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ABSTRACT

A technique involving intermittent external compression of the
legs is used as prophylaxis against the occurrence of thrombi in the
deep veins of the calf. The collapse of the veins produced by com-
pression eliminates venous stasis and introduces a pulsatile compo-
nent to the normally sluggish blood flow during and subsequent to
surgery.

A theoretical model was developed to simulate unsteady flow in
a system of branching vessels, and was validated by hydraulic experi-
ments using a single, thin-walled latex tube.

The theory was applied to the prediction of venous flow parameters
resulting from leg compression with a variety of pressure cycles and
modes of pressurization. The results suggest the possibility of con-
siderable improvements over the currently used'method by either of two
means:

* applying a spatially non-uniform external pressure
which is maximum at the ankle;

* compression of the leg with a wave-like motion start-
ing at the ankle and proceeding toward the knee.

Thesis Supervisor: Ascher H. Shapiro
Title: Professor of Mechanical Engineering
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CHAPTER I:

OVERVIEW OF THE INVESTIGATION

This chapter has been included primarily for the benefit of those

who, although interested in the study, would not have time to read the

entire document. It presents, in highly condensed form, the most impor-

tant features of the present investigation avoiding the cumbersome de-

tails which are necessary in the more complete form.

Our primary goal is this: to understand the fluid dynamics asso-

ciated with external compression of the lower leg and to apply this

knowledge to the task of optimizing the technique of External Pneumatic

Compression for the prevention of Deep Vein Thrombosis (DVT). By way

of introduction we first discuss the disease, its relationship to ana-

tomical and hemodynamic effects, and the methods currently being used

to prevent it.

Introduction

The incidence of deep venous thrombosis and pulmonary embolism has

been increasing in recent years in spite of the development and wide

implementation of new preventative procedures. The methods currently

used require either administering one of many different anti-coagulants

or applying some physical means of enhancing those characteristics of

venous blood flow which act to limit thrombus grwoth. Of this latter

group the method of External Pneumatic Compression (EPC) has received
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considerable attention due to the impressive results of recent clinical

studies. In these clinical trials EPC has proven itself to be at least

competitive with the more widely accepted anti-coagulant therapies,

causing a reduction in the incidence of DVT of at least 60% in most

groups of high-risk patients. The success of the method is somewhat

surprising when one recognizes that the mechanism by which EPC prevents

thrombosis is not at all well understood. The lack of knowledge con-

cerning the relationship between flow properties and the onset of the

disease, in addition to the potential of making significant improve-

ments in the method, provide the motivation for this study.

The underlying goal of this work is to develop, from the point of

view of a fluid dynamicist, a fundamental understanding of the role of

EPC in altering venous flow. The steps taken to reach this goal are,

however, applicable to a much broader range of investigations, with im-

plications for any system of branching vessels which, under some circum-

stances, may undergo collapse. These would include the venous and ar-

terial circulations and the airways of the lung.

Venous Physiology and Deep Vein Thrombosis

To understand the process of thrombus formation, one must first

understand the physiology and pathophysiology of normal venous hemo-

dynamics of the lower limb. By anatomical considerations these vessels

can be divided into two categories, the deep and superficial veins.

Both groups, but primarily the deep veins, are extensively valved,

allowing a significant reduction in the mean venous pressure due to
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muscular activity when one stands erect. Of particular interest to this

study are the muscular veins of the calf because of the tortuous path

they follow and because of the large blood volumes they contain which

might in some circumstances become trapped. These muscular veins con-

stitute the pumping chamber for the calf muscle pump which, in the case

of rhythmic muscular activity, pumps blood from the deep veins toward

the heart.

In venous thrombosis the vessels become partially or totally ob-

structed by a layered thrombus, slowing or preventing completely the

normal flow of blood through these veins. Virchow first postulated

three conditions which, by themselves or in conjunction with others,

are thought to initiate the thrombotic process. These are:

* a lesion in the intima of a vessel involving the endothelium,

invoking an inflammatory response;

* venous stasis, i.e., a slowing or other abnormality of blood

flow, permitting the adhesion of aggregated platelets to the

intima;

* an increase of the tendency of the blood to coagulate due to

either chemical or physical processes.

Investigations since the time of Virchow have provided additional

evidence to support the role of the latter two mechanisms. In accor-

dance with these concepts the prophylactic methods mentioned above act

upon either the fluid dynamic or chemical properties of the blood.

EPC, in very general terms, is thought to act by limiting venous

stasis. However, its role in enhancing mixing, shear rates, or even
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fibrinolytic activity might be equally or more important. The technique

currently used has been "optimized" on the basis of either measurements

of femoral vein flow rate or the emptying of a radio-opaque dye from the

deep veins. The cycle of external compression has been examined only in

view of its rate of pressurization, pressure amplitude, and frequency.

The complexity of the overall process, as we shall see, cannot be viewed

in such simple terms.

As a guide line for our investigations, we have examined the liter-

ature pertaining to the relationship between venous hemodynamics and

the onset of thrombosis. The results of our survey are summarized in

the following set of criteria which we propose for the prevention of

DVT:

* high flow pulsatility

* increased volume flow rate

* increased flow velocity

* increased shear stresses

* clearance of valve sinuses

* mechanical stressing of vessel walls

* complete periodic emptying of the veins.

Our objective is,then,to investigate this set of criteria as they

relate to flows in a network of collapsible vessels subjected to periodic

external compression.
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Theoretical Framework

We start our analysis with the fundamental equations governing

fluid flow in a collapsible-distensible vessel with the appropriate

boundary conditions. Our hydraulic model (shown in Fig. 1) contains,

in a rough sense, all the essentials for a simulation of external com-

pression of the calf veins. Flow originates in a high pressure reser-

voir (arterial pressure), flows through a high resistance (capillary

bed) into the collapsible tube test section (leg veins), and out through

a lumped parameter model of resistance, inductance, and capacitance

(iliac vein and vena cavae), ending in a constant pressure reservoir

(the right heart). The theory permits the rest cross-sectional area,

Ao , wave speed in the unstressed vessel, co , external pressure, Pe- ,

and a friction parameter, Cf , each to vary with distance along a system

of symetrically branching collapsible vessels with a variable influx of

fluid per unit length, QL
To describe flow in the collapsible segment of tubing we have

developed a theoretical model which assumes the flow to be one-dimensional

and unsteady, and includes the effect of viscous flow resistance. The

form of the flow resistance function is a function of the local flow

characteristics and can approximate laminar, turbulent, and developing

boundary layer situations.

The governing equations are:

* the mass conservation equation;

* the equation of motion;

* the "tube law" (a functional relationship between the local
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cross-sectional area and the transmural pressure).

This set of equations is highly non-linear and hyperbolic and, in com-

plete form, must be solved numerically.

Two cases can be analyzed somewhat more simply, however. These

are (1) uniform tube collapse and (2) viscous dominated flow. In the

first case, the non-linear partial differential equations can be reduced

to a set of ordinary differential equations that can be solved easily

by the Runge-Kutta method. The second case can be shown to reduce to

an ordinary differential equation with the introduction of the appro-

priate similarity variable. Each case is useful for providing insights

into the more complicated real flow situations.

Although these two approximate solutions are highly instructive, the

original set of equations must be solved numerically to simulate non-

ideal flows.

Numerical Methods

The numerical method combines the techniques of the method of char-

acteristics and finite differences. The flow field is divided into two

parts, the moving boundary is the point of minimum cross-sectional area.

Computations upstream of the "throat" (point of minimum area) follow a

modified method of characteristics which permits direct calculation of

the solution at a set of fixed grid points. Downstream, we use an al-

ternating point, implicit, finite difference formulation into which is

incorporated a term to account for head loss due to flow separation in

the region of a rapidly diverging vessel wall.
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The boundary conditions are as described for the hydraulic model

and the initial condition is one of uniform steady flow.

Flow Experiments and the Corresponding Numerical Simulations

The first phase of our investigation was devoted to the development

and verification of the theoretical model and the numerical methods. A

series of laboratory experiments were conducted using the hydraulic model

of Fig. 1 with the test section as shown in Fig. 2. The test chamber

is divided into two parts. One part is exposed to the cyclic variations

in external pressure while the other is vented to the outside. The two

chambers are separated from each other by a flexible plastic pressuriz-

ing sleeve. This sleeve surrounds a piece of compliant latex tubing

which extends through both sections. This design allowed us to pressur-

ize only the upstream portion of the collapsible tube, thereby eliminat-

ing a troublesome boundary artifact at the point of attachment between

the downstream rigid duct and the latex tube.

The experiments and the corresponding computer simulations covered

a wide range of values for the various parameters of the system includ-

ing, for example:

* rate of pressurization;

* maximum external pressure;

* fluid viscosity;

* initial flow rate;

* downstream capacitance;

* downstream resistance and inertance;

* downstream pressure.
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In general, the agreement between experiment and theory was quite

good as seen in Figs. 10-13 in which volume flow rate as measured at

the outlet (downstream end) of the collapsible tube is plotted versus

time.

The collapse process proceeded consistently in each of the experi-

ments. We can describe the main features of tube emptying qualitatively

with the aid of Figs. 3 and 4.

The top graph in Fig. 3 shows a typical pressure cycle, the applied

pressure reaching a maximum value of from 20 to 70 mm Hg in a period of

up to about 7 seconds. On the bottom of this same figure is a corres-

ponding plot of volume flow rate at the exit of the collapsible tube

versus time. The flow rate accelerates rapidly at first, reaching a

maximum often before the pressure maximum. It then decays, rapidly at

first, but more and more slowly as the tube empties.

Figure 4 shows the successive states of collapse when a vessel is

compressed by a spatially uniform external pressure. The process is

fundamentally the same for a vein (shown here schematically) as for the

latex tube used in our experiments. (a) shows the tube before compres-

sion begins. When pressure is first applied, fluid empties from the

downstream end forming a narrow throat as seen in (b) which impedes

further emptying. (c) and (d) show later stages that illustrate that

as the vessel empties the collapsed region propagates upstream more

and more slowly.

One of the primary inputs to the model was the functional form of

the tube law. A considerable part of our work centered about first
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scanning the literature for theory and experiments describing the col-

lapse characteristics of an initially circular or elliptical tube, then

conducting a series of experiments on tubes of our own. The procedure

for obtaining precise measurements of tube cross-sectional area as a

function of pressure is extremely difficult, owing to the necessity of

connecting the flexible vessel to rigid supports and to the fact that

tubes obtained commercially are highly non-uniform.

A Model of the Venous System

The problems associated with obtaining a tube law for latex tubes

are relatively minor, however, compared to those for estimating the

characteristics of a vein in its normal environment. Here again, when

beginning to formulate a model of the physiologic system, we looked

first to the literature, then used our fundamental understanding of the

process of vessel collapse to fill in the considerable gaps. From the

literature we found information, mostly for veins filled to a positive

transmural pressure, from such diverse sources as plethysmography, radio-

logy, and experiments on excised veins. Although much of this informa-

tion was highly qualitative and somewhat contradictory, we were able to

construct from it a tube law for the region of pressures greater than

approximately zero transmural pressure. We managed to extend these re-

sults to negative pressures by using estimates of the vessel wall struc-

tural properties and an approximate model of the effect of surrounding

tissue, thus completing the tube law.
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The remaining features of the physiologic model consist of the

spatial variations in total vessel cross-sectional area, Ao , wave

speed, co , a friction parameter, Cf , and the distribution of tribu-

tary inflow per unit length, QL Ao, co, and Cf are each plotted

as a function of distance along the leg in Fig. 5. Ao is the sum of

the areas of all the vessels at each location at normal physiologic

pressures. co is a measure of the stiffness of these vessels, again

at normal physiologic pressures. Cf takes into account the difference

between flow resistance in a single tube and that in a system of ves-

sels having the same total cross-sectional area. Introducing this

friction parameter allows us to use our single tube model to predict

flows in a symmetrically branching system.

The need for Cf was found through scaling arguments in which we

compared the normalized form of the governing equations for a two-vessel

junction and for a single tube having the same total cross-sectional

area and flow rate. We can see why Cf was necessary if we compare

the pressure drop per unit length in these systems: the bifurcated sys-

tem will have a higher viscous pressure drop unless some parameter (Cf)

is introduced to the term representing viscous flow resistance in the

single tube analogue.

Venous Flow Simulations

The simulations of venous flows can be classified in terms of the

pressure cycle used in each case. The three categories are illustrated

in Fig. 6. (A) shows the current method which we call the uniform
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pressure application. As shown in the left-hand plot, the applied pres-

sure reaches a maximum in a period of several seconds and is held there

for a period of 5-10 seconds, then released. The spatial distribution

is plotted on the right. Pressure is uniform over the calf but falls

off at the knee at the edge of the pressurizing cuff. The pressure

falls gradually because of the smearing effect of the muscular tissue

surrounding the veins.

Chart (B) illustrates a linear pressure application. Again the

applied pressure rises, then remains constant. The spatial distribution

is different, however. The pressure drops linearly from a maximum value

at the ankle to zero at the knee. This type of pressurization was moti-

vated by the results of the investigation of uniform vessel collapse men-

tioned earlier. The advantage of applying pressure in this fashion is

that it helps to eliminate the narrow throat which forms at the knee in

the case of uniform compression.

The third means of compression [case (C)] is a wave-like pressure

application. Again, the pressure-time curve can either be the same as

in (A) and (B), or might rise instantaneously to the maximum value. How-

ever, in contrast to the previous methods, the spatial distribution of

pressure varies with time. The front of the pressure distribution pro-

pagates from the ankle toward the knee, effectively milking the blood

from the veins as it moves.

Using the criteria mentioned earlier for optimal protection from

DVT, we simulated each of these three modes of compression, finding dis-

tinct differences. As in the single tube experiments of the same type,
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when the system of veins was pressurized as in (A) with a uniform exter-

nal pressure, a highly constricted throat soon developed. Due to the

high flow resistance at the throat and the constant influx of blood from

the upstream points, it was observed that much of the system never did

empty. Some improvements were made by either reducing the rise time of

the cycle or increasing the maximum pressure, but the mode of collapse

remained relatively unchanged.

One of the main objectives in simulating the linear pressure appli-

cation [Case (B)] was to explore various means of eliminating the restric-

tive throat. This method was highly successful and resulted in much more

rapid and complete emptying of the entire system. The peak values of

volume flow rate, flow velocity, and shear rate were much higher than

in Case A and the peak values were more uniform throughout most of the

system.

The wave-like pressure application [Case (C)] had results quite

comparable to those in (B). The collapse proceeded at the same speed

as the front of the compression wave, except at the highest wave speeds.

Emptying was accomplished, then, in the time required for the wave to

travel from the ankle to the knee. With a pressure wave propagation

speed of 50 cm/sec (the highest simulated) the peak flows were as much

as 10 times as great as those achieved with the current cycle. If fur-

ther flow enhancement is desired, this method could be extended to still

higher wave speeds with yet greater induced flows.

Our most significant observations are summarized below:
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* The current method of spatially uniform compression along the calf

causes a necked-down region at the edge of the pressure cuff which

severely impedes further emptying of the vessels located distal

to the point of collapse.

* Using the method of uniform compression the effectiveness of the

method generally increases with decreasing rise times.

* The effectiveness also improves as the applied pressure is in-

creased, but only marginally for pressures greater than 30 mm Hg.

* The upstream constriction can be eliminated by either of the two

newly proposed methods: linear or wave-like pressure application.

* With either method, flow rates, flow velocities, and shear rates

at points inside the calf can be increased significantly above

what is attainable with uniform compression.

* Both new methods provide collapse of the entire deep venous system.

* The time required to empty the system can be reduced to approxi-

mately 1 to 2 seconds using these methods.

* In the linear mode of compression, the method is made more effec-

tive either by increasing the maximum applied pressure or by re-

ducing rise time.

* For wave-like compression, both Qmax and umax increase with

increasing pressure wave propagation velocities.
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* Filling time might be reduced by applying an occlusion cuff at

the thigh during the refilling phase of the cycle.

* The mean flow rate through the calf might actually be increased if

Pe tc
Pv tR

Proposals for Future Efforts

In view of these findings,.we propose that either the linear or

wave-like pressure application be subjected to the following trial pro-

cedure. Following construction of a compression device and pressurizing

sleeve capable of reproducing these cycles, these methods should be

tested on volunteers using indirect means of evaluating the theoretical

predictions. These methods might include plethysmography or measure-

ments that could be incorporated into routine venographic or surgical

procedures. With the appropriate refinements, the method might then be

subjected to an extensive clinical trial comparing it with one of the

more successful anti-coagulant methods.

The theoretical background developed here lends itself well to an

investigation of a variety of processes occurring in collapsible tube

systems. Of the possible research areas, two seem particularly appro-

priate. The first involves a method of circulation assist that acts

through periodic collapse of the arteries by means of external leg com-

pression. The method, called External Cardiac Assist, works on a prin-

ciple similar to the aortic balloon pump and could, if perfected, provide
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an effective non-invasive means of providing the same patient benefit.

The lung airways constitute another system of vessels which may,

under some circumstances, collapse due to elevated external pressures

and/or reduced internal pressures. An understanding of how and why air-

way collapse occurs in the lung could lead to the development of useful

new diagnostic methods.

As mentioned earlier, this has been a brief survey of those topics

which are covered in more detail in the following text. The reader is

encouraged to refer to the more complete version for any topic of parti-

cular interest or for further clarification.
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CHAPTER II:

INTRODUCTION

A surprisingly large number of people are unaware of the high inci-

dence of Deep Vein Thrombosis (DVT) or of the fact that thousands die

each year due to its complications. The risks associated with DVT are

well recognized by physicians, however, and as a result, nearly all hos-

pitals take some precautionary measures in patients undergoing surgery

which requires either long periods of anesthesia or extended post-

operative bedrest.

DVT is the development and growth of red thrombi in the deep veins

of the leg. The thrombi, if they remain in these vessels, constitute

an impediment to normal perfusion of the limb and can eventually lead

to a condition referred to as phlebitis or thrombophlebitis which is

characterized by localized inflammation and edema. Although this condi-

tion itself is sufficient justification for the physician's concern, an

even greater danger is posed by the threat of pulmonary embolism (PE).

This occurs in the event that one of these leg thrombi dislodges and

travels through the heart to the pulmonary artery where it occludes

blood flow to the lung.

By various estimates as many as 50,0001 - 150,0002 individuals die

each year due to PE. Approximately 73-90% of these thrombi originate

in the deep veins of the lower leg.31* It has been suggested that the

actual number of deaths directly attributable to PE is much higher than

this figure indicates. By any accounting procedure, the cost of DVT in
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terms of loss of life, severe discomfort, and monetary expense is very

significant. And, indications are that, in spite of increased efforts

to protect against DVT, its incidence rate has been rising steadily.

The most probable cause of the increasing mortality rate is the expand-

ing list of inflictions which can now be treated surgically and, as a

direct result, the increasing probability that any one individual will

undergo surgery of some kind.

Because of its recognized prevalance, particularly among surgical

patients, various prophylactic procedures have been developed over the

years to combat venous thrombosis. In very broad terms, these methods

can be thought of as either physical or chemical in nature. The physi-

cal methods act by altering the sluggish blood flow through the deep

veins (often referred to as venous stasis) which accompanies surgery and

the imposed period of immobility afterward. Chemical methods act on

blood chemistry to decrease the tendency of the blood to coagulate in

the veins. The advantages and disadvantages of both of these categories

will be described in detail in Chapter III. In short, some methods from

each classification have met with considerable, but not complete, success,

and are not altogether free of other complicating factors.

One of several physical methods of prophylaxis is the technique of

External Pneumatic Compression (EPC) of the patient's lower leg by means

of an inflatable boot or cuff. (Again, more details will be provided in

Chapter III.) The method, although already quite effective, may not be

providing optimum protection from DVT given the criteria that have been
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set forth in past investigations.

Our main objective in this study is to analyze current methods and,

by way of careful analysis, suggest alternate means of limb compression

which may prove to be more optimal for the prevention of thrombosis.

The steps along the way are goals in themselves and are enumerated below:

* develop a useful model of venous blood flow under the application

of externally-applied pressures;

* use this model to aid in understanding the role of EPC in prevent-

ing DVT;

* investigate normal physiologic venous flows in rest and exercise;

* apply these tools to an analysis and optimization of the technique

of EPC;

* propose potential improvements in the method which can be tested

clinically.

The approach is as follows. Our first step was to develop a model

of the processes occurring in the veins during intermittent external com-

pression. We conducted a series of hydraulic experiments in the labora-

tory designed to simulate the dynamics associated with unsteady flow in

a collapsible vessel such as the veins of the lower leg. We next devel-

oped a completely general theoretical description that could be applied

both to the experimental apparatus and to the system of veins, the simu-

lation of collapsible tube flows being performed by numerical procedures.

Then, as a means of evaluating the range of validity of the various assump-

tions and approximations made in the development of the theoretical model,

we applied our model to the task of simulating the experiments. Having
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learned the capabilities and limitations of the theory, we turned to the

physiologic case.

The model of the venous network used in the simulations is described

in Chapter XI. It was necessarily a very approximate model owing to the

many unknown characteristics of this part of the circulation. We sub-

jected this model of the venous system to a variety of types of pressure

cycles in an attempt to determine which of the many possibilities was

most successful in satisfying the set of criteria set forth in the next

chapter.

Our conclusions, which can be found in Chapter XII, offer a sharp

contrast to the current method. It is our hope that, through the addi-

tional steps discussed in Chapter XIII we can test and further refine

our recommendations and provide a much improved method of protection

against DVT.
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CHAPTER III:

VENOUS PHYSIOLOGY AS IT PERTAINS TO
THE PATHOGENESIS AND PREVENTION OF DVT

The purpose of this chapter is to acquaint the reader with those

aspects of venous anatomy and physiology which are relevant to the ini-

tiation and growth of deep vein thrombi. These basic concepts lead to

the several theories which have been proposed to explain the relation-

ship between venous hemodynamics and thrombosis. An understanding of

the underlying mechanisms aids us in establishing a more complete set

of criteria which can, in turn, be used to guide us in optimizing the

efficiency of any preventative technique. We begin by describing the

complicated anatomical configuration of the deep veins of the lower leg.

Venous Anatomy of the Lower Limbs

The veins of the leg, particularly those of the lower leg, contain

numerous valves (spaced at from 2 to 4 cm) permitting blood to flow only

in the proximal direction and preventing the hydrostatic head from exert-

ing its full effect when one stands erect. These veins can be divided

into three general categories: (1) deep veins, those well below the sur-

face of the calf; (2) superficial veins, those running outside of the leg

muscles just beneath the surface of the skin; and (3) perforating or lat-

eral veins, those which connect the veins of the deep and superficial

systems. The valves within the laterals generally permit flow only in

the direction of the deep veins.
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In addition to their different anatomical location, deep veins also

differ from superficial veins in terms of their wall structure. The

walls of the deep vessels contain proportionately more collagenous and

less smooth muscle tissue than their superficial counterparts.5  The wall-

to-diameter ratio is smaller in deep veins, producing a vessel which has

relatively little tone and whose walls might be considered inextensible

when undergoing collapse. For this reason the deep veins can be thought

of as passive vessels which, in the range of small positive and negative

transmural pressures, are composed of an essentially inextensible but

very flexible material. It follows that the pressure-area relationship

for these vessels would be strongly influenced by the degree of tether-

ing to surrounding tissue.

The muscular veins are distinguishable from other deep veins because

of significant structural differences. Although it has been reported

that they contain no valves," they actually are valved nearly as exten-

sively as are other leg veins.7 9 They are often tortuous and may vary

considerably in cross-sectional area. Blood contained in these muscular

veins must flow through a series of dilated sinuses before emptying,

usually into the proximal end of the posterior tibial veins. These

sinuses can be as large as 1 cm in diameter and 5 cm in length"0 and,

therefore, contain a significant portion of the total venous blood vol-

ume of the leg.

The course of blood flow is generally in the direction of the deep

veins and toward the heart. Due to the interconnecting nature of, for

example, the posterior tibial and muscular veins, it is thought that

blood may flow into the muscular veins from the distal portion of a deep
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vein and back into the same vessel at a more proximal point."1 The

tibial and peroneal veins generally occur in pairs which have numer-

ous cross-over points. The details of the geometrical configuration of

these deep veins are subject to a large degree of variability.

Many factors can alter the flow of blood through this network of

interconnecting vessels. It can be affected by either external or inter-

nal influences and the effect can be either desirable, as in the case of

the normal functioning muscle pump, or undesirable, as in varicose veins,

valve incompetency, or thrombosis.

Pressures in the calf veins vary greatly depending on posture and

muscle activity. The pressure drop between the large veins of the calf

and the right heart due to wall shear stresses is between 2 and 10 mm Hg

by calculation"2 and measurement.13 A change in posture, however, from

supine to erect, can raise venous pressure in the calf to nearly 100 mmn

Hg due to the effect of hydrostatic pressure gradients.
13

These pressures must be viewed in relation to the intramuscular pres-

sure surrounding the vessels which can range from several mm Hg when the

muscles are relaxed to 250 mm Hg under maximal muscle contraction. "4

These large pressures which act on the muscular veins form the basis of

the "muscle pump" which serves both to lower the mean venous pressure in

the leg veins during exercise and to alter the amount of blood flow per-

fusing the calf muscles. Because the muscle pump is one of the most sig-

nificant natural means of prophylaxis against DVT, we will consider it

in. some detail.
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Functioning of the Calf Muscle Pump

As an aid in understanding how the muscle pump functions, we can

think of the vessels, of the lower leg as being divided into several parts:

a pumping chamber, inlets for fluid supply from a high pressure source,

and one or more discharge ducts leading into a low pressure system. The

pumping chamber consists of the intramuscular veins and venules and the

intermuscular veins, primarily those of the soleus and gastrocnemius

muscles. Fluid flowing into the pump may enter either directly from the

S. arterial circulation via the capillaries in the calf, .or from the veins

perfusing the ankle and foot. Upon muscular contraction pressures inside

the pumping chamber rise considerably and, aided by the venous valves,

blood is discharged primarily through the popliteal vein by way of the

posterior tibial and peroneal veins. As noted, intramuscular pressures.

as high as 250 mm Hg have been measured under extreme muscular contrac-

tion. Normal walking, however, generally produces pressures on the order

of only 100 mm Hg. The stroke volume of this pump is difficult to esti-

mate and no doubt varies considerably depending on the degree of muscle

development. It is known, however, that up to 130 mm's of additional

blood can be accommodated in the calf and this entire volume could con-

ceivably be expelled during a single contraction.

Mean venous pressures in veins considered to lie within the pumping

chamber tend to fall during rhythmic exercise by more than 50 mm Hg,

accompanied by a decrease in calf volume. s Thus, assuming no inlet

flow restrictions such as might be caused by muscular constriction of

arterioles, there exists at least one mechanism tending to increase the
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mean A-V pressure gradient and consequently the total limb perfusion

rate. Allwood'6 investigated this mechanism by applying an intermittent

compression to the calf while measuring mean flow rate at the foot. In

healthy individuals in the sitting posture using a cycle of 1 sec of

pressurization to 110-120 mm Hg and 4 sec rest applied to the calf only,

he observed an increase in mean flow rate of approximately 60%. This

mechanism is explored in some detail in Chapter XII.

One particularly thorough investigation of the calf pump was con-

ducted by Arnoldi et al."-  In a series of well-controlled experiments

on healthy subjects, simultaneous recordings of venography (both A-P and

lateral views) and venous pressures were obtained during systematically

performed leg exercise. Observations were made with the subject inclined

600 from the horizontal during a series of four or five muscular contrac-

tions of one-second duration at one-second intervals.

They observed that during the first compression, the muscular veins

emptied completely, apparently into the tibial veins. The tibial veins

themselves decreased slightly in cross-sectional area, the greatest degree

of collapse occurring at the proximal end. The popliteal vein underwent

an increase in diameter and internal pressure, a fact attributable to the

increased blood flow entering this vein from the collapsing regions.

Other veins experienced more modest pressure increases and, in general,

increased in cross-sectional area if located outside the "pumping cham-

ber," and decreased if located inside.

Upon relaxation for a period of only one second, the muscular veins

returned nearly to their original cross-sectional areas, filling primarily
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from the distal end of the posterior tibial veins. It appeared, there-

fore, that there was a sort of shunting action in which the blood, rather

than passing directly up the posterior tibial veins, flowed out into the

distal portions of the muscular veins during relaxed states, and into

the proximal posterior tibial veins during muscular contraction. In

addition to this shunting action, the muscular veins are constantly fed

by capillary blood flow from regions in the calf itself. These two blood

sources apparently provide for extremely rapid filling of the muscular

veins, at least following short periods of compression.

The effectiveness of the muscle pump in removing blood from the mus-

cular veins was demonstrated radiographically by Nicolaides et al." Mea-

suring the clearance time of dye from the soleal and tibial veins they

observed that

(i) resting clearance from the tibial veins was much more rapid

than from the soleal veins, and

(ii) that active plantar flexion against a resistance decreased

soleal clearance times from 9.6 minutes to the time of two

plantar flexions.

We provide this background material on the muscl:e pump because of

the apparent success of this pumping action in preventing the onset of

thrombosis. We should stress "apparent" because it cannot be proven

that the reason most individuals who are healthy and active do not devel-

op thrombosis is due to the continuous flushing of the deep veins pro-

vided by the muscle pump. During sleep, for example, the pump does not

function, yet the risk of thrombosis is still very low. Most physicians
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will agree, however, that the muscle pump is one very important mechanism

and certainly plays a role in preventing thrombosis. The relationship

between fluid dynamic effects and thrombosis will be exDlored in the

next section.

Deep Vein Thrombosis

As noted in the Introduction, the consequences of DVT and the result-

ing pulmonary emboli are extremely lethal and the morbidity associated

with it has shown a consistent increase in recent years. This trend can

be partly attributed to the rise in the range of surgical procedures now

possible, particularly in the area of electivesurgery. During this same

period, the extent of prophylaxis has also risen but obviously without

total effectiveness.

The thrombi which, when dislodged from their source and carried

through the circulation to the lung to produce a pulmonary embolism, most

often originate in the deep veins of the leg, and especially the lower

leg. Many factors have been found that increase the tendency for DVT

but the process by which the thrombin clot first forms and how external

factors affect its formation are still unclear.

The actual cause of venous thrombosis has been a topic of much

debate and is still not entirely understood. It was Virchow"8 who first

postulated the three conditions which, by themselves or in conjunction

with others, might initiate the thrombotic process. These are:

(1) a lesion in the intima of a vessel involving the endothelium,

invoking an inflammatory response;
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(2) venous stasis, i.e., a slowing or other abnormality of blood

flow, permitting the adhesion of aggregated platelets to the

intima;

(3) an increase of the tendency of the blood to coagulate due to

either chemical or physical processes.

Venous thrombosis, although not exclusively a disease of the thigh

and lower leg, most often originates there. 3,4 Six primary sites have

been identified by Sevitt"9 where thrombi are most likely to be found.

These include the following:

(1) intramuscular calf veins (soleal plexus);

(2) posterior. tibial veins;

(3) popliteal vein-(particularly just below the adductor ring at

the site of a large valve);

(4) at the termination of the deep femoral vein;

(5) common femoral vein;

(6) iliac vein.

