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Chapter 1: Introduction

Today, over one and a half billion people are using mobile phones as they go about their

daily lives (3G.co.uk 2005). These devices are a compelling platform by virtue of the

range of uses to which they are put, from basic telephony to music, video, note-takers and

navigators. Mobile phone and wireless carrier industries are currently looking at these

devices to deliver location-based services (LBS) with the aim of changing how people

shop, travel, and retrieve information. However, this use of positioning technologies

represents only a one-to-many model where a set of content providers feed location-based

information to users. When combined with many-to-many social software the likes of

which drive Web 2.0 sites like Amazon, EBay, and Flickr, context-aware services have

the potential to enable an exponentially more powerful set of search, chronicling, and

collaborative filtering tools.

An intrinsic characteristic of social software is the ability for users to "link" to other users

and their content with the end effect of emphasizing material of high quality as

determined by their own experiences, opinions, and expertise. For Amazon, this

primarily takes the form of user reviews on merchandise. EBay captures transactional

evaluations by the buyer about the seller. Sites like Flickr and Del.icio.us allow people to

create tags that help relate disparate works. MySpace is perhaps the best example of the

power of social computing. With over eighty million users, this social networking site

has nearly saturated the youth market in the United States by making the members

themselves into the featured content. Social sites make it easy for members communicate

a mediated identity to other members. In return, these sites have the potential to benefit

hugely from the network effects that their members create.

Conventional web-based techniques for adding connections between members, such as

searching for members and browsing buddy lists, face substantial hurdles in mobile



computing. Mobile devices present constraints that are not present in desktop

environments. User interaction is limited by the demands of the physical world where

attention is at a premium in environments that are continuously changing. Additionally,

the compact user interfaces on mobile devices further reduce the complexity of tasks that

users can accomplish on the go. Interfaces that require extended periods of concentration

are best left on the web.

While mobile devices disfavor user intensive operations, they open new avenues into

sensing social interactions to augment the mobile user's ability to connect with people.

Several projects have recognized this opportunity and implemented systems that use the

sensing capabilities of mobile devices to create social metadata about how the phone is

used. Proximity scanning of co-present devices, and more importantly their users, is one

powerful and popular technique to measure the social context of a mobile device (Davis,

King et al. 2004). This is a useful social measurement, but proximity alone does not

equate to social interaction.

Proximity is only one of many behavioral signals that can be captured by mobile devices

and used to analyze social interactions. Signals such as voice and conversation dynamics

have been shown to predict the roles that people play in organizational contexts

(Choudhury 2003). Other research has looked at patterns of location over time to infer

high-level contexts such as "work" and "home" (Eagle 2005). In addition to proximity

and audio, physical activity, as sensed by accelerometers on the body, can also function

as such an indicator. By looking at the patterns of motion that people exhibit in groups,

one can quantify the strength of the coupling between people in a social encounter.

Measuring face-to-face social interactions with mobile devices offers two opportunities to

mobile, social computing. First, we can give mobile devices the ability to intelligently

and proactively forge links with new peers as we interact with them. Whether we are

attending conferences, concerts, bars, or taking a walk in the park, people go out of their

homes to strengthen their interpersonal relationships and forge new social connections.



From exchanging business cards to writing numbers on napkins, cultural rituals abound

for establishing the permanence of these connections. These mechanisms typically result

in the addition of the strongest of these connections to our networks. Despite our best

efforts and intentions, however, many meaningful and valuable interactions still slip

through our digital fingers. Mobile devices equipped with social sensing capabilities

create the unique opportunity to capture these interactions so that they can be utilized at a

later date.

Second, we can begin to use the sensed social interactions to infer social context without

depending on the user to continuously update the system. The idea here is that a social

context is described by the social dynamics that occur within it. These dynamics include

properties such as who tends to interact with whom and in what ways. If we learn these

dynamics as sensed by mobile devices, then we should be able to identify the likelihood

of a mobile user being in a particular context at a given time. By automatically keeping

the social context of the user current, the system can avoid interrupting the user when she

is engaged in an unrelated face-to-face interaction. The system can also prioritize social

content that it presents to the user by considering its relevance to the user's social

surroundings so as to maximize the limited interactions that can be expected from mobile

users.

Bringing social software to bear on physical activities immediately raises privacy

considerations, which are widely considered to be a major hurdle to ubiquitous

computing (Weiser 1999). Economic research has shown that the possession of pertinent

information by a subset of parties in a transaction causes a negative externality for the

remaining parties. For example, a sales agent who had a real-time map displaying a

competitor's position could formulate an optimal strategy that would impose an

unaccountable cost on the competitor. Working from this theory, Jiang proposes the

Principal ofMinimum Asymmetry, which is a set of guidelines for assuring privacy in

ubiquitous computing. The basic idea is to minimize the asymmetry of information



between communicating parties in two ways. The first way is to decrease the flow of

private information away from the person who owns it, and the second way is to notify

the owner that someone else has accessed the private information so that he can make

more informed decisions (Jiang, Hong et al. 2002).

Our proposed method of establishing links between people based on predictability

learned from behavior satisfies Jiang's Principal ofMinimum Asymmetry. Someone

whose behavior predicts another person's behavior possesses information that is pertinent

to the predicted person. That is, an imbalance already exists between the predictor and

the predicted. By sensing this predictability and establishing a pathway for information

to flow through, back to the predicted person, i.e. the link, the system can help to reduce

the imbalance. For example, the leader of a sales team might predict her team's behavior

as they work a trade show. When she actively engages with other attendees, her team

may follow her lead and behave in a similar manner. Clearly, the leader's actions are

relevant to the team members, and it makes sense that the agents would "link" to the team

leader in this context. Perhaps more often, the predictability will be largely mutual, as

may be the case with two good friends who are hanging out in a loosely bound group. In

this case, the link is equally strong in both directions between friends, and the links to the

weakly coupled group members is weaker.

Consider, for example, what could be possible for a group of six tourists visiting a

foreign city. In deciding what to explore, each person must balance her own interests

with those of the group. Mobile devices can already use interest profiles to make

personalized recommendations, but the appropriateness of the suggestions will vary with

the group's changing social structure. It may be impossible to convince a large group on

the move to take a sightseeing detour, but notifying two like-minded people who are

walking together about a Gaudi exhibit around the corner might be a welcomed side trip.

A socially aware device could factor the group dynamics into the recommendation

process.



Suppose the group went out to a popular bar where diverse sets of people pack into a

tight space and mingle with each other. Over the course of the night, the tourists may

have interactions with locals and other travelers that are worth remembering. However,

exchanging numbers with each of these new acquaintances would be too much effort and

possibly seem forced and unnatural. A socially aware mobile device might minimize the

cost of exchanging information by logging these salient interactions automatically and

making them available for review at a later time.

Imagine that the same group has returned home and shared all their camera phone photos

on a website. A simple way to share would be to simply compile all the photos and give

each person access to the collection. A more sophisticated way to arrange large

collections would be to use metadata produced by the mobile device to arrange the

photos. Photos where the viewer was directly interacting with the photographer might be

placed most prominently. Photos taken with the viewer in proximity might receive the

next highest weighting. In this way, an understanding of face-to-face interactions can

inform how information is shared between people.

