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by Andres Sevtsuk 

Submitted to the Department of Architecture in Partial Fulfillment of the 

Requirements for the Degree of Master of Science in Architecture Studies 

at the Massachusetts Institute of Technology, June 2006 

 

Abstract 

 

This thesis explores the idea of real-time urban space management. While 

increasing amounts of real-time information about the city, specifically the 

location of people and resources, appear, it becomes necessary to explore how 

different strategies of distributing real-time location information can be used as 

urban design tools for a more sustainable resource allocation.  

 

I focus on the study of street-parking, a system that clearly has a market situation 

with demand and supply, but due to lack of information is poorly managed today. 

I argue that an equilibrium state of the parking market in popular areas, similar to 

many other urban space markets, is a frequent over demand. The important 

challenges are therefore allocation optimization and queuing management. I 

propose five different strategies of using real-time location information to reduce 

search times and analyze the system through computer simulations and logic. 

Borrowing ideas from Game Theory, I try to illustrate how collaborative 

behavior between drivers could yield most efficient results from both the 

individual and the group point of view. Lastly, I outline some challenges that the 

use of real-time information systems introduce to the realm of urban design in 

general. 

 

Thesis supervisor: William J. Mitchell 

Title: Professor of Architecture and Media Arts & Sciences 
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Introduction 

 

“The behavior of an artificial system may be strongly influenced by the limits of 

its adaptive capacities- its knowledge and computational powers”. [Herbert 

Simon, p.29, Sciences of the Artificial] 

 

The evolution of human society is built upon the interaction of people. More than 

any other species’, peoples’ interactions have created economies and societies, 

cities and countries. City form is an arena for this interaction. One of the primary 

tasks of city design is therefore to maximize the use of urban space and resources 

in order to foster interactions between people and places. Optimization of urban 

resources has always been a fundamental design challenge for urban designers. 

Five decades after the dawn of the digital computer, communication and 

computation offer new opportunities for optimizing the use of urban space.  

 

This thesis is an exploration of using real-time urban information to affect 

existing relationships between citizens and urban resources. The purpose is to 

achieve a more intense and sustainable resource allocation. A well-planned 

distribution of urban resources could lead to significantly smaller zoning 

requirements of urban infrastructures. I use the term resources relatively loosely 

in this context to signify the functional infrastructure elements of a city that are 

accessible to the public and for which there is generally a great demand or 

competition. Such elements are public transportation, curb-side parking spaces, 

assembly spaces, etc. These elements can be fixed in space (parking spaces, 

meeting spaces) or moving (public transportation, taxis), but they are all publicly 

used by a relatively large number of people in daily urban life. I am interested in 

analyzing how some of these infrastructural systems could acquire different 

patterns of use if people had real-time information of their availability through 

portable communication devices. 
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Specifically I try to illustrate how augmented computational power enables 

individuals to navigate more efficiently in a complex external world. Already 

existent, ubiquitously dispersed personal communication devices can be 

exploited as a network of computational infrastructure for real-time urban 

resource allocation. I argue that modifying this dispersed communication 

infrastructure at a personal level can drastically change the interaction between 

people and places on an aggregated level. I regard such system optimization as 

fundamentally urban design, which explores alternative futures of how things 

could be. However, this design activity does not explore state descriptions that 

are proposals for physical states of a city, but rather process descriptions, which 

similar to differential equations, propose various ways of using information, 

depending on the goals and the feedback from the environment. Related studies 

in science1 have long proven that complex dynamic systems are highly dependent 

on their initial conditions, and that by altering these conditions, very different 

dynamic patterns emerge. In the analysis and design of alternative space 

allocation systems, I shall focus in detail on the universe of internal and external 

variables that affect the system of street-parking. Specifically I shall argue that in 

addition to adding a new layer of information to enhance searching for parking, 

feeding the performance information of group efficiency selectively back to the 

participants of the system in real-time, can create incentives for collaborative 

action and can significantly impact people’s decision making and distribution in 

a city. Collaborative behavior at the group level can be further encouraged 

through dynamic pricing, by offering lower fees to people who are willing to 

cooperate. By accurately matching demand and supply, I shall propose different 

strategies of using real-time information for the distribution of public resources 

and explore how these strategies could help establish their more sustainable 

allocation.  

                                                 
1 Determenistic Nonperiodic Flow [Edward Lorenz, New York Academy of Sciences 
1963] 
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To test my assumptions and strategies, I use an agent based simulation model2 

and analyze the resulting effects from the model. I study which variables in the 

simulation model are most critical for good performance and which 

circumstances jeopardize efficient functioning. My goal is to explore which 

approaches of real-time information use yield the most efficient distribution of 

the studied resource. 

 

However, in order to narrow down a vast field of possibilities, I shall mainly 

focus on an example of a real-time guidance system for street-parking. Many of 

the more general issues of real-time information allocation will hopefully emerge 

through this example. In the conclusion I shall eventually come back to a more 

general discussion and illustrate the implications of this work to other areas of 

urban planning. 

 

To begin with, Chapter One will discuss how the search for parking works at an 

individual and aggregate level today. Why is the search so troublesome? There 

are many valuable strategies that drivers exploit when searching for a parking 

space, which supposedly increase our capacity to find parking in almost hopeless 

situations. These strategies generally reduce the time spent cruising, and offer 

significant insight for the design of a real-time guidance system. Nevertheless, 

there is room for improvement in the search methods today. First, the current 

search strategy is based on locally perceptive information, which can lead to 

results that are only as good as the information perceived from the environment. 

Broader information could enhance the effectiveness of the search. Secondly, 

even with the present information, I shall suggest that the current cognitive 

search method3 might not yield the best possible results. Decision making, based 

on immediate perception of information, and not statistical calculations, can lead 
                                                 

2 An individual based computer modeling technique that allows multiple agents to 
interact with each other and their surrounding environment. 
3 Read: intuitive searching for curb parking that we regularly use today. 
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to non-optimal results and jeopardize the performance of a search. I shall propose 

that computers might help to overcome these shortcomings, and discuss what 

particular aspect of the search process a real-time guidance system could 

enhance.  

 

Chapter Two will discuss the general simulation approach by introducing some 

of the most common cellular automata and agent based modeling concepts for 

urban simulation. It will explain the particular technique used in this thesis for 

modeling distant telecommunication, that is, communication through 

electromagnetic waves over long distances.  It shall then propose four different 

search algorithms that might complement the parking search processes used 

today. Detailed descriptions of the assumptions and rules of each search model 

are subsequently presented. 

   

In Chapter Three I shall analyze the results and findings of simulation models. I 

shall compare the performance of the proposed search strategies and outline the 

effects of different environmental stimuli on the efficiency of each strategy. 

Besides the rational allocation strategies studied in the models, I shall propose an 

additional search strategy (Intel_9), which uses Game Theory to provide 

incentives for collaboration between parkers. I shall try to argue that a 

collaborative behavior between well informed drivers can be the most efficient 

way of reducing searching times. Towards the end of Chapter Three, I shall also 

turn to the question of how to cope with cars that simply can not be immediately 

allocated a parking spot due to a lack of available spaces. Efficient queuing in 

situations of over demand becomes a critical issue. Currently the excess cars 

circulate in traffic with all other vehicles, forming dynamic queues.  I shall 

propose an alternative approach where cars could use temporary static queuing 

spaces while waiting for vacating parking spots. 
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Chapter Four is the conclusion. It will discuss the implications of the simulation 

results, offering suggestions for future work in the field of real-time urban 

resource management. 
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Chapter One 

 

 

The Effects of the Street-parking System Today 

 

An intoxication comes over the man who walks long and aimlessly through the 

streets. With each step, the walk takes on greater momentum; ever weaker grow 

the temptation of shops, of bistros, of smiling women, ever more irresistible the 

magnetism of the next street corner, of a distant mass of foliage, of a street name.  

[p. 417, Walter Benjamin 1999] 

 

If the flaneur were to stroll around a contemporary American downtown, where 

would he find those crowds of bustling people and that spectacle of 

contemporary manners and urban scenes that are as essential to him as water for 

a fish? Where could the flaneur find the hustle bustle of city streets, the very 

heart of the crowd in a center of a metropolis, dense enough to hide himself and 

observe the modern urban scene with the eye of an artist? Perhaps in a car, 

searching for curb-parking? 

 

Eighty seven per cent of all trips in this country are made in personal cars 

[Shoup, 2005]. Ninety five per cent of each car’s lifetime is spent parked, and 

ninety nine per cent of all parking is free of charge in America [ibid.]. So it is no 

wonder that nobody wants to pay for parking in a downtown area either. Instead 

of choosing an available garage that might charge some $10 an hour, most people 

choose to cruise, hoping that they can find a cheaper alternative at the curb if 

they search long enough.  As a result, up to 30% of all traffic in central business 

districts has been cruising for a cheap spot for decades [ibid.].  
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Figure 1 Cruising in the 20th century. Source: The High Cost of Free Parking 

[Shoup 2005] 

 

To put this in perspective, let’s listen to Donald Shoup: 

 

“Even a small search time can create a surprising amount of traffic. Consider a 

congested downtown area where it takes three minutes to find a curb space. If the 

parking turnover is 10 cars per space per day, each curb space generates 30 

minutes cruising time per day, and if the average cruising speed is 10 miles an 

hour, each curb space generates five VMT (vehicle miles traveled) per day. As 

estimated…, the average block is surrounded with 33 curb parking spaces, so 

cruising for parking creates 165 VMT a day per block. Over a year, this amounts 

to  60, 000 VMT per block (equivalent to more than two trips around the earth). 

Because this cruising adds to already congested traffic, it makes a bad situation 

even worse.” 
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While cruising for a cheap parking space can bring great financial savings to a 

driver, the accumulating environmental cost of cruisers is much greater. Studies 

by Axhausen, Polak and Shoup prove that even a slight reduction of parking 

search time could significantly reduce environmental impacts of the current 

parking system [Axhausen, Polak 1991 and Shoup 2005].   

 

The conventional planning response to congested traffic and time-consuming 

parking search is a provision of more off-street parking space. Most 

contemporary parking design guidelines demand property developers to host all 

the potential demand created by their property within off-street parking on the 

property. Instead of requiring the minimum, parking guidelines are usually set for 

extreme traffic situations that rarely occur. As a result, most off-street private 

parking lots are over dimensioned and remain underused a great deal of the time 

(comprehensive statistics are given on  pp. 75-111 in “The High Cost of Free 

Parking”, Shoup 2005).  

 

As off-street parking lots in downtown areas usually charge relatively high fees, 

then their filling rates are diminished because of people preferring to search for 

ubiquitously under priced curb-side alternatives. This results in a vicious cycle 

where demand for street-parking causes congestion and keeps parking 

requirements from being reduced.  

 

 Off-street lots that rarely fill, already consume a surprising amount of urban 

land. In downtown Albuquerque, for instance, approximately 80% of land is 

taken up by off-street parking [ibid.]. As a result, such excessive requirements 

create sparse land-use and restrain building densities, degrading the pedestrian 

environment even further, which forms another vicious cycle by increasing the 

demand for driving. Large parking lots result in spread out developments, where 

even the social flaneurish aspect of today’s cruising for a cheap curb-side space 
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loses its flavor- too much parking eventually eliminates the destinations that we 

drive to in the first place. Such strategy for solving traffic congestion can be 

successful from a personal savings point of view, but the hidden costs of 

ubiquitous free parking are unjust, and seen at an aggregated level, the resulting 

environmental impact is unacceptable. This description, that Shoup has outlined 

in much more detail than presented here, might sound like an exaggerated 

dooms-day scenario, but if Benjamin had been able to compare 19th century Paris 

to 21st century Los Angeles, it might seem disastrous indeed. Figure 2 below, 

illustrates some common parking coverage in world cities today. Figure 3, further 

down, shows the amount of land consumed by off-street parking around MIT. 

Compared to how dense cities like Boston were only a hundred years ago, these 

are no small indicators.  
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Figure 2 Parking in central business districts. Source: The High Cost of Free 

[Shoup 2005] 
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Figure 3 Map of off-street parking lots around MIT. Shaded areas indicate multi-

story structures. 

 

 

An alternative strategy for reducing current cruising seems to be offered by real-

time information technology. If drivers knew the exact availability of street-

parking in real-time, then they could efficiently find their closest parking spaces, 

without driving around searching, wasting energy, polluting air and congesting 

traffic. If the amount of searching cars exceeded the amount of available spots, 

then drivers could be alerted that their search is probably useless. In order to 

reach individuals directly, such information seems to be most useful if brought to 

drivers personally, displayed on their cell-phone screens, personal navigation 

devices in the car, or as voice directions. If this could be achieved, then could 

searching times potentially diminish? Could the turnovers of parking spaces 

increase? Would more cars be accommodated by the same number of parking 

spots and more people simultaneously occupy a C.B.D.? Off and on-street 

parking would of course both remain, but by maximizing their efficiency, zoning 

laws could be revised and their parking requirements could be lowered. 
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Figure 4 Aerial view of half-parking coverage north of Vassar Street at MIT 

  

One of the potential hazards of this idea is that reduced search time might 

encourage more people to drive in central business districts. Pricing could be 

used as a mechanism for controlling demand, turning the rates higher when 

demand is high and lower if only a few vehicles search for parking. Hence, the 

real-time guidance system could also function as a free infrastructure for 

managing dynamic pricing of curb-side parking. Research by [Clinch, Kelly 

2003] and [Shoup 2005] has shown how sensitive drivers are even to small 

fluctuations in pricing. Based on their evidence, and similar precedents in 

congestion pricing in London, Singapore and L.A., dynamic pricing4 could offer 

a powerful tool for managing parking demand.  

 

Whether or not these assumptions would hold in the real world depends on many 

variables, both technological and human, that might prevent the successful 

adoption of real-time urban resource management. I shall hypothesize which 

human requirements a real-time guidance system needs to account for and how 

                                                 
4 Tolls that vary in real time in response to changing congestion levels. 
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different environmental conditions affect the performance of the system, using a 

simulation model to check the validity of my assumptions. 

 

 

How Goal Switching Enhances the Search 

 

“Occupants of vehicles searching for parking spaces are not doing ‘perceiving 

their environment’, they are doing ‘searching for a parking space’ [Watson 

1999].” With this quotation, Laurier has argued that the cognitive mechanisms at 

work and the attention attributed to parking in the driver’s mind are not the same 

as during normal driving [Laurier 2003]. Minsky talks about this phenomenon as 

“credit assignment” to different phenomena around us, depending on our current 

goals [Minsky, 2006]. When the goal of the driver is set to parking, then many 

senses that would normally be passive or doing other things, get mobilized to 

help with the search. Similarly, many environmental conditions, which would be 

overlooked by our senses in different actions, get assigned more “credit” if they 

are potentially useful for achieving the goal.  

 

If the higher level goal of a driver is to find a space for the car, then the sub-goals 

prescribing the particular kind of space that is acceptable, are constantly 

changing. The relationship between a satisfactory parking space for a driver and 

the options an environment has to offer is a dynamic one, frequently shifting, 

depending on many concurrently active variables. Amongst many influences, the 

time spent on searching is itself a crucial factor that affects our ambitions, usually 

making us revert to less desirable or more expensive goals if over extended. 

Laurier, who conducted an ethnographic study of parking-search in London, 

emphasized the importance of this continuously adaptive aspect of the search, by 

showing in his study how a driver’s goals constantly readjusted according to 

varying circumstances. 
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In Laurier’s study, Mms. Marge, one of the subjects, was a delivery driver who 

had heavy boxes to deliver to a hotel lobby. Setting out on her daily route, she 

was anxiously hoping to have good luck and find a parking spot right in front of 

the hotel. Approaching the destination, she passed by one spot, but as it looked 

too small and was located several blocks away from the hotel, she decided not to 

take it. As she passed the hotel, she learned that parking right in front it was 

impossible. Hence she had to reconsider her strategy and try the next best option. 

She readjusted her goal to find a parking space close to the hotel on the same 

street and set out for a new round. She ended up driving several circles around 

the block, each time looking more attentively for people leaving, or other cues to 

help her accomplish her goal. By now her fellow passenger, the ethnographer 

himself had also engaged in helping her observe the environment by looking at 

side streets. After a couple of unsuccessful rounds they happened to pass by the 

small and distant spot they noticed at the very beginning again. This time they 

decided to consider the option seriously.  Marge remarked that she was already 

late for her appointment at the hotel and estimated that further searching would 

extend her delay even more. They discussed whether the car would fit in the 

small space and not block the adjacent car’s passenger doors and decided to go 

ahead and try. This option didn’t seem unacceptable to them anymore, because 

they had learned that it would be hard to find anything better. They drove in, 

discovered that they didn’t block the other car’s doors and decided to park the 

car. The study illustrated how the driver’s goals became progressive less 

selective as time went by and no optimal conditions emerged.  

 

Time also determines the financial resources that a driver agrees to spend. For 

Marge, who was a delivery driver, and did not have a budget to spend on more 

expensive parking, a faster way of parking at a paid parking structure was already 

ruled out before she started her search. However, this is often times not the case. 

Many people spend a substantial amount of their income on parking fees. 

Needless to say, the ability to afford paid off-street parking does not imply that a 
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person will actually choose that costlier option. Instead, the option a person 

prefers is normally determined by a comparison of alternatives that an 

environment offers and the time that the person agrees to spend on searching. 

Hence, we could suggest that the choice of parking is dependent on the long term 

characteristics of the driver (financial resources, speed of life etc.), the 

momentary circumstances of a person (in a hurry, unwilling to search, heavy 

items to carry etc.), and the opportunities an environment offers. Certain drivers 

might always prefer to park at paid off-street spaces, while others only use paid 

parking if they are in a great hurry. Others, such as delivery drivers, might never 

use paid parking, even if they are in a great hurry. The exact behavioral 

psychology of drivers is yet impossible to predict with certainty, but studies 

demonstrate [Klinch and Kelly 2003], that on average, the amount a driver is 

willing to spend is inversely proportional to his available time. 

 

Consider the examples below that illustrate how parking searching time and 

willingness to spend interact in daily life. For instance, imagine a scenario of a 

wealthy person with a meeting in a city center. As it happens to be during work 

hours, she does not have much time to spend looking for parking. She first drives 

towards her destination. A few blocks away she starts to drive slower to make 

sure she does not miss any vacant cheap spots. After passing her destination and 

making a second tour around the block, she slows down the car even more, 

almost to walking speed, but the cars behind her form a queue and force her to 

move faster. After having searched for five minutes, she decides to drive to a 

nearby parking lot that charges 5$ / hour instead of 50cents, but which offers her 

a spot immediately.  

 

On another occasion, she might go shopping downtown on a Sunday afternoon. 

She might have a lot of spare time, and can therefore spend some of it searching 

for a cheap curb-side parking spot. The available spots she finds might be several 

blocks away from the stores she plans to go to, but even though she can afford a 
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closer space in a garage, she is not in a rush and will accept the walk, as well as 

the walk back with her shopping bags.  

 

A week later, she is in a terrible rush, afraid of missing a train. While driving to 

the train-station she thinks over all the options but decides that she has no time to 

waste. When arriving at the station, she hastily looks around for vacant parking 

spaces, but seeing none, she drives directly in front of the station and uses the 

valet service to park her car. She knows that after a fifteen minute search she 

might be able to find a cheap space that would cost her less than a dollar, but 

afraid of missing her train, she decides not to take the chances and agrees to pay 

8$ dollars for valet fees plus 10$ / hour at an off-street parking lot at the station. 

 

From the driver’s point of view, this capacity to use different strategies, adapting 

the goals along the way, is natural to anyone searching for parking. The actual 

choice of parking is not merely a clear outcome of a user’s goals, but a multi-

faceted product of the user’s ambitions, time availability, financial resources and 

the environment’s changing circumstances.  If one strategy fails, then instead of 

wasting any further time applying it, a driver can modify her goals and test a 

different strategy. When designing a technological addition to the system, it is 

important to allow for such adaptive flexibility.  

 

The list below outlines some common techniques and strategies we use when 

searching for street-parking today. The features in the list are mainly based on 

Laurier’s study of street-parking [Laurier 2003] and my own empirical 

reflections on the process.  
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Some Things We Do When Searching for Parking: 

 

 Senses: 

 

• Use the help of fellow passengers to strategize and observe. As the driver is 

forced to multitask between driving and searching, the person in the passenger 

seat or in the back can greatly increase the driver’s scope of observation. 

 

• Look for cues from other drivers on the street, who are also searching for 

parking, in order to understand their goals and learn from it. 

 

• Increase attention paid to surroundings and the sharpness of senses as time moves 

on and the goal is not achieved. For example, an initially passive passenger might 

actively engage in the search over time. 

 

• Observe pedestrians and other drivers on the street, who might be potentially 

leaving parking spaces. People carrying shopping bags, keys in hands, finishing 

conversations on the street, people not wearing overcoats in cold weather etc. are 

all signs that sharpen our attention and make us slow down or wait in anticipation 

for a potential soon to be vacated spot. 

 

• Observe further peripheral environmental signs like the amount of traffic in the 

general area. For instance the presence of road-blocks or construction works that 

can increase the amount of traffic around the destination, further inform us of the 

parking demand in the area and help us choose the appropriate goals.  
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• In addition to visual cues, sounds provide cues to enhance the search process. For 

example, an igniting car engine behind, can alarm the driver of a spot about to be 

vacated. 

 

Strategies:  

 

• Slow down the car, in order to improve the observation of the environment and 

potential for response. 

 

• If there happens to be a car ahead, also looking for parking, then slow down or 

pass that car, deliberately increase distance in order to not be the “second in line” 

and loose the first available spot to the car ahead. 

 

• Estimate the social situation of the road and categorize other drivers as 

competitors, non-competitors, polite, impolite, cheaters etc. Such categorization 

can influence the behavior of the driver, by switching to a more aggressive 

strategy for instance. 

 

• Use previous knowledge about the usual availability and demand of parking in a 

given area in order to set a strategy. For instance, knowledge about how difficult 

it might be to find parking in a specific area at a given time can help a driver to 

revert to a different search behavior or even change his plans to drive all 

together. 

 

• Different parking distances from the destination are acceptable depending on 

specific personal parameters e.g. heavy items to carry, children to walk with and 

other factors influencing the effort to walk. 

 

• Oftentimes a driver notices an available parking space that is either too small or 

inconveniently far away from the destination and therefore doesn’t accept it. 
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However, this undesirable option is nevertheless recorded in memory and its 

acceptance probability grows as the search continues fruitlessly. Drivers 

frequently return to the spot, which they knew about since the beginning of the 

search. This was also confirmed by Thompson’s model [Thompson 1996], where 

he confirmed that “search does not necessarily lead to better car parks being 

selected”.  

 

Considering the late origin of the parking problem, it is quite amazing how in the 

course of a 70-year evolution such complex skills, of which these are only a few, 

have been acquired by almost all drivers. Has it really been worth bothering to 

learn such skills? Yes, Figure 5 below shows some common financial benefits 

that cruising gives. 

 
 

Figure 5 Financial benefits of cruising (parking one hour at the curb). Source: "The 

High Cost of Free Parking" [Shoup 2005]. 
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Improving the Current Street-parking System 

 

Most of the strategies in the list above greatly enhance our capacity to efficiently 

find parking. The list revealed how complex a person’s parking search behavior 

can be, using various senses and strategies to help achieve the goal of finding a 

vacant space. It is not the current search behavior of drivers that causes 

congestion, on the contrary, the current search mechanisms significantly help to 

reduce cruising time. Then why is searching still so long?  

 

On the one hand, we might conclude that a maximum capacity of street parking 

has been achieved and the reason why we cruise is not because we don’t search 

well enough, but because there is simply nothing to find. Indeed, during 

experiments in Westwood, California, Donald Shoup’s analysis showed that “for 

every 100 curb spaces, seven cars are hunting for parking; that is, 107 cars want 

to park in 100 curb spaces, so seven cars must wait in the traffic flow.” [p. 353 

Shoup, 2005.]. In popular areas, especially during rush hours, demand surpasses 

supply exceedingly more than in this example of Westwood, California. Street 

parking is an illustration of a space market that is rarely in a condition of an 

economic demand and supply equilibrium, that is, a condition where the amount 

of parking spaces are matched with the amount of searchers in a perfect balance. 

I would like to argue that a moderate over demand in street-parking is in fact 

positive for the overall efficiency at the group level and that the individual search 

can still be optimized further. 

 

On a general level, street-parking parking simply exemplifies a fluctuating high 

demand condition that is also natural to other public uses of urban space. Bernard 

Landau, the principal architectural surveyor of the city of Paris, has argued 5 that 

optimal design of urban spaces, and here I mean not only functionally optimal, 

                                                 
5 Course in history of urbanism, Ecole d’Architecture de la Ville et des Territoires a 
Marne-la-Vallee, France. 
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but also optimal in relation to cultural and social requirements, cannot satisfy 

everyone, but has to satisfy a necessary majority of people. This has been 

intuitive to city designers throughout history. Similarly to parking, benches in a 

park or a plaza, outdoor recreation spaces, popular restaurants, bus stops and 

sidewalks witness constant fluctuations of high demand, and are traditionally 

designed to function coherently with a changing demand and supply. These 

spaces are dimensioned deliberately smaller than demand at peak conditions 

would require- there are often more people at a door of a restaurant than tables 

can accommodate. In a long run this pays off. A moderate over demand to use 

urban spaces creates a necessary density where spaces do not only function 

efficiently during short instances of extreme demand, but rather over time, during 

any hour of the day. What is this optimal balance? I believe that an urban space is 

optimally dimensioned if it is as large as necessary, but as small as possible. 

Public space, and especially parking, should not be dimensioned according to 

rush hour conditions, but rather according to different demand fluctuations over 

time. 

