
The Self-aware City
by Andres Sevtsuk

Bachelor of Architecture (2003)

Ecole d'Architecture de la Ville et des Territoires à Marne-la-Vallée

Submitted to the Department of Architecture in Partial Fulfillment of the

Requirements for the Degree of Master of Science in Architecture Studies

at the

Massachusetts Institute of Technology

June 2006

© 2006 Andres Sevtsuk. All Rights Reserved.

The author hereby grants MIT permission to reproduce and to distribute publicly

paper and electronic copies of this thesis document in whole or in part in any

medium now known or hereafter created.

Signature of Author………………………………………………………………
 Department of Architecture

 May 17, 2006

Certified by………..………………………………………………………………
 William J. Mitchell

Professor of Architecture and Media Arts & Sciences
Thesis Supervisor

Approved by……...………………………………………………………………

 Julian Beinart
Professor of Architecture

Chair Department Committee on Graduate Students

 2

 3

Thesis Reader
William Lyman Porter

 Professor Emeritus of Architecture

Thesis Reader
 Carlo Ratti

Director of SENSEable City Laboratory at MIT

 4

 5

The Self-aware City
by Andres Sevtsuk

Submitted to the Department of Architecture in Partial Fulfillment of the

Requirements for the Degree of Master of Science in Architecture Studies

at the Massachusetts Institute of Technology, June 2006

Abstract

This thesis explores the idea of real-time urban space management. While

increasing amounts of real-time information about the city, specifically the

location of people and resources, appear, it becomes necessary to explore how

different strategies of distributing real-time location information can be used as

urban design tools for a more sustainable resource allocation.

I focus on the study of street-parking, a system that clearly has a market situation

with demand and supply, but due to lack of information is poorly managed today.

I argue that an equilibrium state of the parking market in popular areas, similar to

many other urban space markets, is a frequent over demand. The important

challenges are therefore allocation optimization and queuing management. I

propose five different strategies of using real-time location information to reduce

search times and analyze the system through computer simulations and logic.

Borrowing ideas from Game Theory, I try to illustrate how collaborative

behavior between drivers could yield most efficient results from both the

individual and the group point of view. Lastly, I outline some challenges that the

use of real-time information systems introduce to the realm of urban design in

general.

Thesis supervisor: William J. Mitchell

Title: Professor of Architecture and Media Arts & Sciences

 6

 7

Acknowledgements

I am grateful to all the faculty and friends at MIT, in France and in Estonia who

have generously contributed to the development of this thesis. In particular I

would like to thank my committee: my thesis advisor William J. Mitchell whose

support has been invaluable and whose brilliance has led me to many of the ideas

below, William Porter who has been the most intellectually supportive and

honest reader and Carlo Ratti whose excellent rationality has helped me develop

the models and writing presented hereafter.

Many people have enlightened me with interesting discussions and constructive

criticism, deepening my interest towards architecture, cities, technology, artificial

systems and people. I would like to thank Jean Pascal Ollivry in Estonia for his

advice in mathematics, Donald Shoup at UCLA for his insights on parking,

Marvin Minsky at MIT for his brilliance in analyzing people and artificial

systems, Eric Klopfer and Mitchell Resnick at MIT for their precious advice on

StarLogo, Michael Batty at UCS in London for his comments and discussion on

urban simulation, Dennis Frenchman at MIT for continuous support and Julian

Beinart, my advisor in the department, for challenging me to be critical.

I am also indebted to my dear friends Leonardo Shieh and Talia Dorsey as well

as the students and researchers at the SENSEable City Laboratory and the Smart

Cities group at MIT who have contributed to the development of this work.

I would like to contribute this to my parents and my brother.

 8

 9

Contents
Acknowledgements………………………………………..…………...…....……7

Introduction………………………………………………………….……..…..11

Chapter One. The Effects of the Street-parking System Today…..…......….....17

How Goal Switching Enhances the Search…………………………...…….…..24

Some Things We Do When Searching for Parking………...……….…………..28

Improving the Current Street-parking System ………...………………………..31

Benefits of a Real-time Guidance System……………….…………………...…40

Chapter Two. The Simulation Approach…………………………………........47

The Rules of the Simulation……..……………………………………………...53

General Rules……………………………………………………………………57

Traditional Parking Search Model……………………………………………....59

Intel Parking Search Models…………………………………………………….60

Intel_ 1 Parking Search Model………………………………………………….62

Intel_3 Parking Search Model…………………………………………………..63

Intel_5 Parking Search Model…………………………………………………..66

Intel_7 Parking Search Model………………………………………………..…68

Critical Variables …………………………………………………………….…71

Optimum Strategy Versus Satisficing Strategy……………………………..…..73

Hazards of the Simulation ………………………………………………………75

Chapter Three. Results..…...79

Simulation Conclusions………………………………………………………....96

Intel_9: The Collaborative Equilibrium and Game Theory…………………..…99

Importance of Efficient Queuing in Real-time Systems……………………….105

Dynamic Queuing……………………………………………………………...109

Static Queuing………………………………………………………………….110

Chapter Four. Conclusions……………………..………………....…..…...…117

References ……………………………………………………………………..123

List of Illustrations……………………………………………………………..126

Appendix ………………………………………………………………………129

 10

 11

Introduction

“The behavior of an artificial system may be strongly influenced by the limits of

its adaptive capacities- its knowledge and computational powers”. [Herbert

Simon, p.29, Sciences of the Artificial]

The evolution of human society is built upon the interaction of people. More than

any other species’, peoples’ interactions have created economies and societies,

cities and countries. City form is an arena for this interaction. One of the primary

tasks of city design is therefore to maximize the use of urban space and resources

in order to foster interactions between people and places. Optimization of urban

resources has always been a fundamental design challenge for urban designers.

Five decades after the dawn of the digital computer, communication and

computation offer new opportunities for optimizing the use of urban space.

This thesis is an exploration of using real-time urban information to affect

existing relationships between citizens and urban resources. The purpose is to

achieve a more intense and sustainable resource allocation. A well-planned

distribution of urban resources could lead to significantly smaller zoning

requirements of urban infrastructures. I use the term resources relatively loosely

in this context to signify the functional infrastructure elements of a city that are

accessible to the public and for which there is generally a great demand or

competition. Such elements are public transportation, curb-side parking spaces,

assembly spaces, etc. These elements can be fixed in space (parking spaces,

meeting spaces) or moving (public transportation, taxis), but they are all publicly

used by a relatively large number of people in daily urban life. I am interested in

analyzing how some of these infrastructural systems could acquire different

patterns of use if people had real-time information of their availability through

portable communication devices.

 12

Specifically I try to illustrate how augmented computational power enables

individuals to navigate more efficiently in a complex external world. Already

existent, ubiquitously dispersed personal communication devices can be

exploited as a network of computational infrastructure for real-time urban

resource allocation. I argue that modifying this dispersed communication

infrastructure at a personal level can drastically change the interaction between

people and places on an aggregated level. I regard such system optimization as

fundamentally urban design, which explores alternative futures of how things

could be. However, this design activity does not explore state descriptions that

are proposals for physical states of a city, but rather process descriptions, which

similar to differential equations, propose various ways of using information,

depending on the goals and the feedback from the environment. Related studies

in science1 have long proven that complex dynamic systems are highly dependent

on their initial conditions, and that by altering these conditions, very different

dynamic patterns emerge. In the analysis and design of alternative space

allocation systems, I shall focus in detail on the universe of internal and external

variables that affect the system of street-parking. Specifically I shall argue that in

addition to adding a new layer of information to enhance searching for parking,

feeding the performance information of group efficiency selectively back to the

participants of the system in real-time, can create incentives for collaborative

action and can significantly impact people’s decision making and distribution in

a city. Collaborative behavior at the group level can be further encouraged

through dynamic pricing, by offering lower fees to people who are willing to

cooperate. By accurately matching demand and supply, I shall propose different

strategies of using real-time information for the distribution of public resources

and explore how these strategies could help establish their more sustainable

allocation.

1 Determenistic Nonperiodic Flow [Edward Lorenz, New York Academy of Sciences
1963]

 13

To test my assumptions and strategies, I use an agent based simulation model2

and analyze the resulting effects from the model. I study which variables in the

simulation model are most critical for good performance and which

circumstances jeopardize efficient functioning. My goal is to explore which

approaches of real-time information use yield the most efficient distribution of

the studied resource.

However, in order to narrow down a vast field of possibilities, I shall mainly

focus on an example of a real-time guidance system for street-parking. Many of

the more general issues of real-time information allocation will hopefully emerge

through this example. In the conclusion I shall eventually come back to a more

general discussion and illustrate the implications of this work to other areas of

urban planning.

To begin with, Chapter One will discuss how the search for parking works at an

individual and aggregate level today. Why is the search so troublesome? There

are many valuable strategies that drivers exploit when searching for a parking

space, which supposedly increase our capacity to find parking in almost hopeless

situations. These strategies generally reduce the time spent cruising, and offer

significant insight for the design of a real-time guidance system. Nevertheless,

there is room for improvement in the search methods today. First, the current

search strategy is based on locally perceptive information, which can lead to

results that are only as good as the information perceived from the environment.

Broader information could enhance the effectiveness of the search. Secondly,

even with the present information, I shall suggest that the current cognitive

search method3 might not yield the best possible results. Decision making, based

on immediate perception of information, and not statistical calculations, can lead

2 An individual based computer modeling technique that allows multiple agents to
interact with each other and their surrounding environment.
3 Read: intuitive searching for curb parking that we regularly use today.

 14

to non-optimal results and jeopardize the performance of a search. I shall propose

that computers might help to overcome these shortcomings, and discuss what

particular aspect of the search process a real-time guidance system could

enhance.

Chapter Two will discuss the general simulation approach by introducing some

of the most common cellular automata and agent based modeling concepts for

urban simulation. It will explain the particular technique used in this thesis for

modeling distant telecommunication, that is, communication through

electromagnetic waves over long distances. It shall then propose four different

search algorithms that might complement the parking search processes used

today. Detailed descriptions of the assumptions and rules of each search model

are subsequently presented.

In Chapter Three I shall analyze the results and findings of simulation models. I

shall compare the performance of the proposed search strategies and outline the

effects of different environmental stimuli on the efficiency of each strategy.

Besides the rational allocation strategies studied in the models, I shall propose an

additional search strategy (Intel_9), which uses Game Theory to provide

incentives for collaboration between parkers. I shall try to argue that a

collaborative behavior between well informed drivers can be the most efficient

way of reducing searching times. Towards the end of Chapter Three, I shall also

turn to the question of how to cope with cars that simply can not be immediately

allocated a parking spot due to a lack of available spaces. Efficient queuing in

situations of over demand becomes a critical issue. Currently the excess cars

circulate in traffic with all other vehicles, forming dynamic queues. I shall

propose an alternative approach where cars could use temporary static queuing

spaces while waiting for vacating parking spots.

 15

Chapter Four is the conclusion. It will discuss the implications of the simulation

results, offering suggestions for future work in the field of real-time urban

resource management.

 16

 17

Chapter One

The Effects of the Street-parking System Today

An intoxication comes over the man who walks long and aimlessly through the

streets. With each step, the walk takes on greater momentum; ever weaker grow

the temptation of shops, of bistros, of smiling women, ever more irresistible the

magnetism of the next street corner, of a distant mass of foliage, of a street name.

[p. 417, Walter Benjamin 1999]

If the flaneur were to stroll around a contemporary American downtown, where

would he find those crowds of bustling people and that spectacle of

contemporary manners and urban scenes that are as essential to him as water for

a fish? Where could the flaneur find the hustle bustle of city streets, the very

heart of the crowd in a center of a metropolis, dense enough to hide himself and

observe the modern urban scene with the eye of an artist? Perhaps in a car,

searching for curb-parking?

Eighty seven per cent of all trips in this country are made in personal cars

[Shoup, 2005]. Ninety five per cent of each car’s lifetime is spent parked, and

ninety nine per cent of all parking is free of charge in America [ibid.]. So it is no

wonder that nobody wants to pay for parking in a downtown area either. Instead

of choosing an available garage that might charge some $10 an hour, most people

choose to cruise, hoping that they can find a cheaper alternative at the curb if

they search long enough. As a result, up to 30% of all traffic in central business

districts has been cruising for a cheap spot for decades [ibid.].

 18

Figure 1 Cruising in the 20th century. Source: The High Cost of Free Parking

[Shoup 2005]

To put this in perspective, let’s listen to Donald Shoup:

“Even a small search time can create a surprising amount of traffic. Consider a

congested downtown area where it takes three minutes to find a curb space. If the

parking turnover is 10 cars per space per day, each curb space generates 30

minutes cruising time per day, and if the average cruising speed is 10 miles an

hour, each curb space generates five VMT (vehicle miles traveled) per day. As

estimated…, the average block is surrounded with 33 curb parking spaces, so

cruising for parking creates 165 VMT a day per block. Over a year, this amounts

to 60, 000 VMT per block (equivalent to more than two trips around the earth).

Because this cruising adds to already congested traffic, it makes a bad situation

even worse.”

 19

While cruising for a cheap parking space can bring great financial savings to a

driver, the accumulating environmental cost of cruisers is much greater. Studies

by Axhausen, Polak and Shoup prove that even a slight reduction of parking

search time could significantly reduce environmental impacts of the current

parking system [Axhausen, Polak 1991 and Shoup 2005].

The conventional planning response to congested traffic and time-consuming

parking search is a provision of more off-street parking space. Most

contemporary parking design guidelines demand property developers to host all

the potential demand created by their property within off-street parking on the

property. Instead of requiring the minimum, parking guidelines are usually set for

extreme traffic situations that rarely occur. As a result, most off-street private

parking lots are over dimensioned and remain underused a great deal of the time

(comprehensive statistics are given on pp. 75-111 in “The High Cost of Free

Parking”, Shoup 2005).

As off-street parking lots in downtown areas usually charge relatively high fees,

then their filling rates are diminished because of people preferring to search for

ubiquitously under priced curb-side alternatives. This results in a vicious cycle

where demand for street-parking causes congestion and keeps parking

requirements from being reduced.

 Off-street lots that rarely fill, already consume a surprising amount of urban

land. In downtown Albuquerque, for instance, approximately 80% of land is

taken up by off-street parking [ibid.]. As a result, such excessive requirements

create sparse land-use and restrain building densities, degrading the pedestrian

environment even further, which forms another vicious cycle by increasing the

demand for driving. Large parking lots result in spread out developments, where

even the social flaneurish aspect of today’s cruising for a cheap curb-side space

 20

loses its flavor- too much parking eventually eliminates the destinations that we

drive to in the first place. Such strategy for solving traffic congestion can be

successful from a personal savings point of view, but the hidden costs of

ubiquitous free parking are unjust, and seen at an aggregated level, the resulting

environmental impact is unacceptable. This description, that Shoup has outlined

in much more detail than presented here, might sound like an exaggerated

dooms-day scenario, but if Benjamin had been able to compare 19th century Paris

to 21st century Los Angeles, it might seem disastrous indeed. Figure 2 below,

illustrates some common parking coverage in world cities today. Figure 3, further

down, shows the amount of land consumed by off-street parking around MIT.

Compared to how dense cities like Boston were only a hundred years ago, these

are no small indicators.

 21

Figure 2 Parking in central business districts. Source: The High Cost of Free

[Shoup 2005]

 22

Figure 3 Map of off-street parking lots around MIT. Shaded areas indicate multi-

story structures.

An alternative strategy for reducing current cruising seems to be offered by real-

time information technology. If drivers knew the exact availability of street-

parking in real-time, then they could efficiently find their closest parking spaces,

without driving around searching, wasting energy, polluting air and congesting

traffic. If the amount of searching cars exceeded the amount of available spots,

then drivers could be alerted that their search is probably useless. In order to

reach individuals directly, such information seems to be most useful if brought to

drivers personally, displayed on their cell-phone screens, personal navigation

devices in the car, or as voice directions. If this could be achieved, then could

searching times potentially diminish? Could the turnovers of parking spaces

increase? Would more cars be accommodated by the same number of parking

spots and more people simultaneously occupy a C.B.D.? Off and on-street

parking would of course both remain, but by maximizing their efficiency, zoning

laws could be revised and their parking requirements could be lowered.

 23

Figure 4 Aerial view of half-parking coverage north of Vassar Street at MIT

One of the potential hazards of this idea is that reduced search time might

encourage more people to drive in central business districts. Pricing could be

used as a mechanism for controlling demand, turning the rates higher when

demand is high and lower if only a few vehicles search for parking. Hence, the

real-time guidance system could also function as a free infrastructure for

managing dynamic pricing of curb-side parking. Research by [Clinch, Kelly

2003] and [Shoup 2005] has shown how sensitive drivers are even to small

fluctuations in pricing. Based on their evidence, and similar precedents in

congestion pricing in London, Singapore and L.A., dynamic pricing4 could offer

a powerful tool for managing parking demand.

Whether or not these assumptions would hold in the real world depends on many

variables, both technological and human, that might prevent the successful

adoption of real-time urban resource management. I shall hypothesize which

human requirements a real-time guidance system needs to account for and how

4 Tolls that vary in real time in response to changing congestion levels.

 24

different environmental conditions affect the performance of the system, using a

simulation model to check the validity of my assumptions.

How Goal Switching Enhances the Search

“Occupants of vehicles searching for parking spaces are not doing ‘perceiving

their environment’, they are doing ‘searching for a parking space’ [Watson

1999].” With this quotation, Laurier has argued that the cognitive mechanisms at

work and the attention attributed to parking in the driver’s mind are not the same

as during normal driving [Laurier 2003]. Minsky talks about this phenomenon as

“credit assignment” to different phenomena around us, depending on our current

goals [Minsky, 2006]. When the goal of the driver is set to parking, then many

senses that would normally be passive or doing other things, get mobilized to

help with the search. Similarly, many environmental conditions, which would be

overlooked by our senses in different actions, get assigned more “credit” if they

are potentially useful for achieving the goal.

If the higher level goal of a driver is to find a space for the car, then the sub-goals

prescribing the particular kind of space that is acceptable, are constantly

changing. The relationship between a satisfactory parking space for a driver and

the options an environment has to offer is a dynamic one, frequently shifting,

depending on many concurrently active variables. Amongst many influences, the

time spent on searching is itself a crucial factor that affects our ambitions, usually

making us revert to less desirable or more expensive goals if over extended.

Laurier, who conducted an ethnographic study of parking-search in London,

emphasized the importance of this continuously adaptive aspect of the search, by

showing in his study how a driver’s goals constantly readjusted according to

varying circumstances.

 25

In Laurier’s study, Mms. Marge, one of the subjects, was a delivery driver who

had heavy boxes to deliver to a hotel lobby. Setting out on her daily route, she

was anxiously hoping to have good luck and find a parking spot right in front of

the hotel. Approaching the destination, she passed by one spot, but as it looked

too small and was located several blocks away from the hotel, she decided not to

take it. As she passed the hotel, she learned that parking right in front it was

impossible. Hence she had to reconsider her strategy and try the next best option.

She readjusted her goal to find a parking space close to the hotel on the same

street and set out for a new round. She ended up driving several circles around

the block, each time looking more attentively for people leaving, or other cues to

help her accomplish her goal. By now her fellow passenger, the ethnographer

himself had also engaged in helping her observe the environment by looking at

side streets. After a couple of unsuccessful rounds they happened to pass by the

small and distant spot they noticed at the very beginning again. This time they

decided to consider the option seriously. Marge remarked that she was already

late for her appointment at the hotel and estimated that further searching would

extend her delay even more. They discussed whether the car would fit in the

small space and not block the adjacent car’s passenger doors and decided to go

ahead and try. This option didn’t seem unacceptable to them anymore, because

they had learned that it would be hard to find anything better. They drove in,

discovered that they didn’t block the other car’s doors and decided to park the

car. The study illustrated how the driver’s goals became progressive less

selective as time went by and no optimal conditions emerged.

Time also determines the financial resources that a driver agrees to spend. For

Marge, who was a delivery driver, and did not have a budget to spend on more

expensive parking, a faster way of parking at a paid parking structure was already

ruled out before she started her search. However, this is often times not the case.

Many people spend a substantial amount of their income on parking fees.

Needless to say, the ability to afford paid off-street parking does not imply that a

 26

person will actually choose that costlier option. Instead, the option a person

prefers is normally determined by a comparison of alternatives that an

environment offers and the time that the person agrees to spend on searching.

Hence, we could suggest that the choice of parking is dependent on the long term

characteristics of the driver (financial resources, speed of life etc.), the

momentary circumstances of a person (in a hurry, unwilling to search, heavy

items to carry etc.), and the opportunities an environment offers. Certain drivers

might always prefer to park at paid off-street spaces, while others only use paid

parking if they are in a great hurry. Others, such as delivery drivers, might never

use paid parking, even if they are in a great hurry. The exact behavioral

psychology of drivers is yet impossible to predict with certainty, but studies

demonstrate [Klinch and Kelly 2003], that on average, the amount a driver is

willing to spend is inversely proportional to his available time.

Consider the examples below that illustrate how parking searching time and

willingness to spend interact in daily life. For instance, imagine a scenario of a

wealthy person with a meeting in a city center. As it happens to be during work

hours, she does not have much time to spend looking for parking. She first drives

towards her destination. A few blocks away she starts to drive slower to make

sure she does not miss any vacant cheap spots. After passing her destination and

making a second tour around the block, she slows down the car even more,

almost to walking speed, but the cars behind her form a queue and force her to

move faster. After having searched for five minutes, she decides to drive to a

nearby parking lot that charges 5$ / hour instead of 50cents, but which offers her

a spot immediately.

On another occasion, she might go shopping downtown on a Sunday afternoon.

She might have a lot of spare time, and can therefore spend some of it searching

for a cheap curb-side parking spot. The available spots she finds might be several

blocks away from the stores she plans to go to, but even though she can afford a

 27

closer space in a garage, she is not in a rush and will accept the walk, as well as

the walk back with her shopping bags.

A week later, she is in a terrible rush, afraid of missing a train. While driving to

the train-station she thinks over all the options but decides that she has no time to

waste. When arriving at the station, she hastily looks around for vacant parking

spaces, but seeing none, she drives directly in front of the station and uses the

valet service to park her car. She knows that after a fifteen minute search she

might be able to find a cheap space that would cost her less than a dollar, but

afraid of missing her train, she decides not to take the chances and agrees to pay

8$ dollars for valet fees plus 10$ / hour at an off-street parking lot at the station.

From the driver’s point of view, this capacity to use different strategies, adapting

the goals along the way, is natural to anyone searching for parking. The actual

choice of parking is not merely a clear outcome of a user’s goals, but a multi-

faceted product of the user’s ambitions, time availability, financial resources and

the environment’s changing circumstances. If one strategy fails, then instead of

wasting any further time applying it, a driver can modify her goals and test a

different strategy. When designing a technological addition to the system, it is

important to allow for such adaptive flexibility.

The list below outlines some common techniques and strategies we use when

searching for street-parking today. The features in the list are mainly based on

Laurier’s study of street-parking [Laurier 2003] and my own empirical

reflections on the process.

 28

Some Things We Do When Searching for Parking:

 Senses:

• Use the help of fellow passengers to strategize and observe. As the driver is

forced to multitask between driving and searching, the person in the passenger

seat or in the back can greatly increase the driver’s scope of observation.

• Look for cues from other drivers on the street, who are also searching for

parking, in order to understand their goals and learn from it.

• Increase attention paid to surroundings and the sharpness of senses as time moves

on and the goal is not achieved. For example, an initially passive passenger might

actively engage in the search over time.

• Observe pedestrians and other drivers on the street, who might be potentially

leaving parking spaces. People carrying shopping bags, keys in hands, finishing

conversations on the street, people not wearing overcoats in cold weather etc. are

all signs that sharpen our attention and make us slow down or wait in anticipation

for a potential soon to be vacated spot.

• Observe further peripheral environmental signs like the amount of traffic in the

general area. For instance the presence of road-blocks or construction works that

can increase the amount of traffic around the destination, further inform us of the

parking demand in the area and help us choose the appropriate goals.

 29

• In addition to visual cues, sounds provide cues to enhance the search process. For

example, an igniting car engine behind, can alarm the driver of a spot about to be

vacated.

Strategies:

• Slow down the car, in order to improve the observation of the environment and

potential for response.

• If there happens to be a car ahead, also looking for parking, then slow down or

pass that car, deliberately increase distance in order to not be the “second in line”

and loose the first available spot to the car ahead.

• Estimate the social situation of the road and categorize other drivers as

competitors, non-competitors, polite, impolite, cheaters etc. Such categorization

can influence the behavior of the driver, by switching to a more aggressive

strategy for instance.

• Use previous knowledge about the usual availability and demand of parking in a

given area in order to set a strategy. For instance, knowledge about how difficult

it might be to find parking in a specific area at a given time can help a driver to

revert to a different search behavior or even change his plans to drive all

together.

• Different parking distances from the destination are acceptable depending on

specific personal parameters e.g. heavy items to carry, children to walk with and

other factors influencing the effort to walk.

• Oftentimes a driver notices an available parking space that is either too small or

inconveniently far away from the destination and therefore doesn’t accept it.

 30

However, this undesirable option is nevertheless recorded in memory and its

acceptance probability grows as the search continues fruitlessly. Drivers

frequently return to the spot, which they knew about since the beginning of the

search. This was also confirmed by Thompson’s model [Thompson 1996], where

he confirmed that “search does not necessarily lead to better car parks being

selected”.

Considering the late origin of the parking problem, it is quite amazing how in the

course of a 70-year evolution such complex skills, of which these are only a few,

have been acquired by almost all drivers. Has it really been worth bothering to

learn such skills? Yes, Figure 5 below shows some common financial benefits

that cruising gives.

Figure 5 Financial benefits of cruising (parking one hour at the curb). Source: "The

High Cost of Free Parking" [Shoup 2005].

 31

Improving the Current Street-parking System

Most of the strategies in the list above greatly enhance our capacity to efficiently

find parking. The list revealed how complex a person’s parking search behavior

can be, using various senses and strategies to help achieve the goal of finding a

vacant space. It is not the current search behavior of drivers that causes

congestion, on the contrary, the current search mechanisms significantly help to

reduce cruising time. Then why is searching still so long?

