accessorizing with Networks: The Possibilities of Building with
Computational Textiles,” Massachusetts Institute of Technology 2005.

Topological Media Group.
http://www.gvu.gatech.edu/people/sha.xinwei/topologicalmedia/index.html

X. Sha, Y. Serita, J. Coffin, S. Dow, G. Iachello, V. Fiano, J. Berzowska, Y. Caravia, D. Nain,
W. Reitberger, and others, “Demonstrations of expressive softwear and ambient
media,” 2003.

M. Jacobs and L. Worbin, “Reach: dynamic textile patterns for communication and
social expression,” Conference on Human Factors in Computing Systems, pp. 1493-1496,
2005.

C. M. Liu and J. S. Donath, “Urbanhermes: social signaling with electronic fashion,”
presented at Proceedings of the SIGCHI conference on Human Factors in computing
systems, 2006.

M. Kanis, N. Winters, S. Agamanolis, A. Gavin, and C. Cullinan, “Toward wearable social
networking with iBand,” presented at Conference on Human Factors in Computing
Systems, 2005.

J. Berzowska, “Memory Rich Clothing: Second Skins that Communicate Physical
Memory,” presented at Proceedings of the 5th conference on Creativity & Cognition,
ACM Press, New York (2005), 2005.

HearWear: The Fashion of Environmental Noise Display.
http://www.absurdee.com/HearWear/

NYX Wearable Displays.
http://www.coolhunting.com/archives/2004/11/nyx_wearable_di_1.php

S. Mann, “Humanistic computing: “WearComp” as a new framework and application for
intelligent signal processing,” Proceedings of the IEEE, vol. 86, pp. 2123-2151, 1998.

S. Mann, ““Smart clothing”: wearable multimedia computing and “personal imaging” to
restore the technological balance between people and their environments,” presented
at Proceedings of the fourth ACM international conference on Multimedia, 1997.

B.J. Rhodes, “The wearable remembrance agent: A system for augmented memory,”
Personal Technologies, vol. 1, pp. 218-224, 1997.

A. Pentland, “Wearable Intelligence,” in Scientific American, vol. 9, 1998, pp. 90-95.

R. DeVaul, M. Sung, J. Gips, and A. Pentland, “MIThril 2003: applications and
architecture,” presented at Wearable Computers, 2003. Proceedings. Seventh IEEE
International Symposium on, 2003.

Georgia Tech Wearable Motherboard. http://www.gtwm.gatech.edu/

A.Feldman, E. Tapia, S. Sadi, P. Maes, and C. Schmandt, “ReachMedia: on-the-move
interaction with everyday objects,” presented at Wearable Computers, 2005.
Proceedings. Ninth IEEE International Symposium on, 2005.

R. Mitchel, “Behavior construction kits,” Commun. ACM, vol. 36, pp. 64-71, 1993.
“Crickets,” Lifelong Kindergarden Group, MIT Media Lab.

0. Zuckerman and M. Resnick, “A physical interface for system dynamics simulation,”
presented at Conference on Human Factors in Computing Systems, 2003.

S. M.]J. Harrison, “SoundBlocks and SoundScratch: Tangible and Virtual Digital Sound
Programming and Manipulation for Children,” Dept. of Architecture. Program In Media
Arts and Sciences, Massachusetts Institute of Technology 2005.

[41]

[42]

[43]
[44]

[45]
[46]
[47]
[48]
[49]
[50]

[51]

(52]
(53]

Nylon. http://acg.media.mit.edu/concepts/volume10.html

Parallax Basic Stamps.
http://www.parallax.com/html_pages/products/basicstamps/basic_stamps.asp

Logo. http://el.media.mit.edu/logo-foundation/

A. Begel, “LogoBlocks: A Graphical Programming Language for Interacting with the
World,” Electrical Engineering and Computer Science Department, MIT, Boston, MA,
1996.

Scratch. Lifelong Kindergarden Group, MIT Media Lab.

Squeak. Squeak Foundation. http://www.squeak.org/

Processing. http://processing.org/

Wiring. http://wiring.org.co/

Max/MSP. Cycling '74. http://www.cycling74.com/products/maxmsp.html

H. S. Raffle, A. J. Parkes, and H. Ishii, Topobo: a constructive assembly system with kinetic
memory: ACM Press New York, NY, USA, 2004.

12C (Inter-Integrated Circuit) Bus Technical Overview and Frequently Asked Questions.
http://www.esacademy.com/faq/i2c/

Microsoft Word. Microsoft Corporation. http://www.microsoft.com/office/

J. Bonar and E. Soloway, “Uncovering principles of novice programming,” presented at
Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, 1983.

C. Kelleher and R. Pausch, “Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers,” ACM Computing
Surveys (CSUR), vol. 37, pp. 83-137, 2005.

M. C. Morrone and D. C. Burr, “Feature Detection in Human Vision: A Phase-Dependent
Energy Model,” Proceedings of the Royal Society of London. Series B, Biological Sciences, vol.
235, pp. 221-245, 1988.

P. Gross and K. Powers, “Evaluating assessments of novice programming
environments,” presented at Proceedings of the 2005 international workshop on
Computing education research, 2005.

T.R. G. Green and M. Petre, “Usability Analysis of Visual Programming Environments: A
'Cognitive Dimensions' Framework,” Journal of Visual Languages and Computing, vol. 7, pp.
131-174, 1996.

A.F.Blackwell and T. R. G. Green, “Does Metaphor Increase Visual Language
Usability?,” presented at Proc. 1999 IEEE Symp. on Visual Languages, 1999.

M. M. Burnett and M. J. Baker, “A Classification System for Visual Programming
Languages,” Oregon State University Corvallis, OR, USA 1993.

