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ABSTRACT

A technique involving intermittent external compression of the
legs is used as prophylaxis against the occurrence of thrombi in the
deep veins of the calf. The collapse of the veins produced by com-
pression eliminates venous stasis and introduces a pulsatile compo-
nent to the normally sluggish blood flow during and subsequent to
surgery. '

A theoretical model was developed to simulate unsteady flow in
a system of branching vessels, and was validated by hydraulic experi-
ments using a single, thin-walled latex tube.

The theory was applied to the prediction of venous flow parameters
resulting from leg compression with a variety of pressure cycles and
modes of pressurization. The results suggest the possibility of con-
siderable improvements over the currently used' method by either of two
means :

» applying a spatially non-uniform external pressure
which is maximum at the ankle;

» compression of the leg with a wave-like motion start-
ing at the ankle and proceeding toward the knee.

Thesis Supervisor: Ascher H. Shapiro
Title: Professor of Mechanical Engineering



ACKNOWLEDGEMENTS

I have many to thank for their help and encouragement during the
past several years. Without my friends, this would have been a much
more difficult and much less rewarding endeavor.

The advice and assistance I received from Professor Shapiro exceeded
by far my expectations of an adviéor. His patient guidance helped me to
develop the art of applying classroom knowledge to the very tangible
’needs of scientific research and engineering.

Many other members of the Fluid Mechanics Laboratory hélped through
their willingness to discuss problems and topics of all sorts and in pro-
viding a congenial atmosphere in which to work. In particular, I want to
thank Dr. Peter Scherer and Professors Huber, Kenyon, and Dewey for their
helpful suggestions along the way. To Dick Fenner, who makes everything
work often in spite of our help, to Cindy Polansky who did many things
including type this thesis, and to Marj Joss, I owe many thanks. The
work of two undergraduates, Charles Kaye and Ping Chiu Hui, is also
appreciated.

Support of a less technical sort came from many, but particularly
from my wife, Judy, who helped in more ways than could be imagined.

Finally, I am indebted to the NIGMS Training Grant Program in Bio-
medical Engineering (Grant No. 5TQIGM02136), the National Heart, Lung,
and Blood Institute (HEW Grant No. HL17974) and the Fluid Mechanics
Program of the National Science Foundation (Grant No. ENG76-08924), all

which provided financial support for my studies and research.



CHAPTER 1I.
‘CHAPTER II.
CHAPTER III.

CHAPTER 1V.

CHAPTER V.
CHAPTER VI.
CHAPTER VII.

CHAPTER VIII.

CHAPTER IX.
CHAPTER X.

CHAPTER XI.
CHAPTER XII.

CHAPTER XIII.

References

Tables

List of Figures

APPENDIX A.
APPENDIX B.
APPENDIX C.
APPENDIX D.

-4-

TABLE OF CONTENTS

Page
Overview of the Investigation . . . . . . . . .. 5
Introduction . . . . . . . . . . . .. oo ... 20
Venous Physiology as it Pertains to the :
Pathogenesis and Prevention of DVT . . . . . . . . 24
Theory: Unsteady Flow Through a Network
of Collapsible Tubes . . . . . . . . . . .. ... 39
A Modified Method of Characteristics . . . . . . . 58

Solution by the Method of Finite Differences . . . 71

Scaling Parameters . . . . . . . . . . .. . . .. 83
Structural Properties of the Tube . . . . . . .. 91
Flow Experiments . . . . . . . . . . . . ... .. 108
Numerical Simulation of Flow Experiments . . . . . 124
A Model of the Venous Network . . . . . . . . . . 149

Simulating Venous Hemodynamics for the Purpose of
Understanding and optimizing the Techniques of EPC 166

Recommendations for Future Research . . . . . . . 190

Uniform Collapse of a Single Vessel . . . . . . .. 259
A Similarity Solution for Viscous Dominated Flow . . 266
Computer Program for Numerical Calculations . . . . 273

Experiments for Determining the Structural
Properties of Collapsing Vessels . . . . . . . . .. 295

Biographical Note . . . . . . . « v v v ¢ v o v v v v v v e e 304



CHAPTER I:
OVERVIEW OF THE INVESTIGATION

This chapter has been included primarily for the benefit of those
who, although interested in the study, would not have time to read the
entire document. It presents, in highly condensed form, the most impor-
tant features of the present investigation avoiding the cumbersome de-

tails which are necessary in the more complete form.

Our primary goal is this: to understand the fluid dynamics asso-
ciated with external compression of the lower leg and to apply this
knowledge to the task of optimizing the technique of External Pneumatic
Compression for the prevention of Deep Vein Thrombosis (DVT). By way
of introduction we first discuss the disease, its relationship to ana-

tomical and hemodynamic effects, and the methods currently being used

to prevent it.

Introduction

The incidence of deep venous thrombosis and pulmonary embolism has
been increasing in recent years in spite of the development and wide
implementation of new preventative procedures. The methods currently
used require either administering one of many different anti-coagulants
or applying some physical means of enhancing those characteristics of
venous blood flow which act to 1imit thrombus grwoth. Of this latter

group the method of External Pneumatic Compression (EPC) has received
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considerab]e'attention due to the-fmpressive'results ot recent c]inicel_
studies. In these clinical trials EPC has proven itself to be at least
competitive with the more widely accepted anti-coagulant therapies,
caus1ng a reduct1on 1n the 1nc1dence of DVT of at least 60% in most
groups of high-risk pat1ents The success of the method is somewhat
surprisihg when one recognizes that the mechanism by which EPC prevents
thrombosis is not at all well understood. The lack of knowledge con-
hcerning the relationship between flow properties and the onset of the
disease, 1n add1t1on to the potent1a1 of mak1ng significant improve-
ments in the method, prov1de the mot1vat10n for this study.

The- under1y1ng goal of th1s work is to develop, from the po1nt of
v1ew of a f1u1d dynam1c1st a fundamenta] understand1ng of the role of
EPC in alterlng venous flow. The steps taken to reach this goal are,

.however, app11cab1e to a much broader range of investigations, with im-
plications for any system of branching vessels which, under some circum-
stances, may undergo collapse. These would include the venous and ar-

terial circulations and the airways of the lung.

Venous Physiology and Deep Vein Thrombosis

| To understand the process of thrombus formation, one must first
understand the physiology and pathophysiology of normal venous hemo-
dynamics of the lower Tlimb. By anatomical considerations these vessels
can be divided into two categories, the deep and superficial veins.
~ Both groups, but primarily the deep veins, are extensively valved,

allowing a significant reduction in the mean venous pressure due to
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muscular activity when one stands erect. Of particular interest to this
study are the muscular veins of the calf because of the tortuous path
they follow and because of the large blood volumes they contain which
might in some circumstances become trapped.A These muscular veins con-
stitute the pumping chamber for the calf muscle pump which, in the case
of rhythmic muscular activity, pumps blood from the deep veins toward
the heart.

In venous thrombosis the vessels become partially or totally ob-
structed by a layered thrombus, slowing or preventing completely the
- normal flow of blood through these veins. Virchow first postulated
three conditions which, by themselves or in conjunction with others,
are thought to initiate the thrombotic process. These are: |

» a lesion in the intima of a vessel involving the endothelium,
invoking an inflammatory response;

» venous stasis, i.e., a slowing or other abnormality of blood
f]ow; permitting the adhesion of aggregated platelets to the
intima;

« an increase of the tendency of the blood to coagulate due to
either chemical or physical processes.

Investigations since the time of Virchow have provided}additional
evidence to support the role of the latter two mechanisms. In accor-
dance with these concepts the prophylactic methods mentioned above act
upon either the fluid dynamic or chemical properties of the blood.

EPC, in very general terms, is thought to act by Timiting venous

stasis. However, its role in enhancing mixing, shear rates, or even
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fibrinolytic activity might be equally or more important. The technique
currently used has been "optimized" on the basis of either measurements
of femoral vein flow rate or the emptying of a radio-opaque dye from the
deep veins. The cycle of external compression has been examined only in
view of its rate of pressurization, pressure amplitude, and frequency.
The complexity of the overall process, as we shall see, cannot be viewed
in such simple terms.
As a guide 1ine for our investigations, we have examined the 1iter-

ature pertaining to the relationship between venous hemodynamics and
the onset of thrombosis. The results of our survey are summariied in
‘the fo11owing set of criteria which we propose for the prevention of
DVT: |

+ high flow pulsatility

» increased volume flow rate

« increased flow velocity

. increased shear stresses

« clearance of valve sinuses

« mechanical stressing of vessel walls

- complete beriodic emptying of the veins.

Our objective is,then,to investigate this set of_criteria as they

relate to floWs in a network of collapsible vessels subjected to periodic

external compression.



Theoretical Framework

We start our analysis with the fundamental equations governing
fluid flow in a collapsible-distensible vessel with the appropriate
bbundary conditions. Our hydraulic model (shown in Fig. 1) contains,
in a rough sense, all the essentials for a simulation of external com-
pression of the calf veins.. Flow originates in a high pressure reser-
voir (arterial pressure), flows through a high resistance (capillary

bed) into the collapsible tube test section (leg veins), and out through
a lumped parameter model of resistance, inductance, and capacitance
(i1iac vein and vena cavae), ending in a constant pressure reéervoir
(the right heart). The theory permits the rest cross-sectional area,

A, , wave speed in the unstressed vessel, ¢, , external pressure, Pe >
and a friction parameter, Cf , each to vary with distance along a system
of symetrically branching collapsible vessels with a variable influx of
fluid per unit length, QL .

To describe flow in the collapsible segment of tubing we have
developed a theoretical model which assumes the flow to be one-dimensional
and unsteady, and includes the effect of viscous flow resistance. The
form of the flow resistance function is a function of the local flow
characteristics and can approximate laminar, turbulent, and developing
boundary layer situations.

The governing equations are:

- the mass conservation equation;
» the equation of motion;

« the "tube law" (a functional relationship between the local
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cross-sectional area and the transmural pressure).
This set of equations is highly non-linear and hyperbolic and, in comQ
plete form, must be so]ved’numerically.
Two cases can be analyzed somewhat more simply, however. These

are (1) uniform tube collapse and (2) visbods dominated flow. In the
first case, the non-linear partial differential equations can be reduced
to a set of ordinary differential equations that can be sb1ved easily
by the Runge-Kutta method. The second case can be shown to reduce to
an ordinary differential equation with the introduction of the appro-
‘priate‘sfmi1arity variable. Each case is usefulvfor providing inSights
into the more éomp]icated real flow situations.

: Altthgh theée two approximate solutions are highly instruétive, the
original set Qf equations must be solved numerically to simulate non-

ideal flows.

Numerical Methods

The numerical method combines the techniques of the method of char-
acteristics and finite differences. The flow field is divided into two
parts, the moving boundary is the point of minimum cross-sectional area.
Computations upstream of the "throat" (point of minimum area) follow a
modified method of characteristics which permits direct calculation of
the solution at a set of fixed grid points. Downstream, we use an al-
ternating point, implicit, finite difference formulation into which is
incorporated a term to account for head loss due to flow separation in

the region of a rapidly diverging vessel wall.
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The boundary conditions are as described for the hydraulic model

and the initial condition is one of uniform steady flow.

Flow Experiments and the Corresponding Numerical Simulations

The first phase of our ihvestigation was devoted to the development
and verification of the theoretical model and the numerical methods. A
series of laboratory experiments were conducted using the hydraulic model
of Fig. 1 with the test section as shown in Fig. 2. The test chamber
is divided into two parts. One part is exposed to the cyclic variations
ih eXtefhal‘pressure while the other is vented to the outside. The two
- chambers are separated from each other by a flexible plastic pressuriz-
ing sleeve. This sleeve surrounds a piece of compliant latex tubing
which extends through both sections. This design allowed us to pressur-
ize dnly the upstream portion of the co]lapsib]e‘tube, thereby eliminat-
ing a troublesome boundary artifact at the point of attachment between
the downstream rigid duct and the latex tube.
The experiments and the corresponding computer simulations covered

a wide range of values for the various parameters of the system includ-
ing, for example:

« rate of pressurization;

« maximum external pressure;

« fluid viscosity;

- initial flow rate;

« downstream capacitance;

- downstream resistance and inertance;

- downstream pressure.
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In general, the agreement between experiment and theory was quite
good as seen in Figs. 10-13 in which volume flow rate as measured at
the outlet (downstream end) of the collapsible tube is plotted versus
~time. |

The collapse process proceeded consistently in each of the experi-
ments. We can describe the main features of tube emptying qualitatively
with the aid of Figs. 3 and 4. |

The top graph in Fig. 3 shows a typical pressure cycle, the applied
pressure reaching a maximum value of from 20 to 70 mm Hg in a period of
up to about 7 seconds. On the bottom of this same figdre is a correé- ‘
,‘_pondihg plot of volume flow rate at the exit of the collapsible tube
versus time. The flow rate accelerates rapidly at first, reaching a
maximum often before the pressure maximum.’ It then decays, rapidly at
first, but more and more slow1y»as the tubé empties. |

Figure 4 shows the successive states of collapse when a vessel is
compressed by a spatially uniform external pressure. The process is
fundamentally the same for a vein (shown here schematically) as for the
latex tube used in our experiments. (a) shows the tube before compres-
sion begins. When pressure is first applied, fluid empties from the
downstream end forming a narrow throat aé seen in (b) which impedes
further emptying. (c) and (d) show later stages that illustrate that
as the vessel empties the collapsed region propagates upstream more
and more slowly.

One of the primary inputs to the model was the functional form of

the tube Taw. A considerable part of our work centered about first
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scanning the literature for theory and experiments describing the col-
lapse characteristics of an initially circﬁlar or elliptical tube, then
conducting a series of experiments on tubes of our own. The procedure
for obtaining precise measurements of tube cross-sectional area as a
function of pressure is extremely difficult, owing to the necessity of
connecting the flexible vessel to rigid supports and to the fact that

tubes obtained commercially are highly non-uniform.

A Model of the Venous System

The problems associated with obtaining a tube law for latex tubes
are relatively minor, however, compared to those for estimating the
characteristics of a vein in its normal environment. Here again, when
beginning to formulate a model of the physiologic system, we looked
first to the literature, then used our fundamental understanding of the
process of vessel collapse to fill in the considerable gaps. From the
Titerature we found information, mostly for veins filled to a positive
transmural pressure, from such diverse sources as plethysmography, radio-
logy, and experiments on excised veins. Although much of this informa-
tion was highly qualitative and somewhat contradictory, we were able to
construct from it a tube law for the region of pressures greater than
approximately zero transmural pressure. We managed to extend these re-
sults to negative pressures by using estimates of the vessel wall struc-
tural properties and an approximate model of the effect of surrounding

tissue, thus completing the tube law.
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The remaining features of the physiologic model consist of the
spatial variations in total vessel cross-sectional area, A, , wave
speed, ¢y , a friction parameter, Cf , and the distribution of tribu-
tary inflow per unit length, QL . Ao, co, and ,Cf are each plotted
as a function of distance along the leg in Fig. 5. Ao‘ is the sum of
the areas of all the vessels at each location at normal physiologic
pressures. ¢, is a measure of the stiffness of these vessels, again
at normal physiologic pressures. Cf takes into account the difference
between flow resistance in a single tube and that in a system of ves-
sels having the same total'cross-sectidnaT area. Introducing'this
friction parameter a]]ows us to use our s1ng]e tube model to predict
flows in a symmetr1ca11y branching system

The need for Cf was found through sca11ng arguments in which we
compared the norma11zed form of the governing equat1ons for a two-vessel
junction and for a single tube having the same total cross-sectional
area and flow rate. We can see why Cf was necessary if we compare
the pressure drop per unit length in these systems: the bifurcated sys-
tem will have a higher viscous pressure drop unless some parameter (Cf)
is introduced to the term representing viscous flow resistance in the

single tube analogue.

Venous Flow Simulations

The simulations of venous flows can be classified in terms of the
pressure cycle used in each case. The three categories are illustrated

in Fig. 6. (A) shows the current method which we call the uniform
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pressure application. As shown in the left-hand plot, the applied pres-
sure réaches a maximum in a period of several seconds and is held there
for a period of 5-10 seconds, then released. The spatial distribution
is plotted on the right. Pressure is uniform over the calf but falls
off at the knee at the edge of the pressurizing cuff. The pressure
falls gradually because of the smearing effect of the muscular tissue
_surrounding the veins.

Chaft.(B) illustrates a linear pressure application. Again the
applied pressure rises, then remains constant. The spatial distribution
is different, however. 'The préssure drops linearly from a maximum value
at'the ahk]e to zero at the knee. This typé of pressurization'was moti-
vated by the reshlts offheinvestigation of uniform vessel collapse men-'
tioned earlier. The advantage of applying pressure in this fashion is
that it helps to e]iminate the narrow throat which forms at the knee in
the case of uniform compression.

The third means of compression [case (C)] is a wave-like pfessure
application. Again, the pressure-time curve can either be the same as
in (A) and (B), or might rise instantaneously to the maximum value. How-
ever, in contrast to the previous methods, the spatial distribution of
pressure varies with time. The front of the pressure distribution pro-
pagates from the ankle toward the knee, effectively milking the blood
from the veins as it moves.

Using the criteria mentioned earlier for optimal protection from
DVT, we simulated each of these three modes of compression, finding dis-

tinct differences. As in the single tube experiments of the same type,
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when the system of veins was pressurized as in (A) with a uniform exter-
nal pressure, a highly constricted throat soon developed. Due to the
high flow resistance at the throat and the constant influx of blood from
the upstream points, it was observed that much of the system never did
empty. Some improvements were made by either reducing the rise time of
the cycle or increasing the maximum pressure, but the mode of collapse
remained relatively unchanged.

One of the main objectives in simulating the linear pressure appli-
cation [Case (B)] was to explore various means of eliminating the restric-
tive throat. This method was highTy successful and resulted in much more
rapid and'complete emptyihg of the entire system. The peak values of
volume flow raté, flow velocity, and shear rate were much higher than
in Case A and the peak values were more uniform throughout most of the
system. |

The wave-like pressure application [Case (C)] had results quite
comparable to those in (B). The collapse proceeded at the same speed
as the front of the compression wave, except at the highest wave speeds.
Emptying was accomplished, then, in the time required for the wave to
travel from the ankle to the knee. With a pressure wave propagation
speed of 50 cm/sec (the highest simulated) the peak flows were as much
as 10 times as great as those achieved with the current cycle. If fur-
ther flow enhancement is desired, this method could be extended to still
higher wave speeds with yet greater induced flows.

Our most significant observations are summarized below:
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The current method of spatially uniform compression along the calf
causes a necked-down region at:the edge of the pressure cuff which
severely impedes further emptying of the vessels located distal

to the point of collapse.

Using the method of uniform compression the effectiveness of the

method generally increases with decreasing rise times.

The effectiveness also improves as the applied pressure is in-

creased, but only marginally for pressures greater than 30 mm Hg.

~ » The upstream constriction can be eliminated by either of the two

newly proposed methods: Tlinear or wave-like pressure application.

With either method, flow rates, flow velocities, and shear rates
'at'points inside the calf can be increased significantly above

what is attainable with uniform compression.
Both new methods provide collapse of the entire deep venous system.

The time required to empty the system can be reduced to approxi-

mately 1 to 2 seconds using these methods.

In the linear mode of compression, the method is made more effec-
tive either by increasing the maximum applied pressure or by re-

ducing rise time.

For wave-like compression, both Qmax and Unax Increase with

increasing pressure wave propagation velocities.
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* Filling time might be reduced by applying an occlusion cuff at

the thigh during the refilling phase of the cycle.

« The mean flow rate through the calf might actually be increased if

'p -
e € . 1.

p‘v R

Proposals for Future Efforts

In view of these f1nd1ngs, we propose that e1ther the llnear or

' wave-11ke pressure app11cat1on be subaected to the fo]low1ng tr1a1 pre-'-'
cedure. Follow1ng construct1on of a compre551on device and pressur1z1ng

| sleeve capab1e of reproduc1ng these cycles, these methods should be
tested on volunteers using indirect means of evaluating the theoretxcal

predictions. These methods might include plethysmography or measure-

‘ments that could be incorporated into routine venographic or surgical

' prdcedures. With the appropriate refinements, the method might then be

subjected to an extensive clinical trial comparing it with one of the

more successful anti-coagulant methods.

The theoretical background developed here lends itself well to an
investigation of a variety of processes occurring in collapsible tube
systems. Of the possible research areas, two seem particularly appro-
priate. The first involves a method of circulation assist that acts
through periodic collapse of the arteries by means of external leg com-
pression. The method, called External Cardiac Assist, works on a prin-

ciple similar to the aortic balloon pump and could, if perfected, provide
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an effective non-invasive means of providing the same patient benefit.
The Tung airways constitute another system of vessels which may,
under some circumstances, collapse due to elevated external pressures
and/or reduced internal pressures. An understanding of how and why air-
way collapse occurs in the lung could lead to the development of useful

new diagnostic methods.

As mentioned earlier, this has been a brief survey of those topics
which are covered in more detail in the following text. The reader is
- encouraged to refer to the more complete version for any topic of parti-

cular interest or for further clarification.
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" CHAPTER II:
INTRODUCTION

A surprisingly large number of people are unaware of the high inci-
dence of Deep Vein Thrombosis (DVT) or of the fact that thousands die
each year due tovits complications. The risks associafed with DVT are
well recognized by physicians, however, and as a result, nearly all hos-
pitals take some precautionary measures in patients undergoing surgery
which réquires either long beriods of‘anesthesia or extended post-
opefaiive bedrest. o o

" DVT is the development and grbwfh of red throﬁbi in the deep veins
of the leg. The thrombi, if they remain in these vessels, constitute
an impediment to normal perfusion of the 1imb and can .eventually lead
to a condition referred to as phlebitis or thrombophlebitis. which is
characterized by localized inflammation and edema. Although this condi-
tion itself is sufficient justification for the physician's concern, an
even greater danger is posed by the threat of pulmonary embolism (PE).
This occurs in the event that one of these leg thrombi dislodges and
travels through the heart to the pulmonary artery where it occludes
blood flow to the lung.

By various estimates as many as 50,000! - 15.0,0002 individuals die
each year due to PE. Approximately 73-90% of these thrombi originate
in the deep veins of the lower leg.3** It has been suggested that the
actual number of deaths directly attributable to PE is much higher than

this figure indicates. By any accounting procedure, the cost of DVT in
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terms of loss of life, severe discomfort, and monetary expense is‘very
significant. And, indications.are that, in spite of increased efforts
to protect against DVT, its incidence rate has been rising steadily.
The most probable cause of the increasing mortality rate is the expand-
ing Tlist of inflictions which can now be treated surgically and, as a
direct result, the increasing probability that any one individual will
undergo surgery of some kind.

Because of its recognized prevalance, particularly among surgical
patients, various prophy]actic procedures have been developed over the
years to combat venous thrombosis. In‘very broad terms, these methods
can be thought of as either'physica] or chemical in nature. The physi-
cal methods act by altering the sluggish blood flow through the deep
~ veins (often referred to as venous stasis) which accompanies surgery and
the imposed period of immobility afterward. Chemical methods act on
blood chemistry to decrease the tendency of the blood to coagulate in
the veins. The advantages and disadvantages of both of these categories
will be described in detail in Chapter III. In short, some methods from
each classification have met with considerable, but not compliete, success,
and are not altogether free of other complicating factors.

One of several physical methods of prdphylaxis is the technique of
External Pneumatic Compression (EPC) of the patient's Tlower leg by means
of an inflatable boot or cuff. (Again, more details will be provided in
Chapter III.) The method, although already quite effective, may not be

providing optimum protection from DVT given the criteria that have been
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set forth in past investigations.

Our main objective in this study is to analyze. current methods and;
by way of careful analysis, suggest alternate means of‘]imbAcompression
which may prove to be more optimal for the prevention of thrombosis.

- The steps along the way are goals in themselves and are enumerated below:
+ develop a useful model of venous blood flow under the application
of externally-applied pressures; |
« use this model to aid in understanding the role of EPC in prevent-
- ing bVT; |
. investigate-nOrmaT physiologic venous flows in rest and exercise;
. app]y_thesé tbo]s to an analysis and optimization of the technique
of EPC;
. propose_pptential improvements in the method which can be tested

clinically.

The approach is as follows. Our first step was to develop a model
of the processes occurring in the veins during intermittent external com-
pression. We conducted a series of hydraulic experiments in the labora-
tory designed to simulate the dynamics associated with unsteady flow in
a collapsible vessel such as the veins of the lower leg. We next devel-
oped a completely general theoretical description that could be applied
both to the experimental apparatus and to the system of veins, the simu-
lation of collapsible tube flows being performed by numerical procedures.
Then, as a means of evé]uating the range of validity of the various assump-
tions and approximations made in the development of the theoretical model,

we applied our model to the task of simulating the experiments. Having
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Tearned the capabilities and limitations qf the theory, we turned to the
physiologic case.

The model of the venous network used in the simulations is described
invChapter XI. It was necessarily a very approximate model owing to the
many unknown characteristics of/this part of the circulation. We sub-
jected this model of the venous system to a variety of types of pressure
cycles in an attempt to determiné which of the many possibilities was
most successful in satisfying the set of criteria set forth in the next
chapter. |

Qur coné]usions, which can be found in Chapter XII, offer a sharp
contrast to the current method. It is our hope that, through the addi-
tional steps discussed in Chapter XIII we can test and further refine
our recommendations and provide a much improved method of protection

against DVT.
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CHAPTER III:

VENOUS PHYSIOLOGY AS IT PERTAINS TO
THE PATHOGENESIS AND PREVENTION OF DVT

The purpose of this chapter is to acquaint the reader with those
aspects of venous anatomy and physiology which are relevant to the ini-
tiation and growth of deep vein thrombi. These basic concepts lead to
the several theories which have been proposed to explain the relation-
ship between venous hemodynamics and thrombosis. An understanding of
the underlying mechanisms aids Qs in estab]ishing a more complete set
of criteria ﬁhich can, in turn, be used to guide us in optimizing the
efficiency of any preventative techriique. We begin by describing the

complicated anatomical configuration of the deep veins of the lower leg.

Venous Anatomy of the Lower Limbs

The veins of the leg, particularly those of the lower leg, contain
numerous valves (spaced at from 2 to 4 cm) permitting blood to flow only
in the proximal direction and preventing the hydrostatic head from exert-
1’ng‘ its full effect when one stands erect. These veins can be divided
into three general categories: (1) deep veins, those well below the sur-
face of the calf; (2) superficial veins, those running outside of the leg
muscles just beneath the surface of the skin; and (3) perforating or lat-
eral veins, those which connect the veins of the deep and superficial
systems. The valves within the laterals generally permit flow only in

the direction of the deep veins.
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In addition to their differént anatomical location, deep veins also
differ frOm'superficia1 veins in terms of their wall structure. The
~ walls of the deep vessels contain proportionately more éo]]agenous and
"_1ess_smocth muSc]e‘tjssue than their superficial counterparts.® The wall-
to-diametef ratio i§ gma]]er in deep veins, producing a vessel which has
relatively little tone and whose walls might be considered ihextensible
when undergoing collapse. For this reason the deep veins can be thought
of as passive vessels which, in the range of small positive and negative

'tkansmurai pressﬁres; are composed of an éssentially inextensib]e but

very f]ex151e material. fIt follows fhat the pressure-aréa.re1ation§hip
: V-for:these 9es$els WdQId bé strdngly influenced by the degree of tether-"j' 
'ing té sufrounding tiésue. | | | -

N The muscular veins are distinguishable from other deep veins because
ofHS§gniffcantVstfucturé] differences. Although it has been reported |
that they contain no valves,® they actually are valved nearly as exten-
si?ely as are other leg veins.”~® They are often tortuous and may vary |
considerably in cross-sectional area. Blood contained in these muscular
veins must flow through a series of dilated sinuses before emptying,
usually into the proximal end of the posterior tibial veins. These
sinuses can be as large as 1 cm in diameter and 5 cm in length?® and;
therefore, contain a significant portion of the total venous blood vol-
ume of the leg. ‘

The course of blood flow is generally in the direction of the deep
veins and toward the heart. Due to the interconnecting nature of, for
example, the posterior tibial and muscular veins, it is thought that

blood may flow into the muscular veins from the distal portion of a deep
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vein and back into the sahe vessel at a more proximal point.!! The
tibial and peroneal veins generally oécUr'in pairs which have numer-
ous cross-over points. The detai]s.of the geometrical cbnfiguration of
these deep veins are subject to a large degree of variébi]ity.

Many factors can alter the flow of blood through this network of
interconnecting vessels. It can be affected by either external or inter-
nal influences and the effect can be either desirable, as in the case of
the normal functioning muscle pump, or undesirable, as in varicose veins,
valve incompetency, or thrombosis.

Pressurés in the calf veins vary greatly dépéndiﬁé on posture and
muscle activity. Thé pressure drop_betweeh the large veins of the calf
and the right heart dué to Qaii sheaszfresses is between 2 and 10 mm Hg
by calculation'? and measurement.’® A change in posture, however, from
supine to erect, can rafse véhous pfessure'in the calf to nearly 100 mm -
Hg due to the effect of hydrostatic pressure gradients.?3

These pressures must be viewed in relation to the intramuscular pres-
sure surrounding the vessels which can range from several mm Hg when the
muscles are relaxed to 250 mm Hg under maximal muscle contraction.!*
These large pressures which act on the muscular veins form the basis of
the "muscle pump" which serves both to lower the mean venous pressure in
the leg veins during exercise and to alter the amount of blood flow per-
fusing the calf muscles. Because the muscle pump is one of the most sig-
nificant natural means of prophylaxis against DVT, we will consider it

in some detail.
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Functioning of the Calf Muscle Pump

As an aid in understanding how the muscle pump functions, We can
 'think of thelvessels;of the lower leg as being divided into several parts:
7évpuﬁping chamber, in)ets for f1uﬁdlsupply from-a-high pfessure*source,'
~“and one or more discharge ducts leading into a low pressure system. The
pumping chamber consists of the intramuscular veins and,venu]es and the

intermusc&]ar veins, primarily thbse of the soleus and gastrocnemius

’muscles. Fluid flowing into the pump may enter either direct]y:from the

?,}'2§fteriél circulation via the capillaries in the calf, or from the veins

.j :pérfusingtheank1e and foot. nUpon’muscular contraction pressures in;idg'

i 1V;the:pumpjng chamber rise considefably_and,‘aided by the venous valves,

blood is discharged primarily through the popliteal vein by way of the
.-g p9sterior tibial and perOnea} veins;: As noted, iﬁtramuscﬂlar’pressures
‘éébhigh as 250 mm_Hg‘have beén meaéured‘undéf eXfreme mugéﬁTdr‘contraé4
tion. Normal walking, however, generally produces pressures on the order
of only 100 mm Hg. The stroke volume of this pump is difficult to esti-
mate and no doubt varies considerably depending on the degree of muscle
development. It is known, however, that up to 130 mm'® of additional
blood can be accommodated in the calf and this entire volume could con-
ceivably be expelled during a single contraction.

Mean venous pressures in veins considered to lie within the pumping
chamber tend to fall during rhythmic exercise by more than 50 mm Hg,
accompanied by a decrease in calf vo]ﬁme.15 Thus, assuming no inlet
flow restrictions such as might be caused by muscular constriction of

arterioles, there exists at least one mechanism tending to increase the
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mean A-V pressure gradient and consequently the total 1imb perfusion
rate. Allwood!® investigated this mechanism by applying an intermittent
compression to the calf while measuring mean flow rate at the foot. 1In
healthy individuals in the sitting posture using a cycle of 1 sec of
pressurization to 110-120 mm Hg and 4 sec rest applied to the calf only,
he observed an increase in mean flow rate of approximately 60%. This
mechanism is explored in some detail in Chapter XII.

One particularly thorough investigation of the calf pump was con-
ducted by Arnoldi et aZ.!! 1In a series of well-controlied experiments
on healthy subjects, simultaneous recordings of venography (both A-P and
lateral views) and venous pressures were obtained during systematically
performed leg exercise. Observations were made with the subject inclined
60° from the horizontal during a series of four or five muscular contrac-
tions of one-second duration at one-second intervals.

They observed that during the first compression, the muscular veins
emptied completely, apparently into the tibial veins. The tibial veins
themselves decreased slightly in cross-sectional area, the greatest degfee
of collapse occurring at the proximal end. The popliteal vein underwent
an increase in diameter and internal pressure, a fact attributable to the
increased blood flow entering this vein from the collapsing regions.
Other veins experienced more modest pressure increases and, in general,
increased in cross-sectional area if located outside the "pumping cham-
ber," and decreased if located inside.

Upon relaxation for a period of only one second, the muscular veins

returned nearly to their original cross-sectional areas, filling primarily
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from the distal end of the posterior tibial veins. It appeared, there-
fore, that there was a sort of shunting action in which’the blood, rather
than passing directly up the posterior tibial veins, flowed out into the
distal portions of the muscular veins during relaxed states, and into

the proximal posterior tibial veins during muscular contraction. In
addition to this shunting action, the muscular veins are constantly fed
by capillary blood flow from regions in the calf itself. These two blood
sources apparently provide for extremely rapid filling of the muscular
veins, at least following short periods of compression.

The effectiveness of the muscle pump in removing blood from fhe mus—"
cular veins was demonstrated radiographical]y by Nicolaides et:az.l? Mea-
suring the clearance time of dye from the soleal and tibial Veihs they |
observed that

(i) resting clearance from the tibial veins'Was much ﬁbre rapid

than from the soleal veins, and

(i1) that active plantar flexion against a resistance decreased

soleal clearance times from 9.6 minutes to the time of two
plantar flexions.

We provide this background material on the muscle pump because of
the apparent success of this pumping action in preventing the onset of
thrombosis. We should stress "apparent" because it cannot be proven
that the reason most individuals who are healthy and active do not devel-
op thrombosis is due to the continuous flushing of the deep veins pro-
vided by the muscle pump. During sleep, for example, the pump does not

function, yet the risk of thrombosis is still very low. Most physicians
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will agree, however, that the muscle pump is one very important mechanism
and certainly plays a role in preventing thrombosis. The relationship
between fluid dynamic effects and thrombosis will be explored in the

next section.

Deep Vein Thrombosis

As noted in the Introduction, the consequences of DVT and the result-
ing pulmonary emboli are extremely lethal and the morbidity associated
with it has shown a consistent increase in recent years. This trend can
be partly attributed to the rise in the range of surgical procedures now
possible, particularly in the area of elective surgery. During this same
period, the extent of prophylaxis has also risen but obviously without
total effectiveness.

