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ABSTRACT

Image processing systems very often degrade images such that
they require appreciable amounts of high-pass filtering or "edge
sharpening." This is necessary to enhance the visibility of image
details, as well as the aesthetic quality of images. Practical
considerations dictate the desirability of sharpening techniques which
do not require extensive a priori knowledge of the characteristics
of degrading systems. A general knowledge of the brightness and
contrast responses of the human visual system led to experimentation
with one such sharpening technique: adaptive high-pass filtering.
A computer program has been developed which filters a digitized
image while varying the frequency response of the filter from one
picture element to the next. Unsharp masking is the high-pass
filtering technique upon which the program is based. Early experi-
ments with this program used local average brightness as the criterion
for selecting the filter frequency response to be used in a particu-
lar area of an image. Much greater success was attained in later
experiments which used edge contrast as an additional criterion.

All of these adaptive filtering experiments are explained here.
In addition, some preliminary experiments with nonadaptive filtering
are also recounted. They included both linear and nonlinear high-
pass filtering. These experiments demonstrated the strengths and
weaknesses of nonadaptive filtering techniques. They also indicated
how the enhancing filter's high-frequency response should vary with
brightness and contrast, in order to produce the most visually
satisfying pictures.

Details of both the design and the performance of the adaptive
filtering program are included in this discussion. Possible



modifications to the program for increased speed and efficiency
are explained along with suggestions for further research and for
other potential applications.
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IMAGE ENHANCEMENT PROBLEMS AND TECHNIQUES

This thesis details research which investigated the potential useful-

ness of adaptive image enhancement techniques. The adaptive techniques

examined involve nonlinear high-pass filtering of images by a computer

program capable of modifying or "adapting" the filter function to cer-

tain local characteristics of the image being filtered. Specifically,

the computer program treats its input image as a rectangular array of

integer brightness values b(nl,n2 ), which is filtered element-by-ele-

ment into an output image array B(nl,n2). The process of "adaptation"

involves selecting a "best" filter function to generate each output

element B(nl,n2 ), based on relevant characteristics of the input image

at or in the neighborhood of (n1 ,n2). Three basic questions arise

concerning such a process. First, can an adaptive filtering program

operate without excessive use of computer time and storage? The research

results presented here will show that it can. Second, can an adaptive

filtering program modify filter functions at each picture element (pel)

without creating in the output image artifacts which are peculiar to the

adaptation process? Research results indicate that the adaptation pro-

cess not only avoids artifacts of its own but also serves to eliminate

some artifacts ordinarily produced by image-independent enhancement

techniques. The third question is: Can adaptive filtering demonstrate

at least the potential for producing subjectively better output images

than image-independent (non-adaptive) filtering techniques? In this



context, "subjectively better" is intended to embrace both a human

observer's evaluation of the aesthetic qualities of an output image and

his evaluation of how much the visibility of useful information is

improved by filtering. Results will show that such a potential defi-

nitely exists.

A photograph or electronic image of a given natural scene has, in

most cases, a lower spatial bandwidth and dynamic range than the original

scene. Although the image is imperfectly derived from the natural scene,

it is very often only the first of a series of derivatives. It is

the source image from which a family of descendant images is produced

by various combinations of processes: electronic scanning, quantiza-

tion, coding, transmission, and decoding. Frequently, the descendant

images are degraded copies of the source image and the three major

degradations are:

1. The high frequency content is reduced.

2. There is compression of the brightness differences between objects

and their surroundings; the most severe compression usually occurs in

bright areas.

3. The noise content is increased.

For these reasons, the filtering operation used to restore

descendant images is almost always some form of high-pass filtering

or "edge sharpening" which amplifies the high spatial frequencies

in the image, while attenuating, if necessary, the very high fre-

quencies in which the noise dominates. Edge sharpening is also

useful for enhancing images beyond the requirements of mere restora-

tion of original image quality. A human observer will often judge
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a sharpened descendant image to be more informative and more aestheti-

cally satisfying than the source image from which it came.

The literature is rich in explanations of image restoration tech-

niques which involve rigorous application of a priori information about

degrading systems to produce an exact or optimal reconstruction of an

image. These techniques include inverse filtering 11,2] which requires

knowledge of the degrading system's frequency response, and Wiener

filtering 13,4] which additionally requires knowledge of signal and

noise spectra. In situations where such information is difficult

or impossible to gather, it is helpful to appeal to the notion that

gathering such information may be unnecessary. The human ability

to see and recognize objects in images does not always require

exact or least mean square reconstruction of images. There are

many image processing systems which do not degrade images so badly that

only an exact inversion of the degrading system can reconstruct or

improve them. For these reasons, the adaptive filtering research dis-

cussed here emphasized the visibility of details in an image, rather than

exact or optimal fidelity of the reproduction. Visibility, and the com-

panion idea of relative visibility, were seen as cognitive issues: How

easy is it to see and recognize a given bright or dark object, relative

to its surroundings in an image? How easy is it to recognize a given

object, compared to the ease with which other brighter or darker objects

are recognized? Adaptive edge sharpening was investigated as a way of

improving a wide variety of images without appeal to detailed a priori

knowledge of the degrading systems which produced them. Instead, refer-

ence was made to the peculiar spatial frequency and brightness sensitivities



of the human eye. Brightness and contrast were used as criteria to

determine how much edge sharpening was required to tailor each image

detail to the human observer's needs.

Unsharp masking is a versatile edge sharpening technique well

suited to adaptive filtering experiments for two reasons. First, in

the frequency domain, one can synthesize any desired high-pass fre-

quency response as the difference between a constant and a low-pass

frequency response of appropriate shape. Second, in the spatial domain,

it is easy to vary the overshoot/undershoot added to a section of an

edge, after a pure "edge signal" devoid of low frequencies has been

created. Edge signal generation is done by low-pass filtering (blurring)

an image, then subtracting the brightness of the blurred image from the

brightness of the original. The process was originally implemented

using optical systems and photographic film. Various investigators [5,6]

have also implemented electro-optical unsharp masking. These nonadaptive

implementations involve subtraction of two video signals by analog

circuitry. This thesis discusses a digital implementation of unsharp

masking in which the low-pass filtering, the generation of the edge sig-

nal, and the weighted addition of the edge signal to the image are all

accomplished by computer programs.