 

However, zoning laws for parking in this country seem to have forgotten the 

necessity to optimize the use of public urban space. Excessively large land use 

requirements are granted to parking, which degrade the quality of urban space, as 

we saw in the beginning of this Chapter. The trouble, as Shoup has pointed out, is 

that adding parking spots one by one passes almost unnoticed in cities until we 

perceive that parking has become the single largest land use in most American 

cities [Shoup and Menville  2005]. It is necessary and critical from the point of 

view of sustainability that planners design fewer parking spaces than satisfying 

demand during peak hours would require and optimize allocation instead of 

increasing supply. This is precisely where the current parking system could use 

an improvement. 
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Despite the use of skills we saw in the list above, the supply and demand of 

available parking spaces are not coordinated in the most efficient and sustainable 

manner. In a situation where the amount of cars searching for parking is low and 

the amount of available parking spots is equally low- a situation close to 

equilibrium- the filling rate of the available spots is small, it is difficult for the 

few searchers to find the few parking spots. Furthermore, in conditions of high 

demand, drivers do not find available parking spaces in a time-efficient manner. 

For instance, as will be shown, simulations with 6 parking spaces and 24 cars 

demonstrate that there are always a few spots unoccupied at all times.  

 

 
Figure 6 Low cost street-parking in popular areas is often filled to almost full 

capacity, making it difficult for drivers to find the remaining few hidden parking 
spaces. Beacon Hill, Boston. 

 

This leads me to suggest that the efficiency of the current street-parking system 

could be improved in two aspects: 
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1. By providing broader information to drivers, than is currently available 

to them in their immediate visual surroundings. 

 

2. By using combinatorial and probabilistic calculations  on a computer to 

enhance decision making with the available information. 

 

Let us expand these two claims. The first argument claims that the current search 

behavior could be rendered more efficient with a use of broader information. The 

skills we have seen thus far are useful for achieving certain parking goals. Most 

strategic parking information that is available to us today is obtained from our 

immediate visual and aural environment during the process of driving and 

searching in combination with information we have learned from the past. The 

list above describes some examples of using such information in order to achieve 

goals more efficiently. The goals that we set however are modified according to 

the information that is available to us. In other words, we can only set goals 

based on the information we are aware of. This leads me to suggest that we are 

not solving the goals inefficiently, but rather we might be solving the wrong 

goals. If drivers had better information of the overall parking situation, then they 

could apply similar tools for solving a better informed goal. Seen from a 

distance, the effectiveness of the current search behavior is only successful 

within a local context around the driver, generally limited by a person’s visual 

field. Many available options outside of this field remain unnoticed and 

underutilized. Due to the limited geographical dimensions of visual perception, 

drivers often fail to find the closest parking spot by virtue of chance. Hence, the 

long searching does not result from poor searching behavior, but rather the 

limited awareness of parking availability beyond the scope of sight. Due to the 

lack of such information, we have no capacity to assess the broader efficiency of 

our strategies.  
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The lack of wide-ranging coordinated information as the cause of wasteful 

searching and queuing becomes apparent at an aggregated city-wide level. As all 

drivers are limited by a similar local search technique, the higher level view of 

street parking is not a random sum of unpredictable individualistic behaviors, but 

shows some clear common patterns. For example Axhausen and Polak found in 

their experiments in UK and Germany that in the overall process from leaving 

the home to arriving at the destination, the average ratio between the time spent 

on driving to the destination area (access time) and the time spent on searching 

for a parking spot (search time) was roughly 2 to 1 [Axhausen, Polak 1991]. The 

ratio between access time and the additional time of walking from the parking 

spot to the destination was roughly 2.15: 1. Hence, of the total process, roughly a 

half was spent on driving, a quarter on searching and a quarter on walking. In 

areas of high demand, close to a third of total time was used for searching. These 

studies were done in Karlsruhe, Germany and Birmingham, Sutton and Coventry 

in UK. In larger cities like Boston, London or New York, where demand is much 

higher, the search can be far longer. Yet studies show [Shoup 2005] that even 

there the average search times are fairly constant. While depending on 

environmental variables, the balance between demand and supply, as well as 

cultural characteristics of drivers, many central districts have relatively stable 

search times for parking [ibid]. 

 

Figure 1 in the introduction indicated that these search times in CBDs have been 

roughly the same over an almost 80 year period (average 30%) since 1927. This 

is very interesting, because over this time the amount of cars per people in 

America has almost quadrupled (from 220 per 1000 people in 1935 to 800 per 

1000 people in 2005) [Shoup 2005].  How can searching times remain 

comparable while the potential demand for parking grows remarkably? One of 

the explanations to this phenomenon might be that the policy of street parking 

has remained virtually unchanged since its creation. Shoup pointed out that that 

taking inflation into account, the cost of metered street-parking, which was 
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initially started in Oklahoma City in 1935 with the charge of a nickel per hour, 

has not changed at all till 2004. “The main change in 70 years is that few meters 

now take nickels. In real terms however, the price of most curb parking hasn’t 

increased; adjusted for inflation, 5 cents in 1935 was worth 65 cents in 2004, less 

than the price of parking for an hour at many meters in 2004” [p. 381 ibid.]. The 

same price and policy directing the flux of parkers over 70 years might explain 

why a dynamic system like parking has reacted linearly over decades.  

 

Analogous to most complex systems, the behavior of drivers searching for street-

parking is influenced by the parameters and variables of their environment. 

Herbert Simon provided a comprehensive theory of the relationship between an 

individual and the environment, arguing that the majority of the constraints 

guiding a system to a given outcome are imposed by the external environment 

rather than isolated individual thinking [Simon 1996].  

 

His example of this idea is an ant walking on a beach. As ants follow relatively 

simple rules of how they should react to environmental stimuli, then more 

complex environments will make their behavior look more sophisticated. 

“Viewed as a geometric figure, the ant’s path is irregular, complex, hard to 

describe. But its complexity is really a complexity in the surface of the beach, not 

a complexity in the ant.” [p. 51, Simon 1996] Following this argument, the 

relative stability of searching times in street-parking can be caused by the stable 

characteristics of the pricing policy as well as the stable perceptive feedback that 

drivers have at their disposal for evaluating the success or failure of their 

strategies. 

 

Simon continues to suggest that “a human being can store away in memory a 

great furniture of information that can be evoked by appropriate stimuli. Hence I 

would like to view this information packed memory less as part of the organism 

than as part of the environment to witch it adapts” [p. 53 Ibid.]. Minsky has 
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elaborated Simon’s idea of environmental feedback as the basis of successful 

functionality of any artificial system, by explaining the importance of cognitive 

feedback that takes place inside the individual’s mind6. The variations in search 

behavior are not only determined by the external environmental stimuli, but also 

the internal states of a person’s mind (mood, ambition, habits, self-critics etc).  

This idea supports the evidence seen in Laurier’s ethnographic study of parking, 

where the driver gradually changed her goal along the way and finally chose a 

parking spot that she initially discarded. The reason why a specific parking spot 

was unacceptable at the beginning of the search, but did become acceptable after 

searching for a while, was caused by the external feedback from the environment 

as well as internal feedback of the driver, specifically her self critique of being 

late. As time passed, and the external environmental conditions remained 

unchanged (no new parking spaces occurred), the driver changed her goals from 

ideal to less ideal.  

 

Hence, the deviations in the behavior of cruising for street-parking are a 

combination of internal stimuli that can cause goal switching, and external 

stimuli offered by the surrounding environment. Like in most systems, it is 

natural for anyone in the parking system to be attracted to options of least effort 

and greatest self-interest. We choose the more comfortable or cheaper alternative 

offered by the environment. Though cruising behavior appears complex at an 

individual level, at an aggregate level cruising patterns appear fairly repetitive. 

To search a larger geographic area, a driver must constantly move around and 

scan the environment by applying his limited sight radius on successive streets 

until a vacant spot comes to view. Hence, cruising is the result of applying the 

currently possible search behavior within a given built environment according to 

the current pricing policy of street-parking. In the long run, the statistical 

constancy of cruising over the past decades might imply that a certain level of 

complexity of searching has stabilized and adapted to the unchanged price of 

                                                 
6 Society of Mind course at M.I.T. Spring, 2005. 
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street parking and feedback of the search. “An intelligent system’s adjustment to 

its outer environment (its substantive rationality) is limited by its ability, through 

knowledge and computation, to discover appropriate adaptive behavior (its 

procedural rationality).” [p. 25, Simon]. Unfortunately, the point at which the 

current parking system has stabilized is unacceptable because of its grave 

environmental impact. 

 

The second problem suggested above is that our current method of search in a 

condition of uncertainty might not necessarily lead us to the best possible 

solution with the given local information. Let us also expand this question of 

rational decision making in a situation of uncertainty in order to explore how 

digital computation might complement this process. 

 

Research on bounded rationality has unveiled interesting results in the recent 

years. I would specifically like to refer to the work by Daniel Kahneman on the 

topic [Kahneman, Slovic, Tversky, 1982]. In his 2002 economics Nobel Prize 

talk, Kahneman claimed that under conditions of uncertainty human decision 

making often arrives at solutions, which are not the best that could be computed 

with the given information. He argued that this is mainly caused by the fact that 

the value function of alternative decisions is defined by gains and losses, and not 

by steady states. This means that people base their decisions largely upon the 

immediately perceivable gains and losses that a given decision offers, and not on 

a slightly more computationally optimal calculation, that could also be derived 

from the same evidence. Here is an example he gave. A person A is shown two 

sets of silverware and asked to evaluate the price of each set. Set A is composed 

of 10 pieces of perfect quality. Set B contains the same 10 pieces of perfect 

quality, and in addition, three damaged pieces. How does a person assess the 

value of A and B?  

 

http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Daniel%20Kahneman
http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Paul%20Slovic
http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Amos%20Tversky


 39

Experiments have shown, that if both sets are shown to the subject together, then 

the vast majority of people assess that set B is more valuable than A. This is 

logically the optimally correct decision, as B contains all the elements of A, and 

just three additional damaged elements, which do not diminish the value of the 

10 remaining perfect pieces. However, if only one of the sets is shown to half of 

the people and the other set to the other half, then people who see A evaluate its 

value to be higher than people who see  B. It is easy to see the erroneous nature 

of this decision if we have already seen two sets, but why does it happen? 

Kahneman explains that people base their decisions on simplistically perceived 

averages derived from the information they are exposed to, instead of slightly 

more computational statistical averages, which requires the help of additions. If 

people see both sets of silverware, then they visually perceive that B is on the 

average more valuable than A, because it contains all elements of A and more. If 

people only see one set, however, then again they average the value, but this 

time, the pros and cons are averaged from within the given sample set itself. It 

follows that as B contains damaged elements, then the average value of each 

element in B is less than perfect. In case of set A, though the set is slightly 

smaller, each element has a perfect average value. People normally fail to see 

that instead of averaging the whole group in a single piece, the set B could be 

broken down into two groups, each containing 10 and 3 elements, which added 

together compose a higher value than the 10 elements alone.  

 

Kahneman has provided several other similar experiments [Kahneman, Slovic, 

Tversky, 1982], which demonstrate that in situations of limited information, 

people tend to use perceptive averaging, instead of additive averages. 

Kahneman’s work demonstrated that in many everyday situations of limited 

information we act irrationally and do not calculate in the most optimal way with 

the information given. Instead, we often arrive at non-optimal decisions due to a 

simpler perceptive calculation. In the search for street-parking, this might suggest 

that we search more based on what we perceive immediately, than based on more 

http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Daniel%20Kahneman
http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Daniel%20Kahneman
http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Paul%20Slovic
http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Amos%20Tversky
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general statistical calculations. For instance, we normally tend to pay most of our 

attention to vacant spots. Even though we pass numerous occupied spots, we 

rarely include them in our equations for finding a parking space. In many areas, 

parking periods are limited, for instance to one or two hours, hence the limited 

spaces have a frequent turnover. Using common sense knowledge of the types of 

parkers that might be using these spaces, we could compute the probability of 

one of these spaces vacating in a few minutes. A high probability result could 

advise us to wait for a spot to vacate and save us a longer trip to a more distant 

area. (I shall explain the idea of waiting in designated queuing spaces at the end 

of Chapter Three.) Though this is certainly done by some drivers, on an 

aggregate level we do not seem to account for such information that is not 

immediately apparent, but requires some statistical computation. That is, we do 

not assign much credit to such information, even though it could potentially lead 

us to a better search outcome. This is a very loose hypothesis and a great effort of 

additional experimental research is required to be able to claim any factual 

evidence. However, there seems to be a great potential to use computers for 

overcoming such decision errors that Kahneman outlines. Unlike people, 

computers are extremely efficient and fast for calculating optimal statistical 

decisions. Thinking along these lines aided me in the construction of the 

simulation models where the use of local information could be compared with the 

use of more general statistical information to determine which method yields 

more efficient search results.  

 

 

Benefits of a Real-Time Guidance System 

 

So far in this chapter I have discussed how the current parking system works at a 

personal level and what the consequent group impact of this system is like. From 
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here on I shall introduce the addition of real-time information to the current 

system and analyze the effects of this proposal.  

 

In light of a stabilized parking system, the use of real-time information sets a new 

paradigm for managing street-parking. Real-time information about the demand 

and supply of street-parking adds a new variable to the search behavior that 

enables drivers to achieve goals more efficiently.  

 

The idea that I am exploring is based on a proposal for the Zaragoza Digital Mile 

urban design studio ( MIT, fall 2005) and the subsequent Smart-Park project 

[Lee, Sevtsuk, Ratti 2006] that we are developing at the SENSEable City Lab at 

MIT.  

 

The system uses both environmental sensors and the user’s mobile 

communication device (e.g. cell phone, PDA, GPS) to help drivers conveniently 

locate parking spots relative to their position in real-time. One of the differences 

that I am proposing to the initial Smart Park idea, is that it does not necessarily 

require help from a telecommunications company to position users. Instead, real-

time positioning could be done inside a personal communication device itself, 

hence protecting a person’s location information from second parties. What is 

necessary for computing one’s location, is a map of the communication network 

and the current signal strength of available antennae. However, I shall try to 

demonstrate later how an aggregate sharing of personal location information can 

improve the efficiency of the search even further by providing drivers with 

information about other drivers competing for the same parking spaces.  The 

system also requires an online database to keep track of the environmental 

sensors and respond to user requests. 

 

Curb-side parking spaces in a downtown area would be interspersed with tiny 

sensors that could detect whether a car is parked in the space in front of it or 
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behind it.   The sensors would use a microcontroller with wireless capabilities to 

communicate with each other and communicate with the server.  They would be 

powered by a battery that recharges from solar energy cells that cover most of the 

sensor’s surface area.  A light on top of the sensor on the road side would 

indicate the status of the parking spot, such as “available,” “restricted,” “paid,” or 

“unpaid” to passing drivers.   

 

The user interacts with these devices with his cell phone, PDA or an in-car 

communication device, such as a GPS receiver.  While driving around the city, 

he can query an on-line database for vacant curb-side parking spaces.  Having 

determined its own geographic position in the network, the device can download 

the parking availability information from the server and offer the closest 

unoccupied parking space to the user.  Users can either reserve that space or 

simply approach it, hoping it will remain vacant while they drive to it. The 

communication device would then direct the user to parking by a displayed map 

or voice directions. Once the user is parked in a chosen spot, the sensor detects 

the vehicle’s presence and informs the server to take the spot off the availability 

list. In case of a reservation, the sensor also checks if the parked car corresponds 

to the reservation and then initiates the electronic payment count, at which point 

the e-ink on the ground indicates this status as a parking meter would. The idea is 

summarized in the following storyboard. 
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Figure 7 Illustration of the guidance system for street-parking. 

 

 

Compared to the current searching of street parking the potential advantages of 

this real-time guidance system are summarized in the points below. 

 

• Currently we rarely find the closest parking space, but rather pick the 

space we happen to stumble upon first. The real-time system would have 

an accurate overview of all vacant spaces of a neighborhood and is 

therefore able to indicate spaces that are within the shortest access 

distance from the driver or closest to the desired destination. 
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• We usually miss many available spots which are close to us, but not 

within our field of sight. The real-time system could extend our 

knowledge of available spaces to areas we cannot see or guess, such as 

spaces behind corners, further down the street, on an adjacent block etc. 

It could also warn drivers if no parking is currently available in the area 

in order to avoid unnecessary trips. 

 

• Currently drivers often snap away a parking spot in front of someone 

else, who has been searching for a longer period of time. For good or for 

bad, it is like cutting into a line. Accurate information about the 

competition for a given spot would allow the system to assess the 

chances of obtaining a spot and only offer a particular spot to the driver 

if he is surely capable of obtaining it. A reservation policy in the system 

could further help guarantee that searchers will not loose a spot to a 

newcomer. Reservations naturally help satisfy specific individual 

demands of drivers. 

 

• It is well known that long term parkers7 today consume most of the 

capacity of all on-street parking. Presently there is no efficient way of 

discouraging that from happening. Current parking meters, which impose 

a maximum time limit, have no way of prohibiting drivers from paying 

the cycle multiple times. This has in fact become so common, that “re-

feeding” the parking meter has become a popular verb in standard 

American English.  In addition, current parking meters charge at a 

constant rate, regardless of how long people stay parked. If the system 

could alter parking fees dynamically and keep track of the period of 

occupancy of a parking space in real-time, then the price per time could 

increase exponentially instead of linearly. Also, a priority of using the 

                                                 
7 People parking for several hours, often a whole day. 
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guidance information could be given to short-term parkers, with high 

penalties in case of violations. 

 

• Under-priced street-parking today is a major cause for cruising and 

excessively large parking requirements in zoning laws [Shoup 2005]. An 

intelligent management system could respond to demand by fair market 

prices in real-time, therefore balancing demand and reducing parking 

requirements. Analogous to economic markets, subsidized supply 

generally creates higher demand. For example, how much bigger would 

the city of London have to be to satisfy housing demands if housing were 

uniformly under priced, equivalent to prices in a small rural village? This 

is the case with under priced curb-parking today. 

 

These ideas and assumptions were tested in agent-based simulations, which gave 

approximate estimates of the benefits of the proposed real-time allocation 

strategies. The topic of the next chapter is to give a detailed overview of these 

simulation models. 
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Chapter Two 
 

The Simulation Approach 

 

In her book The Death and Life of Great American Cities, Jane Jacobs 

emphasized the importance of thinking about cities as organized complexity 

where discrete interrelated variables influence each other simultaneously, where 

players are many and solutions more complicated than simple formulas. 

 

Jane Jacobs paraphrasing W. Weaver states: “Cities happen to be problems in 

organized complexity, like the life sciences. They present “situations, in which a 

half-dozen or even several dozen quantities are all varying simultaneously and in 

subtly interconnected ways.”  Cities again, like the life sciences, do not exhibit 

one problem in organized complexity, which if understood explains all. They can 

be analyzed into many such problems or segments which, as in the case of the 

life sciences, are also related to one another. The variables are many, but they are 

not helter-skelter; they are interrelated into an organic whole.” [p.433 The Death 

and Life of Great American Cities, Jacobs 1961] 

 

During the peak of modernist planning, she warned that cities do not embody 

disorganized complexity, where order is only to be found by reducing everything 

to averages and probabilities. This is an important aspect of this thesis: rather 

than using pure mathematical probability to prove certain benefits or failures of 

one real-time system over another, I deliberately use multi-agent simulation 

models, which not only tell us about the broader behavioral patterns of a dynamic 

system, but arrive there by visually modeling the behavior of each specific 

member of the system, the sum of which creates the whole. Hence, simulation 
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modeling is a way to quantitatively test some of the assumptions made at the end 

of the last chapter. I believe that this technique provides more information than a 

clean mathematical proof, precisely because it doesn’t rule out individual 

differences and because it works as well with very few agents as it does with 

hundreds or thousands of agents. This is the opposite of a probabilistic approach, 

where statistics only get better when the group of study is larger and periodic 

changes over time are not accounted for. 

 

Urban simulation is a growing research area and many thorough studies have 

been conducted for modeling urban growth [Batty 2005], response to policy 

change [Flaxman 2002] and social networks [Metcalf 2005]. UrbanSim software 

(developed at the University of Washington) and ILUTE software (developed at 

the University of Toronto) are examples of large-scale urban simulators designed 

for use by urban planners. The Santa Fe Institute has for years been pioneering 

scientific advancement of agent-based computation in economics and social 

systems. City simulators are generally agent-based simulations with explicit 

representations for land use and transportation. The simulation environment 

primarily used in this thesis, however, is Star Logo8. It is not specifically 

designed for urban applications, but had great advantages due to its open 

framework of coding possibilities, which allowed modifying agent 

communication in aspects discussed at the end of this section.  

 

The two principal computational concepts used in most simulation environments 

are Cellular Automata and Agent-Based modeling. I shall give a very brief 

description of the key characteristics of those two techniques in order to show 

how they can be used for street-parking simulation.  

 

                                                 
8 StarLogo is a specialized version of the Logo programming language. It is developed at 
Media Laboratory and Teacher Education Program, MIT, Cambridge, Massachusetts, 
with support from the National Science Foundation and the LEGO group. 

http://www.media.mit.edu/
http://education.mit.edu/
http://www.mit.edu/
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The origins of both Cellular Automata (CA) and Agent-based models are closely 

related to the work of John von Neumann and John Conway. Before cellular 

automata9 obtained this name, it was a concept that von Neumann proposed as a 

theoretical machine with self-replicating capacity. The idea initially consisted of 

cells on grid paper, with specific rules and purposes for communicating with 

each other. The cells mimicked very simple intelligent beings and their behavior 

was determined by a few internal rules of interaction and by neighboring cells 

that interact with it.  Conway took the idea forward in his Game of Life10, where 

he implemented the idea in a virtual context on a computer. As the interaction 

between cells is largely determined by the rules that a programmer ascribes to the 

cells, CA can simulate selected real-world situations of localized simplicity, but 

overall complexity. 

 

CA consists of an infinite field of equally sized cells, that can all have a finite 

number of states. Each cell is surrounded by a neighborhood of cells, which are 

commonly described as the Moore or the Van Neumann neighborhoods, 

depending if diagonal neighbors are considered. Hence, each cell has eight 

neighbors in a Moore neighborhood and four neighbors in a von Neumann 

neighborhood. A communication signal that travels across a CA field will be 

passed from each affected cell to its neighborhood, therefore changing the state 

of adjacent cells. Though there is potentially an infinite number of states, cells 

can only communicate with other cells within their immediate neighborhoods.  

 

There are surprisingly many processes in nature that follow the principles of 

cellular automata. From the diffusion of particles to the societies of insects, 

communication happens from one member of the system to another, resulting in 

complex orders of dynamic systems. It is commonly believed that the fairly 

sophisticated societal structures in ant colonies are determined by very simple 
                                                 

9 A detailed description can be found in the New Kind of Science [Stephen Wolfram, 
Wolfram Media 2002] and on the Wikipedia on-line encyclopedia. 
10 First published in the October 1970 issue of Scientific American. 

http://en.wikipedia.org/wiki/1970
http://en.wikipedia.org/wiki/Scientific_American
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rules that ants follow without having any knowledge of what higher level 

structures they are actually part of11. Similarly, a flock of birds flying in a neat 

triangular shape or a flock of fish swimming in groups have no higher level 

knowledge of how to organize themselves in neat shapes. Instead the shape is an 

emergent result of self-organization, where birds or fish only know what position 

to take according to each other. Amongst humans, oral communications also 

frequently follows diffusion patterns, similar to CA. Hence, CA is a suitable 

method for analyzing systems where communication flows continuously from a 

locus to its neighboring loci and so on. Cellular automata is not suitable for 

processes, however where communication does not happen in a physically 

proximate manner. 

 

Agent based-modeling is directly related to the concepts of cellular automata. 

Perhaps the main difference in agent-based modeling is that in addition to fixed 

cells, the concept uses dynamically interacting rule based agents, which can 

move around on top of the cell-grid. The agents are representations of small 

programs, which have well-defined rules of interaction. However, agents not 

only interact with the background cells, but also with each other. Hence the 

agents are intelligent and purposeful and they reside in space and time. The 

modeler ascribes the rules of interaction from real-world assumptions he thinks 

as most relevant to the processes he wants to model, and can then study how a 

phenomenon emerges from the agent’s interaction.  Agent- based models are 

very useful for studying how a certain system reacts to external and internal 

forces and how/if a new equilibrium is established after a change. Therefore, 

agent-based modeling can have a wide range of applications in urban planning to 

analyze the impacts of both internal changes in people’s behaviors and external 

changes in physical building or legal policy interventions. 

 

                                                 
11 For a great description, refer to Turtles, Termites and Traffic Jams by Mitchel Resnick, 
MIT Press 1994. 
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The simulations used in this thesis use an agent based modeling approach. Agent 

based modeling can fairly precisely characterize the formation and movement of 

traffic jams that mostly form from two simple principles amongst agents: 

“decelerate if there is a car in front of you” and “accelerate up until the speed-

limit if there is nobody ahead”. The conventional search process for street-

parking can be analogously modeled through an agent based model.  Drivers 

looking for parking spaces can be symbolized as agents. Static cells in the 

background can indicate parking spaces. The physical distance between a driver 

and a parking space that is within the driver’s visual reach, can be represented by 

a neighborhood of CA cells around a driver. Should a space appear in a 

neighborhood, an agent can approach and seize it akin to the way a driver would 

seize a parking space that comes in sight in the real-world. 

 

However, for modeling real-time communication networks of a contemporary 

city, the traditional method of communication between agents and cells, where 

messaging happens only between immediate neighbors, is insufficient.  In the 

real-world, the use of telecommunication channels, such as telephones, faxes, 

cellular-phones, radio, television, satellites etc, have the capacity to transmit 

information over long distances without involving intermediate places and 

channels. This capacity for distant communication is generally not part of cellular 

automata or agent based modeling techniques.  

