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Abstract

The motivation for this project is the recent opportunity to leverage low-power, high-
bandwidth RF devices and compact inertial sensors to create a wearable, wireless, motion
analysis system meeting the demands of many points of measurement and high data rates.
This thesis outlines the implementation of such a system intended for interactive dance, in
which sensor nodes are worn on the wrists and ankles of dancers in an ensemble.
Interactive dance is in some ways an ideal situation for pushing high performance require-
ments. Collecting data in a highly active environment of human motion demands a com-
fortable yet sturdy wearable design. Obtaining detailed information about the movement
of the human body and the interaction of multiple human bodies demands many points of
measurement and high resolution. Most importantly, using this information as a vehicle for
interactive performance demands the real-time translation of data into an efficient feature
set that a composer, designer, or choreographer can interpret.
Now that it is possible to extend expressive motion sensing to multiple points on multiple
dancers, an interactive system is capable of responding not only to individual motions, but
also to how an ensemble is working together. The primary goal in this work is to demonstrate
that simple features describing this type of collective activity can be extracted from the
system and interpreted real-time, in order to generate responsive music or other immediate
feedback. To this end, relevant strategies for feature extraction and music generation were
implemented and tested, using data from a small dance ensemble. The results presented in
this thesis show promising opportunities for future development in the areas of dance and
interactive performance. In the broader scope, the hope is to expand this system to other
applications, such as analyzing the dynamics of team sports, physical therapy, biomotion
measurement and analysis, or personal physical training. Preliminary testing in these areas
is also discussed.
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Chapter 1

Introduction

Sensemble is a new sensor platform developed for interactive dance or other real-time human

motion sensing applications. The system is based around a flexible, high-speed network of

small wireless sensor nodes equipped with very capable inertial measurement units (IMUs)

and capacitive node-to-node proximity sensing. These sensor nodes can be worn at various

locations on the user's body, typically at the wrists and ankles. Each device has the same set

of capabilities, including its own wireless module, so they are completely encapsulated and

rearrangeable within the system. The innovation explored in this work is the combination

of high resolution, very low-latency measurement with a scalable, distributed network of

compact sensors, to an extent which has been achieved in few systems to date. Additionally,

a framework has been developed to process the large amounts of resulting data in real-time,

with relevance to collective activity analysis and interactive feedback in a dance setting.

Currently, 25 sensor nodes have been built and can run simultaneously on the network at

high data rates.

1.1 Synopsis

This thesis provides a very detailed description of the design process and implementation,

as well as early test applications, results, and directions for future development. The re-



mainder of the Introduction is devoted to discussing the motivations behind this research

and other approaches that have been attempted in the past. The Hardware chapter outlines

each aspect of the hardware design, as well as the considerations and challenges associated

with the choice of components and architecture. Firmware and Data Flow provides a sim-

ilar summary of the communication structure and firmware running on the sensor nodes

and basestation. The chapter entitled Building Application Software describes the basic

process of developing host application software to collect and access data from a central

computer. From here, Feature Extraction focuses on developing a theory for analyzing data,

and presents basic results associated with generating useful features from dance motion as

measured with inertial sensors. The next chapter, Assessing Capacitive Sensor Perfor-

mance, presents additional results related to the performance of a capacitive sensing system

which senses inter-node proximity. The High Performance Adaption for Athletics chapter

outlines an excursion from dance in which the system was tested in a professional athletic

training situation. The relevant modifications and preliminary results are all covered. This

leads to Test Application and Results for Dance, in which the dancers return to study the

possibility of using data from a performance to generate music in real time. This chapter

addresses the strategy for translating data from the ensemble into musical sounds, addi-

tional issues regarding the specific implementation of a test application, and the results

produced, as well as immediate directions for improvement. The final assessment of all

aspects of system performance and suggestions for future work are made in Evaluation and

Conclusions.

1.2 Motivation

The name 'Sensemble' evokes the feeling that the overlying goal is not just to track the

movements of an arbitrary individual, but to sense the very subtle and expressive relation-

ships within the collective movement of dancers in an ensemble. What qualities separate

an ensemble from an untrained group of people moving cooperatively? What qualities lend

a specific expressive mood to a dance? What role does the relationship between the move-

ments of each individual and those of the rest of the group play in determining the character



of a performance? If a computer system could address these concepts, then it would begin

to process human movement in a more human fashion, and could react accordingly to gen-

erate feedback, for instance, responsive music. Of course, this hits on a host of very difficult

problems at the core of so-called artificial intelligence, and the questions will not be an-

swered here. However, to even pose such questions in a computational setting requires more

advances in the sensing technology used to capture human movement as digital data. Many

previous systems have explored the possibilities of different motion sensing arrangements

for capturing expressive detail from one user. The high-performance devices presented here

make their contribution by demonstrating real-time simultaneous measurement for up to 6

users, without sacrificing high resolution or multiple points of measurement per dancer.

With this in mind, the artistic implication of improving interactive dance applications is

not the only reason for developing wireless sensor technology along the path taken in this

work. Sensing dance is a situation which poses demanding technical challenges, such as the

need to capture movement across a large and unrestricted space, the desire to take into

account as many of the degrees of freedom of the body as possible, a design sturdy enough

to handle strenuous physical activity without impeding this activity, sample rates which

can cope with rapid motion, and high enough resolutions to capture subtlety of motion. In

addition, the goal here is to collect, analyze, and translate this sensor data into music in

real-time, meaning continuous transmission at high data rates is a necessity.

Of particular value is the fact that this set of challenges differs substantially from those

faced in the more common sensor network applications. Typically, in these applications,

functionality is pared down to an absolute minimum to create the cheapest and lowest power

design possible. Much slower phenomena or transient events are measured, data is reduced

within the network, and information trickles back slowly as a function of the power limita-

tions. Faster radios are preferred in many cases because they can afford to spend more time

turned off. By contrast, a system meeting the challenges of dance would also be useful in

high performance, immediate feedback applications where the former sensor network design

goals become a limitation. Possible examples could include augmenting musical ensembles,

adding live media content to team sports broadcasts, professional athletic training, martial



arts, interactive personal fitness monitoring, or physical therapy.

1.3 Related Work

1.3.1 Sensor Technology for Dance

In some ways, the history of artistic development in the last century has been the history of

a stormy love-affair with rapidly developing technology. Among other benefits, technology

offers the potential to merge forms of artistic and social expression in ways never before

possible. On the other hand, the search for a satisfying union between human and machine

capabilities continues, and artists arrive to explore every new innovation, often finding that

technology still struggles to assuage the human imagination. Philosophy aside, it does not

come as a surprise that technology and dance have a long history together. Dance offers

a unique flexibility in that it is by nature open to the addition of music, video, lighting,

narrative, or theatrics. The opportunity to automate and enhance the confluence of all

these elements provides a natural avenue for the use of new technology. For example, as

early as the 1930's, Leon Theremin adapted his well known electronic instrument to a

full-body interface for dancers [1]. Even earlier, in the 1890's, Loie Fuller explored the

dramatic potential of electric and other lighting technologies in her dance performances

[2]. Today, the major advantages over earlier systems include the ability to make more

precise measurements with a wider array of sensing strategies, the increased availability of

processing power to accomplish more sophisticated interpretations of data, and a greatly

enhanced flexibility in the area of media rendering.

As evident by the design presented in this thesis, one general strategy for designing dance

interfaces involves placing sensors directly on the body, with a wireless communication link

to transmit data to a central computer. Several interfaces of this sort have been developed

to capture dance gestures over the last few decades. A number of the earliest of these placed

specific emphasis on sensor devices built into shoes. For example, the Taptronics system

designed in the 1980's for tap dance featured piezoelectric pickups at the toe and heel [3].



The Expressive Footwear shoes developed in 1997 by the Responsive Environments group

at the MIT Media Lab [4] were capable of extracting much more detailed information from

a dancer's feet - measurement capabilities included inertial sensors, pressure sensors along

the sole, tap sensors, ultrasound range-finders, and a capacitive sensor for positioning over

a floor-mounted electrode. All of the data generated by a pair of shoes could be received

in real-time at 60Hz rates. Unfortunately, the shoe-based systems cannot measure upper

body or arm motion, and have typically been designed with one dancer in mind. Because

of bandwidth constraints, Expressive Footwear was never scaled beyond one pair of shoes.

Attempts to extend wearable dance sensors to other locations on the body have usually

started with bendable sensors spanning primary joints, such as the elbows or knees. Ar-

chitectures of this sort have been introduced at DIEM in Aarhus [5] and by Mark Coniglio

of Trokia Ranch in New York [6]. The most extreme (and expensive) wearable joint-bend

interfaces are outfits for full-body motion capture used in the computer graphics commu-

nity, including exoskeletons or flexible fiber-optic angle-sensing technologies such as the

ShapeWrap by Measurand [7]. Although these systems have become wireless, they employ

a single radio in a beltpack or backpack, so the various sensors need to be tethered across

the body to this central dispatcher. Such a "strapped-in" design can be very restrictive for

a dancer, and the bulky infrastructure limits reliability in a performance setting. Addition-

ally, many of these systems were developed for single subjects, and tend to be difficult to

scale to an entire ensemble.

Magnetic tracking technology, such as the systems marketed by Polhemus [8] or Ascension

[9], provides another alternative for motion capture that has been attempted with dancers on

a few occasions [10]. Although these systems still require the user to wear sensor devices,

they possess the ability to track absolute position in space, which is difficult with other

wearable electronics. Unfortunately, precision magnetic tracking can be slow, especially

with many points of measurement, and only works within a confined range around the

transmitter. It is also expensive, and can be susceptible to tracking errors caused by metal

in the surrounding environment. For these reasons, magnetic tracking is usually impractical

in a performance situation with multiple dancers.



A more common approach to positional gesture tracking for dancers minimizes or eliminates

body-worn hardware by exploiting computer vision - processing video from a camera or

cameras watching the stage. This technique is now well established, and platforms like the

Very Nervous System [11], EyesWeb [12], BigEye [13], and Jitter [14] are used by many com-

posers and choreographers. The prevalence of optical tracking methods has even prompted

some artists to develop their own video analysis tools, for example, [15, 16]. Real-time

video analysis is processor intensive, and although the underlying technology and algo-

rithms are steadily improving, computer vision is further limited by constraints on lighting

and choreography. Robustness to occlusion and background noise remains problematic. As

compared to inertial sensors, sample rates are severely limited in all but the most expensive

video systems. Hence, obtaining multiple relevant features reliably from multiple dancers

in real-time at the rates desired here can be difficult.

In constrained environments, there are certainly situations where computer vision or full-

body sensor suits provide the most suitable means for highly accurate motion capture.

However, when the goal is to obtain a general idea of gestural content as quickly as pos-

sible without compromising artistic expression, simpler techniques with fewer operating

constraints can be considered. This is especially important for working with groups of

people in a performance setting. Video tracking systems with relaxed measurement re-

quirements have, in fact, been developed to accommodate this kind of general sensing of

group interactions. For instance, Cinematrix was designed to capture the movement of an

entire crowd holding colored reflective paddles [17]. Yet, in its extreme simplicity compared

to high resolution motion capture, such an approach is much too coarse to describe dance

movements in any detail, and the need for large reflectors on dancers is physically limiting.

In addition, despite the struggle to adapt optical tracking methods to dance, acceleration

and velocity measurements can be more useful than positional data from a gestural motion

analysis standpoint. Accordingly, a system of wearable inertial sensor nodes with dedicated

wireless connections was selected as the preferred strategy for this project. This approach

has advantages over other wearable sensor techniques in that devices can be compact and

do not have to be wired across the body, the system easily scales to a flexible number of

dancers and number of measurement points per dancer, does not suffer from occlusion, and



provides sensor data which is immediately relevant to features of human motion.

1.3.2 High-Performance Compact Wireless Sensor Platforms

The current hardware design has its roots in the Stack [18], a modular system, including

full IMU card, developed at the MIT Media Lab several years ago as a smaller and more

customizable alternative to the earlier Expressive Footwear design. However, the Stack was

created at a time when the Expressive Footwear shoe was being moved to health monitoring

applications [19, 20]. Because of this, the bandwidth requirements were not as stringent,

and the radio used at the time was limited to data rates of only 115kbps, sufficient for two

shoes on one user, but too low for a high resolution multi-user dance interface.

Although compact sensor clusters have since been developed at other institutes, many of

them meet with the same limitations as the Stack. Very few systems have successfully

combined low power and small size with the number of sensor channels high and data

rates needed here. For instance, Motes [21] are quite established in the sensor network

field, and they provide a configurable research platform for testing a variety of applications.

However, they tend to support mainly peer-to-peer routing at modest data rates. Likewise,

the Smart-Its platform and its descendants [22] are designed to work at data rates similar

to the Stack. A system of sensor nodes specifically made for inertial motion tracking has

been discussed in [23], but in this case a wireless solution for scaling the network effectively

was left for future work.

More recently, Flety and collaborators at IRCAM [24] have built wireless sensor networks

that use the WiFi 802.11 standard, and have used their WiSeBox system in a dance setting

with multiple performers. The trouble with WiFi is that, although it provides very high

data rates, it tends to be much too power hungry for efficient continuous operation with a

small battery. Consequently, the WiSeBox architecture is based on a bulky central radio

and processing unit, and the sensors themselves have to be wired across the body. Many

other new systems favor sensor nodes with Bluetooth for achieving high data rates and ease

of connectivity with consumer electronic devices. Some of these systems use inertial sensors



to measure human motion, and have been designed with goals very similar to the ones

outlined in this work. For example, researchers at ETH Zurich and CSN UMIT in Austria

have collaborated on systems to analyze Butoh Dance [25] and Tai Chi [26]. Unfortunately,

Bluetooth also has relatively high power requirements, and the size of the network is limited

to only seven slave nodes per master. This means that Bluetooth places limitations on the

scalability of a system for dance. In the case of [25], sensor nodes based on the ETH PadNet

system [27] were again wired across the body to a central Bluetooth unit. Several dancers

could potentially be accommodated with this structure, but the cumbersome wires are still

present. The Tai Chi analysis presented in [26] uses IMUs and wireless modules from the

commercially available XSens system [28]. Presumeably, there is an improvement over the

custom made PadNet sensors, but XSens is still a modular Bluetooth system with sensor

units that must be wired across the body to a larger radio unit.

A system with completely encapsulated sensor nodes and high data rates has been proposed

in [29], including applications cited for dance and athletic motion analysis. However, the

wireless link in this design is still Bluetooth, which means a new master would be needed for

every seven nodes. Realistically, to expand this system to multiple users, each person would

have to carry a Bluetooth master device with a higher speed uplink; as the authors suggest,

a cell phone. Essentially the wires across the body have been replaced by power hungry

Bluetooth channels, and the heavy central radio pack still exists. The solution proposed

here is to dispense with the convenience of Bluetooth in favor of a custom protocol using

a configurable high data rate, low-power radio. This approach has been taken before;

for example, the very compact and low-power wireless accelerometer nodes designed by

Emmanuel Tapia of the MIT Media Lab for ubiquitous health monitoring applications,

which were capable of rates up to 1Mpbs [30]. By comparison, the applications of interest

here require more sensor degrees of freedom and continuous operation, but the starting

point is similar.



1.3.3 Collaborative Interfaces

The advantage to having enough sensing power to track multiple people simultaneously is

an opportunity to study collaborative motion, and to design a system which responds to

the relationships between people's activity. Processing data from sensors in a way that

describes a high-level shared experience between devices can be difficult. Controlling an

interface which requires cooperation can also be difficult, especially when the interface has

difficultly perceiving cooperation in the way humans expect. The ability to respond to

collaboration is desirable, however, as it is a fundamental basis of human interaction.

A large body of research in sociology and other fields has been devoted to bringing tech-

nology into this world of collaboration. In the context of this work, it is worth mentioning

that a number of sensor platforms and analysis strategies have already been developed to

study the possibility of collaboration between devices, and to help characterize collabo-

ration between people. For instance, a project entitled "Are You With Me?" [31] used

accelerometers to establish when a pair of devices was being carried by the same person. In

[32] or [33], accelerometers were again used to detect when two devices were shaken at the

same time or tapped together, respectively. In each of these cases, inertial sensors were used

to determine a relationship via shared experience of movement, at which point a virtual

association could be made between devices and responded to accordingly.

As mentioned previously, computer vision has been employed to sense collective movements

on a larger scale with the Cinematrix system [17]. In a similar vein, inexpensive handheld

'shaker' sensors have been developed at the MIT Media Lab for characterizing large group

movement, including an application for interactive dance, in which the activity patterns

of an entire club influence the musical output of the DJ [34, 35]. Although the ability to

scale dramatically enough to study crowd movement is interesting, the techniques used to

do so are too coarse to capture the nuances of gestural interaction desired here. The sensor

system developed in this thesis allows a collaborative interface to be formed with fewer

people, but with much more expressive capability.

Collaboration, technology, and music, in the sense of multiple people sharing control over



one musical output, frequently come together in spaces for shared composition online, such

as [36, 37]. Increased connectivity between communities has created new ideas for how

to generate music in a collaborative setting, along with interfaces that usually take the

form of a type of forum or wiki, allowing users to modify visual musical score elements in

a shared space [38, 39]. Several experimental music interfaces or installation pieces have

also been developed to incorporate direct face-to-face collaboration, by using a convergence

of sensor data and generating sound as a function of multi-user input [40]. However, the

interaction is generally designed ad-hoc, without a concept of gestural vocabulary or the

attempt to make conclusions related to meaningful characteristics of group interaction.

Apart from the system described in [34], it seems that only a few attempts have been made

to study collaborative performance interfaces from the perspective of detailed collective

motion analysis. In one example, [41] discusses a sensor platform and topology to facilitate

this type of system, but applications have not yet been realized. The developments made

in this thesis barely scratch the surface of what could potentially be done with a high-

resolution collaborative sensor interface for music, but it is the hope of this work that the

capabilities of the system described here will inspire future development in this area.



Chapter 2

Hardware Design

2.1 Initial Requirements

Initial guidelines for the sensor design took into consideration restrictions and specifications

on several levels, as motivated by the intent to work towards interactive dance. First, the

topology was envisioned as a network of small sensor devices, each with its own wireless data

link, to be worn on the wrists and ankles. These extremities were chosen as a compromise

between ability to describe full body movements and the number of devices required per

dancer. The small nodes in this scheme can easily be generalized or scaled to include

measurement, of the head, torso, or other locations on the body - this can be considered

an added benefit.

Another prime stipulation was the quality and frequency of measurements coming from each

device. The approach discussed in this work calls for full 3-axis acceleration and rotational

velocity sensing, in other words, a full 6 degree-of-freedom inertial measurement unit (IMU),

at each measurement point on the body. Based on the frequency content of active human

motion [42] and the peak resolution of MEMS intertial sensors, sampling at 100Hz with

12 bits was also imposed to capture this data in sufficient detail. It was also considered

beneficial to include options for other extended sensing modalities where resources were



available. This led to the inclusion of a capacitive node-to-node proximity sensing system

and flexible expansion port.

In designing the communications structure for the wireless network, speed was the first

priority. Because the application involves real-time feedback in the form of music or other

rapid response enabling the user to interact with the system, data must be received at a

central computer quickly and simultaneously from all sensors. Hence, the system makes

use of a star topology, in which a central basestation arbitrates and collects data from the

entire network, as shown in Figure 2-1. The flow of information is direct, and the centralized

structure makes it easy to synchronize sampling between all of the sensor nodes. Further,

the intent was to scale to a small dance ensemble, with 20-40 nodes in the network all

transmitting data at the rates suggested above. Using 20 nodes produce 144kbps of inertial

data alone:

6sensors/node x 12bits/sensor x 20nodes x 100 Hz = 144kbps.

Factoring in a rough estimate of 60% loss due to overhead and protocol inefficiency, as well

as four additional sensor signals that might be generated by the capacitive sensing system,

the minimum data rate required in the channel is:

l0sensors/node x 12bits/sensor x 20nodes x 100 Hz

1 - 0.6

Clearly, the available bandwidth becomes a major issue.

The ultimate limiting factor, of course, is size. Sensors must not only be practical to

wear, but also comfortable, light, and durable enough for strenuous dancing. Being wireless

units, each node must be equipped with a battery, and this power source must fit into

the description above, while providing enough energy for a performance of several hours.

Although the power requirements here are not strenuous in the same sense as those for

tiny wireless devices designed to operate for years on a single battery, the need for high

bandwidth continuous operation in this application makes the selection of appropriate power

sources limited.
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Figure 2-1: Basic network topology and deployment.

Accelerometers and
Gyroscopes

Figure 2-2: Sensor node architecture.

Figure 2-2 provides a pictorial overview of the sensor node architecture that grew out of

these considerations. Each of the design elements will be described in detail in the sections

to follow. Figure 2-3 shows the assembled hardware.
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Figure 2-3: Assembled node board and battery pack.

2.2 Inertial Sensors and Signal Conditioning

Inertial sensing refers to the measurement of a moving object with either accelerometers

or gyroscopes, which harness the properties of inertia in various ways to register changes

in motion. Characterization of human movement through the dynamics of the body is the

focus of this work, and hence inertial sensors are the basis of the hardware design. In gen-

eral, inertial sensors can range from cheap and simple devices to detect a vibration [35] to

expensive and elaborate instruments able to navigate an aircraft or missle [43, 44] (see Fig-

ure 2-4). The best middle ground in terms of size, cost, power consumption, and accuracy

for continuous measurement on the body are sensors of the micro-electro-mechanical sys-

tems (MEMS) variety, which use micro-machined silicon structures to measure the inertial

parameters. The performance of various MEMS accelerometers and rate gyroscopes have

already been tested extensively in the work directly leading up to the design presented here

[45, 46]. Although several new options have materialized recently, and sensors continue to

improve, the current possibilities are similar to those discussed in the aforementioned work,

and the design decisions draw heavily from these previous iterations.

Gyroscopes are more complicated than accelerometers and have imposed the most signif-

icant constraints on the sensor design. Table 2.1 shows the current availability of MEMS

gyroscopes and accelerometers along with relevant specifications. In the case of rate gy-
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(a) Ultra low-cost wireless motion sensor. (b) Heavy navigational IMUs.

Figure 2-4: Extreme examples of inertial sensing.

roscopes, the nominal ranges shown in degrees/sec are really quite small for rapid human

movements. For instance, a quick 90-degree rotation of the wrist can easily be made in 0.25

seconds, amounting to an average rotational velocity of 360 degree/sec, already outside of

the nominal range of most small gyros. The peak values of rotational velocity can be much

higher than the average values, of course, meaning that the problem is not limited to such

a deliberate rapid gesture. To maximize nominal range and minimize size, the ADXRS300,

which had been selected in previous projects, was still the best choice at the time of the

design. Luckily, the ADXRS300 also provides a simple way of extending its range up to a

factor of four by setting an external resistor (R37 in Figure A-1). The extended range of

roughly ±1200 degree/sec was more than enough to capture dance activity without clipping

the sensors. Methods are available to increase the range even more drastically for demand-

ing applications such as professional athletics (see Section 7.3). Exploration of this area

will be discussed in more detail in Chapter 7.

Because multiple axis gyros were not yet available when components were evaluated, the

IMU was constructed with two orthogonal daughtercards to accommodate 3-axis sensing.

The mounting procedure is shown in Figure 2-5, and discussed in more detail in Section

2.8. With these daughtercards already in place, it makes sense to use a pair of 2-axis

accelerometers rather than being restricted to the limited selection of 3-axis accelerometers.

Advow2w, I

• IMU IUl

Front Back

LN,.IO•(I



Figure 2-5: Orthogonal mounting of sensor daughtercards.

For certain applications, however, the new 3-axis ADXL330 would provide great savings

in size, power, and cost. The discussion in [45] provides a justification for why it might

be worthwhile to sacrifice this convenience for the sake of having multi-axis gyro signals

available.

Initially, the ADXL203 accelerometer was chosen because of its high sensitivity and low

noise. However, while the ADXL203 appears to be the best option for fine motion sensing

at a reasonable price, it turns out that, as with the gyro, the range of ±1.7Tg is nowhere

near enough to accommodate strenuous activity. Because of pin compatibility, the design

dropped back to the older ADXL210E, which is less accurate but provides a full ±10g range.

Unfortunately, ±10g is too large of a range for most human activity, and experimentation

has suggested that a ±5g accelerometer such as the non-pin-compatible ADXL320 would

be a more appropriate choice for dance. Future designs will support footprints for these

newer components.

The power requirements of the ADXRS300 gyros necessitate that they run from a 5V supply.

The ADXL210 accelerometers are more flexible, but for simplicity they also use 5V here,

as they are mounted on daughtercards along with the gyroscopes. The digital circuitry,

however, including analog to digital conversion, runs from a 3.3V supply. The necessary

voltage conversion, as well as buffering and filtering, is accomplished by the analog signal



conditioning stage (see Figure A-1). After the inertial sensors' own internal output filter

stages, the signals are scaled down with inverting amplifiers and lowpass filtered with a

first order roll-off at 22Hz. This limits aliasing during analog to digital conversion, while

preserving most of the information one could expect to find at 100Hz sampling rates. The

input and feedback resistor values are large to compensate for the high output impedance of

the sensors (for the accelerometers, roughly 32 ka). Unfortunately, the sensor signals had to

be attenuated to make the conversion from 5V to 3.3V ranges. Attenuation is only possible

with an inverting amplifier; otherwise a high input impedance non-inverting configuration

with smaller associated resistances could have been employed, potentially improving noise

performance.

Six op-amps are required for the signal conditioning stage, one for each IMU axis. Rather

than using three dual packages, two quads were used, leaving one free amplifier to buffer the

reference voltage needed for voltage conversion, and one free amplifier to provide a spare

analog signal path for future expansion, which will be further addressed below. To select

an appropriate op-amp, the focus was on low noise, low power, and rail-to-rail output to

take advantage of as much of the bit depth of the ADC as possible. The TLV 2474 was

selected as a good all-around amplifier meeting these criteria at a low cost. Accounting for

the entire signal path, the noise floor is low enough to get 10-bit precision from the inertial

sensors.

2.3 Microcontroller

Each sensor node is equipped with a microcontroller (MCU) which functions as a local

control center for collecting and processing data, arbitrating sensor behavior, maintaining

communication with the RF module, and timing events. In this particular design, the focus

was on requirements of speed for making effective use of the high bandwidth wireless network

and associated tight timing requirements, availability of analog inputs and ADC resolution

for handling several high quality sensor data streams, digital I/O capabilities for flexible

control over other circuitry and peripheral devices, adequate RAM for offline computation,



and internal flash memory for the option of logging data. The Texas Instruments MSP430

family of MCUs provides respectable solutions to these design criteria, with the added

benefits of very low power operation intended for embedded devices. Ease of use also plays

a role, and previous experience with the MSP430 in other projects, as well as familiarity

with and access to the Rowley CrossWorks' development environment [47], made this MCU

family attractive. Specifically, the sensor nodes use the MSP430F148, an 8MHz 16-bit RISC

MCU with 8 analog input channels, 12-bit ADC, two serial interfaces, two highly flexible

16 bit timers, 2kB of RAM, and 48kB of internal flash memory. The MSP430F149 is a

pin compatible upgrade with 60kB of flash. Both MCUs consume only 3.4mA when idle

in active mode, and less than 0.5pA in the deepest sleep mode. They are available in

compact 64-pin leadless (QFN) packages, providing ample I/O within a 9x9 mm footprint.

Programming the network can be accomplished node by node through a standard JTAG

interface or wirelessly with a bootloader, although the latter was not implemented. The

firmware running on the MCU in the current implementation and the allotment of MCU

resources will be described gradually as the remaining design elements are defined below.