Among these the soleal and posterior tibial veins are the most com-

mon locations. Thrombi tend to originate at particular anatomical points

such as in valve pockets, vessel junctions, or dilated sinuses. Each of

these have in common either lower mean flow velocities or stagnated or

separated flow regions.

The soleal veins are particularly prone to stasis because of their

complex structure. The situation is further complicated when the patient

is in the supine position and gravity tends to pool the blood in these

sinuses causing filling and emptying to take place very slowly.
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There seems to be little agreement on the pathogenesis of venous

thrombosis. One likely schema,20 however,. postulates a local accumula-

tion of thrombin due either to blood stagnation, microscopic lesion, or

abnormalities in blood chemistry. This leads to the formation of plate-

let aggregates which, in slowly flowing blood, can settle out much more

rapidly than non-aggregated platelets. Associated with platelet aggre-.

gation is a release of platelet contents which further promotes platelet

adhesion and initiates the fibrinogen-fibrin process. Once initiated

in this manner, the process can continue, producing the successive lay-

ers of fibrin and platelets which comprise most vein thrombi. With con-

tinued growth, the thrombi become long tubular structures which exhibit

this layered construction throughout.

Numerous factors have been associated with a higher risk of venous

thrombosis and are discussed extensively in the literature. A list of

predisposing factors and literature reference is provided in Table 1.

The relationship between these factors and the initial thrombotic res-

ponse is, in general, poorly understood. Many, however, can be directly

related to one of the three primary causes expounded by Virchow. In

addition to those listed, other correlations have been proposed but the

evidence is often inconclusive or contradictory.

Associated with many of these predisposing factors is the possible

existence of purely anatomical effects on the blood flow. And, as it

was shown earlier, the locations and postulated mode of thrombus forma-

tion also indicate strong fluid mechanical effects.

Sevitt22 has stated in a recent article that, in the development of
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venous thrombi, "venous stasis and eddying of flow are the main predis-

posing mechanisms." The presence of a trapped or slow-moving eddy, as

might be found in valve sinuses, at junctions or at points of sudden

area change can have several deleterious effects. First, since dilution

with fresh blood takes place over a very long time scale, the clearance

of clotting factors or activated products which may be present in the

blood is greatly reduced. Also, the endothelial cells are likely to be-

come undernourished and may, as a result, release some of their contents

which are capable of initiating thrombus growth. Experiments have shown

that in platelet-rich plasma,stirring or mixing the solution accelerates

aggregation2" and the circulating eddymay have the same effect. It has

also been postulated that eddying promotes wall deposition, bringing any

activated complexes present in the blood in contact with the vessel wall

where they can accumulate over time.

The effects of venous stasis are quite similar to those just dis-

cussed in relation to trapped eddies. The slowing of blood flow, parti-

cularly at stagnation points, has the effect of:

(1) preventing the removal by the liver of activated clotting fac-

tors released locally or brought from other sites;

(2) slowing the arrival of inhibiting agents, such as anti-thrombin

and ADP-ase;

(3) permitting ADP (a platelet aggregation inducement) to accumulate

locally;

(4) producing an hypoxic condition in the endothelium;

(5) increasing particle deposition on vessel walls at specific

points;



(6) increasing the degree of rouleaux formation and platelet

adhesiveness;

(7) silting into valve sinuses of platelets, leucocytes, and red

blood cells resulting in a local accumulation of ADP.

.This evidence strongly suggests that the fluid dynamic effects play a

significant, if not dominant role in all stages of thrombus development,

and prevention of stasis would seem to be of definite prophylactic value.

There are many methods purporting to increase either the velocity

.or pulsatility of blood flow in the legs. Among these methods are elec-

trical stimulation, leg wrapping, elevation of the legs, exercise, and

external pneumatic compression (EPC). Each of these techniques has been

evaluated by numerous clinical studies and do provide varying degrees of

protection, but are far from being totally successful. The next section

provides a discussion of the more popular methods of prophylaxis and a

critical evaluation of each based on published clinical results.

Methods of Prophylaxis Against DVT

Primarily because no preventative measure has been proven to be

entirely successful., there is little agreement among physicians as to

the "best" method. Those which have received considerable attenti.on in

recent years and which are commonly used can be divided into two gene-

ral categories based on their mode of attack.

The first category includes the various types of anti-coagulant

therapy. These methods are probably the most widely used and accepted

means of prophylaxis for those classified as high-risk patients.
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Although each of the various anti-coagulants used act in a slightly differ-

ent fashion, the objective is the same: to alter the chemical composi-

tion of the blood in such a way as to lessen the tendency of the blood

to coagulate. These drugs normally act by inhibiting or blocking one or

more of the reactions in the complex process of thrombus growth. One

clear objection that can be raised to this type of therapy is that, while

inhibiting the growth of deep vein thrombi, these drugs also interfere

with the normal clotting process and as a result, patients undergoing

anti-coagulant therapy run the additional risk of hemorrhage or other

bleeding complications accompanying surgery. For these reasons treat-

ment cannot begin prior to surgery which further compromises the overall

effectiveness of the technique. Several of the anti-coagulants used are

listed in Table 2 along with the clinical tests in which each has been

evaluated. Of those listed, low dose heparin is probably the most effec-

tive and has been the focus of many of thd more recent studies.

The second category of preventative methods which are collectively

referred to as "physical" methods, act by altering the behavior of blood

flow in the veins. These methods range from simple bandaging or eleva-

tion of the lower limbs to electrical stimulation of the calf muscles.

Several of these are listed along with the corresponding clinical trials

in Table 2. They all aim at some rather vague goal of "eliminating

venous stasis" and all that that implies. Possibly one reasons these

methods have often been overlooked by physicians is.:that the relation-

ship between first, venous hemodynamics and thrombus growth and second,

the physical method used and the accompanying changes in venous blood

flow, are poorly understood and have not been carefully and completely
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examined. The connection between treatment with anti-coagulants and

decreasing the tendency toward thrombosis is clear; the connection be-

tween,for example, elevating a patient's leg and inhibiting thrombus

growth is not. In fact, one might argue, and justifiably so, that

some of these methods might actually impede blood flow and thereby

worsen the tendency toward thrombosis.

For whatever reasons, these methods have in general been slow to

find acceptance. One possible exception is the use of elastic stockings

which, in spite of recent publications3 6 disclaiming the value of the

procedure, continues to be common practice in many hospitals, particu-

larly among patients with only a slight danger of developing DVT. A

recent investigation38 has determined that, with careful application of

the elastic stockings, flow velocity can actually be increased somewhat.

But it is doubtful thatthe procedure is performed with the necessary

care in routine situations.

One of the physical methods listed in the table shows considerable

promise as evidenced by the highly successful clinical trials. This is

the method of External Pneumatic Compression (EPC). Unlike electrical

stimulation which has also met with some success, EPC involves little

patient discomfort and can be performed continuously, beginning even be-

fore surgery, on nearly all patients.

The procedure followed and the details of the technique of EPC differ

depending on the individual hospital and the commercial device being used.

However, we can describe the method in rather general terms which would

apply almost universally. Treatment would begin just prior to surgery
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by placement of an inflatable plastic boot or cuff on the patient's

lower legs covering the calf and, in some cases, the foot as well. By

means of periodically inflating this boot, the blood flow through most

of the leg veins becomes highly pulsatile, creating a situation in

these vessels which, in many ways, mimics the action of the muscle pump.

Typically, this cycle consists of a rapid pressure rise from zero to

30-50 mm Hg, after which the pressure is held constant for approximately

10 seconds. The pressure is then released and a rest period of about

45 seconds follows before the next pressure pulse is applied.

The means by which intermittent external compression prevents throm-

Sbosis can only be postulated. However, several likely mechanisms have

been proposed. These mechanisms can be thought of in terms of the set

of criteria for optimal protection from DVT listed below.

* high flow pulsatility;

* increased volume flow rate;

* increased flow velocity;

* increased shear stresses;

* clearance of valve sinuses;

* mechanical stressing of the vessel walls;

* complete periodic emptying of the vessels.

Each criterion can be seen to relate directly to one or more of the

hemodynamic effects mentioned before which influence thrombus initia-

tion and growth, with the possible exception of mechanical stressing

of the vessel walls. Recently, Knight 39 has shown that intermittent

compression of the arm can actually lead to a reduction of DVT in the
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leg veins. The only obvious conclusion one might draw from this observa-

tion is that fibrinolytic activity is somehow enhanced by compression

and may be related to a mechanical stressing or to bringing the oppos-

ing walls of a vessel in the arm into contact with each other. This

may be only one of several mechanisms which give rise to the effective-

ness of the technique, but it is certainly one which deserves further

investigation.

It should be stressed that the stage of knowledge concerning the

pathogenesis of thrombosis and how it relates to the various fluid mecha-

nical or mechanical events accompanying EPC are poorly understood. The

results of the study presented in this thesis provide a necessary, but

incomplete picture of the role of EPC in preventing thrombosis. Addi-

tional research into the intricate biochemical relationship between local

fluid dynamics and thrombus growth is needed. Our approach has been to

first identify those flow properties which, based on present knowledge,

are likely to affect the onset of thrombosis, then to carefully and sys-

tematically explore different pressure cycles and modes of pressuriza-

tion in terms of their effect on these properties. We begin this process,

in the next chapter, by developing a theoretical model for flow in a col-

lapsible tube.
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CHAPTER IV:

THEORY: UNSTEADY FLOW THROUGH A NETWORK

OF COLLAPSIBLE TUBES

In this chapter we derive a theoretical description of unsteady

flow through a collapsible vessel or a symmetric network of vessels.

The expressions are written in the most general form in all cases so

as to permit any of the following variations:

(i) variable cross-sectional area of the unstressed tube, Ao ;

(ii) variable wave speed, co (and consequently variable tube

stiffness);

(iii) variable external pressure, pe '

(iv) symmetric branching.

The results are used in two ways. In Chapters V and VI a numerical

scheme is described which permits the solution of the governing equa-

tions yielding a detailed picture of the flow behavior for any given

set of parameters. Secondly, in Chapter VII, we determine the important

scaling parameters of the system to aid in the design of an experimental

model which, although lacking the detailed characteristics of the real

venous system, will exhibit the correct general flow features.

The Theoretical Model

The proposed model consists of one or more collapsible vessels

which are subjected to external pressurization. The complete theoreti-

cal description consists of the equations governing flow in the
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collapsible vessel, two boundary conditions, an initial condition, the

prescribed variations in pe , Ao and co , and what we call a tube

law, which is simply a relationship between the transmural pressure and

the local cross-sectional area.

The boundary and initial conditions are designed to accurately model

the actual physiological environment they are intended to represent.

Briefly, they are:

(1) Upstream boundary condition: A high pressure reservoir kept

at a constant pressure is located at the upstream end of the

system. It drains through a linear resistance, into the col--

lapsible vessels.

(2) Downstream boundary condition: Fluid drains through two rigid

vessels having both resistance and inertance which are sepa-

rated by a capacitance tank. Fluid eventually empties into a

constant pressure reservoir.

(3) Initial condition: Initially there exists a steady flow of

fluid determined by the pressure drop from inlet to outlet

and the resistances in between.

The Governing Equations

The one-dimensional equations governing flow in the collapsible duct

are obtained by applying the principles of conservation of mass and momen-

tum to a small control volume of length dx . Mass continuity states

that the change in flow rate over a distance dx is balanced by the de-

crease in volume of the element. This is written as
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a(uA) + aA
ax at QL -'

where u is the mean flow velocity and A is the cross-sectional area.

QL represents the added flow rate per unit length which in this model

can be thought of as passing through the vessel walls.

Denoting the internal pressure by p , and the external pressure

by p e, the equation of momentum conservation can be expressed as fol-

lows:

(au au p aPe Pt
p + u u e 0 (2)at ax ax e ax A

Here, Tw is the wall shear stress acting in the negative x-direction,

and P is the wetted perimeter.

For the purpose of defining characteristic curves which we will

eventually need, it is useful to introduce the wave speed, c , into

these equations. The relationship between c and the other variables

is obtained by considering the propagation of an infinitesimal pressure

wave in a flexible walled tube of arbitrary cross-section. Without loss

of generality we can assume that the incompressible fluid is initially

at rest. Associated with this pressure wave will be a change in cross-

sectional area as illustrated below.

A+dA
du ----- •-'Pdu P-Pe

(p-p) + d(p-p) u=0
\\'\e\
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We can effectively freeze the motion of this wave by adopting a ref-

erence frame traveling to the right at the same speed, c , as the pres-

sure pulse. With respect to this new frame of reference, the momentum

equation for a control volume including the area transition (neglecting

the effects of friction, viscoelasticity of the wall, and longitudinal

bending) can be written as

A d(p - p) = pcA du

Combining this with the continuity expression across the transition,

du _ dA
c A

yields a relationship which will serve as the definition of c

c A d(p P e)c - . (3)
P dA

Equations (l)-(3) can be made dimensionless by substitution of the nor-

malized variables listed below:

u A x

co(O) Ao(E)

tco(O) P- Pe (4)_
- L P C (4)

Kp(5) co(l)

Q Q = Udct(
Ao(O)co(O) A (0)o
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Introducing these variables into Eq. (2) and dividing the result by

pco2(0)/L yields

au+ U a + K p() a +. dKp( )

pco2(0) aE pco2 (0)

(5)

1 ap e Cf(f)PL tw+ + - 0
pCO2 (0) a pco 2(O)Ao(E) '

Here Cf(Y ) has been introduced to the friction term. For the present

we can assume that Cf(S) = 1 . The reason for its inclusion will be

revealed at a later time in Chapter VII.

We can eliminate aP/a5 and K from this expression by means of

the following relationships derived with the aid of Eq. (3):

)ap aad c2(a

Then,

Kp() = pCo 2() where B (d

Thus, we can write the momentum equation in final form as

2
au + U u co(+ C a + 2P o()do()
r a co(O) j a ac c 2(0) d(

(6)

+p-I aP e + C (f)F = 0
pc02(0) 1
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[PL/pco 2(O)Ao(E)] Tw
where F-

The continuity equation can be normalized in a similar manner and

reduced to

__ + + Ua dAo() Q L 0. (7)aT a Ao(E) d Lc o (O)Ao(E)

In addition to Eqs. (6) and (7) we have the normalized form of (3),

dPC2 = , (8)

and a known relationship between P and a which, for the present

discussion, can be assumed to be expressed as

= fn(P) . (9)

The functional dependence of a on P is actually quite complicated

and is left as the topic of Chapter VIII. For now, we turn to a deri-

vation of the equations for the boundary and initial conditions.

Upstream Boundary Conditions. As mentioned in the introductory

remarks, the supply of fluid entering the collapsible network (at E=0)

flows from a high pressure reservoir at a pressure, pA , through a linear

resistance RA . This represents, for example, the total resistance of

all the vessels of the capillary bed. Flow is governed by the equation:



-45-

PA
(uA) = A p =0

(=o 0RA

In terms of normalized quantities this can be written as

P - K (O)P - pe(Ua) 0 = . (10)
=0  = co(O)Ao(O)RA

E=0

Downstream Boundary Condition. The system into which the collap-

sible tube empties can be represented by the following lumped parameter

model:

pE, R1  Li PC R2 pB=constant

The equations for such a system can be expressed in terms of pressures

at the various nodes:



-46-

P= - Pc =1 RI + Li d 1 + hL

dQB
QBR2 + L2 Bd

1
CVPC - Pc =0t=0

L1 PL1A1

L2 PLA
A2

t

S(Q= 1 - QB) dt
0

RI 
1
2AI

R2 -
A22

dV
V dp

and QB is the flow rate through R2 , Pc is the pressure in the capa-

citance tank, and PB is the outlet pressure. The normalization of

Eqs. (11)-(13) will be left for the next chapter where the equations

will be combined in a way that allows a convenient computation at the

boundary. The last term in Eq. (11) has been introduced to account for

inertial losses due to abrupt changes in vessel diameter such as at a

junction between two tubes. In these equations it takes the form of a

constant times the square of the flow velocity.

(11)

(12)

where

(13)

PC - PB
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Initial Conditions.* In the initial state, we assume that all accel-

eration terms (both convective and temporal) in the governing equations

and boundary conditions are zero. Furthermore, since the collapsible

network in normal initial states will be open, the dominant resistance

is assumed to be located upstream of the collapsible system. As a rea-

sonable approximation we assume that the initial flow resistance in the

collapsible tubes can be estimated assuming A = AO(E) . The initial

flow rate, then, is defined in the following equation:

PA- PBQi = . (13)
x=L

RA + R1 + R2 + 8r f Cf(x) u dx
x=O Ao2

To obtain an estimate of the actual cross-sectional area of the collap-

sing tubes we can first compute the pressure at E = 1 from the expres-

sion,

Pg = PB + (RI + R2)Qi

Introducing normalized variables we have:

PB + (RI + R2)Q i

==1  pco2 (1)B

*QL is assumed to be zero in this discussion. A nonzero QL can be

introduced with minor modifications to the equation.
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Based on the assumptions that

(i) fully developed laminar flow exists throughout the vessel;

(ii) pe(S) E 0 for T = 0 ; and

(iii) inertial effects can be neglected,

we can write the momentum equation in the following simplified form:

d(p - pe)  -87rCf(x)Qi
dx A2

Sfrom which we obtain the normalized equivalent,

817co(O)Ao(O)Cf( )L 40Po 2 dc ()
d. d Q = -Q d - d. .

S pc02()Ao 2 (2)C2 cO(E)c 2 d' (15)

In the general case when Cf , Co , and Ao are arbitrary functions

of 5 , the RHS of Eq. (15) must be integrated numerically.

The resistance function F can exhibit a variety of features depend-

ing on the local flow conditions. The flow can be either laminar or tur-

bulent or, if laminar, can be either fully developed or in a state of

boundary layer growth. Each of these will be considered in the following

discussion.

Selection of Resistance Functions

Let us assume that the flow at any point in the collapsing vessel

satisfies the criteria for one of the following conditions:

(1) laminar flow with a developing boundary layer;
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(2) fully developed laminar flow;

(3) turbulent flow.

Case 1. Two necessary but not sufficient conditions for laminar

developing boundary layer flow are (i) that the Reynolds number (based

on hydraulic diameter) must be less than the critical value, Recr ,

which marks the transition to turbulent flow, and (ii) that the boun-

dary layer thickness, 6 , be less than r , where r is a characteris-

tic radius of the cross-section (r hydraulic diameter/2 = 2A/P). One

means of approximating 6 is by analogy to Stokes' first problem, that

of an infinite flat plate suddenly accelerated to a velocity uo in a

semi-infinite fluid. In the collapsing tube, the real situation is com-

plicated by the time varying nature of the flow and by the convection

of vorticity from points upstream where the flow conditions may differ

considerably from those locally. We will assume these effects to be

negligible since their inclusion would introduce much complexity to a

problem of minor significance. It is quite probable that the boundary

layers will fill the collapsed tube before viscous resistance becomes

a significant factor so a more complete analysis is not warranted.

The errors introduced by this assumption will be most pronounced

in the case of oscillating flow. For sufficiently high frequencies, the

boundary layer is confined to a small region close to the tube wall and

the viscous damping of such oscillations is much greater than would be

predicted using this approach.

In the absence of significant flow oscillations we can make an
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estimate of the boundary layer thickness,

6 4J7-t

As one criterion for assuming the existence of developing boundary layer

flow we will require that 6 < r

Returning to the problem of an impulsively started plate, the velo-

city distribution can be shown to be

u erfc -Uo

where y is the distance from the wall and uo is the plate velocity.

We can superimpose the solutions for a series of impulsive accelerations

in the following manner:

u(y,t) = lim Auo(0) erfc + Auo(T) erfc --
At-*O L /·
AU+0O

This limit can be expressed in integral form permitting the use of a

continuously varying plate velocity, uo(t) :

(17)u(y,t) = duo- erfc d4v(t-
S d(t-
0

From the velocity profile, we can compute the wall shear stress:

+ ... *
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= au
y=O

= (y)

t
Sduo(T) dTrdT

0

If we assume that the velocity-time profile can be approximated as linear

during this initial period an expression can be derived for Tw :

Tw = 2( ' u2 .t•t7w At (19)

In terms of our previous notation the corresponding resistance function

for open tubes is written

-P 4 2Pc03(0 U

Ao(5)a LTAo(E) a

r-

F = 4 --- L p
pco()TAo(E)

U
Ci

a > 0.27 (20)

and for the collapsed tube, assuming the configuration C-O [i.e.,

P = 2(4iTA/2) 2] ,

=w 4 2pUco 3(0)C a U

Ao ()a LTAO(E) a

F = [p21 L  U
pco(O)TAo(E)a_

a < 0.27 . (21)

(18)
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a = 0.27 was chosen as the point of transition from one shape to the

other because it corresponds, roughly, to the area at which the walls

first come into contact.

Case 2. When 6 > r and Re < Recr, fully developed laminar

flow results. This too must be an approximation in unsteady flow since,

with a time-varying flow rate, the velocity profile is never truly "fully

developed."

Derivation of resistance functions for the collapsing tube are pos-

sible only by numerical techniques. Assuming Poiseuille flow, Flaherty

et aZ.4 0 have computed the shape of the collapsed cross-section and

the velocity profiles from which the resistance functions can be deter-

mined. For cross-sectional areas less than 0.21, a similarity solu-

tion exists (see Chapter VIII) for the relationship between transmural

pressure and cross-sectional area. The resistance function in the col-

lapsed tube can be determined simply by knowing the resistance at one

state and imposing the similarity condition. This results in the fol-

lowing relationship which is found by way of the same numerical investi-

gation to be reasonably accurate up to a a 0.36 :

TwP = 701ico(0) U
A ( )a Ao(() )

(21)

F = L 70piU a < 0.36
pCo2(0) Ao()a•
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For cross-sectional areas greater than a = 0.36 but less than 1.0 ,

the numerical solution follows closely that of Poiseuille flow through

an elliptical cylinder (see Milne-Thompson 1 ).. For a cylinder of major

and minor radii a and b the perimeter and area are defined as

P 2( a2 + b2)

A = 7rab

The momentum equation for slow, steady flow of a viscous liquid through

this cylinder is

Q dp 1 a2 b2  Adx 4- a2 + b2

or

uA = P- 1 2A3  . (22)dx 4 v p.

If we convert to the previously defined dimensionless variables, Eq. (22)

can be rewritten as

KdP _c(O P U , (23)
L dý Ao(S) a 2

where P = constant = 2,[Ao(E)/w]½ . This result when expressed in our

standard form is
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wP 8iric(0)U

Ao ()a Aa(E) 2

or

F = 1 8nc0(0)U. 1.0 > a > 0.36 (24)
pco2(E) Ao( )a2

If a > 1.0 , the tube is circular in cross-section. The resistance in

laminar, fully-developed flow is given by the following expressions:

TwP :87. lco(0)U

Ao(f)a Ao(M)a

or

L 8w~c ( 0)U a >1.0
pco'(0) Ao($)a

Case 3. When the local Reynolds number exceeds Recr , we will

assume that fully developed turbulent flow exists. Turbulent wall stress

in the case of a hydraulically smooth pipe of circular cross-section has

been found to obey the relationship

Tw = Ct(½pu2 ) - , (25)
lul

where Ct = (0.3164/4)Re-0.25  with Re based on hydraulic diameter

(see Schlichting 2 ).

As was true for Case (1), velocity gradients are essentially confined
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to narrow zones close to the wall. Therefore, the shape of the cross-

section is relatively unimportant in terms of computing the shear stress.

If we make the assumption that Eq. (17) is a valid expression regard-

less of tube shape, the previously defined resistance functions can be

easily written, for pre-collapse states:

SwP = 0.3164 T 7_ pco 2(0) Re-0.25 U3

Ao(E)a 4 Ao()] a lui

or

F 3 14  7] L 0, 1.0 > A > 0.27 (26)

and for the collapsed tube,

wP 0.3164 2T1 p½ 2 ) Re.2s U3

aAo(E) AUI

or

F 0.3164 2• 12 L Re-0 '2 s U A < 0.27 . (27)
_ Ao()a Iul

The previously obtained equations for mass and momentum conserva-

tion, the tube law, the expressions for the friction parameter F , the

conditions at the boundaries, and the initial condition comprise a com-

plete formulation for flow in a collapsible tube. The system of equa-

tions is hyperbolic and, clearly, cannot be solved analytically.
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Two cases have been explored, however, in which the complexity of

the equations can be reduced to a more soluble form. These are the cases

of

* uniform vessel collapse;

* viscous dominated collapse,

and are discussed in detail in Appendices A and B, respectively.

We found in Appendix A that the tube collapses uniformly in the

specific instance where the external pressure varies as

Pe = a + bx
2

where x is measured from the outlet of the vessel. Using a spatially

varying compression of this type it was found that the tube could be

emptied much more rapidly than in the case of uniform external pressure.

This difference can be accounted for, primarily, by the absence of a

highly constrictive throat at the downstream end which generally occurs

in the case of uniform external pressure.

In Appendix B we demonstrated the existence of a similarity variable

which reduces the governing partial differential equations to a single

ordinary differential equation in the instance of highly viscous col-

lapsible tube flow. The true boundary condition, however, cannot be

expressed precisely in terms of the similarity variable due to the exis-

tence of an initial period during which inertial effects must be impor-

tant. The results, although illustrative, probably apply only for either

very late stages of collapse or for extremely viscous fluids.

The complete set of equations can only be solved numerically. Being
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hyperbolic, the applicable numerical methods can be divided into two

categories:

(1) methods employing the equations in characteristic form;

(2) methods in which the governing equations are written directly

as difference equations.

Both techniques have been studied and the method used in our computa-

tions did, in fact, incorporate both solution procedures. These methods,

as they relate to our analysis, will be discussed in the next two chap-

ters.
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CHAPTER V:

A MODIFIED METHOD OF CHARACTERISTICS

The pair of equations governing flow in the collapsible segment

[Eqs. (7) and (8)] are well suited to solution by the method of charac-

teristics whereby the solution is found along curves of possible dis-

continuities. For the purpose of numerical calculations, the equations

can be formulated along these characteristic curves.

Derivation of Characteristic Equations

First we multiply the continuity equation by an undefined para-

meter, X and add Eq. (6) and to the resulting form of Eq. (7):

+ (U+) + a 2 + U 3 + H + h G = 0 , (28)r a a3 c c a aa

where

H 1 a(Pe) 1 dco() + Cf(E)F

pco 2(O) C c co(O) dE +

G = cU 1 dAo()
Ao(E) dý

= co(0)
C co(O)

Multiplying Eq. (28) by dE and substituting the identities,
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dU = !- d+ ddT

da dE + dTDE 3-T

results in this reduced expression:

(U ± 6cC)dU +
6 CU

_. da
at /

SC
+ H dE + C G da = 0 (29)

(U + •a) = and (6 2

or equivalently, if

C
a c

By rearranging Eq. (29) and substituting the derived expression for

X into Eq. (30), we obtain the final form of the characteristic equa-

tions,

dU 6 C [d(,n a) + dr]c

+ U) (30)dT

+H dT = 0 (31a)

(u 6cC)R
L

(31b)= _£dEftr
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Here R and L denote the rightward and leftward running characteris-

tic curves, respectively (for subcritical velocities, i.e., U < C).

This analysis has provided a pair of physical characteristics defined

by (31b) on which the solution reduces to that of a pair of ordinary

differential equations, (31a). Equivalently, these equations define

the characteristic curves [Eq. (31a)] and their projections on the phy-

sical (ý,T) plane [Eq. (31b)].

The solution carried out in this fashion breaks down in certain

situations encountered during the course of the computation. Signifi-

cant errors are introduced at a position where large area changes take

place between two adjacent grid points. The source of these truncation

errors are discussed in Chapter X.

In the true method of characteristics the solution is carried out

strictly along the curves defined by Eq. (31b) using Eq. (31a). This

procedure has the disadvantage of yielding a result that must be inter-

polated in both ý and T to obtain results on a uniform grid. Fur-

thermore, as the computation proceeds, the characteristic mesh must be

periodically adjusted as the characteristic curves become more concen-

trated in some regions than in others. The advantage of this technique,

however, lies in the more precise location of shock-like discontinuities

which may develop during the computation as a result of characteristic

curves of the same family coalescing. Due to the hyperbolic nature of

the equations, shocks encountered using this procedure are true discon-

tinuities. In reality both in gas dynamic shocks or the quasi-shocks

that may occur in collapsing tubes, some mechanism acts to prevent the



-61-

creation of a true discontinuity. The nature of these mechanisms in col-

lapsible tube flow and the method by which we chose to take them into

account will be discussed in Chapter VI.

The modified method of characteristics used in our. calculations was

first introduced by Hartree43 to circumvent the complicated interpola-

tion associated with the original method. Using the modified technique,

the solution is found on a predetermined E-T grid along characteristic

curves which intersect with the fixed network of points. Since the curve

along which the solution is computed changes with each time step, the

procedure might be considered to be a sort of step-wise characteristic

method.. It lacks, however, the more satisfying nature of continuous

characteristic curves. In the following discussion, this method is

described in some detail.

Computational Procedure Using the Characteristic Method

As mentioned, the numerical calculation involves marching the solu-

tion forward in time along an essentially predetermined E-T grid.. The

solution at each point is computed along the physical characteristics

passing through it using finite difference approximations to the charac-

teristic equations. In general, these expressions are second order

approximations. Equations written in this manner can be used both for

the initial calculation and for subsequent iterations should they be

necessary.

Assuming that U and a are known at time To for all 5 , the
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procedure for computing interior points (i.e., those not on the boundary)

at time To+AT is outlined below. The notation follows the general

rule that subscripts involving "n" refer to position and superscripts
m+l

with "m" refer to time. Therefore, Un-l is the velocity at position

n-I and time m+l . Subscripts R and L denote variables at the

intersection of the rightward or leftward running characteristic curves

(see diagram) with the T = To line.

To +AT

S (m,n-l)

R

/(m+l ,n)

L

(mn) (m~+l)

En-1 En En+l

(1) As a first approximation equate each variable at points R, L,

and (m+l, n) to the corresponding variable at (m,n); i.e.,

m+l m
UR UL n Un

(2) Using a second order approximation to Eq. (31b), solve for

EL and ER

S - [(m+l m+l UR (32)
R n 2 n cn L cRL L L

h
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ap
(3) Interpolate to obtain estimates for a, Q , - 6 ,etc..

at points .R and SL. The linear approximations are, for example,

m ( n- )  m  (33a
QR Qn-I A n n-1) (33a)

and the quadratic expression:

m (, -R ) nm m
R n- 2 n+ n-I

(33b)

+ - gQ ( - 2 n + Qn
2AE2

The linear approximation was often used for two reasons. First, for

supercritical flow, only it truly isolates upstream .points from the flow

behavior downstream. Secondly, the second order equation would some-

times yield negative values for ca in regions where the cross-sectional

area was undergoing rapid change.

(4) Using the interpolated variables, solve for each variable or

group of variables needed in the characteristic expressions including

F, H , G , etc.

(5) By means of the characteristic equation (31a) we can write

the following finite difference approximations, once again of second

order:
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m+l
San a 1 K(R  ( Un

L L

m+1

- H n
LG
L

where

[ ( m+1 ](6c)n

m+1
Solving for u

1
= -- -

K +KR L

+ [(6cC)R

L

between the rightward and leftward expressions yields

2 ,n R
a• + KU

RR
+ KLULL

m+1
H n) 6

SAt [2(iu +( ~~ +(
n R

m+l
Either of Eqs. (34) can be used to solve for an

m+l K m+l
a n  = a• extp Un - U

n L n L

+
2

m+1

n
+ H+-

iC

m+l

G n
L

(35)

R L

; e.g.,

(36)

G)aL At

m+l
£n an U)

L

m+l
(34)

m+l
Un

+ ( 6 H CC,
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Upon completiing step (5), the solution either returns to step (2)

continuing the iterative process, or proceeds to the next computation

at point (n+., m+l).