On the one hand, we might conclude that a maximum capacity of street parking

has been achieved and the reason why we cruise is not because we don’t search

well enough, but because there is simply nothing to find. Indeed, during

experiments in Westwood, California, Donald Shoup’s analysis showed that “for

every 100 curb spaces, seven cars are hunting for parking; that is, 107 cars want

to park in 100 curb spaces, so seven cars must wait in the traffic flow.” [p. 353

Shoup, 2005.]. In popular areas, especially during rush hours, demand surpasses

supply exceedingly more than in this example of Westwood, California. Street

parking is an illustration of a space market that is rarely in a condition of an

economic demand and supply equilibrium, that is, a condition where the amount

of parking spaces are matched with the amount of searchers in a perfect balance.

I would like to argue that a moderate over demand in street-parking is in fact

positive for the overall efficiency at the group level and that the individual search

can still be optimized further.

On a general level, street-parking parking simply exemplifies a fluctuating high

demand condition that is also natural to other public uses of urban space. Bernard

Landau, the principal architectural surveyor of the city of Paris, has argued 5 that

optimal design of urban spaces, and here I mean not only functionally optimal,

5 Course in history of urbanism, Ecole d’Architecture de la Ville et des Territoires a
Marne-la-Vallee, France.

 32

but also optimal in relation to cultural and social requirements, cannot satisfy

everyone, but has to satisfy a necessary majority of people. This has been

intuitive to city designers throughout history. Similarly to parking, benches in a

park or a plaza, outdoor recreation spaces, popular restaurants, bus stops and

sidewalks witness constant fluctuations of high demand, and are traditionally

designed to function coherently with a changing demand and supply. These

spaces are dimensioned deliberately smaller than demand at peak conditions

would require- there are often more people at a door of a restaurant than tables

can accommodate. In a long run this pays off. A moderate over demand to use

urban spaces creates a necessary density where spaces do not only function

efficiently during short instances of extreme demand, but rather over time, during

any hour of the day. What is this optimal balance? I believe that an urban space is

optimally dimensioned if it is as large as necessary, but as small as possible.

Public space, and especially parking, should not be dimensioned according to

rush hour conditions, but rather according to different demand fluctuations over

time.

However, zoning laws for parking in this country seem to have forgotten the

necessity to optimize the use of public urban space. Excessively large land use

requirements are granted to parking, which degrade the quality of urban space, as

we saw in the beginning of this Chapter. The trouble, as Shoup has pointed out, is

that adding parking spots one by one passes almost unnoticed in cities until we

perceive that parking has become the single largest land use in most American

cities [Shoup and Menville 2005]. It is necessary and critical from the point of

view of sustainability that planners design fewer parking spaces than satisfying

demand during peak hours would require and optimize allocation instead of

increasing supply. This is precisely where the current parking system could use

an improvement.

 33

Despite the use of skills we saw in the list above, the supply and demand of

available parking spaces are not coordinated in the most efficient and sustainable

manner. In a situation where the amount of cars searching for parking is low and

the amount of available parking spots is equally low- a situation close to

equilibrium- the filling rate of the available spots is small, it is difficult for the

few searchers to find the few parking spots. Furthermore, in conditions of high

demand, drivers do not find available parking spaces in a time-efficient manner.

For instance, as will be shown, simulations with 6 parking spaces and 24 cars

demonstrate that there are always a few spots unoccupied at all times.

Figure 6 Low cost street-parking in popular areas is often filled to almost full

capacity, making it difficult for drivers to find the remaining few hidden parking
spaces. Beacon Hill, Boston.

This leads me to suggest that the efficiency of the current street-parking system

could be improved in two aspects:

 34

1. By providing broader information to drivers, than is currently available

to them in their immediate visual surroundings.

2. By using combinatorial and probabilistic calculations on a computer to

enhance decision making with the available information.

Let us expand these two claims. The first argument claims that the current search

behavior could be rendered more efficient with a use of broader information. The

skills we have seen thus far are useful for achieving certain parking goals. Most

strategic parking information that is available to us today is obtained from our

immediate visual and aural environment during the process of driving and

searching in combination with information we have learned from the past. The

list above describes some examples of using such information in order to achieve

goals more efficiently. The goals that we set however are modified according to

the information that is available to us. In other words, we can only set goals

based on the information we are aware of. This leads me to suggest that we are

not solving the goals inefficiently, but rather we might be solving the wrong

goals. If drivers had better information of the overall parking situation, then they

could apply similar tools for solving a better informed goal. Seen from a

distance, the effectiveness of the current search behavior is only successful

within a local context around the driver, generally limited by a person’s visual

field. Many available options outside of this field remain unnoticed and

underutilized. Due to the limited geographical dimensions of visual perception,

drivers often fail to find the closest parking spot by virtue of chance. Hence, the

long searching does not result from poor searching behavior, but rather the

limited awareness of parking availability beyond the scope of sight. Due to the

lack of such information, we have no capacity to assess the broader efficiency of

our strategies.

 35

The lack of wide-ranging coordinated information as the cause of wasteful

searching and queuing becomes apparent at an aggregated city-wide level. As all

drivers are limited by a similar local search technique, the higher level view of

street parking is not a random sum of unpredictable individualistic behaviors, but

shows some clear common patterns. For example Axhausen and Polak found in

their experiments in UK and Germany that in the overall process from leaving

the home to arriving at the destination, the average ratio between the time spent

on driving to the destination area (access time) and the time spent on searching

for a parking spot (search time) was roughly 2 to 1 [Axhausen, Polak 1991]. The

ratio between access time and the additional time of walking from the parking

spot to the destination was roughly 2.15: 1. Hence, of the total process, roughly a

half was spent on driving, a quarter on searching and a quarter on walking. In

areas of high demand, close to a third of total time was used for searching. These

studies were done in Karlsruhe, Germany and Birmingham, Sutton and Coventry

in UK. In larger cities like Boston, London or New York, where demand is much

higher, the search can be far longer. Yet studies show [Shoup 2005] that even

there the average search times are fairly constant. While depending on

environmental variables, the balance between demand and supply, as well as

cultural characteristics of drivers, many central districts have relatively stable

search times for parking [ibid].

Figure 1 in the introduction indicated that these search times in CBDs have been

roughly the same over an almost 80 year period (average 30%) since 1927. This

is very interesting, because over this time the amount of cars per people in

America has almost quadrupled (from 220 per 1000 people in 1935 to 800 per

1000 people in 2005) [Shoup 2005]. How can searching times remain

comparable while the potential demand for parking grows remarkably? One of

the explanations to this phenomenon might be that the policy of street parking

has remained virtually unchanged since its creation. Shoup pointed out that that

taking inflation into account, the cost of metered street-parking, which was

 36

initially started in Oklahoma City in 1935 with the charge of a nickel per hour,

has not changed at all till 2004. “The main change in 70 years is that few meters

now take nickels. In real terms however, the price of most curb parking hasn’t

increased; adjusted for inflation, 5 cents in 1935 was worth 65 cents in 2004, less

than the price of parking for an hour at many meters in 2004” [p. 381 ibid.]. The

same price and policy directing the flux of parkers over 70 years might explain

why a dynamic system like parking has reacted linearly over decades.

Analogous to most complex systems, the behavior of drivers searching for street-

parking is influenced by the parameters and variables of their environment.

Herbert Simon provided a comprehensive theory of the relationship between an

individual and the environment, arguing that the majority of the constraints

guiding a system to a given outcome are imposed by the external environment

rather than isolated individual thinking [Simon 1996].

His example of this idea is an ant walking on a beach. As ants follow relatively

simple rules of how they should react to environmental stimuli, then more

complex environments will make their behavior look more sophisticated.

“Viewed as a geometric figure, the ant’s path is irregular, complex, hard to

describe. But its complexity is really a complexity in the surface of the beach, not

a complexity in the ant.” [p. 51, Simon 1996] Following this argument, the

relative stability of searching times in street-parking can be caused by the stable

characteristics of the pricing policy as well as the stable perceptive feedback that

drivers have at their disposal for evaluating the success or failure of their

strategies.

Simon continues to suggest that “a human being can store away in memory a

great furniture of information that can be evoked by appropriate stimuli. Hence I

would like to view this information packed memory less as part of the organism

than as part of the environment to witch it adapts” [p. 53 Ibid.]. Minsky has

 37

elaborated Simon’s idea of environmental feedback as the basis of successful

functionality of any artificial system, by explaining the importance of cognitive

feedback that takes place inside the individual’s mind6. The variations in search

behavior are not only determined by the external environmental stimuli, but also

the internal states of a person’s mind (mood, ambition, habits, self-critics etc).

This idea supports the evidence seen in Laurier’s ethnographic study of parking,

where the driver gradually changed her goal along the way and finally chose a

parking spot that she initially discarded. The reason why a specific parking spot

was unacceptable at the beginning of the search, but did become acceptable after

searching for a while, was caused by the external feedback from the environment

as well as internal feedback of the driver, specifically her self critique of being

late. As time passed, and the external environmental conditions remained

unchanged (no new parking spaces occurred), the driver changed her goals from

ideal to less ideal.

Hence, the deviations in the behavior of cruising for street-parking are a

combination of internal stimuli that can cause goal switching, and external

stimuli offered by the surrounding environment. Like in most systems, it is

natural for anyone in the parking system to be attracted to options of least effort

and greatest self-interest. We choose the more comfortable or cheaper alternative

offered by the environment. Though cruising behavior appears complex at an

individual level, at an aggregate level cruising patterns appear fairly repetitive.

To search a larger geographic area, a driver must constantly move around and

scan the environment by applying his limited sight radius on successive streets

until a vacant spot comes to view. Hence, cruising is the result of applying the

currently possible search behavior within a given built environment according to

the current pricing policy of street-parking. In the long run, the statistical

constancy of cruising over the past decades might imply that a certain level of

complexity of searching has stabilized and adapted to the unchanged price of

6 Society of Mind course at M.I.T. Spring, 2005.

 38

street parking and feedback of the search. “An intelligent system’s adjustment to

its outer environment (its substantive rationality) is limited by its ability, through

knowledge and computation, to discover appropriate adaptive behavior (its

procedural rationality).” [p. 25, Simon]. Unfortunately, the point at which the

current parking system has stabilized is unacceptable because of its grave

environmental impact.

The second problem suggested above is that our current method of search in a

condition of uncertainty might not necessarily lead us to the best possible

solution with the given local information. Let us also expand this question of

rational decision making in a situation of uncertainty in order to explore how

digital computation might complement this process.

Research on bounded rationality has unveiled interesting results in the recent

years. I would specifically like to refer to the work by Daniel Kahneman on the

topic [Kahneman, Slovic, Tversky, 1982]. In his 2002 economics Nobel Prize

talk, Kahneman claimed that under conditions of uncertainty human decision

making often arrives at solutions, which are not the best that could be computed

with the given information. He argued that this is mainly caused by the fact that

the value function of alternative decisions is defined by gains and losses, and not

by steady states. This means that people base their decisions largely upon the

immediately perceivable gains and losses that a given decision offers, and not on

a slightly more computationally optimal calculation, that could also be derived

from the same evidence. Here is an example he gave. A person A is shown two

sets of silverware and asked to evaluate the price of each set. Set A is composed

of 10 pieces of perfect quality. Set B contains the same 10 pieces of perfect

quality, and in addition, three damaged pieces. How does a person assess the

value of A and B?

http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Daniel%20Kahneman
http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Paul%20Slovic
http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Amos%20Tversky

 39

Experiments have shown, that if both sets are shown to the subject together, then

the vast majority of people assess that set B is more valuable than A. This is

logically the optimally correct decision, as B contains all the elements of A, and

just three additional damaged elements, which do not diminish the value of the

10 remaining perfect pieces. However, if only one of the sets is shown to half of

the people and the other set to the other half, then people who see A evaluate its

value to be higher than people who see B. It is easy to see the erroneous nature

of this decision if we have already seen two sets, but why does it happen?

Kahneman explains that people base their decisions on simplistically perceived

averages derived from the information they are exposed to, instead of slightly

more computational statistical averages, which requires the help of additions. If

people see both sets of silverware, then they visually perceive that B is on the

average more valuable than A, because it contains all elements of A and more. If

people only see one set, however, then again they average the value, but this

time, the pros and cons are averaged from within the given sample set itself. It

follows that as B contains damaged elements, then the average value of each

element in B is less than perfect. In case of set A, though the set is slightly

smaller, each element has a perfect average value. People normally fail to see

that instead of averaging the whole group in a single piece, the set B could be

broken down into two groups, each containing 10 and 3 elements, which added

together compose a higher value than the 10 elements alone.

Kahneman has provided several other similar experiments [Kahneman, Slovic,

Tversky, 1982], which demonstrate that in situations of limited information,

people tend to use perceptive averaging, instead of additive averages.

Kahneman’s work demonstrated that in many everyday situations of limited

information we act irrationally and do not calculate in the most optimal way with

the information given. Instead, we often arrive at non-optimal decisions due to a

simpler perceptive calculation. In the search for street-parking, this might suggest

that we search more based on what we perceive immediately, than based on more

http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Daniel%20Kahneman
http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Daniel%20Kahneman
http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Paul%20Slovic
http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Amos%20Tversky

 40

general statistical calculations. For instance, we normally tend to pay most of our

attention to vacant spots. Even though we pass numerous occupied spots, we

rarely include them in our equations for finding a parking space. In many areas,

parking periods are limited, for instance to one or two hours, hence the limited

spaces have a frequent turnover. Using common sense knowledge of the types of

parkers that might be using these spaces, we could compute the probability of

one of these spaces vacating in a few minutes. A high probability result could

advise us to wait for a spot to vacate and save us a longer trip to a more distant

area. (I shall explain the idea of waiting in designated queuing spaces at the end

of Chapter Three.) Though this is certainly done by some drivers, on an

aggregate level we do not seem to account for such information that is not

immediately apparent, but requires some statistical computation. That is, we do

not assign much credit to such information, even though it could potentially lead

us to a better search outcome. This is a very loose hypothesis and a great effort of

additional experimental research is required to be able to claim any factual

evidence. However, there seems to be a great potential to use computers for

overcoming such decision errors that Kahneman outlines. Unlike people,

computers are extremely efficient and fast for calculating optimal statistical

decisions. Thinking along these lines aided me in the construction of the

simulation models where the use of local information could be compared with the

use of more general statistical information to determine which method yields

more efficient search results.

Benefits of a Real-Time Guidance System

So far in this chapter I have discussed how the current parking system works at a

personal level and what the consequent group impact of this system is like. From

 41

here on I shall introduce the addition of real-time information to the current

system and analyze the effects of this proposal.

In light of a stabilized parking system, the use of real-time information sets a new

paradigm for managing street-parking. Real-time information about the demand

and supply of street-parking adds a new variable to the search behavior that

enables drivers to achieve goals more efficiently.

The idea that I am exploring is based on a proposal for the Zaragoza Digital Mile

urban design studio (MIT, fall 2005) and the subsequent Smart-Park project

[Lee, Sevtsuk, Ratti 2006] that we are developing at the SENSEable City Lab at

MIT.

The system uses both environmental sensors and the user’s mobile

communication device (e.g. cell phone, PDA, GPS) to help drivers conveniently

locate parking spots relative to their position in real-time. One of the differences

that I am proposing to the initial Smart Park idea, is that it does not necessarily

require help from a telecommunications company to position users. Instead, real-

time positioning could be done inside a personal communication device itself,

hence protecting a person’s location information from second parties. What is

necessary for computing one’s location, is a map of the communication network

and the current signal strength of available antennae. However, I shall try to

demonstrate later how an aggregate sharing of personal location information can

improve the efficiency of the search even further by providing drivers with

information about other drivers competing for the same parking spaces. The

system also requires an online database to keep track of the environmental

sensors and respond to user requests.

Curb-side parking spaces in a downtown area would be interspersed with tiny

sensors that could detect whether a car is parked in the space in front of it or

 42

behind it. The sensors would use a microcontroller with wireless capabilities to

communicate with each other and communicate with the server. They would be

powered by a battery that recharges from solar energy cells that cover most of the

sensor’s surface area. A light on top of the sensor on the road side would

indicate the status of the parking spot, such as “available,” “restricted,” “paid,” or

“unpaid” to passing drivers.

The user interacts with these devices with his cell phone, PDA or an in-car

communication device, such as a GPS receiver. While driving around the city,

he can query an on-line database for vacant curb-side parking spaces. Having

determined its own geographic position in the network, the device can download

the parking availability information from the server and offer the closest

unoccupied parking space to the user. Users can either reserve that space or

simply approach it, hoping it will remain vacant while they drive to it. The

communication device would then direct the user to parking by a displayed map

or voice directions. Once the user is parked in a chosen spot, the sensor detects

the vehicle’s presence and informs the server to take the spot off the availability

list. In case of a reservation, the sensor also checks if the parked car corresponds

to the reservation and then initiates the electronic payment count, at which point

the e-ink on the ground indicates this status as a parking meter would. The idea is

summarized in the following storyboard.

 43

Figure 7 Illustration of the guidance system for street-parking.

Compared to the current searching of street parking the potential advantages of

this real-time guidance system are summarized in the points below.

• Currently we rarely find the closest parking space, but rather pick the

space we happen to stumble upon first. The real-time system would have

an accurate overview of all vacant spaces of a neighborhood and is

therefore able to indicate spaces that are within the shortest access

distance from the driver or closest to the desired destination.

 44

• We usually miss many available spots which are close to us, but not

within our field of sight. The real-time system could extend our

knowledge of available spaces to areas we cannot see or guess, such as

spaces behind corners, further down the street, on an adjacent block etc.

It could also warn drivers if no parking is currently available in the area

in order to avoid unnecessary trips.

• Currently drivers often snap away a parking spot in front of someone

else, who has been searching for a longer period of time. For good or for

bad, it is like cutting into a line. Accurate information about the

competition for a given spot would allow the system to assess the

chances of obtaining a spot and only offer a particular spot to the driver

if he is surely capable of obtaining it. A reservation policy in the system

could further help guarantee that searchers will not loose a spot to a

newcomer. Reservations naturally help satisfy specific individual

demands of drivers.

• It is well known that long term parkers7 today consume most of the

capacity of all on-street parking. Presently there is no efficient way of

discouraging that from happening. Current parking meters, which impose

a maximum time limit, have no way of prohibiting drivers from paying

the cycle multiple times. This has in fact become so common, that “re-

feeding” the parking meter has become a popular verb in standard

American English. In addition, current parking meters charge at a

constant rate, regardless of how long people stay parked. If the system

could alter parking fees dynamically and keep track of the period of

occupancy of a parking space in real-time, then the price per time could

increase exponentially instead of linearly. Also, a priority of using the

7 People parking for several hours, often a whole day.

 45

guidance information could be given to short-term parkers, with high

penalties in case of violations.

• Under-priced street-parking today is a major cause for cruising and

excessively large parking requirements in zoning laws [Shoup 2005]. An

intelligent management system could respond to demand by fair market

prices in real-time, therefore balancing demand and reducing parking

requirements. Analogous to economic markets, subsidized supply

generally creates higher demand. For example, how much bigger would

the city of London have to be to satisfy housing demands if housing were

uniformly under priced, equivalent to prices in a small rural village? This

is the case with under priced curb-parking today.

These ideas and assumptions were tested in agent-based simulations, which gave

approximate estimates of the benefits of the proposed real-time allocation

strategies. The topic of the next chapter is to give a detailed overview of these

simulation models.

 46

 47

Chapter Two

The Simulation Approach

In her book The Death and Life of Great American Cities, Jane Jacobs

emphasized the importance of thinking about cities as organized complexity

where discrete interrelated variables influence each other simultaneously, where

players are many and solutions more complicated than simple formulas.

Jane Jacobs paraphrasing W. Weaver states: “Cities happen to be problems in

organized complexity, like the life sciences. They present “situations, in which a

half-dozen or even several dozen quantities are all varying simultaneously and in

subtly interconnected ways.” Cities again, like the life sciences, do not exhibit

one problem in organized complexity, which if understood explains all. They can

be analyzed into many such problems or segments which, as in the case of the

life sciences, are also related to one another. The variables are many, but they are

not helter-skelter; they are interrelated into an organic whole.” [p.433 The Death

and Life of Great American Cities, Jacobs 1961]

During the peak of modernist planning, she warned that cities do not embody

disorganized complexity, where order is only to be found by reducing everything

to averages and probabilities. This is an important aspect of this thesis: rather

than using pure mathematical probability to prove certain benefits or failures of

one real-time system over another, I deliberately use multi-agent simulation

models, which not only tell us about the broader behavioral patterns of a dynamic

system, but arrive there by visually modeling the behavior of each specific

member of the system, the sum of which creates the whole. Hence, simulation

 48

modeling is a way to quantitatively test some of the assumptions made at the end

of the last chapter. I believe that this technique provides more information than a

clean mathematical proof, precisely because it doesn’t rule out individual

differences and because it works as well with very few agents as it does with

hundreds or thousands of agents. This is the opposite of a probabilistic approach,

where statistics only get better when the group of study is larger and periodic

changes over time are not accounted for.

Urban simulation is a growing research area and many thorough studies have

been conducted for modeling urban growth [Batty 2005], response to policy

change [Flaxman 2002] and social networks [Metcalf 2005]. UrbanSim software

(developed at the University of Washington) and ILUTE software (developed at

the University of Toronto) are examples of large-scale urban simulators designed

for use by urban planners. The Santa Fe Institute has for years been pioneering

scientific advancement of agent-based computation in economics and social

systems. City simulators are generally agent-based simulations with explicit

representations for land use and transportation. The simulation environment

primarily used in this thesis, however, is Star Logo8. It is not specifically

designed for urban applications, but had great advantages due to its open

framework of coding possibilities, which allowed modifying agent

communication in aspects discussed at the end of this section.

The two principal computational concepts used in most simulation environments

are Cellular Automata and Agent-Based modeling. I shall give a very brief

description of the key characteristics of those two techniques in order to show

how they can be used for street-parking simulation.

8 StarLogo is a specialized version of the Logo programming language. It is developed at
Media Laboratory and Teacher Education Program, MIT, Cambridge, Massachusetts,
with support from the National Science Foundation and the LEGO group.

http://www.media.mit.edu/
http://education.mit.edu/
http://www.mit.edu/

 49

The origins of both Cellular Automata (CA) and Agent-based models are closely

related to the work of John von Neumann and John Conway. Before cellular

automata9 obtained this name, it was a concept that von Neumann proposed as a

theoretical machine with self-replicating capacity. The idea initially consisted of

cells on grid paper, with specific rules and purposes for communicating with

each other. The cells mimicked very simple intelligent beings and their behavior

was determined by a few internal rules of interaction and by neighboring cells

that interact with it. Conway took the idea forward in his Game of Life10, where

he implemented the idea in a virtual context on a computer. As the interaction

between cells is largely determined by the rules that a programmer ascribes to the

cells, CA can simulate selected real-world situations of localized simplicity, but

overall complexity.

CA consists of an infinite field of equally sized cells, that can all have a finite

number of states. Each cell is surrounded by a neighborhood of cells, which are

commonly described as the Moore or the Van Neumann neighborhoods,

depending if diagonal neighbors are considered. Hence, each cell has eight

neighbors in a Moore neighborhood and four neighbors in a von Neumann

neighborhood. A communication signal that travels across a CA field will be

passed from each affected cell to its neighborhood, therefore changing the state

of adjacent cells. Though there is potentially an infinite number of states, cells

can only communicate with other cells within their immediate neighborhoods.

There are surprisingly many processes in nature that follow the principles of

cellular automata. From the diffusion of particles to the societies of insects,

communication happens from one member of the system to another, resulting in

complex orders of dynamic systems. It is commonly believed that the fairly

sophisticated societal structures in ant colonies are determined by very simple

9 A detailed description can be found in the New Kind of Science [Stephen Wolfram,
Wolfram Media 2002] and on the Wikipedia on-line encyclopedia.
10 First published in the October 1970 issue of Scientific American.

http://en.wikipedia.org/wiki/1970
http://en.wikipedia.org/wiki/Scientific_American

 50

rules that ants follow without having any knowledge of what higher level

structures they are actually part of11. Similarly, a flock of birds flying in a neat

triangular shape or a flock of fish swimming in groups have no higher level

knowledge of how to organize themselves in neat shapes. Instead the shape is an

emergent result of self-organization, where birds or fish only know what position

to take according to each other. Amongst humans, oral communications also

frequently follows diffusion patterns, similar to CA. Hence, CA is a suitable

method for analyzing systems where communication flows continuously from a

locus to its neighboring loci and so on. Cellular automata is not suitable for

processes, however where communication does not happen in a physically

proximate manner.

Agent based-modeling is directly related to the concepts of cellular automata.

Perhaps the main difference in agent-based modeling is that in addition to fixed

cells, the concept uses dynamically interacting rule based agents, which can

move around on top of the cell-grid. The agents are representations of small

programs, which have well-defined rules of interaction. However, agents not

only interact with the background cells, but also with each other. Hence the

agents are intelligent and purposeful and they reside in space and time. The

modeler ascribes the rules of interaction from real-world assumptions he thinks

as most relevant to the processes he wants to model, and can then study how a

phenomenon emerges from the agent’s interaction. Agent- based models are

very useful for studying how a certain system reacts to external and internal

forces and how/if a new equilibrium is established after a change. Therefore,

agent-based modeling can have a wide range of applications in urban planning to

analyze the impacts of both internal changes in people’s behaviors and external

changes in physical building or legal policy interventions.

11 For a great description, refer to Turtles, Termites and Traffic Jams by Mitchel Resnick,
MIT Press 1994.

 51

The simulations used in this thesis use an agent based modeling approach. Agent

based modeling can fairly precisely characterize the formation and movement of

traffic jams that mostly form from two simple principles amongst agents:

“decelerate if there is a car in front of you” and “accelerate up until the speed-

limit if there is nobody ahead”. The conventional search process for street-

parking can be analogously modeled through an agent based model. Drivers

looking for parking spaces can be symbolized as agents. Static cells in the

background can indicate parking spaces. The physical distance between a driver

and a parking space that is within the driver’s visual reach, can be represented by

a neighborhood of CA cells around a driver. Should a space appear in a

neighborhood, an agent can approach and seize it akin to the way a driver would

seize a parking space that comes in sight in the real-world.