2.4 Capacitive Node-to-Node Proximity Sensing

Despite the ability of MEMS accelerometers and gyroscopes to perform well in detailed

gesture tracking applications, their signals are still not clean enough to provide positional

tracking in space. Because the computation of position from velocity or acceleration requires

a double integration, noise and bias rapidly accumulate in the result, a phenomenon known

as drift. To recover from drift, navigational systems need to be calibrated periodically

with an outside reference. In the case of small and relatively noisy MEMS sensors, this

recalibration would have to occur on the order of every 5 seconds [45]. Even then, finding

a reliable calibration reference is problematic. Since the focus here is on relative qualities

of movement, activity features, and subjective comparisons between gestures, it is mostly

possible to avoid the slippery slope of calibration, absolute measurement, and positional

navigation. However, in some cases it would be satisfying to make a simple statement about

the location of one sensor node with respect to another. For instance, are the wearers arms



far apart or close together? It would be impossible to answer this question with inertial

sensors alone. To help extract this type of information, a capacitive sensor system was

added to the design that supports rough measurements of distance between pairs of nodes

in the network.

Capacitive sensing, alternatively known as electric field sensing, may come in a variety of

forms, but the term typically implies a measurement based on the relationship between

electrode spacing and the capacitance across two electrodes [48]. For an ideal plate capac-

itor, with electrode spacing d much smaller than electrode area A, and dielectric constant

E, capacitance C is inversely proportional to d as shown:

eA
C =

d

In human interface applications, the electrodes may be irregular conductors worn on the

body, or the body itself may act as a not-so conductive ground electrode, and the distances

of interest are comparatively large [49, 50]. Because of this, the capacitance drops off much

more quickly with d. In addition, the capacitive coupling in such a setting usually occurs

through the air, with its low dielectric constant and sensitivity to environmental factors

such as humidity. Hence, the challenge is to appropriately measure small and notoriously

noisy changes in capacitance.

For this application, the goal is to measure the distance between two sensor nodes with

conductive electrodes attached, ideally without the influence of the body and its surround-

ings, which are effectively grounded. The best way to accomplish this is to transmit a high

amplitude carrier signal from one electrode and receive and demodulate the signal on the

other, to determine a received carrier amplitude. The amplitude of the receive signal is ex-

pected to vary with capacitance because the capacitive coupling channel looks like a variable

cutoff highpass filter in the appropriate frequency range of 50-100kHz. This arrangement

is similar to transmit mode sensing as discussed in [49, 50].

In the case of two isolated wireless sensor nodes, there are two problems to address with

this transmit-receive capacitive sensing arrangement. First, as there is no direct electrical



path between the two devices, there is no common reference, resulting in a decreased signal-

to-noise ratio and the potential for unpredictable behavior. The solution is to ground the

devices to the body, allowing the sensor nodes worn by the same user to share a reference

through the skin. Although the body is not an ideal conductor, this practice has been

documented [49], and indeed greatly improves capacitive sensor performance as discussed

in Chapter 6. Of course, directly grounding the body highlights the fact that the capacitive

sensor will never actually be free from the influence of the body and its surroundings. As a

ground plane, the body will readily shield the electrodes if the path between them becomes

blocked by it, resulting in reduced signal. Similarly, the existence of nearby floating con-

ductors can actually increase the coupling between the electrodes, resulting in an improved

signal. This behavior can cause confusion if, for some reason, one attempts to assess the

performance of a capacitive sensor by placing electrodes near the metal ruler in my office,

for instance.

The second problem, also due to the electrical isolation of the wireless devices, is that

the receiver has no information about the phase of the transmitted signal, which it would

ideally know, in order to synchronously demodulate the carrier and measure its amplitude

properly, while rejecting uncorrelated noise. The simplest way to get around the need for

phase coherence is to sample in quadrature, or at exactly four times the transmit carrier

frequency. Assuming the carrier frequency is known, quadrature sampling produces four

values for every period, known as the in-phase and quadrature components, which can be

combined to reconstruct any bandpass signal without the need to know the initial phase

[51]. To make the capacitance measurement, only the magnitude of the carrier is needed,

which can be computed for each period as:

V = (S0 - s180) + (S90 - S270) 2

This process of quadrature sampling and reconstruction is essentially demodulating a carrier

signal down to baseband. Then, the magnitude of the complex envelope around DC is

measured to compute the amplitude estimate. Supposing there is a small error between

the actual transmitted frequency and the expected carrier frequency, it will be reflected as



Figure 2-6: Capacitive transceiver circuit.

low frequency noise or beats. Typically, the amplitude estimate is computed and averaged

over several periods of the carrier to reduce this effect. The use of quadrature sampling for

electrically isolated capacitive sensing devices has been extensively discussed in previous

work at the MIT Media Laboratory [52]. In particular, Smith addresses ways to handle

the error associated with simplifying the calculations required during demodulation, for

cases where processing power is limited. In the work presented here, sufficient processing

power is more readily available, and making the full calculations is favorable. Performing

the square root operation is not strictly necessary, but in order to compress the result into

an appropriate range of 12 bits, it was carried out in this case with a significant loss in

processing time, as made more apparent in Section 3.6. Optimization of the capacitive

detection algorithm will be left for future development.

A capacitive measurement can only be made for one pair of nodes at a time. During this

transaction, one node must play the role of the receiver and the other must play the role of

the transmitter. The circuitry, also inspired by previous work detailed in [52], is such that

the two roles can be swapped easily by the microcontroller, and each node can make use

of the same amplifier stage and electrode for both transmit and receive modes (see Figures

2-6,A-1).



In transmit mode, the microcontroller generates a square wave on CAP_TX at the desired

transmit frequency, which is then buffered in the amplifier stage, and drives a tuned series

LC resonator to generate a high amplitude sinusoid at the electrode. In this implementation,

40V peak-to-peak signals can be generated, although even higher amplitude signals were

reported with the setup in [52]. Because the energy is stored within the LC circuit, these

high amplitude signals can be generated with relatively little current draw.

In receive mode, CAP_TX is set to high impedance and a bias is applied at the non-inverting

input to the amplifier stage. The first op-amp and LC circuit then act as an inverting ampli-

fier with a high-Q bandpass filter tuned to the carrier frequency - this isolates and amplifies

a carrier signal received at the electrode. A second non-inverting amplifier stage buffers the

received signal and applies more gain before sending the received sinusoid (CAP.RX) to an

ADC input. At this point, the microcontroller handles quadrature sampling and estimates

the amplitude of the received signal.

The frequency of operation was determined by the ability of the microcontroller to sam-

ple and store values at precisely four times this frequency, in order to achieve quadrature

sampling. It was also necessary to generate the driving signal for the transmitter by tog-

gling a pin at precisely two times the frequency of operation. Physical limits on the ADC,

clock speed, and number of instructions to be executed place an upper limit on the possible

choices. At the same time, within the range of frequencies appropriate for measuring ca-

pacitive coupling (typically 10-100kHz), higher values are preferable because the strength

of the coupling is linearly proportional to frequency [52].

With these restrictions in mind, 90.9kHz was chosen as the fastest feasible carrier frequency

for the MSP430F14x. With the clock frequency set to the maximum rate of 8MHz, the

90.9kHz transmit drive signal can be generated by toggling a digital output pin every 44

clock cycles. The received signal must then be sampled every 22 clock cycles to capture

the in-phase and quadrature components. During receive mode, the MCU stores an array

of samples over several periods of the carrier frequency, so that the averaging and quadra-

ture computations can be made after the time-sensitive sampling process. Algorithms to

accomplish these tasks in firmware are shown in Listings 2.1, 2.2, 2.3 (see also Listing C.5).



They have been implemented in C, but include careful timing that is device specific and

may also be unique to the compiler included in the Rowley CrossWorks [47] development

environment.

int i=0;

int length;

P4DIR 1= 0x40; //CAP..TX mode

//toggle CAPTX at 90.9kHz
//Number of toggles is twice the number of periods
length = (CAP.LENGTH<<1);

while ( i<length) {
.. delay-cycles (35)

P4OUT _= 0x40; //CAPTX signal
i++;}

P4DIR &= -0x40; //CAPRX mode

Listing 2.1: Capacitive transmit algorithm.

int tcmp=0;

P4DIR &-- -0x40; //CAP.RX mode

//This captures samples in quadrature
//(4 samples per 90.9kHz cycle)
//for a duration of CAP-LENGTH/2 cycles

ADC12CTLO |= ADC12SC; //Initial ADC sample trigger
ADC12CTLO &- ADC12SC;
__delay-cycles (7);

whil e (temp<CAPLENGTH) {
ADC12CTLO 1= ADC12SC; //Trigger A
ADC12CTLO &= "ADC12SC;
PACMANO[temp]=ADC12MEM8; //Store sample from trigger B

.. delay-cycles (6);
ADC12CTLO 1= ADC12SC; //Trigger B
ADC12CTLO &= -ADC12SC;
PACMAN1[temp]=ADC12MEM9; //Store sample from trigger A
temp++;
}

Listing 2.2: Capacitive receive algorithm.

The full sampling rate for the received signal corresponds to 363.6kHz, much higher than

what would typically be demanded from a microcontroller ADC. To ease the requirements,

two ADC memory locations are used for the in-phase and quadrature components, respec-

tively. In this way, the conversions can be computed as if two different signals are being

sampled at half the rate, with the advantage that a sample intended for the second memory

location can be triggered before the previous sample has finished being stored to the first

memory location. To be sure that the MSP430 can handle such a rate, one must refer to

the User's Guide [53] to determine the minimum time required to capture a sample and the

minimum time required to convert the sample. In the relevant mode of operation, a sample



Listing 2.3: Capacitive calculation algorithm.

is captured by setting a register flag high for the sample duration tsamp, after which the

user must wait a minimum time tconvert before reading the relevant ADC output register.

In order to ensure that the conversion for an in-phase sample is complete before conversion

begins on the next quadrature sample, there must also be a separation of at least tconvert

between sample triggers. Since a sample must be taken every 22 clock cycles to acheive the

full 363.6kHz rate with an 8MHz clock, the first requirement is that:

tconvert < 22 clock cycles.

The conversion time tconvert is specified to be a constant 13.5 clock cycles, so this condition

is met. Although there are 22 clock cycles between each sample, this time cannot be taken

up entirely by the sample capture duration tsamp. After each new sample is captured and

prepared for conversion, code must execute to move the previous sample value to a storage

array (see Listing 2.2). Therefore the maximum time allowed for sample capture is given

by:

tsamp < 22 clock cycles - tcode (2.1)

where t code is the execution time required in clock cycles. At the same time, a lower limit

int temp;
long signed int I =0;
long signed int Q=0;
long signed int diff
unsigned int val
float S ;

if (so u r c e - i d x < MAXCAP-RX-NODES) {
//Accumulate samples in quadrature
diff = PAC.MANO[0] -PACMANO[1];
I = diff*diff;
diff = PAC-MAN1(0]-PAC.MAN1[1];

Q = diff*diff;

for (temp=2;temp<CAPLENGTH- 1;temp++){
diff = PACMANO [ temp] -PAC.MANO[ temp + 1];
I += diff*diff;
diff = PAC-MAN1 [ temp] -PAC.MAN1 [ temp + 1];

Q += diff*diff;

S = sqrtf((float)((I + Q)>>CAP_.P'ROF2));
val = (unsigned int)ceilf(S);

//Hard limit to 12 byte range
if(val < Ox0FFF){

CapRX[sourceidx] = val;

cse {
CapRX[ sourceidx] = Ox0FFF;



on tsamp is determined by the time required to charge the input stage of the converter,

as modeled by an internal capacitance, CI, and an internal resistance, RI. In turn, this

charging time depends on the output impedance Rs of the device connected to the input

of the ADC:

tsamp > (Rs + RI) x ln(2) 13 x CI + 800ns

R = 2 k2, C1 = 40pF

Now, assuming zero output impedance at the input, the smallest possible value of tsamp is

found to be 1.521s, or 12.16 clock cycles of the 8MHz clock. The smallest whole number

of cycles available for sample capture, then, is 13. Since this only allows 9 cycles for code

execution, it is already close to the maximum value imposed above in Equation 2.1. Finally,

the upper limit on the driving output impedance Rs can be estimated to verify that an

input signal can be sampled at this speed:

tsamp - 13 clock cycles = 1.625ps

R tsamp - 800ns RI 0.825ps - 2 kQRs < -- R = -2k
Ci x ln(2)13  360.44pF

Rs < 289

Although this clearly pushes the limits of the converter, an op-amp stage with a typical

output impedance of 10 Q or less is used to drive the analog input. In this case, the output

impedance is certainly low enough to enable the desired sampling rate. Proper behavior was

verified by comparing the amplitude of the input to the ADC as measured on an oscilloscope

with the estimated value obtained through quadrature sampling and computation.

The circuit components for the capacitive transceiver were chosen to ensure as much gain

as possible. The LC circuit must have a high Q to generate the high amplitude transmit

signal, and in turn must be tuned as closely as possible to the driving frequency of 90.9kHz.

To accommodate this, an inductor was chosen with low equivalent series resistance (ESR),

and in some cases the capacitance was hand-tuned by stacking surface mount components

in parallel for the best performance, as shown in Figure 2-7. Originally, variable capacitors

were considered too large and were difficult to obtain for the small range of values needed. In



future designs, they may be an effective addition, as the precision of standard components

is low when faced with the problem of matching highly tuned resonators, and having to

tune each device by stacking capacitors is impractical. The op-amp was chosen with the

major requirement of high enough gain-bandwidth product to effectively amplify signals in

the range of 100kHz. A dual op-amp was required for transceiver and secondary gain stages

(see Figure A-1). Also of importance were low power, and rail-to-rail operation to maximize

the amplitude of the square-wave driving signal applied to the resonator in transmit mode.

The LT6221 was selected as a reasonable solution, with a 60MHz gain-bandwidth product

providing the potential for 600x gain at 100kHz, rail-to-rail input and output, and only

1mA supply current required per amplifier. However, the LT6221 suffers from a high noise

floor, which is exacerbated by the fact that, by design, the LC resonator provides huge gain

at the frequency of interest in receive mode. The result is a receiver with a lower signal to

noise ratio than what may have been possible with a low-noise, non-rail-to-rail amplifier.

Figure 2-7: Stacking surface mount capacitors to tune the resonant circuit.

Another oversight present in the current design is the sharing of bias voltage VREF between

the analog circuitry associated with the inertial sensors and the capacitive receiver circuitry

(see Figure A-1). This bias voltage was originally intended to be half of the 3.3V digital

supply VLogic, the correct bias point for the capacitive receiver, but because of the voltage

conversion requirements built into the inertial sensor circuitry, VREF has actually been set

to 2.06V. Therefore, the capacitive circuitry carries an unintended bias offset. The offset

does not effect the amplitude measurement because quadrature computation is differential.

However, when the received signal is strong, it will saturate the positive rail before saturating



the negative rail, creating reduced sensitivity and increased noise just before the saturation

point when the sensors are moved very close together. This error is trivial to correct, but

will wait for future board revisions. A final performance evaluation of the capacitive sensor

system is left for Chapter 6.

2.5 Extended Capabilities

2.5.1 Integrating Additional Sensors

On top of its core capabilities, the Sensemble sensor platform was designed with flexible

options for future expandability, including the integration of additional sensors or peripheral

devices such as external memory. A sturdy, compact 18-pin cable connector has been

included, which acts as a full expansion port as well as the MCU programming interface,

as shown in Figure 2-8. A cable connector was preferred over board-to-board connectors

with the expectation that it would be less cumbersome to wire expansion devices across

the body if necessary than to add more rigid mass to the sensor unit. The expansion port

provides power lines at 3.3V, 5V, and ground, two digital I/O lines from the MCU, a free

SPI port from the MCU, and a flexible analog sensor input which gives full access to the

free signal conditioning path and ADC input on the main board (see Figure A-1).

Magnetometers

Several specific technologies omitted from the design come to mind as candidates for adding

capability to the system, especially as a tool for interactive biomotion analysis. For instance,

the difficulties of tracking position with inertial devices have been addressed, and this

work suggests one way to dismiss positional tracking while still establishing some degree of

spatial information, by using capacitive sensors. However, it has become popular to attempt

true position tracking with MEMS IMUs by combining the inertial devices with three axis

magnetometers. For instance, this is the case with the previously mentioned XSens system

[28], the system described in [23], and the Motion Bands designed at the Nokia Research



Figure 2-8: Expansion port and cable.

Center [29]. Magnetometers measure the Earths magnetic field to provide a continuous

orientation reference, by which the initial angle of rotation can be recalibrated, and the

gravity component of acceleration can be separated from other accelerations. Unfortunately,

there are certain indoor environments, such as those cluttered with metal or near the floor,

in which the magnetic readings become inaccurate. Handling these inaccuracies to create

a high performance position tracking system was not the primary goal in this design, as

accelerations and velocities alone can be used to characterize expressive movements. Hence,

the use of magnetometers is left as a possibility with the expansion port, which could

accommodate a single axis measurement using the free analog input, or a full three axes

using a digital output, multiplexer, and analog input.

Heart Rate Monitoring

Another likely addition is heart-rate monitoring capability, to describe strenuous activity

in a manner directly relevant to personal fitness. Many commercially available products

already combine the power of accelerometer data with various types of personal physical

training technology [54]. Experimental sensor systems developed for research at the MIT

Media Lab have also demonstrated simple ways of integrating commercial heart monitoring

tools with custom-built hardware. In particular, the hardware developed for [55] is able



to measure heart rate reported from the Polar [56] heart monitor using their watch-sized

receiver board connected to the main board via a single digital input pin. Using a similar

setup, it would be trivial to interface the Polar monitor with the Sensemble sensor node

through a free digital input. In fact, this possibility has been anticipated in that the

expansion port includes a digital line labeled Pulse. The system has not yet been tested in

conjunction with heart rate monitoring, however.

Tactile Inputs

Finally, there may be merit in adding tactile inputs to the sensor network, such as pres-

sure sensors or buttons on some of the nodes. Without tactile feedback, it is difficult to

give the user satisfying control over possible interface elements such as selecting modes of

operation. The expansion port on each node potentially supports one continuous pressure

sensor through the analog input, and two buttons through the free digital inputs. Adding

buttons and transmitting button presses is a simple proposition that does not fundamen-

tally broaden the concept presented here, and is left up to application specific needs in the

course of future development.

2.5.2 Integrating Peripheral Devices

Other enhanced sensor arrangements can be accommodated, not limited to the addition

of single analog or digital signal sources. Provided that the added device supports serial

peripheral interface (SPI) communication, the expansion port allows the possibility of at-

taching a new full-scale sensor node with its own suite of capabilities and processing power,

or a large external memory module for logging data. This is accomplished through the

expansion port's SPI interface, which can be used in three or four wire modes, can run at

speeds greater than 1Mbps, and allows the Sensemble node to be run as either master or

slave. Making such dramatic extensions to the abilities of the sensor node is, of course,

contingent on the power budget and may require the addition of a second power source or

modification of the power regulation circuitry.
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Figure 2-9: Resistor network for controlling the RGB LED.

2.5.3 Visual Feedback

Aesthetic considerations led to the addition of LEDs to the main board for visual appeal

and feedback. Originally, three separate surface mount LEDs were used, but to save space,

increase visibility, and provide for more effective color combination, a single bright tri-color

(RGB) surface mount LED with low current requirements was chosen in the final design.

The Fairchild QTLP650D was selected as one of the brightest and most well balanced of

such devices at low current levels. Typically, an RGB LED can be driven through three

MCU pins and associated current-limiting resistors. However, as will become apparent in

Chapter 3, the timing for sampling data and running the communication protocol is so tight

in this application that there is no room to handle the traditional pulse width modulation

(PWM) used to mix red, green, and blue levels. Therefore, the LED is driven from six

MCU pins through a resistor network providing three possible resistance values for each

color, as illustrated in Figure 2-9 below. For instance, when RedA and RedB are pulled

down together, the red LED is driven through the parallel combination of the resistors Ra

and Rb. When only one driving pin is used, the other is set to high impedance to close off

its current path. When both pins are pulled up, the LED is off. This arrangement provides

four possible brightness levels for each LED; in other words, 64 possible colors.



The LED can be given a small duty cycle based around the existing firmware timing struc-

ture. However, it still creates a significant peak current draw, up to 25mA total for bright

white with resistors Ra and Rb set to 430 Q and 150 Q, respectively. There are several

acceptable reasons to accommodate a fancy power hungry LED. The glowing sensors could

potentially become an output device with the motion of dancers creating patterns of color

on a dark stage. More practically, the bright visual markers have been indispensable for

synchronizing collected data with video documentation during the trial runs.

2.6 Data Radio

The wireless radio module on each sensor node is the foundation of this design concept. Giv-

ing each node its own high-speed wireless connection allows it to be truly self contained and

physically independent of other nodes. In this way, the network is scalable and configurable,

within the limits of available bandwidth and feasible battery power sources. Although this

idea is an old one, it has recently gained momentum with the availability of increasingly

fast low-power radio modules.

Much of the research in wireless sensor networks focuses on the limitations of power, as the

concern is often long-term monitoring. Here, the goal is different in that the concern is with

high resolution real-time monitoring on a short time scale, and therefore the primary focus is

on limitations of bandwidth. Mainly for this reason, relying on the capabilities of hardware

available from other institutions, such as Motes, to develop the Sensemble interface was

insufficient. Similarly, standard communications protocols provide little help. Zigbee is a

limited data rate protocol for typical low-power sensor network applications [57]. Bluetooth

and WiFi provide high data rates, but were not developed with small sensor devices in mind,

and are too cumbersome in terms of both software restrictions and power requirements.

The preferred strategy was to build a custom radio system with the fastest low-power

transceiver available. At the time, this was the Nordic Semiconductor nRF2401A, a 2.4GHz

device designed for data rates up to 1Mbps. The nRF2401A can be controlled through an

SPI-like interface, supports simultaneous reception on two channels, and handles addressing



and cyclic redundancy check (CRC) computations internally. It consumes only 13mA in

transmit mode, 20mA in receive mode, and 12pA in standby, while providing a reliable range

of approximately 50 feet, depending on the surroundings. The nRF2401A has some disad-

vantages, including the inability to monitor a carrier-sense signal for manually determining

when a channel is busy. Fortunately, this feature is not critical here, as the communications

protocol will be low-latency and time synchronized such that dropped packets are preferable

to uncertain delays. For ultra-compact designs, Nordic also offers the nRF24E1, essentially

the same 1Mbps RF transceiver combined with an 8051 microcontroller and 10-bit ADC.

Combining the radio and MCU into one package offers many advantages for small low-power

systems, but here the flexibility and increased processing power afforded by a dedicated and

more capable MCU was favored here.

The radio module was designed on a small daughtercard physically separate from the main

node board. This choice was favored for two reasons, signal integrity and interchangeability

(see Figures A-3,A-11,A-12). The sensitive nature of RF circuitry is such that it is preferable

to isolate the radio from the rest of the system to minimize interference. In the case of the

Nordic module, the datasheet also provides detailed layout guidelines, including matching

network and ground plane arrangements, which are easily reproduced as a distinct unit. As

far as interchangeability is concerned, the nRF2401A has already been superceded by the

potentially more flexible 1Mbps Chipcon CC2400 and the new 2Mbps Nordic nRF24L01

during the course of the development of this project. Judging by this trend, capabilities of

low-power radios will continue to improve rapidly for the foreseeable future. By encapsu-

lating the radio module on a replaceable daughtercard, the sensor node can adapt easily to

higher network speeds as the possibilities grow.

Communication between the main board and RF daughtercard is achieved through a three-

wire SPI interface and several other digital control lines. Although it was considered im-

portant to provide a full SPI interface for the sake of future radio upgrades supporting SPI,

the nRF2401A does not use true SPI, as suggested above. By far the most cumbersome

departure from SPI is the fact that the Nordic radio has only one data line serving both

incoming and outgoing data. Normally, there are two separate data lines for incoming and



(a) Merging SPI data lines.
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(b) Equivalent circuit during MCU transmit. (c) Equivalent circuit during MCU receive.

Figure 2-10: Modified SPI interface for Nordic radio.

outgoing data, one driven by the master (MOSI) and one driven by the slave (MISO), as

well as a synchronizing clock signal. In this way, the structure of the Nordic interface does

not resemble SPI. However, unlike standard bi-directional communication interfaces such

as I2C, which rely on the transmission of request and acknowledgment data packets to ar-

bitrate the channel as a bus, the Nordic interface uses a separate control line to determine

the directionality the data line. Thus, the actual stream of bits transferred to and from the

radio on the data line together with the associated signal on the clock line resembles SPI

more than any other type of transfer. Building a custom interface to match this arrange-

ment to the MCU requires the potentially messy implementation of bit shifting and clock

generation algorithms in firmware. Instead, the convenience of using built-in SPI hardware

to generate the necessary data and clock signals is retained with a slight provision. At

the expense of communication speed and power, the two MCU data lines can be logically

merged into the single radio data line by bridging them with a resistor.

Figure 2-10 shows the approach taken, as well as equivalent circuits for data transmitted to

the radio and data received. It can be seen that when the MCU drives the data line during

the transmission cycle, the signal path is loaded by a lowpass filter with a time constant



linearly dependent on the resistance R and the parasitic input pin capacitance C. The upper

limit on baud rate during transmission is therefore inversely proportional to R.

At the same time, the receive configuration enforces a lower limit on R. Because of the

structure of SPI hardware, the master device controls all transactions by driving the master

out line as well as the clock. In other words, the master transmits an arbitrary byte in order

to receive a data byte from the slave. Since the master out line is always being driven, a

contention is created during the receive cycle, when the Nordic radio attempts to drive its

data line at the same time. This is the situation shown in Figure 2-10(c), where a direct

current path from power to ground occurs through the resistance R whenever the master

tries to transmit a different bit value than it is receiving. In order to control the situation

as much as possible, the MCU (the master in this case) is configured to transmit a series

of ones when it wants to receive, so that master out is always pulled up to logic voltage,

as implied in the diagram. In this way, when the direct current path opens, the MCU

will always source the wasted current, not the radio, whose I/O pins may be less capable.

The amount of current lost when receiving data is linearly proportional to R. Assuming for

simplicity that ls and Os are equally likely in the received data, there is an average lost

current of

Iavg VLogic
'avg 2R2R

while data is being received.

For the 10 kQ resistor chosen in this design, the calculation predicts a lost current of roughly

0.2mA, which is suitably low. At the same time, experimentation suggests that the max-

imum possible baud rate for reliable transmission with this resistance is roughly 400kbps.

This means data traveling upstream from the sensors to the transmission buffer in the node

radio module is limited to less then half the rate of the potential 1Mbps network speed.

However, the nodes can all perform this transmission step simultaneously, and the effective

data rate at this stage is Nx400kbps, where N is the number of nodes. Because of this,

400kpbs is an acceptable baud rate for communication between the Nordic radio and MCU.

Of course, the real bottleneck occurs later in the wireless channel and at the basestation

receiver, where it becomes clear in Section 3.3 that the bandwidth in practice is still limited



to less than the full data rate of 1Mbps.

Luckily, the question of how to adapt this limited hardware modification to increased band-

width requirements in the future is no longer relevant, as the newest Nordic and Chipcon

high bandwidth data radios all provide standard SPI interfaces. When the time comes,

the bridging resistor added above can be removed from the board, and a jumper can be

placed which restores traditional SPI wiring to the daughtercard, as implied in Figure A-1.

1Mbps SPI baud rates are certainly possible with the MSP430, but the datasheet suggests

the baud rate can be set as high as 4Mbps. At such a high rate, trace capacitance may

limit reliability, but the implication is that SPI communication rates between the MCU and

radio daughtercard are unlikely to become a limiting factor with these sensor devices, even

as the radio module is upgraded.