 

For instance, before going out to a retailer, a person can telephone the shop to 

inquire if the product he is looking for is available. If it is, he might set out for 

the trip, if not, he might call other stores before making a move. The information 

that determines the action is acquired distantly. Similarly, on-line databases of 

public transportation and traffic congestion can tell a person the real-time traffic 

situation on major highways and streets (e.g. Los Angeles City Traffic Info, MIT 
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Shuttle Track)12, hence influencing the choice and mode of the route the person 

might take.  Simple electromagnetic signals can encrypt messages in binary form 

and almost anyone connected to the telecommunication network can access them 

by using a device that decrypts the message back into text format. What is most 

significant in an urban context is that messages can travel through 

electromagnetic waves in the air, connecting cars, phones, computers and 

wristwatches to the rest of the network without any apparent physical 

connections. If the amount of portable communication technology continues to 

spread at the current rate13, then an increasing amount of urban decision making 

could happen with the help of distant sources. All this facilitates distant 

communication but complicates urban modeling through classical cellular 

automata. 

 

In the models used in this thesis, I am proposing a way to make real-time distant 

information available to agents that represent cars. In the following models the 

ability to acquire and report information distantly also works in parallel with 

local cellular automata communication. The key additional communication 

feature to traditional cellular automata communication is a dynamic real-time list 

in the form of a global variable that reports the availability of a particular 

resource to all agents regardless of their position. At the same time, the list is also 

continuously updated by all the agents themselves, based on their interactions in 

the model. If a cell representing a parking space is occupied, then the agent 

occupying that cell reports to the system that it has absorbed the particular spot 

and this spot is no longer announced as a vacant parking space to other agents. 

This form of distant communication through a list of information that is updated 

in real-time allows me to symbolize agents the way people in the real-world 

would acquire distant information through their mobile communication devices. 

                                                 
12 http://trafficinfo.lacity.org/ ; http://shuttletrack.mit.edu 
13 In 2005 there were 194,479,364 cellular phones in the U.S., which is equal to 0.65 cell phones 
per person. In 2003 there were 0.54 cell phones per person. (CIA Wold Factbook, 2005) If 
continued at this rate, everyone would have a cell-phone in about seven years from now. 

http://trafficinfo.lacity.org/


 53

The Rules of the Simulation 

 

A very life-true performance of the model is extremely hard to capture. Like all 

good simulation models, even well-known parking choice models [Thompson, 

Richardson 1996] take only a fraction of real-life variables into account. Despite 

the simplifications however, a carefully crafted simulation model can tell us a lot 

about real-life phenomena. The important task for studying a specific system in a 

simulation model is to isolate the critical variables from the less critical ones. At 

one extreme, one could technically model all possible phenomena that might 

directly or remotely influence a system, but people of long experience [Minsky, 

2006] argue that not all such variables are important for understanding the higher 

level reactions of the system studied. If one chose the path of carefully modeling 

all possible variables, then one would be doomed to replicating reality and never 

able to study higher level alternative scenarios of reality.  In the opposite 

extreme, the assumptions made in a simulation might simplify too much the 

reality and hence provide unreasonable evidence. I think that a good simulation 

should neither attempt to mimic reality nor make groundless assumptions, but 

rather analyze a carefully chosen set of underlying dynamics influencing reality.  

 

We could look at street-parking as a structure involving multiple participants, and 

a physical environment where the system operates. The overall behavior of the 

street-parking system is then a combination of three categories of variables: 1) 

the physical and legal environment that drivers operate in 2) a driver’s individual 

behavior 3) dynamics of group behavior (Fig. 8). 
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Figure 8 The three categories of  variables in the street-parking system. 

 

This distinction between group behavior and individual behavior is similar to the 

division between microeconomics and macroeconomics. In order to study 

performance, it is crucial to distinguish which is our viewpoint of evaluation. 

Features that might provide great benefit to individual behavior might at the same 

time jeopardize group behavior and vice versa. This, in fact, is one of the central 

outcomes of this thesis and I shall come back to this idea in the concluding 

chapter. For now, I would like to emphasize that the simulations primarily 

experiment with improving the performance of group behavior (reducing the 

overall search time of cars) by introducing a behavioral modification (the 

guidance system) at the individual level.  

 

To a limited extent, I shall also experiment with modifying the physical and legal 

environment in which street-parking operates. The environmental modifications 

that I am interested in are 1) an introduction of dynamic pricing as part of the 

legal parking policy, 2) a physical modification in the amount of parking spaces a 

neighborhood should have and 3) alterations in the traffic layout to accommodate 

queuing cars.  

 

As a result of intervening in those two categories of the search for parking (the 

Individual Behavior and the Environment), I shall study the resulting search time 
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efficiency for the group. The main question that I am trying to address with these 

simulations is: What are the critical conditions, under which one strategy 

performs more efficiently (i.e. reducing search-times) than another? 

 

The methodology I chose was to intuitively build a simple search model and 

evaluate how it works. Based on the first strategy, I devised a different strategy 

and compared the search efficiency of the two models. Then followed the third 

and the forth and so on. Hence, I started with relatively simple simulations of the 

existing parking system and gradually built up complexity by adding variables 

one step at a time.  

 

What seems natural in everyday life, actually requires a vast amount of common 

sense and is therefore exceedingly hard to capture in a computer program. 

Computers are efficient processors of information, capable of finding optimal 

solutions rather quickly. However, the sensing capacity of humans is far greater 

than that of computers. Thus, computers can potentially compete faster in tedious 

calculations, but they currently have very limited perceptive capacity compared 

to people, which strongly undermines any definitive assumption of the 

superiority of a computational system over human decision making. Chess 

playing programs are a sufficient illustration of this- players of great experience 

can still occasionally defeat any computer programs. Many have experienced the 

inferiority of a modern computer in a GPS navigation system in a car, providing 

wrong information, instructing too much or not instructing enough. It would be 

incongruous to propose that everyone should adopt a computational guidance 

system. In order to avoid common sense conflicts, the application of the real-time 

parking guidance system should be complementary to the existing method of 

parking search and not replace it. Compatibility with traditional ways of finding 

parking and downward compatibility towards a simpler technological system are 

important conditions in order not jeopardize the functioning of the existing 

cognitive processes. The guidance system ought to only add beneficial strategies 
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that can increase an individual’s search capacity and not take away the existing 

ones.  

 

In addition, for most people, the psychological barrier and the learning curve of a 

new technology can be diminished, if previous habitual methods are preserved in 

parallel with a new technology14. Whether or not to use the system should be 

decided by individuals and not imposed by law. However, I shall try to show that 

some aspects of the proposed system provide great time and financial benefits to 

individual users, which could themselves provide enough of an incentive for 

users to join the system.  

 

The next section will first explain some general rules that all of my parking 

models follow. Each distinct model also has some uniquely specific rules, which 

are explained further below under appropriate headings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
14 This has been elegantly demonstrated by [Mackay, W.E. 2000] and [Samad, Weyrauch 2000] 
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General Rules 

 

 
Figure 9 Graphical user interface of the Star Logo simulation model 

 
 

First, a chosen number of cars (see the “number-of-cars” slider in the interface 

window) is created and dispersed randomly on the black patches of the screen, 

which represent the driving lanes of the road. The cars are divided into 4 

categories: 1) “living” 2) “working” 3) “visiting1” and 4)”visiting2”, which 

represent the main kinds of drivers in a real-life neighborhood, depending if they 

live, work or visit a neighborhood. The four categories differ by duration that 

each member spends in a parking-space at a time. The times chosen are the 

following: 48 seconds for “living”, 32 seconds for “working”, 2 seconds for 

“visiting1” and 8 seconds for “visiting2”. These times are proportionally set to 
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match the parking durations that the main kinds of drivers normally use (12h for 

“living”, 8h for “working”, 2h and ½h for brief visitors). I chose the values based 

on a consultation with urban transportation specialists at MIT15. I tried to 

estimate values that would correspond to the commonly known classes of drivers 

in the real-world. I estimated that 20% of cars belong to people who live in the 

neighborhood, 30% to workers, 30% to visitors and 20% to brief visitors. 

 

              
Figure 10 Layout of the street-network. In the model, cars can "wrap" out of the 

picture on one side and re-enter from the opposite side, creating an infinite torus 

shaped topological continuum. 

 

When a car is in “Drive” mode and arrives at an intersection, it can either go 

straight, take a right turn or a left turn. In the Traditional parking simulator, the 

decision of turning right, left or continuing straight is a random one and in a 

simplified way, it simulates how the search for parking works if we do not know 

where vacant spots are located. We shall see later, in the case of “Intel” models, 

that these intersection decisions are what guide a car to the closest parking spot, 

if cars know such information. When a car arrives at the end of the screen it will 

re-enter from the opposite side of the screen, performing a “wrap”. This is 

equivalent to using the street grid as a topological torus, where one can never 

drive out of the scene.  Hence, instead of introducing new incoming cars from 

outside the scene, the same cars illustrate the searching and thoroughfare traffic 

in a repetitive sequence. The number of cars in a given simulation is constant at 

                                                 
15 Consultation with Mikel Murga and Chrisopher Zegras. 
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all times. The cars are also programmed to consider each others presence- they 

have to slow down if a car is directly ahead of them. Accordingly, they can speed 

up if there is no-one ahead until they reach the speed-limit. If the “look-ahead” 

slider is set to 2 instead of 1, then cars will decelerate according to two cars 

ahead. The “speedup” and “slowdown” sliders control how quickly a car 

accelerates or decelerates. 

 

An output monitor on the screen counts the average number of steps to find 

parking for all searching cars. This value is recorded at every iteration and also 

stored in memory for later analysis. The plot window at the bottom of the screen 

graphs this average number of steps. 

 

Traditional Parking Search Model 

 
In the case of Traditional parking, once the drivers have been assigned to a 

certain group, they start driving and looking for a parking spot.  The procedure16 

calls each car to first find a parking spot. If there is no parking spot next to the 

car, the car will keep driving until it finds a vacant spot right next to itself and 

parks there. Once a car has found a spot, it will stay there for a time period that is 

characteristic to its category. Once pulled out of parking, a car will drive around 

for a chosen time-period until it starts looking for a parking spot again. This time 

period is determined by a slider on the screen named “parking-interval.” By 

default the interval is set to 36 units, which allows cars to randomly drive 

                                                 
16 The Source Codes to all the models can be found in the Appendix and at 
http://web.mit.edu/asevtsuk/www/thesis 
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sufficiently far away from the previous spot. Modifying this variable will have a 

direct impact on the availability of parking spots: the smaller the parking-

interval, the more often every car starts looking for parking again, the bigger the 

demand.  

 

 

The initial model is set to have 6 available parking places (white patches), but 

different quantities were tested. The default amount of cars is 6 or 24, generating 

a demand that is either equal to or four times greater than supply. 

 

The simplified pseudo code of an agent’s procedures in this model looks like the 

following: 

 
Repeat Infinitely[ 

Park[ 

  Turn the color of the agent to yellow 

  Repeat until you find parking[ 

If there is a vacant spot next to you, then park, else 

make a step forward] 

if you are at an intersection[ 

choose to go right, straight or left randomly] 

If parking was satisfied, turn color back to red] 

Drive without parking for X period] 

 End 

 

Intel Parking Search Models 

 

The four distinct intelligent parking simulations that were tested are named 

Intel_1, Intel_3, Intel_5 and Intel_7. Their particular differences are described in 

the following section.  
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By an “intelligent” parking model, I refer to the real-time guidance scenario, 

where agents have access to additional information that helps them find the 

closest curb space. As I noted in the previous chapter, the key feature that allows 

agents to have intelligent knowledge in choosing the closest parking spot, is a list 

of all vacant parking spaces, which all agents can monitor at all times. This list 

shows the X and Y coordinates of all white patches (parking spaces), which have 

no agents occupying them. This list (called "aa")is continuously updated at 0.5 

second intervals, and saved as a global variable. "Aa" is not structured in any 

significant order, its elements are added and deleted as vacant spots happen to 

appear or disappear.  

 

Unlike the traditional parking simulation, cars in intelligent simulations do not 

make random decisions at intersections, looking for any available parking spots. 

Instead, before starting a search, they evaluate where the closest vacant spot lies 

and then start heading towards it. To evaluate the closest spot, an agent sums the 

horizontal distance and the vertical distance from its own position to each spot in 

the “aa” list one by one, memorizes the shortest option, and chooses the closest 

spot as its destination. If the spot is in the opposite direction than the agent is 

heading towards, then a length of ½ of the block perimeter is added to the 

distance, because the agent is first forced to drive around the block before 

heading towards the spot. As the following descriptions show, this parking 

guidance information is used differently in the four models. However, the way a 

car orients itself towards a chosen spot is common in all three: if the chosen spot 

lies ahead of the agent on the same street (along an orthogonal axis- up, down, 

left or right) then it keeps moving straight until it reaches the spot and then parks 

on either the right or left side of the road. If the agent is moving towards the spot, 

but the spot is in nearby blocks in the left or right side sectors (seen from an 

intersection), then an agent turns left or right accordingly. If the agent is moving 

further away from the spot, then it takes a left or right turn at the first possible 

intersection depending on which side the destination spot is. These simple rules 
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allow cars to take the shortest possible route to their chosen spot in the given 

traffic grid. Similarly as in the simulation of existing parking, if cars on the edges 

of the screen "wrap" around and re-enter from the opposite side, then the same 

rules continue to apply, even though the spot that was passed may now appear 

ahead of the car. 

 

Intel_ 1 Parking Search Model 

 
In the Intel_1 strategy, when agents enter the parking cycle and start looking for 

a vacant parking space, then they first assess which spot in the “aa” list is closest 

to them. Once the closest spot is chosen, the agent makes a step towards that spot 

along the shortest calculated path. The size of the step is the same as the size of 

an agent as illustrated in the interface above. (Each iteration all agents can move 

only one step.) At the beginning of the next step, the agent calculates the closest 

available spot again, and if the same spot appears closest, then the agent 

continues its way towards that spot. However, if that spot appears to have been 

taken by another agent or if another spot that is closer has been vacated in the 

meantime, then the agent will change its destination to the newer nearest option. 

Thus, if along the way of driving towards a specific destination, an agent 

encounters another occasional vacant space, then it is allowed to immediately 

occupy that space, despite the fact that some other agent might have that space as 

a destination and might be driving towards it. The agents who loose a destination 

in such a manner will re-evaluate their destinations at the following step and 

choose a new destination. Hence agents have a real-time knowledge of where 

vacant spots lie.  
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If an agent reaches its destination and the destination is still unoccupied, then the 

agent parks there for the time period specified by its class (living, working, 

visiting, visiting2).If no vacant spots are available in the aa list, then agents roam 

around randomly (taking random decisions at intersection points whether to go 

straight, left or right). This procedure is repeated at every step. 

 

The simplified pseudo code of an agent’s procedures in this model resembles the 

following: 

 
Repeat Infinitely[ 

Park[ 

  Turn the color of the agent to yellow 

  Repeat until you find parking[ 

Find the closest parking space from the “aa” list, 

memorize it as a destination 

If there is a vacant spot next to you, then park, else 

make a step towards the chosen spot] 

If parking was satisfied, turn color back to red] 

Drive without parking for X period] 

 End 

  

Intel_3 Parking Search Model 

 
The Intel_ 3 system differs from the previous model primarily by its introduction 

of a policy of reservations. A reservation restricts random passers-by from 

parking at that space. Technically, in the model this means that a virtual 

reservation agent is created at the chosen destination, which keeps other cars 
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from being able to use that space for parking while the agent who made the 

reservation is driving to it. In this model, before agents drive off towards a 

parking spot, they again consult the closest option from the “aa” list. The agent’s 

manipulation of the “aa” list, however, differs significantly from the previous 

model. This is due to the condition, that reservations have to be mutually 

exclusive. That is, the same reservation should not be given to several cars. 

Hence, when an agent first queries the “aa” list, it needs to check if the list is 

available for consulting. If not, then it waits until the list becomes available. 

Once the list is available, then the agent blocks the list from other agents’ access 

and then checks if there are any vacant parking spaces available in the list. After 

choosing an available spot, or choosing nothing if the list is empty, the agent 

saves changes to the list and unblocks it for others to use. This is similar to the 

way on-line shops with multiple simultaneous clients function. The sequence of 

steps a computer makes for a buyer is the following:  

 

1) Check if the list of goods is available  

2) Wait until the list of goods is available  

3) Access the list of goods and lock it from others  

4) Check if there is anything to buy from the goods  

5) Perform a purchase and exit the list or simply exit the list 

6) Save the changes to the list of goods  

7) Unlock the list of goods for others to use.  

 

These steps are necessary in a real-time market to ensure that a single good is not 

sold to many customers.  

 

If an agent finds vacant spots in the list, then it chooses the closest spot as its 

destination in the same way as in the previous model. Unlike Intel_1, agents here 

do not re-evaluate their destinations at every step; they keep the same destination 

until they park. In addition, it can also put a “reservation” on that spot. Reserving 
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the spot, the agent asks the “aa” list to eliminate that spot from being offered as a 

vacant space to other agents. During the approach, the agent who made the 

reservation uses a verification procedure at every parking space along the way to 

check whether the space corresponds to its reservation. Only if a match is found 

between the reserved spot and the reserver, can the agent park at the spot. 

However, if the agent happens to pass another unoccupied space along the way to 

its destination, which does not have a reservation on it, then it is also allowed to 

occupy that space. In this case, the agent gives up its reservation at its initial 

destination, which then is put back on the “aa” list for everyone to use.  

 

The simplified pseudo code of an agent’s procedures in this model looks like the 

following: 

 
Repeat Infinitely[ 

Park[ 

  Turn the color of the agent to yellow 

  Wait until the “aa” list becomes available 

  lock the “aa” list 

Find a parking space from the “aa” list 

Eliminate the chosen space from the “aa” list or exit 

if the list is empty. 

Unlock the “aa” list 

 

Repeat until you find parking[ 

If there is a vacant and unreserved spot next to you, 

then park, and if you had a reservation, then cancel 

it. Else make a step towards your reserved spot. 

If no reservation could be made, make a random 

decision on the next intersection and then try to find 

a vacant space from the “aa” list again] 

 

If parking was satisfied [ 

Turn color back to red 
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Drive without parking for X period] 

 End 

 

Intel_5 Parking Search Model 

 
The Intel_5 model tries to unify strategies of both Intel_1 and Intel_3. Similar to 

Intel_1, agents are exposed to the real-time list of all available spaces at every 

step of the search. The model also tries to take advantage of the mutually 

exclusive allocation policy of Intel_3- it tries to avoid the allocation of one space 

to several cars. This is achieved, however, without a reservation policy.  

 

In addition to the real-time vacancy list that Intel_1 used, agents in Intel_5 have 

access to significantly better information about the traffic situation. Namely, 

when an agent consults the real-time vacancy list, then it does not directly choose 

the closest target space and start driving towards it, but also evaluates if any other 

agents have the same destination, and if so, how far they are from that 

destination. Only if the agent is closest to the target spot among all competitors, 

will it start driving towards that spot.  

 

If not, then it will try the next closest spot in the “aa” list and do the same 

evaluation again. If necessary, then this can continue until all the spots in the list 

have been tested. If an agent at an intersection is not the closest competitor to any 

spot, then it will make a random decision and continue checking the list at the 

next step. This evaluation procedure is repeated at every step. 
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In case of a situation where a newly arrived searcher might appear closer to a 

parking space that an agent had calculated for its destination at a previous step, 

then the closer newcomer has priority over the space. This is because no 

reservations are used. However, as soon a new searcher appears in the scene and 

impacts the allocation solution of the previous scene, then all agents recalculate 

their destinations at once, without any further driving towards their last goals. 

Agents, whose targets haven’t attracted any closer competitors, will continue to 

drive towards their previous goals as planned.  

 

The simplified pseudo code of Intel_5 resembles the following. 

 

 
Repeat Infinitely[ 

Park[ 

  Turn the color of the agent to yellow 

  Repeat until you find parking[ 

Find the closest parking space from the “aa” list, 

check if any other agents have the same target and 

check how far the competitors are from the target. 

If you are the closest of all competitors, then make a 

step towards the chosen spot. If not, try the second 

closest spot from the “aa” list. If necessary, repeat 

this until all elements of the “aa” list are 

exhausted. If you are at an intersection and are not 

closest to any spots or if “aa” is empty, take a 

random decision] 

If there is a vacant spot next to you, then park 

If parking was satisfied, turn color back to red] 

Drive without parking for X period] 

 End 
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Similar to all previous models, agents are also able to park at any occasionally 

vacated closer spaces along the way to their target, should such spaces appear. If 

the real-time vacancy list appears empty, then agents at intersections make a 

random decision and query the list again at the next step. 

 

 

Intel_7 Parking Search Model 

 
Lastly, the Intel_7 search model introduces a small, but conceptually significant 

addition to the Intel_5 model. In situations where supply of parking spaces is 

large enough to satisfy all demanding cars, Intel_7 functions identically to 

Intel_5. The additional feature it introduces appears useful only in a case of over 

demand.  

 

Instead of repeating most of the Intel_5 procedure above, let’s assume that 

Intel_7 follows the exact same steps until a situation appears where the searching 

agent is not the closest competitor to any available spot in the scene or when the 

vacancy list simply appears empty. We saw in all 3 previous Intel models that in 

such a case agents at traffic intersections took a momentary random decision and 

checked the vacancy list again at the following step. However, this is certainly 

not the way drivers would react in reality. Instead, drivers use various techniques 

for guessing where the potential vacant spots might appear. The better the 

experience or information that a driver can use in the face of such uncertainty, 

the better the chances for taking a tactical decision. If no clues from the 

environment or prior experience offer certainty, then people could choose 
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probabilistically. In a similar manner, the basic idea of Intel_7 is that as long as 

there are vacant spots available, agents should cooperatively allocate them 

between each other, just like in Intel_5. However, if no vacant spots are 

available, then agents should be able to guess intelligently, where to go searching 

with probability, instead of roaming randomly. 

 

In order to achieve this, accurate information about the current occupancies of all 

parking spots have to be acquired from the environment. Hence, I propose that 

the parking sensors that were introduced in the last chapter, embedded in asphalt 

between two parking spots, also record the duration of stay of each car that 

occupies them. This information is collected in a second real-time list called “bb” 

and fed back to the server for probabilistic analysis of upcoming vacancies. 

“”BB” is a global variable similar to “AA”, it contains the X and Y coordinates 

of every occupied space, available for all agents in the scene to consult at any 

time. 

 

As the program can keep track of the parking duration of occupied spaces, then a 

probability of an occupied space freeing up can be calculated. I have been using 

4 classes of cars: living, working, visiting, visiting2. They differ by the time they 

spend on a parking spot ( "living" cars park 48 seconds, "working" 32 sec, 

"visiting" 8 sec, and "visiting2" 2 sec). 20% of all cars are living, 30% working, 

30% visiting and 20% visiting2.  These were chosen to roughly correspond to 

different classes of real-life drivers. It follows that if a spot is occupied, then the 

probability that the owner of  the car belongs to one of the groups is: 

 

"living group" - 0.2 

"working" - 0.3 

"visiting" – 0.3 

"visiting2"- 0.2 
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A timer records the time of occupancy of each parking space in seconds. 

If the timer ( T ) on an occupied spot is 0 < T < 2, then the chances that the spot 

vacates in less than or equal to 2 second is 0.2. 

If the timer ( T ) on an occupied spot is 2 < T < 8, then the chances that the spot 

vacates in less than or equal to 6 seconds is 0.375. 

If the timer ( T ) on an occupied spot is 8 < T < 32, then the chances that the spot 

vacates in less than or equal to 24 second is 0.6. 

If the timer ( T ) on an occupied spot is 32 < T < 48, then the chances that the 

spot vacates in less than or equal to 16 second is 1 (100%). 

 

To choose which spot to go to, the timer T is weighed according to the distance 

of the given spot from the driver. If a vacant spot is 25 steps away from the car, 

then the value of that spot is still 1 because the agent has already determined that 

it is the closest in the competition for that spot, and the spot is assumed to be 

vacant until this agent arrives there. Hence, vacant spots always have the highest 

value (1). 

 

However, if there are currently no available spots, then instead of roaming 

randomly, an agent can guess which way to go with probability. If an occupied 

spot is 25 steps away from the car, then the agent first has to query what the timer 

T on that parking spot shows. If the timer is 8 < T < 32, then the value of that 

spot is 0.6 / abs(25 - 24) = 0.6. That is the probability of it vacating in 24 seconds 

divided by absolute value of the distance minus the time till vacating. Ideally the 

driver would like that spot to vacate just a little less than in 25 steps, right when it 

arrives there. In this example, chances are 0.6 that the spot will be vacated by the 

time the car gets there. Similarly to evaluating the competition with vacant spots 

that we saw above, agents here can also assess if someone else is targeting the 

same occupied spot and only choose the occupied spot as a target if they are the 

closest competitor to it. This evaluation procedure is again repeated at every step.  
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Repeat Infinitely[ 

Park[ 

  Turn the color of the agent to yellow 

  Repeat until you find parking[ 

Find the closest parking space from the “aa” list, 

check if any other agents have the same target and 

check how far the competitors are from the target. 

If you are the closest of all competitors, then make a 

step towards the chosen spot. If not, try the second 

next closest spot and repeat this until all elements 

of the “aa” list are exhausted. If you are closest to 

none or if “aa” is empty, then calculate the 

probabilities of obtaining currently occupied spaces 

and evaluate your chances of obtaining them compared 

to other competitors. Memorize the option with the 

highest probability value and make a step towards it] 

If there is a vacant spot next to you, then park 

If parking was satisfied, turn color back to red] 

Drive without parking for X period] 

 End 

 

 

By introducing additional information about the current occupancy times of taken 

spaces into the search process, this model attempts to reduce uncertainty for 

agents with no assured goals. 