This thesis describes one attempt to build mobile systems that take into account social

relationships of their users and use this information to streamline the users' interactions

with the devices. Chapter 2 provides background and related work in several different

fields. Chapter 3 presents the specific problems and challenges faced in creating socially

aware devices along with a summary of the proposed solutions. Social sensors and their

advantages and disadvantages are described in Chapter 4. In Chapter 5, we analyze how

different features extracted from social sensors relate to the known social structure of

several experimental data sets. Chapter 6 outlines foundational components for building

mobile systems that incorporate social awareness. Chapter 7 concludes the thesis with

future work and a discussion of the impact of trends in the mobile computing industry.



Chapter 2: Background

We can draw upon several domains in researching how to connect people on mobile

devices by sensing their behavior. The Social Sciences are clearly relevant as we are

analyzing human behavior in social interactions, albeit through largely quantitative

means. Ubiquitous Computing (Ubicomp) is perhaps the field where this work fits most

squarely. Ubicomp, an interdisciplinary field itself, incorporates sensor networks,

distributed computing, mobile computing, and human-computer interaction. Wearable

computing, which is philosophically differentiated from Ubicomp but often deals with

similar technologies and practices, offers substantial work in on-body sensing and context

awareness.

Social Sciences

The notion of social context employed in most of the aforementioned systems is quite

basic: a list or even a count of proximate peers represents the social context of the user.

The social sciences, including Sociology and Anthropology, have generated a large body

of work that can serve to inform the concept of social context used in ubiquitous

computing applications.

Sociometry

Sociometry is "the study and measurement of interpersonal relationships in a group of

people." As a field of Sociology, Sociometry distinguishes itself through its emphasis on

quantitative analysis that does not try to explain the structure of social encounters as

much as it seeks to measure the interactions of subjects and extract patterns from the

resulting data (Infield 1943).

The notion of a subject's "choice" of another subject at a particular "moment" has been at

the core of Sociometry since its inception. Choice refers to one's inclination towards



another person - ranging from negative to neutral to positive, and moment refers to an

instantaneous measurement as opposed to a largely retrospective one. The standard way

to measure choice is through questionnaires administered to the subjects as close to the

moments of their interactions as possible. J.L. Moreno, the father of Sociometry,

articulated a fundamental challenge of measuring choice as follows:

The problem is how to motivate men so that they all will give repeatedly and regularly,

not only at one time or another, their maximum spontaneous participation. (Moreno

1937)

Moreno and others realized the difficulty in getting the amount of data they required from

their subjects. Beyond achieving participation, they were well aware of the deleterious

effects that repeatedly asking the question had on the quality of data collected. They also

realized that the best measurements were made in situ instead of laboratory conditions,

where the framing of the study could easily distort the data collected.

Moreno was also aware of the shortcomings of directly asking a subject for her ratings of

the peers with whom she interacted. He notes that the subjects may not even be aware of

their choices in a given interaction. He writes that "[a] person may not know to whom he

is 'drawn"'. Going forward, Moreno advised that Sociometry should branch out and

invent new mechanisms to measure the many interrelations of society (Moreno 1937).

Proxemics

Proxemics is the "study of the nature, degree, and effect of the spatial separation

individuals naturally maintain (as in various social and interpersonal situations) and of

how this separation relates to environmental and cultural factors" (Dictionary 2006).

Edward T. Hall, who coined the term Proxemics, conducted the founding work in this

field and devised a notation system that allows anthropologists to record the "proxemes"

of a social interaction much like a linguist would record "phonemes". Hall's Proxemics

notation includes eight dimensions - postural, sociofugal-sociopetal orientation (SFP



axis), kinesthetic factors, touch code, retinal combinations, thermal code, olfaction code,

and voice loudness - that together functioned to determine the social distance between

two people (Hall 1963). He identified four such social distances, each with a close and

not close modifier: intimate, personal, social-consultive, and public. Through his

observations of interactions across multiple cultures, which actually led to his research in

this field, Hall concluded that different cultures have different boundaries for each of

these social distances. For example, people from the United States tend to have larger

distances than those from Arabic cultures, which he concluded leads Arabs to the

impression that Americans are disingenuous (Hall 1968).

Recently, researchers have created models of motion in interacting groups to provide

simulated data for ad hoc mobile networking. One particular effort has gone so far as to

specify the social networks of the modeled agents in order to create more human-like

motion (Musolesi, Hailes et al. 2004). By considering the connections between agents,

the simulated data can more realistically model the effect that the presence of one agent

has on another.

Ubiquitous Computing

Ubicomp and related fields such as Pervasive Computing provide a wealth of research

into how computing is becoming integrated into our everyday lives away from the

desktop computer. In the late 1980s, researchers at Xerox PARC proposed three new

classes of devices - tabs, pads, and boards - that broke dramatically from the desktop

metaphor. Of the three, Tabs have had the largest impact on today's trends in mobile

computing. Tabs are the predecessors of personal digital assistants (PDAs) and smart

phones. They are small devices that are kept on the person and remain continuously

powered up. They are used to quickly enter and retrieve digital information via a touch

sensitive screen (Weiser 1999).



Fundamental to the use of Tabs was the idea of communication and context. Weiser

wrote that three types of context should inform interaction with these ubiquitous devices:

location, proximate peers, and other environmental measurements. The idea was that by

keeping devices connected to a network and to the context in which they were operating,

interfaces could be more natural for the task at hand, and people would have to attend

less to the device in order to accomplish what they wanted to do (Want, Schilit et al.

1995).

Around the same time that researchers were working on the first Ubicomp devices at

Xerox PARC, the Active Badge system was undergoing trials in London. This system,

consisting of infrared emitting badges enabled the intelligent routing of phone calls to the

location of the dialed party. These badges were lightweight (about 50 g) and operated for

over a week without recharging. The researchers noted that users initially had privacy

concerns about being tracked by the system but that these concerns faded after extended

use. However, they did not take the potential abuses of the system lightly and concluded

that, in the case where location tracking systems are abused by society, "legislation must

be drawn up to ensure a location system cannot be misused, while still allowing us to

enjoy the benefits it brings." (Want, Hopper et al. 1992)

While the original goal of the Active Badge system - to route phone calls - has largely

been made moot by mobile phones, location-tracking infrastructure has been put to new

uses. Using inexpensive RFIDs with traditional conference badges, the Experience

Ubicomp Project was able to link profiles describing many of the conference participants

with their actual locations. When users would approach a tag reader and display, relevant

"talking points" would appear on the screen. Other screens displayed "Neighborhood

Windows" that gave nearby users a look at the aggregate interests that group members

specified in their profiles (McCarthy, Nguyen et al. 2002).

An important aspect of location-tracking systems like the Experience Ubicomp project is

that the location information is used largely to determine the social context of the users.



Related systems depend nearly entirely on social context acquired through other means.

The Meme Tag is a wearable badge that uses infrared to register other users that come

face-to-face with the wearer. The Meme Tag uses this information to match users on the

basis of prerecorded questions. When users who were facing each other had similar

answers to the questions, green LEDs would flash; if the answers were different then red

LEDs would flash (Borovoy, Martin et al. 1998).

