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Abstract

Many gastropods, such as snails and slugs, crawl using adhesive locomotion, a tech-
nique that allows the organisms to climb walls and walk across ceilings. These animals
stick to the crawling surface by excreting a thin layer of biopolymer mucin gel, known
as pedal mucus, and their acrobatic ability is due in large part to the rheological prop-
erties of this slime. The primary application of the present research is to enable a
mechanical crawler to climb walls and walk across ceilings using adhesive locomotion.
A properly selected slime simulant will enable a mechanical crawler to optimally
perform while climbing in the horizontal, inclined, and inverted positions.

To this end, the rheology of gastropod pedal mucus is examined in greater detail
than any previously published work. The linear rheological response of pedal mucus
is examined with flow, oscillation, and creep tests. Nonlinear rheology is examined
with large amplitude oscillatory shear (LAOS), and analyzed with Lissajous curves,
Fourier transform rheology, and a new measure of non-linear elasticity. In addition,
pedal mucus is examined with a flexure-based microgap rheometer, which can test
the sample at the biologically relevant gap of 10-20µm, the measured thickness of
pedal mucus under a crawling slug.

Adhesive locomotion of a mechanical crawler is modeled in order to find the cri-
teria for an optimal slime simulant. After developing the selection criteria for the
ideal simulant, a range of candidate materials are examined including polymeric gels,
particulate gels, emulsions, composites, and field-responsive fluids. Two promising
simulants are examined in detail and compared with native gastropod pedal mucus.
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Chapter 1

Introduction and Background

Many gastropods, such as snails and slugs, crawl using adhesive locomotion, a tech-

nique that allows the organisms to climb walls and walk across ceilings. These animals

stick to the crawling surface with an excreted thin layer of biopolymer gel, known

as pedal mucus, and their acrobatic ability is due in large part to the rheological

properties of this slime.

The primary application of the present research is to enable a mechanical crawler

to climb walls and walk across ceilings using adhesive locomotion. The mechanical

design and fabrication is being pursued by a fellow student, Brian Chan [5]. A

properly selected slime simulant will enable Chan’s mechanical crawler to optimally

perform while climbing in the horizontal, inclined, and inverted positions.

To this end, the rheology of gastropod pedal mucus is examined in greater detail

than any previously published work. The linear rheology of pedal mucus is examined

with flow, oscillation, and creep tests. Nonlinear rheology is examined with large

amplitude oscillatory shear (LAOS) tests. In addition, pedal mucus is examined

with microgap rheology, which can test the sample at the biologically relevant gap of

10-20µm, the measured thickness of pedal mucus under a crawling slug [6].

Adhesive locomotion of a mechanical crawler is modeled in order to find the crite-

ria for an optimal slime simulant. After developing the selection criteria for the ideal

simulant, a range of candidate materials are examined including polymeric gels, par-

ticulate gels, and emulsions. Two promising simulants are then examined in detail,

19



(i)

(ii)

wave
direction

Figure 1-1: Bottom view of a crawling terrestrial slug Limax maximus, 1cm scale bar;
i) compression wave, ii) interwave

.

and compared with native pedal mucus.

1.1 Adhesive locomotion

It has been known for some time that snails crawl upon a thin layer of excreted

mucus, but the exact mechanism of gastropod locomotion was unclear until Denny

examined the rheological properties of pedal mucus from the banana slug, Ariolimax

columbianus [4, 6]. He discovered that the thin layer of mucus served both as glue

and lubricant, holding part of the animal to the substrate while allowing another part

to glide forward.

Animals that crawl using adhesive locomotion exert shear stresses on the thin

layer of structurally sensitive mucus that holds the organism to the substrate. The

pedal mucus has an effective yield stress; at high applied stresses the network struc-

ture breaks enabling the foot to glide forward over a fluid layer, whereas in regions

of low applied stress the network structure reforms into a solid-like layer connecting

the foot to the substrate. Molluscan pedal mucus films are physically crosslinked
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Figure 1-2: Chan’s Robosnail mimics adhesive locomotion with five discrete pads
which move forward sequentially while other pads remain stationary, 5cm scale bar.

gels containing 0.3-9.9% solid matter in water [7]. The solid constituent which dom-

inates the mechanical properties is a mucus protein-polysaccharide complex. These

glycoconjugates in pedal mucus share similarities with both mucin glycoproteins and

glycosaminoglycans in vertebrates.

Figure 1-1 shows the bottom view of a crawling terrestrial slug, Limax maximus,

commonly known as the leopard slug, tiger slug, or great gray garden slug. The mus-

cular contractions lead to waves that (i) compress the foot parallel with the substrate,

creating an area of high shear stress which ruptures the mucus network structure. The

interwaves (ii) are areas of lower shear stress which allow the transient network struc-

ture to reform into a solid-like material, holding that part of the organism to the

substrate. Muscular compression waves move toward the head (top of picture) dur-

ing locomotion. With adhesive locomotion it is important to note that the thickness

of pedal mucus between the foot and the substrate is constant; the waves are not

peristaltic. However, other gastropods that do not use adhesive locomotion, such as

many marine snails, instead use a peristaltic wave that propagates from the head

toward the rear of the animal.

The adhesive locomotion mechanical crawler designed by Chan [5] is shown in

Figure 1-2. The discrete pads can be individually actuated, creating an area of high

shear stress under the single forward moving pad, while the remaining stationary pads

exert a lower shear stress on the material. This so-called Robosnail2 is the basis of

the adhesive locomotion modeling presented in Chapter 4.
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1.2 Mucus composition

Mucus is a biological secretion common to both vertebrates and invertebrates, and is

best known for coating cells that line the respiratory, digestive, and urogenital tracts.

Mucus serves many functions, such as lubrication, protection from dehydration or

infection, and assisting in adhesive locomotion. It is primarily composed of water,

salts, and large biopolymer complexes made of proteins and polysaccharides. In

vertebrates these large macromolecules are known as mucin, but for invertebrates

the high molecular weight polymer is less defined. Much research has been directed

at understanding human mucin, since mucus is related to a number of diseases (e.g.

cystic fibrosis). Thus invertebrate mucus researchers have often looked to vertebrate

mucin for insight (e.g. [7]).

1.2.1 Vertebrate mucus

Vertebrate mucin molecules are glycoproteins, consisting of a protein backbone onto

which polysaccharides have covalently attached (glycosylation). Mucins are distin-

guished from other glycoproteins by heavy glycosylation, consisting of at least 50%

O-glycans by weight which are concentrated in particular regions on the polypeptide

core [1] (O-glycans are polysaccharides attached at the amino acids hydroxylysine, hy-

droxyproline, serine, or threonine, in contrast to N -glycans which are polysaccharides

attached at asparagine). Mucins are identified by the gene which encodes the protein

backbone. For example, in humans each gene name follows the form MUC#, in which

chronologically identified mucins have been assigned a unique number. Common hu-

man mucins include MUC1, which can be found in the bronchus, salivary gland, and

stomach, and MUC2, which is known to exist in the salivary gland, small intestine,

and colon [8].

Mucins are classified into two distinct categories: membrane-bound mucins and

secretory mucins. For human mucins, it has been suggested that six are membrane-

bound (MUC1, MUC3A, MUC3B, MUC4, MUC12, and MUC13), four are secreted

(MUC2, MUC5AC, MUC5B, and MUC6), and the remaining three mucins (MUC7,
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Figure 1-3: Schematic representation of two well characterized human mucins
(from [1]); MUC1 is a membrane-bound mucin and MUC2 is a secretory mucin.

MUC8, and MUC16) cannot be classified [1]. Figure 1-3 (from [1]) compares the ar-

chitecture of two well characterized human mucins, MUC1 and MUC2, and shows the

contrast between a membrane-bound mucin (MUC1) and a secreted mucin (MUC2).

Different domains of the protein backbone are distinguished by the amino acid se-

quence, in which the amino acid names are abbreviated to one letter. A table listing

the amino acids and their abbreviations is included in Appendix A. Secreted mucins

such as MUC2 are the primary interest of this research because they alone have the

ability to form gels.

The part of the polypeptide core that is heavily O-glycosylated contains no sec-

ondary structure, and is held in an extended position by the polysaccharides. These

O-glycans are mutually repulsive due to their negative charge [9]. Mucins therefore

occupy a large volume with a small weight fraction when in solution. Individual mucin

chains are assembled via disulphide bonds into molecules with molecular weights in

the millions [9]. Secretory mucins may then form gels via entanglement and non-

covalent bonding, such as hydrophobic interactions between protein segments [10].
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1.2.2 Invertebrate mucus

Mucus is quite abundant among invertebrates. As mentioned in [11], most of the

99% of animals without backbones are bursting with mucus secretions. In contrast to

vertebrate mucus, the constituent molecule of invertebrate mucus is not necessarily

a traditional glycoprotein. Both protein and carbohydrate are present in inverte-

brate mucus, but these subunits are not ordered in the same way as glycoproteins. It

has been suggested that the constituent molecules of invertebrate mucus are better

described as protein-polysaccharide complexes [7]. While there is a clear distinc-

tion between glycoproteins and glycosaminoglycans for vertebrates, that distinction

is blurred for invertebrate mucus. As suggested, the protein-polysaccharide complexes

found in invertebrate mucus lie somewhere on the spectrum between a glycoprotein

and a glycosaminoglycan. Whereas a glycoprotein consists of a distinct protein back-

bone onto which polysaccharides are attached, a glycosaminoglycan is a linear chain

of predominantly carbohydrates with a small amount of protein.

Invertebrates also use their mucus secretions in unique ways compared to ver-

tebrates. For example, gastropod slime trails are used for navigating and many

invertebrates coat themselves with distasteful slime to detract predators [11].

1.3 Prior work on the rheology of mucus

This section reviews relevant studies of mucus rheology. Vertebrate mucus is kept dis-

tinct from invertebrate mucus to emphasize the difference in composition, as discussed

in Section 1.2.2.

1.3.1 Vertebrate mucus

Many of the early studies of vertebrate mucus rheology focused on bronchial mucus,

attempting to understand common disorders such as chronic bronchitis and cystic

fibrosis. For example, [12] describes the role of mucus viscoelasticity in the ciliary

transport of pulmonary secretions. Bronchial mucus is described with a Maxwell
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model, which is an elastic spring in series with a viscous damper. More recently,

[13] describes experimental methods for studying mucociliary clearance, including

magnetic bead rheology using beads with a diameter of 100µm.

Rheology has been used to help elucidate the association mechanism of mucin

molecules. For example, [10] has concluded that tracheobronchial mucin associates

due to the hydrophobic attraction between protein segments. Additionally, native

pig gastric mucus has been examined by [14], which concludes that that both tran-

sient (e.g. entanglements) and nontransient (e.g. physical gelation) associations are

responsible for for the bulk rheological response of the material.

At yet a smaller scale, the mechanics of individual mucin subunits have been

examined. For example, [15] uses atomic force microscopy (AFM) to measure the

persistence length of human ocular mucins, which are present in the precorneal tear

film. Ocular mucins possess short oligosaccharide side chains in comparison with

many gastrointestinal mucins. The persistence length was found to be 36nm, which

the authors say is consistent with that of an extended, flexible polymer.

Vertebrate mucus has been examined with nontraditional rheological methods.

For example, [16] uses dynamic light scattering to examine porcine gastric mucus.

This technique requires a small sample volume (on the order of tens of picoliters) to be

imbedded with small particles (109-nm polystyrene spheres are used in this example).

The results show a pH dependent sol-gel transition and a so-called microviscosity that

is 100-fold lower than the bulk viscosity. The authors attribute this dramatic viscosity

difference to the probe particles being smaller than the pore size of the mucus gel.

A recent study of mucus systems by [2] reports a novel mechanical response for

three mucus systems: porcine gastric mucus, purified mucin gels, and mucin-alginate

gels. Specifically, the authors observe a frequency-dependent strain-hardening, as in-

dicated by stress-sweep oscillatory rheology. The authors monitored strain-hardening

by observing “stress/strain” for each cycle of oscillation. No clear definition of

“stress/strain” is given in the article, so it can only be assumed that by “stress/strain”

the authors mean τmax/γmax, the stress amplitude divided by the strain amplitude.

The novel observation is that the ratio “stress/strain” increases while G∗, the complex
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Figure 1-4: The frequency dependent stress hardening and flow of native pig gastric
mucus, as reported by [2] (A) 0.2 Hz and (B) 1 Hz.

modulus, decreases. Figure 1-4 is an example of this novel observation for native pig

gastric mucus. The authors interpret this as both strain-hardening and flow occur-

ring simultaneously. This unique hardening behavior occurs gradually for each mucus

system starting near 0.5 Hz. Frequencies above 1 Hz were not examined.

1.3.2 Invertebrate mucus

The first absolute measures of viscosity and elasticity of molluscan mucus were re-

ported by [3]. Pedal mucus from the limpet Patella vulgata was examined by the

means of creep tests under constant imposed shear stress. Mucus was collected from

a large number of limpets and pooled together so that an adequate sample size was

obtained. Figure 1-5 shows a typical creep test which exhibits a dominant elastic

response. The initial creep compliance J0 was used to determine the initial elastic

modulus G0 = J−1
0 = 3×103 Pa. At long enough times a slow flow was observed with

viscosity η0 ≈ 2 × 106 Pa.s. These creep tests were performed in the linear regime

under a constant applied stress τ0 = 40 Pa.

The role of pedal mucus in gastropod locomotion was elucidated by Denny [4, 6].

These experiments explored the nonlinear regime of pedal mucus rheology from the

terrestrial pulmonate slug Ariolimax columbianus, commonly known as the banana

slug. Denny observed a predominantly elastic response in the linear regime. Oscilla-
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Figure 1-5: A typical creep curve for the pedal mucus of the limpet Patella vulgata
as reported by [3].

tory rheology gave a linear elastic modulus G′ ≈ 50 Pa, and a loss modulus G′′ ≈ 3 Pa.

However, after exceeding a critical strain γyield ≈ 5 the pedal mucus flowed with a

viscosity η ≈ 4 Pa.s. Figure 1-6 shows the controlled-strain test used to observe the

yield transition. The yield stress as reported by [4] is more commonly known as an

overshoot stress. Figure 1-7 depicts how flow stress and overshoot stress depend on

the imposed shear rate. For the limiting case when shear rate γ̇ → 0, the overshoot

stress may be interpreted in terms of a yield stress, as it is more commonly defined.

Thus the yield stress τyield ≈ 300 Pa.

More recent studies of invertebrate pedal mucus, for example [17], have identified

a difference between trail mucus and adhesive mucus. Adhesive mucus is used by

some limpets and snails to form a strong bond to the substrate, in contrast to the

trail mucus used for locomotion. These studies have not examined the comparative

mechanical response of the different mucus, but have identified biochemical differ-

ences. In general, adhesive mucus tends to contain more protein with no significant

difference in carbohydrate concentration.
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Figure 1-6: A typical strain-controlled test performed by [4] to show the transition
to flow of the pedal mucus from the terrestrial slug Ariolimax columbianus.

Figure 1-7: Overshoot stress σy and flow stress σf depend on the imposed shear rate
for pedal mucus from the terrestrial slug Ariolimax columbianus, as reported by [4].
The data points are from a representative sample, and the ruled areas show the total
range observed in all samples tested.
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Chapter 2

Experimental Methods

Rheological measurements were performed with multiple instruments, including a

stress-controlled CSL2 500 rheometer, a stress-controlled AR1000-N rheometer, a

stress-controlled AR-G2 rheometer, a strain-controlled ARES-LS rheometer (all TA

Instruments, New Castle, DE), and the Flexure-based Microgap Rheometer (FMR)

which is discussed in detail in Section 2.4.

Bulk rheology was examined with the AR1000-N, AR-G2, and ARES rheometers.

Samples were tested between both plate-plate and cone-plate geometries. For plate-

plate geometries, diameters ranged from 0.8cm to 4cm, and gaps ranged from 200µm

to 1000µm. When necessary, adhesive-backed waterproof sandpaper (2000 grit, East-

wood Co., Pottstown, PA) was attached to the top and bottom plates to help avoid

slip at the boundaries. All samples were tested at room temperature. Specific test

details will be included with each set of results presented.

2.1 Materials

The terrestrial slug Limax maximus and terrestrial snail Helix aspera were collected

from various places around Cambridge, MA. The animals were kept in a dry aquarium

and fed a variety of foods such as lettuce, carrots, and mushrooms. A dish of water was

in constant supply, and the aquarium was frequently sprayed with water to maintain

a moist environment.
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Pedal mucus was collected from Limax maximus and Helix aspera using the fol-

lowing protocol: A single animal was removed from the containment area, placed on

a glass plate, and allowed to crawl toward a piece of food such as lettuce or a carrot.

No mucus was collected until the gastropod had traveled a minimum of one body

length so that no debris from the containment area remained in the sample, and to

help ensure that locomotive mucus was present, rather than adhesive mucus which

has been shown in some cases to have different composition and mechanical proper-

ties [17]. Deposited trail mucus was gathered by scraping with a razor blade behind

the crawling organism until an adequate sample size was obtained. The sample was

immediately deposited in a rheometer for testing.

2.2 Linear viscoelasticity and steady-flow rheology

The steady shear viscosity was determined by subjecting a sample to constant stress

τ (or strain rate γ̇) and waiting for γ̇ (or τ) to reach steady state. At steady state the

viscosity η was then calculated from the definition η ≡ τ/γ̇. After reaching steady

state, a new stress (or strain rate) was then imposed to examine the non-Newtonian

behavior of the material.

Creep tests were performed on the AR1000-N rheometer by subjecting the sample

to a step input of shear stress τ0, which is held constant until the end of the test.

The strain response γ(t) is recorded and the creep compliance J(t) is calculated by

the definition J(t) ≡ γ(t)/τ0.