 

 

Critical Variables  

 

We saw in the ethnographic description of a real-life parking situation in the last 

chapter that there are a great number of different cognitive and physical activities 

unfolding simultaneously when one tries to park. Personal behavior is directly 
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influenced by physical environmental factors that can cause changes in the 

strategies a driver uses for the search of parking. For instance, if a person notices 

that there is an unusual amount of traffic in a given neighborhood, then he might 

immediately decide to settle on the first available parking space, even if it is 

somewhat inconvenient and the person wouldn’t do so under conditions of light 

demand. I shall outline below some of those critical factors that play a role in the 

overall performance of the street parking system. These factors comprise a 

mixture of individual, group and environmental variables, which I find most 

significant for reducing search times. The list could be potentially infinite, but for 

intuitive and technical reasons, I have mainly tested the simulation models under 

the following variable conditions:  

 

1. The balance between the number of searchers (demand) and available spaces 

(supply). The models use either 6 cars and 6 parking spots or 24 cars and 6 

parking spots. 

2. Connectivity and size of the street grid. The two grids tested were a 3 x 3 and a 5 

x 5 rectangular street network with topologically connected edges. 

3. Distribution of parking spots on the grid. The models use two types of 

distributions: dispersed (parking spaces equally distributed across the field), and 

concentrated (all parking spaces located on a single street segment). 

4. Real-time Information. The Intel models look at four different ways of using 

real-time information about parking spaces, about competing cars, about placing 

reservations and about the total group performance of all cars. 

 

Additional variables that can equally affect the performance of the models 

(duration of parking; management of queuing; dynamic pricing) are touched 

upon in text in Chapter 3. 

 

 



 73

Optimum Strategy versus Satisficing17 Strategy 

 
In chess there are hundreds of different opening strategies18. Each opening also 

has a corresponding defense, which is known to be the most efficient strategy to 

react to a particular opening. There is no one best strategy for all openings, but 

instead a particular one for each case. The initial procedures of the game can be 

predicted in advance for several steps if both players follow well-known 

strategies. When one of the players makes an unpredicted move, then the real 

game begins. Players no longer know for certain which move is optimal, but are 

rather forced to strategize which moves would be most beneficial. To do so, a 

trained player can compute solutions to many possible scenarios and choose the 

most satisfying move. However, after a certain threshold it takes too much 

calculation to predict the best strategy. Theoretically, it is possible to calculate 

the ultimate optimal defense strategy for any situation, but the number of 

required computation is around 10ˇ120, well beyond any human, or computer 

capacity. The ultimate optimal strategy is therefore practically impossible to 

predict and instead, players use the move that seems most promising. In the 

subsequent moves, strategies in chess have to be readjusted in real-time as the 

game evolves according to the particular responses from both opponents.  

 

Similarly to chess, optimal space allocation in parking requires good 

computation. In urban settings, variables are arguably even more complex than in 

chess. It is impossible to define an absolutely optimal strategy for space 

allocation in a particular situation, because all possible outcomes are beyond 

existing computational capacity. A solution can only be optimal to the given 

variables it accounts for. No urban system functions as neatly as a machine, 

performing its task in a clearly optimal manner. The variables in real life are far 

                                                 
17 Term used by Herbert Simon, The Sciences of the Artificial, first published 1969. 
18 List of Chess Openings, Wikipedia, the free encyclopedia. 
http://en.wikipedia.org/wiki/List_of_chess_openings 
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too complex for that. We can, however, outline a satisficing strategy, which 

based on limited computation, proves to work better than other strategies. Unlike 

chess openings, real time parking strategies can function as differential equations, 

they perform best within a certain range of variables. One strategy is not merely 

useful for a particular setting of cars and parking spots, but rather for multiple 

settings within certain limits. When variables exceed these limits, then another 

strategy becomes more efficient. 

 

The choice of a space allocation strategy should therefore depend on 

circumstances of the situation. In an ideal allocation system, different 

circumstances require different strategies, which are substitutable in real-time. 

The decision to switch from one strategy to another itself can require a lot of 

knowledge. Even more computational energy is necessary to compare a situation 

with two different strategies simultaneously. This leads me to state the obvious: 

if commuting within a city were as complex as playing chess, where one has to 

evaluate the next best move after each step, then it is clearly unlikely that people 

would ever accept to deal with such complexity. Simple and repetitive methods 

of commuting in the city are desirable, because instead of solving combinatorial 

problems of optimal travel paths at every step, we can commute by memory, and 

instead think of various other things at the same time.  

 

Today, we base our commuting decisions mostly on the immediate perception of 

the environment around us and analyze only a few of the obvious alternative 

commuting options. With the example of Kahneman’s work, I suggested in 

chapter one that this can lead to erroneous decisions. However, for computers 

calculating thousands of combinations at every step is not too ambitious. 

Assessing the parking circumstances of a situation in real-time, calculating a 

satisficing solution and adjusting the search strategy for space allocation 

accordingly is a relatively simple task for any modern computer. The messy and 

extensive calculation process can thus be performed within a small computational 
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device, a person’s cellular phone for instance, and all that the owner of the device 

ever has to see is the satisficing solution to his problem proposed in simple 

graphics on a screen. 

 

 

Hazards of the simulation  

 

There are several real-life variables that the models described above do not 

account for. First, the model simulating the existing parking system asks agents 

to take completely random decisions on traffic intersections when looking for a 

parking space. As we saw in Chapter one, in real-life such decisions are not 

completely random, drivers are capable of applying previous experience and 

skills in decision making. A simple example is that drivers might not turn back 

and search for spaces on the same street they have already covered several times. 

In a random choice model this can happen with a fairly high probability. 

However, we also saw in Laurier’s ethnographic study how the driver eventually 

did end up repeating the search on the same streets several times and even chose 

the final parking on one of the streets she initially passed and declined. Hence, it 

is not unlikely that such repetitions do also occur in real life. This aspect of 

decision making under conditions of uncertainty is addressed to a limited extent 

in the Intel_7 model, which adopts a probabilistic decision making approach, 

instead of a random one. 

 

Also other, more complex behaviors can help the driver sense vacant or about to 

become vacant spaces. Many of these qualities are not only hard to capture in a 

computational model, but remain unclear to us at the cognitive level. A list of 

some of such activities was presented in chapter one. Human decision making 

under conditions of uncertainty in street-parking deserves a whole paper on its 

own. The way I chose to deal with the lack of such knowledge, was to use the 

same functions of vacant space detection in all models. In other words, the 
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limitation of only noticing immediately proximate spots in the existing parking 

model was also used for the detection of randomly vacant parking spots in all 

other models. Hence, I tried to only compare the added value of the real-time 

guidance system in relation to random search. Due to the complexity of the task, 

the added value of experience and intuition had to be unfortunately cancelled out 

from the models. Hopefully, more of these features can be added to the models in 

the future. 

 

The Intelligent models assume that the accuracy of reporting vacancies and 

occupancies of parking spaces is close to perfect. In the real-world, drivers often 

park on the edges of parking spaces, between two adjacent spaces etc. Such 

occurrences could cause false reports in the system that tracks the precise 

availability of free spaces. This uncertainty remains an issue in the models and 

for the sake of clarity I kept the reporting system faultless. As technology 

advances over time, it is not unlikely to suspect that such deficiencies could also 

be eliminated in the real-world. 

 

Additional errors could emerge from people tricking the system, attempting to 

block parking sensors on the ground in order to avoid public announcement of a 

space.  Also the opposite could occur- false unblocking of sensors, in order to 

encourage more visitors to drive to a commercial area for example. Vandalism 

could possibly disable parts of the system, causing bogus information and 

malfunction in the overall system management. In addition to deliberate cheating 

of the system, a much more important concern is people’s irrational behavior- tt 

would certainly be wrong to anticipate, that all drivers, who use the real time 

guidance system, always follow the guidance suggestions. Instead, as with many 

other technologies, it is likely to expect that people would distrust the system or 

simply believe in their own intuition more than the suggestions made by the 

system. This could be accounted for in future models by using a small random 

error algorithm. 
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The Intel- 1, 3, 5 and 7 models all suppose that every car has access to the real-

time list of available spots and actively uses this list. In a real-world application it 

is probable that only some people would want to use the guidance system, some 

would experience technical difficulty and some might not be able to afford it. 

Hence the results of the system that appear from the model can be too good to be 

true. However, my intent with the simulation models is not replicating reality, but 

studying the critical conditions from a more theoretical point of view in order to 

outline the qualities of different search strategies. Nevertheless, it is likely that if 

the system provides significant and easy to use aid in locating a convenient 

parking space, then this is a good enough incentive for the majority of drivers to 

use the system. A true to life usage ratio could be used in the model, if a credible 

user study were carried out first. 

 

Perhaps the most serious shortcoming in the simulation models is that agents’ 

adaptive behavior is not complex enough compared to the behavior of drivers in 

the real world. In the Traditional and Intel_1 models, when an agent starts 

looking for parking, then the behavioral rules that guide its decisions are the 

same from the start of the task to the accomplishment of the task- agents only 

have one strategy. In chapter one I emphasized the importance of adaptive 

behavior that makes drivers revert to many different goals and strategies if 

searching takes too long. The Intel_7 model addresses this shortcoming to some 

degree, by using at least 3 different strategies (i.e. informed competition for 

vacant spaces, using probability for competing for currently occupied spaces, and 

using random search if nothing is available) that an agent can use, depending on 

the environmental conditions. Nevertheless, the agents in the simulation models 

can only adapt to the outer environment, they have no built-in means to change 

strategies of the search based on their inner credit assignment. The agents have 

no capacity of learning nor assessing the efficiency of their strategies, they 
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simply test one strategy after another in a hierarchical order. I try to compensate 

for that lack by addressing the issue in text instead of models.  
 

Such are the assumptions with which the simulation models were built. The next 

chapter will analyze the outcomes the simulations of these assumptions 

generated.  
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Chapter Three 
 

Results  

 

We saw in the previous chapter, all models used six parking spaces. The 

variables that were changed in different simulations were the number of cars (6 

and 24, while the number of parking spaces was always kept constantly at 6), 

different street grid sizes (3x3 and 5x5) and a different distribution of the six 

spots (one on every street and all on one street segment). The variable that was 

changed most of all was the type of real-time information that was available to 

agents, as well as the specific strategy of using it. The four different guidance 

strategies (Inlte_1, 3, 5 and 7) were presented in the last Chapter.  

 

 Number of Steps 
Model name       and 

Properties 
Average Median Standard 

Deviation 
Max. 

“Traditional” 6cars on 
3x3 grid 

35.9801 29 29.01499 162 

“Traditional” 24cars on 
3x3 grid 

58.8676 52 38.56921 252 

“Traditional” 6cars, 5x5 
grid 

133.486 107 94.19525 535 

“Traditional” 24cars, 
5x5 grid 

164.038 159 37.29277 300 

“Intel_1” 6cars on 3x3 
grid 

18.9373 16 13.82078 81 

“Intel_1” 24cars on 3x3 
grid 

69.5191 71 20.65161 111 

“Intel_1” 6cars on 5x5 
grid 

29.4841 30 10.67552 55 

“Intel_1” 24cars on 5x5 
grid 

120.731 122 30.60324 179 
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“Intel_3” 6cars on 3x3 
grid 

17.1136 14 12.58576 67 

“Intel_3”24cars on 3x3 
grid 

214.771 211.5 30.43529 289 

“Intel_3” 6cars on 5x5 
grid 

27.9552 28 13.27635 59 

“Intel_3” 24cars on 5x5 
grid 

183.894 181 21.04165 240 

“Intel_5” 6cars on 3x3 
grid 

14.1429 11 12.84207 74 

“Intel_5” 24cars on 3x3 
grid 

46.4671 46 11.24772 93 

“Intel_5” 6cars on 5x5 
grid 

30.6998 23 30.24971 143 

“Intel_5” 24cars on 5x5 
grid 

81.5912 79 18.20295 148 

“Intel_7” 6cars on 3x3 
grid 

20.1343 16 14.40481 76 

“Intel_7” 24cars on 3x3 
grid 

54.945 54 12.34717 93 

“Intel_7” 6 cars on 5x5 
grid 

36.2814 34 19.99611 108 

“Intel_7” 24 cars on 
5x5 grid 

62.423 67 17.38108 88 

“Traditional” 6cars on 
3x3 grid concentrated 

240.737 208 148.9806 940 

“Traditional” 24cars on 
3x3 grid concentrated 

284.687 277 79.99469 554 

“Traditional” 6cars, 5x5 
grid concentrated 

636.851 619 242.8204 1281 

“Traditional” 24cars, 
5x5 grid concentrated 

764.374 752 158.0438 1130 

“Intel_1” 6cars on 3x3 
grid concentrated 

30.0871 29 15.78522 84 

“Intel_1” 24cars on 3x3 
grid concentrated 

45.5967 43 15.41761 93 
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“Intel_1” 6cars on 5x5 
grid concentrated 

49.959 50 18.1443 105 

“Intel_1” 24cars on 5x5 
grid concentrated 

59.226 69 23.70496 119 

“Intel_3” 6cars on 3x3 
grid concentrated 

33.5031 25 28.77843 174 

“Intel_3”24cars on 3x3 
grid concentrated 

61.3806 50 42.75369 272 

“Intel_3” 6cars on 5x5 
grid concentrated 

52.5776 44 34.56188 182 

“Intel_3” 24cars on 5x5 
grid concentrated 

252.835 254 80.20153 404 

“Intel_5” 6cars on 3x3 
grid concentrated 

23.547 22 13.14438 64 

“Intel_5” 24cars on 3x3 
grid concentrated 

31.4074 31 15.6449 64 

“Intel_5” 6cars on 5x5 
grid concentrated 

35.0155 36 11.32714 65 

“Intel_5” 24cars on 5x5 
grid concentrated 

70.1508 71 15.58593 97 
 

“Intel_7” 6cars on 3x3 
grid concentrated 

42.6401 
 

42 16.79825 
 

121 

“Intel_7” 24cars on 3x3 
grid concentrated 

69.3122 
 

69 21.75266 
 

124 
 

“Intel_7” 6cars on 5x5 
grid concentrated 

57.7118 52 19.4395 143 

“Intel_5” 24cars on 5x5 
grid concentrated 

82.4779 
 

85 18.1882 
 

118 

Number of parking spots in all models is 6. On the upper half of the table, the six 
spots were distributed uniformly around the street network. In the lower half of 
the table, where indicated “concentrated”, all six spots were concentrated on 

one single street. 
These simulations were measured over aprox. 3000 and 10 000 iterations. 

 
Figure 11 Comparison of the average number of steps to find a parking space in 

simulation models. 
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In most cases, the least amount of average steps to find parking was achieved 

with the Intel_5 strategy. Though this might seem logical and self-explanatory, I 

shall nonetheless try to describe why this is the case.  

 

Effects of Grid Size 

 

 
Figure 12 Comparison search efficiencies on a 3x3 and a 5x5 grid with 6 equally 

distributed parking spaces. 
 

First, it is easy to understand how a random search in the Traditional model 

performed least efficiently in most cases (not all!). In a 3 x 3 grid, there are nine 

intersections, each of which offers 3 choices (right, straight, left). In total, there 

are close to 19 683 (3ˇ9 = 19 683) different ways to travel through this grid 

before repeating a same street segment twice. This gives random search high 

chances of guiding the driver wrongly before he stumbles upon a street that has a 

vacant space. However, when parking spaces were distributed so that every street 

(one street in a 3 x 3 grid is composed of 3 segments) had a parking spot on it, 

then the success rate of random search increased considerably- it took only 35 

steps on average to stumble upon a vacant space (the longer side of one block in 
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the model is 22 steps long). A highly connected street grid could orient a driver 

to search fruitlessly on several streets before finding the right street by chance.  

 
The Intel_1 strategy performed considerably better with 6 cars than random 

search did on a 3 x 3 grid, but still less efficiently than the Intel_5 and Intel_3 

strategies. The explanation to this is that in Intel_1, all cars possess knowledge 

about the location of vacant spaces, but as they are not aware if there might be 

other drivers driving towards the same target, then for a certain time period 

multiple cars might be heading towards the same goal. Only one of those drivers, 

the closest one, is destined to reach the spot first and occupy it. Hence other 

competing agents in such a scenario are always driving in vain until they find out 

that their target spot disappears from the vacancy list when the closest car 

reaches it. At this point these other agents will try to find a new destination, but 

under high demand conditions, even then they might have bad luck and loose the 

next destination to someone else again. If drivers are not aware of competitor’s 

presence and if spots are not reserved, then in case of a competition, all but the 

closest car will travel in vain until the spot disappears from the vacancy list. This 

shortcoming becomes less remarkable in a larger grid. While a larger grid makes 

random search harder, the Intel strategies still guide the agents towards the area 

where parking spots are located. In a large grid, longer travel distances reduce the 

possibility of several cars arriving at a destination at the same time. By the time 

the second or third car with the same target destination arrives at a spot, the first 

car might already have left. A comparison of the Traditional and Intel_1 models 

on 3x3 and 5x5 grids confirmed this: In the former case Intel_1 was almost twice 

as efficient, while in the latter case Intel_1 performed already three times more 

efficiently. 

 

 

 

 



 84 

 

 

 

 

 

 

 

Figure 13 Graphic calculation of the Intel_1 search strategy. 

The table above shows that Traditional (random) search performed better than 

Intel_1 in the high demand situation with 24 cars and 6 spaces on a 3x3 grid, 

where spaces were distributed across the grid uniformly. However this result is 

not characteristic to all situations of high demand. In fact, the results can reverse 

in a situation where the urban grid is larger. For instance, on a 5 x 5 grid, Intel_1 

performs more efficiently than Traditional. In the case of a large grid, random 

search exponentially accumulates additional possible paths of driving. In a 

situation of a 5 x5 grid, the simulations of 24 cars and 6 spaces showed that with 

random search (Traditional) it took an average of 164 steps to park, whereas 

Intel_1 took 120.  
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Figure 14 The average number of searching steps of 24 cars on a 3x3 street grid (on 
the left) and Figure 15 The average number of searching steps of 24 cars on a 5x5 

street grid (on the right) 
 

 
This reversal of efficiency is caused by the additional combinations of driving 

paths in a 5 x 5 grid, which decrease the efficiency of random navigation. For 

Intel_1, the increase in grid size does not play an important role, as the drivers 

still choose a specific target, and navigate towards it along the shortest route. If a 

parking spot is five intersections away, for instance, then the driver will still take 

the path that is shortest along those five intersections. He will not get caught in 

all the other approximately 25ˇ9 (2.9 x 10^17) possible paths along the way, 

which can happen in a random search. Hence, in addition to the precise 

conditions of demand and supply, the success of the Traditional (random) search 

strategy, is inversely related to the connectivity of the street network: It works 

well in a small grid, but terribly in a large grid. Real-life neighborhood street 

networks often have many more streets than 3 x 3 or 5 x 5; the number of 

traveling  combinations that is added with each n x n grids grows exponentially 

thus also decreasing the efficiency of random search accordingly. 
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   Linear Path    1x1 Grid       3x3 Grid       5x5 Grid 

0 Intersections   1 Intersections  9 Intersections           25 Intersections  

        n = 1      n = 3     n = 19683            n = 2.9 x 10^17 

 

Figure 16 Comparison of the number of alternative travel paths on different grid 

sizes. The calculations show the approximate number of different travel paths, 

without repeating any street segment twice and assuming that the search continues 

till it runs into a dead end. 
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Effects of Demand and Supply Balance 

 

 

 
Figure 17 A comparison of strategy performances with 24 cars on a 3x3 grid with 6 

geographically dispersed parking spaces. 
 

 

Interestingly enough, under high demand, random search (Traditional) with 24 

cars and 6 spaces can perform better than the Intel_1 strategy. This can be 

explained again by the fact that Intel_1 drivers often drive purposefully in vain. 

While randomness distributes competitors uniformly in the area, Intel_1 can lead 

many of them towards wrong goals clustered in certain areas. If one space is 

available in Intel_1and 3 cars compete for it, then all 3 will start moving towards 

that spot, but only one is destined to succeed. (See Figure 2 above around the 

vacant parking spot C’). A situation of high demand in Intel_1 thus reminds me 

of a poorly coordinated soccer game, where all players storm towards the ball at 

every step, not realizing that only the closest player will be able to take it. If this 

keeps repeating in a cycle, then all players will run long distances aimlessly. 

Ironically this is often the case with young schoolchildren playing soccer. A herd 

of the kids usually runs after the ball simultaneously without any clear 
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cooperation strategy. Under high demand, the Intel_1 strategy behaves similarly. 

The simulation findings show that the amount of driving that result can be even 

greater than with random search. Random search distributes the demand equally 

across the grid. In case of soccer, as children mature and their thinking becomes 

more sophisticated, then they stop running after the ball all at once. Instead, they 

learn to allocate the ball to the closest players cooperatively. Everyone sees that 

one of the kids is clearly closest to the ball, and usually others will not run for it. 

As mental computation is arguably more advanced in older children’s minds, 

then this example demonstrates how higher computational capacity can result in 

strategies of more efficient commuting.  

 

The Intel_3 strategy tries to address this shortcoming by allowing cars to make 

reservations for the spaces they choose. This seems to work fairly well when 

demand is equal to supply or lower. All cars who find a destination in the real-

time vacancy list are guaranteed to have that particular space held for them when 

they arrive. The reservation blocks all cars, except the one that made the 

reservation, from parking at the spot. In a situation of demand and supply 

equilibrium, Intel_3 performed better than Intel_1 and Traditional. However, a 

poorly strategic reservation system with no knowledge of drivers’ locations, 

might assign a reservation to a driver who is not necessarily the closest 

competitor for that space. This becomes especially apparent in a situation of over 

demand.  For instance, if only one space is currently available in the 

neighborhood  and two cars are searching for parking, and the reservations 

mechanism has no way to estimate who is closer to the spot, then chances are 

50% that the space might be allocated to the further driver, hence reducing the 

efficiency of the strategy. The problem becomes even more critical, if there are 

more than two cars counting on one space. The graphic example below 

demonstrates that a reservations system with 5 cars and 5 spaces, which is not 

aware of cars’ locations and hence does not strategically allocate spaces to the 

closest cars, would probably allocate spaces to further cars, thus increasing the 
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overall search times. However, as this system still assumes that cars only try to 

reserve the spots that are closest to them, then two of the spots in the scheme 

below are always allocated to cars A and B because they are the only ones 

competing for them. Instead of 5! (120) different allocation possibilities, only 3! 

(6) are left. This means that in the simplistic scheme below, only one out of six 

times would the system allocate the spots in the most efficient way. In five times 

out of six, the unknowledgeable reservation policy would allocate the three 

parking spaces in a less efficient manner, forcing cars to drive longer distances 

than necessary.  

 

Even though reservations can be an efficient method to ensure that individual 

drivers do not approach target spaces in vain, unless the system has a clever 

allocation strategy, reservations can often go to drivers who are not closest to 

these spaces. That is the case in a first-come-first-serve reservation policy. 

However, even if this error were fixed, and the reservation system given accurate 

methods for matching cars with closest  spaces in a sustainable way, then a 

serious deficiency still remains. This deficiency is caused by the fact that in a 

situation of high over demand, there are by definition many cars in the area and 

the balance of demand and supply varies constantly. New searchers appear 

frequently. As new demand may appear on any street, then the newcomers are 

likely to occasionally appear closer to vacant spaces than the drivers who are 

driving towards them with reservations. Because these spaces are reserved, they 

cannot be occupied by these occasional passers-by and hence the overall turnover 

of parking spaces decreases. In other words, the concept of reserving under high 

demand is meant to prohibit the use of a particular spot from everyone but the 

reserver, which by definition reduces turnover. This was confirmed in the 6 

spots, 24 cars simulations, where Traditional search required an average of 58 

steps to find parking while Intel_3 required 214.  
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Scenario 4

 

Scenario 6
Scenario 5 

Figure 18 Graphic calculation of the Intel_3 strategy. In the case of a first-come-

first serve reservation policy, this example has 6 different outcomes, of which only 

one is optimal. 
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An analogy to this situation can be found in restaurant reservations. If the 

demand for a particular restaurant is high, then a line forms at its door. If some 

tables have been reserved by expected visitors in advance, then the people 

appearing at the door are not allowed to occupy those reserved tables. If this were 

not so, and the people at the door were immediately allowed to seize vacant 

tables, then the overall turnover of the tables would be greater. Hence, in 

situations where demand surpasses supply, reservations on street parking are 

mostly likely to decrease the overall efficiency of the system. Of course other 

aspects should be considered, for instance, reservations could be highly priced 

and used to collect money for some public good related to urban transportation, 

but this is a different point.  

 

 

Effects of the Geographic Distribution of Parking Spaces 

 

 

 
Figure 19 A comparison search efficiencies with uniformly distributed or locally 

concentrated 6 parking spaces on a 3 x 3 grid. 
 

 



 92 

A third crucial factor that determines the efficiency of a strategy is the location of 

the parking spots in a given grid. In the first examples above, the six spaces were 

dispersed equally apart, so that one was found on every street. Such a distribution 

greatly enhances the chances of finding a parking space with random search. 

However, if parking spaces are all concentrated in a specific limited area, then it 

becomes much less probable to find a space by random search. This was clearly 

illustrated in the results of the simulation model. In a uniformly distributed 

parking field with 6 spots and 6 cars, heuristic search required 35 steps on 

average. When all six parking spaces were situated next to each other on a single 

street segment, then the average amount of steps raised to 240. In a 5 x5 grid the 

corresponding number raised from 133 to 636.  