Computations at the Boundaries

At the boundaries the solution takes on a slightly different form.

At the upstream and downstream boundaries, the equations derived earlier

involving flow conditions outside of the collapsible duct are combined

with either the leftward or rightward running characteristic equation.

Upstream Boundary. At the inlet 0( = 0), Eq. (10) and one form of

Eq. (31a) are solved simultaneously. The second of these can be written

so that q and P are the differential quantities,

For the purpose of the numerical calculation, Eq. (37) can be expressed
S..

in difference form asSAo() (U + C) d + Ao) 8)d
Ao(1) C2  A (O) a

(37)

U ar dAo(E) = 0
Ao(O)

For the purpose of the numerical calculation, Eq. (37) can be expressed

in difference form as

m+l l [ m+l )
P 1 PL + -% + XA (38)
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where

m+l
XA 2 (H -[ BCG.)1 + (Ha - CG) AT

Ao(0) c

m+l Ao
I +1 L Ao(0) A](0)Ao(S)~ Ao(0)

and

x8
m+l

1

Ao(E)L
Ao (O) I L

m+i
Between Eqs. (10) and (38) we can eliminate P1

m+l
Q1

and solve

= ..1 - [PA- Pe X. X1A]
(XB+ XC Kp PL B QL XA)

where XC co(0)Ao(0)RA/Kp(0) .
m+l

Having obtained an estimate for Q1 from Eq. (39) we return to
m+l m+l

Eq. (38) to solve for P1 and subsequently, al . An accurate re-

sult requires one or more iterations.

Downstream Boundary Condition. The flow at I = 1 is governed

by Eqs. (11l)-(13) from the previous chapter. These can be converted to

difference form with the following result. Equations (ll)-(13) become

m+l
for Q1

(39)
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m+l m+l
p~: - Pc

m+1 m
m+l Qi - =i=

SR. 1Q,: + Li + hI p u A
2

m+l m+l
Pc -B = R2QB

m m-I
QB - QB

+ L2
At

1 m At m+l m m+1 m
-Pc = V + + Q - Q - Q

c CV 2 (= 1 (= 1 B B,

where
m

m At =
V -

i=l

i-I
+ Q=

5=1

i i-1)

B B

With some algebraic manipulation, we can eliminate
m+l
PC and

m+l
from these equations resulting in an expression in which
m+l

QE=I

PE=l

are the only unknowns:

m m-I

QB - QB 1 1
= Pg + L2 + At pcAt 1+

2R2CV

m m m
V v + t Q -Q + R, +C - 2 (1 B

m

LAt N + hLpuA2

- B - L2

m m-1

B - QB
At

Li + 1+l
At 2CV 1 •

At R2

(40)

m+l

PC

(41)

(42)

m+l

m+l

QB
and

LCI
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Upon normalization, this becomes

m+l
PN

1
X P 2(

pco2(O)>

m+l
= X + X2•: - X3

1 1
S+ LA Pc - PB -

2R2CVco(O)

SAo(0)Lm m+ Ao(O)V + T Q=l - QB

has been assumed to be zero.

Ao(O)co(0O)

Ipc 2(R)
,pco2(1)8 (

+ c0(0)iL
LaTe

[2CVco(0) 1 1
LAT R2

SLlco2(0)Ao(0)m hL ,UA
LATpco2(1)B =l - 6

In X1, has replaced L2 C02 (O)A(( 0) QB 8-1
L B the rightward running charac-

The additional equation is supplied by the rightward running charac-

teristic expressed in terms of Q and P :

where

(43)

and p
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dQ = A,() (U- C)dP- (. + 6 CG)dT
Ao(O) C2

(44)

+ Us dAo () ]
Ao(C) _

m+l
We can write this equation in difference form and solve for QN

("N" denotes the point at which 1 = 1):

m+l

= R + N ( *+
PR) - r (45)

where

m+l

A Ao(0c (U - AcC)( (U - 6cC)
- (Ao(O ) 2 N LA(O)C2 R

- m+l
r A (H + CG)

2 Ao(O) N

+ A() (aH + 6 CG)
LAo(O)

1 ( m+l

-2 N + Q AoR

m+l
Between Eqs. (43) and (46) we can eliminate _Q=l with the result

X1 + X2 QR- 2 PR - r X3

X2A
2

(47)

(46)

RI

m+l
PN
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The calculation of the boundary parameters using Eqs. (46) and (47) is

performed by way of an iterative procedure to any desired precision.

Initial Condition

The initial condition requires solving for Qi and P:=1 in Eqs.

(13) and (14), then using these results in a numerical integration of

Eq. (15). We used Simpson's Rule for this purpose which can be expressed,

in this particular case, as

En •{ + j( N) + 43( ~N.-) + 2 (ýN-2 + (45)(45)

... + 4p(n+3) + 2ý(En+2) + 49(~n+ l) + ½

where

( ) = XCf(En) 4+ P 2  dco(E)
n D co( n )Ao 2(En )Cn2  c ()C2  d

XD = 16c(O)Ao(O)L
D P

In obtaining Eq. (45) we have integrated both sides of Eq. (15) (the left

hand side exactly) between N = SN and E = En and have expressed the

integral containing the unknown functions of 5 in terms of its numeri-

cal approximation.

The next chapter describes an alternate procedure, that of finite

differences.
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CHAPTER VI:

SOLUTION BY THE METHOD OF FINITE DIFFERENCES

The set of equations derived in Chapter III are hyperbolic and, as

such, their solution may give rise to shock-like discontinuities in the

flow field such as are commonly found in the analogous situation of one-

dimensional flow of a compressible fluid in a duct of varying cross-

sectional area. If the characteristic method described in the previous

chapter is used to obtain the solution, and if the solution tends toward

the development of a flow discontinuity (which is characterized by many

characteristic curves of the same family coalescing) large errors will

result and, by experience, the solution will go unstable.

Two reasons can be given for the failure of the numerical calcula-

tion using the method of characteristics. First, in the solution method

described in Chapter V, the results are obtained at fixed grid points

and the possibility exists of integrating along a characteristic curve

which passes through a discontinuity of the type described above. Right

at the discontinuity,the slope of the characteristic curve changes abrupt-

ly, but the difference equations use a slope which is estimated as the

average of the slopes evaluated at the two endpoints of the curve. Thus

the integration is subject to considerable error.

Secondly, an error can result at the point of smooth transition

from super- to subcritical flow, should it exist. Close to the transi-

tion point, u approaches c and the slope of the leftward running

characteristic (dt/dx = 1/u-c) approaches infinity. Within practical
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limitations on grid size, the difference equations will not be able to

follow the exact nature of these upstream running characteristics.

Again, the averaging features of the computational procedure produce

increasingly large errors as the slope of the curve approaches infinity.

The traditional procedure used to circumvent the first of the two

problems mentioned above is called shock fitting. Basically, this in-

volves computing up to the shock from both sides using the characteris-

tic equations following along characteristic curves. The equations

across the shock (called the Rankine-Hugoniot jump conditions) are de-

termined by satisfying the requirements of mass, momentum, and energy

conservation. Needless to say, this method can be extremely cumbersome

and is prone to stability problems particularly in the case of embedded

shocks which arise at later times in the solution.

The other methods used in gas dynamics to compute conditions across

a shock wave involve the use of the difference equations corresponding

directly to Eqs. (6) and (7) of the earlier formulation. These methods

can be divided into two categories:

(1) pseudo-viscosity methods;44

(2) conservation-law formulations."s

In Case (1), an artificial dissipative mechanism is introduced to

the governing equations which becomes large only in instances where a

shock would develop. The resulting dissipation tends to "smear" the

shock, generally over 3 or 4 grid spacings, and allows the use of the

difference equations straight through the transition zone.

The second case effectively introduces the Rankine-Hugoniot jump
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conditions into the solution scheme automatically. Using what is called

the conservation-law form of the governing equations,46 the requirements

of mass, momentum, and energy conservation are incorporated directly

into the corresponding difference equations.

In spite of the numerous similarities, there are significant differ-

ences between the flow of a compressible fluid and the fluid flow in a

collapsible tube in the immediate region of an actual discontinuity, and

these differences should be reflected in the numerical procedure. In

gas dynamics, the shock wave is very nearly a true discontinuity, having

a thickness on the order of the mean free path. Viscous dissipation pre-

vents the shock from narrowing further, giving rise to an increase in

entropy across the shock. In collapsible tube flow, the numerical dis-

continuity is smeared over a much larger distance, primarily due to two

effects. These are:

(i) When flow passes from a region of small to large cross-sectional

area boundary layer separation occurs and, as a result, dissi-

pation in the form of head loss is observed.

(ii) The tube itself, due to its structural integrity, cannot phy-

sically undergo a step change in area. The combined effects

of tube tension and longitudinal bending moments tend to in-

duce an effective pressure which acts to smooth out the sharply

defined transition zone of the shock.

Of these two shock spreading mechanisms, only the first affects the
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mass and momentum conservation equations in any way.* If the dissipa-

tion associated with flow separation is accounted for in our governing

equations and if we use the conservation law form, then the basic phy-

sical requirements are satisfied. In terms of the numerical procedure

the important point is this: if we can obtain a stable solution through

the region of difficulty using the conservation equations, then the solu-

tion on one side must be consistent with the solution on the other based

on the physical requirements of mass and momentum conservation. In our

solution, any possible discontinuities are spread out mainly by the

averaging of the numerical procedure. Trial-and-error led us to the

particular computational scheme which provided stable, consistent solu-

tions with the aid of this numerical averaging. The details of this

method are described in what follows.

The Governing Equations in Conservation-Law Form

The governing equations, since they include a term for wall shear

stress, cannot be expressed in true conservation-law form, which would

be:

+ F(U) = 0

They can, however, be expressed in a form such that if F E 0 , the

*Tube tension effects may produce locally significant effects but it
should not alter the conditions on the two sides of the shock as in
the case of flow separation.
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equations reduce to the form shown above. If Eqs. (6) and (7) are writ-

ten in this manner, we obtain

+•_ + F() = -K (46)DTe aý

where

[ Ao()a

F(U)

K -

U2

T
K P +(0)

pco (0)

Ao ()Uc

In the absence of dissipation and fluid influx along the tube, the two

quantities contained in F are exactly conserved in the real flow sys-

tem. We can easily show that integration of Eq. (46) between points

n-l and n+l yields a difference equation with the exception of an

integral containing the time-derivative and K ,



-76-

n+l

+ - d + F F 0 (47)
aT n+ 1  n-l

n-1

If we approximate the integral by

2A( + ,
n

and replace the time-derivative by the appropriate two-level difference

form, we have a difference expression that could be used in place of the

previously derived characteristic equations.

Losses at an Abrupt Change in Cross-Sectional Area

We have not yet introduced the losses associated with an abrupt

change in duct area. To do so, we must examine the integrated momentum

conservation law more closely. If we perform this integration across

the transition zone between the points of minimum and maximum cross-

sectional area, we obtain an expression analogous to (7):

2

JaL + C ()F] d + -2(U2 - U 2)

1 (48)
K P + pe p[KP + Pe
pc02(0) pco2(0)

- 2 -
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Here, the subscripts refer to the point of minimum (1) and maximum (2)

cross-sectional area.

We can compare the above expression to the result for steady, fric-

tionless flow of an incompressible fluid across an abrupt change in

cross-sectional area in which the area increases in the direction of

flow. The result, expressed in terms of normalized quantities, is

KP P+ pe + pco(0)U2 2 - KpP + pe + ½pco2(0)u2  1

(49)

= - 2pco2(0)U12  1 -A a
Ao 2 a/

2

In physical terms, the RHS is the head loss due to incomplete pressure

recovery across the expansion.

We can incorporate these losses into the present analysis simply

by rewriting Eq. (48) as

2

fau+ Cf(E)F d + (U22 - U1
2 )

1
(50)

+ KP + pe p = 0 ,0

pco (0) pC02o (0)
2 j 1

where

y U22 - U 2  A
U22 - U12 To 22
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or

Y=l

1- Aa 2Ao a2

U2. 

2

where we neglect the error in Eq. (51) in assuming the flow to be steady.

Defining y in this way, although the point-to-point calculation

within the transition is not strictly correct, we should obtain a con-

sistent result on both sides of the expansion which is independent of

the grid size. In reality, the process of boundary layer separation

and reattachment would occur over a relatively long distance and the

results which we have used in the derivation of Eq. (50) would apply

strictly only for large control volumes. For the purpose of this analy-

sis, however, we feel that it is sufficient to model the separation mech-

anism in such a way that the variables at the boundaries of the transi-

tion zone are essentially correct even though the details of the transi-

tion structure may not be.

Computational Procedure

The difference form for these equations has been set forth in the

previous discussion and are written below in the general form used for

the numerical solution procedure:
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m+l m
U - U m+l m+l 2

AT 4AE Un+l n-I

(51a)

m+l m+ 1

1 Pe pP Pe+ 2A• () 1j + F = 0
S pco2 (0) pC02 (0) n

n+l n-l

m+l m
a a [A )Um+l m+l1
n n 1 A()U (N-)U]l

At b2AEAon(O)

(51b)

- QL 0.L co(0)Ao ( -)

The above formulation is implicit and requires an iterative method.

The procedure found to be stable and convergent involves solving the two

Eqs. (51) at alternate points and performing three iterations. Values

for a at points where (51a) is used and values for U where (51b) is

used are obtained by linear interpolation. For points within the tran-

sition zone, y takes on the value given in Eq. (50) and elsewhere is

equal to unity.

In principle, there is no reason why the characteristic equations

need be used at all since Eqs. (51) are valid throughout the collapsible

tube. We have, in fact, obtained solutions using Eqs. (51) exclusively.

The solution obtained in this way exhibits considerable error in the
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region of supercritical flow which can be attributed to either a numeri-

cal instability or lack of convergence of the equations. To eliminate

these oscillations, we use a combination of the procedures described in

this chapter and in Chapter V. The collapsible tube is divided into two

regions separated by the point of minimum cross-sectional area. The

variables at all points upstream are computed using the characteristic

equations; the variables at downstream points are computed using Eqs.

(51) by means of the alternate point iterative method described above.

A complete listing of the program, written in FORTRAN IV, can be found

in Appendix C.

The program is divided into three parts: the main program and two

subroutines. It incorporates all the generalities described in the theory

requiring as input the spatial distributions of Ao ,co ,QL ' Pe and

Cf in addition to the tube law and all the parameters of the two boun-

dary conditions. The output is selectively printed out and stored in

a disk data set for later retrieval and subsequent plotting. Included

in the Appendix are alternate forms of certain parts of the program which

apply to either the laboratory experiments or the venous system. Aside

from these modifications, the solution is entirely general and requires

only the appropriate input parameters to model any system of collapsible

vessels with a wide range of admissible boundary conditions.

There is one limitation, however, on the conditions in which this

solution procedure yields valid results. Under normal conditions a

pressure is applied externally to a portion of the collapsible tube,

and is maintained until the end of the calculation. During this time,
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the only disturbances which propagate in the upstream direction toward

the compressed zone are relatively small amplitude waves reflected from

the downstream boundary. Under these conditions, the upstream propagat-

ing disturbances have little effect on the conditions at the throat of

the tube and the solution procedure behaves predictably and correctly.

If, however, the downstream end of the tube were suddenly blocked,

causing a strong compression wave to propagate upstream and if at the

time this wave reached the throat the flow was supercritical, then the

numerical solution would yield unrealistic results. The compression

wave would not cause the "shock" to move upstream and eventually dis-

appear as one would expect. The reason for this lies in the method of

computation at the-.boundary between the two solution methods. Up to and

including the point of minimum area, calculations are made by using the

characteristic equations which, in the case of supercritical flow, are

approximated by one-sided difference equations. Changes in the para-

meters at downstream points should not and cannot affect the solution

computed in this region.

What the numerical procedure lacks is a means of moving the transi-

tion zone or "shock" in the upstream direction. Therefore, although a

strong compression wave would, in reality, decelerate the flow by pushing

the shock further and further upstream, the numerical solution upstream

would not change. In gas dynamic calculations, the motion of the shock

is normally predicted, in the case of shock fittilng, by computing the

shock location using both up- and downstream conditions and in the case

of finite difference methods, by using two-sided difference equations in
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the entire flow field. Our hybrid method does not include either of

these mechanisms and as a result cannot account for upstream motion of

the shock.

Normally, however, our procedure works perfectly well for the fol-

lowing reason. Due to the form of the tube law, the transition from

super- to subcritical flow must occur at the point where the tube goes

from a collapsed to an open configuration. This can only happen at the

end of the compression zone, a point which, in all our calculations, is

either stationary or moves downstream--never upstream. Therefore, even

if the shock does become effectively "frozen" at one point in the tube

due to the solution procedure, the point at which it freezes cannot be

far from the actual transition point and the overall solution is rela-

tively unaffected.

The possibility does exist for the flow to remain supercritical

somewhat longer in the numerical solution than in the real case. We

can, in fact, observe a slight "glitch" in the solution when the minimum

area point does finally go subcritical. This disturbance, though, quickly

disappears-and does not cause any significant change in the behavior of

the tube at other points.
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CHAPTER VII:

SCALING PARAMETERS

The scaling parameters of a particular system are generally used

to develop a prototype or scaled model of the real system. If all the

scaling parameters can be matched between the real and modeled systems,

then the normalized test results from the prototype experiment can be

used to predict the behavior of the real system.

Due to the complexity of the venous network, it is not practical

to construct a true scale model in the laboratory. The scaling para-

meters can, however, be useful for deriving an appropriate model which

can be simulated on the computer as will be shown in this chapter.

A Description of the Dimensionless Groups

In Chapter IV we derived a complete set of normalized equations

and boundary conditions for flow in a single collapsible tube. The

results of this analysis are expressed in Eqs. (6)-(12), which are all

in normalized form. In addition, we must include the numerous expres-

sions which define F under the variety of possible flow conditions

[Eqs. (12-(21), (24), (26), (27)]. By inspection of these equations

we find that the relevant dimensionless groups are:

1 dco(5) 1 eap
c co( d) pco2 (o) 1
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Cf(E)IL 1 dAo(S)

pco(O)Ao(E) Ao() d

PCo2(O)Cv PB- Pe(1 )  PA Pe(0 )  RAAo (0)

Ao(O)L pco 2(0) co(O)Ao(O)RA Cf(O) pL

L1A0(O) L. 2A(0) . R1A 2() R2Ao (0)
pL ' pL ' C; (0)vL C (O)pL

If we were to construct a properly scaled model of a particular system

the parameters of the modeled system would have to be such that when

combined into the above groups, each would equal its counterpart in the

real system. Each of these groups which results from normalization of

a boundary condition provides a means of determining one of the boundary

parameters of the scaled system. These parameters are: pAPe(0) ; RA ;

CV , R , R2 , L, , L2 , and pB-Pe(1) .

The remaining dimensionless groups describe the collapsible tube.

Similarity of the second term, ý , is assured if we assume that there

exists one universal P-a law which is applicable along the entire length

of both collapsible segments. Proper scaling of the first, third, and

sixth groups requires that Ao(E) and co(E) be identical functions of

5 for both the model and the modeled system.

The two remaining groups,

tLaminar flow only.
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1 e and Cf( )1L

pCo2 (O) a pco(O)Ao(E)

pertain to the flow in the collapsible tube itself and will help us

later to determine the criteria for modeling- a system of branching

vessels by a single tube.

An example will help to illustrate the implications of the scaling

analysis. Presumably we can model a single venous segment by a single

length of uniform collapsible tube with an appropriate choice of condi-

tions at the boundaries of the vessel. If the value of each individual

parameter which corresponds to that of the actual venous system is de-

noted by subscript "v" and that of the model by subscript "'m," then we

would expect the laws of similarity to hold if v, = mIm where H repre-

sents any one of the dimensionless groups. If the dimensional para-

meters of the model are chosen so as to satisfy these criteria then

each of the normalized variables (p, U, a, and C) will be identical

functions of dimensionless time and distance for the two systems. This

is essentially the approach taken, as much as possible, in the design

of the flow experiments (see Chapter IX).

The dimensionless groups listed above have further significance

with respect to the problem of modeling a collection of branching ves-

sels by a single tube. This problem is taken up in the next section.

A Single Tube Model for a Branching Network of Tubes

In the representation we have adopted, the system of veins in the

leg is modeled by a single length of collapsible tubing. The following
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discussion will provide the rationale for such a model based on the pre-

vious results.

The system to be modeled is shown in schematic form below:

K tributaries

7K

foot deep veins knee hip
of calf

All branches of the deep venous system of the calf (really all vessels

which drain through the popliteal vein) are included explicitly in the

model. Those vessels which merge with the popliteal (or femoral) vein

at points proximal to the knee are included only in terms of the effect

they exert on flow in the vessel downstream of the junction.

To illustrate the relationship of this system to a single tube repre-

sentation we first consider a junction of two vessels at a point distal

to the knee.

Vessel Junction Within the Calf. The objective of this analysis

is to determine the characteristics of a single tube of unstressed cross-

sectional area, Aos(W) which, in terms of the flow into the vessel down-

stream of a junction, is identical to the two-vessel system. The model
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and modeled system are sketched below:

AOB

AoB

Aos(f)

[AoB(O) is the unstressed area of the main vessel. The tributaries are

of equal unstressed area, AoB({).] The dissimilarities in flow at the

junction due to the merging of the two tributary flows are neglected in

this one-dimensional model. We define our requirements for equivalency

of these two systems by stipulating that, at any point 5 upstream of

the junction, all variables [u, p, A (in this case the total vessel area

at the point 5, A = 2AB), and c] for the model are equal to their counter-

part in the modeled system and that mass continuity is satisfied across

the junction. These criteria are satisfied if (i) all the scaling para-

meters are equal; and (ii) if the normaliziing quantities [i.e., co(E),

pco'(E), Ao(E), and L] are equal. (This is not a "scaled" system in

the true sense of the word since our intent is to produce a single tube

model which is exactly equivalent to the multiple tube arrangement.)

Actually, only those scaling parameters involving the internal flow

equations are relevant to the present argument. Those dimensionless

groups dealing with the boundary conditions will again only be used in
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determining the appropriate scaling of the boundary conditions.

Now we are in a position to define the equivalent system. All the

criteria for equivalency are satisfied by the following relationships

upstream of the junction:

CoS(() = coB(E) ; pcos2(E) = CoB2() ;

Aos(E) a 2AoB(E) ; LS = LB ; S =B (52)

e : .. e B [ f(.=.

$a' B pco(0)Ao(ý) pco(O)Ao() B
. S B

We find that an equivalent single tube model is one which is identi-

cal in aN respects to the individual branch tubes with two exceptions:

AoS(E) = 2AoB(E) and Cf (E) = 2Cf ()S B
The extension of this result to numerous bifurcations is obvious.

The friction coefficient must double at each bifurcation and the un-

stressed cross-sectional area of the single tube model at any point E

must equal the sum of the unstressed cross-sectional areas of all the

branch vessels at the same point ( in the real venous system. This

is equivalent to saying that if "n" is the number of bifurcations en-

countered traveling upstream from the knee joint at a distance p in

the venous tree, then

AoB(E) = 2n AoB() and Cf () = 2n Cf (5) . (53)
S B
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Intuition confirms that Cf (which can be thought of as a measure

of the magnitude of viscous effects) must increase in the single tube

model as compared to the branching system in order for the pressure drop

per unit distance to remain the same. This is to say that if a two-

vessel system having the same cross-sectional area and total flow rate

as a single tube is to have the same pressure drop, the viscosity in the

single tube must be twice as large as in the two-branch system.

The weakest of the several assumptions made for this analysis is

that of symmetry of the branching system. As will become evident in

Chapter XI, the popliteal vein, upon entering the calf, divides into

several long, straight conduits which extend to the ankle. In a circuit

parallel to these main vessels and concentrated in the upper muscular

part of the calf are a tangled mass of vessels of varying stiffness and

diameter. Although we can extract very little quantitative information

from the literature concerning the exact nature of these vessels, we would

expect them to differ from the more direct vessels. This discrepancy will

be discussed in Chapter XII.

The Effect of Junctions Proximal to the Calf. In determining the

properties of our equivalent single tube model which allow us to mimic

the effect of flow tributaries that are not implicitly included in the

model we must, at the onset, make a reasonable assumption about the flow

from each tributary. The first few junctions which are encountered pro-

gressing proximally from the knee are with vessels which primarily drain

the lower leg and are either superficial veins (external and internal
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saphenous) or are small deep veins (gastroenemeus). Because of the com-

pression, these vessels will exhibit a time varying flow rate but of a

much smaller amplitude owing either to their origin (superficial veins)

or their size. For this reason, we have chosen to model their effect

purely in terms of a leakage flow rate which is a function of 5 but

independent of time. This leakage flow, QL , was recognized in Chapter

IV in the writing of the mass conservation equation. As more is learned

concerning the exact nature of flow in these tributaries, we may choose

to introduce it as a function of time as well but, for the present, we

leave it as a function of 5 only.

This relates to our model in the following way. Since no scaling

is involved, all parameters of the vessel proximal to the knee have the

same value as the main vessel which, in our case, is the popliteal, femo-

ral, and iliac veins, as you proceed from the knee to the thigh. Cf

then, has a value of unity throughout this part of the system and Ao =

AoB
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CHAPTER VIII:

STRUCTURAL PROPERTIES OF THE TUBE

The formulation of theproblem of unsteady flow in a collapsible-

distensible tube found in Chapter IV was complete in all but one respect:

the form of the constitutive expression or "tube law" relating transmu-

ral pressure to normalized area. In this chapter we will complete that

analysis by providing a theoretical background for predicting the func-

tional dependence indicated in Eq. (9). To accomplish this we define

two distinct phases of tube inflation which are discussed separately be-

low.

The Inflated or Distended Tube

The tube law for the inflated tube is based on several assumptions

which combine to make the analysis relatively straightforward. These

are:

* the cross-section of the tube is circular-

* the vessel is thin-walled (h/R << 1)

* the vessel wall is uniform and isotropic

* viscoelastic effects are ignored

* either longitudinal tension or total length
are constant

* inertial effects are neglected

* the bulk modulus, K , and Young's modulus, E , are both much
greater than the transmural pressure, ptr

* E is not a function of ptr

* the surrounding medium exerts negligible radial force on the tube.
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The validity of these assumptions will be discussed in conjunction with

the similar set of assumptions given later for the collapsed tube.

With acceptance of these conditions we can proceed as many others

have to derive the constitutive law for the range of positive transmural

pressures for which the assumptions are valid. Using Laplace's law to

relate the hoop stress in the wall to the transmural pressure, ptr , we

can derive an expression relating normalized area to ptr (for small

values of 2ptrro/Etanho):

A 2ptr roq.S A 1 -o (54)
Ao(ý) tan

where the subscripts refer to the unstressed or resting state of the tube

and Etan is the Young's modulus in the tangential direction. Another

result of this analysis is an expression for wave speed:

c = Etan h (55)
2p roa

which is often referred to as the Moens-Kortweig Equation. For addi-

tional information concerning the derivation of these expressions, the

reader is reffered to one of a number of papers and texts covering

arterial wall mechanical (e.g., McDonald 47 or Strandness and Sumner 48).
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The Fully or Partially Collapsed Tube

In the range of pressures for which the tube is either fully or

partially collapsed one must, again, make several simplifying assump-

tions which can later be verified either by direct observation or in-

directly as in the case of experimental verification of results obtained

using a particular model. The assumptions are, in some ways, quite dif-

ferent for a collapsed tube and, as a result, the analysis too must dif-

fer from that followed for the distended tube. The shape of the tube

cross-section varies and the nature of wall stresses have shifted from

tension to primarily bending. Because of possible non-uniform wall

composition, the effective Young's modulus for bending may differ from

that in the previous analysis and will be referred to as Ebend . (Think

for example of a sheet comprised of laminates of different materials.)

Due to these and other differences between the two models, we must now

require for the purpose of constructing a theoretical model, that:

* the vessel wall be inextensible (i.e., Etan );

* h/D << 1 ;

* A = A(Ptr, x) alone;

* Ebend be independent of ptr ;

* the tube environment have no effect on the tube law.

Theoretical Description. The methods used for determining the con-

stitutive law for collapsed states rely on the equations of equilibrium

for a small element of tube wall acted upon by a transmural pressure,



-94-

tension (T), shear (N) and bending moments (M) as illustrated in the

figure.

n

5s

SM+ d
as

Ptr

s

aNN + ads

r1 as

aTT + adsas

de = dsR

We arrive at the following set of equations from force and moment

equilibrium conditions:

F Fn= 0 ;

IFt = ;

IM =0;

dN* de 0
ds* ds*

dT*
ds*

dM*
ds*

+ N* d =ds*

+ N* = 0 .

(56)
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In addition, we have the constitutive relation,

M*- P=+ =de (57)ds* ds* O

where the-normalized variables denoted by the asterisk are defined

below:

- tr TNP ; T* - ; N*
EI/R 2  EI/R 2  EI/R 2

(58)

S* S M* = M
EI/R

The boundary conditions on one quadrant of the tube depend upon whether

or not the tube walls are in contact at s = Tr/2 . Referring to the

following diagram, we can state the boundary conditions for each case

as follows.

s
9 2

s=O
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Case I. Tube walls not in contact

(0) =o , =-

(59)

N*(o0) = , 1N* 0

These last two conditions are based on the necessary condition

that N* be continuous at s = 0 and s = r/2 . Using Eq. (4d) and

the symmetry assumption, we see that N* must be zero at these two

points.

Case II. Tube walls in point contact

e(o) =o e, (r =

(60)
N*() = 0 , T* ) 0

The fourth condition has changed because N* can now be discon-

tinuous at s = f/2 but, based on the equilibrium of one half of the

tube, T* must be zero.

Case III. Tube walls in line contact

e(o) = 0 , e(s ) =

(61)

N*(O) = 0 , T*(s ) = 0

where sc is the value of s at which contact first occurs. This case

can be shown to satisfy a similarity solution which, given a solution
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at one pressure, permits us to determine all other solutions satisfying

these same boundary conditions.

