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Abstract

This thesis studies the challenges of providing load balancing and fault-tolerant ex-
ternal links between ad-hoc multicast mesh networks.

The work is the gateway component of a research platform called FluidVoice,
a wireless audio communication system. This system consists of nodes forming a
broadcast mesh based on 802.11. Some of these nodes called Stargates have the
capability to communicate to the external world. The problem is that these gateways
can fail or lose capacity unexpectedly. In this work we explore the ways to provide
communications to the external world under unexpected gateway node failures, and
variance of load.

We propose and evaluate a distributed algorithm designed to form this robust and
balanced interconnection. The algorithm is designed with robustness in mind, and
takes into account failures in the outbound links as well as between the gateways,
and it is focused to support real-time applications running over it.

In this thesis we show that by adopting this algorithm, we can provide a reliable
connection to the end-user even as gateways presence or capacity varies. The pro-
totype version has about 20ms of additional transmission time in average, with an
overhead of about 5% to 35% depending on the packet size, and a recovery time of 1 to
3 seconds. The redundant traffic generated in intermediate steps of the optimization
problem can grow up proportionally to the number of participating gateway nodes,
and reduces quickly to only the required amount of traffic.
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Chapter 1

Introduction

Ad-Hoc cooperative wireless networks are a perfect experiment to explore the capa-

bilities of peer-to-peer systems. In these systems, intelligence is uniformly distributed

between all the entities that form the network.

Static routing breaks down in setups where the node mobility is high, such as in

the cooperative wireless networks.

In this thesis I will describe the gateway component of FluidVoice, a system that

takes advantage of inherent radio capabilities of wireless systems to perform commu-

nications inside a mesh network, and sporadically requires to communicate to nodes

in the external world.

The part of the system that provides external communications is formed by some

special nodes called gateways. In the border, the various gateway nodes that serve

as packet forwarders between the internal and external world require an efficient and

robust way to allocate traffic. Is in this part of the system that our attention will

be focused, on a way to perform this task properly so nodes in the two sides of the

network can rely on having a good connection for any real-time application they wish

to perform even if some of the participating links fail unexpectedly.

The problem for which this thesis provides a solution is on how to distributedly

do traffic allocation over several links, taking into account their capabilities. Addi-

tionally, we are considering that links are faulty, so our aim is to improve the overall

link reliability by enabling the system to recover from unexpected failures on each



one of their components.

In this system, the application running over it is a two-way communication sys-

tem, so latency is a parameter of major importance. We are focusing on minimizing

the delay introduced by the action of adding redundancy to the links to increase

availability.

1.1 Contributions

In this thesis I present a solution for load balancing in a multi-gateway environment.

The traffic to be allocated comes from the internal FluidVoice nodes, which are con-

nected through an unreliable network. This network is the same that the gateway

system uses to communicate.

The solution consists on a distributed algorithm that performs a traffic distribution

between all the nodes that participate in the calculation. This algorithm is robust to

communication errors. as well as node failures.

As a side problem, it was required to perform flow fingerprinting for the packets

that go through the network. Since this is a hard problem, and the general solution

is still not completely solved, a generic framework for the analysis of flows was built,

and a classifier for the particular case of the traffic generated by the current system

was written.

1.2 Thesis Overview

Chapter two collects some of the work relevant to the thesis, in this section we will

give a brief overview of the state of art in wireless mesh networks, review some ideas

used for load balancing, and see which are the main contributions of the algorithms

for routing in wired networks.

Chapter three describes the problem we are trying to solve, and enumerates a list

of questions that came out while designing and implementing the final solution.

In Chapter four, we describe the architecture design, define the requirements for



the system, as well as the algorithms to solve the distributed gateway load balancing

problem.

Each component of the system is studied in detail so the expected behavior is well

simulated and corresponds to the real one. We describe the reasoning behind the

gateway algorithm, and explore all the possible scenarios that it can face, showing

that it successfully performs under them, providing the robustness required.

Chapter five describes the implementation details of the system, we explore the

technical difficulties and how they were solved to build a working system. These

problems range from setting up a telephone network to deal with bandwidth limited

links.

Next, in chapter six, we perform theoretical and experimental analysis on the

system build under the design principles described in the thesis. We conduct several

experiments to see the behavior under stress tests.

Finally we conclude by gathering the lessons learned from building this system,

as well as the future problems that came out while thinking on the solution of it.
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Chapter 2

Background

In this section we will describe FluidVoice, a system that is being developed at MIT

Media Lab. We will give a brief description of the general aspects of the system,

which are required to understand and bring context to the the gateway problem we

are trying to solve.

Following that, we will give an overview of other ongoing work, describing their

main features, showing how this project is similar or contrasts them. These include

load balancers, wireless mesh networks, and gateway coordination algorithms.

2.1 FluidVoice

A local set of nodes form a ground mesh, where each one of the participating nodes

can route data, voice and instructions between them. This configuration allows for

continuous connections and reconfiguration around blocked parts by hopping from

node to node.

This mesh is formed to provide communications to a group of users that need to

deploy connections in an unplanned environment.

This setup can happen without having any previously built infrastructure, and

the time frame for setting up the system is on the order of minutes.

A set of first responders to a disaster is an example set of users -The fire, am-

bulance and police all need to be in close contact with each other. In addition, they



need to communicate outside that close-knit community, for example with hospitals

and support personnel.

Another example might be traders in a real-time financial market. Stock traders

want to know what is going on with different markets in real time. They establish

connections with around eight to sixteen different stock information sources. These

sources give short messages from time to time. When a stock trader is interested

to listen about a certain market, he will tune into it, but always keeping the other

information in the background.

Similarly, a group of tourists may want to wander around an area and jointly look

for a restaurant for dinner, or a military mission may need to coordinate separate

forces while maintaining contact with a command and information center.

A last example could be a group of people with cellphones, all connected through

an alternative network such as 802.11, with each node having different characteristics,

such as number of free minutes, dialing plans, etc. By taking advantage of that di-

versity, we would be able to avoid the cellular connection for communication between

nodes, and route calls originated at the mesh through the phone with the biggest

amount of free minutes, or to the one with the best reception in the moment.

We assume that the underlying network provides communications in a broadcast

mode by default. This is, each message is delivered to all nodes on a best effort

basis. There are no peer-to-peer messages. This experiment is designed in such a way

because we want to study the capabilities and limitations of wireless communications.

In 802.11 almost all the antennas in the devices are omni-directional. By taking

advantage of the inherent broadcast capabilities of these devices, the goal is to reduce

the amount of retransmissions required to send information to all the surrounding

nodes. Work outside the scope of our thesis is to create a decentralized energy-

efficient broadcast network.

In order for the system to be able to communicate to the external world, we

need to build the mechanisms for these nodes to reach outsiders and accept incoming

messages. This thesis addresses the means for a set of randomly located peripheral

access points to be used to guarantee that the mesh will maintain this outside contact.



The issue here is to maintain contact with the highest possible number of gateways

and through at least of one of these reach the outside and delay this process the

smallest amount of time.

GW

Ad-Hoc Wireless Network GW
Telephone Netowork

odes N GW Internet GW Node
Node

NEd

No d e

PBX

GW

PSTN

Figure 2-1: Example Configuration

In Fluid Voice, the local mesh is designed to ensure that all communications reach

all other nodes by any path rather than by the best one. Right now communications

happen through broadcasts. Eventually we want to change it to use a set of re-

dundant multicast trees, or any other useful mechanism such as the algorithms that

MANETs[8] use. With this abstraction in mind, we assume that nodes are one hop

away from each other.

There is a proxy converting data from the telephone network format to the one

used inside FluidVoice. This provides means to create FluidVoice nodes that pipe

information from a conventional telephone. With this, we can add conventional tele-

phones to act as external FluidVoice nodes, that connect to an Autonomous System

formed by the wireless nodes.

A sample configuration is depicted in in figure 2-1. We have several internal nodes

that can communicate between them, and are connected to the external world through

the available set of gateways. In another mesh, a proxy translates telephone calls to

FluidVoice conversations, which connect to the external world through their own set



of gateways.

2.2 Related Work

In this section we compare the ideas used to develop the thesis project with the

ongoing work similar to it. We present a brief description of the main ideas of these

projects, and show how they are similar or related to the current system.

2.2.1 Wired Routing Algorithms

Conventional wired network algorithms for routing make use of periodic broadcasts

to the vicinity of the node, and then collect information to build a tree, so any node

inside the network can be eventually reached. Algorithms like RIP and OSPF [4] use

these mechanisms.

The problem of applying these algorithms to wireless systems is that wired links

are much more reliable than wireless links. Separate cables are electrically isolated

from each other. In the wireless case, the medium is shared and it is necessary to deal

with co-channel interference, these problems can be reduced by using techniques such

as MACAW [5], where by adding some control packets before sending big frames, the

delivery reliability can be increased, and throughput is increased.

On the other side, wireless communications have the inherent capability of working

in broadcast mode. With this, we can increase reliability by replicating information

along the network, and reconstruct the final packet without asking the sender for

retransmission.

