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Abstract:  Building simple and accurate models of hub 
airports can considerably help one understand airport 
dynamics, and may provide quantitative estimates of 
operational airport improvements.  In this paper, three 
models are proposed to capture the dynamics of busy hub 
airport operations.  Two simple queuing models are 
introduced to capture the taxi-out and taxi-in processes.  An 
integer programming model aimed at representing airline 
decision-making attempts to capture the dynamics of the 
aircraft turnaround process. These models can be applied for 
predictive purposes. They may also be used to evaluate 
control strategies for improving overall airport efficiency. 

1 Introduction 

As the demand for air travel increases, congestion and 
delays in the air traffic system become more commonplace.  
Inherent delay uncertainty makes it difficult for airlines and 
air traffic service providers to manage passengers, fleets and 
crews.  In addition, increased congestion at busy airports 
results in significant financial and environmental 
inefficiencies.  Accurate information about an aircraft’s 
current and projected position in the system is extremely 
valuable to airlines and air traffic service providers alike.  
Many of the recorded delays can be directly or indirectly 
attributed to airports.  Thus, several efforts are underway to 
improve airport congestion management, throughput and 
predictability.  To achieve the goal of increased 
predictability and airport efficiency, much research has been 
undertaken to study both the departure and the arrival 
processes at busy airports. 
 
All quantitative approaches to predicting and improving 
airport operations must eventually rely upon mathematical 
models.  Most highly detailed models of airport operations 
such as SIMMOD, TAAM or the Airport Machine are based 
on a detailed, physical modeling of the airport operations 
[1]. These models can be useful to evaluate qualitatively the 
relative effects of various airport improvements on airport 
efficiency.  However, calibrating and validating them in a 
formal sense is a very challenging, if not impossible task.  

As a consequence, these models require very significant 
efforts and extensive working knowledge of the particular 
airport under study to provide quantitative information 
about the effect of improved airport processes. 
 
In reference [2], pilot reports, on-site investigations and 
statistical analyses of automatically recorded data indicate 
that runway capacity is the primary limiting constraint in the 
departure process at busy airports like Boston Logan 
International airport.  For example, substantial congestion 
was observed at Logan Airport under certain airport 
configurations, leading to significant environmental and 
financial inefficiencies.  This observation led to the 
construction of aggregate airport departure models [3], 
which were used to predict taxi-out times.  It was shown in 
[4] that these models could be thoroughly calibrated and 
validated, and that they could be used to quantify the effects 
of holding departing aircraft at their gates during periods of 
taxiway system congestion. 
 
The airport arrival process has been studied intensively for 
airborne traffic, especially through the development of 
airport arrival management tools such as the 
Center/TRACON1 Automation System (CTAS), a suite of 
decision support tools to help the TRACON manage the 
flow of aircraft arriving at a busy airport. Arrival 
management tools such as CTAS provide two benefits for 
congested airports.  First, they contribute to increasing 
airport throughput by achieving efficient runway balancing 
and regularizing aircraft arrival flows.  Second, the powerful 
model-based trajectory prediction of CTAS enables the 
accurate prediction of aircraft landing times up to 40 
minutes in advance [5,6,7].  These accurate landing time 
estimates have the potential to benefit airlines substantially 
by offering them advance information about incoming 
flights. 
 
In contrast, most studies of the air transportation system do 
not consider ground operations.  In fact, in many models the 
ground time, which includes all processes and activities 
from wheels-on to wheels-off, is assumed to be of constant 
length.  This assumption ignores queuing effects arising at 
airports and it implies that the airlines cannot influence 
delays and delay propagation while aircraft are on the 
ground.  However, in practice airlines frequently attempt to 
shorten the ground times of delayed aircraft in order to 
control the downstream impacts of delays. 
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 This paper is organized as follows: It first extends the 
observational base of arrival and departure ground 
operations from a moderate-size, non-hub airport such as 
Boston-Logan International Airport to large hub airports 
such as Dallas/Fort Worth International Airport (DFW), 
George Bush Intercontinental Airport in Houston, Texas 
(IAH), and Atlanta Hartsfield International Airport (ATL).  
Then this paper presents three models designed to capture 
the dynamics of ground operations at busy hub airports, 
including an arrival (taxi-in) model, a ground (aircraft-turn) 
model, and a departure (taxi-out) model. Finally, the paper 
presents possible applications for the three models currently 
under development, including (i) a predictive capability for 
air transportation system monitoring purposes, (ii) a means 
to evaluate policies aimed at managing airport congestion 
by queue delay management, and (iii) a means to evaluate 
the potential economic impacts of airline intervention in the 
aircraft arrival scheduling process.  