Appendix A contains a one-dimensional example of the effect of a

linear phase high-pass filter on the edge between a bright and a dark

region. This analysis represents linear filtering of brightness (b) as

a continuous function of position (x). The analysis shows that the

sharpening of the two sides of the edge is symmetric: The peak overshoot
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equals the peak undershoot. The peak overshoot does not depend in any

way on the average of the brightnesses on either side of the edge. The

magnitude of the frequency response at zero frequency is unity. There-

fore, a brightness change of a given height is filtered the same way

in both bright and dark regions of an image. The peak overshoot does

depend on the difference in brightness. Therefore, the brightness peaks

at a high-contrast edge may exceed the amplitude limitations imposed

by finite dynamic range. The image processing system is then forced to

"clip" these peaks to the whitest white and the blackest black.

Homomorphic filtering 17,8,9] makes the action of a linear filter

brightness-sensitive. Linear filtering of the logarithm of brightness

(density) produces symmetric peaking of the density and asymmetric

peaking of the brightness. The asymmetry consists of a peak on the

dark side of an edge which has smaller amplitude than the peak on the

bright side. Since the brightness sensitivity of humans has been shown

110,11] to be logarithmic, it is reasonable that the amount of edge

peaking should increase with increasing brightness. Furthermore, since

any additive noise in an image is most visible in dark areas, it is

again reasonable that relatively little edge peaking be added in dark

areas. Nonlinear characteristics of films and other imaging media would

also dictate more edge sharpening in the brightest areas than in the

middle tones. Homomorphic filtering has been done 17] with frequency

responses whose zero-frequency magnitudes are equal to .5. The action

of such a filter, coupled with the effect of logarithmic transformations,



compresses the dynamic range of a filtered image and rebiases the image

into the middle of its tone scale. The loss of contrast makes the

filtered image appear more uniformly illuminated. A greater degree of

edge peaking can be introduced without saturation of blacks or whites.

One can argue that such an image is easier for the human eye to examine

and easier for imaging systems with finite dynamic range to reproduce.

However, there do exist undesirable features of homomorphic

filtering. First of all, the contrast of an image is information, just

as are the outlines of objects in the image. Radical reduction of

contrast constitutes a reduction in one kind of information available

from an image. Secondly, homomorphic filtering creates white halos and

black bands along high-contrast edges. (See figures 21(b), 29(a), 30(a),

and 30(b) of 17].) It is evident that high-contrast edges need less

edge peaking since high contrast is inherently easy to see. Thirdly,

the homomorphic filtering of a small change in brightness differs little

from linear filtering of that small change. This is because, for small

changes in brightness, the logarithmic and exponential functions are

piecewise linear, and they are the inverses of one another.

Basic to this investigation of adaptive filtering was the assump-

tion that some nonlinear operator other than the logarithm function can

better control the action of a linear filter, according to brightness

and contrast criteria. Such an operator should exhibit less of the

deficiencies of homomorphic filtering and more of its advantages. In

particular, the criteria for measuring the success of the adaptive



filtering experiments were as follows:

1. The filtered image should preserve as much as possible of the

dynamic range of the unfiltered image.

2. The various bright and dark objects in the filtered image should

receive the maximum edge sharpening possible for each region of the tone

scale, subject to three constraints:

(i) High-frequency noise should not be obtrusive in areas of the

filtered image containing little high-frequency information.

(ii) High-frequency low-contrast "texture" information, such as

grass or wrinkles in clothing should not be sharpened to the point of

unnatural appearance.

(iii) The adaptive filtering process should avoid white and black

saturation at the high-contrast edges in an image. Compromise between

this requirement and the need for preserving dynamic range permits

only modest compression of the original image tone scale.

This investigator's original conception of adaptive unsharp masking

called for a computer program capable of changing the function used for

low-pass filtering from one pel to the next. This requirement placed

basic constraints on the filtering algorithm used. It is evident, first

of all, that adaptive filtering is at least conceptually simpler if

output pels depend not on other output pels but only on the input pels in

a certain neighborhood. This argues for "nonrecursive" filter functions;

that is, impulse responses of finite extent. An even stronger argument

derives from the fact that two-dimensional nonrecursive filters are



never unstable. Recursive filter stability is a much more difficult

problem in two dimensions than in one [3]. A second algorithm design

decision involved the use of convolution rather than frequency domain

filtering. If changing a low-pass filter function from pel to pel

involves more than scaling its magnitude, then frequency domain filtering

becomes awkward. Sectioning an image into small, possibly irregularly

shaped areas for FFT filtering would be costly in both computation and

input/output time. In such a circumstance, the possible speed advan-

tages of the FFT over a convolution algorithm would be eliminated.

Chapter II will detail the novel convolution algorithm used to accomplish

the low-pass filtering. Chapter III will show experimental results

indicating that adaptive unsharp masking can operate successfully with a

single low-pass filter function. This means that future implementations

of the techniques described here can use the speed of the FFT after all.

The third basic design decision was that the various filter functions

used in adaptive filtering must change very gradually from pel to pel.

It was expected that two drastically different filter functions opera-

ting in adjoining sections of an image would create visible spurious

boundaries. To insure gradual changes from pel to pel in the filtered

images, all adaptation algorithms measured the brightness of the low-

pass filtered image as the brightness criterion for filter selection.

Before attempting any experiments in adaptive filtering, this

investigator did extensive work with the properties of nonadaptive

filtering - both linear and nonlinear. This work and the reasons for

it, are the subjects of Chapter II.



EXPERIMENTATION WITH NONADAPTIVE FILTERING

A. IMAGE ENHANCEMENT SYSTEM CONFIGURATION

Figure 1 shows the image processing system used for both

adaptive and nonadaptive filtering experiments. Photographs of various

sizes were mounted on the rotating drum of a Toho Facsimile Transmitter.

The photos were scanned at a standard resolution of 100 lines per inch.