This has some drawbacks, such as an increased amount of required bandwidth,

a buffer is required to store packets in intermediate nodes, and this can in the end

cause some delay, which can play an important role in the delay caused on two way

communication systems.

Even that our focus is on the gateways, since the communications between the

gateway nodes are performed through the internal network, we need to know the

behavior, so our system is adaptive to the conditions inside the network.



The main difference between this system and the conventional systems is that

the amount of border gateway routers is small and route reconfiguration tends to be

uncommon.

Examples of this behavior can be seen in the computers with just one default

gateway entry, which has a single address and most of the times it is just one entity.

Even that maybe at the core there is an active load balancing system going on, errors

in the local network need to be fixed for that specific default gateway when it fails.

In our system, we provide several outgoing gateways so in case of an outage, the

down-time is minimal.

2.2.2 Wireless Mesh Networks

The internal network of the Fluid Voice project is realized as a Mesh Network. There

are various different approaches to multi-hop wireless networks, most of them work

well under very specific conditions, or still don't have a practical implementation.

Networks that have mobility capabilities are usually classified as MANETs[8],

and there are some algorithms developed for routing inside these networks. The

performance of these algorithms depend highly on the degree of mobility of the nodes.

Another important requirement for our mesh network is to have low latency, which

may not be achieved when some algorithms sacrifice delay for high throughput. Some

of the most relevant algorithms for wireless mesh networks are AODV [9], TORA[12],

and DSR [10].

The idea of having an Ad-Hoc network was inspired mainly from the Roofnet [6]

project, where a set of computers with wireless network interfaces form a mesh that

provides network connectivity to a small part of a city. Although this experiment is

more focused on studying the behavior of the internal network, having an effective

connection to the outside world is a key feature in the implementation.

In this network, the gateway is a single node. All the traffic that goes in and out

of the mesh has to go through it, since the proxy adds a special layer to try new ideas

to give robustness to communications. This is feasible in a setup like the one used for

the real system, since the gateway node is inside a very reliable place, where it can



be fixed and checked constantly. However it is a single point of failure.

The main difference between this project and Roofnet is that the amount of border

gateways is bigger in our system. By having more than a single node, a routing

problem needs to be solved inside the mesh, and if we add the fact that some of

these nodes can appear and disappear suddenly, the problem becomes even more

complicated.

Another problem not addressed by Roofnet is how to provide real time commu-

nications. Roofnet aggregates packets into batches, the sender node broadcasts the

entire batch, hoping that the receiver gets the highest amount of packets. Intermedi-

ate nodes will retransmit the missing packets in the batch. These intermediate nodes

are chosen depending on who is the best candidate given the ETX metric.

This approach highly increases the efficiency of TCP-like protocols, where re-

sending a lost packet can jeopardize the entire flow. The only problem is that in the

process of batching packets, the delivery of them may be too slow for real-time two

way communications such as voice and video conferencing.

Ad-Hoc On Demand Distance Vector (AODV) uses on-demand route discovery to

provide the best path on certain moment to a destination. Whenever there is a need

to find an unknown route, a route request is broadcasted, and the answer is sent back

through one of the branches of the broadcast tree.

This algorithm is one of the most popular ones for static mesh networks. It is

used in several deployments to provide wireless networks in cities. Examples of those

are Seattle Wireless [2]. However, performance decreases considerably when mobility

increases. This happens because routing tables cannot change as fast as the location

of the nodes, that move between several obstacles for the radio signals.

In a setup as the one described above it is very often that intermediate nodes

realize that the path is broken, and there is a need to recompute the route. The time

required to know that the path is broken and to fix it has serious effects on higher

level protocols, by making them drop their performance to an unusable level.

For our system, we are considering just broadcasts, so we don't need to worry

about intermediate route reconfiguration. The drawback is the amount of scalability



in the size of the mesh, and probably the amount of power required to keep the

system running, since each sending node needs to talk directly with the destination

one, causing it to output higher power, and probably interfering other communication

pairs.

2.2.3 Load Balancers

One of the most common applications of Load Balancing is to provide high availability

to common services, such as web servers, or e-mail servers. The motivation for having

replicated services is because one single server is usually not enough to handle all the

load from the clients. The server is a single point of failure, so having a cluster of

servers connected by a fast network can be the solution to provide redundancy to the

system.

The Linux Virtual Server Project [17] is a project that provides a basic frame-

work to build highly scalable and highly available network services using clusters of

commodity servers.

The architecture of the system includes a load balancer, a pool of servers, and a

back-end service such as storage. The load balancer handles incoming connections

from the outside world using IP load balancing techniques, then selects servers form

the server pool and maintains the state of concurrent connections as well as forwards

packets.

This virtual server can do load balancing through a NAT, IP Tunneling, or Direct

Routing. These mechanisms are implemented depending on the size of the deploy-

ment.

In the NAT case, the advantage is that any TCP/IP compliant machine can be

behind it, and the setup can be made using a private address space. The drawbacks of

this setup is the low scalability. The reason behind this is that requests and responses

have to go through the same server, so the link is saturated with a fairly small amount

of requests.

Another option is to put an IP tunnel, where one machine listens for requests, and

forwards them to one machine from the pool of servers. The answer to the request



is sent directly from the assigned server to the client, without the need of the load

balancer. This approach requires the servers to support tunneling in their kernel,

which is becoming more common everyday.

Direct Routing is when the load balancer processes the requests and forwards it

directly to the idle server. It avoids to have the overhead of a tunnel, but requires

that the server OS have the ARP response disabled, since all of them respond to the

same address.

For this setup, the load balancer may become a single failure point of the whole

system. In order to prevent the failure of this node, a backup node is setup next to

it. Both machines exchange heartbeat messages through a specialized channel. If the

master node seems to be dead. The backup node will use ARP spoofing to take over

the virtual IP address to provide the load-balancing service.

In this thesis, we are going to extend the ideas provided by the LVS project by

taking away the hierarchical structure of the system. All the previous work was done

considering two or more kinds of nodes, and redundancy was provided by having

several machines waiting to take care of the jobs of a failing machine.

We remove the single point of failure caused by the load balancer by running a

distributed algorithm in each one of the participating nodes, making disturbances in

any random gateway node to cause the same effect on the system, that other nodes

can take care of.

The algorithms that the Linux Virtual Server uses are of major interest in this

project. These algorithms are very well known, and can be explained intuitively.

However, implementation details can represent a challenge for the correct execution

of these algorithms.

LVS uses Round Robin, or Weighted Round Robin to do task assignment. The

first one assumes all servers are identical, and by adding a weight function, we can

address issues as different capacities.

The Least Connection metric, weighted or unweighted, assigns tasks depending

on how busy is each of the servers. This approach can be taken as long as there is a

metric that reflects the amount of traffic on each of the links.



Source and destination hashing is a technique used in large deployments, has the

advantage of running in constant time, but won't be considered here because it as-

sumes all servers of equal characteristics, and it is a static mapping, where redundancy

is usually added by putting several servers listening to the same key space.

To provide more robustness, we could implement the algorithms that DHT's use,

where nodes join and leave at random times, and the key space is partitioned between

the available servers.

Instead of just using the network to store and retrieve key entries, we could use

it to register services on each of the machines conforming the network.

But since the amount of individual traffic is very small compared to the usual

hash table spaces, and we would like to have explicit information about the load of

every link, this is not a practical way to approach our problem.
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Chapter 3

Problem Statement

In this chapter we will describe the problem we are trying to solve, the challenges

and limitations when trying to provide a feasible solution to the problem, and the

consequences of having such solution.

Inside the network, there can be two type of nodes: ones with connection to

the external world, and ones without such access. This configuration will build up

several groups of nodes that intend to form Autonomous Systems (AS), that can be

connected to the external world through the available gateway nodes, that conform

a subset of them. These gateway nodes will provide redundant links to the Internet

or to other AS's.

The problem we are trying to solve is on how to do the best allocation of the traffic

generated by the internal nodes among the existing gateway nodes. The goal of the

project is to build a system of redundant gateways that will provide uninterrupted

communications from any node inside the FluidVoice network to the external world.

This means that gateways have to be prepared to handle unexpected outages in the

network, or of other gateway nodes.

There are some important challenges that the solution must meet to be effective.

The most relevant ones that occurred while developing this thesis are the following:

e Gateway failure

Gateway failures can happen in a variety of ways, ranging from a lost beacon



packet that is used to update the state of each gateway, to losing the link to the

external network link and needing to reestablish it, to the worst case of losing

the gateway completely due to a physical damage.

We need to find out which are the best mechanisms to be aware of the real

status of the gateways. These state updates must be accurate and be delivered

on time for the rest of the system to react to the sudden changes and minimize

the amount of lost packets.

e Internal Network failure

As showed in the following sections, the algorithm that we design is a distributed

one, so intergateway communications play a fundamental role in the correct

execution of the system. Since the objective is to provide reliability under any

difficult condition, the algorithm will use redundancy to deal with lost messages.