The thrombi which, when dislodged from their source and carried
through the circulation to the Tung to produce a pulmonary embolism, most
often originate in the deep veins of the leg, and especially the lower
leg. Many factors have been found that increase the tendency for DVT
but the process by which the thrombin clot first forms and how external
factors affect its formation are still unclear.

The actual cause of venous thrombosis has been a topic of much
debate and is still not entirely understood. It was Virchow!® who first
postulated the three conditions which, by themselves or in conjunction
with others, might initiate the thrombotic process. These are:

(1) a lesion in the intima of a vessel involving the endothelium,

invoking an inflammatory response;
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(2) - venous stasis, i.e., a slowing or-othér‘ébnorma]ity of blood
flow, permitting the adhesion of aggregated platelets to the
V'intima;u | |

(3) an increase of the tendency of the blood to coagulate due to

either chemica1 or.physical processes

Venous thrombos1s although not exclusively a disease of the thigh
and 1ower leg, most often originates there.3:* Six pr1mary sites have
been identified by Sevitt!® where thrombi are most 1ikely to be found.
~ These include the following:. o - | 4   R

(1)_ 1ntramuscu1ar calf veins (so]ea] p]exus), E

(2) poster1or t1b1a1 velns,:, T o

(3) popl1teal vein- (part1cu1ar1y Just be]ow the adductor r1ng at

the s1te of a large valve), o |

(4) at the term1nat1on of the deép femoral ve1n,

(5) .common femoral vein;

(6) 1iliac vein.

Among these the soleal ‘and posterior tibial veins are the most com-
mon locations. Thrombi tend to originate at particular anatomical points
such as in valve pockets, vessel junctions, or dilated sinuses. ‘Each of
these have in common either Tower mean flow velocities or stagnated or
separated flow regions.

The soleal veins are particularly prone to stasis because of their
complex structure. The situation is further complicated when the patient
is in the supine position and gravity tends to pool the blood in these

sinuses causing fi1ling and emptying to take place very slowly.
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There seems to be 1ittle agreement on the pathogenesis of venous
thrombosis. One 1ikely schema,2?® however, postulates a 1océ1 accumula-
tion of thrombin due either to*blood stagnation, microscopic lesion, or
abnormalities in blood chemistry. This Teads to the formation of plate-
let aggregates which, in slowly flowing blood, can settle out much more
rapidly than non-aggregated platelets. Associated with platelet aggre-
gation is a release of platelet contents which further promotes platelet
adhesion and initiates the fibrinogen-fibrin process. Once initiated
in_this”manner, the process can continue, producing the successive lay-
- ers of fibrin and platelets Whiéh compriée most vein thrombi. .with con-
“tinued growth, the thrombi become long tubular structures which exhibit
this layered constructfon fhroughout.

Numerous factors have been associated with a higher risk of venous
thrombosis and are discussed extensively in the literature. A list of
predisposing factors and literature reference is provided in Table 1.
The relationship between these factors and the initial thrombotic res-
ponse is, in general, poorly understood. Many, however, can be directly
related to one‘of the three primary causes expounded by Virchow. In
addition to those listed, other correlations have been proposed but the
evidence is often inconclusive or contradictory.

Associated with many of these predisposing factors is the possible
existence of purely anatomical effects on tﬁe blood flow. And, as it
was shown earlier, the locations and postulated mode of thrombus forma-
tion also indicate strong fluid mechanical effects.

Sevitt?? has stated in a recent article that, in the development of
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venous thrombi, "venous stasié and eddying of flow are the main predis-
posing mechanisms." The presence of a trabped or slow-moving eddy, as
might be found in valve sinuses, at junctions or at points of sudden
area change can have severa]lde1etérious effects. Firsi,'since dilution
with fresh blood takes place over a very long time scale, the clearance
of clotting factors or activated products which may be present in the
blood is greatly reduéed. Also, the endothelial cells are likély'to be-
come undernourished and may, as a resu1t, release some of their contents
which are capable of initiétiné thfombusfgrowth; Experiments have shown
‘that in plateiet-rich plasma;stirfing‘§r»mixing thé So1utioh.acce]erates

aggrégation2°

and the circulating eddy may have the same effect. It has
also been postulated that eddying promotes wall depositidn, bringing ahy .
activated complexes present in.the_b]ood in contact with the vessel wall
where‘they can acéumu]ate over time. | |
The effects of venous stasis are quite similar to those just dis-
cussed in relation to trapped eddies. The slowing of blood flow, parti-
cularly at stagnation points, has the effect of:
(1) preventing the removal by the liver of activated clotting fac-
tors released locally or brought from other sites;
(2) slowing the arrival of inhibiting agents, such as anti-thrombin
and ADP-ase;
(3) permitting ADP (a platelet aggregation inducement) to accumulate
| locally;
(4) producing an hypoxic condition in the endothelium;
(5) 1increasing particle deposition on vessel walls at specific

points;
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(6) increasing the degree of rouleaux formation and platelet
adhesiveness;
(7) silting into valve sinuses of platelets, leucocytes, and red.A
- blood cells resulting in a local accumulation of ADP.
. This evidence strongly suggests that the fluid dynamic effects play a
significant, if not dominant role in all stages of thrombus development,
and prevention of stasis would seem to be of definite prophylactic value.
There are many methods purporting to increase either the velocity
.or pulsatility of b1ood flow in the legs. Among these methods are elec-
trical stimu]étion, leg wrapping, elevation of the legs, exercise, and
exfernal‘pnéumatic compression (EPC). Each of these techniques has been
evalhéted by nﬁmerous clinical studies and do provide varying degrees of
protection, but are far from being totally successful. The next section
proVidesié discussion of the more popular methods of prophylaxis and.a

critical evaluation of each based on published clinical results.

Methods of Prophylaxis Against DVT

Primarily because no preventative measure has been proven to be
entirely successful, there is 1ittle agreement among physicians as to
the "best" method. Those which have received considerable attention in
recent years and which are commonly used can be divided into two gene-
ral categories based on their mode of attack.

The first category includes the various types of anti-coagulant
therapy. These methods are probably the most widely used and accepted

means of prophylaxis for those classified as high-risk patients.
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A]thoUgh each of the various anti-coagulants used act in aslight1y differ-
,‘ent,fashion, the objective is the same: to alter the chemical composi-
“tion of the blood in such a way as to lessen the tendedcy of the blood

to coagulate.i These dfugs normally act by inhibiting or blocking one or
‘more of the reactions in the complex process of thrombus growth. One
clear objection that can be raised to this type of therapy is that, while
inhibiting the growth of deep vein thrombi, these drdgs also interfere
with the normal clotting process and as a result, patients undergoing -
.anti-édagu1ant.therapy run the’additional risk of hemorrhage or other
b]eed1ng comp11cat1ons accompany1ng surgery. Fdr:these reasons tfeat— _
";ment cannot beg1n prior to surgery which further comprom1ses the overa]]

| effect1veness of the technique. Several of the antl-coagulants used are

11sted in Table 2 a]ong w1th the clinical tests in which each has been

eva]uated Of those llsted Tow dose hepar1n is probably the most effec- 7

tive and has been the focus of many of thd more recent studies.

The second category of preventative methods which are collectively
referred to as "physical" methods, act by altering the behavior of blood
flow in the veins. These methods range from simple bandaging or eleva-
tion of the lower limbs to electrical stimulation of the calf muscles.
Several of these are listed along with the corresponding clinical trials
in Table 2. They all aim at some rather vague goal of "eliminating
venous stasis" and all that that implies. Possibly one reasons theée
methods have often been overlooked by physicians is:that the relation-
ship between first, venous hemodynamics and thrombus growth and second,
the physical method used and the accompanying changés in venous blood

flow, are poorly understood and have not been carefully and completely
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examined. The connection between treatment with anti-coagulants and
decreasing the tendency toward thrombosis is clear; the connection be-
tween, for examp]e,~e1evating a patient's leg and inhibiting thrombus
growth is not. In fact, one might argue, and justifiably so, that
some of these methods might actually impede blood flow and thereby
worsen the tendency toward thrombosis.

For whatever reasons, these methods have in general been slow to
find acceptance. One possible eXception is the use of elastic stockings
which, in spite of recént:pub]icatibns3° disclaiming the value of the
procedure, continues to be common practicé in many hospitals, particu-
larly amdng patients with only a slight danger of developing DVT. A |
recent investigation®® has determined that, with careful applicatidn of.
the elastic stockings, flow velocity can actually be increased somewhat.
But it is doubtful that the procedufe is performed with the neceséary |
care in routine situations.

One of the physical methods listed in the table shows considerable
promise as evidenced by the highly successful clinical trials. This is
- the method of External Pneumatic Compression (EPC). Unlike electrical
stimulation which has also met with some success, EPC involves little
patient discomfort and can be performed continuously, beginning even be-
fore surgery, on nearly all patients.

The procedure followed and the details of the technique of EPC differ
depending on the individual hospital and the commercial device being used.
However, we can describe the method in rather general terms which would

apply almost universally. Treatment would begin just prior to surgery
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byfp1acement«of an ihf]atab]e plastic boot or cuff .on the pafient‘s'
.lower legs covering the calf and, in some cases, the foot as well. By
‘ means’of_periodica]]y inflating this boot, the blood flow through most
offthé 1eg.veins becomes highly pulsatile, creating a situation in.
these vessels Which, in‘many ways, mimics the action of the muscle pump.
Typically, this cycle consisfs of a rapid pressure rise from zero to
30-50 mm Hg, after which the pressure is held constant for approximately
10‘seconds. Thé pressure is then released and a rest period of about
45 seconds_f¢11bw$,before‘thé next pféssure'pu1se is applied. |
' .The means by whitﬁ'iﬁtefhittent extefna1 compression prevénts throm-

-bbsis'cén_on]y:be ﬁosiuiafed.; However,'ééveral Tikely meéhanisﬁs have
been proposed;‘ These mechanisms can be thought of.in terms of the set'.
of criteria fqr‘optimal protection from DVT listed below.
B Hiéh fiow pu1satiTity; |

« increased volume flow rate;

« increased flow velocity;

» increased shear stresses;

» clearance of valve sinuses;

» mechanical stressing of the vessel walls;

» complete periodic emptying of the vessels.
Each criterion can be seen to relate directly to one or more of the
hemodynamic effects mentioned before which influence thrombus initia-
tion and growth, with the poséib]e exception of mechanical stressing
of the vessel walls. Recently, Knight3® has shown that intermittent

compression of the arm can actually lead to a reduction of DVT in the
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leg veins. The only obvious conclusion one might draw from this obsefva-
tion is that fibrinolytic activity is somehow enhanced by compression

and may be related to a mechanical stressing or to bringing the oppos-
ing walls of a.vessel in the arm into contact with each other. This

may be only one of several mechanisms which give rise to the effective-
ness of the techniqué, but it is certainly one which deserves further

- investigation.

It should be stressed that the stage of knowledge concerning the
pathogenesis of thrombosis and how it relates to the various fluid mecha-
nical or mechanical'events accompanying EPC are poorly understood. The
results of the étudy'presented_in this thesis provide a necessary, but
incomplete pfcture of the role of EPC in preventing thrombosié.. Addi-
tional research into the intricate biochemical relationship between local
fluid dynamics and fhrombus gfowth is needed. Our approach has been to -
first identify those flow properties which, based on present knowledge, -
are likely to affect the onset of thrombosis, then to éarefu]ly and sys-
tematically explore different pressure cycles and modes of pressuriza-
tion in terms of their effect on these properties. We begin this process,

in the next chapter, by developing a theoretical model for flow in a col-

Tapsible tube.
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CHAPTER IV:

THEORY: UNSTEADY FLOW THROUGH A NETWORK
OF COLLAPSIBLE TUBES

In this chapter we derive a theoretical description‘of unsteady
flow through a collapsible vessel or a symmetric network of vessels.
The expressions are written in the most general form in all cases so
as to permit any of the following variations:

(i) variable cross-sectional area of the unstressed tube, Ao ;
(ii) variable wave speed, co (and consequently variable tube
stiffness); |
(iii) variable external pressure, Po
(iv) symmetric branching.

The results are used in two ways. In Chapters V and VI a numerical
scheme is described which permits the solution of the governing equa-
tions yielding a detailed picture of the flow behavior for any given
set of parameters. Secondly, in Chapter VII, we determine the important
scaling parameters of the system to aid in the design of an experimental
model which, although lacking the detailed characteristics of the real

venous system, will exhibit the correct general flow features.

The Theoretical Model

The proposed model consists of one or more collapsible vessels
which are subjected to external pressurization. The complete theoreti-

cal description consists of the equations governing flow in the
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collapsible vessel, two bbundary conditions, an'initial condition, the

prescribed variations in Pa ,‘Aul and. ca‘, and what we call a tube

law, which is simply a relationship between the transmural pressure and

the local cross;sectional_area._i | o _
The boundary and initial conditions are designed to aécurateiy mode1

~ the actuaiiphysioiogiéai environment they are intended to represent.‘

| Briefiy,}they are: |

(1) Upstream bouhdgry condition: A high pressure reservoir kept

at a constant pressure is located at the upstream end of the
system. It.drainsithrdugh"a linear resistance, intdithe col- -
'_‘lapsibie‘veSSeis,'_ |

(2)‘ADowhstreém BoUhdéfy'cdndition: Fluid drains through two rigid

vessels having both resistance and inertance Which‘are sepa-
" rated by a capacitance tank. Fluid eventually empties into a

constant pressure reservoir.

(3) Initial condition: Initially there exists a steady flow of
fiuid,determined by the pressure drop from inlet to outlet

and the resistances in between.

The Governing Equations -

The one-dimensional equations governing flow in the collapsible duct
- are obtained by applying the principles of conservation of mass and momen-
tum to a small control volume of length dx . Mass continuity states

that the change in flow rate over a distance dx is balanced by the de-

~crease in volume of the element. This is written as
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N T (1)

where u is the mean f10w4ve1ocity and A 1is the cross-sectional area.
QL represents the added flow rate per unit length which in this model
can be thought of as passing through the vessel walls.

Denoting the internal pressure by p , and the external pressure

by Pa » the equation of momentum conservation can be expressed as fol-

Tows:

- op Pt _
ou u 9 _ e W
P (Ef'+ . ax) T oax (p pe) ox TR o . (2)

Here, Ty is the wall shear stress acting in the negative x-direction,
and P is the wetted perimeter.

For. the purpose of defining characteristic curves which we will
eventually need, it is useful to introduce the wave speed, ¢ , into
these equations. The relationship between ¢ and the other variables
is obtained by considering the propagation of an infinitesimal pressure
wave in a flexible walled tube of arbitrary cross-section. Without loss
of generality we can assume that the incompressible fluid is initially
at rest. Associated with this pressure wave will be a change in cross-

sectional area as illustrated below.
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We can effectively freeze the motion of this wave by adopting a ref-
' erence frame traveling to the right at the same speed, ¢ , as the pres-
sure pulse. With respect to this new frame of reference, the momentum
equation for a control volume'includihg'the area transition (neglecting
the effécts of friction, viscoeiasticity of.the wall, andvlongitudinal

bending) can be written as
Ad(p-p,) = pchA du

Combining this with the continuity éxpréSsion,across the transition,

yields a reIatiOnship which will serve as the definition of ¢ ,

d(p - pg) g

A
c = |= (3)
P dA

Equations (1)-(3) can be made dimensionless by substitution of the nor-

.malized variables listed below:

U = u H o = —A_ H g = Z'
a(0) Ao (8) :
T = tcﬁ(oz : P = P~ Pe sy C = (&) (4)
Ky (£) co(E)

= —9 . Ao(E)
Ao (0)co(0) AO(O)
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Introducing these variables into Eq. (2) and dividing the result by

pco2(0)/L yields

w o, L, K _(£) , 2 afxg(a)
T 0co2(0) %% pce2(0) %

9g
| (5)
1 ape

| ! . Cf(g)PL T
pco2(0) 95 0c02(0)A0(£)

W
+ - =
S 0

Here Cf(s) has been introduced to the friction term. For the present
we can assume that Cf(g) = 1 . The reason for its inclusion will be
revealed at a later time in Chapter VII. | |

We can eliminate 9P/3¢ and K_ from this expression by means of

. , P
the following relationships derived with the aid of Eq. (3):

), - &) - &)
T

Then,

Kp(g) = 0co2(E)B where B E(g%)aﬂ

Thus, we can write the momentum equation in final form as

2
i oU colE) ¢? 3o co(E) dcg(E)
& oy oy =— = + 2PB
I i [CO(O)] @ 3¢ co2(0) de

(6)

op
L2 4+ oc(e)F = 0,

+ vtt—
0Co%(0) 9t
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[PL/pco?(0)Aq(E)] =,

6

where F=

The continuity equation can be normalized in a similar manner and

reduced to
da 3 (Ua) 1 dAe (E) L
= + + o - Q — = 0. (7)
o o ‘ Ao () de L Co(0)As(2)

In addition to Eqs. (6) and (7) we have the normalized form of (3),

2 dz
C = aB da 2 _ (8)

and a known relationship between P and o which, for the present

discussion, can be assumed to be expressed as

a = fn(P) . (9)
The functional dependence of o on P is actually quite complicated
and is left as the topic of Chapter VIII. For now, we turn to a deri-

vation of the equations for the boundary and initial conditions.

Upstream Boundary Conditions. As mentioned in the introductory

remarks, the supply of fluid entering the collapsible network (at £=0)
flows from a high pressure reservoir at a pressure, Pp > through a linear
resistance RA . This represents, for example, the total resistance of

all the vessels of the capillary bed. Flow is governed by the equation:
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Pa~ Pe=0

(VA)reg =
g=0 Ra

In terms of normalized quantities this can be wfitten as

pA - Kp(O)P = pe
= ' : 10
e)ea co(0)Ae (0)R, | "

Downstream Boundary Condition. The system into which thé collap--

© sible tube empties can be represented by the following Iumpéd paraméter

model:

Pe R1 Ly Pc Rz . pg=constant
AN\ .

The equations for such a system can be expressed in-terms of pressures

at the various nodes:
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_ . dQE=] - g 2 .
Peyp = P F Qg=]R1 o ¢t th(A)£='l (11)
dQB'
Po - Pg * QBRZ t L 4o (12)
t
1
P. - P = & Q.7 - Q) dt (13)
¢ ey Cy 6{ g=1 "B
where
Ly = %%L o R, = Smib
1 A 2
1
L, = %%L Re = Zmibe
2 A 2
2
. dv
CV =

and QB is the flow rate through R, , Pe is the pressure in the capa-
citance tank, and Pg is the outlet pressure. The normalization of
Egs. (11)-(13) will be left for the next chapter where the equations
will be combined in a way that al]oWs a convenient computation at the
bouhdary. The Tast term in Eq. (11) has been introduced to account for
inertial losses due to abrupt changes in vessel diameter such as at a
junction between two tubes. In these eqﬁations it takes the form of a

constant times the square of the flow velocity.
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Initial Conditions.* 1In the initial state, we assume that all accel-
eratidn terms (both convective and temporai) in the governing equations
and boundary conditions are zero. Furthermore, since the collapsible
network in normal initial states will be open, the dominant resistance
is assumed to be located upstream of the collapsible system. As a rea-
sonable approximation we assume that the initial flow resistance in the
collapsible tubes can be estimated assuming A = Ao(£) . The initial

flow rate, then, is defined in the following equation:

| | Py - P
o = A '8 - : (13)
X=
s u
RA + R1 + Rz + 8r ’[0 C_F(X) E‘ dx
x=

A}

To obtain an estimate of the actual cross-sectional area of the collap-

sing tubes we can first compute the pressure at £ =1 from the expres-

sion,

Peay = Pg * (Ri + R)Qy

Introducing normalized variables we have:

Pg * (Ry + Rz)Qi

P, = . (14)
&=l pco?(1)8

*QL is assumed to be zero in this discussion. A nonzero QL can be
introduced with minor modifications to the equation.
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,Baéed on the assumptions that
"(i) fully developed laminar flow exists throughout the vessel;
(ii) ,pe(g) =0 for T =0 ; and |

o (3i1) inerﬁial effects can be neglected, o

we can write thé momentum equation in the following simplified form:

d(p = pe) -8'ﬂ'ucf(x)Q-i

dx . A2 ?

’ ff§m’whichfwe bbtain the ndrma]izéd equiValent,

o ma(@AOCHEL e g ey e
e e e St AR Y |- Gl 7Y s
i T 2 (E)AR(E)E g % T

In the genera] case when - Cf s co > and Ao' are arb1trary funct1ons!
of g , the RHS of Eq. (15) must be 1ntegrated numer1ca11y |

The resistance function 7 can exhibit a variety of features depend-
ing on the local flow conditions. The flow can be either laminar or tur-
bulent or, if laminar, can be either fully developed or in a state of
boundary layer growth. Each of these will be considered in the following

discussion.

Selection of Resistance Functions

Let us assume that the flow at any point in the collapsing vessel
satisfies the criteria for one of the following conditions:

(1) laminar flow with a developing boundary Tayer;
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(2) fully developed laminar flow;
(3) ‘turbulent flow.

Case 1. Two necessary but not sufficient conditions for laminar
developing boundary layer flow are (i) that the Reynolds number (based
on hydraulic diameter) must be less than the critical value, Recr s
which marks the transition to turbulent flow, and (ii) that the boun-
dary layer thickness, § , be less than r , where r 1is a characteris-
tic radius of the cross-section (r = hydraulic diameter/2 = 2A/P). One
means of approximating & is by analogy to Stokes' first problem, that
of an infinite flat plate suddenly accelerated to a ve]otity upg in a
semi-infinite fluid. In the collapsing tube, the real situation is com-
plicated by the time varying nature of the flow and by the convection
of vorticity from points upstream where the flow conditions may differ
considerably from those locally. We will assume these effects to be
negligible since their inclusion would introduce much complexity to a
problem of minor significance. It is quite probable that the boundary
Tayers will fill the collapsed tube before viscous resistance becomes
a significant factor so a more complete analysis is not warranted.

The errors introduced by this assumption will be most pronounced
in the case of oscillating flow. For sufficigntly high frequencies, the
boundary layer is confined to a small region close to the tube wall and
the viscous damping of such oscillations is much greater than would be
predicted using this approach.

In the absence of significant flow oscillations we can make an
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estimate of the boundary layer thickness,
§ = 4Nt

As one criterion for assuming the existence of developing boundary layer
flow we will require that 8§ < r .
Returning to the problem of an impulsively started plate, the velo-

city distribution can be shown to be

ﬁi- = erfc.(—lL—)' s
0 Vvt
where y 1is the distance from the wall and u, is the plate velocity.
We can superimpose the so]ut1ons for a series of 1mpuls1ve accelerations

in the following manner:

At~>0 v4vt v4vt

Au-+0

u(y,t) = Tim [Auo(o) erfc (—~X-> + Aug(Ty) erfc (—JL—-) + ...]

This limit can be expressed in integral form permitting the use of a

continuously varying plate velocity, uo(t) :

t
du
u(y,t) TE% erfc dr . (17)
4v t-T
0

From the velocity profile, we can compute the wall shear stress:



t
1 = u 4 = -(QE)% duo(t) _dt (]8)
W 3 |y=0 m L ’

If we assume that the velocity-time profile can be approximated as linear

during this initial period an expression can be derived for Ty

%
o oo fou) Ay
r, z(ﬂ) o g (19)

In terms of our previous notation the corresponding resistance function

- for open tubes is written

5
W 4[oucg3(0):| u
)a

Ao (E LtAo(g) | ¢
or
2
F o= 4[ ul ] L, a>o0u (20)
pCo (0)TAo(E)

and for the collapsed tube, assuming the configuration &0 [i.e.,

P = 2(4nA/2)7] ,

.

;é .
WP - 1 [29“093(0)a] U
Ao (E)a LtAo (£) *
or ;i

F = 4 [ 2ul ] U o< 0.27 . (21)
0Co (0)TAg(E)a
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a = 0.27 was chosen as the point of transition from one shape to the
other because it corresponds, roughly, tbfthé area at which the walls

first come into contact.

Qggg_g, when 6.> f and Ré é Re;r’, fui]y déveiopéd laminar
flow results. This too must be an approximation in unsteady flow since,
with a time-vérying flow rate, the velocity profile is never truly "fully
developed."

Derivation of resistance functions for the co11apSing'tube are pos-
sible dnly by.nuherica1‘techhique$. 'Assdming Poisedi}ié'flow, F]ahebty |
etlaz.kp have_computed tﬁe $hapé of.the,CQTJapsed crosseﬁegtion and
the ve1dcity'pfoff1es'ffdm which the resistance fﬁhéffﬁhs‘can be deter-
mined. For cross-sectional areas Tess than = 0.21, a similarity solu-
tion exists (see Cﬁapter*ﬁill)nfOr-the fé]atioﬁshib betWéen'irahShUrai
‘pressure and cross-sectional area. The resistance function in the col-
lapsed tube can be determined simply by knowing the resistance at one
state and imposing the similarity condition. This results in the fol-
lowing relationship which is found by way of the same numerical investi-

~gation to be reasonably accurate up to o = 0.36 :

W _ 70uce(0) U
A, (E)a Ao(g) ©
(21)
F = —t Z0uU o< 0.36

pco?(0) Ao(E)a



-53-

For cross-sectional areas greater than o = 0.36 but less than 1.0 ,
the numerical solution follows closely that of Poiseuille flow through
an elliptical cylinder (see Milne-Thompson*!).. For a cylinder of major

and minor radii a« and b the perimeter and area are defined as

2 2\ %
szﬂ(g___j;_b_.)
2

.A = Tqab

The momentum equation for slow, steady flow of a viscous liquid thrqugh

this cylinder is

[=9

P N
Q dx 4u az_,,bzA

or

= -4 1 2A° |
uA * W o (22)

If we convert to the previously defined dimensionless variables, Eq. (22)

can be rewritten as

NN () R A (23)
L dg Ao (E) a®

where P = constant = Zw[Ao(S)/w]% . This result when expressed in our

standard form is
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W 8iucs ()

Ao (E)a Aa(E)a? *

or

Fo- 1 8mc(0)y

pCQZ(E) Ao(E)dz 1.0>a > 0.36 . (24)

If o> 1.0, the tube is circular in cross-section. The resistanée in
Taminar, fully-developed flow is given by the following expressions;
T P ]f.*ré_f N
W = 811‘1100(0)” .
Ao(E)a - Ag(E)a
or

i} L 8wp¢ﬂ(O)U
:'DCovz(O) Ao(E)a

o>1.0

Case 3. When the local Reynolds number exceeds Recr s we will
assume that fully developed turbulent flow exists. Turbulent wall stress
in the case of a hydraulically smooth pipe of circular cross-section has

- been found to obey the relationship

T, = ct(aipuZ)l—”—‘ ; (25)
u

where Ct = (0.3164/4)Re”%-25 with Re based on hydraulic diameter

(see Schlichting*?).

As was true for Case (1), velocity gradients are essentially confined
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to narrow zones close to the wall. Therefore, the shape of the cross-
section is relatively unimportant in terms of computing the shear stress.
If we make the assumption that Eq. (17) is a valid expression regard-
less of tube shape, the previously defined resistance functions can be

easily written, for pre-collapse states:

W 0.3164 [ 17 pcy?(0) ReT0-25 3
)

BEe 4 LA o v

or

' 5 -0.25 13
P o= 0.3164 [: T ] L Re u , 1.0> A > 0.27 (26)

Yo Lacte) |y

and for the collapsed tube,

T P L

W = 0'32164 [ 2m ] pCoz(G) Re-o.zs.gi
Ao (£) Ao (E)a 4

or

5 3
Fo= 0'3164 Al LRe 025 U= pco0.27 . (27)
Ao )O. :

(g |v]

The previously obtained equations for mass and momentum conserva-
tion, the tube law, the expressions for the friction parameter 7 , the
conditions at the boundaries, and the initial condition comprise a com-
plete formulation for flow in a collapsible tube. The system of equa-

tions is hyperbolic and, clearly, cannot be solved analytically.
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: de.cases have been explored, however, in which the complexity of
thé equations can be reduced to a moré‘sofub1e:form. These are the cases

of
~* uniform vessélicd1iépse;-
» viscous dominated collapse,
and are discussed in detail in Appendices A and B, respectively.
We found in Appendix A that the tube collapses uniformly in the

specific instance where the external pressure varies as

P = @+ bx?

: ' 'whereNAxfiis‘méasured*from the outlet of the vessel. Using a spatia11y

varying combression of this type it was found that fhe tube could be
: _emptjed much more"rapid1y~than in the case_of uniform éxterna] pressure.
This differéﬁéé Eah Be accounted for, priméri]y, by the absence of é
highly constrictive throat at the downstream end which generally occurs
in the case of uniform external pressure. |

In Appendix B we demonstrated the existence of a similarity variable
which reduces the governing partial differential equafions to a‘single
ordinary differential equation in the instance of highly viscous col-
lapsible tube flow. The true boundary condition, however, cannot be
expressed precisely in terms of the similarity variable due to the exis-
tence of an initial period during which inertial effects must be impor-
tant. The results, although illustrative, probably apply only for either
very late stages of collapse or for extremely viscous fluids.

The complete set of equations can only be solved numerically. Being
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hyperbolic, the app]icabie numerical methods can be divided into two |
"categories: A |
(1) methods empToying the equations in chéracteristic form;
{(2) methods in which the governing equations are written directly
as difference equations.
Both techniques have been studied and the method used in our computa-
tions did, in fact, incorporate both solution procedures. These methods,
as they relate to our ana]ysié, will be discussed in the next two chap-

ters.
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CHAPTER V:
A MODIFIED METHOD OF CHARACTERISTICS

The pair of equations governing flow in the collapsible segment
[Eqs. (7) and (8)] are well suited to solution by the method of charac-
teristics whereby the solution is found along curves of possible dis-
continuities. For the purpose of numerical calculations, the equations

can be formulated along these characteristic curves.

Derivation of Characteristic Equations

First we multiply the continuity equation by an undefined para-

meter, A and add Eq. (6) and to the resulting form of Eq. (7):

au 1) 3a 2 C% )ac.x. -
5ot (U+Aa) 5E A +(6C ot M ag“‘“‘m 0 , (28)
where
3(p,)
B = 1 age + 2Pgs, ] dcgég) + C(e)r
pco2(0) co(0)

- 1 dAo (&)
G = ol
Ro(E) dg

) - CO(&)

¢ co(0)

Multiplying Eq. (28) by df and substituting the identities,
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au

v = T drj
T
~do = 5% € + -dr

results in this reduced expression:

| 2, SCC'U) . 8.C ,
(U»i 6ch)€!(1+ T8t S do +HdE £+ ——GdE = 0» ,(_29)‘
if
) - & 2 € . dg 0
(v + Aa) 3= and 8. ‘ax + U T (30)
'or"equiva1ehtiy;’ﬁf3
A= xEs
o C

By rearranging Eq. (29) and substituting the derived expression for

A into Eq. (30), we obtain the final form of the characteristic equa-

tions,
dv + GCC [d(zn a) + g-dr] +Hdr = 0 ' (31a)
- dg
(v = SCC)R = 5 . (31b)

L
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Here R and L denote the rightward and leftward running characteris-
tic curves, respectively (for subcritical velocities, i.e., U<Cc).
This analysis has provided a pair of physical characteristics defined
by (31b) on which the solution reduces to that of a pair of ordinary
differential equations, (31a). Equivalently, these equations define
‘the characteristic curves [Eq. (31a)] and their projections on the phy-
sical (&,t) plane [Eq. (31b)].

The solution carried out in this fashion breaks down in certain

’ situations encoUntered during the course'ofvthe computation. Signifi-
cant efrofs are introduced at a position where 1arge area changes take

place between two adjacent grid points, The source of these truncétion
errors aré discussed in Chapter X.
| _ In the true method of characteristics the solution is carried out
~ strictly along the curves defined by Eq. (31b) using Eq. (31a). This
procedure has the disadvantage of yielding a result that must be inter-
polated in both & and T to obtain results on a uniform grid. Fur-
thermore, as the computation proceeds, the characteristic mesh must be
periodically adjusted as the characteristic curves become more concen-
trated in some regions than in others. The advantage of this technique,
however, lies in the more precise location of shock-fike discontinuities
which may develop during the computation as a result of characteristic
curves of the same family coalescing. Due to the hyperbo]ic nature of
the equations, shocks encountered using this procedure are true discon-
tinuities. In reality both in gas dynamic shocks or the quasi-shocks

that may occur in collapsing tubes, some mechanism acts to prevent the
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creation of a true discontinuity. The nature of these mechanisms in col- .
‘lapéible tube flow and the method by whicﬁ we éhose ﬁo take'them into
- acéount will be discussed in Chapter VI. |

‘The modified method=0f-charécteristics.used’in our calculations was

first introduced by Hartree*® to circumvent the complicated interpola-.
tion associated with the original method. Using the modified technique,
the solution is found on a predetermined £-t grid along characteristic
curves which intersect with the fixed network of points. Since the curve
. é]ongﬁWhich the'solutiOn;is.computeﬁ changeé with each time step, the
pfqéedure mfght be cohsfdered‘tb'be'évsort of Stepéwisevchérabferfstic
" method. It 1acks,ﬂhowéver,_the-mdre sétisfying nature of.continupus
charabteristic curves. In the fo]iowing discussibn, this method is

~described in some detail.

Computational Procedure Using the Characteristic Method

As mentioned, the numerical calculation involves marching the solu-
tion forward in time along an essentially predetermined -t grid. The
solution at each point is computed along the physical charécteristics
passing through it using finite difference approximations to the charac-
teristic equations. In general, these expressions are second order
approximations. Equations written in this manner can be used both for
the initialncalculdtion and for subsequent iterations should they be
necessary.

Assuming that U and o are known at time 7, for all & , the
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procedure for computing interior points (i.e., those not on the boundary)
at time to+*At is outlined below. The notation follows the general

rule that subscripts involving "n" refer to position and superscripts
with "m" refer to time. Therefore, U:f: is the velocity at position

n-1 and time m+l . Subscripts R and L denote variables at the
intersection of the rightward or leftward running characteristic curves

(see diagram) with the t = 1o Tline.

TotAT ‘ : (m+1,n)
R L
(myn-1) (m,n) (m,n+1)
’ / \
En-1 En £n+1

(1) As a first approximation equate each variable at points Rr, L,

and (m+1, n) to the corresponding variable at (m,n); i.e.,

(2) Using a second order approximation to Eq. (31b), solve for

gL and ER .