A Similarity Solution for Collapsed States. To illustrate the

existence of a similarity solution, we first replace s by s in the

governing equations where s = s/sc , so that the boundary conditions

become

e(O) = 0 , 6(1) =

(62)

N*(O) = 0 T*(1) = 0

Assume then that we know one solution at P = PS which satisfies the

equations and boundary conditions and that this solution is given by

FN(s), T(s), (s), and fM() . If we then introduce the following variable

transformation,

N'(s') - (PIPs)13/ N(S)

T'(s') E (P/Ps) 23 T(S)

e,(s,) - 6(s) (63)

s' - (P /p)1 1 3

M'(s') E (PIPs):3 R()2 s

into the governing equations, we find that N', T', ... M' is also a

solution. In this manner all solutions satisfying the equations and

boundary conditions for Case III can be found, thus proving the existence
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of a similarity solution. A consequence of this result is that we can

express the cross-sectional area as

A = A (P /P)2 3  . (64)

This same result can be reached through dimensional arguments. If the

wall thickness is small compared with the local radius of wall curvature

Rc , and since the boundary of the problem is located at sc which can-

not be related to the original perimeter, then we can say there is no

characteristic length. The radius of curvature at any point must then

depend on the two dimensional qualitites, El (the tube stiffness) and

Ptr . Accordingly, we can say that

Rc = fn(EI, Ptr )  (65)

The physical dimensions of each term are given below:

[R ] = L

[El] = FL

[ptr ] = FL-2

The only possible combination of these terms which satisfies the

above functional relationship is an expression for the wall curvature:

Rc constant x (Er)I 1 3 (66)

As this expression can be written for each point along the tube (with

different constants), the cross-sectional area can be shown to vary as
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Rc2 ; hence,

A = constant x (EI 2 . (67)

This result can be directly compared with Eq. (64) derived on the basis

of the governing equations.

Numerical Solutions. The problem remains, however, both of obtain-

ing the solution we assumed known in this analysis and of obtaining solu-

tions for Cases I and II for which no similarity solution exists. This

problem has been solved numerically in various degrees by Tadjbakhsh and

Odeh,4 9 Flaherty, Keller, and Rubinow,40 and Kresh and Noordergraaf.50

Of these, the paper by Flaherty et al. provides the most complete analy-

sis of tubes which are circular in their initial state. Their results

are shown on Figs. 7 and 8 by the line labeled "theory" in the form of

a plot between normalized area and normalized transmural pressure. The

work of Kresch and Noordergraaf considers the effect of initially non-

circular tubes, but their analysis is incorrect for configurations in

which the opposing walls are in contact. Their error results from neg-

lecting to take into account the normal forces exerted on the interface

between the two walls. The numerical methods were similar in each case

and if interested the reader should look to these references for more

details. In addition to computing the shapes of the partially collapsed

cross-sections, Flaherty et aZ. also solved for the velocity profiles

within the vessel assuming fully developed laminar flow. These results
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were used in our study to estimate the flow resistance term for Poise-

uille flow in a collapsed tube [see Eq. (21)].

Limitations of the Theoretical Description

But, as noted already, numerous assumptions have been made in arriv-

ing at these results and we should investigate these in a more critical

manner before blindly applying them to veins.

The Effect of Muscular Tissue. One glaring omission is the neglect

in the model of any effect of the external muscular tissue which surrounds

all deep veins of the calf. Intuitively, we might expect the tissue to

have greatest influence in the portion of the P-a curve where large

changes in shape occur over relatively small changes in transmural pres-

sure. Although an exact analysis has not been performed and would be ex-

tremely difficult, we can get some idea of the order of magnitude of

tissue effects by considering the following example.

Assume that the tissue-surrounded vein can be modeled as a small

diameter circular hole in a large cylindrical body. This problem is

analyzed in any of a number of texts on structural mechanics (e.g.,

Timoshenko51 ). Following their methods, we consider the deflection,

due to a pressure difference between the inside (pi) and the outside

Cf 14 Al

Po
p ( ) o t e cy n er:
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Radial deflection is denoted by u , the Young's modulus by E , and

Poisson's ratio by p . Using the basic equilibrium equations, one

can solve for u(r) with the result given below:

u(r) l-lPi - bp .+i 'a2 b (Pi - Po)

Su(r) 1- i r + 1+- . (68)E b2 -a 2  E (b2  a2 )r

By assumption, a << b , giving

u(r) = Er(-p) (p Po)  (69)

Evaluating the deflection at r = a , we have

u(a) = [(l +)pi- 2po] . (70)

For human tissue, p 0.5 and, as a rough estimate, we can say that

, -- tr (71)
a E

This result pertains to the deflections associated with a symmetric

hole, i.e., the hole does not change geometry. But, for an order of

magnitude estimate of the pressures required to collapse the vessel, we

can assume that, in going from the circular to collapsed state, u M a/2

and the required transmural pressure associated with this shape change

can be estimated as indicated above and given by
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E
ptr 4 , for collapse.

In other words, tissue with a Young's modulus of E - 6 x 0l dynes/cm2

would prevent collapse for transmural pressures less than approximately

1.5 x 10' dynes/cm2 or, ptr =11 mm Hg. In Chapter XI in which we estab-

lish the tube law used for the venous calculations we will .see that the

magnitude of the tissue influence is, indeed, a significant factor in

this range of pressures.

When the vessel is either distended or fully collapsed, however, it

can be shown by similar estimates that the tissue will exert a much smaller

relative effect due to the steeper slope of the P-c, law for the tube

alone. This will be shown more clearly in Chapter XI. In this later

discussion, the tissue is considered to be the dominant influence in the

collapsing region while the tube walls themselves provide the observed

stiffness in other regions. Thus, in this intermediate zone, the slope

of the pressure-area law will be no less than the limit established here,

or

dPtr ~ E
dA 4A

It should be noted that, in all arterial studies, the effect of surround-

ing tissue has been entirely neglected. According to our estimates, this

oversight is entirely justified as long as the transmural pressures are

great enought to insure that the vessels remain filled by pressures well

into the distended range.
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Viscoelasticity. A second possible influence which deserves con-

sideration is that of viscoelasticity. This topic has received consi-

derable attention in the literature on arterial hemodynamics and is re-

viewed in most of the recent texts (e.g., McDonald47). In the analysis

of wall viscosity effects, one approach is to divide the effective

Young's modulus into two parts, one real andthe other imaginary. The

real part, called Edy n , is due to the spring-like nature of the walls

and is what we generally think of as the Young's modulus. The imaginary

part, nw , is a retarding force exerted as a result of viscous effects

within the vessel wall itself where n is the coefficient of viscosity

and w is the radian frequency. It follows then that

Eeff = Eyn + (nw)2  (72)

and, as a consequence in this model, the faster a tube is either inflated

or deflated, the stiffer it will seem. The value of the viscous compo-

nents has been measured in arteries by Gow and Taylors2 and Bergels3

and was found to be approximately 9 to 12 percent of the dynamic compo-

nent for frequencies in the range of the arterial pulse (1-10 Hz).

Because the veins are generally thinner-walled vessels than arter-

ies and because the range of frequencies of interest in our study is

probably much lower than 10 Hz, we feel justified in neglecting the

viscoelasticity of the venous wall. Additionally, the primary impor-

tance of viscous effects is in their influence on the damping of propa-

gating waves, an effect which has little significance in the general



-104-

trends looked for in our study.

There is, however, one possible exception to the argument for neg-

lecting viscous effects. That is in the intermediate region of collapse

where large deflections occur in the muscular tissue as previously noted.

As this collapse is made to occur more and more rapidly (which is one of

the goals of this investigation) viscous effects associated with muscular

tissue might become a significant factor, and one which we should

attempt to estimate.

A formulation for the effective modulus similar to that expressed

in Eq. (72) was derived for muscular tissue with accompanying experimen-

tal measurements by von Gierke et al. 54 Their results yielded values

for Edy n of ~ 3 x 104 dynes/cm' and for n of ~ 150 dynes/cm2 .

Again, for frequencies less than ~ 10 Hz, the viscous effects account

for less than 1/3 of the effective modulus. Clearly, if the freuqencies

encountered in the calculation of vessel collapse exceed 10 Hz, visco-

elasticity will become important and the type of analysis will have to

undergo the necessary modifications. One of these modifications lies

in the basic nature of the computer simulation. Introducing viscoelas-

ticity changes the equations from hyperbolic to parabolic as noted by

Kivity et aL.55 Methods such as the Lax-Wendroff method can be used to

solve a system of parabolic equations and would be the method of choice

if viscoelasticity were added to our analysis.

Longitudinal Tension. A final comment should be made concerning

the effect of longitudinal tension. Tension was not included in our
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model for several reasons. First, we were unable to find any informa-

tion in the literature concerning the degree of venous tension in vivo

other than an occasional comment concerning its existence. Secondly,

we should be able to predict what effect, if any, longitudinal tension

might have.

In a uniformly collapsing vessel, the effect would be exhibited

only in terms of a slight decrease in the wall thickness and, barring

any influence of non-isotropy of the vessel wall, a corresponding de-

crease in stiffness would result. This would be most pronounced in the

collapsed tube since Kp varies as h' . Therefore, a small decrease

in h would lead to a considerable increase in vessel compliance. How-

ever, it is in this range of pressures that our knowledge of the true

venous characteristics is most incomplete and the corrections due to

wall tension would be of little value.

The second effect of tension, and probably the most significant,

occurs when the vessel undergoes large area changes over relatively

small distances. An analysis similar to that of a curved membrane acted

upon by tension and a pressure difference would tell us that, where the

wall curvature is positive (i.e., d2r/dx2 > 0), tension would exert an

effective positive transmural pressure--a negative pressure being asso-

ciated with negative curvature. To explore the significance of this

effect, we can estimate the magnitude of the effective pressure due to

tension, pt , given a wall tension T and the tube properties and com-

pare it to the applied external pressures. Assuming membrane stresses
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Pt T d 2
dx2

for small deflections. Since

A Trr2 or dA = 27r dr ,

for nearly circular tubes, Eq. (73) can be rewritten as

pt T d 1 dA \dAt ddx )dx
2T dA (74)

v~ dx2

As an order of magnitude estimate, if T Ap m/ 27r r p (wheremy 2 my
pmv is the mean venous pressure), then

Pmv d2A½
Pt 2T dx2

or

p my ~:AA
2

Pmv ( AAxPt 2Tr (Ax)2

And if area changes typically take place over a minimum distance of

four diameters,

Pt Pmv A 0.008 p . (76)
(2)(16)(D2)  my

For vessel diameters of approximately 0.7 cm, pt/Pe = 0.008(p mv/pe).

(75)

(73)
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This estimate, although derived by way of very crude approximations,

seems to lend credence to our assumption of negligible wall tension

effects. For some instances in which area changes are found by our

calculations to be even more abrupt than these estimates or if T were

greater than predicted here, tension would tend to smooth out the area

transition with corresponding changes in the local fluid dynamic pre-

dictions.
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CHAPTER IX:

FLOW EXPERIMENTS

Difficulties in Applying the Scaling Laws to the Design of the Experiment

Using the scaling laws of Chapter VII we could, in principle, design

a set of properly scaled experiments to determine the nature of flows in

the veins of the lower leg. In attempting to set of these experiments,

however, we encounter a number of practical limitations.

The first of these concerns the structural properties of the tube

itself. The vein wall has a complicated structure resulting in a highly

non-iostropic behavior and a variable Young's modulus depending on the

state of tension in the material. Also, there is reason to believe (al-

though this has not yet been observed experimentally) that the modulus

in bending differs from that in tension. Add to this the relatively un-

known influence of the surrounding viscoelastic muscular tissue and you

have an extremely complicated tube behavior, one which would be almost

impossible to mimic in the laboratory with any material other than actual

veins.

Another difficulty is posed by the complexity of the venous network.

Even if the exact geometry of the system could be determined, it would

be a major undertaking to create some sort of an elastic replica of the

interconnecting structure. The model would have to be one continuous

piece completely void of rigid parts because of the nature of wave propa-

gation and vessel collapse at junctions between rigid and compliant tubes.
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This requirement would eliminate the possibility of piecing together a

system of individual segments.

Finally, we must recognize that the different veins vary consider-

ably in wall stiffness and unstressed cross-sectional area. Although

these variations could be approximated by an elastic vessel in which

the wall thickness and cross-sectional area are appropriately varied,

we are not, at present, capable of manufacturing tubes of this type.

Methods are being tested which will eventually allow some flexibility

in producing the desired characteristics, but still not to the extent

required for the construction of an exact scale model.

Because of these practical limitations, we view the flow experiments

primarily as a means of evaluating the computer simulations. Since we

naturally want to conduct experiments which are somewhat representative

of induced venous flows we have chosen the model parameters to be roughly

equivalent to their physiological counterparts using the appropriate

scaling laws. And, in the course of experimentation, we have attempted

to bracket the actual physiologic range of parameters. After conducting

these tests, we then perform the corresponding computations and compare

results, looking primarily for the accurate prediction of general trends.

The results of this comparison are presented in Chapter X.

Description of the Hydraulic Model

We used the hydraulic model shown in Fig. 1. Basically, it can be

divided into three parts: the test section, upstream components, and
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downstream components.

Upstream Boundary. A high pressure reservoir is located at the

upstream end of the flow circuit which is kept at a constant pressure,

approximately equal to the mean arterial pressure. This drains through

a resistive element which represents the resistance of the capillary

bed and arterioles. The combination of these components acts to main-

tain a relatively constant inflow to the test section since the pressure

downstream of the resistance element varies by only a fraction of the

resting Ap even during pressurization of the test section.

Downstream Boundary. Downstream of the test section are two rigid

ducts separated by a capacitance tank. The tube adjacent to the test

section roughly models the resistance and inductance of vessels distal

to the vena cava. The capacitance tank represents the highly disten-

sible vena cava and empties through the second rigid duct, into a con-

stant pressure reservoir (the right heart in this model).

Test Section. Both the upstream and downstream flow components are

designed so as to create the proper physiologic environment for the test

section. The test section is shown in Fig. 2. It contains a single

flexible tube running the entire length of the chamber which is collapsed

by various cycles of external pressure. The chamber itself is divided

into two parts as shown in the diagram. A plastic sleeve runs the length

of the upstream chamber which permits the application of external pressure
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over this portion of the collapsible tube alone. By means of this sepa-

ration, the pressure applied in the upstream chamber has little effect

on the pressure in the downstream chamber which is vented to the out-

side.

We chose this two-chamber design to reduce the undesirable effects

on the flow of the downstream rigid support. A set of preliminary experi-

ments were conducted with this same system but without the two-chamber

test section. The flow was observed to be highly oscillatory and largely

governed by the downstream parameters and the nature of the point of

attachment between the rigid and collapsing tubes'. As this means of

support is highly non-physiologic, we sought another configuration which

minimized the influence of this artifact. The introduction ofa pressur-

izing sleeve removed the attachment point from the pressurized zone and,

although it did not eliminate the effect of reflections from the rigid

tube, the effect on flow inside the collapsing portion of the tube was

minimized.

There are, however, two possible drawbacks with this method of

pressure application. The plastic sleeve, due to its own structural in-

tegrity, cannot apply a perfectly uniform pressure around the circumfer-

ence of the vessel. In regions where the plastic makes sharp bends in

order to follow the contour of the tube, the plastic might actually de-

part from the tube as shown in the sketch.
• ' m , -

pressurizi
slee
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In these experiments the resulting non-uniformities in the circumferen-

tial pressure distribution are kept small by using a very flexible, thin-

walled plastic sleeve.

The second artifact occurs at the two ends of the pressurized zone.

With the application of pressure the plastic sleeve itself will collapse

onto the penrose tube except at the ends where it connects to a rigid

support. The contour of the plastic will be determined primarily by

its diameter and the amount of slack in the sleeve. This contour will,

in general, not follow exactly the contour of the tube, again leading

to a region of non-uniform compression, this time in the longitudinal

direction as well as circumferential. Presumably, keeping the length

of this region to a minimum reduces the effect it exerts on the overall

flow.

It should be noted that although the method we employed for reduc-

ing end effects is not perfect, no method was found which could eliminate

these effects completely. Ours was a compromise of sorts, but one which

apparently worked considering the agreement between theoretical and ex-

perimental results presented in the next chapter.

Description of the Flow Experiments

The value of each parameter in the experiment was selected so as

to reflect the general characteristics of the physiologic system to be

modeled. Since exact scaling was not possible, the choices were some-

what arbitrary but fell within the expected physiologic range.

The complete experimental sequence is presented in Table 3. [The
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reference experiment (number 1 in the table) is the test to which all

others were compared.] In the column directly below the test number

are listed the parameters of the test. In each case, one parameter was

varied (the value underlined in each column) and its effect on the mea-

sured variables observed. For the most part the parameters labeled on

the left correspond to our previous notation. Several parameters have

not been mentioned previously. S refers to the time required for the

pressure to reach 1 - of its maximum value, p The initial
max

external pressures in the two chambers are labeled pe and Pe for

the upstream and downstream chambers, respectively.

Measurements and Instrumentation. In each experiment flow rate

and pressure just downstream of the test section were measured. In

addition, transmural pressure was recorded at seven positions along the

collapsing portion of the tube except in those tests with non-zero ini-

tial flow rate.

Flow rates were measured using a Carolina Medical Instruments E-M

Flowmeter. Sodium chloride was added to the flow solution to produce

the required ionic content. Calibrations were performed and the instru-

ment was found to be linear over the entire range of measurements.

Pressure measurements were made with a C.J. Enterprises Differen-

tial Pressure Transducer with a 5 psi range. In order to obtain mea-

surements of transmural pressure, a catheter (No. 18 stainless steel

hypodermic needle, 49 cm in length) was inserted from the upstream end.

Internal pressure was measured at the tip of the catheter; external
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pressure via a tap in the side of the test chamberz

The open end of the catheter was pointed in the downstream direc-

tion. Because of flow separation at the base of the needle, errors were

anticipated of the order of pu2 . The actual error can be estimated

by comparison to experiments measuring base pressure 56 and are approxi-

mately 0.17pu 2 for the worst possible case.

Additional error is associated with the limited time response of

the catheter-transducer system. The resistance and inductance of the

catheter combined with the compliance of the transducer comprise an R-L-C

circuit which can be analyzed accordingly. Based on computed values for

R, L, and C , we can estimate the characteristics of the system which

were:

* damping coefficient 5 = 0.57;

* settling time (time for the signal to come to within 2% of an
applied step in pressure) = 0.11 sec;

* maximum overshoot in response to a step function = 0.11

Our observations of the response to a near step function confirmed

these predictions. Clearly, this response characteristic is a limiting

factor in making high frequency pressure measurements. Our objective,

however, was merely to observe the collapse process as a function of dis-

tance, and the achieved accuracy was sufficient for that purpose. The

absence of high frequency components from the recordings do not, however,

preclude their existence, the cut-off frequency being approximately 10 Hz.

As the tube collapses around the catheter another source of error

arises. In the adjacent sketch we see a cross-sectional view of the
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catheter-tube configuration in the collapsed state. It is obvious that

the pressure at the catheter tip is not necessarily the pressure in the

two sidelobes of the collapsed tube. Because of the two small channels

immediately adjacent to the catheter and running parallel to it the mea-

sured pressure may correspond to a point somewhere upstream of the cathe-

ter tip. These errors will become more pronounced as the tube collapses

but will not affect the results prior to collapse.

Also, when the tube collapses around the catheter as shown, flow

will be disturbed to a greater and greater extent as the catheter is in-

serted further into the tube. The influence of the catheter was clearly

visible when the catheter tip was moved to different radial positions at

the same longitudinal location. As expected, the pre-collapse pressure

profile was unaffected but the falling portion of the pressure trace

(signifying tube collapse) differed quite significantly.

As a final remark concerning the instrumentation for the experiment,

a Honeywell Visicorder was used for recording all pressure and flow

traces. The response time of this recorder was not a factor limiting

our results.

The Collapsible Tube. The collapsible tube used in these tests

was a penrose drainage tube from Davol Inc., made of latex rubber with

1 t b
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a ½ inch diameter. Because of the process by which the tube is made,

the wall thickness varies nearly linearly from one end to another. The

range for this tube was between 0.280 and 0.365 mm. For all but the

final test (Experiment 21) the tube was positioned with the thin-walled

end pointing upstream. The characteristics of the tube are given in Table 7.

Experimental Results. The test numbers refer to the listing in

Table 3 of all experiments. The results of these tests are presented

in the following format:

(1) A complete set of flow and pressure traces for Expt. 1 (Fig. 9).

(2) Exit flow rate for each of the experiments (Figs. 10-13).

(3) Quantitative comparison of characteristic parameters (Table 4).

The three plots in Fig. 9 show the applied external pressure, six

transmural pressure recordings, and the volume flow rate at the exit of

the test section, each plotted against time. The five lower curves in

the center plot are pressure measurements made at E = 0.06, 0.15, 0.24,

0.33, and 0.42 . The upper curve in the same graph is the transmural

pressure as measured just downstream of the test section.

The plots of exit flow in Figs. 10-13 contain both the experimental

result (dashed line) and the predictions of the theory (solid line) which

will be discussed in Chapter X. The tabulated results of item (3) above

are provided as a means of going beyond mere graphical comparisons and

of putting the comparisons on a quantitative basis. A number of charac-

teristic quantities have been identified on the flow and pressure traces

in Fig. 9. These are (referring to the numbers in the figure and in the
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table where applicable);

I. maximum flow rate;

II. time of maximum flow rate;

III. emptying time--defined as the time at which the flow rate first

goes to zero;

IV. time between the first flow maxima and first flow minima;

V. ratio between the first two flow maxima;

VI, collapse time--defined as the time at which the pressure trace

first deviates from the plateau region near zero transmural

pressure.

Each quantity is presented in the table in the form of a ratio between

the values of the parameter in each particular test and the value of the

same parameter in Test 1. For item VI above the single number represents

the average of five ratios computed for each of the five pressure traces

inside the collapsing portion of the tube. Included in Table 4 are the

comparisons for the flow simulations as well. These will be referred to

again in the following chapter.

From these experiments alone, however, much can be said concerning

the nature of unsteady flow from a collapsible tube. The collection of

transmural pressure recordings and visual observations support the intui-

tive concept that the collapse proceeds in the upstream direction, start-

ing at the downstream end of the pressurized zone. The early stages of

collapse occur very rapidly. Within a second of the onset of pressure,

the tube is highly collapsed at the downstream end. This necked down

region impedes the emptying of the remainder of the tube due to the
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resulting high viscous flow resistance. This zone of collapse can be

seen to propagate upstream more and more slowly as the tube empties.

Eventually, the tube reaches a new equilibrium configuration, the pres-

surized zone being more or less uniformly collapsed depending on the

amplitude of the external pressure and the magnitude of the steady flow

rate. (See Chapter X for a more complete physical description.)

Analysis of Flow Oscillations. One primary oscillation frequency

is evident in the recordings of downstream flow rate. We can explain

this mechanism by analogy to a nearly equivalent electrical circuit con-

sisting of two capacitors, a resistor, and an inductor.

(1)

The circuit is initially excited by an impulse event at

is created in our real system by the initial collapse of the

charges C1 and sets up a flow through L and R into C2

sponse of the system as a whole is a damped oscillation such

in the recordings of flow rate at the exit. The oscillation

is determined, in the analog model, by the equation

1 1

n LC1 LC2

(1) which

tube. This

SThe re-

as is seen

frequency

(77)
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We can see that if one capacitance is much smaller than the other (say,

CI << C2), then

On LC (78)

In the flow experiment, C1 is represented by the section of flexible

tubing downstream of the necked down zone. Most of the volume excursion

can be seen to take place in the region extending approximately 2 cm

downstream from the point of maximum constriction. This capacitance,

although difficult to estimate, is likely to be much smaller than the

downstream capacitance in the experimental model. A rough estimate of

the smaller capacitance can be made, based on the length of the partially

collapsed zone k , the cross-sectional area difference A2 - A1 , and

the pressure required to collapse the vessel APcollapse (see diagram).

For the following estimates,

2 = 2 cm
. ___, A

A2 -A 1 - I cmn

APcol lapse = 1000 dynes/cm2 ,

C V= = 0-3 cm3

Ap dynes/cm2
4-

A2
Bill

This value is approximately an order of magnitude below that of the down-

stream capacitance even if we neglect the presence of the discharge reser-

voir which would act essentially as a ground (infinite capacitance). The

frequency of oscillations based on this value for C1 and for L ( = pL/A)

1
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of 22/0.317 = 69.4 gm/cm4 gives us

• nf 2 0.6 Hzn 27r

which is in excellent agreement with the observed frequency (~ .8 Hz)

considering the simplicity of the model.

Another mode of oscillation which is not evident in most flow traces

but which was observed in the pressure recordings made at the flow meter

can be attributed to wave propagation back-and-forth in the downstream

section of the collapsible tubing. Waves excited by the impulsive flow

acceleration can be reflected at any point in the system where the impe-

dance changes abruptly. Abrupt changes can be found at the downstream

point of attachment to the rigid tube, and at the point of sudden change

in area. The frequency of the oscillations associated with the mechanism

is determined by the length of the wave-carrying segment and the mean

wave speed. Strong nonlinearities in wave speed within the range of

transmural pressures occurring in this section of tubing, give rise

to quite a wide range of possible frequencies for this mode of oscilla-

tion, as evidenced by the following calculation:

L = 25 cm

C = 60-700 cm/sec

-Cf C = 1.20 + 14 Hzn 2L

Again, agreement is good between these estimates and the range of ob-

served frequencies.
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Our ability to analyze wave processes is somewhat limited in the

experiments due to the lack of high resolution information concerning

the pressures and flows at points inside the tube. In this respect, the

numerical simulations proved to be indispensible. In the next chapter

we discuss these wave phenomena again in light of the more detailed

information available through the numerical methods of analysis.

The results of the entire range of experiments were surprisingly

similar in many respects. Of particular interest is the apparent de-

coupling between the processes inside the collapsing part of the vessel

(see, in particular, those parameters which measure collapse times and

emptying time) and the components determining the downstream boundary

condition. The question arises of whether or not this apparent decoup-

ling can be attributed to a critical (u = c) or supercritical (u > c)

condition at the throat or region of minimum area. Again, this question

can be better analyzed with the aid of the computer results and will be

taken up in the next chapter.

The most significant effects on the measured variables can be

attributed to changes in the fluid viscosity and in the rise-time and

maximum value of the external pressure. Also significant in terms of

the total emptying time was the introduction of non-zero initial flow

rates. We would expect these changes to affect the entire flow system

regardless of the situation at the necked down region. The effect of

viscosity changes are related to the findings of Appendix B. There we

see that, if the flow is viscous dominated, the emptying time should

vary inversely with the square of the viscosity. The experiments do
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not exhibit this trend, although there is a strong effect due to the

change in viscosity, and we conclude that flow, at least during an impor-

tant initial phase, is not dominated by viscous forces. (In fact, if an

initial period of inertial-dominated flow did not exist, the flow rates

for small times would approach infinity.) Although not dorhinated by

viscous effects, the flow from the collapsing vessel is certain to be

influenced by them, particularly in the latter stages of collapse. This

result merely tells us that neither viscous nor inertial effects can be

neglected in a valid final analysis.

An important observation is that, although peak flow rate increases

(to a decreasing extent) for both increases in p , and decreases in
max

rise time, the time it takes to drain the tube of fluid appears to be a

constant in these tests. We are led to believe that some flow limiting

mechanism is present which establishes an upper limit on the flow during

all or a significant part of the emptying process. One mechanism has

been postulateds57 ', which, in essence, states that flow velocity in

horizontal tubes cannot exceed wave velocity. These arguments are gen-

erally based on the assumptions of frictionless, steady flow and their

applicability in these highly unsteady flow situations maybe disputed.

This question will be addressed further in Chapter X.

For our purpose, it is sufficient to recognize that a limit does

apparently exist, and that simple modifications in the external pressure

pulse are limited in their effect on drainage time. Also, our observa-

tions indicate that flow limitation occurs at the necked down region and

that, if we hope to significantly reduce the time required to empty the
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tube, we should look to other means of pressurization which eliminate

this choking condition. Such methods will be investigated in Chapter

XII.

Additional interpretations of the experimental results are given in

the next chapter, in the context of the numerical simulations.
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CHAPTER X:

NUMERICAL SIMULATION OF FLOW EXPERIMENTS

In this chapter we examine the results of the flow experiment simu-

lations and make direct comparisons between the experiment and the pre-

dictions of the theory. The simulations were felt to be necessary for

several reasons. First, as noted earlier, they allowed us to make a

direct comparison between the predictions of the simulation and a real

situation--a situation which was a greatly simplified version but which

possessed many of the same qualities of the system eventually modeled.

This comparison helped us to determine the extent to which we could

trust the results of the subsequent simulations which could not be

modeled conveniently by experiment.

The simulations aided also in determining how and to what extent

each parameter change affected the overall process. This could not be

accomplished solely by experimentation because of the lack of detailed

information that could be obtained by direct measurement. Applying the

results of both the experiment and theory to future simulations, we could

predict which of the many parameters would have a strong influence (and

therefore should be selected very carefully) and which would have little

or no influence on the results.

Finally, through the simulations we were able to look inside the

collapsible tube in a way not possible experimentally. Specifically,

we could investigate the region of the tube near the throat and come

to a better understanding of the mechanisms of, for example, the
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phenomenon of flow limitation in a collapsible tube.

Description of the Theoretical Model

The numerical methods have been described in detail in Chapters V

and VI. The input parameters include the characteristics of the hydrau-

lic circuit, pressure cycle, and compliant tubing. The circuit and

pressure cycle are described completely by the parameters found in Table

3, where the notation is as defined earlier.

The spatial distribution of external pressure was approximated by

two quadratic curves, symmetric about the half pressure point. The width

of this variable pressure region (which we call the "pressure ramp") was

an important and somewhat troublesome parameter. If made too wide, the

numerically predicted oscillations were found to be of a much lower fre-

quency than those observed experimentally.t If too short, the computa-

tional procedure was adversely affected giving rise to large errors in

the region where external pressure varied most rapidly. Thus, it was

necessary to perform some simulations using the wide pressure ramp (those

which were prone to instabilities because of the violent nature of the

results). These are denoted by an "A" in the simulation number. All

others employ the narrow ramp which had a total length of approximately

5 cm, half the length of the wide ramp.

tSee pp. 118-120 for an explanation of this phenomenon.
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All the experiments were performed using the same penrose tube. The

tube law used in the calculations was one which had been determined ex-

perimentally using similar tubes and is plotted in Figs. 7 and 8. In

Appendix D, the methods and results of the tube law experiments are dis-

cussed in detail. The experimental method required a complete pressure-

volume curve for two segments of different length from the same tube.

The curves were subtracted from one another to eliminate end effects

and analyzed, taking into account the non-uniformity of the wall thick-

ness.

The spatially varying characteristics of the vessel were determined

by measuring the wall thickness as a function of distance using a micro-

meter. The measurement of wall thickness using this method could be in

error by as much as 5% which corresponds to as much as a 16% error in K .

(This does not include the errors in the tube law itself.) A technique

is currently being developed that will enable us to measure the local

tube law in tubes of up to 100 cm in length to better precision than was

possible using the earlier methods. Unfortunately, this new technique

was not available at the time these experiments were conducted.

Sources of Error

Errors which affect the numerical results come from a variety of

sources. Two of these have already been mentioned: errors in the uni-

versal tube law and the way in which tube stiffness varies spatially.
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We have also noted that the nature of the pressure ramp (both its shape

and width) affect the solution. Since we can only estimate the true

nature of the pressure distribution along the plastic pressurizing sleeve,

this will contribute some errors as well. In addition, the model used

for the various types of flow resistance will cause errors which are most

noticeable in situations where the flow is oscillatory. The governing

equations themselves, in that they are a one-dimensional approximation

to the real flow, may cause inaccuracies particularly when the flow is

highly convergent or divergent and hence more nearly two-dimensional.