The number of expected transmissions required to successfully deliver a message

between all the participating nodes depends on the probability of successfully

transmitting packets inside the network, so we provide a solution that when lost

packets exist, the system will be in a suboptimal state, but still working.

e Which are the parameters to optimize?

Our solution focuses on two parameters, availability and packet delay. Avail-

ability can be defined as the percent of time that the links can be used, and

packet delay is the time it takes for a packet to get from any node inside the

mesh to the external world. Other solutions may be required if other parame-

ters were important. For example, in the case that delay is not as important as

high throughput, packets could be stored in batches in intermediate nodes, and

sent when the conditions are more favorable for increasing reception chances.

Such batch algorithms would not support real-time voice very well, however.

If we want to minimize the packet delay that results from providing this redun-

dancy, we need to focus on the algorithmic section, because delay caused by the

hardware is not really a big component of the end-to-end delay.



The time required for the gateways to reach agreement is the principal compo-

nent of the recovery time. So the main feature of this algorithm is to do this

computation concurrently with traffic forwarding. This is achieved by sending

redundant traffic when the state of the system is suboptimal, and then send the

exact amount of traffic when agreement has been reached.

In order to provide availability, the algorithm running on each one of the nodes

will forward traffic that it believes nobody else is forwarding. This will give

an impression to applications running over it that the link is always available,

thanks that the underlying protocols are running to coordinate between the

available gateways.

* Where should route mantainance be performed?

For the system to work properly, it needs to take decisions about traffic alloca-

tion. The place where decisions are taken makes a huge impact in the complexity

of the deployment. The question is where to put the decision making engine, so

the system achieves optimality as fast as possible, without sacrificing to much

processing.

One of the lessons learned from early designs of the Internet architecture is that

any design must be simple, even if it in a state where not all the parameters

are optimized. By having a suboptimal solution, we leave a gap for future

improvements. Extremely optimized solutions have the problem that will be

very specific to the particular case that needs to be solved, and won't work for

any slight variation in the input.

By designing protocols in such a flexible way, we will try to accommodate

connections that were not thought in the design stage. This is the main goal

behind Fluid Communications, where senders and receivers can interact between

them even if they were not designed specifically to do so.

For this reasons, the solution needs to be provided as a generic framework for

solving the allocation of traffic into multiple entities, not just the one that we

are encountering right now.



" How much are we changing the original networking stack?

There are various options to present the set of gateways depending on how

intelligence should be partitioned. In a first setup, all the intelligence is put in

the set of gateways, so the end nodes will broadcast to the biggest amount of

gateways possible, leaving them the job of agreeing who should send the packet.

Another totally different setup could be putting an agent in the end node, and

let it decide which gateway to send it to, so gateways will forward packets by

default.

The third setup is a combination of the two setups stated previously, an agent

is going to be in the end node, and gateways will coordinate between them.

For this particular case, the first implementation is going to be chosen, since

the focus of this problem is to solve the border gateway coordination one, and

we are not so interested in adding more complexity to the internal nodes.

" Configuration takes time

Coordination must be done fast enough so the system does not overload before

agreement has been reached. This is the reason for making the coordination

process asynchronous and separate from packet forwarding.

There are a huge number of variables that can describe the state and behavior of

a gateway. By taking some of the most relevant ones, we can generate a metric

that reflects the channel conditions depending on the interface capabilities, the

current load of the line, and other characteristics that are found to be useful.

Additional to that, it is possible to collect long term statistics about the link,

so we will be able to do some kind of prediction on the channel.

The design of this part of the system is not targeted just to this particular

application, which requires low latency and the fewest dropped packets possible.

Other applications may require other characteristics, so the cost function will

be modified.

Each time a packet arrives to the gateways, or a subset of them, the gateways



that successfully receive the packet need to decide who is the best candidate to

push the packet to the outside world.

" Stability of the output

The frequency of the gateway calculation process has to be high enough to

adapt to the dynamic conditions generated by varying number of flows, and

lose the minimum amount of forwarded packets. At the same time it cannot be

extremely fast because we need to give some time for the system to stabilize.

If the system tries to recalculate too fast, routes may tend to oscillate, so we

need to be aware of this kind of behavior during implementation.

The speed of recalculation may depend on the probability of packet delivery, be-

cause it affects directly the expected number of trials before having a successful

transmission.

" Network configuration complexity

There are a huge number of variables that can describe the behavior of a gate-

way. By taking some of the most relevant ones, we can generate a metric

that reflects the channel conditions depending on the interface capabilities, the

current load of the line, and other characteristics that are found to be useful.

Additional to that, it is possible to collect long term statistics about the link,

so we will be able to do some kind of prediction on the channel.

Choosing which set of significant parameters is a challenge, since we need to

include all the parameters that reflect the state of the system, so it can correctly

react to sudden changes in it.

The design of this part of the system is not targeted just to this particular

application, which requires low latency and the fewest dropped packets possible.

Other applications may require other characteristics, so the cost function will be

modified. In the implementation section, we will try to isolate the computation

of this value as much as possible, so other knowledge that is found to be useful



for future applications can be added without the need of changing the entire

implementation.

* Traffic fingerprinting, and granularity of it

In a real-world setup, gateway capability variations can be big enough that it

will be convenient to isolate separate sessions through the same gateway.

There is a need to identify which packets belong to the same session. Once we

define that, we can treat them as individual conversations, for which we would

allocate resources.

A way to identify a certain flow of information can be applying a Hash function

such as SHA1 to a subset of parameters that distinguish it, such as a combi-

nation of IP address-port pairs, or additional information that can be get from

the messaging protocol of the application.



Chapter 4

System Overview

In this section we will describe the components that form the system. We will give a

brief overview of the requirements of the system, as well as the algorithms that run

in each element of the system.

4.1 Architecture

The system used to provide communications between the inside and the outside nodes

is formed by a group of nodes that have external access. We call this nodes Stargates.

These nodes behave as internal nodes, and also have a connection to the external

network, that allows them to communicate all the nodes in the mesh with the outside

world.

The difference between this system from the conventional ones is that new routes

can be added and deleted much more often than in a wired network. The communi-

cation channel between all the gateways is not very reliable, so often polling between

gateways is required to know the status of each one of the gateways in the system.

Several outside links are established, the reason is to provide redundancy and

reliable communications under this circumstances. With this, it can be seen that

each mesh network can be treated as an Autonomous System, since internal nodes can

communicate seamlessly between them. Work is being done to provide this reliable

connectivity. In the generic case, we are dealing with the problem of communicating



autonomous systems through several redundant links 4-1.

AS1 AS2

Figure 4-1: Generic Architecture

This work focuses on optimizing the architecture for real-time applications such

as voice, but the results can be applied to any generic data network. We can envision

any group of closely connected computers as an AS, that communicates between each

others through redundant links. An example of this could be the computers behind

the NAT of every house, that could conform a set of ASs running as an overlay

network built over the Internet.
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Figure 4-2: Main elements in the architecture

Nodes are randomly positioned within the mesh. In order to provide robustness

to the system, there is no hard coded topology between the set of nodes. The set

of nodes will decide at runtime which one should serve each of the clients requesting

service. Each one of the Stargates will provide an availability index to be compared.

The availability index is computed with static and dynamic parameters. Potential

static parameters can be the theoretical maximal bandwidth, expected latency in

the link, between others, and in the range of dynamic parameters, we can consider

parameters such as current load of the system, the instantaneous throughput and

delay of the network. These parameters will be used to feed an estimator, in order to

give an idea of how good it is to use the gateway at a given time.



The gateways need to perform two tasks basically: the first one is how to choose

the optimal gateway to communicate a certain flow of data, and the second one is

how to provide route reconfiguration when a a gateway that is currently sending data

stops responding.

In order to communicate data through the link, packets that a gateway gets need

to be tunneled to be sent, and reconstructed and delivered in the other side, so nodes

in both sides can treat each other as in the same subnet.

The service where the links go through can vary in characteristics depending on the

provider, and the type of link. The ideal case will be to provide a real Internet point-

to-point link, but sometimes this does not happen, and the IP addresses provided are

behind NATs. In these cases, it is required to use a NAT traversal technique.

Important decisions have to be made in the way packets are being tunneled. This is

because the size of the packets are small, comparable to the header size of an IP/UDP

packet, so by stripping down redundant information, we can construct our own header

so occupies only the required amount of space. By doing this, and enabling packet

header compression, we can have a relatively smaller packet size, which is critical in

bandwidth-limited links.

The main challenge of this system is how to perform the tasks described in a

robust way, come out with a solution in the shortest amount of time, and perform

this operations in a distributed fashion. To make a compelling voice demonstration, it

was considered to add PSTN capabilities, so a proxy was built to translate telephone

calls to VoiceMesh compatible packets.

The rest of this chapter describes the main characteristics of each of the elements

that conform the system. In the next chapter we will describe the current setup from

where measurements are being taken.