At ( m+1 m+]) ( )]
&, = & - 5 |\U, 8L, J+\Upt 8.C)) (32)
L L
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o v ‘ ap
(3) Interpolate to obtain estimates for a, @ , 7§§" 8, » etc.

at pointsv_gﬁ and & - The linear approximations are, for example,

oo m ‘(E SR m. L
'QR=Qn_'[+,R"n]’( )

Ag "Qn = On - (33)
and the quadratic expression:
m (g -E) ( moom
- n_ R [
% T 91 —z2m  \91 - 'Q.n-l) |
- | (33p)

(g, - &p) ( mom o .m )
' —_Ezng—f e =yt Gq) -

 The Tinear approximation was often used for two reasons. First, for

supercritical flow, only it truly isolates upstream points from the flow
behavior downstream. Secondly, the secqnd order equation would some-
~times yield negative values for o 1in regions where the cross-sectional
area was undergoing rapid change.

(4) Using the interpolated variables, solve for each variable or
-group of variables needed in the characteristic expressions including
F,H, G, etc. |

(5) By means of the characteristic equation (31a) we can write

the following finite difference approximations, once again of second

order:



-64-

m+1 ( m+1 )
o, = oy F oK, \U o - U,
L L 3
(34)
m+1 Com+l
. 1l H ¢ ¢
P2 (5(:0) +(“8"5> i’(a)n i(a)ﬁ, ar
n ¢ /g
. I

where

m+]
Solving for U, between the rightward and leftward expressions yields

m+] 1 O
U = 2 4n— + KU + KU
n KR+KL ar R R L L
(35)
m+1
H H H G G
<o |2fate) e () () (8, (),
n R L
m+1
Either of Egs. (34) can be used to solve for o, 5 €.9.,
m+1 K, ( m+1 )
% = o expyo \Yy -7 (36)
m+1 m+1
b)) () -(2), -(8)
+ 5 = =] -(Z - At
2 §.C §.C a/, a/,

n L
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Upon completing step (5), the solution either returnsAtO'stépA(Z)
continuing the iterative process, or proceeds to the next computation

at point (n+l1, mtl),

Computations at the Boundaries

At the boundaries the solution takes on a slightly different form.
At the upstream and downstream boundaries, the equations derived earlier
1nvolv1ng flow conditions outs1de of the col1aps1b]e duct are comb1ned

w1th e1ther the 1eftward or r1ghtward runn1ng character1st1c equat1on

Upstream Boundary At the 1n1et (g 0) Eq (10) and one form ofogbﬂ,-'

Eq (31a) are solved s1mu1taneou51y The second of these can be wr1tten

so that ¢ and P are the differential quantities,

8

dQ - AQ'LQ‘O‘B(U-FSC)C[P + a_AL_(Q(H__;_Cig) dT
Ao(0) ¢? Ao (0) &

(37)

4 o dAe(E) = O
Ao (0)

For the purpose of the numerical calculation, Eq. (37) can be expressed

in difference form as

m+]
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where
X ] [(H' acc)mﬂ + 'AG(E)L( L -8 ) ]A
= 5 o - 0.CG — Ho = CcG T
A 2 Cc ] Ao(O) C L
o m+1 ' A
A PN O N | Al
and ,
Y AR ™ k@), (w50
B - 2 e |, | e |,

' - ‘ m+1 _ : m+1
Between Egs. (]0).and (38) we can eliminate By and solve for 9

m+l -1 [p,-p — | 7
= 1 A e 1
9 = ("xB * Xc) [ - kot 9 XA)] (39)
P B
where Xc = co(O)Ao(O)RA/Kp(O) .

m+1
Having obtained an estimate for @, from Eq. (39) we return to
m+1 m+1
Eq. (38) to solve for Py and subsequently, o; . An accurate re-

sult requires one or more iterations.

Downstream Boundary Condition. The flow at & = 1 is governed

by Eqs. (11)-(13) from the previous chapter. These can be converted to

difference form with the following result. Equations (11)-(13) become



- mt] m
m+1 m+1 m+1 Qo ~ &y
pg=‘l = pC = R1Q=] + In At - ‘ + thqu . v (40)
-m . m=1
p -pp = R + L[, —————— 41
c B S °B o At
m+1 1 1 [ m At (Qm+1 m m+1 m
P -P. = ¢ |V + % -1 v Q_;-0Q - Q (42)
c o CV 2 g=1 g=1 "B B
where ce
m At ( i 1 1 i 1-1)
v o= & z 51 - Q- 0 |-
m+1 m+1
With some algebraic manipulation, we can eliminate p and QB
m+1

from these equations resulting in an expression in which Pg_] and
m+1 -

Qg=] are the only unknowns:

m m-1 m m-1
m+1 Q, - Q. Q,-Q
B B _ 1 1 B B
Peg = Pg T Iz ¥ it {pc " Pyt L2 TR
At 1 +
ZRzCV
1 m At [T n:) 1 L 1 m+1
* E“[V * 'Z"(Qgﬂ'qa ﬁ* Rit 3¢ ¥ ¢ Qe
v v, 1
At Ro
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Upon normalization, this becomes

m+1 m+1
Py = X + Xng=] - X5, (43)
where
QU pem—— A 1 p] - pp -V
0ce2(0)B B 1+ LAT o B
2R2CVCQ(O)
AL |, ac (M )
T [V t 3 (Qg=1 %
and Pe has been assumed to be zero.

g=1

o = M@co(0) ), cr |, [2S@

ocg2(1)8 LAt LAT Rz

2
h Up

(1)

- L1co2(0)Ae(0)
X3 - ng‘!
LATpc,2(1)8

L

B
- 2 m m-1

In X;, ¢ has replaced I, Eﬂ—ig%éiigl-(gg - QB ) g%

The additional equation is supplied by the rightward running charac-

teristic expressed in terms of @ and P :
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dg = Ao (8) [-Oi@ (v - 6¢C)dP - (oA + GCCG)dT

Ao(0) L c?
‘ (44)
v dAo(z)}.
Aq(E)
m+1
We can write this equation in difference form and solve for ay
("N" denotes the point at which & = 1):
m+1 A [ _mtl )

where

m+1 |
AE[M(U-GC)“]“ +[£‘-L(—€-)-°i@-(u-ac)]
A, (0)c? ¢ N Ao (0)c? ¢ R

m+1
I = 923- [/_\ﬂ_i_l (ol + accc-')] + [-A—‘ig—l (af + SCCG):] (46)
Ao (0) N ~ Ao (0) R

1 ) Aoy
-3 QN +QR Qnm

m+1
Between Eqs. (43) and (46) we can eliminate D with the result
A .
m+1 X1 + XZ(QR - 'é‘PR - P) - X3 (47)
P = .
" Xzh

1-7
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The calculation of the boundary parameters using Eqs. (46) and (47) is

performed by way of an iterative procedureAto any desired precision.

Initial Condition

The initial condition requires solving for Qi and P€=] in Egs.
(13) and (14), then using these results in a numerical integration of
Eq. (15). We used Simpson's Rule for this purpose which can be expressed,

in this particular case, as

ugn = {QENZ + %%f[W(gN) + 4¢(5N_]) + Zw(EN_Z) + ...
v (45)

Y
o A(E )+ 20(E L)+ AN(E L) * w(an)]}

where

uCe(ey) . _48Pa®  dco(E)

pg,) = X 2
DCoz(En)Aoz(En)an T el ®

n

- 16mcg(0)A,(O)L
D p

In obtaining Eq. (45) we have integrated both sides of Eq. (15) (the left
hand side exactly) between & = gN and & = gn and have expressed the
integral containing the unknown functions of & 1in terms of its numeri-
cal approximation.

The next chapter describes an alternate procedure, that of finite

differences.
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_ CHAPTER VI:
SOLUTION BY THE METHOD OF FINITE DIFFERENCES

Lo The.set of equations derived in Chapter III are hyperbolic and, as
such, iheir solution may give rise to shock-like discontinuities in the
flow field such as are commonly found in the analogous situation of one-
dimensional flow of a compressible fluid in a duct of varying cross-

sectional area. If the characteristic method described in the previous

- chépter'is*uéed to obtain the solution, and if the solution tendsvtoward

",'._theldéveldpment'of a_flow discontinuity (which is characterized hy many

- ,: FhaT§Cferistic’curves of the same family coalescing) large errors will

fesu]t and, by experience, the solution will go unstable.
1“,¢{;Two reasons can be given for,the failure of the numerical calcula-
' ff6h'using thé métﬁod of characteristics. First, in the solution method
described in Chapter V, the results are obtained at fixed grid points
and the possibility exists of integrating along a characteristic curve
which passes through a discontinuity of the type described above. Right
at the discontinuity,the slope of the characteristic curve changes abrupt-
ly, but the difference equations use a slope which is estimated as the
average of the slopes evaluated at the two endpoints of the curve. Thus
the integration is subject to considerable error.

Secondly, an error can result at the point of smooth transition
from super- to subcritical flow, should it exist. Close to the transi-
tion point, u approaches c¢ and the slope of the leftward running

characteristic (dt/dx = 1/u-c) approaches infinity. Within practical
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Timitations oﬁ grid size, the difference equations will not be able to
follow fhe exact nature of these upstréam’running»characteristics.
'Agaih,'the averaging features of the computational procedure produce
'increasinjly large errors as the slope of the curvé approaches infinity.
The traditional procedure used to circumvenf the first of the two.
probiems mentioned above is called shock fifting: Basically, this in-
volves computing up to the shock from both sides using the characteris-
tic equations following along characteristic curves. The equationé
- across tﬁe.shock (ca]]ed‘the Rankine—Hugoniot Jump conditions) are de-

- términedfby satisfying the réquirements'of maSs, momehtum, and energy

o ¢ohservétion, :Neéd1ess_to say, this method can be extremely cumbersome

and is pkoné‘to stability problems particularly in the'cése of embedded
shocks which_arise at later times in the solution. |
-KI“7Thé othér'méthodSIQSed in gas dynamics’to compute conditions écross
a shock wave involve the use of the difference equations corresponding
directly to Eqs. (6) and (7) of the earlier %ormulation. These methods
can be divided into two batégories:

(1) pseudo-viscosity methods;**

(2)‘ conservation-law formulations."S

In Case (1), an artificial dissipative mechanism is introduced to
the governing equations which becomes large only in instances where a
.shock would develop. The resulting dissipation tends to "smear" the
shock, generally over 3 or 4 grid spacings, and allows the use of the
difference equations straight through the transition zone.

The second case effectively introduces the Rankine—Hugoniot_jump



-73-

conditions into the solution scheme automatically. Using what is called
the conservation-law form of the gover'm'ng-equatioms,“s the requirements
of mass, momentum, and energy conservation are incorporated directly
into the corresponding difference equations.

In spite of the numerous similarities, there are significant differ-
ences between the flow of a compressible fluid and the fluid flow in a
collapsible tube in the immediate region of an actual discontinuity, and
these differences should be reflected in the numerical procedure. In
gas dynamics, the shock wave is very nearly a true discontinuity, having
a thickness on the order of the mean free path. Viscous dissipation pre-
vents the shock from narrowing further, giving rise to an increase in
entropy across the shock. In collapsible tube flow, the numerical dis-
continuity is smeared over a much larger distance, primarily due to two
effects. These are:

(i) When flow passes from a region of small to large cross-sectional
area boundary layer separation occurs and, as a result, dissi-
pation in the form of head loss is observed.

(ii) The tube itself, due to its structural integrity, cannot phy-
sically undergo a step change in area. The combined effects
of tube tension and longitudinal bending moments tend to in-
duce an effective pressure which acts to smooth‘out the sharply
defined transition zone of the shock.

Of these two shock spreading mechanisms, only the first affects the
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mass and momentum conser?ation equations in any way.* If the dissipaQ
tion associated with flow separation is accounted for in our governing
equations and if we use the conservation law form, then the basic phy-
sical requirements are satisfied. In terms of the numerical procedure
the important point is this: 1if we can obtain a stable solution through
the region of difficulty using the conservation equations, then the solu-
tion on one side must be consistent with the solution on the other based
on the physical requirements of mass and momentum conservation. In our
solution, any possible discontinuities are spread out mainly by the
averagihg of the numerical procedure. Trial-and-error led us to the
particular computational scheme which provided stable, consistent solu-
‘tions with the aid of this numerical averaging.’ The details of this

method are described in what follows.

The Governing Equations in Conservation-Law Form

The governing equations, since they include a term for wall shear
stress, cannot be expressed in true conservation-law form, which would
be:

Y

O /7y =
'é:-{‘i'-e"é'F(U) = 0

They can, however, be expressed in a form such that if 7 = 0 , the

*Tube tension effects may produce locally significant effects but it
should not alter the conditions on the two sides of the shock as in
the case of flow separation.



-75-

equations reduce to the form shown above. If Egqs. (6) and (7) are writ-

ten in this manner, we obtain

3 3 .=
'5? + 'a'gF(ﬁ) = =K ) (46)

where

K P+
_U_2_+KP pe

pco?(0)

1

F(U)

L Ao(E)Ua

Ce(E)F

i
1

L
L co(0)

-Q

.

In the absence of dissipation and fluid influx along the tube, the two
quantities contained in F are exactly conserved in the real flow sys-
tem. We can easily show that integration of Eq. (46) between points
n-1 and n+1 yields a difference equation with the exception of an

integral containing the time-derivative and X ,
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¥

n+1

d = | i,

(2 + Z)ar + Fyy - Foy = 0 . (47)
-1

n

If we approximate the integral by
W, =
2A€('§€+K)n .

and replace the time-derivative by the appropriate two-level difference
~ form, we have a difference expression that could be used in place of the

previously derived characteristic equations.

Losses at an Abrupt Change in Cross-Sectional Area

We have not yet introduced the losses associated with an abrupt
change in duct area. To do so, we must examine the integrated momentum
conéervation law more closely. If we perform this integration across
the transition zone between the points of minimum and maximum cross-

sectional area, we obtain an expression analogous to (7):

2
/[%Z— + cga)zr]mz + %0 - 1)
1

(48)

K P+ K P+
P L I LYY

pco?(0) pco?(0)
2

|
[ew]

1



Here, the subscripts refer to the point of minimum (1) and maximum (2)
cross-sectional area.

We can compare the above eXpression to the result for steady, fric-
tionless flow of an incompressible fluid across an abrupt change in
cross-sectional area in which the area increases in the direction of

flow. The result, expressed in terms of normalized quantities, is

[KPP tpg t %pcoz(O)Uz] \ [KPP tpg t aspcoz(O)vz] .

(49)

2 Ao a4
- Bpc*(0)uy? |1 - ——
) ’ Ao Cla
2
In physical terms, the RHS is the head loss due to incomplete pressure
recovery across the expansion.

We can incorporate these losses into the present analysis simply

by rewriting Eq. (48) as

2
f[%%+ cf(s)F] €+ L (0% - 0,?)
1

(50)
XK p+ K P+
. p Pe i p Pe -0
pco?(0) 0co2(0)
where

Ay a; \ 2

- UZZ - }\U12 - - . 01 1
Y = -’——'——"'Uzz - U12 }\ = 1 (1 R———ozaz s
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or ( A0a1>2
. 1 - —t— 1}
. ‘ Ag az
\ 2
Us 2
1-(U1)

where we neglect the error in Eq. (51) in assuming the flow to be steady.

Defining vy 1in this way, although the point-to-point calculation
within the transition is not strictly correct, we should obtain a con-
sistent result on both sides of the expansion which is independent of
- the grid size. In rea]ity, the process of boundary layer separation
and reattachment would occur over a relatively long distance and thé
results which we have used in the derivation of Eq. (50) would apply
strictly only for large control volumes. For the purpose of this analy-
sis, however, we feel that it is sufficient to model the separation mech-
anism in such a way that the variables at the boundaries of the transi-
tion zone are essentially correct even though the details of the transi-

tion structure may not be.

Computational Procedure

The difference form for these equations has been set forth in the
previous discussion and are written below in the general form used for

the numerical solution procedure:
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m+1 m

- + 2 271
Un Un + X [(Um 1 ) - (Um+]) }
At 4AE n+1 n-1

(51a)
m+1 m+1
K P+ K.P +. m+1
+22vz[p Pe] [ Pe] L
OCoz(O) 0002(0) - n
n+1 n—l.
m+1 m
L L Lol - (e,
+ ' 3 LAe (&) TUa - LAo(E)To
(51b)
- Q —-—-——.—]:——-———- = 0 .

b co (00 (E)

The above formulation is implicit and requires an iterative method.
The procedure found to be stable and convergent involves solving the two
Eqs. (51) at alternate points and performing three iterations. Values
for o at points where (51a) is used and values for U where (51b) is
used are obtained by linear interpolation. For points within the tran-
sition zone, vy takes on the value given in Eq. (50) and elsewhere is
equal to unity.

In principle, there is no reason why the characteristic equations
need be used at all since Egs. (51) are valid throughout the collapsible
tube. We have, in fact, obtained solutions using Eqs. (51) exclusively.

The solution obtained in this way exhibits considerable error in the
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region of supercritical flow which can be attributed to either a numeri-
cal instability or lack of convergence ofithe equatiohs. To eliminate
these oscillations, we use a combination of the procedures described in
this chapter and in Chapter V. The collapsible tube is divided into two
regions separated by the point of minimum cross-sectional area. The
variables at all points upstream are computed using the characteristic
equations; the variables at downstream points are computed using Egs.
(51) by means of the alternate point iterative method described above.
A complete listing of the program, written in FORTRAN IV, can be found
in Appendix C. o

The program is divided into three pafts: 'the,main program and two
subrdutines. It incorporates all the genéralities described in the theory
requiring as input the spatial distributions of Ao , co , QL > Po o and
Cf in addition to the tube law and all the parameters of the two boun-
dary conditions. The output is selectively printed out and stored in
a disk data set for later retrieval and subsequent plotting. Included
in the Appendix are alternate forms of certain parts of the program which
apply to either the laboratory experiments or the venous system. Aside
from these modifications, the solution is entireiy general and requires
only the appropriate input parameters to model any system of collapsible
vessels with a wide range of admissible boundary conditions.

There is one limitation, however, on the conditions in which this
solution procedure yields valid results. Under normal conditions a
pressure is app]ied externally to a portion of the collapsible tube,

and is maintained until the end of the calculation. During this time,
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the only disturbances which propagate in the upstream direction toward
~ the compressed zoﬁe are relatively small amplitude waves reflectéd from
the downstream boundary. Under these conditions, the upstream propagat-
ing disturbances have little effect on the conditions at the throat .of
the tube and the solution procedure behaves predictably and correctly.
If, however, the downstream end of the tube were suddenly blocked,
causing a strong compression wave to propagate upstream and if at the
time this wave reached the throat the flow was supercritical, then the
"‘humerical solution would yield unreaiiétic results. The EompkessiOn_;:‘
wave would ndt cause the "shock" to move upstream and eventually dis-
"appear-as-one would expect. "The reason fdr'tﬁis lies in the method of ot
computation at the-boundary between the two solution methods. Up to and
:'° inc1uding the point of minimum area, calculations are made by using ther -
chafacteristic equatibns which, in the'case of supeftritical flow, aré
approximated by one-sided difference equations. Changes in the para-
meters at downstream points should not and cannot affect the solution
computed in this region.

What the numerical procedure lacks is a means of moving the transi-
tion zone or "shock" in the upstream direction. Therefore, although a
strong compression wave would, in reality, decelerate the flow by pushing
the shock further and further upstream, the numerical solution upstream
would not change. In gas dynamic ca]cu]ationé,'the motion of the shock
is normally predicted, in the case of shock fitting, by computing the
shock location using both up- and downstream conditions and in the case

of finite difference methods, by using two-sided difference equations in
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the entire flow field. Qur hybrid method does not include either of
these‘mechanismé and as a result cannot account for upstream motion of
the shock. |

Norma]]y, however, our procedure works perfectly we]l for the fol-
lowing reason. Due to the form of the tube law, the transition from
| super- to subcritical flow must occur at the point where the tube goes
from a collapsed to an open configuration. This can only happen at the
end of the compression zone, a point which, in all our'calculations, is
either stationary or moves downstream—-never upstream Therefore even
if the shock does become effectively "frozen" at’ one po1nt in the tube
due to the so]ut1on procedure, the point at which. 1t,freezes cannot be
far from the actual transition point and the overall solution is rela-
t1ve1y unaffected. |

The poss1b111ty does ex1st for the flow to remain supercr1t1ca1
somewhat longer in the numerical solution than in the real case. We
can, in fact, observe a slight "glitch" in the solution when the minimum
area point does finally go subcritical. This disturbance, though, quickly
disappears ‘and does not cause any significant change in the behavior of

the tube at other points.
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CHAPTER VII:
SCALING PARAMETERS

7 The scaling parameters of a particular system are generally used
to develop a prototype or scaled model of the real system. If all the
scaling parameters can be matched between the real and modeled systems,
then the normalized test results from the prototype experiment can be
used to predict the behavior of the real system.

| _,f ﬁue to the-;omplexity of the venous network, it is not practical
 td:cpnstcht a true scale modeT in the 1aboratbry. The scaling pard-
meters,cén, hbwéver, be useful for deriviﬁg_an appropriate model which

Cah'be.simulated on the computer as will be shown in this chapter.

.\A°DeSijption of the Dimensionless Groups

In Chapter IV we derived a complete set of normalized equations
and boundary conditions for flow in a single collapsible tube. The
results of this analysis are expressed in Egqs. (6)-(12), which are all
in normalized form. In addition, we must include the numerous expres-
sions which define F under the variety of possible flow conditions
[Eqs. (12-(21), (24), (26), (27)]. By inspection of these equations

we find that the relevant dimensionless groups are:

6 . B : 1 dCO(é)‘ . __]___a_p_e__
colg) % pco2(0) %%
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.i.

CelEuL . NG
0¢ (0)Aq () Ao(g) 9
ocf0)Cy, P Pe(1)  Pa = Pe0)  RyA2(0)

MOl pa2(0) T co(0M(0)R, T Ce(0) L

L]AQEO) LA(0) . RiA2(0) . RpA.2(0)
P oL ’ ‘

Ce(0)uL ’ Ce(0JuL

If we were to construct a properly scaled model of a particular system'
the parameters of the modeled system would have to be such that when
‘combined into the above groups, each would equal‘its counterpart in}the
real system. Each of these groups which results from normalization of
’a boundary conditidn provides a means of determining one of the boundary
parameters of the scaled system. These parameters are: pA-pe(O) 3 Ry 3
Cy > Rt s R2 » L1 » L, , and Pg-Pe(1) -

The rémaining dimensionless groups describe the collapsible tube.
Similarity of the second term, 8 , is assured if we assume that there
exists one universal P-a Taw which is applicable along the entire length
of both collapsible segments. Proper scaling of the first, third, and
sixth groups requires that Aq(£) and co(Z) be identical functions of

£ for both the model and the modeled system.

The two remaining groups,

1nLaminar flow only.
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1 3pe and Cf(E)uL
—— e n —— e
0co2(0) %% 0co (0)A (£)

pertain_to the flow in the collapsible tube itself and w111 help us
later to deterﬁine the criteria for modeling-a system of branching
vessels by a single tube.

An example will help to illustrate the implications of the scaling
analysis. Presumably we can model a single venous segment by a single
length of uﬁiform collapsible tube with an appropriate choice of condi-
~tions éf the boundaries of the ves;eT. If the value of each individual
parametéf which cbrrespoﬁds to thét of the actua1 venoué}system is de- |
 n6ted by 5ubstript “v” and that of the model by subscript "m," then wé
would expect the laws of similarity to hold if I, = o where 1 repre-

sents any one of the dimensionless groups. If the dimensional para-
‘meteré.of the model are chosen SO as to'satisfy these criteria then
each of the normalized variables (P, U, a, and ¢) will be identical
functions of dimensionless time and distance for the two systems. This
is essentially the approach taken, as much as possible, in the design
of the flow experiments (see Chapter IX).

The dimensionless groups listed above have further significance
with respect to the problem of modeling a collection of branching ves-

sels by a single tube. This problem is taken up in the next section.

A Single Tube Model for a Branching Network of Tubes

In the representation we have adopted, the system of veins in the

leg is modeled by a single length of collapsible tubing. The following
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discussion will provide the rationale for such a model based on the pre-

vious results.

The system to be modeled is shown in schematic form below:

tributaries

fOOt, deep veins knee hip

of calf

A11 branches of the deep venous system of the calf (really all vessels
which drain through the popliteal vein) are included explicitly in the
model. Those vessels which merge with the popliteal (or femoral) vein
at points proximal to the knee are included only in terms of the effect
they exert on flow in the vessel downstream of the junction.

To illustrate the relationship of this system to a single tube repre-
sentation we first consider a junction of two vessels at a point distal

to the knee.

Vessel Junction Within the Calf. The objective of this analysis

is to determine the characteristics of a single tube of unstressed cross-
sectional area, Aos(g) which, in terms of the flow into the vessel down-

stream of a junction, is identical to the two-vessel system. The model
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and modeled system are sketched below:

AOB(E) AOB(E)

AOB(E) |

I

Aoc(E)
g

s

[AOB(E) is the Qnstressed areé~of the main vessel. The tributaries are
of equa1 unstressed area, A@B(s).] The dissimilarities in flow at the» _.
juncfion due to the‘merging of the two tributary flows are negTected in
this one-dimensional model. We define our requirements for equivalency
}»'of these two systems by‘stfpulating that, at any point & upstream of
the junction, all variables [u, p, A (in this case the total vessel area
at the point g, A = ZAB), and c] for the model are equal to their counter-
part in the modeled system and that mass continuity is satisfied across
the junction. These criteria are satisfied if (i) all thé scaling para-
meters are equal; and (ii) if the normalizing quantities [i.e., co(E),
pco2(&8)s Ag(E), and L] are equal. (This is not a “"scaled" system in
the true sense of the word since our intent is to produce a single tube
model which is exactly equivalent to the multiple tube arrangement.)
Actually, only those sca]ing parameters involving the internal flow
equations are relevant to the present argument. Those dimensionless

groups dealing with the boundary conditions will again only be used in
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i determining the appropriate sca]ing of the boundary conditions.
Now we are in a position to define the equivalent System All the_
cr1ter1a for equ1va1ency are sat1sf1ed by the fo]]ow1ng re]at1onsh1ps |

A__upstream of the Junct1on

Cos(g) = CoB(E) H pCosz(E) N DCoBz(g) H

' .AOS(g) = ZAOB(E) H LS = LB : BS = BB | (52)
(ap) (ape) T 1 [ w1
% %78 7 |eco(0Aa(e) [ [ oco(0)As(E) |5

We f1nd that an equ1va1ent single tube mode] 1s one wh1ch is 1dent1-

?*"ffcal in-all respects to the individual branch tubes with two exceptions:

The extension of this result to numerous bifurcations is obvious.
The friction coefficient must double at each bifurcation and the un-
stressed cross-sectional area of the single tube model at any point £
must equa]rthe sum of the unstressed cross-sectional areas of all the
branch vessels at the same point £ 1in the real venoué system. This
is equivalent to saying that if "n" is the number of bifurcations en-
countered traveling upstream from the knee joint at a distance & 1in

the venous tree, then

Rogle) = 2" Aegle) et Co(e) = 2o () . ()
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Intuition confirms that Cf (which can be thought of as a measure
of the magnitude of viscous effects) must increase in the single tube
model as compared to the branching system in order for the pressure drop
per unit distance to remain the same. This is to say that if a two-
vessel system having the same cross-sectional area and total flow rate
as a single tube is to have thé same pressure drop, the viscosity in the
single tube must be twice as large as in the two-branch system.

The weakest of the several assumptions made for this analysis is
that of symmetry of the branching system. As will become evident in
Chapter XI, the popliteal vein, upon entering‘the calf, divides into
several long, straight conduits which extend to the ankle. In a circuit
parallel to these main vessels and concentrated in the upper muscular
part of the calf are a tangled mass of vessels of varying stiffness and
diameter. Although we can extract very little quantitative information
from the literature concerning the exact nature of these vessels, we would
expect them to differ from the more direct vessels. This discrepancy will

be discussed in Chapter XII.

The Effect of Junctions Proximal to the Calf. In determining the

properties of our equivalent single tube model which allow us to mimic
the effect of flow tributaries that are not implicitly included in the
model we must, at the onset, make a reasonable assumption about the flow
from each tributary. The first few junctions which are encountered pro-
gressing proximally from the knee are with vessels which primarily drain

the Tower leg and are either superficial veins (external and internal
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saphenous) or are small deep veins (gastroenemeus). Because of the com-
pression, tﬁese vessels will exhibit a time varying flow rate but of a
much smaller amplitude owing either to their origin (superficial veins)
or their size. For this reason, we have chosen to model their effect
purely in terms of a leakage flow rate which is a function of £ but
independent of time. This leakage flow, QL » was recognized in Chapter
IV in the writing of the mass conservation equation. As more is learned
concerning the exact nature of flow in these tributaries, we may choose
to introduce it as a function of time as well but, for the present, we
’, leave it as a function of & only. |

This’relates to our model in the following way. Since no sca]ing |
is involved, all parameters of the vessel proximal to the knee have the
~same value as the main vessel which, in our case, is the popliteal, femo-
~ral, and iliac veins, as you proceed from the knee to the thigh. Cf ;
then, has a value of unity throughout this part of the system and A°S =

AOBA.
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| CHAPTER VIII:
STRUCTURAL PROPERTIES OF THE TUBE

The formulation of theproblem of unsteady flow in a collapsible-
distensible tube found in Chapter IV was complete in all but one respect:
the form of fhe constitutive expression or "tube law" relating transmu-
ral pressure to normalized area. In this chapter we will compiete that
analysis by providing a theoretical background for predicting the func-
tional dependence indicated in Eq. (9). To accomplish this we define

~two distinct phases of tube inflation which are discussed separately be-

Tow.

The Inflated or Distended Tube

The tube law for the inflated tube is based on several assumptions

which combine to make the analysis relatively straightforward. These

are:

L

the cross-section of the tube is circular
. the vessel is thin-walled (h/R << 1)

« the vessel wall is uniform and isotropic
» viscoelastic effects are ignored

+ either longitudinal tension or total length
are constant

+ inertial effects are neglected

+ the bulk modulus, K , and Young's modulus, E , are both much
greater than the transmural pressure, Pip

« E is not a function of Py

+ the surrounding medium exerts negligible radial force on the tube.
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The validity of these assumptions will be discussed in conjunction with
the similar set of assumptions given Iatef for the collapsed tube.

With acceptance of these conditions we can proceed as many others
have to derive the constitutive law for the range of positive transmural
pressures for which the assumptions are valid. Using Laplace's law to
relate the hoop stress in the wall to the transmural pressure, Pip » We

can derive an expression relating normalized area to Pep (for small

values of Zptrr°/Etanh°):
-1
2p )
- A tr ro
@ = ——— = (] - — R (54)
Ao(E) ( CBganho/

where the subscripts refer to the unstressed or resting state of the tube

and E ié the Young's modulus in the tangential direction. Another

tan
result of this analysis is an expression for wave speed:

5

E
= tan hg )
c ( %0 T , (55)

which is often referred to as the Moens-Kortweig Equation. For addi-
tional information concerning the derivation of these expressions, the
reader is reffered to one of a number of papers and texts covering

arterial wall mechanical (e.g., McDonald*? or Strandness and Sumner“8).
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The Fully or Partially Collapsed Tube

In the range of pressures for which the tube is either fully or
partially collapsed one must, again, make several simplifying assump-
tions which can later be verified either by direct observation or in-
directly as in the case of experimental verification of results obtained
using a particu1ar model. The assumptions are, in some ways, quite dif-
ferent for a collapsed tube and, és a result, the analysis too must dif-
fer from that followed for the distended tube. The shape of the tube
cross-section varies and the nature of wall stresses have shifted from

“tension to primarily bending. Because of possible non-uniform wall
composition, the effective Young's modulus for bending may differ from.
that in the previous analysis and will be referred to as Epend (Think
for example of a sheet comprised of laminates of different materials.)
Due to these and other differences between the two models, we must now
require for the purpose of constructing a theoretical model, that:

« the vessel wall be inextensible (i.e., E

R

©);

tan

h/D << 1 ;

A= A(ptr’ x) alone;

. Ebend be independent of Pip

the tube environment have no effect on the tube law.

Theoretica] Description. The methods used for determining the con-

stitutive law for collapsed states rely on the equations of equilibrium

for a small element of tube wall acted upon by a transmural pressure,
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tension (T), shear (N) and bending moments (M) as illustrated in the

figure.

S
M oM
M+ Ty ds
| 3N
\‘& \ N+5—S-ds
1.)2////’ N ‘\\\\ k~\\\\s\ )
T+-§§d3

\kff"de

We arrive at the following set of equations from force and moment

equilibrium conditions:

dive

an=0 b gsx - gew v P =0
_ dT* o _ |
Sro=0 ; e - (56)

- . dMx -
ZM—O,dS*+N*-O
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In addition, we have the constitutive relation,

do _ (do
M*+————-(-———) =0 (57)
ds* ds*/ p-g

where the normalized variables denoted by the asterisk are defined

below:
p
Pz ™ = L ; e =z N
EI/R? EI/R? EI/R?
(58)
s+ = 2 wo= M
R EI/R

The boundary conditions on one quadrant of the tube depend upon whether
or not the tube walls are in contact at s = w/2 . Referring to the

fo]lowing diagram, we can state the boundary conditions for each case

as follows.

y
=T
S=73
9
/s
X
s=0
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Case I. Tube walls not in contact

S ER

)_

N*(0) -0 . ,N*(%)

6(0) =0 , e(

) N =3

- (59)

. .
These last two conditions are based on the necessary condition

that N* be continuous at s =0 and s = 1/2 . Using Eq. (4d) and

the symmetry assumption, we see that N* must be zero at these two

“points.

 'Case_II., Tube walls in boint'contact_

(@ =0 . o(3) -
S (60)
N(0) =0, T*(F) = o -

The fourth condition has changed because N* can now be discon-
tinuous at s = w/2 but, based on the equilibrium of one half of the

- tube, T* must be zero.

Case III. Tube walls in line contact

8(0)

0 ., e(sc)

B

(61)
N*(0)

1]
o

where S¢ is the value of s at which contact first occurs. This case

can be shown to satisfy a similarity solution which, given a solution
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at one pressure, permits us to determine all other solutions satisfying

these same boundary conditions.

