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Chapter 1

Introduction

1.1 Motivation

Techniques for recovering geometry from multiple images of the same scene have improved

dramatically over the last ten years. In this time, much of the work in the Object Based Me-

dia group at the MIT Media Laboratory has explored methodologies for media processing

that operate primarily on two-dimensional images. Shawn Becker and Stephan Agamanolis

proposed object-based image coding and compositing techniques that stretched the state of

the art in the mid and late 90s, but their work has not been revisited since the recent explo-

sion of work in this area. The multi-camera virtualized reality work of Kanande and the

image-based rendering techniques employed by Debevec have brought image-based mod-

eling into the research mainstream. Image-based rendering has been used to create con-

vincing 3D models and feature-film visual effects, but despite tremendous recent progress,

scene capture for these techniques is far from automatic.

Central to gathering scene data for model generation or image-based rendering is the plan-

ning of camera positions to ensure adequate coverage. Since much of the processing of

these image sets is done offline, it is usually impossible for a camera operator to know if



he or she has gathered enough image data from a scene to generate a model of a desired

fidelity. If any part of a scene is out of frame or occluded from view in all captured frames,

that portion of the scene will not be available for any subsequently synthesized views.

Likewise, if a surface is imaged only from a grazing angle, quality of gathered texture and

geometry will suffer. For the simple convex objects often digitized in demonstrations of

3D capture systems, reasonable camera placement usually produces good models. Unfortu-

nately, for complex scenes with many occluding objects, it is quite difficult to be sure when

one has gathered adequate coverage. The camera movement planning system I describe

here enables automated capture and refinement of static scenes allowing for unattended

modeling of indoor spaces using a group of mobile robots. This work also demonstrates

an application of scene capture for producers of holographic images. Holographic video

generation requires the capture of either many adjacent views of a scene, or computation

of display information from 3D models. The planning system described here allows for the

automatic capture of data for holographic display.

1.2 contributions

This thesis describes software tools and algorithms that were designed by the author to

allow for automated capture of 3D scenes. Specific contributions include:

An algorithm for planning robotic camera movements to iteratively improve 3D models of

a visual scene.

Specific optimizations to allow the camera planning algorithm take advantage of pro-

grammable graphics hardware.

Software infrastructure for communicating between image-capturing robots and image pro-

cessing computers.



Software viewing progress of scene capture, resulting 3D models, and for simulating the

capture task entirely in software.

1.3 Overview

Calibration

Before experiments begin, the camera attached to each robot is calibrated to determine lens

focal length and radial distortion parameters. Although techniques have been documented

for automatic calibration of moving cameras, for simplicity, I calibrate using static calibra-

tion targets. The derived parameters are used to rectify images gathered by each camera.

Angular calibration of the servo pan-tilt system has was performed, while the linear drive

system only crudely calibrated.

Scene Capture

Capture is triggered by a request sent via the application running on the laptop computer.

The request specifies the camera parameters for the desired view or views of the room to

be gathered, a rough scene center location, and a rough scene radius.

Depth Image Capture

Cameras orient themselves towards the view volume of the desired view, capture one image,

move linearly to a nearby camera position and capture a second image. Each image is

archived and stamped with a unique identifier. A depth image is then computed from

the captured stereo pair. Depth images are be computed using the simplifying Lambertian

assumption: a given point on the surface of an object will look the same from any direction.



A confidence score is stored for each depth sample, based on the difference between the

best-matching luminance patches in the stereo pair.

View Generation

Upon completion of the depth recovery computation, the system, using the GPU on an

attached PC, generate the desired view(s) from all recorded depth images. This is done by

converting each depth map into a 3D mesh, transforming each mesh from the coordinate

system in which it was gathered into the world coordinate system, and then rendering all

of the stored meshes in a single view. Confidence scores are likewise coalesced into a 2D

confidence map for each of the desired view(s).

Planning

Robotic camera nodes then prepare to move to a new location for further image capture,

repeating the above steps until the requested quality criteria are met. To do this, each node

combines all depth and estimates computed so far, and locates a region of the camera's lin-

ear track that has visual access to depth discontinuities in the depth maps. A camera move

towards the area will (except in the degenerate case of a grazing view of a surface) yield a

view of scene information that was previously occluded. New pan-tilt direction direction

is chosen to center the camera on the depth discontinuity. A map is kept of regions that

have been the focus of previous attempts at uncovering scene information. To limit search

of scene patches that cannot be be imaged from reachable positions, explored regions that

yielded no new information will not be revisited until all other candidate regions have been

explored.



Depth Discontinuity New Scene Information

Depth Surface

Viewpoint Shifted Viewpoint

Figure 1-1: Previously missing scene information is revealed when viewpoint is moved in
the direction normal to a depth discontinuity.

Completed View Generation

When a node has a set of confidence maps that together meet the requested confidence

requirements, the node assembles a full model for generating the scene. This node traverses

the depth and confidence maps and finds which texture data will be needed to generate the

desired view(s). These texture data are then requested from the appropriate nodes, and a

complete model is assembled from accumulated texture and geometry data. This completed

model is then sent to the laptop computer. A request to cease further data collection is then

sent to the remaining nodes.

1.4 Related Work

The method described here for planning iterative scene capture draws on work in the areas

of sensor calibration, correspondence-based depth recovery, image-based rendering, and

sensor planning. Much work has been documented in these fields, and this thesis draws

extensively on existing techniques. My contribution consists largely of the integration of

several of these methods, with contributions in fast GPU-based image processing tech-

niques, and in simple heuristic rules to guide image-driven planning. Here, I will outline

research that serves as the foundation for this thesis, as well as other related work.

Mallett and Bove [2003] developed a network of robotic cameras with two degrees of pan-



tilt and one degree of translational freedom. These robots were employed for much of

the work described in this thesis. Bove and Seongju Chang also developed a stationary

system of networked tiles with the same camera and microprocessor hardware as used in

the robotic cameras. Algorithms for comparing the images captured by these tiles were

explored by Pilpre [2005], who built a software tool to find the 2D offset between images

gathered by pairs of tiles. Pilpre's approach employed KLT features [Shi and Tomasi 1994].

Mallett [2005] continued this work by using more robust SIFT features [Lowe 2004] to

establish 2D adjacency relationships within groups of these tiles.

Calibration allows a researcher to learn the geometric parameters of an individual cam-

era as well as parameters relating systems of cameras. Calibration of a camera network

may simply seek to discover which cameras have overlapping views [Pilpre 2005] [Mallett

2005] [Wren and Rao 2003]. Such calibration may also seek additional parameters includ-

ing lens parameters [Willson 1994] [Becker and Bove 1995], rotation axes, and relative

camera locations [Sinha and Pollefeys 2004] [Davis and Chen 2003].

Once camera geometry is known (or estimated), collections of multiple images, and/or

images taken of objects under constrained lighting, have been used to extract the 3D shape

and texture of objects.

At the Media Lab, techniques developed for extracting geometry include the work of

Bove [1989], where depth of images was recovered from structured lighting, focus, and

from camera motion. Successful systems for recovering moving object models by arrays

of fixed cameras have been demonstrated by Kanande [1997]. Image-based rendering of

such scenes has been explored in detail by Debevec [1998]. The work done for this thesis

will use similar techniques for generation of images from synthetic views.

Complete systems for capturing lightfield [Adelson and Wang 1992] models of stationary

objects have been also developed [Unger et al. 2003]. Other research at MIT has explored

the digitizing of cities using a mobile pan-tilt imaging rig [Teller et al. 2005]. Research at



UCSD [Trivedi et al. 2005] has explored the tracking of people in a room using networks

of omnidirectional and pan-tilt cameras.

In addition, work has been done to recover 3D models from images from uncalibrated

image sequences. In uncalibrated situations, camera parameters are derived only from rela-

tionships between gathered images. Work in the Perceptual Computing Group at the Media

Lab [Azarbayejani et al. 1994] demonstrated assisted model recovery and camera tracking

from uncalibrated video sequences. Becker [1995] proposed further methods for recovering

dynamic camera parameters including focal length and radial distortion by finding vanish-

ing points of rectilinear geometry. More recently, compelling image-based Work done at

UNC [Pollefeys et al. 2004] has demonstrated the unassisted registration of frames from an

unknown video sequence to recover detailed geometry of scenes. Future automated scene

capture tools could use iterative refinement techniques to avoid the explicit calibration I

perform for this thesis.