However, for modeling real-time communication networks of a contemporary

city, the traditional method of communication between agents and cells, where

messaging happens only between immediate neighbors, is insufficient. In the

real-world, the use of telecommunication channels, such as telephones, faxes,

cellular-phones, radio, television, satellites etc, have the capacity to transmit

information over long distances without involving intermediate places and

channels. This capacity for distant communication is generally not part of cellular

automata or agent based modeling techniques.

For instance, before going out to a retailer, a person can telephone the shop to

inquire if the product he is looking for is available. If it is, he might set out for

the trip, if not, he might call other stores before making a move. The information

that determines the action is acquired distantly. Similarly, on-line databases of

public transportation and traffic congestion can tell a person the real-time traffic

situation on major highways and streets (e.g. Los Angeles City Traffic Info, MIT

 52

Shuttle Track)12, hence influencing the choice and mode of the route the person

might take. Simple electromagnetic signals can encrypt messages in binary form

and almost anyone connected to the telecommunication network can access them

by using a device that decrypts the message back into text format. What is most

significant in an urban context is that messages can travel through

electromagnetic waves in the air, connecting cars, phones, computers and

wristwatches to the rest of the network without any apparent physical

connections. If the amount of portable communication technology continues to

spread at the current rate13, then an increasing amount of urban decision making

could happen with the help of distant sources. All this facilitates distant

communication but complicates urban modeling through classical cellular

automata.

In the models used in this thesis, I am proposing a way to make real-time distant

information available to agents that represent cars. In the following models the

ability to acquire and report information distantly also works in parallel with

local cellular automata communication. The key additional communication

feature to traditional cellular automata communication is a dynamic real-time list

in the form of a global variable that reports the availability of a particular

resource to all agents regardless of their position. At the same time, the list is also

continuously updated by all the agents themselves, based on their interactions in

the model. If a cell representing a parking space is occupied, then the agent

occupying that cell reports to the system that it has absorbed the particular spot

and this spot is no longer announced as a vacant parking space to other agents.

This form of distant communication through a list of information that is updated

in real-time allows me to symbolize agents the way people in the real-world

would acquire distant information through their mobile communication devices.

12 http://trafficinfo.lacity.org/ ; http://shuttletrack.mit.edu
13 In 2005 there were 194,479,364 cellular phones in the U.S., which is equal to 0.65 cell phones
per person. In 2003 there were 0.54 cell phones per person. (CIA Wold Factbook, 2005) If
continued at this rate, everyone would have a cell-phone in about seven years from now.

http://trafficinfo.lacity.org/

 53

The Rules of the Simulation

A very life-true performance of the model is extremely hard to capture. Like all

good simulation models, even well-known parking choice models [Thompson,

Richardson 1996] take only a fraction of real-life variables into account. Despite

the simplifications however, a carefully crafted simulation model can tell us a lot

about real-life phenomena. The important task for studying a specific system in a

simulation model is to isolate the critical variables from the less critical ones. At

one extreme, one could technically model all possible phenomena that might

directly or remotely influence a system, but people of long experience [Minsky,

2006] argue that not all such variables are important for understanding the higher

level reactions of the system studied. If one chose the path of carefully modeling

all possible variables, then one would be doomed to replicating reality and never

able to study higher level alternative scenarios of reality. In the opposite

extreme, the assumptions made in a simulation might simplify too much the

reality and hence provide unreasonable evidence. I think that a good simulation

should neither attempt to mimic reality nor make groundless assumptions, but

rather analyze a carefully chosen set of underlying dynamics influencing reality.

We could look at street-parking as a structure involving multiple participants, and

a physical environment where the system operates. The overall behavior of the

street-parking system is then a combination of three categories of variables: 1)

the physical and legal environment that drivers operate in 2) a driver’s individual

behavior 3) dynamics of group behavior (Fig. 8).

 54

Legal Physical

Group Behavior Individual Behavior

The Environment

Figure 8 The three categories of variables in the street-parking system.

This distinction between group behavior and individual behavior is similar to the

division between microeconomics and macroeconomics. In order to study

performance, it is crucial to distinguish which is our viewpoint of evaluation.

Features that might provide great benefit to individual behavior might at the same

time jeopardize group behavior and vice versa. This, in fact, is one of the central

outcomes of this thesis and I shall come back to this idea in the concluding

chapter. For now, I would like to emphasize that the simulations primarily

experiment with improving the performance of group behavior (reducing the

overall search time of cars) by introducing a behavioral modification (the

guidance system) at the individual level.

To a limited extent, I shall also experiment with modifying the physical and legal

environment in which street-parking operates. The environmental modifications

that I am interested in are 1) an introduction of dynamic pricing as part of the

legal parking policy, 2) a physical modification in the amount of parking spaces a

neighborhood should have and 3) alterations in the traffic layout to accommodate

queuing cars.

As a result of intervening in those two categories of the search for parking (the

Individual Behavior and the Environment), I shall study the resulting search time

 55

efficiency for the group. The main question that I am trying to address with these

simulations is: What are the critical conditions, under which one strategy

performs more efficiently (i.e. reducing search-times) than another?

The methodology I chose was to intuitively build a simple search model and

evaluate how it works. Based on the first strategy, I devised a different strategy

and compared the search efficiency of the two models. Then followed the third

and the forth and so on. Hence, I started with relatively simple simulations of the

existing parking system and gradually built up complexity by adding variables

one step at a time.

What seems natural in everyday life, actually requires a vast amount of common

sense and is therefore exceedingly hard to capture in a computer program.

Computers are efficient processors of information, capable of finding optimal

solutions rather quickly. However, the sensing capacity of humans is far greater

than that of computers. Thus, computers can potentially compete faster in tedious

calculations, but they currently have very limited perceptive capacity compared

to people, which strongly undermines any definitive assumption of the

superiority of a computational system over human decision making. Chess

playing programs are a sufficient illustration of this- players of great experience

can still occasionally defeat any computer programs. Many have experienced the

inferiority of a modern computer in a GPS navigation system in a car, providing

wrong information, instructing too much or not instructing enough. It would be

incongruous to propose that everyone should adopt a computational guidance

system. In order to avoid common sense conflicts, the application of the real-time

parking guidance system should be complementary to the existing method of

parking search and not replace it. Compatibility with traditional ways of finding

parking and downward compatibility towards a simpler technological system are

important conditions in order not jeopardize the functioning of the existing

cognitive processes. The guidance system ought to only add beneficial strategies

 56

that can increase an individual’s search capacity and not take away the existing

ones.

In addition, for most people, the psychological barrier and the learning curve of a

new technology can be diminished, if previous habitual methods are preserved in

parallel with a new technology14. Whether or not to use the system should be

decided by individuals and not imposed by law. However, I shall try to show that

some aspects of the proposed system provide great time and financial benefits to

individual users, which could themselves provide enough of an incentive for

users to join the system.

The next section will first explain some general rules that all of my parking

models follow. Each distinct model also has some uniquely specific rules, which

are explained further below under appropriate headings.

14 This has been elegantly demonstrated by [Mackay, W.E. 2000] and [Samad, Weyrauch 2000]

 57

General Rules

Figure 9 Graphical user interface of the Star Logo simulation model

First, a chosen number of cars (see the “number-of-cars” slider in the interface

window) is created and dispersed randomly on the black patches of the screen,

which represent the driving lanes of the road. The cars are divided into 4

categories: 1) “living” 2) “working” 3) “visiting1” and 4)”visiting2”, which

represent the main kinds of drivers in a real-life neighborhood, depending if they

live, work or visit a neighborhood. The four categories differ by duration that

each member spends in a parking-space at a time. The times chosen are the

following: 48 seconds for “living”, 32 seconds for “working”, 2 seconds for

“visiting1” and 8 seconds for “visiting2”. These times are proportionally set to

 58

match the parking durations that the main kinds of drivers normally use (12h for

“living”, 8h for “working”, 2h and ½h for brief visitors). I chose the values based

on a consultation with urban transportation specialists at MIT15. I tried to

estimate values that would correspond to the commonly known classes of drivers

in the real-world. I estimated that 20% of cars belong to people who live in the

neighborhood, 30% to workers, 30% to visitors and 20% to brief visitors.

Figure 10 Layout of the street-network. In the model, cars can "wrap" out of the

picture on one side and re-enter from the opposite side, creating an infinite torus

shaped topological continuum.

When a car is in “Drive” mode and arrives at an intersection, it can either go

straight, take a right turn or a left turn. In the Traditional parking simulator, the

decision of turning right, left or continuing straight is a random one and in a

simplified way, it simulates how the search for parking works if we do not know

where vacant spots are located. We shall see later, in the case of “Intel” models,

that these intersection decisions are what guide a car to the closest parking spot,

if cars know such information. When a car arrives at the end of the screen it will

re-enter from the opposite side of the screen, performing a “wrap”. This is

equivalent to using the street grid as a topological torus, where one can never

drive out of the scene. Hence, instead of introducing new incoming cars from

outside the scene, the same cars illustrate the searching and thoroughfare traffic

in a repetitive sequence. The number of cars in a given simulation is constant at

15 Consultation with Mikel Murga and Chrisopher Zegras.

 59

all times. The cars are also programmed to consider each others presence- they

have to slow down if a car is directly ahead of them. Accordingly, they can speed

up if there is no-one ahead until they reach the speed-limit. If the “look-ahead”

slider is set to 2 instead of 1, then cars will decelerate according to two cars

ahead. The “speedup” and “slowdown” sliders control how quickly a car

accelerates or decelerates.

An output monitor on the screen counts the average number of steps to find

parking for all searching cars. This value is recorded at every iteration and also

stored in memory for later analysis. The plot window at the bottom of the screen

graphs this average number of steps.

Traditional Parking Search Model

In the case of Traditional parking, once the drivers have been assigned to a

certain group, they start driving and looking for a parking spot. The procedure16

calls each car to first find a parking spot. If there is no parking spot next to the

car, the car will keep driving until it finds a vacant spot right next to itself and

parks there. Once a car has found a spot, it will stay there for a time period that is

characteristic to its category. Once pulled out of parking, a car will drive around

for a chosen time-period until it starts looking for a parking spot again. This time

period is determined by a slider on the screen named “parking-interval.” By

default the interval is set to 36 units, which allows cars to randomly drive

16 The Source Codes to all the models can be found in the Appendix and at
http://web.mit.edu/asevtsuk/www/thesis

 60

sufficiently far away from the previous spot. Modifying this variable will have a

direct impact on the availability of parking spots: the smaller the parking-

interval, the more often every car starts looking for parking again, the bigger the

demand.

The initial model is set to have 6 available parking places (white patches), but

different quantities were tested. The default amount of cars is 6 or 24, generating

a demand that is either equal to or four times greater than supply.

The simplified pseudo code of an agent’s procedures in this model looks like the

following:

Repeat Infinitely[

Park[

 Turn the color of the agent to yellow

 Repeat until you find parking[

If there is a vacant spot next to you, then park, else

make a step forward]

if you are at an intersection[

choose to go right, straight or left randomly]

If parking was satisfied, turn color back to red]

Drive without parking for X period]

 End

Intel Parking Search Models

The four distinct intelligent parking simulations that were tested are named

Intel_1, Intel_3, Intel_5 and Intel_7. Their particular differences are described in

the following section.

 61

By an “intelligent” parking model, I refer to the real-time guidance scenario,

where agents have access to additional information that helps them find the

closest curb space. As I noted in the previous chapter, the key feature that allows

agents to have intelligent knowledge in choosing the closest parking spot, is a list

of all vacant parking spaces, which all agents can monitor at all times. This list

shows the X and Y coordinates of all white patches (parking spaces), which have

no agents occupying them. This list (called "aa")is continuously updated at 0.5

second intervals, and saved as a global variable. "Aa" is not structured in any

significant order, its elements are added and deleted as vacant spots happen to

appear or disappear.

Unlike the traditional parking simulation, cars in intelligent simulations do not

make random decisions at intersections, looking for any available parking spots.

Instead, before starting a search, they evaluate where the closest vacant spot lies

and then start heading towards it. To evaluate the closest spot, an agent sums the

horizontal distance and the vertical distance from its own position to each spot in

the “aa” list one by one, memorizes the shortest option, and chooses the closest

spot as its destination. If the spot is in the opposite direction than the agent is

heading towards, then a length of ½ of the block perimeter is added to the

distance, because the agent is first forced to drive around the block before

heading towards the spot. As the following descriptions show, this parking

guidance information is used differently in the four models. However, the way a

car orients itself towards a chosen spot is common in all three: if the chosen spot

lies ahead of the agent on the same street (along an orthogonal axis- up, down,

left or right) then it keeps moving straight until it reaches the spot and then parks

on either the right or left side of the road. If the agent is moving towards the spot,

but the spot is in nearby blocks in the left or right side sectors (seen from an

intersection), then an agent turns left or right accordingly. If the agent is moving

further away from the spot, then it takes a left or right turn at the first possible

intersection depending on which side the destination spot is. These simple rules

 62

allow cars to take the shortest possible route to their chosen spot in the given

traffic grid. Similarly as in the simulation of existing parking, if cars on the edges

of the screen "wrap" around and re-enter from the opposite side, then the same

rules continue to apply, even though the spot that was passed may now appear

ahead of the car.

Intel_ 1 Parking Search Model

In the Intel_1 strategy, when agents enter the parking cycle and start looking for

a vacant parking space, then they first assess which spot in the “aa” list is closest

to them. Once the closest spot is chosen, the agent makes a step towards that spot

along the shortest calculated path. The size of the step is the same as the size of

an agent as illustrated in the interface above. (Each iteration all agents can move

only one step.) At the beginning of the next step, the agent calculates the closest

available spot again, and if the same spot appears closest, then the agent

continues its way towards that spot. However, if that spot appears to have been

taken by another agent or if another spot that is closer has been vacated in the

meantime, then the agent will change its destination to the newer nearest option.

Thus, if along the way of driving towards a specific destination, an agent

encounters another occasional vacant space, then it is allowed to immediately

occupy that space, despite the fact that some other agent might have that space as

a destination and might be driving towards it. The agents who loose a destination

in such a manner will re-evaluate their destinations at the following step and

choose a new destination. Hence agents have a real-time knowledge of where

vacant spots lie.

 63

If an agent reaches its destination and the destination is still unoccupied, then the

agent parks there for the time period specified by its class (living, working,

visiting, visiting2).If no vacant spots are available in the aa list, then agents roam

around randomly (taking random decisions at intersection points whether to go

straight, left or right). This procedure is repeated at every step.

The simplified pseudo code of an agent’s procedures in this model resembles the

following:

Repeat Infinitely[

Park[

 Turn the color of the agent to yellow

 Repeat until you find parking[

Find the closest parking space from the “aa” list,

memorize it as a destination

If there is a vacant spot next to you, then park, else

make a step towards the chosen spot]

If parking was satisfied, turn color back to red]

Drive without parking for X period]

 End

Intel_3 Parking Search Model

The Intel_ 3 system differs from the previous model primarily by its introduction

of a policy of reservations. A reservation restricts random passers-by from

parking at that space. Technically, in the model this means that a virtual

reservation agent is created at the chosen destination, which keeps other cars

 64

from being able to use that space for parking while the agent who made the

reservation is driving to it. In this model, before agents drive off towards a

parking spot, they again consult the closest option from the “aa” list. The agent’s

manipulation of the “aa” list, however, differs significantly from the previous

model. This is due to the condition, that reservations have to be mutually

exclusive. That is, the same reservation should not be given to several cars.

Hence, when an agent first queries the “aa” list, it needs to check if the list is

available for consulting. If not, then it waits until the list becomes available.

Once the list is available, then the agent blocks the list from other agents’ access

and then checks if there are any vacant parking spaces available in the list. After

choosing an available spot, or choosing nothing if the list is empty, the agent

saves changes to the list and unblocks it for others to use. This is similar to the

way on-line shops with multiple simultaneous clients function. The sequence of

steps a computer makes for a buyer is the following:

1) Check if the list of goods is available

2) Wait until the list of goods is available

3) Access the list of goods and lock it from others

4) Check if there is anything to buy from the goods

5) Perform a purchase and exit the list or simply exit the list

6) Save the changes to the list of goods

7) Unlock the list of goods for others to use.

These steps are necessary in a real-time market to ensure that a single good is not

sold to many customers.

If an agent finds vacant spots in the list, then it chooses the closest spot as its

destination in the same way as in the previous model. Unlike Intel_1, agents here

do not re-evaluate their destinations at every step; they keep the same destination

until they park. In addition, it can also put a “reservation” on that spot. Reserving

 65

the spot, the agent asks the “aa” list to eliminate that spot from being offered as a

vacant space to other agents. During the approach, the agent who made the

reservation uses a verification procedure at every parking space along the way to

check whether the space corresponds to its reservation. Only if a match is found

between the reserved spot and the reserver, can the agent park at the spot.

However, if the agent happens to pass another unoccupied space along the way to

its destination, which does not have a reservation on it, then it is also allowed to

occupy that space. In this case, the agent gives up its reservation at its initial

destination, which then is put back on the “aa” list for everyone to use.

The simplified pseudo code of an agent’s procedures in this model looks like the

following:

Repeat Infinitely[

Park[

 Turn the color of the agent to yellow

 Wait until the “aa” list becomes available

 lock the “aa” list

Find a parking space from the “aa” list

Eliminate the chosen space from the “aa” list or exit

if the list is empty.

Unlock the “aa” list

Repeat until you find parking[

If there is a vacant and unreserved spot next to you,

then park, and if you had a reservation, then cancel

it. Else make a step towards your reserved spot.

If no reservation could be made, make a random

decision on the next intersection and then try to find

a vacant space from the “aa” list again]

If parking was satisfied [

Turn color back to red

 66

Drive without parking for X period]

 End

Intel_5 Parking Search Model

The Intel_5 model tries to unify strategies of both Intel_1 and Intel_3. Similar to

Intel_1, agents are exposed to the real-time list of all available spaces at every

step of the search. The model also tries to take advantage of the mutually

exclusive allocation policy of Intel_3- it tries to avoid the allocation of one space

to several cars. This is achieved, however, without a reservation policy.

In addition to the real-time vacancy list that Intel_1 used, agents in Intel_5 have

access to significantly better information about the traffic situation. Namely,

when an agent consults the real-time vacancy list, then it does not directly choose

the closest target space and start driving towards it, but also evaluates if any other

agents have the same destination, and if so, how far they are from that

destination. Only if the agent is closest to the target spot among all competitors,

will it start driving towards that spot.

If not, then it will try the next closest spot in the “aa” list and do the same

evaluation again. If necessary, then this can continue until all the spots in the list

have been tested. If an agent at an intersection is not the closest competitor to any

spot, then it will make a random decision and continue checking the list at the

next step. This evaluation procedure is repeated at every step.

 67

In case of a situation where a newly arrived searcher might appear closer to a

parking space that an agent had calculated for its destination at a previous step,

then the closer newcomer has priority over the space. This is because no

reservations are used. However, as soon a new searcher appears in the scene and

impacts the allocation solution of the previous scene, then all agents recalculate

their destinations at once, without any further driving towards their last goals.

Agents, whose targets haven’t attracted any closer competitors, will continue to

drive towards their previous goals as planned.

The simplified pseudo code of Intel_5 resembles the following.

Repeat Infinitely[

Park[

 Turn the color of the agent to yellow

 Repeat until you find parking[

Find the closest parking space from the “aa” list,

check if any other agents have the same target and

check how far the competitors are from the target.

If you are the closest of all competitors, then make a

step towards the chosen spot. If not, try the second

closest spot from the “aa” list. If necessary, repeat

this until all elements of the “aa” list are

exhausted. If you are at an intersection and are not

closest to any spots or if “aa” is empty, take a

random decision]

If there is a vacant spot next to you, then park

If parking was satisfied, turn color back to red]

Drive without parking for X period]

 End

 68

Similar to all previous models, agents are also able to park at any occasionally

vacated closer spaces along the way to their target, should such spaces appear. If

the real-time vacancy list appears empty, then agents at intersections make a

random decision and query the list again at the next step.

Intel_7 Parking Search Model

Lastly, the Intel_7 search model introduces a small, but conceptually significant

addition to the Intel_5 model. In situations where supply of parking spaces is

large enough to satisfy all demanding cars, Intel_7 functions identically to

Intel_5. The additional feature it introduces appears useful only in a case of over

demand.

Instead of repeating most of the Intel_5 procedure above, let’s assume that

Intel_7 follows the exact same steps until a situation appears where the searching

agent is not the closest competitor to any available spot in the scene or when the

vacancy list simply appears empty. We saw in all 3 previous Intel models that in

such a case agents at traffic intersections took a momentary random decision and

checked the vacancy list again at the following step. However, this is certainly

not the way drivers would react in reality. Instead, drivers use various techniques

for guessing where the potential vacant spots might appear. The better the

experience or information that a driver can use in the face of such uncertainty,

the better the chances for taking a tactical decision. If no clues from the

environment or prior experience offer certainty, then people could choose

 69

probabilistically. In a similar manner, the basic idea of Intel_7 is that as long as

there are vacant spots available, agents should cooperatively allocate them

between each other, just like in Intel_5. However, if no vacant spots are

available, then agents should be able to guess intelligently, where to go searching

with probability, instead of roaming randomly.

In order to achieve this, accurate information about the current occupancies of all

parking spots have to be acquired from the environment. Hence, I propose that

the parking sensors that were introduced in the last chapter, embedded in asphalt

between two parking spots, also record the duration of stay of each car that

occupies them. This information is collected in a second real-time list called “bb”

and fed back to the server for probabilistic analysis of upcoming vacancies.

“”BB” is a global variable similar to “AA”, it contains the X and Y coordinates

of every occupied space, available for all agents in the scene to consult at any

time.

As the program can keep track of the parking duration of occupied spaces, then a

probability of an occupied space freeing up can be calculated. I have been using

4 classes of cars: living, working, visiting, visiting2. They differ by the time they

spend on a parking spot ("living" cars park 48 seconds, "working" 32 sec,

"visiting" 8 sec, and "visiting2" 2 sec). 20% of all cars are living, 30% working,

30% visiting and 20% visiting2. These were chosen to roughly correspond to

different classes of real-life drivers. It follows that if a spot is occupied, then the

probability that the owner of the car belongs to one of the groups is:

"living group" - 0.2

"working" - 0.3

"visiting" – 0.3

"visiting2"- 0.2

 70

A timer records the time of occupancy of each parking space in seconds.

If the timer (T) on an occupied spot is 0 < T < 2, then the chances that the spot

vacates in less than or equal to 2 second is 0.2.

If the timer (T) on an occupied spot is 2 < T < 8, then the chances that the spot

vacates in less than or equal to 6 seconds is 0.375.

If the timer (T) on an occupied spot is 8 < T < 32, then the chances that the spot

vacates in less than or equal to 24 second is 0.6.

If the timer (T) on an occupied spot is 32 < T < 48, then the chances that the

spot vacates in less than or equal to 16 second is 1 (100%).

To choose which spot to go to, the timer T is weighed according to the distance

of the given spot from the driver. If a vacant spot is 25 steps away from the car,

then the value of that spot is still 1 because the agent has already determined that

it is the closest in the competition for that spot, and the spot is assumed to be

vacant until this agent arrives there. Hence, vacant spots always have the highest

value (1).

However, if there are currently no available spots, then instead of roaming

randomly, an agent can guess which way to go with probability. If an occupied

spot is 25 steps away from the car, then the agent first has to query what the timer

T on that parking spot shows. If the timer is 8 < T < 32, then the value of that

spot is 0.6 / abs(25 - 24) = 0.6. That is the probability of it vacating in 24 seconds

divided by absolute value of the distance minus the time till vacating. Ideally the

driver would like that spot to vacate just a little less than in 25 steps, right when it

arrives there. In this example, chances are 0.6 that the spot will be vacated by the

time the car gets there. Similarly to evaluating the competition with vacant spots

that we saw above, agents here can also assess if someone else is targeting the

same occupied spot and only choose the occupied spot as a target if they are the

closest competitor to it. This evaluation procedure is again repeated at every step.

 71

Repeat Infinitely[

Park[

 Turn the color of the agent to yellow

 Repeat until you find parking[

Find the closest parking space from the “aa” list,

check if any other agents have the same target and

check how far the competitors are from the target.

If you are the closest of all competitors, then make a

step towards the chosen spot. If not, try the second

next closest spot and repeat this until all elements

of the “aa” list are exhausted. If you are closest to

none or if “aa” is empty, then calculate the

probabilities of obtaining currently occupied spaces

and evaluate your chances of obtaining them compared

to other competitors. Memorize the option with the

highest probability value and make a step towards it]

If there is a vacant spot next to you, then park

If parking was satisfied, turn color back to red]

Drive without parking for X period]

 End

By introducing additional information about the current occupancy times of taken

spaces into the search process, this model attempts to reduce uncertainty for

agents with no assured goals.

Critical Variables

We saw in the ethnographic description of a real-life parking situation in the last

chapter that there are a great number of different cognitive and physical activities

unfolding simultaneously when one tries to park. Personal behavior is directly

 72

influenced by physical environmental factors that can cause changes in the

strategies a driver uses for the search of parking. For instance, if a person notices

that there is an unusual amount of traffic in a given neighborhood, then he might

immediately decide to settle on the first available parking space, even if it is

somewhat inconvenient and the person wouldn’t do so under conditions of light

demand. I shall outline below some of those critical factors that play a role in the

overall performance of the street parking system. These factors comprise a

mixture of individual, group and environmental variables, which I find most

significant for reducing search times. The list could be potentially infinite, but for

intuitive and technical reasons, I have mainly tested the simulation models under

the following variable conditions:

1. The balance between the number of searchers (demand) and available spaces

(supply). The models use either 6 cars and 6 parking spots or 24 cars and 6

parking spots.

2. Connectivity and size of the street grid. The two grids tested were a 3 x 3 and a 5

x 5 rectangular street network with topologically connected edges.

3. Distribution of parking spots on the grid. The models use two types of

distributions: dispersed (parking spaces equally distributed across the field), and

concentrated (all parking spaces located on a single street segment).

4. Real-time Information. The Intel models look at four different ways of using

real-time information about parking spaces, about competing cars, about placing

reservations and about the total group performance of all cars.

Additional variables that can equally affect the performance of the models

(duration of parking; management of queuing; dynamic pricing) are touched

upon in text in Chapter 3.