The analog signal produced for each scan line by the Toho Transmitter

was sampled and quantized by a digital interface. The interface output

for each scan line was a sequence of eight-bit brightness samples

consisting of 100 samples per inch in the direction of scan. These

eight-bit pels were recorded on Dectape by the PDP 11/40 computer which

was used for all of the image enhancement programs. The computer was

programmed to send pictorial output to either or both of two output

media. Some digital images were sent in real time through a serial

interface to be displayed on the face of a cathode-ray tube flying spot

scanner. A Polaroid camera equipped with Polaroid Type 42 film photo-

graphed the image on the face of the tube. Other digital images were

recorded on disk or tape files. These images were later sent by

the computer through a facsimile receiver interface, which reconverted

digital sequences to analog scan line signals for a Laserphoto Facsimile

Receiver. The Laserphoto recorded the images on dry silver photographic





paper. Viewing this system in light of the discussion in Chapter I,

one sees that the original photographs are the source images. The

descendant images are those which are recorded without enhancement on

Polaroid or dry silver paper. The Toho Transmitter, the facsimile

transmitter interface, the facsimile receiver interface, the Laserphoto

circuitry, the scanner circuitry and the two different types of film

all contribute degradations which determine the appearance of the

descendant images. The effect of edge sharpening on these images

was judged against the Laserphoto or scanner product, not against the

original source photograph. The source photographs merely served as

a reference to indicate the amount of detail, the amount of noise, the

dynamic range, and the artifacts, if any, in the original image.

The image enhancement computer software identified in Figure 1

consisted of three different subsystems. The subsystem used in the

first phase of experiments implemented nonadaptive unsharp masking.

This subsystem is shown in Figure 2. The input image b(n1 ,n2) is

read in one line at a time from a sequential tape or disk file. Each

picture line contains approximately 450 to 670 pels depending on the

width of the source photograph. Software switches determine whether

or not a logarithmic transformation and a dynamic range compression

are performed on the input lines. Since several input lines must be

present in memory before the first low-pass filtered output line can

be generated, the input lines must be stored in an array. If the

point spread function (impulse response or "PSF") of the low-pass
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filter has a radius of R picture elements, then R picture lines are

needed both above and below the input line being filtered. To

process the edges of the input image, R border lines containing some

constant gray level are supplied at the top and the bottom of the input

image. R extra pels are added to the left and right ends of each

input picture line. Once a sufficient number of input lines have

been stored in the array, the low-pass filter begins generating one

output line of the blurred image bL(n3,n4 ) for each new input line

read in. All digital PSF's used in these experiments have unit energy;

that is, the magnitude of their frequency response at zero frequency

is one. All dynamic range compression is accomplished by the prefil-

tering compression mentioned above. The software performs the sub-

traction associated with unsharp masking, after each line of bL(n3,n )

has been generated. The blurred output line is subtracted, pel by

pel, from the corresponding line from the input image b(n3,n4). This

input line is one of those available in the multiple line storage

array. The result of the subtraction is a line from the edge image

bE(n3 ,nq). For nonadaptive filtering, a single constant "a" multiplies

each of the pels of the edge image before the edge image line is

added to the input line from b(n3 ,n ). This addition sharpens the

edges in the input image and the magnitude of a determines the amount

of peaking added to each edge. a must, of course, be positive, in

order to sharpen, rather than blur, the edges. The sharpening is

directly proportional to a. When a is a constant, the filtering and
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masking software may be thought of as a linear high-pass filter. The

magnitude of its frequency response at zero frequency is one. The

high-frequency asymptote of the frequency response is 1 + a. The

precise shape of the frequency response is determined by the frequency

response of the low-pass filter. After the sharpened picture line

has been generated, the software performs an antilogarithmic trans-

formation on the line, if one is dictated by the setting of a software

switch. The final product is a line of the output image B(n3,n4)

which is then sent by the software to one of the two output media. The

following discussion describes the components of this software in

greater detail, beginning with the convolutional low-pass filtering

algorithm.



B. IMAGE ENHANCEMENT SOFTWARE COMPONENTS:

THE LOW-PASS FILTERING ALGORITHM

Useful filtering of images either by optical systems or by

digital processors very often involves spatially invariant, linear

phase, circularly symmetric PSF's. Among the exceptions to this are

filtering operations on images with spatially variant degradations

[12] or motion degradations 113,14,15]. When a continuous, circularly

symmetric PSF is sampled on a Cartesian grid, and the sample density

is high enough to prevent frequency aliasing, the resulting sequence

retains approximate circular symmetry. The Fourier transform of such

a sequence also demonstrates circular symmetry in a region surrounding

(w1=0, w2=0) in the frequency plane, even though the transform is

periodic in wl and w2. One may therefore think of using a circularly

symmetric discrete sequence h(nl,n2) as the digital PSF in a filtering

program.

As explained above, early design considerations of adaptive

filtering software seemed to make a direct convolution algorithm very

desirable. Circular symmetry was seen as a property which could be

exploited to economize on the time and storage requirements of a

convolution algorithm. During the course of this research, this

investigator found no evidence in current literature of any effort

toward the study of convolution algorithms based on circular symmetry.



Only one publication [16] even suggests the germ of the idea upon

which such algorithms could be based. An original algorithm for

circular convolution of functions in Cartesian space is presented

here.

The convolution sum equation describes the basic process of

filtering an image directly in the spatial domain:

B(nl,n 2 ) = E Z h(k,r) * b(nl-k, n 2-r)
k=-oo r=-OO

where h, b, and B are the two-dimensional sequences for the PSF,

the input image, and the output image, respectively. If finite limits

are placed on the indices k and r, then the equation describes convo-

lution of an input image with a PSF of finite extent. If h(k,r) is

circularly symmetric about the point (0,0), then it is a linear phase

filter.

Further examination of the convolution sum shows how the asso-

ciated computations can be abbreviated. Since h(k,r) is circularly

symmetric, h(k,r) has the same value at every point (k,r) such that:

k2 + r2 = R2

These points are (k,r), (-k,r), (r,k), (-r,k), (-k,-r), (k, -r),

(-r,-k) and (r,-k). Obviously, this eight-fold symmetry reduces to

only a four-fold symmetry if k=r or if either k or r is zero.