A Similarity Solution for Collapsed States. To illustrate the

existence of a similarity solution, we first replace s by s in the

governing equationé where s = s/sc » S0 that the boundary conditions
become
8(0) =0 , 8(1) = 3
(62)
N*(0) =0 , T*(1) = 0

Assume then that we know one solution at P = Ps which satisfies the
equations and boundary conditions and that this solution is given by

N(s), T(s), 8(s), and M(s) . If we then introduce the following variable

transformation,
N7 (s1) = (p/p)'"* N(s)
Tr(s’) = (p/P)*"? T(s)
0'(s’) = 8(s) (63)
st = (PS/P)"3'§
Mr(s") = (p/B)*'* W(s)

into the governing equations, we find that N’, T', ... M’ 1is also a
solution. In this manner all solutions satisfying the equations and

boundary conditions for Case III can be found, thus proving the existence
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of a similarity solution. A consequence of this result is that we can

express the cross-sectional area as
- 2/3 -
A = As(Ps/P)H . (64)

This same result can be reached through dimensional arguments. If the
wall thickness is small compared with the Tocal radius of wall curvature
RC , and since the boundary of the problem is located at S¢ which can-
not be related to the original perimeter, then we can say there is no
characteristic 1ength.‘ The radius of curvature at any point must then
depend on the two dimenéiona] qualitites, EI (the tube stiffness) and
Pip . Accordingly, we can say that

R, = fn(EI, ptr) . » (65)

The physical dimensions of each term are given below:

[RJ = L
[E1] = FL
[py ] = FL7Z

The only possible combination of these terms which satisfies the

above functional relationship is an expression for the wall curvature:

EI 1/3
R. = constant x . (66)
. ¢ “Per

As this expression can be written for each point along the tube (with

different constants), the cross-sectional area can be shown to vary as
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Rc2 : hence,

V 2/3
A = constant x (:7——-) . . (67)

This result can be directly compared with Eq. (64) derived on the basis

of the governing equations.

Numerical Solutions. The problem remains, however, both of obtain-
ing the solution we assumed known in this analysis and of obtaining solu-
tions for Cases I and II for which no similarity solution exists. This
problem has been solved numerically in various degrees by Tadjbakhsh and
'Odeh,“g Flaherty, Keller, and Rubinow,*? and Kresh and Noordergraaf.S3°
0f these, the paper by Flaherty et al. provides the most complete analy-
sis of tubes which are circular in their initial state. Their results

are shown on Figs. 7 and 8 by the Tine labeled "theory" in the form of
| a plot between normalized area and normalized transmural pressure. The
work of Kresch and Noordergraaf considers the effect of initially non-
circular tubes, but their analysis is incorrect for configurations in
which the opposing walls are in contact. Their error results from neg-
lecting to take into account the normal forces exerted on the interface
between the two walls. The numerical methods were similar in each case
and if interested the reader should look to these references for more
details. In addition to computing the shapes of the partially collapsed
cross-sections, Flaherty et al. also solved for the velocity profiles

within the vessel assuming fully developed laminar flow. These results
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were used in our study to estimate the flow resistance term for Poise-

uille flow in a collapsed tube [see Eq. (21)].

Limitations of the Theoretical Description

But, as noted already, numerous assumptions have been made in arriv-
ing at these results and we should investigate these in a more critical

manner before blindly applying them to veins.

The Effect of Muscular Tissue. One glaring omission is the neglect
in fhe model of any effect of the éxterna] muscular tissue whfch surrounds
a]l,deép veins of the calf. Intuitively, we might expect the tissue to
have greatest influence in the portion of the P-o curve where large
 changes in shape occur over relatively small changes in transmural pres-
sufe. Although an exact analysis has not been performed and would be ex-
tremely difficult, we can get some idea of the order of magnitude of
tissue effects by considering the following example.

Assume that the tissue-surrounded vein can be modeled as a small
diameter circular hole in a large cylindrical body. This problem is
analyzed in any of a number of texts on structural mechanics (e.g.,
Timoshenko®'). Following their methods, we consider the deflection,
due to a pressure difference between the inside (pi) and the outside

(po) of the cylinder:
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Radial deflection is denoted by u , the Young's modulus by E , and
Poisson's ratio by u . Using the basic equilibrium equations, one

can solve for u(r) with the result given below:

a’p; - b%p gy @2b2(ps - p)
u(r). = 1Eu i 0. % 1Eu i 0 (68)
b? - a? (b2 = a?)r
By assumption, a << b , giving
ur) = LzBoe(p) + Lima o p) (69)
E Po E r ‘P T PR -
Evaluating the deflection at r = a , we have
= 2 -
wa) = [ - 3] (70)

R

For human tissue, p = 0.5 and, as a rough estimate, we can say that

2p
u(a) ~ tr
= . (71)

This result pertains to the deflections associated with a symmetric
hole, i.e., the hole does not change geometry. But, for an order of
magnitude estimate of the pressures required to collapse the vessel, we
can assume that, in going from the circular to collapsed state, u = a/2
and the required transmural pressure associated with this shape change

can be estimated as indicated above and given by
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- E ;
Ptp = 7 > for collapse.

In other words, tissue with‘a Young's modulus of }E =6 x 10* ctzl,ynes./c:ml2
would prevent co11apse.for transmural presshres 1ess.thah approximate1yv
1.5 x 10* dynes/cn? or, Py, = 11 mm Hg. In Chapter XI in which we estab-
lish the tube law used for the venous calculations we will see that the
magnitude of the tissue influence is, indeed, a significant factor in
this range of pressures.

- When the vesse1 is either distended or fu11y co]1apsed however, it

. can be shown by 51m11ar estimates that the t1ssue w111 exert a much sma]]erf7'~‘“A

bhrelat1ve effect due to the steeper s]ope of the P-g, 1aw for the tube

alone. This will be shown more clearly in Chapter XI. In this later

d1scuss1on the tissue is cons1dered to be the dom1nant 1nf1uence 1n the

C°1]aPS1n9 region while the tube walls themselves provide the observed PN

stlffness in other regions. Thus, in this intermediate zone, the slope
of the pressure-area law will be no Tess than the Timit established here,
or

dptr 3 E

dA 4A
It should be noted that, in all arterial studies, the effect of surround-
ing tissue has been entirely neglected. According to our estimates, this
oversight is entirely justified as long as the transmural pressures are

great enought to insure that the vessels remain fiT]ed by pressures well

into the distended range.
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Viscoelasticity. A second possible influence which deserves con-

sideration is that of viscoelasticity. This topic has received consi-
derable attention in the literature on arterial hemodynamics and is re-
viewed in most of the recent texts (e.g., McDonald"?). In the analysis
of wall viscosity effects, one approach is to divide the effective
Young's’modu1us into two parts, one real and the other imaginary. The

real part, called Edy

and is what we generally think of as the Young's modulus. The imaginary

n is due to the spring-like nature of the walls

part, nw , is a retarding force exerted as a result of viscous effects
within the vessel wall itself where n is the coefficient of viscosity

and w 1is the radian frequency. It follows then that

| 5
= 2 2
Eerr = [Edy,, + (nw) J : (72)

and, as a consequence in this model, the faster a tube is either inflated
or deflated, the stiffer it will seem. The value of the viscous compo-
nents has been measured in arteries by Gow and Taylor®2? and Bergel®?
and was found to be approximately 9 to 12 percent of the dynamic compo-
nent for frequencies in the range of the arterial pulse (1-10 Hz).
Because the veins are generally thinner-walled vessels than arter-
ies and because the range of frequencies of interest in our study is
probably much Tower than 10 Hz, we feel justified in neglecting the
viscoelasticity of the venous wall. Additionally, the primary impor-
tance of viscous effects is in their influence on the damping of propa-

gating waves, an effect which has 1ittle significance in the general
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trends looked for in our study.

There is, however, one possible excebtion to the argument for neg-
lecting viscous effects. That is in the intermediate region of'c011apse
where large déf]ections occur in the muscular tissue as previously noted.
As this collapse is made to occur more and more rapidly (which is one of
the goals of this investigation) viscous effects associated with muscular
tissue might become a significant factor, and one which we should
attempt to estimate.

A formulation for the effective modulus similar to that expressed
in Eq. (72) was derived for muscular tissue with accompanying expérimen—
tal measurements by von Gierke et aZ.°* Their reSu]ts yie]ded values

for E of ~ 3 x 10* dynes/cm® and for n of ~ 150 dynes/cm?.

dyn
Again, for frequencies less than ~ 10 Hz,_the viscous effects account
for less than 1/3 of the effective modUius. Clearly, if'the freuqehéies
encountered in the calculation of vessel collapse exceed 10 Hz, visco-
elasticity will become important and the'type of analysis will have to
undergo the necessary modifications. One of these modifications lies

in the basic nature of the computer simulation. Introducing viscoelas-
ticity changes the equations from hyperbolic to'parabolic as noted by
Kivity et al.%® Methods such as the Lax-Wendroff method can be used to

solve a system of parabolic equations and would be the method of choice

if viscoelasticity were added to our analysis.

Longitudinal Tension. A final comment should be made concerning

the effect of longitudinal tension. Tension was not included in our
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- model for several reasons. First, we were unable to find any informa-

tion in the Titerature concerning the degree of venous tension in vivo
other than an occasional comment concerning its existence. Secondly,
we should be able to predict what effect, if any, longitudinal tehsion L
might have.
in a uniformly collapsing vessel, the effect would be exhibited

only in terms of a slight decrease in the wall thickness and, barring

any influence of non-isotropy of the vessel wall, a corresponding de-
| creasevin,stiffness would result. This would be‘most;prQnounced}in the
cp11apsed tube since Kp varies as h® . Thérefore, a smal]'deéréase_A
in h would lead to a considerable increase in vessel comp]fépce.  Hdw{‘
ever, it is in this range of pressures that our knowledge of fhé tfué..
venous characteristics is most incpmp]ete and the corrections duento _
*wall tension would be of Tittle value. o

| The second effect of tension, and probably the most significant,
occurs when the vessel undergoes large area changes over relatively
small distances. An analysis similar to that of a curved membrane acted
upon by tension and a pressure difference would tell us that, where the
wall curvature is positive (i.e., d?r/dx% > 0), tension would exert an
effective positive transmural pressure--a negative pressure being asso-
ciated with negative curvature. To explore the significance of this
effect, we can estimate the magnitude of the effective pressure due to

tension, Py » given a wall tension T and the tube properties and com-

pare it to the applied external pressures. Assuming membrane stresses
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- -.d*r

P =T (73)

for small deflections. Since

2

A = 7r or dA = 2mr dr ,

for nearly circular tubes, Eq. (73) can be rewritten as

Py T—"-(-};M-"—‘-‘-)

R

3 . (74)

As an order of magnitude estimate, if T = Apmv/2wr = g'pmv (where

p is the mean venous pressure), then

myv
o L
~ E[Bl /K ‘dzAz
or
P 5
p, = M g _OA ) (75)
t Zﬂ (Ax)z

And if area changes typically take place over a minimum distance of
four diameters,

~ Py A

= 0.008 . 76
t T ae 0y T Py e

For vessel diameters of approximately 0.7 cm, pt/pe = 0.008(pmv/pe).
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This estimate, although derived by way of very crude approximations,
seems to lend credence to our assumption of negligible wall tension
effects. For some instances in which area changes are found by our |
calculations to be even more abrupt than these estimates or if T were
greater than predicted here, tension would tend to smooth out the area

transition with corresponding changes in the local fluid dynamic pre-

dictions.
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CHAPTER IX:
FLOW EXPERIMENTS

Difficulties in Applying the Scaling Laws_to the Design of the Experiment

Using the scaling laws of Chapter VII we could, in principle, design
a set of properly scaled experiments to determine the nature of flows in
the veins of the lower leg. In attempting to set of these experiments,
however, we encounter a number of practical limitations.

~ The first of these concérnslthe.structuralrproperties of the tube

jtself. The vefn wall has a comp]icéted structure resulting in a highly
non-iostropic behavior and a variable Young's modulus depending on the |
state of tension in the material; Also, there is reason to believe (al-
though this has not yet been observed experimentally) that the modulus
in bending differs from that in tension. Add to this the relatively un-
known influence of the surrounding viscoelastic muscular tissue and you
have an extremely complicated tube behavior, one which would be almost
impossible to mimic in the laboratory with any material other than actual
veins.

Another difficulty is posed by the complexity of the venous network.
Even if the exact geometry of the system could be determined, it would
be a major undertaking to create some sort of an elastic replica of the
interconnecting structure. The model would have to be one continuous
piece completely void of rigid parts because of the nature of wave propa-

gation and vessel collapse at junctions between rigid and compliant tubes.
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This requirement would e1iminaté the possibility of piecing together a
system of individual segments. | |
Finally, we muSt recognize that the different veins vary consider-

ably in wall stiffness and unstressed cross-sectional area. Although
these variations could be approximated by an elastic vessel in which
the wall thickness and cross-sectional area are appropriately varied,
we are not, at present, capable of manufacturing tubes of this type.
Methods are being tested which will eventually allow some flexibility
in producing the desired characteristics, but still not to the extent
‘required for the construction of dn exact scale mOdeI.

~ Because of these practical limitations, we view the fiow'experiménté
primarily as a means of evaluating the computer simulations. Since we
naturally want to conduct experiments which are somewhat representative
of induced venous flows we have chosen the model parameteks to be rough]y
equivalent to their physiological counterparts using the appropriate
scaling laws. And, in the course of experimentation, we have attempted
to bracket the actual physiologic range of parameters. After conducting
these tests, we then perform the corresponding computations and compare
results, 1ookfng primarily for the accurate prediction of general trends.

The results of this comparison are presented in Chapter X.

Description of the Hydraulic Model

We used the hydraulic model shown in Fig. 1. Basiéal]y, it can be

divided into three parts: the test section, upstream components, and
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downstream components.

Upstream Boundary. A high pressure reservoir is located at the
upstream end of the flow circuit which is'kept at a cdnstant pbessure,
approximately equal to the mean artérial pressure. This drains through
a resistive element which represents the resistance of the capillary
bed and arterioles. The combination of these components acts to main-
tain a relatively constant inflow to the test section since the pressure
downstream of the resistance element varies by only a fraction of the

resting Ap even during pressUrization of the test section.

Downstream Boundary. Downstream of the test section are two rigid

ducts separated by a capacitance tank. The tube adjacent to the test
section roughly models the.hesistance and inductance of vessels distal
to the vena cava. The capacitance tank represénts the highly disten-
sible vena cava and empties through the second rigid duct, into a con-

stant pressure reservoir (the right heart in this model).

Test Section. Both the upstream and downstreamAflow components are

designed so as to create the proper physiologic environment for the test
section. The test section is shown in Fig. 2. It contains a single
flexible tube running the entire length of the chamber which is collapsed
by various cycles of external pressure. The chamber itself is divided
into two parts as shown in the diagram. A plastic sieeve runs the Tength

of the upstream chamber which permits the application of external pressure



-111-

over this portion of the collapsible tube alone. By means of this sepa-
ration, the pressure applied in the upstream chamber has Tittle effect
on the pressure in the downstream chamber wh1ch is vented to the out-
S1de . . o . . . L . .

We chose this two-chamber design to reduce the undesirable effects
on the‘flow of the downstream rigid support. A set of preliminary experi-
ments were conducted with this same system but without the two-chamber
test section. The flow was observed to be highly osci]latory'and largely
governed by<the downstream parameters and the nature of the point of
attachment between the rig1d and collapsing tubes. As this means of
support is h1gh1y'non phys1o]og1c, we sought another conf1gurat1on wh1chh
minimized the 1nf1uence of this art1fact. The 1ntroduct10ntyfa pressur-
1z1ng sleeve removed the attachment po1nt from the pressurized zone and,
although it did not e11m1nate the effect of reflections from the rigid
tube, the effect on flow inside the collapsing portion of the tube was
minimized.

There are, however, two possible drawbacks with this method of
pressure application. The plastic sleeve, due to its own structural in-

tegrity,}cannot apply a perfectly uniform pressure around the circumfer-
| ence of the vessel. In regions where the plastic makes sharp bends in
order to follow the contour of the tube, the plastic might actua]]y de-

part from the tube as shown in the sketch.

Tatex.tube

separated
region

pressur1z1ng
sleeve
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In these experiments the resulting non-uniformities in the circumferen-
tial pressure distribution are kept small by using a very flexible, thin-
walled plastic sleeve.

The second artifact occurs at the two ends of the pressurized zone.
With the application of pressure the plastic sleeve itself will collapse
onto the penrose tube except at the ends where it connects to a rigid
support. The contour of the plastic will be determined primarily by
its diameter and the amount of slack in the sleeve. This contour will,
in general, not follow exactly the contour of the tube, again leading
to a region of non-uniform cdmpression, this time in tﬁe'longitudinal
direction as well as circumferential. Presumably, keeping the length
of this region to a minimum reduces the effect it exerts on the 6vera11
flow.

It should be noted that aTthough the method we employed for reduc-
ing end effects is not perfect, no method was found which could eliminate
these effects completely. OQurs was a compromise of sorts, but one which
apparently worked considering the agreement between theoretical and ex-

perimental results presented in the next chapter.

Description of the Flow Experiments

The value of each parameter in the experiment was selected so as
to reflect the general characteristics of the physiologic system to be
modeled. Since exact scaling was not possiblie, the choices were some-
what arbitrary but fell within the expected physiologic range.

The complete experimental sequence is presented in Table 3. [The
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reference experiment (number 1 in the table) is the test to which all
others were compared.] In the column directly below the test number
are listed the parameters of the test. In each case, one parameter was
varied (the value underlined in each column) and its effect on the mea-
‘sured variables observed. For the most part the parameters labeled on
the left correspond to our previous notation. Several parameters have
’not been mentioned previously. S refers to the time required for the
pressure to reach 1 - %- of its maximum value, p . The initial
max

external pressures in the two chambers are labeled pe1 and pez for

the upstream and downstream chambers, respectively.

Measurements and Instrumentation. In each experiment flow rate

and pressure just downstream of the test section were measured. In
addition, transmural pressure wés recorded at seven positions along the
collapsing portion of the tube except in those tests with non-zero ini-
tial flow rate.

Flow rates were measured using a Carolina Medical Instruments E-M
Flowmeter. Sodium chloride was added to the flow solution to produce
the required ionic content. Calibrations were performed and the instru-
ment was found to be linear over the entire range of measurements.

Pressure measurements were made with a C.J. Enterprises Differen-
tial Pressure Transducer with a 5 psi range. In order to obtain mea-
surements of transmural pressure, a catheter (No. 18 stainless steel
hypodermic needle, 49 cm in length) was inserted from the upstream end.

Internal pressure was measured at the tip of the catheter; external
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~pressure via a tap in the side of the test chamber.

‘The open end of the catheter was pointed in the downstream direc-
tion. Because of flow separation at the base of the needle, errors were
’anticipated of the order of pu? . The actual error can be estimated
by comparison to experiments measuring base pressures® and are approxi-
mately 0.17pu? for the worst possible case.

Additional error is associated with the limited time response of
the catheter-transducer system. The resistance and inductance of the
. catheter.combined‘with the compliance of the transducer comprise én RQL-C
"iciréuit which can be ahélyied'acéordingly. Based on computed values fOr'
» R,'L;Aand c » we can estimate the characteristics of the system which
were: |
- damping coefficient £ = 0.57;

» settling time (time for the signal to come to within 2% of an
applied step in pressure) = 0.11 sec;

- maximum overshoot in response to a step function = 0.11 .

Our observations of the response to a near step function confirmed
these predictions. Clearly, this response characteristic is a limiting
factor in making high frequency pressure measurements. Our objective,
however, was merely to observe the collapse process as a function of dis-
tance, and the achieved accuracy was sufficient for that purpose. The
absence of high frequency components from the recordings do not, however,
preclude their existence, the cut-off frequency being approximately 10 Hz.

As the tube collapses around the catheter another source of error

arises. In the adjacent sketch we see a cross-sectional view of the
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latex tube

catheter

catheter-tube configuration in the collapsed state. It is obvious that
the pressure at the catheter tip is not necessarily the pressure in the
two sidelobes of the collapsed tube. Because of the two small channels
immediately adjacent to the catheter and running parallel to it the mea-
sured pressure may correspond to a point somewhere upstreah of the cathe-
~ ter tip. Thesé erfors will become more pronounced as the tube collapses
but will not affect the‘results prior to collapse.

Also, when the tube collapses around the catheter as shown, flow
will be disturbed to a greater and greater extent as the catheter is in-
sekted furthér.into the tube. The‘influence of the catheter was clearly
visible when the catheter tip was moved to different radial positions at
the same longitudinal location. As expected, the pre-collapse pressure
profi]e was unaffected but the falling portion of the pressure trace
(signifying tube collapse) differed quite significantly.

As a final remark concerning the instrumentation for the experiment,
a Honeywell Visicorder was used for recording all pressure and flow
traces. The response time of this recorder was not a factor limiting

our results.

The Collapsible Tube. The collapsible tube used in these tests

was a penrose drainage tube from Davol Inc., made of latex rubber with
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a % inch diameter. Because of the process by which the tube ié made,
the wall thickness varies nearly 11near1y‘from one end to another. The
range for this tube was between 0.280 and 0.365 mm. For all but the
final test (Experiment 21) the tube was positioned with the thin-walled

end pointing upstream. The characteristics of the tube are given in Table 7.

Experimental Results. The test numbers refer to the listing in

Table 3 of all experiments. The results of these tests are presented
in the following format:

(1) A complete set of flow‘and pressure traces for Expt. 1 (Fig. 9).

(2) Exit flow rate for each of the experiments (Figs. 10-13).

(3) Quantitative comparison of characteristic parameters (Table 4).

The three plots in Fig. 9 show the applied external pressure, six
transmural pressure recordings, and the volume flow rate at the exit of
the test section, each plotted against time. The five Tlower curves in
the center plot are pressure measurements made at & = 0.06, 0.15, 0.24,
0.33, and 0.42 . The upper curve in the same graph is the transmural
pressure as measured just downstream of the test section.

The plots of exit flow in Figs. 10-13 contain both the experimental
result (dashed line) and the predictions of the theory (solid line) which
will be discussed in Chapter X. The tabulated results of item (3) above
are provided as a means of going beyond mere graphical comparisons and
of putting the comparisons on a quantitative basis. A number of charac-
teristic quantities have been identified on the flow and pressure traces

in Fig. 9. These are (referring to the numbers in the figure and in the
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. table where applicable);
I. maximum:floﬁ fate;
II. time of maximum flow rate;
o TIIL emptying time;édefihed as the time at which the flow rate first
| ~goes to zero;
IV. time between the first flow maxima and first flow minima;
V. ratio between the first fwo flow maxima§
VI. Vco]]apseltime—-defined as the time at which the pressure trace
";-first déviatéS‘frdm the'p]ateau-region near zero'tfansmufa]:
| 'pfessure.':_ _ i | | | o
Each QUAntity is presented in the table in the,fofm of a ratiovbetWEenv
the values of the parameter in each particular test and the value of the
same parameter in Test 1. For item VI above the single number represents
the‘aVerﬁgé of five}ratfos computed for each of the five‘pressureltraces
inside the collapsing portion of the tube. Included in Table 4 are the
comparisons for the flow simulations as well. These will be referred to
~again in the following chapter. |
| From these experiments alone, however, much can be said concerning
the nature of unsteady flow from a'collapsible tube. The collection of
transmural pressure recordings and visual observations support the intui-
tive concept that the collapse proceeds in the upstream direction, start-
ing at the downstream end of the pressurized zone. The early stages of
collapse occur very rapidly. Within a second of the onset of pressure,
the tube is highly co]lépséd at the downstream end. This necked down

region impedes the emptying of the remainder of the tube due to the
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resulting high viscous flow resistance. This zone of collapse can be
seen to propagate upstream more and more é1ow1y as the tube empties.
Eventually, the tube reaches a new equilibrium configuration, the pres-
surized zone being more or less uniformly collapsed depending on the
amplitude of the external pressure and the magnitude of the steady flow

rate. (See Chapter X for a more complete physical description.)

Analysis of Flow Oscillations. One primary oscillation frequency

is evident in the recordings of downstream flow rate. We can explain
this mechanism by analogy to a nearly equivalent electrical circuit con-

sisting of two capacitors, a resistor, and an inductor.

L R
(1) e RNV

Cy L C,

\]

e
oy

B

=

The circuit is initially excited by an impulse event at (1) which
is created in our real system by the initial collapse of the tube. This
charges C; and sets up a flow through L and R into C, . The re-
sponse of the system as a whole is a damped oscillation such as is seen
in the recordings of flow rate at the exit. The oscillation frequency

is determined, in the analog model, by the equation

o = (5 _1_)‘/’ (77)
n LC1 LCo :
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We can see that if one capacitance is much smaller than the other (say,

- €y << C2), then
“n = (Zﬁ?ﬁ)._ o __(73)

~In the flow experiment, C; is represented by the section of flexible
tubing downstream of the necked down zone; Most of ;he volume excursion
can be seen to take place in the region extending approx%mately 2 cm
- _downstream from the point of:maximum constriction. This Capacitance,

",ialthough difficht to estimate, is 1ike1y to be much smaller than the.'

:"Tedownstream capac1tance in the experlmental mode1 A rodgh estimate of

nli',{the pressure requ1red to co]1apse the vesse] Ap

‘the smaller capacitance can be made, based on the length of the part1a11y |
collapsed zone £ , the cross- sect1ona1 area d1fference A, - A1 , and

(see d1agram)

co]lapse
For the following estimates; i
|
L = 2cm
A
A, -A; = 1 cm? ! i
2 -~ |
I
Apco]]apse 1000 dynes/cm® ,
3
Q:%:w-sdcm : e
: ynes/cm > . | |

This value is approximately an order of magnitude below that of the down-
stream capacitance even if we neglect the presence of the discharge reser-
voir which would act essentially as a ground (infinite capacitance). The

frequency of oscillations based on this value for C; "and for L ( = pL/A)
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of 22/0.317 = 69.4 gm/cm* gives us

fn = -2—1; = 0-6 HZ ’

which is in excellent agreement with the observéd frequency (~ .8 Hz)
considering the simplicity of the model.

Another mode of oscillation which is not evident in most flow traces
but which was observed in the pressure recordings made at the flow meter
can be attributed to wave propagation back-and-forth in the downstream
section of the co]lapsible'tubing. Waves éxcited by the impu]sivé Flow
| acceleration can be reflected at any point in the system where the impe-
| dance changes abruptly. Abrupt changes can be found at the downstream
point of attachment to the rigid tube, and at the point of sudden change
in area. The frequency of the oscillatidns associated with the mechanism
is determinéd by the length of the wave-carrying segment and the mean
wave speed. Strong nonlinearities in wave speed within the range of
transmural pressures occurring in this section of tubing, give rise
~ to quite a wide range of possible frequencies for this mode of oscilla-

tion, as evidenced by the following calculation:

L = 25 cm
C = 60-700 cm/sec
= C
fn = 3 1.20 - 14 Hz

Again, agreement is good between these estimates and the range of ob-

served frequencies.
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Our ability to analyze wave processes is somewhat limited in the
ekperiments due to the lack of high resolution information concerning
the pressures and flows at points inside the tube. In this respect, the
numerical simulations proved to be indispensible. In the next chapter.
we discuss these wave phenomena again in light of the more detailed
information available through the numerical methods of analysis.

The resu]ts of the entire range of experiments were surprisingly
similar in many respects. Of particular interest is the apparent de-
coupling between the processes inside the chlapsing part qf the vessel
(see, ih particular, those parameters which measure collapse times and
emptying time) and the components determining the downstream boundany
condition. The question‘arises of whether or not this épparent.decoup—
ling can be attributed to a‘critical (u = c) or supercritical (u > c)

- condition at the throat or regioh of minimum area. Again, this question
can be better analyzed with the aid of the computer results and will be
taken up in the next chapter.

The most significant effects on the measured variables can be
attributed to changes in the fluid viscosity and in the rise-time and
maximum value of the external pressure. Also significant in terms of
the total emptying time was the introduction of non-zero initial flow
rates. We would expect these changes to affect the entire flow system
regardless of the situation at the necked down region. The effect of
viscosity changes are related to the findings of Appendix B. There we
see that, if the flow is viscous dominated, the emptying time should

vary inversely with the square of the viscosity. The experiments do



-122-

not exhibit this trend, although there is a stfong effect due to the
change in viscosity, and we conc]udé»that’f]ow; at least during an 1mpor;
tant initial phase, is not dominated by viscous forces. (In fact, if an
initial period of inertial-dominated flow did not exist, the flow rates
for small times would approach infinity.) Although not dominated by
viscous effects, therf1ow'from the collapsing vessel is certain to be
influenced by them, particu]érly in the latter stages of collapse. This
result merely tells us that neither viscous nor inertial effects can be
neg]ected in a valid f1na1 ana]ys1s |

An 1mportant observat1on is that although peak flow rate 1ncreases

(to a decrea31ng extent) for both increases in p , and decreases in

ema X

rise time, the time it takes to drain the tube of fluid appears to be a
constant in these tests. We are led to believe that some flow Timiting
mechanism is present which establishes an upper limit on the flow dukihg
~all or a significant part of the emptying process. One mechanism has
been postulated®”°5® which, in essence, states that flow velocity in
horizontal tubes cannot exceed wave velocity. These arguments are gen-
erally based on the assumptions of frictionless, steady flow and their
applicability in these highly unsteady flow situations may be disputed.
This question will be addressed further in Chapter X.

For our purpose, it is sufficient to recognize that a limit does
apparently exist, and that simple modifications in the external préssure
pulse are limited in their effect on drainage time. Also, our observa-
tions indicate that flow limitation occurs at the necked down region and

that, if we hope to significantly reduce the time required to empty the
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tube, we should Took to other means of pressurizatibn’which eliminate

this choking condition. Such methods wiTT be inveStigatéd in Chapter

XII. | | .
Additional 1nterpretat1ons of the exper1menta1 resu]ts are g1ven in

the next chapter. in the context of the numerical s1mu1at1ons.
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CHAPTER X:
NUMERICAL SIMULATION OF FLOW EXPERIMENTS

In this chapter we examine the results of the flow experiment simu-
lations and make direct comparisons between the experiment and the pre-
dictions of the theory. The simulations were felt to be necessary for
several reasons. First, as noted earlier, they allowed us to make a
direct comparison between the predictions of the simulation and a real
situation--a situation which was a greatly simplified version but which
possessed many of the same qualities of the system eventually modéled.
This comparison helped us to determine the extent to which we could
trust the results of the subsequent simulations which could not be
modeled conveniently by experiment.

The simulations aided also in determining how and to what extent
each parameter change affected the overall process. This could not be
accomplished solely by experimentation because of the lack of detailed
information that could be obtained by direct measurement. Applying the
results of both the experiment and theory to future simulations, we could
predict which of the many parameters would have a strong influence (and
therefore should be selected very carefully) and which would have little
or no influence on the results.

Finally, through the simulations we were able to look inside the
collapsible tube in a way not possible experimentally. Specifically,
we could investigate the region of the tube near the throat and come

to a better understanding of the mechanisms of, for example, the



-125-

phenomenon of flow limitation in a collapsible tube.

Description of the Theoretical Model

The numerical methods have been described in detail in Chapters V
and VI. The input parameters include the characteristics of the hydrau-
lic circuit, pressure cycle, and compliant tubing. The circuit and
pressure cycle are described completely by the parameters found in Table
3, where the notation is as defined earlier.

The spatial distribution of external pressure was approximated by
two quadratic curves, symmetric about the half pressure point. The width
of this.variable pressure region (which we call the "pressure ramp") was
an important and somewhat troublesome parameter. If made too wide, the
numerica]ly predicted oscillations were found to be of a much lower fre-
quency than those observed experimentaﬂy.+ If too short, the computa-
tional procedure was adversely affected giving rise to large errors in
the region where external pressure varied most rapidly. Thus, it was
necessary to perform some simulations using the wide pressure ramp (those
which were prone to instabilities because of the violent nature of the
results). These are denoted by an "A" in the simulation number. A1l
others employ the narrow ramp which had a total length of approximately

5 cm, half the length of the wide ramp.

+See,pp. 118-120 for an explanation of this phenomenon.
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A1l the experiments were performed uSing the same penrose tube. The
tube law used in the calculations was one which had been determined ex-
perimentally using similar tubes and is plotted in Figs. 7 and 8. 1In
Appendix D, the methods and results of the tube law experiments are dis-
cussed in detail. The experimental method required a complete pressure-
volume curve for two segments of different length from the same tube.
The curves were subtracted from one another to eliminate end effects
and analyzed, taking into account the non-uniformity of the wall thick-
ness.

The spatially varying characteristics of the vessel were determined
by measuring the wall thickness as a function of distance using a micro-
meter. The measurement of wall thickness using this method could be in

error by as much as 5% which corresponds to as much as a 16% error in K

D

(This does not include the errors in the tube law itself.) A technique
is currently being developed that will enable us to measure the Tocal
tube law in tubes of up to 100 cm in length to better precision than was
possible using the earlier methods. Unfortunately, this new technique

was not available at the time these experiments were conducted.

Sources of Error

Errors which affect the numerical results come from a variety of
sources. Two of these have already been mentioned: errors in the uni-

versal tube law and the way in which tube stiffness varies spatially.
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We:have_alsb noted that the nature of the pressure ramp (both its shape
and width) affect the solution. Since we can only esiimafe the true |
nature of the pressure distribution along the plastic pressurizing s]éeve,
this wiT1_contribute some errofs as well. In addition, the model used .
for the various types of flow resistance will cause erkors which are most
noticeab1e in situations where the flow is oscillatory. The governing
equations themselves, in that they are a one-dimensional apbroximation
to the real flow, may cause inaccuracies particularly when the flow is
highlj éqnvefgent or_divgrgent'and hence more nearly two-dimensional.
_” Andthéf sburce-bf'errbr is the numerical so]ufion itself. Erkors in
'Aa solut1on procedure as complex as this are d1ff1cu1t to est1mate direct-
1y. we can, however, discover the magn1tude of one source of error--the
d1scret1zat1on error—-1n an. indirect way. To do th1s, we first rea11ze
' that all d1scret1zat1on (or truncatlon) errors are proportional to the
~grid spacing and can be 1nvestlgated by keeping the ratio between At
and AZ constant, but making the mesh finer. The order of the approxi-
mation involved wou]dvdetérmine to what power of AZ or At this error
varies. The crudest approximations used in our calculations were of
first-order in the interpolation procedures, for examp1e. Therefore,
we would expect the errors to vary as AE%? or At? and the solution,
by this reasoning, should converge to the correct result as Af and At
approach zero.