Sensing social context does not require fixed infrastructure. Several systems have

employed periodic scans with radio transceivers in order to bring mobile social

networking out into the world. Many of these systems are intended to support face-to-

face collaboration by revealing the user's social context and promoting interaction. The

Hummingbird is one such custom mobile RF device developed to alert people when they

are in the same location in order to support collaboration and augment forms of

traditional office communication mediums such as instant messaging and email. This

interpersonal awareness device has been successfully tested at rock festivals and

conferences where users found that the devices fostered a sense of connection in an

unknown situation (Holmquist, Falk et al. 1999). Social Net is a project using RF-based

devices to learn proximity patterns between people. When coupled with explicit

information about a social network, the device is able to inform a mutual friend of two

proximate people that an introduction may be appropriate (Terry, Mynatt et al. 2002).

Jabberwocky is a mobile phone application that performs repeated Bluetooth scans to

develop a sense of an urban landscape. It was designed not as an introduction system, but

rather to promote a sense of urban community (Paulos and Goodman 2004). Serendipity

is a mobile phone application that performs repeated Bluetooth scans in order to

introduce people to each other. When a scan shows an unfamiliar person nearby, a query

is sent to a central server containing profiles of participating individuals; these profiles

are similar to those stored in other social software programs such as Friendster and



Match.com. When a match of interests is found, an introduction messages are sent

(Eagle and Pentland 2005).

While social context has functioned as the primary feature for some successful devices,

such as the Lovegety (Iwatani 1998), social context shows potentially much larger

importance as a supporting piece of information for a variety of applications. Proximity

scans have been used to generate metadata for images that enables sharing between dyads

of proximal people on a per image basis (Davis, King et al. 2004). In the

ContextContacts project, a measure of real-time social context for each user was added to

their respective entries in a smart phone contact book. The research showed that social

context could aid in several types of spontaneous communication and coordination tasks.

While this study showed that user location is more useful than social context, the

software showed only a very minimal measure of social context: a number representing

the number of other users located around a user.

Wearable Computing

In the mid-1990s, a group of researchers at the MIT Media Laboratory formed the first

active wearable computer users group. These "cyborgs" outfitted their bodies with

biosensors, computing cores, networking gear, and chording keyboards to push the limits

of personal computing (Starner, Mann et al. 1997). While Ubicomp emphasizes

embedded computing that disappears into the objects of everyday life, wearable

computing places computation directly on the person. This makes wearable computers

natural tools for sensing social interactions.

Robert Hooke, discoverer of plant cells, anticipated a central goal of wearable computing

back in 1665:

The next care to be taken, in respect of the Senses, is a supplying of their infirmities

with Instruments, and as it were, the adding of artificial Organs to the natural... and as

Glasses have highly promoted our seeing, so 'tis not improbable, but that there may



be found many mechanical inventions to improve our other senses of hearing,

smelling, tasting, and touching. (Hooke 1961)

Hooke had invented a complex microscope that made his discoveries possible. He

understood the opportunity in enhancing other human sensing capacities with technology.

Wearable computers promise precisely this; they should augment the abilities of the user

to capture, process, and act on signals coming from both the physical and digital world.

Fully functional wearable computers date back to Ed Thorp and Claude Shannon's

creation of a body-worn device that helped predict outcomes on a roulette wheel. By

pressing a hidden trigger at precise times in the ball's path, the wearer could expect a

44% gain in payoffs by betting on the octet where the ball was predicted to land (Thorp

1998). This early example shows how sensing the world can be translated into

probabilistic expectations that the wearer can then consider to her own benefit.

One goal of wearable computing is to minimize the amount of cognitive load imposed on

the wearer while using the system. To this end, designers have employed sensors that are

capable of automatically reading signals from the environment and the wearer in order to

streamline the human-computer interaction of the system. The idea is that if the wearable

can be aware of the user's context, the interface can reduce the amount of time the user

spends interacting.

Many groups have pursued context-awareness in wearable computers. The

Remembrance Agent is the one of the first wearable interfaces to support context-

awareness. In this application, the context consists of the text being input into an Emacs

text editor, as many of the first wearable computers worked with head mounted displays

and text only editing environments (Rhodes 1997).

In order to address the ever-increasing number of context sources, the Context Toolkit

aimed to provide reusable components that abstract away the underlying mechanisms that

create context in context-aware application building. Written on top of common



computing infrastructure like TCP/IP, HTTP, XML, and JAVA, this toolkit provided the

basic primitives of context-aware systems: encapsulation of sensors, access through APIs,

abstraction, sharing storage, and access control (Salber, Dey et al.).

Using multiple accelerometer data logging devices placed around the body, Bao and

Intille were able to achieve approximately 80% accuracy in classifying twenty activities

such as walking, running, eating, reading, and vacuuming. They also found that reducing

the number of accelerometers to two - one placed on the upper body (wrist, preferably)

and one on the lower body (waist or thigh) - still resulted in high recognition rates (Bao

and Intille).

Blum adopted a two-accelerometer (wrist and waist) scheme and added in audio

processing that was capable of detecting human voiced segments. This system, called

LifeWear, is able to determine activity states such as standing, walking, running,

bicycling, and typing as well as the conversation state of the user, e.g. "user speaking",

"other speaker", and "loud crowd" (Blum 2005).

Choudhury used a wearable device called the Sociometer to measure and analyze voiced

conversational dynamics among twenty-three coworkers. This device used infrared to

identify face-to-face interactions and recorded audio to internal flash memory. The

researchers found that amount of influence over turn taking in a conversation, as modeled

by a coupled Markov Model called the Influence Model, correlates highly with centrality

in a social network (Choudhury and Pentland 2003).

Eagle instrumented approximately one hundred students and faculty members with smart

phones that recorded the behavior of their users. The phones recorded position by cell

tower ID, proximate devices with Bluetooth scans, logs from phone calls and text

messages, as well as application usage (e.g. alarm clock). By considering patterns of

proximity, location, and usage over the several weeks of the study, Eagle could reliably

infer the nature of the relationship between study members as "friends" or "not friends"

(Eagle and Pentland).
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Chapter 3: Social Motion

Problem Statement

How can we make mobile devices aware of the face-to-face interactions that continuously

happen all around us? Furthermore, how might we apply these models to one of the most

important problems facing social mobile computing: privacy and information sharing?

Without answers to these questions, mobile devices will either remain unaware of their

social surroundings or become wide open to abuse by detractors such as spammers and

nefarious peers.

This type of social intelligence depends on maps of the many and varied human

relationships that span our lives. Over the last decade, a significant effort has gone into

charting human relationships with online social networking sites. While these sites

capture large human networks with some success, they require manual entry, remain

largely static in content, and do not have the capacity to capture the subtle differences in

human relationships across the many contexts of everyday life.

Outfitting mobile and wearable computers with sensors and models of social interactions

opens an avenue into tackling the dynamic side of social awareness that goes beyond the

domain of online social networking sites. However, we are immediately faced with

several challenges:

Sensor Selection. While one could outfit a handful of wearable computers with a vast

number of sensor combinations, not all sensors have the ability to scale to large numbers

of devices. This is true for several reasons. First, the need for social acceptance prohibits

the use of many sensors that would be considered an invasion of privacy (e.g., high

quality microphones and video cameras). Second, personal devices must be designed



with both style and usability in mind; sensors that require intrusive placement on the

body or present a fashion faux pas will likely fail (Starner 2001).