 
 Figure 1: Map of DFW. 

2 Available Data  

2.1 Airport Layouts 
As shown in Figure 1, DFW is oriented in a north/south 
configuration with east and west sides running almost 
independent operations [8].  On the west are two parallel 
runways and one diagonal runway, and on the east side are 
three parallel runways and one diagonal runway.  

The parallel runways are spaced such that simultaneous 
operations can occur.  A “south configuration” includes the 
use of any runways in the set of 18R/L, 13R/L, and 17R/C/L 
runways.  A “north configuration” includes the use of any 
runways in the set of 31R/L, 36R/L, and 35R/L runways.  
At any time, several runways are simultaneously available 
for departure and arrival operations. 
 
ATL had four runways at the time of data collection, 
oriented in an east/west configuration, as shown in 
Figure 2 [8].   The four runways consist of two sets of 
parallel runways:  two to the north and two to the south.   
The runways are spaced such that simultaneous operations 
can occur.  An “east configuration” includes the use of any 
runways in the set of 8R/L and  9R/L  runways.  A “west 
configuration” includes the use of any runways in the set of 
26R/L and 27R/L runways.  At any time, several runways 
are simultaneously available for departure and arrival 
operations. 
 
 

 
Figure 2: Map of ATL.  
 
IAH has six runways, oriented in an east/west overall 
orientation, as shown in Figure 3 [8].  The six runways are 
partitioned as three pairs of parallel runways: two to the 
north, two to the south and two diagonal runways.  The 
parallel runways are spaced such that simultaneous 
operations can occur.  An “east configuration” includes the 
use of any runways in the set of 8R/L, 9R/L and 14R/L 
runways.  A “west configuration” includes the use of any 
runways in the set of 26R/L, 27R/L and 32R/L runways.  At 
any time, several runways are simultaneously available for 
departure and arrival operations. 

2.2 Flight Operations Data 

The analyses discussed herein rely on the Airline Service 
Quality Performance (ASQP) database, which provides 

N 
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information about the jet operations of 10 major airlines: 
Alaska; American; America West; Continental; Delta; 
Northwest; Southwest; TWA; United; and US Airways.  For 
most of these airlines’ flights, ASQP provides both 
scheduled and actual pushback, take-off, landing and gate 
arrival times.  Note that because the ASQP database 
includes jet operations only, it does not provide a complete 
picture of the activity at each airport.  For example, it 
captures approximately 66% of the operations at Dallas/Fort 
Worth, with similar percentages at the other airports 
considered in this paper. 
 
 

 
Figure 3: Map of IAH. 

The accuracy of the ASQP data has been confirmed via 
independent observations.  Visual observations at Boston-
Logan airport confirmed ASQP recorded push-back times 
[9].  A formal validation of take-off and landing times 
recorded in the ASQP data was done by cross-checking 
them against high-resolution, timed radar tracks available at 
DFW. A threshold location was chosen on the departure 
path or on the final approach path roughly 5 Nautical miles 
from the runway threshold, and the time difference between 
the recorded wheels-off time (available from ASQP) and the 
time of threshold crossing (obtained by radar track 
interpolation) was computed and detrended for all jet 
aircraft that used that particular runway. As may be seen 
from Fig. 4, the ASQP records closely match estimated 
take-off and landing times generated from high-resolution, 

timed radar tracks provided by CTAS at DFW; the ASQP 
data is accurate to within its one-minute round off error.  
It is worth noting that the estimated landing and take-off 
times from radar tracks do not rely upon ETMS estimates or 
data. 
 