 

 

Though this seems clearly intuitive, it is important to emphasize that a 

concentrated location of parking spots in a given area can greatly diminish the 

odds of finding a space with random search and therefore increase the value of a 

real-time guidance system.  

 

   

38 steps 

62 steps 

Figure 20 Six parking spaces on a 3 x 3 grid distributed uniformly and 

concentrated. 
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The location of parking spots also plays an important function in the Intel_1 

strategy, more so than any of the other Intel strategies. If spots are concentrated 

in close proximity within a limited geographic area, then the abundant decisions 

to drive towards a single spot that 10 drivers are competing for, as illustrated by 

the children’s soccer example above, is not so useless anymore for Intel_1 

participants. Instead, following a false lead that might not be fruitful in the first 

round, will still lead the driver towards the right area where all the parking spaces 

are located. This effect proved to be so useful, that even under low demand, 

Intel_1 performed more efficiently than Intel_3 with a concentrated parking-

space distribution (which was not the case with the dispersed spaces simulation). 

In a condition of high demand, this was even further apparent: in case of 

dispersed locations of parking spots, it took Intel_1 with 24 cars on a 3 x 3 grid 

an average of 69 steps to find parking, versus only 45 steps  when the parking 

spots under same conditions were concentrated on a single street. 

 

 

Synthesis of Strategies 

 

The general highest efficiency achieved by the Intel_5 and Intel_7 strategies can 

be credited to several cooperating features of these strategies. Intel_5 avoids the 

shortcomings that appeared with the reservations in Intel_3. In fact, due to the 

capacity to assess which parking spot the agent is likely to reach first, 

reservations become unnecessary. Only in cases of special demand should 

reservations be made and the price charged for the convenience (in compensation 

for the inconvenience caused to others) should be accordingly high.  
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Figure 21 Graphic calculation of the Intel_5 search strategy. 

 
The table shows that Intel_7 performed better than Intel_5 only in the most 

challenging situation- on a 5x5 grid with 24 distributed spaces. However, the 

differences between the two models were not large and it is very likely that with 

a different initial position of agents, the advantages could reverse. In situations of 

low demand or small grid size, the performance differences of the two models are 

too small for clear conclusions.  

 
Figure 22 Comparison of search strategies on a 5x5 grid with 24 uniformly 

distrinuted spots. 
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Compared to the deficiencies we indicated for Intel_1, Intel_5 computes the 

parking destination not only based on the locations of a vacant spot, but also 

based on an assessment of obtaining the spot in case of a competition. Referring 

again to the example of a soccer game, participants in Intel_5 have information 

and computational capacity to understand that chasing a ball that someone else is 

closer to, is useless. As cars will only follow a destination that they are almost 

sure of obtaining, then the collective storming for a vacancy, which Intel_1 

faced, is avoided.  

 

I deliberately said almost in order to include the possibility of new cars appearing 

for a search during the time when an agent drives towards its destination. As the 

parking system is dynamic, changing in real-time, then new demand can appear 

while the previous demand situation is being solved. When car A is driving 

towards a spot that it has calculated itself to be closest to, there can be a new car 

B entering the area, who also wants to park. When car A did its calculation on the 

previous step, car B was not part of the scene yet, and could therefore not be 

accounted for. But when B appears and happens to be located closer to the 

destination that A is driving towards, then B is likely to reach the spot first. This 

is why the Intel_5 strategy needs to re-evaluate its target, as well as the chances 

of obtaining the target, at every step. In the example of cars A and B above, car A 

will automatically know when B appears and will therefore stop following a 

target that B is closer to. This is one of the efficiency advantages of Intel_5 and 

Intel_7 over Intel_3, but also a humanly inconvenient aspect of the Intel_5 and 

Intel_7 strategies: practically, it can happen that a given driver is forced to 

choose its parking destination more than once, changing it along the way if newly 

arrived searchers intervene with his plans. 

 

The occasional loss of a target space due to newly appearing demand is 

characteristic to all models, but from the group efficiency point of view, Intel_5 

has the most capable means for coping with the situation. In Intel_1 a similar 
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scenario is also constantly caused by over demand. When a particular street has 

fewer parking spaces to offer than cars that need to be accommodated, then target 

destinations can also be lost to current competitors (in Intel_1 and Traditional). 

Unlike other strategies, in Intel_5 an agent is immediately aware if its search is 

likely to be fruitless. This is an important and powerful advantage of Intel_5 and 

leads us to suggest that due to this knowledge, queuing cars could be 

accommodated in a different way than they are today, cruising and polluting in 

dense traffic aimlessly. I will come back to this point in a later section dedicated 

to queuing. 

 

 

Simulation Conclusions 

 

The list below recaps the effects of the studied variables in the simulation 

models. 

 

• The size of the grid determines the number of possible paths on the grid. 

As the grid size increases, possible commuting paths increase 

exponentially, reducing the effectiveness of a random search and 

increasing the value of a guidance system. If multiple agents drive 

towards the same destination, then a large grid also increases the 

distances that all but the closest driver cross in vain.  

 

• Randomness distributes agents evenly across the field, whereas guided 

strategies direct agents towards the available parking spots. If no 

cooperation between agents happens, then agents can agglomerate 

around a single spot. If they are unable to seize the spot, then they can 

drive around the block in circles, which can extensively increase 

cruising. 
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• A uniform distribution of spaces across the street network increases the 

efficiency of random search, while a concentrated distribution greatly 

decreases the efficiency of random search. The opposite is true for a 

guided search. When agents are guided towards the agglomeration of 

parking spots concentrated in one area, then their chances of seizing an 

arbitrary vacant spot around their original target increases. Good 

examples of this effect in real-life are structured parking garages 

containing several vacant spaces. If drivers know the location of a 

garage, then they can approach the garage hoping to park at a specific 

space in the garage, but if the specific spot happens to be taken, then 

chances are good that another spot will be vacant in the same facility. 

 

• Reservations can be useful in low or equilibrium demand conditions, but 

in high demand conditions they increase overall cruising. However, from 

the point of view of group efficiency, under all circumstances, 

reservations are only efficient if they have a strategic allocation system, 

distributing spots to the agents that are closest to them. Strategic 

allocation becomes especially important when the competition for spots 

increases. By definition, a reservation policy prohibits newly arriving 

passers-by from seizing a reserved space; this reduces the turnover of 

spaces and can produce great inefficiencies in allocation under high 

demand. 

 

• If agents have information about their competitors as well as their 

location in relation to parking spots, then agents can be guided only 

towards the parking spots that they can surely occupy before others. This 

strategy eliminates the common need for reservations as well as cruising 

in vain. Mutual awareness of each other’s locations also allows newly 

arriving parkers to immediately enter the allocation pool on equally 

competitive terms. This means that if a newly arriving searcher happens 
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to start closer to a vacant parking spot than a previous searcher, then the 

new agent will have priority over the spot. This reduces overall cruising. 

 

The results of the simulations indicate that the advantages of a more sophisticated 

strategy appear more clearly under more critical conditions. The advantage of 

Intel_5 above other strategies was apparently more remarkable in situations of 24 

cars and 6 spots than in 6 cars and 6 spots, on a 5x5 street grid more than on a 

3x3 street grid and with a concentrated distribution of spots rather than dispersed 

spots. This is again intuitive: in simpler situations almost any strategy can give a 

satisfactory result, while in challenging situations simpler strategies fail and 

intelligent strategies prevail.   

 

As the five strategies (Traditional; Intel_1; Intel_3; Intel_5 and Intel_7) gradually 

built up in complexity, then the results also showed that the usage of more 

information and computational power for navigation can give better results. This 

is coherent with Herbert Simons argument about intelligent systems that I quoted 

in the very beginning of this thesis: “The behavior of an artificial system may be 

strongly influenced by the limits of its adaptive capacities- its knowledge and 

computational powers.” [Simon 1996, p. 29] However, computational capacity 

and abundant information alone do not automatically result in efficient 

performance. The fundamental strategic differences between models Intel_1, 

Intel_3 and Intel_5 demonstrate that for a successful performance, information 

and computation must be well coordinated. If this is not the case, then even 

worse results can appear than in a random search technique (Intel_3 with 

reservations on a 3 x 3 grid and 24 cars competing for 6 spaces resulted in an 

average of 214 steps of searching, while Traditional random search under the 

same conditions required only 58 steps on average). 

 

The use of more general information, that is, taking account the actions of other 

agents as well as the overall competition situation of the area, gave better results 
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than a simple use of individual information. Furthermore, a probabilistic search 

with the Intel_7 model that also accounted for the currently occupied spaces and 

statistically compared the values of driving to a vacant or a probably vacating 

spot, achieved even more efficient results. The success of these strategies was 

enhanced by collaboration between agents. This leads me to suggest that 

Kahneman’s theory about the deficiencies of immediately perceivable decision 

making might apply to parking indeed. The use of broad and crosscutting 

information gave better results than the use of narrow individual information.  

 

 

Intel_9: The Collaborative Equilibrium and Game Theory Model 

 

A 6th model, which was not tested in agent-based simulations could be added to 

the list of strategies outlined above as potentially even more efficient in the 

reduction of cruising than Intel_5 or Intel_7. We can call it Intel_9. This strategy 

for street-parking introduces an interesting aspect of Game Theory, namely the 

Prisoner’s Dilemma (PD). 

 

In Intel_9 we include another new variable to the parking system: dynamic 

pricing. As we saw in Chapter 1, pricing is one of the most influencing variables 

in real–life parking conditions. Donald Shoup has convincingly argued that fair 

market-rate pricing can alone be a powerful mechanism for reducing demand on 

street parking. My aim here is slightly different: Assuming that conditions of 

over demand will always continue to exist in popular areas, I shall try to propose 

that dynamic pricing could be used as a tool for creating incentives for 

collaborative behavior in overcrowded street parking. As drivers in situations of 

over demand are expected to act self-interestedly, then such behavior can be 

characterized by Game Theory. 
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The Prisoner’s Dilemma (PD) is a classic example of Game Theory, where two 

or more players react to each other with the goal of maximizing their own profit. 

I shall quote the description of the classical Prisoner’s Dilemma from the 

Wikipedia encyclopedia19 as follows: 

“Two suspects, A and B, are arrested by the police. The police have insufficient 

evidence for a conviction, and, having separated both prisoners, visit each of 

them to offer the same deal: if one testifies for the prosecution against the other 

and the other remains silent, the betrayer goes free and the silent accomplice 

receives the full 10-year sentence. If both stay silent, the police can only give 

both prisoners 6 months for a minor charge. If both betray each other, they 

receive a 2-year sentence each. Each prisoner must make a choice - to betray the 

other, or to remain silent. However, neither prisoner knows for sure what choice 

the other prisoner will make. What will happen? 

It can be summarized thusly: 

 Prisoner B Stays Silent Prisoner B Betrays 

Prisoner A Stays Silent Both serve six months Prisoner A serves ten years 
Prisoner B goes free 

Prisoner A Betrays Prisoner A goes free 
Prisoner B serves ten years Both serve two years 

The dilemma arises when one assumes that both prisoners only care about 

minimizing their own jail terms. Each prisoner has two options: to cooperate with 

his accomplice and stay quiet, or to betray his accomplice and give evidence. The 

outcome of each choice depends on the choice of the accomplice. However, 

neither prisoner knows the choice of his accomplice. Even if they were able to 

talk to each other, neither could be sure that he could trust the other. 

                                                 
19 The Prisoner’s Dilemma was invented by Merril Flood and Melvin Dresher in 1950. 
Since then, the dilemma has become a widely used model for predicting conditions of 
uncertainty in economics. http://en.wikipedia.org/wiki/Prisoner%27s_Dilemma 
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Let's assume the protagonist prisoner is working out his best move. If his partner 

stays quiet, his best move is to betray as he then walks free instead of receiving 

the minor sentence. If his partner betrays, his best move is still to betray, as by 

doing it he receives a relatively lesser sentence than staying silent. At the same 

time, the other prisoner's thinking would also have arrived at the same conclusion 

and would therefore also betray. 

If reasoned from the perspective of the optimal outcome for the group (of two 

prisoners), the correct choice would be for both prisoners to cooperate with each 

other, as this would reduce the total jail time served by the group to one year 

total. Any other decision would be worse for the two prisoners considered 

together. When the prisoners both betray each other, each prisoner achieves a 

worse outcome than if they had cooperated.” 

Uncertain about the decision of the partner, it is assumed that rational prisoners 

in a one time PD would decide to betray their partner in order to maximize their 

own benefits.  

 

If the prisoner’s have to repeat such a dilemma multiple times (Repeated 

Prisoner’s Dilemma) then the situation changes drastically. “Repetition is a kind 

of enforcement mechanism, which enables the emergence of cooperative 

outcomes in equilibrium, when everybody is acting in his best interest.”20 In a 

repeated game, the optimal solution for a prisoner is not betrayal of the partner 

anymore, but cooperation instead.  This is because in a repeated game, a betrayal 

of the partner will most likely be responded to with a similar betrayal in the 

following round. Betrayal in a first round would lead to a constant mutual 

treachery, where both prisoners eventually realize that the betraying the other 

also diminishes their own gains. In the extended PD players thus get to know 

each other, and soon realize that selfish action will only result in a similar 

                                                 
20 This is the fundamental insight upon which Robert J. Aumann was awarded the 2005 
Nobel Prize in economics. 
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response, which jeopardizes both players. Hence, it is not in their best interest to 

betray. Instead, the best strategy to react would rather be cooperation in the first 

round. In Game Theory this is called the folk theorem: Cooperative outcomes in 

the outset of the game correspond to equilibrium outcomes in the repeated 

game.21 After the first round, both players can adjust their strategies depending 

on each other’s responses. However, if due to a bad start, a repeating equilibrium 

of betrayal is achieved, then an unexpected cooperative choice from one of the 

players can re-establish a cooperative equilibrium. In order to avoid such looping 

conditions, Nash equilibriums have been proposed. Nash equilibrium is a set of 

strategies that prevent both player from having an incentive to unilaterally 

change their actions. “What is maintaining the equilibrium in a repeated game is 

the threat of punishment, not carrying it out. If you like, call it MAD- mutually 

assured destruction, the model of the Cold War”.22   

 

The Intel_9 parking strategy that takes advantage of the Repeated Prisoner’s 

Dilemma could function as follows. The computational features of this strategy 

are similar to those of Intel_5. At every step agents evaluate their chances of 

going to each available parking spot in their vicinity, but only start driving to a 

specific destination if they are the closest of all competitors to the given spot. If 

nothing is available, then agents act similarly to Intel_7, that is, they navigate 

probabilistically towards the occupied spaces that might shortly vacate. The 

important difference with the former strategies is that agents can increase their 

personal profit even more if they choose to cooperate with other agents. This is 

how it works: assume that the price of street-parking is dynamically adjusted 

with the goal of reducing the amount of cruising in a given area. Due to the 

infrastructure, which is already set up by the guidance system, it is relatively easy 

for the system to assess the amount of people looking for a parking space as well 

as the distances they cover in the search process. As the number of parking 
                                                 

21 Discovered by various people, notably Ariel Rubinstein. 
22 Quotation from Robert J. Aumann’s 2005 Nobel Prize in economics award speech.  

 

http://en.wikipedia.org/wiki/Ariel_Rubinstein
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spaces is finite, then each searching car increases traffic in the area. In order to 

keep prices low, it is in everybody’s interest to reduce cruising on the streets.  

 

 
 

When choosing the closest available parking space that a driver can surely 

occupy, it becomes important to weigh that decision with the overall performance 

of all searching cars. For example it might happen that a parking space, which is 

the nearest to driver A is also the nearest to driver D. But as A is closer than D to 

the spot, then similarly to Intel_5, it seems like A should get the space. However, 

if the second closest spaces are taken into account, this might cause D to make a 

large detour to its next best closest space, increasing the overall amount of 

cruising in the neighborhood and thus increasing the price of parking for 

everyone. Instead, if A decided to give up his closest spot to D and take a second 

closest spot himself, then the total amount of cruising could be reduced 

considerably and parking would be cheaper for everyone. The incentive to 

cooperate is the reduced price of parking.  

 

A D 

 

 

Figure 23 Graphic example of the benefits of collaborative behavior. 

 

Assuming that at least some people collaborate, this strategy can cause less 

cruising than Intel_5. If a driver does not cooperate, then he can earn the 
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irritation of others and be treated correspondingly. The optimal solution for 

everyone is a collaborative equilibrium. 

 

 

   
 

Figure 24 Graphic calculation of Intel_5 and Intel_9 strategies. 

 
A potential issue with this strategy is that wealthier drivers, who might not be 

sensitive to price raises, would never collaborate. This would cause lower 

efficiencies in the overall performance and higher prices for all drivers. In a well-

performing system, drivers should indicate the spot they are planning to seize 

before driving to it as well as their distance from it. As long as all agents have 

accurate information about who is heading where and how far they are from their 

targets, then a non-collaborative driver will not have a major impact on the 

performance of the system. If nobody collaborates, then the efficiency of the 

system is just as good as it was in Intel_7. If agents collaborate, it can only be 

better. The decision to collaborate or not would depend, among many other 

factors, on the scale of the price incentive that one can gain.  

 

A solution to this issue could be a personalization of the benefits. If the 

administrating program of the system recognizes that a person has acted 

collaboratively, and thereby contributed to the reduction of cruisers, then a lower 
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price for parking can be offered to that person individually. In the opposite case, 

a higher price ought to be offered.  

 

Consistently with the previous Intel strategies, all the computation of possible 

choices should happen in a computer that the driver carries, not in the drivers 

head. The driver could simply demand 3 different parking solutions: a cheaper 

collaborative offer, a slightly more expensive non-collaborating offer, and a 

possibly highly charged reservation option, depending on the overall demand in 

the reservation area.  

 

The dynamic pricing mechanism could also be used to accommodate different 

time and location requirements of drivers. If a person is in a great hurry or simply 

unwilling park anywhere but a specific place, which also happens to be 

demanded by others, then a higher price can be charged for a priority reservation. 

Depending on the time availability and financial resources of a driver, the 

computational interface in the vehicle could include indicators for one’s 

willingness to wait or pay. Drivers in a rush could thus always choose to overpay 

the less urgent drivers and immediately gain access to their desired areas. 

Reservations could ensure that the spot remains vacant until the person arrives. 

 

A collaborative equilibrium as proposed by Intel_9 could thus also accommodate 

individually different needs and charge for the level of service accordingly. 

Collaborative commuters would be charged least and the prioritized ones most, 

similar to any other travel industry. 

 

 

Importance of Efficient Queuing in Real-time Systems. 

 

So far we have been testing strategies that can allocate a finite amount of parking 

spaces to different cars, dispersed in a finite area. The central question I have 
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been addressing thus far has been What is the most satisfycing way of distributing 

a given amount of parking spaces, so that least searching is required? I have 

tried to demonstrate how distant information and mobile computing capacity can 

help traveling agents find the quickest parking solution as well as reduce the 

overall cruising and polluting on popular streets.  I have not seriously addressed 

the issue of what to do with surplus cars, which simply cannot be parked at a 

given moment due to insufficient parking space. In other terms, I haven’t dealt 

with the issue of queuing. 

 

Real-time communication operations introduce new management challenges to 

the realm of urban planning. In the past, large clustering of people, massive 

group meetings, protests, parades or open air spectacles appeared relatively rarely 

in cities. Such events require a considerable amount of organization and 

preparation. To avoid large scale conflicts in such circumstances, administrative 

organizations have over centuries developed sophisticated policing techniques to 

keep things under control. For instance, most public meetings in developed 

countries require official permits. A prior notice allows administrators enough 

planning to ensure that the events unroll without conflicts. Because simultaneous 

mobilization of large amounts of people also exerts unusual demand on public 

infrastructure and transportation, then adequate preparations are done well in 

advance to avoid over congestion and queuing.  

 

Real-time communication in urban resource distribution can increase the amount 

of instant mobilizations drastically, without leaving nearly as much preparation 

time for authorities and urban system managers to cope with unexpected 

situations. In digital communication, the importance of time delay caused by 

physical distances disappears, allowing simultaneous gatherings and demand to 

appear instantly. This paradigm is well known in information technology and 

more recently in urban literature under titles like flash mobs, digital 

communication waves and flocking [Mitchell 2003; Castells 2006]  
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For distribution of physical resources, such as parking spaces, the phenomenon 

of instant communication strongly reinforces the need for good system 

management, particularly queuing. 

 

In traditional systems of urban resource distribution, participants interact 

relatively slowly.  Simultaneous queuing can be absorbed by the slow interaction 

of participants. For instance, we can imagine a town A, which has particular 

resources and people B, C and D, who live outside of town A.  

 

 
 

Figure 25 Absorption of physical queues in slow-interaction systems. 
 

People B, C and D are all at different physical distances from town A. If all three 

people develop a need to use a certain resource in town A at the same moment, 

and start driving towards town A simultaneously, then congestion and queuing at 

point A are possibly avoided because it takes B, C and D different times to reach 

A. Assuming it is a relatively quick service, then by the time B gets to point A, D 

and C might have already left. In other words, the potential queuing is absorbed 

in different travel times.  

 

In real-time communication systems, on the other hand, physical distances do not 

absorb queuing times. If on the same scheme above, all participants B, C and D 
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had a real-time communication system to reserve appointments at A and their 

necessities to use the resource at A again formed at the same moment, then their 

request would be received instantaneously at A and a queue would have to be 

managed. In a virtual communication system information flows at the speed of 

light and physical distances do not absorb simultaneous demands. Hence in any 

real-time space management system where multiple participants can exert a 

simultaneous demand on the same resource, queue management becomes a 

crucial efficiency issue. 

 

In the light of those two scenarios, street parking offers an interesting mixture of 

both aspects. If street-parking can use real-time guidance technology for making 

destination choices at a distance, and possibly reservations, then demands from 

competing participants for the same spot can arrive at the same instant.  If cars B 

and D compete for the same spot on a virtual reservations screen, then their 

demands for the spot arrive at the allocation system simultaneously. One of the 

drivers will have to be accommodated in a queue or redirected to search in 

another area. However, similarly to the slow interaction scenario, driving to the 

chosen spot still requires physical travel. Therefore an efficient system should be 

capable of evaluating which car should have priority for the reservation. A 

certain amount of queuing can be absorbed by the fact that it takes different cars 

a different amount of time to reach the destination. In other words, if car B 

reaches the destination much faster than car D, then it is possible that by the time 

car D reaches the spot, car B has already left and no queuing is necessary. Such 

decisions could be based on probabilistic and intelligent guessing and past 

experiences. Unless the reservation is given to the driver who happens to be 

closer or otherwise capable of reaching the space sooner, the turnovers of spaces 

can be reduced, just like we saw in the Intel_3 model. 
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There are multiple ways to manage queues of cars waiting to be parked. Two 

general categories of queuing in spatial systems like street-parking could be 1) 

dynamic queuing and 2) static queuing.  

 

 
 

Figure 26 Different Queuing Strategies in Street Parking 

 

 

Dynamic Queuing 

 

In case of over demand in the current parking system, a relatively large group of 

people cruise and congest traffic in vain. In other words, cars that are waiting for 

parking form dynamic queues by driving around in traffic and searching for 

vacating spaces. This sort of queue management forms a serious environmental 

problem, by creating congestion (up to 30% of all traffic in a rush-hour C.B.D 

[Shoup 2005]), air pollution and augmenting the risk of traffic accidents.  

 

Despite these effects, real-life dynamic queuing is hardly describable as random. 

Knowledge from previous experiences and learned intuition help most drivers 

use intelligent guessing in the search process. The intel_7 model tried to address 

this issue, by allowing agents to use a probabilistic search strategy. This strategy, 

derived from the idea of implicit enumeration search23, does not guide a driver to 

the closest available space, but makes a prediction, based on limited knowledge, 
                                                 

23 Developed by William J. Mitchell, Robin Legget 
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about which area of the search tree is most likely to yield positive results. Hence, 

the guidance system can inquire knowledge about the occupancy periods of each 

taken spot, and make intelligent predictions when these occupied spaces might 

vacate.  This strategy implies that dynamical searching (active cruising) can 

clearly increase the chances of obtaining a parking space sooner. That is, instead 

of waiting for a vacancy to occur, a driver can already drive towards a soon-to-

be-vacated space. 

 

 

Static Queuing 

 

An alternative method of queuing could be an allocation of special short term 

stalling spaces for cars that are waiting to park. If drivers would be informed in 

real time that there are currently no spots available in a neighborhood and 

assuming that they would act rationally, they could stop searching. Instead of 

forming a disguised queue in the moving traffic along with passing cars, parkers 

could use designated stalling areas that specifically accommodate the queue of 

searchers. Such static queuing could economize the gasoline burnt during the 

process of fruitless cruising and minimize traffic congestion. When a parking 

space in the vicinity of the stalling area is vacated, then a driver could notice an 

appropriate message on his communication device, and drive to it from the 

stalling space.  

 

Static queues could be managed in either centralized or distributed ways. A 

centralized static parking queue could provide a common stalling area for several 

cruising cars,  similar to a taxi stop.  
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Figure 27 Centralized stalling area, similar in design to a taxi stall on a street 

corner. 

 

The positive aspect of such stalling is that centralized locations can be easily 

remembered by drivers, which makes returning to the stall undemanding for 

frequent parkers. For first time users a collective queuing location could also be 

easier to find by inquiries from local people or a digital map. Queue management 

would be simple and straightforward, comparable again to the yellow cab queue: 

the first car in the row would be allocated the first vacating parking spot in the 

neighborhood, the next one to the second and so on. The clarity of such a linear 

allocation system makes it simple to comprehend for all drivers and is analogous 

with most physical queues that people are accustomed to. 