However, one can still reduce the number of multiplications required by



the convolution sum. All of the b values on a ring of radius R

may be added before the sum is multiplied by h(R). For a PSF having

a radius of five pels, a total of eighty points reside on a total of

only thirteen concentric rings. However, since the number of rings

(therefore the number of multiplications) can grow very large, an

approximation is used to simplify the situation further: One assumes

that, near the outer edges of the PSF, the values of h(R) on several

closely spaced rings can all be approximated by some average value

h(R'). This effectively groups several adjacent rings into one

annulus to which the single filter coefficient h(R) is assigned.

The particular approximation used in this research involved

defining annuli one pel wide for all values of radius greater than

five pels. Various experiments used PSF's as large as nineteen pels

in radius. Although the "annulus approximation" distorts the shape of

a point spread function larger than five pels in radius, no experiments

ever demonstrated filtering artifacts traceable to this shape distor-

tion. It is conjectured that this shape distortion will not, in most

cases, produce visible artifacts in filtered images. Whether the

"annulus approximation" can be extended to radii smaller than five

pels without producing visible artifacts is an appropriate subject

for future experiments.

The statements above lead to a new expression of the convolution

sum:



N PA j nl,n 2B(n1 ,n 2 ) = c * bij
j= i=l bij

Henceforth, each individual ring or annular group of rings will be

referred to as an "annulus". Using that nomenclature, the inner

summation in the equation above is the "annulus sum" of all values

of the input b on the jth annulus around the point (n1,n2). (There

are Pj points on that annulus.) The product of the "annulus sum"

and the "annulus coefficient" (or "filter coefficient") c. is the

"annulus product". The grand total of the annulus products for all

NA + 1 annuli is the convolution sum for the single output value

B(nl,n2). (The "annulus" corresponding to j=0O has zero radius and

is not a true annulus. c0 is simply the value of the PSF at its

central point.) A few of the properties of this new formulation

are immediately evident. First, storing several filters in the

filtering program is very simple since the number of annulus coeffi-

cients is of the order of R, the radius of the PSF in pels. If

several filter functions are available, a different one can be

selected for each pair of indices (n1,n2) before evaluation of the

annulus sums begins. NA + 1 multiplications are required for each value

of the output function B(nl,n2). Consistent with the "annulus approxi-

mation" discussed above, NA equals R + 8 when R 2 S pels. NA is not

only of the order of R, but is also linearly dependent on R. For



small values of R, the number of multiplications is equal to or

less than the number of multiplications used by FFT procedures

[17,18,19]. However, the number of additions is of the order of

R2 and is functionally dependent on R . This is a distinct disad-

vantage compared to FFT processes.

An important implementation problem of this algorithm is identi-

fying the pels residing on a given annulus around a given central pel.

The problem is complicated by the one-dimensional rather than two-

dimensional addresses of memory locations in which the eight-bit

pels are stored. However, one can define a central pel with a known

memory address as the (0,0) origin of some Cartesian coordinate system.

Then another pel residing on some distant annulus has the integer

coordinates (m,n). Several lines of the input picture reside in

memory at one time. Each line has a fixed length of L pels, which

includes the extra pels on the left and right borders of the line. No

matter what the memory address of the (0,0) pel, the address offset

of the (m,n) pel relative to the (0,0) pel is given by:

n*L + m

All that is required to identify the pels on a particular annulus is

the memory address of the current central pel and a list of fixed

address offsets for the surrounding pels in the "upper half plane"

(where values of n are positive). This is because the offset for the

"lower half plane" pel (-m,-n) is the negative of the offset for (m,n).



During its initialization phase, the filtering program creates a list

of address offsets for each annulus defined for the filter function

in current use. These lists are made from lists of integer coordinate

pairs (m,n) representing points in Cartesian space within a 19-unit

radius of the point (0,0). The coordinate pairs are also grouped

according to the annuli to which they are defined to belong. To

conserve memory space, only the coordinate pairs for points in the

angular slice between zero and 45 degrees are stored as basic data.

The four-fold and eight-fold symmetries mentioned above are used to

generate other coordinate pairs on the same annulus.

As explained above, input picture lines are read in one at a

time, after the first several lines have been read in at once. If

computer memory is thought of as two-dimensional, then the picture

line to be filtered is the one in the "middle" of the multiple line

array. The convolution process uses the lines "above" and "below"

it. If the processing of lines proceeds from the top to the bottom

of the input picture, then the top line of the multiple line storage

array is the one discarded when the filtering of the middle line is

complete. The remainder of the array is moved upward one line, and

space becomes available for a new input line at the bottom of the array.

The movement is done by moving the pels to new memory locations,

rather than by changing pointers to picture lines. The process is

similar to the high-speed "recompacting" done on program address spaces

by operating systems which utilize relocatable partitioning. In this



way, the input picture lines are filtered sequentially in one pass,

and the ordering of the pels relative to each other in computer

memory remains consistent. This allows the address offsets computed

at the beginning of the process to remain fixed throughout. A

pointer to the pels on the middle picture line defines the memory

addresses of the centers around which the annulus sums are evaluated.

This pointer is reset to the same address each time a new middle line

is begun. It is incremented by one, from one pel to the next on that

line.

Another basic implementation issue was decided by the charac-

teristics of PDP 11/40 fixed-and floating-point hardware. The convo-

lution sum calculations were programmed in fixed-point arithmetic as:

N P
A  j nl1,n 2B(nn 2) E I. E b

j=0 i=l i

All values of the input image b are treated as eight-bit integers in

the range [0,255]. The annulus sum is evaluated using one 16-bit

register. Each filter coefficient c. is multiplied by some scale

factor 2S and rounded off to a signed 15-bit integer I . S is chosen

such that the c with the largest magnitude has an absolute value

between 214 and 215-1. The annulus sum is multiplied by Ij and the

entire 32-bit result is saved as the annulus product. This quantity is

added to the convolution sum for B(nl,n2) in a 32-bit accumulator.

When the summation is complete, two steps are necessary to convert a



32-bit value of B to an 8-bit value of B. The first step is division

by 2S (a right shift). The second step involves forcing the value

of B, if necessary, into the range [0,255). At each stage of the

computation, overflow tests occur and appropriate actions are taken

when overflows are detected. Appendix B shows a set of constraints

which can be imposed on the annulus coefficients so that overflows do

not occur and so that no value of B equals or exceeds 256.