Beyond work to generate models and images from still frames, the work described in this

thesis employs online planning of camera movements. Motion planning was the topic of

relatively early work in the robotics community [Brooks 1982]. Similar approaches were

used for placing an image sensor to observe an object without occlusion. Much of this

early sensor planning work assumed prior knowledge of scene geometry to compute object

visibility [Abrams et al. 1993]. For capture of 2D video, work in the Vision Modeling

group [Pinhanez and Bobick 1995] at the Media Lab used approximate 3D templates of

real scenes to perform camera motion planning. Like the planning system proposed here,

the system described by Lehel [1999] uses images directly (without prior scene knowledge)

to adjust the spacing of a trinocular camera array.
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Chapter 2

Robots for Scene Capture

This section outlines the equipment, methodologies and algorithms used in the view plan-

ning system. Briefly, the system generates and improves novel scene views by capturing

stereo pairs of views, processing the pairs to extract depth and texture information, and

making available these locally computed depth and texture estimates. The planning system

directs individual robotic camera nodes towards new unseen parts of the scene to survey.

The robotic cameras then adjust their position, gather new stereo pairs and repeat the pro-

cess.

2.1 Apparatus

The physical equipment used to perform the scene capture and view planning described in

this thesis consists of four "Eye-Society" robotic cameras, several network-attached desk-

top PCs for performing computation, a web and file-server for archiving images captured

by the system, and a laptop computer for controlling these resources.



2.2 Eye Society Robots

The network of three "Eye-Society" robots developed by the Object Based Media group [Mal-

lett 2005], are used for image capture and camera movement. These cameras are mounted

on the ceiling of room 368 along rails forming a roughly 12 foot by 12 foot square. Each

robot sits on an independent linear rail, allowing for about 12 feet of linear motion. The

camera network was designed for experiments with distributed scene capture, object track-

ing, and human activity monitoring.

2.2.1 Mechanical Description

To enable future large-scale camera deployments, The Eye Society robots were engineered

to be low-cost and easy to produce in quantity. We chose to employ inexpensive Charge-

Couple Device (CCD) image sensors used in off-the shelf cameras sold for use with per-

sonal computers. In particular, we chose digital cameras that interface via the Universal

Serial Bus (USB; www.usb.org) despite availability of more inexpensive analog cameras

because digital cameras do not require additional video digitizing hardware for capturing

images into computer memory.

The USB cameras selected for the Eye Society robots were the Connectix Quickcam 3000-

series "webcams" (www.connectix.com). These cameras have CCD sensors with a res-

olution of 640x480 pixels. By employing on-chip image compression, they are capable

of transferring images over their full-speed USB interface at near-television rate. These

cameras also come with reasonably low-distortion fast optics which enables the capture of

comparatively sharp, low-noise images under indoor illumination.

The USB cameras used in the robots were stripped of extraneous plastic packaging and

mounted in a laser-cut acrylic two-axis (pan-tilt) gimbal. Two small off-the-shelf servos

serve as the pivots of this gimbal, and actuate the pan and tilt angle of the camera relative



to the body of the robot. Each servo is capable of moving though about 160 degrees of rota-

tion, allowing cameras to be pointed in nearly any downward-pointing direction, covering

nearly a hemisphere of visual space.

On each robot, the camera gimbal is mounted to the small horizontal acrylic platform from

which the single-board computer is also supported. This platform is in turn suspended from

a system of four cylindrical nylon rollers mounted between more laser-cut acrylic pieces.

The rollers support the weight of the robot and maintain its alignment to the axis of its

extruded aluminum rail.

Each robot is equipped with a small, high-torque drill motor for actuating position along

the support rail. The motor assembly includes an inline gear-train and a rubber wheel that

rests on the upper face of the aluminum rail.

2.2.2 Electrical Description

The robotic cameras are each built around a "BitsyXb" single-board computer manufac-

tured by Applied Data Systems (www.applieddata.net). These computers were chosen for

their small size and low power requirements. As the Eye Society camera platform was

designed to be capable of optionally running untethered on battery power, lightweight (re-

quiring less energy to effect camera movement) and low-power components were selected

where possible. For our experiments, we wired the robots to 12V "wall wart" transformers

so many datasets could be captured sequentially without needing to recharge batteries. The

Bitsy single-board computers have power circuitry capable of running from unregulated

DC Voltages from 9 to 18V.

The Bitsy single board computers are built on the Intel X-Scale architecture, with allows

them to be capable of relatively high computational performance for their power consump-

tion. Initial robot prototypes were based on the ADS BitsyX board, which contained a



400 Megahertz (MHz) X-Scale processor running on a 100 MHz system bus. The Bitsy

Xb boards run at 450 MHz, but are capable of processing images much more quickly due

to their 200 MHz system bus. The Bitsy Xb boards contain 64 Megabytes (Mby) of Syn-

chronous Dynamic Random Access Memory (SDRAM) for storing and processing images,

as well as 64 Mby of non-volatile flash memory for storing the operating system and other

software.

In addition to the Bitsy Xb single-board computer, each robot contains two additional cir-

cuit boards: a power distribution board and a servo controller. The power distribution board

is a hand-soldered prototype board containing an H-bridge chip with supporting compo-

nents for driving the track motor, and a voltage regulator for the low-power circuitry on the

servo controller.

The H-bridge chip runs directly from the 12v robot supply, and allows the current-limited

3.3 Volt digital outputs of the Bitsy Xb board to be used to control the speed and direction

of the track motor. Three such digital outputs are used to send "direction," "brake" and

"PWM" signals to the H-bridge chip. The first two signals configure the output transistors

of the H-bridge, selecting a direction of rotation for the motor (although not currently used,

the brake control line instructs the h-bridge to short the terminals of the motor together

to apply braking force to a moving motor). The Pulse Width Modulated (PWM) drive

signal allows specification of the motor's drive power. The PWM line is driven with an

asymmetric square waveform, which pulses power to the motor whenever this control line

is high.

The servo controller board is an off-the-shelf eight-port RS-232 serial-controlled servo

driver. It accepts commands specifying servo position and supplies power and generates

the appropriate pulse-trains for standard radio-control type servomotors. This circuit board

has two power inputs, one 5V input used by the onboard microcontroller, as well as a 12V

input which supplies power to the attached servomotors.

Interfacing between the Bitsy Xb board and the motor controller board is handled by the



"ADSmartIO" controller. ADSmartIO is an Atmel 8538 microcontroller (www.atmel.com).

The robots use ADSmartIO output pins PCO, PC1, PC2 and PC3 for the "direction" "brake"

"PWM" and "laser" signals respectively. These signals are available on the external header

J10 on the Bitsy board, at pins 15, 13, 11, and 9. The use of the ADSmartIO controller

to drive the H-bridge chip is problematic due to apparent inconsistent reset behavior. Oc-

casionally, when the Bitsy board reboots, the output lines of the ADSmartIO controller

command the H-bridge chip to drive full-on throughout the boot sequence, eventually set-

ting these outputs to float near the end of the boot. This spurious drive command causes

the robot to race down the rail, pegging itself at the end and continuing to spinning its drive

motor in place. Occasionally this causes damage to the robots, so care should be taken not

to reboot them unattended.

Communication among the Eye Society Robots, and with other image processing and stor-

age resources is performed using 802.1 lb wireless ethernet (WiFi). Each robot has an

on-board WiFi card, attached to the PCMCIA interface of the single-board computer. Al-

though these cards are theoretically capable of data transfer of 11 Megabits per second

(Mbps), the bus bandwidth of the Bitsy single-board computers limits transfer rates to

about 1 Mbps.