 73

Optimum Strategy versus Satisficing17 Strategy

In chess there are hundreds of different opening strategies18. Each opening also

has a corresponding defense, which is known to be the most efficient strategy to

react to a particular opening. There is no one best strategy for all openings, but

instead a particular one for each case. The initial procedures of the game can be

predicted in advance for several steps if both players follow well-known

strategies. When one of the players makes an unpredicted move, then the real

game begins. Players no longer know for certain which move is optimal, but are

rather forced to strategize which moves would be most beneficial. To do so, a

trained player can compute solutions to many possible scenarios and choose the

most satisfying move. However, after a certain threshold it takes too much

calculation to predict the best strategy. Theoretically, it is possible to calculate

the ultimate optimal defense strategy for any situation, but the number of

required computation is around 10ˇ120, well beyond any human, or computer

capacity. The ultimate optimal strategy is therefore practically impossible to

predict and instead, players use the move that seems most promising. In the

subsequent moves, strategies in chess have to be readjusted in real-time as the

game evolves according to the particular responses from both opponents.

Similarly to chess, optimal space allocation in parking requires good

computation. In urban settings, variables are arguably even more complex than in

chess. It is impossible to define an absolutely optimal strategy for space

allocation in a particular situation, because all possible outcomes are beyond

existing computational capacity. A solution can only be optimal to the given

variables it accounts for. No urban system functions as neatly as a machine,

performing its task in a clearly optimal manner. The variables in real life are far

17 Term used by Herbert Simon, The Sciences of the Artificial, first published 1969.
18 List of Chess Openings, Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/List_of_chess_openings

 74

too complex for that. We can, however, outline a satisficing strategy, which

based on limited computation, proves to work better than other strategies. Unlike

chess openings, real time parking strategies can function as differential equations,

they perform best within a certain range of variables. One strategy is not merely

useful for a particular setting of cars and parking spots, but rather for multiple

settings within certain limits. When variables exceed these limits, then another

strategy becomes more efficient.

The choice of a space allocation strategy should therefore depend on

circumstances of the situation. In an ideal allocation system, different

circumstances require different strategies, which are substitutable in real-time.

The decision to switch from one strategy to another itself can require a lot of

knowledge. Even more computational energy is necessary to compare a situation

with two different strategies simultaneously. This leads me to state the obvious:

if commuting within a city were as complex as playing chess, where one has to

evaluate the next best move after each step, then it is clearly unlikely that people

would ever accept to deal with such complexity. Simple and repetitive methods

of commuting in the city are desirable, because instead of solving combinatorial

problems of optimal travel paths at every step, we can commute by memory, and

instead think of various other things at the same time.

Today, we base our commuting decisions mostly on the immediate perception of

the environment around us and analyze only a few of the obvious alternative

commuting options. With the example of Kahneman’s work, I suggested in

chapter one that this can lead to erroneous decisions. However, for computers

calculating thousands of combinations at every step is not too ambitious.

Assessing the parking circumstances of a situation in real-time, calculating a

satisficing solution and adjusting the search strategy for space allocation

accordingly is a relatively simple task for any modern computer. The messy and

extensive calculation process can thus be performed within a small computational

 75

device, a person’s cellular phone for instance, and all that the owner of the device

ever has to see is the satisficing solution to his problem proposed in simple

graphics on a screen.

Hazards of the simulation

There are several real-life variables that the models described above do not

account for. First, the model simulating the existing parking system asks agents

to take completely random decisions on traffic intersections when looking for a

parking space. As we saw in Chapter one, in real-life such decisions are not

completely random, drivers are capable of applying previous experience and

skills in decision making. A simple example is that drivers might not turn back

and search for spaces on the same street they have already covered several times.

In a random choice model this can happen with a fairly high probability.

However, we also saw in Laurier’s ethnographic study how the driver eventually

did end up repeating the search on the same streets several times and even chose

the final parking on one of the streets she initially passed and declined. Hence, it

is not unlikely that such repetitions do also occur in real life. This aspect of

decision making under conditions of uncertainty is addressed to a limited extent

in the Intel_7 model, which adopts a probabilistic decision making approach,

instead of a random one.

Also other, more complex behaviors can help the driver sense vacant or about to

become vacant spaces. Many of these qualities are not only hard to capture in a

computational model, but remain unclear to us at the cognitive level. A list of

some of such activities was presented in chapter one. Human decision making

under conditions of uncertainty in street-parking deserves a whole paper on its

own. The way I chose to deal with the lack of such knowledge, was to use the

same functions of vacant space detection in all models. In other words, the

 76

limitation of only noticing immediately proximate spots in the existing parking

model was also used for the detection of randomly vacant parking spots in all

other models. Hence, I tried to only compare the added value of the real-time

guidance system in relation to random search. Due to the complexity of the task,

the added value of experience and intuition had to be unfortunately cancelled out

from the models. Hopefully, more of these features can be added to the models in

the future.

The Intelligent models assume that the accuracy of reporting vacancies and

occupancies of parking spaces is close to perfect. In the real-world, drivers often

park on the edges of parking spaces, between two adjacent spaces etc. Such

occurrences could cause false reports in the system that tracks the precise

availability of free spaces. This uncertainty remains an issue in the models and

for the sake of clarity I kept the reporting system faultless. As technology

advances over time, it is not unlikely to suspect that such deficiencies could also

be eliminated in the real-world.

Additional errors could emerge from people tricking the system, attempting to

block parking sensors on the ground in order to avoid public announcement of a

space. Also the opposite could occur- false unblocking of sensors, in order to

encourage more visitors to drive to a commercial area for example. Vandalism

could possibly disable parts of the system, causing bogus information and

malfunction in the overall system management. In addition to deliberate cheating

of the system, a much more important concern is people’s irrational behavior- tt

would certainly be wrong to anticipate, that all drivers, who use the real time

guidance system, always follow the guidance suggestions. Instead, as with many

other technologies, it is likely to expect that people would distrust the system or

simply believe in their own intuition more than the suggestions made by the

system. This could be accounted for in future models by using a small random

error algorithm.

 77

The Intel- 1, 3, 5 and 7 models all suppose that every car has access to the real-

time list of available spots and actively uses this list. In a real-world application it

is probable that only some people would want to use the guidance system, some

would experience technical difficulty and some might not be able to afford it.

Hence the results of the system that appear from the model can be too good to be

true. However, my intent with the simulation models is not replicating reality, but

studying the critical conditions from a more theoretical point of view in order to

outline the qualities of different search strategies. Nevertheless, it is likely that if

the system provides significant and easy to use aid in locating a convenient

parking space, then this is a good enough incentive for the majority of drivers to

use the system. A true to life usage ratio could be used in the model, if a credible

user study were carried out first.

Perhaps the most serious shortcoming in the simulation models is that agents’

adaptive behavior is not complex enough compared to the behavior of drivers in

the real world. In the Traditional and Intel_1 models, when an agent starts

looking for parking, then the behavioral rules that guide its decisions are the

same from the start of the task to the accomplishment of the task- agents only

have one strategy. In chapter one I emphasized the importance of adaptive

behavior that makes drivers revert to many different goals and strategies if

searching takes too long. The Intel_7 model addresses this shortcoming to some

degree, by using at least 3 different strategies (i.e. informed competition for

vacant spaces, using probability for competing for currently occupied spaces, and

using random search if nothing is available) that an agent can use, depending on

the environmental conditions. Nevertheless, the agents in the simulation models

can only adapt to the outer environment, they have no built-in means to change

strategies of the search based on their inner credit assignment. The agents have

no capacity of learning nor assessing the efficiency of their strategies, they

 78

simply test one strategy after another in a hierarchical order. I try to compensate

for that lack by addressing the issue in text instead of models.

Such are the assumptions with which the simulation models were built. The next

chapter will analyze the outcomes the simulations of these assumptions

generated.

 79

Chapter Three

Results

We saw in the previous chapter, all models used six parking spaces. The

variables that were changed in different simulations were the number of cars (6

and 24, while the number of parking spaces was always kept constantly at 6),

different street grid sizes (3x3 and 5x5) and a different distribution of the six

spots (one on every street and all on one street segment). The variable that was

changed most of all was the type of real-time information that was available to

agents, as well as the specific strategy of using it. The four different guidance

strategies (Inlte_1, 3, 5 and 7) were presented in the last Chapter.

 Number of Steps
Model name and

Properties
Average Median Standard

Deviation
Max.

“Traditional” 6cars on
3x3 grid

35.9801 29 29.01499 162

“Traditional” 24cars on
3x3 grid

58.8676 52 38.56921 252

“Traditional” 6cars, 5x5
grid

133.486 107 94.19525 535

“Traditional” 24cars,
5x5 grid

164.038 159 37.29277 300

“Intel_1” 6cars on 3x3
grid

18.9373 16 13.82078 81

“Intel_1” 24cars on 3x3
grid

69.5191 71 20.65161 111

“Intel_1” 6cars on 5x5
grid

29.4841 30 10.67552 55

“Intel_1” 24cars on 5x5
grid

120.731 122 30.60324 179

 80

“Intel_3” 6cars on 3x3
grid

17.1136 14 12.58576 67

“Intel_3”24cars on 3x3
grid

214.771 211.5 30.43529 289

“Intel_3” 6cars on 5x5
grid

27.9552 28 13.27635 59

“Intel_3” 24cars on 5x5
grid

183.894 181 21.04165 240

“Intel_5” 6cars on 3x3
grid

14.1429 11 12.84207 74

“Intel_5” 24cars on 3x3
grid

46.4671 46 11.24772 93

“Intel_5” 6cars on 5x5
grid

30.6998 23 30.24971 143

“Intel_5” 24cars on 5x5
grid

81.5912 79 18.20295 148

“Intel_7” 6cars on 3x3
grid

20.1343 16 14.40481 76

“Intel_7” 24cars on 3x3
grid

54.945 54 12.34717 93

“Intel_7” 6 cars on 5x5
grid

36.2814 34 19.99611 108

“Intel_7” 24 cars on
5x5 grid

62.423 67 17.38108 88

“Traditional” 6cars on
3x3 grid concentrated

240.737 208 148.9806 940

“Traditional” 24cars on
3x3 grid concentrated

284.687 277 79.99469 554

“Traditional” 6cars, 5x5
grid concentrated

636.851 619 242.8204 1281

“Traditional” 24cars,
5x5 grid concentrated

764.374 752 158.0438 1130

“Intel_1” 6cars on 3x3
grid concentrated

30.0871 29 15.78522 84

“Intel_1” 24cars on 3x3
grid concentrated

45.5967 43 15.41761 93

 81

“Intel_1” 6cars on 5x5
grid concentrated

49.959 50 18.1443 105

“Intel_1” 24cars on 5x5
grid concentrated

59.226 69 23.70496 119

“Intel_3” 6cars on 3x3
grid concentrated

33.5031 25 28.77843 174

“Intel_3”24cars on 3x3
grid concentrated

61.3806 50 42.75369 272

“Intel_3” 6cars on 5x5
grid concentrated

52.5776 44 34.56188 182

“Intel_3” 24cars on 5x5
grid concentrated

252.835 254 80.20153 404

“Intel_5” 6cars on 3x3
grid concentrated

23.547 22 13.14438 64

“Intel_5” 24cars on 3x3
grid concentrated

31.4074 31 15.6449 64

“Intel_5” 6cars on 5x5
grid concentrated

35.0155 36 11.32714 65

“Intel_5” 24cars on 5x5
grid concentrated

70.1508 71 15.58593 97

“Intel_7” 6cars on 3x3
grid concentrated

42.6401

42 16.79825

121

“Intel_7” 24cars on 3x3
grid concentrated

69.3122

69 21.75266

124

“Intel_7” 6cars on 5x5
grid concentrated

57.7118 52 19.4395 143

“Intel_5” 24cars on 5x5
grid concentrated

82.4779

85 18.1882

118

Number of parking spots in all models is 6. On the upper half of the table, the six
spots were distributed uniformly around the street network. In the lower half of
the table, where indicated “concentrated”, all six spots were concentrated on

one single street.
These simulations were measured over aprox. 3000 and 10 000 iterations.

Figure 11 Comparison of the average number of steps to find a parking space in

simulation models.

 82

In most cases, the least amount of average steps to find parking was achieved

with the Intel_5 strategy. Though this might seem logical and self-explanatory, I

shall nonetheless try to describe why this is the case.

Effects of Grid Size

Figure 12 Comparison search efficiencies on a 3x3 and a 5x5 grid with 6 equally

distributed parking spaces.

First, it is easy to understand how a random search in the Traditional model

performed least efficiently in most cases (not all!). In a 3 x 3 grid, there are nine

intersections, each of which offers 3 choices (right, straight, left). In total, there

are close to 19 683 (3ˇ9 = 19 683) different ways to travel through this grid

before repeating a same street segment twice. This gives random search high

chances of guiding the driver wrongly before he stumbles upon a street that has a

vacant space. However, when parking spaces were distributed so that every street

(one street in a 3 x 3 grid is composed of 3 segments) had a parking spot on it,

then the success rate of random search increased considerably- it took only 35

steps on average to stumble upon a vacant space (the longer side of one block in

 83

the model is 22 steps long). A highly connected street grid could orient a driver

to search fruitlessly on several streets before finding the right street by chance.

The Intel_1 strategy performed considerably better with 6 cars than random

search did on a 3 x 3 grid, but still less efficiently than the Intel_5 and Intel_3

strategies. The explanation to this is that in Intel_1, all cars possess knowledge

about the location of vacant spaces, but as they are not aware if there might be

other drivers driving towards the same target, then for a certain time period

multiple cars might be heading towards the same goal. Only one of those drivers,

the closest one, is destined to reach the spot first and occupy it. Hence other

competing agents in such a scenario are always driving in vain until they find out

that their target spot disappears from the vacancy list when the closest car

reaches it. At this point these other agents will try to find a new destination, but

under high demand conditions, even then they might have bad luck and loose the

next destination to someone else again. If drivers are not aware of competitor’s

presence and if spots are not reserved, then in case of a competition, all but the

closest car will travel in vain until the spot disappears from the vacancy list. This

shortcoming becomes less remarkable in a larger grid. While a larger grid makes

random search harder, the Intel strategies still guide the agents towards the area

where parking spots are located. In a large grid, longer travel distances reduce the

possibility of several cars arriving at a destination at the same time. By the time

the second or third car with the same target destination arrives at a spot, the first

car might already have left. A comparison of the Traditional and Intel_1 models

on 3x3 and 5x5 grids confirmed this: In the former case Intel_1 was almost twice

as efficient, while in the latter case Intel_1 performed already three times more

efficiently.

 84

Figure 13 Graphic calculation of the Intel_1 search strategy.

The table above shows that Traditional (random) search performed better than

Intel_1 in the high demand situation with 24 cars and 6 spaces on a 3x3 grid,

where spaces were distributed across the grid uniformly. However this result is

not characteristic to all situations of high demand. In fact, the results can reverse

in a situation where the urban grid is larger. For instance, on a 5 x 5 grid, Intel_1

performs more efficiently than Traditional. In the case of a large grid, random

search exponentially accumulates additional possible paths of driving. In a

situation of a 5 x5 grid, the simulations of 24 cars and 6 spaces showed that with

random search (Traditional) it took an average of 164 steps to park, whereas

Intel_1 took 120.

 85

Figure 14 The average number of searching steps of 24 cars on a 3x3 street grid (on
the left) and Figure 15 The average number of searching steps of 24 cars on a 5x5

street grid (on the right)

This reversal of efficiency is caused by the additional combinations of driving

paths in a 5 x 5 grid, which decrease the efficiency of random navigation. For

Intel_1, the increase in grid size does not play an important role, as the drivers

still choose a specific target, and navigate towards it along the shortest route. If a

parking spot is five intersections away, for instance, then the driver will still take

the path that is shortest along those five intersections. He will not get caught in

all the other approximately 25ˇ9 (2.9 x 10^17) possible paths along the way,

which can happen in a random search. Hence, in addition to the precise

conditions of demand and supply, the success of the Traditional (random) search

strategy, is inversely related to the connectivity of the street network: It works

well in a small grid, but terribly in a large grid. Real-life neighborhood street

networks often have many more streets than 3 x 3 or 5 x 5; the number of

traveling combinations that is added with each n x n grids grows exponentially

thus also decreasing the efficiency of random search accordingly.

 86

 Linear Path 1x1 Grid 3x3 Grid 5x5 Grid

0 Intersections 1 Intersections 9 Intersections 25 Intersections

 n = 1 n = 3 n = 19683 n = 2.9 x 10^17

Figure 16 Comparison of the number of alternative travel paths on different grid

sizes. The calculations show the approximate number of different travel paths,

without repeating any street segment twice and assuming that the search continues

till it runs into a dead end.

 87

Effects of Demand and Supply Balance

Figure 17 A comparison of strategy performances with 24 cars on a 3x3 grid with 6

geographically dispersed parking spaces.

Interestingly enough, under high demand, random search (Traditional) with 24

cars and 6 spaces can perform better than the Intel_1 strategy. This can be

explained again by the fact that Intel_1 drivers often drive purposefully in vain.

While randomness distributes competitors uniformly in the area, Intel_1 can lead

many of them towards wrong goals clustered in certain areas. If one space is

available in Intel_1and 3 cars compete for it, then all 3 will start moving towards

that spot, but only one is destined to succeed. (See Figure 2 above around the

vacant parking spot C’). A situation of high demand in Intel_1 thus reminds me

of a poorly coordinated soccer game, where all players storm towards the ball at

every step, not realizing that only the closest player will be able to take it. If this

keeps repeating in a cycle, then all players will run long distances aimlessly.

Ironically this is often the case with young schoolchildren playing soccer. A herd

of the kids usually runs after the ball simultaneously without any clear

 88

cooperation strategy. Under high demand, the Intel_1 strategy behaves similarly.

The simulation findings show that the amount of driving that result can be even

greater than with random search. Random search distributes the demand equally

across the grid. In case of soccer, as children mature and their thinking becomes

more sophisticated, then they stop running after the ball all at once. Instead, they

learn to allocate the ball to the closest players cooperatively. Everyone sees that

one of the kids is clearly closest to the ball, and usually others will not run for it.

As mental computation is arguably more advanced in older children’s minds,

then this example demonstrates how higher computational capacity can result in

strategies of more efficient commuting.

The Intel_3 strategy tries to address this shortcoming by allowing cars to make

reservations for the spaces they choose. This seems to work fairly well when

demand is equal to supply or lower. All cars who find a destination in the real-

time vacancy list are guaranteed to have that particular space held for them when

they arrive. The reservation blocks all cars, except the one that made the

reservation, from parking at the spot. In a situation of demand and supply

equilibrium, Intel_3 performed better than Intel_1 and Traditional. However, a

poorly strategic reservation system with no knowledge of drivers’ locations,

might assign a reservation to a driver who is not necessarily the closest

competitor for that space. This becomes especially apparent in a situation of over

demand. For instance, if only one space is currently available in the

neighborhood and two cars are searching for parking, and the reservations

mechanism has no way to estimate who is closer to the spot, then chances are

50% that the space might be allocated to the further driver, hence reducing the

efficiency of the strategy. The problem becomes even more critical, if there are

more than two cars counting on one space. The graphic example below

demonstrates that a reservations system with 5 cars and 5 spaces, which is not

aware of cars’ locations and hence does not strategically allocate spaces to the

closest cars, would probably allocate spaces to further cars, thus increasing the

 89

overall search times. However, as this system still assumes that cars only try to

reserve the spots that are closest to them, then two of the spots in the scheme

below are always allocated to cars A and B because they are the only ones

competing for them. Instead of 5! (120) different allocation possibilities, only 3!

(6) are left. This means that in the simplistic scheme below, only one out of six

times would the system allocate the spots in the most efficient way. In five times

out of six, the unknowledgeable reservation policy would allocate the three

parking spaces in a less efficient manner, forcing cars to drive longer distances

than necessary.

Even though reservations can be an efficient method to ensure that individual

drivers do not approach target spaces in vain, unless the system has a clever

allocation strategy, reservations can often go to drivers who are not closest to

these spaces. That is the case in a first-come-first-serve reservation policy.

However, even if this error were fixed, and the reservation system given accurate

methods for matching cars with closest spaces in a sustainable way, then a

serious deficiency still remains. This deficiency is caused by the fact that in a

situation of high over demand, there are by definition many cars in the area and

the balance of demand and supply varies constantly. New searchers appear

frequently. As new demand may appear on any street, then the newcomers are

likely to occasionally appear closer to vacant spaces than the drivers who are

driving towards them with reservations. Because these spaces are reserved, they

cannot be occupied by these occasional passers-by and hence the overall turnover

of parking spaces decreases. In other words, the concept of reserving under high

demand is meant to prohibit the use of a particular spot from everyone but the

reserver, which by definition reduces turnover. This was confirmed in the 6

spots, 24 cars simulations, where Traditional search required an average of 58

steps to find parking while Intel_3 required 214.

 90

Scenario 4

Scenario 6
Scenario 5

Figure 18 Graphic calculation of the Intel_3 strategy. In the case of a first-come-

first serve reservation policy, this example has 6 different outcomes, of which only

one is optimal.

 91

An analogy to this situation can be found in restaurant reservations. If the

demand for a particular restaurant is high, then a line forms at its door. If some

tables have been reserved by expected visitors in advance, then the people

appearing at the door are not allowed to occupy those reserved tables. If this were

not so, and the people at the door were immediately allowed to seize vacant

tables, then the overall turnover of the tables would be greater. Hence, in

situations where demand surpasses supply, reservations on street parking are

mostly likely to decrease the overall efficiency of the system. Of course other

aspects should be considered, for instance, reservations could be highly priced

and used to collect money for some public good related to urban transportation,

but this is a different point.

Effects of the Geographic Distribution of Parking Spaces

Figure 19 A comparison search efficiencies with uniformly distributed or locally

concentrated 6 parking spaces on a 3 x 3 grid.

 92

A third crucial factor that determines the efficiency of a strategy is the location of

the parking spots in a given grid. In the first examples above, the six spaces were

dispersed equally apart, so that one was found on every street. Such a distribution

greatly enhances the chances of finding a parking space with random search.

However, if parking spaces are all concentrated in a specific limited area, then it

becomes much less probable to find a space by random search. This was clearly

illustrated in the results of the simulation model. In a uniformly distributed

parking field with 6 spots and 6 cars, heuristic search required 35 steps on

average. When all six parking spaces were situated next to each other on a single

street segment, then the average amount of steps raised to 240. In a 5 x5 grid the

corresponding number raised from 133 to 636.

Though this seems clearly intuitive, it is important to emphasize that a

concentrated location of parking spots in a given area can greatly diminish the

odds of finding a space with random search and therefore increase the value of a

real-time guidance system.

38 steps

62 steps

Figure 20 Six parking spaces on a 3 x 3 grid distributed uniformly and

concentrated.

 93

The location of parking spots also plays an important function in the Intel_1

strategy, more so than any of the other Intel strategies. If spots are concentrated

in close proximity within a limited geographic area, then the abundant decisions

to drive towards a single spot that 10 drivers are competing for, as illustrated by

the children’s soccer example above, is not so useless anymore for Intel_1

participants. Instead, following a false lead that might not be fruitful in the first

round, will still lead the driver towards the right area where all the parking spaces

are located. This effect proved to be so useful, that even under low demand,

Intel_1 performed more efficiently than Intel_3 with a concentrated parking-

space distribution (which was not the case with the dispersed spaces simulation).

In a condition of high demand, this was even further apparent: in case of

dispersed locations of parking spots, it took Intel_1 with 24 cars on a 3 x 3 grid

an average of 69 steps to find parking, versus only 45 steps when the parking

spots under same conditions were concentrated on a single street.

Synthesis of Strategies

The general highest efficiency achieved by the Intel_5 and Intel_7 strategies can

be credited to several cooperating features of these strategies. Intel_5 avoids the

shortcomings that appeared with the reservations in Intel_3. In fact, due to the

capacity to assess which parking spot the agent is likely to reach first,

reservations become unnecessary. Only in cases of special demand should

reservations be made and the price charged for the convenience (in compensation

for the inconvenience caused to others) should be accordingly high.

 94

Figure 21 Graphic calculation of the Intel_5 search strategy.

The table shows that Intel_7 performed better than Intel_5 only in the most

challenging situation- on a 5x5 grid with 24 distributed spaces. However, the

differences between the two models were not large and it is very likely that with

a different initial position of agents, the advantages could reverse. In situations of

low demand or small grid size, the performance differences of the two models are

too small for clear conclusions.

Figure 22 Comparison of search strategies on a 5x5 grid with 24 uniformly

distrinuted spots.

 95

Compared to the deficiencies we indicated for Intel_1, Intel_5 computes the

parking destination not only based on the locations of a vacant spot, but also

based on an assessment of obtaining the spot in case of a competition. Referring

again to the example of a soccer game, participants in Intel_5 have information

and computational capacity to understand that chasing a ball that someone else is

closer to, is useless. As cars will only follow a destination that they are almost

sure of obtaining, then the collective storming for a vacancy, which Intel_1

faced, is avoided.

I deliberately said almost in order to include the possibility of new cars appearing

for a search during the time when an agent drives towards its destination. As the

parking system is dynamic, changing in real-time, then new demand can appear

while the previous demand situation is being solved. When car A is driving

towards a spot that it has calculated itself to be closest to, there can be a new car

B entering the area, who also wants to park. When car A did its calculation on the

previous step, car B was not part of the scene yet, and could therefore not be

accounted for. But when B appears and happens to be located closer to the

destination that A is driving towards, then B is likely to reach the spot first. This

is why the Intel_5 strategy needs to re-evaluate its target, as well as the chances

of obtaining the target, at every step. In the example of cars A and B above, car A

will automatically know when B appears and will therefore stop following a

target that B is closer to. This is one of the efficiency advantages of Intel_5 and

Intel_7 over Intel_3, but also a humanly inconvenient aspect of the Intel_5 and

Intel_7 strategies: practically, it can happen that a given driver is forced to

choose its parking destination more than once, changing it along the way if newly

arrived searchers intervene with his plans.

The occasional loss of a target space due to newly appearing demand is

characteristic to all models, but from the group efficiency point of view, Intel_5

has the most capable means for coping with the situation. In Intel_1 a similar

 96

scenario is also constantly caused by over demand. When a particular street has

fewer parking spaces to offer than cars that need to be accommodated, then target

destinations can also be lost to current competitors (in Intel_1 and Traditional).