4.1.1 Internal Node

A node consists on a computer with a wireless network. The setup is in this way

because a computer is flexible to program and prototype, but any 802.11 enabled

device that is fast enough to handle voice compression and generic GUI display can



be used.

The networking stack is a typical IP network, running under a Linux machine.

The Link Layer is for now based on 802.11b, with some modifications to allow mesh

capabilities. These capabilities are implemented between link layer and network layer,

and they are still on experimental stage.

There is still not a definitive solution on creating an optimal wireless mesh network.

There are some attempts to create them , the most relevant ones are AODV[9],

DSR[10], and ExOr MAC[7], between others.

The implementation of these mesh algorithms will provide us a convenient ab-

straction for the nodes inside the network, since all of them are going to be one hop

away.

Communications within an AS are broadcasted on a best effort basis. For our

purposes we do not need to know whether the broadcast is done via repeaters or by

direct broadcast.

The reason to use broadcast communications is to recognize that radios in net-

working naturally multicast. Antennas used in radio networks are omni directional,

which makes it very attractive to use for broadcast mode since radio waves are already

being broadcasted by default.
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Figure 4-3: Node architecture

Right now routing is done in the node granularity, and not in the application

one. That means that in the case with a single stream of audio going in and out

from the node, there is no problem, but in setups with multiple inputs, where each

one should be routed in a different way, this may cause problems, by forcing all the

flows through the same routing rules. In that case, the fingerprint function must be



changed to account for this types of traffic, which may require to add some kind of

message identifier in the data packets.

4.1.2 Gateway Node

The design of the gateway node is based on the architecture proposed for the internal

node. The gateways are extensions of these internal nodes by adding them capabilities

to establish a connection with an external link.
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Figure 4-4: Gateway architecture

The gateway node listens to packets originated from nodes inside the mesh, or

itself. If the received packet is intended to be broadcasted, then it is then forwarded

to the external node through the link connection it has established.

In order to send a packet through the link, it first needs to be encapsulated, so the

link connection can forward it as one of its data packets. The initial encapsulation

chosen was IP over UDP. The reason was because some of these links require NAT

traversal,and UDP packets work well under these conditions. It was seen that al-

though it works satisfactory for high bandwidth links, overhead is too big, in extreme

cases, the required bandwidth was more than double. In the implementation section

we will describe in detail the structure of the pseudo header and the reasoning behind

its selection.

Gateways can reach outside the AS Yia connections of different nature, thus their

bandwidth, latency, or other important characteristics are different from those within

the AS. Even for links with the same theoretical capacity, the physical conditions at



the time of establishment can give variations on their characteristics.

Since all gateway nodes are able to receive the broadcast packets within the AS,

it is necessary to coordinate their packet forwarding so the load allocation happens

in an optimal way. The algorithm for allocation is described in the following section,

and the key feature of it is that flow traffic does not get interrupted by the agreement

process.

An inter-gateway network is established, where the participating nodes can send

messages containing information about their own state, so other gateways can gather

information from the rest and make a correct assessment of the load in the entire

network.

4.1.3 Link handler

When gateway nodes initialize, they connect to an external node to setup a connection

with it. We will describe the characteristics and requirements that this node has.

This node is considered to be in a safe place, so availability is much higher than

any of the gateways. That is the reason for having one physical node in it. However

if some extra redundancy needs to be added, it can be added through establishing

a master-slaves scheme, where the master node receives task requests and redirects

them to the available slave nodes.

For simplicity, the link handler is designed as a multi-threaded program, with a

parent thread listening for requests from external gateways, and spawning children

nodes whenever a link needs to be established.

The link handler has two tasks: The first one is to handle incoming packets from

the links, reconstruct a valid IP header from the provided information, discard the

duplicate packets, and rebroadcast the rest of them to its internal network. The

second is to gather the packets from its internal network and send them through the

link with most availability back to the mesh network.

A garbage collector runs in the external node. It periodically goes through each

one of the children to see if the gateway that is connected to is still alive, if not, it

will free the process and reassign outgoing flows to other active nodes.



Figure 4-5: Link Handler

4.1.4 Telephone Interface

To make a compelling demonstration with voice communications, it is required to be

able to accept incoming calls that can participate in the communications.

One of the big complications for making this happen is to have access to a tele-

phone switch that can transform PSTN calls into VoIP calls. The infrastructure

that is being used right now is the MIT PBX that can make this transformation for

external calls to campus.

An Asterisk[1] server setup so any call to a range of extensions will arrive to this

server.The job of the Asterisk box is to give answering services to the system. The

format of audio is usually G771, which is not suitable for transmission over bandwidth

limited links, so there is a need to compress the audio, and at the same time reformat

it to something that FluidVoice understands. The Open Source Shtoom [3] package

is a soft-phone implementation that handles SIP calls to interface with Asterisk, and

at the same time handles G711 and Speex [16] compression, which are the formats

that we want to be able to translate. A modified version of Shtoom along with an

Asterisk server were used to build the proxy.

The modified Shtoom client takes the VoIP capabilities and the Networking layer

of FluidVoice. It registers to the local Asterisk server, so when there is an incoming

telephone call, the extension number is mapped to the correct client. Voice packets

get translated to Speex encoded packets with FluidVoice headers. These packets are
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Figure 4-6: Telephone Interface

connected to the external node interface, so it takes care of sending information to

the nodes inside the mesh.

4.2 Algorithms

The algorithm used to compute the flow allocations is described in this section.It

consists of two parts, the one handling outbound traffic from the mesh, and the one

handling inbound traffic. First we will define the requirements and design principles

for this algorithm, then we describe the algorithm itself, and finally we explore the

possible conditions it will encounter and make sure that it behaves correctly under

all the possible conditions.

4.2.1 Design Considerations

We are looking to design an algorithm that does load balancing of one or more flows

through one or more gateway nodes. A useful algorithm for this application requires it

to be completely distributed. The instances running on every node have to coordinate

between themselves and decide the optimal resource allocation.

It requires to have a fast coordination, since we cannot delay the packets too much,

because that would cause timeouts that can cause problems with the applications

running over this network.

Optimal allocation may not happen very fast, since the priority of the algorithm



is output a flow that needs to go out of the network. Simultaneous flows can occur

if gateways still haven't reached an agreement, and these duplicate packets can be

discarded in the external endpoint.

Since the algorithm is going to run in the same network as the one used for data, it

needs to provide its own mechanisms to work correctly under flaky communications.

In the external node side, it is required to have a buffer containing the most recent

packets, so it can have information to decide if the packet is a duplicate one. The size

of the queue must be chosen correctly depending on the characteristics of the traffic.

How to send packets back to the network is an important issue, the algorithm

needs to take into account the current load due to the outbound traffic, and based

on this additional information, it will run a similar calculation for the inbound traffic

allocation.

Dead gateway detection is done by running a garbage collection algorithm that

periodically samples the gateways for liveness, and deletes them. If the gateway

hasn't had activity for a long enough period of time, this garbage collector process

will deallocate the resources assigned for the certain link.

4.2.2 Gateway Algorithm

The input of the algorithm is a set of M gateways G = {G1,..., GA}, and a set of N

flows F = {F1,..., FN}, and the output is a correspondence table between gateways

and flows {(Gi, F) i E M, j E N}.The flows are the result of applying a fingerprint

function to every packet that passes through a gateway.

Initialization

1. Each gateway Gi is identified by its index i. The gateway contains three sets:

GF, that contain the flows that the gateway is forwarding, AF that contains

all the flows that are being forwarded by all the gateways that Gi can see, in

the ideal case, all the gateways of the system, and B, that contains the control

beacons received from neighboring nodes. These three sets are set to be empty

at the beginning.



Packet handling

1. When a packet arrives to Gi, it will calculate the fingerprint F to determine

which flow does it belong to, and record the time of arrival T,.

2. If the flow F is not in AF, it will forward the packet and append (Fj, T,) to

GF.

3. If the flow F is already in AF, it will check if it is in GF. If true, it will forward

the packet, and update (F, T,) in GF.

4. Else, drop the packet. This situation happens because the packet is already

being forwarded by another gateway.

InterGateway Communication

1. Every Tb, each gateway G sends a beacon packet containing

B= {G, Ci, {(Fo, To), (F1 , T1 ), . . , (FN, TN)

This describes the gateway ID Gj, the current capacity Ci, and an array con-

taining the fingerprint and timestamp of each one of the flows (F, T), j E N.

2. After sending the beacon signal, each Gi will empty B, and listen for beacons

for a period of time T. It will append all the received beacons Bi to its own B,

and construct a list containing the flows and the gateways that are forwarding

them.

3. If in B there is a flow with more than one gateway forwarding, the one with

highest C, is chosen, and if there still exists more than one gateway in the list,

the one with lowest Gi is chosen. The resulting array is AF, and we take all

the flows whose gateway is equal to Gi to construct GF.

With this algorithm it can be guaranteed that packets are forwarded as long as

they reach at least one of the gateways. In practice they should arrive to all the gate-

ways thanks to the infrastructure inside the mesh to provide local communications.