We performed three computations of the same flow simulation with
the mesh spacing being cut in half each time. This corresponded to, in

terms of Af , a spacing of Ag = 0.02, 0.01, and 0.005, or 51, 101, and
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201 spatial increments for the three runs. The result in terms of flow

rate at the exit 1is superimposed in Fig.‘14.+

Clearly, in proceeding
from 51 to 201 points, the solution appears to converge quite well. The
51 point solution seems inadequate, however, and we therefore have used

a 101 point spatial grid for all the computations presented here.

Comparisons Between the Experimental and Theoretical Results

We have plotted the volume f1ow rate (at the first rigid tube down-
stream of the test section) measured experimentally and as predicted by
the theory in Figs. 10-13. This format allows a direct visual compari-
son between the measured and predicted behavior of the one measured para-

meter which best characterizes flow in the entire collapsible tube.

Qualitative Description of the Results. The theoretical curves

exhibit two distinct modes of oscillation. The low frequency distur-
bance corresponds essentially to the sloshing of fluid between two capa-
citors separated by the resistive and inductive elements. As shown in
Chapter IX, the frequency of this oscillation mode depends primarily on
the smaller of the two capacitors--in this case, the compliance of the
region of the tube at the pressure ramp. The distinct difference bet-
ween simulations using the small versus the large (denoted by an "A")

pressure ramp can be attributed to a change in this compliance which

+Because of a considerable increase in cost, the 201 point computation
was only carried out for the first part of the cycle.
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coinéides with a chahgé in'the'width of the pressure ramp. The highv'
ffequehCy osci]iations evident in thevthedretical curVes but abéent in
the experiment represent waves which are being reflected between the
-point of attachment of the downstream rigid tube to the penrose tube
and the edge‘of the pressufized zone in the penrose tube (a poiht at
which the impedance changes abfuptTy and which is thus a source of re-
flection). The frequencies associated with oscillations of this type
have been estimated in Chapter'IX and agree well (in order of magnitude)

 with the observed oscillations. The fact that'these oscillations are

‘ _ :c1eér1y visible ohvthe thédretical but'hot fhe experimental curve can

- fbe;attributedAtoia'COmbination,of-several factors. _Firét,'as is evi-”.. ’

dent in Fig. 14; decreasing the size of the computétional grid has the
- effect of minimizing these oscillations. This indicates that their
pféﬁéhcé cén be.part1y attributed to nﬁmerica] errors. The errors pro-
bably arise in the region where large changes take place over a rela-
tively small distance (in the immediate neighborhood of the pressure
ramp). |

Real waves do exist, however, and can be seen in pressure measure-
ments made in the rigid duct just downstream of £ =1 . In the experi-
ments, the waves damp out very rapidly whereas the theory pfedicts that
they persist through much of the cycle. One reason for their persistence
- is that the flow resistance forms used in the computation are hot capable
of accurately predicting the viscous damping of relatively high frequency
waves. Thus, onée started, the waves arellikely to'continue much longer

in the theoretical prediction than in the experiment. Tube viscoelasticity
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may also be an important factor. In reality, any waves of relatively
high frequency will be increasingly affected by the viscoelasticity of
the tube wall. OQur model does not include viscoelasticity, and there-
fore would not predict the additional damping due to this effect.

For the purpose of the following discussion we can define three
relatively distinct phases of emptying as characterized by the plot of
volume flow rate versus time:

(1) the initial transient peak;

(2) the period of relatively constant flow rate;

(3) wviscous emptying.

The most consistent difference between the experimental and theore-
tical curves occurs during phase two, that of nearly constant flow rate.
We can see that the mean flow rate predicted by the theory is distinctly
higher than that observed by experiment. In agreement with the observa-
tion of higher flow rates, the time for the flow rate to go to zero is
less for the simulation than the experiment. There are several possible
explanations for this discrepancy. Later in this chapter we present an
argument, one result of which is that the mean flow rate during phase
two depends directly upon the local wave speed as characterized by ¢, .
If we fail to accurately predict the stiffness of our tube, the result-
ing error in ¢, could account for the observed differences. Other

factors which may influence the results during phase two are the
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.i-

approximate flow resistance functions and the shape and extent of the

pressure ramp.

A More Quantitative Approach to the Comparison of Theory and

Experiment. The results of the simulations are compared directly to
the corresponding experiment in the two ways discussed in the previous
chapter. As discussed earlier, Figs. 10-13 provide a direct visual
comparison between the experimental (dashed) and theoretical (solid)
‘curves of volume flow rate at the exit of the test section. In Table
- 4 the quantitative comparisons of the type described\ear1ier are pre-
‘sented for both the experiments and the simulations. In each case; we
have tabulated the values of the ratio between a particular variable
’bf expériment (or simulation) "n" and the value of the same variable
df experiment (or simulation) "1." The ratios for the expériment and
simulation of the same test are listed beside each other. We chose
this form rather than a direct comparison for each test between the
theory and the corresponding experiment for the following reason. Our
main concern is in the prediction of trends in actual flow situations,
trends which might otherwise be overshadowed by the intrinsic differ-

ences between the theoretical and experimental models. A direct

1-Flow at the throat is very nearly turbulent in most simulations. A
significant error could result by failing to accurately predict the
Reynolds number at which turbulence will occur. In addition, even in
Taminar flow the boundary layer narrows in a converging section of the
tube, resulting in larger actual shear stresses than those predicted
by the simulation.
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comparison is provided, however, for Test 1. The values found in the
first row in the table constitute ratios comprised of experimental and
theoretical résu]ts for the same test. The Roman numerals in the table
refer to the parameters identified in the previous chapter.

The results expressed in this manner can be viewed in two ways.
First, if the parameter varied in any particular test has no influence
on the flow, then all ratios will be exactly equal to one. The greater
the influence, the greater the departure from one. Secondly, the rela-
tive success of each simulation can be determined by direct comparison

of the two sets of ratios labeled "experiment" and "theory."

Discussion of Results. In general, the agreement was good particu-

larly for those tests in which the pressure cycle was varied. The agree-
ment in those simulations in which parameters of the downstream hydraulic
circuit were varied is somewhat less satisfying, particularly in Expt. 14,
where the downstream pressure has been increased. This result could have
been influenced by the errors, for positive transmural pressures, in
using a universal dimensionless pressure-area law. The characteristics
of the tube change when going from negative to positive transmural pres-
sure, a change which is accompanied by a change in the normalizing para-
meter used to reduce all the data onto a single curve. Thus, in attempt-
ing to use one universal curve for the entire range of transmural pres-
usres, the region of positive transmural pressure deviates from the true

curve. In other words, stiff tubes will be too stiff and compliant tubes



-133-

will be too compliant, the dividing line being at a Kp of approximately
200 dynés/cm2 . We justify this type of a normalization on the basis
that our interest is primarily in the collapsed tube and that, in most
calculations, the tube rarely extends very far into the positive pres-
sure regime. This experiment, however, is an exception and could have
been influenced by this anomaly of the P-a law. We should add that the
apparent errors found in Expt. 14 tend to bring the results of the simu-
lation closer to the experimental results. That is, if we compare, not
the ratios formed by Simulation 14 and Simulation 1 against the ratios
formed by Expt. 14 and Expt. 1, but rather the results of Expt. 14 and
Simulation 14 directly, the agreement improves. » |

Changing the viscosity of the fluid by a factor of five also strongly
influenced the results--an effect which was reflected in the numerical
soiution. It is significant to’note, though, that théVChanges which took
place during the early part of the cycle were much less dramatic than
those at later times. This leads us to assume that the early stages are
largely dominated by inertial effects--a concept that will come up again
in later discussion.

It should be noted that, in general, variations in downstream para-
meters had little effect on the results considering the large variations
from reference conditions they represent. This observation coincides
with the possibility of critical or supercritical flow velocities (u > c)
at the throat of the collapsing tube which would prevent the flow from
being accelerated beyond the critical point.

In only one experiment were the tube properties changed in any way.
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This was accomplished in Expt. 21 by reversing the tube.so that the thin-
walled section pointed downstream. Although the tube wall varied consi-
derably in thickness from one end to the other (giving rise to a varia-
tion of ¢, from 69.9 to 103 ém/sec), both thg experimental and theore-
tical results changed surprisingly little. This is the result we would
expect if the flow had been largely determined by the tube properties in
the'region surrounding the point of minimum area, since reversing the
tube produced the least change around £ = 0.5 . This is an additional

piece‘of evidence which helps to substantiate our claims made later, that
| "chokihgf does occur and is’primari]y’determined by the tube properties

~at the throat.

Simulations in_which A; and co, Were Yaried

We simulafed several additional situatiohs for which no correspond-
ing experiment was conducted. The purpose of these was to investigate
the effect of changes in ¢, and A, independently. The equivalent
experiments could not be conducted because we lack the stringent control
over wall thickness and tube radius that would be necessary to construct
two tubes which, for example, had exactly the same ¢, but differing
areas. In this series of calculations, Ao and ¢, were given specified

values (independent of &) as indicated below:

. . ) . d
Simulation 59: Ao = 1.06 cm , ¢co = 60 ég% ; pemax = 2.6 % 10* _%%gi

i i : = = Lm = y dynes
Simulation 60: Ap = 2.0 cm , ¢, = 60 sac ° pEmax 2.6 x 10 _%ﬁ
Simulation 63: Ag = 1.06 cm , co = 150 é%%, Pe = 1.65 x 105 dﬁ;gs

max
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The applied pressure in Simulation 63 was increased so that the dimen-
sionless group, (1/pc02)(ape/3£) , was kept constant. A1l other para-
meters corresponded to those of Expt. 1.
The results of these simulated conditions are presented in Figs.
15 to 18. For each simulation the normalized variables are plotted in
the following sequence:
(1) Transmural pressure versus time at four different locations
within the pressurized region (Fig. 15).
(2) Volume flow rate versus time at the same four loéations (Fig. 16).
(3) The ratio between flow velocity and wave speed (U/C) at the
same four Tocations (Fig. 17). | |
(4) Cross-sectional area versds distance at six equally spaced
times between t = 0 and the final time (Fig. 18).
wevcan draw several very useful éonc1usions from these fesu]ts.
First, in comparing the graphs of Simulations 59 and 60 we notice that
a change in A, has virtually no effect on the solution in terms‘bf
normalized variables, at least in the collapsing portion of the tube.
The flow rate just downstream of the pressurized zone, however, is
strongly influenced due probably to the lack of appropriate scaling in
the downstream boundary condition. The results are nearly identical
over most of the cycle, differing only slightly in the period of vis-
cous emptying at the very end. The analysis found in Chapter VII can
be used as a guide in understanding this observation. Looking at the
dimensionless groups on page 84 we find that A, appears only in the

boundary condition parameters and the group which represents the ratio
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between viscous and inertial forces, and as such has the form of a Reyé
.. nolds number, pcvo/CfuL . The fact that.much of the solution is inde-
pendent of the Reynolds number suggests that most of the process is gov-
“erned primarily by inertia14effécts, at least within the pressurized
region. We know, however, that viscous effects must be significant in

a narrow region close to the minimum in cross-sectional area in order

to haintain such a large pressure"drop across the region. Granted, the
inertial effects and head-loss term contribute to the pressure drop but
._are n0i11fke1y to constitute the entire effect. We can estimate, from
.‘the'numericéi solution, the relative magnitude of the inertial and vis-
' cous“terms'and, in doing so, find them to be comparable at the throat. |
We seem to have come upon a contradiction. One one hand, we observe
- that the solutionis independent_of the term involving viscous stresses.
" On the other; we cén éhow'that viscous and inertial effects areﬁcomparable
in at least one region of the tube. These two statements can be recon-
ciled if we can demonstrate that the presence of viscous effects at the
throat do not influence the solution upstream. During that time for
which u > ¢ in any region between the throat and some point upstream,
the two solutions are effectively uncoupled. Hence, if the following
criteria are satisfied, then the solution upstream will not exhibit the
effect of viscous stresses:

(1) viscous effects were not yet significant at the time flow velo-
cities became supercritical;
(2) at no time since first éoing supercritical has the flow become

entirely subcritical;
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(3) viscous effects are insignificant upstream of the supercriti-

cal region.

Although sustained supercritical flow is not observed at any of
the points plotted in Fig. 17, the detailed so]utidn results indicate
that the flow was, indeed, supercritical until a normalized time of
approximately t =4 in Simulation 59 and until Tt = 3 in Simulation 60.

It is interesting to note that during an initial period, the flow
transiently becomes supercritical. It then quickly returns to a condi-
tion of u = ¢ which constitutes an apparent upper bound for the quasi-
steady beriod immediately fo]]owing. |

' vBy contrast, when we compare the results of Simulations 59 and 63
we find subtle differences both inside and outside of the pressurized
region. These differences are evident both at the end of the cycle (as
in the previous comparison) and during the early phases of collapse.
Since, in comparing the results of Simulations 59 and 60 we found that
the flow inside the collapsing portion of the tube was largely indepen-

dent of pcvo/CfuL and since p was adjusted to maintain proper

max
scaling of v(pcoz)ape/az , then the observed influence must be
attributable to boundary effects. The flow trace at & = 0.65 does
indicate the presence of a strong reflection reaching the edge of the
pressurized zone just prior to choking. The nature of this reflected

wave which is determined largely by the boundary conditions prevents

the flow rates even in the collapsing region from reaching the same
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maximum values. However, after choking occurs, the normalized results
show strong similarities, reflecting the fact again that the flow is iso-
lated from the downstream boundary conditions. And in spite of the dis-
similarities during the initial phase, the emptying time is virtually
unaffected.

In dimensional terms since flow rate is normalized by the product
Apco , actual flow rates scale as Asco . This implies that, for example,
doubling either A, or co, causes flow rates to approximately double,
at least in regions that are relatively uninfluenced by boundary condi-
tions. Additionally, since time is horma]ized by L/ce , dimensional
emptying time is independent of A, and varies inversely with ¢, --the
stiffer tube will empty more rapidly. Again, this result could be de-

duced from arguments based on volume flow rate alone.

An Approximate Theoretical Analysis Using a More Physical Approach

The results discussed above provide the framework for the following
analysis. Our objective is, given certain very general characteristics
of the tube and the mode of pressurization, to determine a semi-quantita-
tive description of the flow process. To do this we begin with the basic
principles governing collapse and the associated fluid dynamics, and
attempt to extract order of magnitude estimates for such parameters as
the maximum flow rate, Qpeak ; the magnitude of the flow rate during
the second, quasi-steady phase, Qmaxz ; and the time required to empty

the vessel, tempty .
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We would like to be able to predict, using a relatively simple
model, the salient features of the collapse process. For this purpose
we consider the different phases of flow individually making an appro-
priate set of approximations in each case; first the initial transient

phase.

Phase One: The Initial Transient Phase. Our main objective in

the following analysis is to estimate the peak flow rate occurring dur-
ing the initial phase of collapse.

The tube can be divided into two parts: an upstream region which
is compressed by a time-varying but spatially uniform external pressufe;
énd a downstream region'over which the external pressure is constant.
For this discussion we assume that (1) the pressure changes abruptly

i(ovef a distance comparable to the tube diameter) and (2) the bounda-
ries are distant enough so that we can ignore the effect of reflections.
Initially, the fluid is everywhere at rest.

As the external pressure along the upstream portion of the tube
increases, the tube begins to collapse at the boundary between the two
regions. The time varying area at this point will be referred to as
the "throat" area, A » and it is assumed that the area is a minimum
at or very near this point during the entire initial phase.

We can think of the time dependent external pressure as being com-
prised of a series of infinitesimal step-changes of magnitude Ape .

For each increment in external pressure, the internal pressure increases

by some small amount, Api . The relationship between Api and Ape



-140-

~ depends upon the extent of vessel collapse locally. Instantaneously,
Api -will equal Ape » but the cohsequent‘co]lapse will cause Api to
decrease with time following a'single pressure increment.

Using small amplitude approximations we can derive an expression
for the change in velocity as the compression wave propagates down-
stream into the undisturbed fluid. Using the equations of mass and
momentum conservation across the compression wave we find that the velo-

city increment, Au , can be written as
o= =+, (79)

where c, is the initial wave speed. Summing over a series of pres-

sure increments, we can obtain an expression for Q(t) :

AoAp. : .
Q(t) = > ——1 : (80)

pCo

This summation can be expressed in integral form for a smoothly Varying

p; and integrated to obtain:

ae) = 2o - py0)] (81)

The implicit assumption in writing Eq. (81) is that A, and c,
are both constant. In reality, the compression waves entering the
downstream region act ta further inflate the tube causing A, and c,
to increase. However, the increases in Ao, will be relatively small

for an already circular tube and the changes in ¢, , although more
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. significant; will not changé the general character of the results.
Cdincident with the increase‘fn flow rate downstfeam,'the tube
'begins to collapse in the upstream preséurized regioh} Rarefaction

- waves propagating in the upstfeam‘directiOn.act to accelerate the flow
and deflate the vessel. The region influenced by these wéves has a

1ength cot ., and contains initially a volume cotA; . As a consequence.
the volume expelled from the upstream portion, V(t) , cannot exceed

CotAy . We might estimate the actual expelled volume as follows:
V(t) = Kicot(Ao - A;) (82)
. ‘where fAf;»is:the"thkoat area and K, is a shapelfactor which must be

less than one. A second expression for Q(t) can be obtained by dif-

'* ferentfating Eq,,(82):with»respect to time:
dAT
Q(t) = K1C0(Ap - AT -t _(-ﬁ:— . (83)

- At the time of maximum flow rate, dQ/dt = 0 . This condition
gives the following expressions upon differentiation of Eqs. (81) and

(83), which are valid at the instant of maximum flow:

dp.
1 _
4 - 0 (84a)
at t=+¢
dA d*A P
2 — + t = 0 (84b)

Here tp denotes the time at which peak flow occurs.
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Physica]ly, Eq. (84a) implies that some mechanism must be present
to cause the internal préssure to decrease, thus decelerating the flow.
This mechanism is provided by vessel collapse to a state at which the
rising éxterna] pressure is offset by the increasing ability of the tube
to resist collapse. To complete the analysis, then, we need to consider
the tube law at the throat. |

Assuming that the tube is in the similarity range when the flow

maximum occurs we can use the following tube law:

"T)'”’_ |

Pe =Py = KP(I\'E' (85)

Differentiating this expression and setting dpildt =0 , gives, upon

. -one differentiation,

p :

dAT 2 ATSI? dpe '
® T3 Ton® (862)
K Aq
p .
and, differentiating again,
d2A dp_/dt :
P
T - (-8 . (86b)
dtz K AOSIz
p
Substituting Eq. (86a) and (86b) into (84b) we get an expression for t
6 K A 372
t=—-—L(——‘?- . (87)
p 5 dpe/dt AT

Whereupon, evaluating Eq. (83) for the maximum flow rate, Qp » we find



-143-

g

= -K1C‘0Ao (1 - 7}
Or:‘

,

G ek forogecd ()

W

This suggests that the peak flow réte is independent of the type of
pressurization except in that it may affect K; or, to a lesser extent,
AT . It depends primarily on the product cyA, for the 1nitiaf state
] .of the vessel.

| Equat1on (88) agrees qu1te ‘well with our prev1ous observat1ons

-'fu;Peak f]ow rate 1s relat1ve1y unaffected by any of the changes 1mposed

iR our tests. '

'F”:f;fPhéséiTwo; A Period of Quasi-Steady Emptying. Ali‘thé expékimeﬁtslj

éxhibit»a period of relatively constant flow rate fol]owing the initia]
‘transient peak, with the exception of the decaying flow oscillations in the
region . downstream of the collapsing zone. During this second phase,

we might consider the flow to be quasi-steady and make the appropriate
approximations. |

The Tocal stagnation pressure for steady, horizontal‘flow is

P = p+ ku? . (89)

We can'replace u by Q/A and solve Eq. (89) for the flow rate:

Q = A‘/;Z,-(P-p) - AE[e-p) - -] - (00)
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At a'pafticular instant during the emptying process we might con-
sider fhe flow locally to have a fixed value of P - Pe - Actually,
P will be a decreasing function of distance in the flow direction due
to frictional Tosses, but a value of P can still be identified with
any location. The flow rate, then, will be a function only of (p -)pe)
since A 1is related to p - Pe by way of the tube law. Since A -+ 0
as p-p, > -~ and since u-~>0 as (p-pe) -> (P-pe), we might expect
Q to have a maximum with respect to P-Pg - To determine this maximum
- we differentiéte'Eq. (90) with respect to p-p, and set the result
| édua] to 2éro;A |

Caw @ ,

_ - & =0. (91
d(pp,) P ) .

N =
N

-g- [(P-pe)» - (p-ée)]' N (-

Whereupon, substituting the expression for ¢ , we obtain

A (uv? -
pu ( c? ) 0
or

u?

L | (92)

This implies that for fixed values of P-pe in steady flow situa-
tions, the maximum flow rate is achieved when u = c , constituting a
means of flow Timitation or "choking" in the terminology of compressible
fluid flow. The maximum flow rate, then, in steady or quasi-steady
flows is T1imited by the minimum value of cA élong the tube. Since,

in general, cA decreases with A , flow limitation or "choking" will
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occur at the'point of minimum area.
In the range of similarity the produét ‘cA for a particular tube .

is a very weak function of transmuré]vpressure. Using the similarity

tube law, S
-2/3" _
Pe =P - :
p - )
and the expression for wave speed;
d(p - p,) . .

“we can éhow‘that

Qrax, = e = Ao(zp Kp) ( X . (95)
where }Qméxz
" flow. Thus, for wide ranges of external pressure, the maximum flow rate

i denotes the maximum flow rate during the second phase of

during phase two of the emptying process is likely to be approximately
constant if the assumption of quasi-steady flow is valid.

Expressed in normalized form, Eq. (95) becomes

Q 1/2

Aops =of = (%e) C(-p)TYe (96)

which demonstrates the direct dependence on Ayco of the maximum flow
rate during steady flow. Therefore, as in the case of the initial tran-
sient peak, the maximum flow rate during later stages of emptying de-

pends primarily upon the tube characteristics expressed in terms of the
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product AgcCo .

- Phase Three: Viscous Drainage. As the extent of the collapsed

region increases, eventually viscous effects will become an important
factor. The flow rate will become unchoked and depart noticeably from
the nearly constant plateau region. This period of viscous emptying
we refer to as phase three.

In our experiments phase three seemed to occur only at the very end
of the flow cycle and had little effect on the overall results. The
points at which viscous effects first become important would, of course,
bé a function of the total tube length and the fluid viscosity. On this
basis in veins, as in the laboratory experiments, phase three is likely |
to haye a very limited influence. If other systems are considered where
viscous effects are a dominant influence, the results of Appendix B
could be used to predict the behavior of the tube.

The time required to empty the vessel or to reach a new steady state
would depend on these three phases in combination. However, as noted,
phases one and two govern, to a large extent, the behavior of our tests.
Based on the results that both the initial flow maximum and the maximum
allowable flow rate during phase two are proportional to Apc, , we

would expect the emptying time to vary according to the expression

£ . lrotal volume expelled
empty AocCo

(97)

Since the expelled volume is somewhat less than the initial volume, this
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can also be written as

temp'ty Ks a ’ (98)

IR

where L 1is the length of the pressurized region. Consequently, the
emptying time should be independent of all parameters except the tube

properties and the expelled volume.

Evaluation of the Approximate Expressions. We can now compare the

results obtained by experiment or simulation to the predictions bf'this
more approximate ané]ysis. If confirmed it would pkovide a userT means
of predicting the relative qualitative behavior Qf different'systems to
different types of pressure cycles without.requiring a complete theore-
tical simulation. The results of our approximate descriptions are sum-
marized below: |

. Q. = KiCohAo

p
. Qmaxz = Ka2Coho (99)
. tempty = Kz L/co

In normalized form, these become

p
* nax, K2 (100)
" Tempty © Ks

Expressing these relations in dimensionless form points up the

rather amazing prediction that, at least qualitatively, all the results
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should be the same regardless of tube size or stiffness and independent
of other system parameters.

This was indeed observed to a large degree in the experiments with
the exception of Expt. 19, in which the viscpsity of the fluid was in-
creased. This we would explain on the basis of an extended phase three
demonstrating the presence of significant viscous effects.

The most severe test comes in trying to predict the results of Simu-
lations 59, 60, and 63. Here, too however, we find strong confirmatioﬁ
- of our predictions. In normalized form all the results exhibit very much
- the same behavibr;'the sihi]arities being particu]ar1y striking between
ASimulétionSVSQ and 60. |

| AT1 these conclusions, however, are based on oné particular type of-

pressurization--uniform external pressure. In the next several chapters,

" we consider the venous system of the leg and ebeore two alternate modes

of compression with distinctly different results.
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CHAPTER XI:
A MODEL OF THE VENOUS NETWORK

The anatomical information required by the numerical simulation of
induced venous flows primarily pertains to the geometry and structural
properties of the system of vessels and their environment. In this chap-
ter, we will discuss the nature and origin of that information which has
been used in the flow simulations. In many instances, quantitative data
was not available in the Titerature. Whenever possible, we sought to ob-
tain more precise physiologic dafa on our own. In other cases, we used
a basic understanding of the principles involved to create a realistic,

if not precise, model.

The Geometry of the Venous System and Normal Flow Conditions

The section of the venous tree which was explicitly included in our
model extended from the deep veins of the lower calf, through the muscu-
lar veins of the upper calf, and into the popliteal, femoral, and iliac
veins.

As noted earlier, the complicated inter-relation of the deeplveins
of the calf vary according to a wide range of common configurations.3®
Our intent was not to create an exact replica of this system but only
to produce an estimate of the number of vessels, their cross-sectional
area, and the approximate flow rate at each location in the leg. The
model itself restricts us to systems of uniformly branching vessels so

the non-symmetry inherent in individual systems could not be reproduced.
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| Our information concerning vessel geometry and size came from two
sources; the literature énd a venographic'study of our own. The basic
system is described in several texts®®>6? aTthdugh some discrepancies
are fOuhd“with réspectjto‘the detailed configuration. The main vessels,
starting with the iliac vein and headiﬁg distally, are listed beiow:

- Iliac

Femoral

Popliteal | |
-_PerOhea1,posterior tibial, anterior tibial (one or two each)

. Numerous muscular véins.

: Figuréﬁlglshows schematically how these vessels are arranged. The dia-
gram inﬁlﬁdes only thosé'veséelé directly inciuded in the model, i.e.,
only the deep veins are shown. The extent of muscular vascularization
depends largely on the state of development of the calf muscles. The
muscular veins join the main tributaries (peroneaT and anterior and
posterior tibial veins) at arbitfary locations and may, in fact, commu-
nicate with these vessels at more than one point, forming a sort of by-
pass through which blood can pass into the muscular regions._ This
arrangement lends itself to the efficient operation of the muﬁc]e pump

;described in Chapter III.

The literature sources of geometrical information noted earlier
made Tittle mention of the relativeisize of the individual vessels and
provided almost no quantitative information. Our data on vessel dimen-
sions came from a study we conducted on a small sample of normal veno-

~grams obtained from the MGH Radiology Department. Because of the
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density of vessels in the upper calf and the two-dimensionality of the
venograms, the resolution in this region was very restricted. Addition-
ally, due to the nature of the dye injection and the presence of valves,
many of the vessels probably were not filled and therefore were not vis-
ible on the x-ray. However, the diameters of those vessels in the thigh
and the major vessels in the calf were readily obtainable, making the
appropriate adjustment for the scale of the x-ray.

Because it was felt that the total blood volume at locations in the
calf were underestimated by the venographic method (due to partial fil-
ling and overlapping), plethysmographic studies were reviewed to gain
more precise measurements of total venous volume. Since most of these
results were stated in terms of mg of blood per 100 mR of tissue for
the entire calf, we can oniy estimate the distribution of blood within
the vessels. Based on a number of independent studies,®!°%2 a value of
approximately 3.5 m¢/100 mg was chosen as an average venous blood volume
in normal supine posture. A certain fraction of this volume would, of
course, occupy the superficial veins and would not be visible in the
venograms. However, deep venous blood volume as estimated from the veno-
grams still fell short of that which would be predicted on the basis of
estimates fromthe literature with superficial blood volume subtracted
out. For our model, then, we chose to use the distribution determined
from the venograms, but boosted the curve to a level which gave better
agreement with the total volume estimates. Likewise, the number of ves-
sels (equivalent to Cf in the model) at a particular level in the calf

obtained from the venograms was adjusted to reflect the information from
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all sources including the literature and the results of the venogram
study. The summarized results eXpressed as total cross-sectional area
Ao and number of brimary vessels Cf as a function of location are
found in Table 5, along with the distributiqn of c¢¢ , in the form
used for the computer simulation of venous blood flow.

Qutside the region explicitly included in our model lie those parts
of the circulation which are included within one of the two boundary con-
ditions. Far upstream, a mean arterial pressure of approximately 100 mm
Hg drives blood through the capillary bed. Based on measurements made
by Roberts,®® the méan flow rate through the popliteal vein was esti-

mated at 180 m&/min. ‘The arterial pressure and resting flow rate allow
us to compute the capillary resistance which is estimated at approxi-
mately 4.12 x 10* gm/cm*-sec . Since, in our model, all vessels which
drain through the pop]iteé] veih are part‘of our system, no additional
influx of blood from tributaries is allowed. Downstream, however, in
the femoral and iliac veins, tributaries which are not part of our sys-
tem increase the resting flow rate from ~ 180 m2/min at the knee to
~ 450 m/min at the groin. Because the location and relative size of
these tributaries vary and because they exert only an indirect effect
,Von the flow inside the deep calf veins, we have modeled this influx of
‘blood by a constant tributary flow per unit length of 0.108 m&/sec/cm .

At the downstream end of our system, the iliac vein connects with
its counterpart from the other leg to form the abdominal vena cava,
which eventually drains into the atrium of the right heart. We have

modeled this portion of the circulatory system as two rigid vessels
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- separated by a capacitance tank. Togéther, they represent the inductance, .
resistance, and capacitance of the vessels leading back to the heart.
Based on vessel dimensions given by Burton®* and a pressure-volume curve
for the vena cava,®" the lengths and areas of the rigid vessels were
selected upstream and downstream of the capacitance tank (L; = 20 cm,
Ay =1.5cm® , L, =5 cm, A2 = 1.5 cm®). The value used for the capaci-
- tance of these vessels was 0.011 m¢/(dyne/cm?®). The discharge pressure
was given}a value of 10 cm_Hzo (this value may seem high, but it is sig-
. nificant on1y,iﬁ terms of the state of filling it creates at the level
of the calf). |

.:The assumption of symmetry is perhaps the weakest 6f the sevéra]
aséumptions made in arriving at our model. One could certainly argue
‘that the system really consists of two quite different para]le] systemsj
Oné, which we w111 call the "direct system," consists of the anterior
and posterior tibial veins and the peroneal veins which pass nearly
straight through the calf fromthe.ankle to the junction with the popli-
teal vein. The other system (the "indirect system") is comprised of
vessels which empty into one of the vessels of the direct system and
which follow a much more tortuous path through the calf muscles. The
indirect system is more compliant than the first and connects at its
upstream end with either capillaries perfusing calf muscle, superficial
veins via the system of laterial or interconnecting vessels, or a more .
distal point in one of the vessels of the direct system. In normal
resting conditions, the indirect system sees little of the normal blood

flow originating at the foot or lower calf. In exercise, however, the
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indirect system becomes the pumping chamber for the calf muscle pump
described in Chapter 111 and receives a cdnsiderab)e fraction of the
 b1ood reaching the leg. ‘C1eérly, some compromises must be made in

. modeling the real system by one which contains only uniform branching.

Weaknesses of the Model. The errors associated with the uniform

branching model can be divided into two~parts. First, those attributable -
to the fact that some pathways are much shorter than others (e.g., one
' pathway ehterinb the indikect syStem might,'ih a“very-short distance, S
terminaié_{n:aJcapi116ry>bed while another, in the'direct system, might "
J.extedd'fb_the fdot}. Second,zfﬁoséverkoré associated with.asymmEtry,ih
1 the.coﬁﬁlianCe or area of the tWo tributaries;. | | |

o Cogsider the effect of different pathway length.} Although some
péthwayé end in aufe1afivé1y shdrt-distanée;’because of the'c1bse'prdxi—_t
mity of the large veins to the muscular tissue, the length of the smaller
veins is very small and hence the volume is likely to be small as com-
pared to that of the large sinuses. The effect is analogous to the
branching pattern of an evergreen which has a large main trunk with
relatively short, much smaller branches leading from it.v The behavior
- of this kind of system would not differ significantly from a system
héving the same total volume, but consisting of only one vessel (the
trunk). This has been our approach, essentially; include only the large
vessels explicitly in the model taking into account the volume of the
smaller vessels by increasing thé size of the large vessels accordingly.

‘With this reasoning, the length differences become less significant
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since most of the larger vessels extend.beydnd the large muscle mass at
the top of the calf. One must be careful, however, in how the length
variable is 1nterprefed. Distance is measured along the vessel axis
and, since the vessels of theindirect system are quite tortuous as com-
pared to the other vessels, the same value of x (or £) may correspond
to different positions along a straight line connecting the knee and
ankle.

This representation raises one more question, this one concerning
- the point in the system at which blood enters from the capillaries. If
‘the "evergreehranaldgy" is used, then the influx of capillary b]dod»
'shouid bé distributed a]ong”the system, while ih fact the model al]ows"
inflow only at & = 0 , the upstream end. Although basicafiy a poor
~ assumption, we can justify our model by looking ahead. The results of
the flow simulations (see Chapter XII) indicate that the induced f1ows.
are many times greater than the initial flow rate and are therefore
relatively unaffected by this small error in locating the fluid inflow.