Linear viscoelastic moduli G′ (storage modulus) and G′′ (loss modulus) were ex-

amined with small amplitude oscillatory shear (SAOS) tests. For a strain-controlled

input (e.g. on the ARES rheometer) of

γ(t) = γ0sin(ωt) (2.1)

the linear response of the material will be a sinusoid at the same harmonic, shifted
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by a phase angle δ,

τ(t) = τ0sin(ωt + δ). (2.2)

This single harmonic response can be rewritten in terms of the viscoelastic moduli

τ(t) = γ0|G∗(ω)|sin(ωt + δ) (2.3)

τ(t) = γ0[G
′(ω)sin(ωt) + G′′(ω)cos(ωt)] (2.4)

such that

G∗2(ω) = G′2(ω) + G′′2(ω) (2.5)

G′(ω) =
τ0cosδ

γ0

(2.6)

G′′(ω) =
τ0sinδ

γ0

(2.7)

in which G∗ is the complex modulus, G′(ω) is the in-phase elastic component or “stor-

age modulus” and G′′(ω) is the out-of-phase viscous component or “loss modulus” of

the response. It is important to note that by definition, the linear viscoelastic moduli

are not a function of the strain input amplitude γ0.

If the input is an oscillatory stress, instead of strain, then the output can be

written as

γ(t) = τ0|J∗(ω)|sin(ωt + δ) (2.8)

γ(t) = τ0[J
′(ω)sin(ωt) + J ′′(ω)cos(ωt)] (2.9)

where J∗ is the complex compliance, J ′(ω) is the storage compliance and J ′′(ω) is the

loss compliance. In the linear regime one can interrelate the moduli and compliances
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Figure 2-1: A Pipkin diagram maps the phase-space of linear and nonlinear material
responses.

using the relationships [18]

|G∗||J∗| = 1 (2.10)

G′ =
J ′

J ′2 + J ′′2
(2.11)

G′′ =
J ′′

J ′2 + J ′′2
. (2.12)

2.3 Nonlinear oscillatory shear rheology

The response of a material to oscillatory shear is considered nonlinear if either of two

things occur: 1) the viscoelastic moduli (G′ or G′′) depend on the input amplitude (γ0

or τ0) or 2) the response is not a sinusoid. These nonlinearities tend to appear as the

input amplitude is increased beyond a critical point, and thus the nonlinear regime

is typically referred to as large amplitude oscillatory shear (LAOS). It is convenient

to draw a map which shows the various regimes of linear and nonlinear material

behavior. Such a map is commonly referred to as a Pipkin diagram (see Figure 2-1),
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which shows regimes of material behavior as a function of the strain amplitude γ0

and frequency ω. The Pipkin diagram will be used later to map the phase-space in

which experiments have been performed.

The first condition for nonlinearity, input amplitude dependence, will modify the

material response so that

τ(t) = γ0[G
′(ω, γ0)sin(ωt) + G′′(ω, γ0)cos(ωt)]. (2.13)

Although the response is nonlinear by definition, both G′ and G′′ are still well defined.

In general, however, G′ and G′′ may not be well defined in the nonlinear regime, as

will be shown in the following section.

2.3.1 Fourier transform rheology

If the second condition for nonlinearity appears, and the response is not a sinusoid,

then G′ and G′′ are not defined as in the linear case. The material response can,

in general, be written as a Fourier series to capture the higher harmonics in the

response [19]

τ(t) = γ0

N∑
n=1
n odd

[G′
n(ω, γ0)sin(nωt) + G′′

n(ω, γ0)cos(nωt)]. (2.14)

Here n can only be odd due to the non-negativity of stored energy, as argued by [20]. A

different framework must be developed to interpret the elastic and viscous components

when higher harmonics are present. It has been shown [21] that the dissipation of

energy depends on only one material function, G′′
1. For a sinusoidal strain input, the

energy dissipated per unit volume per cycle, Ed, is

Ed =

∮
τdγ =

∮
τ(t)γ̇(t)dt (2.15)

= γ2
0ω

∫ 2π/ω

0

N∑
n=1
nodd

[G′
nsin(nωt) + G′′

ncos(nωt)]cos(ωt)dt (2.16)
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and due to the orthogonality of the trigonometric basis functions this reduces to

Ed = γ2
0ωG′′

1

∫ 2π/ω

0

cos2(ωt)dt (2.17)

Ed = γ2
0πG′′

1. (2.18)

Note that a similar result is achieved for the linear case when no higher harmonics

are present, such that G′′
1 = G′′.

Although the dissipative nature of a material depends on only one material func-

tion, G′′
1, the elastic nature of a material is more complicated. The storage of energy

is related to all the remaining material functions. It has thus been proposed [21] to

name G′
1 the first harmonic modulus, G′

2 and G′′
2 the second harmonic moduli, G′

3

and G′′
3 the third harmonic moduli, and so on. Higher harmonics tend to decay away

rapidly, which is a strength of Fourier transform rheology; typically only a few higher

harmonics are needed to reconstruct the original signal.

It is complicated to understand the physical basis of the higher harmonic moduli,

and this is a weakness of Fourier transform rheology. However, the higher harmonic

moduli can serve as a sensitive rheological fingerprint for a material (e.g. [22]), and

therefore can be used in quality control situations. The strengths and limitations of

Fourier transform rheology have recently been reviewed by [23].

2.3.2 Lissajous curves

Another method of analyzing LAOS rheological data is to plot data in the form of

a so-called Lissajous curve. In rheology a Lissajous curve is a parametric plot of

stress τ(t) on the ordinate against strain γ(t) (or strain rate γ̇(t)) on the abscissa.

The curve appears as an ellipse for a linear viscoelastic material. Figure 2-2 shows

examples of linear viscoelastic Lissajous curves for various phase angles, normalizing
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Figure 2-2: Normalized Lissajous curves of linear viscoelastic materials with varying
phase angle δ.

the strain input and stress output of Equations 2.1 and 2.2 such that

x(t) =
γ(t)

γ0

= sin(ωt) (2.19)

y(t) =
τ(t)

τ0

= sin(ωt + δ). (2.20)

A strongly elastic material will appear more like a straight line through the origin,

whereas a viscous material will enclose more area. The enclosed area of a Lissajous

curve, where τ is plotted against γ, is equal to the energy dissipated per unit volume

per cycle Ed, as given by Equations 2.15 - 2.18.

A nonlinear, non-sinusoid material response will distort the ellipse. Thus a Lis-

sajous curve, like Fourier transform rheology, can be used to indicate a deviation from
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Figure 2-3: Normalized Lissajous curves of some nonlinear viscous fluids.

the linear viscoelastic regime. Distorted ellipses can take many forms. Figure 2-3 dis-

plays the Lissajous curves of some model nonlinear fluids, each obeying a variation

of the power law

τ = κγ̇n. (2.21)

Curves are shown for a Newtonian (n = 1), shear-thickening (n = 1.5), shear-thinning

(n = 0.5), and a yield-stress-like fluid (n = 0.01).

Two basic examples of a nonlinear solid response are shown in Figure 2-4. Curves

are shown for a linear, a strain-stiffening, and a strain-softening response. The elastic

shear modulus, or tangent modulus, is equal to the slope of a Lissajous curve for

a purely elastic material, G = dτ/dγ. The examples in Figures 2-3 and 2-4 are
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Figure 2-4: Sample Lissajous curves of some nonlinear purely-elastic solids.

the beginning of a framework for physically interpreting Lissajous curves of general

nonlinear viscoelastic materials. This section has shown that the shape of a Lissajous

curve depends on the type of material. It will also be shown (Section 2.4.4) that the

shape of a Lissajous curve depends on the forcing function used. The examples given

in this section consider a sinusoidal input (Equation 2.1). Section 2.4.4 will consider

a triangle wave strain input.

2.3.3 Newly proposed quantitative measures for LAOS

Some quantitative material functions for describing LAOS rheology have been previ-

ously proposed. For example, [24] proposes three parameters for interpreting Lissajous

curves which plot stress τ upon strain-rate γ̇. The three parameters are an attempt to

describe the dissipative, elastic, and nonlinear nature of the material. However, these

three parameters, along with other previously suggested material functions, do not

adequately describe the type of nonlinear response shown in the tests of pedal mucus,
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as will be seen in Chapter 3. Thus, a new framework is proposed for interpreting

LAOS results.

Four parameters are proposed to describe the elastic, viscous, and nonlinear char-

acteristics of a material in LAOS. The dissipative nature of the material is completely

captured by the loss modulus G′′
1, since G′′

1 is the only mode of viscous energy dissi-

pation for a single harmonic input as shown in Section 2.3.1. Three other parameters

are proposed to describe the elasticity and nonlinearity of the material.

Small strain elastic shear modulus, M

The elasticity and nonlinearity of a material are described by three parameters. First,

the slope of the curve at zero strain, that is

M ≡ dτ

dγ

∣∣∣∣
γ=0

. (2.22)

This first measure of elasticity, M , can be interpreted as the small strain elastic

modulus. That is, M is the elastic modulus at zero strain, and can be written in

terms of the higher harmonic elastic moduli by referring to Equation 2.14. First note

that

M =
dτ

dγ

∣∣∣∣
γ=0

=
dτ

dt

dt

dγ

∣∣∣∣
γ=0

. (2.23)

Then it is shown, from Equation 2.14, that

dτ

dt
= γ0ω

N∑
n=1
nodd

n[G′
n(ω, γ0)cos(nωt)−G′′

n(ω, γ0)sin(nωt)]. (2.24)

Substituting t = 0 and π/ω gives

dτ

dt

∣∣∣∣
γ=0

= γ0ω(±1)
N∑

n=1
n odd

nG′
n(ω, γ0) (2.25)
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since, for an input of γ(t) = γ0sin(ωt), γ = 0 when t = 0 and t = π/ω, and the ±1

term corresponds to each of those times, respectively. Additionally we have

dγ

dt

∣∣∣∣
γ=0

= γ0ω(±1). (2.26)

Thus we conclude that

M(ω, γ0) =
N∑

n=1
n odd

nG′
n(ω, γ0). (2.27)

It is then apparent that M reduces to G′ in the linear regime, that is

lim
γ0→0

M(ω) = G′(ω). (2.28)

Large strain elastic shear modulus, L

The second measure of elasticity, L, is defined as the stress at maximum strain divided

by the maximum strain, that is

L ≡ τ |γ=±γ0

±γ0

. (2.29)

Thus L serves as some measure of the large strain elastic modulus, that is, the shear

modulus at maximum strain γ = γ0. This second measure of elasticity can also be

represented in terms of the higher harmonic elastic moduli. From Equation 2.14

τ

γ0

=
N∑

n=1
nodd

[G′
n(ω, γ0)sin(nωt) + G′′

n(ω, γ0)cos(nωt)] (2.30)

and substituting t = π/2ω and 3π/2ω gives

L(ω, γ0) =
τ |γ=±γ0

±γ0

=
N∑

n=1
nodd

G′
n(ω, γ0) (2.31)
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since γ = ±γ0 when t = π/2ω and 3π/2ω. It is thus shown that L also reduces to G′

in the linear regime, that is

lim
γ0→0

L(ω) = G′(ω). (2.32)

Elastic stiffening ratio, L/M

Comparing the material functions L and M is a way to compare large strain and

small strain elasticity. This comparison will be referred to as the elastic stiffening

ratio S, given by

S(ω, γ0) ≡ L(ω, γ0)

M(ω, γ0)
. (2.33)

If S > 1 then the material strain-stiffens, and is in some way analogous to the strain-

stiffening solid in Figure 2-4. Likewise, if S < 1 the material is strain-softening. The

elastic stiffening ratio then serves as a measure of nonlinearity. Since M and L both

reduce to G′ in the linear regime, a linear viscoelastic material will have S = 1, as

given by Equations 2.28 and 2.32. The fact that S = 1 in the linear regime can also

be seen graphically in Figure 2-2 which shows Lissajous curves for linear viscoelastic

materials. Note that for a Newtonian fluid M = 0 and L = 0, which causes S to be

undefined. However, in the limit of a Newtonian fluid as the phase angle δ approaches

π/2,

lim
δ→π/2

S = 1 (2.34)

as it does for all linear viscoelastic materials.

Figure 2-5 shows schematically the definitions of M , L, and S for an arbitrary

nonlinear viscoelastic material. It is important to note that the current definitions

and linear viscoelastic limits of the quantitative measures M , L, and S are only valid

for a sinusoidal input (e.g. Equation 2.1). Section 2.4 will discuss LAOS quantifiers

for a triangle wave strain input.
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Figure 2-5: Schematic definitions for elastic material functions of a nonlinear vis-
coelastic material; M : small strain elastic shear modulus; L: large strain elastic
shear modulus; S = L/M : elastic stiffening ratio.

2.4 Microgap rheology

Gastropod pedal mucus secretions were also examined with microgap rheology using

the Flexure-based Microgap Rheometer (FMR) [25]. Microgap rheology is distinct

from bulk rheology in that gap sizes can be as small as 1µm, whereas bulk rheology

is typically limited to gaps larger than 50µm. Microgap rheology offers two distinct

benefits for testing gastropod pedal mucus. First, smaller sample sizes are required,

which is important for many biological samples. Second, microgap rheology is able

to test pedal mucus at its biologically relevant thickness, which under a crawling slug

has been measured in the range of 10-20 µm [6].
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Figure 2-6: Apparent bulk viscosity of a Newtonian oil deviates due to errors at
decreasing gap sizes (AR1000, 4cm plate, 20◦C).

2.4.1 Gap limits of bulk and microgap rheology

As an example of the minimum gap achievable with bulk rheology, Figure 2-6 displays

the apparent viscosity of a Newtonian oil (N1000, η(20◦C) = 2.867 Pa.s, Cannon In-

strument Co., State College, PA) at various gap separations. The test was performed

on the stress-controlled AR1000 rheometer with a 4cm plate at 20◦C. Results start

to deviate at a gap of 100µm, and continue to deviate at smaller gaps. Smaller gaps

magnify errors such as nonparallelism, nonconcentricity, and nonflatness of plates. A

significant error may also be due to a miscalculation of zero gap, due to the squeeze

flow of air between parallel plates resulting in a high normal force before the plates

actually touch [26].

The maximum attainable gap for a bulk rheometer is determined by a balance of

surface tension helping the sample to bridge the gap and gravity pulling the sample
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downward. Surface tension will hold a fluid sample in the gap with a force

Fσ
∼= σcosθ2πr (2.35)

where σ is surface tension, θ is the contact angle, and r is the radius of the plate.

Gravity, in the form of hydrostatic pressure, fights to flow the material out of the gap

with a force

Fg
∼= 1

2
ρgh22πr (2.36)

where ρ is the fluid density, g is the gravitational acceleration, and h is the gap height.

The ratio of gravity to surface tension forces is captured by the Bond number,

Bo ≡ Fg

Fσ

=
ρgh2

σ
(2.37)

where the numerical coefficients have been discarded. Surface tension dominates so

long as Bo < 1, thus one might expect the maximum gap to occur when Bo ≈ 1,

giving

hmax ≈
√

σ

ρg
. (2.38)

For water hmax ≈ 3 mm, giving an approximate upper bound for the maximum gap

height for testing liquids in a rheometer.

The experimental limits of a typical bulk rheometer and the FMR are shown

graphically in Figure 2-7. For the FMR, viscosity is calculated from (see Section 2.4.2)

η =
τ

γ̇
=

τ

V/h
(2.39)

where τ is the measured shear stress, V is the velocity of the sliding plate, and h is

the gap height between the plates. The limits of measuring the stress τ , imposing a

velocity V , and maintaining a gap h are shown in Table 2.1. The boundaries shown

43



Figure 2-7: Experimental limits of a typical bulk rheometer (AR1000, 4cm plate) and
the Flexure-based Microgap Rheometer.

in Figure 2-7 for the FMR are calculated as

A) η =
τhmin

V
(2.40)

B) η =
τminh

Vmax

(2.41)

C) η =
τhmax

V
(2.42)

D) η =
τmaxh

Vmin

(2.43)

where τ , V , and h vary from their minimum to maximum values.

2.4.2 FMR working principles

The FMR is a strain-controlled rheometer that tests a sample in planar Couette flow.

A front view schematic of the FMR is shown in Figure 2-8. The sample is held in the

area between the two black plates. The inchworm motor actuates the lower compound
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Figure 2-8: A schematic view of the Flexure-based Microgap Rheometer (image cour-
tesy of Dr. Christian Clasen).

flexure, which imposes a simple shear deformation on the sample. The rate of strain

depends on the velocity of actuation V and the gap height h,

γ̇ =
V

h
. (2.44)

The top flexure responds to the shear stress transferred through the sample, and

its displacement is measured with an inductive proximity sensor. The stress in the

material is then calculated from the displacement of the upper flexure ∆x, the spring

constant of the upper flexure (k = 8.2× 104N/m), and the area of the top confining

plate A (A = 217.3 mm2 and A = 20.1 mm2 are both available),

τ =
k∆x

A
. (2.45)

The compound flexures serve the purpose of maintaining a constant gap height

while the sample is being sheared. Compound flexures significantly reduce displace-
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minimum maximum
V (m/s) 5× 10−5 2× 10−3

h (m) 1× 10−6 1× 10−4

∆x (m) 3× 10−9 4× 10−5

γ̇ (s−1) 0.5 2000
F (N) 2.5× 10−4 3.28
τ (Pa) 1.1 1.6× 105

Table 2.1: Experimental limitations of the Flexure-based Microgap Rheometer.

Figure 2-9: Experimental limits of the Flexure-based Microgap Rheometer.

ment perpendicular to the direction of motion of the top and bottom plates. The

plates must be transparent, because the absolute gap height is measured with white

light interferometry. Visible light is directed through the semi-reflective transparent

plates and the gap, which creates a fringe pattern upon exiting. The fringe spacing

is used to determine the absolute spacing of the gap h.
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2.4.3 FMR experimental range

The experimental range of the FMR is fundamentally limited by three parameters as

seen from Equations 2.44 and 2.45: the actuation velocity V , the gap height h, and

the displacement of the force-sensing upper flexure ∆x. Table 2.1 displays the limits

of these fundamental parameters in addition to the consequential limits of derived

parameters: the shear rate γ̇, the force measured with the upper flexure F , and the

resulting shear stress τ . The minimum and maximum values of τ depend on the

choice of plate area A; Table 2.1 gives the minimum and maximum values possible

assuming that both geometries can be used.