Another source of error is the numerical solution itself. Errors in

a solution ..procedure as complex as this are difficult to estimate direct-

ly. We can, however, discover the magnitude of one source of error--the

discretization error--in an indirect way. To do this, we first realize

that all discretization (or truncation) errors are proportional to the

grid spacing and can be investigated by keeping the ratio between AT

and Aý constant, but making the mesh finer. The order of the approxi-

mation involved would determine to what power of AE or At this error

varies. The crudest approximations used in our calculations were of

first-order in the interpolation procedures, for example. Therefore,

we would expect the errors to vary as AE2  or AT2  and the solution,

by this reasoning, should converge to the correct result as AE and AT

approach zero.

We performed three computations of the same flow simulation with

the mesh spacing being cut in half each time. This corresponded to, in

terms of AE , a spacing of AE = 0.02, 0.01, and 0.005, or 51, 101, and
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201 spatial increments for the three runs. The result in terms of flow

rate at the exit is superimposed in Fig. 14. Clearly, in proceeding

from 51 to 201 points, the solution appears to converge quite well. The

51 point solution seems inadequate, however, and we therefore have used

a 101 point spatial grid for all the computations presented here.

Comparisons Between the Experimental and Theoretical Results

We have plotted the volume flow rate (at the first rigid tube down-

stream of the test section) measured experimentally and as predicted by

the theory in Figs. 10-13. This format allows a direct visual compari-

son between the measured and predicted behavior of the one measured para-

meter which best characterizes flow in the entire collapsible tube.

Qualitative Description of the Results. The theoretical curves

exhibit two distinct modes of oscillation. The low frequency distur-

bance corresponds essentially to the sloshing of fluid between two capa-

citors separated by the resistive and inductive elements. As shown in

Chapter IX, the frequency of this oscillation mode depends primarily on

the smaller of the two capacitors--in this case, the compliance of the

region of the tube at the pressure ramp. The distinct difference bet-

ween simulations using the small versus the large (denoted by an "A")

pressure ramp can be attributed to a change in this compliance which

tBecause of a considerable increase in cost, the 201 point computation
was only carried out for the first part of the cycle.
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coincides with a change in the width of the pressure ramp. The high

frequency oscillations evident in the theoretical curves but absent in

the experiment represent waves which are being reflected between the

point of attachment of the downstream rigid .tube to the penrose tube

and the edge of the pressurized zone in the penrose tube (a point at

which the impedance changes abruptly and which is thus a source of re-

flection). The frequencies associated with oscillations of this type

have been estimated in Chapter IX and agree well (in order of magnitude)

with the observed oscillations. The fact that these oscillations are

clearly visible on the theoretical but not the experimental curve can

be attributed to a combination of several factors. First, as is evi-

dent in Fig. 14, decreasing the size of the computational grid has the

effect of minimizing these oscillations. This indicates that their

presence can be partly attributed to numerical errors. The errors pro-

bably arise in the region where large changes take place over a rela-

tively small distance (in the immediate neighborhood of the pressure

ramp).

Real waves do exist, however, and can be seen in pressure measure-

ments made in the rigid duct just downstream of 5 = 1 . In the experi-

ments, the waves damp out very rapidly whereas the theory predicts that

they persist through much of the cycle. One reason for their persistence

is that the flow resistance forms used in the computation are not capable

of accurately predicting the viscous damping of relatively high frequency

waves. Thus, once started, the waves are likely to continue much longer

in the theoretical prediction than in the experiment. Tube viscoelasticity
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may also be an important factor. In reality, any waves of relatively

high frequency will be increasingly affected by the viscoelasticity of

the tube wall. Our model does not include viscoelasticity, and there-

fore would not predict the additional damping due to this effect.

For the purpose of the following discussion we can define three

relatively distinct phases of emptying as characterized by the plot of

volume flow rate versus time:

(1) the initial transient peak;

(2) the period of relatively constant flow rate;

(3) viscous emptying.

The most consistent difference between the experimental and theore-

tical curves occurs during phase two, that of nearly constant flow rate.

We can see that the mean flow rate predicted by the theory is distinctly

higher than that observed by experiment. In agreement with the observa-

tion of higher flow rates, the time for the flow rate to go to zero is

less for the simulation than the experiment. There are several possible

explanations for this discrepancy. Later in this chapter we present an

argument, one result of which is that the mean flow rate during phase

two depends directly upon the local wave speed as characterized by co

If we fail to accurately predict the stiffness of our tube, the result-

ing error in co could account for the observed differences. Other

factors which may influence the results during phase two are the
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approximate flow resistance functions t and the shape and extent of the

pressure ramp.

A More Quantitative Approach to the Comparison of Theory and

Experiment. The results of the simulations are compared directly to

the corresponding experiment in the two ways discussed in the previous

chapter. As discussed earlier, Figs. 10-13 provide a direct visual

comparison between the experimental (dashed) and theoretical (solid)

curves of volume flow rate at the exit of the test section. In Table

4 the quantitative comparisons of the type described earlier are pre-

sented for both the experiments and the simulations. In each case, we

have tabulated the values of the ratio between a particular variable

of experiment (or simulation) "n" and the value of the same variable

of experiment (or simulation) "1." The ratios for the experiment and

simulation of .the same test are listed beside each other. We chose

this form rather than a direct comparison for each test between the

theory and the corresponding experiment for the following reason. Our

main concern is in the prediction of trends in actual flow situations,

trends which might otherwise be overshadowed by the intrinsic differ-

ences between the theoretical and experimental models. A direct

tFlow at the throat is very nearly turbulent in most simulations. A
significant error could result by failing to accurately predict the
Reynolds number at which turbulence will occur. In addition, even in
laminar flow the boundary layer narrows in a converging section of the
tube, resulting in larger actual shear stresses than those predicted
by the simulation.
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comparison is provided, however, for Test 1. The values found in the

first row in the table constitute ratios comprised of experimental and

theoretical results for the same test. The Roman numerals in the table

refer to the parameters identified in the previous chapter.

The results expressed in this manner can be viewed in two ways.

First, if the parameter varied in any particular test has no influence

on the flow, then all ratios will be exactly equal to one. The greater

the influence, the greater the departure from one. Secondly, the rela-

tive success of each simulation can be determined by direct comparison

of the two sets of ratios labeled "experiment" and "theory."

Discussion of Results. In general, the agreement was good particu-

larly for those tests in which the pressure cycle was varied. The agree-

ment in those simulations in which parameters of the downstream hydraulic

circuit were varied is somewhat less satisfying, particularly in Expt. 14,

where the downstream pressure has been increased. This result could have

been influenced by the errors, for positive transmural pressures, in

using a universal dimensionless pressure-area law. The characteristics

of the tube change when going from negative to positive transmural pres-

sure, a change which is accompanied by a change in the normalizing para-

meter used to reduce all the data onto a single curve. Thus, in attempt-

ing to use one universal curve for the entire range of transmural pres-

usres, the region of positive transmural pressure deviates from the true

curve. In other words, stiff tubes will be too stiff and compliant tubes
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will be too compliant, the dividing line being at a K of approximately

200 dynes/cm2 . We justify this type of a normalization on the basis

that our interest is primarily in the collapsed tube and that, in most

calculations, the tube rarely extends very far into the positive pres-

sure regime. This experiment, however, is an exception and could have

been influenced by this anomaly of the P-a law. We should add that the

apparent errors found in Expt. 14 tend to bring the results of the simu-

lation closer to the experimental results. That is, if we compare, not

the ratios formed by Simulation 14 and Simulation 1 against the ratios

formed by Expt. 14 and Expt. 1, but rather the results of Expt. 14 and

Simulation 14 directly, the agreement improves.

Changing the viscosity of the fluid by a factor of five also strongly

influenced the results--an effect which was reflected in the numerical

solution. It is significant to note, though, that the changes which took

place during the early part of the cycle were much less dramatic than

those at later times. This leads us to assume that the early stages are

largely dominated by inertial effects--a concept that will come up again

in later discussion.

It should be noted that, in general, variations in downstream para-

meters had little effect on the results considering the large variations

from reference conditions they represent. This observation coincides

with the possibility of critical or supercritical flow velocities (u > c)

at the throat of the collapsing tube which would prevent the flow from

being accelerated beyond the critical point.

In only one experiment were the tube properties changed in any way.



-134-

This was accomplished in Expt. 21 by reversing the tube so that the thin-

walled section pointed downstream. Although the tube wall varied consi-

derably in thickness from one end to the other (giving rise to a varia-

tion of co from 69.9 to 103 cm/sec), both the experimental and theore-

tical results changed surprisingly little. This is the result we would

expect if the flow had been largely determined by the tube properties in

the region surrounding the point of minimum area, since reversing the

tube produced the least change around 5 = 0.5 . This is an additional

piece of evidence which helps to substantiate our claims made later, that

"choking" does occur and is primarily determined by the tube properties

at the throat.

Simulations in Which Ao and Co Were Varied

We simulated several additional situations for which no correspond-

ing experiment was conducted. The purpose of these was to investigate

the effect of changes in co and Ao independently. The equivalent

experiments could not be conducted because we lack the stringent control

over wall thickness and tube radius that would be necessary to construct

two tubes which, for example, had exactly the same co but differing

areas. In this series of calculations, Ao and co were given specified

values (independent of 5) as indicated below:

Simulation 59: Ao = 1.06 cm , co = 60 cm p 2.6 x 10' Odyes
sec e cm2max

Simulation 60: Ao = 2.0 cm , co = 60 cm , max = 2.6 x 10 c dynessec e cmmax cm2

Simulation 63: Ao = 1.06 cm , co = 150 cm, P = 1.65 x s  2
maX
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The applied pressure in Simulation 63 was increased so that the dimen-

sionless group, (1/pco2)(ap e/a) , was kept constant. All other para-

meters corresponded to those of Expt. 1.

The results of these simulated conditions are presented in Figs.

15 to 18. For each simulation the normalized variables are plotted in

the following sequence:

(1) Transmural pressure versus time at four different locations

within the pressurized region (Fig. 15).

(2) Volume flow rate versus time at the same four locations (Fig. 16).

(3) The ratio between flow velocity and wave speed (U/c) at the

same four locations (Fig. 17).

(4) Cross-sectional area versus distance at six equally spaced

times between t = 0 and the final time (Fig. 18).

We can draw several very useful conclusions from these results.

First, in comparing the graphs of Simulations 59 and 60 we notice that

a change in Ao has virtually no effect on the solution in terms of

normalized variables, at least in the collapsing portion of the tube.

The flow rate just downstream of the pressurized zone, however, is

strongly influenced due probably to the lack of appropriate scaling in

the downstream boundary condition. The results are nearly identical

over most of the cycle, differing only slightly in the period of vis-

cous emptying at the very end. The analysis found in Chapter VII can

be used as a guide in understanding this observation. Looking at the

dimensionless groups on page 84 we find that Ao appears only in the

boundary condition parameters and the group which represents the ratio
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between viscous and inertial forces, and as such has the form of a Rey-

nolds number, pcoAo/CfIL . The fact that much of the solution is inde-

pendent of the Reynolds number suggests that most of the process is gov-

erned primarily by inertial effects, at least within the pressurized

region. We know, however, that viscous effects must be significant in

a narrow region close to the minimum in cross-sectional area in order

to maintain such a large pressure drop across the region. Granted, the

inertial effects and head-loss term contribute to the pressure drop but

are not likely to constitute the entire effect. We can estimate, from

the numerical solution, the relative magnitude of the inertial and vis-

cous terms and, in doing so, find them to be comparable at the throat.

We seem to have come upon a contradiction. One one hand, we observe

that the solution is independent of the term involving viscous stresses.

On the other, we can show that viscous and inertial effects are comparable

in at least one region of the tube. These two statements can be recon-

ciled if we can demonstrate that the presence of viscous effects at the

throat do not influence the solution upstream. During that time for

which u > c in any region between the throat and some point upstream,

the two solutions are effectively uncoupled. Hence, if the following

criteria are satisfied, then the solution upstream will not exhibit the

effect of viscous stresses:

(1) viscous effects were not yet significant at the time flow velo-

cities became supercritical;

(2) at no time since first going supercritical has the flow become

entirely subcritical;
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(3) viscous effects are insignificant upstream of the supercriti-

cal region.

Although sustained supercritical flow is not observed at any of

the points plotted in Fig. 17, the detailed solution results indicate

that the flow was, indeed, supercritical until a normalized time of

approximately T --4 in Simulation 59 and until T a 3 in Simulation 60.

It is interesting to note that during an initial period, the flow

transiently becomes supercritical. It then quickly returns to a condi-

tion of u c which constitutes an apparent upper bound for the quasi-

steady period immediately following.

By contrast, when we compare the results of Simulations 59 and 63

we find subtle differences both inside and outside of the pressurized

region. These differences are evident both at the end of the cycle (as

in the previous comparison) and during the early phases of collapse.

Since, in comparing the results of Simulations 59 and 60 we found that

the flow inside the collapsing portion of the tube was largely indepen-

dent of pcoAo/CfPL and since Pmax was adjusted to maintain proper

scaling of (pco 2)pe,/3 , then the observed influence must be

attributable to boundary effects. The flow trace at 5 = 0.65 does

indicate the presence of a strong reflection reaching the edge of the

pressurized zone just prior to choking. The nature of this reflected

wave which is determined largely by the boundary conditions prevents

the flow rates even in the collapsing region from reaching the same
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maximum values. However, after choking occurs, the normalized results

show strong similarities, reflecting the fact again that the flow is iso-

lated from the downstream boundary conditions. And in spite of the dis-

similarities during the initial phase, the emptying time is virtually

unaffected.

In dimensional terms since flow rate is normalized by the product

Aoco , actual flow rates scale as Aoco . This implies that, for example,

doubling either Ao or co causes flow rates to approximately double,

at least in regions that are relatively uninfluenced by boundary condi-

tions. Additionally, since time is normalized by L/co , dimensional

emptying time is independent of Ao and varies inversely with co -- the

stiffer tube will empty more rapidly. Again, this result could be de-

duced from arguments based on volume flow rate alone.

An Approximate Theoretical Analysis Using a More Physical Approach

The results discussed above provide the framework for the following

analysis. Our objective is, given certain very general characteristics

of the tube and the mode of pressurization, to determine a semi-quantita-

tive description of the flow process. To do this we begin with the basic

principles governing collapse and the associated fluid dynamics, and

attempt to extract order of magnitude estimates for such parameters as

the maximum flow rate, Qpeak ; the magnitude of the flow rate during

the second, quasi-steady phase, Qmax2 ; and the time required to empty

the vessel, tempty '
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We would like to be able to predict, using a relatively simple

model, the salient features of the collapse process. For this purpose

we consider the different phases of flow individually making an appro-

priate set of approximations in each case; first the initial transient

phase.

Phase One: The Initial Transient Phase. Our main objective in

the following analysis is to estimate the peak flow rate occurring dur-

ing the initial phase of collapse.

The tube can be divided into two parts: an upstream region which

is compressed by a time-varying but spatially uniform external pressure;

and a downstream region over which the external pressure is constant.

For this discussion we assume that (1) the pressure changes abruptly

(over a distance comparable to the tube diameter) and (2) the bounda-

ries are distant enough so that we can ignore the effect of reflections.

Initially, the fluid is everywhere at rest.

As the external pressure along the upstream portion of the tube

increases, the tube begins to collapse at the boundary between the two

regions. The time varying area at this point will be referred to as

the "throat" area, AT , and it is assumed that the area is a minimum

at or very near this point during the entire initial phase.

We can think of the time dependent external pressure as being com-

prised of a series of infinitesimal step-changes of magnitude Ape .

For each increment in external pressure, the internal pressure increases

by some small amount, Api . The relationship between Api and Ape
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depends upon the extent of vessel collapse locally. Instantaneously,

Api will equal Ape , but the consequent collapse will cause Api to

decrease with time following a single pressure increment.

Using small amplitude approximations we can derive an expression

for the change in velocity as the compression wave propagates down-

stream into the undisturbed fluid. Using the equations of mass and

momentum conservation across the compression wave we find that the velo-

city increment, Au , can be written as

Api
'Au c (79)

where co is the initial wave speed. Summing over a series of pres-

sure increments, we can obtain an expression for Q(t) :

AoAp
Q(t) = co (80)

This summation can be expressed in integral form for a smoothly varying

pi and integrated to obtain:

Q(t) A= Pi(t)co Pi(0 )  (81)

The implicit assumption in writing Eq. (81) is that Ao and co

are both constant. In reality, the compression waves entering the

downstream region act to further inflate the tube causing Ao and Co

to increase. However, the increases in Ao will be relatively small

for an already circular tube and the changes in co , although more



significant, will not change the general character of the results.

Coincident with the increase in flow rate downstream, the tube

begins to collapse in the upstream pressurized region. Rarefaction

waves propagating in the upstream direction act to accelerate the flow

and deflate the vessel. The region influenced by these waves has a

length cot , and contains initially a volume cotAo . As a consequence

the volume expelled from the upstream portion, V(t) , cannot exceed

cotAo . We might estimate the actual expelled volume as follows:

V(t) = K1cot(Ao - AT) (82)

where AT. is the throat area and K1 is a shape factor which must be

less than one. A second expression for Q(t) can be obtained by dif-

ferentiating Eq. (82) with respect to time:

Q(t) = KcoAo - AT t d- A . (83)( dt

At the time of maximum flow rate, dQ/dt = 0 . This condition

gives the following expressions upon differentiation of Eqs. (81) and

(83), which are valid at the instant of maximum flow:

dpidp 0 (84a)dt
at t = t

dAT  d 2 AT
2 d + t dt2  0 (84b)

dt p dt2

Here t denotes the time at which peak flow occurs.
p
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Physically, Eq. (84a) implies that some mechanism must be present

to cause the internal pressure to decrease, thus decelerating the flow.

This mechanism is provided by vessel collapse to a state at which the

rising external pressure is offset by the increasing ability of the tube

to resist collapse. To complete the analysis, then, we need to consider

the tube law at the throat.

Assuming that the tube is in the similarity range when the flow

maximum occurs we can use the following tube law:

e i =  Kp (A. (85)

Differentiating this expression and setting dpi/dt = 0 , gives, upon

one differentiation,

dAT 2 AT12  dpe (86a)
dt 3 KpAo32 dt

and, differentiating again,

2
d2AT 10 dpe/dt 

(86b)
= - AT• KpAo- -. (86b)

dt2  9 K A/2

Substituting Eq. (86a) and (86b) into (84b) we get an expression for tp

t 6 Kdp /dt 32 (87)
p 5 dp e/dt T

Whereupon, evaluating Eq. (83) for the maximum flow rate, Q , we find
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Qp= KicoAo 1 5 A

or
AT

Qp KicoA0  for 0 << 1 (88)

This suggests that the peak flow rate is independent of the type of

pressurization except in that it may affect K1 or, to a lesser extent,

AT . It depends primarily on the product coAo for the initial state

of the vessel.

Equation (88) agrees quite well with our previous observations.

Peak flow rate is relatively unaffected by any of the changes imposed

in ourý tests.

Phase Two: A Period of Quasi-Steady Emptying. All the experiments

exhibit a period of relatively constant flow rate following the initial

transient peak, with the exception of the decaying flow oscillations in the

region downstream of the collapsing zone. During this second phase,

we might consider the flow to be quasi-steady and make the appropriate

approximations.

The local stagnation pressure for steady, horizontal flow is

P p + pu2 . (89)

We can replace u by Q/A and solve Eq. (89) for the flow rate:

=A (P - p) (P - e) (90)
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At a particular instant during the emptying process we might con-

sider the flow locally to have a fixed value of P - pe Actually,

P will be a decreasing function of distance in the flow direction due

to frictional losses, but a value of P can still be identified with

any location. The flow rate, then, will be a function only of (p - pe)

since A is related to p - pe by way of the tube law. Since A + 0

as P-Pe -o and since u + 0 as (p-pe) (P-pe ), we might expect

Q to have a maximum with respect to p-pe . To determine this maximum

we differentiate Eq. (90) with respect to p-p and set the result

equal to zero:

dQp = dA + A 2 (P-p)- (P-p)](- = 0. (91)

Whereupon, substituting the expression for c , we obtain

A u2 1)

or

2u_ = . (92)
c
2

This implies that for fixed values of P-Pe in steady flow situa-

tions, the maximum flow rate is achieved when u = c , constituting a

means of flow limitation or "choking" in the terminology of compressible

fluid flow. The maximum flow rate, then, in steady or quasi-steady

flows is limited by the minimum value of cA along the tube. Since,

in general, cA decreases with A , flow limitation or "choking" will
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occur at the point of minimum area.

In the range of similarity the product cA for a particular tube

is a very weak function of transmural pressure. Using the similarity

tube law,
/ p - 3

A = Ao(eK P, K (93)

and the expression for wave speed,

A d(p - p )
C2 A

P dA . (94)

we can show that

Qmax 2  Ac = Ao. ( 3 K(e )(5max2 P e p K(95)

where Qmax denotes the maximum flow rate during the second phase of

flow. Thus, for wide ranges of external pressure, the maximum flow rate

during phase two of the emptying process is likely to be approximately

constant if the assumption of quasi-steady flow is valid.

Expressed in normalized form, Eq. (95) becomes

Q a C = (1/2
max ac = ( (-P)-"116

Aoc o \2 (96)

which demonstrates the direct dependence on Acco of the maximum flow

rate during steady flow. Therefore, as in the case of the initial tran-

sient peak, the maximum flow rate during later stages of emptying de-

pends primarily upon the tube characteristics expressed in terms of the

.-
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product AQco ,

Phase Three: Viscous Drainage. As the extent of the collapsed

region increases, eventually viscous effects will become an important

factor. The flow rate will become unchoked and depart noticeably from

the nearly constant plateau region. This period of viscous emptying

we refer to as phase three.

In our experiments phase three seemed to occur only at the very end

of the flow cycle and had little effect on the overall results. The

points at which viscous effects first become important would, of course,

be a function of the total tube length and the fluid viscosity. On this

basis in veins, as in the laboratory experiments, phase three is likely

to have a very limited influence. If other systems are considered where

viscous effects are a dominant influence, the results of Appendix B

could be used to predict the behavior of the tube.

The time required to empty the vessel or to reach a new steady state

would depend on these three phases in combination. However, as noted,

phases one and two govern, to a large extent, the behavior of our tests.

Based on the results that both the initial flow maximum and the maximum

allowable flow rate during phase two are proportional to Aoco , we

would expect the emptying time to vary according to the expression

tempty total volume expelled (97)
emptye is somewhat less than the initial volume, this

Since the expelled volume is somewhat less than the initial volume, this
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can also be written as

t K3  , (98)
empty co

where L is the length of the pressurized region. Consequently, the

emptying time should be independent of all parameters except the tube

properties and the expelled volume.

Evaluation of the Approximate Expressions. We can now compare the

results obtained by experiment or simulation to the predictions of this

more approximate analysis. If confirmed it would provide a useful means

of predicting the relative qualitative behavior of different systems to

different types of pressure cycles without requiring a complete theore-

tical simulation. The results of our approximate descriptions are sum-

marized below:

* Q - K1coAo

* Qmax2 K2coAo (99)

• tempty K3 L/co

In normalized form, these become

Q* K1

SQmax K2  (100)

empty K3

Expressing these relations in dimensionless form points up the

rather amazing prediction that, at least qualitatively, all the results
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should be the same regardless of tube size or stiffness and independent

of other system parameters.

This was indeed observed to a large degree in the experiments with

the exception of Expt. 19, in which the viscosity of the fluid was in-

creased. This we would explain on the basis of an extended phase three

demonstrating the presence of significant viscous effects.

The most severe test comes in trying to predict the results of Simu-

lations 59, 60, and 63. Here, too however, we find strong confirmation

of our predictions. In normalized form all the results exhibit very much

the same behavior, the similarities being particularly striking between

Simulations 59 and 60.

All these conclusions, however, are based on one particular type of

pressurization--uniform external pressure. In the next several chapters,

we consider the venous system of the leg and explore two alternate modes

of compression with distinctly different results.
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CHAPTER XI:

A MODEL OF THE VENOUS NETWORK

The anatomical information required by the numerical simulation of

induced venous flows primarily pertains to the geometry and structural

properties of the system of vessels and their environment. In this chap-

ter, we will discuss the nature and origin of that information which has

been used in the flow simulations. In many instances, quantitative data

was not available in the literature. Whenever possible, we sought to ob-

tain more precise physiologic data on our own. In other cases, we used

a basic understanding of the principles involved to create a realistic,

if not precise, model.

The Geometry of the Venous System and Normal Flow Conditions

The section of the venous tree which was explicitly included in our

model extended from the deep veins of the lower calf, through the muscu-

lar veins of the upper calf, and into the popliteal, femoral, and iliac

veins.

As noted earlier, the complicated inter-relation of the deep veins

of the calf vary according to a wide range of common configurations.59

Our intent was not to create an exact replica of this system but only

to produce an estimate of the number of vessels, their cross-sectional

area, and the approximate flow rate at each location in the leg. The

model itself restricts us to systems of uniformly branching vessels so

the non-symmetry inherent in individual systems could not be reproduced.
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Our information concerning vessel geometry and size came from two

sources; the literature and a venographic study of our own. The basic

system is described in several texts 59'60 although some discrepancies

are found with respect to the detailed configuration. The main vessels,

starting with the iliac vein and heading distally, are listed below:

* Iliac

* Femoral

* Popliteal

* Peroneal, posterior tibial, anterior tibial (one or two each)

* Numerous muscular veins.

Figure 19 shows schematically how these vessels are arranged. The dia-

gram includes only those vessels directly included in the model, i.e.,

only the deep veins are shown. The extent of muscular vascularization

depends largely on the state of development of the calf muscles. The

muscular veins join the main tributaries (peroneal and anterior and

posterior tibial veins) at arbitrary locations and may, in fact, commu-

nicate with these vessels at more than one point, forming a sort of by-

pass through which blood can pass into the muscular regions. This

arrangement lends itself to the efficient operation of the muscle pump

described in Chapter III.

The literature sources of geometrical information noted earlier

made little mention of the relative size of the individual vessels and

provided almost no quantitative information. Our data on vessel dimen-

sions came from a study we conducted on a small sample of normal veno-

grams obtained from the MGH Radiology Department. Because of the
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density of vessels in the upper calf and the two-dimensionality of the

venograms, the resolution in this region was very restricted. Addition-

ally, due to the nature of the dye injection and the presence of valves,

many of the vessels probably were not filled and therefore were not vis-

ible on the x-ray. However, the diameters of those vessels in the thigh

and the major vessels in the calf were readily obtainable, making the

appropriate adjustment for the scale of the x-ray.

Because it was felt that the total blood volume at locations in the

calf were underestimated by the venographic method (due to partial fil-

ling and overlapping), plethysmographic studies were reviewed to gain

more precise measurements of total venous volume. Since most of these

results were stated in terms of mZ of blood per 100 mk of tissue for

the entire calf, we can only estimate the distribution of blood within

the vessels. Based on a number of independent studies, 6'62 a value of

approximately 3.5 mk/100 mt was chosen as an average venous blood volume

in normal supine posture. A certain fraction of this volume would, of

course, occupy the superficial veins and would not be visible in the

venograms. However, deep venous blood volume as estimated from the veno-

grams still fell short of that which would be predicted on the basis of

estimates from the literature with superficial blood volume subtracted

out. For our model, then, we chose to use the distribution determined

from the venograms, but boosted the curve to a level which gave better

agreement with the total volume estimates. Likewise, the number of ves-

sels (equivalent to Cf in the model) at a particular level in the calf

obtained from the venograms was adjusted to reflect the information from
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all sources including the literature and the results of the venogram

study. The summarized results expressed as total cross-sectional area

Ao and number of primary vessels Cf as a function of location are

found in Table 5, along with the distribution of co , in the form

used for the computer simulation of venous blood flow.

Outside the region explicitly included in our model lie those parts

of the circulation which are included within one of the two boundary con-

ditions. Far upstream, a mean arterial pressure of approximately 100 mm

Hg drives blood through the capillary bed. Based on measurements made

by Roberts,63 the mean flow rate through the popliteal vein was esti-

mated at 180 mk/min. The arterial pressure and resting flow rate allow

us to compute the capillary resistance which is estimated at approxi-

mately 4.12 x 104 gm/cm4-sec . Since, in our model, all vessels which

drain through the popliteal vein are part of our system, no additional

influx of blood from tributaries is allowed. Downstream, however, in

the femoral and iliac veins, tributaries which are not part of our sys-

tem.increase the resting flow rate from ~ 180 mZ/min at the knee to

~ 450 mZ/min at the groin. Because the location and relative size of

these tributaries vary and because they exert only an indirect effect

on the flow inside the deep calf veins, we have modeled this influx of

blood by a constant tributary flow per unit length of 0.108 mZ/sec/cm

At the downstream end of our system, the iliac vein connects with

its counterpart from the other leg to form the abdominal vena cava,

which eventually drains into the atrium of the right heart. We have

modeled this portion of the circulatory system as two rigid vessels
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separated by a capacitance tank. Together, they represent the inductance,

resistance, and capacitance of the vessels leading back to the heart.

Based on vessel dimensions given by Burton64 and a pressure-volume curve

for the vena cava,6' the lengths and areas of the rigid vessels were

selected upstream and downstream of the capacitance tank (L1 = 20 cm,

A, = 1.5 cm2 , L2 = 5 cm, A2 = 1.5 cm2). The value used for the capaci-

tance of these vessels was 0.011 mk/(dyne/cm2). The discharge pressure

was given a value of 10 cm H20 (this value may seem high, but it is sig-

nificant only in terms of the state of filling it creates at the level

of the calf).

The assumption of symmetry is perhaps the weakest of the several

assumptions made in arriving at our model. One could certainly argue

that the system really consists of two quite different parallel systems.

One, which we will call the "direct system," consists of the anterior

and posterior tibial veins and the peroneal veins which pass nearly

straight through the calf fromthe:ankle to the junction with the popli-

teal vein. The other system (the "indirect system") is comprised of

vessels which empty into one of the vessels of the direct system and

which follow a much more tortuous path through the calf muscles. The

indirect system is more compliant than the first and connects at its

upstream end with either capillaries perfusing calf muscle, superficial

veins via the system of laterial or interconnecting vessels, or a more

distal point in one of the vessels of the direct system. In normal

resting conditions, the indirect system sees little of the normal blood

flow originating at the foot or lower calf. In exercise, however, the
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indirect system becomes the pumping chamber for the calf muscle pump

described in Chapter III and receives a considerable fraction of the

blood reaching the leg. Clearly, some compromises must be made in

modeling the real system by one which contains only uniform branching.

Weaknesses of the Model. The errors associated with the uniform

branching model can be divided into two parts. First, those attributable

to the fact that some pathways are much shorter than others (e.g., one

pathway entering the indirect system might, in a very short distance,

terminate in a capillary bed while another, in the direct system,.might

extend to the foot). Second, those errors associated with asymmetry in

the compliance or area of the two tributaries.

Consider the effect of different pathway length. Although some

pathways end in a relatively short distance, because of the close proxi-1

mity of the large veins to the muscular tissue, the length of the smaller

veins is very small and hence the volume is likely to be small as com-

pared to that of the large sinuses. The effect is analogous to the

branching pattern of an evergreen which has a large main trunk with

relatively short, much smaller branches leading from it. The behavior

of this kind of system would not differ significantly from a system

having the same total volume, but consisting of only one vessel (the

trunk). This has been our approach, essentially; include only the large

vessels explicitly in the model taking into account the volume of the

smaller vessels by increasing the size of the large vessels accordingly.