Along with standard hardware, one of the Eye Society Robots is additionally fitted with a

small laser diode module, mounted with the CCD camera on the pan-tilt gimbal. This laser

module was mounted to allow for future experiments with projecting feducial marks into

the scene to be captured, as well as to allow for measurement and characterization of the

dynamics of robot movement.

2.2.3 Software Infrastructure

The ADS Bitsy Xb single-board computers inside the Eye Society Robots run a version

of the Gnu-Linux operating system. Linux was chosen for its modifiability and for its



compactness.

Much of the software infrastructure for the Eye Society Robots is shared with the "Smart

Architectural Surfaces" project in the Media Lab's Object Based Media Group. Both

projects employ variants of the Bitsy single-board computers from ADS, and both use

the same camera hardware. Common software was developed with the intent of enabling

future collaboration between nodes from both projects.

Communication between robots is mediated by the Remote Python Call (PyRPC) software

library (rpyc.sourceforge.net), which allows software objects located across a network to

appear to be co-located on a single computer.

Basic robot functions, including movement and image capture are managed by the RobotCore

software object. This object was written in C++ and contains wrappers to make it accessible

from the Python environment (and in turn remotely via PyRPC).

drive motor

Pan-tilt camera

Figure 2-1: Illustration of an "Eye-Society" robot. Drive motor actuates robot along a 12
foot rail.



Chapter 3

Calibration

The cameras used for this project produce two-dimensional images as output. When viewed

on a computer screen, these images approximate the appearance of the real objects at which

the camera was pointed. Beyond subjective appearance, if we want to draw mathematical

conclusions about scene geometry from these images, we must characterize the geometry

of the cameras.

This chapter describes the relationship between the light exiting a real scene, and the images

produced by the camera. First, the simplified model of camera geometry used throughout

this work is presented, and assumptions inherent to this model are described. Next, descrip-

tions are given of the methods for determining the parameters for this model. These param-

eters seek to describe the spatial distortion in images of objects caused by the true shape

of the camera's lens and image sensor. Further, descriptions are given of the calibration

methods used for the robotic platforms used to move cameras in experiments conducted

for this thesis.



3.1 Camera Model

The cameras used for this work consist of a set of a set of small glass lenses that refract

incoming light to form an image on a CCD image sensor. The term "real scene" is used to

describe the physical objects that reflect or emit light that is recorded by the camera. This

term is used in contrast to "scene model" which describes a 3-dimensional representation

of the geometry and appearance of the real scene.

To approximate the properties of the physical cameras, we use a pinhole projection model

to describe how points in the real scene map to points on the image sensor. In the pinhole

model, only light rays that pass through a single point in space, known as the center of

projection, can reach the plane of the image sensor, and only rays within the bounds of

the image sensor reaching this "image plane" are recorded by the camera. In this model,

the line perpendicular to the image plane that passes through the center of projection is

referred to as the "axis" of the camera. Because light rays travel in a straight line through

the center of projection, the angle between points in the real scene and the camera's axis

always equals the angle between the camera's axis and the image-plane projection of that

scene point.

In this thesis, pinhole projection is computed using a mathematical description that is used

throughout computer graphics and machine vision research: the homogeneous transforma-

tion matrix. Modern computer graphics hardware is highly optimized for handling this

representation, as projecting 3D points onto an image plane sits at the core of computer

graphics rendering.

Transformation of a point p, in three-dimensional space to its corresponding point pi on the

camera's image plane can be represented as multiplication by a projective transformation

matrix Ti, as:

PO TioPi. (3.1)



In this representation, points are represented as 4-vectors, containing three location coordi-

nates and a scale. These vectors are in most cases maintained in canonical form, normaliz-

ing all elements by the scale:

PO [Xo,yoZo, 1]'. (3.2)

Projection by a pinhole camera with center of projection at the origin, facing in the positive

z direction, can be represented as a multiplication of a location 4-vector by the matrix

-f 0 0 0

0 -f 0 0 -f (3.3)
0 0 1 0

0 0 0 1

where f is the distance from the center of projection to the image plane. This maps scene

coordinates to three-dimensional "view" coordinates, of which the first two describe a two-

dimensional image plane location.

This projection representation is used for rendering 3D models in computer graphics usu-

ally define Two planes, both parallel to the image plane, that bound the volume of space

in front of the camera to be considered. These planes are referred to as the "near plane"

and the "far plane"(or near and far clipping planes). In this form, the projection matrix is

parameterized by Z, the distance from the center of projection to the near clipping plane,

Zf, the distance from the center of projection to the far clipping plane, and t b 1 and r,

describing the distance from the camera's axis to the top, bottom, left, and right boundaries

of the near plane. When scene point locations are multiplied by this projection matrix, the

result is a 2-D view coordinate location, representing position on the image plane, as well

as a depth coordinate in the range of 0 to 1, representing relative location of the scene point

between the near and far planes.
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Figure 3-1: View volume in rendering model. Space bounded by near and far clipping
planes falls in the imaging volume.

In addition to projection, transformation matrices are also used in this work represent re-

lationships between points after they undergo rotation or translation. Spatial relationships

that consist of combinations of translation, rotation, and projection can be represented by

combining, via matrix multiplication, the transformation matrices representing these indi-

vidual relationships.

These matrices are used to model relationships between locations in the scene and locations

on the image plane that arise over movements of robotic cameras. Such situations are

represented here by computing a separate transformation matrix to represent joints attached

to the camera, and matrices to represent the spatial relationships between these joints.



3.2 Camera Calibration

The real lenses used for this work use several glass lenses instead of a simple pinhole to

project light onto the image sensor. Lenses, like pinholes allow light to be projected, but

have the advantage of allowing much more light to reach the image sensor. Tradeoffs in

the design of lens systems however, generally produce optics that distort images of scenes.

The standard approach in the machine vision community for accounting for this distortion

is to capture images of a known scene, and then measure how the resulting image differs

from how it would appear under the pinhole assumption. Following this, a function is

constructed that transforms expected locations to their actual measured locations. Once

found, the inverse of this function can be approximated to rectify the distorted images.

Functions used to model this distortion usually include parameters to account for offset

between the center of the image sensor and the camera's axis, shrinking of the image that

varies with distance from image center (a third-degree polynomial is used), and sometimes

skew and sheer of the image sensor pixels.

Calibration for the Connectix Quickcams used for camera planning experiments were cal-

ibrated using the Matlab Camera Calibration Toolbox [Bouguet 2000]. This utility allows

for semi-automated computation of camera intrinsic parameters. The toolbox solves for

parameters from a set of images that contain a planar checkerboard calibration target. Cor-

ners of the checkerboard squares are found in a semi-automatic fashion, requiring the user

to click at the corners of the checkerboard in each image, after which the tool solves for

sub-pixel estimates of checkerboard square locations.

Camera calibration was performed using a set of images of a checkerboard grid containing

10xI0 squares, with each square measuring 25.4 mm (1 in) on a side. The checkerboard

pattern was balanced on a table in the middle of a room and cameras were moved in-

teractively to acquire 18 images confining the checkerboard. Effort was made to acquire

checkerboard images taken from a variety of locations. The images used were captured at



a resolution of 320x240 pixels, at a distance of about 3 meters from the checkerboard.
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Figure 3-2: Matlab-based interactive camera calibration [Bouguet 2000] used to compute
camera geometry from images of checkerboard.
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3.3 Robot Actuator Calibration

The Eye Society robots used for this project can direct their cameras through three degrees

of freedom. The cameras can be rotated, using servomotors, along two (nearly intersecting)

axes, and can be translated along a linear track. This section details calibration procedures
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used to find the mapping between commands sent to the actuators, and the resulting camera

movements.

3.3.1 Servomotor Calibration

The servomotors used for camera positioning employ an internal feedback mechanism to

rotate an output shaft in response to an input voltage waveform. The relationship between

this input signal and the resulting camera waveform is nearly linear at the middle of the

servo's range of motion but the servos tend to undershoot as the are commanded towards

the ends of their range. This seems to occur in part due to the design of the servo gear

system, and in part due to additional forces on the servos as the camera cables become

tighter at the edges of the movement envelope.