2.7 Power Circuitry

The major design choices for sensing and communication were made with only basic con-

cerns towards minimizing power. Once these decisions were made, the power budget was

more closely considered for the purposes of designing the appropriate regulation circuitry

and choosing the best power source. Table 2.2 shows the breakdown of the major electrical

components and their typical power requirements in the intended application. Tradition-

ally, it is beneficial to pay close attention to the amount of time devices are on, and to

reduce power consumption by duty cycling. Several factors conspired to limit the amount

of temporal power management considered in this design. The largest power drain comes

from the gyroscopes. The sensors will be sampled at 100Hz, or every 10ms, yet the gyro

has a long wake up time, 35ms, which prevents it from being duty cycled between samples

at this rate. By contrast, the accelerometers are very low power, and it was considered

unnecessary to duty cycle them. Originally, because the inertial sensors were not duty

cycled, the TLV2474 amplifiers making up their signal conditioning circuitry were set to

run continuously as well. However, it can be seen that the sheer number of op-amps being

used contributes to a significant power draw that could potentially be reduced by duty



cycling in future designs. The TLV2474 has a wake up time of 8.3Ups, which could allow an

analog channel to settle and be sampled in 100ps or less. With a 10ms sampling period,

this permits a 1% duty cycle, or a 99% reduction in the power consumed by the amplifier

circuitry.

Other power hungry components were typically restricted by the communication protocol

requirements. For instance, the radio is the third biggest potential power drain, with

the highest peak current requirements of any device on the board other than the LED.

During normal operation, the RF communication protocol strictly limits the amount of

time the radio is in transmit or receive modes, and consequently the average power required

is only 9.3mW. However, outside of normal operation, notably when not in range of the

basestation, the RF protocol makes the radio to wait in receive mode indefinitely. In this

state it consumes its peak power of 66mW. Thus, the radio is not strictly duty cycled, but

its power consumption is managed when possible as arbitrated by the basestation. The

LED plays a less critical role, but could potentially rival the gyros in terms of power draw

if left on full brightness continuously. Much like the radio, control over the LED is bound

to the communication cycle, as timing resources on the MCU are too limited to drive its

duty cycle independently. In order to make the LED visible, it ends up being turned on

continuously for most of the cycle, and its current draw is controlled through a resistor

network as metioned above in Section 2.5.3. However, in this case it is simple to reduce

peak power requirements by using a very dim setting or turning off completely when the

communications link is lost, or whenever the radio requires its full share of current draw.

Essentially, the operation of the LED is arbitrary, and its use can be moderated by the

designer. The power requirements shown in Table 2.2 correspond to a typical situation in

which the LED shines yellow during transmission of data and drops down to dim blue when

the radio switches to receive mode to listen for the next basestation broadcast.

Based on typical operating conditions in this application, the average power requirement

is estimated to be 211mW (see Table 2.2). Peak current draws amount to approximately

24mA from the 5V supply and 52mA from the 3.3V supply, equating to 292mW peak power

consumption. As the system is intended for a performance, game, or training session lasting
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several hours, a suitable power source would have a energy capacity of at least 1000mWh

and the ability to supply a peak power of 300mW. Since any small battery will be discharged

within hours under this heavy usage, only rechargeable batteries were considered to avoid

generating a small mountain of waste. Some AAA-size NiCd and NiMH cells approach the

current capacity required, but are typically heavy and possess an inconvenient form factor

for wrist or ankle mount devices. Lithium coin cell batteries would be more convenient, yet

the highest capacity coin cells can't even come close to supplying the peak current draw

required here. The lightest, most compact, and most powerful technology available is the

lithium polymer (LiPo) cell. Two tiny 145mAh LiPo cells can be combined in series to

provide 1073mWh of energy (at 7.4V), in a pack measuring only 3x2xlcm and weighing

only 9 grams. A longer, slimmer 3.7V 350mAh cell, measuring 5.2x3.3x0.3cm and weighing

10 grams, can provide 1295mWh. Both battery packs can discharge at 20 times their rated

current capacity, and so can easily handle the peak power requirements of the system, while

lasting for 4-5 hours during typical use. The flat, rectangular form factor is well suited to

a small wearable device.

Compared to more conventional power sources, LiPo batteries do have disadvantages. They

are expensive, for instance, the 7.4V 145mAh pack currently costs $15, about 5 times as

much as a comparable amount of energy in NiMH cells. They have strict operating condi-

tions concerning charge and discharge rates, violation of which could destroy the battery

and possibly cause serious personal injury. Ensuring these proper charging and discharging

techiniques requires a charging circuit set up specifically for a certain LiPo cell arrangement,

and a voltage regulator equipped with low-battery sensing, both of which may increase the

cost of the electronics in a system. Despite this, LiPo was considered the best choice for

pushing the boundaries of power versus size and weight as much as possible in this design.

Under the heavy power requirements imposed here, even the best batteries available begin

to rival the size of the sensor device itself. Because the system is worn on the body during

strenuous physical activity, it was decided early on that volume should be distributed more

evenly by decoupling the battery pack from the rest of the electronics. Combining the two

as a rigid unit would have added either too much extra height or too much inflexible contact



area for a comfortable experience. Allowing the battery to be freely accessible also makes

it much easier to recharge and replace when necessary. Since the sensor nodes are designed

to be affixed to the wrists and ankles, a strap provides the natural structural element by

which to wire a battery pack to the main board, in keeping with this idea. The short, thick

7.4V 145mAh LiPo pack is more easily attached to a flexible strap than any arrangement of

longer 350mAh cells. Hence, the former option was considered the power source of choice.

Decoupling the battery has another advantage, however, in that any number of different

batteries could be used if desired, with little bearing on the rest of the hardware design.

Providing for this flexibility was a major consideration in the choice of power management

circuitry.

Conveniently, as the favored power source outputs 7.4V, both supply rails on the sensor

node (5V and 3.3V) can be generated with step down regulators. Rather than use two

wide input range regulators in parallel, the 3.3V supply is generated by a simple 5V to

3.3V low dropout regulator running in series off the 5V regulator (see Figure A-1). Dips

in the logic supply voltage have been known to cause a perpetual reset state in MSP430

microcontrollers. Therefore, it was important to find a 3.3V regulator with a low-voltage

error output, in order to properly reset the MCU in the event of a momentary power loss.

Based on the peak current requirements assessed earlier, the 3.3V regulator must also handle

at least 53mA. The Microchip TC1073, rated at 100mA, fits the requirements for only $0.90

(see Appendix B).

The 5V regulator is a more complicated proposition, as it must properly handle LiPo bat-

teries. When discharging a single 3.7V LiPo cell, the voltage must never drop far below

3V, or the cell will permanently lose its ability to hold charge. To accommodate different

LiPo arrangements, the regulator must have a low-battery sense input and shutdown with

a variable voltage threshold, so that the circuit will be immediately shut down when volt-

age drops to the critical level. The step down design restricts battery selection to choices

providing at least 5V, but to be able to operate with battery packs supplying more than

7.4V, the 5V regulator should also accept a wide input voltage range. Additionally, it must

supply current to the 5V analog circuitry as well as to the 3.3V regulator input, a total peak



draw of approximately 60mA. The Linear Technology LTC1474 was chosen to meet these

requirements with the added benefit of high efficiency - according to the datasheet, 85-

90% with a 7.4V input and 60mA current draw. It also allows inputs up to 18V, and could

therefore be used with an 11.1V 3-series LiPo pack, or even a standard 9V battery. The low

battery threshold can be easily set by a resistor to adapt to these different power sources.

Rated at 300mA, the LTC1474 can comfortably supply the peak currents demanded by the

design. However, the performance and flexibility of the LTC1474 comes at a price. The

unit costs $7.50, and requires an extremely large external capacitor (100/F) and inductor

(560pH) on the 5V output which claim board space and add additional cost (see Appendix

B). In the future, the design could be greatly simplified by settling on one battery pack

and dispensing with flexibility in the choice power sources. For example, the 7.4V 145mAh

LiPo pack proved adequate in all situations explored by this work.

2.8 Structural Design

As a wearable device for strenuous activity, the sensor node has to be compact, sturdy, and

lightweight. Since the intent was to strap sensor devices to the wrists and ankles of the

wearer, the natural goal was to fit the form factor to that of a large wristwatch. The major

physical components to accommodate within these guidelines are the main circuit board,

RF daughtercard, two sensor daughtercards, battery pack, and strap.

First, the main board was laid out to occupy a 3.4cm square, which was considered to be

an appropriate size for a rigid mass secured to the fiat area of the wrist, and is slightly

larger than a typical wristwatch. The main board houses the MCU and 8MHz crystal, one

gyroscope, all analog signal conditioning, power regulation, and capacitive sensing circuitry,

power connector, expansion port connector, and daughtercard connectors. The layout was

designed on a four-layer circuit board, which includes an internal ground plane for signal

integrity and an internal power layer to route 3.3V supply, 5V supply, and a reference

voltage (see Figures A-6,A-7,A-8). The main board also includes three threadable screw

mount holes for size #2 screws to secure it reliably to external packaging. These mounting
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Figure 2-11: Axis conventions for inertial sensor data.

holes also serve as electrical paths to place ground in contact with the body and to connect

the capacitive transceiver to an external electrode. Wherever possible, 0402 surface mount

capacitors and resistors were used to make up for limited space, as evident in the bill

of materials (see Appendix B). Still, much of the space on the external layers is taken

up by traces, and adding additional internal signal layers would be the most dramatic

way to reduce board area in the future. This option was simply considered too costly for

prototyping.

The two sensor daughtercards are identical, each housing a two-axis accelerometer, gyro-

scope, and associated capacitors (see Figures A-9,A-10). The layout is on a small two layer

circuit board measuring 2.5 by 1cm. The daughtercards must be mounted orthogonally

with respect to the main board and to each other, in order to provide the three axes of

inertial sensing (as well as one redundant accelerometer axis). This arrangement is achieved

by using standard 0.001-inch 3x2-pin headers, which straddle two edges of the main board,

as shown above in Figure 2-5. After the inertial sensor signals are inverted by the signal

conditioning circuitry, the MCU receives data corresponding to the axis convention shown in

Figure 2-11. Although the structural design prevents these axes from following a standard

cross-product convention, the required inversions can easily be made in software.

The RF daughtercard designed for the Nordic nRF2401A radio is a simple layout adapted

directly from the datasheet and Gerber files provided by Nordic. It is mounted on a raised
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Figure 2-12: RF daughtercards comparing wire antenna to chip antenna.

header and lays across the lower half of the main board. The layout shown in Figure A-11

provides for a 2.4GHz chip antenna that was originally considered to be more durable than

a simple quarter-wave wire segment. However, the chip antenna performed poorly and was

eventually replaced by a wire segment soldered directly to the surface mount pad. Beyond

greatly improved performance, the addition of the wire antenna also reduced board area.

Originally, the chip antenna hung over the side of the main board to avoid being shielded

by the ground plane beneath it. The wire antenna does not require a rigid mounting plane,

and therefore the RF card could be trimmed flush with the main board (see Figure 2-12).

In terms of durability, the simple wire is tried and true, and extremely cheap to replace.

Chip antennas are no longer recommended for this type of design.

The bare sensor node complete with daughtercards measures 4x4x1.5cm and weighs only 10g

(see Figure 2-3). It must now be merged with a strap that will secure the device to the body,

as well as house the external battery pack. As mentioned previously, separating the battery

pack from the sensor node provides flexibility and distributes the bulk of the electronics

more evenly. In the ideal situation, a slim enclosure could be designed that secures the

sensor and battery pack while grounding the body and routing the capacitive transceiver

to an electrode built into a custom-made strap. This electrode could be designed using

highly conductive fabric such as Bekiweave [58], for instance, or with flexible copper foil

inside the strap. The prototype structure actually implemented is much simpler, relying on

a sandwich of acrylic plates and an off-the-shelf Velcro strap, as shown in Figure 2-13. The



(a) Fully assembled sensor node.

(b) Sensor node pictured worn on the wrist.

Figure 2-13: Finished prototypes.

Figure 2-14: USB basestation board.



battery pack is secured to the strap with Velcro, which seems to be effective for most dance

situations. In order to test the capacitive sensor, the body was grounded by wiring to a

metal grommet on the strap, and simulation bracelet-sized electrodes were made with strips

of copper foil (see Chapter 6). In the prototype enclosure, the node measures 4.3x4.3x2cm

and weighs 40g including the battery. The use of thick acrylic and standard size spacers

here dramatically increases the volume of the device, but a thoroughly designed enclosure

could improve this. More importantly, the prototypes built for this project are sturdy and

have proven their roadworthiness.

2.9 Basestation Design

The duty of the basestation is to control and synchronize the network, collect data from all

of the nodes, and relay this information via USB to a central computer for processing. The

design elements are simple, involving the Nordic nRF2401A radio module, an MCU with

built in USB capabilities, power supply, status LED, and programming interface. Luckily,

all of these components can operate for under 100mA, with attention paid to proper MCU

and LED operation. Because of this, the basestation can be powered over USB as a standard

device, greatly simplifying the design (see Figure 2-14).

In the wireless communications protocol, discussed in greater detail in Chapter 3, the bases-

tation is required to transmit broadcasts at the sampling rate to drive the network. Because

of this, the microcontroller must work quickly to pass data from the radio module to the

USB interface without incurring delays that would disturb the timing. Since the speed of

USB is so high (12Mbps at 'full' speed), most microcontrollers with built in USB capabilities

are fast enough to meet this challenge. In this design, the Silicon Laboratories C8051F320

has been selected, a 25MHz 8051 MCU with built in USB controller, internal voltage reg-

ulator for delivering USB bus power, internal precision oscillator, and flexible digital I/O

ports. With a supply current of 10mA when active at full clock speed, the F320 consumes

more power than the MSP430, but is appropriate for a USB powered device. As before,

part of the reason for selecting this MCU was previous development experience. Also, Sil-



icon Laboratories provides the proprietary USBXpress API, a framework which makes it

very easy to develop basic USB applications for Windows using the F320. However, the

API places limitations on the type of USB transfers possible, a restriction which turned

out to be more problematic than expected. Additionally, using the API makes it especially

painful to communicate with the USB device from other host operating systems, such as

MacOSX. These issues will be addressed further when host application software is discussed

in Chapter 4.

Since the basestation is a single unit with a simple layout, it is easily replaceable. Because

of this, the radio module was included on the main board, rather than using a daughtercard.

The radio layout is otherwise identical, except the luxury of space allows for a larger antenna

mounted on a threaded SMA connector (see Figures 2-14, A-13). As before, there are

problems interfacing the Nordic radio with a standard SPI port. However, the F320 MCU

provides the very fortunate ability to select which pins will be used for SPI communication

on the fly. During transmission of data from the MCU to the radio, master out and master

in can be shorted together to the radio data line with no added resistor. When receiving

data, master out will attempt to drive the line, but it can simply be reassigned to a new

pin which doesn't interfere with the radio. With no added resistance, the lowpass filtering

effect that limited SPI baud rates on the nodes is no longer present. This change is critical,

as the basestation receiver is a bottleneck, where the full 1Mbps data rate out of the radio

will be called upon.



Chapter 3

Firmware and Data Flow

3.1 Communications Overview

Data generated by the sensor nodes must be transmitted to the central computer as quickly

as possible to allow real-time processing to occur. In the case of music generation, delays

of greater than lOOms are not only clearly audible, but can be disruptive to performers.

Because of this, transmission latencies of greater than 30ms begin to leave insufficient time

for processing. Additionally, the samples across all of the sensors in the network should be

time synchronized and collected at a stable rate, to ensure that digital signal processing

assumptions hold. As suggested previously, the best arrangement in this situation is a star

topology, where a basestation controls all communication and timing on the network (see

Figure 2-1). The Nordic radio is certainly capable of adapting to more complex scenarios,

such as multi-hop networks where data flows between several nodes on its way to a desti-

nation. However, the typical reasons to do this - increased range and ad-hoc deployment

of sensors .- are not particularly relevant here. In this application, range is limited to a

stage or other defined region, and the arrangement of the sensors can be predetermined.

In the protocol proposed here, which has been largely derived from an earlier design [46],

timing and control of the network is based on broadcast messages sent from the basestation

to all of the nodes at the sample rate of 100Hz. This imposes very strict synchronization,
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Figure 3-1: Basic illustration of the TDMA communications cycle.

and allows the nodes to share the communications channel effectively with a simple time

division multiple access (TDMA) scheme. At the beginning of the cycle, each node listens

for the broadcast signal. Upon receiving the signal, the sensors are sampled, and the data

is transmitted back to the basestation after a preprogrammed time interval, as determined

by each node's hard-coded ID number. Once the transmission has been sent, the node

knows roughly when to begin listening again in preparation for the next broadcast. The

basic procedure is illustrated in Figure 3-1. Besides low latency, the advantage of this

protocol is that samples across the entire network will be taken essentially at the same

time and precisely at the sample rate determined by the basestation. On the other hand,

the integrity of the data depends on the ability of the basestation to make its broadcasts

reliably. If the basestation stalls, the nodes will not begin to buffer samples in expectation

that the communications link will be recovered. This type of recovery scheme could be

added without too much struggle, but will be left for future implementations.
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3.2 Radio Configuration

Although the Nordic radio can be configured at any point during operation, the process

is somewhat time consuming, and for the purposes of this system can really only be done

once, before sampling is initiated. Unfortunately, the possibilities are somewhat limited for

a given configuration on the nRF2401A. In addition to selecting the carrier frequency, data

rate, and other operating parameters, radio configuration assigns an address and a payload

length for data transfers. Whenever a transmission is made, the address of the destination

receiver must be specified. Thus, because the basestation needs to transmit broadcasts

to the entire network, all of the node RF addresses must be the same. If the basestation

then wants to send a message to a specific node, the request will have to be processed in

firmware at every node receiver. Another limitation is the payload length, which must be

the same for both transmit and receive paths. In this case, since the nodes must transmit

a large data packet downstream to the basestation, the basestation is required to make its

broadcast signal the same length, most likely resulting in wasted bits flowing upstream to

the nodes.

In this implementation, the maximum required packet length from the nodes was considered

to be 16 bytes, which fits a header byte indicating the node ID number or status, 6 inertial

sensor values at 12 bits each, and 4 additional 12 bit values which might be taken up by

capacitive sensor measurements or other information. The structure of a node packet is

shown below in Table 3.1. Similarly, a 16 byte broadcast and control packet was designed

for the basestation, with only 8 bytes potentially used, as illustrated in Table 3.2. The

first byte in the broadcast packet signals an operating mode, allowing the system to wait

in an idle state, for instance, before collecting data in sample mode. Other modes were

implemented for additional functionality described later in Chapter 7. The next two bytes

are used for an optional timecode that can be stored on the node in the case of logging data,

an option which is also further explored in Chapter 7. The fourth byte is used to set the

intended destination of a special message, in order to allow control messages to be passed

to individual nodes. A message intended for all nodes is indicated by a hex value OxFF in

the fourth byte position. The remaining four data bytes are reserved for other messages,



Header lB Payload 15B

Node ID Inertial Data 9B Other Data 6B
Ox01-0x19 AccX AccY AccZ I Gyr Pitch Gyr Roll Gyr Yaw Capacitive Measurements

OxF5 Node Idle, Payload Empty

Table 3.1: Node packet structure.

Mode Header Timestamp Target ID Message Code Message Unused

Sample OxAF All Nodes
OxFF

Ox0000- No Message Set LEDs R G B
OxFFFF Ox00 Ox01 Ox00- Ox00- Ox00-

Idle OxFF One Node 0x04 0x04 0x04
Node ID
Ox01-0x19

Table 3.2: Basestation broadcast packet structure.

for instance, setting the color of the LED.

During wireless communication in either direction, the radio handles packets with a 16

byte (128 bit) payload, as well as a preamble, address, and CRC. For the most reliable

operation in the presence of noise, the maximum lengths of 40 bits for the address and 16

bits for the CRC were used. As the preamble is set at 8 bits, this equates to a total packet

length of 192 bits. The Nordic radio employed here is configured to use ShockBurstTM mode,

which allows a data rate of 1Mbps, but requires a setup time of roughly 19 5 ps to transmit

a packet. Therefore, the effective data throughput for this configuration is only about

330kbps, or a 67% loss to overhead. In practice, the setup times during node transmission

can be overlapped to pack the transmissions as closely together as possible, provided that

the receiver can run CRC checking and clock data out fast enough. This can help to recover

some of the loss, but more inefficiencies crop up in processing time for received messages at

both ends of the RF channel.



3.3 Node Operation

This section provides a more detailed look at the firmware running on each sensor node

and its relationship to the communications cycle. For reference, Figure 3-2 provides an

illustration of the operations that must be carried out on several nodes, in the context of

the basic RF communications timeline depicted above in Figure 3-1.
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Figure 3-2: Detail of network timing cycle.

Initially, the node firmware is configured to hold the radio in receive mode until it receives

a broadcast message. Once a signal from the basestation has been received, an interrupt

triggers nRFdatawaiting() (see Listing C.5). At this point, the node reads the first 8

bytes of the message out of the radio and stores them in an array. Luckily, all 16 bytes

of the received payload do not have to be clocked out of the radio, as this requires time

on the SPI port, and the last 8 bytes of the broadcast message are never used. The SPI

transaction with 8 bytes takes about 220ps. The mode byte is checked immediately after



this interval to determine if it is time to enter sample mode. If so, all of the inertial sensors

are sampled in a rapid sequence, and the first byte of the outgoing data packet is set to

the node ID number to prepare for transmission. If the node has been told to wait in idle

mode, the first byte of the outgoing data packet is set to hex OxF5 to alert the basestation

that the node has entered the expected state. Once either of these options is complete, the

node sends a single configuration byte to the radio to prepare it for transmit mode, after

which the radio waits in standby. Finally, the remainder of the broadcast received from the

basestation is read for any special instructions. In the current implementation, the only

special instruction controls the color of the RGB LED. If the fourth byte indicates that the

message is intended for the node in question, and the fifth byte is set to hex Ox01, then the

last three bytes control the brightness of the three LED colors as implied in Table 3.2.

Timing relevant to RF communication is controlled in firmware by timer A. This timer

begins its count as soon as a broadcast message is received, and it eventually triggers two

interrupt service routines. The first of these, TimerAl (), occurs at a flexible interval

beyond the start of the count. This interval is calculated at initialization time based on the

hard-coded node ID number, and it determines the TDMA slot in which a specific node

will report back to the basestation with data. Within TimerAl (), the radio is first set

to transmit mode. Then, the 5 byte address of the basestation and the contents of the

outgoing data buffer are clocked into the radio over the SPI port. Shortly afterwards, the

radio transmits the data and eventually returns to standby mode. When enough time has

passed to ensure the transmission has taken place, another one byte configuration packet

is sent to the radio to prepare it to return to receive mode the next time it wakes up

from standby. This set of transactions takes approximately 1.16ms. The second interrupt

routine, TimerA0(), plays a brief but critical role. This interrupt is always set to trigger

500ps before the node expects to receive the next broadcast message, and when it is handled,

the radio returns from standby mode to receive mode. This short window is crucial to limit

the amount of time the radio is allowed to drain power waiting in receive mode, but is long

enough to catch the next broadcast even in the case of significant clock drift.

During most of the 1.16ms block of transmit activity on one node, operations can be per-



formed simultaneously on other nodes. In fact, it is absolutely critical that this overlap

occurs, in order to pack the TDMA slots together as tightly as possible. The length of

the TDMA slot, shown as Td in Figure 3-1, corresponds to the delay between initiations of

interrupt handler Timer..A1 () on neighboring nodes. For the most part, the smallest delay

factor possible here was determined empirically by observing received signals at the bases-

tation, and was set to be 330ps. However, the first node does not begin its transmission

until 350ps into the communications cycle, to allow for necessary processing time.

Based on the 330ps interval required per node, 350ps setup time at the beginning of the

communications cycle, 5001ts buffer time at the end of the communications cycle, and 16

byte data packets, 25 nodes are able to share the channel simultaneously while sampling

at 100Hz. If the entire 16 byte packet is considered data, the effective throughput of the

sensor network is found to be:

bits
25nodes x 128 x 100Hz = 320kbps.

node

Assuming a 1Mbps symbol rate, this is a 68% loss of efficiency, as compared to the 67%

loss inherent in the single radio transmission discussed above. Most likely, the improvement

made by packing transmissions as closely together as possible was outweighed by the amount

of time in the communications cycle spent not transmitting data. Although the loss in data

rate appears drastic, this communications scheme is typically an improvement over what

could be achieved with standard protocols and has the advantage of low latency, with a

maximum one sample delay to the basestation.

3.4 Basestation Operation

The duty of the basestation is to control the network, and to pass data seamlessly between

the wireless system and the USB connection to the host computer. Using a timer interrupt

and the service routine TimerOISR ) (see Listing C.13), this basestation generates regular

broadcast messages at the desired sample rate, as described above. Each broadcast has

an incremental 2-byte timestamp value associated with it, which could be used to locate



gaps in the data up to 10 minutes long (at 100Hz broadcast rates). Once a broadcast

has been made, assuming that the devices are operating in sample mode, the basestation

must be prepared to store a barrage of data as the nodes send back their responses in the

TDMA sequence. During this data collection phase, there will be little time to perform

other operations. Yet, at some point during the communications cycle, the data collected

must be transferred to the USB pipe so that it can be clocked out to the host. The only

time this can happen is during the processing phase between a broadcast and the resulting

response from the first node. Thus, the timer routine TimerOISR() is also used to drive

USB communication.

Currently, the firmware running on the basestation uses the USBXpress'API, available

for Silicon Laboratories MCUs. This set of functions makes it easy to implement USB

communication, but with certain limitations. For instance, only bulk transfer mode is

allowed. Although the packet size and data rate limitations of bulk mode do not pose

a problem in this design, bulk transfers can only be initiated by the host, and take a low

priority to other OS events. In a situation where data must be transfered at regular intervals

determined by the device, interrupt transfer mode, which allows the device to place transfer

requests, would be preferable. In order to use bulk mode successfully in this design, the

host must place requests for data frequently enough to prevent buffer overflow, and the

basestation firmware must have knowledge of these requests, so that it does not move data

to the USB pipe before a request has been made 1

The request for data is first processed in the USB interrupt handler, USBAPITESTISR )

(see Listing C.13). For some reason, an interrupt cannot be linked directly to the host's

request for data, but only to the receipt of a USB packet. Because of this, the request

for data is encapsulated in a 6 byte control message sent by the host at the desired USB

packet rate - at least once every two periods of the RF communication cycle (see Table

3.3). Similar to the basestation broadcast message, the host control message can be used

to set modes of operation on the basestation or nodes. In fact, most of the host control

1This may not be the case when the USBXpress API driver is used in Windows, which appears to allow
bulk transfers to act like interrupt transfers, through a buffering mechanism that was not fully investigated.
However, a hack using open source drivers in Mac OSX requires this, refer to Chapter 4.



message becomes the broadcast message used by the basestation until a new control message

is received. In terms of software design, this is not a great level of abstraction, as the host

programmer needs to know protocol specific to node firmware. In this case, however, it is

simply the quickest way to convey information from the host to the nodes.

Request IHeader ID Number Message Code Message

Sample OxAF All Nodes
Mode OxFF

No Message Set LEDs R G B
Ox00 Ox01 Ox00- Ox00- Ox00-

Idle OxFF One Node 0x04 0x04 0x04
Mode Node ID

Ox01-0x19
Local Message for basestation not passed to nodes.
None No new message.

Table 3.3: Host control packet structure.