 

On the other hand, a collective queuing stand can also have negative effects on 

overall efficiency of the parking system. Drivers would be subjected to 

unpleasant equity, forced to stand in line with all other drivers, even though their 

time and financial availability might vary significantly. In Chapter 1 we saw an 

empirical description of a person driving to a train station in a great hurry. The 

current parking system offers different services for people with different time 

availability or willingness to pay. In case of a hurry, a driver can decide to use an 
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expensive private parking structure or valet parking, achieving the goal in a 

costly but immediate way. In a collective stalling area, such individual 

differences would be subject to group attention. Passing other cars in the line 

would stir up conflicting feelings amongst other members of the line. 

 

Centralized stalling areas would also require a substantial amount of access 

driving. By definition, collective stalling areas, which assemble searchers from a 

relatively large geographic extent, should be located at sparser intervals than 

individual stalling spaces, which creates larger access radiuses. The time and 

distance spent on driving to the queue from the location where a person starts 

searching, and then in turn to a vacated parking space in another location, would 

in most cases cause more driving than distributed stalling.  

 

 
 

Figure 28 Functioning of collective queuing for street-parking. 

 

 

Furthermore, if the queues are long, then considerable lengths of street space 

would be consumed in a single location, potentially rendering an entire street into 

an unpleasant row of buzzing cars and leaving no parking spaces for inhabitants 

or business owners.  
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Decentralized stalling offers an alternative. The idea could function more 

similarly to packet routing of data over the Internet, where individual pieces can 

take different paths of the network, avoiding clustering and congestion in 

centralized bottle-necks. A potentially exploitable resource for distributed 

stalling is fire hydrant spaces, currently banned from use. Fire hydrant spaces are 

otherwise unusable as parking spaces and their exploitation as stalling spaces 

would not affect the number of current parking spaces. Cruisers, who have been 

notified that there are absolutely no available parking spaces at a given time, 

could either drive to another neighborhood or use the fire hydrant spaces for 

temporary stalling. Drivers should not be allowed to leave the seat while stalling 

at a hydrant, facing big penalties for violations. In addition to fire hydrants, 

additional stalling spaces could be allocated dynamically, depending on the 

current need through controllable signage on the ground. Using the 

communication infrastructure set up by the guidance system, the current over 

demand in a given area could be approximated momentarily and stalling spaces 

allocated accordingly. 

 

      
 

Figure 29 Allocation of temporary stalling spaces at fire hydrants and other 

designated spaces according to demand. 
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Access radiuses to local fire hydrants and other designated individual stalling 

spaces would be much smaller than to collective stalling areas. Hence, in total, 

less distance would need to be traveled between the location where a driver starts 

searching for parking, the location of the stalling space and the eventual location 

of a parking space. 

 

 

 
 

 
Figure 30 Functioning of distributed queuing for street-parking. 

 

Whereas distributed queuing could also disperse the quantity of queued cars into 

a larger geographic area without creating overly intense stalling lines on specific 

streets, it would therefore also be harder for individual drivers to locate these 

dispersed spaces in a neighborhood. Using the guidance software on a personal 

communication device could again aid in such a search. It is quite likely that 

similarly to the collective stalling spaces, local inhabitants and signage could also 

help guide drivers to appropriate sites.  

 

More importantly, distributed queuing at individual stalling spaces could flexibly 

accommodate different time and financial constraints of drivers in the queue. In 

case of urgency or simply willingness to pay higher fees for priority parking, 

drivers in scattered stalling spaces would not be subject to uncomfortable 
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situations, where distinguishing themselves in front of all the drivers in the queue 

might irritate others.  

 

Though my arguments seem to suggest that distributed queuing might be quite 

beneficial for reducing overall search times, more research on these assumptions 

is certainly needed. Specifically, critical conditions need to be outlined to 

indicate when stalling is better than dynamical probabilistic search. For instance, 

if the occupation turnover of parking spots in an area is relatively rapid, then 

driving to a stalling space, and subsequently from the stalling space to the 

parking spot, might increase the total search time. Under conditions of rapid 

turnover, a probabilistic search, or even a random search for that matter, could 

yield higher efficiencies for reducing overall search times. This, and many other 

similar uncertainties outlined in this thesis, require additional experimental 

research. But rather than only indicating the poor value of the current findings, I 

believe that such controversy adequately demonstrates the multilayered 

complexity of the use of real-time information in a dynamic allocation of urban 

resources.  
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Chapter Four 

 

 

Conclusions 
 

The question that I have been exploring is one of efficiency from a highly 

rational point of view. This efficiency is the overall reduction of searching time 

for street parking, that is, efficiency from the point of view of the group. Faced 

with challenges of sustainable development, group efficiency is becoming an 

important task for planners in the 21st century. Somewhat counter intuitively, a 

system that might be beneficial for an individual agent can undermine the 

efficiency of the group and vice versa. For instance, the simulation models 

showed that a reservation policy for street-parking, which clearly benefits an 

individual, can in fact cause great inefficiencies at a group level. Choosing and 

retaining the collective viewing angle has been an important part of this thesis, 

since I believe it is here that the emerging technology for urban systems needs 

most attention.  

 

Clearly, cruising for curb parking produces severe pollution and congestion 

today. Donald Shoup has adequately illustrated this story [Shoup, 2005]. 

However, excessive cruising is not only caused by the low price of street-

parking, but also by an inefficient match between the supply and the demand for 

parking spaces. Street-parking, like many other urban resources, is often times in 

over demand and it is likely to remain so in popular areas. Urban resource 

allocation should not be mistaken for a classical economic equilibrium case 

where supply is supposed to balance demand. Such an equilibrium condition of 

urban resources rarely occurs. As the metropolitan population in the world is 

growing faster than ever, it would be tremendously dangerous to produce enough 

urban resources that satisfy classical demand/supply equilibriums for everyone. 
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Hence, instead of producing more supplies, the important challenge is to deal 

with the over demand, with optimal allocation and queuing when there is little to 

allocate but demanders are many.  

 

I have tried to argue that that the efficiency of the current street-parking system 

could be improved in at least two aspects: 

 

1. By providing broader information to drivers, than is currently available to them 

in their immediate visual surroundings. 

 

2. By using combinatorial and probabilistic calculations  on a computer to enhance 

decision making with the available information. 

 

I have proposed that a computational guidance system can be used to balance 

these shortcomings. Personal mobile communication devices could exchange and 

process enough information to find satisfying solutions to combinatorial 

problems of commuting more efficiently than intuitive searching today. 

However, currently the sensing capacity of humans is far greater than of 

computers. Computers can do statistical calculations faster than human beings, 

but they have very limited capacity to sense information from the environment. 

Nevertheless, even with the limited but strategic group information, the 

simulation models that were presented suggest that overall parking search times 

can be diminished by at least a factor of two, depending on environmental 

conditions, with the aid of a digital guidance system. Rather than betting on one 

or the other, a seamless collaboration between a digital avatar and cognitive 

intuition can result in a more optimal search process. 

 

The comparison of simulations that used narrow individual information, and 

those that took into account group behavior and broader statistical information, 

showed that highest efficiencies can be achieved through collaborative behavior, 
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combining a wide range of information. The simulation results also suggested 

that an increase in information and computational capacity does not 

automatically lead to more efficient search results- a well planned coordination 

strategy is indispensable for good results.  As expected, clever strategies worked 

better under critical circumstances. In simpler situations almost any strategy 

could give a satisfactory result, while in challenging environmental conditions 

simpler strategies failed and intelligent strategies prevailed.  

 

A satisfying strategy is highly dependent on the external variables of the 

environment that it has to operate in. The causal effects of the few important 

environmental variables that I have outlined are 1) street grid size, 2) 

demand/supply ratio, 3) parking spot distribution and 4) alternative methods of 

guidance information. In addition to the external variables, search decisions are 

also affected by internal stimuli of the driver that allow him to freely switch 

between different goals and strategies with no apparent external environmental 

changes. The current intuitive searching behavior can provide many clues for a 

system designer to achieve a more efficient and humanly pleasant guidance 

system. Specifically beneficial for the efficiency of the search would be factors 

such as goal knowledge and goal switching capacity. 

 

I have also tried to emphasize, that an introduction of digital optimization 

systems to the physical realm of urban resource allocation brings about a set of 

important real-time management issues that have been far less crucial in both the 

digital realm and the urban realm so far. In digital information networks 

information travels at the speed of light and overlapping demand queues are 

solved in a fraction of a second. Information systems generally do not need to 

consider the physical distances between the remote parts of the network to 

manage queues. In traditional urban systems, on the other hand, interaction 

between people and places is slow and a potential queuing for a unique space can 

often be avoided due to different travel times of people in the physical world. 
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However, the use of digital communication for urban space allocation has to 

account for the physical efforts involved in relocating people and resources, as 

well as good queuing management. Unless carefully planned, an electronic 

system could cause severely wasteful allocation. This makes the digital allocation 

system susceptible to laws of physics. 

 

The issues I have been outlining in this thesis are not solely characteristic to 

parking management, but to virtually any digital space allocation system. The 

study of an efficient parking strategy has merely provided a slice of many more 

general issues that the introduction of real-time information systems creates for 

urban planners. The potentially affected domains are wide and cross-disciplinary, 

ranging from real-estate values, public and private transportation management, 

temporary space allocation, the distribution of goods and services, etc.24 It is yet 

to be seen how important the role of real-time information in urban economies 

will turn out to be, but there are reasons to believe that city planners should pay 

close attention and participate in this development. Currently, most real-time 

information technology is being pioneered by the private sector. Given that the 

clientele of the private sector is essentially composed of profit seeking 

individuals, it is natural that the technology is focused on the individual and that 

personal interests dominate. This thesis has tried to challenge this direction. It has 

tried to demonstrate that certain co-operative behavior amongst the agents in the 

system can lead to a better group outcome as well as higher individual gains than 

purely individual competition. Real-time awareness of other competitors 

combined with a clever decision making strategy increases the general 

competitiveness of the individual in the environment in which it operates. On the 

other hand, if well planned, the resulting competitive collaboration does not 

jeopardize group efficiency but rather improves it. The collaborative behavior 

between agents, that I have been exploring, is not achieved by centralized 

                                                 
24 A supplementary list of similar case studies to street-parking can be found at 
web.mit.edu/asevtsuk/www/thesis 
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planning, quite the opposite. It is achieved by taking advantage of innovative 

technology, competition and Game Theory in order to provide incentives for 

collaborative behavior amongst profit seeking individuals. I believe that it is 

precisely such group performance, which masks the immediately visible gains for 

the private sector (but does indeed contain them), that mostly needs the attention 

of planners. Undoubtedly, a further understanding and debate around the issues 

of group performance of real-time allocation systems can eventually also shift the 

focus of private technology companies towards a more universal understanding 

of their impacts on the cities of tomorrow.  
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Appendix 
 

Source codes for Star-Logo simulation models of street-parking. 
 
 

Intel_1 

Observer Procedures: 
 
globals [aa East-Free West-Free Total-Free List-Ready?] 
patches-own [EastSide? xcoord ycoord number] 
breeds [living working visiting1 visiting2] 
 
 
to track-vacant 
 loop[ 
 set Total-Free (count-patches-with [pc = white and count-
turtles-here = 0 ] ) 
 output Total-Free] 
end 
 
 
to track-vacant-all ; here we generate a list called "aa" which 
tracks the vacant spots on the east sides of roads 
 ; we need to keep them separate so that when a car estimates 
its driving distance, it knows if it needs to go around the block 
or not 
 setList-Ready? false 
 let [:a (count-patches-with [pc = white and count-turtles-
here = 0] )] 
 setTotal-Free (:a) 
 ask-patches [if pc = white and count-turtles-here = 0 [ 
 repeat Total-Free [ 
 if (number? xcor) [let [:xpos xcor]] 
 if (number? ycor) [let [:ypos ycor]] 
 let [:bb (list xcor ycor)] 
 
 set aa make-list 0 (East-Free) 
 set aa insert 1 aa :bb 
 ]]] 
 setList-Ready? true 
 ;show aa ; for debugging only to see if "aa" works 
end 
 
 
to setup 
 ct 
 crt number-of-cars 
 ask-turtles [setCounter 0 setshape cross setc red setspeed 1 
setSpeedLimit 1 
 if (who <= (number-of-cars / 5)) [setbreed living] 
 if (who > (number-of-cars / 5) and who <= (number-of-cars / 
2)) [setbreed working] 
 if (who > (number-of-cars / 2) and who <= (number-of-cars / 
1.25)) [setbreed visiting1] 
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 if (who > (number-of-cars / 1.25)) [setbreed visiting2] 
  if breed = living [setParkTime 48] 
  if breed = working [setParkTime 32] 
  if breed = visiting1 [setParkTime 2] 
  if breed = visiting2 [setParkTime 8] 
 
 loop [ifelse ((pc-at 0 0) = black and count-turtles-here = 1 
) [stop] [ 
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth 
90][ifelse (random 2) = 0 [seth 180] [seth 270]]] 
 fd (int random 25) 
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth 
90][ifelse (random 2) = 0 [seth 180] [seth 270]]] 
 fd (int random 25) ]]] 
 ask-patches-with [pc = white] [ 
 let [:x xcor] set xcoord :x let [:y ycor] set ycoord :y set 
number (:x * :y); assign each patch an x and y coordinate valeu 
and a unique number. 
 ] 
 starttrackingall 
 startcountaverage 
end 
 
 
to clear-cars 
 ct 
end 
 
 
to count-steps-to-find-parking 
output (average-of-turtles-with [color = yellow] [steps-to-find-
parking])  
end 
 
 
to stop-it 
 stoptrackingall 
 stopcountaverage 
 stopDrive&Park 
end 
 
 
to count-average ; this is for statistical analysis: paste these 
number into excel and calculate the mean, median and standard 
deviation 
 show (round average-of-turtles-with [color = yellow] [steps-
to-find-parking]) wait 1 
end 

 

Turtle Procedures: 
 
turtles-own [speed SpeedLimit ParkTime Parked? steps-to-find-
parking Direction CoordX CoordY Counter MyDist] 
 
 
to check-patches-after-park 
  if (pc-ahead = 7) or (pc-ahead = 9) [ 
 rt 90 check-patches-after-park 
      ] 
end 
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to check-side 
 ask-patch-at CoordX CoordY [output EastSide?] 
end 
 
 
to choose-nearest-spot 
; here extract the itam in the aa list, then extract ech item's x 
and y and check the patche's distance from the turtle (for all 
patches) 
; create a new variable named :dist which indicates the distance 
to the nearest free spot and a variable named "item-find" 
indicating the number of the element in the aa list 
; the aa list signifies place on the east side of roads, the bb 
contains spots from the west side of the road. 
  
 wait-until [List-Ready? = true] 
 let [:nullcheck (length aa)] 
 ifelse (:nullcheck > 0) [ 
 setMyDist 2000 ; initialize a distance that is bigger than 
any on screen dist, so that a new dist will always be smaller 
 let [:CoordX 0] 
 let [:CoordY 0] 
 let [:Dir 90] 
 let [:k 1] ; loop through every elemnt in the "number" list 
starts with 1 
 let [:aacopy (copy-list aa)] ; make a copy of the "aa", so 
if the real aa changes in length, their's remain the same until 
end of counting  
 let [:aasize (length :aacopy)]  
 repeat :aasize [ ;check only for free spots, don't waste RAM 
 let [:item-number (item :k :aacopy)] ; extract the first 
(eventually each) element from the aa list 
 let [:item-numberX (item 1 :item-number)] ; extract the X 
value of aa item  
 let [:item-numberY (item 2 :item-number)] ; extract the Y 
value of the aa item 
 let [:a (round(:item-numberX - xcor))] 
 let [:b (round(:item-numberY - ycor))]  
 ifelse (heading = 0 and :item-numberY < ycor) or (heading = 
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY > 
ycor) or (heading = 270 and :item-numberX > xcor)[ 
 let [:distnew ((abs :a) + (abs :b) + 45)]] ; if the 
destination spot is in the opposite direction, the add 1/2 
(average) block loop (22 + 8) to the dist 
 [let [:distnew ((abs :a) + (abs :b))]] 
 
 if (:distnew < MyDist ) [let[:kchosen :k] setMyDist 
:distnew] 
 ; CoordX and CoordY are turtle-own variables, which remember 
which parking spot the turtles zoomed onto, and will keep that 
until a turtles goes to that spot. 
 if :k <= :aasize [set :k (:k + 1)] 
 ] 
 
 set :item-number (item :kchosen :aacopy) ; extract the 
memorized smallest distance element from the :aacopy list 
 
 set :item-numberX (item 1 :item-number) ; extract the X 
value  
 set :item-numberY (item 2 :item-number) ; extract the Y 
value  
 set :a (round (:item-numberX - xcor))  
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 set :b (round (:item-numberY - ycor)) 
 
 ifelse (heading = 0 and :item-numberY < ycor) or (heading = 
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY > 
ycor) or (heading = 270 and :item-numberX > xcor)[ 
 setMyDist ( (abs :a) + (abs :b) + 45)] ; if the destination 
spot is in the opposite direction, the add 1/2 (average) block 
loop (22 + 8) to the dist 
 [setMyDist ((abs :a) + (abs :b))] 
 set CoordX (:item-numberX) set CoordY (:item-numberY) 
 setDirection (towards-nowrap CoordX CoordY) 
  
 ] [setCoordX 0 setCoordY 0 setMyDist 1000] 
end 
 
 
to park ; has to be done so that agent will look for parking until 
found 
  
 if (Parked? = false)[ 
 setc yellow 
 ;ask-patch-at CoordX CoordY [setpc green] 
 ;ask-patch-at CoordX CoordY [setpc white] 
 loop[ 
 choose-nearest-spot 
  ; here set the car to break or accelerate according 
to other cars 
  ifelse (count-turtles-towards heading 1) > 0     ;if 
there is a turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-towards heading 1 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at heading 1) > 0 
         [setspeed speed-of one-of-turtles-towards heading 2 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
 
 ; here is how the actual parking move happens 
 ; first, parking at your own side of the road and then 
parking at the opposite side of the road, parking on horisontal 
streets is also allowed. 
 ; augment the counter, which counts the program iterations 
during which a car parks (instead of real time) 
 ifelse ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-
turtles-at 1 0) = 0) or ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 
and (count-turtles-at (-1) 0) = 0) or 
 ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-at 
-2 0) = 0) or ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-
turtles-at 2 0) = 0) or 
 ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-at 0 
1) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) or 
 ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-at 
0 -2) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-
turtles-at 0 2) = 0) or  
 ((pc-at 0 0) = 9) [ 
 
 ; here we augment the parking counter and check if the 
counter is full, in which case a car leaves 



 133

 if ((pc-at 0 0) = 9 and (pc-at (-1) 0) = 0) [ setCounter 
Counter + 1 if Counter > ParkTime [setCounter 0 seth 270 fd 1 seth 
0 setParked? true stop]] 
 if ((pc-at 0 0) = 9 and (pc-at 1 0) = 0) [ setCounter 
Counter + 1 if Counter > ParkTime [setCounter 0 seth 90 fd 1 seth 
180 setParked? true stop]] 
 if ((pc-at 0 0) = 9 and (pc-at 0 (-1)) = 0) [setCounter 
Counter + 1 if Counter > ParkTime [setCounter 0 seth 180 fd 1 seth 
270 setParked? true stop]] 
 if ((pc-at 0 0) = 9 and (pc-at 0 1) = 0) [setCounter Counter 
+ 1 if Counter > ParkTime [setCounter 0 seth 0 fd 1 seth 90 
setParked? true stop]] 
 
 if ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-turtles-
at 1 0) = 0) [seth 90 fd 1 set steps-to-find-parking 0 setMyDist 0 
setc red ] 
 if ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 and (count-
turtles-at (-1) 0) = 0) [seth 270 fd 1 set steps-to-find-parking 0 
setMyDist 0 setc red ] 
 if ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-
at -2 0) = 0)[seth 270 fd 2 set steps-to-find-parking 0 setMyDist 
0 setc red ]  
 if ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-turtles-
at 2 0) = 0) [seth 90 fd 2 set steps-to-find-parking 0 setMyDist 0 
setc red ] 
 if ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-
at 0 1) = 0) [seth 0 fd 1 set steps-to-find-parking 0 setMyDist 0 
setc red ] 
 if ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) [seth 180 fd 1 set steps-to-find-parking 0 
setMyDist 0 setc red ] 
 if ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-
at 0 -2) = 0)[seth 180 fd 2 set steps-to-find-parking 0 setMyDist 
0 setc red ] 
 if ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-turtles-
at 0 2) = 0) [seth 0 fd 2 set steps-to-find-parking 0 setMyDist 0 
setc red ]] 
 [if (pc-at 0 0) not= white [ ifelse (pc-ahead = 2 and (pc-at 
0 0) = 2) [ifelse (random 2) = 0 [leap 3 set steps-to-find-parking 
(steps-to-find-parking + 3)] [ifelse (random 2) = 0 [rt 90 fd 2 
set steps-to-find-parking (steps-to-find-parking + 2)][fd 1 lt 90 
fd 2 set steps-to-find-parking (steps-to-find-parking + 3)]]]  
 [check-patches-after-park fd speed set steps-to-find-parking 
(steps-to-find-parking + speed)] if (CoordX = 0 and CoordY = 
0)[choose-nearest-spot]]]  
 
; here are the rules to guide a car towards a chosen spot, 
assuming it can also park on the opposite side of the road. 
ifelse (CoordX not= 0 and CoordY not= 0 and MyDist not= 1000) [ 
;only if you are closest in the competition for a given spot, 
drive there, else roam randomly and try again next step 
;in reality you should try the second best option here and then 
third best and so on! 
 
; for heading = 0, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor < CoordX and ycor < CoordY))[  
ifelse (CoordX < (xcor + 3))[fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor < CoordX and ycor > CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
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if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor > CoordX and ycor > CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor > CoordX and ycor < CoordY))[ 
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]] 
 
; for heading = 90, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
< CoordX and ycor < CoordY))[ 
ifelse (CoordX < (xcor + 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)][fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
< CoordX and ycor > CoordY))[ 
ifelse (CoordX < (xcor + 3)) [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
> CoordX and ycor > CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
> CoordX and ycor < CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
 
; for heading = 180, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor < CoordX and ycor < CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor < CoordX and ycor > CoordY))[ 
ifelse (CoordX < (xcor + 3)) [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)] [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor > CoordX and ycor > CoordY))[ 
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor > CoordX and ycor < CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
 
; for heading = 270, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor < CoordX and ycor < CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor < CoordX and ycor > CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor > CoordX and ycor > CoordY))[ 
ifelse (CoordX > (xcor - 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)] [fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]] 
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if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor > CoordX and ycor < CoordY))[ 
ifelse (CoordX > (xcor - 3)) [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)]] 
][if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 2) = 0 
[leap 3 set steps-to-find-parking (steps-to-find-parking + 3)] 
[ifelse (random 2) = 0 [rt 90 fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]]] 
]] 
end 
  
 
to drive ; each egnt will park and then drive for a certain time 
  
 if (pc-at 1 0) = 7 or (pc-at 1 0) = 9 [ 
 seth 0  
 setParked? false  
  
 park  
  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at 0 1) > 0     ;if there is a 
turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at 0 1 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at 0 1) > 0 
         [setspeed speed-of one-of-turtles-at 0 2 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
 
 if (pc-at (-1) 0) = 7 or (pc-at (-1) 0) = 9 [ 
 seth 180  
 setParked? false  
 park  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at 0 (-1)) > 0     ;if there is 
a turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at 0 (-1) 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at 0 (-1)) > 0 
         [setspeed speed-of one-of-turtles-at 0 (-2) 
         decelerate] 
         [accelerate]]   ;else accelerate 
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         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
  
 if (pc-at 0 1) = 7 or (pc-at 0 1) = 9 [ 
 seth 270  
 setParked? false  
 park  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at (-1) 0) > 0     ;if there is 
a turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at (-1) 0 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at (-1) 0) > 0 
         [setspeed speed-of one-of-turtles-at (-2) 0 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
  
 if (pc-at 0 (-1)) = 7 or (pc-at 0 (-1)) = 9 [ 
 seth 90  
 setParked? false  
 park  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at 1 0) > 0     ;if there is a 
turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at 1 0 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at 2 0) > 0 
         [setspeed speed-of one-of-turtles-at 2 0 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
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  if (pc-at 0 0 )= 2 [fd 1] 
end 
 
 
to accelerate 
  setspeed (speed + (speedup / 1000)) 
end 
 
 
to decelerate 
  setspeed speed - (slowdown / 1000) 
end 
 

 