The experimentally accessible range for a steady-state flow viscosity test on the

FMR can be determined from Table 2.1. The experimental range is shown graphically

in Figure 2-9, where the boundary lines A−D are calculated from

A) η =
F

A

hmax

Vmin

(2.46)

B) η =
Fmin

A

h

V
(2.47)

C) η =
F

A

hmin

Vmax

(2.48)

D) η =
Fmax

A

h

V
(2.49)

where F , h, and V vary from their minimum to maximum values. The experimental

range of shear-rate γ̇ depends on the gap height, and thus the limits shown in Figure 2-

9 are on a sliding scale. The absolute limits at maximum and minimum gap height h

are labeled to reinforce this point.

2.4.4 Theoretical models of LAOS rheology on the FMR

Oscillatory shear rheology on the FMR is distinct from typical oscillation rheology

because the strain input is a triangle wave, rather than a sinusoid. The actuating

motor is programmed to drive forward or backward at a constant speed, thus creating

the strain input shown in Figure 2-10. Since the strain input is not a simple sinusoid,
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Figure 2-10: Controlled strain input for FMR is a triangle wave.

the typical G′ and G′′ framework (Equations 2.1 - 2.7) for describing viscoelastic

models does not readily apply. The response of some model materials will be examined

in this section.

Figure 2-11 shows two typical ways to model linear viscoelastic materials. The

Maxwell model consists of a spring (modulus G) in series with a damper (damping

coefficient η). The Maxwell model represents a viscoelastic fluid, since a constant

applied stress will cause a steady state flow. In the limit that G approaches infinity,

i)

G

η

G
η

ii)

τ
γ

τ
γ

Figure 2-11: Schematics of i) Maxwell model for a viscoelastic fluid and ii) Kelvin
model for a viscoelastic solid.
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the Maxwell model represents a Newtonian fluid.

The Kelvin model consists of a spring (modulus G) in parallel with a viscous

damper (damping coefficient η). The Kelvin model represents a viscoelastic solid,

since an applied stress will result ultimately in a steady state strain. For the limiting

case where η approaches zero the Kelvin model represents a purely elastic solid.

The governing equation for the linear Maxwell model is

τ̇ +
G

η
τ = Gγ̇. (2.50)

The characteristic time of the Maxwell model λ is given by λ = η/G. Equation 2.50

is a first order non-homogeneous differential equation which can be solved via the

technique of an integrating factor. The forcing function is a square wave, which will

be represented as

γ̇(t) = γ̇0[1− 2H(t− a) + 2H(t− 3a)− 2H(t− 5a) + ...] (2.51)

where H(t − a) represents a Heaviside step function occurring at t = a. The steady

state solution for stress τ(t) is then given by

τ(t) = ηγ̇0[(1− e−t/λ)− 2(1− e−(t−a)/λ)H(t− a)

+ 2(1− e−(t−3a)/λ)H(t− 3a)− ...]. (2.52)

Equation 2.52 can be rendered dimensionless by introducing a non-dimensional

stress

τ ∗ =
τ

ηγ̇0

. (2.53)

Additionally, a non-dimensional time may be introduced as

t∗ =
t

tcycle/2
=

t

2γ0/γ̇
. (2.54)
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Figure 2-12: Steady-state Maxwell model response to triangle wave strain input.

Finally, the non-dimensional Deborah number is given by

De =
material timescale

experimental timescale
=

λ

2γ0/γ̇
. (2.55)

The Deborah number is a ratio of the material timescale λ divided by the exper-

imental timescale 2γ0/γ̇. Small Deborah numbers represent a situation where the

the experimental timescale is much longer than the material timescale, and thus the
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viscoelastic fluid can achieve steady state flow. Conversely, a high Deborah number

represents a more solid-like response. Equation 2.52 is then rewritten in dimensionless

form as

τ ∗(t) = (1− e−t∗/De)−2(1− e−(t∗−a∗)/De)H(t∗ − a∗)

+ 2(1− e−(t∗−3a∗)/De)H(t∗ − 3a∗)− ... (2.56)

The dependence of the material behavior on the experimental timescale is shown

schematically in the Pipkin diagram of Figure 2-1. Lissajous curves of the Maxwell

model response on the FMR are shown in Figure 2-12. Note that the limiting case

De→ 0 represents the response of a Newtonian fluid. The Lissajous curves of Figure 2-

12 are distinct from the curves of Figure 2-2, even though the material is linear

viscoelastic in each case. For example, in the limit of a Newtonian fluid, the Lissajous

curve is a circle for a sinusoidal input (Equation 2.1 and Figure 2-2), but the curve

is a square for a triangle wave strain input (Figure 2-10 and 2-12).

The governing equation for the Kelvin model is

τ = Gγ + ηγ̇ (2.57)

where G is the shear modulus and η is the viscosity of the elements shown in the

Kelvin model of Figure 2-11. The characteristic time of the Kelvin model λ is given

by λ = η/G. A convenient way to explore the parameter space of a Kelvin model

is to hold G constant while increasing η starting from η = 0, as shown in Figure 2-

13, which plots the Lissajous curves expected for the Kelvin model subjected to a

triangle wave strain input. The axes are not normalized in this plot to show two

distinct features of the Kelvin model response to a triangle wave strain input. First,

the slope is equal to the elastic shear modulus

dτ

dγ
= G (2.58)

which is independent of all other parameters (η, γ̇0, and γ0). Second, the zero-strain
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Figure 2-13: Kelvin model response to triangle wave strain input.

intercept is due entirely to viscous stresses

τ |γ=0 = ηγ̇0. (2.59)

Note that for a purely solid material (η = 0) no area is enclosed in the Lissajous

curve, and thus no energy is dissipated.

The proposed quantitative measures for LAOS (Section 2.3.3) only apply for a

sinusoidal input such as Equation 2.1. Thus M , L, and S can not, in general, be ap-

plied to the Lissajous curves produced by the FMR. However, a measure of nonlinear

elasticity can still be quantified if the material has solid-like qualities. Specifically

for a Kelvin model, the slope of the Lissajous curve is always equal to the shear

modulus, as given by Equation 2.58 (in general, with a triangle wave strain input, at

large De the slope is approximately equal to the shear modulus). The shear modulus

at maximum strain G(γ = γ0) can be compared to the shear modulus at zero strain

G(γ = 0) to quantify the stiffening or weakening of a Kelvin material. Thus, an
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elastic stiffening ratio for a Kelvin model on the FMR can be written as

SFMR =
G(γ = γ0)

G(γ = 0)
. (2.60)

The Maxwell and Kelvin models are only the simplest descriptions of a linear

viscoelastic fluid and solid. Although many other linear viscoelastic (and non-linear

viscoelastic) responses are possible, the examples of this section provide a framework

for analyzing results from the Flexure-based Microgap Rheometer that are presented

in Section 3.3.
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Chapter 3

Results and Discussion: Rheology

of Pedal Mucus from Terrestrial

Gastropods

This chapter presents results from examining pedal mucus using the rheological char-

acterization methods discussed in Chapter 2. First, results from traditional rheology

are presented, including flow, creep, and linear oscillation tests. The nonlinear me-

chanical response of pedal mucus is discussed in Section 3.2, in which Fourier trans-

form rheology, Lissajous curves, and the new quantitative measures (introduced in

Section 2.3.3) are used to characterize pedal mucus. Microgap rheology is used to

examine pedal mucus at physically relevant length scales. Finally, the Pipkin space

(introduced in Figure 2-1) is used as a framework for mapping the linear and nonlinear

response of pedal mucus.

3.1 Traditional rheology

The steady-state flow viscosity of pedal mucus from the garden snail Helix aspera is

shown in Figure 3-1, as measured in a controlled stress rheometer. It is apparent that

pedal mucus is extremely non-Newtonian. At stresses below 300 Pa the viscosity is

of the order 103− 104 Pa.s, but decreases by several orders of magnitude at a critical
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Figure 3-1: Steady state flow viscosity of native pedal mucus collected from two snails
Helix aspera (D=0.8 cm plate with sandpaper, 20◦C, Snail#1 on CSL2 500, 100µm
gap; Snail#2 on AR1000, 50µm gap).

stress near 100− 250 Pa. Below this critical stress, pedal mucus is almost solid-like,

as compared to higher stresses when the material flows with a dramatically lower

viscosity. Since flow exists at any finite stress, pedal mucus does not exhibit a true

yield stress. However, this behavior may be described as an apparent yield stress,

since the flow at low applied stresses may be difficult to measure, and it is followed

by a dramatic drop in viscosity over a narrow range of stress. The critical stress

at which viscosity dramatically changes will henceforth be referred to as the yield

stress τy [27, 28].

After exceeding the yield stress the steady shear viscosity η decreases with increas-

ing stress τ . Thus pedal mucus exhibits shear-thinning above τy. The yield stress τy

and post-yield viscosity values are similar to those reported by [4] for pedal mucus

from the banana slug Ariolimax columbianus. However, [4] does not explicitly report

a finite viscosity below τy.
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Figure 3-2: Creep compliance of native pedal mucus from the terrestrial snail Helix
aspera (AR-G2, D=0.8 cm plate with sandpaper, 1000µm gap, 22◦C, τ0 = 5 Pa < τy).

Pedal mucus from the garden snail Helix aspera was also tested under creep con-

ditions of constant applied stress. Results from one such creep test are shown in

Figure 3-2. Pedal mucus initially shows a dominant elastic response, followed by a

small amount of flow as indicated by the slope of the compliance curve. At suffi-

ciently long times the slope of the compliance curve approaches a constant. The rate

of change of compliance with time is exactly equal to the inverse of viscosity, that is

dJ(t)/dt = η−1. At steady state dJ(t)/dt = 2.96× 10−5 Pa−1.s−1, which corresponds

to a viscosity η = 3.4 × 104 Pa.s. This matches well with the large finite viscosity

below the yield stress, as shown in Figure 3-1.

At short times a damped inertio-elastic ringing can be seen, which is the result of

the moment of inertia of the rotating fixture and draw rod of the torsional rheometer

in series with the elastic response of the material. If the moment of inertia of the

fixture is known, then the storage modulus G′ and loss modulus G′′ can be determined

at the free oscillation ringing frequency [29]. This will be discussed further at the end
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Figure 3-3: Oscillatory stress sweep of native pedal mucus from the terrestrial slug
Limax maximus (AR1000, 2cm plate with sandpaper, solvent trap, 200µm gap, 22◦C,
ω = 1 rad.s−1).

of this subsection, in order to compare with the results obtained from oscillatory

testing.

The linear viscoelastic moduli, G′ and G′′, were examined at multiple frequencies

within the linear regime using small amplitude oscillatory shear (SAOS), as described

in Section 2.2. All oscillatory tests were performed on pedal mucus from the terres-

trial slug Limax maximus. The linear regime was first identified by performing an

oscillatory stress sweep at a constant frequency ω = 1 rad.s−1, as shown in Figure 3-3.

Note that although the instrument reports G′ and G′′, this information is interpreted

here as G′
1 and G′′

1, to emphasize that higher harmonics may exist in the non-linear

regime. As discussed in Section 2.3 the linear viscoelastic regime is defined to be

the region in which G′ and G′′ are independent of the oscillation stress τ0 and the

strain response is a single harmonic sinusoid. The first condition seems to be weakly

satisfied for most of the stress range examined. It is noteworthy that higher stresses
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Figure 3-4: Oscillatory frequency sweep of native pedal mucus from the terrestrial
slug Limax maximus (AR1000, 2cm plate with sandpaper, solvent trap, 200µm gap,
25◦C, τ0 = 5 Pa< τy).

(τ0 > 1000 Pa) could not be explored because the sample yielded and was quickly

thrown out of the gap. The second requirement for linearity, a single harmonic re-

sponse, will be discussed in the following section (Section 3.2) where it will be shown

that |G∗
3| << |G∗

1| for τ0 < 30 Pa (Figure 3-8). An oscillating stress with amplitude

τ0 = 5 Pa (which corresponds to τ0 << τy) was chosen for a frequency sweep in the

linear regime (Figure 3-4). It is observed that both G′ and G′′ are weak functions

of frequency in the linear regime. This is typical behavior for a viscoelastic solid,

although it may be speculated that at low enough frequencies the material would

exhibit more dissipation, since a finite steady state flow was observed in the creep

test of Figure 3-2.

It is interesting to examine the similarity in pedal mucus from Helix aspera (Fig-

ures 3-1 and 3-2) and Limax maximus (Figures 3-3 and 3-4). To do this, the vis-

coelastic moduli, G′ and G′′, of pedal mucus from Helix aspera must be extracted
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from the inertio-elastic ringing of the creep experiment (Figure 3-2) [29].

For a torsional spring-mass-damper system, the equation of motion can be written

as

Iθ̈ = T0 − TR. (3.1)

where θ is the angular rotation of the fixture, I is the moment of inertia of the system,

T0 is the applied torque, and TR is the torque resistance of the material. In a torsional

rheometer the torque resistance TR is related to the shear stress τ by

TR =

∫ R

0

τ2πr2dr (3.2)

where R is the radius of the geometry. The shear stress τ is related to the shear strain

γ and strain-rate γ̇ by an appropriate constitutive model. The Kelvin model for a

viscoelastic solid (introduced in Figure 2-11) is initially chosen. The Kelvin model

was given by Equation 2.57, but is repeated here for convenience

τ = Gγ + ηγ̇. (3.3)

For the experiment of Figure 3-2 a parallel plate geometry was used, in which case γ

depends on the radial location within the sample as

γ =
rθ

h
(3.4)

where h is equal to the gap height. Equations 3.3 and 3.4 can be substituted into

Equation 3.2 to relate TR and θ for a parallel plate geometry, resulting in

TR = F (Gθ + ηθ̇). (3.5)

F =
πR4

2h
(3.6)

where F is given for a parallel plate geometry. The radial displacement can be scaled
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Figure 3-5: Kelvin and Jeffreys models fit to inertio-elastic ringing during creep test
of native pedal mucus from the terrestrial snail Helix aspera (AR-G2, D=0.8 cm plate
with sandpaper, 1000µm gap, 22◦C, τ0 = 5 Pa < τy).

by the elastic nature of the material such that

θ∗ ≡ θ

θ|t→∞ =
θFG

T0

(3.7)

where θ|t→∞ is the steady state result when T0 = TR. Equations 3.5–3.7 can now be di-

rectly substituted into Equation 3.1, which results in a second-order non-homogeneous

differential equation for the radial displacement θ∗, where the applied torque is a step

function T0 = T0H(t)

I

FG
θ̈∗ +

η

G
θ̇∗ + θ∗ = H(t). (3.8)

The equation above is that of a classical spring-mass-damper system. Ringing
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Figure 3-6: Jeffreys model for a viscoelastic fluid in series with the moment of inertia
of the rheometer; if η2 is not included a Kelvin model is retained.

occurs only with an under-damped system, with the solution given by

θ∗ =

{
1− e−

ηF
2I

t

[
cos(ωt)− ηF

2Iω
sin(ωt)

]}
(3.9)

ω =

√
GF

I
−

(
ηF

2I

)2

. (3.10)

The two Kelvin model parameters are fit to the first ten seconds of the data. Fig-

ure 3-5 shows the result of the fit to the data originally shown in Figure 3-2, and

Table 3.1 gives the fitting parameters. Note that compliance J(t) is related to angu-

lar displacement as

J(t) ≡ γ(t)

τ0

=
θ∗(t)
G

. (3.11)

The Kelvin model is unable to capture steady-state flow at long times, due to the

parallel spring element. Since steady-state flow is observed in pedal mucus, a three-

parameter model was used to see if an additional parameter can accurately capture

this behavior.

A Jeffreys model is equivalent to a Kelvin model (parameters G, η1) in series with

a viscous damper (parameter η2), as shown in Figure 3-6. Note that the steady-state

flow viscosity η = η2. Furthermore, two time constants may be defined as

λ1 = η1/G (3.12)

λ2 = η2/G (3.13)
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Kelvin Jeffreys SAOS (Figure 3-4)
G (Pa) 210 224 n/a
η1 (Pa.s) 12.7 5.94 n/a
η2 (Pa.s) n/a 5.26× 103 n/a
λ1 (s) 0.061 0.027 n/a
λ2 (s) n/a 23 n/a
ω (rad.s−1) 2.03 2.11 1.99
G′ (Pa) 210 223 211
G′′ (Pa) 25.9 17.0 21.4

Table 3.1: Fitting parameters for creep ringing experiment with pedal mucus from
Helix aspera (Small amplitude oscillatory shear (SAOS) test included for reference,
which was performed on pedal mucus from Limax maximus).

where λ1 is the relaxation time and λ2 is the retardation time. In a similar way to

the previous development with the Kelvin model, a second order differential equation

may be constructed to describe the motion of the system [29]. Figure 3-5 shows

the resulting fit of the Jeffreys model to the creep data from Figure 3-2; the fitting

parameters are given in Table 3.1.

The addition of a third parameter, corresponding to a steady viscous flow element,

dramatically improves the fit to the data. The steady-state flow viscosity η2 = 5.26×
103 Pa.s compares well with the steady-state flow results of Figure 3-1 (τ0 < τy), which

is interesting because the value of η2 is determined by only the first ten seconds of

the creep test, whereas each data point in Figure 3-1 may take more than 120 s to

reach steady state.