A host control packet can be received at any time during the communications cycle, since

the host is not synchronized to the basestation in any way. Because of this, processing is

kept minimal within the USB interrupt handler. If the control packet indicates a request

for data, a flag is set, and the broadcast packet is set up to indicate sample mode. At the

beginning of the next RF communications cycle, initiated by Timer0OISR O, the basestation

makes the broadcast, checks the USB flag, and finally calls Block-Write ) to fill the USB

pipe with previously stored data (see Listing C.13). Only then does the host receive the

requested data packet. On the other hand, if the control packet does not indicate a request

for data, the flag and broadcast packet can be set so that no data is returned from the

nodes, and no call to BlockWrite() is made.

Once the USB transfer to the host has been initiated, the basestation has time to handle

the new batch of incoming sensor data triggered by the latest broadcast message. Each

packet received triggers a call to the RF-datawaiting() routine (see Listing C.13). During

each 330ps TDMA slot, the data is clocked out of the radio over SPI at 1Mbps and is stored

as quickly as possible into a large (900 bytes max) buffer. This buffer will eventually be

flushed to the USB pipe for transmission to the host, which may not occur every broadcast



period. Because of this, it is made to store multiple samples from all of the sensors, and

uses the headers and timestamps illustrated in Table 3.4 so that the data can be parsed

efficiently at the host. Still, 900 bytes allows just 2 full samples to be stored for a 25-node

network using 16 byte data packets, hence the requirement that USB packets should be

requested at least once every two periods of the sample rate.

Packet Node Times- Length Node Payload Node Times-
Length Payload Hedr tmHeader Header tamp ID Header tamp

OxiF OxAC Ox00- typically Ox01- X OxAC Ox00-
OxFF Ox10 Ox19 OxFF .

Table 3.4: USB data packet structure.

3.5 Host Requirements

One of the major concerns at the host is sample latency, and how it will effect the processing

requirements for generating real-time feedback. Here, sample latency refers to the delay

between the sample capture time and the response, not between the request for samples

and the reponse. Still, the negotiation process at each stage of communication adds some

latency to the protocol. The RF transfer to the basestation has an unavoidable worst-case

delay of almost one sample period, or 10ms at the sample rate of 100Hz. In addition to

this, the USB transfer to the host requires that data wait for as long as 1.35ms for a USB

cycle period of under 10ms, or 11.35ms for a cycle period of under 20ms. Accounting for a

small USB transmission latency as well, total delays of up to 22ms must be expected. To

prevent buffer overflow at the basestation, the host must send requests and attempt to read

the USB buffer at least every 20ms. Because the typical latency is longer than this cycle

period, there will most likely be several attempts by the host to read data before it appears

in the host buffer. In the worst case scenario that the requested data takes three read

attempts to be collected by the host, and the host cycle is set to 20ms, another nearly 20ms

of delay is possible. In practice, the host sends requests as quickly as possible, typically

close to every 15ms, and the overall sample latency is closer to 30ms.



The degree of latency from sample to observation here places two significant stresses on the

host application. First, with the goal of lOOms maximum total latency, there are only 70ms

left for analysis and processing of the data. Second, if the software does not continually

make USB read requests at least every 20ms, a buffer overflow may occur on the basestation,

and several samples might be lost. This condition could easily occur while the OS is doing

heavy processing and is asked to perform a GUI task, for instance, since the USB bulk

transfers are very low priority2 . A basestation firmware design allowing interrupt transfer

mode would solve both problems, by allowing the host to respond immediately to new

data, and by increasing the USB device handling priority. It would also promote cross-

platform compatibility by getting away from the proprietary USBXpress API which can

only be used officially with Windows. In this case, limited development time was the only

attraction towards using the API in the firmware design, and host performance does in fact

suffer as a result. The various limitations imposed on the host software will be addressed

in more detail in Chapter 4.

3.6 Taking Measurements with the Capactive Sensors

So far, the discussion of sampling data has been limited to the inertial sensors. To say

that a sample is taken on any of the standard sensor channels is a simple statement, as the

ADC can handle this quickly and with minimal impact in firmware. However, to capture

a data point with the capacitive node-to-node proximity sensor is much more complicated,

requiring many samples taken for several cycles of the received waveform, and computation

to extract the amplitude estimate from these samples (see Section 2.4). It is also important

to schedule capacitive sampling in such a way that receive nodes sample their received signal

precisely when a transmit node is transmitting, and only one node may transmit at a given

time. At the carrier frequency of 90.9kHz, 30 cycles take up 330ps, the length of an entire

TDMA slot. Thus, just obtaining the measurement is time consuming for both transmit

and receive nodes. On top of this, the calculation for the magnitude estimate (Equation

2Again, this does not appear to be the case with the proper Windows driver, which buffers the USB data
reliably even if the host application stalls, see Chapter 4.



2.4), which involves multiplication, accumulation, and a square root, is the heaviest of any

computation required on the sensor node.

Given N nodes, there are N(N - 1) possible measurements that can be taken with the

capacitive sensor system. Of these, half are unique node-to-node spacings, resulting in 300

unique measurements for a 25-node network. It would never be very worthwhile to transmit

all of these measurements, especially since meaningful readings are limited to sets of nodes

being worn by the same user or in very close proximity, as illustrated in Chapter 6. It also

may be unnecessary to transmit capacitive data at the same 100Hz rate as the other sensors,

because it is a noisy and usually slowly varying signal. Therefore, it is possible to design

a strategy for a specific application that uses capacitive sensing sparingly but effectively,

to limit the amount of resources required. For instance, capacitive measurements could be

taken between wrists only, and the measurement could be alternated each sample period

so that 5 pairs of wrists could be measured at 20Hz each rather than one pair at 100Hz.

In the test arrangement designed here, however, the goal was to push the system and

utilize the extra bytes provided in the data packet (see Table 3.1), without complicating

the communications protocol. Towards this goal, as many capacitive measurements were

made at the full rate as could feasibly fit into the existing timing structure.

The basic strategy was to transmit a pulse at the capacitive carrier frequency from a trans-

mit node, and time several receive nodes to sample during the stable area of the pulse.

Then, the next set of transmitters and receivers could be selected, and so on. Because of

the TDMA scheme, at least one node is busy at almost any given time. Therefore, not all

nodes are free to receive a transmission, and it seemed reasonable to select just a small fam-

ily of receivers to handle each transmitter. This also makes sense because a node can only

transmit up to 4 12-bit capacitive measurements per data packet. For simplicity, the pat-

tern of transmitters and receivers was assumed to repeat on every broadcast cycle, thereby

continually capturing the signals at the full rate. It also was most convenient to base the

capacitive measurement cycle around the TDMA communications cycle, which has higher

priority.

Unfortunately, it was difficult to realize this arrangement effectively, mainly because the
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Figure 3-3: Oscilloscope trace showing alignment of capacitive transmit and receive phases
on a pair of nodes.

transmit pulses ended up being much longer than a 330ps TDMA slot. The highly tuned

LC resonator that allows the transmitter to generate high voltage signals also results in

long ring-up and ring-down times, which limit the effectiveness of a short pulse. In order to

get at least 10 steady-state cycles of the carrier signal to sample at the receiver, a 32-cycle

transmit pulse was used, with the timing as shown in Figure 3-3. It is important to note

that a capacitive measurement cannot be received accurately on any node until the transmit

signal for the previous measurement has decayed. The length of the decay time shown here

suggests that there must be at least 750ps between the beginning of one measurement period

and the receive stage of the next measurement period. Since the receive stage is initiated

16 cycles into the transmit pulse, measurements must be separated by at least:

16cycles
750ps - 90.9kHz 5741s.

Because the measurements must fit within the communications cycle, a transmission pulse

can only be generated at 660ps intervals, or every other TDMA slot. This means that

at most, only half of the nodes will be able to act as transmitters. In future designs,

the situation could be greatly improved by switching a load into the circuit to dampen the

....... ........

.... ...........



oscillator at the end of the transmit pulse. The need for such a provision was not anticipated

early enough to be added to the current hardware design.

Another difficulty is the time needed to compute the magnitude estimate. The calculation

required to process one capacitive sensor value with the algorithm in caprx-calculate ()

takes about 850ps, spanning three TDMA intervals (see Listing C.5). Also, there is only

one set of memory buffers for quadrature samples, so calculations must be performed be-

tween every receive cycle. The sampling routine, caprxlisten(), which performs rapid

quadrature sampling over 16 periods of the transmit frequency, typically takes 184ps to

execute. Together, the entire receive process to pick up one capacitive measurement lasts

for over ims. Bound to the TDMA cycle, the limit for samples collected on a single node

is therefore just one every four TDMA intervals, or one every 1320ps. Because of the long

computation times, capacitive receive measurements must also be scheduled carefully so as

not to interfere with the timing of the RF protocol.

In the protocol implemented here, each node primarily concentrates on its RF transmission,

to be sure that the timing of its reply within the TDMA cycle is accurate. Once RF commu-

nication has been initiated, the node runs a capacitive measurement sequence for as long as

possible before it needs to prepare for the next RF broadcast. The timing diagram in Figure

3-4 illustrates the relationship of the capacitive sequence to elements of the communications

cycle for two nodes. During the idle time when each node waits for its RF transmission to

be processed, there is enough space to transmit a capacitive pulse with the captx pulse ()

routine, and to configure timer B, which then controls subsequent capacitive sampling (see

Listing C.5). Only the nodes with odd ID numbers actually transmit pulses, however, as

a 660ps delay is required between transmitters. Receive routines are scheduled in such a

way that each node samples up to four other nodes, each separated by the requisite four

TDMA intervals. Specifically, a node with ID number M is capable of listening for the

signal transmitted from nodes with the ID numbers M+4, M+8, M+12, and M+16 for M

odd, or M+3, M+7, M+11, and M+15 for M even. However, as these ID numbers approach

the end of the TDMA sequence, it becomes impossible to complete the measurement before

entering the next communication cycle, and if this is found to be the case, timer B stops its



Figure 3-4: Detail of capacitive measurement scheme as related to the network timing cycle.
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round of capacitive sampling. Then, the capacitive sensor data gathered so far is prepared

for transmission to the basestation with the next outgoing packet.

The advantage of this system is that it plays an entirely subordinate role to the commu-

nications protocol. On the other hand, the disadvantage is that several nodes transmit a

pulse that is never received, or are unable to fill the three capacitive measurements, and

end up sending wasted bits back to the basestation. Of course, a number of improvements

could be made with proportionate complexity added to the firmware design. One likely

possibility is that all of the capacitive transactions could be handled, but at a much lower

rate. These would ease the burden in terms of both computation and the quantity of data

to transmit. For testing purposes, however, the simple implementation described here is

adequate. With the 25-node network it is possible to measure 46 node-to-node couplings.

This equates to 46% of the four value per node potential provided by the 16 byte packet

structure, and 15.3% of all possible measurements among 25 nodes.

Latency with the capacitive sensor system is also somewhat different from that of the inertial

sensors. Since the capacitive measurements are taken after data has been sent on to the

basestation, they wait until the next communications cycle to be transferred. This can

potentially cause a delay of 8ms in addition to the system latencies mentioned previously 3.

The capacitive measurements are also not taken simultaneously, and by their nature have

phase offsets that can be well over half of the 10ms sample period. In this case, the signals

are usually lowpass filtered to the 10Hz range where the increased latency and presence of

phase offsets cause less trouble. However, in situations where capacitive measurements are

taken more intermittently, or alternate between nodes, relative phase may come into play

more dramatically. Luckily, the phase of each capacitive sample can always be inferred by

the node ID and the broadcast timestamp associated with the inertial data it arrives with.

38ms is roughly the time between the first capacitive receive in a cycle and the sample capture event in
the following cycle.



Chapter 4

Building Application Software

Application software for Sensemble developed down several paths in parallel in an attempt

to satisfy different requirements at each stage of development. At various times, the goal

was to log data from the network as a text file, to display visualizations of the data as it

arrived, or to inject data directly into an environment providing audio and MIDI control for

music generation. Each implementation was a rough attempt to meet these goals without

too much concern with regards to advanced functionality.

Currently, Microsoft WindowsTM is the only OS which supports the drivers and software

libraries needed to properly interface with the USB basestation, since its firmware uses the

Silicon Laboratories USBXpress API. This makes integration into Windows fairly simple and

reliable. However, the MIDI control environment of choice, Max/MSP TM , and other preferred

music software, happened to be more readily available on a Mac. The prospect of designing

a Windows-only USB device was also personally dissatisfying. Faced with indecision and

a regrettably false sense of free time, basic working applications were developed on both

platforms.



4.1 Windows

4.1.1 Using the USBXpress API

Application software developed in Windows can freely make use of the USBXpress API to

establish USB communication with the basestation device, which is equipped with Silicon

Laboratories' C8051F320 MCU. The API covers up many of the intricacies of configuring

and enumerating USB devices, and provides a simple library of functions which make USB

connectivity straightforward to implement in code. It also includes a set of templates for

simple test applications built in Visual C++ or Visual Basic .Net. Of course, the decision

to use USBXpress was not only motivated by convenience provided by Silicon Laboratories,

but also support provided by colleagues who had previously developed applications using

this framework. The software designed here for Windows is based on an earlier USB data-

logging application built in Visual Basic. It primarily relies on only seven simple API

functions to drive USB communication, as outlined in Table 4.1, and has been adapted for

both data logging and real-time visualization.

Routine Description

SIGetNumDevices () Returns the number of devices connected
SIGetProductString() Returns the serial number of a device

SIOpen() Opens the device and returns its handle
SIWrite() Writes data to the device buffer

SIRead() Reads data from the device buffer
SIFlushBuffers () Flushes host receive buffer and device transmit buffer

SIClose() Closes the device

Table 4.1: Host routines for basic USB functionality provided by the USBXpress API.

Before the application can run successfully, the basestation must be recognized by the

system. In the Windows device manager, the device driver for the new unknown device

should be manually selected and set to refer to siUSBXp.inf, the setup file provided by

Silicon Laboratories. Then, the basestation should show up as a USBXpress device in the

device menu.
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Figure 4-1: Select form user interface for connecting to the USB device.

4.1.2 Recording Data Streams

The most basic Windows application is one which collects data and records it as a text file.

Execution begins with the select form shown in Figure 4-1 (see also Listing D.1), which

scans for USB devices matching the description of USBXpress device. If any are found,

their product serial numbers are returned. The basestation currently has serial number

1234, which can be set in its firmware (see Listing C.13). The first pull down menu in

the select form (1) allows the user to choose the correct device in case multiple USBXpress

devices are attached. The 'Browse' button (2) allows the user to browse for a directory in

which to store data logged from the device. Once a directory is chosen, selecting 'OK' (3)

opens the main execution interface (see Figure 4-2) and initiates communication with the

basestation (see Listing D.2).

The main interface is partially a debugging tool cluttered with output fields that still need

to be organized or labeled. It also includes controls meant for the professional athletics

application, which will be addressed in Chapter 7. For now, the important interface elements

are the 'Idle' (4), 'Sample' (5), and 'Exit' (6) buttons. The meaning of these buttons is

intuitive. When the application starts, it is in idle mode. First, it creates a new text file

in the directory chosen at the select form, and opens a text stream to the file. By default,

the file is named 'test.txt', but a new filename can be created by changing the name in

the 'Filename' (7) field. Once the text stream is open, further execution is based on the

timer routine Timeri-Tick O, which tries to run every 8ms (it is often limited to 15ms by

the OS). This routine continually executes a simple data collection parsing algorithm (see
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Figure 4-2: Main user interface for logging sensor data to a text file.

Listing D.2). However, because it started in idle mode, the host passes 'Idle' packets to the

basestation (see Table 3.2), and only 6-byte dummy packets (with node ID 0) are returned.

These packets were meant for debugging purposes, and are ignored by the functional parts

of the routine. As soon as the 'Sample' button is pushed, the host begins to feed the

basestation with regular 'Sample' packets, and real data flows back from the nodes. At

this point, the parsing engine does its work, generating text which is written to the output

file. At any time, the 'Idle' button can be pressed to stop the flow of data again. Pushing

'Sample' then returns the system to sample mode, and also moves the previous text stream

to a new output file with a number appended to the name in the 'Filename' field. Any

time 'Sample' is pressed, the file number is incremented and a new file is generated, making

it easy to create frames of data within a long recording session. Finally, pressing 'Exit'

terminates the application, closing the last text stream and leaving the basestation and

wireless network in idle mode.

During sample mode, the host potentially receives a data packet on every timer cycle.

However, there is no synchronization between the host and the basestation, and the number

of nodes in the network is unknown, so that packet is variable length. Because of its



structure, a data packet also contains some packed 12-bit values that must be unpacked

into 16-bit integers (see Tables 3.1 and 3.4). During its execution, the parsing engine writes

to the text file byte by byte and saves the incoming data in the tab-delimited format shown

below in Table 4.2. In addition to the ten sensor readings, basestation timestamps, and

node ID labels, the host adds its own timestamp value, which corresponds to the time a

sample arrived at the host. This feature was provided to help track delays which may not

be reflected elsewhere, such as those which might have stalled the basestation or otherwise

created a very long gap in the data. In fact, the host timestamp is the absolute system

clock value in milliseconds, which means that even very deliberate, hour-long gaps between

data frames can be accurately tracked to within several samples, and each data point is

automatically tagged with a date and time. Since it is tab-delimited, the output text file

can be imported easily into Matlab, Excel or similar tools for offline analysis. For example,

Listing F.1 shows a Matlab script which reads the text file directly into a cell array structure,

with each cell corresponding to a node present in the recorded data.

Host
Node s Basestation c Gyr Gyr Gyr Cap Cap Cap

ID Times- Timestamp AccX AccY AccZ Pitch Roll Yaw 1 2 3
tamp

Table 4.2: Tab delimited file format for recorded data.

4.1.3 Visualizing Data

Once data could be logged to a text file, the next step was to build an application to

visualize data in real-time. This was simply done by adapting the structure of the previous

application. Instead of writing lines of data to a file, the sensor values are continually stored

to an array of ring buffers, which together hold the last 100 samples from each sensor on

each node. At the end of each timer cycle, the buffers can be used to update strip chart

graphics. This process was also implemented in Visual Basic, with graphics provided by

the free ChartFX LiteT package (see Listing D.3).

Shown in Figure 4-3, the user interface provides the same basic control with 'Idle' (8),

'Sample' (9), and 'Exit' (10) buttons. It also includes three charts, which from top to
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Figure 4-3: User interface for visualizing sensor data in real-time.



bottom display the three axes of accelerometer data (11), three axes of gyro data (12),

and a subset of the capacitive sensor data (13). Because the capacitive sensor response is

nonlinear, the display on the third chart is a log plot. To ensure that the charts are readable,

only one node can display inertial data at a time. Any node from 1 to 25 can be selected

by the menu field to the left of the chart displays (14). Alternatively, nodes 1, 5, or 9 can

be selected with the quick access buttons below the menu (15). The reason 1, 5, and 9 are

relevant is that they form a capacitive measurement family. That is to say, node 1 receives

a capacitive signal from node 5 and node 9, and node 5 receives a signal from node 9, so all

three edges between 1, 5, and 9 are measured. Since the strip chart visualizer was originally

intended as a demonstration with just nodes 1, 5, and 9, the capacitive sensor chart only

plots these three values, regardless of which node is selected to display accelerometer and

gyro data. This is indicated by the legend to the right of the bottom-most chart.

4.2 Macintosh

4.2.1 Enabling USB Communication with the Basestation

In MacOSXT", the USBXpress libraries that made host application development so simple in

Windows could not be used. However, similar functionality exists in an open source library

known as libusb [591, which happens to be compatible with OSX. The libusb interface is

quite similar to that of USBXpress, for instance, Table 4.3 displays a selection of available

functions which parallel those in Table 4.1. If anything, libusb is intended to be more

customizable, and is potentially a better solution. At the time the software described here

was being designed, several colleagues had already implemented software to access the USB

port in OSX using libusb. Some of their software even allows continuous data collection

from custom built devices. However, in this case, the basestation firmware expects to

communicate with proprietary USBXpress driver software on the host. Because of this,

several modifications had to be made to adapt existing code structures to the needs of the

project.



Routine Description

usbinit ) Initializes libusb
usbf ind.busses ) Finds USB busses on the system
usbf inddevices ) Finds all connected devices

usbhset.conf igurat ion() Sets an active configuration
usbclaim-interface () Claims an interface on the device

usbopen ) Opens the device and returns its handle
usbcontrol msg ) Sends a control transfer to the device
usbbulkwrite o) Writes data to the device buffer via bulk transfer
usb..bulkread () Reads data from the device buffer via bulk tranfer

usbreleaseinterface ) Releases an interface on the device
usbclose ) Closes the device

Table 4.3: Host routines for basic USB functionality provided by libusb.

Luckily, connecting to the USBXpress device through libusb was simple. After initializing

libusb with usbinit (), the first step is to open the correct device. Much in the same

way as the select form in Windows searched for devices matching the USBXpress device

description, here the application must search for a device matching the vendor ID, prod-

uct ID, and interface ID provided by the programmer. This is accomplished with the

usbf indbusses () and usbf ind-devices ) functions. Once the application has a handle

to the correct device, it can be opened with usbopen (), and the interface can be claimed

with usbclaiminterface(). On MacOSX, the active configuration also has to be set

with usbsetconfigurationo) before claiming the interface. So far, this is no different

from the standard procedure, and the basestation will respond as if it were opened correctly.

However, requests to read or write data will cause an error.

In order to find out what was missing, a minimal amount of reverse engineering was re-

quired. In Windows, USB probing software was used to monitor the traffic to and from the

basestation. Just after the standard control transfer for opening a device, an unidentified

control packet was sent from the host with request type 64, request 2, value 2, index 0, and 0

bytes to transfer. With libusb, this packet can be sent manually using usbcontrol-msgo.

If this is done immediately after claiming the interface, data will finally transfer success-

fully in both directions. One more modification is required, as releasing the interface and

closing the connection in the standard way causes the basestation to hang. Just before



usbreleaseinterface() and usbclose() are called, another manual control message

must be sent, this time with the value field set to 4. The syntax for both messages is

illustrated below in Listing 4.1.

//Op•nnng the device

usb..control-msg(my-handle,64,2,2,0,0,0,100);

//Closing the device

usb..control-msg(my-handle,64,2,4,0,0,0,100);

Listing 4.1: Modified USB control messages for accessing a USBXpress device from libusb.

These modifications allow a USBXpress device to be accessed from MacOSX, but they do

not succeed in totally simulating behavior under Windows. For instance, the basestation

firmware stalls if the host is not ready to read data at the same time as it is being sent. This

is the main reason for requiring the basestation to wait for a signal from the host before

transmitting its data, as described in Chapter 3. Still, in MacOSX these troublesome stalls

occur any time many processes are vying for CPU, and the exact circumstances of the error

in firmware have not been determined. With the proper driver in Windows, it turns out that

the basestation can initiate USB writes any time it wants. Originally, it was assumed that

this data was actually moved to the 1kB USB buffer on the basestation MCU, later being

retrieved with read request from the host. As such, a buffer overflow could easily occur.

However, the USB probe revealed that apparently any data written from the basestation was

automatically transfered to a much larger buffer in host memory. This happened without

intervention from application software, so the system could even begin sampling without

any application running. It was not entirely clear how the USBXpress API was able to

accomplish this, although it may rely on interrupt USB transfers while professing to use

bulk transfers. One other unidentified USB control message is passed upon opening the

device, and it is speculated that this command might include an address in host memory

for buffering. This message could never be simulated successfully using libusb, however.

Further development will be required to streamline operation under OSX, but at this point

making changes in the basestation firmware and avoiding the use of USBXpress completely

might be preferable to further reverse engineering.



4.2.2 Recording Data Streams with Python

The first host application developed for OSX was an adaptation of an existing Python

script for recording USB data to a text file (see Listing D.4). Access to libusb functions in

Python is provided through another open source framework known as PyUSB [60]. With

PyUSB installed, USB functionality becomes available after importing the usb module, which

operates with methods that look quite similar to the libusb routines outlined in Table 4.3.

As PyUSB and libusb are currently in the early stages of development, new versions are

likely to require changes in the implementation presented here. For reference, the latest

working setup uses libusb 0.1.10a and PyUSB 0.3.1, running on MacOS 10.3.9.

The execution of the script in Listing D.4 basically follows the same procedure as data

logging in Windows, with the addition of the modified process for opening and closing the

device as described above. Unlike the software in previous examples, this script is called

from the command line, with options providing the output filename and mode of operation:

$> sudo python SensembleUSB.py [ log ] [ filename.txt ]

For now, the only operating mode is 'log', and the functionality is very basic. Sampling

begins immediately, and rather than using a timed loop, requests for data and processing

on receive packets occur in a while loop which simply runs as often as possible. The output

file is text, with the same tab delimited format outlined in Table 4.2 above. In this case,

however, the host timestamp logged in the first column is the time from the beginning of

execution, not the system clock time. To stop sampling, ctrl+c terminates the while loop

and the USB connection is closed appropriately, leaving the basestation in idle mode.

4.2.3 Access to Data Streams in Max/MSP

The main reason to pursue MacOS compatibility was the opportunity to merge sensor data

with a suite of familiar MIDI and audio processing tools, making it easier to build off of



previous work in the area of responsive sound. Thus, the focus shifted towards driving the

USB basestation directly from within a music control environment, in this case, Max/MSP.

Max/MSP is a graphical environment in which functional blocks, or objects, are connected

together to form a patch which operates on a stream of data (see examples in Appendix

E). This graphical flowchart structure is particularly cumbersome for large array processing

or conditional statements, which would be simple in a sequential language. However, if as

much processing as possible can be encapsulated in object boxes, it becomes an intuitive

way to manipulate continuous data streams. Most importantly, Max/MSP was made for

music controllers, and it provides an intuitive way to harness MIDI and audio functionality.

Similar environments exist, most notably PureData (PD), which is freely available, and has

largely the same capabilities. In this case, the choice was made partly based on experience

and previous work, some of which called upon Max/MSP objects with no parallel in PD.

For instance, the rewire- object allows Max/MSP to become a ReWire T master with full

control over other audio applications running on the system, such as Reason, Live, or Logic.

In this project, the software synthesizers in Reason were called upon frequently for quick

access to a rich sound palette.

Real Time Access

Several objects are available for transferring a stream of raw data from an external device

directly into Max/MSP. Of course, none of these have the specific properties required to

access the basestation, and in general there are few alternatives for any custom USB hard-

ware. The serial object is too slow for USB rates, and control interface readers such as

hi require that devices comply with the human interface device (HID) specification, which

would add huge amounts of complexity to the firmware. Luckily, it is possible to program

custom objects, or externals, in C, and detailed tutorials with example source code are

made available in the Max/MSP SDK. As such, it is straightforward to encapsulate libusb

functionality and the familiar USB polling and data parsing algorithms within a Max/MSP



object that outputs real-time sensor data. The implementation presented here is an external

object called rawusb (see Listing D.5).

One point not established above is that Max/MSP comprises two distinct packages - Max

objects, which respond to single control messages at peak rates of 1kHz, and MSP objects,

which continuously process data streams at the audio sample rate, typically 44.1kHz. Al-

though the sensor data is a continuous stream, it arrives in discrete packets at rates no

higher than 100Hz. Since there is no reason to generate output samples at audio rates,

rawusb was designed as a Max external, and the output it generates is a stream of control

values.

In order to develop an external object, basic conventions must be followed in the source code,

including constructor and destructor methods to handle several instantiations of the object,

syntax for data structures within the object, and specifics of the initialization process. These

details are provided in the Max/MSP development tutorials and will not be described here.