The digital PSF's used for both nonadaptive and adaptive filtering

were sampled Gaussian functions with radii of 5, 7, 10, 13, 15, and

19 pels respectively. If the Gaussian "spread" parameter a is measured

with the distance between pels as the unit distance, then the radii

named above equal 4.47 times their respective a values. 4.47 * a

was used because the Gaussian annulus coefficients vary over several

orders of magnitude. The use of 15-bit signed integer coefficients

in the filtering computations required truncation of the Gaussian

functions to a radius approximately equal to 4.47 * a. Figures 3A

and 3B show two-dimensional radial cross-sections of a continuous unit-

volume Gaussian PSF h(r) and its Fourier-Hankel transform H(q). The

unit of measure for r and a is one arbitrary pel distance. The sampled

version of h(r) therefore has an effective radius of ten pels. The

annulus coefficients for this digital PSF appear in Table I. Since

the sample values are scaled so that the sequence has unit energy, the

annulus coefficients vary somewhat from the corresponding values of

h(r). This is due to the distortions caused first by sampling and
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truncating h(r), then by applying the "annulus approximation" to the

resulting sequence. The unit of measure for the radial frequency

variable q is the reciprocal of the pel distance. When a continuous

two-dimensional function is sampled on a Cartesian grid with a cer-

tain pel distance between samples, the Sampling Theorem imposes an

upper limit on the bandwidth of the sampled function. In the units

of measure of q, this limit is .5. It is evident from Figure 3B

that a Gaussian impulse response ten "pel distances" in radius has a

bandwidth (at -3db) of .0593. This is approximately one tenth of

the bandwidth of any sampled image on which the sampled impulse

response might operate.

A useful direction for further study might be the investigation

of low-pass filters other than the Gaussian. Techniques have been

published 120] for the design of two-dimensional digital filters with

finite impulse response. There are also techniques [21] for "windowing"

two-dimensional infinite impulse responses. "Windowing" is another

device which permits one to sidestep the stability problems associated

with two-dimensional recursive filters.

A discussion of the performance of the convolution algorithm is

now in order. It should be noted, first of all, that the particular

PDP 11/40 used for this research contained enough memory to accomodate

even the 39 input picture lines required by the PSF with the 19-pel

radius. As explained above, the input lines varied from 450 to 670

pels in length. For those computers with less memory, the "overlap-



save" technique is available [18]. This technique involves generating

sections of output lines from the corresponding sections of several

input lines. More than one pass must be made through the input image.

For example, the first pass might read the left half of each input

line and create the left half of each output line. The second pass

would then process the right half of the image. Even though such a

procedure was not needed for this research, experiments showed that

the low-pass filtering was the computational "bottleneck" in the image

enhancement software. Filtering generally took far more computation

time than all other processes combined. These included the logarithmic

and antilogarithmic transformations, the compression, the edge image

generation, and even the selection of the different values of a used in

adaptive filtering. Typical timings were as follows: When a 512 by

512 input image was filtered by a PSF ten pels in radius, approximately

twenty output lines were generated per minute. When the PSF was 19

pels in radius, the rate was only six output lines per minute. This

is undoubtedly due to the R2 dependence of the number of additions.

As will be shown in Chapter III, future implementations of the adaptive

filtering techniques will not require convolutional filtering as was

originally anticipated.

This concludes discussion of the filtering algorithm. Discus-

sion of the other image enhancement software components follows.



C. IMAGE ENHANCEMENT SOFTWARE COMPONENTS:

LOGARITHMIC TRANSFORMATION AND TONE SCALE COMPRESSION

The logarithmic and antilogarithmic transformations are activated

by software switches for nonlinear filtering experiments. Eight-bit

values are converted between the brightness and log-brightness domains

by high-speed table look-up. The logarithm table maps an integer b

in the range 10,255] into another integer b in the range [0,255]

using the rounded-off values of the function:

b = 255 * In(l + .02 * b)

In(l + .02 * 255)

The antilogarithm table is the inverse of the logarithm table. There

were two reasons for using this transformation. First, it distorts

the tone scale in a way similar to, but less severe than, the behavior

of the logl0(Kb) function used in homomorphic filtering. Second,

other experiments [22] have shown that its visual effects on images

are in some sense optimal.

The dynamic range compression system compresses and rebiases

the tone scale of the input brightnesses or log-brightnesses. (Note,

in Figure 2, that the compression operates after the logarithmic

transformation.) The transformation of the input brightness b to



the output brightness b is:

b=f • b+i

where f is the fraction less than one which causes the compression

and i is an integer in the range 10,(l-f) * 255] which adds the bias.

The various nonadaptive and adaptive filtering experiments showed

that the output images with the best appearance were produced by

compression functions using these values: f = 15 , i = 3 for
16

Laserphoto pictures and f = 13 , i = 23 for Polaroid pictures.
16

These differences are due to three facts. The Polaroid pictures are

smaller than the Laserphoto pictures and therefore the details in the

pictures are harder to see. The high spatial frequency response of the

scanner hardware is poorer than that of the Laserphoto hardware. The

amplitude (brightness) response of the scanner-Polaroid film system

is more nonlinear than the response of the Laserphoto-dry silver

paper system, in the dark as well as the bright ends of the tone scale.

Therefore, in general, Polaroid pictures required more edge sharpening,

and therefore more compression, than could be used in Laserphoto

pictures. Also, a larger bias was needed for the Polaroids to

eliminate the very dark tones in which visibility of details was some-

times poor.

All of the software components used for nonadaptive filtering

have now been described. The aims and results of this phase of the

research will now be explained.



D. NONADAPTIVE FILTERING EXPERIMENTS AND RESULTS

It was expected that sharpening entire images with a fixed value

of a would show the effect of that a on image details throughout the

tone scale. It was also expected that the effect of each value of a

would become even more evident if each a were used with a variety of

Gaussian filter functions. The results of such studies would provide

a range of a values to be used later in adaptive filtering experiments

where a would become a function of brightness and contrast. Both

linear and nonlinear filtering experiments were done, to verify the

strengths and weaknesses of the logarithmic filtering technique.