To calibrate the response of the servomotors, the servos were commanded to move the

camera to positions throughout the envelope of movement, and images of a checkerboard

target were taken at each position. View planning experiments use a linear approximation

found from the servo positions within the center two-thirds of the servos' motion range.

Future work could use a lookup table, or polynomial approximation of this function to

allow for more accurate positioning at the ends of the servos range.

3.3.2 Track Drive Motor Calibration

Unlike the pan-tilt actuators, the motors that actuates the Eye Society Robots along their

guide rails have no feedback control loop. Additionally, slight differences in construction

between the individual robots result in a wide range of mappings between commanded

and actual movement. Motion along this axis is specified by the view planning system as

a movement duration. To approximate the relationship between movement duration and

travel distance, robots were directed to make a series of small short-distance fixed-time
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Figure 3-4: Model edge falls at left edge of a view. When this edge falls inside the synthetic
view volume, pivoting camera position left will reveal more of the scene.

movements along their rails, and the number of movements required to reach the end of the

rail was recorded.



Chapter 4

Models from Scenes

The overall goal of the work presented here is to generate 3D models of scenes for synthe-

sizing new views. This section describes methods for generating these models from sets of

images. Discussion of methods for choosing the locations from which these images should

be captured are described in the chapter that follows. Models are generated by first com-

puting depth maps from pairs of images. Those depth maps are then combined with scene

appearance information to generate sets of 3D patches that model the scene geometry. Sets

of patches from many view pairs are combined to form complete models.

4.1 Depth from Stereo Images

Many technologies exist for extracting 3D information from object or scenes. These tech-

nologies include acoustic methods, where pressure (in air or water) waves are measured as

they reflect of a scene. Other methods project structured light onto a scene (either laser,

or other projected light) and triangulate scene geometry based on the locations from which

light reflects back to an optical sensor. Additionally, depth information can be gathered by

measuring image properties as they change with lens focus. The method for depth recovery



chosen for this work is stereo matching: pairs of images taken from different camera loca-

tions are compared, and the spatial displacement of matching regions is used to triangulate

distance to that scene region.

This method was chosen for the simplicity of the equipment it requires. Since the images

to be generated will also need surface appearance information, cameras can be employed

as a single sensor for gathering both kinds of information. The cameras used are not capa-

ble of actuated focus adjustment, so depth-from-focus methods were not considered. One

shortcoming of the stereo matching approach is that extraction of depth information re-

lies on variation in surface radiance information (appearance). The performance of stereo

matching diminishes for objects that appear more self-similar. For example, two images of

the surface of an empty white desk, taken from a few inches apart, appear nearly identi-

cal. Without being able to see variations on a surface, we determine the shift of regions in

one image relative to the other; we can not determine its distance from the pair of camera

locations. Beyond this limitation, when surfaces have radiance that changes as we view

it from different directions (such as shiny or finely textured surfaces), appearance of that

surface may not match itself between camera views. For these kind of surfaces (referred to

as non-Lambertian), stereo matching is prone to error.

4.1.1 Graphics Processing Units for Stereo Matching

Many computational methods have been described for depth recovery by matching patches

in images. For this thesis, the author explored methods that employ graphics processing

units (GPUs) present in most modern computers. Recent graphics processing units contain

many parallel execution units that are ideal for computational problems that divide easily

into independent subproblems. While support for writing programs for these processors is

not as mature as for conventional central processors, tremendous performance gains can

be had for algorithms that can be implemented in the graphics processing pipeline. Sev-

eral programming languages for describing programs that run on graphics processing units



were evaluated. These included assembly language, Nvidia's Cg language (Nvidia Inc.

www.nvidia.com), and the OpenGL Shader Language (GLSL). The OpenGL Shader lan-

guage was chosen for this work because it seems to be the most likely to be supported in the

long term. Specifically, Fragment Shaders, which execute a short program on each pixel

location of rendered geometry, were used for computation.

Hardware

For this thesis, experiments were performed primarily on an ATI Mobility Radeon X1600

graphics processor (ATI Technologies Inc. www.ati.com). This processing unit contains

twelve individual "pixel shader" processors, designed for performing mathematical oper-

ations on each pixel of a computer-graphics image. The processor used operates at 310

million clock cycles per second (MHz ) and has access to 256 million bytes (MB) of dedi-

cated memory running at 278MHz.

4.1.2 Stereo Matching Algorithm

Capture of 3D scene models consists of a series of applications of a stereo matching al-

gorithm. Each application of the algorithm uses a pair of strategically captured images

to compute a single depth map. The terms "reference camera" and "comparison camera"

will be used to describe the two cameras used for matching. Depth maps are computed to

describe distance between the reference camera and objects that appear in the image taken

by that camera. To find this map, The comparison camera images the same scene from

a nearby location, chosen to provide parallax information while still viewing most of the

same scene objects as the reference camera. Values in the depth map are populated by test-

ing the similarity of regions (here similarity is defined as the absolute difference between

corresponding pixel values, averaged over the region) in the reference and comparison im-

ages.



Before actual matching is be performed, the stereo matching system estimates the location

and orientation of the camera corresponding to each image. This spatial information allows

the system to recover the actual physical location from relative object locations in the two

images. When the Eye Society Robots are used for gathering images, the robots record with

each captured image, the pan-tilt servo settings, and the approximate track position. These

pieces of information, along with a calibrated model of the spatial relationships between

the robot actuators, allows for computation of the two camera locations in a common room

coordinate system. This in turn allows the depth map generated by region matching to be

described in this room coordinate system.

To compute depth maps, this project uses several applications of the standard graphics

pipeline (running on the graphics processor, accessed through the Open GL graphics li-

brary) to match regions in pairs of images. To perform matching, patches of pixel values

in the reference image are compared to pixel values over a set of locations in the compar-

ison image. If the relative placement of the two camera positions is known, Matches for

regions at one pixel need only be sought along a single line in the second image. This

line of locations corresponds to the set of places in the comparison image to which a scene

region can possibly project in the comparison image, when location in the reference image

is known. Locations along this line correspond to the scene locations that all appear at one

single image location in the reference camera (along a ray through that camera's center

of projection). Limiting search to this single line provides dramatic savings over search-

ing the entire image for matches, but uncalibrated lens distortion or incorrectly estimated

camera pose can lead cause the wrong line to be searched, producing incorrect matches.

Many traditional stereo systems simplify computation by using camera locations that ex-

hibit symmetry (either with co-planar image sensors, or at least keeping corresponding

rows of sensor pixels each in a common plane, allowing for converging view directions).

This is done so that matches for a given pixel location can only appear along the same

horizontal image line in the corresponding image.



Reprojection

The implementation used in this work uses properties of pinhole projection to choose image

patches to compare that could have feasibly come from the same scene location. Instead

of explicitly describing the candidate line of possible comparison regions for a given ref-

erence region, OpenGL is used to render a set of reprojected reference images to match

against the comparison image. Each reprojected reference image is generated to simulate

the appearance of a planar scene, sitting parallel to the reference camera's image plane, im-

aged from the viewpoint of the comparison camera. The planar scene used for generating

these reprojected image is simply a rectangle containing the image captured by the refer-

ence camera projected out into the scene using a pinhole camera model. In this way, each

of the reprojected scenes as viewed from the reference camera look identical, while from

any other viewpoint, the reprojected planar scenes appear to have different sizes and loca-

tions. This method can be thought of as creating a hypothesized scenes, scenes that could

feasibly have generated the reference image, and then testing these hypotheses by examin-

ing whether when viewed by the comparison camera, the hypothesized scene is consistent

with the real photograph captured by that camera. Clearly, we don't expect any of these

hypothesized planar scenes to be entirely correct, we can pick some parts of several hy-

potheses to construct our model of the scene. Since the hypothesis scenes are planar, no

parts of the scene block other parts from view. With no interaction between reference pixel

locations in the hypothesis scene, we are free to evaluate different hypotheses on a pixel by

pixel basis, deciding to accept some regions of the hypothesis scene, but not others. This

method also allows for verification of completed depth maps (assembled from feasible re-

gions across many hypothesis scenes). A depth map can be tested by using the map itself

to create another kind of non-planar hypothesis scene. Verification can be performed by

back-projecting patches of the reference image to depths indicated by the depth map, and

then imaging them from the comparison camera location. Discrepancies between the re-

projected image and the real comparison image indicate errors in the depth map (or invalid



assumptions in the camera or scene models).