The more important aspects of the design are the algorithm and the interface which allows

the customized object to be connected to others in a patch. Every object communicates

to the outside world via inlets and outlets, which can be configured to handle various data

structures. One such data structure is called a message, which is really any text string.

Every object in Max must have at least one inlet which responds to messages, and typically

this inlet is set to at least respond to a 'bang', which is the basic event message. Not

surprisingly, inlets and outlets can pass single integers and floating point numbers, but of

more interest here is the list structure, which in Max is something similar to an array. Since

each data point returned from a node is an N-tuple of sensor values, the ability to process

lists is very important.

In this case, input to rawusb was limited to the control functions necessary to start and

stop sampling. Thus, the object was designed with a single inlet, which responds to the

messages 'bang' and 'stop' (see Listing D.5). When a 'bang' is received, the method

rawusbbang() is called, which starts the clock timer. During execution, the timer triggers

rawusbtick(), which contains the USB negotiation and data parsing algorithm, at inter-

vals of 10ms. When the 'stop' message is received, the rawusbstop() method is called,



the timer is halted, and the basestation returns to idle mode. If the request to stop has

been processed successfully, a 'device ready' message is printed to the Max output window.

The details of USB operation are handled by libusb routines (Table 4.3), which are avail-

able as a C library, provided that the associated files are included in the build process.

Traditional USB device open and close operations, as well as the workaround for con-

necting and disconnecting a USBXpress device successfully in MacOSX, are bound to-

gether in software with the open-mydevice() and closemydevice() methods. A call to

close-mydevice () also sends the host 'idle' request message to ensure that the basestation

and nodes are left in idle mode whenever the connection is terminated.

While data is being extracted during the timer routine, it can be parsed and organized by

node ID, just as lines of text were generated in previous applications. In this case, the lines

are not stored, but are clocked out sequentially as data arrives. The best way to do this

in Max is to output lists, and therefore rawusb was designed with a single list outlet. The

ordering of the list values is altered from the format in the received packets, however, to

take advantage of Max-specific list processing behavior. Max places special emphasis on the

first member of a list, which acts as a sort of tag for the rest of the structure. By placing

the node number at the head of the list, the data points can be routed according to node

very easily, for instance, with the route object. The output format and typical useage of

rawusb in a patch is illustrated in Figure E-1.

Streaming from a Recorded File

At this point, applications have been presented which either record data from the sensor

network or forward the data stream to Max/MSP, but there has not been a discussion about

linking the two modes of operation, for example, recreating the data stream from a recorded

file. This playback capability is especially useful for testing real-time feature extraction and

interpretation algorithms repeatedly with the same data set, but in general it is valuable to

be able to accurately reconstruct the time evolution of recorded movements in this way.



0, id [filename];
1, [milliseconds].00 [data data data ...] ;
2, [milliseconds].00 [data data data ...] ;

N, [milliseconds].00 [data data data ...];

Table 4.4: The seq- file format.

It was possible to accomplish this without actually developing new application software;

it can be done with some preprocessing on the recorded text file and a simple Max/MSP

patch. The format of the output data stream should be a series of lists with the same

structure as the output of rawusb (see Figure E-1). The stream of output samples should

not only be sequential, but should preserve the original timing of the recording. To store

and access arbitrary control data in a time-synchronized sequence, the best existing solution

is the MSP object seq- . Data is stored in a seq- as a text file with the format shown in

Table 4.4, and must be clocked out with a counter signal running at the audio rate. When

the counter reaches the millisecond timecode associated with an event, the data stored at

that index is output.

The timestamps in the recorded sensor data text file can easily be converted to a millisecond

timecode with floating point values. However, in the seq- format, every event line must

carry a unique timecode. By contrast, the previously discussed text output format uses

one row per node, and on each broadcast cycle data from many nodes has typically been

recorded with the same timestamp. Thus, the information in the recorded text file has to be

condensed again, into large packets with only one timestamp per packet. Then, the layout

of the text file can be re-written to suit the seq- format.

The need to rearrange of timestamps in the recorded file provides an opportunity to com-

pare the basestation and host time records for disagreements that could be corrected. For

instance, because the host's data retrieval cycle tends to be slower than the basestation

broadcast cycle, it is possible to record host packets containing two samples from the same

node. Although these samples share a host timestamp because they appeared to arrive



at the host on the same cycle, their true timing can be determined from the basestation

timestamp, which should indicate which broadcast initiated each sample. When the data

set is converted to seq- format and reconstructed as a stream, reporting two values for

the same sensor at the same time could create a glitch. Instead, the host and basestation

timestamps should be reconciled to produce a single corrected timescale. This correction

process was implemented in Matlab, along with an additional feature to detect and fill gaps

in the data with simple constant interpolation (see Listing F.1). Once the data from the

original file is scanned into Matlab and processed, it can be written to a seq'- format text

file with another Matlab script, shown in Listing F.2, and then loaded into a seq- object

in Max/MSP.

With the correctly formatted sequence file loaded, a clock signal must be generated to play

back the recorded data at the correct rates. With the sequence running, the large blocks

of data coming in at each sample can once again be broken down into smaller streams for

each node, using the route object. Figure E-3 shows the basic patch structure used to load

and play back the formatted text file.

This approach works well once the text file is loaded, but seq- is not meant to store huge

files with tens of thousands of lines, which can be generated by the network in just a few

minutes of recording. For this reason, loading the data before running the patch is extremely

slow. In the future, a better solution might be to develop a custom object which is able to

buffer data from a text file and process the sequence on a line by line basis.





Chapter 5

Feature Extraction

Now that the entire of process of designing the sensor system from hardware to application

software has been established in detail, the discussion can turn to strategies for putting the

data to use. Typically, this begins by generating features, parameters which are derived from

a data stream for the purpose of isolating patterns. At a certain level, patterns combine

to represent the qualitative statements one would like to conclude from the data. This

chapter covers feature extraction - in particular, it highlights methods for the selection

and interpretation of features with specific relevance to group movement. Most of the

features discussed below were studied with dancers wearing the sensor system, in order

to investigate what types of conclusions can be drawn in a dance setting. The results of

this early experimentation, originally discussed in [61, 62], will also be presented in detail.

Matlab scripts relevant to the analyses performed here are included in Appendix F.

5.1 Basic Inertial Features

In general, feature extraction starts with processing on single sensor signals to generate core

statistical parameters such as mean and variance. This can be expanded in several direc-

tions to provide a foundation for interpreting inertial sensor systems. For instance, while

gyroscopes are ideally zero-mean, accelerometers have a bias offset related to the direction



of gravity. During periods of inactivity, when the orientation is stable, this bias offset be-

comes apparent. Therefore, a long-term running mean of the accelerometers should yield

some degree of information about the average orientation of the device. Also, the derivative

of the accelerometer signals can be calculated to determine jerk in three dimensions. Evi-

dence suggests that the human body attempts to move in such a way that jerk is minimized

[45]. Thus, it potentially becomes an important feature associated with the power or effort

of movement. Similarly, variance is commonly used as an energy or motion activity mea-

surement with wide applications as discussed in Section 5.2.2. Finally, the accelerometer or

gyro axes can be collapsed by taking the magnitude, V/x 2 + y 2 + z 2 . Since the sensor axes

are orthogonal, this magnitude represents a meaningful value, the length of the net accel-

eration or angular velocity vector in three-dimensional space. Any of these simple direct

features can be used in various ways to study group movement.

5.2 Describing Collective Motion

The major advantage of having enough bandwidth to operate multiple sense points on mul-

tiple wearers simultaneously is the ability to obtain detailed information about correlated

activity within a group. In the context of a dance ensemble, time and spatial correlations

can be used to determine which dancers are moving together, mean tempo, which dancers

are leading versus following, or perhaps which are responding to one another with com-

plementary movements. Bulk parameters averaged across the entire ensemble can also be

used to measure collective energy, net jerk, or the predominance of certain types of motion.

Most of the analysis here focuses on simple features that can be used to characterize group

dynamics with these goals in mind.

5.2.1 Measuring Temporal and Spatial Separation

The first task was to investigate features for quantifying both time separation and spatial

similarity of gestures performed by multiple users. For initial evaluation purposes, the
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network was limited to three sensor nodes, each worn on the right wrist of three test

subjects. In a pair of tests, subjects were asked to raise and lower their right hands, first

simultaneously and then in sequence. In the last test, subject one raised and lowered a hand

as before, subject two performed a qualitatively "similar" but distinct gesture, and subject

three performed a qualitatively "completely different" gesture. To find the time separation

between similar signals, cross-correlation is a natural choice. Here, the the similar measure

of cross-covariance is favored, because of the bias present in the raw inertial data. Given two

data segments of length N from different sources, the cross-covariance function of length

M = 2N - 1 is defined as:

c[m] 2N- m - 1 (x [n + m - N] - ) (y[n] - ) for m > N, 5.1)C[M] ==0-(5.1)
Sm1 (y [n + N - m] - ) (x[n] - ) for m < N.

Hence, cross-covariance acts as crosscorrelation with the mean of the input signals removed.

Early tests using this measure to explore correlated activity with wearable IMU platforms

were presented in [46].

For each segment data in this test sequence, subject one was regarded as the reference

and cross-covariance was calculated for the other subjects with respect to subject one.

It can be seen in. Figure 5-1 that the location of maximum cross-covariance provides an

estimate for the time lag between similar gestures performed in succession. As might be

expected, cross-covariance also appears to be useful for determining the time delay between

disparate gestures, but with diminishing accuracy. The nature of cross-covariance as a

signal-matching technique would suggest that the peak magnitude gives a measure of the

strength of the correlation at the location of the peak. In the context of the inertial sensor

data this translates loosely into a measure of spatial similarity between gestures. Indeed,

Figure 5-2 illustrates that as the disparity between gestures increases, the height of the peak

cross-covariance decreases. This is a satisfying result in that a cross-covariance calculation

can be used to determine both the time and spatial correlation of group movements.

One problem with cross-covariance as a feature is that it requires a complete segment of

data to calculate. The length of the segment also determines the maximum delay that can
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Subject 1 (Raw Pitch Gyro Signal)

Subject 2 (Raw Pitch Gyro Signal)

Subject 3 (Raw Pitch Gyro Signal)

Average xcov for Subjects
Relative to Subject 1

Seconds

Figure 5-1: Raw data for hands raised and lowered in sequence and
covariance.
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Subject 1 (Raw Pitch Gyro Signal)

Subject 2 (Raw Pitch Gyro Signal)

Subject 3 (Raw Pitch Gyro Signal)

Average xcov for Subjects
Relative to Subject 1

Seconds

Figure 5-2: Raw data for gestures of decreasing similarity and resulting average cross-
covariance.
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be detected - the space between two events cannot be measured unless they have both oc-

curred within the scope of the measurement. In a streaming situation, cross-covariance can

be computed periodically on short windows of data. Window size is chosen to make a trade-

off between latency and the maximum time separation that can be expressed. A window of

length N samples handles time separations of +N, but also requires N samples before the

calculation begins. Even then, the computation required to arrive at a result is intensive

and scales with N, adding to the latency (see Section 8.2.1). Therefore, cross-covariance can

never be extracted in real-time, but processing on windows less than a second long might

still be useful for driving interactive content. For instance, when dancers synchronize to

music or to a leader, the delays between their correlated motions are most likely less than

a second, and the latency associated with cross-covariance might be manageable in this

setting.

To test the effectiveness of a cross-covariance measure, six sensors were given to three

dancers participating in a ballet lesson; each wore one on the right wrist and one on the

right ankle. The class then performed an exercise involving a repeated sequence of leg

swings executed in unison, to music. Although they were roughly in time with the music,

the dancers were not necessarily looking at each other or at an instructor, creating a small

but clearly visible delay in their motions1 . Figure 5-3 shows a portion of the raw data

collected from the leg of each dancer. Because there was very little arm motion associated

with this exercise, only leg motion is discussed here. The area from about 35 to 65 seconds

corresponds to the synchronized sequence of swings made with the right leg.

Figure 5-4(a) shows the result of windowed cross-covariance analysis on this data segment,

computed using a window size of 1 second, step size of 0.25 seconds, and averaged across

sensor axes. That is to say, at each interval of 0.25 seconds, data from the past second

was considered, the cross-covariance vector was computed individually for each inertial

sensor signal, and finally the individual vectors were averaged to produce the final result.

Because the step size is small enough, individual leg swings and their synchronicity across

the ensemble can be picked out. Note that the area of peak cross-covariance, shown in white,

'The dance rehearsal was documented on video for reference.
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Figure 5-3: Selected raw data from the ankles of three ballet students performing a sequence
of leg swings in unison.

tends to waver around the baseline as time progresses. This is consistent with the dancers

slowly leading and lagging with respect to one another by small amounts. The histograms

in Figures 5-4(b), 5-4(c), and 5-4(d) roughly show the extent of the peak drift for each of

the three plots in Figure 5-4(a). It is clear from the relative stability of middle plot that

Dancer A and Dancer C were closely synchronized for the duration of the exercise. However,

the other two pairings were not as stable. For instance, in the top plot and corresponding

histogram, Dancer A fluctuates from about 0.2 seconds ahead of Dancer B to about 0.3

seconds behind Dancer B. There is even more disparity in the relationship between dancers

B and C. These fluctuations reflect accurately what is visible in the video. Interestingly, it

turns out that Dancers A and C were facing each other during the exercise, while Dancer

B had her back turned to the others.

Another observation regarding Figure 5-4(a) is the fact that in some areas the covariance

peaks are not as well defined as others. This is especially true in the bottom plot, relating
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Figure 5-4: Time and spatial correlation with three dancers performing leg swings in unison.
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dancers B and C. Smaller peak values indicate less similarity in the motions being performed,

and this data seems to agree with certain gestural differences visible in the video footage.

Thus, although cross-covariance is not exactly a real-time feature, it is still clearly valuable

for describing group relationships, both temporally and gesturally.

5.2.2 Quantifying Activity

In addition to extracting correlations between the activities of a group, it is important to

obtain information about the properties of the activities being observed. These properties

might include variations in the overall activity level of an individual or group at different

time scales, principal axes of movement, or other features extracted during an interval of

high activity. It will also be necessary to find features with lower latency and processing

overhead as compared to cross-covariance, and activity-related measures are one way to

achieve this.

Increased physical activity, as qualified by faster movements and more frequent directional

shifts, is related to the energy present in the inertial sensor signals. In turn, the average

energy over a segment of data is reflected in the variance of the segment. Therefore, one

approach to activity measurement on a data stream involves computing windowed variance.

Variance computed on a window of length N is shown in Equation 5.2. The computations

require very little processing power, and although they rely on capturing a complete window

of data, these segments can be much shorter than what was needed for cross-covariance.

Hence, the latency associated with windowed variance is much lower.

a2 _- 1 N-1
0 N E (5.2)

n=o

Variance can be used here with various combinations of sensors, and can be processed

in different ways, depending on the desired result. For instance, if the separation between

gestures is long enough, the variance spikes created at the beginning and end of a movement

can be used to delineate them. In other cases, it might be useful to use a median filter to
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obtain a slowly varying envelope on the running variance for certain sensors, in order to

determine broader trends in activity level.

As an example of the latter, data was collected from the right wrist and ankle of a ballet

student performing a sequence of motions in which slow kicks with the right foot transitioned

into fast, tense kicks 2. The full sequence was framed with a stylistic raising and lowering

of the right arm at the beginning and end, respectively. Figure 5-5 shows a portion of the

raw data from this segment along with four different activity envelopes obtained by filtering

the windowed variance of both upper and lower body movement. Accelerometer activity

here denotes the average variance envelope across the accelerometer axes, while rotational

activity denotes the average across the gyro axes. One can clearly see a marked increase

in activity as leg motion transitions to faster kicking. The role of the arm movement is

apparent in the activity envelope as well.

Selected Raw Data from Sensor Mounted at Ankle

Ca
a)

0
0,

.N

E
o
z

25 30 35 10 15 20

Envelope of Windowed Variance as Activity Measure

5 10 15 20 25 30
Time Elapsed (Seconds)

35 40 45

Figure 5-5: Selected data and resulting activity envelopes as dancer transitions from slow
kicks to rapid tense kicks. Sequence of leg motions is framed by stylistic arm motion.

2In ballet terminology, the tense kicks are known as petit battement. Unfortunately, the terminology for
the other movements was unspecified, and has not been sought out.
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Similar conclusions can be drawn from Figure 5-6, which illustrates the activity envelopes

of leg motion for each dancer during the period of correlated activity highlighted earlier in

Figures 5-3 and 5-4(a). Two areas of peak activity across the ensemble appear around 50

and 60 seconds into the sample, corresponding to repeated leg swings over the full range

of motion from front to back and back to front. The general trend of activity is increasing

over the segment from 30 seconds to 60 seconds, as the instructor urges the dancers to make

each leg swing "successively higher".

Dancer A

Dancer B

Dancer C
- - Leg Accelerometer Activity

- Leg Rotational Activity

Figure 5-6: Activity envelopes
5-3 and 5-4(a).

60 70 80 90

for the synchronized leg movement highlighted in Figures

Looking at Figures 5-5 and 5-6, it would seem as if there is no reason to distinguish between

accelerometer and gyro activity. Indeed, the inertial sensor activity on a single node is often

highly correlated, because human motion is unlikely to occur along only one axis. The

accelerometers are also subject to gravity and centripetal acceleration, so rotations will be

picked up strongly in some cases. It should be possible to use the gyro signals to help isolate

translational acceleration from other types of movement picked up by the accelerometers.
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However, if one wishes to identify a particular type of activity, it may be more important

to compare motion along each sensor axis than comparing rotational versus translational

motion, since a specific movement may be characterized by high variance in some directions,

but not in others.

For example, Figure 5-7 demonstrates the results of a group of three people raising and

lowering their right hands in unison, with sensor nodes worn on their right wrists. The bot-

tommost plot indicates the variance on each sensor axis, averaged across all three subjects.

Note that the average variance of the pitch gyro dominates, which supports one's intuition

that the act of raising and lowering the hand involves mostly a rotation in pitch, and as

such primarily generates activity on one axis.

2t 

cejbuS
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0 0.5 1 1.5 2 2.5 3 3.5
0.5 Subject 3
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0.5 I I I I 1
0 0.5 1 1.5 2 2.5 3 3.5

Nindowed Variance on Each Sensor Axis - x accel
7 - Y accel

Z accel
-Pitch gyro
-Yaw gyro
-Roll gyro

1 1.5 2 2.5 3 3.5
Time Elapsed (Seconds)

Figure 5-7: Right arm pitch gyro signals and windowed variance averaged across subjects
for each sensor axis, as hands are raised and lowered in unison.

Based on this result, the variance envelopes from multiple sensor axes on one individual

could be combined to form an 'activity profile' for distinguishing between certain types of

movement. This profile could potentially remain effective even if it was highly simplified.
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For instance, it could include only markers indicating which sensor signal has the highest

variance at a given point in time and a confidence level indicating how much higher this

variance is compared to the other sensors. This type of analysis can be extended to an entire

ensemble, simply by averaging the appropriate activity envelopes across the group to create

a global activity feature. As in Figure 5-7, global activity can be useful for determining the

predominate axes of collective motion.

5.3 Group Structure as a Means for Feature Reduction

Eventually, the features extracted from sensor data will have to be processed in some way to

produce a meaningful output, mapped to various elements of responsive feedback, or used

as input to a detection algorithm looking for specific patterns. Because of this, it is helpful

to reduce the number of features that have to be considered at any given time. In the dance

ensemble setting, the fact that structure develops around group cooperation creates several

very natural opportunities to make this reduction.

5.3.1 Clustering Group Members

During many types of dance performance, one can often observe the formation of group-

ings among the dancers on stage. Within a group, performers may be performing similar

movements or cooperating in a specific way that leads them to be regarded as a unit with

a distinct role in the larger ensemble. The interaction between groups and their coming

and going can be used an expressive tool in a dance piece. The existence of an individual

who does not fit into a group may also be significant. However, the importance of trying

to detect this clustering within an ensemble using sensor data is not limited to quantifying

choreographic content. If simple features can be used to form meaningful clusters, each

grouping can be analyzed as one unit. This means that heavier analytical techniques can

be performed on groups of dancers, rather than on every dancer individually.
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Activity levels on various sensors could potentially be used as a simple way to define these

clusters. For example, in Figure 5-3, activity is observed for Dancer B in the interval from

10 to 20 seconds that is not reflected in the movements of the other dancers. Referring to

the video, this was confirmed to correspond to a few warm-up leg swings by Dancer B. By

acknowledging that the activities of Dancer B are slightly different from those of the other

dancers, a clustering algorithm might add evidence to the claim that Dancer B should be

grouped differently from Dancers A and C. This grouping might be meaningful in light of

the discussion above, in which A and C were found to be tightly synchronized in time, while

B was slightly more of an outlier.

At the same time, the activity levels for all three dancers during the period of synchro-

nization between A and C are presumably very similar, and it remains to be seen how a

clustering algorithm based solely on activity envelopes would handle time sensitive group-

ings, such as leader versus followers. It is also worthwhile to mention that although activity

envelopes cannot measure small time deviations, the cross-covariance analysis shown in Fig-

ure 5-4(a) is unable to compare the warm-up leg swings with the similar motion occurring

later in time, because the time separation is larger than the one second cross-covariance

window. Therefore, while clustering is very useful, it is not always clear what features would

be best for defining the clusters.

5.3.2 Selectivity Based On Group Statistics

Depending on the circumstances, there is another option for feature reduction, which also

makes use of comparisons between activity levels within the group. In this case, rather than

going as far as clustering members of the group, the structure of the group is used as a basis

for considering only what data appears to be statistically interesting. While sophisticated

algorithms for this statistical analysis have not been developed with the system presented

here, the concept can be put to the test in very simple terms.

For instance, the definition of 'statistically interesting' might include anything that appears

very different from the predominant activities of the ensemble. In this case, one can compute
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a distance measure between each individual's activity profile and the mean activity profile

of the entire group. If the activity profiles are just average variance envelopes, than the

distance measure can be as simple as a series of squared differences. When this distance

is large, an individual's movements lie outside the norm, and at this point a more detailed

analysis can be performed.

Another possibility is that unique events are not considered important, and the analysis is

meant to focus instead on the net characteristics of the entire ensemble. In this case, all

of the features generated by individual performers can be merged appropriately to form a

smaller set of average ensemble features.

One can also imagine a situation in which the covariance measurements discussed above

are desired, but it is unclear who should be interpreted reasonably as a 'reference' for the

rest of the group. By selecting the individual who's activity profile lies closest to the mean

activity profile, there is a good chance that this individual will be in step with most of the

others, and will result in cross-covariance measurements that reliably capture the state of

the group. If all cross-covariance measurements can be made with respect to one individual,

this cuts down on the number of computations that have to be made.
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Chapter 6

Assessing Capacitive Sensor

Performance

Feature extraction strategies for group movement have focused solely on the interpretation

of inertial sensor data. However, the capacitive sensor system described in sections 2.4 and

3.6 was fully implemented in this design, and the data it provides may also be relevant

to motion analysis. This chapter briefly details performance results obtained with the

capacitive sensors during preliminary testing, and outlines the range of possibilities for

future applications.

In making test measurements there were two major considerations to address, namely elec-

trode design and grounding through the body. As discussed previously in section 2.4, larger

electrodes were expected to result in a significant performance improvement, but they can

quickly become cumbersome in the context of a wearable device. In this case, the assump-

tion was that the area taken up by the strap affixing sensors to the ankles or wrists can

easily be turned into a capacitive electrode, while anything larger is impractical. The test

procedure described here compares this best-case electrode arrangement to a more compact

arrangement. Additionally, allowing sensor nodes to share a ground reference through the

body was expected to improve performance, and consequently tests were made both with

and without the body grounded.
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For testing purposes, the bracelet electrode design was simulated with a loop of copper

foil and insulating tape, as shown in Figure 6-1. The smaller electrode used here was a

patch of copper foil spanning the faceplate of the sensor node package, pictured in Figure

6-2. A ground path to the body was established by wiring one of the grounded screw

mounts to a metal grommet in the strap. Measurements were then recorded over a range of

electrode spacings for a series of electrode and grounding arrangements. In each case, both

the transmit and receive node used the same arrangement.

Figure 6-1: Bracelet electrode for capacitive sensor.

Figure 6-2: Faceplate electrode for capacitive sensor.

Figure 6-3 displays the typical response obtained, after lowpass filtering the data to about

15Hz to eliminate noise. It is clear from the results that grounding the body is critical
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for good performance. Even the grounded sensors with small electrodes perform better

than the ungrounded sensors with large electrodes. Further, adding a shared ground to

the system with large electrodes nearly doubles the useable range. On top of this, the

large bracelet electrode has a clear advantage in that it is omnidirectional - the faceplate

electrodes had to be pointed directly at one another to obtain the ranges shown here. Still,

capacitive proximity sensing is a short range system, only working for distances within

about 50cm. This is adequate for sensing over about half of the range of separation of

the arms, and measurement becomes quite sensitive for movements within a 20cm range.

Other range-finding solutions, such as infrared (IR) intensity measurement, are not much

of an improvement in terms of range, and are more directional. However, within a range

of 50cm the possibilities for engaging multiple performers on a stage are limited to close

interpersonal interactions.
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Figure 6-3: Typical capacitive sensor response with different electrode configurations.

One intriguing use of the capacitive sensors in a group context might be to detect physical

contact between wearers. This has not been tested, but with the limited range, it seems

unlikely that high values would be measured between sensors worn by two different individ-
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uals unless they were in physical contact, and therefore sharing a common ground. If the

ground coupling between two individuals through the floor is not as strong as the coupling

through skin, as is generally the case, one would also expect to see a sudden increase in

gain when physical contact is made. This modality was explored in early work at the MIT

Media Lab, which demonstrated using the body as a conductor through which data could

be transported between people via a simple handshake [63]. The foreseeable difficulty in at-

tempting these kinds of detections with the capacitive sensors is ambiguity, since the output

can fluctuate with the presence of electrical conductors or noise in the surroundings, and

indeed contact with other people or objects, just as easily as it fluctuates with changes in

electrode spacing. In addition to this, there appears to significant variability in bias offset

from sensor node to sensor node. This property tends to make accurate detection based

on thresholds very difficult. At any rate, the capacitive system provides an interesting ap-

plicable auxiliary sensing modality, and more development is warranted to find how it can

best be used to compliment the capabilities of the IMU sensors.
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Chapter 7

High Performance Adaptation for

Athletics

7.1 Motivation

Although interactive dance provided the impetus for designing the Sensemble system, its

possible uses extend to any area in which high-quality human motion analysis may be

applied, especially those requiring low latency feedback, high sample rates, or many points

of measurement. Athletic sports comes to mind as one of the most promising areas for

further development, in part because of demand from both high-performance professional

markets and growing consumer markets. Wearable sensors for health monitoring or activity

classification are becoming more and more prevalent, but few of these systems are intended

to handle, much less focus on, the large accelerations and high speeds of athletic movement.

Thus, a sensor platform designed for dancers, athletes themselves, is an attractive starting

point.

Given the multi-user capabilities that have been stressed in this work, it would be natural to

test the system in a team sport setting. Progress in this direction could generate some very

interesting research in modeling strategy, communication, and competition. However, the
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benefit of sensor technology applied to training individual athletes is far more immediate,

and within the scope of this project it was more practical to implement. Also, using one

individual is not necessarily a limitation, as higher sampling rates can be achieved with the

alloted bandwidth. Thus, single-subject training applications were pursued for evaluating

the sensor system in the context of athletic sports.