Table 3.1 gives the fitting parameters of the Kelvin and Jeffreys models, along

with the resulting G′ and G′′ which can be found after the model parameters are

known. Table 3.1 also includes the results of testing pedal mucus from Limax maximus

in oscillatory shear. The comparison is remarkably similar, with G′ ≈ 200 Pa for

pedal mucus from both creatures. Furthermore, the loss moduli are also similar,

G′′ ≈ 20 Pa, for both creatures, which is about one order of magnitude less than the

storage modulus. This corresponds to tan δ = G′′/G′ ≈ 0.1, which is a comparative

measure of the significance of dissipative to elastic effects in the material.
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Figure 3-7: Oscillatory stress sweep of native pedal mucus from the terrestrial slug
Limax maximus (AR1000, 2cm plate with sandpaper, solvent trap, 180µm gap, 22◦C).
Note these results are for a different sample than Figures 3-3 and 3-4.

3.2 Nonlinear LAOS rheology

A crawling slug subjects pedal mucus to shear stress above the yield stress, and

thus the nonlinear viscoelastic properties of native slime are relevant in adhesive

locomotion. The shear stress exerted by a crawling slug can exceed 2000 Pa, as

measured by Denny [30]. Furthermore, the strain amplitude under a crawling slug

can be estimated from the speed versus time profile reported by Denny [30]. Using

this data, and assuming the pedal mucus thickness to be 10-20 µm, a maximum strain

γ ≈ 103 is imposed on the pedal mucus with each pulsatile wave.

3.2.1 Viscoelastic moduli

An oscillatory stress sweep of pedal mucus from Limax maximus is shown in Fig-

ure 3-7, in which a stress sweep was performed at multiple frequencies. Pedal mucus
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Figure 3-8: Higher harmonic moduli for an oscillatory stress sweep of native pedal
mucus (ω = 0.5 rad.s−1).

undergoes a transition at a critical stress beyond which the elastic response dramat-

ically decreases. However, no quantitative data could be collected for native slime

beyond this critical stress since the material was ejected from the gap. The critical

stress amplitude for this transition is slightly larger than the yield stress in steady

flow tests, where τy,flow ≈ 100 − 250 Pa, and the maximum oscillatory shear stress

τ0,crit ≈ 800− 1000 Pa.

Figure 3-7 distinctly reports only the first harmonic moduli, G′
1 and G′′

1, as a

function of oscillation stress τ0 (see Equation 2.14 which defines the Fourier series

decomposition). It may appear that the material is linear over most of the stress

range probed, since G′
1 and G′′

1 are nearly independent of τ0. However, the second

criteria for linear behavior, a single harmonic response, is not satisfied over the entire

stress range, as will be shown in the following section.
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Figure 3-9: Normalized intensity of Fourier coefficients for oscillatory data points in
the linear and nonlinear regime; a) τ0 = 2.3 Pa, and b) τ0 = 630 Pa.

3.2.2 Fourier transform rheology

The stress sweep at ω = 0.5 rad.s−1 shown in Figure 3-7 was analyzed with a discrete

fourier transform (Matlab) in order to calculate the higher harmonic contributions

to the complex modulus. Figure 3-8 shows the higher harmonic moduli, |G′
n| and

|G′′
n|, as a function of τ0 for pedal mucus from Limax maximus. At low stresses

(τ0 < 30 Pa) the magnitudes of the higher harmonic moduli are no more than 1% of

G′
1, and show no clear variation with stress amplitude, indicating the linear regime

where higher harmonics are negligible. Above τ0 = 30 Pa the higher harmonic moduli

monotonically increase and the sample response is nonlinear. Note that the higher

harmonics appear even though G′
1 and G′′

1 seem to be independent of τ0.

A wider range of the Fourier spectrum is shown in Figure 3-9 for a point in the

linear regime at low stress and for a point in the nonlinear regime at high stress. The

plots show the intensity of each frequency, scaled by the intensity of the fundamental

frequency.

The linear regime is completely dominated by the fundamental harmonic. The

next strongest harmonic (3ω1) is only 1.5% as strong as the fundamental. This is in

the range of the background noise of the signal, since the even harmonic 4ω1 is also
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1.5% as strong as the fundamental and, as mentioned in Section 2.3.1, even harmonics

are not physical.

The nonlinear regime is dominated by the fundamental harmonic, but the other

odd harmonics are no longer negligible. The third harmonic 3ω1 is more than 20% as

strong as the fundamental. Note that even harmonics are almost zero, though due to

noise in the original data signal they have a finite value.

The higher harmonics in an oscillatory shear experiment can be a very sensitive

indicator for identifying the linear and nonlinear regimes of a given material response,

but their physical interpretation is difficult. As mentioned in Section 2.3.1, for a

sinusoidal input signal G′′
1 is the only mode with a simple interpretation and represents

viscous energy dissipation, but all higher harmonic moduli components are able to

store energy. The extent of physical interpretation for the data in Figure 3-8 is that

as τ0 is increased the viscous nature of the material, as indicated by G′′
1, decreases.

At the same time the material seems to become more nonlinearly elastic in nature,

since all modes of energy storage increase as τ0 increases.

3.2.3 Lissajous curves

Native pedal mucus exhibits a strongly nonlinear response leading up to yield, as

evidenced by the Fourier transform analysis of Section 3.2.2. In addition to Fourier

transform rheology, the nonlinear behavior can be examined with Lissajous curves,

as described in Section 2.3.2. The three oscillatory stress sweeps of Figure 3-7 have

been plotted as Lissajous curves in Figures 3-10 to 3-12.

Figure 3-10 shows Lissajous curves at progressively increasing stress at a fixed

frequency ω = 5 rad.s−1. At low stress the curves appear elliptical, because the

sample is responding as a linear viscoelastic material. The elliptical curves become

increasingly distorted as the oscillatory stress amplitude τ0 is increased. At large

strains the curves appear to turn upward like a strain-stiffening material (similar to

the example in Figure 2-4). At the highest stresses explored for ω = 5rad.s−1, the

loops appear to cross over themselves. This may be a true response of the material,

but may also be due to the competition between inertia of the instrument and the

67



Figure 3-10: Lissajous curves for an oscillatory stress sweep of pedal mucus from
Limax maximus (ω = 5.0 rad.s−1).

Figure 3-11: Lissajous curves for an oscillatory stress sweep of pedal mucus from
Limax maximus (ω = 1.0 rad.s−1)
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Figure 3-12: Lissajous curves for an oscillatory stress sweep of pedal mucus from
Limax maximus (ω = 0.5 rad.s−1).

elasticity of the sample, since the test is performed by imposing an oscillatory stress,

not strain. As we saw in Section 3.1 this can lead to overshoots in free-oscillations.

Lissajous curves for pedal mucus at ω = 1 rad.s−1 are shown in Figure 3-11.

The mucus again shows a linear response at low stress amplitudes, as indicated by

the elliptical shape of the curves. As the stress amplitude is increased the curves

distort. At large strains the curves again turn upward, and are reminiscent of a

strain-stiffening material. Unlike the curves for ω = 5 rad.s−1, no overlapping is

observed in the curves at ω = 1 rad.s−1.

The oscillatory stress sweep at ω = 0.5 rad.s−1 explored higher stress amplitudes

than the other two tests. Figure 3-12 shows Lissajous curves for oscillatory tests of

pedal mucus at ω = 0.5 rad.s−1. Again, the curves appear elliptical in the linear

regime, but become progressively distorted as τ0 is increased. The curves are dis-

torted in a similar way to the data shown in previous figures; at large strains the

stress turns up, indicating a type of strain-stiffening behavior. This trend becomes
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more pronounced as the yield stress is approached. The nonlinear elasticity at each

frequency will be quantified in the following section, as outlined in Section 2.3.3. It

is significant to note that this nonlinear response is not captured by monitoring G′
1,

which is shown in Figure 3-7 to be nearly constant even into the non-linear regime.

Furthermore, the physical interpretation could not be elucidated with Fourier trans-

form rheology by monitoring the coefficients of higher harmonics.

3.2.4 Quantitative measure of stiffening

The Lissajous curves presented in Figures 3-10 to 3-12 appear to indicate the material

is strain stiffening, but this apparent stiffening has not yet been quantified. This

section will apply the newly proposed quantitative measures of LAOS (Section 2.3.3)

to the pedal mucus results initially presented in Figure 3-7.

First, the small-strain elastic shear modulus M was calculated at each stress

amplitude τ0, and is shown in Figure 3-13. This measure of elasticity should reduce

to G′
1 in the linear regime, as proven in Section 2.3.3. This appears to be the case

if we compare Figure 3-13 to Figure 3-7, since M ≈ G′
1 for low stresses. At high

stress M deviates from G′
1, dropping down to M ≈ 10 Pa just before yield, whereas

G′
1 ≈ 40 Pa just before yield. The decrease in M is apparent from the Lissajous

curves by recalling that M is defined as the slope dτ/dγ when γ = 0. For example,

in Figure 3-12 this slope progressively decreases as τ0 increases.

The small-strain elastic shear modulus M decreases with increasing τ0 as the bulk

yield stress is approached. This decrease in elasticity can be interpreted partial yield-

ing. Some network components that contribute to elasticity are weakened or broken,

but the sample is not fully yielded. In fact, network components that contribute to

large strain elasticity are still intact, as will be seen by analyzing L, the large strain

elastic shear modulus.

The large strain elastic shear modulus L was calculated as a function of τ0 (Figure

3-14). This measure also reduces to G′
1 in the linear regime, which can be seen by

comparing the small stress results of Figure 3-14 to Figure 3-7. The large strain

modulus is approximately equal to G′
1 even at large stress. At the highest stress
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Figure 3-13: Small strain elastic modulus, M , for an oscillatory stress sweep of pedal
mucus at various frequencies, G′

1 data from Figure 3-7.

Figure 3-14: Large strain elastic modulus, L, for an oscillatory stress sweep of pedal
mucus at various frequencies, G′

1 data from Figure 3-7.
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Figure 3-15: Elastic stiffening ratio, S, for an oscillatory stress sweep of pedal mucus
at various frequencies.

L ≈ 50 Pa, whereas G′
1 ≈ 40 Pa. Thus, while L slightly decreases with increasing τ0,

it does not seem to decrease relative to G′
1.

Comparing the values of L and M serves as a measure of stiffening for a material,

as outlined in Section 2.3.3. This comparison is quantified by S = L/M , shown

in Figure 3-15. In the linear viscoelastic regime it is expected that S = 1. This

expectation agrees with the results shown in the figure, although it should be noted

that noise from calculating L and M could be magnified upon the calculation of

S. Nonetheless, this data of S(τ0) confirms the strain-stiffening appearance of the

Lissajous curves of Figures 3-10 to 3-12. This stiffening appears to be independent

of the frequencies examined, as each curve begins to show significant stiffening near

τ0 ≈ 100 Pa.
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Figure 3-16: Lissajous curves for pedal mucus tested on the FMR, γ0 ≤ 21 (A =
20 mm2, T=22◦C, Cycle time ≈ 0.8 s).

3.3 Microgap rheology

Pedal mucus from Helix aspera was also tested using the Flexure-based Microgap

Rheometer (FMR), which was described in Section 2.4. Steady-state flow was very

difficult to achieve with pedal mucus, since the working distance of the FMR is

limiting, unlike a rotational rheometer which allows for essentially infinite strain.

The results should therefore be interpreted in terms of small and large amplitude

cyclic tests, with the triangle wave strain input described in Section 2.4.4.

Figure 3-16 shows the results of oscillatory tests of pedal mucus with the FMR.

Each cyclic test was performed with a fixed cycle period (Tcycle = 0.8 s) and varying

shear-rate γ̇0. Smaller shear-rates also correspond to smaller strain amplitude γ0,

since the cycle period is fixed; for a triangle wave input these three parameters are
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Figure 3-17: Lissajous curves for pedal mucus tested on the FMR (A = 20 mm2,
T=22◦C, Cycle time ≈ 0.8 s).

related by

Tcycle =
4γ0

γ̇0

=
2∆x

Vplate

(3.14)

where ∆x is the end-to-end displacement of the moving plate and Vplate is the velocity

of the plate.

The short cycle time Tcycle = 0.8 s causes the data to appear slightly choppy or

sparse due to the data acquisition rate of 24 Hz corresponding to 19 points per cycle.

Multiple cycles are shown for each value of γ̇0 to give a sense of the average steady

state response.

Unfortunately the quantitative measures M , L, and S can only be applied to

the FMR results if the material displays a Kelvin-model response (as discussed in
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Section 2.4.4). Although pedal mucus may respond like a Kelvin model, the data

sampling was too slow and the oscillation frequency to high to capture smooth Lis-

sajous curves. However, some remarks can still be made about the results. The data

at the lowest γ0 reported (γ0 = 4.7) is similar to the theoretical Kelvin model response

shown in Figure 2-13. As γ0 is increased, some strain-stiffening qualities are observed,

just as in the bulk rheometer results of Figures 3-10 through 3-12.

Figure 3-17 plots Lissajous curves at even larger strains for pedal mucus tested

on the FMR, and includes the curves from Figure 3-16 for comparison. It should be

noted that a constant cycle time Tcycle was programmed, but the maximum strain

limits of the instrument were reached for the curves at the highest shear rates (γ̇ =

130, 100, 79 s−1). For these shear-rates the cycle time varies while the strain amplitude

γ0 is held constant at its maximum value.

Some initial network rupture can be seen in the curve for γ̇ = 130 s−1, as indicated

by the initially large stress response that decays away as the sample continues to be

periodically strained. This curve was actually the first shear-rate examined, and

smaller shear-rates were subsequently tested. The maximum stress observed is over

6000 Pa, far exceeding the stress explored with oscillatory tests on the bulk rheometer.

One reason that higher stress can be explored on the FMR is that the sample is not

exposed to rotational motion, and therefore if the sample is ruptured there is no

tendency to be thrown out of the gap.

At the largest strain-amplitude of γ0 ≈ 32 the material appears to exhibit a similar

strain-stiffening to that observed with LAOS tests. Specifically, the short-range elastic

modulus, qualitatively indicated by the slope dτ/dγ at γ = 0, progressively decreases,

which can be interpreted as the destruction of elastic elements that contribute to

short-range elasticity. Other elastic elements appear to still be intact, since the stress

continues to increase or “strain-harden” at increasing strain.
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Figure 3-18: Pipkin diagram for pedal mucus of the terrestrial slug Limax maximus.
Each point in Pipkin space has a Lissajous curve associated with it.

3.4 Overview: the Pipkin diagram

The oscillatory test results presented in this chapter can be described with the frame-

work of a Pipkin space, which was described in Section 2.3 and shown schematically

in Figure 2-1. Recall that Pipkin space maps a rheological test according to two vari-

ables: the input amplitude γ0 (or τ0) and the input frequency ω. The FMR results

can be mapped in this space by determining the input frequency as

ωFMR =
2π

Tcycle

=
πγ̇0

2γ0

. (3.15)

A Lissajous curve exists for every point in Pipkin space (i.e. the (ω,γ0) space).

Figure 3-18 displays the Pipkin space of the terrestrial gastropod pedal mucus ex-

amined in this chapter. Representative Lissajous curves are shown in the different

regimes of behavior. Linear viscoelastic behavior is observed for small enough input

amplitude, resulting in elliptical Lissajous curves. The three curves shown in the
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linear regime were tested with an imposed stress amplitude τ0 = 16 Pa. The strain

amplitude response γ0 = 0.15 was approximately the same for each of the three dif-

ferent frequencies. This would probably not be the case if a larger range of frequency

was probed, since even a simple Kelvin model for a viscoelastic solid would predict a

strain amplitude γ0 which depends on the imposed frequency.

When the input amplitude (γ0 or τ0) is larger than a critical value, the rheological

response of pedal mucus becomes nonlinear. The elliptical curves become exceedingly

distorted further as the material is driven deeper into the non-linear regime, and the

pedal mucus exhibits strain-stiffening. The strain amplitude response γ0 is still rather

independent of frequency, therefore the three curves tested under τ0 = 79 Pa and

τ0 = 158 Pa all responded with γ0 = 1.0 and γ0 = 2.0, respectively.

A line representing the steady-state flow yield stress τy is shown in Figure 3-18 for

reference (where τy ≈ 250 Pa as determined by the flow tests in Figure 3-1). However,

the stress amplitude τ0 required to fully yield the sample appears to be larger than τy,

and may be a function of frequency ω. A yield strain may also be identified. Denny

reports a yield strain γy ≈ 5 − 6 for pedal mucus from Ariolimax columbianus as

measured from step-rate tests [4]. The results shown here are consistent with that

result.

As the input amplitude τ0 is increased beyond τy , the Lissajous curves show even

more pronounced strain-stiffening. Furthermore, the short range elastic modulus

decreases as short-range elastic network components are ruptured and the sample

is partially yielded. Interestingly, however, the pedal mucus continues to have an

elastic nature even for τ0 > τy. It is expected that the sample would fully yield at

even larger τ0, but as previously mentioned the sample was ejected from the gap at

these larger stresses. It is not known if terrestrial gastropods use this peculiar feature

of strain-stiffening for locomotive purposes.
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Chapter 4

Modeling Adhesive Locomotion:

Criteria for Optimizing a Slime

Simulant

This chapter discusses different ways to model adhesive locomotion, with the goal

of understanding the optimization of the working fluid. First, a simple model is

developed to explore what fluid properties, in general, are required for successful

adhesive locomotion on a horizontal surface. Inclined locomotion is then considered,

first with a generalized Newtonian fluid (GNF) with variable viscosity. A simple

model with an idealized yield stress fluid is then examined. Finally, a yield stress

fluid with a finite restructuring time is used in the model. All of these models provide

insight in developing criteria for optimizing a slime simulant for a mechanical crawler.

4.1 Adhesive locomotion model

Adhesive locomotion is modeled with a crawler that has discrete pads actuated by

an internal force (Figure 4-1). The crawler rests on a thin film of fluid of height h.

In this model a controlled force separates one pad away from the rest, while the rest

are rigidly connected. A controlled force might come from muscles in real snails or

from the “muscle-wire” (shape-memory alloy) that actuates Chan’s robotic crawler
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Figure 4-1: Model for discrete adhesive locomotion - the crawler consists of discrete
pads and rests on a fluid with thickness h. A controlled force iteratively separates
one pad from the rest.

(Figure 1-2).