Model Generality. Mobile devices go nearly everywhere that people go. Useful models

of social interaction that enable social intelligence should be applicable across these

varied circumstances. Additionally, models should generalize across people as much as

possible. Without this property, people would have to train individual models for each

social setting to derive any usefulness.

Architecture for Multiple Devices. The combination of social and mobile essentially

demands that useful models incorporate features from multiple devices. In order to use

these models in a real-time scenario, this means that software infrastructure must be put

in place to ensure flexibility of device configurations and to handle limitations in

connectivity, bandwidth, and computational capacity.

Operation with Minimal User Input. Compared to the world of online social

networking sites, mobile users have more divided attention that is usually dominated by

the demands of the physical world. Socially aware mobile devices must be able to

operate without continuous input from the user.

Modeling Privacy. The final challenge is a large one: how does one create a functional

model of privacy and information sharing based on face-to-face interactions?

Social Motion Framework

Our framework, called Social Motion, adds social awareness to mobile devices. In this

thesis, we will outline the components of Social Motion and analyze work we have done

towards implementing these pieces. Social Motion addresses the aforementioned

challenges in the following ways:

Lightweight, orientation-independent sensing. We select sensors that either already

exist in mobile phones or have a straightforward path towards adoption by mobile phone

manufacturers. Imposing this constraint ensures that our framework remains viable for



widespread adoption. The two categories of sensors that we consider are proximity and

motion sensors. By proximity sensors, we are referring to sensors capable of detecting

other devices within a fixed proximity of the sensing device. We put both RF scanning

and face-to-face IR sensors into this category, but only the former fully satisfies the

imposed constraint. For motion sensing, we are using accelerometers, which are both

small and useful without a known orientation.

Measuring Social Interaction. With the end goal of creating general models of social

interaction, we analyze the structure of data collected from several large data sets of

group interactions. We identify correlations in the users' states that can be used to create

classifiers of friendship and company affiliation. Working from these correlations, we

describe a hierarchical model that captures social context at the individual, dyadic, and

network levels. We discuss the potential for using one particular network model, called

the Influence Model, which has been shown to be useful for modeling social interactions

with wearable devices (Choudhury 2003).

Distributed Modeling. We have developed a software infrastructure called

Enchantment that is capable of supporting distributed modeling in a network transparent

manner. Enchantment implements two inter-process communication mechanisms that

enable this functionality: a whiteboard and a signaling system. The whiteboard allows

processes to be run simultaneously both locally and remotely while decoupling consumer

from producer. The signaling system allows for the high-bandwidth transfer of stream-

oriented data from point-to-point. Enchantment can be used for offline classification by

simply playing back previously recorded information through the system (DeVaul, Sung

et al. 2003). We have developed a large variety of applications with the Enchantment

system and will show that it is a versatile tool. It was developed with context

classification in mind, and we have developed a system that showcases this use.

Automatic Classification and Context-aware User Interfaces. We do not rely upon

having input from the user available for our modeling. Both proximity and motion



sensing operate completely autonomously. This allows for the continuous generation of

social context metadata for chronicling and other offline uses. We can use the context

likelihoods to augment mobile user interfaces with social context. We have made steps

towards realizing such an interface with the Electronic Lens project. For this project, we

created a set of social widgets that allow users to create and edit social groups on the

mobile device. We will describe ways that these elements can be extended with social

context information. These elements can also contribute to the refinement of the

underlying models by providing ground truth for the learning process.

Privacy as Inverse Function of Predictability. We propose a simple privacy model that

we test with empirical data that we have collected. This model holds that the better entity

A's state predicts entity B's state (as determined by the influence value, in our case), the

lower the privacy barrier B should assign to A. Therefore, two people who are closely

coupled will grant each other low privacy levels while two random, non-interacting

people will have high privacy levels. Clearly, there are cases where this model breaks

down, and these will be interesting to evaluate.



Chapter 4: Sensor Selection

Our goal in sensor selection is simple: we want to sense proximate and face-to-face

interactions using sensors that can be easily deployed into current and near future mobile

devices. Mobile devices come equipped with the necessary interfaces and resources to

connect a multitude of sensors that could be used to accomplish this goal. However,

these sensors each have advantages and disadvantages with no single sensor offering the

ideal feature set at all times. Instead, we consider an array of suitable sensors that can be

combined into multi-modal models. The sensor characteristics are summarized in Table

1 at the end of the chapter.

Infrared Transceivers

Infrared transceivers (IR) have long been used to recognized face-to-face interactions.

With this technology, the transmitter emits an infrared signal that is digitally encoded

with an identifier that is associated with the transmitting party. A receiver within range

of the transmitter can receive this signal, and the receiving device can know with high

reliability that the transmitting device is nearby within a tight cone of space. False

positives are nearly impossible (with a well designed encoding), but the highly specific

range of the transmission means that some face-to-face encounters will be missed. For

example, two people in conversation but facing in the same direction will not register

with each other.

Since the IR signal requires line of sight to transmit, typically each person wears both a

transmitter and a receiver that face outwards from the chest towards the location of a

potential interacting party. This configuration is difficult to integrate into mobile phones

as they are worn in the United States. In other parts of the world, where phones are

increasingly worn around the neck, this is possible but not necessarily reliable. Work in

the Ambient Intelligence at the MIT Media Lab has demonstrated the potential for



working infrared technology into Bluetooth wireless headsets (Merrill and Maes). This

location could enable even finer grain detection of conversation participants. However,

the number of people who wear a Bluetooth headset throughout the day is still low.

Another project under development in the Human Dynamics group is creating a badge

the size of a Star Trek communicator that would allow for the required placement under

everyday use.

For our experiments with IR face-to-face encounter detection, we used the UbER-Badge.

The UbER-Badge is an electronic conference badge developed in the Responsive

Environments group at the MIT Media Laboratory (Laibowitz and Paradiso 2004). The

badge is worn around the neck and directs the IR transceiver outwards at chest height.

Approximately every second, the badge transmits an IR packet containing the badge's

unique ID. These packets are received at up to six meters away within an unobstructed

conical field of view of approximately ninety degrees.

Figure 1. The UbER-Badge records accelerometer and audio signals
as well as IR encounters with other badges and fixed beacons called

Squirts.

Within the badge hardware, the individual IR packets received are amalgamated to form

IR encounters. An encounter begins when an IR packet is received. Each time an

additional packet is received within thirty seconds of the previous one, the encounter's



end time is extended. After the time limit between packets is exceeded, the encounter is

recorded to flash memory.

Proximity Scanners

Research and industry alike have widely employed proximity scanning for sensing social

context. Typically, short-range radios will broadcast their IDs to surrounding devices in

much the same fashion of an IR based system. However, since radio frequency with

omni-directional antennae are used instead of directional infrared, the radio device does

not need to be located in any particular orientation or location. Thus, proximity scanners

have higher sensitivity but lower specificity than IR based systems at detecting face-to-

face interactions.