Reprojected image as seen from
comparison viewpoint

Image from reference camera N

Comparison
Reference, camera
camera

Figure 4-1: Reference image is re-rendered as if it was on a plane in the scene parallel to
the reference image plane.

Computational cost of Reprojection

Performing comparisons in this way incurs little or no additional computational cost, and

simplifies implementation for unconstrained cameras. Since image comparisons in the

OpenGL environment require the rendering the two images as if they were a 3D scene (ap-

plying a differencing operator as the second image is rendered), rotating and projecting the

scene as above can be performed as part of this rendering pass. Since rendering requires the

specification of virtual camera parameters and scene orientation, performing comparisons

on reprojected images takes about as long as comparing flat, unprojected images.



Shader Implementation of Region Similarity

Once a set of reprojected hypothesis images has been generated, an OpenGL pixel shader

is used to decide, for each reference image pixel, which hypothesis image is likely to be a

projection of the scene point seen in the comparison image.
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Figure 4-2: Overview of OpenGL fragment shader used for stereo computation.

This comparison is performed by first rendering each reprojected image into a rectangular

OpenGL texture. Each such texture is applied to a rectangular polygon, along with a tex-

ture containing the reference image. (OpenGL allows geometry to be mapped with several

textures simultaneously, and then use a fragment shader to compute how those textures are

combined to produce the final appearance.) The fragment shader used to perform compar-

ison (executed at each pixel location on the supplied polygon) subtracts pixel intensities at

corresponding locations in the two textures, computes the absolute value of this difference,

and averages these absolute differences over a 3x3 window surrounding the current pixel

location. Since fragment shaders can (depending on graphics hardware used) be given ac-

cess to several textures at once, the final version of the stereo matching algorithm used



here simultaneously performs matching between the comparison image and four candidate

reference images. The resulting average absolute difference value for each candidate is

output to a different channel (normally used for red, green, blue, and transparency values)

of the output image. Several rendering passes are used to evaluate all hypothesis images,

performing evaluations in batches of four per pass. At the end of K passes, similarity values

for all hypotheses are available in K/4 4-channel images.

4.1.3 Shader Implementation of Best Match

The goal of the stereo matching algorithm is to choose the depth estimate at each reference

image pixel that is most likely to be correct. This estimate is made by finding the smallest

absolute difference score at each pixel location, taking into consideration similarity scores

from each of the reprojected hypothesis images. This simple minimum operation can be

performed in the same fragment shader program as the similarity computation, or can be

performed in the CPU using the stack of "similarity images" described in the previous

section. When performed in the fragment shader, the output of the shader is changed from

recording the similarity for each of the input hypotheses to recording the best similarity

score seen so far, and the image number at which it was seen. Only a single output image

is produced by this process, describing the best match, and its similarity. This technique

is very fast, but is not compatible with more advanced stereo matching techniques [Brown

et al. 2003] that use the similarity scores for all pixels and all hypotheses simultaneously to

gain resilience to errors from noisy or untextured regions.

3D Mesh Generation

The map of chosen depth values for each pixel in the reference image is then transformed

into a 3D mesh for re-rendering to generate novel scene views. Meshes consist of a lattice

of 3D vertex locations, and triangular facets that connect triplets of these vertices. Simple



meshes can be constructed by using the same back-projection technique used to generate

the hypothesis images above, but back-projecting the corners of each pixel individually to

an appropriate depth instead of back-projecting the entire image as a single flat plane. Ver-

tices are back-projected to a camera distance corresponding to that of the the best match

for that image location found above. For simple, continuous depth maps, the shape of the

scene can be well represented by tessellating the resulting back-projected vertices, produc-

ing a 3D polygon connecting the vertices bordering each image pixel. To assign color to

this mesh, OpenGL texture mapping is used. A texture map, usually a 2D array of color

values, can be used to color a 3D polygon by describing a relationship between surface

locations on the polygon and locations in the texture map. OpenGL allows this relationship

to be described by specifying the location in the texture map that should be used to color

each of the corners of the polygon. The locations in the texture map, specified for each

vertex, are called "texture coordinates." Color values for the intermediate locations be-

tween vertices on the polygon are computed by sampling the texture map at corresponding

intermediate locations between the texture coordinates. For constructing 3D scene meshes,

texture coordinates are assigned to the mesh to describe the mapping between locations in

the reference image and locations on the mesh. The mesh created describes one rectan-

gular polygon (represented internally as a pair of triangles) corresponding to each pixel of

the reference image, so texture coordinates for each polygon are simply the corners of the

corresponding pixel in the reference image. Regardless of resulting mesh shape, the texture

coordinates fall on a regular grid.

4.1.4 Mesh Discontinuities

The above method works well for smooth, highly textured scenes where no surfaces are

blocked from view by either camera. In real scenes however, objects usually do occlude

parts of themselves, or other objects from view. When occlusion occurs, depth maps, and

corresponding depth meshes, will have discontinuities at locations where the edge of a near



object falls in front of a far object. As we scan through sequential values in such a depth

map, values describing distance to the near object change in value abruptly at that object's

edge to begin describing distance to the far object. If continuous 3D mesh was used to

describe such a scene, a surface would appear connecting the boundary of the near object

to the representation of the far object. Such a model viewed from the reference camera

location would look fine, but viewed from nearby locations, this surface would appear

noticeably at odds with a corresponding view of the real scene. This situation is worse

that simply having information missing from a generated view since this incorrect surface

connecting near and far objects would be capable of obscuring other correctly modeled

geometry. Spurious surfaces connecting disjoint objects are an extreme case of another

problem that appears in meshes generated through reprojection. Similar problems occur

at any locations in a depth map that have depth values dissimilar to those at neighboring

locations. Such situations appear at occlusions, but also at locations where the surface of

objects is steeply inclined as viewed from the reference camera. Such large depth changes

describe polygons that have steep surfaces relative to the reference camera's image plane.

Such polygons are textured with information drawn from only a single pixel in the reference

image, but have much larger area than polygons that are parallel to the image plane. This

means that when viewed from other directions, these steep polygons, informed by only

small areas in the reference image, can cover relatively large parts of the synthetic image.

This is undesirable as these large polygons provide coarse representations of the surfaces

they represent, and small errors in the reference depth or texture maps can impact large

areas of synthetic images.

To address the problem of surfaces spanning depth discontinuities, or steep regions in the

depth map, 3D mesh facets are drawn only where the gradient of the depth surface is

relatively small. In practice, a threshold is chosen, limiting the resulting 3D area of facets

in the mesh. If the polygon connecting the four corners of a depth-map pixel would have an

area larger than this threshold, it is created, but not drawn in synthetic views. In practice,

since generated image error is governed by relative area of created facets compared to the



image regions that inform them, a limit of 2 is used for this ratio.