Unlike other strategies, in Intel_5 an agent is immediately aware if its search is

likely to be fruitless. This is an important and powerful advantage of Intel_5 and

leads us to suggest that due to this knowledge, queuing cars could be

accommodated in a different way than they are today, cruising and polluting in

dense traffic aimlessly. I will come back to this point in a later section dedicated

to queuing.

Simulation Conclusions

The list below recaps the effects of the studied variables in the simulation

models.

• The size of the grid determines the number of possible paths on the grid.

As the grid size increases, possible commuting paths increase

exponentially, reducing the effectiveness of a random search and

increasing the value of a guidance system. If multiple agents drive

towards the same destination, then a large grid also increases the

distances that all but the closest driver cross in vain.

• Randomness distributes agents evenly across the field, whereas guided

strategies direct agents towards the available parking spots. If no

cooperation between agents happens, then agents can agglomerate

around a single spot. If they are unable to seize the spot, then they can

drive around the block in circles, which can extensively increase

cruising.

 97

• A uniform distribution of spaces across the street network increases the

efficiency of random search, while a concentrated distribution greatly

decreases the efficiency of random search. The opposite is true for a

guided search. When agents are guided towards the agglomeration of

parking spots concentrated in one area, then their chances of seizing an

arbitrary vacant spot around their original target increases. Good

examples of this effect in real-life are structured parking garages

containing several vacant spaces. If drivers know the location of a

garage, then they can approach the garage hoping to park at a specific

space in the garage, but if the specific spot happens to be taken, then

chances are good that another spot will be vacant in the same facility.

• Reservations can be useful in low or equilibrium demand conditions, but

in high demand conditions they increase overall cruising. However, from

the point of view of group efficiency, under all circumstances,

reservations are only efficient if they have a strategic allocation system,

distributing spots to the agents that are closest to them. Strategic

allocation becomes especially important when the competition for spots

increases. By definition, a reservation policy prohibits newly arriving

passers-by from seizing a reserved space; this reduces the turnover of

spaces and can produce great inefficiencies in allocation under high

demand.

• If agents have information about their competitors as well as their

location in relation to parking spots, then agents can be guided only

towards the parking spots that they can surely occupy before others. This

strategy eliminates the common need for reservations as well as cruising

in vain. Mutual awareness of each other’s locations also allows newly

arriving parkers to immediately enter the allocation pool on equally

competitive terms. This means that if a newly arriving searcher happens

 98

to start closer to a vacant parking spot than a previous searcher, then the

new agent will have priority over the spot. This reduces overall cruising.

The results of the simulations indicate that the advantages of a more sophisticated

strategy appear more clearly under more critical conditions. The advantage of

Intel_5 above other strategies was apparently more remarkable in situations of 24

cars and 6 spots than in 6 cars and 6 spots, on a 5x5 street grid more than on a

3x3 street grid and with a concentrated distribution of spots rather than dispersed

spots. This is again intuitive: in simpler situations almost any strategy can give a

satisfactory result, while in challenging situations simpler strategies fail and

intelligent strategies prevail.

As the five strategies (Traditional; Intel_1; Intel_3; Intel_5 and Intel_7) gradually

built up in complexity, then the results also showed that the usage of more

information and computational power for navigation can give better results. This

is coherent with Herbert Simons argument about intelligent systems that I quoted

in the very beginning of this thesis: “The behavior of an artificial system may be

strongly influenced by the limits of its adaptive capacities- its knowledge and

computational powers.” [Simon 1996, p. 29] However, computational capacity

and abundant information alone do not automatically result in efficient

performance. The fundamental strategic differences between models Intel_1,

Intel_3 and Intel_5 demonstrate that for a successful performance, information

and computation must be well coordinated. If this is not the case, then even

worse results can appear than in a random search technique (Intel_3 with

reservations on a 3 x 3 grid and 24 cars competing for 6 spaces resulted in an

average of 214 steps of searching, while Traditional random search under the

same conditions required only 58 steps on average).

The use of more general information, that is, taking account the actions of other

agents as well as the overall competition situation of the area, gave better results

 99

than a simple use of individual information. Furthermore, a probabilistic search

with the Intel_7 model that also accounted for the currently occupied spaces and

statistically compared the values of driving to a vacant or a probably vacating

spot, achieved even more efficient results. The success of these strategies was

enhanced by collaboration between agents. This leads me to suggest that

Kahneman’s theory about the deficiencies of immediately perceivable decision

making might apply to parking indeed. The use of broad and crosscutting

information gave better results than the use of narrow individual information.

Intel_9: The Collaborative Equilibrium and Game Theory Model

A 6th model, which was not tested in agent-based simulations could be added to

the list of strategies outlined above as potentially even more efficient in the

reduction of cruising than Intel_5 or Intel_7. We can call it Intel_9. This strategy

for street-parking introduces an interesting aspect of Game Theory, namely the

Prisoner’s Dilemma (PD).

In Intel_9 we include another new variable to the parking system: dynamic

pricing. As we saw in Chapter 1, pricing is one of the most influencing variables

in real–life parking conditions. Donald Shoup has convincingly argued that fair

market-rate pricing can alone be a powerful mechanism for reducing demand on

street parking. My aim here is slightly different: Assuming that conditions of

over demand will always continue to exist in popular areas, I shall try to propose

that dynamic pricing could be used as a tool for creating incentives for

collaborative behavior in overcrowded street parking. As drivers in situations of

over demand are expected to act self-interestedly, then such behavior can be

characterized by Game Theory.

 100

The Prisoner’s Dilemma (PD) is a classic example of Game Theory, where two

or more players react to each other with the goal of maximizing their own profit.

I shall quote the description of the classical Prisoner’s Dilemma from the

Wikipedia encyclopedia19 as follows:

“Two suspects, A and B, are arrested by the police. The police have insufficient

evidence for a conviction, and, having separated both prisoners, visit each of

them to offer the same deal: if one testifies for the prosecution against the other

and the other remains silent, the betrayer goes free and the silent accomplice

receives the full 10-year sentence. If both stay silent, the police can only give

both prisoners 6 months for a minor charge. If both betray each other, they

receive a 2-year sentence each. Each prisoner must make a choice - to betray the

other, or to remain silent. However, neither prisoner knows for sure what choice

the other prisoner will make. What will happen?

It can be summarized thusly:

 Prisoner B Stays Silent Prisoner B Betrays

Prisoner A Stays Silent Both serve six months Prisoner A serves ten years
Prisoner B goes free

Prisoner A Betrays Prisoner A goes free
Prisoner B serves ten years Both serve two years

The dilemma arises when one assumes that both prisoners only care about

minimizing their own jail terms. Each prisoner has two options: to cooperate with

his accomplice and stay quiet, or to betray his accomplice and give evidence. The

outcome of each choice depends on the choice of the accomplice. However,

neither prisoner knows the choice of his accomplice. Even if they were able to

talk to each other, neither could be sure that he could trust the other.

19 The Prisoner’s Dilemma was invented by Merril Flood and Melvin Dresher in 1950.
Since then, the dilemma has become a widely used model for predicting conditions of
uncertainty in economics. http://en.wikipedia.org/wiki/Prisoner%27s_Dilemma

 101

Let's assume the protagonist prisoner is working out his best move. If his partner

stays quiet, his best move is to betray as he then walks free instead of receiving

the minor sentence. If his partner betrays, his best move is still to betray, as by

doing it he receives a relatively lesser sentence than staying silent. At the same

time, the other prisoner's thinking would also have arrived at the same conclusion

and would therefore also betray.

If reasoned from the perspective of the optimal outcome for the group (of two

prisoners), the correct choice would be for both prisoners to cooperate with each

other, as this would reduce the total jail time served by the group to one year

total. Any other decision would be worse for the two prisoners considered

together. When the prisoners both betray each other, each prisoner achieves a

worse outcome than if they had cooperated.”

Uncertain about the decision of the partner, it is assumed that rational prisoners

in a one time PD would decide to betray their partner in order to maximize their

own benefits.

If the prisoner’s have to repeat such a dilemma multiple times (Repeated

Prisoner’s Dilemma) then the situation changes drastically. “Repetition is a kind

of enforcement mechanism, which enables the emergence of cooperative

outcomes in equilibrium, when everybody is acting in his best interest.”20 In a

repeated game, the optimal solution for a prisoner is not betrayal of the partner

anymore, but cooperation instead. This is because in a repeated game, a betrayal

of the partner will most likely be responded to with a similar betrayal in the

following round. Betrayal in a first round would lead to a constant mutual

treachery, where both prisoners eventually realize that the betraying the other

also diminishes their own gains. In the extended PD players thus get to know

each other, and soon realize that selfish action will only result in a similar

20 This is the fundamental insight upon which Robert J. Aumann was awarded the 2005
Nobel Prize in economics.

 102

response, which jeopardizes both players. Hence, it is not in their best interest to

betray. Instead, the best strategy to react would rather be cooperation in the first

round. In Game Theory this is called the folk theorem: Cooperative outcomes in

the outset of the game correspond to equilibrium outcomes in the repeated

game.21 After the first round, both players can adjust their strategies depending

on each other’s responses. However, if due to a bad start, a repeating equilibrium

of betrayal is achieved, then an unexpected cooperative choice from one of the

players can re-establish a cooperative equilibrium. In order to avoid such looping

conditions, Nash equilibriums have been proposed. Nash equilibrium is a set of

strategies that prevent both player from having an incentive to unilaterally

change their actions. “What is maintaining the equilibrium in a repeated game is

the threat of punishment, not carrying it out. If you like, call it MAD- mutually

assured destruction, the model of the Cold War”.22

The Intel_9 parking strategy that takes advantage of the Repeated Prisoner’s

Dilemma could function as follows. The computational features of this strategy

are similar to those of Intel_5. At every step agents evaluate their chances of

going to each available parking spot in their vicinity, but only start driving to a

specific destination if they are the closest of all competitors to the given spot. If

nothing is available, then agents act similarly to Intel_7, that is, they navigate

probabilistically towards the occupied spaces that might shortly vacate. The

important difference with the former strategies is that agents can increase their

personal profit even more if they choose to cooperate with other agents. This is

how it works: assume that the price of street-parking is dynamically adjusted

with the goal of reducing the amount of cruising in a given area. Due to the

infrastructure, which is already set up by the guidance system, it is relatively easy

for the system to assess the amount of people looking for a parking space as well

as the distances they cover in the search process. As the number of parking

21 Discovered by various people, notably Ariel Rubinstein.
22 Quotation from Robert J. Aumann’s 2005 Nobel Prize in economics award speech.

http://en.wikipedia.org/wiki/Ariel_Rubinstein

 103

spaces is finite, then each searching car increases traffic in the area. In order to

keep prices low, it is in everybody’s interest to reduce cruising on the streets.

When choosing the closest available parking space that a driver can surely

occupy, it becomes important to weigh that decision with the overall performance

of all searching cars. For example it might happen that a parking space, which is

the nearest to driver A is also the nearest to driver D. But as A is closer than D to

the spot, then similarly to Intel_5, it seems like A should get the space. However,

if the second closest spaces are taken into account, this might cause D to make a

large detour to its next best closest space, increasing the overall amount of

cruising in the neighborhood and thus increasing the price of parking for

everyone. Instead, if A decided to give up his closest spot to D and take a second

closest spot himself, then the total amount of cruising could be reduced

considerably and parking would be cheaper for everyone. The incentive to

cooperate is the reduced price of parking.

A D

Figure 23 Graphic example of the benefits of collaborative behavior.

Assuming that at least some people collaborate, this strategy can cause less

cruising than Intel_5. If a driver does not cooperate, then he can earn the

 104

irritation of others and be treated correspondingly. The optimal solution for

everyone is a collaborative equilibrium.

Figure 24 Graphic calculation of Intel_5 and Intel_9 strategies.

A potential issue with this strategy is that wealthier drivers, who might not be

sensitive to price raises, would never collaborate. This would cause lower

efficiencies in the overall performance and higher prices for all drivers. In a well-

performing system, drivers should indicate the spot they are planning to seize

before driving to it as well as their distance from it. As long as all agents have

accurate information about who is heading where and how far they are from their

targets, then a non-collaborative driver will not have a major impact on the

performance of the system. If nobody collaborates, then the efficiency of the

system is just as good as it was in Intel_7. If agents collaborate, it can only be

better. The decision to collaborate or not would depend, among many other

factors, on the scale of the price incentive that one can gain.

A solution to this issue could be a personalization of the benefits. If the

administrating program of the system recognizes that a person has acted

collaboratively, and thereby contributed to the reduction of cruisers, then a lower

 105

price for parking can be offered to that person individually. In the opposite case,

a higher price ought to be offered.

Consistently with the previous Intel strategies, all the computation of possible

choices should happen in a computer that the driver carries, not in the drivers

head. The driver could simply demand 3 different parking solutions: a cheaper

collaborative offer, a slightly more expensive non-collaborating offer, and a

possibly highly charged reservation option, depending on the overall demand in

the reservation area.

The dynamic pricing mechanism could also be used to accommodate different

time and location requirements of drivers. If a person is in a great hurry or simply

unwilling park anywhere but a specific place, which also happens to be

demanded by others, then a higher price can be charged for a priority reservation.

Depending on the time availability and financial resources of a driver, the

computational interface in the vehicle could include indicators for one’s

willingness to wait or pay. Drivers in a rush could thus always choose to overpay

the less urgent drivers and immediately gain access to their desired areas.

Reservations could ensure that the spot remains vacant until the person arrives.

A collaborative equilibrium as proposed by Intel_9 could thus also accommodate

individually different needs and charge for the level of service accordingly.

Collaborative commuters would be charged least and the prioritized ones most,

similar to any other travel industry.

Importance of Efficient Queuing in Real-time Systems.

So far we have been testing strategies that can allocate a finite amount of parking

spaces to different cars, dispersed in a finite area. The central question I have

 106

been addressing thus far has been What is the most satisfycing way of distributing

a given amount of parking spaces, so that least searching is required? I have

tried to demonstrate how distant information and mobile computing capacity can

help traveling agents find the quickest parking solution as well as reduce the

overall cruising and polluting on popular streets. I have not seriously addressed

the issue of what to do with surplus cars, which simply cannot be parked at a

given moment due to insufficient parking space. In other terms, I haven’t dealt

with the issue of queuing.

Real-time communication operations introduce new management challenges to

the realm of urban planning. In the past, large clustering of people, massive

group meetings, protests, parades or open air spectacles appeared relatively rarely

in cities. Such events require a considerable amount of organization and

preparation. To avoid large scale conflicts in such circumstances, administrative

organizations have over centuries developed sophisticated policing techniques to

keep things under control. For instance, most public meetings in developed

countries require official permits. A prior notice allows administrators enough

planning to ensure that the events unroll without conflicts. Because simultaneous

mobilization of large amounts of people also exerts unusual demand on public

infrastructure and transportation, then adequate preparations are done well in

advance to avoid over congestion and queuing.

Real-time communication in urban resource distribution can increase the amount

of instant mobilizations drastically, without leaving nearly as much preparation

time for authorities and urban system managers to cope with unexpected

situations. In digital communication, the importance of time delay caused by

physical distances disappears, allowing simultaneous gatherings and demand to

appear instantly. This paradigm is well known in information technology and

more recently in urban literature under titles like flash mobs, digital

communication waves and flocking [Mitchell 2003; Castells 2006]

 107

For distribution of physical resources, such as parking spaces, the phenomenon

of instant communication strongly reinforces the need for good system

management, particularly queuing.

In traditional systems of urban resource distribution, participants interact

relatively slowly. Simultaneous queuing can be absorbed by the slow interaction

of participants. For instance, we can imagine a town A, which has particular

resources and people B, C and D, who live outside of town A.

Figure 25 Absorption of physical queues in slow-interaction systems.

People B, C and D are all at different physical distances from town A. If all three

people develop a need to use a certain resource in town A at the same moment,

and start driving towards town A simultaneously, then congestion and queuing at

point A are possibly avoided because it takes B, C and D different times to reach

A. Assuming it is a relatively quick service, then by the time B gets to point A, D

and C might have already left. In other words, the potential queuing is absorbed

in different travel times.

In real-time communication systems, on the other hand, physical distances do not

absorb queuing times. If on the same scheme above, all participants B, C and D

 108

had a real-time communication system to reserve appointments at A and their

necessities to use the resource at A again formed at the same moment, then their

request would be received instantaneously at A and a queue would have to be

managed. In a virtual communication system information flows at the speed of

light and physical distances do not absorb simultaneous demands. Hence in any

real-time space management system where multiple participants can exert a

simultaneous demand on the same resource, queue management becomes a

crucial efficiency issue.

In the light of those two scenarios, street parking offers an interesting mixture of

both aspects. If street-parking can use real-time guidance technology for making

destination choices at a distance, and possibly reservations, then demands from

competing participants for the same spot can arrive at the same instant. If cars B

and D compete for the same spot on a virtual reservations screen, then their

demands for the spot arrive at the allocation system simultaneously. One of the

drivers will have to be accommodated in a queue or redirected to search in

another area. However, similarly to the slow interaction scenario, driving to the

chosen spot still requires physical travel. Therefore an efficient system should be

capable of evaluating which car should have priority for the reservation. A

certain amount of queuing can be absorbed by the fact that it takes different cars

a different amount of time to reach the destination. In other words, if car B

reaches the destination much faster than car D, then it is possible that by the time

car D reaches the spot, car B has already left and no queuing is necessary. Such

decisions could be based on probabilistic and intelligent guessing and past

experiences. Unless the reservation is given to the driver who happens to be

closer or otherwise capable of reaching the space sooner, the turnovers of spaces

can be reduced, just like we saw in the Intel_3 model.

 109

There are multiple ways to manage queues of cars waiting to be parked. Two

general categories of queuing in spatial systems like street-parking could be 1)

dynamic queuing and 2) static queuing.

Figure 26 Different Queuing Strategies in Street Parking

Dynamic Queuing

In case of over demand in the current parking system, a relatively large group of

people cruise and congest traffic in vain. In other words, cars that are waiting for

parking form dynamic queues by driving around in traffic and searching for

vacating spaces. This sort of queue management forms a serious environmental

problem, by creating congestion (up to 30% of all traffic in a rush-hour C.B.D

[Shoup 2005]), air pollution and augmenting the risk of traffic accidents.

Despite these effects, real-life dynamic queuing is hardly describable as random.

Knowledge from previous experiences and learned intuition help most drivers

use intelligent guessing in the search process. The intel_7 model tried to address

this issue, by allowing agents to use a probabilistic search strategy. This strategy,

derived from the idea of implicit enumeration search23, does not guide a driver to

the closest available space, but makes a prediction, based on limited knowledge,

23 Developed by William J. Mitchell, Robin Legget

 110

about which area of the search tree is most likely to yield positive results. Hence,

the guidance system can inquire knowledge about the occupancy periods of each

taken spot, and make intelligent predictions when these occupied spaces might

vacate. This strategy implies that dynamical searching (active cruising) can

clearly increase the chances of obtaining a parking space sooner. That is, instead

of waiting for a vacancy to occur, a driver can already drive towards a soon-to-

be-vacated space.

Static Queuing

An alternative method of queuing could be an allocation of special short term

stalling spaces for cars that are waiting to park. If drivers would be informed in

real time that there are currently no spots available in a neighborhood and

assuming that they would act rationally, they could stop searching. Instead of

forming a disguised queue in the moving traffic along with passing cars, parkers

could use designated stalling areas that specifically accommodate the queue of

searchers. Such static queuing could economize the gasoline burnt during the

process of fruitless cruising and minimize traffic congestion. When a parking

space in the vicinity of the stalling area is vacated, then a driver could notice an

appropriate message on his communication device, and drive to it from the

stalling space.

Static queues could be managed in either centralized or distributed ways. A

centralized static parking queue could provide a common stalling area for several

cruising cars, similar to a taxi stop.

 111

Figure 27 Centralized stalling area, similar in design to a taxi stall on a street

corner.

The positive aspect of such stalling is that centralized locations can be easily

remembered by drivers, which makes returning to the stall undemanding for

frequent parkers. For first time users a collective queuing location could also be

easier to find by inquiries from local people or a digital map. Queue management

would be simple and straightforward, comparable again to the yellow cab queue:

the first car in the row would be allocated the first vacating parking spot in the

neighborhood, the next one to the second and so on. The clarity of such a linear

allocation system makes it simple to comprehend for all drivers and is analogous

with most physical queues that people are accustomed to.

On the other hand, a collective queuing stand can also have negative effects on

overall efficiency of the parking system. Drivers would be subjected to

unpleasant equity, forced to stand in line with all other drivers, even though their

time and financial availability might vary significantly. In Chapter 1 we saw an

empirical description of a person driving to a train station in a great hurry. The

current parking system offers different services for people with different time

availability or willingness to pay. In case of a hurry, a driver can decide to use an

 112

expensive private parking structure or valet parking, achieving the goal in a

costly but immediate way. In a collective stalling area, such individual

differences would be subject to group attention. Passing other cars in the line

would stir up conflicting feelings amongst other members of the line.

Centralized stalling areas would also require a substantial amount of access

driving. By definition, collective stalling areas, which assemble searchers from a

relatively large geographic extent, should be located at sparser intervals than

individual stalling spaces, which creates larger access radiuses. The time and

distance spent on driving to the queue from the location where a person starts

searching, and then in turn to a vacated parking space in another location, would

in most cases cause more driving than distributed stalling.

Figure 28 Functioning of collective queuing for street-parking.

Furthermore, if the queues are long, then considerable lengths of street space

would be consumed in a single location, potentially rendering an entire street into

an unpleasant row of buzzing cars and leaving no parking spaces for inhabitants

or business owners.

 113

Decentralized stalling offers an alternative. The idea could function more

similarly to packet routing of data over the Internet, where individual pieces can

take different paths of the network, avoiding clustering and congestion in

centralized bottle-necks. A potentially exploitable resource for distributed

stalling is fire hydrant spaces, currently banned from use. Fire hydrant spaces are

otherwise unusable as parking spaces and their exploitation as stalling spaces

would not affect the number of current parking spaces. Cruisers, who have been

notified that there are absolutely no available parking spaces at a given time,

could either drive to another neighborhood or use the fire hydrant spaces for

temporary stalling. Drivers should not be allowed to leave the seat while stalling

at a hydrant, facing big penalties for violations. In addition to fire hydrants,

additional stalling spaces could be allocated dynamically, depending on the

current need through controllable signage on the ground. Using the

communication infrastructure set up by the guidance system, the current over

demand in a given area could be approximated momentarily and stalling spaces

allocated accordingly.

Figure 29 Allocation of temporary stalling spaces at fire hydrants and other

designated spaces according to demand.

 114

Access radiuses to local fire hydrants and other designated individual stalling

spaces would be much smaller than to collective stalling areas. Hence, in total,

less distance would need to be traveled between the location where a driver starts

searching for parking, the location of the stalling space and the eventual location

of a parking space.

Figure 30 Functioning of distributed queuing for street-parking.

Whereas distributed queuing could also disperse the quantity of queued cars into

a larger geographic area without creating overly intense stalling lines on specific

streets, it would therefore also be harder for individual drivers to locate these

dispersed spaces in a neighborhood. Using the guidance software on a personal

communication device could again aid in such a search. It is quite likely that

similarly to the collective stalling spaces, local inhabitants and signage could also

help guide drivers to appropriate sites.

More importantly, distributed queuing at individual stalling spaces could flexibly

accommodate different time and financial constraints of drivers in the queue. In

case of urgency or simply willingness to pay higher fees for priority parking,

drivers in scattered stalling spaces would not be subject to uncomfortable

 115

situations, where distinguishing themselves in front of all the drivers in the queue

might irritate others.

Though my arguments seem to suggest that distributed queuing might be quite

beneficial for reducing overall search times, more research on these assumptions

is certainly needed. Specifically, critical conditions need to be outlined to

indicate when stalling is better than dynamical probabilistic search. For instance,

if the occupation turnover of parking spots in an area is relatively rapid, then

driving to a stalling space, and subsequently from the stalling space to the

parking spot, might increase the total search time. Under conditions of rapid

turnover, a probabilistic search, or even a random search for that matter, could

yield higher efficiencies for reducing overall search times. This, and many other

similar uncertainties outlined in this thesis, require additional experimental

research. But rather than only indicating the poor value of the current findings, I

believe that such controversy adequately demonstrates the multilayered

complexity of the use of real-time information in a dynamic allocation of urban

resources.

 116

 117

Chapter Four

Conclusions

The question that I have been exploring is one of efficiency from a highly

rational point of view. This efficiency is the overall reduction of searching time

for street parking, that is, efficiency from the point of view of the group. Faced

with challenges of sustainable development, group efficiency is becoming an

important task for planners in the 21st century. Somewhat counter intuitively, a

system that might be beneficial for an individual agent can undermine the

efficiency of the group and vice versa. For instance, the simulation models

showed that a reservation policy for street-parking, which clearly benefits an

individual, can in fact cause great inefficiencies at a group level. Choosing and

retaining the collective viewing angle has been an important part of this thesis,

since I believe it is here that the emerging technology for urban systems needs

most attention.

Clearly, cruising for curb parking produces severe pollution and congestion

today. Donald Shoup has adequately illustrated this story [Shoup, 2005].

However, excessive cruising is not only caused by the low price of street-

parking, but also by an inefficient match between the supply and the demand for

parking spaces. Street-parking, like many other urban resources, is often times in

over demand and it is likely to remain so in popular areas. Urban resource

allocation should not be mistaken for a classical economic equilibrium case

where supply is supposed to balance demand. Such an equilibrium condition of

urban resources rarely occurs. As the metropolitan population in the world is

growing faster than ever, it would be tremendously dangerous to produce enough

urban resources that satisfy classical demand/supply equilibriums for everyone.

 118

Hence, instead of producing more supplies, the important challenge is to deal

with the over demand, with optimal allocation and queuing when there is little to

allocate but demanders are many.

I have tried to argue that that the efficiency of the current street-parking system

could be improved in at least two aspects:

1. By providing broader information to drivers, than is currently available to them

in their immediate visual surroundings.

2. By using combinatorial and probabilistic calculations on a computer to enhance

decision making with the available information.

I have proposed that a computational guidance system can be used to balance

these shortcomings. Personal mobile communication devices could exchange and

process enough information to find satisfying solutions to combinatorial

problems of commuting more efficiently than intuitive searching today.