Many RF scanning systems also have the ability to capture a Received Signal Strength

Indicator (RSSI) along with each packet received. This measure can be transformed into

a rough approximation of distance. It will not always be accurate due to the way that RF

signals propagate in different types of environments (e.g. open air vs. cluttered

environments).

Bluetooth is a short-range RF system that works in the unlicensed 2.4GHz band. An

increasing number of mobile devices include Bluetooth, which allows people to use

wireless headsets, transfer files to desktop machines, and access the Internet through their

mobile phones. Several studies have used discovery capability of Bluetooth to track the

co-presence of devices over time.

Bluetooth offers several advantages that make it a logical choice for proximity scanning.

As Bluetooth comes included in many phones, users do not need to carry around

additional hardware. Mobile devices with Bluetooth generally include user interfaces

that allow people to turn off the feature when they desire privacy or power-savings. Most

importantly, the wide-scale availability and interoperability of devices with Bluetooth

makes it an attractive choice.



As it was not designed specifically as a social sensor, Bluetooth has several

disadvantages. The Bluetooth software stack is quite large and imposes substantial

overhead on proximity scanning what could be a simple piece of functionality in a

different implementation. The result is that scans take at least ten seconds to complete

and extra energy is expended that can limit the runtime of the entire system. Eagle found

that he needed to set Bluetooth scanning to an interval of five minutes in order to achieve

an acceptable runtime from a Nokia 6600 (Eagle and Pentland 2006).

Perhaps the largest downside to using Bluetooth as a social sensor is the globally unique

BDADDR value assigned to every Bluetooth device. This address serves functions at

the lowest levels of the Bluetooth protocol to identify a device to other devices. It is set

by the device's manufacturer and cannot be changed by the user. While the uniqueness

of the BDADDR is convenient, it severely limits the ability of an RF scanning system to

put privacy mechanisms in place. Without the ability to issue and revoke IDs, it becomes

trivial to track a Bluetooth device across time and space.

In our experiments, we have used a Sharp Zaurus SL-5500 PDA equipped with compact

flash Bluetooth cards and scanning software. Since we collected data in short-term

experiments, we set the scanning rate as high as possible and achieved an average scan

period of approximately one minute.



Accelerometry

Accelerometers are not typically thought of as social sensors. Most research using these

devices as on-body sensors focuses on individual activity classification. We have taken

the novel approach of calculating a feature that captures the mutual information in the

motion energy (MIME) of two accelerometer signals as an indicator of social interaction.

This dyadic feature is symmetric and intended to capture the natural synchronizations that

arise from face-to-face interactions. As Erving Goffman put it, a face-to-face interaction

is "the reciprocal influence of individuals upon one another's actions when in one

another's immediate physical presence" (Goffman 1959). This accelerometer feature is

designed to represent these synchronizations.

We calculate the MIME across two people for a given time period (from to to t,) in the

following way:

1. Signals from accelerometers attached to the core (e.g. waist

individuals are time synchronized.

or chest) of two

Figure 2. Subjects are wearing a hybrid UbER-Badge / Sharp Zaurus
PDA system that includes accelerometers on waist and chest, a close-

talking microphone, an IR transceiver, and a Bluetooth scanner.



2. The signals are binned into segments that are TBinl seconds long, where TBi s

approximately 2 seconds. This value has been chosen experimentally and reflects

the timescale of the interaction components that we are measuring.

3. The energy in each of the bins' signal data is calculated using one of two

techniques:

a. DFFT. We add the square of the discrete fast Fourier transform frequency

components without the DC component and divide by the number of

samples in the bin. This is the best method but incurs the highest

processing cost.

b. Standard Deviation. We calculate the standard deviation of the samples in

the bin. This is an approximation of the energy and suitable for real-time

microcontroller implementations.

4. MIME is calculated as the mutual information over the bivariate bin samples

between to and ti.

a. Mutual Information is determined by the following formula:

I(X;Y) = p(x,y)log p(xy)
YEYXEX p(x)p(y)

where the samples of X and Y have been made discrete by binning their

continuous values into a finite number of bins. For our purposes, we

divided the continuous energy values into five bins that were evenly

distributed over the range of the signal.

Our general interpretation is that the MIME feature is proportional to the amount of

synchronization and therefore the amount of interaction in the behavior of the two

subjects over the specified time period. For this interpretation to hold, we must assume

the nonexistence of foreign influences on the two subjects' motion. For example, two

people playing the game "Simon Says", where a third party instructs participants to



follow his lead, will have a high MIME but are not interacting with each other. More

mundanely, two people who are walking up a flight of stairs one after the other will have

a high MIME but may not be interacting at all. The same would be true for passengers

riding on the subway, where the motion of the subway car would dominate and

coordinate the motion of the riders.

We can foresee methods to deal with the falsely high readings created by foreign

influence. Many of these sources of error, such as the subway car, induce motion that is

outside the range of typical human motion. With precise enough synchronization of data,

it should be possible to detect this type of motion and remove it from accelerometer

signals.

Our use of accelerometers has several advantageous qualities. We only require that a

single accelerometer is located near the core of the body so as to measure the motion of

the wearer's center of mass. Locating an accelerometer within a mobile phone or device

would satisfy this requirement. We do not require a set orientation for the accelerometer

as we are calculating only the energy in the signal, which in the case of a three-axis

accelerometer is orientation-independent. We do not need to worry about calibration of

the accelerometers to a true G scale because we are looking at the correlation across

accelerometers, and it is only important that the accelerometers stay consistent over the

period of the feature we are calculating.

Accelerometers as social sensors impose some hard constraints. The primary constraint

is that the possible pairings of devices needs to be known a priori. Calculating the

MIME feature for every pair of devices known to the system quickly becomes

intractable. Instead, this feature relies heavily upon a substantially reduced set of

potential interaction pairs as is easily produced by a proximity-scanning sensor. Real-

time use of this feature presents an additional constraint where at least one device's

energy features must be transmitted to a peer (most likely over RF) in order to calculate

the feature.



Alternative Sensors

Mobile devices afford many additional social sensing possibilities through their diversity

of input signals. On-device email, phone logs, text messages, and calendars are all rich

with indicators of social interaction. While these sources may be used to increase

likelihoods of particular social contexts, they do not give any direct evidence of face-to-

face interactions occurring.

Audio recorded from a wearable device can be used as a social sensor in many different

ways. We have previously described work that extracted structural components studied

in Conversational Analysis using wearable microphones to show correlations in these

turn-taking patterns to position in a social network. Work like this shows the promise of

using wearable sensors to identify the larger structural underpinnings of a social context.

More simplistic audio measurements that do not presuppose the availability of a reliable

face-to-face interaction sensor can benefit social interaction analysis. The amplitude of

the audio signal from the microphone on the UbER-Badge, for example, can function as a

rough indicator of the presence of human conversation. This type of audio feature can

potentially be extracted from the microphones built into mobile devices while being

stowed on the person.

Several technologies on phones can be used to sense a user's location. Global Position

Service (GPS) can yield location accuracies down to a few meters depending on

environmental conditions. Cell tower IDs available both on the mobile device and the

carrier's servers can be used to sense coarse granularity location that is available both

indoors and outside. Another technique is to use Bluetooth scans to recognize devices

that have fixed locations (e.g., printers, desktop computers).