The conclusions drawn from this and other phases of the

research are based on examination of Laserphoto and Polaroid pictures

by this investigator and a small number of other observers. As such,

the conclusions drawn in this thesis are not rigorously "proven" by

extensive psychophysical experiments. However, these conclusions do

have sufficient experimental foundation to indicate the potential of

the adaptive filtering techniques described here and to provide a

direction for further work.

The conclusions drawn from the experiments in nonadaptive filtering

are the following:

The range of useful a values seemed to lie roughly between

a = 1 and a = 5 for Polaroid pictures and between a = .25 and a = 2
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for Laserphoto pictures. The reasons for the larger a values associated

with Polaroids were explained above. The lower limits corresponded

to the minimum values of a which produced any noticeable edge sharpening.

The upper limits corresponded to the maximum values of a which did

not produce unacceptable artifacts in sharpened images. The artifacts

observed in "oversharpened" images included excessive high frequency

noise and excessive white and black halos at high contrast edges.

As was expected from the known brightness response of the human

eye, the degree of sharpening which was tolerable or desirable at a

given edge tended generally to increase with increasing brightness.

Figures 4, 5, 6, and 7 are Laserphoto pictures in which this effect

may be observed. Figure 4 is the unprocessed image and Figures 5, 6,

and 7 are logarithmically filtered, each using a different value of

a. As the value of a increases, the high-brightness low-contrast

details (such as the high-rise buildings against the sky) become

sharper. However, as a increases, details in the dark areas begin

to appear unnatural. Two effects cause this. First, as high-

frequency noise is amplified, it first becomes visible to the eye in

dark areas. Second, highly sharpened details are most obvious to

the eye in dark areas, and seem to stand out artificially, compared

to similarly sharpened details in bright areas. Another effect

visible as a increases is the increase of the white and black bands at

the high-contrast edge between the coat and its brighter surroundings.

Although most experiments showed that a should be smallest in dark
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areas, some experiments indicated that a should sometimes be greater

in the darkest tones than in the middle tones. This effect would

enhance barely visible details in very dark areas if there are any

such details. The nonlinear brightness response of films in very

dark as well as very bright areas has already been mentioned. The

problem of image details in very dark areas was the focus of some of

the later experiments in adaptive filtering.

The radius of the Gaussian PSF proved to have a pronounced

effect on the range of useful a values. The maximum useful value of

a tended to decrease as the radius increased. One can account for

this by noting that the larger the radius of the PSF, the wider the

"tails" on peaks added to sharpened edges. Such a "tail" appeared

artificial when amplified by too large a value of a. However, even the

largest PSF's used (with radii of 15 and 19 pels) succeeded only in

modifying the edges of most objects. The functions were not large

enough to change the brightness of large areas.

Comparison of linear with logarithmic filtering verified the

performance expected of the latter. "Asymmetric peaking" of edges

definitely reduced the black bands produced at high-contrast edges by

linear filtering. White halos on the bright sides of such edges

were still visible. As expected, there was little or no visible dif-

ference between linear and logarithmic filtering where the enhancement

of low-contrast details was concerned. Improved performance in this

area had to be sought from some other nonlinear operator. Chapter III

explains efforts to find such an operator.



EXPERIMENTATION WITH ADAPTIVE FILTERING

A. ADAPTATION TO LOCAL AVERAGE BRIGHTNESS

Chapter I has explained that a linear high-pass filter creates

peaks at an edge whose amplitudes are proportional to the height of

the edge and independent of the average brightness in the vicinity of

the edge. However, the experiments mentioned above, along with exten-

sive published evidence, indicate that the amplitudes of peaks should

be related to the average brightness near an edge. This was the

rationale used for attempting to add, at each pel in an image, the

maximum acceptable edge sharpening cdnsistent with the average local

brightness. All adaptive filtering experiments aimed at this goal

and two others. First, there should be no visible spurious boundaries

between areas of an image with different degrees of sharpening.

Second, abrupt large changes of brightness should receive minimal,

rather than maximal, sharpening, since high contrast is inherently

easy to see. Such sophisticated variations in the degree of sharpening

were expected to permit more sharpening in bright areas than was

possible with nonadaptive filtering. 'This proved to be the case, in

the experiments.

Figure 8 is a diagram of the unsharp masking software used for

the early adaptive experiments. In that software system, a is a

function of the average image brightness in the vicinity of each pel,
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the average being taken to be the brightness of the low-pass filtered

image. In terms of program implementation, the algorithm which selects

a values scans the one available low-pass filtered picture line pel-

by-pel. The brightness of each pel is compared with a set of three

to eight thresholds which divide the tone scale into separate regions.

A different value of a is assigned to each region. That value is

used as a multiplier to scale the amplitude of the edge signal. The

scaled edge signal is added to the brightness of the corresponding

pel in the input image. This investigator surmised that modifying a

from pel to pel would be faster and computationally simpler than

changing low-pass filter functions. Experiments showed that the

process of selecting a values was very fast, even when contrast was

added as a selection criterion. The technique of modifying a alone

was further justified by the satisfying results it produced.

Figures 9 and 10 are graphs of a as a function of the blurred

image brightness bL . These graphs show a to be constant over large

ranges of tones. Therefore, in image areas of relatively constant

average brightness, an adaptive filter using these functions behaves

like the simple linear filter of Figure 2. Experiments showed no

visible boundaries between image areas with different a values,

whether the tone scale was coarsely divided (three thresholds) or

finely divided (eight thresholds).

The graphs are typical of the a functions used in two types of

experiments. The first type dealt with Laserphoto pictures, and a



44

z

00 H

uq

00 0

0 H0
P--1

H6 E-4

H 0z •4 O
ZrT4

O

H



Cl)

o o

r-4 H

rL4

OdO

0

O° )
z

P-4
r4

0~

..Q



increased with increasing brightness, as in Figure 9. Certain pre-

dictable results were observed. Low-contrast edges in bright areas

appeared more nearly equal in sharpness to low-contrast edges in dark

areas. The use of minimal sharpening in dark areas reduced the black

saturation on the dark sides of high-contrast edges. However, since

the bright sides of such edges were subject to maximal sharpening,

white halos remained. The effect was unacceptably similar to the

asymmetric peaking produced by logarithmic filtering.