Intel_3 

Observer Procedures: 
 
globals [aa Total-Free Reservation-Available?] 
patches-own [xcoord ycoord number] 
breeds [living working visiting1 visiting2 reserving] 
 
to track-vacant-all ; here we generate a list called "aa" which 
tracks the vacant spots on the east sides of roads 
 wait-until [Reservation-Available? = true] 
 if Reservation-Available? = true [ 
 set Reservation-Available? false 
 set aa make-list 0 0 
 let [:a (count-patches-with [pc = white and count-turtles-
here = 0])] 
 ask-patches [if pc = white and count-turtles-here = 0 [ 
 let [:xpos xcor] 
 let [:ypos ycor] 
 let [:bb (list xcor ycor)] 
 set aa insert 1 aa :bb 
 ]] 
 set Reservation-Available? true] 
end 
 
 
to setup 
 set-random-seed 100 
 set Reservation-Available? true 
 ct 
 crt number-of-cars 
 ask-turtles [setCounter 0 setshape cross setc red setspeed 1 
setSpeedLimit 1 
 if (who <= (number-of-cars / 5)) [setbreed living] 
 if (who > (number-of-cars / 5) and who <= (number-of-cars / 
2)) [setbreed working] 
 if (who > (number-of-cars / 2) and who <= (number-of-cars / 
1.25)) [setbreed visiting1] 
 if (who > (number-of-cars / 1.25)) [setbreed visiting2] 
  if breed = living [setParkTime 48] 
  if breed = working [setParkTime 32] 
  if breed = visiting1 [setParkTime 2] 
  if breed = visiting2 [setParkTime 8] 
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 loop [ifelse ((pc-at 0 0) = black and count-turtles-here = 1 
) [stop] [ 
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth 
90][ifelse (random 2) = 0 [seth 180] [seth 270]]] 
 fd (int random 25) 
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth 
90][ifelse (random 2) = 0 [seth 180] [seth 270]]] 
 fd (int random 25) ]]] 
 starttrackingall 
 startcountaverage 
end 
 
 
to clear-cars 
 ct 
end 
 
 
to count-steps-to-find-parking 
output (average-of-turtles-with [color = yellow] [steps-to-find-
parking]) 
end 
 
to stop-it 
 stoptrackingall 
 stopDrive&Park 
 stopcountaverage 
end 
 
 
to count-average ; this is for statistical analysis: paste these 
number into excel and calculate the mean, median and standard 
deviation 
 show (round average-of-turtles-with [color = yellow] [steps-
to-find-parking]) wait 1 
end 
 
 

Turtle Procedures: 
 
turtles-own [speed SpeedLimit ParkTime Parked? steps-to-find-
parking Direction CoordX CoordY Counter Dist] 
 
to check-patches-after-park 
  if (pc-ahead = 7) or (pc-ahead = 9) [ 
 rt 90 check-patches-after-park 
      ] 
end 
 
 
to choose-nearest-spot 
  
; here extract each item in the "aa" list, then extract each 
item's x and y and check the patche's distance from the turtle 
; use the turtles-own variable Distance which indicates the 
distance to the nearest free spot and a variable named ":item-
find" indicating the number of the element in the aa list 
 
wait-until [Reservation-Available? = true] 
if Reservation-Available? = true [ 
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set Reservation-Available? false 
 
 let [:nullcheck (length aa)] 
 if (:nullcheck > 0) [ 
 setDist 2000 ; initialize a distance that is bigger than any 
on screen dist, so that a new dist will always be smaller 
 let [:k 1] ; k is the counter to loop through every elemnt 
in the "number" list starts with 1 
 let [:aacopy (copy-list aa)] ; make a copy of the "aa", so 
if the real aa changes in length, their's remain the same until 
end of counting   
 repeat (length :aacopy) [ ;check only for free spots, don't 
waste RAM 
 let [:item-number (item :k :aacopy)] ; extract the first 
(eventually each) element from the aa list 
 let [:item-numberX (item 1 :item-number)] ; extract the X 
value of aa item  
 let [:item-numberY (item 2 :item-number)] ; extract the Y 
value of the aa item 
 let [:xdist (:item-numberX - (round xcor))] 
 let [:ydist (:item-numberY - (round ycor))]  
 ifelse (heading = 0 and :item-numberY < ycor) or (heading = 
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY > 
ycor) or (heading = 270 and :item-numberX > xcor)[ 
 let [:distnew ((abs :xdist) + (abs :ydist) + 45)]] ; if the 
destination spot is in the opposite direction, the add 1/2 
(average) block loop (22 + 8) to the dist 
 [let [:distnew ((abs :xdist) + (abs :ydist))]]  
 ; you're always comparing distnew to the initial dist, of 
course you'll just end up choosing the last one... 
 if (:distnew < Dist ) [let [:kchosen :k] setDist :distnew] 
 if :k <= (length :aacopy) [ set :k (:k + 1)]] 
 
 set :item-number (item :kchosen :aacopy) ; extract the 
memorized smallest distance element from the :aacopy list 
 set :item-numberX (item 1 :item-number) ; extract the X 
value  
 set :item-numberY (item 2 :item-number) ; extract the Y 
value  
 set :xdist (:item-numberX - (round xcor)) 
 set :ydist (:item-numberY - (round ycor)) 
 
 ifelse (heading = 0 and :item-numberY < ycor) or (heading = 
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY > 
ycor) or (heading = 270 and :item-numberX > xcor)[ 
 set Dist ((abs :xdist) + (abs :ydist) + 45)] ; if the 
destination spot is in the opposite direction, the add 1/2 
(average) block loop (22 + 8) to the dist 
 [set Dist ((abs :xdist) + (abs :ydist))] 
 set CoordX (:item-numberX) set CoordY (:item-numberY) 
 setDirection (towards-nowrap CoordX CoordY) 
 ask-patch-at :xdist :ydist [sprout [setbreed reserving setc 
green setshape cross]] 
 let [:bb (list CoordX CoordY)] 
 set aa (remove-element :bb aa)] 
 set Reservation-Available? true 
 ] 
end 
 
 
to park ; has to be done so that agent will look for parking until 
found 
  
 if breed not= reserving[ 
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 if (Parked? = false)[ 
 setc yellow 
 ; the idea here is that if an agent has found a destination 
from the aa list, then it will keep driving there until it parks, 
if not, it will roam randomly once and then try the aa list again 
 choose-nearest-spot 
 loop[ 
; First check if there is a parking spt next to you. here is how 
the actual parking move happens 
 ; first, parking at your own side of the road and then 
parking at the opposite side of the road, parking on horisontal 
streets is also allowed. 
 let [:roundx (round xcor) 
 :roundy (round ycor)] 
 
 ifelse ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-
turtles-at 1 0) = 0) or ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 
and (count-turtles-at (-1) 0) = 0 ) or 
 ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-at 
-2 0) = 0 ) or ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-
turtles-at 2 0) = 0 ) or 
 ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-at 0 
1) = 0 ) or ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0 ) or 
 ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-at 
0 -2) = 0 ) or ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-
turtles-at 0 2) = 0 ) or 
 
 ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and 
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at 
0 0) = 0 and (pc-at 1 0) = 9 and (count-reserving-at 1 0) = 1) or 
((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and 
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at 
0 0) = 0 and (pc-at (-1) 0) = 9 and (count-reserving-at (-1) 0) = 
1 ) or 
 ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and 
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at 
0 0) = 0 and (pc-at -2 0) = 9 and (count-reserving-at -2 0) = 1 ) 
or ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and 
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at 
0 0) = 0 and (pc-at 2 0) = 9 and (count-reserving-at 2 0) = 1 ) or 
 ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and 
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at 
0 0) = 0 and (pc-at 0 1) = 9 and (count-reserving-at 0 1) = 1 ) or 
((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and 
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at 
0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-reserving-at 0 (-1)) = 
1 ) or 
 ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and 
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at 
0 0) = 0 and (pc-at 0 -2) = 9 and (count-reserving-at 0 -2) = 1 ) 
or ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and 
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at 
0 0) = 0 and (pc-at 0 2) = 9 and (count-reserving-at 0 2) = 1 )[ 
 
 if ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-turtles-
at 1 0) = 0) [ seth 90 fd 1 kill one-of-reserving-at (CoordX - 
(round xcor)) (CoordY - (round ycor)) set CoordX 0 set CoordY 0 
setDirection 0 setParked? true set steps-to-find-parking 0 setc 
red] 
 
 if ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 and (count-
turtles-at (-1) 0) = 0) [seth 270 fd 1 kill one-of-reserving-at 
(CoordX - (round xcor)) (CoordY - (round ycor)) set CoordX 0 set 
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CoordY 0 setDirection 0 setParked? true set steps-to-find-parking 
0 setc red] 
 if ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-
at -2 0) = 0) [seth 270 fd 2 kill one-of-reserving-at (CoordX - 
(round xcor)) (CoordY - (round ycor)) set CoordX 0 set CoordY 0 
setDirection 0 setParked? true set steps-to-find-parking 0 setc 
red] 
 if ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-turtles-
at 2 0) = 0) [seth 90 fd 2 kill one-of-reserving-at (CoordX - 
(round xcor)) (CoordY - (round ycor)) set CoordX 0 set CoordY 0 
setDirection 0 setParked? true set steps-to-find-parking 0 setc 
red] 
 if ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-
at 0 1) = 0) [seth 0 fd 1 kill one-of-reserving-at (CoordX - 
(round xcor)) (CoordY - (round ycor)) set CoordX 0 set CoordY 0 
setDirection 0 setParked? true set steps-to-find-parking 0 setc 
red] 
 if ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) [seth 180 fd 1 kill one-of-reserving-at 
(CoordX - (round xcor)) (CoordY - (round ycor)) set CoordX 0 set 
CoordY 0 setDirection 0 setParked? true set steps-to-find-parking 
0 setc red] 
 if ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-
at 0 -2) = 0 ) [seth 180 fd 2 kill one-of-reserving-at (CoordX - 
(round xcor)) (CoordY - (round ycor)) set CoordX 0 set CoordY 0 
setDirection 0 setParked? true set steps-to-find-parking 0 setc 
red] 
 if ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-turtles-
at 0 2) = 0 ) [seth 0 fd 2 kill one-of-reserving-at (CoordX - 
(round xcor)) (CoordY - (round ycor)) set CoordX 0 set CoordY 0 
setDirection 0 setParked? true set steps-to-find-parking 0 setc 
red] 
 
 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) 
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and 
(pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-reserving-at 1 0) = 
1) [seth 90 fd 1 set CoordX 0 set CoordY 0 setDirection 0 kill 
one-of-reserving-here setParked? true set steps-to-find-parking 0 
setc red] 
 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) 
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and 
(pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 and (count-reserving-at (-
1) 0) = 1) [seth 270 fd 1 set CoordX 0 set CoordY 0 setDirection 0 
kill one-of-reserving-here setParked? true set steps-to-find-
parking 0 setc red] 
 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) 
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and 
(pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-reserving-at -2 0) 
= 1)[seth 270 fd 2 set CoordX 0 set CoordY 0 setDirection 0 kill 
one-of-reserving-here setParked? true set steps-to-find-parking 0 
setc red] 
 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) 
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and 
(pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-reserving-at 2 0) = 
1) [seth 90 fd 2 set CoordX 0 set CoordY 0 setDirection 0  kill 
one-of-reserving-here setParked? true set steps-to-find-parking 0 
setc red] 
 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) 
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and 
(pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-reserving-at 0 1) = 
1) [seth 0 fd 1 set CoordX 0 set CoordY 0 setDirection 0 kill one-
of-reserving-here setParked? true set steps-to-find-parking 0 setc 
red] 
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 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) 
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and 
(pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-reserving-at 0 
(-1)) = 1) [seth 180 fd 1 set CoordX 0 set CoordY 0 setDirection 0 
kill one-of-reserving-here setParked? true set steps-to-find-
parking 0 setc red] 
 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) 
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and 
(pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-reserving-at 0 -2) 
= 1)[seth 180 fd 2 set CoordX 0 set CoordY 0 setDirection 0 kill 
one-of-reserving-here setParked? true set steps-to-find-parking 0 
setc red] 
 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) 
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and 
(pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-reserving-at 0 2) = 
1) [seth 0 fd 2 set CoordX 0 set CoordY 0 setDirection 0 kill one-
of-reserving-here setParked? true set steps-to-find-parking 0 setc 
red]] 
 [if (pc-at 0 0) not= white [ ifelse (pc-ahead = 2 and (pc-at 
0 0) = 2) [ifelse (random 2) = 0 [leap 3 set steps-to-find-parking 
(steps-to-find-parking + 3)] [ifelse (random 2) = 0 [rt 90 fd 2 
set steps-to-find-parking (steps-to-find-parking + 2)][fd 1 lt 90 
fd 2 set steps-to-find-parking (steps-to-find-parking + 3)]]]  
 [check-patches-after-park fd speed set steps-to-find-parking 
(steps-to-find-parking + speed)] if (CoordX = 0 and CoordY = 
0)[choose-nearest-spot]]] 
 
 ;here we augment the parking counter and check if the 
counter is full, in which case a car leaves. When leaving, a car 
must also step 1 step away from the spot in order not to park 
again. 
 if (breed not= reserving and Parked? = true and (pc-at 0 0) 
= white) [ 
 ifelse Counter > ParkTime [ 
 if ((pc-at (-2) 0) = black and (pc-at (-1) 0) = black and 
(pc-at 0 0) = white) [kill one-of-reserving-here seth 270 fd 1 
seth 0 setCounter 0 stop] 
 if ((pc-at 2 0) = black and (pc-at 1 0) = black and (pc-at 0 
0) = white) [kill one-of-reserving-here seth 90 fd 1 seth 180 
setCounter 0 stop] 
 if ((pc-at 0 (-2)) = black and (pc-at 0 (-1)) = black and 
(pc-at 0 0) = white) [kill one-of-reserving-here seth 180 fd 1 
seth 270 setCounter 0 stop] 
 if ((pc-at 0 2) = black and (pc-at 0 1) = black and (pc-at 0 
0) = white) [kill one-of-reserving-here seth 0 fd 1 seth 90 
setCounter 0 stop]] 
 [set Counter (Counter + 1)]] 
  
; Now, check if you are on an intersection. Here are the rules to 
guide a car towards a chosen spot, assuming it can also park on 
the opposite side of the road. 
ifelse (CoordX not= 0 and CoordY not= 0)[ 
 
; for heading = 0, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor < CoordX and ycor < CoordY))[ 
ifelse (CoordX < (xcor + 3))[fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor < CoordX and ycor > CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
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if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor > CoordX and ycor > CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor > CoordX and ycor < CoordY))[ 
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]] 
 
; for heading = 90, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
< CoordX and ycor < CoordY))[ 
ifelse (CoordX < (xcor + 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)][fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
< CoordX and ycor > CoordY))[ 
ifelse (CoordX < (xcor + 3)) [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
> CoordX and ycor > CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
> CoordX and ycor < CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
 
; for heading = 180, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor < CoordX and ycor < CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor < CoordX and ycor > CoordY))[ 
ifelse (CoordX < (xcor + 3)) [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)] [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor > CoordX and ycor > CoordY))[ 
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor > CoordX and ycor < CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
 
; for heading = 270, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor < CoordX and ycor < CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor < CoordX and ycor > CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor > CoordX and ycor > CoordY))[ 
ifelse (CoordX > (xcor - 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)] [fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]] 
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if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor > CoordX and ycor < CoordY))[ 
ifelse (CoordX > (xcor - 3)) [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)]]]  
 
[if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 2) = 0 
[leap 3 set steps-to-find-parking (steps-to-find-parking + 3)] 
[ifelse (random 2) = 0 [rt 90 fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]]] 
 
; if Reserved? was false on the  previous step, try again and then 
enter the park proc again. 
  ; here set the car to break or accelerate according 
to other cars 
  ifelse (count-turtles-towards heading 1) > 0     ;if 
there is a turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-towards heading 1 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at heading 1) > 0 
         [setspeed speed-of one-of-turtles-towards heading 2 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
]]]  
end 
  
 
to drive ; each egnt will park and then drive for a certain time 
  
 if (pc-at 1 0) = 7 or (pc-at 1 0) = 9 [ 
 seth 0  
 setParked? false  
  
 park  
  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at 0 1) > 0     ;if there is a 
turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at 0 1 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at 0 1) > 0 
         [setspeed speed-of one-of-turtles-at 0 2 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
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 if (pc-at (-1) 0) = 7 or (pc-at (-1) 0) = 9 [ 
 seth 180  
 setParked? false  
 park  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at 0 (-1)) > 0     ;if there is 
a turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at 0 (-1) 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at 0 (-1)) > 0 
         [setspeed speed-of one-of-turtles-at 0 (-2) 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
  
 if (pc-at 0 1) = 7 or (pc-at 0 1) = 9 [ 
 seth 270  
 setParked? false  
 park  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at (-1) 0) > 0     ;if there is 
a turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at (-1) 0 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at (-1) 0) > 0 
         [setspeed speed-of one-of-turtles-at (-2) 0 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
  
 if (pc-at 0 (-1)) = 7 or (pc-at 0 (-1)) = 9 [ 
 seth 90  
 setParked? false  
 park  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
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  ifelse (count-turtles-at 1 0) > 0     ;if there is a 
turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at 1 0 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at 2 0) > 0 
         [setspeed speed-of one-of-turtles-at 2 0 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
end 
 
to accelerate 
  setspeed (speed + (speedup / 1000)) 
end 
 
to decelerate 
  setspeed speed - (slowdown / 1000) 
end 

 
 

Intel_5 

Observer Procedures: 
 
 
globals [aa East-Free West-Free Total-Free List-Ready?] 
patches-own [EastSide? xcoord ycoord number] 
breeds [living working visiting1 visiting2] 
 
 
to track-vacant 
 loop[ 
 set Total-Free (count-patches-with [pc = white and count-
turtles-here = 0 ] ) 
 output Total-Free] 
 
end 
 
 
to track-vacant-all ; here we generate a list called "aa" which 
tracks the vacant spots on the east sides of roads 
 ; we need to keep them separate so that when a car estimates 
its driving distance, it knows if it needs to go around the block 
or not 
 setList-Ready? false 
 let [:a (count-patches-with [pc = white and count-turtles-
here = 0] )] 
 setTotal-Free (:a) 
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 ask-patches [if pc = white and count-turtles-here = 0 [ 
 repeat Total-Free [ 
 if (number? xcor) [let [:xpos xcor]] 
 if (number? ycor) [let [:ypos ycor]] 
 let [:bb (list xcor ycor)] 
 
 set aa make-list 0 (East-Free) 
 set aa insert 1 aa :bb 
 ]]] 
 setList-Ready? true 
 ;show aa ; for debugging only to see if "aa" works 
end 
 
 
 
to setup 
  
 ct 
 crt number-of-cars 
 ask-turtles [setPark-Counter 0 setshape cross setc red 
setspeed 1 setSpeedLimit 1 
 if (who <= (number-of-cars / 5)) [setbreed living] 
 if (who > (number-of-cars / 5) and who <= (number-of-cars / 
2)) [setbreed working] 
 if (who > (number-of-cars / 2) and who <= (number-of-cars / 
1.25)) [setbreed visiting1] 
 if (who > (number-of-cars / 1.25)) [setbreed visiting2] 
  if breed = living [setParkTime 48] 
  if breed = working [setParkTime 32] 
  if breed = visiting1 [setParkTime 2] 
  if breed = visiting2 [setParkTime 8] 
 
 loop [ifelse ((pc-at 0 0) = black and count-turtles-here = 1 
) [stop] [ 
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth 
90][ifelse (random 2) = 0 [seth 180] [seth 270]]] 
 fd (int random 25) 
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth 
90][ifelse (random 2) = 0 [seth 180] [seth 270]]] 
 fd (int random 25) ]]] 
 ask-patches-with [pc = white] [ 
 let [:x xcor] set xcoord :x let [:y ycor] set ycoord :y set 
number (:x * :y); assign each patch an x and y coordinate valeu 
and a unique number. 
 ] 
 starttrackingall 
 startcountaverage 
end 
 
 
to clear-cars 
 ct 
end 
 
 
to count-steps-to-find-parking 
output (average-of-turtles-with [color = yellow] [steps-to-find-
parking])  
end 
 
 
to stop-it 
 stoptrackingall 
 stopcountaverage 
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 stopDrive&Park 
end 
 
 
to count-average ; this is for statistical analysis: paste these 
number into excel and calculate the mean, median and standard 
deviation 
 show (round average-of-turtles-with [color = yellow] [steps-
to-find-parking]) wait 1 
end 

 

Turtle Procedures: 
 
turtles-own [speed SpeedLimit ParkTime Parked? steps-to-find-
parking Direction CoordX CoordY MyDist Total-Min-Dist Aacopy 
Search-Counter Park-Counter] 
 
 
to check-patches-after-park 
  if (pc-ahead = 7) or (pc-ahead = 9) [ 
 rt 90 check-patches-after-park 
      ] 
end 
 
 
to check-side 
 ask-patch-at CoordX CoordY [output EastSide?] 
end 
 
 
to try-all-choices 
 let [:nullcheck2 (length Aacopy)] ifelse :nullcheck2 not= 0 
[ 
 set Search-Counter 1 
 setMyDist 2000 
 repeat :nullcheck2 [ ;check only for free spots, don't waste 
RAM 
 let [:item-number (item Search-Counter Aacopy)] ; extract 
the first (eventually each) element from the aa list 
 let [:item-numberX (item 1 :item-number)] ; extract the X 
value of aa item  
 let [:item-numberY (item 2 :item-number)] ; extract the Y 
value of the aa item 
 let [:a (round(:item-numberX - xcor))] 
 let [:b (round(:item-numberY - ycor))]  
 ifelse (heading = 0 and :item-numberY < ycor) or (heading = 
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY > 
ycor) or (heading = 270 and :item-numberX > xcor)[ 
 let [:distnew ((abs :a) + (abs :b) + 45)]] ; if the 
destination spot is in the opposite direction, the add 1/2 
(average) block loop (22 + 8) to the dist 
 [let [:distnew ((abs :a) + (abs :b))]] 
 
 if (:distnew < MyDist ) [let[:kchosen Search-Counter] 
setMyDist :distnew] 
 ; CoordX and CoordY are turtle-own variables, which remember 
which parking spot the turtles zoomed onto, and will keep that 
until a turtles goes to that spot. 
 if Search-Counter <= :nullcheck2 [set Search-Counter 
(Search-Counter + 1)] 
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 ] 
 
 set :item-number (item :kchosen Aacopy) ; extract the 
memorized smallest distance element from the :aacopy list 
 set :item-numberX (item 1 :item-number) ; extract the X 
value  
 set :item-numberY (item 2 :item-number) ; extract the Y 
value  
 set :a (round (:item-numberX - xcor))  
 set :b (round (:item-numberY - ycor)) 
 
 ifelse (heading = 0 and :item-numberY < ycor) or (heading = 
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY > 
ycor) or (heading = 270 and :item-numberX > xcor)[ 
 setMyDist ( (abs :a) + (abs :b) + 45)] ; if the destination 
spot is in the opposite direction, the add 1/2 (average) block 
loop (22 + 8) to the dist 
 [setMyDist ((abs :a) + (abs :b))] 
 
        let [:a (CoordX) :b (CoordY)] 
 setTotal-Min-Dist ( min-of-turtles-with [CoordX = :a and 
CoordY = :b] [MyDist]) ;show Total-Min-Dist; ask from all turtles 
who has the same target, what the min dist is and save it for 
later 
        ifelse (MyDist <= Total-Min-Dist)[ 
 set CoordX (:item-numberX) set CoordY (:item-numberY) 
 setDirection (towards-nowrap CoordX CoordY)] 
        [set Aacopy (remove-element :item-number Aacopy) try-all-
choices]] 
 [setCoordX 0 setCoordY 0 setMyDist 1000] 
end 
 
 
to choose-nearest-spot 
  
; here extract the itam in the aa list, then extract ech item's x 
and y and check the patche's distance from the turtle (for all 
patches) 
; use a  turtles-own variable named MyDist which indicates the 
distance to the nearest free spot and a variable named ":kchosen" 
indicating the number of the element in the aa list 
 
  
 wait-until [List-Ready? = true] 
 let [:nullcheck (length aa)] 
 ifelse (:nullcheck > 0) [ 
 setMyDist 2000 ; initialize a distance that is bigger than 
any on screen dist, so that a new dist will always be smaller 
 let [:CoordX 0] 
 let [:CoordY 0] 
 let [:Dir 90] 
 setAacopy (copy-list aa) ; make a copy of the "aa", so if 
the real aa changes in length, their's remain the same until end 
of counting  
  
 try-all-choices 
  
 ] [setCoordX 0 setCoordY 0 setMyDist 1000] 
end 
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to park ; has to be done so that agent will look for parking until 
found 
  
 if (Parked? = false)[ 
 setc yellow 
 ;ask-patch-at CoordX CoordY [setpc green] 
 ;ask-patch-at CoordX CoordY [setpc white] 
 loop[ 
 choose-nearest-spot 
  ; here set the car to break or accelerate according 
to other cars 
  ifelse (count-turtles-towards heading 1) > 0     ;if 
there is a turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-towards heading 1 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at heading 1) > 0 
         [setspeed speed-of one-of-turtles-towards heading 2 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
 
 ; here is how the actual parking move happens 
 ; first, parking at your own side of the road and then 
parking at the opposite side of the road, parking on horisontal 
streets is also allowed. 
 ; augment the counter, which counts the program iterations 
during which a car parks (instead of real time) 
 ifelse ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-
turtles-at 1 0) = 0) or ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 
and (count-turtles-at (-1) 0) = 0) or 
 ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-at 
-2 0) = 0) or ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-
turtles-at 2 0) = 0) or 
 ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-at 0 
1) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) or 
 ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-at 
0 -2) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-
turtles-at 0 2) = 0) or  
 ((pc-at 0 0) = 9) [ 
 