The errors associated with differences in vessel area and compliance
are somewhat more difficult to rationalize. These structural differences
will result in different rates of emptying of the two systems. Although
we cannot incorporate the asymmetry into our model, we can predict how
this asymmetry will affect relatively emptying rates by simulating two
systems differing in eithér stiffness or area. The results of these

tests have been discussed in Chapter X.
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Structural Properties of the Veins

- The'second:categdny-of needed iﬁformatidn centers around the struc-
tural'prpperties'of the vein. More precisely, a "tube law" in the same
"sénsé'aEZWas-used in earTief.discuSsion is required. The computer pro-
gram does, in fact, allow for variations in the "stiffness" of the vés-'
Se]é with location, but requires that each vessel satisfy the same "nor-
malized" tube law. |

In Chapter VIII, we prov1ded a theoretical basis for formulat1ng a
. tube 1aw for a partacu]ar vesse1 ‘based on]y on 1ts d1mens1ons env1ron-

'ment, nd wa11 structura] propert1es. Because of the sparse 11terature
*concern1ng the character1st1cs of col]apsed veins in vzvo, we must rely
1arge]y on our theoret1ca1'background The information that is avail-

: .ab]e--wh1ch pr1mar11y concerns vessels in- the d1stended range—-has been -

‘used as a gu1de11ne and as a means of check1ng ‘the va]1d1ty of our model.

Literature Survey. We will look first at the existing literature.

This information has been obtained from a variety of sources, most of
the papers falling into one of the following categories:

(1) direct in vivo determination of vein tube law;

(2) eXperiments on excised veins;

(3) plethysmography;

(4) radiographic methods;

(5) wave speed measurements.

Of these methods, the results from studies classified under item (1)
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above would be most useful to us. Unfortunately, only one investiga-
tion®® provided reliable in vivo resu]ts,vthose pertaining to a canine
jugular vein having quite a different environment from a deep calf vein.
The results, however, do extend into the range of partial collapse and
provide a foundation for our estimated vein tube law.

The results of the experiments conducted using excised vein segments
show that the vein, as one might expect, behaves in a manner very simi-
lar to the penrose tubing,s¢" in this type of preparation. And if we
compare the results of these studies to the results of Alexander men-
tioned above, we find considerable discrepancy, more than could be attri-
buted to differences in the vessel wall itself. The conclusion is that
thé vein behaves quite differently in its natural environment immersed
in muscular tissue. We would expect the greatest deviation from the in
vitro results for those volume changes which cause the greatest distor-
tion of the vessel (i.e., for the collapsing region) (see the analysis
» in Chapter VIII of the effect of surrounding tissue). For either Targe
positive or large negative distending pressures, however, the vein should
respond in much the same way as it would in an isolated preparation and
for these limiting cases, these results are useful.

Radiographic techniques have great potential for obtaining precise
compliance curves for individual vein segments. when used in conjunction
with simultaneous catheter pressure measurement. Unfortunately, though,

experiments of this type have not yet been performed.

%See Appendix D for the results of our experiments using penrose drain-
age tubing.
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Measurement of wave speed, since it can be directly related to the
slope of the pressure-area curve by Eq. (3), would provide an indirect
means of predicting the vein tube law. Some studies have been conducted
in which wave speed was measured at different distending pressures in

7 These results are useful at least for

the canine abdominal vena cava.®
the purpose of comparing the order of magnitude of predicted wave speeds
with the experimental measurements. But, because of the differences in
vessel characteristics between the vena cava and the deep veins of the
leg, the comparison shou1d not be pressed to provide any further informa-

tion.

Constructing a Tube Law for the Veins

The Range of Positive Transmural Pressures.. Most of the data of use

in determining the pressure-area law for veins has been obtained indirect-
1y by one of the many plethysmographic techniques. However, due to the
wide variety of methods used and the intrinsic difficulty in establishing
precise reference pressures and volumes, the published results are not
consistent. Each technique introduces its own artifacts, the effect of
which are rarely even acknowledged. These studies do, however, provide
our greatest insight into the true <n vivo behavior of the leg veins.
Therefore; in the following discussion we will consider a representative
sample of plethysmographic data.

In this sample four different techniques were used to vary the trans-

mural venous pressure. They were:
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(1) changing the subject's orientation on a tilt table;®®

(2) occluding the veins emptying thé calf with a range of occlu-

sion pressures;®®

(3) varying the pressure in the plethysmograph;’®

(4) forcing all the blood (both arterial and venous) out of the

calf and allowing it to refill to a predetermined transmuka1
pressure.5?

The volume changes were measured by either a water or air plethys-
mograph enclosing some portion of the calf or by integrating the volume
flow rate trace during pressurization to the desired value. Most investi-
tators give only volume changes while two (Litter et al.,%2 Wilkins et
al.”’%) provide information on the absolute venous volume at some refer-
ence pressure. To compare the various sets of data, it was sometimes
necessary to make a reasonable estimate of a reference volume, usually
at the venous pressure and volume corresponding to the supine subject,
with no external pressure.

In none of these studies was the internal venous pressure measured.
Therefore we can only estimate it knowing the position of the subject and
whether or not an occlusion cuff was used. In those studies in which
transmural pressure is increased by use of a proximal pressure cuff it
was assumed that the venous pressure was equal to the occluding pressure.
The results from a variety of studies have been analyzed, providing,
where necessary, reasonable values for the parameters not given. There
is good agreement among these studies for large positive transmural

pressures. At low pressures, however, where we would expect collapse
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to begin, either the data ends or there is a considerable amount of

variability.

Small Positive and Negative Transmural_Pressures, There 1is good

reason to be suspect of these low pressure results. First, when the
patient is supine, there can be as much as a 10 cm‘HZO hydrostatic pres-
sure difference between the vessels in the upper and lower parts of the
leg. Therefore, the actual transmural pressure is smeared between these
two Timits for any particular external pressure. Thus, at Tow pressures,
the appareht collapse will occur much more gradua11y in these experiments
as compared to tests in which a single vein is ana]yzed.

A second source of error in these results is related to thé constant
influx of arterial blood through the capillaries which, in steady state,
flows through the entire venous system. As a result, internal pressure
gradients are present which become ﬁore and more accentuated as the ves-
sels collapse. Finally, since all of these methods measure changes in
1imb volume rather than local cross-sectional area, significant errors
are introduced due to the effective averaging over long segments of
vessels which may have spatially varying internal pressures.

In conclusion, it seemed reasonable to discard most of the low pres-
sure data of these plethysmographic studies and in its place use a curve
with a shape similar to that obtained by Alexander. This combination of
results provides us with a tube law which extends into the partially boT-
lapsed state but we can go no further with data from the 1iterature.

The effect of the surrounding muscular tissue was discussed in
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Chapter VIII. We concluded from a very approximate argument that the
vessel col]apsé should occur over a range of pressures no less than about
10 cm H20. This‘estimate, in fact, agrees quite well with the partial
results obtained from AIexander's data. Our approach ét this poiﬁt, then,
is to extend the tube law to small negative pressures at roughly the same
s16pe as determined. by our previous estimate until the vessel is collapsed
and wall bending moments become significant.

The Tower portion of the tube law is the most difficult to obtain.
‘We expect, as mentioned earlier, that the surrounding tissue again be-
Cdmes less signifiéant and the pressure-area law is therefore'detefminéd B
'primaki]y by_the characteristics of the isolated vein. Ouf‘theofetfcal

reshTts show that these characteristics are governed by the dimensional

_parameter K, = Ep(t/R)?/12(1-v?) , where E, s the Young's modulus
for bending. . .

A 1ogicalvapproach, then, would be to compute this portion of the
tube law based on experimental measurements of Eb and the dimensions
of the vessel. Here too, however, we encounter problems. First, all
measurements of E have been obtained with the wall in tension, not
bending. ‘At Tow transmural pressures, the collagen fibers exist in a
Toosely woven network and consequently do not affect the observed ten-
sion modulus. This same vessel,when subjected to bending stresses,
might appear much stiffer. The reasoning behind this statement can be
illustrated using the following example. The two sheets of paper shown
below, although differing greatly in their apparent tension modulus,

will exhibit the same resistance to bending. Therefore, the existence
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AVAVAY,

of even a small amount of collagen fiber (duetto'its high Young's modu-
Tus) can have a strong influence on the bending stiffness of the vessel
| regardless of its orientation withinvthe.wa11. Even with detailed infor-
mation concerning the miéroscopic_wa]l structure, a calculation of Ey
would be extreme]y difficult, however. A1l that we can say is that the
wall is likely to have a higher bending modulus than tension modulus at
Teast at very Tow degreeé of vessel elongation. | | |
Values for the tensfon modu]ué at low transmuréizpréSSufés akg;fn
" the range of 10° d_ynes/cmz'.71 The range of values for fhe'indiVTdual :
constituents of the wall are as follows:®" |
. smooth muscle: 6 x 10* - 1 x 105 dynes/cm®
. e]a;tic fibers: 3 x 10° dynes/cm?®

« collagenous fibers: 1 x 10* dynes/cm?

~ Each constituent is found in roughly equal quantity in a typical vein.”?

We would expect, then, based on the reasoning given above, that the
bending modulus for veins would be somewhat greater than 108 dynes/cm?.
In addition to Eb » we require the values of h/rR for the various

vessels for computing K Here, we find considerable variébility in

b -
the literature among the different veins, values for h/R ranging from
0.018 to 0.035 according to one source’! and 0.2 for mid-sized veins
according to another.®* Because Kp depends on h/R to the third

power, this range of values gives rise to a dramatic variation in Kp
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If we compute the two extremes,'we find that 0.19 < Kp < 8.9 x 10°
dynes/cm?.

We expect that at the lower values, the surrounding tissue would
again exert a dominant effect. As a reasonable approximation based on
observations of veins and on some of the results on excised veins,®®
we have chosen the mean value of Kp for the veins modeled in our study
to be 133 dynes/cm®* . This is somewhat more compliant than the penrose
tubes used in the Taboratory experiments.

- Piecing this information together, we obtained the pressure-area
curﬁé'sﬁown'in'Fig. 20. We chose, in tﬁisAéase; to define Ag, at a
“transmural pressuke not equal to zero betausé_ft appears that veins are
alréady partfai]y éo]]apsed at fhat}pfeséuré. Fbr comparison with pre-

- vious results, it was desirable to have o - 1 correspond to a nearly
"Cikéﬁia}:Qessel. | | | |

Clearly, there is potential for considerable error in the tube law
obtained in this manner. What is needed are direct <n vivo measurements
of compliance using either radiographic méthods or carefully conducted
strain gage plethysmography. These will be discussed in Chapter XIV,

where recommendations are made for additional research.

The Distribution of External Pressure

Another factor which enters into the physiologic model is the dis-
tribution of pressure at the level of the veins in the leg. Clinically,
pressures are applied to the external surface of the leg by means of an

inflatible boot or cuff. The muscular tissue would tend to smear out
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 the step change 1n externa] pressure at the edge of the cuff. Intui-
t1ve1y, one might ant1c1pate that the length of this smearing effect
would correspond roughly with the diameter of the leg

Direct measurements of interstitial pressures beneath the edge of
a pressure cuff at different depths and at different positions relative’
to the edge of the cuff have, in fact, been made.”’® The results indi--
- cated very little pressurevvariation with depth and confirmed our intui-
tive pred1ct1on that pressure var1ationsoccurover a d1stance comparable

f to the 11mb d1ameter, approx1mate1y 5 cm in the arm.. Pressures beneath

o the cuff, outs1de of the range of end effects were 100% of the app11ed

-ﬂ"pressure These exper1menta1 results are reflected d1rect1y 1n the form .

of the pressure d1str1but1on used in our experiments and plotted in the

o .upper center graph in each of the f1gures descr1b1ng the resu]ts of the

“venous flow s1mu1at1ons

Comments on Other Physiologic Features

Additional comments should be made concerning other features of the
real phyéiologic system which are not dikectly portrayed in our model.
These include: |

- the venous valves;

« smooth muscle tone;

+ the effect of previous venous disease.

Venous Valves. The valves have been included in the model, at least

to the extent that backflow is not permitted. They would also presumably
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have an effect on flow resistance since the cross-sectional area of the
vessel may vary somewhat locally. Also, the flow along the valve leaf-
lets could separate and cause somewhat greater losses than those pre-
dicted in the model. In our opinion, these effects would be minimal

and the overall picture of vessel collapse would not change noticeably

even if they were included in some way.

Smooth Muscle Tone. The state of contraction of smooth muscle

could cause significant shifts in the tube law under varying conditions.
However, it is known that the deep veins contain relatively little smooth
muscle; consequently, the influence of an adrenergic response would be
less significant in these vessels. Additionally, since our estimate of
vessel characteristics already is subject to considerable error, we feel

that the relatively small corrections dictated by changes in muscular

tone would be unwarranted.

Previous Venous Disease. The primary effects of previous venous

disease would be the valve incompetency and varicosities often associated
with the post-phlebotic syndrome. In terms of the model, this condition
would permit the possibility of backflow (extremely rare in the simula-
tions) and would tend to increase total venous volume while increasing
compliance. These effects would influence the flow in the same manner
as increases in Ap and c, did in the results discussed in Chapter X.
In summary, although our model can be justified on the basis of our
theoretical concepts, much additional physiologic testing is in order to

confirm and refine the assumptions made here.
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CHAPTER XII:

SIMULATING VENOUS HEMODYNAMICS FOR THE PURPOSE OF
UNDERSTANDING AND OPTIMIZING THE TECHNIQUE OF -EPC

The Method for Evaluating Different Pressure Cycles

In Chapter III we stated some criteria for the prevention of DVT

which were based on current knowledge of the interaction between the

fluid dynamics of the blood flow and the process of thrombus formation.

These criteria: were:

; high-f1ow puisatiTity;.

increased volume flow rate;

increased flow velocities;

‘increased shear stresses;

clearance of valve sinuses.
mechanical stressing of the vessel walls;

complete periodic emptying of the vessels.

For the purpose of making comparisons between the various means of exter-

nal compression, we need to convert these criteria into an objective eval-

uation scheme. We have chosen to consider the following variables of the

solution:

(1) Volume flow rate, Q , at four locations inside the calf.

(2) Flow velocity, u , at the same four locations.

(3) A measure of the shear stress; u/R , at the same four locations.

(4) Time required to reach a new steady state.
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(5) Whether or not the vessels collapse at locations inside the

calf. |

(6) Does backflow tend to occur at any time during the cycle?

Items (1)-(3) have a clear relationship to the criteria listed above.
We have chosen to consider Q , u , and u/R only at locations inside
the calf because this is the region in which thrombi are most 1ikely to
originate. The four locations indicated represent points equally spaced
between & = 0.1 and & = 0.4 in the model, the last point being nearly
at the 1eVe1 of-the knee, close to the edge of the pressurizing cuff.

The time requ1red to reach steady state (4) refers to the time it
‘takes unt11 the vessels have emptied about as much as they are go1ng to.
We would like this time kept to a minimum for the following reasons.
Shortened periods of compression may permit an increase in cycle frequency
and hence, more frequent flow enhancement. Secondly, since during com- |
pression we may be slightly impeding blood flow from the arteries, a
reduction in compression time would help to maintain normal mean flow
rates.

The basis for criterion (5) is not obvious. We reason that, if the

vessels do collapse along the entire length of the system, then it is
less Tikely that pockets of relatively stagnant blood might persist.
Also, if the claim that arm compression can help to prevent leg DVT is
substantiated, we miéht postulate that vessel wall contact may help in
the release of some anti-thrombotic cell constituent.

Item (6) above concerns the mixing in the sinuses behind venous

valves. If a tendency for backflow is introduced at some time during



-168-

the cycle, the valves will close. The repeated opening and closing of
the valves shduld hejpﬂto promite mixing fh and around the valve sinuses.
What effect, if any, induced.Backaow in the collapsed vessel would have:-
is unclear, however, and although this criterion has been included, it
“and number (5) should be viewed with some'skepticism. This matter will
Come.up_again in a later discussion in which we consider the value of
employing some kind of‘pressure pulse which would have the effect of
try1ng to reverse the f]ow d1rect1on periodically. For the present we
],W111 cons1der only the compress1on phase of the pressure cycle |
The deta11ed resu1ts of the venous flow s1mu1at1ons are presented

in the form of s1x graphs each prov1d1ng some add1t1ona1 1nformatlon
”concern1ng the flow at d1fferent locations in the system For each s1mue
_1ation,:we p1ot*the-fo]1owing variables: |

1' (1) - ‘the maximum app11ed pressure pmax(t); versus time;ft‘;

(2) the ratio of local applied pressure to maximum applied pres-

sure, p(x,t)/p_..(t), plotted as a function of normalized

max
distance, x/L ;

(3) normalized cross-sectional area plotted against x/L at six
successive times;

(4) a measure of the shear stress (flow velocity u dividied by a
characteristic vessel radius R) plotted versus time at four
equally spaced positions beneath the pressurizingvcuff in the
calf; |

(5) the flow velocity u plotted against time at the same four

Tocations;
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(6) volume flow rate, Q , p]otted{against time at the same four
‘locations. '

In éddition to the information readily attained from one of these
tWoAmethods of comparison, we have also tried to define trends which may
be exhibited by the results. To do this, we have selected the same var-
iables (Q, u, u/R at four calf locations) and have plotted the maximum
value of each as a function of the varied parameter (e.g., rise time, or
maximum pressure). This approach quickly points out the general effect
’  a change in maximum pressure, for exampje, might have on peak flow rate.

'Itialso gives us an idea of how much additional enhahcementvmight be
~achieved by changing a particular parameter beyond the range of the . .

simulations.

- Classification of Venous Flow Simulations

The venous flow simulations fall into four general categories. Each

is described below.

A. Current Mode of Pressurization. The current pressure cycle and

the method of pressure application were discussed in Chapter III. Basi-
cally, the cycle consists of a very slow pressure rise, the shape of the
pressure-time curve (S-shaped) being determined primarily by the filling
characteristics of the large plastic boots. With the fastest cycles, maxi-
mum pressure of 30-50 mm Hg is reached in 3-5 seconds and held there for

approximately 5-10 seconds, then released.
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| B. UniformrPreSSUre'App1ication. This compressien technique is.
- very similar to the method described~in (A) but with one major exceptien.
The pressure rise is now assumed to be 11near in time until reaching the
»,max1mum vaIue, then held constant for the remainder of the cyc]e The
| pressure 1s assumed uniform along the calf fa111ng of f at the knee at
the edge of the cuff. This change was made so that we could systemati-
cally investigate the effects of the rate of pressurization and the maxi-
mum applied pressure without these effects being infernced by the shape
of the pressure'curve.} Two series of tests were conduCted using this .
.method In one, “the r1se time was var1ed wh11e the max1mum pressure was
kept constant In the other, the rise t1me was he]d constant wh11e the

maximum pressur‘e was vamed.

C. Linear Pressure Application. In these-tests;'the time course

of pressure remained the same as in (B), rising linearly to a maximum
pressure which was held until the end of the cycle. The pressure distri-
bution, however, was modified. In view of the rather dramatic results
obtained using a pressure distrfbution which varied quadratically (see
Appendix A) we decided to try some form of a non-uniform spatial distri-
bution of pressure. As the simplest case we chose to simulate a pressure
which fell in a Tinear fashion between a maximum value at the ankle to
zero at the knee. In the series of tests using this mode of pressuriza-
tion, both the maximum applied'pressnre and the rate of pressurization

were varied and their effects examined.
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D. Wave-Like Pressure Application. Here, the external pressure

might rise to a maximum value linearly as in (B) and (C) or be applied
instantaneously. This time, though, the pressure distribution is a
function of time. The front of pressure moves in a wave-like motion
beginning at the ankle and proceeding toward the knee. When the wave
reaches the knee it stops and remains there for the duration of the
cycle. This method of pressurization effectively "milks" the blood
from the vessels as the pressure wave advances. In a series consisting
’of four_simu1ations, the effect of pressure wave velocity was investi-

. gated..

Discussion of Results

The main features of the results obtained using the physiologic
model were much the same as in the latex tube tests. This‘was in spite
of a significant change in the tube law, the distributed stiffness of
the vessels, and the addition of a varying friction parameter,.cf .

The non-linearities in the vein tube law were less severe due to the
influence of surrounding tissue. This, and probably the increase in
fluid viscosity, accounted for the improved stability in these simula-

~ tions over the previous computations.

Current Pressure Cycle. The results of the current pressure cycle

are shown in Fig. 21. Qualitatively, the collapse process occurs in
much the same way as described before. Collapse occurs first at the

downstream edge of the pressurized region although, in accord with the
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comments made above, the changes associated with collapse are much less
abrupt.  By the time a nafrow throat is well established at the kneé, |
much 6f the tube has already emptied and what Tittle additional emptying
that occurs takes place very slowly. Because of a significant.inf]ux of .
fluid from the arteri_a1 sidé ,‘ the new steady-state conﬁgur‘atioh that we
see at the end of the 5-second pressurization cycle is one.in which much -
of the system is still partially filled. The region of severe collapse
that we see at the edge of the pressure cuff is the source of a largé
pressure drop'due to viscous effects. This pfeSSUbé'gradient:is;1a¥géV'
enough ~with thé norma1 reéting Flow rate that preséurés,wifhih'thé‘veSA_ '
- sels.béneath the_cuff'maintain an 1nterna1‘pres$ufe,higﬁ;enqugh:td-rééist |
col]apse even for pressures of up to 70 hm_Hg as we sha]Tréeé in:a 1atér
'discussion.v'_ | , | |

The fact that the vessels collapse to an ethéﬁé]y”smaiT cro§§-° 
sectional area at only one, relatively narrow location helps to explain
the resulté shown in the bottom three graphs of the'figure. Flow rate,
as one would expect, falls off gradually but significantly proceeding
from-the knee toward the ankle. Velocity and shear rate, however, both
drop precipitously when we move just a short distance upstream of the
narrow throat. The fall is even more severe if we consider the maximum
values of u and u/R found in Table 6 at the point of minimum throat
area'(x/L = 0.44), which was not plotted. This shows that while shear
rates and velocities are extremé]y high at the knee along most of the
system the departure from normal is negligible by comparison. These

observations provide an excellent example to demonstrate why it is
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necessary to get more information than merely a measure of the volume

flow rate in the femoral vein when evaluating different pressure cycles.

- Uniform Pressure Application--The Effect of Rise Time. In the next

series of tests we investigated the effect of rise time using a linear
incfease in pressure to a maximum of 30 mm Hg in times of 1/3 sec (Fig.
“ 22), 1 sec (Fig.‘23), 1.6 sec (Fig. 24), 3 sec (Fig. 25), and 5 sec
(Fig. 26) In each case, collapse of the system occurred in much the
_same way as with the current pressure cycle. In general, décfeaSing
the rise tlme caused Q, u, and u/R each to increase as indicated on
_the graphs 1n F1g 27 of Q

mnax * Ymax ° and (u/R)max p1otted aga1nstv

}r1se time. The one except1on to this rule can be seen in the bottom two
| PR | max -
and (U/R)max as measured at x/L = 0.44 peak at a rise time of approxi-
mately 1 second.

These results are in general agreement with the measurements of
Roberts et al.%® of femoral vein flow rate during different compression
rates. His experiments covered a range of from 0.89 to 9.4 mm Hg/sec
which overlaps with the two slowest cycles used in our tests. We can
compare Roberts' findings with the increase in flow pulsatility predicted
by our results assuming that his measurements were made at some point in
the thigh, say x/L = 0.71 . The comparisons are shown below in terms

of percent increase in flow pulsatility (100 x Qmax/Qmean):
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Rate of Compression Increase in Flow

""" (mm " Hg/sec) Pulsatility
Roberts et al.®? 6 | 550%
10 ' 650%
Simulation _l , 6V 520%
10 740%

The agreement is surprisingly good considering the variability we would
expect between different patients. |
Roberts indicated that flows could not be altered siéﬁifﬁcanf]yjﬁithF

~_ further changes in rise time, a}conclusion which seems unjuétifiédaih view

of our results which show pulsatility in the femoral vein”ihcréaées'tb a
_ .value of approximately 1300% before leveling off for combression rates
.greater than approximately 30 mm Hg/sec. Thus,vwe can conc10de>fr0m ﬁheéé'
results that the optimal compression rate for uniform compression.Would
be.approximately 30 mm Hg/sec and the further decreases in rise time pro-

vide Tittle or noadditional prophylactic value.

Uniform Pressure Application--The Effect of Maximum Pressure. The

sequence of tests corresponding to Figs. 23 and 28 - 30 comprise our
étudy of the effect of maximum applied pressure. We somewhat arbitrar-
i]y chose to maintain a constant rise time of 1 second while varying the
maximum presSure attained during this period from 20 to 70/mm Hg. As‘a
result, the rate of compression (in mm Hg/sec) varies from test to test.
Figure 31 iT]ustrates how Qmax s U

, and (u/R) vary with

max max

changes in external pressure. As shown in these plots, increasing the
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maximum pressure beyond 30 mm Hg even as high as 70 mm Hg does not signi-
ficantly alter any of the variables except for (u/R)maX at the point of
maximum constriction. This is a direct result of the higher applied
pressure causing a smaller throat area. The important faétor demonstrated
here is that_the applied pressure be sufficient to assure collapse of the
veins. Pressures much higher than this, while providing marginal improve-
ment, cause the patient considerably greater discomfort.

One interesting feature of normal resting venous blood flow can be
seen in these graphs. That'is_howvextremelybsma11 normal physiologic

"f10wAVe1oéiffes and shear rates'afe in‘theSeuVessels. (It is not sur-
| brisingjthatnthrombin clots most_frequehtiy arisé in deep veins.) These

ﬁ shear rates are so Tow (~ 10 sec;l) as to raise a question concerning

_.thg.validity of our assumption that the blood behaves as a Newtonian.

: f1ﬁfd: We can juétify the assumption, however, on the basis that vis-
cous effects only play a significant role in regions where the tube is
highly collapsed and consequently where shear rates are several orders
of magnitude higher. In the rest of the tube inertial effects are the

primary determining influence.

Linear Pressure Application. In the next series of simulations we

investigated what we called the linear pressure application. The results
of these tests are shown in Figs. 32 to 34. Several distinctions can
be immediately seen between these results and the induced flows with uni-
form external compression.

We mentioned earlier that we were motivated to try this mode of
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pressurization based on the encouraging results of the investigetion of
“uniform vessel col1apse (see Appendix A).  As anticipated the collapse
occurred first at the upstream end of the system (x/L = 0) and propegated
_-in the downstream direction. Thus the narrow throat at the knee which
was ah'important factor in the brevious tests never formed{v In the ah—
sence ofvthis necked down region, the collapse is seen to be more complete
and to take place over a considerably shorter time than before.

An additional benefit of this pressurization mode is that the peak

' va]ues of Q, u, and u/R are much more even]y d1str1buted (see TabTe

6). The peak values for u and u/R - are nearly constant along the

,'ent1re system whereas in the prev1ous tests the magn1tude of these peak
“values, varied over one to two orders of magn1tude, the max1mum value
| occurr1ng over a very sma]] distance r1ght at the knee

The three figures represent results of tests in which f1rst the rise
time and then the maximum pressure were varied. The decrease in rise
time from 1 to 1/3 second keeping the maximum pressure constant caused
moderate increases in each variable from 20% to 37%. Again, we conclude
that a rise time of 1 second is probably sufficient. As a practical
matter the small imprbvements that might be gained by reducing the rise
time any further are probably not warranted in view of the increasing
difficulty in attaining shorter rise times.

Similar results were found when the maximum pressure was raised from
30 to 50 mm Hg while the risevtime was kept at 1/3 sec. With this modi-
fication the improvements ranged from 41% and 42% in Q and u to

max max
72% 1in (u/R)max . The case with which this higher pressure could be
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imp]emented clinically depends on the actual design of the pressurizing
cuff and the pressure cycling device. It seems, though, in view of cur-
rent methods, that.increasing thelmakimum pressure to 50 mm Hg would re-
duire only minor quifications. Weighing the cost in terms of design

practiCality.agéinst the improved flow'éondftiohs we feel that the in- :

crease in pressure would be warranted.

Wave-Like Pressure Application. The final modification we made in

the mode of calf compression took the form of a wave-like pressure appli-

~ ¢ation. For eaéh of the tests invthis-sequence, the maximum pressure wés
held constant with timé at 30 mm Hg while the}wave swept frdﬁ the ank1e
fowérd thé khee. In the results presented in Figs. 35 to 38 ,'the'

one parameter investigated was the speed of propagation of this wave of
pressure. The tests correspond to speeds ofIIO, 20, 30, and 50vcm/sec; “
It should be noted that in the region of spatially varying pressure at

the front of the wave (between x = x and x = xw'LR where x is

W
the position of the leading edge of the wave and LR is the width of

the variable pressure region), pressure was described by the relation

pe(x,t) = pemax(t) { 1 + sin[% + 'L% (x-xw+LR)]}

where 'LR was 0.15 in dimensionless form. We should also mention that
the region behind the wave front remained pressurized for the duration

of the pressure application.
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"~ As in the case of 11near pressurization, the maximum value of each

. of the varlables plotted (Q, u; u/R) were much more uniform over the en-

tire system than in the case of uniform compression and showed a general

- upward trend for increasing wave speed (see Table 6).  Once again, the
reason can be traced to the absence of a narrow throat at the knee. The

_ppint of collapse in these tests generally follows the motion of the wave
front although at the higher speeds there was some indication of the pres-
sure wave overtaking the region of col]apse The 11m1t1ng case (wh1ch

rwe d1d not approach 1n our tests) would be that of an 1nstantaneous un1-p

_form pressure app11cat1on as in the first. sequence of tests but w1th the'

. szeetJme approaqh1ng«zero This extreme s1tuat1on would revert back to

one in which a throat is formed at the knee as before. There is, then,

oA 11m1t on. ‘how fast the wave of pressure should progress Intuitively,

we m1ght expect the 11m1t1ng process to occur when the pressure wave pro-
pagation speed is roughly equal to or greater than the speed of wave pro-
pagation in the vessels. This would be at approximately 60-200 cm/sec
according to our tube law, depending on the initial degree of vessel
1nf1ation.

The curves of flow rate, velocity, and shear rate in Figs. 35 to 38
exhibit considerable oscillations. Since the peak spacing varies but
the total number of oscillations that occur in any particular trace re-
mains roughly the same from one simulation to the next, we anticipate
that the unsteadiness is introduced as a result of numerical errors and
is not due, for example, to real wave reflections. The errors probably

arise in the region of rapidly varying cross-sectional area where
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truncation errors will be largest.

. Our tests culminated at a speed of 50 cm/sec due to difficulties in
the numerical solution at higher speeds. The problem can be éttributed
~ to the extremely high flow rates, and consequently high fluid inertia in
the downstream rigid ducts in the model. The flow begins to decelerate
rapidly when the pressure wave reaches its final position. This rapid
deceleration induces large negative transmural pressures at the point
where the compliant tube and rigid tube. meet. The tesfs which did run
to compTetion provide us with an ample picture of how the variables be-
. hayé Withfn the’range of practical application. With a‘propagatiqn_speéd o
. of 30 cm/Séc, the pressure'wave reaches the knee in a little hore than a
sécohd. If the wave is created by somé sort of é segmented pressure cuff,
it would be increasingly difficult to produce wave'motion in times shorter
than this. |

We must realize too that the flows and velocities induced by a wave
moving at 30 cm/sec are already extremely high. Before we attempt fur-
ther increases, the physiologic effect of volume flow rates perhaps 20
or more times as large as resting flow should be determined.

| Comparing the last two modes of pressure application, we find strong
similarities. We can compare, for example, the Tinear pressure applica-
tion of 50 mm Hg with a rise time of 1/3 sec to the wave pressure with a
propagation speéd of 30 cm/sec. The mean value of the peak flow rates

are within 1% of each other; the mean value of Uy is 12% greater in

a X

the Tinear pressure application; and the mean value of (u/R)max is 63%

greater with the wave of cbmpression. The choice between the two cycles
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would have to be made on the basis of practicality in terms of actual

implementation in a clinically viable design.

The Effect of Appgoximatioﬁs'Mede“in:the'DeVelopment of the Model

- Before reaching conclusions concerning what we would recommend as
an optimal pressure cycle, three possible deficiencies in the model should
be examined in view of how they mfght influence the results--in particu-

lar those results using one of the two newly proposed means of pressuriza-

- tion. Spec1f1ca11y, how would (1) unsymmetrxc branch1ng, (2) d1fferent

'tube 1aw, and (3) the effect of vesse]s running in a d1rect1on not paral-
e to the ax1s of the 1eg affect the pred1ct1ons made here? -

(1) Unsymmetric branching. In situations in which the vesse]s

'collapse at the upstream end f1rst and the collapse- reg1on propagates '
in the downstream d1rect1on, the effect of unsymmetr1c branch1ng should
be minimal. The driving force in these cases is a gradient in external
pressure applied to the outer surface of the leg, which is unaffected
by the local properties of the vessels beneath. Therefore the vessels
must collapse in the manner described above and the possibility of leav-
ing a region of stagnant blood in a particular vessel due to unsymmetry
is remote. |

(2) A different tube law. Much of the same arguments stated above

apply here as well. Regardless of the detailed shape of the tube law
collapse should occur in the expected way. If, however, the tube law is
found to be such that the wave speed in the vessels is actually lower

~ than what we have predicted, the speed of the wave of pressure would
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have to be adjusted so as not to exceed this value. If, on the other
hand; the‘tubeblaw varied drastically from one position to another in
the same vessel it is conceivable that the linear pressure applicétion
could Teave pockets of stagnant blood. This can be thought of in the
following way. If the vessel is found to be progressively more com-
p]iant-proceeding in the downstream direttion, although the external
pressure at downstream points is less, it may be sufficient to cause
collapse whereas the higher pressures upstream might not collapse the
stiffer part of the vessel. The result would be a situation similar
to that observed in the case of uniform pressurization. It is,‘however,
~ highly unIikely that veése1 properties would change sb abruptly so as
to cause this phenomenon.

(3) The effect of vessels running'in a direction not parallel to

the axis of the leg. In all previous analyses, it has been implicitly

assumed that distance inside the vessels corresponded to distance out-
side the leg with a one-to-one correspondence. Obviously, the veins fol-
low a more tortuous path and at certain locations their axis may be nearly
at right angleé to the leg axis.

For cases of linear variation of external pressure, the direct effect
of this anomaly would be to decrease the pressure gradient locally--the
~greater the departure of the vessel from the leg axis, the smaller the
pressure gradient. If the departure is severe enough to cause a pressure
distribution which is less steep than the quadratic distribution then the
vessel will collapse first at the proximal end of the segment. (This

comes as a result of the analysis of Appendix A. There we find that
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uniform collapse oécurs for ‘a quadratic pressure distributibn. Hence,
‘a linear distribution such as was ﬁsed in'the sim&lations céuses ¢o11apse'
upstream first and a distribution more sha}]ow than the qhadrafic one
-~ -would, by analogy, caﬁse co]labsé downstream first.) This is hardly a -
dire consequence, thqugh; since it simply brings us back to a case more
Tike the uniform compressfon but with tﬁe thfoat being much less severe.

| The same sort of event could occur in the case of wave-like compres-
sion and again, although it creates a less than optimal condition, the

| effect is Tikely to be relatively small.