This model includes several assumptions. First, acceleration is neglected. This

is a reasonable approximation if the internal force F changes slow enough, so as to

achieve a quasi-steady state. Second, each pad contains 1/N th of the total mass.

Third, pads moving in the same direction are rigidly connected. Thus, as depicted in

the figure, only two velocities need to be considered: the velocity of the pad tending

forward Vi and the velocity of all the pads tending rearward Vn. The viscous shear

stress exerted by the fluid on a pad is given by τ = ηγ̇, which neglects the end effects

at the edge of the pads. Here the viscosity η is not necessarily a constant, which is

known as a generalized Newtonian fluid model. The viscosity of the fluid is assumed

to be a general function of shear stress, η = η(τ), motivated by the flow viscosity

results in Figure 3-1.

The discrete pad model can be generalized with φ = 1/N , which represents the

fraction of the crawler which is moving forward. Note that φ is physically limited to

values of 0 < φ < 1.0. However, due to symmetry, values of φ > 0.5 will be dismissed.
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F internal force (e.g. muscles)
Vi velocity of the pad tending forward
fi viscous force on pad tending forward
Vn velocity of the pads tending rearward
fn viscous force on a pad tending rearward
N number of pads

φ = 1/N fraction of crawler moving forward
A total area of pads
Ap area of each pad
h fluid thickness

η(τ) stress dependent flow viscosity
Vcm velocity of center of mass

Table 4.1: Definitions of variables for controlled-force adhesive locomotion model.

For example, φ = 0.2 is the same as φ = 0.8, except that the coordinate system is

reversed. Therefore, in this model φ will be limited to values of 0 < φ < 0.5.

4.1.1 Velocity expression

The velocity of the center of mass will be monitored to indicate the net velocity of

the crawler. Since the mass is distributed evenly among the pads, the center of mass

velocity is expressed by

Vcm = φVi − (1− φ)Vn. (4.1)

The velocities Vi and Vn are determined by a force balance on the pads. On the

forward-tending pad the actuating force F is balanced by the viscous force on the

bottom of the pad. The force balance on the forward-tending pad may be expressed

as

F = fi = τiφA (4.2)

F = η(τi)
Vi

h
φA (4.3)

where τi is the shear stress acting on the fluid under the forward-tending pad, τi =

F/A. It has been noted that the shear-rate under the forward-tending pad is γ̇i =
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Vi/h.

Similarly, a force balance on the rearward-tending pads provides an expression in

which Vn is related to the internal actuation force F , which is given by

F = fn = τn[1− φ]A (4.4)

F = η(τn)
Vn

h
[1− φ]A. (4.5)

Again the viscous shear stress acting on the bottom of the pads, τn, balances the

actuation force F . Note that the total area over which the shear stress acts on the

rearward-tending pads is (1− φ)A.

Equation 4.3 and 4.5 can be solved explicitly for the pad velocities Vi and Vn, and

then substituted into Equation 4.1 to give an expression for Vcm as a function of F

and the viscosity function,

Vcm =
Fh

A

[
1

η(τi)
− 1

η(τn)

]
. (4.6)

Successful adhesive locomotion results when Vcm 6= 0. A non-zero velocity only

results if η(τi) 6= η(τn). This statement requires two features of the fluid and the

mechanical crawler. That is, for successful adhesive locomotion:

1. The fluid must have a non-Newtonian viscosity.

2. Different stresses must be applied to the fluid beneath the forward- and rearward-

tending pads, since even with a non-Newtonian viscosity, τi = τn would result

in the forward-tending and rearward-tending pads “feeling” the same viscosity.

Thus, differential areas must be actuated to create a differential stress. Fur-

thermore, N = 3 is the smallest number of pads that can produce locomotion

for a crawler with discrete pads of equal area.

For φ < 0.5, the forward-tending pad will always exert a higher stress on the

fluid than the rearward-tending pads (τi > τn). Equation 4.6 shows that a shear-

thinning fluid, η(τi) < η(τn), will result in positive net velocity, Vcm > 0. Conversely,
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a shear-thickening fluid, η(τi) > η(τn), will result in a negative net velocity, Vcm < 0,

according to the coordinate system shown in Figure 4-1. Negative net velocity is still

valuable progress, since the positive direction of the coordinate system in Figure 4-1

is arbitrary.

4.1.2 Efficiency expression

A measure of locomotive efficiency for adhesive locomotion will help guide the design

and material selection process. A Froude propulsive efficiency is typically used for

creatures that locomote in a fluid, such as swimmers and fliers [31]. Swimmers and

fliers impart momentum onto the surrounding media to propel themselves forward,

thus giving the surrounding medium kinetic energy. The Froude efficiency compares

the kinetic energy of the subject with the total kinetic energy of both the subject and

the surrounding media,

εFroude =
KEsubject

KEsubject + KEsurroundings

. (4.7)

However, in the case of adhesive locomotion the subject is not necessarily propelled

forward by imparting momentum onto the fluid. Furthermore, the kinetic energy of

the fluid is almost negligible, especially in the case of a very thin film.

Since the Froude efficiency is not useful for adhesive locomotion, a new measure

is introduced. This measure of efficiency compares useful power to total dissipated

power,

ε =
Puseful

Pdissipated

. (4.8)

The total dissipated power can be determined from the viscous dissipation in the

fluid. Conveniently, in this controlled-force model, the total dissipated power can be

directly related to the actuating force, represented as

Pdissipated = FVi + FVn (4.9)
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Newtonian Fluid ηi = ηn ε → 0
Yield Stress Fluid ηi << ηn ε → φ
Extremely Shear-thickening ηi >> ηn ε → (1− φ)

Table 4.2: Limits of locomotive efficiency ε as determined by the steady-flow viscosity
function η(τ) of the fluid for discrete pad adhesive locomotion.

since the internal actuation force F acts on both the forward-tending and rearward-

tending portions of the crawler. It is reasonable to think that the useful power should

somehow be related to the center of mass velocity Vcm and the forward thrust on the

crawler. In this controlled-force model, the thrust in the direction of motion is always

F , thus the useful power is represented as

Puseful = F |Vcm| . (4.10)

Therefore, the expression for locomotive efficiency becomes

ε =
|Vcm|

Vi + Vn

(4.11)

where Vi and Vn are always positive, as defined in Figure 4-1 . The expressions for

velocity as a function of internal actuation force F (Equations 4.3, 4.5, and 4.6) can

be substituted into the previous expression to give

ε =

∣∣∣ 1
ηi
− 1

ηn

∣∣∣
1

φηi
+ 1

(1−φ)ηn

(4.12)

where ηi = η(τi) and ηn = η(τn) are the viscosities of the fluid under the forward-

tending and rearward-tending pads, respectively.

Equation 4.12 gives an expression for efficiency ε as a function of the number of

pads on the crawler and the viscosity function of the fluid. Thus, viscosity data for

real fluids can be used to determine ε for a given design platform. It is interesting

to note the this expression for efficiency does not seem to depend on the mass of the

robot nor the thickness of the fluid (however, Vcm from Equation 4.6 does depend on

the fluid thickness).
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It is useful to explore the limits of efficiency for some example fluids. For a

Newtonian fluid, where ηi = ηn, the locomotive efficiency ε = 0. This is the expected

result, since Vcm = 0 for a Newtonian fluid.

For a yield stress fluid, which is an example of the most extreme shear-thinning

fluid, ηi << ηn, the locomotive efficiency ε → φ. For a robot with five pads, such as

Chan’s Robosnail, ε = 0.2 for a yield stress fluid. This matches with intuition if one

considers that φ = (1/N)th of the crawler makes forward progress on a yield stress

fluid, since one pad moves forward and no pads move rearward.

Finally, in the limit of an extreme shear-thickening fluid (ηi >> ηn), one finds

that ε → (1−φ). For this extreme case (N−1) pads are able to make progress, while

one pad experiences a much higher viscosity and is essentially “stuck.” Therefore the

fraction of the crawler that makes progress is (1 − φ) = (N − 1)/N . The limiting

values of locomotive efficiency ε as determined by the steady-flow viscosity function

are summarized in Table 4.2.

4.2 Horizontal locomotion simulation

The force-controlled adhesive locomotion model of Section 4.1 can be used with em-

pirical steady-flow viscosity functions, η(τ), of real fluids to examine performance.

Figure 4-2 shows the viscosity functions of four “sample” (or “candidate”) fluids, in-

cluding native pedal mucus from Helix aspera, as reported in Chapter 3. LaponiteRD

in water is another yield stress fluid (details in Chapter 5). Locust bean gum in water

is an example of a shear-thinning fluid, and is also discussed in more detail in Chapter

5. Cornstarch in water is a shear-thickening fluid, as indicated by the data in Figure

4-2 (Cornstarch data courtesy of Suraj Deshmukh).

Cornstarch data was fit to a quadratic expression, given by

ηcornstarch = 10−5τ 2 + 0.0691τ + 0.15 (4.13)

where τ is in units of Pa and η in Pa.s. There is no physical basis for a quadratic fit; it

85



Figure 4-2: Viscosity functions η(τ) of some real fluids. Data for the cornstarch
solution has been fit to a quadratic function, whereas each other fluid has been fit
to an Ellis model. (Cornstarch data courtesy of Suraj Deshmukh, pedal mucus data
reported in Chapter 3, Laponite and locust bean gum data reported in Chapter 5).

serves only to represent a continuous viscosity function that adequately matches the

experimental data. The three remaining fluids were fit to the Ellis model, in general

given by

η − η∞
η0 − η∞

=
1

1 + (cτ)d
. (4.14)

The Ellis model represents a shear-thinning fluid that exhibits a Newtonian plateau

viscosity η0 at low-stress and a high-stress Newtonian plateau viscosity η∞. The

parameters c and d determine the location and shape of the transition between the

lower and upper limits of viscosity. Table 4.3 gives the Ellis Model parameters used

for the three shear-thinning fluids in Figure 4-2.

The locomotive efficiency expression given by Equation 4.12 can be used with the

steady-flow viscosity functions of Figure 4-2 to examine the expected efficiency of a

mechanical crawler on a horizontal surface. Using parameters that are relevant to
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η0 [Pa.s] η∞ [Pa.s] c [Pa−1] d [-]
Snail pedal mucus 1043 0.06882 0.008512 86.47
LaponiteRD 4 wt% 5.407×105 0.37 0.01737 28.95
Locust bean gum 7.003 2.025×10−9 0.0648 2.585

Table 4.3: Ellis model parameters for three shear-thinning fluids shown in Figure 4-2.

Figure 4-3: Locomotive efficiency ε as a function of actuation force F for some sample
fluids using the controlled-force adhesive locomotion model on a horizontal surface.

Chan’s Robosnail, the area of each pad Ap = 6.9 cm2 and the thickness of fluid below

each pad h = 1 mm. The efficiency with various φ and various viscosity functions are

shown in Figure 4-3.

Locomotive efficiency ε is shown as a function of the internal actuation force

F . For the shear-thinning fluids at low actuation force (and therefore low stress

under the pads) ε = 0, since both the forward-tending and rearward-tending pads

experience the same low-stress Newtonian viscosity η0. For the shear-thickening fluid

this also happens to be the case, since η is such a weak function at low τ . The

efficiency of each fluid increases as η becomes a stronger function of τ at higher

applied stress. This happens much more sharply for the yield-stress fluids, pedal

mucus and LaponiteRD. The yield-stress fluids quickly reach the maximum efficiency

possible for shear-thinning fluids (ε → φ). This quick jump to maximum efficiency

happens for each yield stress fluid in all configurations (φ = 0.33, 0.2, 0.1). The
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moderately shear-thinning fluid, locust bean gum, is able to achieve the maximum

possible efficiency only for φ = 0.2 and φ = 0.1. For φ = 0.33 the smaller stress

difference limits the efficiency, since the viscosity difference is not as great.

At high enough actuation force the efficiency of the yield-stress fluids drops back

down to zero. This happens when the stress under the rearward-tending pads exceeds

the yield stress, and all pads experience the same high-stress Newtonian viscosity η∞.

This might also be expected for the locust bean gum, but no rheological data was

obtained at such high stresses, and therefore could not be used in the simulation.

The efficiency of the shear-thickening fluid increases from zero as η becomes a

stronger function of τ . For φ = 0.33 the shear-thickening fluid is unable to achieve an

efficiency that is as high as those obtained with the shear-thinning fluids. However,

for both φ = 0.2 and φ = 0.1 the shear-thickening fluid is able to achieve a higher

locomotive efficiency than any other fluid. This might be expected, since the maxi-

mum efficiency possible with a shear-thickening fluid (ε → (1 − φ)) is higher than a

shear-thinning fluid (ε → φ) as shown in Table 4.2, and a larger difference between

ηi and ηn is achieved with smaller φ, since η = η(τ). Thus, a real shear-thickening

fluid does have the potential to be more efficient than yield stress fluids in horizontal

adhesive locomotion. It is noteworthy that nature does not use a shear-thickening

fluid for adhesive locomotion, even though a higher ε appears to be possible. This

could be due to several reasons, one of them being that snails also crawl up inclines,

which was not considered in the previous analysis. Inclined locomotion is discussed

in the following section.

4.3 Inclined locomotion model

The adhesive locomotion model developed in Section 4.1 is only applicable on a flat

surface. The weight of a crawler must be considered for inclined locomotion since

a component of the weight acts to provide an additional shear stress on the fluid.

The sketch from Figure 4-1 is modified to consider inclined locomotion, as presented

in Figure 4-4. The same assumptions apply to this modified model. Note that the
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Figure 4-4: Locomotion model for discrete adhesive locomotion on an inclined surface;
a controlled force iteratively separates one pad from the rest.

weight is distributed equally among the N pads, such that the magnitude of the

gravitational force on each pad fg = φMg, where M is the total mass of the crawler.

4.3.1 Generalized Newtonian fluid

The expressions which were used to solve for Vi and Vn in the horizontal locomo-

tion model (Equations 4.3 and 4.5) must be modified for inclined locomotion. The

component of the gravitational force that opposes forward locomotion and imposes

a shear stress on the fluid, fg sin θ, must be included. As done in Section 4.1, forces

are balanced on the forward-tending pad, and also balanced on the rearward-tending

pads. These expressions can be solved for Vi and Vn, and used to express the center

of mass velocity, resulting in

Vcm =
h

A

{
[F − φMg sin θ]

[
1

ηi

− 1

ηn

]
− 1

ηn

Mg sin θ

}
(4.15)

where again ηi = η(τi) is the viscosity under the forward-tending pad and ηn = η(τn)

is the viscosity under the rearward-tending pads.

For a Newtonian fluid, on an incline where θ > 0, the center of mass velocity is

negative, i.e. downhill. Similarly, on an incline for θ < 0 the center of mass velocity is

positive, which is also downhill. Thus, a Newtonian fluid cannot be used for inclined
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adhesive locomotion; the crawler simply slides downhill.

A crawler could make uphill progress on a shear-thickening fluid. That is, for

θ < 0, the net velocity is negative and uphill. However, when the crawler rests

(F = 0) the robot slides downhill. Thus, to maintain a given position (Vcm = 0)

energy must be continuously expended.

A shear-thinning fluid can also enable an uphill velocity if the viscosity difference

is dramatic enough to counteract gravity. Again for a crawler to hold its position

energy must continuously be expended, since when the crawler rests it will slide

downhill with a velocity

Vrest = − h

ηi

Mg sin θ

A
. (4.16)

However, the downhill slide can be reduced by increasing the low-stress viscosity,

η0 in the Ellis model. As η0 →∞, the fluid approaches a true yield stress fluid, where

no flow occurs below a critical stress. For this idealized case, the crawler can rest

without expending energy.

4.3.2 Idealized yield stress fluid

It is useful to examine a model in which the robot crawls on a yield stress fluid. That

is, below a critical yield stress τy the fluid does not flow. This is an idealized model,

but is approximately true for some fluids, especially native slime and LaponiteRD,

as shown in Figure 4-2, where the low stress viscosity is on the order of 103 Pa.s and

106 Pa.s, respectively. A common constitutive equation for a yield stress fluid is the

Bingham model, which relates shear stress to strain rate as

τ = τy + ηBγ̇ (4.17)
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where ηB is referred to as the plastic viscosity, but is not the apparent viscosity. An

expression for apparent viscosity η ≡ τ/γ̇ results as

η = ∞ τ ≤ τy (4.18)

= ηB + τy/γ̇ τ > τy. (4.19)

A minimum critical stress τy exists such that the crawler does not slide downhill.

For static conditions, i.e. when no pads are being actuated, the minimum yield stress

required to hold the crawler stable is

τ s
y,min =

Mg sin θ

A
. (4.20)

There exists a different minimum yield stress for dynamic conditions, i.e. when

the crawler is trying to move forward. First, notice that the actuating force must be

large enough to yield the fluid under the forward-tending pad, while the shear stress

exerted by the rearward-tending pads must not yield the fluid. A minimum actuating

force to yield the fluid under the forward-tending pad is

Fmin = τyφA + φMg sin θ, (4.21)

since this force must counteract the weight of the pad and also yield the fluid. The

force can not be too large, however, or the rearward-tending pads will also yield. The

maximum actuating force is then expressed as

Fmax = τy(1− φ)A−Mg sin θ(1− φ), (4.22)

since both the actuating force and the contribution of the weight that is distributed

to the rearward-tending pads act to yield the fluid.

A minimum dynamic yield stress can be found in the limit that Fmin = Fmax,

which implies that the forward-tending pad and the rearward-tending pads all yield

at the same time. The minimum yield stress under a crawling robot is then found to
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be

τ d
y,min =

Mg sin θ

A

[
1

1− 2φ

]
(4.23)

= τ s
y,min

[
1

1− 2φ

]
. (4.24)

The minimum dynamic yield stress is therefore a factor of 1/(1 − 2φ) larger than

the static yield stress. This can be used as a design criteria when choosing a slime

simulant. The result suggests that a lower yield stress is required for a crawler with

a smaller proportion of forward-tending area, for example having a larger number of

pads while holding the total area of the pads constant.