However, currently the sensing capacity of humans is far greater than of

computers. Computers can do statistical calculations faster than human beings,

but they have very limited capacity to sense information from the environment.

Nevertheless, even with the limited but strategic group information, the

simulation models that were presented suggest that overall parking search times

can be diminished by at least a factor of two, depending on environmental

conditions, with the aid of a digital guidance system. Rather than betting on one

or the other, a seamless collaboration between a digital avatar and cognitive

intuition can result in a more optimal search process.

The comparison of simulations that used narrow individual information, and

those that took into account group behavior and broader statistical information,

showed that highest efficiencies can be achieved through collaborative behavior,

 119

combining a wide range of information. The simulation results also suggested

that an increase in information and computational capacity does not

automatically lead to more efficient search results- a well planned coordination

strategy is indispensable for good results. As expected, clever strategies worked

better under critical circumstances. In simpler situations almost any strategy

could give a satisfactory result, while in challenging environmental conditions

simpler strategies failed and intelligent strategies prevailed.

A satisfying strategy is highly dependent on the external variables of the

environment that it has to operate in. The causal effects of the few important

environmental variables that I have outlined are 1) street grid size, 2)

demand/supply ratio, 3) parking spot distribution and 4) alternative methods of

guidance information. In addition to the external variables, search decisions are

also affected by internal stimuli of the driver that allow him to freely switch

between different goals and strategies with no apparent external environmental

changes. The current intuitive searching behavior can provide many clues for a

system designer to achieve a more efficient and humanly pleasant guidance

system. Specifically beneficial for the efficiency of the search would be factors

such as goal knowledge and goal switching capacity.

I have also tried to emphasize, that an introduction of digital optimization

systems to the physical realm of urban resource allocation brings about a set of

important real-time management issues that have been far less crucial in both the

digital realm and the urban realm so far. In digital information networks

information travels at the speed of light and overlapping demand queues are

solved in a fraction of a second. Information systems generally do not need to

consider the physical distances between the remote parts of the network to

manage queues. In traditional urban systems, on the other hand, interaction

between people and places is slow and a potential queuing for a unique space can

often be avoided due to different travel times of people in the physical world.

 120

However, the use of digital communication for urban space allocation has to

account for the physical efforts involved in relocating people and resources, as

well as good queuing management. Unless carefully planned, an electronic

system could cause severely wasteful allocation. This makes the digital allocation

system susceptible to laws of physics.

The issues I have been outlining in this thesis are not solely characteristic to

parking management, but to virtually any digital space allocation system. The

study of an efficient parking strategy has merely provided a slice of many more

general issues that the introduction of real-time information systems creates for

urban planners. The potentially affected domains are wide and cross-disciplinary,

ranging from real-estate values, public and private transportation management,

temporary space allocation, the distribution of goods and services, etc.24 It is yet

to be seen how important the role of real-time information in urban economies

will turn out to be, but there are reasons to believe that city planners should pay

close attention and participate in this development. Currently, most real-time

information technology is being pioneered by the private sector. Given that the

clientele of the private sector is essentially composed of profit seeking

individuals, it is natural that the technology is focused on the individual and that

personal interests dominate. This thesis has tried to challenge this direction. It has

tried to demonstrate that certain co-operative behavior amongst the agents in the

system can lead to a better group outcome as well as higher individual gains than

purely individual competition. Real-time awareness of other competitors

combined with a clever decision making strategy increases the general

competitiveness of the individual in the environment in which it operates. On the

other hand, if well planned, the resulting competitive collaboration does not

jeopardize group efficiency but rather improves it. The collaborative behavior

between agents, that I have been exploring, is not achieved by centralized

24 A supplementary list of similar case studies to street-parking can be found at
web.mit.edu/asevtsuk/www/thesis

 121

planning, quite the opposite. It is achieved by taking advantage of innovative

technology, competition and Game Theory in order to provide incentives for

collaborative behavior amongst profit seeking individuals. I believe that it is

precisely such group performance, which masks the immediately visible gains for

the private sector (but does indeed contain them), that mostly needs the attention

of planners. Undoubtedly, a further understanding and debate around the issues

of group performance of real-time allocation systems can eventually also shift the

focus of private technology companies towards a more universal understanding

of their impacts on the cities of tomorrow.

 122

 123

References

Anjali Mahendra, 2000, Congestion Prices in Cities of the Developing World:
Exploring Prospects in Mexico City, MIT Urb. Studies M.C.P. Thesis.

Axelrod Robert and Cohen D. Michael (2000), Harnessing Complexity,
Organizational Implications of a Scientific Frontier, Basic Books.

Axhausen, K.W. and J.W. Polak (1991) Choice of parking: Stated preference
experiments, Transportation, 18 (1) 59-81.

Axhausen, K.W. and J.W. Polak (1996) A disaggregate model of the effects of
parking guidance systems, D. Hensher, J. King and T. Oum 'World Transport
Research', 1, 139-149, Elsevier, Amsterdam

Axhausen, K.W., J.W. Polak, M. Boltze and J. Puzicha (1994) Effectiveness of
the parking guidance system in Frankfurt/Main, Traffic Engineering and Control,
35 (5) 304-309

Batty, Michael (2005) Cities and Complexity, MIT Press.

Benjamin, Walter, (1999) The Arcades Project, translated by Howard Eiland and
Kevin McLaughlin (Cambridge, Massachusetts and London, England: The
Belknap Press of Harvard University Press).

Borenstein, Severin (2005) The Long-Run Efficiency of Real-Time Electricity
Pricing. Center for the Study of Energy Markets, University of California.

Manuel Castells, Mireia Fernandez-Ardevol, Jack Linchuan Qiu, and Araba Sey,
Electronic Communication and Socio-Political Mobilisation: A New Form of
Civil Society, in Global Civil Society 2005/2006, London: Sage, 2006, pages
266-287.

Carrera Fabo (2003) City Knowledge: An Emergent Information Infrastructure
for Sustainable Urban Maintenance, Management and Planning. PhD Thesis,
MIT.

Clinch Peter, Kelly Andrew (2003), Testing the sensitivity of parking behavior
and modal choice to price of on-street parking, University College Dublin,
environmental studies research series ESRS 03/03.

Dawson Michael, (2005) Minds and Machines: Connectionism and
Psychological Modeling, Blackwell Publishers.

http://stellar.mit.edu/S/project/castells-seminar06/courseMaterial/topics/topic5/readings/Castells_Electronic_Commu---tical_Mobilisation/Castells_Electronic_Commu---tical_Mobilisation.pdf

 124

Flaxman, M. Using Virtual Cities to Plan Real Cities: Alternative Futures for
Hangzhou, China. SIGGRAPH 2002 Conference Abstracts and Applications.
Computer Graphics Annual Conference Series, Sketches and Applications
section.

Hilton, Ian C., Holding place technique and the removal of car-park queues,
Traffic Engineering + Control, April 1989.

Jacobs, Jane (1961) The Death and Life of Great American Cities , Vintage
Books, New York.

Kahneman Daniel (Editor), Slovic Paul (Editor), Tversky Amos (Editor), 1982
Judgment under Uncertainty : Heuristics and Biases. Cambridge University
Press.

Laurier, E. (2003) Searching for a parking space. Originally presented at Espace,
Inter / Action & Cognition ARCo in Paris 2003.

Lynch, Kevin (1984) Good City Form, MIT Press.

Mackay, W.E. (2000) Is Paper Safer? The Role of Paper Flight Strips in Air
Traffic Control. ACM/Transactions on Computer-Human Interaction. Vol. 6 (4),
pp. 311-340.

Mackay, W.E. (2000) Responding to cognitive overload: Co-adaptation between
users and technology. Intellectica. Vol. 30 (1), pp. 177-193.

Mackay, W.E. (2001) Does Tutoring Really Have to be Intelligent?. To appear in
ACM/CHI2001 Extended Abstracts, Seattle, WA.

Maya Abou Zeid, 2001, Models and Algorithms for the Optimization of the
Traffic Flows and Emissions Using Dynamic Routing and Pricing, MIT M.S. in
Transportation Thesis.

Metcalf Sara and Mark Paich (2005) Spatial Dynamics of Social Network
Evolution, Department of Geography University of Illinois at Urbana-
Champaign, Presented at the 23rd International Conference of the System
Dynamics Society
July 19, 2005

Minsky Marvin, 1988, The Society of Mind, Touchstone Press.

Minsky Marvin, 2006, The Emotion Machine, MIT course Society of Mind
course materials.

http://www.gsd.harvard.edu/users/gsd98mf2/publications/pdfs/mflaxman_sketch.pdf
http://www.gsd.harvard.edu/users/gsd98mf2/publications/pdfs/mflaxman_sketch.pdf
http://en.wikipedia.org/wiki/The_Death_and_Life_of_Great_American_Cities
http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Daniel%20Kahneman
http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Paul%20Slovic
http://www.amazon.com/gp/search/103-8413066-3848604?%5Fencoding=UTF8&index=books&rank=-relevance%2C%2Bavailability%2C-daterank&field-author-exact=Amos%20Tversky

 125

Morris Joan, 2001, A Simulation-based Approach to Dynamic Pricing, MIT
Media A & S SM Thesis.

William J. Mitchell, ME++ The Cyborg Self and the Networked City.
Cambridge, MA, MIT Press, 2003

Nishimura Masahiro, 1996, Congestion Pricing for Air Pollution Reduction -
Environmental Evaluation of Pollution-adjusted-rate Pricing and Comparisonn
with Other Strategies, MIT Urban Studies M.C.P. Thesis.

Ormerod Paul, 2005. Why Most Things Fail, Pantheon Books.

Polak, J.W., I.C. Hilton, K.W. Axhausen and W. Young (1991) Parking
guidance and information systems: A European review, The Parking
Professional, (2) 16-34

Rauterberg, M (1994) About the Relationship between Incongruity, Complexity
and Information: Design Implications for Man-Machine Systems, Wolf Rauch /
Frenz Strohmeier / Harald Hiller / Christian Schlög (Hg.), Schriften zur
Informationswissenschaft, Band 16, 1994.

Samad T.; Weyrauch J., Automation, Control and Complexity. An Integrated
Approach, 2000 Wiley & Sons Ltd.

Shoup Donald (2005) The High Cost of Free Parking, APA Planners Press.

Shoup Donald and Menville Michael (2005), Parking, People and Ethics, Journal
of Urban Planning and Development, Volume 131 nr. 4, Dec. 2005, ASCE

Simon Herbert, 1996, The Sciences of the Artificial (3rd Edition), MIT Press.

Thompson, R.G. and A.J. Richardson (1998). A parking search model,
Transportation Research, Part A, Vol. 32, 159-70, Pergamon

Thompson, R.G., K. Takada and S. Kobayakawa (1999). Understanding the
demand for access information, Transportation Research, Part C, Vol. 6, 231-45,
Pergamon.

Thompson, R.G., K. Takada and S. Kobayakawa (2000). Optimision of parking
guidance and information systems display configurations, Transportation
Research, Part C, Vol. 9, 69-85, Pergamon, Elsevier.

Townsend, Anthony, 2003. Wired / unwired : The urban geography of digital
networks PhD Thesis, MIT.

https://dspace.mit.edu/handle/1721.1/30041
https://dspace.mit.edu/handle/1721.1/30041

 126

Watson, Rod. 1999. Driving in Forests and Mountains : A Pure and Applied
Ethnography. Ethnographic Studies 3:50-60.

List of Illustrations

Chapter 1

Figure 1 Cruising in the 20th century. Source: The High Cost of Free Parking

(2005); D. Shoup

Figure 2 Parking in central business districts. Source: The High Cost of Free
Parking (2005); D. Shoup

Figure 3 Map of off-street parking lots around MIT. Shaded areas indicate multi-

story structures.

Figure 4 Aerial view of parking coverage north of Vassar Street at MIT. Google
Maps.

Figure 5 Financial benefits of cruising. Source: The High Cost of Free Parking,

Shoup 2005.

Figure 6 Low cost street-parking in popular areas is often filled to almost full
capacity, making it difficult for drivers to find the remaining few hidden parking
spaces. Beacon Hill, Boston. Photo: Andres Sevtsuk.

Figure 7 Illustration of the guidance system for street-parking.. Andres Sevtsuk.

Chapter 2

Figure 8 The three categories of variables in the street-parking system.

 127

Figure 9 Layout of the street-network. In the model, cars can "wrap" out of the

picture on one side and re-enter from the opposite side, creating an infinite torus

shaped topological continuum.

Figure 10 Graphical user interface of the Star Logo simulation model.

Chapter 3

Figure 11 Comparison of the average number of steps to find a parking space in

simulation models.

Figure 12 Comparison search efficiencies on a 3x3 and a 5x5 grid with 6 equally
distributed parking spaces.

Figure 13 Graphic calculation of the Intel_1 search strategy.

Figure 14 The average number of searching steps of 24 cars on a 3x3 street grid

Figure 15 Average number of searching steps of 24 cars on a 5x5 street grid

Figure 16 Comparison of the number of alternative travel paths on different grid

sizes. The calculations show the approximate number of different travel paths,

without repeating any street segment twice and assuming that the search

continues till it runs into a dead end.

Figure 17 A comparison of strategy performances with 24 cars on a 3x3 grid with 6

geographically dispersed parking spaces.

Figure 18 Graphic calculation of the Intel_3 strategy. In the case of a first-come-

first serve reservation policy; this example has 6 different outcomes, of which

only one is optimal.

Figure 19 Comparison of search efficiencies with uniformly distributed or

locally concentrated 6 parking spaces on a 3 x 3 grid.

 128

Figure 20 Six parking spaces on a 3 x 3 grid distributed uniformly and

concentrated.

Figure 21 Graphic calculation of the Intel_5 search strategy.

Figure 22 Comparison of search strategies on a 5x5 grid with 24 uniformly distrinuted
spots.

Figure 23 Graphic calculation of the benefits of collaborative behavior.

Figure 24 Graphic calculation of Intel_5 and Intel_9 strategies.

Figure 25 Absorption of physical queues in slow-interaction systems.

Figure 26 Different Queuing Strategies in Street Parking

Figure 27 Centralized stalling area, similar in design to a taxi stall on a street

corner.

Figure 28 Functioning of collective queuing for street-parking.

Figure 29 Allocation of temporary stalling spaces at fire hydrants and other

designated spaces according to demand.

Figure 30 Functioning of distributed queuing for street-parking.

 129

Appendix

Source codes for Star-Logo simulation models of street-parking.

Intel_1

Observer Procedures:

globals [aa East-Free West-Free Total-Free List-Ready?]
patches-own [EastSide? xcoord ycoord number]
breeds [living working visiting1 visiting2]

to track-vacant
 loop[
 set Total-Free (count-patches-with [pc = white and count-
turtles-here = 0])
 output Total-Free]
end

to track-vacant-all ; here we generate a list called "aa" which
tracks the vacant spots on the east sides of roads
 ; we need to keep them separate so that when a car estimates
its driving distance, it knows if it needs to go around the block
or not
 setList-Ready? false
 let [:a (count-patches-with [pc = white and count-turtles-
here = 0])]
 setTotal-Free (:a)
 ask-patches [if pc = white and count-turtles-here = 0 [
 repeat Total-Free [
 if (number? xcor) [let [:xpos xcor]]
 if (number? ycor) [let [:ypos ycor]]
 let [:bb (list xcor ycor)]

 set aa make-list 0 (East-Free)
 set aa insert 1 aa :bb
]]]
 setList-Ready? true
 ;show aa ; for debugging only to see if "aa" works
end

to setup
 ct
 crt number-of-cars
 ask-turtles [setCounter 0 setshape cross setc red setspeed 1
setSpeedLimit 1
 if (who <= (number-of-cars / 5)) [setbreed living]
 if (who > (number-of-cars / 5) and who <= (number-of-cars /
2)) [setbreed working]
 if (who > (number-of-cars / 2) and who <= (number-of-cars /
1.25)) [setbreed visiting1]

 130

 if (who > (number-of-cars / 1.25)) [setbreed visiting2]
 if breed = living [setParkTime 48]
 if breed = working [setParkTime 32]
 if breed = visiting1 [setParkTime 2]
 if breed = visiting2 [setParkTime 8]

 loop [ifelse ((pc-at 0 0) = black and count-turtles-here = 1
) [stop] [
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth
90][ifelse (random 2) = 0 [seth 180] [seth 270]]]
 fd (int random 25)
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth
90][ifelse (random 2) = 0 [seth 180] [seth 270]]]
 fd (int random 25)]]]
 ask-patches-with [pc = white] [
 let [:x xcor] set xcoord :x let [:y ycor] set ycoord :y set
number (:x * :y); assign each patch an x and y coordinate valeu
and a unique number.
]
 starttrackingall
 startcountaverage
end

to clear-cars
 ct
end

to count-steps-to-find-parking
output (average-of-turtles-with [color = yellow] [steps-to-find-
parking])
end

to stop-it
 stoptrackingall
 stopcountaverage
 stopDrive&Park
end

to count-average ; this is for statistical analysis: paste these
number into excel and calculate the mean, median and standard
deviation
 show (round average-of-turtles-with [color = yellow] [steps-
to-find-parking]) wait 1
end

Turtle Procedures:

turtles-own [speed SpeedLimit ParkTime Parked? steps-to-find-
parking Direction CoordX CoordY Counter MyDist]

to check-patches-after-park
 if (pc-ahead = 7) or (pc-ahead = 9) [
 rt 90 check-patches-after-park
]
end

 131

to check-side
 ask-patch-at CoordX CoordY [output EastSide?]
end

to choose-nearest-spot
; here extract the itam in the aa list, then extract ech item's x
and y and check the patche's distance from the turtle (for all
patches)
; create a new variable named :dist which indicates the distance
to the nearest free spot and a variable named "item-find"
indicating the number of the element in the aa list
; the aa list signifies place on the east side of roads, the bb
contains spots from the west side of the road.

 wait-until [List-Ready? = true]
 let [:nullcheck (length aa)]
 ifelse (:nullcheck > 0) [
 setMyDist 2000 ; initialize a distance that is bigger than
any on screen dist, so that a new dist will always be smaller
 let [:CoordX 0]
 let [:CoordY 0]
 let [:Dir 90]
 let [:k 1] ; loop through every elemnt in the "number" list
starts with 1
 let [:aacopy (copy-list aa)] ; make a copy of the "aa", so
if the real aa changes in length, their's remain the same until
end of counting
 let [:aasize (length :aacopy)]
 repeat :aasize [;check only for free spots, don't waste RAM
 let [:item-number (item :k :aacopy)] ; extract the first
(eventually each) element from the aa list
 let [:item-numberX (item 1 :item-number)] ; extract the X
value of aa item
 let [:item-numberY (item 2 :item-number)] ; extract the Y
value of the aa item
 let [:a (round(:item-numberX - xcor))]
 let [:b (round(:item-numberY - ycor))]
 ifelse (heading = 0 and :item-numberY < ycor) or (heading =
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY >
ycor) or (heading = 270 and :item-numberX > xcor)[
 let [:distnew ((abs :a) + (abs :b) + 45)]] ; if the
destination spot is in the opposite direction, the add 1/2
(average) block loop (22 + 8) to the dist
 [let [:distnew ((abs :a) + (abs :b))]]

 if (:distnew < MyDist) [let[:kchosen :k] setMyDist
:distnew]
 ; CoordX and CoordY are turtle-own variables, which remember
which parking spot the turtles zoomed onto, and will keep that
until a turtles goes to that spot.
 if :k <= :aasize [set :k (:k + 1)]
]

 set :item-number (item :kchosen :aacopy) ; extract the
memorized smallest distance element from the :aacopy list

 set :item-numberX (item 1 :item-number) ; extract the X
value
 set :item-numberY (item 2 :item-number) ; extract the Y
value
 set :a (round (:item-numberX - xcor))

 132

 set :b (round (:item-numberY - ycor))

 ifelse (heading = 0 and :item-numberY < ycor) or (heading =
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY >
ycor) or (heading = 270 and :item-numberX > xcor)[
 setMyDist ((abs :a) + (abs :b) + 45)] ; if the destination
spot is in the opposite direction, the add 1/2 (average) block
loop (22 + 8) to the dist
 [setMyDist ((abs :a) + (abs :b))]
 set CoordX (:item-numberX) set CoordY (:item-numberY)
 setDirection (towards-nowrap CoordX CoordY)

] [setCoordX 0 setCoordY 0 setMyDist 1000]
end

to park ; has to be done so that agent will look for parking until
found

 if (Parked? = false)[
 setc yellow
 ;ask-patch-at CoordX CoordY [setpc green]
 ;ask-patch-at CoordX CoordY [setpc white]
 loop[
 choose-nearest-spot
 ; here set the car to break or accelerate according
to other cars
 ifelse (count-turtles-towards heading 1) > 0 ;if
there is a turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-towards heading 1
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at heading 1) > 0
 [setspeed speed-of one-of-turtles-towards heading 2
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]

 ; here is how the actual parking move happens
 ; first, parking at your own side of the road and then
parking at the opposite side of the road, parking on horisontal
streets is also allowed.
 ; augment the counter, which counts the program iterations
during which a car parks (instead of real time)
 ifelse ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-
turtles-at 1 0) = 0) or ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9
and (count-turtles-at (-1) 0) = 0) or
 ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-at
-2 0) = 0) or ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-
turtles-at 2 0) = 0) or
 ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-at 0
1) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) or
 ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-at
0 -2) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-
turtles-at 0 2) = 0) or
 ((pc-at 0 0) = 9) [

 ; here we augment the parking counter and check if the
counter is full, in which case a car leaves

 133

 if ((pc-at 0 0) = 9 and (pc-at (-1) 0) = 0) [setCounter
Counter + 1 if Counter > ParkTime [setCounter 0 seth 270 fd 1 seth
0 setParked? true stop]]
 if ((pc-at 0 0) = 9 and (pc-at 1 0) = 0) [setCounter
Counter + 1 if Counter > ParkTime [setCounter 0 seth 90 fd 1 seth
180 setParked? true stop]]
 if ((pc-at 0 0) = 9 and (pc-at 0 (-1)) = 0) [setCounter
Counter + 1 if Counter > ParkTime [setCounter 0 seth 180 fd 1 seth
270 setParked? true stop]]
 if ((pc-at 0 0) = 9 and (pc-at 0 1) = 0) [setCounter Counter
+ 1 if Counter > ParkTime [setCounter 0 seth 0 fd 1 seth 90
setParked? true stop]]

 if ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-turtles-
at 1 0) = 0) [seth 90 fd 1 set steps-to-find-parking 0 setMyDist 0
setc red]
 if ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 and (count-
turtles-at (-1) 0) = 0) [seth 270 fd 1 set steps-to-find-parking 0
setMyDist 0 setc red]
 if ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-
at -2 0) = 0)[seth 270 fd 2 set steps-to-find-parking 0 setMyDist
0 setc red]
 if ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-turtles-
at 2 0) = 0) [seth 90 fd 2 set steps-to-find-parking 0 setMyDist 0
setc red]
 if ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-
at 0 1) = 0) [seth 0 fd 1 set steps-to-find-parking 0 setMyDist 0
setc red]
 if ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) [seth 180 fd 1 set steps-to-find-parking 0
setMyDist 0 setc red]
 if ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-
at 0 -2) = 0)[seth 180 fd 2 set steps-to-find-parking 0 setMyDist
0 setc red]
 if ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-turtles-
at 0 2) = 0) [seth 0 fd 2 set steps-to-find-parking 0 setMyDist 0
setc red]]
 [if (pc-at 0 0) not= white [ifelse (pc-ahead = 2 and (pc-at
0 0) = 2) [ifelse (random 2) = 0 [leap 3 set steps-to-find-parking
(steps-to-find-parking + 3)] [ifelse (random 2) = 0 [rt 90 fd 2
set steps-to-find-parking (steps-to-find-parking + 2)][fd 1 lt 90
fd 2 set steps-to-find-parking (steps-to-find-parking + 3)]]]
 [check-patches-after-park fd speed set steps-to-find-parking
(steps-to-find-parking + speed)] if (CoordX = 0 and CoordY =
0)[choose-nearest-spot]]]

; here are the rules to guide a car towards a chosen spot,
assuming it can also park on the opposite side of the road.
ifelse (CoordX not= 0 and CoordY not= 0 and MyDist not= 1000) [
;only if you are closest in the competition for a given spot,
drive there, else roam randomly and try again next step
;in reality you should try the second best option here and then
third best and so on!