  
Figure 4: ASQP and radar track agree 
 
 
2.3 Weather and Airport Configurations 
Based on field observations and data analysis at Boston-
Logan Airport [10], airport runway configuration is a major 
determinant of ground operations dynamics.  In particular, 
runway configuration is a major factor to determine airport 
arrival and departure acceptance rates.  Unfortunately, 
historical runway configuration data are not readily 
available for the hub airports studied in this paper.  
However, detailed historical wind and weather data are 
available from the Consolidated Operations and Delay 
Analysis System (CODAS) database, which provides 
airport-specific weather information over 15-minute 
intervals.  The CODAS weather data includes wind speed; 
wind direction; wind gust; temperature; precipitation; 
ceiling; and visibility.  The data set is remarkably complete.  
For example, at DFW in 1997, only eight 15-minute 
intervals are missing from the records, and only 7% of the 
temperature data are missing, while all of the other data 
fields are complete. 
 
While weather conditions alone do not fully determine 
runway configuration (e.g., in the case of Boston Logan 
Airport, environmental concerns are also a significant 
influencing factor), the CODAS data may still be used in 
conjunction with airport layout information to partition the 
available operations data into distinct segments2.  For this 

                                                 
2 For this work, a segment is defined as a particular 
combination of runway operability and weather conditions, 

12 

10 

8 

 
6 

4

2 

0

-600              -400                -200                 0                  200                 400                600 
Time (sec) 

Number 
Of 
occurences 

Histogram of recorded time differences between ASQP and 
interpolated radar track arrival times. DFW, Jan 5, 1999. 

N 



 4 

paper, we considered CODAS data from 1997 for DFW and 
from 1998 for IAH and ATL.  A summary of the 
segmentation methodology and results of this segmentation 
is provided here for the three airports studied.  The same 
segmentation methodology was used for each airport, with 
changes to accommodate the different runway layouts. 
 
With the help of an experienced jet pilot employed by a 
major US airline, a set of standards was developed for 
runway operability and airport capacity under various 
weather conditions.  A runway was considered operable if 
the crosswind was less than 20 knots and the headwind was 
positive.  Otherwise, the runway was considered inoperable.  
If the wind data over an interval were incomplete, a 
conservative approach was used to estimate the runway 
configuration:  if at either end of the interval a runway was 
considered inoperable, the runway was considered 
inoperable during the entire interval.  Further segmentation 
was then conducted to include weather factors such as 
ceiling, visibility and precipitation (including thunderstorm 
activity), all of which are known to influence airport 
capacity significantly.  Each of these weather factors was 
assigned a threshold at which it was considered to affect the 
airport operations.  Precipitation was considered to affect 
operations when there was thunderstorm activity or when 
precipitation was indicated3.  Ceiling was considered to 
affect operations when it dropped below 1000 feet.  
Visibility was considered to affect operations when it 
dropped below 3 miles. 
 
The first step in the segmentation process was to estimate 
the runway configuration for each 15-minute interval using 
the CODAS winds data.  After determining the runway 
configurations, the number of operations occurring under 
each of the configurations was tallied.  The percentage of 
operations occurring under each of the determined runway 
configurations for each of the airports is shown in Figures 5 
through 7.  Note that the “no runways available” bin 
includes both times of severely high winds and times of 
incomplete wind data for which the runway operability was 
conservatively estimated using the method described above. 
The second step in the segmentation process was to consider 
additional weather factors such as ceiling, visibility, 
temperature, and precipitation.  Using the thresholds 
described above, each of the four weather factors was 
assessed as to whether it affected airport operations for each 
15-minute interval.  The number of operations occurring 
under each of the weather conditions was tallied.  The 
percentage of operations occurring under each of the 

                                                                                  
independent of actual runway operations or standard 
operating procedures. 
3 The precipitation entries in the database belong to the set 
{0,1,T} where 0 indicates no activity, T indicates a 
thunderstorm and 1 indicates the presence of precipitation. 

determined weather conditions for each of the airports is 
shown in Table 1. 
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Figure 5: Configuration breakdown for DFW. 