The second type of experiment involved Polaroid pictures. Since

the Polaroids suffered most from poor visibility of details in very

dark areas, a was made larger in the darkest tones than in certain

middle tones. (See Figure 10.) Visibility of low-contrast details in

very dark areas did improve, but at the expense of increased noise

visibility and increased black saturation near high-contrast edges.

The CRT-Polaroid system is an example of many image processing systems

with finite dynamic range which exhibit some sort of S-shaped charac-

teristic of output versus input brightness. Response to very low

input brightness is a threshold phenomenon, while response to very high

input brightness is a saturation phenomenon. It has been tacitly

assumed in this thesis that degradations due to saturation affect the

visible quality of an image more than do degradations due to thresh-

olding. This investigator acknowledges that there may be many images

with a great deal of detail in very dark areas, and that some imaging

systems will severely degrade these details. The experiments discussed
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above did not settle the issue of how such details should be enhanced

without creating bad visible side effects.



B. ADAPTATION TO LOCAL AVERAGE BRIGHTNESS AND CONTRAST

Experiments showed that the adaptive filtering system of

Figure 8 failed to solve the problem of halos at high contrast edges.

This investigator therefore sought a method of reducing the sharpening

at high-contrast edges, while preserving the dependence of low-

contrast edge sharpening on average brightness. The software system

of Figure 11 is such a method. This system uses the amplitude of the

edge signal bE(n3,n4 ) as a rough measure of the height of the

nearest edge in the image. a increases linearly with the average

brightness bL . However, the slope of the line depends linearly on

IbEl, and in a negative way. Figure 12 shows a family of lines for

a as a function of bL, each line representing a different constant

value of IbEl. As that figure shows, the value of a at high bright-

ness decreases with increasing IbEl, until it becomes a constant for

all IbEl greater than 32. In qualitative terms, this means that

minimal sharpening is applied to all edges having an increment of

brightness greater than some limit.

This dependence of a on bL and bE has a very interesting side

effect. As is shown in Figure 11, the input image b(n3,n4 ) is

sharpened, pel-by-pel, by adding to it:
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Sb E = [.25 + 2.5 bL (32- bE) ] b
256 32

= .25 * bE + 2.5 * E (32- bEl) b
256 32

(This assumes that 1bEI - 32.) Since only one term in the above

expression is linear in bE, it is evident that multiplication of the

edge signal by a not only scales that signal's magnitude, but also

changes its shape. Figure 13 is a graph of the change of shape of a

typical high-contrast edge signal. Figure 14 is a picture of the

edge image bE(n3 ,n4 ) associated with the cameraman photograph of

Figure 4. (A brightness bias of 32 has been added.)

This adaptive technique had a profound effect on high-contrast

edges in Laserphoto pictures. Figure 15 shows the adaptively filtered

version of the cameraman photograph. The a function graphed in

Figure 12 was used to process this and other Laserphoto pictures. Note

that the degree of sharpening in dark areas is only weakly dependent

on contrast. The values of a at low brightness are nearly equal to the

a value used for all high-contrast edges. This value of .25 was

judged to be the minimum which produced visible sharpening. The

value of a at high brightness and low contrast approaches 2.75.

This value is significantly higher than the "maximum useful value" of

2 found in the nonadaptive experiments. The opinions of some
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observers indicated that, for some of the pictures processed in these

experiments, that maximum a value might have been made still higher.

One can further compare the effects of adaptive and nonadaptive

filtering in Figures 16 thru 30. Each group of three pictures con-

tains an unprocessed image, an image logarithmically filtered using

a=2, and an adaptively filtered image. The image of Figures 16 thru

18 is a particularly interesting case. This is an aerial photograph

of Lake Erie with Windsor, Ontario at the top and Cleveland, Ohio

at the bottom. The photo is a radar echo image made by an aircraft

equipped with side-looking all-weather radar. This photo, and others

like it, are made regularly by NASA and the Air Force during each

winter, to show the ice accumulations on all of the Great Lakes.

NASA transmits these photos by facsimile to ships on the Great Lakes

as a navigation aid. In Figures 16 thru 18, it is evident that

the facsimile images benefit greatly from any kind of edge sharpening,

and that adaptive edge sharpening produces fewer edge artifacts than

the logarithmic technique.

These experiments in adaptive filtering were not extensive enough

to permit conclusions about the "optimal" dependence of a on bL and

bE . The function graphed in Figure 12 is simply that which produced

the best Laserphoto pictures in these experiments. Full-scale psycho-

physical observer tests are the next logical step in the investigation

of this technique. Two questions are pertinent in such tests. First,

for what set of images and imaging systems can a functions be found
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which produce images superior to nonadaptively filtered images?

Second, what are those optimal a functions?

Further testing of the adaptive algorithm can be made more

efficient by one basic change to the low-pass filtering process. Since

a single filter function produces the entire blurred image used in

unsharp masking, the basic requirement for a convolution algorithm no

longer exists. The Fast Fourier Transform can replace the convolution

algorithm, and considerably reduce the computation time associated

with large PSF's. There is available in the literature [23] an exten-

sive discussion of how best to program the FFT to take advantage of

computer memory and secondary mass storage. Another publication [24]

explains a new and highly efficient algorithm for performing the matrix

transposition which is a major intermediate step in two-dimensional

FFT processing. Studies have been made [19,30] of the numbers of

arithmetic operations involved in convolution and FFT processes. They

show that filtering a typical 512 by 512 image is faster by FFT

processing than by convolution, whenever the PSF has a radius greater

than three or four pels. However, one should not conclude that useful

adaptive filtering can be done only by FFT filtering with a large-

diameter PSF. There are images such as aerial photographs and pictures

of printed text, in which the details of interest are very small.