The location of a mobile device user can be a powerful social context indicator. Clear

mappings exist between physical locations and the types of social contexts that they

support. For example, dog parks tend to host pet-related social activities. A soccer field



would likely be associated with sports activities. An important social context is the

home. Knowing that a device is at home has large implications for the types of social

contexts likely to be encountered. Interactions with the same people at work versus at

home can relate to two totally different social contexts. There is a substantial learning

phase to using location as a social context sensor in this way.

We are interested in inferring face-to-face interaction, and location does have something

to offer to this cause. Co-location can function much like proximity sensing in that it is

also a necessary condition of face-to-face interaction. Even though location sensing is

less robust for this purpose (due to GPS unreliability and cell tower coarseness), it offers

something that proximity scanners alone do not offer. This is the asymmetric quality of

the data that tells us qualities about the interaction beyond the fact that it occurred. For

example, it could tell who confronted whom and in what order the participants departed.

This information can be acquired through combining accelerometry with proximity

scanning but not with scanning alone.

Time of day, much like location, is useful for determining the types of social interactions

that people are likely to occur. During work hours, work social contexts are likely

whereas at night and on the weekends personal contexts are more likely. These patterns

generalize better than spatial patterns but still require learning on an individual basis.



Sensor Hardware Power Face-to- Design Learning

Cost Consumption face Constraints Required

Resolution

Infrared Low Low High High Low

Bluetooth Medium Medium Medium Low Low

Accelerometer Medium Low Medium Low Low

Microphone Low Medium High Medium Low

Location High High Low Medium High

(GPS)

Location (Cell Low Low Low Low High

Tower ID)

Time of Day Low Low Low Low Medium

Table 1. Analysis of social sensors along multiple dimensions.



Chapter 5: Measuring Social Interactions

We have instrumented several large gatherings of people with wearable sensors described

in the previous chapter. Our primary goal in analyzing this data is to identify the features

from the social sensors that correlate the strongest to the known social structure of the

subjects within the context of the collected data. Once we have identified these features,

we can combine them across all the members of the sensed population and use the

resulting adjacency matrix to cluster the individuals.

We collected data from three different social activities. The first data came from the

open house at the MIT Media Laboratory where sponsors wore the UbER-Badge for an

entire day's worth of presentations, meals, and demonstrations. The second data set

comes from a three-day career fair where Scottish middle school students roamed an

indoor sports complex looking at booths with their friends. The final data set was

collected during a treasure hunt where two teams competed against each other to find

clues distributed around a floor of the Media Laboratory. The ground truth social

structure came from profiles, surveys, and team assignment, respectively.

Co-workers

In the spring of 2005, eighty-four corporate sponsors of the MIT Media Laboratory wore

the UbER-Badge as they attended a semi-annual sponsor day. After attending

presentations in an auditorium, attendees had a three-hour period of time to roam around

the building, socialize, and attend demonstrations put on by students.



We analyzed this part of the day to see if our social sensor measurements could be used

to infer the underlying company affiliations. We found two useful features, which can be

used independently or in combination.

Cumulative time spent face-to-face with someone as measured by IR encounters has a

medium correlation with whether two people are affiliated or not (r-0.4674,p<O.00 1).

We also found that the MIME feature had predictive power in determining affiliation

between badge wearers. MIME showed a medium-low correlation with two people being

from the same company (r-0.35,p<0.001). Figure 1 shows a multi-dimensional scaling

of the MIME and IR features of the attendees during the open house.
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Figure 1 Multi-dimensional scaling of MIME and IR encounter time data collected from badge

participants during a sponsor meeting at the Media Laboratory.

Friends

We collected a data set from students at a career fair under different conditions. In this

data set, 261 students from 27 schools wore badges over the course of three days. The

students were divided into groups consisting of between six and ten students drawn from

a single school. Each group wore badges for an average duration of approximately one

hour. Beacons were placed at exhibits, but we did not place emphasis on giving

bookmarks to exhibits and therefore do not rely on these marks in our analysis. Breaking

from the sponsor meeting design, students were told to bookmark their friends instead of

using the badge as a way to exchange contact information, which would not have made

sense in this context.



We analyzed the within-group dyadic interactions for all three days of the career fair. We

looked at two features: 1) the natural logarithm of the time two badges spent face-to-face

2) the correlation in the energy of their accelerometers over the time the wearers used the

badges. Each of the interacting dyads is plotted in Figure 2. We have removed those

dyads that did not spend any time face-to-face from the data set.

From looking at the plot, one can see that the two features have a medium correlation

(r-0.56, p<0.001). As face-to-face time increases so does the motion energy correlation.

While unsurprising, this supports the idea that accelerometers can tell us something about

face-to-face interactions when IR sensors are absent.

The green marks specify dyads where a bookmark was exchanged. We can see that most

dyads of students (84%) who spent a non-zero amount of time face-to-face exchanged a

bookmark. We provided an incentive for students to bookmark their friends by raffling

off an iPod NanoTM to one person who wore a badge and one of her bookmarked friends.

Apparently, the popular strategy was to over-bookmark.

As students returned the badges, we administered a brief survey that asked each person to

answer questions about their friendship with another participant. In Figure 2, the circles

indicate answers to the question "How well do you know the other person?" The answers

were given on a scale of one to seven, with one corresponding to "not at all" and seven to



"very well", in this case. The size of the circles is proportional to the answer given. A

limitation with the survey data is that it was only administered to dyads - each participant

did not fill out a survey about everyone else in her group. Interestingly, however, we

noted that small groups of students would return at the same time after exploring the

event and fill out surveys about each other. This had the effect of making the presence of

a dyadic survey response function as a sort of "buddy" indicator. This observation is

supported by the data, which shows that these survey dyads have both higher time spent

face-to-face and higher motion energy correlation than the non-survey dyads (see Table

2).

Motion Correlation vs. Log Time Spent Face-to-Face
Green=Bookmark, Red=None; o=Survey, x=None

Survey Question: How well do you know the other person?
Size of circles proportional to survey answer value
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Figure 2. Scatter plot of features calculated for dyads of school classmates.



Table 2. The means and standard deviations for three
relationships in the career fair data set.

different label categories of dyadic

Teammates

We ran a treasure hunt experiment where two teams of people each competed to gather

clues distributed around the third floor of the Media Laboratory. Our goal was to identify

the team membership of the subjects by only using the sensors that they wore as they

participated in the experiment. The short nature of the experiment (twenty minutes)

combined with the restricted space that subjects could explore (approximately half of the

third floor of the Media Laboratory) presented significant challenges to the classification

problem.

For each of a total of three trials, we formed two teams of three people each to compete

in a treasure hunt. We told the subjects that approximately twenty clues were distributed

around the third floor of the Media Lab in areas that were highlighted on a map that we

gave them. Their task was to find as many clues as possible over the course of twenty

minutes and also get their teammates to see the clues as well. Figure 3 shows an example

Dyadic Motion Energy
Log IR Face-to-Face Time

Relationship Correlation

Surveyed (y=5.12,a= 1.13) (y=.308,u=.166)

Bookmarked,

but not (y= 3.71,a= 1.48) (y=.120,a=.170)

Surveyed

Neither

Bookmarked (= 2.56,a = 1.25) (y =.096, a =.166)

nor Surveyed



clue from the treasure hunt. Each clue consisted of a photo of members of the Human

Dynamics group holding various gadgets, a number in a red circle, and a Squirt IR

beacon.