Breakdown of Inferred Configuration at ATL Over 1998
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Figure 6: Configuration breakdown for ATL 

Breakdown of Inferred Configuration Over 1998
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Figure 7: Configuration breakdown for IAH 
 
 
WEATHER FACTOR DFW ATL IAH 

% of ops affected by ceiling 5% 9% 6% 

% of ops affected by 
visibility 

3% 8% 6% 

% of ops affected by 
precipitation 

3% 4% 4% 

Table 1: Influence of weather 
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The final step in the segmentation process was to link the 
runway configuration for each 15-minute interval to the 
corresponding weather data to create distinct segments.  
Even though the number of possible segments is large, 
operations only occur during a small subset of the possible 
segments.  As might be expected, for the three airports 
studied the majority of the operations occurred under the 
segments corresponding to the primary runway orientation 
of the airport, as defined in Section 2.1.  At DFW, the 
segments corresponding to the north/south configuration 
represent 80% of the operations.  Similarly at ATL and 
IAH, the segments corresponding to the east/west  or 
north/south configurations represented 85% and 56% of the 
operations, respectively.  Given this result, the possible 
segments were summarized into six segment groups: the 
two primary configurations under good weather conditions, 
the two primary configurations under inclement weather 
conditions4, indeterminable configuration and “other”.  The 
number of operations occurring in each of these 6 segments 
for the three airports is shown in Table 1 below. 
 
SEGMENT DFW ATL IAH 
N/E Good  26.6% #1 24.2% #1 31.4% #2 
S/W Good  46.4% #2 48.2% #2 16.5% #1 
N/E Bad  2.8% #3 8.0% #3 5.9% #4 
S/W Bad  3.7% #4 4.7% #4 2.3% #3 
Other 15.0% #5 3.1% #5 41.7% #5 
Excluded 5.5% #6 11.8% #6 2.2% #6 
Table 2: Final results of segmentation analysis by airport. 

These results have not been explicitly validated for the three 
airports because historical runway configuration data is not 
readily available.  However, our results support anecdotal 
reports that the south configuration is the primary 
configuration for DFW.  Similarly at ATL, the segmentation 
results above are consistent with the account that the west 
operation is considered the most efficient, and hence is the 
preferred configuration.  Further, we were able to validate 
the segmentation results at DFW in an implicit sense using 
radar track data:  Through an analysis of radar-track data 
from CTAS, the runways used for take-offs and landings 
were determined, and then compared against the weather-
inferred runway configurations.  In general, the weather-
inferred configurations were the same as the radar-inferred 
configurations.  The orientation of each configuration 
(north/south) was identical, but the weather-inferred set of 
runways often varied slightly from the radar-inferred set of 
runways, probably due to the sensitivity of the weather-
inferred configuration to short-term changes in wind speed 
and direction and weather. 

                                                 
4 Inclement weather conditions means that either ceiling or 
visibility was below its defined minimum or precipitation 
was above its defined maximum.  Note that low temperature 
alone does not qualify as inclement weather for the three 
airports studied. 

3 Models 

3.1 Departure Process (Gate Pushback to Takeoff) 

3.1.1 Modeling Approach 
The general approach taken to modeling the taxi-out process 
is to treat the system as an input/output system with very 
simple dynamics. The model is intended to capture the 
observed statistical behavior of the departure process, rather 
than replicate the exact physically- and procedurally-
constrained dynamics of aircraft motion on the airport 
surface.  This approach has the advantage that particular 
models can be easily calibrated and validated to describe a 
wide variety of airports under various traffic and weather 
conditions, and statistically significant conclusions can be 
drawn from these models. 
 