The minimum yield stress result can be rearranged so that, given the yield stress

of a fluid τy, the maximum weight of the crawler can be determined. Rearranging

Equation 4.23 gives

(Mg sin θ)max = τyA [1− 2φ] . (4.25)

To optimize locomotion, one may want to increase speed and/or efficiency. Once

the forward-tending pad has yielded the fluid, the speed of the crawler is inversely

proportional to the flow viscosity. Thus, another material property to be considered

for optimization is the post-yield viscosity, which should be minimized to increase the

speed of the crawler. For many fluids the post-yield viscosity is not constant (e.g.

the Bingham model in Equation 4.19). A benchmark for comparing fluids might be

the viscosity at a certain γ̇ (or τ) . For example, Chan’s crawler exerts strain-rates

on the fluid on the order of γ̇ ≈ 10 s−1, since V ≈ 1 cm.s−1 and h ≈ 1 mm. Thus,

the post-yield viscosity can be taken at a benchmark shear rate as

ηpost-yield = η|γ̇=10s−1 . (4.26)
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For example, the post-yield viscosity of the Bingham model (Equation 4.19) is

ηpost-yield = ηB +
τy

10 s−1
. (4.27)

For this locomotion model with an idealized yield stress fluid, ηn = ∞ and ηi ∼
ηpost-yield during motion.

For a yield stress fluid, where no flow occurs below a critical stress, the locomotive

efficiency ε = φ, as given in Table 4.2. This efficiency is independent of other material

properties, and can only be changed by modifying the mechanical design. Thus

no fluid properties can be optimized to improve efficiency, within the context of

this idealized yield stress model. Note, however, that this is not the case with a

real fluid which exhibits a finite viscosity below the yield stress, and may exhibit

time-dependent effects. One time-dependent feature, a restructuring time, will be

considered in the following section.

For the controlled-force adhesive locomotion model developed in this section, with

a crawler on an idealized yield stress fluid, the two properties of the fluid that optimize

locomotion are:

1. A minimum yield stress, τ d
y,min , required for stable inclined locomotion (Equa-

tion 4.23).

2. Post-yield viscosity, ηpost-yield, minimized to increase speed (Equation 4.26).

4.3.3 Yield stress fluid with restructuring time

A further generalization of a yield stress fluid is to consider its time-dependent nature.

Shearing a yield stress fluid breaks down the microstructural arrangement within the

fluid; after cessation of flow the microstructure takes a finite time to rearrange and

confer a yield stress upon the material again. For example, with a physical gel such

as pedal mucus, the network of units is broken in order to flow, and when the flow is

stopped a finite time is required for the network to restructure. This time dependent

character of rheology in which structure breaks down during flow and builds up again
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during rest is known as thixotropy (the reverse behavior in which shearing promotes

aggregation is known as antithixotropy)[32]. The restructuring of the yield stress may

take many forms. A possible expression for a yield stress with a single restructuring

time is

τy(tr) = τy,0(1− e−tr/λ) (4.28)

where τy,0 is the long-rest-time yield stress, λ is the restructuring timescale, and tr

is the time that the material has been able to restructure, i.e. the time since the

material stopped flowing.

The finite restructuring time imposes limits on the maximum velocity of an adhe-

sive locomotion crawler. After moving a portion of its foot forward, a crawler must

wait for the material to regain an adequate yield stress before actuating the next

portion. The rearward-tending pads must not yield the material while the forward-

tending portion exerts sufficient stress to yield the fluid. This competition can be

expressed as

Fmin(t) ≤ Fmax(t) (4.29)

where Fmin(t) is the minimum required force to yield the forward-tending pad and

Fmax(t) is the maximum actuation force that can be applied without yielding the fluid

under the rearward-tending pads, which support the crawler. Using the expressions

for Fmin and Fmax given by Equations 4.21 and 4.22, and considering a time-dependent

yield stress, Equation 4.29 becomes

τy,i(tr,i)φA + φMg sin θ ≤ τy,n(tr,n)[1− φ]A−Mg sin θ[1− φ] (4.30)

τy,i(tr,i) ≤ τy,n(tr,n)
[1− φ]

φ
− Mg sin θ

φA
(4.31)

where τy,i(tr,i) is the yield stress under the forward-tending portion, and τy,n(tr,n) is

the yield stress under the most recently moved rearward-tending portion. If ta is the

time between actuating each pad, then tr,i = Nta = ta/φ is the time since a forward-
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tending pad last yielded the fluid. Furthermore, tr,n = ta since ta is the smallest time

that any rearward-tending pad has been allowed to rest. That pad would then have

the lowest yield stress of all rearward-tending pads, because it has had the least time

to recover its structure.

The minimum required yield stress for adhesive locomotion was given by Equa-

tion 4.23, and can be introduced into the above expression, giving

τy(ta/φ) φ ≤ τy(ta)[1− φ]− τ d
y,min[1− 2φ]. (4.32)

Substituting the expression for a time-dependent yield stress (Equation 4.28) into

the previous equation gives

τy,0(1− e−ta/(φλ)) φ ≤ τy,0(1− e−ta/λ)(1− φ)− τ d
y,min(1− 2φ). (4.33)

The maximum velocity of a crawler is then inversely related to the minimum time ta

which satisfies the above expression. The average velocity of the crawler, Vcm, on a

yield stress fluid is given by (from Equation 4.1)

Vcm = φVi = φ
∆x

ta
(4.34)

where ∆x is the length each pad moves during a single actuation step and ta is again

the time between actuating each pad.

Equation 4.33 can be non-dimensionalized. First, a non-dimensional yield stress

τ ∗y is introduced as

τ ∗y =
τ d
y,min

τy,0

. (4.35)

The non-dimensional yield stress is limited to the rage 0 ≤ τ ∗y ≤ 1. The limits do not

come from τy,0, which may have any finite value, but exist because stable locomotion

can only occur if the fluid posses a large enough yield stress (Equation 4.23). The

lower bound of τ ∗y = 0 is set by τ d
y,min = 0, which corresponds to horizontal locomotion
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in which the crawler does not require a yield stress to remain in place. The upper

bound τ d
y,min = 1 is set by τ d

y,min = τy,0 since stable locomotion is not possible if

τy,0 < τ d
y,min, i.e. if the fluid’s yield stress does not meet the minimum requirements.

A non-dimensional velocity V ∗ can also be introduced, where the average velocity

Vcm from Equation 4.34 is scaled by the actuation step length ∆x and the character-

istic restructuring time λ of the fluid, given by

V ∗ =
Vcm

∆x/λ
=

φ∆x/ta
∆x/λ

(4.36)

= φ
λ

ta
. (4.37)

As desired, this choice for the non-dimensional variables τ ∗y and V ∗ completely elim-

inates the variables τy,0, τ d
y,min, λ, and ta from Equation 4.33. The non-dimensional

expression that governs the crawler velocity is then given by

1− e−1/V ∗ ≤ (1− e−φ/V ∗)
1− φ

φ
− τ ∗y

1− 2φ

φ
. (4.38)

Noting that the maximum velocity V ∗
max occurs when the above expression is an equal-

ity, and using the relation e−φ/V ∗ = e−1/V ∗e(1−φ)/V ∗ , Equation 4.38 can be rearranged

to implicity solve for V ∗
max,

V ∗
max = 1/ ln

(
φ

(1− 2φ)(1− τ ∗y )

[
1− φ

φ
e(1−φ)/V ∗max − 1

])
. (4.39)

The above expression can be solved iteratively for V ∗
max as a function of τ ∗ for given

values of φ. Results for values of φ = 0.01 − 0.33 are plotted in Figure 4-5. Values

of φ are limited to φ = 1/N < 0.33 since the model assumes iterative discrete pad

locomotion, and N = 3 is the smallest number of pads that can produce locomotion.

Contour lines of constant V ∗
max are shown for values of V ∗

max = 0 − 1 at intervals of

0.05. Note that V ∗
max = 0 for τ ∗y = 1 and that V ∗

max increases as τ ∗y decreases.

The V ∗
max curves dramatically increase as τ ∗ → 0, but do not diverge. Physically,

τ ∗ → 0 corresponds to the case where the fluid’s long-rest-time yield stress is much
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Figure 4-5: Maximum dimensionless velocity V ∗
max of a crawler on a time-dependent

yield stress fluid; contours of constant V ∗
max are shown for values of V ∗

max = 0 − 1 at
intervals of 0.05. Values of V ∗

max at τ ∗y = 0 are given in the following figure.

larger than required for stable locomotion (τy,0 >> τ d
y,min). The values of V ∗

max at

τ ∗y = 0 are shown in Figure 4-6 as a function of φ.

The maximum dimensional crawling velocity of the center of mass is determined

by

Vcm,max = V ∗
max

∆x

λ
. (4.40)

For example, for V ∗
max = 1, if the crawler displaces each pad a distance ∆x = 1 cm

during an actuation step, and the restructuring time of the fluid λ = 10 s, the

maximum dimensional velocity Vmax = 1 mm.s−1. It is apparent that Vmax is inversely

proportional to the restructuring time λ for a given V ∗
max.

If a fluid has a very fast restructuring time, then the maximum dimensional veloc-

ity may be quite large, for example if λ = 10−3 s and ∆x = 1 cm, then the maximum

velocity Vmax = 10 m.s−1. The resulting velocity may be much larger than the crawler

is physically capable of providing, for example being limited by the maximum velocity

of the actuators moving the pads. In this case it is the mechanical design that limits
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Figure 4-6: Maximum dimensionless velocity V ∗
max when τ ∗y = 0 for a crawler on a

time-dependent yield stress fluid.

the velocity, and not the restructuring time of the fluid.

In conclusion, the restructuring time λ of a yield stress fluid should be minimized

to increase the velocity of a mechanical crawler. There is a lower limit to minimizing

λ, since eventually the mechanical design will limit the velocity. The restructuring

time does not affect the locomotive efficiency ε of a yield stress fluid, since ε → φ for

a yield stress fluid, as shown in Table 4.2.

For adhesive locomotion on an inclined surface, using the most general yield stress

fluid which includes a restructuring time (Equation 4.28), the following properties of

the fluid should be sought:

1. A minimum yield stress τ d
y,min (Equation 4.23), which is required for adhesive

locomotion on an inclined surface.

2. Post-yield viscosity, minimized to increase speed (Equation 4.26).
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3. Non-dimensional yield stress τ ∗ (Equation 4.35), minimized to increase crawler

speed (Figure 4-5).

4. Restructuring time λ of a yield stress fluid (Equation 4.28), minimized to in-

crease speed (Equation 4.40).

Furthermore, locomotive efficiency ε for a simple yield stress fluid is only a function

of φ, the fraction of the crawler that iteratively moves forward (Table 4.2). No fluid

properties can be optimized to improve the locomotive efficiency within the framework

of a simple yield stress fluid. However, a real fluid will possess a finite η for τ < τy,

and this low stress viscosity should be maximized to improve ε and reduce rearward

motion during rest.
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Chapter 5

Survey of Possible Slime Simulants

The material selection criteria developed in Section 4.3.3 are now used to compare

the potential of possible slime simulants for adhesive locomotion with a mechanical

crawler. A variety of yield stress fluids will be surveyed, including native mucus,

polymer gels, particulate gels, emulsions, foams, and field-responsive fluids. Results

from personal experiments and scientific literature will be used.

Two material properties will be used to compare possible slime simulants: the

yield stress τy and the post-yield viscosity ηpost-yield. Recall from Section 4.3.3 that

a minimum yield stress τ d
y,min exists to enable adhesive locomotion, given by Equa-

tion 4.23. This minimum yield stress τ d
y,min for Chan’s mechanical crawler climbing

up a vertical wall is τ d
y,min = 150 Pa, since Mg = 0.31 N, A = 5 × 6.9 cm2, and

φ = 1/N = 0.2. Furthermore, ηpost-yield should be minimized to increase locomotive

speed. The restructuring time λ will not be fully considered at this time; the limit

λ → 0 will be used to simplify the problem, which allows the fluid to be modeled as a

Generalized Newtonian Fluid. Furthermore, information regarding a time-dependent

yield stress is rarely reported in the scientific literature.

A dimensionless measure which compares the yield stress τy and the flow viscosity

η is the Bingham number, Bn. The Bingham number is motivated by the Bingham

model of a yield stress material, which was given by Equation 4.17. The Bingham
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number Bn is defined as

Bn ≡ τy

τflow

=
τy

ηγ̇
(5.1)

which is a comparison of the yield stress to the viscous flow stress. For adhesive

locomotion Bn compares the stress which supports the crawler under static (no flow)

conditions to the stress which resists locomotion. Since the viscosity is a function

of shear rate, a representative γ̇ must be chosen to calculuate Bn. As outlined in

Section 4.3.2, ηpost-yield is taken at a shear rate γ̇ = 10 s−1, which is a representative

shear rate for Chan’s mechanical crawler, since V ≈ 1 cm.s−1 and h ≈ 1 mm. A large

Bn optimizes adhesive locomotion, since a high yield stress is increases support of a

crawler and a small flow viscosity increases crawler speed.

Legend name Description Reference

Banana slug Native pedal mucus from
the banana slug (Ariolimax
columbianus)

[4]

Rice eel Native mucus which covers the
outer body of the rice eel
(Monopterus albus)

personal data

Garden snail Native pedal mucus from the
common garden snail (Helix as-
pera)

personal data

Table 5.1: Details of mucus data which is shown in Figures 5-1 to 5-4.

Native mucus will be used as a benchmark to which other fluids will be compared.

Table 5.1 gives the details of three native mucus gels used for this study. The ter-

restrial slug Ariolimax columbianus and the terrestrial snail Helix aspera use their

pedal mucus for adhesive locomotion. Pedal mucus was collected as described in Sec-

tion 2.1. The mucus from the rice eel (Monopterus albus) is excreted on the outer

body, and is not used for adhesive locomotion; however, as the mucus exhibits a yield

stress it will be used for comparison. Mucus was collected by removing an eel from

its water environment and scraping off the slime with a latex-gloved hand. Mucus
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was immediately deposited on a rheometer for testing.

5.1 Polymeric gels

Many polymeric gels exhibit the critical material property required for inclined ad-

hesive locomotion, that is, a recoverable yield stress. Table 5.2 lists some selected

polymer gel materials and indicates the source of the data. Material preparation and

testing protocols can be found in the cited references.

5.1.1 Material preparation

Preparation of the materials personally tested will be described in this section.

Carbopol is a high molecular weight carbomer (a polymer of acrylic acid) used

to modify the rheology of a variety of personal care products. Carbopol 940 was

obtained from the Noveon corporation (Cleveland, OH). Slime simulants based on

Carbopol were prepared at various concentrations ranging from 0.5% - 4% (w/w),

where w/w refers to weight of the additive with respect to the total weight of the

mixture. The polymer was obtained as a white powder, and was added to deionized

water being agitated with a magnetic stirrer. Samples were mixed for a minimum of

30 minutes. The Carbopol-water mixtures initially have a pH near 3, and each was

neutralized with NaOH to achieve a pH = 7, which produces a clear gel. The rheology

of Carbopol mixtures depends on the pH, with maximum thickening occurring within

a pH range 5-9 [40]. Carbopol dispersions are typically interpreted as microgels

[41, 42], in which crosslinked polymer particles are formed and swell in water. The

outside of each particle exposes dangling ends which overlap with the dangling ends of

other particles above a critical concentration, producing a sample-spanning network

structure.

High vacuum grease was purchased from the Dow Corning Corporation (Midland,

MI). Aloe gel was purchased under the Banana Boat brand name, labeled as Soothing

Aloe Aftersun Gel. The aloe gel is distributed by Sun Pharmaceuticals Corp (Delray

Beach, FL). Locust bean gum was a gift from P.L. Thomas & Co., Inc. (Morristown,
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Legend name Description Reference

Grease Dow Corning high vacuum grease personal data
Grease in oil Dow Corning high vacuum grease

in 0.1 Pa.s silicone oil; 15wt%,
25wt%

courtesy of Suraj Deshmukh

Alginate Alginate in water; 4.4% (w/w)
with Ca cations; τy extrapolated
from data

[33]

Carageenan Grindsted Carageenan in water;
2%, 3%

[34]

Xanthan Xanthan in water; 1%, 2%, 3% [34]
LBG/Xanthan Locust bean gum and xanthan

in water (1:1); 0.8% (w/w) total,
ηpost-yield unavailable

[35]

Dextran Dextran in water; 250mg/ml;
0mM CaCl2, 1.9mM CaCl2; τy

and ηpost-yield extrapolated from
data

[36]

HPG3 hydrophobically modified (hy-
droxypropyl) guar, called HPG3,
in water; 1.5wt%; η ≈ 102 Pa.s
for τ < τy

[37]

Carbopol Carbopol 940 in water, pH7;
0.5%, 1%, 2%, 3%, 4% (w/w)

personal data

Aloe Gel Banana Boat, Soothing Aloe Af-
tersun Gel

personal data

Collagen Type I collagen in water; 0.5%,
2%, 3.5%, 5% (w/w)

personal data

Blend Carbopol 940 : sodium alginate
: guar gum in artificial tear
fluid; 0.5:0.2:0.2, 0.6:0.3:0.3; un-
known concentration, fit to Bing-
ham model

[38]

Hair gel Miss Helen blue hair gel [39]
LBG Locust bean gum in Ringer’s so-

lution; 1% (w/w)
personal data

Table 5.2: Details of the polymer gels shown in Figure 5-1.

NJ). Locust bean gum was added directly to a Ringer’s solution and mixed with a

magnetic stirrer. The Ringer’s solution is DI water containing 0.86 mg/ml NaCl, 0.03

mg/ml KCl, and 0.033 mg/ml CaCl.
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The collagen mixture was prepared by adding 0.25 g of microfibrillar, type I

collagen isolated from bovine tendon (Integra LifeSciences, Plainsboro, NJ) to 4 ml

of DI water. After mixing the solution, 1 ml of 3.0M acetic acid was injected, resulting

in a mixture of 5% (w/w) collagen in 0.6M acetic acid solution. The collagen and

acetic acid solution was mixed using two syringes joined with a female-female Luer-

lock assembly, in which the solution was pushed from one syringe to another ten times

in succession. The solution was allowed to rest for three hours in order to equilibrate.