With this reasoning, the length differences become less significant
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since most of the larger vessels extend beyond the large muscle mass at

the top of the calf. One must be careful, however, in how the length

variable is interpreted. Distance is measured along the vessel axis

and, since the vessels of theindirect system are quite tortuous as com-

pared to the other vessels, the same value of x (or E) may correspond

to different positions along a straight line connecting the knee and

ankle.

This representation raises one more question, this one concerning

the point in the system at which blood enters from the capillaries. If

the "evergreen analogy" is used, then the influx of capillary blood

should be distributed along the system, while in fact the model allows

inflow only at E = 0 , the upstream end. Although basically a poor

assumption, we can justify our model by looking ahead. The results of

the flow simulations (see Chapter XII) indicate that the induced flows

are many times greater than the initial flow rate and are therefore

relatively unaffected by this small error in locating the fluid inflow.

The errors associated with differences in vessel area and compliance

are somewhat more difficult to rationalize. These structural differences

will result in different rates of emptying of the two systems. Although

we cannot incorporate the asymmetry into our model, we can predict how

this asymmetry will affect relatively emptying rates by simulating two

systems differing in either stiffness or area. The results of these

tests have been discussed in Chapter X.
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Structural Properties of the Veins

The second category of needed information centers around the struc-

tural properties of the vein. More precisely, a "tube law" in the same

sense as was used in earlier discussion is required. The computer pro-

gram does, in fact, allow for variations in the "stiffness" of the ves-

sels with location, but requires that each vessel satisfy the same "nor-

malized" tube law.

In Chapter VIII, we provided a theoretical basis for formulating a

tube law for a particular vessel based only on its dimensions, environ-

ment, and wall structural properties. Because of the sparse literature

concerning the characteristics of collapsed veins in vivo, we must rely

largely on our theoretical background. The information that is avail-

able--which. primarily concerns vessels in the distended range--has been

used as a guideline and as a means of checking the validity of our model.

Literature Survey. We will look first at the existing literature.

This information has been obtained from a variety of sources, most of

the papers falling into one of the following categorizes:

(1) direct in vivo determination of vein tube law;

(2) experiments on excised veins;

(3) plethysmography;

(4) radiographic methods;

(5) wave speed measurements.

Of these methods, the results from studies classified under item (1)
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above would be most useful to us. Unfortunately, only one investiga-

tion65 provided reliable in vivo results, those pertaining to a canine

jugular vein having quite a different environment from a deep calf vein.

The results, however, do extend into the range of partial collapse and

provide a foundation for our estimated vein tube law.

The results of the experiments conducted using excised vein segments

show that the vein, as one might expect, behaves in a manner very simi-

lar to the penrose tubing,66t in this type of preparation. And if we

compare the results of these studies to the results of Alexander men-

tioned above, we find considerable discrepancy, more than could be attri-

buted to differences in the vessel wall itself. The conclusion is that

the vein behaves quite differently in its natural environment immersed

in muscular tissue. We would expect the greatest deviation from the in

vitro results for those volume changes which cause the greatest distor-

tion of the vessel (i.e., for the collapsing region) (see the analysis

in Chapter VIII of the effect of surrounding tissue). For either large

positive or large negative distending pressures, however, the vein should

respond in much the same way as it would in an isolated preparation and

for these limiting cases, these results are useful.

Radiographic techniques have great potential for obtaining precise

compliance curves for individual vein segments when used in conjunction

with simultaneous catheter pressure measurement. Unfortunately, though,

experiments of this type have not yet been performed.

See Appendix D for the results of our experiments using penrose drain-
age tubing.
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Measurement of wave speed, since it can be directly related to the

slope of the pressure-area curve by Eq. (3), would provide an indirect

means of predicting the vein tube law. Some studies have been conducted

in which wave speed was measured at different distending pressures in

the canine abdominal vena cava.67 These results are useful at least for

the purpose of comparing the order of magnitude of predicted wave speeds

with the experimental measurements. But, because of the differences in

vessel characteristics between the vena cava and the deep veins of the

leg, the comparison should not be pressed to provide any further informa-

tion.

Constructing a Tube Law for the Veins

The Range of Positive Transmural Pressures. Most of the data of use

in determining the pressure-area law for veins has been obtained indirect-

ly by one of the many plethysmographic techniques. However, due to the

wide variety of methods used and the intrinsic difficulty in establishing

precise reference pressures and volumes, the published results are not

consistent. Each technique introduces its own artifacts, the effect of

which are rarely even acknowledged. These studies do, however, provide

our greatest insight into the true in vivo behavior of the leg veins.

Therefore, in the following discussion we will consider a representative

sample of plethysmographic data.

In this sample four different techniques were used to vary the trans-

mural venous pressure. They were:
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(1) changing the subject's orientation on a tilt table;68

(2) occluding the veins emptying the calf with a range of occlu-

sion pressures;69

(3) varying the pressure in the plethysmograph; 70

(4) forcing all the blood (both arterial and venous) out of the

calf and allowing it to refill to a predetermined transmural

pressure.62

The volume changes were measured by either a water or air plethys-

mograph enclosing some portion of the calf or by integrating the volume

flow rate trace during pressurization to the desired value. Most investi-

tators give only volume changes while two (Litter et al., 62 Wilkins et

aZ. 70 ) provide information on the absolute venous volume at some refer-

ence pressure. To compare the various sets of data, it was sometimes

necessary to make a reasonable estimate of a reference volume, usually

at the venous pressure and volume corresponding to the supine subject,

with no external pressure.

In none of these studies was the internal venous pressure measured.

Therefore we can only estimate it knowing the position of the subject and

whether or not an occlusion cuff was used. In those studies in which

transmural pressure is increased by use of a proximal pressure cuff it

was assumed that the venous pressure was equal to the occluding pressure.

The results from a variety of studies have been analyzed, providing,

where necessary, reasonable values for the parameters not given. There

is good agreement among these studies for large positive transmural

pressures. At low pressures, however, where we would expect collapse
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to begin, either the data ends or there is a considerable amount of

variability.

Small Positive and Negative Transmural Pressures. There is good

reason to be suspect of these low pressure results. First, when the

patient is supine, there can be as much as a 10 cm H20 hydrostatic pres-

sure difference between the vessels in the upper and lower parts of the

leg. Therefore, the actual transmural pressure is smeared between these

two limits for any particular external pressure. Thus, at low pressures,

the apparent collapse will occur much more gradually in these experiments

as compared to tests in which a single vein is analyzed.

A second source of error in these results is related to the constant

influx of arterial blood through the capillaries which, in steady state,

flows through the entire venous system. As a result, internal pressure

gradients are present which become more and more accentuated as the ves-

sels collapse. Finally, since all of these methods measure changes in

limb volume rather than local cross-sectional area, significant errors

are introduced due to the effective averaging over long segments of

vessels which may have spatially varying internal pressures.

In conclusion, it seemed reasonable to discard most of the low pres-

sure data of these plethysmographic studies and in its place use a curve

with a shape similar to that obtained by Alexander. This combination of

results provides us with a tube law which extends into the partially col-

lapsed state but we can go no further with data from the literature.

The effect of the surrounding muscular tissue was discussed in
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Chapter VIII. We concluded from a very approximate argument that the

vessel collapse should occur over a range of pressures no less than about

10 cm H20. This estimate, in fact, agrees quite well with the partial

results obtained from Alexander's data. Our approach at this point, then,

is to extend the tube law to small negative pressures at roughly the same

slope as determined, by our previous estimate until the vessel is collapsed

and wall bending moments become significant.

The lower portion of the tube law is the most difficult to obtain.

We expect, as mentioned earlier, that the surrounding tissue again be-

comes less significant and the pressure-area law is therefore determined

primarily by the characteristics of the isolated vein. Our theoretical

results show that these characteristics are governed by the dimensional

parameter K = Eb(t/R)3/12(l-v 2 ) , where Eb is the Young's modulus

for bending.

A logical approach, then, would be to compute this portion of the

tube law based on experimental measurements of Eb and the dimensions

of the vessel. Here too, however, we encounter problems. First, all

measurements of E have been obtained with the wall in tension, not

bending. -At low transmural pressures, the collagen fibers exist in a

loosely woven network and consequently do not affect the observed ten-

sion modulus. This same vessel,when subjected to bending stresses,

might appear much stiffer. The reasoning behind this statement can be

illustrated using the following example. The two sheets of paper shown

below, although differing greatly in their apparent tension modulus,

will exhibit the same resistance to bending. Therefore, the existence
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of even a small amount of collagen fiber (due. to its high Young's modu-

lus) can have a strong influence on the bending stiffness of the vessel

regardless of its orientation within the wall. Even with detailed infor-

mation concerning the microscopic wall structure, a calculation of Eb
would be extremely difficult, however. All that we can say is that the

wall is likely to have a higher bending modulus than tension modulus at

least at very low degrees of vessel elongation.

Values for the tension modulus at low transmural pressures are in

the range of 10' dynes/cm2 .71 The range of values for the individual

constituents of the wall are as follows:64

* smooth muscle: 6 x 10 - 1 x 10s dynes/cm2

* elastic fibers: 3 x 106 dynes/cm2

* collagenous fibers: 1 x 10' dynes/cm2

Each constituent is found in roughly equal quantity in a typical vein.72

We would expect, then, based on the reasoning given above, that the

bending modulus for veins would be somewhat greater than 106 dynes/cm 2.

In addition to Eb , we require the values of h/R for the various

vessels for computing K . Here, we find considerable variability in

the literature among the different veins, values for h/R ranging from

0.018' to 0.035 according to one source"1 and 0.2 for mid-sized veins

according to another. 6' Because Kp depends on h/R to the third

power, this range of values gives rise to a dramatic variation in Kp
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If we compute the two extremes, we find that 0.19 < Kp < 8.9 x 103

dynes/cm2.

We expect that at the lower values, the surrounding tissue would

again exert a dominant effect. As a reasonable approximation based on

observations of veins and on some of the results on excised veins,66

we have chosen the mean value of Kp for the veins modeled in our study

to be 133 dynes/cm 2 . This is somewhat more compliant than the penrose

tubes used in the laboratory experiments.

Piecing this information together, we obtained the pressure-area

curve shown in Fig. 20. We chose, in this case, to define Ao at a

transmural pressure not equal to zero because it appears that veins are

already partially collapsed at that pressure. For comparison with pre-

vious results, it was desirable to have a = 1 correspond to a nearly

circular vessel.

Clearly, there is potential for considerable error in the tube law

obtained in this manner. What is needed are direct in vivo measurements

of compliance using either radiographic methods or carefully conducted

strain gage plethysmography. These will be discussed in Chapter XIV,

where recommendations are made for additional research.

The Distribution of External Pressure

Another factor which enters into the physiologic model is the dis-

tribution of pressure at the level of the veins in the leg. Clinically,

pressures are applied to the external surface of the leg by means of an

inflatible boot or cuff. The muscular tissue would tend to smear out
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the step change in external pressure at the edge of the cuff. Intui-

tively, one might anticipate that the length of this smearing effect

would correspond roughly with the diameter of the leg.

Direct measurements of interstitial pressures beneath the edge of

a pressure cuff at different depths and at different positions relative

to the edge of the cuff have, in fact, been made.73 The results indi-

cated very little pressure variation with depth and confirmed our intui-

tive prediction that pressure variations occur over a distance comparable

to the limb diameter, approximately 5 cm in the arm. Pressures beneath

the cuff, outside of the range of end effects, were 100% of the applied

pressure. These experimental results are reflected directly in the form

of the pressure distribution used in our experiments and plotted in the

.. upper center graph in each of the figures describing the results of the

venous flow simulations.

Comments on Other Physiologic Features

Additional comments should be made concerning other features of the

real physiologic system which are not directly portrayed in our model.

These include:

* the venous valves;

* smooth muscle tone;

* the effect of previous venous disease.

Venous Valves. The valves have been included in the model, at least

to the extent that backflow is not permitted. They would also presumably
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have an effect on flow resistance since the cross-sectional area of the

vessel may vary somewhat locally. Also, the flow along the valve leaf-

lets could separate and cause somewhat greater losses than those pre-

dicted in the model. In our opinion, these effects would be minimal

and the overall picture of vessel collapse would not change noticeably

even if they were included in some way.

Smooth Muscle Tone. The state of contraction of smooth muscle

could cause significant shifts in the tube law under varying conditions.

However, it is known that the deep veins contain relatively little smooth

muscle; consequently, the influence of an adrenergic response would be

less significant in these vessels. Additionally, since our estimate of

vessel characteristics already is subject to considerable error, we feel

that the relatively small corrections dictated by changes in muscular

tone would be unwarranted.

Previous Venous Disease. The primary effects of previous venous

disease would be the valve incompetency and varicosities often associated

with the post-phlebotic syndrome. In terms of themodel, this condition

would permit the possibility of backflow (extremely rare in the simula-

tions) and would tend to increase total venous volume while increasing

compliance. These effects would influence the flow in the same manner

as increases in Ao and co did in the results discussed in Chapter X.

In summary, although our model can be justified on the basis of our

theoretical concepts, much additional physiologic testing is in order to

confirm and refine the assumptions made here.



-166-

CHAPTER XII;

SIMULATING VENOUS HEMODYNAMICS FOR THE PURPOSE OF

UNDERSTANDING AND OPTIMIZING THE TECHNIQUE OF EPC

The Method for Evaluating Different Pressure Cycles

In Chapter III we stated some criteria for the prevention of DVT

which were based on current knowledge of the interaction between the

fluid dynamics of the blood flow and the process of thrombus formation.

These criteria were:

* high flow pulsatility;

* increased volume flow rate;

* increased flow velocities;

* increased shear stresses;

* clearance of valve sinuses.

* mechanical stressing of the vessel walls;

* complete periodic emptying of the vessels.

For the purpose of making comparisons between the various means of exter-

nal compression, we need to convert these criteria into an objective eval-

uation scheme. We have chosen to consider the following variables of the

solution:

(1) Volume flow rate, Q , at four locations inside the calf.

(2) Flow velocity, u , at the same four locations.

(3) A measure of the shear stress, u/R , at the same four locations.

(4) Time required to reach a new steady state.
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(5) Whether or not the vessels collapse at locations inside the

calf.

(6) Does backflow tend to occur at any time during the cycle?

Items (1)-(3) have a clear relationship to the criteria listed above.

We have chosen to consider Q , u , and u/R only at locations inside

the calf because this is the region in which thrombi are most likely to

originate. The four locations indicated represent points equally spaced

between 0 = 0.1 and 5 = 0.4 in the model, the last point being nearly

at the level of the knee, close to the edge of the pressurizing cuff.

The time required to reach steady state (4) refers to the time it

takes until the vessels have emptied about as much as they are going to.

We would like this time kept to a minimum for the following reasons.

Shortened periods of compression may permit an increase in cycle frequency

and hence, more frequent flow enhancement. Secondly, since during com-

pression we may be slightly impeding blood flow from the arteries, a

reduction in compression time would help to maintain normal mean flow

rates.

The basis for criterion (5) is not obvious. We reason that, if the

vessels do collapse along the entire length of the system, then it is

less likely that pockets of relatively stagnant blood might persist.

Also, if the claim that arm compression can help to prevent leg DVT is

substantiated, we might postulate that vessel wall contact may help in

the release of some anti-thrombotic cell constituent.

Item (6) above concerns the mixing in the sinuses behind venous

valves. If a tendency for backflow is introduced at some time during
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the cycle, the valves will close. The repeated opening and closing of

the valves should help to promite mixing in and around the valve sinuses.

What effect, if any, induced backflow in the collapsed vessel would have

is unclear, however, and although this criterion has been included, it

and number (5) should be viewed with some skepticism. This matter will

come up again in a later discussion in which we consider the value of

employing some kind of pressure pulse which would have the effect of

trying to reverse the flow direction periodically. For the present we

will consider only the compression phase of the pressure cycle.

The detailed results of the venous flow simulations are presented

in the form of six graphs, each providing some additional information

concerning the flow at different locations in the system. For each simu-

lation,, we p.lot. the following variables:

(1) the maximum applied pressure, pmax(t), versus time, t ;

(2) the ratio of local applied pressure to maximum applied pres-

sure, p(x,t)/pmax(t), plotted as a function of normalized

distance, x/L ;

(3) normalized cross-sectional area plotted against x/L at six

successive times;

(4) a measure of the shear stress (flow velocity u dividied by a

characteristic vessel radius R) plotted versus time at four

equally spaced positions beneath the pressurizing cuff in the

calf;

(5) the flow velocity u plotted against time at the same four

locations;
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(6) volume flow rate, Q , plotted against time at the same four

locations.

In addition to the information readily attained from one of these

two methods of comparison, we have also tried to define trends which may

be exhibited by the results. To do this, we have selected the same var-

iables (Q, u, u/R at four calf locations) and have plotted the maximum

value of each as a function of the varied parameter (e.g., rise time, or

maximum pressure). This approach quickly points out the general effect

a change in maximum pressure, for example, might have on peak flow rate.

It also gives us an idea of how much additional enhancement might be

achieved by changing a particular parameter beyond the range of the

simulations.

Classification of VenouS Flow Simulations

The venous flow simulations fall into four general categories. Each

is described below.

A. Current Mode of Pressurization. The current pressure cycle and

the method of pressure application were discussed in Chapter III. Basi-

cally, the cycle consists of a very slow pressure rise, the shape of the

pressure-time curve (S-shaped) being determined primarily by the filling

characteristics of the large plastic boots. With the fastest cycles, maxi-

mum pressure of 30-50 mm Hg is reached in 3-5 seconds and held there for

approximately 5-10 seconds, then released.
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B. Uniform Pressure Application. This compression technique is

very similar to the method described in (A) but with one major exception.

The pressure rise is now assumed to be linear in time until reaching the

maximum value, then held constant for the remainder of the cycle. The

pressure is assumed uniform along the calf, falling off at the knee at

the edge of the cuff. This change was made so that we could systemati-

cally investigate the effects of the rate of pressurization and the maxi-

mum applied pressure without these effects being influenced by the shape

of the pressure curve. Two series of tests were conducted using this

method. In one, the rise time was varied while the maximum pressure was

kept constant. In the other, the rise time was held.constant while the

maximum pressure was varied.

C. Linear Pressure Application. In these tests, the time course

of pressure remained the same as in (B), rising linearly to a maximum

pressure which was held until the. end of the cycle. The pressure distri-

bution, however, was modified. In view of the rather dramatic results

obtained using a pressure distribution which varied quadratically (see

Appendix A) we decided to try some form of a non-uniform spatial distri-

bution of pressure. As the simplest case we chose to simulate a pressure

which fell in a linear fashion between a maximum value at the ankle to

zero at the knee. In the series of tests using this mode of pressuriza-

tion, both the maximum applied pressure and the rate of pressurization

were varied and their effects examined.
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D. Wave-Like Pressure Application. Here, the external pressure

might rise to a maximum value linearly as in (B) and (C) or be applied

instantaneously. This time, though, the pressure distribution is a

function of time. The front of pressure moves in a wave-like motion

beginning at the ankle and proceeding toward the knee. When the wave

reaches the knee it stops and remains there for the duration of the

cycle. This method of pressurization effectively "milks" the blood

from the vessels as the pressure wave advances. In a series consisting

of four simulations, the effect of pressure wave velocity was investi-

gated.

Discussion of Results

The main features of the results obtained using the physiologic

model were much the same as in the latex tube tests. This was in spite

of a significant change in the tube law, the distributed stiffness of

the vessels, and the addition of a varying friction parameter, Cf

The non-linearities in the vein tube law were less severe due to the

influence of surrounding tissue. This, and probably the increase in

fluid viscosity, accounted for the improved stability in these simula-

tions over the previous computations.

Current Pressure Cycle. The results of the current pressure cycle

are shown in Fig. 21. Qualitatively, the collapse process occurs in

much the same way as described before. Collapse occurs first at the

downstream edge of the pressurized region although, in accord with the
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comments made above, the changes associated with collapse are much less

abrupt. By the time a narrow throat is well established at the knee,

much of the tube has already emptied and what little additional emptying

that occurs takes place very slowly. Because of a significant influx of

fluid from the arterial side, the new steady-state configuration that we

see at the end of the 5-second pressurization cycle is one in which much

of the system is still partially filled. The region of severe collapse

that we see at the edge of the pressure cuff is the source of a large

pressure drop due to viscous effects. This pressure gradient is large

enough with the normal resting flow rate that pressures within the ves-

sels beneath the cuff maintain an internal pressure high enough to resist

collapse even for pressures of up to 70 mm Hg as we shall see in a later

discussion.

The fact that the vessels collapse to an extremely small cross-

sectional area at only one, relatively narrow location helps to explain

the results shown in the bottom three graphs of the figure. Flow rate,

as one would expect, falls off gradually but significantly proceeding

from the knee toward the ankle. Velocity and shear rate, however, both

drop precipitously when we move just a short distance upstream of the

narrow throat. The fall is even more severe if we consider the maximum

values of u and u/R found in Table 6 at the point of minimum throat

area (x/L = 0.44), which was not plotted. This shows that while shear

rates and velocities are extremely high at the knee along most of the

system the departure from normal is negligible by comparison. These

observations provide an excellent example to demonstrate why it is
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necessary to get more information than merely a measure of the volume

flow rate in the femoral vein when evaluating different pressure cycles.

Uniform Pressure Application--The Effect of Rise Time. In the next

series of tests we investigated the effect of rise time using a linear

increase in pressure to a maximum of 30 mm Hg in times of 1/3 sec (Fig.

22), 1 sec (Fig. 23), 1.6 sec (Fig. 24), 3 sec (Fig. 25), and 5 sec

(Fig. 26). In each case, collapse of the system occurred in much the

same way as with the current pressure cycle. In general, decreasing

the rise time caused Q, u, and u/R each to increase as indicated on

the graphs in Fig. 27 of Qmax , umax , and (u/R)max plotted against

rise time. The one exception to this rule can be seen in the bottom two

plots between rise time of 1/3 and 1 second when it appears that Umax

and (u/R)max as measured at x/L = 0.44 peak at a rise time of approxi-

mately 1 second.

These results are in general agreement with the measurements of

Roberts et at. 63 of femoral vein flow rate during different compression

rates. His experiments covered a range of from 0.89 to 9.4 mm Hg/sec

which overlaps with the two slowest cycles used in our tests. We can

compare Roberts' findings with the increase in flow pulsatility predicted

by our results assuming that his measurements were made at some point in

the thigh, say x/L = 0.71 . The comparisons are shown below in terms

of percent increase in flow pulsatility (100 x Qmax /mean):
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Rate of Compression Increase in Flow
(mm Hg/sec) Pulsatility

Roberts et al. 6 3  6 550%

10 650%

Simulation 6 520%

10 740%

The agreement is surprisingly good considering the variability we would

expect between different patients.

Roberts indicated that flows could not be altered significantly with.

further changes in rise time, a conclusion which seems unjustified.in view

of our results which show pulsatility in the femoral vein increases to a

value of approximately 1300% before leveling off for compression rates

greater than approximately 30 mm Hg/sec. Thus, we can conclude from these

results that the optimal compression rate for uniform compression would

be.approximately 30 mm Hg/sec and the further decreases in rise time pro-

vide little or no additional prophylactic value.

Uniform Pressure Application--The Effect of Maximum Pressure. The

sequence of tests corresponding to Figs. 23 and 28 - 30 comprise our

study of the effect of maximum applied pressure. We somewhat arbitrar-

ily chose to maintain a constant rise time of I second while varying the

maximum pressure attained during this period from 20 to 70/mm Hg. As a

result, the rate of compression (in mm Hg/sec) varies from test to test.

Figure 31 illustrates how Qmax , umax and (u/R)max vary with

changes in external pressure. As shown in these plots, increasing the
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maximum pressure beyond 30 mm Hg even as high as 70 mm Hg does not signi-

ficantly alter any of the variables except for (u/R)max at the point of

maximum constriction. This is a direct result of the higher applied

pressure causing a smaller throat area. The important factor demonstrated

here is that the applied pressure be sufficient to assure collapse of the

veins. Pressures much higher than this, while providing marginal improve-

ment, cause the patient considerably greater discomfort.

One interesting feature of normal resting venous blood flow can be

seen in these graphs. That is how extremely small normal physiologic

flow velocities and shear rates are in these vessels. (It is not sur-

prising that thrombin clots most frequently arise in deep veins.) These

shear rates are so low (~ 10 sec-1) as to raise a question concerning

the validity of our assumption that the blood behaves as a Newtonian

fluid. We can justify the assumption, however, on the basis that vis-

cous effects only play a significant role in regions where the tube is

highly collapsed and consequently where shear rates are several orders

of magnitude higher. In the rest of the tube inertial effects are the

primary determining influence.

Linear Pressure Application. In the next series of simulations we

investigated what we called the linear pressure application. The results

of these tests are shown in Figs. 32 to 34. Several distinctions can

be immediately seen between these results and the induced flows with uni-

form external compression.

We mentioned earlier that we were motivated to try this mode of
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pressurization based on the encouraging results of the investigation of

uniform vessel collapse (.see Appendix A). As anticipated the collapse

occurred first at the upstream end of the system (x/L = 0) and propagated

in the downstream direction. Thus the narrow throat at the knee which

was an important factor in the previous tests never formed. In the ab-

sence of this necked down region, the collapse is seen to be more complete

and to take place over a considerably shorter time than before.

An additional benefit of this pressurization mode is that the peak

values of Q, u, and u/R are much more evenly distributed (see Table

6). The peak values for u and u/R are nearly constant along the

entire system whereas in the previous tests, the magnitude of these peak

values varied over one to two orders of magnitude, the maximum value

occurring over a very small distance right at the knee.

The three figures represent results of tests in which first the rise

time and then the maximum pressure were varied. The decrease in rise

time from 1 to 1/3 second keeping the maximum pressure constant caused

moderate increases in each variable from 20% to 37%. Again, we conclude

that a rise time of 1 second is probably sufficient. As a practical

matter the small improvements that might be gained by reducing the rise

time any further are probably not warranted in view of the increasing

difficulty in attaining shorter rise times.

Similar results were found when the maximum pressure was raised from

30 to 50 mm Hg while the rise time was kept at 1/3 sec. With this modi-

fication the improvements ranged from 41% and 42% in Qmax and umax to

72% in (u/R) . The case with which this higher pressure could bemax



-177-

implemented clinically depends on the actual design of the pressurizing

cuff and the pressure cycling device. It seems, though, in view of cur-

rent methods, thatincreasing the maximum pressure to 50 mm Hg would re-

quire only minor modifications. Weighing the cost in terms of design

practicality against the improved flow conditions we feel that the in-

crease in pressure would be warranted.

Wave-Like Pressure Application. The final modification we made in

the mode of calf compression took the form of a wave-like pressure appli-

cation. For each of the tests in this sequence, the maximum pressure was

held constant with time at 30 mm Hg while the wave swept from the ankle

toward the knee, In the results presented in Figs. 35 to 38 , the

one parameter investigated was the speed of propagation of this wave of

pressure. The tests correspond to speeds of 10, 20, 30, and 50 cm/sec.

It should be noted that in the region of spatially varying pressure at

the front of the wave (between x = xw and x = x w-LR where xw is

the position of the leading edge of the wave and LR is the width of

the variable pressure region), pressure was described by the relation

e(x,t) = Pemax(t) 1 + sin + (x-x +LR

where LR was 0.15 in dimensionless form. We should also mention that

the region behind the wave front remained pressurized for the duration

of the pressure application.
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As in the case of linear pressurization, the maximum value of each

of the variables plotted (Q, u, u/R) were much more uniform over the en-

tire system than in the case of uniform compression and showed a general

upward trend for increasing wave speed (see Table 6.). Once again, the

reason can be traced to the absence of a narrow throat at the knee. The

point of collapse in these tests generally follows the motion of the wave

front although at the higher speeds there was some indication of the pres-

sure wave overtaking the region of collapse. The limiting case (which

we did not approach in our tests) would .be that of an instantaneous uni-

form pressure application as in the first sequence of tests but with the

rise time approaching zero. This extreme situation would revert back to

one in which a throat is formed at the knee as before. There is, then,

a limit on how fast the wave of pressure should progress. Intuitively,

we might expect the limiting process to occur when the pressure wave pro-

pagation speed is roughly equal to or greater than the speed of wave pro-

pagation in the vessels. This would be at approximately 60-200 cm/sec

according to our tube law, depending on the initial degree of vessel

inflation.

The curves of flow rate, velocity, and shear rate in Figs. 35 to 38

exhibit considerable oscillations. Since the peak spacing varies but

the total number of oscillations that occur in any particular trace re-

mains roughly the same from one simulation to the next, we anticipate

that the unsteadiness is introduced as a result of numerical errors and

is not due, for example, to real wave reflections. The errors probably

arise in the region of rapidly varying cross-sectional area where
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truncation errors will be largest,

Our tests culminated at a speed of 50 cm/sec due to difficulties in

the numerical solution at higher speeds. The problem can be attributed

to the extremely high flow rates, and consequently high fluid inertia in

the downstream rigid ducts in the model. The flow begins to decelerate

rapidly when the pressure wave reaches its final position. This rapid

deceleration induces large negative transmural pressures at the point

where the compliant tube and rigid tube-meet. The tests which did run

to completion provide us with an ample picture of how the variables be-

have within the range of practical application. With a propagation speed

of 30 cm/sec, the pressure wave reaches the knee in a little more than a

second. If the wave is created by some sort of a segmented pressure cuff,

it would be increasingly difficult to produce wave motion in times shorter

than this.

We must realize too that the flows and velocities induced by a wave

moving at 30 cm/sec are already extremely high. Before we attempt fur-

ther increases, the physiologic effect of volume flow rates perhaps 20

or more times as large as resting flow should be determined.

Comparing the last two modes of pressure application, we find strong

similarities. We can compare, for example, the linear pressure applica-

tion of 50 mm Hg with a rise time of 1/3 sec to the wave pressure with a

propagation speed of 30 cm/sec. The mean value of the peak flow rates

are within 1% of each other; the mean value of umax is 12% greater in

the linear pressure application; and the mean value of (u/R)ma x is 63%

greater with the wave of compression. The choice between the two cycles
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would have to be made on the basis of practicality in terms of actual

implementation in a clinically viable design.

The Effect of Approximations Made in the Development of the Model

Before reaching conclusions concerning what we would recommend as

an optimal pressure cycle, three possible deficiencies in the model should

be examined in view of how they might influence the results--in particu-

lar those results using one of the two newly proposed means of pressuriza-

tion. Specifically, howwould (1) unsymmetric branching; (2) different

tube law; and (3) the effect of vessels running in a direction not paral-

le to the axis of the leg affect the predictions made here?

(1) Unsymmetric branching. In situations in which the vessels

collapse at the upstream end fi~rst and the collapse region propagates

in the downstream direction, the effect of unsymmetric branching should

be minimal. The driving force in these cases is a gradient in external

pressure applied to the outer surface of the leg, which is unaffected

by the local properties of the vessels beneath. Therefore the vessels

must collapse in the manner described above and the possibility of leav-

ing a region of stagnant blood in a particular vessel due to unsymmetry

is remote.