; for heading = 0, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor < CoordX and ycor < CoordY))[
ifelse (CoordX < (xcor + 3))[fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor < CoordX and ycor > CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]

 134

if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor > CoordX and ycor > CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor > CoordX and ycor < CoordY))[
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]

; for heading = 90, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
< CoordX and ycor < CoordY))[
ifelse (CoordX < (xcor + 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)][fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
< CoordX and ycor > CoordY))[
ifelse (CoordX < (xcor + 3)) [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
> CoordX and ycor > CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
> CoordX and ycor < CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]

; for heading = 180, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor < CoordX and ycor < CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor < CoordX and ycor > CoordY))[
ifelse (CoordX < (xcor + 3)) [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)] [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor > CoordX and ycor > CoordY))[
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor > CoordX and ycor < CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]

; for heading = 270, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor < CoordX and ycor < CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor < CoordX and ycor > CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor > CoordX and ycor > CoordY))[
ifelse (CoordX > (xcor - 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)] [fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]]

 135

if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor > CoordX and ycor < CoordY))[
ifelse (CoordX > (xcor - 3)) [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)]]
][if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 2) = 0
[leap 3 set steps-to-find-parking (steps-to-find-parking + 3)]
[ifelse (random 2) = 0 [rt 90 fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]]]
]]
end

to drive ; each egnt will park and then drive for a certain time

 if (pc-at 1 0) = 7 or (pc-at 1 0) = 9 [
 seth 0
 setParked? false

 park

 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at 0 1) > 0 ;if there is a
turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at 0 1
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at 0 1) > 0
 [setspeed speed-of one-of-turtles-at 0 2
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]

 if (pc-at (-1) 0) = 7 or (pc-at (-1) 0) = 9 [
 seth 180
 setParked? false
 park
 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at 0 (-1)) > 0 ;if there is
a turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at 0 (-1)
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at 0 (-1)) > 0
 [setspeed speed-of one-of-turtles-at 0 (-2)
 decelerate]
 [accelerate]] ;else accelerate

 136

 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]

 if (pc-at 0 1) = 7 or (pc-at 0 1) = 9 [
 seth 270
 setParked? false
 park
 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at (-1) 0) > 0 ;if there is
a turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at (-1) 0
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at (-1) 0) > 0
 [setspeed speed-of one-of-turtles-at (-2) 0
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]

 if (pc-at 0 (-1)) = 7 or (pc-at 0 (-1)) = 9 [
 seth 90
 setParked? false
 park
 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at 1 0) > 0 ;if there is a
turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at 1 0
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at 2 0) > 0
 [setspeed speed-of one-of-turtles-at 2 0
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park

 137

 if (pc-at 0 0)= 2 [fd 1]
end

to accelerate
 setspeed (speed + (speedup / 1000))
end

to decelerate
 setspeed speed - (slowdown / 1000)
end

Intel_3

Observer Procedures:

globals [aa Total-Free Reservation-Available?]
patches-own [xcoord ycoord number]
breeds [living working visiting1 visiting2 reserving]

to track-vacant-all ; here we generate a list called "aa" which
tracks the vacant spots on the east sides of roads
 wait-until [Reservation-Available? = true]
 if Reservation-Available? = true [
 set Reservation-Available? false
 set aa make-list 0 0
 let [:a (count-patches-with [pc = white and count-turtles-
here = 0])]
 ask-patches [if pc = white and count-turtles-here = 0 [
 let [:xpos xcor]
 let [:ypos ycor]
 let [:bb (list xcor ycor)]
 set aa insert 1 aa :bb
]]
 set Reservation-Available? true]
end

to setup
 set-random-seed 100
 set Reservation-Available? true
 ct
 crt number-of-cars
 ask-turtles [setCounter 0 setshape cross setc red setspeed 1
setSpeedLimit 1
 if (who <= (number-of-cars / 5)) [setbreed living]
 if (who > (number-of-cars / 5) and who <= (number-of-cars /
2)) [setbreed working]
 if (who > (number-of-cars / 2) and who <= (number-of-cars /
1.25)) [setbreed visiting1]
 if (who > (number-of-cars / 1.25)) [setbreed visiting2]
 if breed = living [setParkTime 48]
 if breed = working [setParkTime 32]
 if breed = visiting1 [setParkTime 2]
 if breed = visiting2 [setParkTime 8]

 138

 loop [ifelse ((pc-at 0 0) = black and count-turtles-here = 1
) [stop] [
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth
90][ifelse (random 2) = 0 [seth 180] [seth 270]]]
 fd (int random 25)
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth
90][ifelse (random 2) = 0 [seth 180] [seth 270]]]
 fd (int random 25)]]]
 starttrackingall
 startcountaverage
end

to clear-cars
 ct
end

to count-steps-to-find-parking
output (average-of-turtles-with [color = yellow] [steps-to-find-
parking])
end

to stop-it
 stoptrackingall
 stopDrive&Park
 stopcountaverage
end

to count-average ; this is for statistical analysis: paste these
number into excel and calculate the mean, median and standard
deviation
 show (round average-of-turtles-with [color = yellow] [steps-
to-find-parking]) wait 1
end

Turtle Procedures:

turtles-own [speed SpeedLimit ParkTime Parked? steps-to-find-
parking Direction CoordX CoordY Counter Dist]

to check-patches-after-park
 if (pc-ahead = 7) or (pc-ahead = 9) [
 rt 90 check-patches-after-park
]
end

to choose-nearest-spot

; here extract each item in the "aa" list, then extract each
item's x and y and check the patche's distance from the turtle
; use the turtles-own variable Distance which indicates the
distance to the nearest free spot and a variable named ":item-
find" indicating the number of the element in the aa list

wait-until [Reservation-Available? = true]
if Reservation-Available? = true [

 139

set Reservation-Available? false

 let [:nullcheck (length aa)]
 if (:nullcheck > 0) [
 setDist 2000 ; initialize a distance that is bigger than any
on screen dist, so that a new dist will always be smaller
 let [:k 1] ; k is the counter to loop through every elemnt
in the "number" list starts with 1
 let [:aacopy (copy-list aa)] ; make a copy of the "aa", so
if the real aa changes in length, their's remain the same until
end of counting
 repeat (length :aacopy) [;check only for free spots, don't
waste RAM
 let [:item-number (item :k :aacopy)] ; extract the first
(eventually each) element from the aa list
 let [:item-numberX (item 1 :item-number)] ; extract the X
value of aa item
 let [:item-numberY (item 2 :item-number)] ; extract the Y
value of the aa item
 let [:xdist (:item-numberX - (round xcor))]
 let [:ydist (:item-numberY - (round ycor))]
 ifelse (heading = 0 and :item-numberY < ycor) or (heading =
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY >
ycor) or (heading = 270 and :item-numberX > xcor)[
 let [:distnew ((abs :xdist) + (abs :ydist) + 45)]] ; if the
destination spot is in the opposite direction, the add 1/2
(average) block loop (22 + 8) to the dist
 [let [:distnew ((abs :xdist) + (abs :ydist))]]
 ; you're always comparing distnew to the initial dist, of
course you'll just end up choosing the last one...
 if (:distnew < Dist) [let [:kchosen :k] setDist :distnew]
 if :k <= (length :aacopy) [set :k (:k + 1)]]

 set :item-number (item :kchosen :aacopy) ; extract the
memorized smallest distance element from the :aacopy list
 set :item-numberX (item 1 :item-number) ; extract the X
value
 set :item-numberY (item 2 :item-number) ; extract the Y
value
 set :xdist (:item-numberX - (round xcor))
 set :ydist (:item-numberY - (round ycor))

 ifelse (heading = 0 and :item-numberY < ycor) or (heading =
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY >
ycor) or (heading = 270 and :item-numberX > xcor)[
 set Dist ((abs :xdist) + (abs :ydist) + 45)] ; if the
destination spot is in the opposite direction, the add 1/2
(average) block loop (22 + 8) to the dist
 [set Dist ((abs :xdist) + (abs :ydist))]
 set CoordX (:item-numberX) set CoordY (:item-numberY)
 setDirection (towards-nowrap CoordX CoordY)
 ask-patch-at :xdist :ydist [sprout [setbreed reserving setc
green setshape cross]]
 let [:bb (list CoordX CoordY)]
 set aa (remove-element :bb aa)]
 set Reservation-Available? true
]
end

to park ; has to be done so that agent will look for parking until
found

 if breed not= reserving[

 140

 if (Parked? = false)[
 setc yellow
 ; the idea here is that if an agent has found a destination
from the aa list, then it will keep driving there until it parks,
if not, it will roam randomly once and then try the aa list again
 choose-nearest-spot
 loop[
; First check if there is a parking spt next to you. here is how
the actual parking move happens
 ; first, parking at your own side of the road and then
parking at the opposite side of the road, parking on horisontal
streets is also allowed.
 let [:roundx (round xcor)
 :roundy (round ycor)]

 ifelse ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-
turtles-at 1 0) = 0) or ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9
and (count-turtles-at (-1) 0) = 0) or
 ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-at
-2 0) = 0) or ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-
turtles-at 2 0) = 0) or
 ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-at 0
1) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) or
 ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-at
0 -2) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-
turtles-at 0 2) = 0) or

 ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at
0 0) = 0 and (pc-at 1 0) = 9 and (count-reserving-at 1 0) = 1) or
((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at
0 0) = 0 and (pc-at (-1) 0) = 9 and (count-reserving-at (-1) 0) =
1) or
 ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at
0 0) = 0 and (pc-at -2 0) = 9 and (count-reserving-at -2 0) = 1)
or ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at
0 0) = 0 and (pc-at 2 0) = 9 and (count-reserving-at 2 0) = 1) or
 ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at
0 0) = 0 and (pc-at 0 1) = 9 and (count-reserving-at 0 1) = 1) or
((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at
0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-reserving-at 0 (-1)) =
1) or
 ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at
0 0) = 0 and (pc-at 0 -2) = 9 and (count-reserving-at 0 -2) = 1)
or ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY)) and
(((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and (pc-at
0 0) = 0 and (pc-at 0 2) = 9 and (count-reserving-at 0 2) = 1)[

 if ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-turtles-
at 1 0) = 0) [seth 90 fd 1 kill one-of-reserving-at (CoordX -
(round xcor)) (CoordY - (round ycor)) set CoordX 0 set CoordY 0
setDirection 0 setParked? true set steps-to-find-parking 0 setc
red]

 if ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 and (count-
turtles-at (-1) 0) = 0) [seth 270 fd 1 kill one-of-reserving-at
(CoordX - (round xcor)) (CoordY - (round ycor)) set CoordX 0 set

 141

CoordY 0 setDirection 0 setParked? true set steps-to-find-parking
0 setc red]
 if ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-
at -2 0) = 0) [seth 270 fd 2 kill one-of-reserving-at (CoordX -
(round xcor)) (CoordY - (round ycor)) set CoordX 0 set CoordY 0
setDirection 0 setParked? true set steps-to-find-parking 0 setc
red]
 if ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-turtles-
at 2 0) = 0) [seth 90 fd 2 kill one-of-reserving-at (CoordX -
(round xcor)) (CoordY - (round ycor)) set CoordX 0 set CoordY 0
setDirection 0 setParked? true set steps-to-find-parking 0 setc
red]
 if ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-
at 0 1) = 0) [seth 0 fd 1 kill one-of-reserving-at (CoordX -
(round xcor)) (CoordY - (round ycor)) set CoordX 0 set CoordY 0
setDirection 0 setParked? true set steps-to-find-parking 0 setc
red]
 if ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) [seth 180 fd 1 kill one-of-reserving-at
(CoordX - (round xcor)) (CoordY - (round ycor)) set CoordX 0 set
CoordY 0 setDirection 0 setParked? true set steps-to-find-parking
0 setc red]
 if ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-
at 0 -2) = 0) [seth 180 fd 2 kill one-of-reserving-at (CoordX -
(round xcor)) (CoordY - (round ycor)) set CoordX 0 set CoordY 0
setDirection 0 setParked? true set steps-to-find-parking 0 setc
red]
 if ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-turtles-
at 0 2) = 0) [seth 0 fd 2 kill one-of-reserving-at (CoordX -
(round xcor)) (CoordY - (round ycor)) set CoordX 0 set CoordY 0
setDirection 0 setParked? true set steps-to-find-parking 0 setc
red]

 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY))
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and
(pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-reserving-at 1 0) =
1) [seth 90 fd 1 set CoordX 0 set CoordY 0 setDirection 0 kill
one-of-reserving-here setParked? true set steps-to-find-parking 0
setc red]
 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY))
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and
(pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 and (count-reserving-at (-
1) 0) = 1) [seth 270 fd 1 set CoordX 0 set CoordY 0 setDirection 0
kill one-of-reserving-here setParked? true set steps-to-find-
parking 0 setc red]
 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY))
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and
(pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-reserving-at -2 0)
= 1)[seth 270 fd 2 set CoordX 0 set CoordY 0 setDirection 0 kill
one-of-reserving-here setParked? true set steps-to-find-parking 0
setc red]
 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY))
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and
(pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-reserving-at 2 0) =
1) [seth 90 fd 2 set CoordX 0 set CoordY 0 setDirection 0 kill
one-of-reserving-here setParked? true set steps-to-find-parking 0
setc red]
 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY))
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and
(pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-reserving-at 0 1) =
1) [seth 0 fd 1 set CoordX 0 set CoordY 0 setDirection 0 kill one-
of-reserving-here setParked? true set steps-to-find-parking 0 setc
red]

 142

 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY))
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and
(pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-reserving-at 0
(-1)) = 1) [seth 180 fd 1 set CoordX 0 set CoordY 0 setDirection 0
kill one-of-reserving-here setParked? true set steps-to-find-
parking 0 setc red]
 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY))
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and
(pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-reserving-at 0 -2)
= 1)[seth 180 fd 2 set CoordX 0 set CoordY 0 setDirection 0 kill
one-of-reserving-here setParked? true set steps-to-find-parking 0
setc red]
 if ((((:roundy + 4) > CoordY) and ((:roundy - 4) < CoordY))
and (((:roundx + 4) > CoordX) and ((:roundx - 4) < CoordX)) and
(pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-reserving-at 0 2) =
1) [seth 0 fd 2 set CoordX 0 set CoordY 0 setDirection 0 kill one-
of-reserving-here setParked? true set steps-to-find-parking 0 setc
red]]
 [if (pc-at 0 0) not= white [ifelse (pc-ahead = 2 and (pc-at
0 0) = 2) [ifelse (random 2) = 0 [leap 3 set steps-to-find-parking
(steps-to-find-parking + 3)] [ifelse (random 2) = 0 [rt 90 fd 2
set steps-to-find-parking (steps-to-find-parking + 2)][fd 1 lt 90
fd 2 set steps-to-find-parking (steps-to-find-parking + 3)]]]
 [check-patches-after-park fd speed set steps-to-find-parking
(steps-to-find-parking + speed)] if (CoordX = 0 and CoordY =
0)[choose-nearest-spot]]]

 ;here we augment the parking counter and check if the
counter is full, in which case a car leaves. When leaving, a car
must also step 1 step away from the spot in order not to park
again.
 if (breed not= reserving and Parked? = true and (pc-at 0 0)
= white) [
 ifelse Counter > ParkTime [
 if ((pc-at (-2) 0) = black and (pc-at (-1) 0) = black and
(pc-at 0 0) = white) [kill one-of-reserving-here seth 270 fd 1
seth 0 setCounter 0 stop]
 if ((pc-at 2 0) = black and (pc-at 1 0) = black and (pc-at 0
0) = white) [kill one-of-reserving-here seth 90 fd 1 seth 180
setCounter 0 stop]
 if ((pc-at 0 (-2)) = black and (pc-at 0 (-1)) = black and
(pc-at 0 0) = white) [kill one-of-reserving-here seth 180 fd 1
seth 270 setCounter 0 stop]
 if ((pc-at 0 2) = black and (pc-at 0 1) = black and (pc-at 0
0) = white) [kill one-of-reserving-here seth 0 fd 1 seth 90
setCounter 0 stop]]
 [set Counter (Counter + 1)]]

; Now, check if you are on an intersection. Here are the rules to
guide a car towards a chosen spot, assuming it can also park on
the opposite side of the road.
ifelse (CoordX not= 0 and CoordY not= 0)[

; for heading = 0, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor < CoordX and ycor < CoordY))[
ifelse (CoordX < (xcor + 3))[fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor < CoordX and ycor > CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]

 143

if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor > CoordX and ycor > CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor > CoordX and ycor < CoordY))[
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]

; for heading = 90, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
< CoordX and ycor < CoordY))[
ifelse (CoordX < (xcor + 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)][fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
< CoordX and ycor > CoordY))[
ifelse (CoordX < (xcor + 3)) [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
> CoordX and ycor > CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
> CoordX and ycor < CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]

; for heading = 180, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor < CoordX and ycor < CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor < CoordX and ycor > CoordY))[
ifelse (CoordX < (xcor + 3)) [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)] [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor > CoordX and ycor > CoordY))[
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor > CoordX and ycor < CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]

; for heading = 270, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor < CoordX and ycor < CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor < CoordX and ycor > CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor > CoordX and ycor > CoordY))[
ifelse (CoordX > (xcor - 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)] [fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]]

 144

if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor > CoordX and ycor < CoordY))[
ifelse (CoordX > (xcor - 3)) [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)]]]

[if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 2) = 0
[leap 3 set steps-to-find-parking (steps-to-find-parking + 3)]
[ifelse (random 2) = 0 [rt 90 fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]]]

; if Reserved? was false on the previous step, try again and then
enter the park proc again.
 ; here set the car to break or accelerate according
to other cars
 ifelse (count-turtles-towards heading 1) > 0 ;if
there is a turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-towards heading 1
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at heading 1) > 0
 [setspeed speed-of one-of-turtles-towards heading 2
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
]]]
end

to drive ; each egnt will park and then drive for a certain time

 if (pc-at 1 0) = 7 or (pc-at 1 0) = 9 [
 seth 0
 setParked? false

 park

 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at 0 1) > 0 ;if there is a
turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at 0 1
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at 0 1) > 0
 [setspeed speed-of one-of-turtles-at 0 2
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]

 145

 if (pc-at (-1) 0) = 7 or (pc-at (-1) 0) = 9 [
 seth 180
 setParked? false
 park
 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at 0 (-1)) > 0 ;if there is
a turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at 0 (-1)
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at 0 (-1)) > 0
 [setspeed speed-of one-of-turtles-at 0 (-2)
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]

 if (pc-at 0 1) = 7 or (pc-at 0 1) = 9 [
 seth 270
 setParked? false
 park
 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at (-1) 0) > 0 ;if there is
a turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at (-1) 0
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at (-1) 0) > 0
 [setspeed speed-of one-of-turtles-at (-2) 0
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]

 if (pc-at 0 (-1)) = 7 or (pc-at 0 (-1)) = 9 [
 seth 90
 setParked? false
 park
 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park

 146

 ifelse (count-turtles-at 1 0) > 0 ;if there is a
turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at 1 0
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at 2 0) > 0
 [setspeed speed-of one-of-turtles-at 2 0
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
end

to accelerate
 setspeed (speed + (speedup / 1000))
end

to decelerate
 setspeed speed - (slowdown / 1000)
end

Intel_5

Observer Procedures:

globals [aa East-Free West-Free Total-Free List-Ready?]
patches-own [EastSide? xcoord ycoord number]
breeds [living working visiting1 visiting2]

to track-vacant
 loop[
 set Total-Free (count-patches-with [pc = white and count-
turtles-here = 0])
 output Total-Free]

end

to track-vacant-all ; here we generate a list called "aa" which
tracks the vacant spots on the east sides of roads
 ; we need to keep them separate so that when a car estimates
its driving distance, it knows if it needs to go around the block
or not
 setList-Ready? false
 let [:a (count-patches-with [pc = white and count-turtles-
here = 0])]
 setTotal-Free (:a)

 147

 ask-patches [if pc = white and count-turtles-here = 0 [
 repeat Total-Free [
 if (number? xcor) [let [:xpos xcor]]
 if (number? ycor) [let [:ypos ycor]]
 let [:bb (list xcor ycor)]

 set aa make-list 0 (East-Free)
 set aa insert 1 aa :bb
]]]
 setList-Ready? true
 ;show aa ; for debugging only to see if "aa" works
end

to setup

 ct
 crt number-of-cars
 ask-turtles [setPark-Counter 0 setshape cross setc red
setspeed 1 setSpeedLimit 1
 if (who <= (number-of-cars / 5)) [setbreed living]
 if (who > (number-of-cars / 5) and who <= (number-of-cars /
2)) [setbreed working]
 if (who > (number-of-cars / 2) and who <= (number-of-cars /
1.25)) [setbreed visiting1]
 if (who > (number-of-cars / 1.25)) [setbreed visiting2]
 if breed = living [setParkTime 48]
 if breed = working [setParkTime 32]
 if breed = visiting1 [setParkTime 2]
 if breed = visiting2 [setParkTime 8]

 loop [ifelse ((pc-at 0 0) = black and count-turtles-here = 1
) [stop] [
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth
90][ifelse (random 2) = 0 [seth 180] [seth 270]]]
 fd (int random 25)
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth
90][ifelse (random 2) = 0 [seth 180] [seth 270]]]
 fd (int random 25)]]]
 ask-patches-with [pc = white] [
 let [:x xcor] set xcoord :x let [:y ycor] set ycoord :y set
number (:x * :y); assign each patch an x and y coordinate valeu
and a unique number.
]
 starttrackingall
 startcountaverage
end

to clear-cars
 ct
end

to count-steps-to-find-parking
output (average-of-turtles-with [color = yellow] [steps-to-find-
parking])
end

to stop-it
 stoptrackingall
 stopcountaverage

 148

 stopDrive&Park
end

to count-average ; this is for statistical analysis: paste these
number into excel and calculate the mean, median and standard
deviation
 show (round average-of-turtles-with [color = yellow] [steps-
to-find-parking]) wait 1
end

Turtle Procedures:

turtles-own [speed SpeedLimit ParkTime Parked? steps-to-find-
parking Direction CoordX CoordY MyDist Total-Min-Dist Aacopy
Search-Counter Park-Counter]

to check-patches-after-park
 if (pc-ahead = 7) or (pc-ahead = 9) [
 rt 90 check-patches-after-park
]
end

to check-side
 ask-patch-at CoordX CoordY [output EastSide?]
end

to try-all-choices
 let [:nullcheck2 (length Aacopy)] ifelse :nullcheck2 not= 0
[
 set Search-Counter 1
 setMyDist 2000
 repeat :nullcheck2 [;check only for free spots, don't waste
RAM
 let [:item-number (item Search-Counter Aacopy)] ; extract
the first (eventually each) element from the aa list
 let [:item-numberX (item 1 :item-number)] ; extract the X
value of aa item
 let [:item-numberY (item 2 :item-number)] ; extract the Y
value of the aa item
 let [:a (round(:item-numberX - xcor))]
 let [:b (round(:item-numberY - ycor))]
 ifelse (heading = 0 and :item-numberY < ycor) or (heading =
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY >
ycor) or (heading = 270 and :item-numberX > xcor)[
 let [:distnew ((abs :a) + (abs :b) + 45)]] ; if the
destination spot is in the opposite direction, the add 1/2
(average) block loop (22 + 8) to the dist
 [let [:distnew ((abs :a) + (abs :b))]]

 if (:distnew < MyDist) [let[:kchosen Search-Counter]
setMyDist :distnew]
 ; CoordX and CoordY are turtle-own variables, which remember
which parking spot the turtles zoomed onto, and will keep that
until a turtles goes to that spot.
 if Search-Counter <= :nullcheck2 [set Search-Counter
(Search-Counter + 1)]

 149

]

 set :item-number (item :kchosen Aacopy) ; extract the
memorized smallest distance element from the :aacopy list
 set :item-numberX (item 1 :item-number) ; extract the X
value
 set :item-numberY (item 2 :item-number) ; extract the Y
value
 set :a (round (:item-numberX - xcor))
 set :b (round (:item-numberY - ycor))

 ifelse (heading = 0 and :item-numberY < ycor) or (heading =
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY >
ycor) or (heading = 270 and :item-numberX > xcor)[
 setMyDist ((abs :a) + (abs :b) + 45)] ; if the destination
spot is in the opposite direction, the add 1/2 (average) block
loop (22 + 8) to the dist
 [setMyDist ((abs :a) + (abs :b))]

 let [:a (CoordX) :b (CoordY)]
 setTotal-Min-Dist (min-of-turtles-with [CoordX = :a and
CoordY = :b] [MyDist]) ;show Total-Min-Dist; ask from all turtles
who has the same target, what the min dist is and save it for
later
 ifelse (MyDist <= Total-Min-Dist)[
 set CoordX (:item-numberX) set CoordY (:item-numberY)
 setDirection (towards-nowrap CoordX CoordY)]
 [set Aacopy (remove-element :item-number Aacopy) try-all-
choices]]
 [setCoordX 0 setCoordY 0 setMyDist 1000]
end

to choose-nearest-spot

; here extract the itam in the aa list, then extract ech item's x
and y and check the patche's distance from the turtle (for all
patches)
; use a turtles-own variable named MyDist which indicates the
distance to the nearest free spot and a variable named ":kchosen"
indicating the number of the element in the aa list

 wait-until [List-Ready? = true]
 let [:nullcheck (length aa)]
 ifelse (:nullcheck > 0) [
 setMyDist 2000 ; initialize a distance that is bigger than
any on screen dist, so that a new dist will always be smaller
 let [:CoordX 0]
 let [:CoordY 0]
 let [:Dir 90]
 setAacopy (copy-list aa) ; make a copy of the "aa", so if
the real aa changes in length, their's remain the same until end
of counting

 try-all-choices

] [setCoordX 0 setCoordY 0 setMyDist 1000]
end

 150

to park ; has to be done so that agent will look for parking until
found

 if (Parked? = false)[
 setc yellow
 ;ask-patch-at CoordX CoordY [setpc green]
 ;ask-patch-at CoordX CoordY [setpc white]
 loop[
 choose-nearest-spot
 ; here set the car to break or accelerate according
to other cars
 ifelse (count-turtles-towards heading 1) > 0 ;if
there is a turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-towards heading 1
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at heading 1) > 0
 [setspeed speed-of one-of-turtles-towards heading 2
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]

 ; here is how the actual parking move happens
 ; first, parking at your own side of the road and then
parking at the opposite side of the road, parking on horisontal
streets is also allowed.
 ; augment the counter, which counts the program iterations
during which a car parks (instead of real time)
 ifelse ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-
turtles-at 1 0) = 0) or ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9
and (count-turtles-at (-1) 0) = 0) or
 ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-at
-2 0) = 0) or ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-
turtles-at 2 0) = 0) or
 ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-at 0
1) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) or
 ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-at
0 -2) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-
turtles-at 0 2) = 0) or
 ((pc-at 0 0) = 9) [

 ; here we augment the parking counter and check if the
counter is full, in which case a car leaves
 if ((pc-at 0 0) = 9 and (pc-at (-1) 0) = 0) [setPark-
Counter Park-Counter + 1 if Park-Counter > ParkTime [setPark-
Counter 0 seth 270 fd 1 seth 0 setParked? true stop]]
 if ((pc-at 0 0) = 9 and (pc-at 1 0) = 0) [setPark-Counter
Park-Counter + 1 if Park-Counter > ParkTime [setPark-Counter 0
seth 90 fd 1 seth 180 setParked? true stop]]
 if ((pc-at 0 0) = 9 and (pc-at 0 (-1)) = 0) [setPark-Counter
Park-Counter + 1 if Park-Counter > ParkTime [setPark-Counter 0
seth 180 fd 1 seth 270 setParked? true stop]]
 if ((pc-at 0 0) = 9 and (pc-at 0 1) = 0) [setPark-Counter
Park-Counter + 1 if Park-Counter > ParkTime [setPark-Counter 0
seth 0 fd 1 seth 90 setParked? true stop]]

 if ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-turtles-
at 1 0) = 0) [seth 90 fd 1 set steps-to-find-parking 0 setc red
setMyDist 0]