The best chance to test the performance of the system in a demanding athletic training

situation came when colleagues at the Massachusetts General Hospital Sports Medicine

Department expressed interest in using the sensors to study professional baseball pitchers,

in collaboration with the Boston Red Sox. Their interest in focusing on pitchers stems

from a recent increase in injuries associated with the shoulder and elbow of the pitching

arm, an increase which has not been limited to professional athletes [64, 65]. These joint

injuries are typically the result of wear building up over time [66, 67, 68], but the risk

of injury clearly escalates if a pitch is made with poor body mechanics or after passing

the threshold of muscle fatigue [69, 70]. A more definitive risk assessment is difficult to

make, in part because the mechanics of the arm during a baseball pitch are not fully

understood. Especially for professional athletes, who routinely throw fastballs with release

speeds approaching 100mph, the critical portion of the arm motion is simply too fast to be

reliably measured with most techniques. The speeds generated by these players are at the

limits of human ability, and being able to quantify these limits is crucial to understanding

what makes the arm prone to injury. In particular, health practitioners are looking for the

peak value of angular velocity at the shoulder (internal rotation), peak angular velocity of

elbow extension, and peak acceleration at the wrist. These are the processes by which most

of the force is directed to the ball during a pitch, and thereby are also associated with the

greatest wear on the arm.

The biomechanics literature specifies vague ranges for these parameters. For instance,

internal rotation of the shoulder peaks somewhere around 10,000 deg/sec [71, 72], elbow

extension peaks between 2,500 deg/sec and 4,500 deg/sec [71, 73, 74, 75], and peak angular

accelerations of the arm are quoted at anywhere between 300,000 deg/sec2 and 500,00

deg/sec2 [75]. The acceleration phase of the pitch, during which the peaks occur, is only
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20-40 ms long. Typically, video motion capture systems have been used to take these

measurements. However, even the state of the art system at the American Sports Medicine

Institute (ASMI) is limited to 240Hz sampling. At this sampling rate, fewer than 10 frames

of the critical phase of the pitch can be recorded. In addition, to obtain accelerations and

velocities from the positional video tracking data, calculations have to be made which further

reduce the accuracy of these 10 samples. Video systems also suffer from the fact they can

only be used in constrained spaces and require significant infrastructure. Thus, video motion

capture cannot move out into the field to measure players in a realistic situation. Wireless

IMUs, on the other hand, can be sampled at much higher rates, provide acceleration and

angular velocity measurements directly, and can theoretically be used anywhere within range

of a basestation. Only one previous pitching study using an inertial sensor is widely known,

and at the time, over 20 years ago, technology was too limited to achieve definitive results

[76]. The availability of the high-speed, high-resolution, compact wireless IMUs developed

here provides a great opportunity to explore new territory and to begin to address the

limitations of video motion capture for high-performance biomechanics research.

7.2 Goals

Currently, one pilot study has been accomplished using the sensor system with professional

pitchers, with procedures and results initially summarized in [77]. This was carried out at

Red Sox spring training camp in Ft. Meyers, Florida, where a camera-based motion capture

system (XOS Technologies) was also being tested. The goal of the study was to capture

several pitches with the inertial sensor system, without any rigorous calibration, simply

to see how the results compared to predictions from the literature and the performance

of a state-of-the-art motion capture system. It was speculated that the results would not

only agree with the video tracking system and previous predictions, but might exhibit the

potential for more detailed measurement than what is possible at current video rates.

To make these measurements, sensors had to be securely mounted at several locations on the

pitcher's body, for instance, the torso, the upper arm, the wrist, and the hand. At some of
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these points, the peak accelerations and rotational velocities were expected to be extremely

high - over 80g (784m/s 2 ) of acceleration at the hand and 10,000 deg/sec rotation at the

shoulder. Thus, the sensors had to be modified to measure ranges as high as these. In

order to capture the structure of peaks lasting only 20-40ms, the target sampling rate was

also increased to 1kHz. The camera tracking system employed during this study captured

only 180 frames per second, meaning that at 1kHz the inertial sensor system could capture

between five and six times as many data points. In this case, however, it was not necessary

to transmit the data at low latencies. Instead, the strategy was to log data to on-chip flash

memory and allow it to trickle back at lower rates between pitches. Thus, it was necessary

to make sure enough flash memory was available to record a full pitch. Finally, it was

necessary to develop a way to synchronize the inertial data stream with the video data

stream.

Figure 7-1: Baseball pitching subjects the arm to extreme accelerations.

7.3 Adapting the Hardware

The most important adaptation to make to the system was scaling from modest 10g, 300

deg/sec sensors up to devices capable of measuring over 80g and 10,000 deg/sec. Further-

more, these peak requirements are lower at some measurement points, the torso for instance,
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so it was considered appropriate to develop both mid-range and high-range sensor designs.

Several high-range accelerometers are available off the shelf. In this design, the ±70g

ADXL78 and the ±120g ADXL193, both from Analog devices, were used. Although these

sensors are essentially pin compatible, they only measure one axis. Because of this, a

modified sensor daughtercard was designed for high-range applications (see Figures A-5,

A-15), which allows one of the cards to house two orthogonal 1-axis devices. The situation

regarding gyroscopes is somewhat more difficult, as the largest nominal range available is

300 deg/sec. As mentioned in Chapter 2, there is a simple way to increase the range of the

gyro by about a factor of four, by placing an external resistor (R37 in Figure A-1). This

alteration was desirable for dance, and had already been provided for in the basic design.

However, for the pitching trials, the goal was to increase the range of the gyro by a factor

of more than 33.

Fortunately, there is a modification capable of achieving this drastically increased range, of

course at the expense of noise levels. The sensing element of the gyroscope is a polysilicon

resonator which is driven into oscillation. Its deflections can then be related to the angular

velocity of the device. The element is driven at a high voltage, in this case 12.5V, to

achieve its sensitivity, and to accomplish this the ADXRS300 actually uses an internal

voltage regulator. However, the output of this regulator is connected to one of the device

I/O pins, providing an opportunity to override the driving voltage level. There is no formal

analysis available from Analog Devices regarding the detailed behavior of the gyroscope

when the driving voltage is altered, but the company was able to provide the theoretical

relationship between voltage and sensitivity, as shown in Figure 7-2. As the driving voltage

decreases, so does sensitivity, resulting in a proportional increase in range. Based on this

curve, the device is capable of operating in some capacity with range increases as large as

50 times the nominal range, if the voltage supplied to the drive circuit is brought all the

way down to 5V.

For the application described here, a range of about 1200 deg/sec can be obtained by setting

the external resistor, after which an additional reduction in sensitivity by roughly a factor

of ten seemed appropriate to ensure measurement out to 10,000 deg/sec. This corresponds
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Figure 7-2: Relative scale factor of sensitivity versus driving voltage for the ADXRS300
gyroscope.

to reducing the voltage drive level to 7.5V. Luckily, an additional voltage regulator was

not necessary - the current supplied by the internal converter was sufficient to drive a

7.5V zener diode placed from the regulator I/O pin to ground, as shown in Figure A-5. On

the specially designed high-range sensor cards, a footprint was provided for the zener (see

Figure A-15). The gyro already mounted on the main board was just as easily modified by

placing a surface mount zener on top of existing capacitor C18 (see Figure A-1).

For the pilot study, the kind of calibration necessary for true absolute motion tracking

was not attempted. For one thing, the datasheet indicates that modifications to the gyro

output range should be accompanied by checking and resetting the output bias offset with

another external resistor. Although this resistor was provided for in the high-range sensor

daughtercard design (R2 or R3 in Figure A-5), the observed bias offset was not severe

enough to impede the measurement range and was not adjusted. Additionally, the bias

reading of the gyroscope is clearly visible in recorded data and can be removed after the fact.

Nonlinearity in the modified gyros is possible, but this was also assumed to be negligible.

However, to make any sort of useful measurement with the modified gyros, the actual range
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had to be verified, at least within a few hundred deg/sec. This was not a trivial task with

minimal tools, as the potential peak range of 12,000 deg/sec after modifications corresponds

to 2000 RPM.

The most readily available motor capable of reaching 2000 RPM in our laboratory was

inside a Dremel handheld rotary tool. Conveniently, the Dremel bit could be replaced by a

small aluminum plate which houses a sensor node securely by its three screw mount points,

with liberal amounts of electrical tape to secure the battery. A rig was built to secure the

tool horizontally, and a variable AC transformer was used to control the speed of the motor.

In order to determine the speed of rotation, a marker was attached to the spinning platform

so that it passed through a break-beam optical sensor taken from an old mouse with every

rotation. The signal from the phototransistor was measured on an oscilloscope to determine

the frequency of the interrupted beam. With this setup, using a 7.5V zener and setting the

range adjustment resistor (R4 in Figure A-5) to 120 kQ, the peak range was estimated to

be roughly 1950 RPM, or 11,700 deg/sec.

The final set of hardware modifications focused on synchronization and memory. In order to

synchronize with a video motion capture system, the RGB LED on one of the adapted nodes

was exchanged for an infrared LED which was expected to be visible to the infrared cameras.

Since data was to be logged to memory for this application instead of being immediately

transmitted, the MCU was upgraded from the MSP430F148 to the MSP430F149, moving

from 48kB to 60kB of internal flash memory. Given that the typical code running on the

sensor nodes takes up about 4kB, this leaves 56kB of storage space. The six inertial sensor

values, at 12 bits apiece, take up 9 bytes per sample. With an additional 1 byte timestamp

and a sampling rate of 1kHz, this means that the node can store up to 5.6 seconds of data.

This is not a luxurious amount of time, but was considered adequate for storing one pitch

from just before the initial stance to the completion of the follow through.
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7.4 Extending the Firmware

7.4.1 Communications Structure

The firmware running on each sensor node was mainly built around the communications

protocol, specifically designed for a model in which a central basestation clocks the network

at the sample rate, and receives data from the nodes every sample period. With a sample

rate of 100Hz, there are 10ms to complete the negotiations required to collect each sample.

In particular, partly because of the low SPI baud rate, it takes more than 1ms for each

node to transfer a sample's worth of data to its radio module and initiate transmission, as

discussed in Chapter 3. Using the same model at 1kHz, or ten times as fast, is not possible

to perform the tasks required to stream data at the sample rate from even one node.

The solution, as mentioned previously, was to store data temporarily in flash memory and

retrieve it later.

Given this behavior, some of the low latency properties of the original communication struc-

ture are no longer relevant. Still, it was not necessary to design a completely new protocol

for this preliminary study. During the sampling phase, the standard communications cycle

can be adapted, by allowing each node to run on its own timer at 1kHz, while using the

100Hz broadcast pulse from the basestation to resynchronize the network after every ten

samples. The clock skew on the nodes was found to be small enough at 1kHz that resyn-

chronization could be performed in this way without noticeable jitter. When it is time to

collect the stored data, nodes revert to the standard system, transmitting data packets in

assigned TDMA slots at 100Hz.

The change of behavior between logging data and retrieving data suggests that states will

have to be added to the system. In the previous structure, nodes could be in sample or idle

modes. Here, there are two new modes - the 'Write' mode for storing data, and the 'Read'

mode for transmitting it back. In addition, a number of states for reading and writing flash

memory are encapsulated in each of these modes. As before, the basestation requests a

state change in a broadcast packet, using the additional codes shown in Table 7.1. Since
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the state transitions are more complicated in the adapted system, an acknowledgment code

is transmitted back to the basestation to make sure that all of the nodes reach the requested

state. These acknowledgments replace the node header in a node data packet (Table 7.2,

which is sent in accordance with the TDMA scheme discussed previously. The system of

state transitions and responses will be described in further detail in the following section.

Mode Header Timestamp Target ID Message Code Message Unused

Sample OxAF All Nodes
OxFF

No Message Set LEDs R G B
Ox00 Ox01 Ox00- Ox00- Ox00-

Idle OxFF Ox0000- One Node 0x04 0x04 0x04
OxFFFF Node ID

Ox01-0x19
Write OxBE Start Writing

OxFF Nodes do not respond to messages.
Read OxCD Any

Table 7.1: Basestation broadcast packet structure with additional options for logging and
retrieving data.

Header lB Payload 15B
Node ID Inertial Data 9B Other Data 6B

Ox01-O0x19 AccX AccY AccZ Gyr Pitch Gyr Roll Gyr Yaw Capacitive Measurements
OxF5 Finished Reading, Node Idle, Payload Empty
OxFF Flash Memory Full, Payload Empty
OxFO Flash Memory Ready (Erased), Payload Empty

Table 7.2: Node packet structure with additional options for logging and retrieving data.

7.4.2 Logging and Retrieving Data from Flash

In write mode, whenever samples are recorded on the sensor node, they are logged imme-

diately to flash memory, using the writef lashbyte() routine (see Listing C.3). During

this transaction, it is important to ensure that memory has previously been erased, that no

address will be repeatedly written to, and that program code will not be overwritten. In

addition, memory cannot be erased by byte, but must be erased in 512 byte segments. To
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ensure this, the address to be written, stored in FlashPtr, always starts from the top of free

memory and moves downward with each byte written, until it reaches the beginning of the

first full segment following code memory. In this implementation, the address at the end of

the last code memory segment must be noted by the programmer as MAXCODESPACE. Once

the flash pointer reaches this lower limit, it is reset, and further writes are not valid until

the entire memory is erased.

Within the 10ms broadcast cycle, the sensor nodes must collect samples and write them to

flash every millisecond, with enough time to spare at the end of the cycle to resynchronize to

the next broadcast pulse. The difficulty with this procedure is that byte-by-byte writes to

flash are fairly slow. Writing 10 bytes per sample at 1kHz, or 80kbps, approaches the limits

of the current MCU. Flash can be written in blocks at higher rates, but this instruction

must be executed from RAM, which is inconvenient to implement. Because of the timing

limitations, once the node begins writing to flash, it cannot stop to read the messages it

receives from the basestation, or to transmit its own messages. Instead, it automatically

resynchronizes when any valid RF signal is received, and writes to flash without interruption

until all of the free memory has been used up. New timer routines were required to run this

1kHz sampling procedure independently from the broadcast cycle, and this was provided

for by eliminating capacitive sensor functionality and using TimerB to control the logging

of data. Another sacrifice was made, in that the current implementation does not store the

1 byte timestamp of each sample, but only stores the 9 bytes of inertial sensor data. This

means more data can be stored, but was an obvious mistake, as discussed below in Section

7.7.

Reading data out of flash is less involved, since it is equivalent to reading any register in

memory. Therefore, accessing packets of recorded data from flash and transmitting the

data from several nodes could be handled easily by the existing TDMA scheme. On every

broadcast cycle, the readflasharray() routine is used to fill DATAPACKET in place of

sampledata() (see Listing C.6). The data packet can then be handled as in standard

operation. However, firmware must ensure that packets are read out sequentially in the

order they were written, and that once the last packet is read, flash memory must be erased
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State Numbers: Value Stored in flashstate

RF: Header Value of a Basestation Request Packet

N: Header Value of a Node Response Packet

Figure 7-3: Reading and writing flash memory.

to prepare for the next write cycle. Erasing the entire data memory can take up to 1.4

seconds, during which time the node has no means of RF contact. It must therefore wait

to resynchronize with the broadcast cycle until the operation is complete, and only then

alerts the basestation that memory is ready.

As mentioned above, ensuring that flash is written, read, and erased with the appropriate

behavior requires a series of states. Because of the time required to write and erase flash

memory, nodes do not have the ability to rely on two-way RF communication from within

some of these states. Thus, it is very important to send acknowledgments from the nodes

with every state transition to make sure that the basestation is aware of the status of the

network. The behavior of the adapted firmware running on the nodes is determined by the

state machine illustrated in Figure 7-3. Typically, each transition is initiated by a state
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request stored in the header byte of the broadcast packet sent from the basestation (see

Table 7.1). The state itself is stored in the variable flash-state, which takes on the values

shown as state labels in the graph. The state acknowledgment is sent in the header byte

of the next data packet transmitted from each node (see Table 7.2). Only data packets

beginning with a valid node ID actually contain sensor data; these packets are sent during

read mode. Among other regulatory duties, the state machine ensures that nothing can

be read from flash until data is recorded, that memory cannot be erased until the stored

data has been read and transmitted once in full, and that the next data segment cannot be

written until memory has been erased.

Except on the sensor node fitted with an IR LED, visual feedback is provided from the nodes

so that the user can discern any problems occurring in the progression through states. While

data is being written, the LED shines dim white. Once memory is full, the LED turns green.

While data is being read from memory, the LED turns yellow and then green again when all

of the data has been retrieved. Finally, the LED turns blue while memory is being erased,

and turns green once more when memory is ready to be filled with new data.

7.4.3 Basestation Control

Once again, the basestation acts as intermediary between the host computer and the sensor

network. It must maintain its sequence of broadcasts at 100Hz to synchronize the network,

and to forward state requests from the host to the nodes. In this case, it must also process

a larger variety of data packets returned from the network and respond accordingly. In

order to accomplish this without sacrificing speed, all of the received packets are initially

assumed to contain sensor data and are immediately stored in the data buffer for USB

transmission (see Listing C.13). Then, the header value is checked, and if the received

packet was a state acknowledgment and not sensor data, the write index into the buffer is

simply not incremented. In other words, any state acknowledgments in the data buffer will

be overwritten.

One other modification was made to the basestation firmware, which provides another option
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Request Header ID Number Message Code Message

Sample OxAF All Nodes
Mode OxFF

No Message Set LEDs R G B
Ox00 Ox01 Ox00- Ox00-- Ox00-

Idle OxFF One Node 0x04 0x04 0x04
Mode Node ID

Ox01-0x19
Write OxBE Frame Unused
Flash Number
Read OxCD Unused
Flash
Local Message for basestation not passed to nodes.
None No new message.

Table 7.3: Host control packet structure.

for synchronizing the inertial system with external hardware such as a video tracking system.

The idea was to generate a slowly varying signal at one of the digital outputs on the MCU,

which could be initiated at the same time as sampling and recording data to flash. The

signal would mark the exact temporal location of the recorded data segment, as well as

encoding a number identifying the segment. It could be sent to an external system without

fear of grounding issues by using an optocoupler, and finally incorporated into the external

data stream using a free analog or digital input. In this design, the output pin for the

synchronization signal is set by SYNCHOUT (see C.13). The segment ID is sent as the frame

number from the host (Table 7.3), and stored in the variable framenum. When the system

enters write mode, the output signal goes high, and over the next seven broadcast periods

seven lowest bits of the segment ID are clocked out starting with the least significant bit.

For up segment IDs up to 63 (six bits), this leaves the synchronization signal high for the

remainder of the write cycle. When the first node replies to indicate that its flash is full, the

signal drops back to zero. The digital output sequence is clocked by the 100Hz broadcast

cycle, hence it can be read by any external system sampling at greater than 100Hz.
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7.5 Host Application Software

The host application software for collecting data in conjunction with the baseball pitch-

ing study has already been introduced in Section 4.1.2. However, the additional features

provided to handle data logged to flash were not discussed. Mainly, these consist of the

'Write' button, the 'Read' button, and the 'Erase' button. Pressing each one of these sends

the associated control byte to the basestation for inclusion in the broadcast packet (see

Table 7.3). If it is possible to perform the requested action, the button press will result

in a corresponding change of state in the network. Provided the system is in the correct

state, after pressing the read button the application will begin to receive data, which is

stored in a text file using the same conventions as the real time sampling mode described in

Section 4.1.2. During write mode, the frame number that will be appended to the name of

the saved file is also used as the segment ID for the synchronization signal sent to external

hardware. In most cases, this results in logged data segments with filenames that match

up with the synchronization codes recorded on external systems. However, the user should

be aware that during read mode, or any time when the nodes are waiting for a command

as evident by green LEDs, the state progression shown in Figure 7-3 can be interrupted by

going back to idle or sample modes. In the case of sample mode, the network begins to

generate real-time data in the original configuration. This data is also logged to a file, and

therefore may produce a break in the data retrieved from flash, or an offset between the

filename and the true segment ID. An application to visualize logged data as it is retrieved

has not yet been developed.

7.6 Experimental Procedure

The pitching study was performed in parallel with the XOS Technologies motion capture

system at Red Sox spring training 2006 in Fort Myers, Florida. During the session, the

inertial sensor system went through preliminary testing with a retired major league player

and representative of XOS Technologies while the video system was being set up and cal-
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ibrated. Then, a series of pitches, all fastballs, were recorded with an active minor league

pitcher during his training regimen.

Mounting points for the inertial sensor nodes were selected to provide measurement at the

most important locations for pitching motion - the torso, upper pitching arm, wrist, and

hand (see Figure 7-4). Each of these locations experiences different peak accelerations, as

estimated in [77], and therefore sensors were specified with different ideal ranges for each

location. In the case of the upper arm and wrist, it was speculated that fine motions may

be just as important to measure as high range motions. To achieve resolution across the

scale, a pair of sensors with different capabilities were used at these points. The final system

employed six sensor nodes, with detailed positioning information and sensor ranges outlined

in Table 7.4.

Figure 7-4: Basic placement of sensors on the pitching arm.

Sensor Position Accelerometer Range (g) Gyro Range (deg/sec)

Torso ±10 ±1,200
Arm (Low Range) ±10 ±1,200
Arm (High Range) ±70 ±11,700
Wrist (Low Range) ±10 ±1,200
Wrist (High Range) ±120 ±11,700
Hand ±120 ±11,700

Table 7.4: Sensor placements and approximate ranges for the baseball study.



(a) Six inertial sensor units alongside motion capture (b) Sensors being secured to the body of
gear ready to go. an athlete with straps and athletic tape.

Figure 7-5: Setup for baseball pitching study.

In order to mount the sensors to the pitcher's arm in a way that could withstand the

forces anticipated, the standard velcro straps were supplemented by a heavy application

of flexible sports tape (see Figure 7-5). Once the sensors were attached, their distance to

primary joints was documented for later analysis. Although the on-body infrastructure for

the inertial sensors was more bulky than the optical markers used for motion capture, it

took about as much time to prepare, and the mounting strategy employed was probably the

least uncomfortable method for the test subject. He claimed that although the mass of the

sensors was undesirable, it did not interfere with pitching. Future tests can incorporate a

number of immediate improvements to the size of the devices, for instance, a smaller battery

can be used since the operating time is not as critical here as in a dance performance.

The test sequence began by a calibration of the video motion capture system, in which the

subject assumed a starting position so that all of the optical markers could be found and

initialized. XOS Technologies could not provide a direct signal input to their system, so the

digital synchronization code from the basestation could not be used. However, the modified

node with the IR LED could be seen with the cameras and did not confuse the marker system

when it was turned on after calibration. The node generating the IR synchronization signal
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was mounted on the torso, and was programmed to flash at the beginning of the data

collection cycle. Therefore, to capture the synchronization point and begin collecting data,

the subject turned to face a camera and sampling on the inertial system was initiated by

pressing the write button in the host application. From this point, roughly six seconds of

storage space was available to capture data. If correctly timed, this was enough to capture

the wind-up, pitch, and follow-through reliably. Once a pitch had been recorded at the

nodes, the data was retrieved by initiating read mode. After all of the data had arrived at

the host and the flash memory on the nodes had been erased successfully, then the system

was ready to capture a new pitch. This process was used to capture four complete pitches

from the minor league baseball player.

7.7 Results

The pitching study was a technical success except for a few caveats. First, in order to

build the high range sensor nodes, the pitch and roll gyroscopes (x and y direction, see

Figure 2-11) were transferred from old sensor daughtercards to new high range daughter-

cards. Unfortunately, the gyroscopes come in ball grid grid array (BGA) packages, which

are notoriously difficult to solder without proper tools. Most of the sensor boards were

assembled professionally, but this modification had to be made by hand. Once a BGA

package has been soldered, it is simple enough to test for short circuits, but hard to test for

open circuits and poor connections. In this case, if a soldered gyro could be turned on and

responded properly to movement in the lab, it was deemed to work. The difficulty turned

out to be ensuring reliability. After transportation and a few hours of heavy usage on site

in high humidity and high acceleration, none of the modified gyros worked properly. This

was assumed to be the result of poor connections and not stress on the MEMS components,

as the gyros which had not been re-soldered all worked consistently. Still, only one gyro

axis was captured on the high range sensors at the upper arm, wrist, and hand, meaning

peak rotational velocities could not be measured directly as intended. Luckily, acceleration

was captured on all three axes at every measurement point.
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The second issue was synchronization between nodes. Because the sample timestamps were

not recorded to flash memory on each node as originally intended in Section 7.4.2, all

information about timing anomalies present during sampling, such as dropped RF packets,

was lost. Thus, sensor signals recorded from different nodes in this trial cannot be accurately

compared in time. The next iteration will, of course, eliminate the problem by recording

the appropriate timestamps.

Finally, an unanticipated problem was encountered in the data retrieval scheme. Data

is sampled and stored at the nodes at 1kHz, but then it is retrieved using the original

TDMA scheme, with each node sending a single data packet every cycle. In other words,

data is collected from the network at only 100Hz, ten times slower than it was generated.

Therefore, the 6 seconds of data stored on the nodes takes an entire minute to retrieve.

In the laboratory, it was considered more important to capture the pitch than to optimize

response time. However, the fact that a training professional baseball pitcher throws a

strict number pitches per session with no breaks and then rests his arm was not considered.

During the study, there was a limited window in which to collect data, and only 4 pitches

were successfully recorded because of the long data retrieval times. This will not be as much

of an issue for future studies - since the TDMA cycle fits 25 nodes, retrieval time can be

reduced by a factor of four by simply allowing the six nodes to transmit four times per

cycle. Further optimizations can most likely be achieved by developing a more specialized

RF communications structure.

Figure 7-6 shows an example of the accelerometer signals and estimated magnitudes recorded

from the wrist, hand, and upper arm during one of the pitches. The results indicate an

area of significant movement over roughly 400ms, with a rapid peak acceleration phase oc-

cupying under 30ms. For reference, the IMU sampling at 1kHz captures 30 samples during

this acceleration peak, while the video system is able to capture only 5 frames in the same

interval. The acceleration values shown in the plots are approximate, as the sensors were

never calibrated. Nevertheless, a very sharp increase in acceleration was recorded on all

nodes, with approximated peak values in accordance with the video tracking results and

predictions in the literature.
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Figure 7-6: Acceleration phase of a baseball pitch measured on various accelerometer axes.
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At the wrist, the predominant axis of acceleration is the y-axis as shown in green, which

peaks above 80g (784m/s 2 ) (Figure 7-6(a)). This is the acceleration directed down the

arm towards the elbow, and hence is the major component of centripetal acceleration as

the arm rotates towards ball release. The smaller accelerations on the other two axes

are transverse movements, as indicated by an acceleration (positive) peak followed by a

deceleration (negative) peak. This most likely corresponds to the sudden burst in tangential

velocity immediately before ball release. The magnitude plot indicates that at its peak,

the wrist is experiencing nearly 100g (980m/s 2 ) of net acceleration, although this is only

sustained for several milliseconds.

The hand shows a similar result, as its motion during a baseball pitch closely follows that

of the wrist. Again, the predominant acceleration occurs along the y-axis, and is mainly

the result of centripetal acceleration directed towards the wrist. As might be expected,

the peak values at the hand are even higher, since the radius of rotation from the elbow

is slightly longer and the hand also rotates to generate the last bit of momentum before

ball release. The measurements here indicate that centripetal acceleration peaks around

110g (1078m/s 2 ), and net acceleration may reach up to 120g (1176m/s 2 ) (Figure 7-6(b)).

Although it has not yet been verified, evidence suggests that the distinct double peak in

acceleration on the y-axis may be an artifact introduced by the elasticity of the athletic tape

securing the sensor package to the pitcher's hand. However, the effect of this 'snapping'

artifact on acceleration estimates is still unpredictable, and taking it into account does not

necessarily reduce the value of the net acceleration peak predicted here.