3.1.2 Observed Behaviors of the Departure Process 
Based on extensive field observations at Boston-Logan 
Airport [10], and analysis of historical data from BOS, 
ATL, and DFW, there are several major behaviors of the 
departure process that the model must capture.  The taxi-out 
time of a particular aircraft (from pushback to takeoff) is 
primarily determined by the departure congestion at 
pushback, i.e. the number of departing aircraft that are 
already on the airport's surface but have not yet taken off.  
When departure congestion is low, a nominal (or 
unimpeded) distribution of taxi-out times can be observed 
for aircraft pushing back from a particular gate.  Aircraft are 
often observed to reach the active runways in a different 
order from their pushback sequence, indicating that the 
departure traffic flow up to the runway is relatively 
unconstrained. 
 
In contrast, once an aircraft reaches the runway, it usually 
enters a runway queue, and its position in the queue 
becomes fixed.  The airport throughput is primarily limited 
by this bottleneck effect at the runways [2].  Runway 
configuration and weather are observed to be the primary 
factors which determine the behavior of the runway queue, 
including the maximum runway throughput, and the 
approach to throughput saturation as a function of rising 
departure congestion. 
 
3.1.3 Proposed Model Structure 
Based on these behaviors, simple queuing structures are 
proposed to represent the input-output system dynamics.  
Aircraft enter the system after they have called ready for 
pushback and have been given pushback clearance by the 
tower; they leave the system at the time they take off. 
 

Terminals

Airport
Control
Tower

Time
Travel Runway Queue

 
Figure 8: Proposed Queuing Model for the Departure Process 
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The initial unconstrained phase of departure traffic flow is 
modeled as a random delay, where each aircraft that pushes 
back is assigned a stochastic taxi-out time to reach the 
active runways.  The probability distribution of these taxi-
out times is taken to be the nominal (unimpeded) taxi-out 
time observed at low congestion levels.  Ideally, to capture 
the differences in travel time due to different gate locations, 
each gate would be assigned an individual probability 
distribution.  Unfortunately, historical gate-assignment 
information is not readily available.  However, it has been 
found that the airline for each flight is a reasonable proxy 
variable since the gates for a particular airline are often 
clustered at a particular terminal [11]. 
 
Once aircraft complete their nominal taxi-out time, they are 
assumed to enter the runway queue.  This queue is first-
come first-served, which captures the bottleneck and 
sequencing effects observed near the active runways.  
During each interval of time, a stochastic number of takeoff 
opportunities is available, and aircraft at the head of the 
runway queue can exit the system if sufficient opportunities 
are available.  This stochastic behavior is observed under 
conditions of high departure congestion, when the runway 
system is almost certainly non-empty. In reference [11], a 
similar queuing model for the airport departure process was 
proposed, and extensively calibrated and validated for 
Boston-Logan Airport using several years of historical 
runway configuration and traffic data.  Our current model 
uses the same queuing structure but proposes several 
changes to the runway queue model, and to the calibration 
and validation techniques. 
 
3.1.4 Calibration Methods 
Based on results from [10], a method has been developed to 
observe the nominal (unimpeded) distribution of taxi-out 
times.  Each departing flight is assigned an index (denoted 
“NH”) that counts the number of other aircraft which takeoff 
while that flight is taxiing out on the airport surface.  If a 
particular flight is held on the airport surface after pushback 
due to downstream restrictions, mechanical problems, 
bureaucratic delays, or other effects which are unrelated to 
departure surface congestion, it will tend to be passed on the 
taxiway by other departing aircraft, and its NH index will be 
large.  If a particular flight pushes back and encounters 
substantial queuing delays near the runway, then its NH 
index will be large due to the large number of other 
departing aircraft which takeoff while it waits in the queue.  
Therefore, flights with a low NH index are assumed to have 
experienced little delay while taxiing out to the runway, and 
the nominal (unimpeded) distribution of taxi-out times is 
estimated from their taxi-out times.  It is worth noting that 
the NH index cannot be calculated at the time an aircraft 
pushes back from the gate, and hence it cannot be used 
directly in real-time to predict taxi-out time. 
 