 151

 if ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 and (count-
turtles-at (-1) 0) = 0) [seth 270 fd 1 set steps-to-find-parking 0
setc red setMyDist 0]
 if ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-
at -2 0) = 0)[seth 270 fd 2 set steps-to-find-parking 0 setc red
setMyDist 0]
 if ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-turtles-
at 2 0) = 0) [seth 90 fd 2 set steps-to-find-parking 0 setc red
setMyDist 0]
 if ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-
at 0 1) = 0) [seth 0 fd 1 set steps-to-find-parking 0 setc red
setMyDist 0]
 if ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) [seth 180 fd 1 set steps-to-find-parking 0
setc red setMyDist 0]
 if ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-
at 0 -2) = 0)[seth 180 fd 2 set steps-to-find-parking 0 setc red
setMyDist 0]
 if ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-turtles-
at 0 2) = 0) [seth 0 fd 2 set steps-to-find-parking 0 setc red
setMyDist 0]]
 [if (pc-at 0 0) not= white [ifelse (pc-ahead = 2 and (pc-at
0 0) = 2) [ifelse (random 2) = 0 [leap 3 set steps-to-find-parking
(steps-to-find-parking + 3)] [ifelse (random 2) = 0 [rt 90 fd 2
set steps-to-find-parking (steps-to-find-parking + 2)][fd 1 lt 90
fd 2 set steps-to-find-parking (steps-to-find-parking + 3)]]]
 [check-patches-after-park fd speed set steps-to-find-parking
(steps-to-find-parking + speed)] if (CoordX = 0 and CoordY =
0)[choose-nearest-spot]]]

; here are the rules to guide a car towards a chosen spot,
assuming it can also park on the opposite side of the road.
;in reality you should try the second best option here and then
third best and so on!

ifelse (CoordX not= 0 and CoordY not= 0 and MyDist not= 1000) [
;only if you are closest in the competition for a given spot,
drive there, else roam randomly and try again next step

; for heading = 0, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor < CoordX and ycor < CoordY))[
ifelse (CoordX < (xcor + 3))[fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor < CoordX and ycor > CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor > CoordX and ycor > CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor > CoordX and ycor < CoordY))[
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]

; for heading = 90, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
< CoordX and ycor < CoordY))[

 152

ifelse (CoordX < (xcor + 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)][fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
< CoordX and ycor > CoordY))[
ifelse (CoordX < (xcor + 3)) [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
> CoordX and ycor > CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
> CoordX and ycor < CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]

; for heading = 180, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor < CoordX and ycor < CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor < CoordX and ycor > CoordY))[
ifelse (CoordX < (xcor + 3)) [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)] [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor > CoordX and ycor > CoordY))[
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor > CoordX and ycor < CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]

; for heading = 270, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor < CoordX and ycor < CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor < CoordX and ycor > CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor > CoordX and ycor > CoordY))[
ifelse (CoordX > (xcor - 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)] [fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor > CoordX and ycor < CoordY))[
ifelse (CoordX > (xcor - 3)) [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)]]
][if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 2) = 0
[leap 3 set steps-to-find-parking (steps-to-find-parking + 3)]
[ifelse (random 2) = 0 [rt 90 fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]]]
]]
end

 153

to drive ; each egnt will park and then drive for a certain time

 if (pc-at 1 0) = 7 or (pc-at 1 0) = 9 [
 seth 0
 setParked? false
 park
 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at 0 1) > 0 ;if there is a
turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at 0 1
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at 0 1) > 0
 [setspeed speed-of one-of-turtles-at 0 2
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]

 if (pc-at (-1) 0) = 7 or (pc-at (-1) 0) = 9 [
 seth 180
 setParked? false
 park
 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at 0 (-1)) > 0 ;if there is
a turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at 0 (-1)
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at 0 (-1)) > 0
 [setspeed speed-of one-of-turtles-at 0 (-2)
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]

 if (pc-at 0 1) = 7 or (pc-at 0 1) = 9 [
 seth 270
 setParked? false
 park
 repeat (parking-interval * 10) [; these are turtles driving
up

 154

 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at (-1) 0) > 0 ;if there is
a turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at (-1) 0
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at (-1) 0) > 0
 [setspeed speed-of one-of-turtles-at (-2) 0
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]

 if (pc-at 0 (-1)) = 7 or (pc-at 0 (-1)) = 9 [
 seth 90
 setParked? false
 park
 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at 1 0) > 0 ;if there is a
turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at 1 0
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at 2 0) > 0
 [setspeed speed-of one-of-turtles-at 2 0
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 if (pc-at 0 0)= 2 [fd 1]
end

to accelerate
 setspeed (speed + (speedup / 1000))
end

to decelerate
 setspeed speed - (slowdown / 1000)
end

 155

Intel_7

Observer Procedures:

globals [aa bb Total-Free List-Ready? Occupied-List-Ready?]
breeds [living working visiting1 visiting2]
patches-own [Probability-Timer]

to track-vacant
 loop[
 set Total-Free (count-patches-with [pc = white and count-
turtles-here = 0])
 output Total-Free]
end

to track-vacant-all ; here we generate a list called "aa" which
tracks the vacant spots on the east sides of roads
 wait-until [List-Ready? = true]
 if List-Ready? = true [
 set List-Ready? false
 set aa make-list 0 0
 ask-patches [if pc = white and count-turtles-here = 0 [
 let [:bb (list xcor ycor)]
 set aa insert 1 aa :bb
]]
 set List-Ready? true]

 ask-patches-with [pc = white] [if (count-turtles-here = 0)
[
 setProbability-Timer 0]
]
end

to track-occupied-all ; here we generate a list called "bb" which
tracks the ocupied spots for probabilitsic search
 wait-until [Occupied-List-Ready? = true]
 if Occupied-List-Ready? = true [
 setOccupied-List-Ready? false
 set bb make-list 0 0
 ask-patches [if pc = white and count-turtles-here > 0 [
 let [:bb (list xcor ycor)]
 set bb insert 1 bb :bb
]]
 setOccupied-List-Ready? true]
end

to setup
 set-random-seed 100
 set List-Ready? true
 setOccupied-List-Ready? true
 set aa make-list 0 0
 set bb make-list 0 0
 ct
 crt number-of-cars
 ask-turtles [setPark-Counter 0 setshape cross setc red
setspeed 1 setSpeedLimit 1
 if (who <= (number-of-cars / 5)) [setbreed living]
 if (who > (number-of-cars / 5) and who <= (number-of-cars /
2)) [setbreed working]

 156

 if (who > (number-of-cars / 2) and who <= (number-of-cars /
1.25)) [setbreed visiting1]
 if (who > (number-of-cars / 1.25)) [setbreed visiting2]
 if breed = living [setParkTime 48]
 if breed = working [setParkTime 32]
 if breed = visiting1 [setParkTime 2]
 if breed = visiting2 [setParkTime 8]

 loop [ifelse ((pc-at 0 0) = black and count-turtles-here = 1
) [stop] [
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth
90][ifelse (random 2) = 0 [seth 180] [seth 270]]]
 fd (int random 25)
 ifelse (random 2) = 0 [seth 0] [ifelse (random 2) = 0 [seth
90][ifelse (random 2) = 0 [seth 180] [seth 270]]]
 fd (int random 25)]]]
 starttrackingall
 startcountaverage
 startoccupied-all
end

to count-steps-to-find-parking
output (average-of-turtles-with [color = yellow] [steps-to-find-
parking])
end

to stop-it
 stoptrackingall
 stopcountaverage
 stopDrive&Park
 stopoccupied-all
end

to count-average ; this is for statistical analysis: paste these
number into excel and calculate the mean, median and standard
deviation
 show (round average-of-turtles-with [color = yellow] [steps-
to-find-parking]) wait 1
end

Turtle Procedures:

turtles-own [speed SpeedLimit ParkTime Parked? steps-to-find-
parking Direction CoordX CoordY MyDist MyDist-Occupied Total-Min-
Dist Total-Min-Occupied-Chances Aacopy Bbcopy Search-Counter Park-
Counter Vacant-Chances Occupied-Chances]

to check-patches-after-park
 if (pc-ahead = 7) or (pc-ahead = 9) [
 rt 90 check-patches-after-park
]
end

 157

to try-all-vacant-choices

 let [:nullcheck2 (length Aacopy)] ifelse :nullcheck2 > 0 [
 set Search-Counter 1
 setMyDist 2000
 repeat :nullcheck2 [;check only for free spots, don't waste
RAM
 let [:item-number (item Search-Counter Aacopy)] ; extract
the first (eventually each) element from the aa list
 let [:item-numberX (item 1 :item-number)] ; extract the X
value of aa item
 let [:item-numberY (item 2 :item-number)] ; extract the Y
value of the aa item
 let [:a (round(:item-numberX - xcor))]
 let [:b (round(:item-numberY - ycor))]
 ifelse (heading = 0 and :item-numberY < ycor) or (heading =
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY >
ycor) or (heading = 270 and :item-numberX > xcor)[
 let [:distnew ((abs :a) + (abs :b) + 45)]] ; if the
destination spot is in the opposite direction, the add 1/2
(average) block loop (22 + 8) to the dist
 [let [:distnew ((abs :a) + (abs :b))]]

 if (:distnew <= MyDist) [let[:kchosen Search-Counter]
setMyDist :distnew]
 ; CoordX and CoordY are turtle-own variables, which remember
which parking spot the turtles zoomed onto, and will keep that
until a turtles goes to that spot.
 if (Search-Counter <= (:nullcheck2)) [set Search-Counter
(Search-Counter + 1)]
]

 set :item-number (item :kchosen Aacopy) ; extract the
memorized smallest distance element from the :aacopy list
 set :item-numberX (item 1 :item-number) ; extract the X
value
 set :item-numberY (item 2 :item-number) ; extract the Y
value
 set :a (round (:item-numberX - xcor))
 set :b (round (:item-numberY - ycor))

 ifelse (heading = 0 and :item-numberY < ycor) or (heading =
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY >
ycor) or (heading = 270 and :item-numberX > xcor)[
 setMyDist ((abs :a) + (abs :b) + 45)] ; if the destination
spot is in the opposite direction, the add 1/2 (average) block
loop (22 + 8) to the dist
 [setMyDist ((abs :a) + (abs :b))]

 set :a (CoordX) set :b (CoordY)
 setTotal-Min-Dist (min-of-turtles-with [CoordX = :a and
CoordY = :b] [MyDist]) ;show Total-Min-Dist; ask from all turtles
who has the same target, what the min dist is and save it for
later
 ifelse (MyDist <= Total-Min-Dist)[
 set CoordX (:item-numberX) set CoordY (:item-numberY)
 setDirection (towards-nowrap CoordX CoordY)
 setVacant-Chances (1 / MyDist)]; this is for comparison with
the occupied spot search- availability probability / distance.
 [set Aacopy (remove-element :item-number Aacopy) try-all-
vacant-choices]]
 [setCoordX 0 setCoordY 0 setMyDist 1000]
end

 158

to try-all-occupied-choices

 let [:nullcheck3 (length Bbcopy)]
 ifelse (:nullcheck3 > 0) [
 setMyDist-Occupied 2000 ; initialize a distance that is
bigger than any on screen dist, so that a new dist will always be
smaller
 set Search-Counter 1 ; loop through every elemnt in the
"number" list starts with 1
 repeat :nullcheck3 [;check only for free spots, don't waste
RAM
 let [:item-number (item Search-Counter Bbcopy)] ; extract
the first (eventually each) element from the aa list
 let [:item-numberX (item 1 :item-number)] ; extract the X
value of aa item
 let [:item-numberY (item 2 :item-number)] ; extract the Y
value of the aa item
 let [:a (round(:item-numberX - xcor))]
 let [:b (round(:item-numberY - ycor))]
 ifelse (heading = 0 and :item-numberY < ycor) or (heading =
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY >
ycor) or (heading = 270 and :item-numberX > xcor)[
 let [:distnew ((abs :a) + (abs :b) + 45)]] ; if the
destination spot is in the opposite direction, the add 1/2
(average) block loop (22 + 8) to the dist
 [let [:distnew ((abs :a) + (abs :b))]]

 if (:distnew <= MyDist-Occupied) [let [:kchosen Search-
Counter] setMyDist-Occupied :distnew]
 ; CoordX and CoordY are turtle-own variables, which remember
which parking spot the turtles zoomed onto, and will keep that
until a turtles goes to that spot.
 if (Search-Counter <= (:nullcheck3)) [set Search-Counter
(Search-Counter + 1)]
]

 set :item-number (item :kchosen Bbcopy) ; extract the
memorized smallest distance element from the :aacopy list
 set :item-numberX (item 1 :item-number) ; extract the X
value
 set :item-numberY (item 2 :item-number) ; extract the Y
value
 set :a (round (:item-numberX - xcor))
 set :b (round (:item-numberY - ycor))

 ifelse (heading = 0 and :item-numberY < ycor) or (heading =
90 and :item-numberX < xcor) or (heading = 180 and :item-numberY >
ycor) or (heading = 270 and :item-numberX > xcor)[
 setMyDist-Occupied ((abs :a) + (abs :b) + 45)] ; if the
destination spot is in the opposite direction, the add 1/2
(average) block loop (22 + 8) to the dist
 [setMyDist-Occupied ((abs :a) + (abs :b))]
 ;set :a (CoordX) set :b (CoordY)
 ;setTotal-Min-Dist (min-of-turtles-with [CoordX = :a and
CoordY = :b] [MyDist-Occupied]) ;show Total-Min-Dist; ask from all
turtles who has the same target, what the min dist is and save it
for later
 show (pc-at :a :b)
 if ((Probability-Timer-at :a :b) > 0) and ((Probability-
Timer-at :a :b) < 2) [setOccupied-Chances (0.2 / (abs (int MyDist-
Occupied - 1)))]
 if ((Probability-Timer-at :a :b) > 2) and ((Probability-
Timer-at :a :b) < 8) [setOccupied-Chances (0.375 / (abs (int

 159

MyDist-Occupied - 6)))] ; 3 is half of six, which is ha max
waiting time.
 if ((Probability-Timer-at :a :b) > 8) and ((Probability-
Timer-at :a :b) < 32) [setOccupied-Chances (0.6 / (abs (int
MyDist-Occupied - 24)))] ; 12 is half of 24, which is ha max
waiting time.
 if ((Probability-Timer-at :a :b) > 32) and ((Probability-
Timer-at :a :b) < 48) [setOccupied-Chances (1 / (abs (int MyDist-
Occupied - 16)))] ; 8 is half of 16, which is ha max waiting time.

 set :a (CoordX) set :b (CoordY)
 setTotal-Min-Occupied-Chances (min-of-turtles-with [CoordX
= :a and CoordY = :b] [Occupied-Chances])
 ifelse (Occupied-Chances <= Total-Min-Occupied-Chances)[
 setCoordX (:item-numberX) setCoordY (:item-numberY)
 setDirection (towards-nowrap CoordX CoordY)] ;show
"gotooccupied!"]
 [setBbcopy (remove-element :item-number Aacopy) try-all-
vacant-choices]][setCoordX 0 setCoordY 0 setMyDist-Occupied 1000]
end

to choose-nearest-spot
; here extract the itam in the aa list, then extract ech item's x
and y and check the patche's distance from the turtle (for all
patches)
; use a turtles-own variable named MyDist which indicates the
distance to the nearest free spot and a variable named ":kchosen"
indicating the number of the element in the aa list
 wait-until [(Occupied-List-Ready? = true) and (List-Ready? =
true)]
 if (Occupied-List-Ready? = true and List-Ready? = true) [

 let [:nullcheck (length aa)]
 ifelse (:nullcheck > 0) [
 setMyDist 2000 ; initialize a distance that is bigger than
any on screen dist, so that a new dist will always be smaller
 setAacopy (copy-list aa) ; make a copy of the "aa", so if
the real aa changes in length, their's remain the same until end
of counting
 setBbcopy (copy-list bb); do the same for occupied spots
 try-all-vacant-choices if (CoordX = 0 and CoordY = 0)
[try-all-occupied-choices]]
 [try-all-occupied-choices]]
end

to park ; has to be done so that agent will look for parking until
found

 if (Parked? = false)[
 setc yellow
 ;ask-patch-at CoordX CoordY [setpc green]
 ;ask-patch-at CoordX CoordY [setpc white]
 loop[
 choose-nearest-spot
 ; here set the car to break or accelerate according
to other cars
 ifelse (count-turtles-towards heading 1) > 0 ;if
there is a turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-towards heading 1
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also

 160

 [ifelse (count-turtles-at heading 1) > 0
 [setspeed speed-of one-of-turtles-towards heading 2
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]

 ; here is how the actual parking move happens
 ; first, parking at your own side of the road and then
parking at the opposite side of the road, parking on horisontal
streets is also allowed.
 ; augment the counter, which counts the program iterations
during which a car parks (instead of real time)
 ifelse ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-
turtles-at 1 0) = 0) or ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9
and (count-turtles-at (-1) 0) = 0) or
 ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-at
-2 0) = 0) or ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-
turtles-at 2 0) = 0) or
 ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-at 0
1) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) or
 ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-at
0 -2) = 0) or ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-
turtles-at 0 2) = 0) or
 ((pc-at 0 0) = 9) [

 ; here we augment the parking counter and check if the
counter is full, in which case a car leaves
 if ((pc-at 0 0) = 9 and (pc-at (-1) 0) = 0) [setPark-
Counter Park-Counter + 1 ask-patch-at 0 0 [setProbability-Timer
(Probability-Timer + 1)] if Park-Counter > ParkTime [setPark-
Counter 0 seth 270 fd 1 seth 0 setParked? true stop]]
 if ((pc-at 0 0) = 9 and (pc-at 1 0) = 0) [setPark-Counter
Park-Counter + 1 ask-patch-at 0 0 [setProbability-Timer
(Probability-Timer + 1)] if Park-Counter > ParkTime [setPark-
Counter 0 seth 90 fd 1 seth 180 setParked? true stop]]
 if ((pc-at 0 0) = 9 and (pc-at 0 (-1)) = 0) [setPark-Counter
Park-Counter + 1 ask-patch-at 0 0 [setProbability-Timer
(Probability-Timer + 1)] if Park-Counter > ParkTime [setPark-
Counter 0 seth 180 fd 1 seth 270 setParked? true stop]]
 if ((pc-at 0 0) = 9 and (pc-at 0 1) = 0) [setPark-Counter
Park-Counter + 1 ask-patch-at 0 0 [setProbability-Timer
(Probability-Timer + 1)] if Park-Counter > ParkTime [setPark-
Counter 0 seth 0 fd 1 seth 90 setParked? true stop]]

 if ((pc-at 0 0) = 0 and (pc-at 1 0) = 9 and (count-turtles-
at 1 0) = 0) [seth 90 fd 1 set steps-to-find-parking 0 setc red
setMyDist 0]
 if ((pc-at 0 0) = 0 and (pc-at (-1) 0) = 9 and (count-
turtles-at (-1) 0) = 0) [seth 270 fd 1 set steps-to-find-parking 0
setc red setMyDist 0]
 if ((pc-at 0 0) = 0 and (pc-at -2 0) = 9 and (count-turtles-
at -2 0) = 0)[seth 270 fd 2 set steps-to-find-parking 0 setc red
setMyDist 0]
 if ((pc-at 0 0) = 0 and (pc-at 2 0) = 9 and (count-turtles-
at 2 0) = 0) [seth 90 fd 2 set steps-to-find-parking 0 setc red
setMyDist 0]
 if ((pc-at 0 0) = 0 and (pc-at 0 1) = 9 and (count-turtles-
at 0 1) = 0) [seth 0 fd 1 set steps-to-find-parking 0 setc red
setMyDist 0]

 161

 if ((pc-at 0 0) = 0 and (pc-at 0 (-1)) = 9 and (count-
turtles-at 0 (-1)) = 0) [seth 180 fd 1 set steps-to-find-parking 0
setc red setMyDist 0]
 if ((pc-at 0 0) = 0 and (pc-at 0 -2) = 9 and (count-turtles-
at 0 -2) = 0)[seth 180 fd 2 set steps-to-find-parking 0 setc red
setMyDist 0]
 if ((pc-at 0 0) = 0 and (pc-at 0 2) = 9 and (count-turtles-
at 0 2) = 0) [seth 0 fd 2 set steps-to-find-parking 0 setc red
setMyDist 0]]
 [if (pc-at 0 0) not= white [ifelse (pc-ahead = 2 and (pc-at
0 0) = 2) [ifelse (random 2) = 0 [leap 3 set steps-to-find-parking
(steps-to-find-parking + 3)] [ifelse (random 2) = 0 [rt 90 fd 2
set steps-to-find-parking (steps-to-find-parking + 2)][fd 1 lt 90
fd 2 set steps-to-find-parking (steps-to-find-parking + 3)]]]
 [check-patches-after-park fd speed set steps-to-find-parking
(steps-to-find-parking + speed)] if (CoordX = 0 and CoordY =
0)[choose-nearest-spot]]]

; here are the rules to guide a car towards a chosen spot,
assuming it can also park on the opposite side of the road.
;in reality you should try the second best option here and then
third best and so on!

ifelse (CoordX not= 0 and CoordY not= 0 and MyDist not= 1000) [
;only if you are closest in the competition for a given spot,
drive there, else roam randomly and try again next step

; for heading = 0, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor < CoordX and ycor < CoordY))[
ifelse (CoordX < (xcor + 3))[fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor < CoordX and ycor > CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor > CoordX and ycor > CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and ((heading = 0) and
(xcor > CoordX and ycor < CoordY))[
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]

; for heading = 90, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
< CoordX and ycor < CoordY))[
ifelse (CoordX < (xcor + 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)][fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
< CoordX and ycor > CoordY))[
ifelse (CoordX < (xcor + 3)) [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
> CoordX and ycor > CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]

 162

if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 90 and (xcor
> CoordX and ycor < CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]

; for heading = 180, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor < CoordX and ycor < CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor < CoordX and ycor > CoordY))[
ifelse (CoordX < (xcor + 3)) [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)] [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor > CoordX and ycor > CoordY))[
ifelse (CoordX > (xcor - 3)) [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)] [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 180 and
(xcor > CoordX and ycor < CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]

; for heading = 270, supposing that you can also park on the
opposite side of the road
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor < CoordX and ycor < CoordY))[
rt 90 fd 1 set steps-to-find-parking (steps-to-find-parking + 1)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor < CoordX and ycor > CoordY))[
fd 1 lt 90 fd 2 set steps-to-find-parking (steps-to-find-parking +
3)]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor > CoordX and ycor > CoordY))[
ifelse (CoordX > (xcor - 3)) [fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)] [fd 2 set steps-to-find-
parking (steps-to-find-parking + 2)]]
if ((pc-at 0 0) = 2 and (pc-ahead)= 2) and (heading = 270 and
(xcor > CoordX and ycor < CoordY))[
ifelse (CoordX > (xcor - 3)) [rt 90 fd 1 set steps-to-find-parking
(steps-to-find-parking + 1)] [fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)]]
][if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random 2) = 0
[leap 3 set steps-to-find-parking (steps-to-find-parking + 3)]
[ifelse (random 2) = 0 [rt 90 fd 2 set steps-to-find-parking
(steps-to-find-parking + 2)][fd 1 lt 90 fd 2 set steps-to-find-
parking (steps-to-find-parking + 3)]]]]
]]
end

to drive ; each egnt will park and then drive for a certain time

 if (pc-at 1 0) = 7 or (pc-at 1 0) = 9 [
 seth 0
 setParked? false

 park

 repeat (parking-interval * 10) [; these are turtles driving
up

 163

 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at 0 1) > 0 ;if there is a
turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at 0 1
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at 0 1) > 0
 [setspeed speed-of one-of-turtles-at 0 2
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]

 if (pc-at (-1) 0) = 7 or (pc-at (-1) 0) = 9 [
 seth 180
 setParked? false
 park
 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at 0 (-1)) > 0 ;if there is
a turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at 0 (-1)
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at 0 (-1)) > 0
 [setspeed speed-of one-of-turtles-at 0 (-2)
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]

 if (pc-at 0 1) = 7 or (pc-at 0 1) = 9 [
 seth 270
 setParked? false
 park
 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at (-1) 0) > 0 ;if there is
a turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at (-1) 0
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at (-1) 0) > 0

 164

 [setspeed speed-of one-of-turtles-at (-2) 0
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]

 if (pc-at 0 (-1)) = 7 or (pc-at 0 (-1)) = 9 [
 seth 90
 setParked? false
 park
 repeat (parking-interval * 10) [; these are turtles driving
up
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 ifelse (count-turtles-at 1 0) > 0 ;if there is a
turtle 1 space ahead, decelerate
 [setspeed speed-of one-of-turtles-at 1 0
 decelerate]
 [ifelse lookahead = 2 ;if lookahead=2,
check 2 spaces ahead also
 [ifelse (count-turtles-at 2 0) > 0
 [setspeed speed-of one-of-turtles-at 2 0
 decelerate]
 [accelerate]] ;else accelerate
 [accelerate]]
 if speed < 0.01 [setspeed 0.01] ;also adjust speed
based on SpeedLimit and radar
 if speed > SpeedLimit [setspeed SpeedLimit]
 fd speed
]
]
 if (pc-ahead = 2 and (pc-at 0 0) = 2) [ifelse (random
2) = 0 [leap 3] [ifelse (random 2) = 0 [rt 90 fd 2][fd 1 lt 90 fd
2]]] check-patches-after-park
 if (pc-at 0 0)= 2 [fd 1]
end

to accelerate
 setspeed (speed + (speedup / 1000))
end

to decelerate
 setspeed speed - (slowdown / 1000)
end

	Contents
	Introduction
	“The behavior of an artificial system may be strongly influe
	Chapter One
	Benefits of a Real-Time Guidance System
	Chapter Two
	The Rules of the Simulation
	General Rules
	Traditional Parking Search Model
	Intel Parking Search Models
	Intel_ 1 Parking Search Model
	Intel_3 Parking Search Model
	Intel_5 Parking Search Model
	Intel_7 Parking Search Model

	Chapter Three
	Chapter Four
	References
	Appendix
	Source codes for Star-Logo simulation models of street-parki

	Intel_1
	Observer Procedures:
	Turtle Procedures:

	Intel_3
	Observer Procedures:
	Turtle Procedures:

	Intel_5
	Observer Procedures:
	Turtle Procedures:

	Intel_7
	Observer Procedures:
	Turtle Procedures:

