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Abstract

This thesis describes the design and development of a system that is aimed for

enhancing safety and security using cellular phones. This system has two main

components: a master phone application to assist people who need to take care of their

loved ones, and a slave phone application to provide help to care-recipients who need

attention from their caregivers. This system applies location awareness (GPS), awareness

of social activities (communication activity and proximity with close peers,) and peer-to-

peer data communication as its core technologies.

There are three sub-components that are implemented the system: First

component is for providing a set of information in order to enhance awareness of crime

around users' surrounding areas. This component is used to assess risk on users

themselves as well as their property. The second component is a sub-system that is

dedicated for detecting a possible abnormal transit behavior. Consequently, the system

alerts this abnormality to both the system users and their caregivers. Third component

detects nearby phone to cultivate social activities with the system user's peers. The

purpose of finding contacts is to get remote help from friends of the care-recipients.

All the functions provided by the system fall into the gray area in between the

state in which care-recipients are completely safe, and that in which care-recipients had

an accident severe enough to require help from authorities.
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Chapter 1

Introduction

Although mobile phones were originally simply "telephones", the current reality

is that today's mobile phones are really computers. As phones become more capable of

independent action through programmability and data-processing capability, they can do

a great deal more than merely transfer voice data. Mobile phones now come equipped

with video cameras and music players, as well as software for personal schedulers, all of

which use a powerful processor and a large memory. People are already carrying their

phones everywhere and taking advantage of the additional functionality they provide.

By coupling the phone's computing and data communication capabilities, it is

possible to create mobile peer-to-peer interactions that have previously only been

achievable with desktop computers. These new phone capabilities allow us to access

other phones remotely, as well as to program and command remote phones to execute

functions. The ability to execute commands on a phone was previously only available

when the phone was physically present.

Additionally, these phones are capable of conveying location and notifying users

of proximate mobile phone devices. To meet the FCC's Enhanced 911 (E91 1)

requirements, all mobile phones are mandated to be equipped with devices that are aware

of location, such as GPS1 [7], or triangulating cell-tower technology, also known as mini-

GPS. In addition, more and more phones are equipped with Bluetooth, which is capable

of scanning nearby Bluetooth devices. This helps us to be aware of devices that are

physically close to us. With these new phone attributes, how can we use phones to

enhance security but prevent intrusions of privacy?

1.1 Problem

The expectation that mobile phone users are able to answer phone calls most of

the time lets us easily check on our loved ones' well-being by simply calling them. This

convenience lets us use mobile phones to call our friends and family to get or to provide

'Global Postioning System.



help. However, in an accident or emergency situation, circumstances may not be

favorable, and we may not be able to call our guardians or care-givers to request help.

Although our care-givers may be willing to provide help to us, they are unlikely to know

exactly when we need help or require attention unless we explicitly contact them. This

raises the question of how to increase awareness of our loved one's situations, and be

able to provide help remotely.

1.1.1 Awareness and detection

Let us consider a system that detects the situations in which attention is required

from one's care-giver. The system would automatically inform the care-giver that his or

her dependents require help. This type of system already exists in the case of domestic

fire and burglar alarms. In the area of security and health care, industry and academia

have actively conducted research [14], [20] using various external sensors such as visual

monitors, microphones, motion detectors, and proximity sensors. Although increasing the

number of sensors may result in increased awareness, these sensors may not always be

available, particularly in the case of outdoor activities.

Despite limitations in the number of sensors that a pedestrian can carry, mobile

phones equipped with GPS receivers enable us to track one's location. This functionality

can be used by pedestrians to identify where they are on a map. Also, it is possible for

parents to use a GPS service for remotely monitoring their children while they are en

route to school, for example. [20] Through a GPS-equipped mobile phone, a child's GPS

coordinates are periodically tracked, and his/her parents can see on a map where the child

is located.

However, there are a few problems with using the currently existing GPS services

to track loved ones' locations for the sake of their security and safety. First, the interface

for monitoring position is based on plotting a dot on an electronic map. A moving dot on

a map shows information about where the subject is located, but does not give detailed

information about what type of situation he/she may be in. Second, the existing services

compromise the privacy of the person who is being tracked with GPS. Third, current GPS



systems do not detect abnormal situations. Caregivers are constantly required to focus

their attention on the map to assess the situation themselves while their kids are on the

way to school, for example. A dot on a map can, at best, provide psychological

satisfaction to a concerned parent, but the overall system cannot automatically detect an

abnormality in a child's routine, or alert the parent in the case of an unusual situation.

Thus, for a GPS tracking system to be more useful, the system should learn a

traveler's regular transit pattern and should be able to discriminate abnormal routes from

a user's normal path. In addition, the system should be aware of a traveler's current

location and should assess any potential risks in their current surroundings. Increasing

awareness of potential crime in various neighborhoods is an important element of

enhancing the security and safety of each individual. As the system assesses the potential

risk of a pedestrian, it should alert the pedestrian's caregivers whenever the risk exceeds

a safe level.

1.1.2 Providing remote help

Increasing the overall security of an individual requires not only monitoring but

also managing potentially risky situations. When a risky situation is detected, it is

reasonable to think about how to solve it. When we think about providing help to our

dependents, one way to provide help is to go to their physical location. However, when

our dependents are located too far away for us to get to them in a reasonable amount of

time, another solution is to find someone in close proximity to them who can provide

assistance. This is not only helpful to our dependents, but it also provides a way to further

assess the seriousness of the situation by adding an alternative avenue of communication.

This could be especially useful if our dependents' communication channel is temporally

unavailable.

We are living in a society where an individual might have multiple relationships

with multiple social groups. This makes the task of finding someone to help our

dependents difficult, because the most appropriate person to provide help may not be in a

social group for which we might have contact information. When our dependents are not

living in the same town but we still need to take care of them remotely, it becomes harder

to find someone with access to our dependents' social contacts.



In addition, personal relationships are often regarded as private; thus, when we try

to access the contact information of someone with whoin we don't have a direct

relationship, we are attempting to Find a communication channel which has not been

explicitly allowed previously. Thus, in designing a system for finding someone who can

help our remote dependents, we need to find a way to protect the privacy of both our

dependents and their peers. Additionally, we need to think about how we might find a

contact person in close physical proximity to our dependents, and how to communicate

with them successfully.

1.2 Proposed solution

To solve the previously stated problems, this thesis addresses an approach which

is described in three sub-themes: where you are, where you are going, and who is around

you.

"Where you are" tackles an issue related to a pedestrian's current location. We

collected a year's worth of crime logs around the MIT campus to measure personal safety

risk. These logs were saved on a geographic information system (GIS) database server to

render crime statistics and maps in real-time at a user's request. Users can request a crime

risk analysis by providing the server with their current location and information about

their commonly transported valuables. Based on the GPS coordinates, the time of a

request, and a user's information about his/her valuables, the system will calculate the

current risk of theft or damage for each valuable and provide this information to the user.

"Where you are going" tackles the detection of abnormal locomotion patterns

while a pedestrian is moving. Based on the user's average elapsed traveling time between

two known locations, the system will detect and determine certain abnormalities such as

deviation from average transition time and unusual destinations. To achieve this, the

system requires users to bookmark locations and specify the desired routes to be detected.

A simple interface, such as a button to initiate the system's learning of a new route, is

provided to train routes before detecting any abnormalities. Data is initially collected

during the training, and later used to check if users are on the normal path heading to

their destinations. The algorithm in the system is restricted to detect recurring routines,



such as going to school, to the office, and back home. Although deviations from normal

routes do not always imply that an incident has occurred, it is useful to provide this

information to caregivers as an awareness of their dependents' possible abnormal

situations.

"Who is around you" tackles the discovery of our loved one's social peers who

can potentially provide help in an emergency, and help a remote caregiver to assess an

unusual situation. Because the nature of social relationships is dynamic and changes over

time, it is hard to find contact information for our dependents' peers. By investigating the

communication frequency between users and each of their peers via phone logs, and

examining the time that users spend in close proximity to each of their peers, the system

determines who the best possible individuals are to call and ask for help. In order to

accomplish this, the system keeps track of communication logs, Bluetooth MAC Address

(BTID) logs, and phones' location logs. Periodically-scanned BTIDs are used to examine

the proximity of co-located peers. Since a GPS-enabled phone can locate its position

through book-marking certain locations, e.g. "at home", the system can further search for

a person who actually visited the user's home, by examining the events in Bluetooth logs

and location logs. These logs are only kept in an individual user's phone and other

phones cannot directly access this information. Finally, the process of finding a possible

remote contact person is determined inside the phone which is running the application,

but the name and the contact information are completely hidden from other phones,

which are requesting contacts, for the sake of protecting the privacy of everyone involved.

1.3 System description

Although this thesis divides a proposed solution into three small themes, overall,

the system is divided into two parts: the cellular phone application, Contella, and the

spatial database system.

Contella is an application platform that allows us to store contact information and

to exchange the information between other Contella phones via Bluetooth and cellular

phone communication network in peer to peer manner. Based on Contella, three

functionalities for client side services, "Where you are", "Where are you going" and



"Who is around you" are developed. We used J2ME 3 on Motorola's i860 and i870

phones as our main development platform for Contella.

Contella is further divided into a master phone application and a slave application.

In the thesis, I refer to the phone that contains the master phone application as "the

master phone" and the phone which contains the slave application as "the slave phone."

The master phone has the capability to remotely access and command slave phones when

necessary. In order to communicate between master and slave phones, trust must be

established between them. The caregivers use the master phone to detect abnormal

situations and search for contact points of their care-recipients via remotely commanding

the slave phones. The slave phones are used by care-recipients and get help from master

phones.

The spatial database system is essentially a subset of a Geographical Information

System (GIS) database. This GIS database is the server side of the service "Where are

you" The Server contains GIS information as well as crime logs. The crime logs are used

to assess whether the slave phones are in a dangerous zone. The information from the

crime logs is used on both master and slave phones to increase the awareness of crime

history in the area where the users are located.

All in all, the design focus in this thesis is to increase the availability of caregivers

by providing adequate information to caregivers, detecting possible problems related to

location, alerting both caregiver and care-recipient, and providing the capability of

searching for possible contacts who might offer help to both the caregiver and the care-

recipient. All the functions provided by the system exist in the range from care-recipients

being completely safe, to care-recipients having had an accident severe enough to require

help from authorities.

3 Java Platform, Micro Edition (J2ME) is a collection of Java APIs for the development of software for
resource constrained devices such as PDAs, cell phones and other consumer appliances.



Chapter 2

Related Work

2.1 Monitoring System on Mobile Phones

As mobile phones become one of the best candidates to be used as personal

security tools, the telecommunication industry and mobile phone manufacturers have

developed and provided a few services towards the goal of increasing safety and security

both for the individual, and for entire families.

Additionally, in the area of home security and health care, companies and

academic institutions are actively conducting research on new solutions. For example, the

project called "Wellbeing at Home" [18] uses various external sensors to monitor one's

well-being, such as physiological sensors including heart beat monitors, external visual

monitors, and various proximity sensors. However, for someone participating in activities

outside of the home, these sensors are not always available.

Although increasing the number of sensors in the home may be useful for

increasing awareness of one's well-being indoors, few companies around the world

provide services such as LG Telecom's "Peace of mind Service" [17], which is available

in South Korea. This service is used for monitoring family members while they are en

route to school, to the office, and to their homes. However, the service fails to increase

the availability of the caregivers of those being monitored. "Peace of mind Service"

allows service subscribers to monitor a family member's location through GPS

coordinates that are sent from their family member's phone via Simple Messaging

System (SMS) and shows their location on a map in a phone. For example, parents can

monitor their child's progress towards a destination by looking at a map on their phone

which updates its information every five minutes. However, this solution is not really

sufficient for detecting an abnormal situation. Rather than trying to detect an abnormality

in someone's routines, and trying to increase the availability of caregivers in an unusual

situation, this system only provides psychological satisfaction to caregivers while

monitoring their charges. The care-recipients, however, do not receive any benefit from



the system, and are not aware of whether their caregivers are monitoring their safety until

they arrive at their destination.

Another service that is provided in the US is "Teen Arrive Alive" provided by

teenarrivealive.com [21]. GPS and call-in voice services are used in combination to

locate young teens or other family members. Subscribed users can track locations of their

registered teenagers by accessing the teenarrivealive.com website or by calling their

Locator Hotline service. After speaking their child's cell phone number, along with their

private pin number, the system provides information about the child's last known

location as street address, the current direction of travel, and the speed of travel.

However, the system requires that the server retrieve GPS information constantly, which

could be a potential privacy problem. Moreover, the information that the service

provides to subscribers is standard GPS information with no additional attributes. For

example, although the system provides subscribers with information such as the current

speed and travel direction of their child, it still lacks a built-in smart detection derived

from a child's history of transit patterns, and therefore, it cannot alert subscribers when

an abnormality is detected along their child's route.

2.2 WatchMe

Will You Help Me was inspired by the WatchMe [12] project carried out in the

Speech Interface Group at the MIT Media Lab. WatchMe is a personal communicator in

the form of a wristwatch. The goal of WatchMe is to keep an intimate connection with

friends and family through text, voice instant messages, and synchronous voice

connectivity. Through embedded GPS in the WatchMe device, the watch can track a

wearer's location, and use the data collected to predict the wearer's destination and

arrival time. Users are allowed to name frequented locations, and the system tracks

position via GPS to compute normal routes of travel between two named locations. Then

in real-time, it reveals a user's current location such as "At home", "On the way to work,

arriving in 10 minutes" or "Left home 5 minutes ago."

The interface of the system presented here that shows a graphical representation

of context information is directly inherited from WatchMe. As will be described in later



sections, WatchMe uses a set of icons and text to convey a user's current transit

behaviors such as moving, at a particular location, going to a particular location at a

certain time, or departed from a particular location at a certain time. The information is

displayed such that users only need to glance quickly at their watch to learn about another

user's current situation based on location information.

In addition, WatchMe is enabled to learn about a user's route. Routes are defined

as trajectories between labeled locations. In the system, routes between two known

endpoints are automatically extracted from the GPS data. A route template is calculated

from the various instances of a given route; this involves dividing the route into chunks

of 100 meters of traveled distance and finding an average latitude and longitude for each

chunk. The average elapsed time from the starting point and the average speed are also

included in the template.

The canonical route templates are used to predict where the user is going and to

estimate the time to arrival. By trying to align the user's current progress to the saved

route templates, the route the user is currently traveling along is identified. The alignment

is a piecewise comparison of the route segments, generating a distance error for each

segment, averaged into a total route error. It is compared to all the canonical routes

initiating at the same source. The predicted route is the one with the smallest aggregate

error, below a threshold of 150 meters. The route templates provide a means to predict

the traveled route, and based on the average time required to reach the current segment,

they are able to predict an estimated time to arrival.

Although the route tracking algorithm in Will You Help Me is different from

WatchMe's, we carefully studied the behavior of the algorithm used in WatchMe and

extracted some of the features that would work better on an optimized algorithm that is

dedicated to route detection. This eventually allowed us to successfully develop an

algorithm that could be used on a mobile phone with limited memory and computation

power. Also, we discovered some disadvantages to using a server for the sharing of

context information among peers. The main disadvantage is that when using a server

architecture, private information is not sent directly to the user's peers, but rather must be

be rerouted through server, which has the potential for exposing private information to

third parties. In addition, because users are required to subscribe to a service or a server,



the scalability is limited. If peers in a group are using different services for sharing

context information in order to share information among all the peers, each one needs to

subscribe to each service. If we can share context information directly between peers,
then no central server is required. This is the key reason for us to consider a stand-alone

version of WatchMe in mobile phones.

The application used in Will You Help Me is different from WatchMe. Although

the two systems have the similar concepts of allowing users to share context through

mobile devices, and both use location awareness for tracking and predicting users'

behaviors, the systems are used in different contexts. While WatchMe is more focused on

helping friends and family members to stay connected, Will You Help Me is concerned

with enhancing safety and security utilizing mobile phones.

2.3 Systems for Awareness of Crimes

According to G Tomas Kingsley [8], during the 1990s, nonprofit institutions in

several cities, including Boston started a project to construct a computer-based

information system that would provide a variety of information about conditions and

trends at the neighborhood level. The city could use this system to identify patterns of

problems as well as opportunities. These databases covered an extensive array of social

welfare issues including crime. However, the goal of the project is to democratize

information; the information was provided to community leaders so that institutions and

residents could build their capacity to enhance decision-making by using the data.

Unfortunately, the data access of these databases was a cumbersome process. Information

requesters could access and manipulate the database directly to get simple facts from

terminals at institutes in some cities, but they needed to ask system staff to get any tables,

maps, or analysis of the data.

Another system, the Automated Regional Justice Information System (ARJIS)

[1], developed as a web-based network of criminal justice agencies in San Diego County,

is a complex criminal justice enterprise network utilized by 50 local, state and federal

agencies in the San Diego region. The goal of the system is to promote better sharing of



information between police officers and the public. An article entitled "Automated

Information Sharing?" [22] from the NIJ (National Institute of Justice) Journal in January

2006 reported a studying showing that sharing crime information increases public safety

as well as the safety of officers. The San Diego Sheriff's Office (SDSO) reported that this

information increases effectiveness and job performance as well as public safety, in

general.

Figure 2.1 Screenshot of map service provide by ARJIS

The system provides a large range of services including an emergency digital

information service that delivers official information about emergencies and disasters to

the public. Other information includes the 10 most wanted criminals, online warrants,

who's in jail, crime statistics, and a graphical tool that allow users to browse crime

information in the forms of a map, a statistical bar graph, or simple number figures. Users

can access ARJIS to create maps based on crime types, period and region as shown in

Figure 2.1. Although it provides rich information on the website available through any

standard web browser, it has yet to provide any interface that can be accessed and viewed

on a mobile phone.

The website Chicagocrime.org provides a user-friendly website that allows users

to access a crimes database. We found that this database and its interface are the most

advanced type of crime-searching tools. One of the most sophisticated features in the site

is called "Crime along a route". It is a map service developed with the Google map

development toolkit with their crime log information. The service lets users create

custom views of crimes from auto theft to bribery on maps. Users can draw a route by



clicking multiple points on a map, and then they can choose conditions to plot crime

instances based on crime type, date, and time.

Figure 2.2 Screen shot of map service provide by Chicagocrime.org

Figure 2.2 is a result of using Chicagocrime.org to plot crime incidents from Nov

16, 2005 to July 10, 2006 with all types of crime. This map can be useful when a user

plans to travel between one location and another, but the system doesn't provide

automatic route planning based on the crime statistics. In addition, although users may be

interested in incidents of crimes, it might be more useful for users to be aware of crime

tendencies derived from statistical facts along the route. Finally, the site does not provide

any interface for supporting mobile users to access crime information.

2.4 Reality Mining

Reality Mining [4] was a research project conducted by Nathan Eagle as a part of

his Ph.D. work in the Human Dynamics group at the MIT Media Lab. His work's

primary goal was to collect machine-sensed data from the real world, and to use the data

to recognize social patterns in people's daily activities. This could be used to infer social

relationships, identify social significant locations, and model group dynamics. In order to

utilize Bluetooth's ability to detect nearby devices, he deployed 100 Nokia Bluetooth-

equipped phones among Media Lab and other MIT communities to collect information

representing proximity, location and time. He conducted this experiment for six months

and collected over 500,000 hours (-60 years) of continuous data on daily human behavior.



From the study he discovered that although individuals have the potential for a

relatively random pattern of behavior 4, identifying and recognizing people's everyday

routines and behavior patterns can be easily achieved; from the daily routines of driving

home from work to weekly patterns. In addition, by comparing the collected data and

surveys from users, he validated that the reported frequency of (self-report) interaction is

strongly correlated with the number of logged BTIDs (R =.78, p=.003), and that the self-

reported data has a correlation with the proximity data (R=.74, p<.001). The results

strongly support the belief that Bluetooth detection is effective for measuring interaction

in social activities among individuals.

Although this method is very useful for measuring and predicting social activities

with nearby social peers, Bluetooth scanning only provides information about proximate

Bluetooth IDs. Given only this BTID information, we cannot sufficiently identify the

owner of each device as well as his/her peers. Thus, this approach is still left with the

problem that a human has to collect additional identification information and identify

each Bluetooth ID with each corresponding detected devices' owner. In addition, as

Eagle mentioned in his paper Reality Mining [4], the computation for analyzing log data

to infer social relationship and finding patterns of human behavior is not meant to be

computed in a mobile phone. Although his work did not provide an optimized algorithm

for mobile phones to do such tasks, his thesis described a simple algorithm for mobile

phones for detecting a user's social interaction with his/her peers through BTID and

location via GPS.

2.5 Route Finding Algorithm for Road Traffic.

There are a number of system that support route planning, which use traffic

congestion information to find optimal routes from the input of a user's defined

destinations. This is a similar solution to the problems in data communication networks

between routers and hubs, and in electronic power supplies through cable links between

transmission towers; all of these solutions attempt to maximize the efficiency in time and

energy to transmit something, whether it be vehicles, data, or electricity. Here, we looked

4 The stduy employs a simple model of behavior for analyzing individual in three states: home, work, and
elsewhere.



at systems and algorithms that relate to a route planning system, which is most relevant to

what this thesis covers.

TrafficMaster [6] is a route planner system developed by John Fawcett and Peter

Robinson in 2000 at Cambridge, U.K. as part of their research project. The system

recommends routes that reflect the congestion anticipated in the future during the time of

the journey. In addition, travelers are notified if the predicted congestion at the time of

travel makes an alternative route preferable. The system collects congestion information

from various sources, such as speed detectors and monitors mounted on bridges and

major roads. It accumulates historic information, and also includes a live data service

that informs its clients of unexpected congestions. The historical information includes

location direction of traffic flow as detected by sensors, as well as average car speed. In

addition to data from sensors, it also uses map information to find an optimal route

between pairs of points for a given departure time by accounting for the connectivity and

capacity of each road.

The system uses the Fast Lee [3] routing algorithm. Similar to Dijkstra's and

Bellman-Ford's routing algorithms, Lee's algorithm finds the shortest path between two

points using a trick known as wave propagation and back-trace. The algorithm simulates

an inkblot spreading out over a piece of paper, centered on the start point. The area

covered represents vertices already explored. The real time is known upon the traversal of

each edge, so the algorithm can calculate the correct value of the delay, which is derived

from accumulated heuristic data. When the destination vertex is reached, the algorithm

traces back to the start to find which path leads from the start to the destination. Because

vehicles continue to move along the road while the system is calculating routes, this

enables an advantage for providing the most current information to users - the algorithm

traces back from the destination to find the latest position of the car before returning the

result.

There are a few resemblances between the TrafficMaster system and the route

detection algorithm in this thesis. TrafficMaster calculates a route's condition based on a

heuristics approach of using congestions. Traffic congestion is not static; it changes over

time, fluctuating from morning rush hour, to very little congestion during the middle of

the night. It is reasonable to apply this heuristic in the algorithm because the average



departure time is known. Similarly, our route detection algorithm predicts routes and

destinations based on a user's historical transit seed and usage of routes based on the time

of day. In addition, the detection of abnormality reflects the current detection sensitivity;

this sensitivity is based on risk information which changes over time.

The route detection, however, does not involve finding new routes based on map

information. Rather, it tries to predict where the user is heading based on the user's

transit behaviors. This is unlike the TrafficMaster, which requires destination information

to compute an optimal route between one's current location and the given destination.

However, our route detection algorithm does not require destination information because

the destination itself is the question that it tries to answer. In addition, the route detection

algorithm does not have any street information other than what the users have provided

through training routes on the system.

Although the scope of this thesis does not cover finding routes between two

locations, the future work of the project involves using an algorithm that tries to compute

optimal routes between a current location and a predicted location. Often, multiple routes

exist between two locations, and people may have to make decisions about which route to

take. These decisions will be supported by the system, as it will compute the conditions

of each route, taking into account the travel time of day, predicted risks, total expected

travel time on the routes, and location of people near the routes, who are peers and

caregivers of travelers, and who may be able to offer help if needed. This future work

will be described in more detail in the later concluding chapter.
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Chapter 3

Where are you? - The Risk-Meter

Increasing people's awareness of potential crime in various neighborhoods is the

first step towards enhancing the security and safety of each individual. Walking down an

unfamiliar street for the first time, or trying to park a car or bicycle in a strange

neighborhood can make one particularly vulnerable to crimes. Contella offers users the

ability to learn about the safety of their surroundings in an attempt to more deeply inform

their daily decisions.

Our approach to enhancing the awareness of crime was to build a system that

measures a potential risk and provides this information to the concerned user. This

system was built on top of an already existing system that enables simple GPS detection

of position. As mentioned in the introduction, we attempted to measure the risks to

personal safety based on a year's worth of crime logs around the MIT campus in

Cambridge, MA. This information was collected and saved on a Geographic Information

System (GIS) database. Our system renders crime statistics from the database in real-

time at the user's request. Users can request a real-time risk analysis by providing the

server with their location and information about their commonly transported valuables.

Based on GPS coordinates, the time of a request, and users' information about their

valuables, the system can calculate and communicate any potential risk to its users.

The goal of the system is to provide a simple mobile phone interface to retrieve

just-in-time risk metrics at the click of a button. The following scenario describes how

the system could be used.

3.1 Scenario

Scenario 1:

Ann is a new freshman at MIT. She lives in an apartment off-campus, and it takes

her about 20 minutes to walk to her lab. She likes to walk alone but she is very concerned

about her safety and security. Whenever she feels unsafe, she grabs her cell phone and

checks the Risk-Meter to see how safe her surroundings are. At times, she works late at



the lab and before she leaves, she checks the Risk-Meter to decide whether it is safe for

her to walk home at night or whether she should take a shuttle bus which stops close to

her house. She also uses the Risk-Meter to protect her belongings. When she rides her

bike and needs to find a new place to park it, she checks her Risk-Meter to assess the

prevalence of bike theft in her immediate vicinity. Sometimes she sees on the Risk-Meter

that the risk to bikes is high in certain neighborhoods, so she tries to find a safer place to

leave her bike. If she can't find one, she keeps her eye on her bike whenever she can.

Like most parents, Ann's parents are concerned about her safety and security.

Because she moved far away from home to study, her parents are unfamiliar with her new

city, which adds to their concern. Ann allows her parents to check her Risk-Meter

remotely at the beginning of the school year, and her parents check Risk-Meter from time

to time to see if she is all right. Although the Risk-Meter only measures risk based on

historical crime statistics and does not report Ann's actual safety, psychologically it gives

her parents a connection to their daughter.

3.2 User Interface

The interface of the Risk-Meter consists of a menu for configuring and requesting

risk analysis, and a graphical interface for visualizing the measured risk. This interface is

a part of Contella, a phonebook client application on which the Risk-Meter was

developed. We used J2ME's standard API on Motorola i870 iDEN phones to build a

graphical user interface for Contella. In the following sections, first I will describe the

basic Contella interface, and then I will illustrate the interface for the Risk-Meter, which

is a part of the larger Contella system.

3.2.1 Contella

The main menu that the user sees when Contella is first launched is a contact list.

The user may use the phone's standard arrow keys to browse the phone book list. We

can see the layout of the keypad shown in the Figure 3.1(b).
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Figure 3.1 Contella's contact list and individual contact's detailed information screen

Boxes positioned on the left side of each entry are context icons. These icons can

represent a number of different things, including each contact's current location (office,

supermarket, park or home icons), whether a contract is currently moving (walking icon),

and if a contact's status is unknown (globe icon).

Contella shows detailed information about the highlighted contact ("Jaewoo

Chung" in <Figure 3.1(a)>) when the user presses the right menu soft key or the OK

button on the keypad. The detailed information includes an image of the contact, the

contact's contextual information, and buttons for communication with this contact.

* %h#bii~brn#Add items f rom list
jawoChung em e

Odd custom items
emin Chungtems

Paulina oditba

Joe Dvorak 7

Chris Schmandt Menu icon

(a) Contact list (b) Keypad layout of (c) Risk-Meter menu

Motorola i870 phone

Figure 3.2 Contella's Contact list screen and keypad layout of mobile phone



By pressing the menu key (see Figure 3.2(b)), the Risk-Meter Menu will appear on the

mobile phone screen (see Figure 3.2(c)). The following table describes the functions on

the menu:

Name of item Description

Risk-Meter Shows risk of selected items

Add items from list Lists a preset of at-risk items such as car, bicycle, and laptop

Add custom items Enables user to type in a name of an item through mobile phone keypad

Remove items Lets user remove items

Table 3.1 Menu description of Risk-Mete

As previously mentioned, users can set up a trust scheme, allowing other trusted

users to have permission to access information. A master phone can access information

from a slave phone, while a slave phone can request certain services from a master phone.

Details for setting up the master and slave trust scheme will be covered later in this

chapter.

The following figure illustrates how to access a slave phone user's risk

information. As shown in the Figure 3.3(a), when the user selects a contact from the list

to be a slave, the border of the context icon becomes blue.

Paulina ModIitba

Joe Dvorak

Chris Schmandt

=MN, : M W seec
(a) Contact list that indicates (b) Detailed information (c) Detailed information

slave contacts of slave contact of regular contact

Figure 3.3 Screenshot of trusted user and non trusted user



When users select a contact from the list, for example "Jaewoo Chung" whose

context box border is blue, users can see a list menu on the bottom of the screen, as

shown in the Figure 3.2(b). If the border is not blue, meaning that the contact is not set up

as a slave, the list menu will not be shown at the bottom of the phone screen, can be seen

in Figure 3.2(c).

Selecting the list menu will bring up a hidden list of commands that allow the user

to access information and request tasks relating to the already selected contact. This list

is shown in Table 3.2.

Name of function Function description

Risk Meter Requests and displays remote contact's Risk-Meter

Manage Location Add or delete remote contact's labeled location

Manage Routes Set a route for detecting transit patterns

Table 3.2. Commands that allow users to request tasks or access information from slave phones

3.2.2 Risk-Meter

For the design of the crime statistic's visualization, we considered two kinds of

graphical representations: a map and a bar graph. As seen in Figure 3.4, the map allows

us to easily grasp the overall distribution of risk. However, the small screen of most

mobile phones does not provide a fine enough resolution to easily communicate detailed

crime information. In addition, it is hard to display multiple properties on a phone screen.



Figure 3.4 Crime statistics on a map and risk meter on a mobile phone screen

Although there are many different ways to display crime-related information on a

map, for the reasons already mentioned, the Risk-Meter only displays risk in the form of

a simple bar graph. This allows users to easily check specific items and see the

measurement of risk in a graphical representation. Each row represents the risk attributed

to specific items, such as "car" or "laptop", and the red bar increases in length from left

to right as the associated risk increases. The bar's length is based on the statistical

analysis of crime logs. When there is no red bar on the grid, it means no historical

information exists in regard to the particular item. Crime information is calculated within

100 meters of the phone's current location, at the current time of day, plus-or-minus one

hour.

Initially, three items are listed: Laptop, Bicycle, and Car. According to the crime

logs collected around the MIT campus, property theft is a major crime on campus.

Specifically, laptops and bicycles are stolen with the highest frequency throughout

campus. Users can also retrieve information about risks to other specific items. In order

to achieve this, a user needs to provide information to the system about which items'

risks are to be measured. They can add and subtract items from their Risk-Meter by

selecting a list of items or manually entering the item name through the phone's keypad.



3.3 Trust and Communication

Scenario 1 described Ann's parents accessing their daughter's potential risk

information. However, to protect the retrieval of private information by unwanted third

parties, the system employs a simple trust mechanism that requires specific settings on

both the master and slave phones. Therefore, to establish a trust between Ann and her

parents' phones, Ann must set her father's and mother's contact profiles as masters and

her father and mother must set Ann's contact profile as slave. These demarcations

indicate whether we allow each contact to request certain information and activate certain

functionalities, such as accessing risk information from remote phones.

An interface for setting the trust between master and slave phones is provided in

the "Edit Contact" screen, as shown in the Figure 3.5. By pressing the right soft key to

select "Profile", as shown in Figure 3.1(c) in the previous section, users can access the

Edit Contact screen. This screen allows users to edit the selected contact's information.

The screen includes basic information such as a phone number, IP and email addresses,

and the trust configuration which sets the contact as master or/and slave. By pressing

either the up and down arrow buttons on the keypad, users are able to navigate through

the text field entries and check boxes. When a field or check box is highlighted, a user

can use the number key to enter characters or to select or deselect the check box.

I - ;- U

Phone Number
1617253xxxx
Email Address
I Jaewooo media. it edu

1.85.44.xx4
iselect Master/Slave
rzMaster
1OSlaue

Figure 3.5 Edit Contact screen

Once trust is established and a request is issued, the Contella application checks

the message header of the request in a UDP packet to confirm the appropriate status



necessary to fulfill the request. When a master phone requests remote access to a slave

phone, the master phone includes its IP address, Bluetooth ID, and phone number in the

header of the request message. The slave phone that receives the request message first

checks if the requester's information matches with an existing master's information.

When the information matches, the slave phone accepts the request and performs the task

that the master phone requested.

The communication between the phones is accomplished via the iDEN 5 network.

In the US, Nextel provides a static IP address for each Nextel-subscribed iDEN phone,

and it allows the phone to communicate through this unique IP address. In Contella, most

of the data communication use UDP over this network in a peer-to-peer manner between

mobile phones.

As shown in the Figure 3.6, there are two ways to retrieve risk information: a

master phone can request it directly from the crime log server, or it can request it from

the sjave phone.

go._ Crime Log

UDP via iDEN network Server

Request risk
information

UDP Port
Master end computed 9090

phone risk information

Send computed
risk information

UDP Port
8880 Request risk

Forward risk information
information

Request Slave
phone's Risk Slave

phone

UDP Port
8880

5 Integrated Digital Enhanced Network (iDEN) is a mobile communications technology, developed by Motorola, which provides its
users the benefits of a trunked radio and a cellular telephone. iDEN places more users in a given spectral space, compared to analog
cellular systems, by using time division multiple access (TDMA). In US, Nextel provides static IP address for each Nextel subscribed
iDEN phones, and it allow phone to communicate through this unique IP address.



Figure 3.6 Communication between master phones, slave phones and crime log server

When any user requests risk information about his/her location, the Risk-Meter

directly requests the risk information from the Crime Log Server using UDP over iDEN.

The server computes the risk for the requesting party and returns the result. However,

when a master phone requests a slave phone's potential risk information, as opposed to

its own risk information, the master phone must first send this request to the slave phone.

When the slave phone accepts the request from the master phone, it then requests its own

risk status from the Crime Log Server. The resulting computed risk information is sent

back to the slave phone, and the slave phone then relays the information to the master

phone.

3.4 System architecture of Crime-Log Server and Risk-Meter in Contella.

The Crime Log Server is a GIS database that contains crime information collected

by the police. Table 4.3 illustrates an example of a log collected on Oct 14-16 2005,

provided by the MIT police.

MASSACHUSETTSINSTfUnTE OF TECKhNOLOGY
POLICE DEPART MNT

Preas Log

October 14-16, 2005

200540-16 C N32 32 VASSAR ST PATROL OF STATA CENTER CLOSED
18:55:09.0 18:50:00.0

2005-10-16 UNKTROLB 2005-10-16 W31 120 ASSIST OTHER POL1CE AGENCY CLOSED
05:28:010 02:00:00,0 MASSACHUSETTS AVE T

2005-10-16 LARCENY 2005-10-16 W7 / 362 MEMORIAL DR R;P STATES WALLET CELL PHONE AND JACKET CLOSED
03:20:02.0 01:00:00.0 STOLEN SOMETBIE THIS EVENING,

2005-10-16 FIRE ALM 2005-10-16 PKS ' 530 BEACON ST ALARM MALFUNCTION ON FOURTH FLOOR. CLOSED
02:25:22,0 02:25:00,0 BOSTON FRE DEPARTMENT INVETSIGATED,

2005-10-15 SUSP ACT 2005-10-15 E23 .25 CARLTON ST KR? STATES SEVERAL INDIVIDUALS PUSHING BOOTH CLOSED
23:37:51.0 23:37:00.0 FROM TROLLY TOURS DOWN CARLTON ST. UNITS

MAXE CONTACT WTTH SUBJECTS

20054015 SUSP ACT 2005-10-15 M10 122 MEMORIAL PARTY REPORTED AMAN HITINGA EMALE OUT CLOSED
15:50:22.0 15:30:00.0 DR SIDE OF 77 MASS AVE

2005-10-15 HOMELESS 2005-10-15 M10 122 MEMORIAL HOMELESS PERSON IN LOBBY 10. TRESPASS CLOSED
09:49:01,0 09:49:010 DR WARNING ISSUED.

2005-10-14 LARCENY 2005-10-14 STUDENT HOUSE I 111 RP REPORTS A DVD PLAYER AND AMP1PHER WERE CLOSED
18:05:47.0 01:00:00.0 BAY STATERD STOLEN.

2005-10-14 ATT B&E 2005-10-11 E60 "30 MEMORLAL DR RP REPORTS AN ATTEMPTED B&E AT HIS CLOSED

Table 3.3 Crime log collected and published by MIT Police



As we can see in Table 3.3, the report consists of an incident type, the date and

time of the occurrence, the location of the incident and any further comments from police

officers. Although the logs were collected systematically by the police, they lacked the

GPS coordinates required to compute risk based on location. Thus, we needed to convert

each address into GPS coordinates; this allowed us to organize crime information based

on location. The locations of reported crimes are based on the building code, so we had

to build a table mapping building codes to latitude and longitude.

Process of Risk-Meter Client Crime Log Server

Contella

Location Manager GPS Factory

Data:
{Location: 41.358161, -71.09413)

Risk-Meter Serialize data {ltems:CAR,BICYCLE,LAPTOP}

User Preference -- UPUPoeUDP UDP over
Communication Internet Protocol

Hanler

GUI Handler 4 Port 9090 Data
{Items:CAR,BICYCLE,LAPTOP} Port 9090

Parse data {Risk:26,55,13}

Contella GUI

Figure 3.7 System architecture of Risk-Meter in Contella

Contella's client request data contains location information in a series of strings,

and a list of item names. The location is provided from the GPS Factory, which is

dedicated to processing incoming GPS data, and passing it on to the Location Manager.

The Risk-Meter collects the GPS information from the Location Manager, which handles

all location-related services in Contella. Location information consists of GPS

coordinates in decimal degrees. The Risk-Meter then sends the coordinates, along with a

list of items based on a user's preference, to the UDP Communication Handler. The



Handler serializes the data and sends it to the Crime Log Server. The data is sent in UTF

strings in UDP packets. The example of data sent from a client is shown as follows:

{Location:41.358161,- 71.09414) {Items: CAR,BICYCLELAPTOP}

Client Crime Log Server Process of computing risk

Data:
{Location: 41.358161, -71.09413) - Parse incoming Data
{Items:CAR,BICYCLE,LAPTOP)

Communic- Search related crime Crime Log
UDP over logs Database

Internet Protocol tions
Handler(GS

Port 9090 Data: Compute risk on each
{RISK) Port 9090 items

{Items:CAR,BICYCLE,LAPTOP}
{Risk:26,55,13)

Figure 3.8 System architecture of Crime Log Server

The Crime Log Server is dedicated to serving risk information. It handles and

parses incoming information, and then sends the computed results back to the client. The

incoming message is handled by the UDP Communication Handler 7. When the UDP

packet arrives, the Communication Handler parses data into lists of strings. The server

expects to receive location data and a list of items in order to compute risk.

The algorithm for assessing risk is based on time, location and item names. First,

the algorithm searches for the total number of each incident related to a given item from

the Crime Log Database. It searches by the name of the item that appears in the database.

To increase the hit rate of matching words, we employed a table that expands each word

into its synonyms. For example, "car" is expanded to "vehicle" and "automobile".

We have two search ranges for calculating the risk. For location, we use a 100-

meter search range from the given location. For time, we have a window of plus-or-

minus one hour from the requested time of day. When the algorithm searches the

7In our examples in the thesis uses UDP for communicating with phone client. Although a UDP packet can
be lost in the middle of transmission, data communication in iDEN network works more reliably with UDP.



database, it also calculates the maximum number of incidents based on time of day within

a 2-km range. The resulting risk is normalized based on the maximum number of

incidents on a scale of 100.

A

Figure 3.9 Circles of diameter 100m and 2km

After each item's risk is computed, the information is serialized and sent back to the

client via the UDP Communication Handler. An example of data sent from a client is

shown as follow:

{RISK} (Items: CAR, BICYCLE, LAPTOP} (Value: 25,36,14}

The client receives a UDP packet from the UDP Communication Handler and it forwards

the message to the GUI Handler in the Risk-Meter. Users are able to see this information

in the form of a bar graph on their phone screens.



Chapter 4

Where are you going - Route Detection Algorithm

This chapter discusses a way to learn a user's traveled patterns and detect certain

abnormalities such as deviation from average transit time and unusual destination. In

order to achieve this, the system must learn about a user's travel routes and be able to

discriminate between abnormal journeys and the normal transit patterns learned by the

system during a training phase. The algorithm in the system is restricted to detecting

recurring routines such as going to school, to the office, and to home. Although

deviations from averages do not always imply incidents, it is helpful to provide this

information to caregivers. In addition, a trusted user, i.e. a caregiver, should be able to

assist the care-recipient through slave phones remotely, to help training routes, setting

bookmarked places, and specifying a route to be detected and conveyed to the caregiver

through the master phone.

The sections in this chapter will describe the use scenario, interface, and the

algorithm for learning and detecting route transition pattern. The following is a simple

scenario that describes how the system could be used.

4.1 Scenario

Mary is an elderly woman who lives in a nursing home. Although Mary has a

mild Alzheimer's affliction, she is very independent and likes doing grocery shopping,

walking a dog, or visiting the doctor by herself. Mary has a grownup son who dearly

cares for his mother, but he works in a different town and is not able to visit her that often.

However, with the help of Contella, he checks his mother's location and makes sure she

is safe and on her schedule. Because of her Alzheimer's, she sometimes forgets what she

is supposed to do, and her son checks her schedule from time to time to see, for example,

if she, for example, has left home early enough to get to an appointment with the doctor.

Also, her son gets an alert whenever she deviates from her regular path or she halts on the

way. This gives her son more opportunities to help his mother.



Although she has very few activities outside the nursing home, occasionally she

discovers a new path while walking her dog or finds new shops to regularly visit. Mary's

son remotely sets two interesting locations between which Mary's phone will

automatically collect any new route information. Mary walks between the locations as

usual and she does not need to be aware that her Contella is collecting training

information. For the new grocery shops Mary discovers, her son asks her to tell him the

location in the terms of streets or addresses, and he remotely enters the location into

Marry's phone. So, when Mary walks down to her new grocery store, the route will

learned by her phone.

4.2 User Interface

As described in the scenario, Contella provides an interface that allows the

application users to monitor their loved ones' locations and transit status. It also allows

users to bookmark locations and set Contella into a training mode to collect route

information between bookmarked locations. Users can do this locally as well as remotely.

The following sections describe the contextual information display, settings for

bookmarking and route learning, sending and receiving alert messages and assisting at a

remote care-recipient.

Hvemin Chung

Paulina Hodlitba

R1 Joe Dvorak

Chris Schmandt

Figure 4.1 Screen shot of Contella. Context boxes appear next to each contact entry.



4.2.1 Contextual information

As described in the previous chapter, boxes positioned on the left side of each

entry are context icons. They allow users to share context information in order to enhance

the awareness of remotely located loved ones. The color of the context box border

indicates whether you have established a trust relationship with the contact. Inside the

box, an icon represents each contact's location information. The icon represents three

states: at a bookmarked location, moving, and status unknown. When a user is at a

previously identified (i.e., bookmarked) location, the associated location icon will appear,

such as office, supermarket, park, etc. When users are not in a previously specified

location, Contella considers the user to be in transit and the "walking" icon will appear in

the context box (see "Joe Dvorak" on the list in Figure 4.1). In addition, when a user's

location is not certain and his/her status is unknown, it shows a globe (as shown next to

contact "Paulina Modlitba" in Figure 4.1).

Contella provides more information about contacts' transit status in the detailed

information screen as seen in the Figure 4.2.

Figure 4.2 Screen shot of a contact's detailed information

The detailed information screen, from top to bottom, consists of an image of the

contact, contextual information and two buttons for communication. These buttons allow



the user to make a phone call or send messages to the currently selected contact. The

contextual information shows detailed information about the moving contact. For

example, Figure 4.3 illustrates the meaning of the possible contextual information.

Through the route detection algorithm, Contella predicts its user's location status.

Alternatively, if it can not predict, it will still attempt to provide facts about the user's

location. When a Contella user is moving, Contella compares previously collected route

information and tries to predict the user's destination and estimate time to arrival. As

seen in Figure 4.3, when a remote contact left home and is moving but the algorithm can

not predict the contact's destination, a user sees the icons labeled "B" in detailed

information of the remote contact. When the algorithm can predict the destination and

compute the estimated time to arrival, the user will see the icons labeled "D" on the

screen.

W] At home

MBm * 7 min. Left home 7 min. ago

Left home and heading to park

2 min. Estimate time to arrival is 2 min.

Figure 4.3 Graphical representation of user's location status.

4.2.2 Settings

Contella provides a list of options, through which users can bookmark locations,

set the system into training mode (to collect route information), and adjust the threshold

for detecting route transition abnormalities.

From the contact list, a software button "Menu" (see <Figure 4.1>) will display a

list of items that are mostly related to location awareness functionality. Table 1 describes



each item and its function. Some of the functions will be covered in more detail in

Section 4.4.

Name of item Function

GPS Reception Monitor Shows the status of current GPS reception.

Where am I? Users may choose to enter their current position explicitly. This option

(Set Location) brings up the list of labeled locations which user previously defined.

New Contact Allows the user to create a new contact

Mark Location Allows the user to label current position.

Location List Lists the names of previously marked locations.

Training: Selecting this item toggles the training mode to false or true. This menu sets

{FALSEITRUE} Contella's route training mode. When it is set to 'TRUE', Contella begins to

collect route information while the user is moving.

Routes Lists routes which were previously trained by user.

Detection Threshold It allows the user to change the route abnormality threshold.

Preference This item contains a menu that is used for debugging purposes such as

dumping collected data to server.

Exit Quit from the Contella application.

Table 4.1 Function description of sub menu.

4.2.3 Communication

As described in the previous chapter, Contella uses UDP over the iDEN network

to communicate between master and slave phones in a peer-to-peer manner. In this

section the communication used between the master and slave phones is divided into two

parts: sending alert message to the master phone and providing remote assistant to a the

slave phone.

4.2.3.1 Alert Messaging

When an abnormal route is detected and it exceeds a threshold set by the user, the

slave phone sends alert messages to its master phones. Initially, the slave phone searches

the phone book in Contella to find contacts that are setup as masters. Once the search for



finding emergency contact finished, the slave phone starts to distribute alert messages to

its master phones (the phones of caregivers). When caregivers get the alert message, their

phone vibrates and makes an alert sound. On the Contella phone screen, information

about the abnormal activity of the contact whose phone sent the alert message will appear.

This is shown in Figure 4.4.

[ Sun Jul 23 21:53:11 [ Wed ]ug 09 17:43.57 1 Wed Aug 09 17.52:13 1
jaewoo Chung's status is Jacwoo Chung Is not Jaewoo Chung deviated

funknown. He was last moving on a route from a route between
seen 3 minutes ago. between home and lab, home and lab. joewoo

jaewoo Chung was not Chung was last seen on
A Sa W ~ 144fmoving for 3 minutes the route 3 miutes ago.

0 Set Safty Zone
111 Snooze L Show t1Op

isetSaft Zone Set Saft Zone
A Snooze Snooze

(a) user's status is unknown (b) user is not moving (c) user deviated from know route

Figure 4.4 Screenshot of status report.

The status information shown on the screen is generated by the care-recipient's

Contella, and it contains information about when the care-recipient deviates from a route,

how long the care-recipient has stopped moving, or the last moment the care-recipient

was observed at known routes or locations. There are three options that the caregiver has

in reacting to the message; a button for accessing map to view care-recipient's location, a

button to snooze (to temporally discard) the alert, and a button to temporally set the care-

recipient's current location (and the surrounding 100 meters) as a safety zone.

Figure 4.5 Screenshot of a map displaying location of remote care-recipient

The 'Show Map' option of the status report screen allows care-givers to locate

their loved ones. When the caregiver assesses the situation to be safe, they can set the

le



care-recipient's current location to be in safety zone temporally. However, when the

location is bookmarked, the location becomes permanently set as a safety zone.

4.2.3.2 Remote Assistance

The Scenario described earlier in this chapter explained how Mary's son remotely

accessed Marry's phone and added locations. In addition, he set up two locations so that

route information is automatically collected while Marry travels between them.

Three main functions are provided in order for care-givers to assist loved ones;

specifying a route for detection, assigning semi-unsupervised route training between two

labeled locations, and transferring labeled locations from master phones to slave phones.

From the hidden menu (see <Figure 4.6(b)>), caregivers are can access and execute

these functions remotely from master phones. This allows a care-giver to provide those

functions to care-recipients who are not keen at using technology, such as young children

or elderly people (like Mary, the character mentioned in the scenario above).

Jaewoo Chung 2. Manage Locations...
3. Manage Rloutes...

Hgemin Chung

Hidden
Paulina Medittba mnILJ menu

Joe Dvorak

[jChris Schnuandt

(a) Contact list that indicates (b) Detailed information (c) Detailed information

slave contacts of slave contact of regular contact

Figure 4.6 Screenshot of trusted user and remote assistant menu.

The "Manage Location..." function allows a user to remotely manage a slave

phone's labeled locations. For example, they can remotely transfer a location (name and

GPS coordinates) stored in their master phone to the slave phone, or add a new labeled

(bookmarked) location into the remote slave phone by providing GPS coordinates.



HUR lu1alun suur
3Delete location

Figure 4.7 Screenshot of Manage Location menu.

The "Manage Routes..." function allows a user to remotely assign a route to be

detected in the slave phone as shown in the Figure 4.8. The items on the list in Figure 4.8

(a) represent route information that was previously collected by remote care-recipient.

The small check box indicates that a route, for example "home-lab", is marked as one to

use when detecting abnormalities in the care-recipient's travels. Once the caregiver

remotely sets a route to detection mode through their master phone, the slave phone will

start to detect the slave phone user's transit pattern and report their status to master phone.

Gghome- lab 'hm
t3home-dagcare (1)

home-ropeSwIng
Wiab-ropeSwIng (1) Osuperm arket

jOropeSwing
0snakenock
Ob edford

(a) Route information of slave phone (b) Assigning two locations in slave phone

Figure 4.8 Screenshots of slave phone's route list and bookmarked list.

A number in brackets on the right side of the route (see <Figure 4.8 (a)>)

indicates a route between the two locations is scheduled to be collected. The number

indicates the numbers of trials to collect along that route. A master phone can also

remotely set two labeled locations for automatic collection of route information. The

slave phone will then collect this information whenever the slave phone user travels



between the two locations, as shown in figure 4.8(b). This allows the slave phone user to

train routes without any knowledge of how to operate the route training mode. The slave

phone user can even be unaware that their route is being collected by their own phone.

4.3 Design Consideration on Route Learning and Detection Algorithm

After Natalia Marinas's work on WatchMe, as mentioned earlier, in the related

work in Chapter 2, we decided to experiment with a phone-only version, using the same

GUI running on an ordinary phone, and using only GPS for context.

There were a number of difficulties in accomplishing this. The start up process

was cumbersome; users had to collect several days of data which could then be analyzed

for possible significant locations, and once they were named it might be necessary to

collect another week's worth of data to classify the routes. In the mean time, batteries

died due to the volume of data transmitted and the software sometimes hung while trying

to re-establish broken connections (this was eventually fixed by switching from to UDP

from TCP). Also, having a server component added a layer of complexity. We therefore

decided to build a modified version of WatchMe that substituted the elegance of the

watch for normal phone menus and input, with route classification and detection running

entirely on the phone.

We experimented with different methods of route detection in order for the

detection algorithm to work with the limited computation power available in mobile

phones. The challenge of developing a route detection algorithm was making the

algorithm simple enough so that it could fit into a mobile phone - we used J2ME on

Motorola's i860 and i870 phones as our main development platform. But at a deeper

level, the challenge was to obtain accurate route descriptions more or less on the fly.

WatchMe's use of a server allowed a week's worth of data to be stored for later analysis,

which allowed for better detection of the true location from the frequently noisy GPS data.

The following sections detail the learning and prediction techniques (endpoint

detection, route identification, and route prediction) used in Contella.



4.3.1 Endpoint Detection

Whenever a good AGPS 10fix is available, Contella allows users to label locations

and save them as landmarked places. From the phone menu's "Mark location" item, a

user can choose a label from a predefined list. The label can be changed later to any name

the user desires. The area within a 70-meter radius of the recorded position is regarded as

the labeled place. When a user is within this radius, Contella recognizes that the user is

currently in a labeled place.

Although a 70-meter radius is quite a large area, we find that the detection range

is a reasonable size. When the labeled place is large, such as a school or an office in a big

building, for example, there may be a significant distance between the marked location

and the user's actual location. Thus, if the detecting radius is not large enough, the user's

perception of the space would not match with Contella's location detection. Although the

user might think they are still in the same area, Contella will not recognize the user as

being in the labeled location. This problem is exacerbated by the fact that the GPS

precision error can easily exceed 40 meters.

Another problem related to detecting location is determining whether a user

departed from a labeled location. For example, when a subway station is close to an

office, and a user who walks out from the office to take the subway hasn't been exposed

to GPS satellites long enough to get coordinates, Contella will fail to detect the user's

location, when the detection algorithm solely depends on GPS data. We solved this

problem by checking cell tower IDs to see if the current cell tower ID matches the cell

tower IDs associated with labeled location. Cell tower IDs are initially collected when a

user labels a location. When a new cell tower ID appears while the GPS coordinates are

currently available and the user is in a labeled location, Contella automatically collects

the cell tower ID and associates it with the stored location. If the current cell tower ID is

not found in the collected cell tower IDs associated with the assumed current location,

then Contella changes the user's status as having departed from the previous labeled

location.

10 Assisted GPS (AGPS or A-GPS) is a technology that uses an assistance server to cut down the time
needed to determine a location using GPS. The GPS receiver communicates with the assistance server that
has high processing power and access to a reference network in order to get a faster result.



4.3.2 Route Identification

In order to design a route learning and detection algorithm that is simpler and

requires a smaller amount of computation than WatchMe, we came up with an algorithm

based on intermediate point detection. Intermediate points (iPoints) are locations that are

interpolated between two labeled locations. If we compare the route to a subway train's

route, the stations where the user enters and exits the train are the labeled places, and

stations between these endpoints are iPoints. Because each set of iPoints are associated

with a route, detecting an iPoint and the direction of travel will infer which route the

user/passenger is taking and where he/she is heading. As in a subway train's routes,

multiple routes and destinations can be associated with each iPoint.

Training mode is selected from a menu. While training, when a user leaves from a

labeled place, Contella generates a new route template and begins to collect GPS data

until the user arrives at another labeled place. A new location can also be labeled while in

training mode, and this labeled location is used as a destination, or endpoint, of the newly

collected route. Every 50 meters, as shown in Figure 4.9, several pieces of information

are collected, including GPS coordinates and their accuracy to be used as iPoints and cell

tower IDs associated with the iPoint. In addition, each template contains the elapsed time

interval between iPoints, which has been collected during the training. This time interval

is used to calculate the estimated time to arrival.

4 .~ .....................

(a) Plot of raw GPS route data received (b) iPoints collected every 50 meters from GPS

Every five seconds coordinates received by Contella

Figure 4.9 Collected GPS coordinates by Contella



As the user progresses on his/her path, existing iPoints may be encountered, and

these iPoints are registered on the newly generated route template. Thus, Contella avoids

having redundant iPoints when multiple routes share the same points as shown in the

Figure 4.11(a) in the later section. The size of the data of a 90-minute, 9 km. trip route

template and its iPoints is about 2.5 KB. The data structure in the current system is not

yet optimized, so we expect the data to be even smaller when optimized.

A route template is used to detect travel in either direction along the route.

Although a route is trained in one direction, the iPoints are identical when the user takes

the same path in the opposite direction. In the route templates, the order of the iPoints

collected during training is preserved. When two consecutive iPoints are detected,

Contella will find a route that contains these two iPoints; the order of the iPoints will

determine the destination.

Improving routes by re-sampling iPoints: The route template is mainly used to

determine the destination and the ETAs (Elapsed Time to Arrival). In a good route

template, iPoints are dispersed by about 50 meters equally throughout the template.

However, when the quality of GPS reception is poor, we observe noise and gaps in route

templates as shown in Figure 4.10

(a) a route template with gaps in the middle. (b) a result of re-sampling iPoints.

Figure 4.10 Improved routes by re-sampling iPoints

In order to fix this problem, either the route should be re-trained or additional

information should be applied to enhance the reliability of the route template. In

Contella, we solved this problem by automatically re-sampling iPoints where gaps exist

in the templates. As shown in Figure 4.10(a), an initially trained route template could



have gaps in it because of various conditions such as speed, trees, and buildings. While a

user is on a known route, Contella examines the distance between iPoints on this route.

When a distance between consecutive iPoints is greater than 100 meters, Contella starts

to collect new iPoints and fills in the hole in the route template on the fly.

Additionally, as GPS data provides an accuracy range in each GPS fix, Contella

compares the accuracy range of currently received GPS data with the accuracy of iPoints.

Some loss of accuracy is due to static obstacles, such as tall buildings, but other times it

is due to more transitory factors such as the ever-changing visible satellite constellation,

seasonal foliage, placement of the phone/GPS receiver on the body, and speed of travel.

When the currently received GPS accuracy range is smaller than the iPoint where the

user is located, Contella replaces the original coordinates of the iPoint with the most

recently received coordinates. This improvement helps route templates to be reliable and

eliminates the need to re-collect entire route templates when the initial one is poor. This

re-sampling capability could also be extended to create detour routes within an existing

route.

4.3.3 Route Prediction

When a user leaves from a labeled location, the route template candidates that are

associated with the location will be selected and used to search for iPoints. Contella

receives GPS coordinates every five seconds, and tries to match these coordinates with

iPoints from the route candidates. The search number of adjacent iPoints is limited to 15

for each route. When there is an iPoint near the currently received GPS coordinates

within a radius of 35 meters, Contella is able to detect it. Because iPoints are equally

dispersed 50 meters apart, it is less likely to detect two different iPoints within a 35-meter

range. The average width of tested streets is within 35 meters and the detection range is

large enough to include both pedestrian sidewalks.

As described previously, when two consecutive iPoints are detected, the

algorithm will find a route that contains these two iPoints. From this route template, it is

possible to determine the destination, and calculate the estimated time of arrival.



When multiple routes are found with different destinations, Contella will fail to

choose a route by solely depending on iPoints to determine the destination. Similar to the

subway station route example, a station could be part of multiple routes, but a timetable is

used to discriminate routes and destination. Similarly, Contella keeps track of users'

transit time patterns in templates to decide which are the most likely route and destination

that the user is taking. For example, one of our Contella users leaves from home to head

to the office usually between 9 am to 12 pm, and returns home between 7 pm to 9 pm. He

sometimes goes to the supermarket around 8 pm. There is about a 50% overlap of the

routes from home to office and home to supermarket as shown in Figure 4.11(a). When

the user takes these routes, Contella checks the departure time and increments a number

into a corresponding slot in a timetable that is kept in each route template; the timetable

has eight slots, each representing a three-hour time interval (e.g. 9AM - 12PM, 12PM -

3PM, etc, covering the 24 hours of the day). By looking up the timetable kept in the route

templates, and comparing the numbers between the two routes based on the time of day,

Contella predicts the user's destination. If the user left home in the morning, Contella

predicts that the user is going to the office. On the other hand, if the user left home in the

afternoon, it will predict that the user is going to the supermarket.

(home ==> supermarket around 8 pm.)

Time Location Prediction
20:43:39 42.362282, -71.084266, home,0 min.,,,
20:43:47 42.362453, -71.084336, home,0 min.,,,
20:44:10 42.362818, -71.084693, home,0 min.,supernarket,6 min.
20:44:44 42.362690, -71.085104, home,0 min., supermarket,6 min.
20:45:13 42.362725, -71.085637, home,1 min.,supermarket,5 min.
20:45:50 42.362812, -71.086722, home,2 min.,supermarket,4 min.

(home ==> lab around 10 am.)

Time Location Prediction
10:14:18 42.362274, -71.084229, home,0 min.,,,
10:14:23 42.362346, -71.084288, home,0 min.,,,
10:14:35 42.362648, -71.08476, home,0 min.,lab,6 min.
10:14:58 42.36282, -71.08527, home,0 min.,lab,5 min.
10:15:26 42.362797, -71.08579, home,1 min.,lab,4 min.
10:15:54 42.362843, -71.08633, home,l min.,lab,4 min.



(a) Route path from home to office and supermarket. (b) Indexing iPoints based on cell tower IDs.

Black diamond dots are iPoints where two routes

were merged

Figure 4.11 Contella's route templates

Indexing iPoints in route template: When a matching iPoint is not found on the first

pass, as just described, Contella tries to match every existing iPoint. If the number of

iPoints is small, it is reasonable to search all the iPoints. However, if the number is large,

significant computation is required to compare each iPoint every five seconds, which

violates a design constraint. In order to stay within constraints, we used cell tower INs as

reference points to index iPoints. In other words, iPoints are partitioned into groups

based on cell-towers, as shown in Figure 4.11 (b).

Contella will only search for iPoints within a group defined by cell tower range

when it fails to find iPoints from previously known routes. By searching this small space,

Contella can find nearby routes that weren't part of previously detected routes. For

example, suppose a user left location A, and took a route connected to location B, but

then the user changed his/her mind and cut into a route connecting C to D. Because route

A-B is not connected to route C-D, the initial search of finding iPoints will fail. Instead

of attempting to search through the entire set of iPoints, the algorithm will only look for

iPoints that are associated with current cell tower ID. This will allow Contella to

efficiently reduce any unnecessary searching. If a part of route C-D is in the same cell-

tower range area, Contella will detect nearby iPoints and predict the destination and

estimated time to arrival. If Contella does not find any iPoints for several minutes, it will

simply return the elapsed time from the location of departure.

Estimating time to arrival: The simplest way to estimate the time to arrival is to

calculate the current speed and apply it to the distance that remains to the destination.



Distance can also easily be calculated by summing the distance intervals between iPoints

to the destination. Although, a user's average speed varies slightly, perhaps within 10

percent, the estimated time of arrival fluctuates a great deal whenever the distance to the

destination is large. Particularly when walking, the GPS precision error can easily range

from 20-30 meters, causing the speed of walking to vary more than 30 percent. This

results in a bad estimation of arrival time.

Another way to estimate time of arrival is to collect a user's interval of elapsed

time while the user is taking a particular route. This time interval can be collected every

time the user takes a particular route, and be applied to the previously stored average.

When user's transit speed pattern is regular, we can use this average to estimate the time,
and the result will be quite reasonable. If the ETA depends on the sum of remaining

interval time between iPoints, the ETA will shrink quickly as the user's speed increases

and he/she encounters iPoints at a more rapid rate. However, if the user changes his/her

means of transportation, such as switching from walking to bicycling or driving, the

estimated arrival time will not be correctly calculated.

Thus, in Contella, two factors are considered in calculating the estimated time of

arrival: a user's average transit time intervals (TTI) and his/her current speed. TTIs are

collected initially when a new route is constructed. This initial interval is used to

construct blocks of iPoints where the speed of transition is similar. For instance, one of

our Contella users takes a route with multiple kinds of transportation, including driving a

car, walking and riding the subway. The route length between the subject's home and

office is about 11.2 km. The subject drives his car for about 1.2 km from home to an

intermediate location. Then, he parks the car and depending on weather, he either walks

or bikes to the subway station 4 km away. From the station, he rides on the subway to his

office. According to the speed and circumstantial evidence from GPS reception, we can

divide his route into three blocks of different speed zones. If the average of the user's

current transit speed and the average speed within one block are within 30 percent, TTI

will be applied to estimate the time of arrival. If the user's current speed does not match

the average in the current speed zone, the average current speed will be used to calculate

the time until the end of the current zone, and the remaining blocks will estimate the time

of arrival using TTI. For example, when our subject decides to walk instead of taking his



bike, the speed of the walk will be applied to calculate the current block's ETA (Speed

zone 2), which ranges from where the subject's car is parked to where he takes the

subway. If this segmenting mechanism algorithm is not applied, all the remaining

distance is applied to walking speed, and more than 30 minutes are added to the actual

estimated time to the office; it takes about 25 minutes to travel from the station to the

office by subway, and more than an hour by walking.

Speed Zone 1: Speed Zone 2: Speed Zone 3:
Driving Car Walking Riding Subway

Figure 4.12. Dividing a route into speed zone blocks.

4.3.4 Abnormal Transit Detection

Based on the algorithm for destination prediction and estimation of time to arrival,

we can use the system to detect abnormalities such as i) deviation from average transition

time and ii) unusual destinations. As described in the previous section, the route

prediction algorithm simply returns the elapsed time from the departed location when it

fails to predict a destination. In other words, if the user's transit pattern does not match

the previously collected route templates, it fails to predict the destination and provides

facts about the user's current motion. This feature is used to detect whether the user is

still following the template or deviates from the template to infer abnormalities in transit

on the route.

However, if the system detects every route's transit abnormalities and alert the

user and their caregivers, it will begin to annoy them very quickly. Therefore limiting and

restricting the detection area is required.

In every route template, the user can specify whether the route is used for

detection. When user's traveling route matches the route template, the algorithm starts to



check if user is moving along the route at the expected pace and direction. Although the

tolerance delay of TTI (transit time intervals) is set to three times of normal transition

time interval by default, but users are allowed to change this through the Contella user

interface.

Contella provides three parameters for adjusting the detection sensitivity:

Minimum tolerable delay time (0 - 15 minutes), Maximum tolerable distance from route

(50 - 150 meters), and Minimum tolerable speed proportion (0 - 100 %).
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Figure 4.13 Screenshot of Risk Threshold

When the user specifies a route to be detected, the detection starts when it

confirms the user is on that route. For instance, we can consider two different routes with

two different destinations that have an overlapping section (see <Figure 4.13>).

-smmn f*sh ham ud 8:00 pm

om arwournd 10:0 m q

Figure 4.14 Overlapping routes

When the user walks along the overlapping section, the Contella prediction

system starts to calculate a probability value using the route transit count table and the



current time of day. Thus, although the user is on a route where the algorithm should

initiate a positive detection, the detection will be only be activated when the most

probable of the route and its destination matches the route to be detected. Because the

algorithm for detection is restricted to detect daily routines such as going to school, the

office, and home, this feature disambiguates the other routes from target routes to be

detected.

4.4 System Architecture

The architecture for "Where are you going" is designed to accommodate the

structuring of collected route data and the detection of route transition. In addition, there

is a communication component that supports the exchange of context information and the

remote access and manipulation of the slave phone's location-related properties.

4.4.1 Data Structures

The system is based on five databases, each respectively containing;

e Contact Information

" User Profiles

* Route intermediate points (iPoints)

* Route Data

* Cell-Tower Data

The user profile and contact information databases have similar data structures.

Both contain basic information about a person's name, phone number, the Bluetooth ID

of their phone device, its IP address and some other 'trust' information. The phone

owner's profile is stored in a single Java object called User Profile. Contella organizes

contact information in the contact database by way of a Java hash table. Both the profile

information and the contact information are used to make calls, or to send data over IP

(depending on the trust settings).



There are two classes of location information in the system: IntermediateData

(iPoint) and LocationData. IntermediateData is a parent class of LocationData, and an

iPoint class stores information about its ID, GPS coordinates, GPS reception accuracy,

RouteData IDs, and CeilTowerData IDs. The IDs of iPoints and other data objects in the

system are automatically obtained from the system based on the time of data creation.

User profile

String Name

Sting Phone

String Bluetooth ID

String IP

Figure 4.15 Data structure of Location Manager

Contact Information

String Name

Sring Phone

String Bluetooth ID

String P

Boolean Master

Boolean Slave

and contact list

Each iPoint stores all the information about a specific location. The iPoint contains

information of latitude/longitude, associated routes, and cell-tower IDs. Mutilple iPoints

are stored in the iPoint database. The database handles searching and storing iPoints.

LocationData inherits the data structure of iPoint but it also additionally stores the name

of the iPoint. LocationData stores the user's bookmarked locations, and multiple

locations are stored in the Location Database in the form of a Java Vector. LocationData

also contains its associated CeliTowerData IDs and RouteData IDs.

60



When a new cell tower is detected, a CellTowerData object is created. A

CellTowerData object contains an array of iPoint IDs whose location are associated with

this cell tower. The GPS API provides the location of the currently assisting cell tower,

and this information is used to index iPoints as described in the previous chapter.

CellTowerData objects are stored in the CellTower Database.

RouteData is composed of a unique ID, an array of iPoint IDs, start and end

points of LocationData IDs. In addition, it also contains a number of index arrays that

contain information about transit-time intervals (TTI) between iPoints, a timetable index

for recording route transit time of day, the distance between iPoints and speed zone

information. The iPoint array, timetable and TTI index array are persistent information

that are stored in memory but the distance and the speed zone arrays are dynamically

generated from the persistent information arrays. The iPoint array in the RouteData

object is used to search for adjacent iPoints as described in the previous section. The

system stores multiple RouteData objects in the Route Database.

4.4.2 System Component

Contella

Usr Contact
GPS Facto Information

Profile Database

Location Manager

Route Manager
Route Tranistion

Detector Route Database Communication

Handler

Location Cell Tower
Database iPoint Database Database

Risk-Meter

GUI Handler

Figure 4.16 Detailed System Diagram of Location Manager in Contella



The GPSFactory is a component that listens for and handles the GPS events that

come from the GPS receiver build into the Motorola i870 phone. The Motorola

proprietary Java API in the iDEN SDK provides the functionality for handling GPS.

GPSFactory checks for GPS events every five seconds and converts GPS information

into an IntermediateData (iPoint) object as requred.

The Location Manger is a core component of the system that handles incoming

iPoints. The Location Manager handles iPoints based on three different cases;

bookmarking, route training and route detecting.

In the case of bookmarking, the Location Manager converts the latest iPoint,

together with the current location's name (as labeled by the system user) into

LocationData. The LocationData is then stored in Location Database and its ID is

registered in the associated CellTowerData. If the currently detected cell tower is not

know to the system, the Location Manager creates a new CeilTowerData object, then

registers the location ID in the new CellTowerData object.

When the system collects route information, the Location Manager checks if the

user has left from a labeled location. When the user leaves from the location, the system

first stores the LocationData ID in the route as one of the end points in the RouteData,

and then it starts to collect iPoint data. While collecting iPoints, the system also collects

cell tower information and the interval transit time from the previous iPoint. When the

user arrives at a labeled location that is different from the departed location, the Location

Manager registers this location's LocationData ID as the other end point of RouteData.

However, currently collected iPoints are stored not in the iPoint Database but in a

temporary space until it finishes collecting routes. Because a route is collected only

between two different locations, the system postpones permanently storing the

information until it reaches a different location. Upon arrival at the different location,

iPoints are stored in iPoint Database. Then, the preserved order of collected iPoint IDs

are registered in RouteData with associated information such as the ITT and the timetable.
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Figure 4.17 Slave phone's perspective of processing alert and context messages

While moving, the Route Transition Detector is activated. The Route Transition

Detector handles the detection of nearby iPoints and the user direction of motion. The

Location Manager passes an iPoint to the Route Transition Detector which then searches

for any nearby iPoints in the iPoint Database. As we described in detail in the previous

section, the Route Transition Detector searches iPoints based on the previously detected

iPoint's RouteData IDs, and if the do not exist, it searches for iPoints associated with the

current cell tower information. When it detects an iPoint, it determines the relationship

with the previously found iPoint and computes the destination and ETA. Subsequently, it

generates a context message and sends it to all the Contella phones whose information is

stored in the Contact DB.
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Figure 4.18 Master phone's perspective of processing an alert message

If, the Route Transition Detector can't predict the destination and ETA time, it

means that either the user deviated from the route or the user stopped moving between

iPoints. In that situation, the system creates an alert message and sends it to any contact

who has been designated as a 'master'.

Contact
Information
Database



Chapter 5

Who is around you - Finding Contacts Around You.

This chapter explores how we can find someone who might be able to help our

loved ones when they are in need. It also looks at how we can successfully communicate

with these intermediate parties in a way that does not interfere with their privacy or

burden them with social pressure.

The goal of this part of the system is to provide a mechanism to cultivate social

activity by logging a user's communications, locations (via GPS) and nearby phones (via

Bluetooth) scanning. In addition, it provides a means to communicate with a third party

who is physically close to our distant family members, while minimizing the exposure of

the third party's privacy. The system also enables us to receive confirmation of whether

or not someone is available to help our distant loved ones at their physical location. If the

first person who is contacted is not available, we will then need to try to contact each

person suggested by the system (in turn) else until we eventually find someone who is

available and willing to help.

The following is a simple scenario that describes how the system could be used.

5.1 Scenario

James has an elderly father who lives alone in Philadelphia. Like most people

with concerns about their elderly parents, James worries about his father's health

problems. However, James lives in Chicago, far away from his father, and the only way

to check on his father's well being is through a phone call. James regularly calls his

father to see if he is OK.

One morning, James calls his father's home phone but his father doesn't answer.

Immediately, he dials his father's mobile phone, but his father still does not answer the

phone. James checks the GPS information on Contella to see where his father is.

Surprisingly, Contella tells James that his father is at home. James thinks it might be an

emergency situation and he uses Contella's "Emergency Contact" button to deliver a

message to someone who is living close by to his father, who can check in to make sure

his father is all right. Contella brings up a textbox that James can use to compose a



message. Contella initially provides a predefined message for James, which says: "Hello,

could you please check if my father Jeffrey is OK? My number is 617-253-xxxx. Thank

you. James Lee." James modifies the message, and presses 'send' in the hope that

someone who has a close relationship with his father will receive the message.

First, the message is sent to his father's retired co-worker, Phillip, who has visited

James' father's house before. Contella has found someone who has a recent history of

visiting James' father. However, Phillip is very busy at the moment and isn't able to act

on the request. He answers "No" by pressing the 'no' button. Immediately James receives

a message that the request was denied, but he doesn't know who denied the request as

this information is kept anonymous. He presses the retry button to send out the same

message that he composed to another contact.

The second message is sent to his father's new friend Fred, whom he met a few

months ago. Fred has spent time with James' father and has an idea of what James' father

might be doing at the moment. He is willing to help his friend's son out and he replies to

the emergency message by pressing "Yes" to the message. Immediately James gets a

"Yes" message, and he knows that someone will help him out. Soon, James receives a

phone call from Fred. Fred tells James that his father went out fishing early this morning

with some of his other new friends, and he probably forgot to take his mobile phone with

him. Thus Contella showed that he was still at home.

5.2 User Interface

The user interface described in this chapter mainly focuses on asynchronous text

messaging between caregivers and the social peers of their care-recipients through

Contella. The user of the master phone initiates the messaging by selecting "Emergency

Contact" in the contact's detailed screen as shown in Figure 5.1(b).
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Hello, could you please
check if Jaewoo Chung
is ok?
My contact is 617-253-
xxxx
Thank you.
Hye-Jin Kown

Figure 5.1(a) Detailed contact information, (b) Emergency Contact button,

(c) Automatically composed message

When a caregiver presses the "Emergency Contact" button (as shown in <Figure

5.1(b)>, a predefined message is automatically created using the caregiver's

identification information, as well as that of the currently selected contact, as shown in

Figure 5.1(c). Users are allowed to edit the message by using the keypad on their mobile

phones. In this screen, the user may press the "OK" button to send the message to the

care-recipient's peers. Alternatively, the user may press "Cancel" to abort this task. Some

trust must be established between the phones of the caregiver and the care-recipient in

order to access this functionality. As mentioned in previous chapters, in order for the

"Emergency Contact" option to be used (as a master phone application), the caregiver

must be set as 'master' in the care-recipient's slave phone, and the care-recipient must be

set as 'slave' in the caregiver's master phone.

In this service, there is no direct interaction between the caregivers and care-

recipients. The service is not trying to interact directly with the contact but rather with the

care-recipient's peer. This creates an indirect way, or even an alternative way, to

communicate with the target contact when his or her communication channel is

temporally unavailable.

The care-recipient's peers who have installed Contella on their phones will

receive a help request message. When the message arrives, it appears on the recipient's

phone along with an alert sound, as shown in Figure 5.2. Recipients have an option

either to accept the request by pressing "OK" or to deny it by pressing "NO".



Hello, could you please
check if jaewoo Chung
is ok?
IlyContact is 617-253-

XXXX
Thank you.
Hge- jin Kown

Figure 5.2 Received help request message

In response, the caregiver will receive one of two messages, depending on how

the care-recipient's peer chose to respond to the request. When the response from a peer

is positive, the caregiver will receive a message saying that the request has been accepted,

accompanied by a vibration and an alert sound from the phone, as shown in Figure 5.3(a).

However, if the peer's response is negative, the caregiver receives a message saying,

"Your request for help is denied", which is also coupled with a vibration and an alert

sound. However, when a caregiver receives this denial message, he/she also has an option

to retry the search for a new peer to contact.

Your request I Your request for
help is denied,

accpted.

(a) Screenshot of acceptance message, (b) Screenshot of denial message

Figure 5.3 Response messages of emergency contact message



5.3 Design consideration of the system.

5.3.1 Data logging and implicit information exchanges between phones.

This section describes issues concerning the collection of information about who

is physically proximate to users of the system. First, we searched for a way to collect

information about mobile phones that people carry all the time. Nathan Eagle, in his

Reality Mining project [16], used Bluetooth to detect other personal mobile devices close

by that were also equipped with Bluetooth. Eagle used this information to derive social

networks among groups of people. Short-range Bluetooth scans distances up to

approximately 10 meters and is able to identify other nearby Bluetooth devices. It can

also access the Bluetooth IDs of the devices it finds. Although this method is very useful

for logging information about nearby social peers, Bluetooth scanning only provides

information about proximate Bluetooth IDs. Given only this information, we cannot

necessarily identify the owner of each device. Thus, we are still left with the problem of

collecting additional information about each device in order to identify its owner.

To solve this problem, we used a similar approach, but took things one step

further. In our method, we not only scan for proximate Bluetooth devices, but we also

identify what kinds of services are available in each detected device in order to find

phones with Contella installed. Bluetooth uses UUID to identify services and applications

installed on phones. UUID is a Java class that represents an immutable universally unique

identifier that is composed of a 128-bit value. The Bluetooth API in JSR-82 allows us to

assign a service or an application with a UUID. This assigned UUID identifies existing

services running on mobile phones.

Contella employs two phase-detection, device level and service level, for

scanning Bluetooth devices. After Contella detects proximate devices, it executes an

additional search for the UUID to see if Contella is running on each detected device.

When a matching UUID is found, Contella attempts to exchange contact information

with the other phones also running Contella. Contact information for a phone includes its

IP address and phone number. This implicitly exchanged information is not accessible to



the owner of a Contella phone but it is used to send emergency contact messages when

necessary.

In addition to Bluetooth IDs, location information is also collected by Contella.

As described in the scenario in Chapters 5 and 6, location awareness helps a caregiver to

assess the safety of his or her remote dependents. Consequently, the system not only

keeps a log of proximate phones, but it also stores the location at which two Contella

phones come within range of each other. In a situation in which we know where our

loved ones are, such as at home, we may also want to find out who else is nearby.

Additionally, we may want to find out if anyone else has recently visited this location.

We can look at the saved time information in the system to infer who is likely to be near

our loved ones at different times during the day.

The collected logs are divided into two groups: logs of those who are already in

Contella's contact list, and logs of those whose information is unknown to Contella. The

system keeps this information in two lists: a contact database for known people, and an

internal contact database for unknown people. This internal contact list is hidden from

users and the information on it is available to the phone's owner only when the owner

explicitly adds someone from this list onto his contact list; then the internal information

will be added into Contella's contact list as well. In addition, this internal contact list is

additionally used in finding contact process.

5.3.2 Search Process

Based on Contella's phone book, the system indexes each contact's log

information in the form of a table. This helps Contella have a more efficient search

process. Bookmarked locations form one axis of the table and time windows (each an

hour in length) constitute the other axis. Therefore each cell of the table will contain the

number of instances of when the phone was in a particular location at a particular time.

On the other hand, for each of the logs that were not collected at any of the bookmarked

locations, only the total number of Bluetooth scan detections is considered. This number

conveys how often a contact has been within range of a phone's owner.



In addition to this location-time table, when a master phone makes a request for

an emergency contact, the system considers phone logs, as well as the current distance

between a contact and the system's user, in order to find an appropriate contact. The

process of searching for a contact is described as follows: First, Contella identifies the

user's current location through GPS. If the user is at any bookmarked location, the system

looks up this location in the location-time table for each contact to determine the

likelihood of any of the user's contacts being in the same location at the same time. If the

user's current location is not bookmarked, then this procedure is skipped.

Second, the system calculates which contacts have spent the most time with the

user by looking at which contacts have the greatest number of Bluetooth detection scans.

Third, the number of Bluetooth detection scans is added to sort the contacts in a list.

Finally, Contella chooses ten people who have the highest sum, and sends out GPS

coordinates to the contacts. After the distance from the user to each of the contacts is

returned, Contella chooses the nearest person to send the emergency message to.

Although the algorithm to search for an emergency contact is carefully designed

to maximize the probability of getting help, it is inconclusive whether this would actually

work in a real-world situation. It is highly difficult to apply this algorithm to all kinds of

different situations, without large-scale and long-term user studies with the system.

However, the purpose of this algorithm is not to optimize the search process for finding a

person for every situation, but rather to find any contact that would at least have

"relevance" to the system user. The major emphasis of this system is to enable

communication to confirm one's willingness to offer help in a potential emergency

situation.

5.4 Communication process between Master phone and Slave phone.

In order for the system to be successful, three conditions should be satisfied: i)

The system should be able to find people physically proximate to our dependents who are

in need, ii) The system should hide from the requester the contact information of the

peers of our dependents so that they will not feel any social pressure affecting their



decision to accept the request to help. iii) The system should establish communication

with our dependent's peers in order to get confirmation of whether the peers will accept

or deny the caregiver's request for help. We have already described an approach to

solving part of the first constraint. In this section, we discuss design issues related to the

second and third constraints.

There are two possibilities for communication with the contacts who are

identified as possibly being able to provide help. The first is that when a master phone

commands a slave phones to search for possible contacts, the slave phone would send all

the search results back to the master phone. (To take this approach one step further, a

master phone could even request a slave phone to return all of its logs so that a caregiver

could identify a possible contact him or herself). One advantage of this approach is that

caregivers would have access to the contact information of their dependents' peers, and

could choose to call a peer directly to obtain confirmation about whether they could help.

However, this violates one of our design constraints; the privacy of our dependents' peers

is exposed without permission.

The second possibility is to allow the slave phone itself to send the caregiver's

composed help request message directly to the dependents' peers. This approach protects

the privacy of the dependents and their peers, but still successfully forwards the help

request message to the dependents' peers. In addition, this method provides a negotiation

process in the message by giving the message recipient the option to accept or deny a

request from caregivers. This negotiation is necessary so that caregivers can find other

contacts when they get a denial of their request.

In this second case, the message is not sent directly from the caregiver.

Additionally, the information about the message's recipient is made anonymous to the

caregiver by allowing the slave phone to choose who the recipient will be. This results in

the response to the request being a voluntary effort, such that the message's recipient can

be impartial in his/her response to the request. This creates an environment in which

people can make requests without putting social pressure on the recipients, and thereby,

not affects their decision on how to respond to the request. Also, the requester is not a

total stranger but rather, a peer's caregiver, who is requesting help for someone that the



recipient presumably knows and cares about. As mentioned earlier, we intended to design

a service that would create a communication channel between two people to allow mutual

voluntarily help.

5.5 System Architecture

The system "Who is around you" in Contella consists of data structures for

collected logs, a process for data mining, and Bluetooth communication. The log

manager is the main component of the system; it handles log collection and data analysis

to enable searching contacts from collected logs. The log manager consists of two main

data structures: Bluetooth Log Data and Call Log Data.

5.5.1 Data Structure

Call Log Data is a simple data collection that records every incident of a phone

call in a mobile phone. Motorola provides a J2ME SDK API for accessing call logs

stored in Motorola iDEN phones. In addition, the API provides a listener that listens to

updates in recent call data. This call event listener allows us to keep track of call events in

real-time and to store our own log data beyond the allowed limit of phone call logs. Call

Log Data contains a phone number, time and duration of each phone call, and a Boolean

variable for identifying calls as either incoming or outgoing. Each record of Call Log

Data is stored in the Call Log Database.
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Figure 5.4 Data Structure of Log Manager

Bluetooth Log Data consists of a table object, ID, and Bluetooth Scanned

Frequency. For each contact in Contella's phone book, a Bluetooth Log Data entry is

created. When a Bluetooth Log Data entry is created, its ID corresponds to the contact's

Bluetooth ID. Whenever the system performs a Bluetooth scan and finds a match with

any contact's Bluetooth ID, the Log Manager increments the Bluetooth Scanned

Frequency.

A table object in the Bluetooth Log Data is a two-dimensional table that consists

of a location axis and a time axis. The location axis is comprised of Contella's labeled

places that are stored in the LocationData object. When a table is created, the Log

Manager refers to all the Location IDs stored in the Location Database and creates a table

row for each location. Whenever there is a change in the Location Database, such as

adding or deleting a location, the table is updated.

1 2 3 Type 21 22 23

Cell Data Type: Integer

Bluetooth Log Data

String ID

Integer BT Scanned Freqency

Time Slot (24 hours, 0-23)

23



The table 24 fixed columns, each corresponding to one-hour intervals of time in a

day. Whenever a detected Bluetooth ID matches with a contact's Bluetooth ID while both

phones are in a labeled place, it increments a number in the cell that matches both the

current location ID and time of day. This table is used to track the Bluetooth detection

frequencies of people who are co-located with Contella's owner in any labeled place.

5.5.2 Log Handler

The Log Handler consists of two process components: the Log Scanner and the

Log Collector. The Log Collector organizes logs created from events such as recent calls,

GPS positioning, and Bluetooth scanning. The Log Scanner searches for contacts using

the Call log Database and the Bluetooth log Database.

Contella

Contact User
GPS Factory Information Profile

Database

Location Manager Log Handler

Log Scanner
Location Database

Log Collector

Location-Time
Table Datatabse

Risk-Meter

Phone Log
Database

UDP
Communication

Hanler

Bluetooth
Communication

Handler

Bluetoot
Scanner

GUI Handler

Figure 5.5 System components for service "Who you are around"



The Log collector requests the Bluetooth Communication Handler to scan for

proximate devices every five minutes. Whenever the Bluetooth Scanner returns scanned

IDs to the Log Handler, the Log Collector then searches for any matching IDs between

those it has just detected and those saved in the contact list. If it finds any matches, it

updates the corresponding Bluetooth Log Data. In addition, the Log Collector tracks

every incoming and outgoing call event and records this information in the Call Log

Data.

Whenever Contella requests emergency contacts, which is initiated by care-givers

through the master phones, the Log Scanner first checks the most recently detected GPS

coordinates from the Location Manager to see if the coordinates are within a range of 100

meters from any bookmarked place. Depending on what it finds, it accesses the Bluetooth

Log Database and the Call Log Database to gather information for conducting a search.

After finding candidates, the Log Scanner accesses the candidates' IP addresses from the

Contact Database, and sends out GPS coordinates to the candidates' Contella phones

through the UDP Communication Handler

When Contella receives this request from a fellow Contella phone, the message is

forwarded to the Log Handler. The Log Handler checks if the requester is in the contact

list. If it finds the requester in the database, it computes the distance to the other Contella

phone's location and sends the distance information back to the requester. If it does not

find the requester in Contact Database, it discards the request.

5.5.3 Bluetooth Communication Handler

The Bluetooth Communication Handler handles the scanning of proximate

Bluetooth devices as well as Bluetooth services which reside on the detected devices. In

addition, using Bluetooth's L2CAP' Iprotocol, we were able to establish a communication

connection between other Bluetooth devices without pairing them. This allows Contella

phones to spontaneously exchange information without any involvement of the devices'

" L2CAP, Logical Link Control and Adaptation Protocol is used within the Bluetooth protocol stack. L2CAP is
layered over the Baseband Protocol and resides in the data link layer. L2CAP provides connection-oriented and
connectionless data services to upper layer protocols with protocol multiplexing capability, segmentation and
reassembly operation, and group abstractions.



users. We used a fixed 512 byte size packet in L2CAP for sending and receiving encoded

text messages.

The following diagram depicts the control flow of scanning and exchanging

messages between Bluetooth devices using the L2CAP protocol. When the Log Collector

requests for the Bluetooth Communication Handler to scan for proximate devices, the

handler conducts a search in two phases. First, it begins to search for proximate devices

and determines whether each device is known to the system. If the device is known, it

sends the scanned log information to the Log Collector. If the device is not known, it

stores the detected information in a temporary cache.

First phase for detecting
Bluetooth devices

Figure 5.6 Bluetooth Handler's communication and Bluetooth scan flow



When the device search is finished, the Bluetooth Communication Handler begins the

second phase, in which it searches for Contella services on the detected devices stored in

the temporary cache. The procedure of searching for these services is shown in the blue

block of Figure 5.6. For each detected device in the cache, the Bluetooth Communication

Handler searches for a Contella UUID, which is assigned in every Contella phone. When

it finds a UUID, it means that another Contella phone was found, and it tries to open a

socket via L2CAP to exchange data with this phone. After the completion of the data

exchange, the received data is sent to the Log Collector.



Chapter 6

Evaluation

This chapter describes some evaluation on the three major components of the

system: "Where are you", "Where are you going", "Who is around you".

6.1 Where are you - Risk-Meter

To properly evaluate the system Risk-Meter, it requires the measuring of users'

perception of risk and a comparison with the Risk-Meter's risk measurements. Such an

experiment would require a large number of subjects in different locations for long

periods of time. Also, in order to get truly valuable feedback from the users, it is

desirable to consider subjects with a lot of experience and knowledge about crime

incidents and tendencies in their neighborhood. Instead, we decided to interview a few

people who have good knowledge about security and safety around the MIT campus area.

For the evaluation of the Risk-Meter, we interviewed three people who work in

the area of safety and security (either professionally or voluntarily). For each subject, we

first explained the purpose of the risk-meter and explained how the system works. This

took about 10 minutes. Then, we let them use the application around the MIT campus for

a few hours. After the use of the application, we interviewed each subject to get their

feedback and comments.

The profiles of the interviewees were as follows:

* Subject 1 - The organizer and student member of the MIT Crime club (male).

" Subject 2 -President of Student-Alumni Committee on Institutional Security

Policy (male).

" Subject 3 - An MIT Police sergeant from the crime prevention department

(female).

Generally, the purpose of the Risk-Meter was well understood by all three

subjects, and they were enthusiastic to experience the application. Subject 1 expressed his



initial response to the application; "it is very exciting to see such an application." One of

the subjects explained that the first step of crime prevention is awareness of crimes, and

he thought that this "handy device that shows statistics of crime is very useful for

students in the campus". Subject ] and 2 pointed out that the broad use of the application

will expedite the process of modernizing the police report system by coupling GPS

information as the location where the crime occurred. Also, they all liked the red bar

graphs which allowed them to see the result by just glancing at the screen for a brief

moment. They also thought this bar graph was very intuitive. When we asked what the

bar graph might mean, they were each able to correctly explain what it depicted.

After they walked around the campus, they expressed their understanding that the

Risk Meter was showing information relevant to their proximate surroundings. For

example, when Subject ] reached student center, a place where a lots of bikes and laptops

are stolen, the bar graph jumped up a bit. They liked the fact that the phone knew where

they were so that they did not need to input their location into the phone. Around 6 pm,

the measurement for "car's" risk reached at its peak, and slowly decreased over a 2 hour

period. Subject 2 closely observed this, and appreciated the fact that the measurement of

the risk reflects the time of day. He explained that he feels this information to be more

vivid than what we can get from crime-log applications on desktop computers. He said he

will remember this fact much better than what he learned on his desktop computer.

They also pointed out that there are flaws in the system. For example, when

Subject 3 was around the student center at 9:30 pm on Wednesday, the Risk Meter

showed low risk on the item "laptop". She said "this is not true." She pointed out that

although the total number of stolen laptops is small, the human traffic in the student

center is quite low at that hour. The risk has to consider the fact that sparsely populated

areas can be less safe. Subject 2 pointed out that although risk is low, this does not mean

there will be no crime, so it is important to let users know this does not mean people and

their property are "Safe." All the subjects were concerned about the possibility that users

may interpret this information to measure safety instead of risk. They each asked for an

explanation to be inserted into the system to avoid users having a sense of false safety.

Another potential problem of Risk-Meter is that it measures risk based on police-

logs. However, if there is some amount of crime log data missing in from a certain



location, the subjects pointed out that they felt people would lose confidence in the Risk-

Meter and would stop using it. In fact, Subject 1 discovered a hole while he walked along

Vassar Street, around the football field. The Risk-Meter showed no information around

this area. This problem is due to the fact that the police log information is based on

building addresses. When an address is converted into GPS coordinates, the crime

incidents associated with any given building will cluster on a single point. Although

police keep detailed crime incident information internally, the only available locations for

us to use are the building addresses. However, when we presented the problem of crime-

logs that only keep addresses of buildings to Subject 3, she understood the issue and

promised future collaboration with us. She said she would try to provide more detailed

crime-logs in the future.

Finally, they commented about the additional features that they wanted to see

added to the Risk-Meter. One of subjects wants to implement a function that allows users

to bookmark where their cars or bikes are parked. Then, the Risk-Meter will alert user

when the risk of their property at the parked location reaches certain threshold. Subject 2

wanted to see the most recent crimes for each type of item, for instance, "three robberies

occurred here in the last seven days". Subject 3 wanted to build some sort of

authorization into the system so that criminals cannot use this information against people.

Overall, although the Risk-Meter needs some improvements, the idea of using

crime-logs in combination with location based information retrieval was well received by

the subjects. All the subjects want to see the system used by students very soon. In fact,

the system will be introduced to incoming students in the Fall 2006 semester.



6.2 Where are you going - Route Detection

In this section, we evaluated the core algorithm for route detection in the system.

The evaluation experiment had five people participants, one female and four males. The

purpose of the experiment was to test the route detection algorithm and measure its

performance in terms of i) how well the system learns about routes, ii) how well the

system detects and predicts users' route transit behaviors, and iii) how well the system

detects abnormalities in the transition.

First, each participant set the Contella to be in training mode in order to collect

route information, then they each traveled on his/her own route at his/her own pace. They

each made several round trips on their assigned routes. As an observer, we followed their

trace of travel and checked their behaviors. Before they were traveling on their routes, we

asked them to intentionally stop, or reduce their speed of travel. Also we asked them to

deviate from their routes to see if the system detected these aberrations. Their

transportation methods varied from walking to bicycling to driving. The length of the

routes also varied from 759m to 3.6 km, and the elapsed time of the travel on a one-way

trip varied from five to 11 minutes. At the end of the experiment, the participants

generated a total of six routes and traveled on these routes a total of 30 times. The

condition and transportation method of each route is described as follows:

Table 6.1 Route information in the experiments

Route ID Length Duration Transportation Road condition

Route 1 1.0 km 11 minutes Walking One end of the route is surrounded by tall buildings, and
this trend continues along the route for 70 meters. The rest
of the route passes through a residential area, which has
one- or two- story buildings and very few trees along the
path. The width of the road is about 35 meters.

Route 2 759 m 5 minutes Walking The most of the path is surrounded with medium sized
buildings (about 5 stories high) and dense trees along the
side walks. The width of the road is about 30 meters

Route 3 769 m 7 minutes Walking No major obstacles are found along the path. The width of
the road is about 50 meters.

Route 4 1.4 Km 5 minutes Bicycling Half of the route is covered with dense buildings. The
diameter of the first rout is about 20 meters. The second
half of the route has no major obstacles and the width of the
rout is 40 meters.

Route 5 1.9 Km 6 minutes Bicycling No major obstacles are found around the path. One traffic
light is found on the route. The width of the road is about 55
meters.

Route 6 3.6 Km 7 minutes Driving Buildings along the road are about 5 stories high, and, in
average, 3 lanes for each side of the road. Seven traffic
signal lights are found on the road.



Six different aspects of the measurements are considered to evaluate the

algorithm. For the most part, the performance of the route detection/prediction and the

detection of abnormalities which occur in route transit are measured. The following

listings are six measurements that were taken from all the routes in this experiment.

" Distance between iPoints (intermediate points).
" Elapsed time between iPoints.
" Percentage of iPoint detections made on a route travel.
* Difference of each predicted time and actual time it took to travel on a

route.
" The average time of detection of a delay on a route.
" The average time and distance to detect a deviation from a route.

Distance between iPoints:

The algorithm is set to collect an iPoints every 50 meters. However, the data from

the experiment showed that there was an increase in the distance between iPoints as a

user's travel speed increased.

Route ID Length Duration Transportation Average Distance
Route 1 1.0 km 11 minutes Walking 64 m
Route 2 759 m 5 minutes Walking 69 m
Route 3 769 m 7 minutes Walking 69 m
Route 4 1.4 km 5 minutes Bicycling 66 m
Route 5 1.9 km 6 minutes Bicycling 86 m
Route 6 3.6 km 7 minutes Driving 278 m

Table 6.2 Distance between iPoints

As shown in the Table 6.2, as the speed increased, the length of the distances

between iPoints also increased as well. However, not only the speed of travel but also

static obstacles, such as tall buildings and trees, prevent the system from collecting

iPoints.

Although the average distance between iPoints was about 20% greater than 50

meters, if each distance between iPoints is considered, as shown in the Figure 6.1, most

of the distances between iPoints were, in fact, close to 50 meters.
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- 50 meter
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Figure 6.1 Distances between iPoints on Route 1 and Route 5.
The red lines across the bars indicate 50 meter threshold.

The Figure 6.1 compares the distances between iPoints on Route 1 and Route 5.

The blue bars in the figure indicate the distances between adjacent iPoints along the

route. Route 1 has an average iPoint distance of 64 meters and Route 5 has an average

distance of 86 meters. Although the average distance difference is more than 30 meters

for Route 5 and 16 meters for Route 1, for 90% of the times, the system correctly

collected both routes at every 50 meters. From this we can conclude that the most of the

time, the system is correctly collecting iPoints at every 50 meters.

Elapsed time between iPoints:

The traveled-time interval (or TTI) between iPoints varies based on the speed of

travel. Intuitively, as speed increased, the TTI decreased between iPoints. In order to

accurately predict the estimated time of arrival at the destination, the system is required

to detect one iPoints per minute. If the system fails to detect an iPoint within a minute,

the algorithm stops predicting and provides facts about the departed location and elapsed

time since the departure. Thus, ideally, the TTI should be less than one minute.



Route ID Length Duration Transportation TTI
Route 1 1.0 km 11 minutes Walking 41 second

Route 2 759 m 5 minutes Walking 29 second

Route 3 769 m 7 minutes Walking 37 second

Route 4 1.4 Km 5 minutes Bicycling 14 second

Route 5 1.9 Km 6 minutes Bicycling 17 second

Route 6 3.6 Km 7 minutes Driving 33 second

Table 6.3 Traveled-Time Interval between iPoints

As shown in Table 6.3, the data from the experiment showed that all the routes

had less than one minute of TTI (mostly around 30 second) between the detection of

iPoints. In fact, the distance between iPoints is designed to get at least two predictions

per minute at normal walking speed. Figure 6.2 compares the TTI of Route 4 and Route

6.

30 second

Route 4

60 second

30 second

Route 6

Figure 6.2 TTI between iPoints on Route 4 and Route 5.

As shown in the Figure 6.2, the TTI of the Route 4 is well below 30 seconds, and

at the very least, the algorithm can make two predictions in a minute. On the other hand,

the participant traveled on the Route 6 by driving. In the case of that route, the TTI at the

11 iPoint is over 60 seconds. Consequently, when the user travels between the this

1 2 3 4 5 6 7 8 9 10 11 12 13



iPoint, and the next one, the system will not be able to make a prediction fast enough

before the user reaches the next iPoints.

Despite the fact that the average distance between iPoints is 278 meters in the

Route 6, the system is expected to adequately predict the destination and estimate time

more than 92 % of the time for the drive along the route because most of the TTIs were

less than a minute. This result also confirms that the system effectively collects and

generates the route templates for the prediction and detection of the route along which the

users are traveling.

Percentage of iPoint detections made while traveling on a route:

After collecting route information and generating routes templates by the system,

each participant made a return trip on the same route to see if the system successfully

detected the route. The following Table 6.4, which shows the percentage of successful

iPoint detection, is calculated based on all the trips made along the route where the

iPoints were collected by the system.

Route ID Length Duration Transportation Number of iPoints Detection Road
_____________ Diameter

Route 1 1.0 km 1 Iminutes Walking 17 96% 35 m
Route 2 759 m 5 minutes Walking 12 97% 30 m
Route 3 769 m 7 minutes Walking 12 89% 45 m

Route 4 1.4 km 5 minutes Bicycling 22 86% 40 m

Route 5 1.9 km 6 minutes Bicycling 24 93% 45 m

Route 6 3.6 km 7 minutes Driving 14 98% 40 m

Table 6.4 Percentages of iPoint detection on each route on the same route.

As shown in Table 6.4, the total iPoint detection average is over 93 %. The routes

that have detection average below 90% are the Route 3 and Route 4. However if we

consider the fact that the participants took the opposite side of street or sidewalk while

they are traveling on the return trip at least once, the detection rate is higher than the

result showed in the table. The width of the street on Route 3 and Route 4 are 40 and 45

meters respectively such that the other side of the street is out of the detection range (the

system considers iPoints detected within 35 meters). Consequently, the system failed to

detect any iPoints on Route 3 when the participant made a trip on the opposite side of the

street. The major portion of detection failed on Route 3 was due to this problem and if the

failure is ignored, the percentage of iPoint detection is increased to 97 %. Route 4 has a



similar, and if only the walking on one side of the street is considered, the detection

percentage is also increased to be greater than 90%.

The Route 6 has the highest percentage of detecting iPoints in the Table 6.4. We

presume that this is due to the fact that cars are driving relatively in the middle of the

road, while pedestrians are walking along the sides of the road where trees and building

walls may be an obstacle for getting GPS fixes from satellites. However, we do not have

enough experiments that involve driving to confirm this hypothesis All in all, the overall

detection rate of the iPoints is over 93 %, and is adequately detected iPoints on both sides

of the streets when the width is less than 40 meters.

Difference between each predicted time and actual time it took:

The difference between the actual time of arrival and the predicted time of arrival

can be used to measure the performance of the route detection system. The prediction of

arrival time is computed based on the route templates. We compared the predicted time

of arrival with the actual arrival time on each routes.

Route ID Length Duration Transportation Number of iPoints Average deviation in minutes

Route 1 1.0 km 11 minutes Walking 17 0.53 minute

Route 2 759 m 5 minutes Walking 12 0.45 minute

Route 3 769 m 7 minutes Walking 12 0.22 minute

Route 4 1.4 km 5 minutes Bicycling 22 0.19 minute

Route 5 1.9 km 6 minutes Bicycling 24 0.73 minute

Route 6 3.6 km 7 minutes Driving 14 0.69 minute

Table 6.5 Average deviation between predicted time and actual time to arrival.

As seen in Table 6.5, the overall average deviation of the actual arrival time from

the prediction time was less than a minute. Thus, the average prediction error is within a

minute and the results show that the system has a very accurate prediction performance.

The experiment showed errors at a maximum of 2 minutes off from the actual arrival

time in a few trips, but this maximum error was only seen 6 times out of 91 prediction

incidents.



The average time of detecting a delay on a route:

While participants were traveling on routes, they were asked to stop or reduce

their transit speed deliberately to see if the system could detect this behavior. By default,

the system is set to detect a two-minute delay between one iPoint and another. If a user

travels between two iPoints and does not reach the second iPoint within two minutes, the

system begins to alert the user with sound and vibration. In addition, the system detects

the average speed of the user; by default, the system tolerates 50% of a speed reduction.

For example, if the user is traveling at less than the half of the normal speed which is

based on the previously collected route template, (or in other words, the user did not

reach to another iPoints within the twice time of the normal TTI,) the system alerts the

user. Users are allowed to adjust these parameters on the application on their phones.

In order to increase the detection of delays but not to be affected by detections of

route deviation, the tolerable route deviation parameter it increased to 500 meters. This

ensures that system will only detect any delays between iPoints.

Route ID Length Duration Transportation Number of attempt Success of Average time of
detection detection

Route 1 1.0 km 11 minutes Walking 3 3 2.3 mm

Route 2 759 m 5 minutes Walking 4 4 2.1 min

Route 3 769 m 7 minutes Walking 3 3 2.4 min

Route 4 1.4 km 5 minutes Bicycling 2 2 2.3 min

Route 5 1.9 km 6 minutes Bicycling 2 2 2.1 min

Route 6 3.6 km 7 minutes Driving 1 1 2.1 min

Table 6.6 The average time of detecting a delay on a route

As shown in Table 6.6 the system successfully detected any delays in the transit

along the routes. All delays were detected by the system and the average time of

detection was within 2.5 minutes. However, although all the delays were detected, a

couple of detections did not match with a user's transit behavior. For instance, one

participant stopped in the middle of traveling on the Route 3. The expectation that the

system would detect this delay is within 2 minutes. However, the system did not detect

this behavior, and instead, the system changed the participant's predicted direction back

to the location they departed from. This problem is occurred because of GPS precision

errors. The system collects GPS coordinates every 50 meters and the iPoint detection area



within a 35 meters radius. When the GPS precision accuracy is poor while initially

collecting the route data, and the current GPS accuracy is also poor, there is a chance that

the system will see an iPoint that the user already passed. This will result in changing of

the destination prediction, and consequently the system will think that the user is still

moving even when he has stopped. Although this error was found only once in this

experiment, this error can be prevented in the future by either increasing the interval

(currently every 50 meters) at which GPS route data is collected, or decreasing the iPoint

detection radius to be smaller than 35 meters. In our observed instance of this, the system

later detected the fact that the participant had delayed moving.

The average time and distance of detecting a deviation from a route:

In order to conduct the experiment to detect only the deviation only from the

known routes, the delay parameters were set to allow maximum tolerance in the

algorithm (tolerance delay: 10 min, tolerance speed: 10%). The tolerance deviation

distance was also restricted to 100 meters. If a user deviates more than 100 meters from

the last detected iPoint, the system makes an alert. The participants were asked to deviate

from their routes during the experiment. After the system detected their deviations and

made an alert, the participants returned to the route where they had left it to see if the

alert was terminated.

Route ID Length Duration Transportation Number of attempt Success of Average time of
detection detection

Route 1 1.0 km 11 minutes Walking 2 2 1.5 min

Route 2 759 m 5 minutes Walking 2 2 1.1 min
Route 3 769 m 7 minutes Walking 2 2 58 sec
Route 4 1.4 km 5 minutes Bicycling 4 4 32 sec
Route 5 1.9 km 6 minutes Bicycling 3 3 28 sec.
Route 6 3.6 km 7 minutes Driving 2 2 35 sec.

Table 6.7 The average time of detecting a deviation from the known routes

As expected, all the deviations from known routes were successfully detected. As

presented in the previous result such that the system robustly of detected iPoints, the

detection algorithm also showed the satisfying performance in this experiment. The time

it took to detect deviations varied because of the travel speed of the participants. The



average of detection time was about one minute when the participants were walking,

while the average detection time for moving by car or bicycle was about 30 seconds.

One potential problem was found, which could be easily fixed by modifying the

detection algorithm. If the distance between the currently detected iPoint and the next

adjacent one exceed a certain distance, about 250 meters for example, the system will not

make an alert until the user deviates from the most recently detected iPoint for more than

250 meters. In order to fix this problem, the system needs to calculate the both distances

from the most recently detected iPoint and next anticipated adjacent iPoint. If the user is

on a know path and progresses toward the destination, the distance from the previously

detected iPoint gradually gets larger as the distance from the next expected iPoint

decreases. Therefore, checking the both distances enhances the detection of whether the

user is actually on the track or off the track.

All in all, the performance of the route detection algorithm in the experiment

showed that the system collects route information effectively, and also generates route

template that detects routes with more than 92 % precision. In addition, its predictions of

estimated arrival times are made within an error range of 0.6 minutes on average. The

system detected abnormal transit patterns with 100% accuracy with a few minor errors.



6.3 Who is around you - Finding contacts.

In order to evaluate the system for its ability to find contacts properly, it is

desirable to let users experience using the system for long periods of time in their daily

lives to see how they actually interact with other people and how the system gathers

information to make inferences about their social relationships. However, given our

limited resources and time, we decided to conduct a small scripted experiment that would

help to evaluate the system to see if i) the sensors adequately reflected the actual

activities of people, and if ii) the algorithm for finding contacts worked in the way that

we predicted. We created a scripted scenario involving three different personas: an office

mate, a co-worker, and a close friend who also works at the same office. The experiment

was designed to evaluate the core algorithm for finding social peers. Each participant in

the experiment was assigned to one of the three personas we created. The personas are

described as follows:

* Contella user: the key user in the experiment. The experiment is

conducted from the point of view of this Contella user. The user's phone

will try to find social peers based on the activities between this user and

his peers detected through Bluetooth, phone, and GPS logs.

* Peer 1: a friend and officemate of the Contella user who has a social

relationship with him both in and out of the office. They often call each

other on the phone.

" Peer 2: an officemate who spends as much time in the office as Peer 1.

However, the Contella user and Peer 2 do not have any social relationship

other than their interaction in the office. They don't call each other on the

phone.

" Peer 3: a work buddy who works in the same building as the Contella user

and who exchanges phone calls with him for work-related purposes. At

times, they also talk to each other in person.



Each user was provided with a phone installed with Contella, and told to carry the

phone with them wherever they went. During the experiment, they also made efforts to

co-locate at certain hours. In addition, they called each other on the phone in order to

create social activities between the peers in accordance with their specified personas.

The following table describes the location and phone activities of each participant

during the experiment:

Time Location Co-located peers Phone calls

9:30am Home Contella user, Peer 3 - twice
Peer 1

10:00am Office Contella user,
Peer 1, Peer 2

10:30pm Office Contella user, Peer 3 - once
Peer 1, Peer 2

11:00pm Office Contella user, Peer 1 - once
Peer 2

11:30pm Office Contella user,
Peer 1, Peer 2

12:00pm Cafeteria Contella user, Peer 1 - once
Peer 3

Table 6.8 Activities of each participant

To summarize the table, Peer 1 and Peer 2 were co-located for 2.5 hours, and

Peer 3 was co-located with Contella user for half an hour. While the participants were

co-located, Contella logged the scanned BTIDs, GPS coordinates, phone calls, and

associated timestamps into the system. In addition, the Contella user made phone calls to

his peers, except for Peer 2. He exchanged a total of three calls with Peer 3, and with

Peer 1, he exchanged two phone calls during the experiment.

Our hypothesis in this experiment is that the algorithm would select Peer 1 first when

looking for a contact because Peer 1 was most frequently co-located with the Contella

user, and Peer 1 was also involved in 40% of the Contella user's total number of phone

calls. To support this hypothesis, the sensors for detecting proximate Bluetooth IDs and

location would also have to adequately reflect the actual activities of each of the

participants. The following table is the Bluetooth-scanned Location-Time table

containing an actual data set collected from this experiment. During the experiment, a



Bluetooth scan was activated every 3 minutes (which therefore scanned 20 times per

hour).

<User 1> Percentage that User l's phone was detected by Bluetooth = 45 % (37)

Location 9:00 - 10:00 am 10:00 - 11:00 am 11:00 -12:00 am 12:00 am- 1:00 pm

Office 0%(0) 70% (14) 55% (11) 15%(3)

Park 5%(1) 0%(0) 0%(0) 0%(0)

Supermarket 0% (0) 0% (0) 0% (0) 0% (0)

Cafeteria 0% (0) 0% (0) 0% (0) 0% (0)

Home 10% (2) 0% (0) 0% (0) 0% (0)

<User 2> Percentage that User 2's phone was detected by Bluetooth = 44 % (36)

Location 9:00 -10:00 am 10:00 -11:00 am 11:00 -12:00 am 12:00 am- 1:00 pm

Office 5%(1) 65%(13) 100%(20) 10%(2)

Park 0% (0) 0% (0) 0% (0) 0% (0)

Supermarket 0% (0) 0% (0) 0% (0) 0% (0)

Cafeteria 0% (0) 0% (0) 0% (0) 0% (0)

Home 0% (0) 0% (0) 0% (0) 0% (0)

<User 3 Percentage that User 3's phone was detected by Bluetooth = 11 % (9)

Location 9:00 -10:00 am 10:00 - 11:00 am 11:00 -12:00 am 12:00 am- 1:00 pm

Office 0% (0) 0% (0) 0% (0) 0% (0)

Park 0% (0) 0% (0) 0% (0) 0% (0)

Supermarket 0% (0) 0% (0) 0% (0) 0% (0)

Cafeteria 0% (0) 0% (0) 0% (0) 45% (9)

Home 0% (0) 0% (0) 0% (0) 0% (0)

Table 6.9 Bluetooth Location-Time table

The current location of the Contella user was correctly detected via GPS in the

experiment, but, as seen in the table, Bluetooth did not always detect other proximate

Bluetooth devices. For example, the phones of Peer 1 and Peer 2 were detected only 70%

and 65% of the time, respectively, during the time period of 10:00 - 11:00 am, when in

fact, they were co-located during this whole period. However, in other cases, the

Bluetooth scanning adequately reflected situations in which users were co-located.

On the other hand, from 9:00 - 10:00 am as seen in Table 6.9, the Bluetooth

device detected Peer 1's phone only 15% of the time. Although this result might seem

incorrect, this was actually a location transition period during which Peer 1 and the

Contella user were both traveling between their respective "Office" and "Home"



locations. Also, the system recorded this detection that occurred at the outside the known

location and updated the total count of the Bluetooth scan for Peer 1.

The algorithm for finding contacts computed its results based on the data set

collected by the Contella user's phone. Overall, as we expected, the algorithm picked

Peer 1 as its first contact. The results produced by the algorithm, which we described in

Chapter 5, are shown in Table 6.10 below.

Table 6.10 Results of the contact-finding algorithm

Location 9:00 -10:00 am 10:00 -11:00 am 11:00 - 12:00 am 12:00 am- 1:00 pm

Office Peer 2 (P =1.44) Peer 1 (P =1.37) Peer 1 (P 1.18) Peer 1 (P =1.06)
Peer I (P =0,85) Peer 2 (P =0.92) Peer 2 (P = 1.11) Peer 3 (P = 0.71)
Peer 3 (P =0.71) Peer 3 (P = 0.71) Peer 3 (P 0.71) Peer 2 (P 0.58)

Park Peer 1 (P = 1.85) Peer 1 (P = 0.85) Peer 1 (P = 0.85) Peer 1 (P = 0.85)
Peer 3 (P =0.71) Peer 3 (P = 0.71) Peer 3 (P = 0.71) Peer 3 (P = 0.71)
Peer 2 (P =0.44) Peer 2 (P =0.44) Peer 2 (P =0.44) Peer 2 (P =0.44)

Cafeteria Peer 1 (P = 0.85) Peer 1 (P = 0.85) Peer 1 (P = 0.85) Peer 3 (P = 1.35)
Peer 3 (P = 0.71) Peer 3 (P = 0.71) Peer 3 (P = 0.71) Peer 1 (P = 0,85)
Peer 2 (P = 0.44) Peer 2 (P = 0.44) Peer 2 (P = 0.44) Peer 2 (P = 0.44)

Home Peer I (P= 1.85) Peer 1 (P = 0.85) Peer 1 (P = 0.85) Peer 1 (P = 0.85)
Peer 3 (P =0.71) Peer 3 (P =0.71) Peer 3 (P =0.71) Peer 3 (P =0.71)
Peer 2 (P =0.44) Peer 2 (P =0.44) Peer 2 (P = 0.44) Peer 2 (P =0.44)

The P values in the table are calculated based on the activity logs collected by the

Contella user's phone. The following formula is a mathematical representation of the

computation in the algorithm that weighs each peer in order to sort contacts.

P-total = Sum(p(Contact | Location, Time) +

p(Contact's total detection by Bluetooth) +

p(Contact's total phone call) )

As shown in the results in Table 6.10, the algorithm selects Peer 1 85% of the

time, and this result supports my hypothesis. In the case where the Contella user is in the

"office" location from 9:00 - 10:00 am, the algorithm chooses Peer 2 (officemate). This

result makes sense because the Contella user spent the most of this time period with Peer

2 in the "office". However, if Peer 1 (friend & officemate) is near the "office" during this

time, the algorithm selects Peer 1. In addition, when the Contella user is in the

"Cafeteria" location from 12:00pm to 1:00 pm, the algorithm picks Peer 3. This also

makes sense because the Contella user is only co-located with Peer 3 in the "Cafeteria."



The results generally made sense to all the participants of the experiment. However, there

was a potential experimental problem that could lead to questionable results.

The system selects Peer 3 as the second best contact for the Contella user. In

some cases, this result makes sense because frequent phone calls indicate a strong social

relationship between these two peers. Consequently, we considered the phone calls and

co-location as having the same weight when calculating the P value in the algorithm.

However, if the total interaction time between peers is considered, then the algorithm

should give more weight to co-location than to phone calls. Thus, the algorithm requires

further improvements; performing more real-life experiments will give us additional

insight about how to weigh the different social activities in the algorithm.

To sum up, during the experiment, the system effectively collected log

information from Bluetooth, GPS, and phone calls. We also confirmed that the

experiment supported our hypothesis that the algorithm would pick Peer 1 most of the

time. However, we found that a potential problem exists in figuring out how to weigh

different activities to infer social relationship. Although the algorithm works in general, it

is hard to conclude whether it will work reliably in real life situations outside of this

simulated experiment. However, the purpose of the algorithm is not to find optimal

contacts, as mentioned in Chapter 5, but to find any peers who might have some

connection with our loved ones. In that respect, the system served its purpose well in this

experiment.
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Chapter 7

Conclusion and Future Work

7.1 Contribution

The system described in this thesis touches on three different areas, each of which

is aimed at enhancing our security and safety in daily life through the use of mobile

phones. We have covered the retrieval of historical crime information from Crime-Log

Servers ("Where You Are"), development of a route detection algorithm ("Where You

Are Going"), and a method for increasing connectivity between people for the purposes

of requesting and providing help remotely ("Who Is Around You").

Where are you: The Risk-Meter showed how we can enhance our awareness of

crimes around us for the purpose of enhancing our security and safety. The thesis showed

that police logs have a great potential to be used by the public. With an easy access to this

information, as well as good summarization techniques, it is possible that they can

increase our situational awareness within our surroundings. We successfully showed a

'proof of concept' by implementing the system in GPS equipped mobile phones and

delivering a summary of crime information where it is relevant to user's spatial and

temporal location. In addition, the system allows users to choose which crime

information is to be summarized and displayed on their screen. The simple interface of

the Risk-Meter also contributes to its potential to be adopted as a service that provides

easy access to summarized risk information. In fact, there are already plans to introduce

the Risk-Meter to incoming students during the Fall 2006 orientation at MIT, Boston

University and Harvard".

Where are you going: Utilizing the capability of location awareness through

GPS, we developed a route detection algorithm in a mobile phone. Previously, our route

detection algorithm ran on a desktop server machine and the mobile phones were

required to stream GPS information to this external server to analyze data for the route

" by the Student-Alumni Committee on Institutional Security Policy



detection. This provided two potential problems; i) scalability issues, and ii) private

information is constantly tracked by third party.

Scalability is a major issue with centralized servers because, in order to share

information between peers, peers are constrained to subscribe to same server or service.

For example, it is impossible to communicate between MSN messenger, Yahoo

messenger, and AOL Messengers. The phone version of the route detection algorithm

solves this potential problem by keeping the users' private information in the users'

hands. In addition, because the phones exchange information directly between phones

there is no need to build or maintain a server to relay this information between phones.

The algorithm in this thesis is also optimized for using only the phone to detect

routes. The previous algorithm that ran on the desktop was based on a standard pattern

matching algorithm and used Matlab. It was simply inefficient to use the same algorithm

and transplant it into the phone because it requires lot much memory as well as

significant computation power to run the algorithm. Our approach was to build a new

algorithm, optimized for route detection, which uses less memory and computation power

so that it will sufficiently run on modem mobile phones. The algorithm is very

successful, as can be seen in the evaluations described in the thesis. Although there are

many parts to be improved in the algorithm, it is currently robust enough to be used as a

platform for other projects.

Who is around you: This aspect of the project broke new ground in the sense that

phones can now find other, familiar phones as a communication channel resource. Then,

when necessary, the phone of an intended recipient can relay messages to other 'peer'

phones with the intention that important messages might be more successfully delivered

in person (by the owner of the 'peer' phone). The system is originally designed for

finding our loved one's peers and requesting their help. In the thesis, we introduced this

novel system to show how we can design a system that learns about surrounding phones,

and can relay a message to those surrounding phones without revealing the private

information of the help message recipient.



7.2 Future Work

In the system we describe, there are a number of interactions between the three

major components, yet there are many parts that have a potential to be integrated more

tightly. Joe Dvorak has proposed that the route detection algorithm can be improved by

involving not only information provided by Risk-Meter but also the locations of

caregivers and peers of Contella phone users. Because multiple routes can exist between

two locations, the system can recommend an optimal route that takes into consideration

the predicted duration to reach at destination, the corresponding risk and the distances

from caregivers when users arrive at each of the intermediate points.

In addition, we can improve the system for finding contacts. In the thesis we

described one way caregivers can find peers of care-recipients for help, but we can also

consider that care-recipients may wish to ask for help from their peer's care-givers should

their own care-givers not be available. This creates an expansion of connectivity between

pools of caregivers and recipients. People could contact each other and help each other in

the pools, with each pool containing people who are not complete strangers. This allows

the system to be used as a communication network for communities who may or may not

have other direct communication channels available. Because the system collects

information that can be used to infer social relevance between people, the network of

community will dynamically reform to reflect current social dynamics in order to provide

connectivity and communication to people who are socially related to each other.
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Appendix A

Route Templates Collected during the Experiment

Index:

Phone # l's Route Template

" Location Database

e Route Database

o Route 1

o Route 6

o Route 3

Phone #2's Route Template

* Location Database

" Route Database

o Route 2

o Route 4

o Route 5

Data Format:

" Location Database

o Location: [LocationName], [Lat],[Lon],[Accuracy],[LocationID]

" Route Database

o Route: [RouteID],[LocationID],[LocationID], [number of iPoints]

o iPointD: [iPointlD] :[Distance from previous iPoint], [Lat], [Lon]

o iPoint: [index], [iPointlD], [accumulated distance], [Accumulated

Elapsed Time] :[Latitude], [Longitude]
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<Phone # l's Location Database>

Data Format:
Location :[Location Label], [Latitude], [Longitude], [Accuracy], [LocationID]

======Location Size :6=======
Location :snakeRock, 42.438789, 71.185419, 0, 60000000
Location :lab, 42.361317, 71.088432, 27, 1153140783791
Location :home, 42.361885, 71.084101, 24, 1154215240629
Location :loc2, 42.417106, 71.10824, 27, 1154218632815
Location :school, 42.373765, 71.118944, 24, 1154225086668
Location :supermarket, 42.367325, 71.07792, 4, 1154434220755
======Location end=======

<Phone # l's Route Database>

Data Format:
Route:[RouteID], [Endpoint: LocationID], [Endpoint: LocationID], [number of
iPoints]
iPointID : [iPointID] :[Distance from previous iPoint], , [Latitude],
[Longitute]
iPoint : [index], [iPointID], [accumulated distance], [Accumulated Elabsed

Time] :[Latitude], [Longitute]

=======Route Size :3=======
<ROUTE 1>
Route :1154433565483, 1154215240629, 1154434220755, 17

iPointID :1154433620137 :0 42.361885, -71.0841
iPoint :0, 1154215240629, 0.0, 6 :42.361885, -71.0841

iPointID :1154433620137 :105 42.362873, -71.08397
iPoint :1, 1154433620137, 105.627235, 62 :42.362873, -71.08397

iPointID :1154433654793 :50 42.36327, -71.08371
iPoint :2, 1154433654793, 155.87186, 95 :42.36327, -71.08371

iPointID :1154433694195 :55 42.36372, -71.083435
iPoint :3, 1154433694195, 211.76694, 135 :42.36372, -71.083435

iPointID :1154433771376 :101 42.364624, -71.08313
iPoint :4, 1154433771376, 312.9122, 212 :42.364624, -71.08313

iPointID :1154433809385 :64 42.365074, -71.082726
iPoint :5, 1154433809385, 377.05106, 250 :42.365074, -71.082726

iPointID :1154433842538 :60 42.365555, -71.08242
iPoint :6, 1154433842538, 437.40207, 283 :42.365555, -71.08242

iPointID :1154433891552 :51 42.365974, -71.082184
iPoint :7, 1154433891552, 488.46014, 332 :42.365974, -71.082184

iPointID :1154433916944 :50 42.366383, -71.08195
iPoint :8, 1154433916944, 538.465, 357 :42.366383, -71.08195

iPointID :1154433957489 :58 42.366875, -71.081696
iPoint :9, 1154433957489, 597.05786, 398 :42.366875, -71.081696

iPointID :1154433990441 :53 42.36727, -71.08139
iPoint :10, 1154433990441, 650.1136, 431 :42.36727, -71.08139





iPointID :1154434030218 :63 42.367638, -71.08092
iPoint :11, 1154434030218, 713.52435, 471 :42.367638, -71.08092

iPointID :1154434056792 :53 42.36752, -71.08043
iPoint :12, 1154434056792, 766.77844, 497 :42.36752, -71.08043

iPointID :1154434115202 :106 42.36738, -71.07944
iPoint :13, 1154434115202, 872.9707, 556 :42.36738, -71.07944

iPointID :1154434143738 :59 42.36738, -71.07888
iPoint :14, 1154434143738, 932.00696, 584 :42.36738, -71.07888

iPointID :1154434175827 :61 42.367325, -71.0783
iPoint :15, 1154434175827, 993.7295, 616 :42.367325, -71.0783

iPointID :1154434220755 :40 42.367325, -71.07792
iPoint :16, 1154434220755, 1034.1653, 662 :42.367325, -71.07792

<ROUTE 6>
Route :1154224661124, 1153140783791, 1154225086668, 14

iPointID :1153140783791 :0 42.361317, -71.08843
iPoint :0, 1153140783791,

iPointID :1154224660764 :
iPoint :1, 1154224660764,

iPointID :1154224700973 :
iPoint :2, 1154224700973,

iPointID :1154224712085 :
iPoint :3, 1154224712085,

iPointID :1154224771431 :
iPoint :4, 1154224771431,

iPointID :1154224804902 :
iPoint :5, 1154224804902,

iPointID :1154224830813 :
iPoint :6, 1154224830813,

0.0, 6 :42.361317, -71.08843

76 42.362038, -71.08843
76.423645, 6 :42.362038, -71.08843

131 42.362736, -71.08946
208.31439, 46 :42.362736, -71.08946

101 42.362755, -71.09042
310.23264, 57 :42.362755, -71.09042

931 42.363422, -71.09918
1241.3313, 118 :42.363422, -71.09918

50 42.363506, -71.099655
1292.

168
1460.

iPointID :1154224881076 :82
iPoint :7, 1154224881076, 1543.

iPointID :1154224903756 :101
iPoint :8, 1154224903756, 1644.

iPointID :1154224943816 :469
iPoint :9, 1154224943816, 2113.

iPointID :1154224976366 :373

iPoint :10, 1154224976366, 2486

iPointID :1154225059884 :926

iPoint :11, 1154225059884, 3413

iPointID :1154225075163 :182

iPoint :12, 1154225075163, 3595

iPointID :1154225086668 :27

iPoint :13, 1154225086668, 3622

2548, 150 :42.363506, -71.099655

42.36389, -71.1012
6431, 176 :42.36389, -71.1012

42.364323, -71.101845
1846, 226 :42.364323, -71.101845

42.364815, -71.10266
2231, 249 :42.364815, -71.10266

42.3671, -71.10645
494, 289 :42.3671, -71.10645

42.368893, -71.10948
.5864, 321 :42.368893, -71.10948

42.373184, -71.117096
.0552, 405 :42.373184, -71.117096

42.37357, -71.118774
.5999, 420 :42.37357, -71.118774

42.373764, -71.11894
.8362, 432 :42.373764, -71.11894





<ROUTE 3>
Route :1154215340715, 1154215240629, 1153140783791,

iPointID :1154215240629 :0

iPoint :0, 1154215240629, 0.0,

iPointID :1154215384686 :106
iPoint :1, 1154215384686, 106.

iPointID :1154215417251 :50
iPoint :2, 1154215417251, 157.

iPointID :1154215472776 :103
iPoint :3, 1154215472776, 260.

iPointID :1154215509591 :60
iPoint :4, 1154215509591, 320.

iPointID :1154215545076 :61
iPoint :5, 1154215545076, 382.

iPointID :1154215583407 :55
iPoint :6, 1154215583407, 438.

iPointID :1154215612270 :54
iPoint :7, 1154215612270, 492.

iPointID :1154215649632 :54
iPoint :8, 1154215649632, 546.

iPointID :1154215686985 :62
iPoint :9, 1154215686985, 609.

iPointID :1154215733413 :52
iPoint :10, 1154215733413, 661

iPointID :1153140783791 :112
iPoint :11, 1153140783791, 774

======Route end=======

42.361885, -71.0841
6 :42.361885, -71.0841

42.36089, -71.084206
14299, 51 :42.36089, -71.084206

42.36046, -71.08399
1386, 83 :42.36046, -71.08399

42.36015, -71.084915

3291, 139 :42.36015, -71.084915

42.360043, -71.08547
44122, 176 :42.360043, -71.08547

42.359806, -71.086006
35422, 211 :42.359806, -71.086006

42.359535, -71.08646
03973, 250 :42.359535, -71.08646

42.359398, -71.08695
5846, 279 :42.359398, -71.08695

42.35944, -71.08746
9508, 316 :42.35944, -71.08746

42.36001, -71.087616
33344, 353 :42.36001, -71.087616

42.360363, -71.08796
.6646, 400 :42.360363, -71.08796

42.361317, -71.08843
.50586, 416 :42.361317, -71.08843





<Phone # 2's Location Database>

Data Format:
Location :[Location Label], [Latitude], [Longitude], [Accuracy], [LocationID]

======Location Size :5=======
Location :office, 42.360696, 71.088197, 24, 1154814697926
Location :daycare, 42.359581, 71.101157, 51, 1154815602138
Location :home, 42.361658, 71.083685, 4, 1154859590359
Location :park, 42.362754, 71.099525, 2, 1154893968849
Location :supermarket, 42.35488, 71.103125, 40, 1154898998448
======Location end=======

<Phone # 2's Route Database>

Data Format:
Route:[RouteID], [Endpoint: LocationID], [Endpoint: LocationID], [number of
iPoints]
iPointID : [iPointID] :[Distance from previous iPoint], , [Latitude],
[Longitute]
iPoint : [index], [iPointID], [accumulated distance], [Accumulated Elabsed

Time] :[Latitude], [Longitute]

======Route Size :3=======

<Route 2>
Route :,0, 1154876897552, 1154859590359, 1154814697926, 12

iPointID :1154859590359 :0 42.361656, -71.08369
iPoint :0, 1154859590359, 0.0, 10 :42.361656, -71.08369

iPointID :1154876896832 :88 42.36225, -71.08427
iPoint :1, 1154876896832, 88.07208, 10 :42.36225, -71.08427

iPointID :1154876917800 :73 42.36268, -71.08481
iPoint :2, 1154876917800, 161.20163, 31 :42.36268, -71.08481

iPointID :1154876942007 :52 42.362606, -71.0853
iPoint :3, 1154876942007, 213.52655, 56 :42.362606, -71.0853

iPointID :1154876969496 :61 42.362843, -71.08583
iPoint :4, 1154876969496, 275.43954, 83 :42.362843, -71.08583

iPointID :1154876992734 :50 42.36282, -71.0863
iPoint :5, 1154876992734, 325.63858, 106 :42.36282, -71.0863

iPointID :1154877023690 :73 42.36257, -71.08695
iPoint :6, 1154877023690, 399.23285, 137 :42.36257, -71.08695

iPointID :1154877042673 :54 42.36252, -71.08746
iPoint :7, 1154877042673, 453.71173, 156 :42.36252, -71.08746

iPointID :1154877073651 :72 42.362476, -71.08815
iPoint :8, 1154877073651, 526.63196, 187 :42.362476, -71.08815

iPointID :1154877095965 :65 42.362175, -71.08869
iPoint :9, 1154877095965, 592.33856, 210 :42.362175, -71.08869

iPointID :1154877123322 :56 42.36164, -71.08873
iPoint :10, 1154877123322, 649.0929, 237 :42.36164, -71.08873





iPointID :1154814697926 :115 42.360695, -71.088196

iPoint :11, 1154814697926, 764.249, 319 :42.360695, -71.088196

<Route 4>
Route :,1, 1154893684568, 1154814697926, 1154893968849, 22, 22

iPointID :1154814697926 :0 42.360695, -71.088196
iPoint :0, 1154814697926, 0.0, 7 :42.360695, -71.088196

iPointID :1154893684319 :83 42.36122, -71.088776
iPoint :1, 1154893684319, 83.014595, 7 :42.36122, -71.088776

iPointID :1154893696850 :67 42.3612, -71.08942

iPoint :2, 1154893696850, 150.99004, 19 :42.3612, -71.08942

iPointID :1154893704974 :54

iPoint :3, 1154893704974, 205

iPointID :1154893712255 :55
iPoint :4, 1154893712255, 260

iPointID :1154893724678 :57
iPoint :5, 1154893724678, 317

iPointID :1154893746152 :72
iPoint :6, 1154893746152, 389

iPointID :1154893772676 :64

iPoint :7, 1154893772676, 453

iPointID :1154893786203 :64
iPoint :8, 1154893786203, 517

iPointID :1154893798641 :66
iPoint :9, 1154893798641, 584

iPointID :1154893813224 :84

42.361008, -71.08989

.05316, 28 :42.361008, -71.08989

42.360794, -71.09036
.0696, 35 :42.360794, -71.09036

42.360718, -71.0909
.25446, 47 :42.360718, -71.0909

42.361156, -71.091415
.2722, 68 :42.361156, -71.091415

42.361706, -71.091675

.66547, 95 :42.361706, -71.091675

42.36147, -71.09223
.8043, 108 :42.36147, -71.09223

42.36122, -71.09281
.6507, 121 :42.36122, -71.09281

42.36089, -71.09354
iPoint :10, 1154893813224, 669.1499, 136 :42.36089, -71.09354

iPointID :1154893825740 :60 42.36061, -71.09403

iPoint :11, 1154893825740, 729.4372, 148 :42.36061, -71.09403

iPointID :1154893838466 :82 42.3603, -71.09474
iPoint :12, 1154893838466, 811.6323, 161 :42.3603, -71.09474

iPointID :1154893851714 :54 42.36035, -71.09525
iPoint :13, 1154893851714, 866.1112, 174 :42.36035, -71.09525

iPointID :1154893867188 :92 42.36089, -71.09594
iPoint :14, 1154893867188, 958.5678, 190 :42.36089, -71.09594

iPointID :1154893880094 :89 42.361305, -71.09667

iPoint :15, 1154893880094, 1047.843, 202 :42.361305, -71.09667

iPointID :1154893892616 :75 42.361656, -71.09729
iPoint :16, 1154893892616, 1123.1753, 215 :42.361656, -71.09729

iPointID :1154893905657 :61 42.36196, -71.097786

iPoint :17, 1154893905657, 1184.8978, 229 :42.36196, -71.097786

iPointID :1154893920084 :85 42.362335, -71.098495





iPoint :18, 1154893920084, 1269.9092, 242 :42.362335, -71.098495

iPointID :1154893933206 :68 42.362724, -71.09901
iPoint :19, 1154893933206, 1338.0048, 256 :42.362724, -71.09901

iPointID :1154893951377 :51 42.36282, -71.09948
iPoint :20, 1154893951377, 1389.154, 274 :42.36282, -71.09948

iPointID :1154893968849 :8 42.362755, -71.099525
iPoint :21, 1154893968849, 1397.5682, 292 :42.362755, -71.099525

<Route 5>
Route :,2, 1154898634601, 1154814697926, 1154898998448, 24, 24

iPointID :1154814697926 :1220 42.360695, -71.088196
iPoint :0, 1154814697926, 0.0, 7 :42.360695, -71.088196

iPointID :1154898633161 :90 42.36002, -71.08768
iPoint :1, 1154898633161, 90.258804, 8 :42.36002, -71.08768

iPointID :1154898642233 :52 42.35959, -71.087425
iPoint :2, 1154898642233, 143.1741, 16 :42.35959, -71.087425

iPointID :1154898655886 :55 42.359085, -71.087296
iPoint :3, 1154898655886, 198.2915, 28 :42.359085, -71.087296

iPointID :1154898668508 :78 42.358913, -71.08802
iPoint :4, 1154898668508, 277.2449, 41 :42.358913, -71.08802

iPointID :1154898674802 :55 42.358818, -71.08854
iPoint :5, 1154898674802, 333.159, 47 :42.358818, -71.08854

iPointID :1154898751434 :438 42.357574, -71.09248
iPoint :6, 1154898751434, 771.5531, 124 :42.357574, -71.09248

iPointID :1154898763934 :51 42.357403, -71.09293
iPoint :7, 1154898763934, 822.6192, 136 :42.357403, -71.09293

iPointID :1154898808391 :61 42.357273, -71.0935
iPoint :8, 1154898808391, 884.0231, 181 :42.357273, -71.0935

iPointID :1154898814676 :51 42.3571, -71.09395
iPoint :9, 1154898814676, 935.0892, 187 :42.3571, -71.09395

iPointID :1154898821096 :60 42.356907, -71.09448
iPoint :10, 1154898821096, 995.3385, 194 :42.356907, -71.09448

iPointID :1154898828350 :65 42.356705, -71.09506
iPoint :11, 1154898828350, 1060.43, 201 :42.356705, -71.09506

iPointID :1154898858301 :217 42.355995, -71.09699
iPoint :12, 1154898858301, 1278.4207, 231 :42.355995, -71.09699

iPointID :1154898870610 :99 42.355675, -71.09787
iPoint :13, 1154898870610, 1377.4314, 243 :42.355675, -71.09787

iPointID :1154898876859 :50 42.35549, -71.098305
iPoint :14, 1154898876859, 1427.4478, 250 :42.35549, -71.098305

iPointID :1154898883399 :57 42.35532, -71.098816
iPoint :15, 1154898883399, 1484.6055, 256 :42.35532, -71.098816





iPointID :1154898895285 :93 42.355125,
iPoint :16, 1154898895285, 1578.2883, 268

iPointID :1154898908275 :76 42.354958,
iPoint :17, 1154898908275, 1654.7878, 281

iPointID :1154898926828 :61 42.354782,
iPoint :18, 1154898926828, 1716.6849, 300

iPointID :1154898937238 :64 42.354557,
iPoint :19, 1154898937238, 1781.11, 310 :4

iPointID :1154898946269 :61 42.354385,
iPoint :20, 1154898946269, 1842.8868, 319

iPointID :1154898958569 :63 42.354237,
iPoint :21, 1154898958569, 1906.3401, 331

iPointID :1154898977481 :60 42.354782,
iPoint :22, 1154898977481, 1966.8386, 350

iPointID :1154898998448 :35 42.35488,
iPoint :23, 1154898998448, 2002.3945, 373

-71.09968
:42.355125, -71.09968

-71.10038
:42.354958, -71.10038

-71.10094
:42.354782, -71.10094

-71.1015
2.354557, -71.1015

-71.10206
:42.354385, -71.10206

-71.10264
:42.354237, -71.10264

-71.102806
:42.354782, -71.10280

-71.10313
:42.35488, -71.10313

======Route end=======
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