4.2 3D meshes from many images

To coalesce depth meshes from many images, we employ a counterintuitive approach, that

produces some visual artifacts in intermediate generated views, but produces correct images

once enough images have been collected. The approach employed removes the need to

merge geometry across multiple depth meshes, and instead uses only the "best" polygons

from each mesh. For the purposes of view generation, best is defined as having the smallest

area. Facets from depth meshes have smaller area when they are generated from surfaces

that are close to parallel to the capturing image plane. In addition to surface orientation,

meshes representing objects that are closer to the camera's center of projection will have

smaller facets. Intuitively, each facet represents data from a single sensor pixel, but a

single pixel can record much finer detail (small area per pixel) on a close object than a

far one. The selection of smallest facets is performed per-pixel in rendering. When many

meshes overlapping meshes are available for the same physical space, each is rendered into

a separate buffer, and results are combined using a fragment shader. Faces are given an

alpha value that represents their area, and the fragment shader culls fragments that have

larger area, scaled by distance to the camera.
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Chapter 5

Planning

The computer graphics literature exhibits an increasing number of 3D illustrations of scenes

generated from sets of still images. One frequent artifact in these images is the presence of

visual tears or holes in the generated images. These holes are caused by two phenomena:

failed matching, and occlusion. Holes in 3D models that are the result of failed matching

appear when the algorithms used to construct models from the source images fail to deter-

mine the depth value for texture data present in one of the images. This can happen, for

example, when depth is reconstructed via stereo matching from objects with little surface

detail. Since many matching algorithms rely on local similarity between image regions in

a stereo pair, when little texture is present these regions no longer appear to have a unique

best match (they match many regions in the pair image equally well). This can make it

difficult to determine the depth value for such low-texture regions. Another source of the

holes present in many recovered 3D models is outright lack of information in the source

images due to occlusion. Casually gathered still images inevitably do not record complete

detail of the contents of a scene. In photographing a dining room for example, detail from

some surfaces like the underside of the table, or the inside surfaces of a ceramic vase, are

not likely to be photographed, unless s'pecific effort is made to do so. These surfaces are

likely to be blocked from view by other parts of the object in question, or by other objects.



Beyond obscure locations whose surfaces may not be present in generated views, it is also

very easy to miss larger areas as well. The following figure from a system for generat-

ing 3D models of crime scenes [Se and Jasiobedzki 2005] shows such regions behind the

copier, and at the front edge of the cabinet.

Figure 5-1: Figure from [Se and Jasiobedzki 2005] showing reconstructed scene with areas
missing due to occlusion and matching error.

The main contribution of the work described here, is to provide tools for generating models

from 3D scenes which provide methods for computing when sufficient scene information

has been gathered. In addition, when desired scene information is found to be missing, this

work describes methods for computing new camera locations (optionally subject to given

constraints) that are likely to provide views of missing portions of the scene.

When reconstructing scenes from still images, there are three possible requirements for

what information is available for reconstruction: we may wish to have all information

about a scene so that it may be reconstructed from any imaginable viewpoint, we may wish

to only gather enough information to reconstruct the scene from some continuous set or sets

(lines, surfaces, or volumes) of camera positions, or lastly, we may wish to gather enough

information to reconstruct scenes from a closed set of predefined point camera locations.

This work proposes methods for solving the third such problem, where desired viewpoints

for scene reconstruction are known in advance. By pre-specifying virtual camera locations



for reconstruction, we can address this problem without requiring the computation of wa-

tertight scene geometry. Geometry gathered may have holes, but this method describes

how to seek models whose holes are not visible in the reconstructed views. Problems for

continuous sets of camera positions can be approximated by sampling the spaces of desired

camera locations and applying the methods described here.

5.1 Specifying the Scene Capture Task

The camera planning algorithm I describe here seeks to generate images from a set of

novel viewpoints. The algorithm accepts as input, virtual camera descriptions and basic

scene information both described below, in addition to a description of the available camera

resources, and optionally intermediate results from previous executions of the algorithm.

The algorithm provides as output, a synthetic image created for each given novel viewpoint,

a description of a new camera position (or positions for multiple cameras) that is likely to

provide visual information to improve the synthetic images. Also available at completion

of execution is a set of 3D models, with texture and confidence information, which is used

for subsequent executions. The algorithm seeks to maximize the "pixel gain per second,"

seeking to improve the total confidence over all pixels of all synthetic views.

Camera descriptions supplied to the algorithm consist of one or more virtual pinhole camera

descriptions from which novel views will be generated. These descriptions consist of, for

each camera, location, viewing direction, up direction, horizontal view angle and horizontal

and vertical resolution. (Information describing locations of cameras are expressed in a

common "world" coordinate system.)

Basic scene information provided as input is used to initialize system, and limit search for

geometry. This information includes specification of a rough scene center point as well as

an approximate scene radius, both expressed in the same world coordinate system as the

virtual camera descriptions.



5.2 Determination of Model Completeness

Before describing methods for planning camera movement, it is useful to have way to de-

termine if additional camera movements (additional images) are necessary. At some point,

enough images may exist to completely synthesize views the scene from the desired view-

points. To determine this, the algorithm maintains a confidence map that has a value defined

for each pixel of the desired synthesized images representing roughly the probability that

the information gathered so far for that pixel accurately represents the real scene. A con-

fidence value between zero (no information) and one (high confidence) is maintained for

each location on the geometry constructed from the existing set of still images. (Geom-

etry consists of triangular facets with a single confidence value per facet.) To form the

confidence maps, this geometry is projected into the framebuffers of virtual cameras with

parameters determined by the desired view generation locations. These framebuffers are

initialized to contain zero at all locations. Then, each facet of scene geometry with con-

fidence value greater than some min-conf idence-to-render, is simply colored with its

confidence value and the standard computer graphics rendering pipeline is applied. After

rendering, these confidence values then appear in the framebuffers in locations correspond-

ing to locations where that facet would be the visible in each of the desired views. These

framebuffer contents are the confidence maps. When all values in all confidence maps

are greater than some completion threshold min-conf idence-per-pixel, we consider the

models to be complete for the set of desired views. footnote: This method fails to ad-

dress situations where a low-confidence facet - generated erroneously due to a sensing or

stereo matching error - obscures high-confidence, correctly generated facets. Future work

will include methods for detecting and correcting for these situations, possibly adapting

thresholds for rejecting facets from rendering.

Conf idenceMapGenerate

1: for all facets in model do

2: if confidence is greater than min-conf idence-to-render then



3: color facet with confidence

4: render facet in all desired views

5: end if

6: end for

CheckGatherComplete

1: for all desired views do

2: Conf idenceMapGenerate

3: return: are all pixels in confidence map greater than min-conf idence-per-pixel?

4: end for

5.3 General Planning Strategy

The core strategy employed for actual planning of new camera positions is simulation of

potential views. Throughout the planning process, the system improves an internal 3D

model of the physical space to be imaged, and uses that model both for image generation,

and for consideration of new views.

Visibility of scene locations can be expensive to determine with certainty, especially when

we are considering a range of potential camera locations. To reason about this, consider

having a known patch of scene that we want to re-image (for example one we have seen at

a grazing angle and want to re-image to gain a better view of surface texture). The task of

deciding whether the patch will be visible from some new viewpoint under consideration

is one of deciding whether other geometry will block our view.

From a single camera viewpoint, we can determine the visibility of a scene point by consid-

ering only other objects along the line connecting the point to view's center of projection.

For the purposes of novel view generation, if the location of the novel view is specified,

and is some 3D representation of a single camera-facing surface known to be in the real



scene, we can be sure that either that some object exists between the camera and the sur-

face, or that surface will appear in the camera's view. To decide which of these possibilities

is the case, we have to search for geometry between the camera and the surface in question.

Presence of any geometry means that the initially considered surface will be occluded. The

process for finding the content of a stationary camera is fairly straightforward though. Only

a small portion of space must be explored to answer the visibility question. If the scene is

represented internally as a set of 3D triangles, the list may be traversed once, computing in-

tersection between a line and a plane for each triangle. (Simply rendering a scene using the

OpenGL pipeline can also answer this question, and can be an efficient way to evaluate the

visibility of many surfaces simultaneously) In view planning, we are considering a range of

camera locations, choosing one that gives us an improved view of (some part) of our scene.

If we wish view a specific scene location, but want to consider a range of camera locations,

visibility determination is no longer a search of a single line of 3D locations. Especially for

fully unconstrained camera systems, the visibility of a scene surface requires much more

information. For example, if we are considering camera locations from any location on a

sphere around the patch in question, entire 3D volumes of space must be searched for ge-

ometry that may occlude the patch from some portions of this sphere. To compute the areas

of this sphere from which a surface is visible, all scene geometry must be projected onto

the sphere of camera locations, and regions must be found that contain the projections of

no geometry. When computing this for several patches simultaneously, it would be easy to

evaluate individual locations on the sphere for being able to see a location in question, the

search for a "best" location on this sphere (one that say, could see as many patches as pos-

sible) would require merging all projections from all patches of interest. While possible,

an approximation using sampling was chosen for this work.