In addition to peak accelerations, it is also important to try to obtain a preliminary estimate

from the inertial system as to the peak angular velocity of internal rotation of the shoulder.

Most of the power associated with a baseball pitch is generated by this process. Also, the

shoulder is the joint that takes the most wear from repeated pitching. Unfortunately, the

gyros that would have measured these rotational speeds directly were among the sensors

that failed during this study. Still, it was possible to obtain rough estimates by employing

centripetal acceleration. Given a radius r, for circular motion the angular velocity w in
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rad/sec is related to the centripetal acceleration ac by:

w = rad/sec
Lr

At the upper arm, internal rotation of the shoulder shows up as centripetal acceleration

directed inwards towards the bone. This corresponds to a negative acceleration on the z-

axis of the upper arm sensor, which is clearly apparent in Figure 7-6(c). The peak magnitude

of centripetal acceleration appears to reach approximately 66g (647m/s 2 ). With a biceps

radius of 6cm, this results in a peak angular velocity of 104 rad/sec, or roughly 6,000

deg/sec. This is slightly lower than the expected value of 10,000 deg/sec, but it is a very

vague estimate that may have been affected by the lack of calibration. It may also happen

that peak shoulder rotational velocity is highly variable among individual pitching styles.

There has not yet been an attempt to formally compare the results of the inertial system

with the corresponding data from the video motion capture system. Subjectively, however,

the two systems produced a similar output, and the inertial data demonstrates very high

peak values that seem to agree with those previously published. The advantage of the

IMU is seen in the high level of detail captured during the peak acceleration phase. The

nonlinearities visible within the peak as different components of acceleration interact would

not be easily captured by video or other tracking methods. For instance, the rapid up-down

pulses of transverse acceleration present at the peak of wrist motion last only 20ms, and

could easily be misinterpreted with only 4 video frames to describe them. With calibration

and additional testing, a wireless inertial sensor system could be an important supplement

for video tracking in a sports biomotion context. Once the relationship between pitching

parameters and inertial features is more thoroughly studied, an inertial system can stand

on its own, with the potential for bringing biomechanical analysis out of the laboratory and

onto to the playing field.
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Chapter 8

Test Application and Results for

Dance

8.1 Concept

To demonstrate the utility of the system as a multi-user interface for interactive perfor-

mance, it was necessary to explore mappings for translating extracted activity features into

musical sound in a satisfying way. In a traditional free gesture interface, each degree of free-

dom might be mapped directly to a specific continuous effect control or set of musical event

triggers. In this system, however, there are at least six degrees of freedom per node provided

by the inertial sensors, and typically four nodes per user, making direct mapping impracti-

cal. For this reason, the focus has been on forming descriptions of motion at the group level

rather than at the individual level, thereby reducing the number of features to consider.

As suggested in Chapter 5, simple group features can be used to express a whole range of

useful information, such as who is leading and who is following, degree of correlation across

the ensemble, changes in activity level across the ensemble, the existence of subgroups or

clusters within the ensemble that could be considered separately, principal axes of activity

within subgroups, the location of an event unique to one individual, or relationships be-
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tween levels of upper body motion and lower body motion. In turn, the treatment of the

ensemble as an organic unit offers new possibilities for musical interpretation.

In this chapter, a preliminary implementation is presented which allows sensor data to be

realized as sound in a simulation of real-time operation. The goal of this test application was

not to create a coherent performance piece, but to verify the capabilities of the system, and

to demonstrate how the features discussed in this work could be interpreted in a real dance

setting to create responsive sounds. Five dancers were monitored, each wearing sensors on

both wrists and ankles, for total of 20 sensor nodes. Data was collected during a rehearsal

over several repetitions of a short dance piece. In this case, the test application could not

be developed while the dancers performed, so the data was recorded and analyzed offline.

These recorded performances can be recreated by playing the data back into Max/MSP

just as if it had arrived in real-time, with the patch described in Section 4.2.3.

As the performance is played back, the data stream is interpreted by a variety of feature

extraction algorithms, covering most of the strategies for group analysis. For simplicity,

only the motion data provided by the inertial sensors is considered in this case. During

the mapping process, the time varying features are transformed into control parameters for

sampled and synthesized sound generation. In a broad sense, the possibilities are triggering

sounds, stopping sounds, modifying sound sources, and modifying effects. These can be

combined and executed in any number of ways. For this design, the mapping from features

to sound parameters is very simple and direct, to highlight the nature of the features being

measured.

8.2 Feature Extraction Tools for Max/MSP

All interpretation of data, including feature extraction and mapping, occurs in Max/MSP.

As stated above, mapping is deliberately simplified in this application, but feature extraction

may still require significant computation. Unfortunately, performing heavy computation in

Max/MSP using built-in objects is notoriously slow and cumbersome. Many external ob-

jects have been developed to perform advanced math operations, but these are typically
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MSP externals for audio processing. The data signals here are actually control rate mes-

sages, and converting them to the audio rate to perform math would only require more

operations. Usually, it is not necessary to perform a great deal of math on control signals,

so very few control-rate externals have been developed for this purpose. However, since a

custom Max object for data collection had already been built for this project (see Section

4.2.3), it was simple enough to develop code for custom feature extraction objects as well.

The advantage of having a custom-built external object is that it does not have to be a

general system building block - it can take advantage of the special structure of a specific

application and abstract away many of the processing steps, resulting in a faster and cleaner

patch. In this case, the externals designed for feature extraction take advantage of the fact

that the data received from each node is packed with a known structure. Specifically, a list

of sensor values can be treated as one input message and the parallel operations required

for different sensor signals can be encapsulated within the object.

8.2.1 Cross-covariance

The cause for heavy computation during feature extraction is undoubtedly championed by

cross-covariance. As evident in the definition (see Equation 5.1), cross-covariance is a type

of convolution between two sequences. As such, straight computation on a window of size

N requires (2N - 1)N multiplications and (2N - 1)(N - 1) additions. In other words,

the process is potentially an O(N 2) computation. Given the similarity to convolution,

however, it is not surprising that the loss can be reduced to O(NlogN) through the use of

fast Fourier transforms (FFTs). To illustrate this, first consider two signals f(t) and g(t).

Their cross-correlation, r(t), can be expressed as the convolution between one signal and

the time-inverted compex conjugate of the other:

r(t) = f*(-t) ® g(t)

Cross-covariance, c(t), is equivalent to cross-correlation for signals that have been shifted to

zero mean. Additionally, if f(t) and g(t) are real, as they will be in practice, f *(-t) = f(-t).
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Thus the cross-covariance can be expressed as:

c(t) = (f(-t) - f) 0 (g(t) - g) f,g e R.

The same calculation can be made in the frequency domain using two forward Fourier

transforms and an inverse transform:

C(jw) = .F[f(-t) - f] - F[g(t) - 9] (8.1)

c(t) = {F[f(-t) -] F[g(t) - g]} (8.2)

Using an FFT algorithm to compute the transforms, the number of computations required

is O(NlogN), not O(N 2 ). Hence for large values of N it becomes much faster to calculate

cross-covariance in the frequency domain than in the time domain. Incidentally, this is the

procedure followed by the Matlab xcov O) function (see Appendix F).

The Matlab implementation also highlights the fact that the result contains a scaling factor

dependent on the variance of the input signals. To normalize, the output can be rescaled

so that the autocorrelation of the input signals at zero lag equals one. For a sequence x[n],

the zero-lag component of the autocorrelation, rxxo, is given by:

N

rXXO = r [m= 0] = 2[n].
n=O

Consequently, the normalizing factor for x[n] is Vr :

N x[n] 2
= 1.

n=O

Now, let cab[m] be the cross-covariance between two zero-mean, real sequences a[n] and

b[n], with associated zero-lag autocorrelation components raaO and rbbO. In the frequency

domain, this cross-covariance can be expressed as:

Cab(eiw) = A(e-J")B(eJ").
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Then, if normalization factors are applied to a[n] and b[n], the normalized cross-covariance

can be defined as:

A(e- ') B(e d )

Cnorm(e w) = (e

Cabe - )

cab m]Cnorm [mn] = Cabm
V/raaO - rbbO

Therefore, to normalize the output, the result from Equation 8.2 must be scaled down

by a factor of v/raao. rbbo . This summarizes the procedure that will be taken to compute

cross-covariance within a custom-built Max external.

Depending on the situation, different types of cross-covariance features can be called upon.

For instance, it can be measured between two distinct signals, but it may also be helpful

to measure average cross-covariance between two sensor nodes. In the latter case, cross-

covariance is computed separately for each of the six inertial sensor signals on a node, and

then the results are averaged. For example, this was the technique employed for the analysis

in Section 5.2.1. To accommodate the possibilities, two Max externals were designed, xcov

and xcovlist (see Listings D.6, D.7). Like rawusb, these were also developed in C using

Xcode and templates provided in the Max/MSP SDK. The first accepts streams of integers

at its inputs, and is initialized with arguments specifying the window size and step size

for the computation. The second accepts lists of integers at its inputs, with an additional

argument specifying the length of the lists. Computation within these objects is similar,

apart from the fact that xcov performs one cross-covariance calculation at every time step,

while xcovlist performs a cross-covariance calculation per list element and computes the

average at every time step. Although it is possible to design a Max object that accepts

general input and changes its behavior depending on the input format, it was simpler in

this case to use two specialized pieces of code. Also, the behavior of xcovlist could be

achieved with a series of xcov objects and a scaling factor, but as suggested above it is

much more efficient to encapsulate the parallel operations in one object.

Both cross-covariance objects have two inlets, one for each of the signal sources to be
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correlated. Generally, because of the scheduling structure of Max/MSP, objects generate

an output in response to activity on the leftmost inlet. In accordance with this principal,

the left inlet here continually buffers new data points and initiates all computation. If

step-size new data points have been received on the left inlet since the last calculation,

a new calculation is performed over the last windowsize data points. Meanwhile, data

received on the right inlet is only stored to its buffer when corresponding data appears on

the left inlet. This ensures that the sequences being correlated are properly synchronized,

but care must be taken that when a pair of data points arrive, they appear in right to left

order. This follows naturally with the Max/MSP scheduling scheme.

When it is time to make a computation, cross-covariance is computed in the frequency

domain, as discussed above, and normalized with the appropriate scaling factor. The core

algorithm, implemented in computexcovO) (see Listing D.6), uses FFT subroutines pro-

vided by FFTW, a popular and freely distributed C library [78]. In order to achieve the full

speed advantage of the FFT over time domain computation, the length of the sequences

should be a power of two. Therefore, when the object is initialized, the value provided in

the windowsize field is rounded to the nearest power of two, and the actual values being

used are reported to the Max output window.

Both xcov and xcovlist have 7 outlets. For a window size N, the computation at each

time step results in a cross-covariance vector of length 2N - 1. This result is sent to the

leftmost outlet as a list of floating point values. However, in the course of the computation,

a number of other useful features are generated, including the Fourier coefficients and the

means of both input signals. These features are made available to outlets as well. Finally,

the value of the cross-covariance peak is output as a float, and the location of the peak

in the cross-covariance list is output as an integer index. In this way, xcov and xcovlist

provide a versatile set of features beyond acting as number-crunching units. Figure E-4

illustrates the layout of xcov and xcovlist and their use in a simple patch.
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8.2.2 Running Mean and Variance

Compared to cross-covariance, mean and variance are very basic computations that could

be handled adequately by existing Max/MSP tools. However, in the case of variance, there

is no dedicated object for performing the calculation on control rate values. Also, in the

course of making the activity measurements discussed in Section 5.2.2, there is a need to

compute running variance on windows of sensor data, with a variety of possible update rates

and window lengths. While a patch in Max/MSP could be designed with this structure, it

would not be as fast and flexible as a simple buffering scheme in C. In the case of computing

mean, there are several existing objects. For instance, mean computes the mean of all the

values it has received between resets, and Lmean computes the element-by-element mean of

two lists. Still, a running mean feature with similar behavior to windowed variance would

be useful and not easily implemented with the existing options. In order to simplify the

prospect of extracting running mean and variance features, the externals Rmean and Rvar

were developed (see Listings D.8, D.9).

The description of Rmnean and Rvar is brief, as their function is simple and their only

difference is in the central calculation. Both objects are initialized with a window length

and a step size. They have one inlet, which accepts either integers or floating point numbers,

and one floating point outlet for the result (see Figure E-2). Values received at the input

are buffered, and any time stepsize new samples are received, the mean or variance of

the last windowsize samples is computed and sent to the outlet.

8.3 Sound Palette and Control Space

In this design, the control medium of choice for interactive sound was MIDI, which can link

Max/MSP with other music generation tools. Max/MSP is capable of generating audio

output directly, of course, and can also output other standard formats such as OSC. These

options would likely be more efficient than MIDI, in terms of processing power in the case

of direct audio output, or in terms of throughput of control data in the case of OSC, as
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MIDI has limited speed and resolution. However, for testing purposes it was considered

more appropriate to use a familiar system capable of providing quick results.

Also with this in mind, Propellerhead's Reasonm was used for sound generation. Reason

is a powerful modular software synthesizer and sequencer with a well-designed interface,

allowing easy access to amazingly wide variety of appealing sounds. Using the rewire-

object and running Reason as a ReWire slave gives Max/MSP full control over most of

Reason's interface elements via MIDI. MIDI notes and controller values can also be sent

to any Reason track from within Max/MSP. Thus, in this context, MIDI provides a very

convenient way to move between data processing and sound design.

However, it is important to mention that both the MIDI protocol and the Reason interface

set up certain assumptions about the control space, which can often be a limitation in

terms of what types of interaction are most naturally supported by the system. MIDI

was not invented as a description for music so much as a communications link for musical

keyboards. Because of this, the protocol is laced with the usual keyboard-centric limitations

- notes are on or off and have a strict value, buttons are pressed, knobs turn. For all its

complexity, Reason was completely built around this type of interaction. Many synthesizer

modules offer a battery of parameters to shape a keyboard attack, sustain, and release into

something that resembles the behavior of another instrument, but control is still passed

through this keyboard channel. Here, the limitations are handled as best as possible, but

nevertheless strongly affect the mapping strategy. Broadening the scope of the control space

and bringing in new mapping possibilities is left for future implementations where MIDI

can be avoided or supplemented.

8.4 Implementation

8.4.1 The Mapping Process

Mapping can be thought of as the process of making connections between three interpretive

layers, where information is passed from top to bottom. At the top layer is a set of direct
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features taken from the raw data; in other words, means, variances, and the like. The middle

layer contains a set of descriptive elements - the observations or patterns one hopes to

derive from the direct features. Contingent on the complexity of the computations linking

the two layers, these descriptive elements could potentially be as specific as a set of gestures

to recognize, or a set of emotional states to predict based on body movement. Since pattern

recognition was not the focus of this project, the descriptive elements used here are broad

reinterpretations of the direct features, such as ensemble synchronicity or average group

activity. Finally, the bottom layer is made up of musical elements, typically a set of digital

instruments, effects, score structures, and their associated control parameters.

Connections between the middle and bottom layers should be designed so that the descrip-

tive elements affect the musical output in a satisfying way. Typically, the ear appreciates the

complexity associated with correlation across multiple musical parameters; for instance, vol-

ume and timbre vary mutually on any physical instrument. Therefore, it is beneficial to give

a single descriptive element control over several musical parameters in varying capacities, or

potentially to give multiple descriptive elements control over the same musical parameter.

However, for a complex mapping, the difficulty becomes balancing rich responsive sound

with interpretability for an audience. At some point, it is necessary to incorporate feed-

back and learning to oversee such a system. This can be assisted by software, for instance

supplanting the mapping process with a software agent [15], but the role of the human

performer cannot be understated.

For the purposes of this work, analysis and experimentation have only begun to progress

far enough to be concerned about complex interaction with feedback and learning. Rather,

the mapping designed for this test application was meant to provide a simple overview of

the possibilities for transforming group features into sound, and to test real-time operation

for the first time. Because of this, simple sounds were preferred, with relatively direct

relationships to descriptive elements, making the influence of each feature distinctly audible.

The mrapping strategy is illustrated in Figure 8-1. It was designed by selecting the set

of descriptive elements first. In order to address most of the group features discussed in

Chapter 5, the synchronicity across the ensemble, similarity across the ensemble, global
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activity level, individual activity level, and several comparative activity levels were chosen.

Given this set of descriptive elements, the top level features to extract were the acceleration

and angular velocity magnitudes, and running variance envelopes for each sensor value. The

sensor magnitudes are used to compute average cross-covariance features for each dancer,

while the variance envelopes are averaged and compared in various ways to produce the

activity features. Musical elements were selected to provide a simple palette of four very

distinct sounds, violin, bass synth, plucked string, and flute. In the case of the bass synth,

sounds were generated using a subtractive synthesis module in Reason. Other sounds were

generated with a sample synthesis module, also in Reason, using built-in samples.

4 44 j

Figure 8-1: Basic strategy for a test mapping from sensors to sound.

This structure was explored using data streamed from pre-recorded text files to simulate

real-time operation, with the help of the seq- patch discussed in Section 4.2.3 (see Figure

E-3). The full test interface is shown in Figure E-5. Playback is achieved by loading the

text file with the read button (1), setting the proper Rewire channels (2), turning on the
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DAC (3), and hitting start (4). The start position can be set with the upper slider (5),

and the current position in the file is reported on the lower slider (6). Playback will loop

between the start position and the end of the file. The generated audio can also be recorded

to an output file, by selecting open (7) to create a new audio file prior to playback, and

then activating record (8). The interface view gives the user some idea about how the data

is being handled, but does not show details of feature extraction and mapping to sound.

8.4.2 From Data to Features

All of the feature extraction in encapsulated within a sub-patch called giantfeaturemess

(see Figure E-6). The purpose of this object is to accept bulk streaming data from the

sensor network, generate the top level features, process them, and output all of the middle

layer features or descriptive elements. The actual contents of giantfeaturemess are true

to its name, so rather than displaying the full patch, the processes involved will be broken

down and illustrated piece by piece. In this case, the input data comes directly from the

output stream of the seq- object. Therefore, the first step is to parse the bulk data stream

back into individual streams for each sensor node (see Figure E-7). Then, the top level

feature set, comprised of magnitude and windowed variance, can be generated for each

node. The Max patch for magnitude calculation is shown in Figure E-8(a). It accepts a list

with all of the sensor values for one node, ignores the capacitive sensor readings, and shifts

the expected bias of the inertial sensors to zero. Then, a standard magnitude computation

( x2 + y2 + z 2 ) is performed separately on the three accelerometer axes and the three gyro

axes, resulting in a two element list at the output. A similar patch for windowed variance

is shown in Figure E-8(b). The preparation of the inertial data is the same, except that in

addition to shifting the bias, the signals are normalized to fit within the maximum range

±1. The Rvar object performs a running variance calculation on each sensor value, with a

window size of 20 samples and a step size of one. The smoother objects apply 20-sample-long

median filters, which create smoothed envelopes while preserving signal edges. The output

of the patch is a six element list containing the variance envelopes for each inertial sensor

value. Magnitude of acceleration, magnitude of angular rotation, and variance envelopes
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of each sensor signal now form the basis of the rest of the feature extraction and analysis

process.

The first five outlets of giantfeaturemess generate descriptive features which encompass

the ideas of both similarity and synchronicity, for each of the five dancers in the ensemble

analyzed here. These features are loosely termed average lag times, and their intent is to

quantify the average temporal separation of each dancer from the rest of the group during

a period of similar activity. For instance, if one dancer is consistently lagging behind all of

the other dancers, a high average lag time should be reported for this dancer. On the other

hand, if one dancer is ahead of some group members but equally behind others, an average

lag time of near zero should result. Average lag time is only meaningful when movements are

similar, hence it is only updated when correlated activity is detected. The calculation begins

by computing average running cross-covariance between each pair of dancers using sensor

magnitudes (see Figure E-9(a)). Cross-covariances here are calculated with a window of

128 samples and a step size of 10 samples. When the peak value of average cross-covariance

exceeds a threshold, the location of the peak in the output frame is recorded terms of an

index. This index is shifted by half the size of the output frame to produce a lag estimate

in samples. This procedure is performed once for every pairing of dancers, or ten times

in the case of the five dancers measured for this application. At this point, each dancer is

implicated in a set of four lag estimates which describe a relationship to the other dancers

in the ensemble. By merging the four appropriate lag estimates, it is possible to obtain the

net temporal separation of a single dancer from the group average. However, one difficulty

is that lag estimates are only valid while correlated activity exceeds a threshold. Because of

this, data comes in asynchronous bursts which cannot be averaged reliably simply by taking

the mean of four inputs. Instead, the last step of the calculation is carried out as illustrated

in Figure E-9(b). The thresh object collects bursts of lag estimates from all sources over

lOOms, and then outputs a list which can be averaged to compute the final result. This

measurement has the additional property that if a pair of dancers are correlated for a long

period of time as compared to other pairs, their associated lag estimate will be more heavily

weighted in the average lag. Since lag estimates are only recorded for pairings with high

correlation, it is also possible that two pairs of dancers could be completely uncorrelated,
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but everyone in the group will have average lag times zero near because within the pairs

the dancers are correlated and highly synchronized. Thus, average lag time is not strictly

a measure of temporal correlation - it describes time synchronicity conditioned on spatial

similarity.

The next most important descriptive elements are the global activity parameters, consisting

of average upper versus lower body activity difference, ensemble activity level, predominant

limb across the ensemble during an activity peak, and value associated with the predominant

limb. From left to right, these are supplied by the last four outlets of giantfeaturemess.

Each of these features is a result of the combined influence of windowed variance envelopes

calculated on individual sensor signals. First, data from all of the sensor nodes on common

limbs is combined to form average activity profiles for each limb (see Figure E-10). The

four limb activity profiles can be combined in different ways to generate all of the global

activity parameters, as shown in Figure E-11.

Once the ensemble activity level has been computed, it can be compared to individual

activity levels to generate the final set of features, which are mean activity deviations

between each dancer and the group. These values are supplied by outlets 6 through 10 of

giantfeaturemess, one outlet for each dancer. An individual activity level is computed

by averaging the variance envelopes of all the sensor signals common to one dancer, as in

Figure E-12(a). Then, the global activity level is subtracted from an individual activity level

and normalized to determine deviation as the percent difference between the two signals,

as in Figure E-12(b). In this implementation, it is worth noting that the deviation between

individual activity and the activity of the whole is left as a signed distance measure. In

other words, a dancer standing still while the rest of the ensemble moves will receive a

negative deviation, while a dancer moving alone will receive a positive deviation. This is

useful for differentiating 'solo' movement from held-back movement.
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8.4.3 From Features to Musical Sound

The descriptive elements or middle level features were mapped to sound in a very straight-

forward way, roughly following the plan presented in Figure 8-1. In this test application,

the primary goal was to illustrate the effectiveness of the low-latency feature extraction

and analysis algorithms developed in this work for generating meaningful feedback. Each

instrument was designed to play a specific role in this context.

The violin was meant to highlight areas of synchronous and correlated movement. To

accomplish this, a violin note is triggered whenever an average lag time value is updated,

and the pitch of the note is proportional to the magnitude of the average lag estimate (see

Figure E-13). The closer the lag estimates are to zero, the higher the pitches produced

will be. This means that high levels of synchronicity are reflected by high pitched sounds.

Also, the more correlation there is across the ensemble, the more lag updates will arrive,

increasing the density of note activity. Even with the stream of average lag estimates coming

from a single dancer, there is a potential for very dense bursts of notes. In the mapping

designed here, the violin is driven by the cumulative influence of average lag estimates from

all five dancers. In order to prevent excessive clutter in pitch space, notes are actually

selected from two ranges, a narrow, low 'viola' range, and a broader high range. Three

dancers are mapped to the high range and two dancers control the low range. With this

arrangement, temporal and spatial alignments between dancers can excite complex clouds of

violin notes. However, additional control is necessary to make the sounds more interesting.

The MIDI velocity parameter sent with each note message is the standard way to convey

dynamics and shifting timbral qualities to a keyboard-based synthesizer. In this design, the

velocity for all violin notes is continually varied in step with the global activity envelope.

As average activity builds across the ensemble, the violin notes become louder and slightly

harsher when they are triggered. A more subtle embellishment was explored by allowing

sensor data to affect the position of the violin sounds in the stereo field. The upper to lower

body activity ratio was used to pan the violin to the right when upper body movement

was prevalent, and to the left when lower body movement was prevalent. This mapping

was not intended to be entirely intuitive for illustrating the classification of predominant
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movements, but was meant to add some motion to draw attention to the violin sounds.

Guitar and flute sounds were employed to highlight solo movement, in other words, activity

by single dancers that was not reflected in the rest of the ensemble. In a similar arrangement

to the high and low violin ranges, three dancers were given control over the flute and the

remaining two dancers were given control of the guitar. The activity deviation feature

was used to trigger both instruments (see Figure E-14). A solo event for a dancer was

defined by activity deviation crossing a threshold, indicating that the activity level of the

individual is higher than the activity level of the group by a certain percent. When an event

is detected, rather than triggering a single note with a pitch determined by an external

process, the event triggers a brief sequence of notes that are selected at random from a

list. This enables the guitar and flute sounds to have a more predictable tonal quality and

some degree of rhythmic structure within an event. In the case of the flute, the continuous

activity deviation value after an event is triggered is also mapped to note velocity and a

controller value that determines breathiness. Therefore, more dramatic differences between

the dancers in control of the flute and the average ensemble behavior result in louder and

breathier flute tones. In the case of the guitar, continuous expressive control is limited to

note velocity, which is proportional to the mean of the activity deviations of both dancers

delegated to guitar sounds.

The bass synthesizer was meant to provide a steady underpinning for the random note

events occurring in the other instruments. The notes making up the bass line also had to

be triggered occasionally using thresholds on features, but they could be long pedal notes

able to meld together into a more continuous layer. The idea was to have sensor features

slowly affect the pitch of the droning note. This was accomplished by using the predominant

limb across the ensemble to select one of four pitches for the bass note (see Figure E-15).

The note is activated when the global activity level crosses a threshold, but a note can only

be triggered every 500ms. Global activity also continuously controls an effect parameter

setting the cutoff of a lowpass filter, and the activity level of the selected predominant limb

is mapped to note velocity. Also, the bass patch uses the upper versus lower body activity

ratio to pan the bass track to the opposite side of the stereo field as the violin track.
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8.5 Results

8.5.1 Real-Time Operation

Currently, the closest this system has come to true real-time operation with dancers has

been through playback of recorded data. As mentioned previously, the testing process has

involved an ensemble of five dancers wearing four sensor nodes each. This arrangement

approaches the network limit of 25 nodes and produces 144kbps of intertial data alone,

presenting a challenge for low-latency processing. Assuming for the moment that during

live operation data can be transferred to the host computer with minimal intrinsic processing

requirements, reading from a pre-recorded text file is adequate for assessing the real-time

performance of the host system.

In this case, all testing was run on a 1.6GHz Power Mac G5 with 1GB of RAM. This

system could handle text file access, full feature analysis and interpretation in Max/MSP,

audio rendering in Reason (as a ReWire slave) including a few reverb units, and recording

audio to an output file, with about 80% CPU usage. Audio was generated from several

short segments of a dance rehearsal and then resynchronized to align with the sensor data

segment and recorded video segment.

Qualitatively, the rendered audio and video material shows that the generated sound clearly

corresponds to dance movements, possibly with small delays. For the purpose of this thesis,

Figures 8-2, 8-3, 8-4, 8-5, and 8-6 attempt to recreate two pertinent video segments and

their alignment with generated features and musical events. The segments are each over

20 seconds long, so the numbered video progressions displayed in Figures 8-2 and 8-3 show

only major turning points. In the data plots, vertical lines indicate the location of each

video frame in time. Note that the beginning and end of each data plot also correspond to

the first and last of the pictured frames.