B Addftiohal Considerationsﬁfor'cyCTeVOptimfzation‘ )
Our comparisons until now have focused exclusively on the first
;‘thfee criteria stated at the beginning of this chapter.~;Th§$§5afé-prof
baﬁly'the most impdrtént‘flow criteria so our.pfiorvhégiéct bf'itéms'“
(4)-(6) can be justified. We should, however, consider the two proposed
modified methods and evaluate them on the basis of our complete list of
criteria including items (4)-(6). |

In both methods, the emptying time has been greatly reduced, occur-
ring in a period from 1 to 2 seconds in each case. This is in sharp con-
trast to the current method which approaches a steady state very slowly |
once the throat has fofmed.

Both new methods, again in contrast‘to the current technique, cause
the‘vessels to collapse at all points in the system, thus satisfying
criterion (5).

In none of the simulations, however, did we induce the tendency for



-183-

backflow which would have the benefit of closing the Qenous valves, thus
promoting mixing of the blood in the sinuses. We could, however, easily
close a]l the valves simply by either reversing the direction of motion
of_the pressure wave or reversing the external pressure gradient. This

could be incorporated into any procedure if it was felt that this were

an important criterion.

Analysis of the Complete Pressure Cycle

AsSUming now that we adopt either the wave-like or the linear pres-
o sUfeiapp]ication we still must address the question of the relative

_ 1ength$ of the different portions of the cycle: How long should the pres- -
sure be applied? How long should the rest period be?

~ We have actually already answered the first question. The pressure
should be maintained just long enough to reach a new steady state which,
with either of these methods, is close to two seconds, depending on the
maximum pressure, the rate of pressurization and, in the case of wave-
Tike compression, the wave propagation speed.

_ The remainder of the cycle, then, is the time required for refilling.
If the pressure is simply released and the filling allowed to take place
naturally, studies have shown’* that a rest period of approximately 45
seconds is needed to return the vessels to their original state.

This time might be reduced nominally by applying an occlusion cuff
to the thigh filled to a pressure of 20 or 30 mm Hg during the refilling

phase. This would prevent the escape of any blood from the deep veins
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until they are completely filled. This could also be used as a means of
"chafging" the deep yeins with some additional blood volume which could -
be useful if some dependent parts of the circulation resist filling Uhdéf
. normal venous pressures. The actual time required for-refi1ling, thdugh;
with a fixed inflow of less than 3 mz/sec‘ffom”the aftérial sidé;'}é-"
quires a minimum_of 25-30 seconds and there is no way to reduce this
portion of the cycle any further. |

It would be extremely usefui in determining the entire pressure
| cycle if we cduld estimate, even roughly, the behavior of inflow durfng
_.fhe entire procéss;_ Td do this, we can divide the cycle into_twcvbhaées;V -
:one for fi]ling and one for emptying of the calf véins; Invébsénce:of-;

any compression at all, we can define a mean volume flow rate =

G = Rlp-p) . (o)

where R is the resitance of the capillary bed, Pp is arterial pressure,
and Py the mean venous pressure at the calf. During most of the period
of external compression, the vessels are likely to be partially collapsed
and thus at a transmural pressure of about zero. The pressure inside the
veins is, then, roughly the same as the external pressure, Pe - If we

~assume R to be constant and recognize that Pa will not be affected

| by compressions of less than about 100 mm Hg, we can write an expression

for the flow rate into the veins during compression,

Q = R(py -pg) - | (102)
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This, of course, would be somewhat less than Qm . During the portion
of theicycleArequfred for refilling (if we adjust our cycle appropriately)
the veins will again have a transmural pressure of about zero, thus an
: interna].pressure of zero as well (since P = 0 during the refilling
process). Hence we can express the arterio-venous flow rate during re-
filling as

QR = R P - (103)

'-Accordingly; if the compression portion of the cycle has a period
of 'tc and the ref111 portion, t R the mean vo]ume flow rate through

‘_the cap111ar1es durlng the entire cycle is

Q.t. +Q,t v
o (o)

We can compare the mean flow rates more conveniently in the form of a
ratio:
me Q t + QRtR

0 = . (105)
m (t +tR)Q ‘

Replacing Qc, QR’ and Qm with the previous expressions we obtain

Q pA - Py A e tc + tR :

Finally, if we assume that t, << t, (the fil1ling proceSs occurs
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~ much more slowly than emptying), then we can rewrite this expresSion'in

approximate form as

Pe t¢
ch ! ZERiEE : A :
q - : . ' : (107)
m Py
P

Hencé, if (petc)/pvtR, <1, the mean flow rate during intermittent com-
pression is greater than that in the resting state. This equation has
,fsqme particularly interesting implications. First, we find fhat;the; f, :”
| éurﬁgnt cycle (with t. =10 sec, t, =45 sec and p, = 45 hm ﬁg) has-! -
i-n¢ftendency to increase the mean volume flow rate which agrees with pre-
vious measurements®® using similar cycles which demonstrate that ch
__is equal to or slightly below Qm . Another conclusion is that theIIA, -
éffect of a change in posture from supine to erect (with an accompany-
ing incrgase in Pe SO as to assure vesse1 collapse) is to cause an
increase in mean flow rate. And, clearly, a decrease in tc/tR will
have the same effect. We can compare this approximation to the findings
of Allwood'® mentioned earlier. In his experiments a net increase in
mean flow of "60% was measured for a sitting individual with a compres-
sion cycle consisting of 1 sec of compression to 110 mm Hg and 4 seconds
of refilling. Assuming that in this pbsture Py = 170 mm Hg and Py =
80 mm Hg, our equation predicts an increase of 58%.

We also find, using this equation, that for our proposed alternate
methods of either a linear pressure application or wave-like compression,

only slight enhancement of mean flow rates is obtained. For the following
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values:
Po = 50 mm Hg 30 mm Hg-
tC = 2 sec 2 sec
tR = 40 sec 40 sec.
Pp = 100 mm Hg 100 mm Hg
Py = 10 mm Hg 10 mm Hg
ch
- = 1.08 1.09
Qm

True, the analysis is a crude approximation at best, but serves to
- illustrate the influence changes in the various parameters will have on

the overall process.

Conclusions

Based on our findings which have been discussed in some detail in
this chapter, we can gather all our pertinent observations and come to
some conclusions concerning our concept of the optimal compression cycle.

First, some of the more important observations:

+ The current method of spatially uniform compression along the calf
causes a necked down region at the edge of the pressure cuff which
severely impedes further emptying of the vessels located distal to

the point of collapse.

« Using the method of uniform compression, the effectiveness of the

method generally increases with decreasing rise times.
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The effectiveness also improves as the applied pressure is increased,

but only marginally for pressures greater than 30 mm Hg.

The upstream constr1ct1on can be e11m1nated by either of the two newly

proposed methods: 11near or wave-like pressure app11cat1on

With either method, flow rates, flow velocities, and shear rates at
points inside the calf can be increased significantly above what is

- attainable with uniform compression.
Both new_methods provide co]iapse'of‘the entire deep yenousjsystem.'

+ The time requ1red to empty the system can be reduced to approx1mate1y

| 1-2 seconds using these methods

"In the ‘1inear mode of compress1on the method 1s made more effect1ve
'e1ther by increasing the maximum applied pressure or by reduc1ng rise
time.

For wave-1ike compression, both Qmax “and Unax increase with increas-

ing pressure wave propagation velocities.

Filling time might be reduced by appiyjng an occlusion cuff at the
thigh during the refilling phase of the cycle.

The mean flow rate through the calf might actually be increased if
p, t
£ _C

<1.
Py tr
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In view of these findings, ig appears that either the method of
Tinear pressuré application or wa&e-]ike éompression has considerable
,potentiél. The two methods are véry nearly equal in terms of protec-

- tion from DVT according to our criteria and offer the possibility of
considerable improvements over the current method. Additional studies
are of course necessary before either method is tried clinically and
these steps will be discussed in the next chapter.

The choice between thése two methods should be made on the basis
::of design considerations of thé compression cuff andipressure source.
if the linear méthod is selected, our predictions indicate that a maxi-
mum pressure of‘approximaté1y:50 mm Hg'should be used witﬁ as rapfd a
rise tfme as can be obiained by reasonab1eAmethods but certainly less
than 1 sec. If the second method is employed, the speed of the pressure
ﬁave'shbuid be about 30 cm/sec. In both casés, the compression portion
of the cycle should 1asi about two seconds, the refilling phase 30-45
sec.

This completes the present analysis. What remains is to refine
and test these predictions. In the next chapfer we will discuss fhe

future directions for this and related investigations.
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CHAPTER XIII:
~ RECOMMENDATIONS FOR FUTURE RESEARCH

In this.chapter we consider ways in which the results of the pre-
sent investigation could be either extended or refined, so that we come
closer to achieving those goals set forth in Chapter II. In addition,
we will explore two new fields of research in which our present know-

Tedge could be put to other purposes.

Possib1eARéfiheménts.invthe:PreéentiMdde14

The Physio1ogic.que1;»_We»can first look at the results obtained

thus far and ask, how might they be improved? It was noted previously
that the accuracy of theuphysio1ogic model was compromised due to the
scarcity'of detailed, quantitative information concerning the structurall
properties and geometry of the relevant vessels. Specifically, errors
in the flow simulations can most likely be attributed to the rather
broad assumptions made in formulating a tube law for the veins and in
predicting the variations in A, and ¢, along the system. Although
corrections in these parameters would probably not reverse or even sig-
nificantly alter the trends we observed, they would provide some addi-
tional confidence in the results which, when dealing with a problem of
clinical significance, can be very important.

Three methods can be suggested for a further investigation of ven-

ous anatomy and vein characteristics:
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(1) the construction of venous casts;

(2) venography, |

(3) plethysmography |
Venous casts, although requ1r1ng a certain amount of sk111 to construct,
provide an ‘excellent three-dimensional picture of the complex venous net-
work. They can also provide some information concerning the state of the
. collapsed vessels if the casting material is allowed to harden while an
external pressure is appTied to the 1imb. Care must be taken, however,
in comparlng co]lapse character1stics of a vesse] 1n an amputated 11mb
to those of 11v1ng t1ssue | . '
- E1ther venography or p]ethysmography can ‘be used as a means of L
| der1v1ng a pressure-area 1aw for veins. Ideally, a s1ng]e vein cou]d
be observed venograph1ca11y wh11e an increasing external pressure is
being applied, S1mu1taneous]y, the internal pressure might be measured'
by means of a catheter inserted to the level of the venographic obser-
vation. Similar information could be obtained for all the vessels at
a particular cross-section of the calf by means of plethysmography with‘
graded external pressures. If internal pressures are not directly mea-
sured, however, the results must be interpreted very carefully because |
of the varying degree of flow resistance (and hence changes in pressure
~gradient) due to flow, at points downstream of the volume measurement.

Another area of considerable uncertainty was the criteria used in
the optimization procedure. Obviously, the problem of determining the
precise fluid dynamic influence on the onset of thrombosis is one of

enormous difficulty. We necognize the problem, but feel that it is
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highly improbable that our efforts would lead to a significant contri-

_ bution in this field.

Improvements in the Numerical Procedure. A shortcoming of the
numerical procedures was encountered as we pushed toWard larger and
larger volume flow rates, as in the case shown in Fig. 38. When the
flow began to decelerate, the tube started to pinch off at £ =1,
eventually causing the solution to break down. The reason the tube
area drqbs so catastrophically at the downstream end‘has_to‘do»with
théVfact*that, in order to decelerate flow in the first downstreém:

| rfgid duct, the pressure at & =1 must be less than the ﬁreésure'in .
'thevcapacitaﬁce element. For high rates of deceleration, 1arge pres-
.. sure gradients are necessary, eventually causing the tube to collapse.
- In'tekms'of the present study, sufficient information was obtained prior
to the failure of the solution so it was not deemed necessary to revamp
the computational procedure. If, however, we decide that even higher
flow rates are desirable, we may have to consider a different form for
the boundary condition that either eliminates this non-physiologic event

or enables the numerical solution to cope with it.

The Development of New Experimental Models. One purpose of the

hydraulic experiments was to provide evidence of the validity of the
theoretical model with respect to variations in the different parameters.
The range of experiments was sufficiently diverse to thoroughly investi-

gate the effect of parameters of the boundary conditions and of the
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spatially uniform pressure application. Lacking,}however, were experia
ments in which the effect of tube properties»and of either non-uniform |
or wave-1ike pressure applications were considered. For the_sake of
_completeness, we should at least weigh the value of theSe tests.egainst o
‘the difficulties that would be encountered in thefr implementetion; We
obviously cannot evaluate .every detail of the theoretical model--if we
could there would be no need for the theoretical calculations at all.
But, perhaps, in view of the dramatic differences predicted by the theory

 in some instances, some additional experiments may be warranted.

Immed1ate 0bqect1ves in the Study of DVT ProphyTax1s . o

Phys1o]og1c Stud1es. We want to consider now the d1rect1on that

- new: research should take so as to extend the usefulness or app11cab111ty

"of the present work . Clearly, the next, most 1mportant step wou]d be
the clinical confirmation of the findings in Chapter XII concerning the
optimal pressure cycle. An apparatus wi]] have to be designed and con-
structed which allows us to pressurize the calf with either.a linearly
varying or wave-like compression. The performance of the device can
then be tested by'various methods either on patients or volunteers.
Three testing procedures are available:

 venography;

+ plethysmography;

+ direct measurement of flow rates and/or pressures during either

venography or surgery.
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Venography has the potential to provide us with a more complete
picture of vein emptying than either of tﬁese other methods. Typically,
at the end of a normal venogram, the radio-opaque dye could be ejected
by a pressurizing cuff that had been fitted to the leg at the beginning
of the testing procedure. Cine viewing would provide us with informa-
tion concerning the collapse of all vessels which were originally filled
with dye. Flow rates could be estimated by taking the time derivative
of volume changes upstream of any particular point. There are disadvan-
tages to this method, however. First, we can never be sure that all deep
vessels are filled with dye initially, particularly the large muscular
veins which are bf considerable interest. Secondly, we can obtain at
most two two-dimensional cine recordings and are limited accordingly in
constructing a three-dimensional representation of vessel collapse. The
problem is compounded even further if only one view can be obtained.
Finally, the flow process is 1ikely to be altered by high concentrations
of a dye which has a significantly greater density than the blood itself.
This is particularly true in the inertia-dominated initial phases.

Plethysmographic techniques have the vast advantage of being totally
non-invasive and can be conducted in our Taboratory on normal, healthy
volunteers. Using mercury strain gages positioned along the subject's
calf beneath a pressurizing cuff, we obtain a direct, continuous output
representing the local changes in cross-sectional area as a function of
time. Again, we can estimate volume flow rates based on the accumula-

tive volume change (area change integrated over distance) upstream of

any point.
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These first two procedures provide us with similar ihformation,
area changes as a function of time. The éhortcomings'of these methods
could be compenéated for by direct measurement of flow rate, vé]écities, _
or pressure at different 10cations within the collapsing network or just -.
: downstream of it. This could be accomplished, at least partially, in
two ways. During surgery, it is at times possible to place an eléctro-
mégnetic flow probe around the femoral vein. Recordings of flows during
calf compression would be a valuable addition to the above results. Dur-
Aihg catheterization of the lower eXtremity, it may"ﬁe'possible to fhfead'
a pressure or:ve1ocity'sensing catheter retrpgradevin £he femora] véin, :
to-a‘]eVeT jhst.below the knee, beneath-the.edge of_the'préssur§LCuff@.  f-::
Agéin, recordings made by this means during compréssion provfdevénothér
1ndependent p1ece of information. _ o o

A]though none of the methods prov1de a comp]ete p1cture by them- B
selves, each compliments the other in such a way that when we piece all
the %nformation together, we should have a reasonably good idea of how

actual venous flows relate to our predictions.

Design of a New Compression Cuff and Pressure Source. If-we'hope

to test some of the different pressure cycles suggested in the previous
chapter we cannot overlook the need for the pressure chff and pressuriz-
ing apparatus. The current boot is extremely large and requires a mini-
mum of 3-5 seconds to inflate. The cycles we have proposed require rise
times on the order of a ffaction of a second. In addition we have special

needs in terms of either a spatially linear or wave-like pressure
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- application,

One of our f1rst steps, then, must be the des1gn and construction
of a compression sleeve and the accompanying pressurizing apparatus.
Some criteria for the design include that it be segmented to allow for
spatial gradations in pressure, that it require a very small volume for
complete inflation, and that it be comfortable and not cumbersome for
the patient. In addition, we feel that it should cover only the calf,

not the entire lower leg and that it be adjustable so as to accommodate

~all or least a large segment of the population.

Clinical Trials of a Potentially More Effective Method. The final

step, following clinical confirmation of the theoretical results, would
- be a trial comparison between the postulated optimal pressure cycle and
one of the more successful alternative procedures; low dose heparin, for
example. The value of this study would then have been fully realized.
Only By way of numerical simulations could we have made a logical study
of the various alternative pressure cycles. Clinical trials of all, or
even some, of the methods examined theoretically would have taken years
to complete. In addition, the ethics of such a plan would be highly
questionab]e..

The discussion so far has been directed toward the more immediate
objectives: those which relate directly to the study of EPC. The fol-
lowing comments which are made with a much broader perspective consider

other applications of the theory of collapsible tube flow.
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" New Fields of Research

Two other research topics follow c1o§e1y aTong the lines of the -
: preseni study. Witﬁ our present dnderstanding of uhsteady flow in col-
-vlapSible tubes and the capabilities and interests of the individuals in
the Fluid Mechanics Laboratory, a‘fayorab1e situation exists for branch-

ing out into either of the following research areas.

~ External Cardiac Assist (ECA). A method of cardiac assist using
:"_EXternal compression of the Tower eXtremities has been suggesféd and_f
| trﬁed on avveny 1imited'basis.75' The ide& was similar to thdt'dséd :

'iiin‘thé intfa-ao}tic balloon pump--increase aortic pfessuré during diaev
stole ‘and reduce it during systole, thereby reducing afterload (and thus
‘the strain on a damaged heart) and enhancing coronary circulation. 'Rathef
than displacing volume in the aorta, such as with the balloon bump, it
was suggested that the pressure surrounding the legs be cycled in such
a way thét blood be pushed into the aorta during diastole and drained
from it during systole, effectively accomplishing the same purpose;

The previous tkia]s have not been well accepted and the results were
not particularly convincing. The concept, however, is attractive and
deserves additional consideration before being discarded.

In principle, the process of "squeezing" the blood from the legs
into the aorta is much the same as squeezing blood from the veins. The
vessel network has different characteristics; the initial pressure is
much higher, and the flow is initially in the.opposite direction; but

none of these differences require the development of a completely



-198-

different model.
A study of ECA would necessarily be a large-scale, multi-faceted |
investigation requiring cooperation between several research groups. It

would, though, be a task well worth the considerab]e efforts required.

A Model of the Airways of the Lung. The lung airways constitute

another system of potentially collapsible vessels. Under conditions of
normal respiration, the external pressure surrounding the airways, and

~ the alveoli at which they terminate, varies in a cyclic fashion causing
aif to be transferred into and out of the lung. In extreme‘cases; the
external pressure can be raised to levels which are sufficienf,to col- .
lahse thé airways. This occurs in certain diseased statésAsuéh‘aS asthma,-
where due to the increased flow resistance in small airways much greater
mﬁscular effort--hence much greater external pressures;-are'necessahy to.
satisfy the oxygen needs of the body. Collapse can also occur in forced
expiration or coughing in which high external pressures are needed to
produce the correspondingly large flow rates and flow velocities.

A model similar to ours could be applied in either instance as a
means of gaining a better understanding of the important phenomena. In
asthma, one belief is that the sounds one hears are the sounds produced
by airway oscillations and are often described by analogy to the "Bronx
cheer." The vibrational frequency of the sound and whether or not the
sounds occur could contain useful diagnostic information concerning the
airways directly involved in the oscillations and the surrounding tissue.

Respiratory physiologists generally agree that airway collapse
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accoﬁﬁts for flow limitation observed in curves of flow rate during'é
" cough or a forced expiration maneuver. The characteristics of this
maximum flow curve and the transients produced by forced expiration
- are currentIy being considered for their diagnostic'va]ue;. _

In'both cases just described we have a phenomenon of unsteady flow
in a collapsible tube. In each, an understanding of the-fluid dynamic
. mechanisms involved would greatly contribute to the current attempts to
determine their diagnostic potential. Modeling respiratory flows is not
'  aﬁ easy taék, hoWever, and would require,a'someWhét different modé] than
'] that which'Qas used to simulate ihducedvvéhOUS'fXOWS;' Iheftiaiveffects
)  of_thé'vés$é} wéli ére_like}y td_be.impdrtaﬁt as aré;the effects of visco-
| elasticity at}the highéf frequencies and.waQe ﬁropagation speeds enéoun-
tered in-the lung. Our basic understanding of flows:of this general type
"WOﬁ1d;'however,'givé us a solid BaCkgfound from whftﬁIWé could formulate
a new model that could be applied to a variety of simulations of respira-

tory flows.

RDK:cp
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TABLE 1. Risk Factors for Venous Thrqmbosis(a)

General surgery, particularly:

major abdominal

thoracic

gynecologic

retropubic prostatectomy
neurosurgery

] - L] » L ]

Orthopedic surgery
« hip fracture
- elective hip replacement
+ knee surgery
- tibial fracture
Increasing age
Malignancy
Prior history of venous thrombosis
Bed rest
Varicose veins
Obesity
Pregnancy
Use of oral contraceptives
Recent travel
Stroke
Myocardial infarct
Congestive heart failure
Leg trauma
Blood group

(a) See Ref. 21 for a complete discussion of these risk
factors and for specific references.
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Clinical Evaluation of Prophylactic

Methods Against Deep Vein Thrombosis

_ _ % DVT

Type of Therapy Patient Group Control Treated

Heparin?? General surgery 24.6 7.7

Heparin2?* General surgery 37 12

Heparin?® Total hip replacement --(a) 73

Heparin2® Elective surgery 41 15

Heparin?? General surgery O 2

Heparin2® Surgery in malignant disease 40 7

Heparin?? Elective surgery 16

Dextran®* General surgery 37 .25

Dextran?® Total hip replacement -(a) - 20-25

Warfarin?s Total hip replacement --(a) 20-25

Aspirin?® Total hip replacement - 35

Acenocoumarol?? | General surgery --(a) 18
PHYSICAL METHODS

; - % OVT

Type of Therapy Patient Group

Control Treated

External pneumatic compression®? General surgery -- 0
External pneumatic compression3! Non-malignant disease 40 15
External pneumatic compression®! Malignant disease 50 50
External pneumatic compression®’ Neurosurgery 19 1.5
External pneumatic compression3? General surgery 26 6.4
External pneumatic compression?®? Malignant disease 32 4,5
External pneumatic compression3? General surgery 20 ]
Electrical muscle stimulation®® General surgery 21 8.2
Electrical muscle stimulation3s Non-malignant disease 35 10
Electrical muscle stimulation®® Malignant disease 56 55
Compression stockings?®® Elective surgery 32 32

(a)No controT group. -
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TABLE 3. Summary of Flow Experiments(a)

Experiment Number

Parameter
1 2 3 4 5 6 7 8 9 10
Pe (em Ha0) | 27 10 175 82 30 30 .28 28 29 28
$ (sec) 0.25 0.42 0.30 0.30 0.7 0.5 0.5 0.78 0.25 0.25
Q; (me/sec) 0 0 0 0 o 0 0 0 0 0
PgP, (cmH0) [ 3.1 3.05 30 30 30 31 3.1 3.1 475 4.6
PgPe, (M Ma0) | 3.2 335 3.0 3.0 3.0 31 31 31 475 46
Cy (cm®/dyne) | 0.011 0.011 0.011 0.011 .01 0.011 0.011 0.011 0.002 0.082
Ly (cm) 2 22 22 22 22 2 2 22 22 22
Ax (em?) 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317
Lz (em) 2 2 2 2 2 2 2 2 2 2
Az (cm?) 1.6 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26
o (gn/cm?®) 1.00  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
u (gn/cm-sec) | 0.01 0.01 0.01 0.01 ©0.01 0.01 0.01 0.01 0.1 0.01
Parameter o 13 14 516 17 18 19 20 21(b)
p.  (cmH0) | 28 28 28 28 28 27 27 28 8 82 B
' se?::c) 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 025 0.32 0.25
Q; (me/sec) 0 0 0 0 0 12 28 1.5 0 0 0
PgPe, (cMH0) | 29 3.0 31 8.8 045 3.0 2.9 3.0 3.4 3.0 3.0
PgPo, fcmHp0) [ 29 3.0 31 88 050 3.0 2.9 3.0 3.4 3.0 3.1
Cy (cn¥/dyne) | 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.01
L (cm) a.2 9.0 22 22 22 22 22 22 22 22 22
Ay (en?) 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317
Lz (cm) 2 2 22 2 2 2 2 2 2 2 =2
A; (cm?) 126 126 ¢’ 126 126 126 126 126 126 126 1.2
p (gm/cm®) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 114 1.00 1.00
u (gn/cm-sec) | 0.01 0.0 001 001 0.01 0.01 0.01 0.1 0.05 0.01

0.01

(a) The parameter varied in each test is underlined.
(b) Tube reversed.
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Tabulated Comparison of Experimental
and Theoretical Results

Parameter (as defined in text, see p. 117)

‘Test #
{1) (11) (111) () (v) (v1)
) Expt. Theory Expt. Theory Expt. Theory Expt. Theory Expt. = Theory Expt. Theory

1) 1.13 0.76 0.80 1.03 0.86 1.51

(@) 113 0.85 0.8 1.47 0.94 1.13

2 0.49  0.60 | 2.12  2.22 113 138 | 1.5 0 107 | 077 0.69 | 1.72 1.20
2A 0.4  0.62 | 212 2.30 193 18 | nes 0.77 .72 1.42
3 0.80 0.76 | 1.35 1.33 1.0 1.03 | 1.00 1.07 | 0.89 0.91 | 1.10  1.10
aA 1.47  1.44 | 061 0.8 | 0.9 091 | 1.8 0.80 | 1.21  1.38 | 0.94  0.85
5 1.3 1.7 | 0.53  0.67 0.99 095 | 1.16 1.07 | 1.25 . 1.13 | 0.91 0.91
5A 1.3 1.22 | 0.53. 0.60 0.99 089 | 1.16 .10 | 1.25 1.40 | 0.91 0.84
6 1.2 1.0 | 0.78 078 | 0.9  0.95 | 1.06 1.07 | 1.09 1.10 | 0.95  0.95
8 0.85 0.76 | 1.53 1.56 1.08° 1.06 | 097 1.0 | o085 087 | 128 1.2
9 1.0 0.8 | 1.02 1.1 1.0 098 | 077 o071 | 0.9 098 | 098  1.08
10 1.07 0.5 | 1.000 1.00 | 1.01  0.97 .| 0.0 0.79 | 1.01 = 0.95 | 1.02  1.05
n o8 036 | .20 1.22 .17 106 | 116 1.3 | 1.02  0.89 | 1.04  1.02
12 {116 1.1 | o8 o078 | 1.04 0.95 | 0.85 071 | 1.05 1.07 | 1.0  0.97
13 1.06 1.00 | 0.98 1.00 | 1.08 1.00 | 0.99  0.93 | 1.00 1.00 | 1.0 1.00
14 0.96 0.90 | 117 1.22 1.08 1.06 .| 0.62 0093 | asy g7 ! 1.5 0.8
15 0.97 0.89 | 0.80 0.88 108 1.06 | 151 =B | qas - (B} | g o4 0.78
17 1.02  1.02 | 0.98 0.9 157 1.30 | 0.9 0.9 | 0.97 0.98 | --{) g9
18 143 106 | 1.02 100 | 0489 100 | 096  1.2009) 079 .08 | --(9) -
19 0.77 0.8 | 1.02 1.1 (e (e} oes o6 | 1.44 123 | 1.62 0.99
21 113 1.05 | 1.00 0.9 | 0.92 0.7 | 1.04 1.07 | 1.02  1.01 | 1.05 0.98

(a) Ratios are direct comparisons of theory and experiment.
(b) Second flow maximum cannot be determined.
(¢) Transmural pressures not measured.

(d) These values were very difficult to determine from data.

(e) Emptying time could not be clearly identified but is much greater than in Test 1 for both

experiment and theory.
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TABLE 5. Values of Ay, ¢y, and Cg used
in the venous flow simulations

v

Ao Co Cf

w

L)

BELBRLRADEDWWWWWWWWWWRNNINNNIONNIN e ded Dol ed ed ed =d e D O DO OQOO |

.

" e o @

 1.5333  200.3333  7.2500

.

\om\nmmhwmuommvmmauN--omoo\toxm-a-mm-aotooo\umm-hwNeommummpmma

1.4000 . 251.5000 8.0267
1.4000 244,0000 7.9433
1.4000 239.0000 7.8867
1.4000 234.0000 7.8333
1.4000 229.0000 7.7767 .
1.4000 224.0000 7.7233
1.4000 219.0000 7.6667
1.4000 214.3333 7.6133
1.4000 210.3333 7.5567
1.4000 207.3333 7.5000
1.4000 205.6660 7.4433
1.4000 205.0000 7.3867
1.4000 205.0000 7.3333
1.4000 205.0000 7.2767
1.4000 205.0000 7.2233
1.4110 . 205.0000  7.1667
- 1.4333  204.6666 7.1133
1.4667 204.0000 7.0567
1.5000 - 202.6667 ~ 7.1033

0.7287 205.0000  1.0000
0.7333 205.0000 1.0000
0.7377 205.0000 1.0000
- 0.7423 205.0000  1.0000
0.7467 205.0000 1.0000
0.7510 205.0000 1.0000
0.7553 205.0000 1.0000
0.7597 205.0000 1.0000
0.7643 205.0000 1.0000
0.7687 205.0000 1.0000
0.7730 205.0000 1.0000
0.7773 205.0000 1.0000
0.7817 205.0000 1.0000
0.7863 205.0000  1.0000
0.7907 205.0000 - 1.0000
0.7953 205.0000 . 1.0000
0.7997 205.0000 - 1.0000
- 0.8040 205.0000 1.0000
0.8083 - 205.0000 1.0000
0.8127 205.0000 - 1.0000
0.8173 . 205.0000 - 1.00C0
0.8217 - 205.0000 1.0000
0.8263 205.0000 1.0000
0.8307 2n5.0000 - 1.0000
0.8350 205.0000  .1.0000
0.8393 205.0000 .  1.0000
0.8437 205.0000 1.0000
- 0.8483 205.0000 1.G000
0.8527 205.0000 1.0000
0.8573 205.0000 1.0000
0.8617 205.0000 1.0000
0.8660 205.00GC 1.0000
0.8703 205.0000 1.0000
0.8747 205.0000 1.0000
0.8793 205.0000 . 1.0000
0.8837 205.0000°  1.0000
0.8880 205.0000 1.0000
0.8923 205.0000 1.0000
0.8967 205.0000 1.0000
0.9013 205.0000 ~ 1.0000
0.9057 205.0000 1.0000
0.9103 205.0000 1.0000
0.9147 205.0000 1.0000
0.91%0 205.0000 1.0000
0.9233 205.0000 1.0000
0.9277 205.0000 1.0000
0.9323 205.0000 1.0000
0.9367 205.0000 1.0000
0.9413 205.0000 1.0000
0.9460 205.0000 1.0000

.

0

)

)

.

1.5667 - 196.6667 7.5000
1.6000 191.6667 7.7500
1.6333 186.0000 7.9167
~1.6667 180.0000 - 8.0000
1.7000 174.0000 - 8.0000
1.7333 168.0000 8.0000
- 1.7667 162.0000 8.0000
1.8000 156.3333 8.0000
1.8333 151.3333 8.0000
1.8667 147.3333 8.0000
1.8890 144.3333 8.0000 -
1.9000 142.0000 8.0000
1.9000 140.6667 7.8533
1.9000 140.6668 7.5633
1.8900 142.6667 7.1267
1.8600 146.6668  6.6900
1.8000 152.6667 6.2500
1.7200 159.6667 5.8133
1.6300 166.6668 5.3767
1.5400 173.0002 4.9400
1.4500 179.0000 4.5000
1.3567  185.0001 4.0633
1.2633 190.6668 3.6267
1.1700 195.6667 3.1900
1.0800 199.6667 2.7500
0.9900 202.6667 2.3133
0.9000 204.3334 1.8767
0.8200 205.0000 1.4400
0.7613 205.0000 1.1467
0.7343 205.0000 1.0000

. o e

.

.

OCOVOOOOOOOOOOOOOOOOOOOO0OOCOOOCOO0O0OOODOO0OODOOO0OOOO0OOO0QO
e o o NI e s v e s e . o e « . . © e e o o e & o . o e

S PWWVWWOLWWWOWWORNONNMMOOOOOESNNSNNSNSNNSNNSOO OO OOYONOYOy Ot Orototovaor ot o an

QUOWONONMPBWN—~OWRNONPAWN~OWVRNOATAWN~SOWVOEONOANPWN~OOVONONTRWN—-O

0 0.9500 205.0000 1.0000



WO G@'E = 9OUBAIJWNOALD 9gn3 “SISED [|° U]
s,1dx?
. . . 99€0°0 Mo 3
G0° 1 892 LEL'O 65°L | 84S | o3 es20°0 | ut posn
| aqn
oL"L €210 | 80°L | SUS | o03°he90%0| S
oLL-L 1880 €6 56 . . 00
2L ¥860°0 60°2 | 667 | o ac00r| 16
. . 0°0
gLl GLL"0 659 | €U | o3 0eo000 | S8
gyl'l | 2s0°L 922 261 . . . 21£0°0
CoLLTL €10 e’ | 052 | o3 gez00| 18
~
. . 0£0°0
BN LLL0 10°9 | U8 | o03°0120%0 | S8
1L | €01 (82 502 . 6550°0
10°1 , gel'0 | 86°¢ | 88 | o2a00050|
b e1ep wo (,wo/saukp) | ( wo/sauAp) (uo)
(cwo/ub) aJanssaud (o) {4 d (4 d yabual 3Lun (wb) (wo) sSauyoLyl
Ayisuag | aAl3isod 0y (oted) ¥ | (L,3dxd) N e jybLam | y3buan LLeM aqny
’ wouy Oy J0 abuey
uoLjewdou] aqny 4o Aaewwns °9 31gyl

(®)




Type of Cycle

Current pressure
cycle

_Uniform pressure
cycle

TABLE 7. Maximum value§ of Q, u, and u/R at five calf

Rise Time
(sec)

1/3

1.6

pmax
{mm Hg)

30

30

30

30

30

30

20

70
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Tocations for each venous simulation.