The effect of NH on the observed distribution of taxi-out 
times is shown below in Figure 9.  The plot shows how the 
observed distribution increases in both mean and variance as 
a function of increasing values of the NH index.  Similar 
results are found for ATL and DFW. 
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Figure 9: Effect of NH on taxi-out time distribution at IAH . 

Gaussian or log normal distributions are used to 
approximate the underlying distribution on unimpeded taxi-
out time. The stochastic model for the runway queue 
behavior is based on the observation that, at a fixed level of 
departure congestion, the distribution of takeoffs over each 
one-minute interval is well fitted as a Poisson distribution.  
Further, as the level of departure congestion increases, the 
rate of the fitted Poisson distribution increases, until a 
threshold is reached where further increases in departure 
congestion levels do not result in increased rates.  Based on 
these observations, the runway queue is modeled as 
providing a stochastic number of takeoff opportunities 
during each interval of time, where the distribution of the 
number of opportunities is Poisson with the maximum 
observed rate. 
 
A type of runway throughput plot was developed to aid in 
calibrating this model.  At each level of departure 
congestion, a Poisson distribution (with 95% confidence 
intervals) is fitted to the observed distribution of takeoffs.  
Then these fitted rates are plotted as a function of the 
departure congestion level to yield a throughput plot.  
Additionally, the number of time-intervals at each level of 
departure congestion is plotted to ensure that sufficient data-
points are being used in the fitting process.  Several of these 
plots are shown below for the various airports studied in this 
paper. 
 
The first pair of plots (Figures 10 and 11) was made using 
data from ATL during those intervals in 1998 when the 
airport was operating in its secondary runway orientation.  
The first plot corresponds to good-weather conditions, and 
the second plot corresponds to inclement-weather 
conditions.  Note that the distribution of takeoffs is fitted 
very well as a Poisson distribution over a wide range of 
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departure congestion levels.  It is apparent that the 
throughput in good-weather conditions saturates at a higher 
level of congestion than the throughput in inclement-
weather conditions.   
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Figure 10: Throughput at ATL during good weather. 
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Figure 11: Throughput at ATL during inclement weather. 

Overlaid in Fig. 11 are similar statistics collected from the 
calibrated queuing model of departure operations for that 
airport segment. According to those statistics, this model 
matches very well experimental data. 
  
A second pair of plots (Figures 12 and 13) was derived 
using data from DFW during those intervals in 1997 when 
the airport was operating in its secondary runway 
orientation.  We observe effects similar to those seen at 
ATL.  However, note that the throughput at DFW during 
good-weather conditions appears to steadily increase as 
departure congestion increases; there is no observed 
saturation effect.  In contrast, the throughput during 
inclement-weather conditions shows a clear saturation 
effect.  
 
3.1.5 Work in Progress 
To date, there are several important observations that have 
not yet been successfully incorporated into the departure 
process model.  Observations indicate that at some airports, 
departure taxi-out times tend to increase as arrival 
congestion increases, where arrival congestion (denoted 
“NA”) is measured as the number of arriving aircraft that are 

taxiing in from the runways when a departing aircraft 
pushes back from the gate.  
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Figure 12: Throughput at DFW during good weather. 

5 10 15 20 25 30 35 40
0

0.5

1

1.5

Departure surface congestion

T
ak

eo
ff 

R
at

e 
(a

/c
 p

er
 m

in
ut

e)

Takeoff Rate (fitted Poisson rate) (DFW, 1997, Segment #3)

5 10 15 20 25 30 35 40
10

1

10
2

10
3

10
4

Departure surface congestion

N
um

be
r 

of
 m

in
ut

es

 
Figure 13: Throughput at DFW during inclement weather. 