Figure 3. An example clue from the treasure hunt (left) and two subjects wearing the wearable gear
used in the hunt (right).

We motivated the subjects to search out the clues by telling them that they would use the

information they found in the second half of the experiment, which would determine the

winning team. The second half of the experiment was a market experiment that had the

subjects combine their information to get the best approximation of the total distribution

of information across all the clues. This analysis was performed as part of a separate

research project.

While they participated in the treasure hunt, subjects wore a rig that consisted of two

UbER-Badges and a Zaurus. One UbER-Badge was located on the subject's chest, where

it is typically worn, and a second UbER-Badge was placed inside of a fanny pack that

rested at the base of the back. These provided two measurements of acceleration as well

as face-to-face interaction detection. We placed a Zaurus PDA inside of this pack that

contained a compact flash Bluetooth card that performed repeated Bluetooth scans at its

maximum (but variable) rate of approximately one scan per minute. The Zaurus also



recorded full quality 11 KHz audio from a headset microphone. Figure 3 shows a subject

wearing the data collection rig.

We ran three runs of the Treasure Hunt experiment involving a total of eighteen subjects.

We found that both the MIME feature (r = 0.533, p < 0.001) and the total IR encounter

time (r = 0.438,p <.01) had medium correlations with two people being on the same

team. The Bluetooth scanning failed on four of the devices from the third trial. Using the

remaining twelve subjects, we did not find any significant correlation between the

number of times devices scanned each other and the subjects being on the same team.

We need to experiment further to compare Bluetooth with our other measures.

The correlations of the MIME and IR features to team membership are encouraging.

Figure 4 contains the features for one trial of the experiment in matrix form. Players 1, 2,

and 3 are on one team with 4, 5, and 6 on the other. Figure 5 shows a dendrogram

formed by clustering the MIME and IR features for the same data. The clustering

correctly separates out the two teams.

In this example, the IR features most clearly delineate the teams. The MIME features

provide the second best differentiator. Interesting, the MIME and Bluetooth features are

structurally similar, and yet they are noticeably different than the IR features. One

explanation for this is that most of the time the subjects were following each other around

but not necessarily engaging in face-to-face interaction that would register with IR.

While only one example, this suggests that the accelerometer feature may be a suitable

proxy for proximity scanning in certain instances.
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Figure 4. MIME (left), IR Encounter Time (center), and Bluetooth Scan

the Treasure Hunt experiment.

1 2 3 4 5 6

Count (right) from a trial of

Figure 5. Clustering of the players from a run of the treasure hunt experiment. Team members are

correctly clustered into their teams (1,2,3) and (4,5,6) by using the MIME and IR features.



Chapter 6: Design of a Socially-Aware System

We have designed a system that uses the ability to sense interaction couplings between

people to inform the design of real-time, mobile applications. This system incorporates

sensing and feature extraction; networking multiple sensor nodes; group membership

management; and social context-aware widgets embedded in a mobile application

platform. While we have not yet integrated everything into one fully functional system,

the components have functioned individually. The complete system deployment is future

work.

Sensing and Feature Extraction

In our architecture, each person modeled corresponds to one sensor node. This node may

contain multiple sensors of different types that take measurements such as motion

activity, vocalization, and GPS location from the individual. The sensor node contains

modules that process these raw measurements into a feature vector. For example,

accelerometer data may pass through a Fast Fourier Transform that extracts the strength

of the signal across frequency bins. Audio data may pass through both an FFT and a

Hidden Markov Model to create features corresponding to voiced or non-voiced audio.

We have implemented a sensor node-based system that handles sensing and feature

extraction in real-time on Linux Personal Digital Assistants or other POSIX compliant

systems. Software modules that process input signals into transformed output signals

form the core of these nodes. We have written modules that read from a variety of sensor

hardware including accelerometers, IR transceivers, and biosensors, as used in the

LiveNet health monitoring system (Sung and Pentland 2004). After sensor sampling, the

outputted signals feed into modules that perform transformations such as down sampling

and FFTs. These intermediate signals then flow into modeling modules that classify the



state of the sensor node using Gaussian Mixtures Models, Hidden Markov Models,

Influence Models, Decision Trees and the like.

In order to network these modules together in as flexible a way as possible, we have

designed and implemented an inter-process communication system called Enchantment.

The Enchantment library functions as the glue that combines the sensor node modules. It

accomplishes this through two mechanisms. The first is a socket-based signaling system

that ensures reliable transport of point-to-point time encoded data between processes.

The second is a whiteboard server that allows processes to publish and subscribe to signal

handles while decoupling the producer from the consumer. This provides the important

ability for modules to come up in any order as well as for modules to be "hot swapped"

without bringing down the entire system. The whiteboard is also used to publish data that

does not continuously vary and has some limited permanence.

In summary, we define a sensor node in our system to be the combination of hardware

sensors, software feature extraction modules, the model module used for state inference,

and a locally run copy of the Enchantment whiteboard server. Figure 6 contains a

diagram of a sensor node.

Figure 6. Sensor node with feature extraction and model processes connected using the

Enchantment inter-process communication system.



Networking Multiple Sensor Nodes

In a system that models only the activity of a single sensor node, the model component

can simply be run on the sensor node itself. However, modeling multiple individuals, as

we are doing with our Social Motion architecture, requires data pathways across multiple

sensor nodes. This can be accomplished through configuring the inter-process links in a

number of ways.

Centralized. In typical client-server fashion, the sensor nodes connect to one special node

that runs the model. This has the advantage of minimizing both the overall amount of

processing done as well as the theoretical number of data transmissions. A disadvantage

to this approach is that there is a single point of failure for the entire classification

system.

Distributed. Each node runs the modeling code locally and sends updates to each of the

other nodes. While this increases processing and communication, the system is robust to

node failure and state inference can be made at each node.

Figure 7 shows examples of centralized and distributed configurations.

Figure 7. Sensor nodes connected in centralized (left) and distributed (right) topologies.



Our system allows for the possibility of three types of messages to be passed between

nodes to maintain a continuously updated model: raw sensor signals, feature vectors, and

latent state likelihoods. The first of these types, raw sensor signals, offers the most

flexibility but also has the highest bandwidth requirements. Each of the two remaining

types has its advantages and disadvantages.

Feature Vectors. These vectors need only be transmitted at a rate determined by the

model, which can be dramatically lower than sampling frequency of the raw signal. In

the case of a centralized model, feature vectors are the natural candidates due to the lack

of any modeling at the sensor nodes themselves. Distributed models may also

communicate feature vectors that will be used as observations in the full model run at

each of the nodes.

Latent State Likelihoods. Running the model at each of the sensor nodes, as in the

distributed case, enables the transmission of the latent state likelihoods at each time step.

Minimally, only the likelihoods for the states pertaining to the sensor node making the

calculations need to be transmitted to each of the other nodes.

Figure 8 shows the feature vector and latent state configurations for inter-node messages.

Figure 8. Sensor nodes can transmit feature vectors (left) or latent state inferences (right).