5.3.1 Partial Information

In general, the planning task is one of determining visibility in the presence of only partial

information. The goals of a new view of a scene are twofold. First, we want to use new

camera views to discover surfaces in the real scene that a) have not yet been seen and b)

will be visible in one of the synthetic views. Second, we want to refine views of surfaces

we have seen that a) have been seen previously but with insufficient resolution and b) that

will be visible in one of the synthetic views.

To guide this search, this thesis takes advantage of the relative continuity of real scenes.

In general, objects are in contact with other objects, and open space is next to more open

space. If we happen to have observed some 3D location to contain an object, we have a

better chance of finding more occupied space if we look near that object than if we sample

some other randomly chosen 3D location. Locations in space that are not adjacent to other

objects can be considered in the planning system, but only after we have explored the extent

of objects that we have already seen.

The relative continuity of real scenes also works to our advantage when considering occlu-

sions by unseen geometry. When we choose a new camera location, we do so with the hope

that the image taken from that location will contain portions of the scene also visible by

the desired view(s), so we can come closer to our overall goal of populating those views.

When we consider a camera location, clearly we don't want one that has its view blocked

by some object outside of the desired view volumes - such an object will not contribute to

the desired views. Unfortunately, we can only compute how to avoid occlusions by geom-

etry we have previously seen. For this reason, we adopt a search strategy that assigns a low

but present priority to exploring geometry that falls outside the desired views, but blocks

parts of them from view. If the system cannot see objects in the desired view, geometry of

outside objects is still modeled so that knowledge of its shape can be used to find ways to

see around it. As such blocking objects are, in most scenes, generally spatially continuous,

accidentally stumbling onto one of these occluding objects will lead to its exploration, after



which it can be avoided.

5.4 Algorithm Overview

The planning algorithm used in experiments performs the following steps to choose the

next view:

PlanNextView

1: Image Capture

2: Depth Map Generation

3: Depth Mesh Generation

4: Novel View Projection of face ID numbers

For each novel view, the newly captured mesh is rendered, coloring each face with a

unique color value. Lighting is disabled.

5: Weighting of visible mesh faces

All mesh faces are assigned a small base weight, then mesh face weights are incre-

mented based on the number of novel-view pixels in which they appear.

6: Re-imaging of weighted mesh from candidate new view locations

The space of possible camera center of projection locations is discreteized into an

array spanning possible camera locations. For each location, a wide-angle image is

synthesized of the current scene mesh. Mesh faces are colored with their weights, and

lighting is turned off. After all candidate view buffers have been rendered, weights are

totaled across the entire buffer and the location with the largest total is chosen as the

new camera location.

Although not explicitly computed within the planning process, novel views are computed

from meshes as follows:

PopulateNovelView



1: Each mesh is rendered to an individual framebuffer from the viewpoint of the novel

view, using RGB texture mapping, and alpha value determined by mesh polygon area.

Rendering of back-faces is disabled.

2: Framebuffers are merged by a fragment shader, keeping the smallest polygons over all

views at each screen pixel.

Simulated elephant scene,with robot and camera bounds Mesh from simulated camera using OpenGLz-buffer

Depth mesh colored with face identifiers

Figure 5-2: Illustration of depth map and face identifier map for a simulated scene



5.5 Movement Planning for Eye Society Robots

When using the Eye Society Robots to gather images for scene modeling, the range of

possible locations from which we can gather scene information is restricted approximately

to a set of line segments defined by the camera tracks. The center of projection of each of

the cameras is very close to the cameras' pan and tilt axes and the aperture of the lenses

on the cameras is only a couple of millimeters. This means that after gathering an image,

actuating one of the pan-tilt servos can reveal parts of the scene that were outside the

bounds of the camera's image sensor in the first photograph, but will not substantially

change views of objects that are fully in both images. Parts of objects that are occluded in

one of these views will, for the most part, be occluded in any view taken after a pan or tilt.

Considering this, image information needed to generate the desired views that is missing

due to occlusion is unlikely to become after a pan or tilt, so the only camera movements

available for recovering occluded information are movements along their one-dimensional

support rail. For this reason, we can separate the planning of camera position and camera

direction. Pan-tilt movements are used to fill in information available from the current

position but outside of the current field of view while lateral movements are used to position

the camera so that it can look behind objects that occluded parts of the scene in previous

views.

Internally, to plan movement, we compute, based on several considerations described in the

next section, a goodness score for potential new camera locations. Cameras are directed

to move to the position with the highest goodness score. Currently, this goodness score

is approximated as a discrete array of goodness values representing small bins of position

along the rail, but future work could explore a continuous representation.



5.5.1 Single camera along a rail

When a single Eye Society camera is used for generating models of a scene, first a stereo

pair of images are captured to create an initial estimate of scene geometry. Then, plans

to move the camera and gather subsequent images are computed based on the confidence

maps created from this geometry estimate.

For indoor operation of the Eye Society Robots, cameras operate with a long (about half

of a second) sensor integration time. Because of this, substantial motion blur results when

the cameras are moving during image capture. Also, because of the geometry of the track

support mechanism and high torque of the track drive motor, linear movements of the robots

along their rails cause robots to exhibit swaying motion that can continue up to about two

seconds after the robots are commanded to stop moving. In addition, the movement itself

takes time (about ten seconds to traverse the entire rail), so movements generally require

several seconds to complete. Pan and tilt operations however only move a small part of the

robot. This leads to quick (sub-second) movement completion time, and very little shaking.

and image capture can commence about a half-second after these movements are made. For

these reasons, pan operations are prioritized over movement operations when possible, and

movements of short distances are preferable to long moves.

At the beginning of scene capture, the first pair of images is gathered from the current

location of the camera along its track. This capture is intended to help the system "get

it's bearings." As no geometry information is available until images have been gathered,

computational resources sit idle until images are available. Even if the images gathered

here are not ideal, computation can begin early, and continue as the robot is unavailable

while subsequent movements are made.

For the first images, the pan and tilt actuators are adjusted to point the camera approxi-

mately to the center of the scene to be captured. This center, expressed in world coordi-

nates is specified by the operator of the system to direct scene capture, but in principle an



arbitrary starting "center" could be chosen as well. For the capture of subsequent images,

the camera is also directed, in pan and tilt, towards a specific scene location. The method

for choosing pan and tilt values is described next.

Pan and tilt values for pointing the camera at a specific scene point are found as follows:

First an "object" vector is found by transforming the scene point into the the robot-centered

coordinate system. Pan angle is found by projecting the object vector onto the robot's pan

plane, and computing the signed angle between this and the robot's calibrated zero-pan

direction in the pan plane. Relative tilt angle is found by computing the angle between the

object vector and its pan-plane projection. This relative tilt angle is added to the robot's

calibrated zero-tilt angle.

After this first stereo pair has been gathered, matching is performed to generate a depth

map, and then 3D meshes with texture and confidence values are computed as described in

the previous chapter. These meshes are used for planning the next view as described next.

Pivot planning

The most inexpensive and reliable camera movement for the Eye Society robots is a simple

change in pan and tilt settings. We can quickly tell if such a camera movement will be

beneficial by looking for edges of the most recently gathered 3D mesh in the synthesized

view(s). This can be done by projecting vertices from the perimeter of the most recent

reprojected image pair into the coordinate system of the synthesized views. If these edge

vertices lie within the view volume of the synthesized view, this most recent camera ori-

entation "cuts off" part of the scene projected into the desired view. Furthermore, if no

geometry information is available (zero appears in the confidence map) at locations adja-

cent to projected edge vertex locations, the scene information that lies outside of the frame

of the camera has not been gathered by previous imaging. This makes this location a good

candidate for a pan-tilt movement.