(2) A different tube law. Much of the same arguments stated above

apply here as well. Regardless of the detailed shape of the tube law

collapse should occur in the expected way. If, however, the tube law is

found to be such that the wave speed in the vessels is actually lower

than what we have predicted, the speed of the wave of pressure would
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have to be adjusted so as not to exceed this value. If, on the other

hand, the tube law varied drastically from one position to another in

the same vessel it is conceivable that the linear pressure application

could leave pockets of stagnant blood. This can be thought of in the

following way. If the vessel is found to be progressively more com-

pliant proceeding in the downstream direction, although the external

pressure at downstream points is less, it may be sufficient to cause

collapse whereas the higher pressures upstream might not collapse the

stiffer part of the vessel. The result would be a situation similar

to that observed in the case of uniform pressurization. It is, however,

highly unlikely that vessel properties would change so abruptly so as

to cause this phenomenon.

(3) The effect of vessels running in a direction not parallel to

the axis of the leg. In all previous analyses, it has been implicitly

assumed that distance inside the vessels corresponded to distance out-

side the leg with a one-to-one correspondence. Obviously, the veins fol-

low a more tortuous path and at certain locations their axis may be nearly

at right angles to the leg axis.

For cases of linear variation of external pressure, the direct effect

of this anomaly would be to decrease the pressure gradient locally--the

greater the departure of the vessel from the leg axis, the smaller the

pressure gradient. If the departure is severe enough to cause a pressure

distribution which is less steep than the quadratic distribution then the

vessel will collapse first at the proximal end of the segment. (This

comes as a result of the analysis of Appendix A. There we find that
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uniform collapse occurs for a quadratic pressure distribution. Hence,

a linear distribution such as was used in the simulations causes collapse

upstream first and a distribution more shallow than the quadratic one

would, by analogy, cause collapse downstream first.) This is hardly a

dire consequence, though, since it simply brings us back to a case more

like the uniform compression but with the throat being much less severe.

The same sort of event could occur in the case of wave-like compres-

sion and again, although it creates a less than optimal condition, the

effect is likely to be relatively small.

Additional Consideratio 6ns for Cycle Optimization

Our comparisons until now have focused exclusively on the first

three criteria stated at the beginning of this chapter. These are pro-

bably the most important flow criteria so our prior neglect of items

(4)-(6) can be justified. We should, however, consider the two proposed

modified methods and evaluate them on the basis of our complete list of

criteria including items (4)-(6).

In both methods, the emptying time has been greatly reduced, occur-

ring in a period from 1 to 2 seconds in each case. This is in sharp con-

trast to the current method which approaches a steady state very slowly

once the throat has formed.

Both new methods, again in contrast to the current technique, cause

the vessels to collapse at all points in the system, thus satisfying

criterion (5).

In none of the simulations, however, did we induce the tendency for
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backflow which would have the benefit of closing the venous valves, thus

promoting mixing of the blood in the sinuses. We could, however, easily

close all the valves simply by either reversing the direction of motion

of the pressure wave or reversing the external pressure gradient. This

could be incorporated into any procedure if it was felt that this were

an important criterion.

Analysis of the Complete Pressure Cycle

Assuming now that we adopt either the wave-like or the linear pres-

sure application we still must address the question of the relative

lengths of the different portions of the cycle: How long should the pres-

sure be applied? How long should the rest period be?

We have actually already answered the first question. The pressure

should be maintained just long enough to reach a new steady state which,

with either of these methods, is close to two seconds, depending on the

maximum pressure, the rate of pressurization and, in the case of wave-

like compression, the wave propagation speed.

The remainder of the cycle, then, is the time required for refilling.

If the pressure is simply released and the filling allowed to take place

naturally, studies have shown"' that a rest period of approximately 45

seconds is needed to return the vessels to their original state.

This time might be reduced nominally by applying an occlusion cuff

to the thigh filled to a pressure of 20 or 30 mm Hg during the refilling

phase. This would prevent the escape of any blood from the deep veins
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until they are completely filled, This could also be used as a means of

"charging" the deep veins with some additi-onal blood volume which could

be useful if some dependent parts of the circulation resist filling under

normal venous pressures. The actual time required for refilling, though,

with a fixed inflow of less than 3 mZ/sec from the arterial side, re-

quires a minimum of 25-30 seconds and there is no way to reduce this

portion of the cycle any further.

It would be extremely useful in determining the entire pressure

cycle if we could estimate, even roughly, the behavior of inflow during

the entire process. To do this, we can divide the cycle into two phases;

one for filling and one for emptying of the calf veins. In absence of

any compression at all, we can define a mean volume flow rate

m =  R(PA -PV )  (101)

where R is the resitance of the capillary bed, pA is arterial pressure,

and pV the mean venous pressure at the calf. During most of the period

of external compression, the vessels are likely to be partially collapsed

and thus at a transmural pressure of about zero. The pressure inside the

veins is, then, roughly the same as the external pressure, pe . If we

assume R to be constant and recognize that pA will not be affected

by compressions of less than about 100 mm Hg, we can write an expression

for the flow rate into the veins during compression,

Qc = R(PA - Pe) (102)
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This, of course, would be somewhat less than m . During the portion

of the cycle required for refilling (if we adjust our cycle appropriately)

the veins will again have a transmural pressure of about zero, thus an

internal pressure of zero as well (since pe = 0 during the refilling

process). Hence we can express the arterio-venous flow rate during re-

filling as

QR =  R PA (103)

Accordingly, if the compression portion of the cycle has a period

of tc and the refill portion, tR , the mean volume flow rate through

the capillaries during the entire cycle is

Qct + QRtR
Qmc = c RR (104)

c t + t

We can compare the mean flow rates more conveniently in the form of a

ratio:

mc ctc + QRt (105)
Qm (tc+tR) m

Replacing Qc' QR' and Qm with the previous expressions we obtain

Qm PA - PV PA e (106)

Finally, if we assume that tc << tr (the filling process occurs
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much more slowly than emptying), then we can rewrite this expression in

approximate form as

p tQe c
Qm 1 t
--_. AR (107)

pm v
PA

Hence, if (Petc)/PVtR < 1 , the mean flow rate during intermittent com-

pression is greater than that in the resting state. This equation has

some particularly interesting implications.. First, we find that -the

current cycle (with t c  10 sec, tR 45 sec and e = 45 mm Hg) has

no tendency to increase the mean volume flow rate which agrees with pre-

vious measurements63 using similar cycles which demonstrate that Qmc

is equal to or slightly below Qm. Another conclusion is that the

effect of a change in posture from supine to erect (with an accompany-

ing increase in pe so as to assure vessel collapse) is to cause an

increase in mean flow rate. And, clearly, a decrease in tc/tR will

have the same effect. We can compare this approximation to the findings

of Allwood16 mentioned earlier. In his experiments a net increase in

mean flow of 60% was measured for a sitting individual with a compres-

sion cycle consisting of 1 .sec of compression to 110 mm Hg and 4 seconds

of refilling. Assuming that in this posture pA - 170 mm Hg and pV

80 mm Hg, our equation predicts an increase of 58%.

We also find, using this equation, that for our proposed alternate

methods of either a linear pressure application or wave-like compression,

only slight enhancement of mean flow rates is obtained. For the following
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values:

Pe = 50 mm Hg 30 mm Hg

tc = 2 sec 2 sec

tR = 40 sec 40 sec

PA = 100 mm Hg 100 mm Hg

PV =  10 mm Hg 10 mm Hg

c - 1.08 1.09
Qm

True, the analysis is a crude approximation at best, but serves to

illustrate the influence changes in the various parameters will have on

the overall process.

Conclusions

Based on our findings which have been discussed in some detail in

this chapter, we can gather all our pertinent observations and come to

some conclusions concerning our concept of the optimal compression cycle.

First, some of the more important observations:

* The current method of spatially uniform compression along the calf

causes a necked down region at the edge of the pressure cuff which

severely impedes further emptying of the vessels located distal to

the point of collapse.

* Using the method of uniform compression, the effectiveness of the

method generally increases with decreasing rise times.



-188-

* The effectiveness also improves as the applied pressure is increased,

but only marginally for pressures greater than 30 mm Hg.

* The upstream constriction can be eliminated by either of the two newly

proposed methods: linear or wave-like pressure application.

* With either method, flow rates, flow velocities, and shear rates at

points inside the calf can be increased significantly above what is

attainable with uniform compression.

Both new methods provide collapse of the entire deep venous system.

* The time required to empty the system can be reduced to approximately

1-2 seconds using these methods.

* In the linear mode of compression, the method is made more effective

either by increasing the maximum applied pressure or by reducing rise

time.

* For wave-like compression, both Qmax and umax increase with increas-

ing pressure wave propagation velocities.

* Filling time might be reduced by applying an occlusion cuff at the

thigh during the refilling phase of the cycle.

* The mean flow rate through the calf might actually be increased if
Pe t

C< 1
PV tR
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In view of these findings, it appears that either the method of

linear pressure application or wave-like compression has considerable

potential. The two methods are very nearly equal in terms of protec-

tion from DVT according to our criteria and offer the possibility of

considerable improvements over the current method. Additional studies

are of course necessary before either method is tried clinically and

these steps will be discussed in the next chapter.

The choice between thdse two methods should be made on the basis

of design considerations of the compression cuff and pressure source.

If the linear method is selected, our predictions indicate that a maxi-

mum pressure of approximately 50 mm Hg should be used with as rapid a

rise time as can be obtained by reasonable methods but certainly less

than 1 sec. If the second method is employed, the speed of the pressure

wave should be about 30 cm/sec. In both cases, the compression portion

of the cycle should last about two seconds, the refilling phase 30-45

sec.

This completes the present analysis. What remains is to refine

and test these predictions. In the next chapter we will discuss the

future directions for this and related investigations.
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CHAPTER XIII:

RECOMMENDATIONS FOR FUTURE RESEARCH

In this chapter we consider ways in which the results of the pre-

sent investigation could be either extended or refined, so that we come

closer to achieving those goals set forth in Chapter II. In addition,

we will explore two new fields of research in which our present know-

ledge could be put to other purposes.

Possible Refinements in the Present Model

The Physiologic Model. We can first look at the results obtained

thus far and ask, how might they be improved? It was noted previously

that the accuracy of the physiologic model was compromised due to the

scarcity of detailed, quantitative information concerning the structural

properties and geometry of the relevant vessels. Specifically, errors

in the flow simulations can most likely be attributed to the rather

broad assumptions made in formulating a tube law for the veins and in

predicting the variations in Ao and Co along the system. Although

corrections in these parameters would probably not reverse or even sig-

nificantly alter the trends we observed, they would provide some addi-

tional confidence in the results which, when dealing with a problem of

clinical significance, can be very important.

Three methods can be suggested for a further investigation of ven-

ous anatomy and vein characteristics:
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(1) the construction of venous casts;

(2) venography;

(3) plethysmography.

Venous casts, although requiring a certain amount of skill to construct,

provide an excellent three-dimensional picture of the complex venous net-

work. They can also provide some information concerning the state of the

collapsed vessels if the casting material is allowed to harden while an

external pressure is applied to the limb. Care must be taken, however,

in comparing collapse characteristics of a vessel in an amputated limb

to those of living tissue.

Either venography or plethysmography can be used as a means of

deriving a pressure-area law for veins. Ideally, a single vein could

be observed venographically while an increasing external pressure is

being applied. Simultaneously, the internal pressure might be measured

by means of a catheter inserted to the level of the venographic obser-

vation. Similar information could be obtained for all the vessels at

a particular cross-section of the calf by means of plethysmography with

graded external pressures. If internal pressures are not directly mea-

sured, however, the results must be interpreted very carefully because

of the varying degree of flow resistance (and hence changes in pressure

gradient) due to flow, at points downstream of the volume measurement.

Another area of considerable uncertainty was the criteria used in

the optimization procedure. Obviously, the problem of determining the

precise fluid dynamic influence on the onset of thrombosis is one of

enormous difficulty. We recognize the problem, but feel that it is
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highly improbable that our efforts would lead to a significant contri-

bution in this field.

Improvements in the Numerical Procedure. A shortcoming of the

numerical procedures was encountered as we pushed toward larger and

larger volume flow rates, as in the case shown in Fig. 38. When the

flow began to decelerate, the tube started to pinch off at E = 1 ,

eventually causing the solution to break down. The reason the tube

area drops so catastrophically at the downstream end has to do with

the fact that, in order to decelerate flow in the first downstream

rigid duct, the pressure at = 1 must be less than the pressure in

the capacitance element. For high rates of deceleration, large pres-

sure gradients are necessary, eventually causing the tube to collapse.

In terms of the present study, sufficient information was obtained prior

to the failure of the solution so it was not deemed necessary to revamp

the computational procedure. If, however, we decide that even higher

flow rates are desirable, we may have to consider a different form for

the boundary condition that either eliminates this non-physiologic event

or enables the numerical solution to cope with it.

The Development of New Experimental Models. One purpose of the

hydraulic experiments was to provide evidence of the validity of the

theoretical model with respect to variations in the different parameters.

The range of experiments was sufficiently diverse to thoroughly investi-

gate the effect of parameters of the boundary conditions and of the
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spatially uniform pressure application. Lacking, however, were experi-

ments in which the effect of tube properties and of either non-uniform

or wave-like pressure applications were considered. For the sake of

completeness, we should at least weigh the value of these tests against

the difficulties that would be encountered in their implementation. We

obviously cannot evaluate .every detail of the theoretical model--if we

could there would be no need for the theoretical calculations at all.

But, perhaps, in view of the dramatic differences predicted by the theory

in some instances, some additional experiments may be warranted.

Immediate Objectives in the Study of DVT Prophylaxis

Physiologic Studies. We want to consider now the direction that

new research should take so as to extend the usefulness or applicability

of the present work. Clearly, the next, most important step would be

the clinical confirmation of the findings in Chapter XII concerning the

optimal pressure cycle. An apparatus will have to be designed and con-

structed which allows us to pressurize the calf with either a linearly

varying or wave-like compression. The performance of the device can

then be tested by various methods either on patients or volunteers.

Three testing procedures are available:

* venography;

* plethysmography;

* direct measurement of flow rates and/or pressures during either

venography or surgery.
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Venography has the potential to provide us with a more complete

picture of vein emptying than either of these other methods. Typically,

at the end of a normal venogram, the radio-opaque dye could be ejected

by a pressurizing cuff that had been fitted to the leg at the beginning

of the testing procedure. Cine viewing would provide us with informa-

tion concerning the collapse of all vessels which were originally filled

with dye. Flow rates could be estimated by taking the time derivative

of volume changes upstream of any particular point. There are disadvan-

tages to this method, however. First, we can never be sure that all deep

vessels are filled with dye initially, particularly the large muscular

veins which are of considerable interest. Secondly, we can obtain at

most two two-dimensional cine recordings and are limited accordingly in

constructing a three-dimensional representation of vessel collapse. The

problem is compounded even further if only one view can be obtained.

Finally, the flow process is likely to be altered by high concentrations

of a dye which has a significantly greater density than the blood itself.

This is particularly true in the inertia-dominated initial phases.

Plethysmographic techniques have the vast advantage of being totally

non-invasive and can be conducted in our laboratory on normal, healthy

volunteers. Using mercury strain gages positioned along the subject's

calf beneath a pressurizing cuff, we obtain a direct, continuous output

representing the local changes in cross-sectional area as a function of

time. Again, we can estimate volume flow rates based on the accumula-

tive volume change (area change integrated over distance) upstream of

any point.
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These first two procedures provide us with similar information,

area changes as a function of time. The shortcomings of these methods

could be compensated for by direct measurement of flow rate, velocities,

or pressure at different locations within the collapsing network or just

downstream of it. This could be accomplished, at least partially, in

two ways. During surgery, it is at times possible to place an electro-

magnetic flow probe around the femoral vein. Recordings of flows during

calf compression would be a valuable addition to the above results. Dur-

ing catheterization of the lower extremity, it may be possible to thread

a pressure or velocity sensing catheter retrograde in the femoral vein,

to a level just below the knee, beneath the edge of the pressure cuff.

Again, recordings made by this means during compression provide another

independent piece of information.

Although none of the methods provide a complete picture by them-

selves, each compliments the other in such a way that when we piece all

the information together, we should have a reasonably good idea of how

actual venous flows relate to our predictions.

Design of a New Compression Cuff and Pressure Source. If we hope

to test some of the different pressure cycles suggested in the previous

chapter we cannot overlook the need for the pressure cuff and pressuriz-

ing apparatus. The current boot is extremely large and requires a mini-

mum of 3-5 seconds to inflate. The cycles we have proposed require rise

times on the order of a fraction of a second. In addition we have special

needs in terms of either a spatially linear or wave-like pressure
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application,

One of our first steps, then, must be the design and construction

of a compression sleeve and the accompanying pressurizing apparatus.

Some criteria for the design include that it be segmented to allow for

spatial gradations in pressure, that it require a very small volume for

complete inflation, and that it be comfortable and not cumbersome for

the patient. In addition, we feel that it should cover only the calf,

not the entire lower leg and that it be adjustable so as to accommodate

all or least a large segment of the population.

Clinical Trials of a Potentially More Effective Method. The final

step, following clinical confirmation of the theoretical results, would

be a trial comparison between the postulated optimal pressure cycle and

one of the more successful alternative procedures; low dose heparin, for

example. The value of this study would then have been fully realized.

Only by way of numerical simulations could we have made a logical study

of the various alternative pressure cycles. Clinical trials of all, or

even some, of the methods examined theoretically would have taken years

to complete. In addition, the ethics of such a plan would be highly

questionable.

The discussion so far has been directed toward the more immediate

objectives: those which relate directly to the study of EPC. The fol-

lowing comments which are made with a much broader perspective consider

other applications of the theory of collapsible tube flow.
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New Fields of Research

Two other research topics follow closely along the lines of the

present study. With our present understanding of unsteady flow in col-

lapsible tubes and the capabilities and interests of the individuals in

the Fluid Mechanics Laboratory, a favorable situation exists for branch-

ing out into either of the following research areas.

External Cardiac Assist (ECA). A method of cardiac assist using

external compression of the lower extremities has been suggested and

tried on a very limited basis.7s The idea was similar to that used

in the intra-aortic balloon pump--increase aortic pressure during dia-

stole and reduce it during systole, thereby reducing afterload (and thus

the strain on a damaged heart) and enhancing coronary circulation.: Rather

than displacing volume in the aorta, such as with the balloon pump, it

was suggested that the pressure surrounding the legs be cycled in such

a way that blood be pushed into the aorta during diastole and drained

from it during systole, effectively accomplishing the same purpose.

The previous trials have not been well accepted and the results were

not particularly convincing. The concept, however, is attractive and

deserves additional consideration before being discarded.

In principle, the process of "squeezing" the blood from the legs

into the aorta is much the same as squeezing blood from the veins. The

vessel network has different characteristics; the initial pressure is

much higher, and the flow is initially in the opposite direction; but

none of these differences-require the development of a completely
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different model.

A study of ECA would necessarily be a large-scale, multi-faceted

investigation requiring cooperation between several research groups. It

would, though, be a task well worth the considerable efforts required.

A Model of the Airways of the Lung. The lung airways constitute

another system of potentially collapsible vessels. Under conditions of

normal respiration, the external pressure surrounding the airways, and

the alveoli at which they terminate, varies in a cyclic fashion causing

air to be transferred into and out of the lung. In extreme cases, the

external pressure can be raised to levels which are sufficient to col-

lapse the airways. This occurs in certain diseased states such as asthma,

where due to the increased flow resistance in small airways much greater

muscular effort--hence much greater external pressures--are necessary to

satisfy the oxygen needs of the body. Collapse can also occur in forced

expiration or coughing in which high external pressures are needed to

produce the correspondingly large flow rates and flow velocities.

A model similar to ours could be applied in either instance as a

means of gaining a better understanding of the important phenomena. In

asthma, one belief is that the sounds one hears are the sounds produced

by airway oscillations and are often described by analogy to the "Bronx

cheer." The vibrational frequency of the sound and whether or not the

sounds occur could contain useful diagnostic information concerning the

airways directly involved in the oscillations and the surrounding tissue.

Respiratory physiologists generally agree that airway collapse
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accounts for flow limitation observed in curves of flow rate during a

cough or a forced expiration maneuver. The characteristics of this

maximum flow curve and the transients produced by forced expiration

are currently being considered for their diagnostic value.

In both cases just described we have a phenomenon of unsteady flow

in a collapsible tube. In each, an understanding of the fluid dynamic

mechanisms involved would greatly contribute to the current attempts to

determine their diagnostic potential. Modeling respiratory flows is not

an easy task, however, and would require a somewhat different model than

that which was used to simulate induced venous flows. Inertial effects

of the vessel wall are likely to be important as are the effects of visco-

elasticity at the higher frequencies and.wave propagation speeds encoun-

tered in the lung. ýOur basic understanding of flows of this general type

would, however, give us a solid background from which we could formulate

a new model that could be applied to a variety of simulations of respira-

tory flows.

RDK: cp
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TABLE 1. Risk Factors for Venous Thrombosis(a)

General surgery, particularly:
* major abdominal
* thoracic
* gynecologic
4 retropubic prostatectomy
* neurosurgery

Orthopedic surgery
* hip fracture
* elective hip replacement
* knee surgery
* tibial fracture

Increasing age

Malignancy
Prior history of venous thrombosis

Bed rest
Varicose veins
Obesity
Pregnancy

Use of oral contraceptives
Recent travel
Stroke
Myocardial infarct
Congestive heart failure

Leg trauma
Blood group

(a) See Ref. 21 for a complete discussion of these risk
factors and for specific references.
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TABLE 2. Clinical Evaluation of Prophylactic
Methods Against Deep Vein Thrombosis

I. CHEMICAL METHODS

% DVT
Type of Therapy Patient Group

Control Treated

Heparin 23  General surgery 24.6 7.7

Heparin 2 "  General surgery 37 12

Heparin 25  Total hip replacement -- (a)73

Heparin 2 6  Elective surgery 41 15

Heparin2 7  General surgery --(a) 2

Heparin 2 8  Surgery in malignant disease 40 7

Hepari n2 9  Elective surgery 16 4

Dextran24  General surgery 37 25

Dextran25  Total hip replacement --(a) 20-25

Warfarin 2 5  Total hip replacement -- (a) 20-25

Aspirin 25  Total hip replacement --(a) 35

Acenocoumarol27  General surgery --(a) 18

II. PHYSICAL METHODS

% DVT
Type of Therapy Patient Group

Control Treated

External pneumatic compression"s General surgery -- 0

External pneumatic compression 31  Non-malignant disease 40 15

External pneumatic compression31  Malignant disease 50 50

External pneumatic compression 3 Neurosurgery 19 1.5

External pneumatic compression32  General surgery 26 6.4

External pneumatic compression32  Malignant disease 32 4.5

External pneumatic compression33  General surgery 20 0

Electrical muscle stimulation3"  General surgery 21 8.2

Electrical muscle stimulation 35  Non-malignant disease 35 10

Electrical muscle stimulation" s  Malignant disease 56 55

Compression stockings36 Elective surgery 32 32

(a)No control group.
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TABLE 3. Summary of Flow Experiments(a)

Experiment Number
Parameter

1 2 3 4 5 6 7 8 9 10

Pe (cm H20) 27 10 17.5 62 30 30 28 28 29 28
max

S (sec) 0.25 0.42 0.30 0.30 0.07 0.15 0.65 0.78 0.25 0.25

qi (mi/sec) 0 0 0 0 0 0 0 0 0 0

pB-ezj (cm H20) 3.1 3.05 3.0 3.0 3.0 3.1 3.1 3.1 4.75 4.6

pg-Pes (cm H20) 3.2 3.15 3.0 3.0 3.0 3.1 3.1 3.1 4.75 4.6

CV (ncm/dyne) 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.002 0.082

L, (cm) 22 22 22 22 22 22 22 22 22 22

A1 (cm
1 ) 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317

Lz% (cm) 22 22 22 22 22 22 22 22 22 22

A2 (acm) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26

p (gm/cmn) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

U (gm/cm-sec) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Parameter 11 12 13 14 15 16 17 18 19 20 21(b)

pe (cm HaO) 28 28 28 28 28 27 27 28 28 82 31

S (sec) 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.32 0.25

Qi (mi/sec) 0 0 0 0 0 1.2 2.8 11.5 0 0 0

pB-ex (cm H20) 2.9 3.0 3.1 8.8 0.45 3.0 2.9 3.0 3.4 3.0 3.0

pB-Pe (cm H20) 2.9 3.0 3.1 8.8 0.50 3.0 2.9 3.0 3.4 3.0 3.1

Cv (cml/dyne) 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

L, (cm) 41.2 9.0 22 22 22 22 22 22 22 22 22

A% (Cnm) 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317

L, (cm) 22 22 13.0 22 22 22 22 22 22 22 22

A2 (cm=) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26

p (gm/cm5 ) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.14 1.00 1.00

u (gm/cm-sec) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.055 0.01 0.01

(a) The parameter varied in each test is underlined.

(b) Tube reversed.
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TABLE 4. Tabulated Comparison of Experimental
and Theoretical Results

Test # Parameter (as defined in text, see p. 117)
Tt (1) (II) (III) (IV) (V) (VI)

Expt. Theory Expt. Theory Expt. Theory Expt. Theory Expt. Theory Expt. Theory

1 (a) 1.13 0.76 0.80 1.03 0.86 1.51

1A(a) 1.13 0.85 0.80 1.47 0.94 1.13

2 0.49 0.60 2.12 2.22 1.13 1.18 1.25 1.07 0.77 0.69 1.72 1.20

2A 0.49 0.62 2.12 2.30 1.13 1.08 1.25 0.77 1.72 1.42

3 0.80 0.76 1.36 1.33 1.04 1.03 1.00 1.07 0.89 0.91 1.10 1.10

4A 1.47 1.44 0.61 0.80 0.99 0.91 1.18 0.80 1.21 1.38 0.94 0.85

5 1.33 1.17 0.53 0.67 0.99 0.95 1.16 1.07 1.25 1.13 0.91 0.91

SA 1.33 1.22 0.53 0.60 0.99 0.89 1.16 1.10 1.25 1.40 0.91 0.84

6 1.22 1.10 0.78 0.78 0.96 0.95 1.06 1.07 1.09 1.10 0.95 0.95

8 0.85 0.76 1.53 1.56 1.08 1.06 0.97 1.0 0.85 0.87 1.28 1.12

9 1.0 0.98 1.02 1.11 1.01 0.98 0.77 0.71 0.96 0.98 0.98 1.04

10 1.07 0.95 1.00 1.00 1.01 0.97 0.90 0.79 1.01 0.95 1.02 1.05

11 0.89 0.86 1.20 1.22 1.11 1.06 1.16 1.36 1.02 0.89 1.04 1.02

12 1.16 1.11 0.80 0.78 1.04 0.95 0.85 0.71 1.05 1.07 1.09 0.97

13 1.05 1.00 0.98 1.00 1.08 1.00 0.99 0.93 1.00 1.00 1.10 1.00

14 0.96 0.90 1.17 1.22 1.08 1.06 - 0.62 0.93 0.80 0.37 1.15 0.84

15 0.97 0.89 0.80 0.88 1.08 1.06 1.51 (b) 1.44 (b) 0.94 0.78

17 1.02 1.02 0.98 0.96 1.57 1.30 0.99 0.96 0.97 0.98 --(c) 0.99
18 1.13 1.06 1.02 1.00 0 .48 (d) 1.00 0.96 1.29(d) 0.79 0.98 --(c)

19 0.77 0.84 1.02 1.11 -- (e) (e) 0.88 0.86 1.44 1.23 1.62 0.99

21 1.13 1.05 1.00 0.96 0.92 0.97 1.04 1.07 1.02 1.01 1.05 0.98

(a) Ratios are direct comparisons of theory and experiment.

(b) Second flow maximum cannot be determined.

(c) Transmural pressures not measured.

(d) These values were very difficult to determine from data.

(e) Emptying time could not be clearly identified
experiment and theory.

but is much greater than in Test I for both



-210-

TABLE 5. Values of Ao, co, and Cf used
in the venous flow simulations

Ao co Cf

0.0
0.01
0.02
0.03
0.04
0.05.
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

1.4000
1.4000
1.4000
1.4000
1.4000
1.4000
1.4000
1.4000
1.4000
1.4000
1.4000
1.4000
1.4000
1.4000
1.4000
1.4110
1.4333
1.4667
1.5000
1.5333
1.5667
1.6000
1.6333
1.6667
1,7000
1.7333
1.7667
1.8000
1.8333
1.8667
1.8890
1.9000
1.9000
1.9000
.1.8900
1.8600
1.8000
1.7200
1.6300
1.5400
1.4500
1.3567
1.2633
1.1700
1.0800
0.9900
0.9000
0.8200
0.7613
0.7343

251.Z000
244.0000
239.0000
234.0000
229.0000
224.0000
219.0000
214.3333
210.3333
207.3333
205.6660
205.0000
205.0000
205.0000
205.0000
205.0000
204.6666
204.0000
202.6667
200.3333
196.6667
191.6667
186.0000
180.0000
174.0000
168.0000
162.0000
156.3333
151.3333
147.3333
144.3333
142.0000
140.6667
140.6668
142.6667
-146.6668
152.6667
159.6667
166.6668
173.0002
179.0000
185.0001
190.6668
195.6667
199.6667
202.6667
204.3334
205.0000
205.0000
205.0000

Ao Co Cf

8.0267
7.9433
7.8867
7.8333
7.7767
7.7233
7.6667
7.6133
7.5567
7.5000
7.4433
7.3867
7.3333
7.2767
7.2233
7.1667
7.1133
7.0567
7.1033
7.2500
7.5000
7.7500
7.9167
8.0000
8.0000
8.0000
8.0000
8.0000
8.0000
8.0000
8.0000
8.0000
7.8533
7.5633
7.1267
6.6900
6.2500
5.8133
5.3767
4.9400
4.5000
4.0633
3.6267
3.1900
2.7500
2.3133
1.8767
1.4400
1.1467
1.0000

0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0,79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
0.100

0.7287
0.7333
0.7377
0.7423
0.7467
0.7510
0.7553
0.7597
0.7643
0.7687
0.7730
0.7773
0.7817
0.7863
0.7907
0.7953
0.7997
0.8040
0.8083
0.8127
0.8173
0.8217
0.8263
0.8307
0.8350
0.8393
0.8437
0.8483
0.8527
0.8573
0.8617
0.8660
0.8703
0.8747
0.8793
0.8837
0.8880
0.8923
0.8967
0.9013
0.9057
0.9103
0.9147
0.9190
0.9233
0.9277
0.9323
0.9367
0.9413
0.9460
0.9500

205.0000
205.0000
205.0000
205,0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
2ns.00o00
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000-
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000
205.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
S.00no
1.0000
1 .0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000



SE

CD 0r- Ea m

4-) M•.) 2

e"OL
)a

- -l- u a)

.- C4
-c-J:
I-,

-I 1I

r--Cr)

coOCO

LO

cO0 r-CMCo

cm co

CO Ln -- O

Co NoC.0 -00o0 CVO

LO rO

0--0

I-

NC
O

F-

0 o

mO oCO on

CM LO

0 04 n)

NO NO

0 00

co co

I-

co
CO

0 -

CD

LO co
C:t CD

* *

O) NO

4--' 4
d- -

0N 1cc

O OCr-..o C1ON 0i q:

0) 0)

F-

01

LO0

co
NO

LC)*0CO

*r--0-.a

a)0 -

"• 3 r.-- X
I.- = 4- a)

i

r-co

0

4-

Ct

0

4---

=

I.-

4-S.

r-

-----

I
,,



-212-

TABLE 7. Maximum values of Q, u, and u/R at five calf
locations for each venous simulation

Type of Cycle

Current pressure
cycle

Uniform pressure
cycle

Rise. Time Pmax
(sec) (mm Hg) Parameter 9=0.10

30 __.
"max

Umax
(u/R)m x.