In case there are lost beacon signal packets, a suboptimal allocation is achieved,

where more than one gateway is sending the same type of traffic. This can be even-

tually fixed when communications are fixed again.

Figure 4-7: Gateway consensus with lost control packets

Figure 4-7 describes this situation. In the left figure, packets are lost in the

network, so the set of gateways partition into two subsets. Each one of these subsets

reaches an agreement of who should forward traffic, and select a gateway from each

group. This is the suboptimal case where more than one gateway is forwarding traffic,

with unnecessary redundancy happening.

Eventually gateways will be able to communicate again, and will reach to the state

described in the right figure. In this case, where a global agreement can happen, there

will be just one gateway selected to forward a certain flow.

Another case is when communications are partial, meaning communications only

happen in one direction. Say gateways Gi and Gj are part of the system, as shown

in the left side of figure 4-8. Gi can listen to the beacons coming from Gj but not

the other direction. In this case, Gi has information about Gi and Gj, and G just of

itself. When the algorithm runs in each one of the nodes, the one lacking information

from the other node may be forwarding extra packets of a flow, but there is very little

information because of gateway coordination failures.

The ideal case happens when communications are perfect, such as in the right side

of figure 4-8. In this case, each gateway has information of the other one, so when

the algorithm runs in each one of the nodes, the optimal allocation is achieved.

When a gateway dies, the outage perceived by the application will oscillate from 0

to the period of a beacon Tb. This short hiccup can be handled by upper layers, which

in our case can be the audio codecs, that in the absence of a packet, interpolation
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Figure 4-8: Gateway consensus with lost control packets

can be performed with the data available, making the transition more smooth.

Recovery happens because right just before beacons are sent, information about

who is forwarding which flows is gathered, and the flows that the disappeared gateway

was forwarding will appear as orphan flows, will be picked by several gateways, so the

application will see packets again, and another period of time, when the next beacon

is sent, agreement will be reached and just one gateway will be forwarding the flow.

4.2.3 Flows inbound at gateways

In the previous section we described the algorithm used to route outbound traffic.

Now we will describe an algorithm that deals with inbound traffic allocation on several

available links to the AS.

Each external endpoint is in charge of receiving the packets, discard duplicates,

reconstruct them to the IP format, and rebroadcast them in its local network. The

external node keeps a list of recent received packets, which uses to find out if the

incoming packet has already been sent into the AS.

When the external node receives packets from the mesh, it also receives informa-

tion about the capacity of the link. By constructing a table with information about

the state of the active links, the external node will be able to decide which link should

be used to send the packet.

This problem is slightly different from the one in the internal gateway, because

the algorithm does not need to run in a distributed fashion. All the information is

gathered by one entity, and there are no worries about lost packets between inter-

gateway communications.



Redundancy in this gateway node can be provided by having backups of this node

that can enter the system to replace the dead node. This can be done by sending

heartbeat signals from the current working node to the backups.

The objective of this algorithm is to provide an optimal allocation of the traffic

going from the external world to the mesh. This allocation is done such that the

nodes with least link usage are the first on being used.

The input of the algorithm is a set of M gateways G = {G 1, G 2, ... , GmI con-

nected to the external node, and incoming flows F = {F 1 , F2 ,..., FN}. The output

of the algorithm is a correspondence table between gateways and flows {(Gi, F) Ii E

M,j E N}.

Initialization

1. Queue L will contain the last received packets is initialized, and set to the

maximal size Lmax. A table C will contain the capacity of each one of the links

that are established.

Input Packet Handling

1. When a packet arrives, a hash is computed over it, and stored into H,.

2. If H, is contained in L, the packet is discarded and H, will be moved to the

end of the queue.

3. If H,, is not contained in L, it is appended to the end of the queue, and the

packet is forwarded.

4. If L is larger than Lmax, the front element of L is dropped.

5. If the packet was successfully forwarded, the value of the current capacity as

well as the timestamp is updated in C[in].

Output Packet Handling

1. The packet gets the fingerprint F.

2. If F is in F, we retrieve the pair (F, G), and send the packet through G,.



3. If F is not in F, select the gateway Gmax that maximizes C[in] [j] - C[out] [j], j E

M. Send the packet through it, and increase C[out][Gj].

Garbage Collector

1. Every T. look in F , if C[in][i] has a timestamp older than Tld, remove F from

F.

The minimal size of Lmax needs to be chosen carefully, since a small one may allow

duplicate packets if there are many packets coming from the links. A safe amount to

choose could be the number of packets that can come during a period of inter-gateway

broadcasts times the maximum amount of gateways.



Chapter 5

Implementation

This chapter gathers the lessons learned from the implementation of the ideas de-

scribed in the Design section. The implementation is focused in constructing a frame-

work to study new ways of routing between wireless networks taking into account their

unique characteristics.

The prototype implementation needs to be easy to modify so new traffic models

can be added. At the same time, it has to be efficient enough to perform real-time

tasks. The Python scripting language was chosen for the implementation because it

combines the flexibility required for prototype development, and good runtime speed

for VoIP applications, as reported in [3].

5.1 Gateway Network

In this section we will describe the laboratory setup of the current implementation.

This system is built according to the design guidelines stated in previous chapters.

The high level diagram of the setup is in figure 5-1.

The implementation consists of five different entities, each one of them is going to

be described here. This particular implementation has internal nodes communicating

between them, some gateways that provide redundant communications to the outside

world, and finally some telephone extensions whose calls are translated to be able to

participate in a conversation inside the mesh.
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Figure 5-1: Experimental Setup

5.1.1 VoiceMesh Node

This is an internal node of the Voice Mesh. It consists on a Linux computer with

802.11 networking enabled in Ad-Hoc mode.

This node is intended to be as simple as possible, so there is no need to have

any extra configuration over it. The application runnning on top of it uses broadcast

communications by default, so there is no need to setup a default gateway (there are

more than one usually). It is going to broadcast packets to its vicinity, and receive

broadcast packets from its neighbors, so the application is in charge to handle them.

5.1.2 Gateway Node

These nodes are the similar to the internal nodes in the mesh, except that it has an

additional network interface that is used to establish external communications.

The gateway node has a sniffer running on it, this is done not because it requires

to listen in promiscuous mode, since all the packets are intended to arrive to every

node, but to listen to its own outgoing packets.

Gateways communicate between them through broadcast packets in a special port



intended for inter-gateway communications, where they send messages to calculate

load allocation.

The job of a gateway is to encapsulate and de-encapsulate packets according to

the pseudoheader structure used in the links.

5.1.3 Asterisk and Link Handler

In this node, traffic from FluidVoice to the Telephone Network is handled. This node

has two network interfaces, as described in the diagram, which enables it to handle

outbound and inbound traffic.

It establishes connections with the gateway nodes through its public network

interface, receives packets, and forwards them to its own private network. Source

addresses are rewritten, so nodes in both sides of the network believe that they are

in the same subnet.

This address translation is not a requirement, since we could assign same subnet

addresses to both sides of the mesh, however to keep order of the different internal

networks it may be useful to have them uniquely identified.

Duplicate packet handling is also done in this node. Packet identification must be

done in an efficient way, since the arrival rate is relatively high and that can cause

it to be the bottleneck of the system. For this reasons, a hash is computed over the

packet and stored as a reference. The probability of hash collisions is low enough that

we can consider it none.

This node also acts as an Asterisk server, which handles call connections with

the telephone network. The task of handling calls requires the node to do audio

transcoding in real time, which han be processor intensive.

5.1.4 Telephone Proxy

The conversion between SIP/RTP format to the one used in FluidVoice is made in

this part of the system. The underlying platform used is Shtoom, which is originally

intended to be a VoIP client with Speex capabilities.



An instance of the proxy running for each extension in the telephone network.

On initialization, the proxy registers with the Asterisk-NAT server, so in case of an

incoming call, it is redirected to it.

When an incoming call is established, the proxy begins sending beacon signals

about the availability of the node. It will translate G.771 format to Speex coded

packets and add VoiceMesh headers to them.

Conversion in the other direction is also performed by this entity, where Speex

packets are converted to RTP format, so it can be delivered to Asterisk, that subse-

quently forwads it to the PBX and it can be converted to voltage amplitudes that

the telephone understands.

5.1.5 Telephone

This is a plain telephone node, the extension was provided by MIT IS&T Department,

and the service they provide is a translation between conventional analog lines to

packetized networks that are forwarded to our Asterisk server. The output is the

typical SIP/RTP format, which is a widely known standard for VoIP. The coding

used is G771, which uses pLaw.

5.2 Flow Identification and Isolation

For the routing algorithm to make a decision whether or not to forward a certain

packet, it requires to know to which conversation does that packet belong to. Traffic

fingerprinting can be a challenging subject since it is necessary to find which param-

eters of the packet reflect its identity.

Popular approaches make use of unsupervised machine learning techniques to

classify flows that require big amounts of packets to be processed before a good

decision can be made [15]. These approaches are useful when the type of traffic is

unknown and can vary unexpectedly.