Figure 14 shows that increasing levels of arrival congestion 
are clearly related to increasing taxi-out times at ATL.  
However, the same phenomenon is not readily apparent at 
DFW (Figure 15).  It is not clear if this dependence is the 
effect of a causal relationship, or if arrival congestion and 
departure congestion simply have some positive correlation 
due to the airlines' schedule bunching and block-scheduling 
at certain hub airports. It is also worth noting that weather 
breakdown and configuration breakdown are not equivalent; 
following observations made at Boston Logan Airport, 
airport capacity may be affected somewhat by weather 
within a single configuration, as shown in Fig. 16. The 
effect of prop traffic (which is notably absent from the 
ASQP database) is currently treated as an additional source 
of stochastic noise in the system, although in principle the 
current queuing model can be trivially extended to include 
prop traffic. Occasionally aircraft experience significantly 
longer taxi-out times due to downstream restrictions, and 
work is underway to accommodate these outliers. 
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Figure 14: Arrival congestion influences taxi-out times at ATL. 
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Figure 15: Arrival congestion has limited influence on taxi-out times at 
DFW. 
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Finally, it is intuitively obvious that on a very short time-
scale there must be some tradeoff between landings and 
takeoffs on the same runway.  This tradeoff is currently 
treated as an additional source of stochastic noise in the 
runway behavior, but work is currently in progress to 
explicitly model this effect in the behavior of the runway 
queue. 

3.2 Arrival Process (Landing to Gate Arrival) 

Data analysis at BOS, DFW, and ATL indicate a somewhat 
surprising result:  The statistical behavior of arrival 
operations can be captured using the same general 
input/output queuing structures and calibration/validation 
techniques which are currently used to statistically model 
the departure process.  A diagram of the proposed arrival 
model is shown below (Figure 17): 
 

Terminals

Time
TravelRamp/Apron Queues

 
Figure 17: Proposed Queuing Model for the Arrival Process 

At first this result is somewhat unappealing, since the 
structure of the departure model has been explicitly 
motivated by a specific set of field observations and data-
analysis results, and it is not apparent that these 
observations and behaviors immediately generalize to the 
arrival process.  However, it is possible to view the 
departure process model in a more general framework.  The 
departure process model is intended to capture a relatively 
unconstrained period when aircraft are taxiing out 
unimpeded to the runway queues, followed by a period that 
is dominated by bottleneck effects near the runway queues.  
The arrival process follows roughly the same pattern, where 
aircraft initially taxi towards the gates, and then slow down 
and queue up near the gates.  This effect is especially 
apparent in airports with physical bottlenecks near certain 
terminals, such as the corridor-type terminals at ATL and 
the “Horseshoe” at Boston-Logan Airport. 
 
Nominal distributions of taxi-in times were obtained using 
the same method used to obtain nominal distributions of 
taxi-out times.  For the arrival process, the NH index is 
defined as the number of arriving aircraft that reach the 
gates while a particular flight is taxiing in from the runways. 
There are some interesting observations to be made here.  
Representative distributions of taxi-in time at IAH and 
DFW are shown in Figures 18 and 19.  Note that as NH 
increases, the distributions of taxi-in times do not appear to 
significantly change shape or width at DFW, but are simply 
shifted to the right.  This effect may indicate that the 
stochastic component of an aircraft’s taxi-in time is 
approximately independent of the arrival congestion, and 

Figure 16: Evolution of throughput by weather, for 
given configuration at Boston Logan Airport 



 9 

hence that taxi-in times may have a much higher level of 
predictability than taxi-out times.  Further field observations 
are necessary to confirm this hypothesis. 
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Figure 18: Effect of NH on taxi-in time at IAH. 
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Figure 19: Effect of NH on taxi-in time at DFW. 

Gate throughput curves are also shown.  The gate 
throughput curves for all three airports are quite similar in 
character.  As might be expected, gate throughput appears 
unaffected by inclement weather conditions at all of the 
airports studied (see Figures 20 to 23).  One interesting 
observation is that the gate throughput can saturate, similar 
to the saturation effect in the departure process.   
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Figure 20: Gate throughput at DFW (good weather). 