1/3 30 (max

Umax
(u/R)mxmax

30 x
Umax
(u/R)ax

1.6 30 Qmax
umax
(u/R)max

30 Q mx
Umax
(u/R)max

30 Q max.max
umax
(u/R)max

20 Qmax

Umax

(u/R)mx

50 %max
Uumax
(u/R)max

70 Qmax

umx
(u/R)max

6.2
5.6

26.9

10.9
8.2

36.1

7.6

6.4

30.1

7.5

6.6

30.5

6.7

5.6

25.9

5.6

5.0

23.4

7.0
6.3

29.7

7.8

6.7

30.9

9.4

7.2

32.9

9=0.20 .-. =0.30 ý=0.40 t=0.44

11.5 20.2 31.1
9.8 13.1 33.8

44.5 55.0 202.5

21.9 38.3 54.0

15.9 21.7 47.0
67.6 83.7 206.3

13.7
11.3

50.0

13.6
11.2

49.2

23.7 42.4
14.3 46.8
56.6 257.4

22.7 37.8
13.6 42.8

54.1 257.6

11.4 18.2 28.9
9.0 10.8. 36.2

39.4 45.3 253.7

9.0 14.0 21.5

7.5 8.8 30.9
33.5 40.8 242.9

51.3
105.8
957.8

85.7

147.8
1088

55,1

141.5
1344

46.3

113.7
1264

33.9
67.3

730.2

24.2

39.8

479.1

13.4 23.4 35.8 57.0
11.4 14.9 35.9 111.6
51.0 61.4 179.6 847.2

15.8 28.5 43.9
12.7 17.2 40.3

55.8 68.9 235.0

18.5 33.3 50.7

14.1 19.2 44.4
61.1 75.7 260.2

64.4

146.3

1490

81.0

163.8
1865

(continued)
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TABLE 7. (continued)

Type of Cycle

Linear pressure
application

Wave-like pressure
application

Rise Time Pmax
(sec) (Mi Hg)

Wave Speed
_(cm/sec)

10

Parameter t=0.10 t=0.20 t=0.30 E=0.40 &=0.44

30 Qmax

Umax
(u/R)max

30 Qmax

Umax

(u/R)max

50 Qmax
Umax

(u/R)max

30 Qmax

Umax
(u/R)max

30 Qmax

Umax
(u/R)max

30 Qmax
umax

(u/R)max

30 Qmax
Umax

(u/R)max

18.0 28.9 42.2 49.5 50.5
18.0 25.4 23.1 28.7 38.8

121.2 138.9 125.6 87.7 109.3

32.3 49.4

32.9 36.3

175.2 149.9

43.2

47.2

271.5

68.6

52.1

256.0

19.2 22.1

32.1 21.9

582.8 461.8

31.5 41.1

27.8 25.4

508.3 371.2

48.7 51.8

31.1 31.3

484.8 371.2

83.9 85.2

56.9 51.9

536.2 452.2

47.0 58.4

25.7 34.1

129.1 118.0

81.6

38.1

207.7

83.8
46.7

246.3

60.6

47.3

136.0

86.9

63.9

219.3

32.8 34.7 33.9
17.4 23.1 26.0
42.5 497.2 248.

59.1 54.6 53.1
27.2 33.0 40.2

332.4 518.4 281.0

95.5 90.9 88.3

43.6 51.7 61.5

286.4 458.3 374.0

134.7 158.4

60.8 95.6

963.2 303.4



-214-

LIST OF FIGURES

Fig. 1 The hydraulic model used in the experiments.

Fig. 2 The test section of the hydraulic model illustrating the sepa-
ration of the two chambers.

Fig. 3 Schematic representation of an applied pressure cycle and the
corresponding volume flow rate exiting from the collapsing
tube.

Fig. 4 Stages of vessel collapse with uniform external compression
shown schematically for a typical vein in the lower leg.

Fig. 5 The physiologic model: total cross-sectional area, Ao , wave
speed, co (both at normal physiologic pressures), and a fric-
tion factor, Cf , plotted against distance between the ankle
and the thigh.

Fig. 6 Various types of pressure cycles.

Fig. 7 Log-log plot of normalized transmural pressure, P, versus
normalized cross-sectional area, a . The points represent
experimental results for three different tubes; the solid
line is the theoretical prediction.

Fig. 8 Linear plot of normalized transmural pressure, P, versus nor-
malized cross-sectional area, a . The points represent three
sets of experimental results; the solid line is the theoreti-
cal prediction.

Fig. 9 Complete set of results for Experiment 1. Top: applied ex-
ternal pressure. Center: transmural pressure at E = 0.06,
0.15, 0.24, 0.33, 0.42 and at the exit (proceeding from the
bottom trace up). Bottom: volume flow rate at the exit of
the test section. The Roman numerals correspond to the dif-
ferent quantities defined on p. 117 of the text.

Fig. 10 A comparison of volume flow rates at the exit of the test sec-
tion between experiment (dashed lines) and theory (solid lines).
Tests 1, lA, 2, 2A, 3 and 4A.

Fig. 11 A comparison of volume flow rates at the exit of the test sec-
tion between experiment (dashed lines) and theory (solid lines).
Tests 5,5A, 6, 8, 9, and 10.
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Fig. 12 A comparison of volume flow rates at the exit of the test sec-
tion between experiment (dashed lines) and theory (solid lines).
Tests 11, 12, 13, 14, 15, and 17.

Fig. 13 A comparison of volume flow rates at the exit of the test sec-
tion between experiment (dashed lines) and theory (solid lines).
Tests 18, 19, and 21.

Fig. 14 Volume flow rate at the exit of the test section as computed
for three different grid spacings: 51 points (Aý = 0.02),
101 points (AE = 0.01), and 201 points (AE = 0.005).

Fig. 15 Results of Simulations 59, 60, and 63. Normalized transmural
pressure, P, plotted against normalized time, T , at four dif-
ferent locations inside the collapsing portion of the vessel:

= 0.09, 0.19, 0.29, and 0.39 (from top to bottom).

Fig. 16 Results of Simulations 59, 60, and 63. Normalized volume flow
rate, Q, plotted against normalized time, T, at five different
locations inside the collapsing portion of the vessel: 5 = 0.09,
0.19, 0.29, 0.39, and 0.64 (from bottom to top).

Fig. 17 Results of Simulations 59, 60, and 63. U/c plotted against
normalized time, T, at four different locations inside the
collapsing portion of the vessel: , = 0.09, 0.19, 0.29, and
0.39 (from bottom to top).

Fig. 18 Results of Simulations 59, 60, and 63. Normalized cross-
sectional area, a, plotted against normalized distance, x/L,
at six different times, T = 0.0, max/lO, max/5, 2Tmax/5,
3 max/5, and Tmax . (from top to bottom). max max

Fig. 19 Schematic representation of the deep veins of the leg.

Fig. 20 The tube law used in the venous flow simulations.

Fig. 21 Venous flow simulation. The currently used clinical pressure
cycle. From the upper left, proceeding counterclock-wise:
(1) maximum applied pressure vs. time; (2) volume flow rate
at E = 0,1, 0.2, 0.3, 0.4 vs. time; (3) flow velocity at same
four locations vs. time; (4) shear rate at the same four loca-
tions vs. time; (5) normalized cross-sectional area vs. dis-
tance at six times, t = 0, t = tmax/lO, t = tmax/5, t = 2tmax/5,
t = 3t ax/5, t = t max; (6) Distribution of external pressure.

Fig. 22 Venous flow simulation. Uniform pressure application; Pmax =
30 mm Hg; rise time = 1/3 sec. Same six graphs as described
for Fig. 21.
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Fig. 23 Venous flow simulation. Uniform pressure application; Pmx30 mm Hg; rise time = 1 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 24 Venous flow simulation. Uniform pressure application; Pmax =
30 mm Hg; rise time = 1.6 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 25 Venous flow simulation. Uniform pressure application; Pmax =
30 mm Hg; rise time = 3 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 26 Venous flow simulation. Uniform pressure application; Pmax =
30 mm Hg; rise time = 5 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 27 Qmax, umax, and (u/R)max plotted as a function of rise time
for the simulations of Figs. 22-26.

Fig. 28 Venous flow simulation. Uniform pressure application; Pmax :
20 mm Hg; rise time = 1 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 29 Venous flow simulation. Uniform pressure application; Pmax =
50 mm Hg; rise time = 1 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 30 Venous flow simulation. Uniform pressure application; Pmax =
70 mm Hg; rise time = 1 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 31 Qmax, umax, and (u/R)max plotted as a function of maximum
applied pressure for the simulations of Figs. 23 and 28-30.

Fig. 32 Venous flow simulation. Linear pressure application; Pmax =
30 mm Hg, rise time = 1 sec. Same six graphs as described
in cpation for Fig. 21.

Fig. 33 Venous flow simulation. Linear pressure application; Pmax =

30 mm Hg, rise time = 1/3 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 34 Venous flow simulation. Linear pressure application; Pmax :
50 mm Hg, rise time = 1/3 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 35 Venous flow simulation. Wave-like pressure application; Pmax =
30 mm Hg; wave propagation speed = 10 cm/sec. Same six graphs
as described in caption for Fig. 21. The pressure distribution
is shown at three consecutive times.
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Fig. 36 Venous flow simulation. Wave-like pressure application; Pmax =
30 mm Hg; wave propagation speed = 20 cm/sec. Same six graphs
as described in caption for Fig. 21. The pressure distribution
is shown at three consecutive times.

Fig. 37 Venous flow simulation. Wave-like pressure application; Pmax =
30 mm Hg; wave propagation speed = 30 cm/sec. Same six graphs
as described in caption for Fig. 21. The pressure distribution
is shown at three consecutive times.

Fig. 38 Venous flow simulation. Wave-like pressure application; Pmax =
30 mm Hg; wave propagation speed = 50 cm/sec. Same six graphs
as described in caption for Fig. 21. The pressure distribution
is shown at three consecutive times.

Fig. 39 Schematic of uniformly collapsing tube system.

Fig. 40 Simulation results for uniform vessel collapse. Collapse time,
tc*, maximum required pressure (Pmax in dynes/cm2 ) and maximum
volume flow rate (Qmax in mZ/sec), each plotted as a function of
b, where p(x) = p - bx2

max
Fig. 41 Tube law measuring apparatus.
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APPENDIX A:

UNIFORM COLLAPSE OF A SINGLE VESSEL

In one instance the equations derived for flow through a collapsible

tube reduce to a set of nonlinear ordinary differential equations. The

purpose of this appendix is to explore this special case and to consider

the insights it might provide into more complicated situations.

Description of the Model

The system to be analyzed is shown in Fig. 39. It consists of a

uniform collapsible tube blocked at x = 0 and connected at x = L to

a pair of rigid ducts of length LD and LE separated by a capacitance

tank. The pressure at the end of the second duct is held constant. The

values of L, LE, LD, and the capacitance, CV, are chosen so as to create

a lumped parameter model of what a single vein in the calf might "see"

in terms of proximal inertance and capacitance. With this model, no

attempt is made to simulate the complexities of the point of attachment

between the collapsible and rigid tubes. The internal pressure, p , is

assumed to be constant across the attachment point and the tube law is

assumed to be unaffected by this physical constraint.

The Governing Equations

This analysis is motivated by the presumed existence of a spatially-

varying external pressure which will cause the tube to collapse uniformly,
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i.e., independently of x . We assume that aA/ax = 0

governing flow equations as

and write the

A u+ dA
ax dt (A-1)

au au
P + p x

ap
+ -Pe +

ax

The uniform tube assumption implies that if aA/ax = 0

is equal to zero as well. Imposing the condition that

can integrate Eq. (A-I) to give

x dA
A dt

Introducing the following normalized variables,

X- L
C=i

- u-cU I

SAo

t t*T

then a(p-pe )/ax

= 0 we

(A-3)

(A-4)

yields the following form for (A-3):

1 da
U = dt . (A-5)

Substitution into (A-2) with some rearrangement results in the expression

du T2 aPe
S + U2  + 2  a

dt* pL2 3EL

2 PT 0
pL aAo

(A-6)

PTwA - 0 . (A-2)

ux= 0
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Of those expressions previously derived for the flow resistance,

we will choose to use the one representing fully developed flow in a

collapsed tube. Although the collapse takes place very rapidly, it

can be shown that shear stresses become important only during the later

stages when the tube is essentially collapsed and when the flow is more

nearly fully developed. Replacing the quantity PT w/Ao in (A-6) by

the appropriate expression we can rewrite the momentum equation as

"2 aP2 + (A-7)

where we have defined T in the following manner so as to simplify

the resulting expression:

T .Ao70v A (A-8)

By examining Eq. (A-7) we see that the necessary condition for the

assumed uniform tube collapse is that the external pressure take on

the general form, expressed as

P = a - bL2 2  (A-9)

where a and b can both be functions of t* . Assuming the applied

external pressure is of the expressed form we can reduce Eq. (A-7) to

an ordinary differential equation,

du Y - U (A-1)
dt* a = y- -
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where

2b( A0  2
Sp 70v /

Between Eqs. (A-5) and (A-10) we can determine each variable at any

time, t* , given one initial condition which we state as

at*=O = 1 and U= = 0 . (A-11)

To solve for the applied pressure at E = 0 , we must take into account

the downstream boundary condition.

Assuming that frictional effects can be neglected in the discharge

ducts, the momentum equations for the two lengths of rigid tubing (LD
and LE) can be written:

d D Lp ( 1 - pC) (A-12)

u = E EP (Pc - PE)  (A-13)

where the pressures and lengths are defined in Fig. 39. The pressure

in the capacitance tank is governed by the expression:

dp = 1 (A D - AE )  
(A-14)

dt CV DUD EE

Here, CV = dV /dpc and AD and AE are the cross-sectional areas of

the two discharge vessels.

Differentiating (A-14) and replacing uE using Eq. (A-13), we obtain



SEAE ]
LE PE)

We can write Eq. (A-15) in normalized form, recognizing that

u _aU 70vLD A=D

and

PL = KpP= 1 + a - bL2

The result: of this normalization is

:d
d-t*

dPc

dý[Fk -A0L' v a - 2U - a,

Using the approximation for the tube law,

P = -3/2 + alg

we can solve for the magnitude of the external pressure as a function

of time:

LLDP
a = Pc + AADcAoAD

(70v)2 [1a - 2u 2 - a ] (A-17)

+ Kp(a.- 31 2
p

- a1• ) + bL2 .

Discussion of Results

(A-10), (A-16), and (A-17) completely define the

given system and can be solved by a standard Runge-Kutta technique.
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dt \ dt / DADd (A-15)

( Ao
70v

AE

Ev •

(A-16)

Equations (A-5),



-264-

The results of the numerical solution are illustrated in Fig. 40. The

maximum flow rate, Qmax , the maximum applied pressure, Pmax , and the

time required for collapse, tc* (for a to reach 0.26) are plotted against

b . The units of Qmax are mt/sec, pmax is expressed in dynes/cm 2 , and

tc* is dimensionless.

A number of cases have been simulated in which b was varied bet-

ween the limits of 5 and 100 dynes/cm4 . As indicated by the maximum

pressures required to maintain uniform collapse, this range covers all

pressures that might reasonably be used for EPC. The flow rate and maxi-

mum applied pressure both increase with increasing b , while the col-

lapse time decreases.

It appears from these results that the only limitation exists in

how rapidly one can apply these increasingly large pressures. It should

be noted, however, that the emptying rate presumes an extremely rapid

pressure application, one which would be difficult to attain in a real

situation. This restriction combined with the parabolic pressure dis-

tribution and lack of constraint at the downstream end make this tech-

nique difficult, if not impossible, to explore experimentally. The

usefulness of this result lies essentially in the concept of using some

sort of a spatially varying external pressure so as to prevent the flow

limitation associated with a uniform pressure application. Clearly,

there exists a great potential with such a scheme to significantly re-

duce the emptying time of the vessels, thereby inducing larger flow

rates and shear stresses throughout.

A more practical method might be to apply a linearly varying
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external pressure. This would produce a collapse which proceeds from

the upstream end and would eliminate the downstream collapse observed

in situations of uniform compression. This concept is explored further

in the text of Chapter XII.
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APPENDIX B:

A SIMILARITY SOLUTION FOR VISCOUS DOMINATED FLOW

Under certain circumstances, the equations governing unsteady col-

lapsible tube flow can be simplified considerably. In such limiting

cases, the flow can by analyzed much more simply and, as was the case

in Appendix A, the results can help us to better understand the entire

flow process. In this appendix we consider the case of viscous dominated

quasi-steady flow.

Description of the Model

The model is similar to that used in the previous discussion except

that the collapsible tube extends from x = 0 to c . When pressure is

first applied fluid empties at the point where there exists a pressure

gradient--at x = 0--and proceeds in the negative x-direction.

Theoretical Description

The equations governing the flow are those of conservation of momen-

tum:

au + u + 1 3P + vg(A) = 0 , (B-1)
3t x p ax A

(where g is a weak function of A); continuity:

A+ Q 0 ; (B-2)
Tt ;x
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and the tube law:

p op
e = P) . (B-3)

Kp

The assumptions we make for this analysis are:

(1) The tube is infinitely long, uniform, and is pressurized beginning

at t = 0 by a constant pressure, Pe

(2) At some stage in the process, the flow becomes quasi-steady, i.e.,

S << vg(A) A

and the convective acceleration term is small compared with the

viscous stresss term:

u << vg(A) Au

(3) Reynolds number based on tube diameter is small (and t is suffi-

ciently large) so that we can assume that the flow is laminar and

fully developed.

(4) For large x ,A + Ao and p - pe

(5) The outlet pressure is constant, maintaining a constant cross-

sectional area at x = 0 (note that Q will be in the direction

of negative x).

As a result of (2) and (3), the momentum equation can be reduced

to the following form:

= -ug(A) - (B-4)
ax A2
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Using the tube law we can eliminate pressure by introducing the wave

speed, c . Differentiating (B-3) and substituting c2 = K a d ,
p pda

where a = A/Ao , we obtain

p_ : - (pC2 -5

x a ax (

which can be substituted directly into Eq. (B-4) to give

Qp: Ao 20a U0-

Q pC2A2• . (B-6)
ig(a) x

Combining this with (B-2) produces a nonlinear partial differential

equation which has the form of the diffusion equation,

ý " - -x a aT ] 0 (B-7)at ax ax
where

J() = CA c2a
P g(a)

Solution of Eq. (B-7) requires two boundary conditions and an ini-

tial condition. The boundary conditions are

c(O,t) = aexit

(B-8)
a (Co,t) = 1

Ideally, we could stipulate the initial condition that a = 1 for all

x > 0 at t = 0 . Realistically, however, the unsteady terms are likely

to be dominant or at least significant at small times. Therefore, it

would be more appropriate to begin the analysis at some later, time, to ,
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when the previously stated assumptions are valid. This condition can be

stated as

a(x,to) = a(x) (8-9)

The nature of Eq. (B-7) leads us to expect that a similarity variable

exists of the form

x (B-10)

Although we can express the conditions (B-8) in terms of 5 , Eq. (B-9)

does not, in general, admit to this kind of variable transformation. To

the extent that (B-9) resembles the solution to Eqs. (B-7) and (8-8) with

the initial condition a(x,O) = 1 , at some time tx [i.e., a(x) =

a(x,tl)], the following remarks are valid.

We introduce the similarity variable 5 into the governing equa-

tions with the assumption that a = a(E) only. After some manipulation,

we obtain the following ordinary differential equation in 5 :

d dj + da = 0 , (B-ll1a)

along with the transformed boundary conditions,

at = 0 : a = aexit
(B-11b)

at = ; = = .
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Discussion of the Similarity Formulation

We can draw several conclusions based on the existence of a simi-

larity variable without actually solving Eq. (B-11a).

The exit flow rate [Q(O,t)] can be computed from the expression

Q(O,t) = d (tube volume) dt -(Ao -A) dx
0

(B-12)
0o

- AoV/ f -(l-a) dý .
0

Since a = a(c) , then

Q(O,t) d (constant ) = constant . (B-13)

Based on our previous discussion with respect to the early stages of

collapse during which the similarity solution is not valid, we replace

t in Eq. (B-13) by t-tl . To make a direct comparison between these

predictions and actual observations, we could rewrite (B-13) in the

following manner:

t = t, + K. (B-14)
Q(0,t)2

The form of Eq. (B-14) suggests that if we plot experimental results

for 1/Q(O,t)2 versus time, we would expect to see the features shown in

the following figure.
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Q(O,t)2

.doo

J. -.. ~

inertial
end
effects

K)

.0-

The initial phase shown in the diagram is dominated by inertial

effects and since Q(O,t)t 0 - 0 , then [1/Q(O,t)2]t0 . In a tube

of finite length, the flow rate must approach zero [i.e., 1/Q(O,t)2 + c]

as the end effects become significant. In between these regions on the

graph, if all the conditions mentioned above are satisfied, the curve

should be a straight line with a slope of 1/K and an x-intercept of t

Similarly, we could estimate the time necessary to displace a cer-

tain volume of fluid, say VE , by integrating the volume flow rate over

time:

VE = Q dt = constant A/

The time required for equal volume displacements, since the constant in

the above expression varies inversely with i , should vary as the square

of the viscosity.

We attempted to correlate these estimates with our experimental or

theoretical results but with little success. Our experiments, for the

l
Q(Ot)

.•"

,, 

•_

_ ___~_ ___
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most part, were primarily inertia-dominated or at least strongly influ-

enced by inertial effects during most of the cycle. A possible excep-

tion could be made in the case of Expt. 19 in which the viscosity was

increased by a factor of five. Clearly, in the later stages of this

experiment, viscosity plays an important role, but again the results

of that experiment could not be entirely explained by these predictions.
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APPENDIX C:

COMPUTER PROGRAM FOR NUMERICAL CALCULATIONS
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APPENDIX D:

EXPERIMENTS FOR DETERMINING THE STRUCTURAL
PROPERTIES OF COLLAPSING VESSELS

In an earlier discussion we developed the theoretical approach to

the analysis of tube collapse. The characteristic most sought after was

the constitutive expression relating vessel cross-sectional area to trans-

mural pressure, termed the "tube law." This appendix includes a discus-

sion of the experiments that were conducted to examine the validity and

limitations of the existing theories. The results are analyzed in a way

that will help us to predict the constitutive relation for tubes of known

geometry and composition.

The techniques available to use for obtaining this information fall

into two general categories:

* Direct determination of the pressure-volume and hence pressure-
area law by means of absolute volume/area/linear dimension and

transmural pressure measurements.

* Deduction of this relationship from wave speed measurements which

determine the slope of the P-a curve at a particular transmural

pressure [see Eq. (3)].

A number of complicating factors arise when measuring wave speeds,

including (1) dispersion or frequency dependence; (2) different propaga-

tion speeds for competing modes of wave propagation; and (3) interference

due to wave reflections. Therefore we chose to use the former method.

When using the direct measurement method, problems arise when
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estimating the wave speed using the derivative of an experimental curve.

For this reason and for the benefit of all the results, much care was

taken to design an apparatus with high precision.

The Experimental Apparatus

The apparatus is shown in Fig. 41. Illustrated here is the ram

mechanism for volume changes, the vertical chamber to enclose the col-

lapsible tube and the pressure varying and sensing equipment. The inter-

nal pressure is held constant by maintaining a consistent fluid level in

the capillary tube while the external pressure is varied by raising or

lowering the fluid reservoir. The ram which translates by way of a 32

thread/inch leadscrew measures the volume changes (to _ 10 lO ) necessary

to maintain a constant internal pressure. The pressures are recorded

by observing the fluid level in two manometers using a cathetometer.

The pressure can be determined to within ± 0.05 cm H20. The two inde-

pendent hydraulic circuits for the internal and external systems. are

shown in the drawing.

Analysis of the Experimental Results

The results one obtains using this apparatus are complicated by the

need to attach the collapsible tube to rigid supports inside the fluid

chamber. As the tube collapses two problems arise.

First, in boundary regions adjacent to each of the two supports, the

tube undergoes a transition from what appears to be a zone of uniform
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collapse to a cross-section equal to that of the supporting structure.

Within this boundary region the cross-sectional area varies longitudi-

nally and is determined, in part, by the tension in the tube wall. The

measured volume changes, AVm , represent the sum of changes in a uniform

tube essentially void of all end effects, AV , plus a volume change

which is influenced by the presence of the two boundary regions, AVb ;
i.e., AVm = AV + AVb

Second, if the tube is constrained longitudinally, the wall tension

increases as the vessel collapses. The variations in wall tension are

easily eliminated by mounting the tube vertically within a chamber con-

taining the same fluid as that inside the tube (to negate the effect of

hydrostatic pressure gradients) and allowing the lower support, designed

to be slightly negatively buoyant, to float freely, thus providing a

constant longitudinal wall tension.

The effects associated with the boundary regions pose a more diffi-

cult problem. These, too, can be compensated for, however, in the fol-

lowing way. If a complete pressure-volume experiment is performed on

two lengths of the same piece of tubing and if the boundary regions occupy

less than the length of the shorter tube, then the end effects can be sub-

tracted out because they should be identical in the two experiments. Using

the terms defined earlier, the change in volume of the uniform tube, AV, is

AV = AV - AV = AV + AVb + AV2 - AVb (D-1)

Here, AV represents the volume change taking place in a tube of length
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(Li - L2) which is not influenced by the presence of rigid supports as

shown in the sketch,

Lr - L2 N

The raw data from these experiments was obtained in the form of

(i) ram position; and (ii) transmural pressure (pt). The first step

in the analysis of the data was to express the results in terms of

AVm/ptr for each of the two tubes. The curves of AVm/APtr were

smoothed numerically using the method of cubic splines and the differ-

ence,

AV m AVm

APtr i tr a

was determined at the values of ptr for one set of data, the corres-

ponding values from the associated data being determined by interpola-

tion. The result, using Eq. (D-1), is AV/Aptr , the corrected value.

Next we postulate that for the range of transmural pressures within

the similarity range of the theoretical result (see Chapter VIII) the

relationship between pressure and area is
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Ptr
= .K(x) ( Ax) -3/2( A Q

where, according to the theory, Kp(x) =E[h(x)/R]3
. • 12(l -v2)

(D-2)

. For generality,

we let h , the tube wall thickness, be a function of x , thus making

Kp a function of x as well.

Equation (D-2) can be solved for A and integrated to give volume:

L
V = A dx = Ao(tr)-2/3 E  2/3

0 12R2(-V2)
f h2(x)dx

from which we obtain

2 12R2(l - v2)

3 Ao
! _ \ll _•

L

f h2(x) dx- .

Replacing the differential term in Eq. (D-4) by the difference terms

obtained experimentally, we can show that

AV 2 Ao 12R2(2 2) h2 (x) dx -APtr T 1Ao f
(-Ptr) 0

or, since tube 2 is a shortened version of tube 1,

L2 d

f h2(x) dx
0

tE 
2/3

AV 2 12R2(l-N)Atr 3--p 2A 51

tr 3 Ptr)sis

L1-L2
h2 (x) dx

(D-3)

dV
Ptr (D-4)

(D-5)
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where h(x) is the wall thickness of the portion of tube 3 left over when

tube 2 is cut from it.

Plotting AV/Aptr against 2 (LI-L2)(- ptr)-S 3 should produce a

straight line of slope

L1-L2
f .h2(x) dxA0 0

12R2(l .v•2) L - L2

if our previous assumption in writing Eq. (D-2).: is valid. The actual

curve fitting is done using the method of least squares and in each.case

a straight line gave an excellent fit to the experimental data.

The analysis up to and including Eq. (D-5) is completely general in

terms of the functional form of hI(x) . Therefore, regardless of how

h(x) varies, the experimental data should still be reducible by the method

described above, One discrepancy should be noted, however. It was assumed

initially that AVb was identical for the two experiments. The value of

H(x) within the boundary region might, however, influence this quantity

and prevent the cancellation necessary for the subsequent analysis. We

felt that the small errors associated with this problem would not warrant

a more detailed description of the boundary region but might in cases

where the variations in h(x) become much larger than those encountered

in our experiments.

Returning to the data analysis procedure, upon obtaining the slope

of the previously described curve, the actual volume of the uniform tube
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can be computed using the expression:

Li-L2
12R2(1_V2) Li-L2 0

.01 0

up to the point which marks the upper bound of the similarity range

(i.e., the range of pressures for which the straight line fit occurs).

The pressure-volume relation can be extended beyond this point

simply by using the values of AV/Aptr in the following expression:

tr

V = VS +

Ptr
S

dptr dptrtr
vs + AV

n=l

where the subscript "S" denotes a point in the similarity range.

resulting value of V corresponding to ptr = 0 yields a value

Ao

VAo = - L
Li - L2

(0-7)

The

for

(D-8)

Knowing Ao , we can compute an experimental value for Kp using the

slope from Eq. (D-5). (We actually compute an estimate of

L1-L2E 1 f
12R2 (l-v 2 ) Li - L2 0

h2(x) dx .)

This is an averaged value of K (x) and, if our definition of Kp is

h2(x) dx (D-6)
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correct,

L1-L2
K = K E .... h2() dx (D-9)

lexp Pcalc 12R 2(l-v2) L1-L2 0

where the integral in Kpcalc is evaluated from the actual h(x)

For the tubes used in these experiments, the wall thickness varied

in an approximately linear fashion. The tubes were formed from a dip-

ping process which accounts for this variation. If the wall thickness

is expressed as h(x) = ho + h x , the integral in (D-9) can be

evaluated, giving

K ca = E (ho + hoh + h3 (D-10)
Pcalc 12R2(1-v 2)  3 2

Discussion

Table 7 summarizes the tube measurements and the experimental results.

Because of the tedious nature of the experiments and the difficulty in de-

veloping the proper technique, only three sets of usable data were ob-

tained. The agreement between the calculated and experimental values of

K is good, however, considering that the measurement of wall thickness

contains an error of ± 5 x 104 cm . The effect of this error is ampli-

fied when we see that the wall thickness appears in the equation for Kp

raised to the third power.

Figures 7 and 8 present all three sets of data on a normalized basis:
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" Ptr
K
pexp

S= AA

Once again, the similarity region is clearly defined as all data fits

well to a line having a slope of -3/2 on the log-log scale. Figure 8

illustrates the departure of the curves as we approach the range of posi-

tive transmural pressures. Since radial stretch and not bending are the

dominant influences for this range, we would expect this departure. In

fact, we can predict the slope of this portion of the curve using the

results of Chapter VIII, where the relationship between pressure and

area (or volume) is given by Eq. (54). The values of Ao chosen in

this way are also given in Table 7.

In between the similarity zone and the region of positive transmural

pressures lies the portion of the curve encompassing intermediate col-

lapsed states. In this region, the tube shape and area are primarily

determined by the bending stiffness of the wall but are strongly affected

by, for example, the shape of the unstressed tube and the presence of an

elastic medium surrounding the tube. The effect of the surrounding medium

is most pronounced in this region because large deformations occur over

relatively minute changes in transmural pressure. We will consider this

problem in more detail in the discussion of venous compliance found in

Chapter XI.
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