In the first dance segment, several 'solo' movements are present as dancers laying in a ring

spring upwards one by one before rising together. As expected, this activity is reflected in the

guitar and flute triggers set to accompany high levels of deviation between individual activity
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and ensemble activity. Although the latency appears relatively adequate when listening

to the generated sound, most of the features extracted in the Max/MSP implementation

described above are already known to incur delays which exceed the goal of lOOms maximum

latency. For instance, windowed variance has been calculated with a 20-sample window

followed by a 20-sample smoothing filter, which creates a 400ms delay. It is very difficult to

verify this by looking at the plots in Figure 8-4, since it is unclear exactly where a gesture

begins. The best example might be the area between video frames 6 and 7, in which Dancers

C and D mistakenly spring upwards at nearly the same time (see video frames in Figure

8-2). By the time both dancers reach the apex of the movement in video frame 7, their

variance peaks have been reported in Figure 8-4(a). Since the time from the beginning of

the gesture in frame 6 to the height of the gesture in frame 7 is only about half a second,

the latency appears not to exceed 400ms. However, determining the latency accurately will

require more directed tests.

The second dance segment is an area of highly active and highly synchronized movement

across the ensemble, including running in place and energetic arm swinging by all five

dancers at once. This provided a good opportunity to look at the cross-covariance fea-

tures driving the violin sounds. In terms of latency, the 128-sample window used here was

expected to create a very noticeable delay of 1.28 seconds. The most significant change

in behavior during this segment occurs in video frame 11, when tightly synchronized arm

movement gives way to an extended period of running in place. At this point, the dancers

are moving their feet as quickly as possible and consequently get out of step with each

other. This event is reflected in Figure 8-6 at around 10 seconds, when the lag times tightly

centered around zero suddenly dissolve into a sparse cloud. In Figure 8-5(b), the violin

notes also plummet in pitch and thin out in response. The actual timestamp of video frame

11 is 8.73 seconds into the segment, meaning that the observed latency in cross-covariance

measurements for this event is about 1.27 seconds, essentially equal to the expected feature

latency. While there is nothing surprising in this result, it is reassuring to know that the ma-

jor sources of latency are still very predictable artifacts of the feature extraction strategy.

Although cross-covariance requires latency to measure large time separations, windowed

variance can easily be improved by using a window and smoothing filter length as small as
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5 samples to achieve lOOms latency. The tradeoff in this case is a slightly rougher envelope

with less smoothing between the variance peaks at the beginning and end of gestures.

It should be mentioned again, however, that the analysis here was performed offline and

is only a simulation of real-time performance. Even with improved lower-latency features,

there is still the possibility of a 40ms worst case transmission latency from the basestation,

as discussed in Section 3.5. Clearly, it is very difficult to meet. the goals of real-time feed-

back with the current basestation firmware and the feature set that has been developed

in this work. The best way to assess real-time operation will be to take more extensive

measurements in a live setting and allow performers to respond to the output. It remains

to be seen how dancers are able to handle live interaction with a system given the current

latencies, and how much these requirements will have to be pushed for future progress.

Despite the latency inherent in some of the design elements, the mechanics of the real-time

simulation held up well, in the sense that data arriving at realistic rates was translated

from features into sound successfully on one processor. However, even this may falter in a

live situation, as the assumption that the requisite USB data transfers are not processor

intensive does not appear to be true. With the current basestation firmware, the host must

continuously poll to receive data over the USB interface, and these USB transfers take

low priority. In Windows, if the host is busy and cannot request data every 20ms, then

the data is buffered and the only loss is some additional latency. However, in Mac OSX,

the basestation stalls when the host cannot make requests in time, resulting in patches of

missed data. Because of the low priority of USB transfers from the basestation, moving the

mouse and performing GUI tasks can bring the basestation to its knees, even when data is

being collected from just a handful of nodes and no intensive analysis algorithms are being

run. Unfortunately, reliable timing at the basestation is crucial for the correct operation of

the sensor network. If the frequent USB packets are causing such a load on the processor,

it is unclear whether changing the firmware to implement interrupt transfers will actually

improve the situation (see Section 3.4). In the end, short of designing a very sophisticated

USB device, it may be necessary to dedicate a small computer to USB data collection and

pass data via sockets to the analysis and audio rendering systems.
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Figure 8-2: Selected video frames showing a segment of dance with individual gestures
that progress from dancer to dancer. Features and musical parameters generated from this
segment are shown in Figure 8-4.

Figure 8-3: Selected video frames showing a dance segment with high levels of correlated
activity. Features and musical parameters generated from this segment are shown in Figure
8-5 and 8-6.
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(b) Activity deviation features computed by comparing personal and en-
semble activity envelopes.

(C) Guitar and flute tracks showing MIDI values and note triggers.

(c) Guitar and flute tracks showing MIDI values and note triggers.

Figure 8-4: Selected features and musical parameters corresponding to the dance segment
in Figure 8-2.
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Figure 8-5: Selected features and musical parameters corresponding to the dance segment
in Figure 8-3.
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Figure 8-6: Average lag features between dancers, corresponding to the segment in Figure
8-3, used to determine violin pitch and note triggers.
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8.5.2 Musical Output

As a demonstration application, the musical aspect of this trial focused on simple inter-

actions, simple sounds, and contained little structure imposed outside of the data itself.

Therefore, a raw or stochastic quality is evident in the output, including random bursts of

note entrances and very few musical relationships between instruments. Still, in a number

of instances, the mapping from data to sound manages to be effective.

In particular, the relationship between flute or guitar events and solo activity is especially

clear when very little movement is occurring in the ensemble. As mentioned previously,

Figures 8-2 and 8-4 illustrate the alignment of musical parameters and sensor data with

video snapshots for a short dance segment containing solo gestures which move around a

circle from person to person. Flute and guitar entrances stand out prominently, as shown

in Figure 8-4(c). Conversely, the violin sounds are particularly effective when ensemble

movement is very active and highly synchronized. This is the case in Figure 8-3, which

shows a sequence of rapid arm swings and periods of running in place synchronized across

the ensemble. The increased activity, correlation, and synchronicity suddenly create a very

tense, thick texture of high pitched violin notes, which can be seen in Figure 8-5(b). As

the segment progresses, arm movement gives way to leg movement between video frames 11

and 14. This behavior is clearly reflected in the upper versus lower body activity feature,

which indicates predominant lower body activity in the region between about 10 and 18

seconds into the segment (Figure 8-5(a)). This in turn controls the stereo pan of the violin

channel (Figure 8-5(b)). The fairly sharp delineation between arm activity and leg activity

in this case provides a clear pan from right to left that follows the changing character of the

dance. The pitch and note density of the violin also changes subtly in this region, adding

to the response.

Not surprisingly, the least effective dance segments in terms of the mapping designed here

are those which are hard to interpret visually as containing highly correlated or highly con-

trasting activities. During these segments, the generated sounds seem to lose interpretability

as well. Part of the difficulty is the practice of triggering sounds on feature thresholds. By

nature, this creates random note entrances and behaviors that are not robust to changing
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conditions. When the features clearly support a certain state, the random entrances cluster

into patterns that seem to follow the input. However, when the features are ambiguous,

the random entrances become clutter. In addition, relying on triggering makes the system

sensitive to latency, and the use of single empirical thresholds is typically an oversimplified

decision process.

Of course, triggering shows up in this design because of the MIDI protocol and the Reason

interface, which rely on note events with strict beginnings and ends. A different control

environment could be better suited to an ambient setting where notes are driven in and out

with continuous parameters. Still, it is unclear whether this structure would help clarify

the relationship between movement and sound during ambiguous states. Given its intended

purposes and deliberate simplicity, the mapping described here generated satisfying results.

8.5.3 Directions for Improvement

The most pressing direction for improvement is to add live feedback so that dancers can

respond to the music they are generating. In terms of getting a meaningful output from

the system, if would appear that the designer is at an advantage with the current setup,

in which pre-recorded data is played back and as such is completely repeatable. However,

without the dancers being able to respond to the musical output, there is no feedback or

adaptability to lend shape to the mapping. Once live interaction can occur, the relationship

between movement and sound will be clearer because of the dialog between performer

and computer. In this situation, a mapping can also be learned and explored to push its

most useful aspects. Most likely, when the system is tested with real-time feedback, more

satisfying musical output will be posible. More complex mappings can then be developed,

potentially incorporating machine learning and adaptability in software. Eventually, the

system should support a satisfying live performance.

Further development of the feature set and analysis strategies may also be necessary to im-

prove the system. In particular, many of the features discussed in this work have relatively

high latencies which compromise the intent of real-time data collection. Future implementa-
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tions could focus more aggressively on simpler, low-latency features. At the same time, the

detection and interpretation algorithms can become more sophisticated to glean information

from the data with a higher degree of detail and reliability. Certain pattern classification

algorithms, such as support vector machine (SVM) or tree based approaches, can be rela-

tively fast to evaluate once they have been trained. These techniques can be used to process

windows of data to look for a specific gesture, activity characteristic, or event with much

higher dependability than single thresholds. A hidden Markov model (HMM) can be used

to track progressions from gesture to gesture, although the application of HMMs to inertial

sensor data has been met with mixed results [45]. Machine learning techniques were avoided

previously, mainly because of the need to generate and process a large amount of training

data. Now that the means for generating this data are in place, they would be useful to

investigate. Since the current implementation only considers inertial data, in would also be

interesting to incorporate the capacitive sensor into the next iteration of feature analysis.

Even with machine learning techniques employed to refine the feature extraction process,

the potential amount of information expressed by all of the descriptive elements of group

motion suggested in this work is still cumbersome for direct mapping to a general musical

palette. The problem can be simplified by interpreting group dynamics in the context of a

specific piece. For example, the music can be generated from a loose framework or score

designed alongside the choreography. At a given point in the score, one may be looking for

a specific set of possible changes in the dancers movements that signal musical events such

as changing timbral qualities, the entrance of a new melodic line, or a shift to a new section.

By placing contextual limits on the decision space, pattern recognition algorithms can be

trained on a specific performance to streamline the control process. Although the dancers

do not actually generate music directly under this model, they are able to freely control

their progression through sections of the score, alter their interpretation of the context, and

add embellishments. This approach should provide a balance between musical continuity

and the sense of causality between the movements of the dancers and the generated sound,

which is essential for an engaging interactive performance.
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Chapter 9

Conclusions

9.1 Summary

In summary, this thesis has presented the design of a system of compact, wearable, wireless

inertial sensing devices, as well as their application in analyzing human motion and provid-

ing real-time feedback, especially for interactive dance and music. With dance performance

applications in mind, the design effort has been focused on building a platform for scala-

bility, speed, durability, distributed measurement, and interpretation of group interactions.

The novelty that has been explored in this area is the insistence on instrumenting entire en-

sembles without sacrificing the measurement resolution typically reserved for a single user.

With this requirement satisfied, the result is a high performance system equally applicable

in any situation where human motion analysis is coupled with the need for high data rates.

The sensor network is made up of wristwatch-sized nodes that can be attached to various

locations on the body, typically wrists and ankles. Each node contains a full six-degree-

of-freedom IMU and a capacitive-node-to-node proximity sensor, as well as its own 1Mbps

wireless radio module. A central computer controls the network and collects data via a USB

basestation. Using a simple TDMA scheme, one basestation can handle up to 25 nodes

sending full state updates at 100Hz. Thus, the current system can potentially operate with

an ensemble of up to 6 dancers wearing sensors on each limb.
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So far, the system has been successfully tested with a group of five dancers and 20 nodes

running simultaneously. The results of this study show that it is possible to collect and

analyze data quickly enough to generate meaningful feedback that responds to dance with

tolerable latencies. More work is required to find features and analysis algorithms that

minimize these latencies while at the same time creating more sophisticated mappings

to improve the quality of the output. In an effort to extend beyond dance applications,

the system has also been evaluated in a preliminary study measuring the arm movement

of professional baseball pitchers. In this case, fewer sensors were used, but with higher

sampling rates. With some modifications, the sensors were able to measure the extremely

high accelerations involved with more temporal precision than a state of the art motion

capture system. Statements as to the accuracy of these measurements and their bearing on

traditional motion capture practices will require further study and rigorous calibration.

9.2 Evaluation

9.2.1 Design

Hardware design was the most significant aspect of this project, as the results could not

be achieved with any previously existing system. The choice of MEMS inertial sensor

components was straightforward, and their capability in fine gesture tracking and activity

classification applications is well documented. Fewer inertial systems have been documented

for very strenuous movement, and fewer still demonstrate scalability to multiple users. The

10g and +1,200 deg/sec devices used here in conjunction with a 1Mbps radio network

are more than enough to balance high ranges and scalability with high resolution. The

devices are also relatively small, light, and rugged enough to be worn comfortably in a

dance situation.

However, some improvements are left to be made. The first and most general is to make

the device smaller, from a bulky replacement for a wristwatch to a unit fitting inside an

existing wristwatch, and eventually even smaller. Already, the size could be reduced by
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about a factor of two by adding layers to the printed circuit board to accommodate the

traces which take up a significant portion of the current board area. Further reductions

could be made quite easily with the recent advent of multi-axis gyroscopes, which obviate

the cumbersome sensor daughtercards, although the performance of such gyroscopes has not

been evaluated. Radio devices are becoming available with increasingly powerful integrated

MCUs, which may quickly eliminate the need for a dedicated MCU as well. Of course, as

more systems become integrated, the progression moves towards a single die or stacked die

implementation which could house an entire IMU within the size of a ring [79, 80]. As this

happens, it will become increasingly easy to integrate devices into clothing, making the

applications described here more feasible and accessible. However, this may not yet be cost

effective.

More immediate hardware improvements might include changing daughtercard layouts to

accommodate the more appropriately ranged ±5g accelerometers or a 3-axis accelerometer,

reducing area and cost by replacing the flexible high-efficiency 5V regulator with a cheaper

solution specifically intended for the current battery pack and requiring fewer external

components, or upgrading to the new 2Mbps radio. The capacitive sensor system performed

very well, considering its inclusion in the design as a supplement. Its range limitations may

be mainly physical, but could potentially be improved by increasing the transmit voltage

and using an op-amp with a lower noise floor. In general, the hardware design has been more

than adequate by providing a very stable and reliable foundation on which to experiment

freely with applications and analysis.

The communications structure and associated TDMA scheme has been a very effective way

of sharing the network among as many devices as required here, while enforcing low-latency

and keeping a very simple firmware design. The only major drawback is the insistence on

arbitrating the nodes from the basestation on a sample-by-sample basis. Although this

keeps the samples perfectly synchronized across the network, it becomes a problem when

broadcast packets are dropped or the basestation falters in its transmission pattern. The

design was intended to cope with significant clock skews between the nodes. In reality, the

clock skew appears to be small enough that a node could remain synchronized with the
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basestation for several samples without being reset. Thus, a node could continue to operate

by at least storing data for several samples when the communication from the basestation

is lost, potentially recovering from short dropouts that would normally result in lost data.

This behavior would also have an advantage in that the node could save power by duty

cycling the radio while it waits to regain contact with the basestation, rather than leaving

it in receive mode continuously.

The other major communications improvement could be made in basestation firmware by

eliminating the dependence on a proprietary API for USB communication. Rather than

using bulk transfers, the basestation could operate as an interrupt transfer device, hope-

fully resulting in a more responsive communications link to the host computer. The other

advantage would be enhanced operability in MacOSX, which does not support the proper

drivers for the current basestation design and causes difficulties as a result. Designing the

USB device firmware from the ground up would also allow other customizations and en-

hancements, such as making the system recognizable as a human interface device. These

efforts will improve compatibility and reduce the burden on application software.

9.2.2 Application

The applications and analysis techniques described in this work were mainly intended to

test and validate the design. For this purpose, they performed quite well. Firstly, it was

demonstrated that features could be extracted in order to make relevant conclusions about

the data. This was achieved for both dance and baseball applications. Then, various pieces

of software were written to show that data could be collected in real-time from the entire

network. Finally, features were computed on streaming data from dance and processed to

produce music with low-latency. The final step, linking collection to analysis and response

so that dancers can listen and react to the system, will be discussed below.
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9.3 Future Work

Primarily, the goal for future development would be to run the system in a live situation

where dancers can hear the musical feedback they generate. Although sound was generated

from a streaming file of pre-recorded data for research purposes, and all of the elements

are now in place, the system has not yet been used in a live context with a full ensemble.

Three or four sensor nodes have been used together to control sound for various small scale

demonstrations, but the mapping considerations are different and the network requirements

are not as impressive without full deployment. Apart from clearly illustrating the degree

of low-latency processing possible with a full group, using the sensors in a live interactive

setting is crucial for further development of analysis mapping algorithms. This is because

the ability of dancers to learn and react to responses adds a new dynamic and malleable

layer, indeed the whole purpose of an interactive system. Additionally, closer collaboration

with experienced dancers, choreographers, and composers will shed light on which features

and mapping strategies are most relevant to real parameters.

New directions for analysis and mapping will most likely strive for more aggressively min-

imizing latency and adding to the subtlety of the response. As mentioned previously, this

implies the divergent courses of faster, simpler base features and the addition of elaborate

pattern recognition techniques to the detection and mapping process. In many cases, when

applying pattern recognition to human motion analysis the first instinct is to detect ges-

tures. Given the depth and difficulty of the problem, pattern recognition was completely

avoided here in favor of driving musical feedback directly from more general features with-

out interpreting them in a gestural context. However, trying to detect specific gestures

is not necessarily a better approach. Inevitably, a full gesture cannot be detected until

it is complete, meaning that gesture recognition suffers from the same type of latency as

cross-covariance features. Also, once gestures have been determined, in the case of dance

interpretation it is very likely that movements across multiple people will be combined and

brought back down to the vague level of group activity features. Still, the activity envelopes

and thresholds employed in this work are too general and unreliable for more involved map-

ping. Eventually, pattern recognition will be necessary, but in a way more conducive to
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group activity, by recognizing styles rather than gesture. It seems by experience that the

brain interprets collective motion, dance in particular, by emphasizing style, some palpable

quality of movement, rather than by picking apart individual movements. This interpre-

tation would be more valuable for generating musical responses that have meaning to a

human audience. A response to changing style, being a slow process, is also more tolerant

to latency.

As suggested previously, one way to control music in the context of slowly varying styles is

to follow a score, which shifts characters as the ensemble moves through different sections

of a dance piece. Changing the control space may also be useful. MIDI protocol favors

situations in which events must be triggered, leaving latency issues glaringly obvious, and

sparse changes like the transition between styles reflected in sparse music. Pursuing new

models for mapping outside of the MIDI may be the next stage of the musical aspect of this

design. Fitting the pieces of interaction, analysis, and musical structure together should

eventually involve a performance piece to showcase the technology.

Further development is also required for the purposes of moving forward with athletic train-

ing applications. In this case, the next steps are simply to work on calibrating sensors and

comparing their measurements directly with the video motion capture system to determine

the degree of accuracy. Another trial study with improved synchronization between the two

systems and working gyroscopes may be necessary to begin this process. Additional work

will explore the application of the system to athletic training and evaluation.

9.4 Outro

In conclusion, a high-speed sensor network large enough to instrument the arms and legs of

a modest dance ensemble has been built and tested with real-time data collection. Further-

more, the analysis, interpretation, and effective realization of sensor data as sound has been

accomplished with low-latency and with reasonable processing power. The implementation

developed in this work has been successful in generating several collective activity features

relevant to dance, and preliminary results suggest that the focus on these group features
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and the ability to distribute measurement over multiple people has intriguing possibilities

for performance art. Although the concept of a collaborative interface with inertial sensors

has only been roughly outlined here, the capabilities of this system provide a huge space

for future exploration that should be taken advantage of. The benefits do not stop with

interactive art and human interface research, however. This work has demonstrated, in

preliminary testing, that the system will eventually be capable biomotion capture at the

speeds and resolutions necessary for physiological analysis of professional athletes. Thus,

distributed, wireless, inertial sensing may well find applications in human biomechanics,

spanning the range from high-performance athletic research to consumer physical training

tools. In many of these cases, the ability to generate instant feedback in a natural en-

vironment fills an important pedagogical role that would be an improvement to existing

measurement systems. Towards this goal, that is, of improving the value and accessibility

of human motion analysis tools, this thesis has hopefully established one viable model for

future progress.
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Appendix A

Schematics and PCB Layouts
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Figure A-1: Node main board schematic.

174

T

i

'if

A ml',

in~o~ E,1
IM' Et-d
AMJ Erd

MSI,,Ed
Uov:,zzd
m Vl.w C.,
MYv~ Ut-tX01/9,



fmoav-aim
IflOaLV-d 5i

' 2

~31l4 ~hI +1 ~fl

Figure A-2: Sensor daughtercard schematic.
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Figure A-3: RF daughtercard schematic.
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Figure A-4: Basestation schematic.
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Figure A-5: High range sensor card schematic.
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Figure A-6: Node main board layout, top layer.
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Figure A-7: Node main board layout, internal layer.

180



Figure A-8: Node main board layout, bottom layer.

181



notes accel X and Y do not follou convention on datasheet
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Figure A-9: Sensor daughtercard layout, top layer.

Figure A-10: Sensor daughtercard layout, bottom layer.
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Figure A-11: RF daughtercard layout, top layer.

Figure A-12: RF daughtercard layout, bottom layer.
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Figure A-13: Basestation layout, top layer.

Figure A-14: Basestation layout, bottom layer.
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Figure A-15: High range sensor card layout, top layer.

Figure A-16: High range sensor card layout, bottom layer.
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Appendix B

Bill of Materials
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Appendix E

Max/MSP Patches

233



Stop Start

Figure E-1: Patch showing rawusb external used to extract data from the USB basestation.

Figure E-2: Externals Rmean and Rvar usage.
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Figure E-3: Patch showing usage of seq- for loading and playing back data from a text
file.
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(a) xcov and xcovlist I/O Parameters

(b) Example Patch

Figure E-4: Externals xcov and xcovlist usage.
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1 6
It

'I, 2

Figure E-5: Interface for streaming recorded text files Into Max/MSP.
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Figure E-6: Detail of inlet and outlet parameters for the feature extraction engine.

)utput
ndividual
nertial Data
treams from
lodes 1 - 20

Figure E-7: Patch for parsing bulk data stream by node.
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MAGNITUDES
INPUT : AccX, AccY, AccZ, Pitch, Roll, Yaw, Capacitive

WINDOWED VARIANCE
INPUT : AccX, AccY, AccZ, Pitch, Roll, Yaw, Capacitive

OUTPUT : Acc Magnitude, Gyro Magnitude

(a) Magnitude.

OUTPUT : Vanriance Envelope [AccX, AccY, AccZ, Pitch, Roll, Yaw]

(b) Windowed variance.

Figure E-8: Example patches for extracting basic features in Max/MSP.

AVERAGE CROSS-COVARIANCE OF MAGNITUDES
INPUT : Dancer A [Left Arm
Acc Magnitude, Left Anrm
Gyro Magnitude, Right Arm
Acc Magnitude, Right Annrm
Gyro Magnitude, Left Leg
Acc Magnitude, Left Leg
Gyro Magnitude, Right Leg
Act Magnitude, Right Leg
Gyro Magnitude]

INPUT : Dancer B [Left
Arm Acc Magnitude, Left
Arm Gyro Magnitude, Right
Arm Acc Magnitude, Right
Arm Gyro Magnitude, Left
Leg Acc Magrnitude, Left
Leg Gyro Magnitude, Right
Leg Acc Magnitude, Right
Leg Gyro Magnitude]

Threshold

OUTPUT : Lag Estimate Between Dancer A and 8

(a) Computing a lag estimate between two dancers using
cross-covariance.

AVERAGE LAG (SYNCHRONICITY)
INPUT : Lag Estimate Between Dancer A and B

INPUT : Lag Estimate Between Dancer A and C

INPUT : Lag Estimate Between Dancer A and D

INPUT: Lag Estimate Between Dancer A and E

OUTPUT : Average Lag for Dancer A

(b) Accumulating and averaging lag estimates
with respect to all dancers.

Figure E-9: Example patches for describing synchronicity.
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AVERAGE LIMB ACTIVITY PROFILE

INPUT Dancer A Left Arm Variance Ervelope[AccX, AccY, AccZ, Pitch, Roll, Yaw]

INPUT : Dancer B Left Am Variance Envelope [AccX, AccY, AccZ, Pitch, Roll, Yaw]

INPUT : Dancer C Left Arm Variance Envelope [AccX, AccY, AccZ, Pitch, Roll, Yaw]

INPUT : Dancer D Left Arm Variance Envelope [AccX, AccY, AccZ, Pitch, Roll, Yaw]

INPUT : Dancer E Left Arm Variance Envelope [AccX, AccY, AccZ, Pitch, Roll, Yaw]

OUTPUT : Ensemble Average Left Arm Activity Profile (AccX. AccY, AccZ, Pitch, Roll, Yaw]

Figure E-10: Patch for generating average activity profiles for each limb across the ensemble.

AVERAGE ENSEMBLE ACTIVITY PARAMETERS

INPUT : Ensemble Average Left Arm Activity Profile [AccX, AccY, AccZ, Pitch, Roll, Yaw)

INPUT : Ensemble Average Right Arm Activity Profile [AccX, AccY, AccZ, Pitch, Roll, Yaw]

INPUT : Ensemble Average Left Leg Activity Profile [AccX, AccY, AccZ, Pitch, Roll, Yaw]

INPUT : Ensemble Average Right Leg Activity Profile [AccX, AccY, AccZ, Pitch, Roll, Yaw]

Threshold

OUTPUT : Average OUTPUT : Average OUTPUT : Predominant Limb During
Ensemble Envelope Difference Between Activity Peak

Upper Body Activity
Profile and Lower
Body Activity Profile

OUTPUT : Value at Predominant Limb
During Activity Peak

Figure E-11: Patch for generating global ensemble activity features.

AVERAGE INDIVIDUAL ACTIVITY ENVELOPE
00Uf" reDace a A L teR AM V b Ice met•p e Aca.t Aa, AW e . M eVL fdv te

M; i, A I[* AM AVt. Ac 1 Ym)

eOM : r a, li A WRt L • IVow - (A• l, I AC. P•dR el tee.

I(a1" OC1eut e A indi Le Valiel tebaAtiC. M•Cty , eIvel, Plat.. Yel

"WW A)tefe tompe ing -eor nO d u A

(a) Computing an individual activity level.

MEAN ACTIVITY DEVIATION
BETWEEN INDIVIDUAL AND GROUP

INPUT Averae Activity Enelope for Dancer A

INPUT : Average Ensemble Evelope

OUTPUT : Percent Difference Between Dancer A and Ensemble Averge Actity Envelopes

(b) Computing the percent difference.

Figure E-12: Comparing individual activity to group activity.
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INPUT:
Average Lag
from Dancer
A, C, or E

INPUT: INPUT:
Average Lag
from Dancer
B or D

Average
Ensemble
Activity

INPUT:
Upper vs
Lower Body
Activity

Figure E-13: Subpatch for controlling violin sounds.

INPUT:
Activity
Deviation
for
Dancer D

INPUT: Activity
Deviations for
Dancers A, C or E

son

(a) Guitar. (b) Flute.

Figure E-14: Subpatches for controlling guitar and flute sounds.
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INPUT: INPUT: INPUT:
Average INPUT: Main Limb Upper vs
Ensemble Ensemble Activity Lower Body
Activity Main Limb Level Activity

Figure E-15: Subpatch for controlling bass synthesizer sounds.
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Appendix F

Matlab Scripts
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