The mixture was then centrifuged for 45 minutes at 4000g to remove air bubbles. The

resulting clear gel was kept at 4◦C until it was needed for testing.

5.1.2 Results

The yield stress τy and post-yield viscosity ηpost-yield of the polymeric gels described in

Table 5.2 are shown in Figure 5-1, along with the results of the native mucus samples

listed in Table 5.1. Figure 5-1 is a plot of τy and ηpost-yield for each material. The

minimum required yield stress, τ d
y,min of Chan’s crawler is shown for reference, to

divide the plot into regions of feasible an infeasible materials for allowing the crawler

to traverse a vertical wall. Additionally, lines of constant Bn are shown, which appear

as diagonal lines with a slope of one.

It is immediately apparent that a few polymeric gels have a yield stress which

would support the adhesive locomotion of Chan’s crawler on a vertical surface. Grease,

collagen, carbopol, and dextran all have a sufficient yield stress. However, none of

the other materials have a sufficient yield stress at the concentrations tested.

Many of the polymeric gels have a Bingham number in the range 0.1 < Bn < 1,

even as the concentration is varied. Furthermore, the Bingham number often remains

constant as concentration is varied, which implies that τy and ηpost-yield are affected

by concentration in the same way. As concentration is increased so that a sufficient

τy is achieved, ηpost-yield will increase by the same proportion. In other words, the

increased resistance to motion is a price to be payed for reaching a higher yield stress.

Two native mucus samples have Bn > 1: Banana slug pedal mucus, and Rice eel

mucus. This means that the viscous, or dissipative, stress at γ̇ = 10 s−1 is less than
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Figure 5-1: Material selection space for comparing yield stress fluids - Polymer Gels.

τy.

The carbopol gel is produced from a commercially available polymer, which allows

the rheology to be examined as a function of concentration (unlike the grease, for

example). A more detailed rheological study of the carbopol mixture will be given in

Chapter 6, where it will be compared directly with native pedal mucus.

5.2 Particulate gels

A selection of particulate gels are listed in Table 5.3. The table gives some details of

the materials, along with reference information. Details of the material preparation

and testing protocol can be found in the appropriate references.
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Legend name Description Reference

Laponite LaponiteRD in water, pH=10;
3%, 4%, 5%, 7% (w/w)

personal data

Bentonite 1 Na2CO3-activated Kutahya ben-
tonite in water-based solution,
2.5% Na2CO3; 2%, 4%, 6%;
ηpost-yield reported at γ̇=348 s−1

[43]

Bentonite 2 Ca-bentonite and Na-bentonite in
water; 2% (w/w), τy extrapolated
from data

[44]

Bentonite 3 Clarsol FB5 bentonite in water;
3% - 11% (w/w); τy measured
with vane technique, ηpost-yield un-
available

[45]

Cloisite Exfoliated montmorillonite clay
(Cloisite 20A) in xylene; 1% -
10% (w/w),

[46]

Shp clay 1 Jebel Shemsi clay in water; 8%-
11% (w/w), ηpost-yield unavailable

[47]

Shp clay 2 Jebel Shemsi clay in water-
salt; 8.5%(w/w); 0M-0.2M NaCl,
ηpost-yield unavailable

[47]

Kaolin Kaolin (plate-like particles) in
water; 51% (w/w)

[48]

TiO2 A-HR TiO2 (sphere-like parti-
cles, 0.5µm diameter) in water,
pH=2.4; 50% (w/w)

[48]

SiO2 Mixture of SiO2 flour and R-HD2
TiO2 in water (1.00:0.12), ; 70%
(w/w) total solids concentration,
ηpost-yield unavailable

[48]

Table 5.3: Details of the particulate gels shown in Figure 5-2.

5.2.1 Material preparation

Laponite was the only material personally prepared and tested. LaponiteRD was

obtained from Rockwood Specialties Group, Inc. (Princeton, NJ). LaponiteRD is a

disc-shaped colloidal particle measuring approximately 30 nm in diameter and 1 nm

in thickness [49]. Laponite clay particles form a fractal network when mixed with

water at sufficient concentration [50]. If the colloidal dispersion is properly filtered,
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however, it forms a colloidal glass [51].

Simulants based on Laponite were prepared at concentrations ranging from 1% to 7%

(w/w), where w/w refers to weight of the additive with respect to the total weight

of the mixture. A yield stress was not observed for concentrations of 2.5% or less.

Dispersions were prepared by adding Laponite powder to deionized water being agi-

tated with a magnetic stirrer. Samples were mixed for 30 minutes, centrifuged, and

degassed to remove air bubbles. In all cases a clear solution was formed. Laponite

dispersions were brought to pH=10±5% by addition of NaOH to make them chemi-

cally stable [49]. Dispersions were kept in a sealed container and allowed to rest for

a minimum of 6 hours before testing.

Immediately before testing, Laponite samples were subjected to a pre-shear at a

shear rate γ̇ = 5 s−1 for 25 seconds, followed by three minutes of recovery. The pre-

shear and recovery sequence helped to erase strain history and sample loading effects,

as Laponite is known to be thixotropic and to exhibit “rheological aging” even under

quiescent conditions [50].

5.2.2 Results

Results for the particulate gels are shown in Figure 5-2. For some materials ηpost-yield

data was not available; these materials are plotted in the region where ηpost-yield ≥ 100 Pa.s

at arbitrary values of ηpost-yield. Additionally, viscosity data for the Bentonite 1 sam-

ple was only reported for γ̇ = 348 s−1, thus the magnitudes of the lines of constant

Bn do not apply to this sample, since the lines strictly correspond to a shear-rate

γ̇ = 10 s−1.

Four particulate gel samples meet the minimum yield stress criteria for Chan’s

Robosnail: Laponite, Cloisite, Shp clay, and TiO2. It is also apparent that many

particulate gel samples fall very close to the line Bn = 1. The value Bn = 1 corre-

sponds to the yield stress being exactly equal to the viscous flow stress at the specified

shear rate. This situation may easily occur for a material whose viscosity drops many

orders of magnitude within an extremely narrow range of stress. This is the case of

pedal mucus from Helix aspera, as shown previously in Figure 3-1 which plots the
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Figure 5-2: Material selection space for comparing yield stress fluids - Particulate
Gels.

steady state flow viscosity η as a function of shear stress τ . That so many particulate

gels fall on the line Bn = 1 implies that viscosity drops dramatically within a very

narrow range of imposed shear stress.

LaponiteRD was available to be examined as a function of concentration. A more

detailed rheological study of the laponite mixtures will be given in Chapter 6, where

it will be compared directly with native pedal mucus.

5.3 Emulsions, foams, and composites

A number of emulsions were surveyed for this study. A wet foam is similar in mor-

phological structure to an emulsion, and so this category is also included in this

section. More complicated materials, such as peanut butter, are also included in this

section. Peanut butter is partly emulsified but also includes solid material suspended

throughout the material. Toothpaste is also a complicated material, consisting of
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Figure 5-3: Material selection space for comparing yield stress fluids - Emulsions,
Foams, and Composites.

solid materials. All of the emulsions, foams, and composites examined for this study

are listed in Table 5.4.

5.3.1 Material preparation

All personally tested materials were available as commercial products. The Cream 3

and Conditioner samples are made available by Westin hotels under the Heavenly

Bath brand name. Toothpaste was purchased from a local store, sold by the Crest

Co., labeled as Regular paste - tartar control. The toothpaste is opaque, and light

blue in color.

5.3.2 Results

The yield stress and post-yield viscosity values for the materials listed in Table 5.4

are shown graphically in Figure 5-3.
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Legend name Description Reference

Cream 1 Commercially available skin
creme (brand not reported)

[25]

Cream 2 Prepared lamellar gel-structured
“cream” containing emulsifiers,
2% triethanolamine, and water;
6.5% and 13% emulsifiers

[52]

Cream 3 Westin’s Heavenly Bath brand
“hydrating cream”

personal data

Conditioner Westin’s Heavenly Bath brand
conditioner

personal data

PB creamy Commercially available “smooth”
peanut butter (brand not re-
ported), data fit to Bingham
model

[53]

PB 100% nuts Commercially available “100%
peanuts” peanut butter (same
brand as above, but not re-
ported), data fit to Bingham
model

[53]

Toothpaste Crest regular paste personal data
Mayo 1 Factory sample of mayonnaise, fit

to Herschel-Bulkley model
[52]

Mayo 2a Apparent rheology of mayonnaise
prepared with various xanthan
gum concentrations; 50% (w/w)
oil; 0.5%, 1.0%, 1.5% (w/w) xan-
than gum

[54]

Mayo 2b Same physical sample as Mayo 2a
but with data corrected for slip

[54]

Mayo 2c Slip corrected rheology of may-
onnaise prepared with various oil
concentrations, no xanthan gum;
75%, 80%, 85% (w/w) oil

[54]

Foam Commercial shaving foam
(Gilette Foamy, regular), tested
with rough surface, fit to
Herschel-Bulkley model

[39]

Table 5.4: Details of the emulsions, foams, and composites shown in Figure 5-3.
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Legend name Description Reference

MR fluid Carbonyl iron powder (CIP) (1.1
µm diameter) in grease/oil mix-
ture; 0.0, 0.05, 0.09, 0.13 Tesla

[55]

ER fluid Surface modified complex stron-
tium titanate particles in silicone
oil (ν = η/ρ = 5 × 10−5 m2/s);
23% (v/v); 1.0, 1.8 kV/mm

[56]

Table 5.5: Details of the field-responsive fluids shown in Figure 5-4.

Many of the materials shown in Figure 5-3 are able to meet the minimum yield

stress criteria for Chan’s Robosnail: Cream 1, PB creamy, Toothpaste, and some

concoctions of the Mayo 2 sample. The highest yield stress values are only 2-3 times

as large as the required yield stress. This is in contrast to the highest yield stress

values within the polymer gel and particulate gel categories, some of which were

nearly 10 times as large as the minimum required yield stress.

All of the materials shown in Figure 5-3 fall between 0.1 < Bn < 1, and many

maintain the same value of Bingham number as concentration is varied. Similar to the

findings for polymer gel and particulate gel materials, the yield stress and post-yield

viscosity seem to increase colinearly.

An important note should be made about the data shown for the Mayo 2a and

Mayo 2b samples, which give the apparent and slip corrected data, respectively. Al-

though the data labeled as Mayo 2b may better describe the material since it is

corrected for the slip which occurred during testing, it may not be the best indicator

of what will happen under a real crawler. Thus, the apparent yield stress and appar-

ent viscosity, which is given by the data labeled Mayo 2a, would be a better indicator

of the performance of the material under an actual mechanical crawler, where slip is

likely to occur.
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Figure 5-4: Material selection space for comparing yield stress fluids - Field-
Responsive Fluids.

5.4 Field-responsive fluids

Field-responsive fluids are able to change their mechanical properties when exposed

to an electric or magnetic field. These materials frequently show very high yield

stresses when exposed to the appropriate field. Of course, for a crawler to exploit

the field-induced properties of these materials, electric or magnetic fields must be

generated between the crawler and the substrate. Table 5.5 lists two field-responsive

fluids examined for this study.

5.4.1 Material preparation

Neither of the materials listed in Table 5.5 were personally prepared. Details of

material preparation can be found in the references given in Table 5.5.
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5.4.2 Results

The yield stress and post-yield viscosity data for the two field-responsive fluids are

shown in Figure 5-4. Each fluid is able to achieve a yield stress more than one order

of magnitude larger than the minimum required yield stress for Chan’s Robosnail.

Thus, even though an electric or magnetic field generator would need to be carried

by the crawler, the materials may still provide an adequate yield stress to carry the

additional weight. Furthermore, each fluid achieves Bn ≈ 1, indicating a dramatic

drop in viscosity over a small range of applied shear stress.

5.5 Conclusions

In summary, this chapter has shown that several candidate materials are available

which would allow inclined locomotion of a mechanical crawler. No materials have

Bn > 1, other than some natural mucus gels, and for many materials 0.1 < Bn < 1.

Each category of viscoplastic materials contains multiple formulations which exhibit

an adequate yield stress for wall climbing. Some polymeric gels and particulate gels

far-exceed the required yield stress, τ d
y,min, whereas emulsions only narrowly exceed

the required yield stress. Field-responsive fluids also far exceed τ d
y,min, but require

the generation of a magnetic or electric field. Future tests should also compare the

restructuring time λ of those materials which meet the minimum yield stress criteria,

since this parameter was also shown to influence adhesive locomotion performance

(Section 4.3.3).

Chapter 6 will examine the detailed rheology of two promising simulants: a poly-

mer gel (Carbopol) and particulate gel (Laponite). The linear and nonlinear rheology

of these two potential simulants will be compared with that of native slime.
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Chapter 6

Results: Detailed Rheology of Two

Slime Simulants

Two promising slime simulants, based on Laponite and Carbopol, were examined in

detail and compared with native pedal mucus from the terrestrial snail Helix aspera

and the terrestrial slug Limax maximus. Comparisons were made using traditional

rheological measurements, including flow viscosity, creep, and small amplitude oscilla-

tory shear (SAOS). Furthermore, the nonlinear rheology of each simulant is compared

with that of pedal mucus (which was reported in Chapter 3).

6.1 Steady shear flow

The steady shear viscosity of the Carbopol-based and Laponite-based simulants are

shown in Figures 6-1 and 6-2, respectively. The steady shear viscosity of native pedal

mucus from Hexlix aspera is also shown for reference in each figure. Henceforth, the

Carbopol-based simulant will be referred to as Carboslime and the Laponite-based

simulant will be referred to as Laposlime. Material preparation and testing protocols

for Carboslime and Laposlime were given in Sections 5.1.1 and 5.2.1, respectively.

All tested concentrations of Carboslime exhibit an apparent yield stress (i.e. con-

centrations ≥ 0.5%, where % implies (w/w) concentration throughout this entire

chapter). Laposlime shows an apparent yield stress for concentrations ≥ 3%. Each
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Figure 6-1: Steady shear flow viscosity of Carboslime (Carbopol940 in water, pH7),
0.5%–4.0% (AR1000, plate with sandpaper, h=1000 µm, T=25◦C, solvent trap; plate
diameter D=4 cm for 0.5%–2%, D=2 cm for 3%–4%). Pedal mucus data from Fig-
ure 3-1.

Figure 6-2: Steady shear flow viscosity of Laposlime (LaponiteRD in water, pH10),
1%–7% (AR1000, T=25◦C, solvent trap; various geometries, D=6 cm 1◦ cone for
1%–2%, D=4 cm 2◦ cone for 2.5%, D=4 cm plate h=1000 µm with sandpaper for
3%–7%). Pedal mucus data from Figure 3-1.
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of these materials is rheologically reversible, so that solid-like properties are regained

when the stress is reduced below the yield stress, and the test can be repeated to give

the same data.

Each yield stress material exhibits a finite, but large, viscosity at low stress. The

viscosity for each material is so high that it is solid-like for timescales on the order

of seconds, which is the relevant timescale of locomotion for natural snails [30] and

Chan’s mechanical crawler. For example, with a viscosity η ≈ 107 Pa.s, and a fluid

thickness h = 1 mm, Chan’s crawler would slump down a vertical wall at a rate of

only 30 µm/hr. At a critical stress the viscosity drops by several decades. Since

flow exists at any finite stress, none of these materials exhibits a true yield stress,

but rather display an apparent yield stress. Native slime and Laposlime share a steep

and dramatic drop in viscosity at the yield stress, whereas the viscosity of Carboslime

drops less quickly as the stress is increased. The steepness of this drop is quantified

by the Bingham number, as mentioned in Chapter 5, where Bn = 1 corresponds to

τy = τflow, indicating a vertical drop in viscosity as a function of stress.

The drop in viscosity of Laposlime occurs over such a narrow range of stress

that a stress-sweep could not capture the behavior. Thus, a rate-sweep was per-

formed from high shear-rates down to low shear-rates. This technique allows for large

changes in viscosity to be measured over a small change in stress. A rate-sweep is

limited by the smallest rotational rate that the rheometer’s control loop can manage

(ωmin ≈ 10−3 rad.s−1 for the AR1000), thus a stress-sweep was used to explore the

high viscosity (ω < ωmin) region of the flow curve. Stress-sweep tests quickly reveal

the time-dependent nature of Laposlime’s yield stress. The sample is deformed so

little during a sweep from low to high stress that the network has time to grow, re-

sulting in a larger apparent yield stress than determined by the rate-sweep tests (this

time-dependent yield stress could be used to quantify the thixotropy of the mater-

ial). The stress-sweep data have therefore been truncated to be consistent with the

rate-sweep data.

The data for both simulants show that the yield stress is a strong function of

concentration. The maximum yield stress of each simulant is limited by the imprac-
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ticality of increasing the concentration beyond a certain point. Extremely high yield

stress materials are also difficult to test, since they suffer from slip at the bound-

aries [57]. Laposlime at 7% is prone to slipage at the boundary, as can be witnessed

by observing the edge of the sample during the test [58]. Thus, the data reported in

in Figure 6-2 give the apparent viscosity for a gap h = 1000 µm; if slip is occurring

then the measured viscosity will be a function of gap height.

6.2 Creep

Linear viscoelastic material properties were examined using creep and small amplitude

oscillation tests. Native slime is compared to simulants which have similar yield

stress values: a Carboslime at 2% and a Laposlime at 5%, each having a yield stress

τy ≈ 100 Pa. The linear rheological regime is defined such that the material properties

are not a function of the input stress amplitude, and thus each creep and oscillation

test in the linear regime is performed below the yield stress (τ0 << τy). Figures 6-3

and 6-4 show the creep response of Carboslime 2% and Laposlime 5%. The creep

compliance of native slime, from Figure 3-2, is included for reference.