?arameter

Q

max

“max

(/R ) pax

Onax

"max
(u/R)pax

nax

Unax

(u/R) e
 Opax

U

max
(u/R) o

max

£=0,10

6.2
5.6

26.9

10.9
8.2
36.1

7.6

6.4
30.1

7.5
6.6
30.5

6.7
5.6
25.9

5.6
5.0
23.4

7.0
6.3
29.7

7.8
6.7
30.9

9.4
7.2
32.9

£=0.20

1.5
9.8
44.5

21.9
15.9
67.6

13.7
11.3
50.0

13.6
11.2
49.2

11.4
9.0
39.4
9.0

7.5
33.5

13.4
11.4
51.0

15.8
12.7
55.8

18.5
14.1
61.1

..£=0.30

20.2
13.1
§5.0

38.3
21.7
83.7

23.7

14.3
56.6

22.7
13.6
54.1

18.2

10.8
45,3

14.0
8.8
40.8

23.4
14.9
61.4

28.5
17.2
68.9

33.3
19.2
75.7

.

£=0.40

3
33.8
202.5

54.0
47.0
206.3

42.4
46.8
257.4

37.8

32.8
257.6

28.9
- 36.2
283.7

21.5
30.9
2432.9

35.8
35.9
179.6

43.9
40.3
235.0

50.7
44.4

260.2

(continued)

£<0.44

51.3
105.8
957.8

85.7
147.8
1088

65,1 -

. 141.5
1344

6.3
" 113.7

1264

3.9
67.3
730.2

24.2
39.8
479.1

57.0
111.6
847.2

64.4
146.3
1490

81.0
163.8
1865



Type of Cycle

Linear pressure
application

Wave-1ike pressure
application

Rise Time

(sec)

1/3

1/3

Wave Speed

!Cm{S&C!

10

20

30

50

pmax

{mm Hg)

30

30

50

30

30

30

30
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TABLE 7. (continued)

Parameter

max

max
(u/R)max

Qmax

max

(/R pax
max

"max
(u/R) ay

max
max

(W/R) ey

O,

Unax
(u/R) oy

ax

max
Unax

(U/R)max

max

max
(u/R) ey

£=0.10

18.0
18.0
121.2

32.3
"32.9
175.2

43.2
47.2
271.5

19.2
32.1

582.8

31.5
27.8
508.3

48.7
31.1

~484.8

83.9
56.9
536.2

© £=0.20

28.9
25.4
138.9

49.4
36.3
149.9

68.6
52.1
256.0

22.1
21.9
181 8

41.1
25.4
371.2

51.8
313
3.2

85.2
51.9
452.2

£=0.30

42,2
23.1
125.6

47.0
25.7
129.1

‘81.6
38.1

207.7

TE L e

£=0.40

49.5
28.7
87.7

58.4
34.1
118.0

83.8
46.7
246.3

34.7

23.3
497.2

- 54.6

33.0
518.4

90.9
51.7

458.3

158.4
95.6
303.4

£=0.44

50.5
38.8
109.3

60.6
47.3
136.0

86.9
63.9
219.3

33.8
26.0

248.5

83.1
40.2
281.0

88.3
61.5
374.0
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LIST OF FIGURES

Fig. 1 The hydraulic model used in the experiments.

Fig. 2 The test section of the hydraulic model illustrating the sepa-
ration of the two chambers.

Fig. 3 Schematic representation of an applied pressure cycle and the

corresponding volume flow rate exiting from the collapsing
tube.

Fig. 4 Stages of vessel collapse with uniform external compression
: shown schematically for a typical vein in the Tower leg.

Fig. 5 The physiologic model: total cross-sectional area, A, , wave
speed, co (both at normal physiologic pressures), and a fric-
tion factor, Cf » plotted against distance between the ankle
and the thigh.

Fig. 6 Various types of pressure cycles.

Fig. 7 Log-log plot of normalized transmural pressure, P, versus
~normalized cross-sectional area, oo . The points represent
experimental results for three different tubes; the solid
line is the theoretical prediction.

Fig. 8 Linear plot of normalized transmural pressure, P, versus nor-
malized cross-sectional area, c . The points represent three
sets of experimental results; the solid line is the theoreti-
cal prediction.

Fig. 9 Complete set of results for Experiment 1. Top: applied ex-
ternal pressure. Center: transmural pressure at £ = 0.06,
0.15, 0.24, 0.33, 0.42 and at the exit (proceeding from the
bottom trace up). Bottom: volume flow rate at the exit of
the test section. The Roman numerals correspond to the dif-
ferent quantities defined on p. 117 of the text.

Fig. 10 A comparison of volume flow rates at the exit of the test sec-
tion between experiment (dashed lines) and theory (solid lines).
Tests 1, 1A, 2, 2A, 3 and 4A.

Fig. 11 A comparison of volume flow rates at the exit of the test sec-
tion between experiment (dashed 1ines) and theory (solid lines).
Tests 5,5A, 6, 8, 9, and 10.
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Fig. 12 A comparison of volume flow rates at the exit of the test sec-
tion between experiment (dashed lines) and theory (solid lines).
Tests 11, 12, 13, 14, 15, and 17.

Fig. 13 A comparison of volume flow rates at the exit of the test sec-
tion between experiment (dashed Tines) and theory (solid Tines).
- Tests 18, 19, and 21. '

Fig. 14 Volume flow rate at the exit of the test section as computed
for three different grid spacings: 51 points (AZ = 0.02),
101 points (Ag = 0.01), and 201 points (Ag = 0.005).

Fig. 15 Results of Simulations 59, 60, and 63. Normalized transmural
pressure, P, plotted against normalized time, T , at four dif-
ferent locations inside the collapsing portion of the vessel:
g =0.09, 0.19, 0.29, and 0.39 (from top to bottom).

Fig. 16  Results of Simulations 59, 60, and 63. Normalized volume flow

' rate, @, plotted against normalized time, t, at five different
locations inside the collapsing portion of the vessel: & = 0.09,
0.19, 0.29, 0.39, and 0.64 (from bottom to top).

Fig. 17 Results of Simulations 59, 60, and 63. U/C plotted against
normalized time, T, at four different locations inside the
collapsing portion of the vessel: & = 0.09, 0.19, 0.29, and
0.39 (from bottom to top). :

Fig. 18 Results of Simulations 59, 60, and 63. Normalized cross-
sectional area, a, plotted against normalized distance, x/L,
at six different times, T = 0.0, Tpay/10, T __ /5, 21__ /5,
3Tmax/5, and Trax (from top to bottom). MaX max

Fig. 19 Schematic representation of the deep veins of the leg.
Fig. 20 The tube law used in the venous flow simulations.

Fig. 21  Venous flow simulation. The currently used clinical pressure
cycle. From the upper left, proceeding counterclock-wise:
(1) maximum applied pressure vs. time; (2) volume flow rate
at £ = 0.1, 0.2, 0.3, 0.4 vs. time; (3) flow velocity at same
four locations vs. time; (4) shear rate at the same four loca-
tions vs. time; (5) normalized cross-sectional area vs. dis-
tance at six times, t = 0, t = tmax/10, t = tpax/5, t = 2tpax/5,
t = BtmaX/S, t=t (6) Distribution of external pressure.

Fig. 22 Venous flow simulation. Uniform pressure application; ppax =
30 mm Hg; rise time = 1/3 sec. Same six graphs as described
for Fig. 21.
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Fig. 23  Venous flow simulation. Uniform pressure application; ppay =
30 mm Hg; rise time = 1 sec. Same six graphs as describeg
in caption for Fig. 21.

Fig. 24 Venous flow simulation. Uniform pressure application; pmax =
30 mm Hg; rise time = 1.6 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 25 Venous flow simulation. Uniform pressure application; ppax =
30 mm Hg; rise time = 3 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 26 Venous flow simulation. Uniform pressure application; ppax
30 mm Hg; rise time = 5 sec. Same six graphs as described
in caption for Fig. 21.

]

Fig. 27  Qpax» Umax> and (u/R)max plotted as a function of rise time
for the simulations of Figs. 22-26.

Fig. 28 Venous flow simulation. Uniform pressure app]icaticn; Pmax =
20 mm Hg; rise time = 1 sec. Same six graphs as describe
in caption for Fig. 21.

Fig. 29 Venous flow simulation. Uniform pressure application; pmax =
50 mm Hg; rise time = 1 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 30 Venous flow simulation. Uniform pressure application; pmax =
70 mm Hg; rise time = 1 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 31  Qmax»> Umaxs and (u/R)max plotted as a function of maximum
applied pressure for the simulations of Figs. 23 and 28-30.

Fig. 32 Venous flow simulation. Linear pressure application; ppax =
30 mm Hg, rise time = 1 sec. Same six graphs as described
in cpation for Fig. 21.

Fig. 33 Venous flow simulation. Linear pressure application; pmax =
30 mm Hg, rise time = 1/3 sec. Same six graphs as described
in caption for Fig. 21. .

Fig. 34 Venous flow simulation. Linear pressure application; pmax =
50 mm Hg, rise time = 1/3 sec. Same six graphs as described
in caption for Fig. 21.

Fig. 35 Venous flow simulation. Wave-like pressure application; ppax =
30 mm Hg; wave propagation speed = 10 cm/sec. Same six graphs
as described in caption for Fig. 21. The pressure distribution
is shown at three consecutive times.



Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

36

37

38

39

40

41

-217-

Venous flow simulation. Wave-like pressure application; pmax =
30 mm Hg; wave propagation speed = 20 cm/sec. Same six graphs
as described in caption for Fig. 21. The pressure distribution
is shown at three consecutive times.

Venous flow simulation. Wave-like pressure application; pmax =
30 mm Hg; wave propagation speed = 30 cm/sec. Same six graphs
as described in caption for Fig. 21. The pressure distribution
is shown at three consecutive times.

Venous flow simulation. Wave-like pressure application; pmax =
30 mm Hg; wave propagation speed = 50 cm/sec. Same six graphs
as described in caption for Fig. 21. The pressure distribution
is shown at three consecutive times.

Schematic of uniformly collapsing tube system.

Simulation results for uniform vessel collapse. Collapse time,
td*, maximum required pressure (ppax in dynes/cm?) and maximum

volume flow rate (Qmax in m&/sec), each plotted as a function of
b, where p(x) = Prax " bx? .

Tube law measuring apparatus.
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APPENDIX A:
UNIFORM COLLAPSE OF A SINGLE VESSEL

In one instance the equations derived for flow through a collapsible
tube reduce to a set of nonlinear ordinary differential equations. The
purpose of this appendix is to explore this special case and to consider

the insights it might provide into more complicated situations.

Description of the Model

The system to be analyzed is shown in Fig. 39. It consists of a
uniform collapsible tube blocked at x = 0 and connected at x = L to
separated by a capacitance

a pair of rigid ducts of length L, and L

D E
tank. The pressure at the end of the second duct is held constant. The
values of L, LE’ LD’ and the capacitance, CV’ are chosen so as to create
a lumped parameter model of what a single vein in the calf might "see"

in terms of proximal inertance and capacitance. With this model, no
attempt is made to simulate the complexities of the point of attachment
between the collapsible and.rigid tubes. The internal pressure, p , is

assumed to be constant across the attachment point and the tube law is

assumed to be unaffected by this physical constraint.

The Governing Equations

This analysis is motivated by the presumed existence of a spatially-

varying external pressure which will cause the tube to collapse uniformly,
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i.e., independently of x . We assume that 05A/ox = 0 and write the

governing flow equations as

d

9 Pt
ou au _£ _w : -
Pag f U f e YR o . (A-2)

The uniform tube assumption implies that if 5A/3x = 0 then 3(p-pe)/8x
is equal to zero as well. Imposing the condition that Uyag = 0 we

can integrate Eq. (A-1) to give

[«

A

u = - '—t- . (A-3)

T %

Introducing the following normalized variables,

. = A .
£ =1 H LR Y
(A-4)
= _l_}_:f_ . = *.
U = i o t t*t
yields the following form for (A-3):
_ 1 da
u = -y dt* . (A'5)

Substitution into (A-2) with some rearrangement results in the expression

T2 ape 72 PTw

K/ 2 It e R -
Sd Tt Y oot wam T 0 (A-6)
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' ‘Of those expressions previously deriyed for the flow resistance,
~ we will choose to.use the one representing fully developed flbw in a
collapsed tube. Although the‘c011apse.take$ place very rapid]y, it
~can be shown that shear stresses become important only during the later
stages when the tube is essentially collapsed and when the flow is more

 nearly fully developed. Replacing the quantity Prw/aAo in (A-6) by

the appropriate expression we can rewrite the momentum equation as

L 3 - , .
1l A )2_£_=~ I /S g) i
| p(7&i~' T €(m¢'f_?_*~a e (AT)
_:;where_we havefdefjned T in the foilowing;manner so as to simplify
the resh]tihg eXpression: -
= _'.l_\.!)._ . -
T = o - ‘v,(A 8)

" By examining Eq. (A-7) we see that the neceésary condition for the
assumed uniform tube collapse is that the external pressure take on

the general form, expressed as
P = a-bL%* (A-9)

where a and b can both be functions of t* . Assuming the applied
external pressure is of the expressed form we can reduce Eq. (A-7) to

an ordinary differential equation,

at* = 'Y-Uz- - (A-'IO)
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where ‘
2 ()
Y = 35 \70v

- Between Eqs. (A-5) and (A-10) we can determine each variable at any

time, t* , given one initial condition which we state as
Oprzq = 1 and UE‘O =0 . (A-11)

To solve for the applied pressure at & = 0 , we must take into account
the downstream boundary ‘condition.

Assum1ng that frictional effects can be neglected in the d1scharge
ducts, the momentum equations for the two 1engths of rigid tubing'(LD'

and LE) can be written:

du

D .

T = ,_Dp (Pe=1 - Pe) (A-12)
du

E . 1 i}

it T T (P - Pg) (A-13)

where the pressures and lengths are defined in Fig. 39. The pressure
in the capacitance tank is governed by the expression:

- A

—£ = é}-(A cug) . (A-14)

u

Here, CV = dVC/dpC and AD and AE are the cross-sectional areas of

the two discharge vessels.

Differentiating (A-14) and replacing ug using Eq. (A-13), we obtain
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and

- 2
‘ ThefresuTt'of this normaiization is

Cw. S I 3
codo e o Ak | opr- U (R By p -
@ T T T, ["‘(Y 2 - oz)] (70v) pLec, (PcPg)- (A-16)

":f[ USing the approximation for the tube law,

- -372 1
P = -a"%% + 10,

we can solve for the magnitude of the external pressure as a function
of time:
LL

a pP 2 2 U
a—pc+m—-(70\)) [OL(Y-ZU- )]

D o (A-17)

+ K@/ - al®) + bl

Discussion of Results

Equations (A-5), (A-10), (A-16), and (A-17) completely define the

~given system and can be solved by a standard Runge-Kutta technique.
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The results of the numerical solution are illustrated in Fig. 40. The

maximum flow rate, Qmax max

time required for éo]]apse, tg'(for o to reach 0.26) are plotted against

b . The units of .Qmax

tc* is dimensionless.

» the maximum applied pressure, p » and the

are mL/sec, p.

max is expressed in dynes/cm? , and

A number of cases have been simulated in which b was varied bet-
ween the limits of 5 and 100 dynes/cm* . As indicated by the maximum
pressures required to maintain uniform collapse, this range covers all
pressures that might reasoﬁab1y be uSed for EPC. The flow rate and maxi- -
mum applied pressure both increasé with increasing. b , while the col-
lapse time decreases.

It appears from these results that the only Timitation exists in
- how rapidly one can apply these increasingly large pressures; It should
be noted, however, that the emptying rate presumes an extremely rapid
pressure application, one which would be difficult to attain in a real
situation. This restriction combined with the parabolic pressure dis-
tribution and lack of constraint at the downstream end make this tech-
© nique difficult, if not impossible, to explore experimentally. The
usefulnessvof this result lies essentially in the concept of using some
sort of a spatially varying external pressure so as to prevent the flow
limitation associated with a uniform pressure application. Clearly,
there exists a great potential with such a scheme to significantly re-
duce the emptying time of the vessels, thereby inducing larger flow
rates and shear stresses throughout.

A more practical method might be to apply a Tinearly varying
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external pressure. vThis would produce a collapse which proceeds from
the upstream end and would elimfnate the downstream collapse observed
in situations of uniform compression. This conéept is explored further

_ in»the-téxtﬁovahapter XIr. ..
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APPENDIX B:.
A SIMILARITY SOLUTION FOR VISCOUS DOMINATED FLOW

Under certain circumstances, the equations governing unsteady col-
Tapsible tube flow can beAsimplified considerably. In such limiting
cases, the flow can by analyzed much more simply and, as was the case
in Appendix A, the results can help us to better understand the entire

flow process. In this appendix we consider the case of viscous dominated

quasi-steady flow.

Description of the Model

The model is similar to that used in the previous discussion except
that the collapsible tube extends from x =0 to « . When pressure is
first applied fluid empties at the point where there exists a pressure

gradient--at x = 0--and proceeds in the negative x-direction.

Theoretical Description

The equations governing the flow are those of conservation of momen-
tum:

ég + u g_ +

u 3p u . -
a ax + vg(A) A 0 > (B ])

1
p 9X
(where g is a weak function of A); continuity:

EA + ég = 0

3t X ; (B-2)
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and the tube law:

(1)

(2)

P =P _ : I ‘ ~
'"K;'g = P(Q)A . - | (B-3)

'The‘assumptions we make forlthis analysis are:

The tube is infinitely long, uniform, and is pressurized beginning -
at t = 0 by a constant pressure, Pe

Atrsdme stage in the process, the flow becomes quasi-stéady, i.e.,

o du au
et < vl g,

. and the convective acceleration term is small CQmpaFed"with_thé“

(3)

(4)
(5)

viscous stresss term:

Su u
u'a';(- << VQ(A) A

Reynolds number based on tube diameter is small (and t fs sufff-
ciently large) so that we can assume that the flow is laminar and
fully developed.

For large x , A+ A, and p > Pg -

The outlet pressure is constant, maintaining a constant cross-
sectional area at x = 0 (note that Q will be in the direction

of negative x).

As a result of (2) and (3), the momentum equation can be reduced

to the following form:

B = ugla) f; . (B-4)
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Using the tube law we can eliminate pressure by introducing the wave

speed, ¢ . Differentiating (B-3) and substituting c? = Kp %~%§ s
where o = A/A, , we obtain
3p . _pc? da -
3X o 3x (B-5)
which can be substituted directly into Eq. (B-4) to give
e ;2'
Q = -Lhol (B-6)
ug(a)

Combfning this with (B-2) produces a nonlinear partial differential

equation which has the form of the diffusion equation,

g-% - -%—[J(oc) -g-%} = 0 (B-7)

where

J(a) = oA, cfo
" og(a)

Solution of Eq. (B-7) requires two boundary conditions and an ini-

tial condition. The boundary conditions are

a(0,t) “axit

1

(B-8)

a=,t)
Ideally, we could stipulate the initial condition that a =1 for all
x>0 at t= 0’. Realistically, however, the unsteady terms are likely
to be dominant or at least significant at small times. Therefore, it

would be more appropriate to begin the analysis at some later, time, to ,
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when the previously stated assumptions'are valid. This condition can be

stated as
a(x,to) = alx) . (B-9)

The nature of Eq. (B-7) leads us to expect that a similarity variable

exists of the form

£ = % . (B-10)

Although we can express the conditions (B-8) in terms of £ , Eq. (B-9)
does not, in general, admit to this kind of variable transformation. To
the extent that (B-9) resembles the solution to Egs. (B+7)’ahd (B-8) with
the initial condition a(x,0) =1 , at some time t, ti.e., a(x) =
a(x,t1)], the following remarks are valid. |

We introduce the similarity variable & 1into the governing equa-
tions with the assumption that o = a(g) only. After some manipulatibn,

we obtain the following ordinary differential equation in & :

d da gda -
aE [J(a) dg] 3 5 0o ., , (B-11a)
along with the transformed boundary conditions,

at£=0: a-= Yayit
(B-11b)

at g =o; o=1
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‘Discussion of the Similarity Formulation

We can draw several conclusions based on the existence of a simi-
larity variable without actually solving Eq. (B-11a).

The exit flow rate [Q(0,t)] can be computed from the expression

0(0,t) = - (tube volume) = & [ -(A, - A) dx
] |

(B-12)
- & [AM/E f-n-a) dg_]. |
o 0 ,
Since o = a(g) , then
Q(o,t) = é%-(constant e /t) = - EQE%%?EE . (B-13)

Based on our previous discussion with respect to the early stages of
collapse during which the similarity solution is not valid, we replace
t 1in Eq. (B-13) by t-t; . To make a direct comparison between these
predictions and actual observations, we could rewrite (B-13) in the

following manner:
K

t o= ot b
Q(0,t)?

(B-14)
The form of Eq. (B-14) suggests that if we plot experimental resdlts

for 1/Q(0,t)? versus time, we would expect to see the features shown in

the following figure.
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inertial end
1 effects effects
Q(O:t)z '
arctan (1/K)
- ///
_-T
i t

The initial phase shown in the diégram is dominated‘byiinerf{al' . »
~ effects and since Q(b’t)t+0 >0, then [1/Q(O,t)2]t;0 +‘wA,.};h_a}tﬁbejzl
of finite length, the flow rate must approach zero [i.e., 1/Q(0,t)? + =]
a$ the end effects Become significant. In between these regions on the
graph, if all thé conditidns mentioned above are satisfied, the cdfvé
should be a straight line with a slope of 1/K and an x-intercept of t; .
- Similarly, we could estimate the time necesSary to displa;e a cer-

tain volume of fluid, say VE » by integrating the volume flow rate over
time:

Vp = /.Q dt = constaqt'/f

" The time required for equal volume displacements; since the constant in
the above expression varies inversely with ﬁ » should vary as the square
of the viscosity. | |

We attempted to correlate these estimates with our experimental or

theoretical results but with Tittle success. Our experiments, for the
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most part, were primarily inertia-dominatgd or at least strongly influ-
enced by inertial effects during most of the cycle. A possible excep-
tion could be made in the case of Ekpt; 19 in which the viscosity was
increased by a factor of five. Clearly, in the later stages of this
experiment, viscosity plays an important role, but again the results

of that experiment could not be entirely explained by these predictions.
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APPENDIX C:

COMPUTER PROGRAM FOR NUMERICAL CALCULATIONS
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APPENDIX D:

EXPERIMENTS FOR DETERMINING THE STRUCTURAL
PROPERTIES OF COLLAPSING VESSELS

In an earlier discussion we developed the theoretical approach to
the analysis of tube collapse. The characteristic most sought after was
the constitutive expression relating vessel cross-sectional area to trans-
mural pressure, termed the "tube law." This appendix includes a discus-
sion of the experiments that were conducted to examine}the validity and
limitations of the existing theories. The results are analyzed in a way
that will help us to preditt the constitutive relation for tubes of known
geometry and composition. | |

The techniques avai]ab]e.to use for obtaining this information fall
into two general categorieé: |

+ Direct determination of the pressure-volume and hence pressure-

area law by means of absolute volume/area/linear dimension and
transmural pressure measurements.

» Deduction of this relationship from wave speed measurements which
determine the slope of the P-a curve at a particular transmural
pressure [see Eq. (3)].

A number of complicating factors arise when measuring wave speeds,
including (1) dispersion or frequency dependence; (2) different propaga-
tion speeds for competing modes of wave propagation; and (3) interference
due to wave reflections. Therefore we chose to use the former method.

When using the direct measurement method, problems arise when
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estimating the waye speed using the derivative of an experimental curve.
-~ For this reason and for the benefit of all the results, much care was

taken to design an apparatus with high precision.

The Experimental Apparatus:

The apparatus is shown in Fig; 41. Illustrated here is the ram
mechanism for volume changes, the vertical chamber to enclose the col-
__1aps1b1e tube and the pressure vary1ng and sens1ng equipment. The inter-
;na] pressure 1s he]d constant by ma1nta1n1ng a cons1stent f1u1d Ieve] 1n_
the cap111ary tube while the external pressure is varied by ra1s1ng or
Towering the fluid reservoir. The ram thCh translates by way of a 32
thread/inch leadscrew measures the volume changes (to + 10 ue) necessary
to maiutéin apcOnstant internal pressure.e The pressures are recorded
by observing the fluid 1eve1 in two manometers usihg a cathetometer.

The pressure can be determined to within * 0.05 cm‘Hzo. The two inde-
pendent hydraulic circuits for the internal and external systems are

shown in the drawing.

Analysis of the Experimental Results

The results one obtains using this apparatus are complicated by the
need to attach the collapsible tube to rigid supports inside the fluid
chamber. As the tube collapses two problems arise.

First, inAboundary regions adjacent to each of the two supports, the

tube undergoes a transition from what appears to be a zone of uniform
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collapse to a cross-section equal to that‘of the supporting structure.
Within this boundary region the cross-sectional area varies longitudi-
nally and is determined, in part, by the tension in the tube wall. The
measured volume changes, Avm » represent the sum of changes in a uniform
tube essentially void ofya1] end effects, AV , plus a volume change
which is influenced by the presence of the two boundary regions, AVb 3
i.e., AV = AV + AV .

Second, if the tube is constrained longitudinally, the wall tension
increases as the vessel collapses. The variations in wall tension are
easily eliminated by mounting the tube vertically within a chamber con-
taining the same fluid as that inside the tube (to negate the effect of
hydrostatic pressure gradients) and allowing the lower support, designed
to be inght]y negatively buoyant, to float freely, thus providing a
constant longitudinal wall tension.

‘The effects associated with the boundary regions pose a more diffi-
cult problem. These, too, can be compensated for, however, in the fol-
Towing way. If a complete pressure-volume experiment is performed on
two lengths of the same piece of tubing and if the boundary regions occupy
less than the length of the shorter tube, then the end effects can be sub-
tracted out because they should be identical in the two experiments. Using

the terms defined earlier, the change in volume of the uniform tube, AV, is

AV = A\lm1 - Asz = AV; + AVb + AV, - AVb (D-1)

Here, AV represents the volume change taking place in a tube of length
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(Ll_-sz) which is not influenced by the presence of rigidvsupports as

- shown in the sketch.

L,

N/
J\d

p——

Ly

AN

DY

The raw data from these experiments was obtained in the form of
'-(1) ram-position;land'(ii) transmura],pressure_(ptr);_[The first étep
Lin the ana]ys%s.of the data was to expreSs the resu]té in terms of
Avm/Aptr for each of.ghe two tubes. The curves of Avm/Aptr were
smoothed numerically using the method of cubic splines and the differ-
ence,

AVm

Aptr

AVm

Aptr

2

was determined at the values of Pip for one set of data, the corres-
ponding values from the associated data being determined by interpola-
tion. The result, using Eq. (D-1), is AV/Aptr » the corrected value.
Next we postulate that for the range of transmural pressures within
the similarity range of the theoretical result (see Chapter VIII)_the

relationship between pressure and area is
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Pgp = 'Kp(x) (%%')-SI? s (D-2)

: R 3
where, according to the theory, Kp(x) = E hEX)IE) . For generality,
‘ 12(1-v
we let h , the tube wall thickness, be a function of x , thus making

Kp a function of x as well.
Equation (D-2) can be solved for A and integrated to give volume:

. | L L
Vo= [Adx = A(p. )2 | —E — |** [ h2(x)dx - (-3
A Oj x = Aalopy)” [12R2(1—v2)] { (x)éx  (0-3)

from which we obtqin

[ E :}2/3 L

207 _ vw2y | ‘ .

R T T R
tr ) (-ptr) 0 '

Replacing the differential term in Eq. (D-4) by the difference terms

obtained experimentally, we can show that

E 2/3
['—"TJ PR re
AV g-Ao 12R*(1-v7) J j‘ h?(x) dx - j- h2(x) dx
Prr ST ()

tr 0 0

or, since tube 2 is a shortened version of tube 1,

E 2/3
[——-—2—-———2—-] Li-L2
2z, LRy [ e« (0-5)
tr (_ptr)SIS 0
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where h(x) is the wall thickness‘oftheportion of tube 3 left over when -
tube 2 is cut from it.

P]ott1ng AV/Aptr aga1nst 3 (L; Lz)( pu,)"s’3 shou]d produce a

'stra1ght 1ine of slope

Ly-L,
4 ‘ [ h2(x) dx
Ao E 0 , .
]2R2(1 - .\)2) L1 - 'Lz

>£[ Alf our prev1ous assumpt1on 1n wr1t1ng Eq (D- 2) is val1d The actual

= curve fitting is done us1ng the method of 1east squares and 1n each. case .
a stra1ght line gave an exceT]ent f1t to the exper1menta1 data.

The analysis up to and including Eq. (D-5) is completely general in
terms of the functional form of}fﬁ{X)?.f Therefore; regardless of_how |
h(x) vafies, the experimentai'data shou1drst111‘be redusfble by the method
described above. One discrepancy should be noted, however. It was assumed
initially that Avb was identical for the two experiments. The value of
H(x) within the boundary region might, however, influence this quantity
and prevent the cancellation necessary for the subsequent analysis. We
felt that the small errors associated with this problem would not warrant
a more detailed description of the boundary region but might in cases
where the variations in h(x) become much larger than those encountered
in our experiments.

Returning to the data analysis procedure, upon obtaining the slope

‘of the previously described curve, the actual volume of the uniform tube
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can be computed using the expression:

273 LI—LZ
- - ~21/3 " E ] 2
Vo= Ao(-py,) [mmzu‘m] o/ P (0-6)
0

up to the point which marks the upper bound of the similarity range
(i.e., the range of pressures for which the straight 1ine fit occurs).
The pressure-volume relation can be extended beyond this point

simply by using the values of AV/Aptr in the following expression:

Ftr N
o\
V = Vo + — dp = Vo + AV , (D-7)
S j dptr tr S n;
p
, trs

where the subscript "S" denotes a point in the similarity range. The

resulting value of V corresponding to =0 yields a value for

ptr
Ag

Ao = — . (D-8)

Ly - La

Knowing A, , we can compute an experimental value for Kp using the

slope from Eq. (D-5). (We actually compute an estimate of

Li-Lo
E 1 j‘ h2(x) dx .)
12R2(1-V2) Ly - Lo 0

This is an averaged value of Kp(x) and, if our definition of Kp is
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correct,

_ IR B ‘ , _ A
K.~ =K = _ - h*(x) dx - (D-9)
pexp pca]c ]2R2(1v\)2) L1fL2 6[
where the integral in K_ - is evaluated from the actual h(x) .

calc
For the tubes used in these experiments, the wall thickness varied

in an approximately linear fashion. The tubes were formed from a dip-
ping process which accounts for this variation. If the wall thickness
s expressed as h(X) = hy + hy [I§f; , the integral in (D-9) can be
_evaluated, giving _ - ' N

S 3rz o
\ | o
Pcalc 12R2(1-v?) |

Discussion

Table 7 summarizes the tube measurements and the’experimenta1 results.
Because of the tedious nature of the experiments and the difficulty in de-
_ veloping the proper téchnique, only three sets of usable data were ob-
tained. - The agreement between the calculated and experimental values of

‘Kp is good, hoWever,'considering that the measurement of wall thickness

contains an error of + 5 x 10”* cm . The effect of this error is ampli
fied when we see that the wall thickness appears in the equation for Kp
raised to the third power.

Figures 7 and 8 present all three sets of data on a normalized basis:



-303-

p = tr
K
Pexp

o = A
Ao

Once again, the similarity region is cieariy defined as all data fits
well to a line having a slope of -3/2 on the log-log scale. Figure 8
illustrates the departure of the curves as we approach the range of posi-
- tive transmural pressures. ance radial stretch and not bend1ng are the
dom1nant 1nf1uences for this range, we would expect th1s departure In |
- fact, we can predict the slope of this portion of the curve us1ng the -
. results of Chapter VIII, where the relationship between pressure and
area (or voTume)rie_given'bygEq. (54). The values of A, - chosen in
this way are also inen in Table 7. |

In between the similarity zone and the region of positive transmural
pressures lies the portion of the curve encompassing intermediate col-
lapsed states. In this region, the tube shape and area are primarily
determined by the bending stiffness of the wall but are strongly affected
by, for example, the shape of the unstressed tube and the presence of an
elastic medium surrounding the tube. The effect of the surrounding medium
is most pronounced in this region because large deformations occur over
relatively minute changes in transmural pressure. We will consider this

problem in more detail in the discussion of venous compliance found in

Chapter XI.
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Biographical Note

During my first éighteen years, beginning in 1950, I led a health-
ful, enjoyable Tife on the shores of Lake Superior in Northern Wisconsin.
For_collegé, I travelled to Evanston, IT1linois and Northwestern Univer-
sity, where I remained for four years--long enough to earn a B.S. degree
in Mechanical Engineering. I have my father's employers, Interlake Steam-
ship Co., to thank for their generosity in prov1d1ng comp]ete f1nanc1a1
| support durwng my stay at NU.
| Having never lived on the East Coast and posse551ng a certa1n curxosf
sity of those who did, I moved on to Cambr1dge to attend MITAfcr graduate'i:}v
work in Mechanical Engineering. My first year yielded considerable coﬁ-‘
fusion and an S.M.,degree. My thesis énd several publications were'ﬁrit;5 _‘
ten on a novel opto-acoustfc technidue of measuring atmospheric pollu-
tants. |

Perhaps a much more notable accomplishment wés my finding and even-
tually marrying Judy Brown, a native of Massachusetts.

I continued at MIT in search of a doctorate through the trauma of
qualifying exams and fhe rigdrs of teaching the undergraduate fluid mech-
anics course. My dinterests during more recent years have focused on the
field of biomedical fluid mechanics, in particular the fnvestigation of
biological flows through systems of collapsible vessels. My plans for
the future are to continue doing research of this same general type in

either an academic or clinical environment.