Unsupervised techniques start by selecting some parameters that are believed to

be distinctive of the class and preserved over time, such as connection ports, and



begin to do clustering.

This is useful for traffic generated by applications that choose random ports on

run time to send information. Common applications are the ones running over TCP,

which by nature will spawn the next available port for every instance of the original

service.

For our particular application, since the application runs over UDP packets, most

of the communication happens in a well defined set of ports, so after trying some

combinations of parameters, the most successful one was the Source IP Address +

Data port. A SHA1 hash is computed over the concatenation of the bytes that

conform these fields.

The probability of hash collision in SHA1 is about 2-80, which can be considered

essentially zero for the current application. By using this particular flow fingerprinting

algorithm, we are restricted to have at most one flow per device, which works without

problems right now, but if a future application has another configuration that makes

this flow identification useless, more information can be added or removed from the

hash, to reflect uniqueness in the flow, and nothing else needs to be changed in the

routing algorithm.

5.3 InterGateway Messaging Protocol

In this section we will provide the implementation details of the inter-gateway proto-

col, which was described in the algorithm section.

This protocol runs over UDP, so no state is kept in the network stack. This makes

it much more convenient to program.

Every gateway node sends a periodic beacon signal, the period T is set to be

one second for the implementation. The value was chosen by considering that such a

timeout due to lost packets is significant enough to be noticed by the end user. This

value can be increased or decreased depending on the rate of the packets arriving

from the internal nodes.

Considering that voice packets are sent every 20ms, the amount of traffic forwarded



before every consensus time is about 50 packets. This value is big enough to notice

when a packet was failed to deliver because of a missing gateway, and not because of

a random intermission in the network.

The structure of the packet is shown 5-2. The beacons contain the following fields:

Gateway ID, current capacity, and finally a list with FlowID, timestamp pairs.

Gateway ID

Capacity

FlowD, Timestamp

Figure 5-2: Generic Beacon Packet Structure

In FluidVoice we are relying on the UDP protcol to check for errors in packets,

so we do not need to add any checksum into the beacon signal, and can consider

the packet delivery an atomic operation, duplication or loss of a packet gets handled

elsewhere.

One problem that happens in communications is how to synchronize the clocks

between all the nodes. This problem was solved by considering some assumptions

that often hold for wireless networks inside a local network.

By enabling RTS/CTS handshake and pseudo-broadcast [11] inside the wireless

network, packet collision can be reduced to a rare case, even for broadcast packets.

This is very important specially for UDP packets, where retransmissions do not hap-

pen unless the protocol running over it takes into account lost packets. The delay

of the packet then depends on the amount of traffic circulating around the network.

This delay is in the order of milliseconds, and is small compared to the beacon interval

time.

So we can assume that beacons come spaced about Tb, with small variations due

to packet delivery delay. Since it is impractical to send acknoledgement packets back

to the sender, it is necessary to define an epoch for which all the beacons received

during that period of time will be added up to calculate the traffica allocation.

After a beacon has been sent, the epoch starts, and ends just before the next



beacon is sent. Just after sending packages, the gateway will be listening for incoming

beacon signals from other nodes, and add them to an array that holds several beacon

signals.

The array for holding incoming beacon signals needs to be two epochs long, this

is done because it is necessary to consider to gateways sending beacons to each other

at the same time. There is no problem of lost packets since the MAC protocol will

take care of that. But if two packets from the same gateway come in the same epoch,

that means that the second one is too close to the end of the epoch and belongs to

the next epoch rather than to the current one. This is illustrated in figure 5-3.

II 111 Lu incoming beacons

T T T own beacons

wrong epoch

incoming beacons

own beacons

Figure 5-3: Beacon Message Timing Diagram

5.4 Packet Header Compression

For voice applications the average packet size is small, and sent in a relatively high

rate. This packet size is comparable to the size of the headers, so including a poorly

designed header can easily increase the amount of bandwidth required in the link.

Some of the links considered in the design have a limited amount of bandwidth, to

the point that the smallest ones can hold exactly one voice conversation coded using

a proprietary codec. Under these conditions, IP header compression together with an

efficient packet encapsulation are required for the link to work.

In this particular application we are using UDP packets with fragmentation dis-

abled. We also know that packets are broadcasted, so the concept of a destination IP

address is irrelevant.



IP Header

UDP Header

PseudoHeader

Data

Figure 5-4: Generic Encapsulation

With this information in mind, the IP ID field can be discarded since in a local

network, modern switches do not allow fragmentation, and even in the Linux IP

implementation, this field is discarded and padded with zeroes.

A final simplification is that checksums are not sent with the packet, so when a

packet arrives to the other end, it will be checked to have a consistent structure, such

as having expected values in each one of the fields. If the packet seems to be correct,

an UDP checksum will be calculated over it. In case this packet was really erroneous,

higher layer protocols will notice that and take care using their own error correction

mechanisms.

Some of the links that compose the system are services that work behind a NAT, so

in order to apply the NAT traversal algorithms, it is necessary to use UDP packets.

The current implementation is done by encapsulating IP packets over UDP ones.

Taking into account these special characteristics of the packets that the system is

going to handle, a smaller pseudoheader can be built, thus reducing the overhead.

The general aspects of the encapsulation are shown in 5.4.

The header for outbound traffic is different from the one for inbound traffic, this

is because the algorithm requires to know some information about the current state

of the gateways.

The pseudoheader structure is shown in figure 5.4. The first field is the last octet

of the Source IP Address, followed goes the UDP source port, which happens to be

the same value for the destination port. The encapsulation in the forward path is

different from the reverse one. In the path from the gateway to the external server

there is an extra field about the current capacity of the link. This header is 4 bytes
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Figure 5-5: Encapsulation Header

long going outside the mesh, and 3 bytes going inside.

Considering the different audio compression factors that can be handled by the

voice codec, we can have an idea of the size of the packet before header compression

techniques. Some common values are shown in table 5.1.

For example, the average packet size for encoding near telephone quality using

Speex compression is 44 bytes for every 20ms of sound.

Table 5.1: Overhead introduced by encapsulation

Packet Size[bytes] Outbound Size Increase [%] Inbound Size Increase [%]
44 8.3 6.3
22 15.4 11.5
8 33 25

5.5 NAT Traversal

The fast growing of the Internet led to a shortage of IP addresses. To deal with

this problem, NAT (Network Address Translation) was invented, this method allows

to connect private IP address spaces to public routable Internet addresses. This is a

very common practice between organizations where there can be thousands of systems

connected through a few public IP addresses.



The problem with using this kind of schemes is that hosts behind a NAT do not

have true end-to-end connectivity. Services that require the initiation of connections

from the outside network such as TCP, or stateless protocols such as UDP, cannot

work behind a NAT.

However, the lack of bidirectional connectivity can be regarded sometimes as a

"feature" instead of a limitation. This is because the NAT depends on an internal

machine to initiate a session, so it can prevent malicious activity targeted to a host

behind the NAT. This can enhance reliability of local systems by not allowing scans.

Some of the links that participate as alternative options to send packets through,

are provided by ISP's that establish a connection behind a NAT, this is true at least

for GPRS connections as well as Satellite Modems. In this case, it is necessary to

punch a hole in this NATs to allow incoming and outgoing packets through it.

The nature of the data generated by the nodes is very simmilar to standard VoIP

applications, and thus suffers from the same problems related to NATs. There are

well known techniques to traverse NATs.

We have chosen STUN [14] as the way to traverse NAT boxes. STUN is a

lightweight protocol that allows applications to discover the presence and types of

NATs and firewalls between them and the public internet. It also provides the ability

for applications to determine the public IP addresses allocated to them by the NAT.

STUN works with most of the existing NAT boxes and does not require any special

behavior from them.

Once the client running in each one of the gateways has been able to determine if

there is a NAT in the middle, and what kind of NAT it is, is possible to traverse it by

sending packets through the port where we are expecting to receive information. The

usual configuration is a port restricted cone NAT, so it is required to send packets

through the ports we want to use before the state needs to be kept. A keepalive signal

is sent every minute through the NAT in case there is an absence of packets to keep

the state in the NAT box.



Chapter 6

Analysis and Evaluation

In this section we analyse and evaluate the performance of the algorithm running on

the gateways. We first analyse the behavior of the gateways under load variation, and

provide the upper bounds for the possible variation in input traffic that the system

can handle.

6.1 Gateway Behavior Analysis

The nature of the algorithm used in the set of routers sacrifice optimality for reliable

packet delivery. In this section we will give an analysis of the implications of this.

The algorithm is designed in such a way that when an unknown flow arrives, it

is forwarded by default. This is done until gateways coordinate after a period T, in

the ideal case where intergateway messages are not lost.

6.1.1 Load Variation

Consider a system of M gateways that communicate intergateway messages every Tb.

The total load is A2 packets/s at t < 0, and a changes to Af for t > 0. This load is

sent from the internal nodes of the mesh network to all the available gateways. Our

interest is to predict the expected load experienced by the external link.