1-Wire and iButton website. http://www.maxim-ic.com/1-Wire.cfm

A.F. Blackwell, K. N. Whitley, J. Good, and M. Petre, “Cognitive Factors in Programming
with Diagrams,” Artificial Intelligence Review, vol. 15, pp. 95-114, 2001.

A.F.Blackwell, “Metacognitive Theories of Visual Programming: What do we think we
are doing,” presented at Proceedings IEEE Symposium on Visual Languages, 1996.

B. Bell, J. Rieman, and C. Lewis, Usability testing of a graphical programming system: things
we missed in a programming walkthrough: ACM Press New York, NY, USA, 1991.

C. Lewis, J. Rieman, R. Weaver, N. Wilde, B. Zorn, B. Bell, and W. Citrin, “Using the
programming walkthrough to aid in programming language design,” 1994.
HorizonZero, “Interview with Maggie Orth,”
http://www.horizonzero.ca/textsite/wear.php?is=16&file=8.

89

appendix a: supported operators

Arithmetic Functions
+ » Addltlon
- Subtraction
* Multlphcatlon
/ ' Division
% - Modulus
Mathematical Functions
Function | Description
abs(x) : Returns absolute value of x
acos(x) : Returns arc cosine of X
asin(x) Returns arc sme of x
atan(x) : Retums arc tangent not able to handle asymptotlc conditions of x
atan2(x, y) Returns arc tangent, quadrant-corrected of coordinates (x, y)
ceil(x) Returns the smallest integer greater than or equal to x
cos(x) Returns the trigonometric cosine of an angle
exp(x) l Returns Euler's number e raised to the power x
floor(x) ' Retums the largest mteger less than or equal to x
log(x) ; Returns the natural logarlthm of x
log10(x) ! Returns the base-10 logarithm of x
max(x, y) Returns the greater of x andy
min(x, y) ' Returns thé lesser of x and y
pow(x, y) Returns x’
random() Returns a random number
round(x) : Returns the closest integer value to x
sin(x) x Returns the sine of x
sqrt(x) | Returns the square root of x
tan(x) ' Returns the tangent of x

91

Constant Functions
Function Description

se of the natural ith

| Returns value of the ba

pi() v Returns value of pi

&& " Boolean AND

[Boolean OR
k| Booleannotequlto

< Less than

s Greater than

- - Less than or equalvto
>= Greater than or eQual to
o ' BooleanNOT

92

appendix b: evaluation documents

The evaluation documents are presented below in compressed form. The formatting has been
modified to better fit within the confines of the thesis document. Each of these documents were
supplemented with extensive spoken instructions and additional details. The references were
provided to allow the user a means of taking notes and recalling general details. The post-task
questionnaire was provided as a supplement to the analysis of verbalization of their own
thought process.

9.1 documentation attachments provided

Map of device file location and device fucntion

audio_level
Detects the ambient audio level, Updates 10 times per second.

beat_detector
Detects bass beats from sound. Sends one event per major beat with audic level.

identify
Identify another person. Can remember others.

input prox_sensor
Senses distance.

switch_grid
A grid of switches. Any number can be missing (ie, holes)

touch
Touch sensor

comm
Communication module that talks to another communication module.

devices } mixed f led_sensor
LED sesor that can act as both touch sensor and output.

led_grid
A grid of LEDs

servo
output A servo motor (value = amount of turn)

switch
A switch that turns something on or off

/_,_./

93

Functions, left panel:

& Devices
i A

remove selected device
add timer device
add device from file

graph type (selected)

add a variable
delete selected variable
Functions, main area:
device name (or user event designation)
event name
variables updated by this event (and type)
event handler stack
create new user event stack
delete the user event

%«:@m m/___ o e e et

= handler object

94

Functions, ribbon:

9.2 tasks

Task 1:

Task 2:

Task 3:

Task 4:

Task 5:

Task 6:

Create a pillow that responds to touch. It will communicate with another copy
of itself. The pillow has one LED grid output, one switch grid input, and a
communication device. The LED grid keeps its own state. Each grid starts off in
a known equal state.

Add the ability to save a particular display by pressing buttons 1 and 2 on the
first row of the pillow. Rows and columns are numbered starting with 1.

Hint: the display can only be read by sending a message to it.

Add the ability to clear the display when button 1 and 3 on the first row are
pressed. You can clear the display by sending an empty grid to it.

Create a skirt which switches a light built into it based on audio beats. The
louder the beat, the longer the light should stay on. The skirt has one beat
sensor, and one switch output. Beat sensor volume levels are between 0 and
100. The switch turns on when it is sent a 1. It turns off when sent a zero.

Modify the skirt so that it only works when a person you know is nearby. You
will need to add an identification sensor. The identification sensor sends a
number when it reads a person nearby. Allow the user to add or forget people.
Use a touch sensor for this.

Hint: people are added by sending a remember event with the unknown ID.
People are forgotten by sending a forget event with the known ID.

You have at your disposal a fabric flower (on a dress) that can animate using a
servo. It has one servo output. Animate the flower (your choice of motion).

Modify the flower to be “shy.” It should close when the use tries to touch it.
Hint: Add a proximity sensor, and check the reading. Presume distance are
between 0 and 100 in 1/10 inches. When something leaves the range of the
sensor, the sensor sends a 100 reading.

95

9.3 post-task questionnaire

Describe any particular tricks you felt you had to do to get things to work as expected.

Describe any instances when you felt that something didn’t match how the rest of the
environment worked.

Describe any locations where you felt that the language required more steps than you would
have liked

Describe any locations where the system required you to make a choice with insufficient
information.

Describe any locations where you could not see the parts of the program that you needed to
see.

96