Each simulant initially shows a dominant elastic response, followed by a small

amount of flow, as indicated by the slight slope of the compliance curve. The average

compliance of Carboslime and Laposlime are noticeably smaller than native pedal

mucus, indicating that these materials are stiffer at small strains. At short times a

damped inertio-elastic ringing can be seen for each material, as was observed with

native slime in Figure 3-2. If the inertial contribution is known, then the storage

modulus G′ and loss modulus G′′ can be determined at the free oscillation ringing

frequency, as was done with native slime in Section 3.1. This analysis will not be

performed on Carboslime or Laposlime. Note that the ringing frequency of Laposlime

is so high that under-sampling occurs, and the signal is aliased.

At sufficiently long times the slope of each compliance curve approaches a constant.

The rate of change of compliance with time is exactly equal to the inverse of viscosity,

and the steady state values match well with the large finite viscosity of each material
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Figure 6-3: Creep compliance of Carboslime 2.0% (AR1000, T=25◦C, solvent trap;
D=4 cm plate with sandpaper, h=1000 µm, τ0 = 5 Pa). Pedal mucus data from
Figure 3-2.

Figure 6-4: Creep compliance of Laposlime 5% (AR1000, T=25◦C, solvent trap;
D=4 cm plate with sandpaper, h=1000 µm, τ0 = 20 Pa). Pedal mucus data from
Figure 3-2.
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below the yield stress; for Carboslime η = (dJ/dt)−1 = 2×105 Pa.s, and for Laposlime

η = (dJ/dt)−1 = 3× 106 Pa.s.

6.3 Small amplitude oscillatory shear (SAOS)

The linear viscoelastic moduli, G′ and G′′, were examined at multiple frequencies

with SAOS. Both G′ and G′′ were found to be weak functions of frequency for each

material below the yield stress, as shown in Figures 6-5 and 6-6. Although each

material has approximately the same yield stress, the storage moduli vary across an

order of magnitude; native slime has the lowest elastic modulus, near 200 Pa, whereas

the Laposlime has a storage modulus G′ ≈2000 Pa. Thus, although the yield stress is

comparable, the elastic stiffness of the particulate gel simulant shown in Figure 6-6 is

a factor of ten larger than native slime. This comparative stiffness is consistent with

the creep compliance results.

The loss tangent of each material is shown as a function of frequency in Figure 6-7.

The loss tangent is defined as tanδ = G′′/G′, and thus compares the magnitudes of

the viscoelastic moduli. The loss tangent of each material is on the order of 0.1 for

most of the frequency range. The notable exception is Laposlime, in which the loss

tangent goes down to approximately 0.02 at higher frequencies, indicating that the

elastic modulus is nearly two orders of magnitude larger than the loss modulus.

6.4 Nonlinear, large amplitude oscillation

The first harmonic storage modulus G′
1 and loss modulus G′′

1 are shown in Figures 6-8

and 6-9 as a function of stress amplitude τ0 at a fixed frequency of ω = 1 rad/s. At

low stresses each material shows a very weak or no dependence on the input stress

amplitude. Each material undergoes a transition at a critical stress at which the

elastic response dramatically decreases. As mentioned previously, no data could be

collected for native slime beyond this critical stress since the material was ejected from

the gap. The critical stress amplitude for this transition corresponds approximately
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Figure 6-5: Frequency dependent viscoelastic moduli of Carboslime 2.0% (AR1000,
D=4 cm plate with sandpaper, h=1000 µm, T=25◦C, solvent trap, τ0 = 5 Pa). Pedal
mucus data from Figure 3-4.

Figure 6-6: Frequency dependent viscoelastic moduli of Laposlime 5% (AR1000,
T=25◦C, solvent trap; D=4 cm plate with sandpaper, h=1000 µm, τ0 = 20 Pa).
Pedal mucus data from Figure 3-4.
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Figure 6-7: Loss tangent of Carboslime 2.0% and Laposlime 5%, compared to native
pedal mucus; same protocols as Figure 6-5 and Figure 6-6. Pedal mucus data from
Figure 3-4.

to the apparent yield stress in steady flow tests. The sharpness of the transition also

corresponds with the steady shear flow results; the polymer gel Carboslime exhibits

a soft shoulder transition, whereas the slime and particulate gel Laposlime show a

sharp transition.

As the stress amplitude approaches the yield stress, a minor difference can be

seen in the behavior of G′
1 and G′′

1 for each material. The loss modulus G′′
1 appears to

increase just before yield for each material; this increase is most pronounced with the

Carboslime. The increase in G′′
1 prior to yield, combined with a decrease in G′

1, has

been observed in other materials and is classified as type III behavior by Hyun and

coworkers [59]. The variation of the first harmonic storage modulus is less interesting

as the yield stress is approached; in each case G′
1 is a weak function of stress amplitude

for τ0 < τy. However, upon closer inspection, a dramatic difference in the material

response leading up to failure becomes apparent.
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Figure 6-8: Stress dependent viscoelastic moduli of Carboslime 2.0% (AR1000,
T=25◦C, solvent trap; D=4 cm plate with sandpaper, h=1000 µm, ω = 1 rad.s−1).
Pedal mucus data from Figure 3-3.

Figure 6-9: Stress dependent viscoelastic moduli of Laposlime 5% (AR1000, T=25◦C,
solvent trap; D=4 cm plate with sandpaper, h=1000 µm, ω = 1 rad.s−1). Pedal mucus
data from Figure 3-3.
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Figure 6-10: Lissajous curves of Carboslime 2.0%, from oscillatory stress sweep of Fig-
ure 6-8 (AR1000, T=25◦C, solvent trap; D=4 cm plate with sandpaper, h=1000 µm).

Figure 6-11: Lissajous curves of Laposlime 5%, from oscillatory stress sweep of Fig-
ure 6-9 (AR1000, T=25◦C, solvent trap; D=4 cm plate with sandpaper, h=1000 µm).
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With the aid of a Lissajous curve one can immediately see the substantial differ-

ence in each material’s non-linear response to an oscillatory stress input, as shown in

Figures 6-10 and 6-11. As outlined in Section 2.3.2, Lissajous curves are parametric

plots of stress upon strain, with each curve corresponding to a particular frequency

and stress amplitude.

The Lissajous curves of each material at low stress appear as tight ellipses (see in-

sets in Figures 6-10 and 6-11) indicating G′ >> G′′, thus only a small area is enclosed

and the response is dominated by elasticity. As the stress amplitude is increased

toward the yield stress, each material exhibits distinctive behavior. The Laposlime

maintains tight ellipse curves almost all the way up to yield, and subsequently under-

goes a quick transition to viscous behavior, shown by a dramatic increase in the area

enclosed by the curve. This transition is consistent with the sudden drop in viscosity

for the steady shear flow curves. The Carboslime Lissajous curves (Figure 6-10) grad-

ually broaden to enclose more area, and thus show a gradual transition from elastic

to viscous behavior. This soft transition is consistent with the steady shear flow tests

and the behavior of G′
1 and G′′

1 as the oscillatory stress amplitude is increased.

In contrast to both simulants, native slime exhibits a strongly nonlinear response

leading up to yield. As summarized with the Pipkin diagram of Figure 3-18, for native

slime the elliptical curves which appear at low stresses become exceedingly distorted

as stress is increased, and appear to be strain-stiffening. The strain-stiffening reported

for native slime is not mimicked by either the Carboslime or Laposlime simulants.

6.5 Time dependency of yield stress

As discussed in Section 4.3.3, the apparent yield stress, or critical stress, of a material

may depend on how long the sample has been at rest since it was last yielded, i.e. how

much time it has been allowed to restructure. Furthermore, the maximum velocity of a

mechanical crawler is inversely proportional to the restructuring time (Equation 4.40).

The restructuring times of Carboslime and Laposlime were examined with stress

overshoot tests. Figure 6-12 displays the sequence of a stress overshoot test. The
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Figure 6-12: Experimental procedure for determining a stress overshoot which de-
pends on rest time.

sample is first “pre-sheared” to yield the material and erase strain history effects.

The pre-shear is abruptly brought to a halt, at which point the sample is allowed to

rest for a time ∆t. A step-strain-rate is then imposed, which yields the sample. The

overshoot stress ∆τ is then determined as the difference between the peak stress and

the steady flow stress.

The overshoot stress is not quantitatively equivalent to the yield stress as defined

in this work. However, it is closely related to the yield stress, since it is the peak

stress which occurs as the material is ruptured. The overshoot stress is a combination

of elastic breaking stress and flow stress, and will therefore depend on the shear-rate.

A possible form of the time dependent yield stress was suggested with Equa-

tion 4.28. The same form of that equation will be used for fitting the time-dependency

of the overshoot stress, since zero overshoot stress may be expected if the sample is

not allowed to restructure (∆t = 0), and a steady state value of overshoot stress is

achieved for sufficient rest times. An exponential approach to a long-rest-time ∆τ is
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Fitting Parameter Carboslime 2% Laposlime 3%
Equation 6.1 A [Pa] 4.59 ±0.19 35.70 ±2.43
exponential λ [s] 0.82 ±0.15 17.34 ±3.44

R2 [-] 0.870 0.961
A [Pa] 4.98 ±0.21 64.99 ±7.0

Equation 6.2 λ [s] 0.749 ±0.098 88.2 ±25
stretched exponential B [-] 0.451 ±0.083 0.594 ±0.019

R2 [-] 0.997 0.9995

Table 6.1: Fitting parameters and confidence intervals for stress overshoot data of
Carboslime 2% and Laposlime 3%.

expressed as

∆τ = A
(
1− e−∆t/λ

)
(6.1)

where A is the maximum overshoot stress at long rest times and λ is the characteristic

restructuring time. Here λ is assumed to represent the restructuring time of both the

overshoot stress and the yield stress.

An extra parameter can be added to Equation 6.1 to represent a “stretched-

exponential” approach to a maximum overshoot stress. Stretched exponentials have

been observed with numerous systems and have been associated with the presence

of fractal networks [60]. A stretched exponential approach to a long-rest-time ∆τ is

given by

∆τ = A
(
1− e−(∆t/λ)B

)
(6.2)

where λ is still regarded as the restructuring time of the material and B is the stretch-

ing exponent.

The results of time-dependent overshoot tests for the simulants are shown in

Figures 6-13 and 6-14. The Laposlime sample is at a concentration of 3%. Laposlime

was pre-sheared at γ̇ = 5 s−1 for 60 seconds; Carboslime was pre-sheared at γ̇ = 5 s−1

for five seconds (less shearing was needed to eliminate strain history effects with

the Carboslime). Each was allowed to rest for a specified time and then sheared at
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Figure 6-13: Time-dependent stress overshoot of Carboslime 2.0% (ARES, T=25◦C,
solvent trap; D=5.0 cm 1◦ cone).

Figure 6-14: Time-dependent stress overshoot of Laposlime 3.0% (ARES, T=25◦C,
solvent trap; D=5.0 cm 1◦ cone).

γ̇ = 5 s−1. Error bars are shown for the Carboslime data since each test was repeated

three times. Each data set has been fit to Equations 6.1 and 6.2. Table 6.1 reports
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the fitting results.

For a yield stress that grows in a similar fashion to Equation 6.1, the restructuring

time λ was shown to be inversely related to the maximum velocity of a crawler (Equa-

tion 4.40). The Carboslime has a much faster restructuring time than the Laposlime.

The restructuring time of Carboslime is λ ≈ 0.8 s, whereas the restructuring time

of Laposlime is λ ≈ 17 s. Thus, the maximum velocity of a mechanical crawler on

Carboslime would be approximately 20 times that of a crawler on Laposlime. The

restructuring times determined by fitting Equation 6.2 (stretched-exponential) are

also dramatically different (λ ≈ 90 s for Laposlime and λ ≈ 0.7 s for Carboslime).

6.6 Summary

The two simulants compared in this chapter have similar yield stresses, but when

examined in detail, in linear and nonlinear deformations, show some differences in

rheological properties. Table 6.2 summarizes the results of this chapter.

Laposlime yields and transitions to a steady flow response over a much narrower

range of stress than Carboslime, and therefore Laposlime has a much higher Bingham

number. In this respect, Laposlime is more similar to native pedal mucus. However,

Laposlime is much stiffer and more elastic than both Carboslime and native pedal

mucus. Laposlime is approximately ten times as stiff as native slime; Carboslime is

approximately three times as stiff.

The non-linear rheology of Carboslime and Laposlime are quite different, in that

Laposlime undergoes a very quick transition to yield, whereas Carboslime gradually

transitions to yield, as shown by the Lissajous curves in Figures 6-10 and 6-11. The

quick yield transition of Laposlime is typical for a particulate gel. Furthermore,

neither of these simulants mimics the strain-stiffening observed with native pedal

mucus (Figure 3-18).

Finally, the restructuring time of the simulants are an order of magnitude different

from each other. This is the most dramatic difference between the two simulants and

strongly affects their successful use in adhesive locomotion. Once a simulant has been
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Native Carboslime 2% Laposlime 5%
pedal mucus Polymer gel Particulate gel

Yield stress τy [Pa] 100–240 108 90.75
η|γ̇=10 s−1 [Pa.s] 10.4–25 31.6 9.6
Bn|γ̇=10 s−1 [-] 0.96 0.34 0.95

G′|ω=1 rad.s−1 [Pa] 200 540 1800
G′′|ω=1 rad.s−1 [Pa] 20 30 60
Pre-yield stiffening Yes No No

Restructuring time [s] - 0.8 17

Table 6.2: Summary of rheological properties of two simulants with a similar apparent
yield stress; properties of native pedal mucus shown for reference.

shown to provide an adequate yield stress for inclined locomotion, the restructuring

time of the material should be examined, since this property is directly related to

the maximum crawler velocity, as discussed in Section 4.3.3. Therefore, of the two

simulants analyzed in this chapter, Carboslime is the better candidate for aiding

adhesive locomotion.
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Chapter 7

Conclusions

The contributions of this thesis can be can be summarized as follows.

Chapter 2 introduced a new characterization technique for analyzing the non-

linear shear rheology of materials, by quantifying the non-linear elastic response.

Section 2.3.3 introduced three measures for quantifying non-linear elasticity in oscil-

latory shear:

1. M : Small strain elastic shear modulus; reduces to G′ in linear viscoelastic

regime.

2. L: Large strain elastic shear modulus; reduces to G′ in linear viscoelastic regime.

3. S: Elastic stiffening ratio; S = 1 in linear viscoelastic regime.

These measures provide a physical interpretation of non-linear behavior.

Chapter 3 reported the detailed rheology of native pedal mucus from terrestrial

gastropods (the terrestrial snail Helix aspera and the terrestrial slug Limax maximus).

Pedal mucus from terrestrial gastropods has been known to exhibit a yield stress

[4], but this thesis reported the first ever examination of progressive transition to

yield with increasing oscillatory shear stress amplitude. Lissajous curves were used

to represent graphically the rheological response, which indicated strain-stiffening

behavior. The newly proposed quantitative measures of non-linear elasticity were

applied to this data, and they quantified the strain-stiffening of pedal mucus. The
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maximum elastic stiffening ratio observed was Smax ≈ 4.5. Strain-stiffening has been

observed in other biological materials [61], but has typically been reported only by

monitoring the first harmonic storage modulus G′
1 and its dependence upon input

amplitude, e.g. γ0. This thesis demonstrates that strain-stiffening can exist (Figure 3-

15) even though the first harmonic modulus G′
1 decreases (Figure 3-7). Finally, a

Pipkin diagram was used to map the non-linear rheology and provide a complete

“rheological fingerprint” of pedal mucus (Figure 3-18).

Chapter 4 developed the design and optimization criteria for a fluid which would

enable adhesive locomotion. It was shown that any fluid with a non-Newtonian shear

viscosity can be used for horizontal adhesive locomotion, and that shear-thickening

fluids can be more efficient that yield stress fluids on horizontal terrain. For adhesive

locomotion on an inclined surface, using the most general yield stress fluid model

which includes a restructuring time (Equation 4.28), the following properties of the

fluid should be sought:

1. A minimum yield stress τy > τ d
y,min (Equation 4.23), which is required for ad-

hesive locomotion on an inclined surface.

2. Post-yield viscosity, minimized to increase speed (Equation 4.26).

3. Non-dimensional yield stress τ ∗ (Equation 4.35), minimized to increase crawler

speed (Figure 4-5).

4. Restructuring time λ of a yield stress fluid (Equation 4.28), minimized to in-

crease speed (Equation 4.40).

Furthermore, locomotive efficiency ε for a simple yield stress fluid is only a function

of φ, the fraction of the crawler that iteratively moves forward (Table 4.2).

Chapters 5 and 6 were devoted to the search for a suitable slime simulant to be

used with Chan’s Robosnail (Figure 1-2). Dozens of materials were surveyed, includ-

ing polymer gels, particulate gels, emulsions, foams, composites, and field-responsive

fluids. The results support the feasibility of a mechanical wall climber without needing

to harvest native slime, that is, commercially available materials could be used with
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Chan’s Robosnail for adhesive locomotion on any incline. Two promising simulants

were examined in detail in Chapter 6: a polymeric gel and a particulate gel simulant

(Table 6.2). Both materials had similar yield stresses, but the restructuring time of

the polymer gel was an order of magnitude less than the particulate gel. Thus the

polymer gel, Carboslime (material preparation given in Section 5.1.1) is the better

material for use in adhesive locomotion.

133



134



Appendix A

Biochemistry Reference

Abbrev. Full Name
A Ala Alanine
C Cys Cysteine
D Asp Aspartic acid
E Glu Glutamic acid
F Phe Phenylalanine
G Gly Glycine
H His Histidine
I Ile Isoleucine
K Lys Lysine
L Leu Leucine
M Met Methionine
N Asn Asparagine
P Pro Proline
Q Gln Glutamine
R Arg Arginine
S Ser Serine
T Thr Threonine
V Val Valine
W Trp Tryptophan
Y Tyr Tyrosine

Table A.1: Amino acids and their abbreviations
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