. If Af > A2. The link experiences a transient period where the usage increases



from Ai to an overshoot value Ao = Ai + M(Af - As). After at most Tb, the

gateways reach an agreement and the final load is Af.

* If Af < A,. If the gateways reduce the amount of traffic, the effect is immediate

in the link. After some period of time, the garbage collector in the gateway

will notice that traffic is not being sent anymore, and will remove the allocated

resources for it.

Both cases are illustrated in figure 6-1.

(a) { (b) A

Xfi

Having presented our assumptions about the nature of the variations in load, we

are prepared to do an analysis of the maximal variations allowed by a certain link.

The transient bandwidth usage is defined as

AO = AfM - A(M - 1) (6.1)

In the limit case, where AO = BWmax, we can calculate the maximal achievable

load given an initial one. A sample plot with some values of M is shown in figure

6.1.1.

For a typical case with around 10 conversations of about 20kb/s simultaneously,

running in 5 gateways, and an external link of about 100Mbps. For this case, the sys-

tem can handle another extra 130 conversations without overloading in the transient

period.
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Figure 6-2: Upper bounds for load variation

6.1.2 Time to reach a stable state

The convergence time of this algorithm depends highly on the reliability of commu-

nications. Consider a gateway system of M nodes, where the probability for a node

sending a message and reaching all the other nodes is p. Beacon signals are sent

periodically, every Tb.

For this part of the problem, a simulation was run on a setup of M nodes. Figure

6.1.2 shows results for an interval from p = 0.1 to p = 1. We can see that the

number of transmissions required to deliver the message successfully decreases as the

probability is near to 1.

An interesting fact is that the amount of required transmissions does not increase

significantly with the number of nodes, as the simulation shows.We can see that for

low packet delivery probability, adding a large amount of nodes does not increase the

number of transmissions significantly.

In out tests so far, experiments have shown that the packet delivery probability is

higher than 80%, so we will focus on that region of interest. With this information,

and considering that the number of gateways we work are less than 10, we can see that

the expected number of transmissions before reaching all nodes is around 3, which

can be mapped to expected delay during gateway reconfiguration. Such information



can be very useful for a voice codec, so it can know the worst case of delay, and apply

countermeasures to minimize it, such as redundant transmission of frames, or forward

error correction codes (FEC), etc.
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Figure 6-3: Convergence Time

6.1.3 Recovery Time

The original goal of the algorithm is to reach a stable state, and ultimately an optimal

stable state. In case that there are errors, this process can imply going through

suboptimal states, that can be stable or not.

In this section we will talk about how to recover from errors causing the system

to go from an optimal state to a suboptimal one. This recovery is focused on deliv-

ering packets properly, and not other kinds of higher level recovery, such as Forward

Error Correction codes, which interpolate information of a lost packet through their

neighbors.

The most important aspect of this system is resiliency. We are focused from the

very early design stages to construct a system that can tolerate failures and recover

from them in the shortest amount of time.

Consider a system with M gateways, transferring packets at a Ai rate, with one of
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them failing. We are interested to know which is the expected time before information

goes back through the link, and also the time for the system to converge after this

happens.

There is a periodic beacon sent every T by the nodes in the network. We can

model the moment of failure as a uniform distribution in 0 < t < Tb. With this

information we can find out the expected time for the system to realize that one node

has died, which is Tb/2. This is the amount of time for which traffic is lost.

The expected time it takes for the system to converge again is 3/2T, because we

need to wait for the next beacon to be sent. If the traffic that the lost gateway was

transferring is equal to Am, we can predict that the overshoot will be Ao = Ai + MAm,

before stabilizing to the original value A1.

6.1.4 Route Stability

An important aspect of a routing algorithm is how long a route follows the same

path. The behavior of the routes differs from its wired counterpart in the sense that

most wired networks are setup in specialized ways, where the routers are in special

environments, such as data centers, with shielded connections.
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In fixed topology wired networks, routes are stable for long times [13], in the order

of hours to days. This happens because once routers have solved the optimal route

problem, and if there is no change in the topology, the optimal has been achieved and

there is no need to switch to another configuration.

The routing problem is an search for a better solution, and the reason routes can

vary if there are not drastic changes in the conditions is if a better optimal solution

is found on the system. This happens for example when an optimal solution is found

but more information is added to the optimization problem.

In our case, the algorithm that runs on each gateway executes a global optimiza-

tion algorithm, so we can expect that routes last for a considerable amount of time

unless gateways drop unexpectedly.

6.2 Gateway Measurements

In this section, we present some experimental data gathered from running probes on

the network testbed. The main objective of these measurements is to see how close

we hold from the theoretical analysis presented in the previous section.

The main differences between the measurements and the theoretical prediction are

due to simplifications done on the model, such as no propagation time of messages,

immediate response time of the systems, and perfect internal mesh behavior.

We will see that most of the model behaves, however important phenomena were



observed, from which some should be added to the design considerations.

6.2.1 Gateway behavior under load variation

We present a series of measurements for the traffic observed inside the mesh network.

An interesting observation of this measurements are the scalability issues for internal

broadcast methods inside a wireless mesh network.

Although the packet speed ranges around 11-54Mbps, which is several orders of

magnitude higher than the traffic generated by the internal nodes, packet collision

happens when the amount of nodes increases.

Figure 6-6 shows plots for four independent nodes turned on sequentially. Even

that the final cumulative traffic is about 20kbps, which is less than 1% of the the-

oretical maximal capacity of the channel, collisions start happening with very high

probability.

The total traffic seen at the gateway is in figure 6-7. A possible explanation of

this behavior is that nodes do not know when to send information. Packets are being

broadcasted, so the concept of receiving a CTS packet does not exist.

Since 802.11 does not protect packets in broadcast mode, and UDP packets do

not have reliable delivery protection in the network layer, information is sent through

a much lower rate, generally at 1Mbps. This can be avoided in the Atheros chipset

by changing some parameters in the driver, however this is just for experiments.

One possible way to avoid this kind of behavior, could be to send unicast packets

to a node, and have the rest of them listen in promiscuous mode. With this we

can guarantee that the RTS/CTS process happens, so reliable delivery can happen

between two nodes, and at the same time, the other ones can listen to the conversation.

6.2.2 Link behavior under load variation

In this experiment, we setup three gateways connected to the external link, and

begin running FluidVoice clients that generate traffic incrementally in random internal

nodes. There is a period of time that load has to wait in order to be stabilized. These
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Figure 6-6: Individual Flows seen from a gateway inside the mesh

plots can show how information gets routed from one side of the mesh to another.

The algorithm acts in such a way that when unknown traffic is heard, the gateway

will forward it by default, and subsequently will make an assessment of the correct

allocation.

Figure 6-8 shows a plot for the traffic seen at the link handler, where packets are

gathered from all the possible links that it could be connected to. The behavior is

the one as expected, where a period of overload happens before stabilization.

An important observation that has to be made is that packets get ordered in the

links, since the capacity of the link is much higher than the throughput generated by

the flows. Ordering is accomplished because packets are sent to the link, where the

probability of collision is very low because most of the time the link is idle.

Figure 6-9 shows the traffic behavior seen at the link compared to its theoretical

192.168.200.82 192.168.200.79
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behavior. The thick line is the predicted behavior and the thin line is the real one.

The clock between each one of the nodes are not synchronized, so due to the small

variations in response time, we can see that the result is not a perfect step function,

but a low pass version of it.

We can see from the plots that the external node has to handle some extra traffic,

proportional to the amount of active gateways at the time. This is the key property

of the algorithm, which is its commitment to forward any unknown traffic until the

nodes figure out who should really be in charge of a certain flow.

Once gateways communicate, agreement is reached, and the load perceived at the

external node decreases to only the required amount. This is can be seen in the stable

regions of the plot.

If we measure traffic in the side of the network where the external node has already

filtered out duplicate packets, we can see that increase in network load occurs in a

much regular way, just as predicted, consecutive incremental step functions, without

the overshoot seen due to the redundant external traffic. This can be observed in

figure 6-10.
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One fundamental parameter for this traffic filtering to happen is the size of the

queue used to handle packets, as well as having an efficient implementation of the

filter. The delay in packet processing can affect dramatically the output response for

the link handler, adding delay and jitter to the packets as they cross the link.

The range there this kind of behavior can happen is limited by the maximum

bandwidth of the link, and we have seen that the theoretical limits, or maximum

values specified by the manufacturer are not the values that should be used for design.

We need to take into account the speed of the intermediate router, as well as the

nature of the traffic that is going to be forwarded. If it does not count with collision

avoidance mechanisms, which is very common for broadcast communications, this can

deteriorate severely performance.

6.2.3 Gateway Failure

The main objective of the project is to build a resilient gateway system, which can

perform packet forwarding under severe conditions.
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This made the design to be focused on automatic recovery and self healing.

The sources for packet failure can be gateway death, or miscommunication between

live gateways. In either case, the rest of the network tries to take care as good as

possible of the remaining links.