 ; here we augment the parking counter and check if the 
counter is full, in which case a car leaves 
 if ((pc-at 0 0) = 9 and (pc-at (-1) 0) = 0) [ setPark-
Counter Park-Counter + 1 if Park-Counter > ParkTime [setPark-
Counter 0 seth 270 fd 1 seth 0 setParked? true stop]] 
 if ((pc-at 0 0) = 9 and (pc-at 1 0) = 0) [ setPark-Counter 
Park-Counter + 1 if Park-Counter > ParkTime [setPark-Counter 0 
seth 90 fd 1 seth 180 setParked? true stop]] 
 if ((pc-at 0 0) = 9 and (pc-at 0 (-1)) = 0) [setPark-Counter 
Park-Counter + 1 if Park-Counter > ParkTime [setPark-Counter 0 
seth 180 fd 1 seth 270 setParked? true stop]] 
 if ((pc-at 0 0) = 9 and (pc-at 0 1) = 0) [setPark-Counter 
Park-Counter + 1 if Park-Counter > ParkTime [setPark-Counter 0 
seth 0 fd 1 seth 90 setParked? true stop]] 
 
 if ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-turtles-
at 1 0) = 0) [seth 90 fd 1 set steps-to-find-parking 0 setc red 
setMyDist 0] 
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 if ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 and (count-
turtles-at (-1) 0) = 0) [seth 270 fd 1 set steps-to-find-parking 0 
setc red setMyDist 0] 
 if ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-
at -2 0) = 0)[seth 270 fd 2 set steps-to-find-parking 0 setc red 
setMyDist 0]  
 if ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-turtles-
at 2 0) = 0) [seth 90 fd 2 set steps-to-find-parking 0 setc red 
setMyDist 0] 
 if ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-
at 0 1) = 0) [seth 0 fd 1 set steps-to-find-parking 0 setc red 
setMyDist 0] 
 if ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) [seth 180 fd 1 set steps-to-find-parking 0 
setc red setMyDist 0] 
 if ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-
at 0 -2) = 0)[seth 180 fd 2 set steps-to-find-parking 0 setc red 
setMyDist 0] 
 if ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-turtles-
at 0 2) = 0) [seth 0 fd 2 set steps-to-find-parking 0 setc red 
setMyDist 0]] 
 [if (pc-at 0 0) not= white [ ifelse (pc-ahead = 2 and (pc-at 
0 0) = 2) [ifelse (random 2) = 0 [leap 3 set steps-to-find-parking 
(steps-to-find-parking + 3)] [ifelse (random 2) = 0 [rt 90 fd 2 
set steps-to-find-parking (steps-to-find-parking + 2)][fd 1 lt 90 
fd 2 set steps-to-find-parking (steps-to-find-parking + 3)]]]  
 [check-patches-after-park fd speed set steps-to-find-parking 
(steps-to-find-parking + speed)] if (CoordX = 0 and CoordY = 
0)[choose-nearest-spot]]]  
 
 
; here are the rules to guide a car towards a chosen spot, 
assuming it can also park on the opposite side of the road. 
;in reality you should try the second best option here and then 
third best and so on! 
 
ifelse (CoordX not= 0 and CoordY not= 0 and MyDist not= 1000) [ 
;only if you are closest in the competition for a given spot, 
drive there, else roam randomly and try again next step 
 
; for heading = 0, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor < CoordX and ycor < CoordY))[  
ifelse (CoordX < (xcor + 3))[fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor < CoordX and ycor > CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor > CoordX and ycor > CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor > CoordX and ycor < CoordY))[ 
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]] 
 
; for heading = 90, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
< CoordX and ycor < CoordY))[ 
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ifelse (CoordX < (xcor + 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)][fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
< CoordX and ycor > CoordY))[ 
ifelse (CoordX < (xcor + 3)) [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
> CoordX and ycor > CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
> CoordX and ycor < CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
 
; for heading = 180, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor < CoordX and ycor < CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor < CoordX and ycor > CoordY))[ 
ifelse (CoordX < (xcor + 3)) [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)] [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor > CoordX and ycor > CoordY))[ 
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor > CoordX and ycor < CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
 
; for heading = 270, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor < CoordX and ycor < CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor < CoordX and ycor > CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor > CoordX and ycor > CoordY))[ 
ifelse (CoordX > (xcor - 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)] [fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor > CoordX and ycor < CoordY))[ 
ifelse (CoordX > (xcor - 3)) [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)]] 
][if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 2) = 0 
[leap 3 set steps-to-find-parking (steps-to-find-parking + 3)] 
[ifelse (random 2) = 0 [rt 90 fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]]] 
]] 
end 
  
 



 153

to drive ; each egnt will park and then drive for a certain time 
  
 if (pc-at 1 0) = 7 or (pc-at 1 0) = 9 [ 
 seth 0  
 setParked? false  
 park  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at 0 1) > 0     ;if there is a 
turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at 0 1 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at 0 1) > 0 
         [setspeed speed-of one-of-turtles-at 0 2 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
 
 if (pc-at (-1) 0) = 7 or (pc-at (-1) 0) = 9 [ 
 seth 180  
 setParked? false  
 park  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at 0 (-1)) > 0     ;if there is 
a turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at 0 (-1) 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at 0 (-1)) > 0 
         [setspeed speed-of one-of-turtles-at 0 (-2) 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
  
 if (pc-at 0 1) = 7 or (pc-at 0 1) = 9 [ 
 seth 270  
 setParked? false  
 park  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
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  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at (-1) 0) > 0     ;if there is 
a turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at (-1) 0 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at (-1) 0) > 0 
         [setspeed speed-of one-of-turtles-at (-2) 0 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
  
 if (pc-at 0 (-1)) = 7 or (pc-at 0 (-1)) = 9 [ 
 seth 90  
 setParked? false  
 park  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at 1 0) > 0     ;if there is a 
turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at 1 0 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at 2 0) > 0 
         [setspeed speed-of one-of-turtles-at 2 0 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  if (pc-at 0 0 )= 2 [fd 1] 
end 
 
 
to accelerate 
  setspeed (speed + (speedup / 1000)) 
end 
 
 
to decelerate 
  setspeed speed - (slowdown / 1000) 
end 
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Intel_7 

Observer Procedures: 
 
globals [aa bb Total-Free List-Ready? Occupied-List-Ready?] 
breeds [living working visiting1 visiting2] 
patches-own [Probability-Timer] 
 
to track-vacant 
 loop[ 
 set Total-Free (count-patches-with [pc = white and count-
turtles-here = 0 ] ) 
 output Total-Free] 
end 
 
 
to track-vacant-all ; here we generate a list called "aa" which 
tracks the vacant spots on the east sides of roads 
 wait-until [List-Ready? = true] 
 if List-Ready? = true [ 
 set List-Ready? false 
 set aa make-list 0 0 
 ask-patches [if pc = white and count-turtles-here = 0 [ 
 let [:bb (list xcor ycor)] 
 set aa insert 1 aa :bb 
 ]] 
 set List-Ready? true] 
 
 ask-patches-with [pc = white] [ if (count-turtles-here = 0) 
[ 
 setProbability-Timer 0] 
 ] 
end 
 
 
to track-occupied-all ; here we generate a list called "bb" which 
tracks the ocupied spots for probabilitsic search 
 wait-until [Occupied-List-Ready? = true] 
 if Occupied-List-Ready? = true [ 
 setOccupied-List-Ready? false 
 set bb make-list 0 0 
 ask-patches [if pc = white and count-turtles-here > 0 [ 
 let [:bb (list xcor ycor)] 
 set bb insert 1 bb :bb 
 ]] 
 setOccupied-List-Ready? true] 
end 
 
 
to setup 
 set-random-seed 100 
 set List-Ready? true 
 setOccupied-List-Ready? true 
 set aa make-list 0 0 
 set bb make-list 0 0 
 ct 
 crt number-of-cars 
 ask-turtles [setPark-Counter 0 setshape cross setc red 
setspeed 1 setSpeedLimit 1 
 if (who <= (number-of-cars / 5)) [setbreed living] 
 if (who > (number-of-cars / 5) and who <= (number-of-cars / 
2)) [setbreed working] 
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 if (who > (number-of-cars / 2) and who <= (number-of-cars / 
1.25)) [setbreed visiting1] 
 if (who > (number-of-cars / 1.25)) [setbreed visiting2] 
  if breed = living [setParkTime 48] 
  if breed = working [setParkTime 32] 
  if breed = visiting1 [setParkTime 2] 
  if breed = visiting2 [setParkTime 8] 
 
 loop [ifelse ((pc-at 0 0) = black and count-turtles-here = 1 
) [stop] [ 
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth 
90][ifelse (random 2) = 0 [seth 180] [seth 270]]] 
 fd (int random 25) 
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth 
90][ifelse (random 2) = 0 [seth 180] [seth 270]]] 
 fd (int random 25) ]]] 
 starttrackingall 
 startcountaverage 
 startoccupied-all 
end 
 
 
to count-steps-to-find-parking 
output (average-of-turtles-with [color = yellow] [steps-to-find-
parking])  
end 
 
 
to stop-it 
 stoptrackingall 
 stopcountaverage 
 stopDrive&Park 
 stopoccupied-all 
end 
 
 
to count-average ; this is for statistical analysis: paste these 
number into excel and calculate the mean, median and standard 
deviation 
 show (round average-of-turtles-with [color = yellow] [steps-
to-find-parking]) wait 1 
end 
 
 
 

Turtle Procedures: 
 
 
turtles-own [speed SpeedLimit ParkTime Parked? steps-to-find-
parking Direction CoordX CoordY MyDist MyDist-Occupied Total-Min-
Dist Total-Min-Occupied-Chances Aacopy Bbcopy Search-Counter Park-
Counter Vacant-Chances Occupied-Chances] 
 
to check-patches-after-park 
  if (pc-ahead = 7) or (pc-ahead = 9) [ 
 rt 90 check-patches-after-park 
      ] 
end 
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to try-all-vacant-choices 
 
 let [:nullcheck2 (length Aacopy)] ifelse :nullcheck2 > 0 [ 
 set Search-Counter 1 
 setMyDist 2000 
 repeat :nullcheck2 [ ;check only for free spots, don't waste 
RAM 
 let [:item-number (item Search-Counter Aacopy)] ; extract 
the first (eventually each) element from the aa list 
 let [:item-numberX (item 1 :item-number)] ; extract the X 
value of aa item  
 let [:item-numberY (item 2 :item-number)] ; extract the Y 
value of the aa item 
 let [:a (round(:item-numberX - xcor))] 
 let [:b (round(:item-numberY - ycor))]  
 ifelse (heading = 0 and :item-numberY < ycor) or (heading = 
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY > 
ycor) or (heading = 270 and :item-numberX > xcor)[ 
 let [:distnew ((abs :a) + (abs :b) + 45)]] ; if the 
destination spot is in the opposite direction, the add 1/2 
(average) block loop (22 + 8) to the dist 
 [let [:distnew ((abs :a) + (abs :b))]] 
 
 if (:distnew <= MyDist ) [let[:kchosen Search-Counter] 
setMyDist :distnew] 
 ; CoordX and CoordY are turtle-own variables, which remember 
which parking spot the turtles zoomed onto, and will keep that 
until a turtles goes to that spot. 
 if (Search-Counter <= (:nullcheck2)) [set Search-Counter 
(Search-Counter + 1)] 
 ] 
 
 set :item-number (item :kchosen Aacopy) ; extract the 
memorized smallest distance element from the :aacopy list 
 set :item-numberX (item 1 :item-number) ; extract the X 
value  
 set :item-numberY (item 2 :item-number) ; extract the Y 
value  
 set :a (round (:item-numberX - xcor))  
 set :b (round (:item-numberY - ycor)) 
 
 ifelse (heading = 0 and :item-numberY < ycor) or (heading = 
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY > 
ycor) or (heading = 270 and :item-numberX > xcor)[ 
 setMyDist ( (abs :a) + (abs :b) + 45)] ; if the destination 
spot is in the opposite direction, the add 1/2 (average) block 
loop (22 + 8) to the dist 
 [setMyDist ((abs :a) + (abs :b))] 
 
        set :a (CoordX) set :b (CoordY) 
 setTotal-Min-Dist ( min-of-turtles-with [CoordX = :a and 
CoordY = :b] [MyDist]) ;show Total-Min-Dist; ask from all turtles 
who has the same target, what the min dist is and save it for 
later 
        ifelse (MyDist <= Total-Min-Dist)[ 
 set CoordX (:item-numberX) set CoordY (:item-numberY) 
 setDirection (towards-nowrap CoordX CoordY) 
 setVacant-Chances (1 / MyDist)]; this is for comparison with 
the occupied spot search- availability probability / distance. 
        [set Aacopy (remove-element :item-number Aacopy) try-all-
vacant-choices]] 
 [setCoordX 0 setCoordY 0 setMyDist 1000]  
end 
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to try-all-occupied-choices 
  
 let [:nullcheck3 (length Bbcopy)] 
 ifelse (:nullcheck3 > 0) [ 
 setMyDist-Occupied 2000 ; initialize a distance that is 
bigger than any on screen dist, so that a new dist will always be 
smaller 
 set Search-Counter 1 ; loop through every elemnt in the 
"number" list starts with 1 
 repeat :nullcheck3 [ ;check only for free spots, don't waste 
RAM 
 let [:item-number (item Search-Counter Bbcopy)] ; extract 
the first (eventually each) element from the aa list 
 let [:item-numberX (item 1 :item-number)] ; extract the X 
value of aa item  
 let [:item-numberY (item 2 :item-number)] ; extract the Y 
value of the aa item 
 let [:a (round(:item-numberX - xcor))] 
 let [:b (round(:item-numberY - ycor))]  
 ifelse (heading = 0 and :item-numberY < ycor) or (heading = 
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY > 
ycor) or (heading = 270 and :item-numberX > xcor)[ 
 let [:distnew ((abs :a) + (abs :b) + 45)]] ; if the 
destination spot is in the opposite direction, the add 1/2 
(average) block loop (22 + 8) to the dist 
 [let [:distnew ((abs :a) + (abs :b))]] 
 
 if (:distnew <= MyDist-Occupied ) [let [:kchosen Search-
Counter] setMyDist-Occupied :distnew] 
 ; CoordX and CoordY are turtle-own variables, which remember 
which parking spot the turtles zoomed onto, and will keep that 
until a turtles goes to that spot. 
 if (Search-Counter <= (:nullcheck3)) [set Search-Counter 
(Search-Counter + 1)] 
 ] 
 
 set :item-number (item :kchosen Bbcopy) ; extract the 
memorized smallest distance element from the :aacopy list 
 set :item-numberX (item 1 :item-number) ; extract the X 
value  
 set :item-numberY (item 2 :item-number) ; extract the Y 
value  
 set :a (round (:item-numberX - xcor))  
 set :b (round (:item-numberY - ycor)) 
 
 ifelse (heading = 0 and :item-numberY < ycor) or (heading = 
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY > 
ycor) or (heading = 270 and :item-numberX > xcor)[ 
 setMyDist-Occupied ( (abs :a) + (abs :b) + 45)] ; if the 
destination spot is in the opposite direction, the add 1/2 
(average) block loop (22 + 8) to the dist 
 [setMyDist-Occupied ((abs :a) + (abs :b))] 
      ;set :a (CoordX) set :b (CoordY) 
 ;setTotal-Min-Dist ( min-of-turtles-with [CoordX = :a and 
CoordY = :b] [MyDist-Occupied]) ;show Total-Min-Dist; ask from all 
turtles who has the same target, what the min dist is and save it 
for later 
 show (pc-at :a :b) 
        if ((Probability-Timer-at :a :b) > 0) and ((Probability-
Timer-at :a :b) < 2) [setOccupied-Chances (0.2 / (abs (int MyDist-
Occupied - 1)))] 
 if ((Probability-Timer-at :a :b) > 2) and ((Probability-
Timer-at :a :b) < 8) [setOccupied-Chances (0.375 / (abs (int 
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MyDist-Occupied - 6)))] ; 3 is half of six, which is ha max 
waiting time. 
 if ((Probability-Timer-at :a :b) > 8) and ((Probability-
Timer-at :a :b) < 32) [setOccupied-Chances (0.6 / (abs (int 
MyDist-Occupied - 24)))] ; 12 is half of 24, which is ha max 
waiting time. 
 if ((Probability-Timer-at :a :b) > 32) and ((Probability-
Timer-at :a :b) < 48) [setOccupied-Chances (1 / (abs (int MyDist-
Occupied - 16)))] ; 8 is half of 16, which is ha max waiting time. 
  
        set :a (CoordX) set :b (CoordY) 
 setTotal-Min-Occupied-Chances ( min-of-turtles-with [CoordX 
= :a and CoordY = :b] [Occupied-Chances]) 
        ifelse (Occupied-Chances <= Total-Min-Occupied-Chances)[ 
 setCoordX (:item-numberX) setCoordY (:item-numberY) 
 setDirection (towards-nowrap CoordX CoordY)] ;show 
"gotooccupied!"] 
        [setBbcopy (remove-element :item-number Aacopy) try-all-
vacant-choices]][setCoordX 0 setCoordY 0 setMyDist-Occupied 1000] 
end 
 
 
to choose-nearest-spot 
; here extract the itam in the aa list, then extract ech item's x 
and y and check the patche's distance from the turtle (for all 
patches) 
; use a  turtles-own variable named MyDist which indicates the 
distance to the nearest free spot and a variable named ":kchosen" 
indicating the number of the element in the aa list 
 wait-until [(Occupied-List-Ready? = true) and (List-Ready? = 
true)] 
 if (Occupied-List-Ready? = true and List-Ready? = true) [ 
 
 let [:nullcheck (length aa)] 
 ifelse (:nullcheck > 0) [ 
 setMyDist 2000 ; initialize a distance that is bigger than 
any on screen dist, so that a new dist will always be smaller 
 setAacopy (copy-list aa) ; make a copy of the "aa", so if 
the real aa changes in length, their's remain the same until end 
of counting  
 setBbcopy (copy-list bb); do the same for occupied spots 
        try-all-vacant-choices if (CoordX  = 0 and CoordY = 0) 
[try-all-occupied-choices]] 
 [try-all-occupied-choices]] 
end 
 
 
to park ; has to be done so that agent will look for parking until 
found 
  
 if (Parked? = false)[ 
 setc yellow 
 ;ask-patch-at CoordX CoordY [setpc green] 
 ;ask-patch-at CoordX CoordY [setpc white] 
 loop[ 
 choose-nearest-spot 
  ; here set the car to break or accelerate according 
to other cars 
  ifelse (count-turtles-towards heading 1) > 0     ;if 
there is a turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-towards heading 1 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
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         [ifelse (count-turtles-at heading 1) > 0 
         [setspeed speed-of one-of-turtles-towards heading 2 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
 
 ; here is how the actual parking move happens 
 ; first, parking at your own side of the road and then 
parking at the opposite side of the road, parking on horisontal 
streets is also allowed. 
 ; augment the counter, which counts the program iterations 
during which a car parks (instead of real time) 
 ifelse ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-
turtles-at 1 0) = 0) or ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 
and (count-turtles-at (-1) 0) = 0) or 
 ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-at 
-2 0) = 0) or ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-
turtles-at 2 0) = 0) or 
 ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-at 0 
1) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) or 
 ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-at 
0 -2) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-
turtles-at 0 2) = 0) or  
 ((pc-at 0 0) = 9) [ 
 
 ; here we augment the parking counter and check if the 
counter is full, in which case a car leaves 
 if ((pc-at 0 0) = 9 and (pc-at (-1) 0) = 0) [ setPark-
Counter Park-Counter + 1 ask-patch-at 0 0 [setProbability-Timer 
(Probability-Timer + 1)] if Park-Counter > ParkTime [setPark-
Counter 0 seth 270 fd 1 seth 0 setParked? true stop]] 
 if ((pc-at 0 0) = 9 and (pc-at 1 0) = 0) [ setPark-Counter 
Park-Counter + 1 ask-patch-at 0 0 [setProbability-Timer 
(Probability-Timer + 1)] if Park-Counter > ParkTime [setPark-
Counter 0 seth 90 fd 1 seth 180 setParked? true stop]] 
 if ((pc-at 0 0) = 9 and (pc-at 0 (-1)) = 0) [setPark-Counter 
Park-Counter + 1 ask-patch-at 0 0 [setProbability-Timer 
(Probability-Timer + 1)] if Park-Counter > ParkTime [setPark-
Counter 0 seth 180 fd 1 seth 270 setParked? true stop]] 
 if ((pc-at 0 0) = 9 and (pc-at 0 1) = 0) [setPark-Counter 
Park-Counter + 1 ask-patch-at 0 0 [setProbability-Timer 
(Probability-Timer + 1)] if Park-Counter > ParkTime [setPark-
Counter 0 seth 0 fd 1 seth 90 setParked? true stop]] 
 
 if ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-turtles-
at 1 0) = 0) [seth 90 fd 1 set steps-to-find-parking 0 setc red 
setMyDist 0] 
 if ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 and (count-
turtles-at (-1) 0) = 0) [seth 270 fd 1 set steps-to-find-parking 0 
setc red setMyDist 0] 
 if ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-
at -2 0) = 0)[seth 270 fd 2 set steps-to-find-parking 0 setc red 
setMyDist 0]  
 if ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-turtles-
at 2 0) = 0) [seth 90 fd 2 set steps-to-find-parking 0 setc red 
setMyDist 0] 
 if ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-
at 0 1) = 0) [seth 0 fd 1 set steps-to-find-parking 0 setc red 
setMyDist 0] 
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 if ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) [seth 180 fd 1 set steps-to-find-parking 0 
setc red setMyDist 0] 
 if ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-
at 0 -2) = 0)[seth 180 fd 2 set steps-to-find-parking 0 setc red 
setMyDist 0] 
 if ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-turtles-
at 0 2) = 0) [seth 0 fd 2 set steps-to-find-parking 0 setc red 
setMyDist 0]] 
 [if (pc-at 0 0) not= white [ ifelse (pc-ahead = 2 and (pc-at 
0 0) = 2) [ifelse (random 2) = 0 [leap 3 set steps-to-find-parking 
(steps-to-find-parking + 3)] [ifelse (random 2) = 0 [rt 90 fd 2 
set steps-to-find-parking (steps-to-find-parking + 2)][fd 1 lt 90 
fd 2 set steps-to-find-parking (steps-to-find-parking + 3)]]]  
 [check-patches-after-park fd speed set steps-to-find-parking 
(steps-to-find-parking + speed)] if (CoordX = 0 and CoordY = 
0)[choose-nearest-spot]]]  
 
 
; here are the rules to guide a car towards a chosen spot, 
assuming it can also park on the opposite side of the road. 
;in reality you should try the second best option here and then 
third best and so on! 
 
ifelse (CoordX not= 0 and CoordY not= 0 and MyDist not= 1000) [ 
;only if you are closest in the competition for a given spot, 
drive there, else roam randomly and try again next step 
 
; for heading = 0, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor < CoordX and ycor < CoordY))[  
ifelse (CoordX < (xcor + 3))[fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor < CoordX and ycor > CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor > CoordX and ycor > CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and 
(xcor > CoordX and ycor < CoordY))[ 
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]] 
 
; for heading = 90, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
< CoordX and ycor < CoordY))[ 
ifelse (CoordX < (xcor + 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)][fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
< CoordX and ycor > CoordY))[ 
ifelse (CoordX < (xcor + 3)) [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
> CoordX and ycor > CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
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if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor 
> CoordX and ycor < CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
 
; for heading = 180, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor < CoordX and ycor < CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor < CoordX and ycor > CoordY))[ 
ifelse (CoordX < (xcor + 3)) [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)] [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor > CoordX and ycor > CoordY))[ 
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and 
(xcor > CoordX and ycor < CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
 
; for heading = 270, supposing that you can also park on the 
opposite side of the road 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor < CoordX and ycor < CoordY))[ 
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor < CoordX and ycor > CoordY))[ 
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking + 
3)] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor > CoordX and ycor > CoordY))[ 
ifelse (CoordX > (xcor - 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)] [fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]] 
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and 
(xcor > CoordX and ycor < CoordY))[ 
ifelse (CoordX > (xcor - 3)) [rt 90 fd 1 set steps-to-find-parking 
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)]] 
][if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 2) = 0 
[leap 3 set steps-to-find-parking (steps-to-find-parking + 3)] 
[ifelse (random 2) = 0 [rt 90 fd 2 set steps-to-find-parking 
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]]] 
]] 
end 
  
 
to drive ; each egnt will park and then drive for a certain time 
  
 if (pc-at 1 0) = 7 or (pc-at 1 0) = 9 [ 
 seth 0  
 setParked? false  
  
 park  
  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
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  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at 0 1) > 0     ;if there is a 
turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at 0 1 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at 0 1) > 0 
         [setspeed speed-of one-of-turtles-at 0 2 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
 
 if (pc-at (-1) 0) = 7 or (pc-at (-1) 0) = 9 [ 
 seth 180  
 setParked? false  
 park  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at 0 (-1)) > 0     ;if there is 
a turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at 0 (-1) 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at 0 (-1)) > 0 
         [setspeed speed-of one-of-turtles-at 0 (-2) 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
  
 if (pc-at 0 1) = 7 or (pc-at 0 1) = 9 [ 
 seth 270  
 setParked? false  
 park  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at (-1) 0) > 0     ;if there is 
a turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at (-1) 0 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at (-1) 0) > 0 
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         [setspeed speed-of one-of-turtles-at (-2) 0 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
  
 if (pc-at 0 (-1)) = 7 or (pc-at 0 (-1)) = 9 [ 
 seth 90  
 setParked? false  
 park  
 repeat (parking-interval * 10) [ ; these are turtles driving 
up  
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  ifelse (count-turtles-at 1 0) > 0     ;if there is a 
turtle 1 space ahead, decelerate  
  [setspeed speed-of one-of-turtles-at 1 0 
         decelerate] 
         [ifelse lookahead = 2      ;if lookahead=2, 
check 2 spaces ahead also 
         [ifelse (count-turtles-at 2 0) > 0 
         [setspeed speed-of one-of-turtles-at 2 0 
         decelerate] 
         [accelerate]]   ;else accelerate 
         [accelerate]] 
    if speed < 0.01 [setspeed 0.01]   ;also adjust speed 
based on SpeedLimit and radar 
   if speed > SpeedLimit [setspeed SpeedLimit] 
   fd speed 
  ] 
  ] 
  if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd 
2]]] check-patches-after-park 
  if (pc-at 0 0 )= 2 [fd 1] 
end 
 
 
to accelerate 
  setspeed (speed + (speedup / 1000)) 
end 
 
 
to decelerate 
  setspeed speed - (slowdown / 1000) 
end 
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