(See Figures 16 thru 18 and 25 thru 27.) Experiments showed that

visible improvements in the sharpness of such images can be made with

point spread functions only five pels in radius.
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C, POTENTIAL APPLICATIONS OF ADAPTIVE UNSHARP MASKING

The power of the adaptive unsharp masking technique is the speed

and simplicity with which it tailors the edge sharpening to the bright-

ness and contrast at every single pel. This suggests a number of

possible applications other than "after the fact" enhancement of already

degraded images. Adaptive filtering might be used to preprocess

images before they are transmitted by some irreversible (information

lossy) coding system. The Roberts pseudorandom noise technique is such

a system. It involves coarsely quantizing the brightness of an image

to which pseudorandom noise has been added, to reduce the number of

bits needed for transmission of the image. Even though the pseudorandom

noise is removed from the received image, there remains in the image

some noise caused by the original coarse quantization. Homomorphic

filtering has already been used in some experiments [9] for pre- and

post-transmission processing of Roberts-encoded images. The improvement

in the quality of received images is quite evident. It is possible that

adaptive unsharp masking might make even greater improvements. This

is because positive values of a sharpen edges, while negative values

of a act like a low-pass filter which might be used for "smoothing out"

noise. These two effects suggest several possible combinations of

adaptive pre- and post-processors, each aimed at solving some facet of

the degradation problem. One idea for a single post-processor capable

of simultaneously sharpening edges and removing noise is the following:



An a function may be devised which generates positive values of a only

when the high-frequency edge signal amplitude, IbEl , exceeds a certain

threshold. When IbEl is below threshold, a negative value of a is gener-

ated. Note, however, that this scheme would require some knowledge

of whether the noise in the image is additive or signal-dependent. It

would also require a reasonably high signal-to-noise ratio in the images

to be processed.

Other types of images can also benefit from adaptive edge sharpening

and noise removal. It has been shown [25,26] that the image degrada-

tions caused by atmospheric turbulence can sometimes be characterized

as the introduction of additive noise coupled with blurring by a zero-

phase low-pass filter. Photographs degraded by atmospheric turbulence

are therefore candidates for the same kind of processing as that

suggested for Roberts-encoded images.

Quantum-limited images, such as medical radioisotope scans, present

similar problems. Some adaptive filtering techniques have already

been developed for such images 127,28]. These techniques take account

of the observed fact that the noise in radioisotope scans is most

pronounced in dark areas. The filtering technique is therefore to

blur dark areas and to sharpen bright areas. To do this by adaptive

unsharp masking, a would be assigned positive or negative values based

on the average area brightness bL, rather than on the edge signal bE.

Images sent to earth from some satellites and spacecraft suffer

from transmission at low power over a "noisy channel". Their high



spatial frequency response also suffers from technical compromises in

the transmission hardware, which are forced by the need for bandwidth

reduction. Many techniques [1,29] have been developed to restore the

received image to the quality of the transmitted image. The imple-

mentation of adaptive unsharp masking in digital or analog hardware

would be very straightforward. A satellite or spacecraft equipped

with such hardware could sharpen an image adaptively before transmitting

it to earth. The filtering operation could amplify high frequencies

in the dark areas of the image where additive transmission noise is

most visible. An adaptive filter on earth could then attenuate the

high frequencies in the dark areas of the received image. This pre-

sumably would restore the normal appearance of the image while

attenuating the transmission noise. Such applications as these would

make adaptive unsharp masking a two-dimensional analog of the highly

successful Dolby system used for acoustical noise reduction. This

investigator has complete confidence that adaptive unsharp masking

systems are capable of the same technical successes in the field of

image processing.



APPENDIX A

THE EFFECT OF HIGH-PASS FILTERING ON A CHANGE IN BRIGHTNESS

Let brightness (b) be represented as a continuous function of

position (x):

x

x1 x2

Let b(x) be filtered by the impulse response:

h(x) = (1+28) * 6(x)-8 * k * exp[-k * 1xI]

where k,S > 0

- impulse of area

exponential with

(1 + 28)

time constant k

The frequency response associated with h(x) is:

H(f) = 1+28 - 28

1-

1 + 2r * f 2

k
1+2

The result of convolving b(x) with h(x) is B(x):
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B(x ) = b - (b2-bl) (1 - exp[k (xl-x2)])
k (x2-x )

B • (b2-b I )
B(x2 ) = b2 + 2 (1 - exp[k * (x l-x 2 ) )

k (x 2-x 1)

The effect of high-pass filtering is the "sharpening" of

the edge between brightnesses bl and b2 . This is done by subtraction

of an exponential edge signal on the dark side of the edge

and addition of that edge signal on the bright side. The second

term in each of the above equations expresses the maximum of the

edge signal amplitude.



APPENDIX B

"NO OVERFLOW" CONSTRAINTS ON THE SET OF ANNULUS COEFFICIENTS {(c.
3

Let the integer coefficient set {I.} be generated from the set

{c.} via multiplication by 2S and appropriate roundoff. Let input

pels be eight-bits long:

< n1 ,n 2 <0- b.i -255

The convolution sum is evaluated as:

NA PA J n1,n2B(n1 ,n2) = E c. * E b..ij

j=0 i= 13

This is implemented in fixed-point arithmetic by:

NA PA J nI , n2B(nl,n ) = E I * E b..
j=0 i=l 1

Constraint #1:
NA

0 -B(nl,n 2) 
- 255 iff 0 E c P. 1

j=0 3

NA
If E c. * P. = 1, then the digital PSF has unit energy and

j=o

the average brightness and the dynamic range of the output image

B are the same as those of the input image b. If



N

Z c. - P. has some positive value other than 1, the
j=O 3

average brightness of the image is either reduced or increased,

and the dynamic range is either compressed or expanded.

P.
3 nl,n2Constraint #2: The annulus sum Z b.. cannot overflow a

i=l 13

16-bit register as long as:

< 15P. -(2 - 1) 128
255

(P. is the number of points in the jth annulus around (nl,n2).

For each PSF used in this thesis research, all values of P

obey this constraint.

P
j nl,n2Constraint #3: The annulus product I. Z bi cannot

j i=1

overflow a 32-bit register as long as:

231 - (S+8) < c. P < 231 - (S+8)

for each annulus coefficient cj.

N P.
A nl,n 2

Constraint #4: The convolution sum E I. Z b..
j=O 2 ij=

cannot overflow a 32-bit register as long as:



N
31 - (S+8) < 231 - (S+8)-2 O c P. < 2

j=0 3

Constraints 3 and 4 are obeyed by all of the unit-energy digital

PSF's used in this thesis research.
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