If, for example, a physical camera has a much longer focal length than the desired view,

most of the images it can capture that overlap the desired view will produce the mesh edges

(described in the previous paragraph) at most if not all of the edges of the most recent

physical view. To plan subsequent pan-tilt movements, exploration proceeds towards the

edge vertex that falls closest to the desired view (or has the smallest distance from any of the

multiple desired views). Because objects close to a virtual camera appear larger, and due

to the piecewise smoothness of most scenes, we generally have a good chance of retrieving

useful scene information from areas nearby known object locations, especially if they are

close to the center of projection of the desired view. To prevent repeated search of the same

location, cameras maintain a list of visited directions for the current track position. Views

are removed from consideration if they contain more than some number of these directions.

5.5.2 Translation Planning

Planning of translational movements for the Eye Society Robots proceeds with considera-

tion given to speed of the track motor actuator. As candidate views are evaluated as possible

camera destinations, views farther along the track are penalized for their distance from the

current camera position. Penalty is chosen by dividing the score previously assigned to

each view by the total time required to move the camera and capture an image.

candidateviewscore
image-grab-time + transit-time-tolocation

This weighting allows movements to be chosen to maximize the estimated number of novel

view pixels improved per second.



These areas are invisible from all external viewpoints

Figure 5-3: We only seek to model the approximate visual hull of a scene. Some areas may
be occluded in all views.

Model

Edge'of right camera view

Real Scene

synthetic
View

Track

Figure 5-4: Model edge falls at left edge of a view. When this edge falls inside the synthetic
view volume, pivoting camera position left will reveal more of the scene.



Chapter 6

Experiments

6.1 CameraNetworkViewer

An application was constructed to visualize state of the Eye Society robots, including their

fields of view, relative locations, and ranges of motion. This application was also used to

display results of planning experiments.

The CameraNetworkViewer application can connect directly to the software running on the

Eye Society Robots, or can be run offline in simulation. When connections to the robots

are available, a user can interactively manipulate the pan and tilt and track actuators, and

see on screen the camera geometry of the robots in their current positions and orientations.

The user can also interactively capture single images or stereo pairs to test the system.

The CameraNetworkViewer can be used to initiate planning by interactively adjusting a set

of simulated camera locations to specify the desired views of the scene. After choosing

desired views, the application applies the planning algorithm to iteratively compute new

camera positions, and then capture images from those positions.



Figure 6-1: CameraNetworkViewer, an application for interacting with and displaying re-
sults from the Eye Society Camera Network

6.1.1 Simulated planning

To quickly test portions of the planning algorithm in isolation, a version of the planning

system was implemented to operate on synthetic 3D scenes instead of real physical scenes.

Scenes are imported as vrml models, and the model of real camera track locations and

ranges of motion is used. Synthetic images can be captured of the synthetic scene, and

depth maps may be computed either by the stereo matching procedure described in the

Stereo chapter, or by directly reading the z-buffer from the OpenGL pipeline. Directly

reading the z-buffer produces depth maps that are unrealistically vivid, but allows for val-



idation of the planning algorithm independent of stereo matching error. Depth maps of

the accuracy obtained by reading the z-buffer might be obtained in the future by using

alternate stereo matching techniques, higher resolution images, or alternate depth sensing

techniques.

6.1.2 Depth-map results

When applied to simulated scenes, the stereo matching algorithm performs reasonably well.

Since the exact geometry of images is known, errors in the depth maps can be directly

observed.

Figure 6-2:

ia
Depth image of elephant model, computed with stereo matching shader.

6.1.3 Reprojection results

To further test the stereo matching system, the above depth maps were re-projected into the

simulated scene and triangulated to create 3D meshes. Here, meshes were rendered omit-

ting faces that fell at the near or far planes, and also omitted faces that had area greater than



Figure 6-3: Ground-truth depth image of elephant model, from OpenGL z-buffer.

one square centimeter (At this scale, elephant model is about 2 meters long). The depth

map shown was computed using 160 candidate depth levels, and even with this many, clear

artifacts are visible from quantization of depth levels. Realtime stereo matching systems

generally consider 100 or fewer disparity levels [Yang and Pollefeys 2003], yet still, com-

pared to the continuous depth scores stored in floating point z-buffers, this quantization

impairs the visual appeal of the results. In addition, the strategy of removing faces that

have large area, which works well for removing faces that bridge depth discontinuities in

the scene, works against the system here where depth discontinuities also result from the

quantization of depth values.

When texturing and back-face culling is performed on the mesh facets used for reprojected

object rendering, the depth quantization becomes much less apparent. Clear artifacts can

still be seen from areas near the edges of the camera images used to compute the depth

map, as well as at locations where no detail is visible on objects or the background.



Figure 6-4: Reprojected untextured rendering of OpenGL z-buffer depth map above.

6.1.4 Real image results

Stereo matching results for interior scenes in the room where the Eye Society Robots are

deployed have been poor. The environment contains numerous reflective and untextured

surfaces, and although small patches of the scene are reprojected accurately, still frames of

these reprojected scenes are not compelling. In depth maps from interior scenes, and also

when interactively viewing the reprojections, it can be seen that correct depth estimates are

being made for the borders of the LCD monitors in the room, but fail to match their untex-

tured centers. Stereo matching algorithms have been developed to improve performance in

untextured areas [Yang and Pollefeys 2003] although demonstration images provided usu-

ally only contain textured surfaces. Future work will include exploration of refinements to

the stereo matching algorithm presented here.



Figure 6-5: Reprojected untextured rendering of stereo matched depth map above.

Figure 6-6: Reprojected textured rendering of stereo matched depth map.



Figure 6-7: Two images taken by an Eye Society camera, used for depth reconstruction

below.

Figure 6-8: Depth map computed from the stereo pair above.



Figure 6-9: Reprojection of above depth map.



Chapter 7

Discussion

This thesis presented algorithms and software tools developed to allow automated capture

of real scenes. While experiments show that the tools are capable of addressing all of the

intermediate steps towards this goal, there is still much room for refinement of these tools

before compelling synthetic scene views can be produced. This section outlines impli-

cations of the results for the individual parts of the planning system and robotic camera

network, and identifies possible directions for future work in these areas.

7.1 Calibration

Calibration of camera properties enables correction of lens distortion present in the Eye

Society cameras. While the minimization procedure implemented in the Matlab Camera

Calibration Toolbox [Bouguet 2000] performs reasonably well, an improved system could

use image comparison across movement of the robot actuators. The current system relies

on a target with known geometry, which does have the advantage of fixing absolute scale of

images, does not make use of much of the area of the calibration images, as only image lo-

cations containing the calibration chessboard are used. This limitation requires the capture



of more images than would an automatic system. Likewise, simultaneous calibration of the

camera intrinsic parameters and the actuator ranges of motion could enable more precise

location of scene points, and could improve matching and modeling performance.

7.2 Depth map generation

Depth maps computed by the GPU shader described in this thesis perform well on tex-

tured images, or images where geometry is precisely known. Performance in situations

with more pose misestimation error is often poor. Search for matching image patches is

currently constrained to locations falling along a single line. When pose of cameras is es-

timated incorrectly, matching image locations may fall outside the area that is searched.

Incorrect pose estimation resulting from the open-loop nature of the track actuator could be

improved by adding an optical or resistive sensor on the track to better monitor robot po-

sition. Physical construction of the robots could also modified to improve stiffness, so that

the weight of the power cables, and tension on the camera USB cable would be less likely

to move the physical camera in ways that are not measured by the servo control loops.

7.3 Mesh generation

Construction of meshes from stereo depth maps produces reasonable facsimiles of synthetic

scenes. The appearance of meshes that have visible errors when viewed without texture can

improve substantially when scene-derived texture is applied. Raw meshes computed by

tessellating depth maps contain bridging membranes across discontinuities even in the best

case, and contain holes and spikes where errors appear in the source depth map. Meshes

might be improved by applying operators, such as a low-pass filter or a median operator, but

these are likely to degrade accuracy for scenes containing high-frequency detail. The mesh



implementation used in the CameraNetworkViewer application contains an implementation

of the half-edge data structure used in geometric algorithms such as complex hull. These

data structures maintain information about connections between facets in the mesh, and

could be used to detect and fill holes resulting from missing information.
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