In figure 6-11 the gateways receive load incrementally, which can be observed in

the peak variations. But due to miscommunications between the gateways in the

mesh, one gateway believes that another one is dead, so it will take care of its traffic,

generating the sudden increase in traffic.

Once communication is re-established, load stabilizes and the system behaves

normally.

6.2.4 Packet delivery probability

In this section we will describe some interesting phenomena observed in the experi-

ment run. These are implementation dependent, and need to be considered for any

future implementation of a similar system.
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Figure 6-10: Load Variation seen in the external Network

Figure 6-12 shows a typical increase in bandwidth, and the behavior of the gate-

ways. This behavior is the one expected in the theoretical analysis, and is very similar

to the plots describing gateway load increase.

However, in this case the amount of time it takes to converge is bigger than

one period of beacon broadcast. In graph 6-11 it is very clear that the number of

coordination messages that have to be sent are two, which corresponds to about 85%

of reliability in message delivery, as calculated in the simulations for packet delivery

probability.

One application of this could be that we could set convergence time based on

measurements of network conditions. With this, we could do what network weather

tools predict. This information could be made explicit to higher network layer, and

they could be able to take advantage of this.

6.2.5 Packet Delay

One of the main goals of this algorithm is to minimize the amount of delay introduced

by adding the load balancing mechanism to the network.
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Figure 6-11: Recovery

The amount of delay caused by the gateway loss and reconfiguration was analyzed

in the previous section. Here we will study the behavior of the system in stable

conditions, by that I mean connections are routed through the same path during the

experiment.

The performed test was the conventional Round Trip Time(RTT) test, in which

a packet with a timestamp is sent from a machine inside the mesh, and reaches a

machine outside the network, and this machine resends it back. Once the packet

is received, its timestamp is compared with the reception time, and this value was

measured.

The measurements are shown in figure 6-13. The values are RTT against Trial

Number. The RTT experienced by the application is in the order of 20ms. This value

is acceptable for real-time two-way voice communications, much less than the 80-100

msec tolerance considered acceptable in the Bell Telephone network.

In a comparable wired network, the RTT experienced between two hosts in the

same AS is in the order of 0.5ms, which can be neglible,and between single hop

wireless networks, the amount of delay is also around 0.5ms. With this knowledge,
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Figure 6-12: Individual Flows

we can conclude that the major component of the delay is due to the gateway code.

Any variation shown is ideally due to the processing overhead in the gateway network.

In these set of measurements, even that points are spreaded due to random noise

in the environment, there is a clear tendency to increase the lower bound linearly.

Even that the slope of this bound is relatively small, and may not interfere with

the overall behavior of the system, it is clear that it reflects the existence of some

state in the gateway system.

The system was measured in a stable state. We arranged this by running the

system configuration for about one day before measurements were made. This was

done to make sure that the errors introduced by transient states could be discarded.

The setup includes four nodes transmitting information and three acting as gateways

too.
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Chapter 7

Conclusions and Future Work

This thesis reports on the design and implementation of a distributed algorithm for

connecting mesh radio networks using multiple available gateways. Our goal is to be

resilient, robust, and efficient. This setup of redundant gateways aims to provide an

overall reliable link between two Autonomous Systems.

Reliability and resiliency are the primary goals, given that any of the underlying

links may fail unexpectedly, and their connectivity to the mesh may vary substantially.

The objective of providing a reliable system has been achieved, as shown in the

analysis and experimental section, where it was shown how the algorithm works under

some of the most common scenarios.

Gateway failure was handled successfully by the algorithm, as we can show in the

experimental measurements. The amount of downtime is around 1 to 3 seconds, and

this his depending on the period for broadcast reconfiguration. It can be lowered

down to even smaller values, but the stability and convergence of the system can be

threatened.

Internal network failure was studied through simulations, resulting that in order

for a message to reach all the other nodes in the mesh, it is required to send packets

around 2 times in the average case for 85% packet delivery rate in a network consisting

of around 10 nodes. With this value we could tune the intergateway beacon period

so we can control the outage time. This outage time resulted to be of 1 to 3 seconds

depending on the network conditions.



The traditional approach to provide redundancy in big systems is to have a re-

placement substitute a faulty node and perform its task, and in a hierarchical system

such as in master-slave ones, specific replacers are required. In our approach, we are

using a flat approach, where any node can be replaced any other one. This approach

can bring more robustness to distributed systems, specially the small ones, where

having hierarchical structure can be a waste of resources.

7.1 Measurements

The measurements done show that depending on network conditions, packet deliv-

ery probability can vary substantially, making delivery rate and probability play an

important role in the performance of the algorithm. The algorithm can/may be in

a suboptimal state in the case of partial communications. Under the most common

or normal conditions, the transient overload period after a crowd of new communi-

cations or lost gateway, where the bandwidth consumption increases suddenly, would

last one beacon period. In the other case, where communications are flaky, and some

beacon packets are lost, bandwidth consumption will be more than the optimal, but

for the end user, the problem would be imperceptible.

The parameters that this system optimizes are the packet delivery latency and

system downtime. The average packet latency of the algorithm in a typical setup is

about 15ms to 20ms, which is much higher than a conventional wired link, which is

about 0.5ms. Even that this latency is several times bigger than without adding the

system, it is still acceptable for real time communications, and it is probably caused

by implementing it on Python. The system downtime is in the order of seconds,

as stated before, and this when gateways fail to forward traffic. In the case of lost

beacon packets, the effect is not seen as a lost packet, but as some extra use of

bandwidth, proportional to the number of Stargates that realized that a certain flow

is unattended.

The changes in the networking stack were minimal for the internal nodes, which

are just required to broadcast packets by default. For the Stargate nodes, the only dif-



ference was that they were taking the relevant parameters of the headers to construct

their own pseudo header based over IP/UDP. The overhead introduced by adding a

tunneling layer into the packets for forwarding through the links is in the range of 5%

to 35%, depending on the packet size. If packets are very small, they are comparable

to the size of the header of the protocol where they are encapsulated. Some of the

fields in the IP header are redundant, so just the useful information was extracted to

construct a pseudo-header.

This algorithm has the advantage of doing a distributed allocation given a partial

or total input to each one of the gateway nodes. The downside of this is that during

recovery time traffic grows proportional to the number of participating gateway nodes,

that quickly slows down to only the required amount of traffic when agreement has

been achieved. The time for this traffic to slow down depends on the packet delivery

probability, and in our case is about two or three gateway beacon periods.

Stability of the routes were measured as the number of times a flow had to change

the gateway it is using. The stability of the allocation depends directly on the avail-

ability of gateways. Once a flow is taken by a certain gateway, it will remain allocated

there until the gateway disappears, or there is a miscommunication between gateway

nodes. In that case, a route will be replicated by other nodes, and once communica-

tion is reestablished, allocation will go back to the original node that was forwarding

traffic.

Traffic fingerprinting and flow identification were done by taking IP addresses and

ports. This could be done since traffic flows in very well defined ports and do not tend

to change. However in more complicated cases such as encrypted traffic, or multiple

clients running on the same machine, more complex ways to fingerprint needs to be

done.

7.2 Lessons Learned

The main lesson learned from this thesis is the fact of isolating a specific problem and

solve it, instead of trying to solve all the small side problems that increase performance



in a small fraction. This is true specially for the gateway problem, where it was very

important to set a limit on the problem, and just solve the necessary networking

problems required to have a working solution.

As an important implementation issue, it was seen that even using an interpreted

language such as Python, the development time was decreased drastically without a

substantial performance sacrifice. But for future applications on a more larger scale

development or a production development, it would be better to write the primitives

in a compilable language, and use Python bindings to have the flexibility to test

different approaches without sacrificing performance.

7.3 Future work

As future work, it would be interesting to add some unsupervised machine learning

techniques to analyze more complex traffic. In this case, ports do not vary, but in a

broader range of applications, it would be critical to know which packets belong to

the same logical entity, so they can be treated atomically.

A very important issue that has not been considered in the design of this algorithm

is scalability. This algorithm clearly does not scale very well for a large number of

gateways. The original goal of the problem is to provide reliable communications

through any available node. This still works very well in practical setups, where no

more than a couple of gateways are present, such as in our experiments, where there

were about three to four gateways. However, in a bigger system, such as a campus

scale network with dozens of links with the external world, overhead introduced by

gateway coordination could degrade performance severely.

A more efficient way to solve the problem would be to create several internal mul-

ticast trees, so routing would be performed under a geographical basis depending on

parameters such as position or signal strength. This implies integrating the mesh net-

work with the gateway network, using the same internal routing capabilities on both

types of nodes. With this assumption, load could be balanced between several gate-

ways, without overloading the links during transient periods. The downside of this



is that in case of gateway failure or intermediate node dead, the time to reconstruct

the tree could cause lost packets.

This prototype was built for routing traffic generated by FluidVoice, which is a

subset of the traffic that networks can carry. As a more ambitious project, it would

be interesting to explore ways to handle general Internet traffic, and try to couple

them to higher layer protocols like TCP, which try to provide fairness and handle

congestion.
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