Group Management Software

Enchantment gives us the ability to create real-time models of social interactions, but it

does not provide a way to perform the group management operations that a social-context



aware application requires. We have created a package of software called Constellation

whose role it is to provide this piece of infrastructure.

Constellation comprises a database-backed server that handles connections from mobile

clients through a context server called xLink (Sadi 2005). The server handles requests to

join and leave "networks", create links between members of networks, and set users'

current active status on a per-network basis. The client library includes a set of widgets

written in J2ME that access the functionality of the server.

We have integrated Constellation into an urban mobile computing project called the

Electronic Lens. The Electronic Lens allows users to participate in asynchronous

discussions that are indexed by and accessed through spatial and social keys. Figure 9

shows the main screen of the Electronic Lens running on a Motorola A1000 smart phone.

The button in the upper left hand corner of the screen (1) leads to the Constellation

control screen where people can edit their network membership. Button (2) enters spatial

mode, where users can scan and create visual tag markers that are intended to be affixed

to points of interest (Costanza 2006). By pressing the lower button (3), users can select a

social space that corresponds to one of the social networks to which they belong. After

either scanning a tag or selecting a social space, the user enters an asynchronous

discussion space that presents user-generated media clips in a browsable, graph-based

interface called RadioActive (Zinman and Donath).



Figure 9. The main screen of the Electronic Lens. Users can edit their social connections through

accessing the Constellation control screen (1), or they access media through scanning visual tags

(2) or selecting social spaces (3)

The Constellation control screen, which is shown in Figure 10, allows the user to join

existing networks or create new ones. The list of networks (1) includes both networks to

which the user belongs as well as publicly visible networks that the user might join.

When a user is a current member of a network, its entry is bolded, and the right side of

the list entry (2) displays the total number of members. Public networks that the user

does not belong to are shown in light grey. The text on the right is "Locked" if the

network requires a password to join. Otherwise, it displays "Non-member" and can be

joined by pressing the button (4) that displays a "+" for join. When a joined network is

highlighted this button displays a "-" to un-join the network. Highlighting a locked

network will change the icon to a key, which can be pressed to unlock the network with a

password. Not all of the networks are initially available in the list. When creating a

network with the new button (3), the user can specify the network as private. This makes

the network visible once the user presses the private button (4) and enters the network's

name. The left arrow (6) brings the user back to the main screen.



Figure 10. The Constellation control screen. The list shows the available networks (1) and the

network's status (2). Buttons on the right allow users to create new networks (3); access private

networks (4); join, un-join, and un-lock networks (5); and (6) return to the main screen.

After pressing the social mode button on the main screen, the user enters the network

selection screen in Figure 11. This screen allows the user to check the message count of

each of her member networks (1). By selecting a network and pressing the right arrow

(2), the user continues on to the asynchronous message screen.

Figure 11. The network selection screen. The user can see the new message count for each of her

member networks (1) and enter the selected network's discussion space (2).



Chapter 7: Conclusion

In this thesis, we have presented the foundational components of a mobile system that

enables social context awareness and networking through the sensing of human behavior.

We showed that several sensing options exist that can be integrated into current mobile

devices without disrupting the usage patterns and form factors to which people have

grown accustomed. Through our experimental analysis, we have demonstrated that these

sensor signals contain the information necessary to infer the underlying social structure of

groups of interacting people about which no information is known a priori. We have

developed infrastructure to make these inferences of social structure available to the

mobile user on a real-time basis. With the Electronic Lens project, we have created and

tested a platform that integrates social computing into a multi-faceted mobile experience.

Future Work

Going forward, we aim to integrate these components into a new type of sharing

application that leverages real-time social awareness to guide user-generated media

dissemination. Working from the Electronic Lens platform, we would augment the

selection screen to prioritize networks based on the inferred social setting of the user. At

the very least, this would cut down the complexity of navigating through all the groups

that the user belongs to in order to share a photo. Ideally, the inference would be reliable

enough that people would be able to trust the system to distribute the content through the

system automatically. We would also implement an online training mechanism where

each selection of a social network would provide the system with a trained example of

what social context the user considered her self to be in at that time.

Interruption management and synchronous communication support are two additional

areas where we can put social awareness to good use. Understanding the relationship of a

caller to the receiver's social context could help make intrusive incoming calls more

acceptable by only letting pertinent calls through. Conversely, the user's device could



proactively contact users related to the user's social context but not currently involved in

the interaction. This type of opportunistic communication could enable interactions that

would not occur without this capability.

Lessons Learned

Testing and deploying social applications on mobile devices present a substantial

challenge. In the United States, the mobile landscape is filled with many players who

have failed to converge on a standardized platform that allows full-featured applications

to run on a majority of devices. Unifying technologies like J2ME and Symbian have

advanced towards this goal, but they have largely fallen short. Upcoming platforms such

as Flash and optimized web browsers, such as those from Opera, are striking out on a

similarly difficult path. Instead of relying on open standards, we see tightly integrated,

closed applications coming from major online players like Google and Yahoo who have

used their deep pockets to create their own platforms that span the numerous devices that

are on the market.

Even these efforts cannot tap into the true potential of the mobile device as a multi-modal

sensor node due to the restrictions that wireless carriers impose on device manufacturers.

The carriers pressure these manufactures to lock down their devices with the idea that

they alone will reap the benefits of delivering expensive content to their customers.

Without a standardized hardware profile, mobile applications are undermined to the point

where they become severely limited desktop alternatives.

Consequently, we have seen several new players enter the mobile market that are taking

on the roles of device manufacturer, application developers, and wireless carriers. These

companies, including the likes of Amp'd Mobile and Helio, aim to unlock the intrinsic

value of mobile devices through offering fully integrated hardware, software, and

wireless services to their customers. While this approach can offer an improved mobile

experiences that takes advantage of what a single mobile device has to offer - such as



high quality video feedback, seamless interface design, and location-based services, it

creates new barriers along branded device lines for social applications that need the

participation of large numbers of people to realize their potential.

Two pathways show particular promise for bringing mobile networking to the masses.

The first is Microsoft's increasing role in the mobile device market. Windows Mobile is

currently at version 5.0, and the number of devices that support the operating system is

growing. Microsoft may well be posed to bring the same type of standardization to the

mobile market that they brought to desktop personal computers. With so many devices

on the market, it may take a force like Microsoft to achieve such a goal.

The second avenue is more of a parallel pathway than a market trend. Wearable devices

that are designed specifically with social applications in mind have the potential to fill the

void in today's mobile device market. A plethora of low-power, low-cost radio

transceivers, microprocessors, and storage solutions are hitting the market and spurring

on the sensor network community. For real-time applications, these devices could be

interfaced to mobile devices through Bluetooth or simply work in a stand-alone mode.

Ubiquitous Wi-Fi networks and USB accessible desktop computers offer zero-cost ways

to upload information to Internet based services for asynchronous applications.

Final Thoughts

Social computing on mobile devices presents a way for people to put their social capital

work across all segments of life. By using sensors to automatically infer social context,

we can remove the hurdle of manual annotation for disseminating new content and

minimize the attention necessary to search for content from other people. Together with

advances in location sensing, social context-awareness promises to bring computing out

into the every day world where the majority of the world's population will be using

computing devices in the years ahead.
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