These observations indicate that gate throughput saturation 
may be an effect of very high traffic loads, rather than a 
degradation of the system performance.  Again, figure 22 
shows statistics obtained for a calibrated arrival model of 
ATL. Again this model performs quite well with respect to 
the experimental data. 
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Figure 21: Gate throughput at DFW (inclement weather). 
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Figure 22: Gate throughput at ATL and calibrated model (secondary 
runway orientation). 
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Figure 23: Gate throughput at ATL (secondary runway orientation, 
bad weather). 
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3.3 Ground Operations (Gate Arrival to Gate Pushback) 

3.3.1 Modeling Approach 
The ground operations model is an optimization model 
designed to simulate airline operational decisions about 
aircraft pushback times under resource constraints.  The 
ground operations model considers the departure schedule, 
aircraft-gate compatibility, gate availability and ground 
crew resource availability in determining pushback times 
that minimize passenger delay given arrival at gate times.   
As a result, the model can measure how an airline can 
reduce delays and delay propagation on the ground.  This 
section includes a description of the ground operations 
model and results to date from IAH, the only airport for 
which sufficient ground operations data was available. 
 
3.3.2 Observed Behavior of the Ground Operations 
There are many factors contributing to departure delays.  
This includes arrival delay.  To illustrate this, the difference 
between arrival delay and departure delay was computed. 
This difference will be referred as delay flow-through.  The 
distribution of delay flow-through for DFW, ATL and IAH 
is shown in Figures 24-26.  Notice that these distributions 
appear Gaussian, with means greater than zero.  In fact, the 
mean delay flow-through for each airport is positive and the 
95% confidence interval of the mean delay flow-through is 
strictly positive.  This positive mean delay flow-through 
indicates that the arrival delay was somehow reduced while 
the aircraft was on the ground.    

Distribution of Delay Flow-Through at DFW in August 1998
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Figure 24:  Distribution of flow-through at DFW. 

Distribution of Delay Flow-Through at ATL in August 1998
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Figure 25: Distribution of flow-through at ATL.  

Distribution of Delay Flow-Through at IAH in August 1998
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Figure 26: Distribution of flow-through at IAH. 

There are two potential explanations for this observation.  
First, the “slack” in the arrival and departure schedule may 
have absorbed the arrival delay.   For example, assume an 
aircraft is scheduled to arrive at 10:00 and depart at 10:40 
and that the scheduled minimum turn time for the aircraft is 
30 minutes.  In this case, there are ten minutes of slack built 
into the schedule.   Therefore, the aircraft can arrive up to 
ten minutes late without affecting the departure time.   
Second, the airline may have prepared the aircraft for 
departure ahead of schedule.  Continuing with the same 
example, if the aircraft arrived 20 minutes late, but departed 
on time, the airline turned the aircraft in 20 minutes, 10 
minutes under the scheduled minimum turn time.  In this 
case, the airline reduced the turn time of the aircraft. 
 
To understand the extent to which the airline is able to 
reduce the turn time of the aircraft in order to reduce delays, 
we identify aircraft with departure delay greater than 10 
minutes and with arrival delay greater than departure delay.  
For these aircraft, the histogram of the actual turn time 
minus the minimum scheduled turn time was plotted.  The 
scheduled minimum turn time is the turn time assumed by 
the airline in the scheduling process.  This plot is shown in 
Figure 27 below for one airline at one of the hubs.  Data for 
other airlines was not accessible.  The confidence interval 
for the mean of the distribution is negative, indicating that 
the airlines tend to prioritize late arrivals on the ground to 
reduce the corresponding departure delay. 

Distribution of Actual Turn Time Minus Minimum Scheduled Turn Time For One Airline At a Hub Airport 
in August 1998
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Figure 27: The mean of the distribution of the difference in actual turn 
time from the scheduled minimum turn time is negative, indicating 
that airlines prioritize the turning of delayed arrivals. 
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3.3.3 Model Structure 
As discussed above, an airline can reduce departure delay 
by reducing turn time.  However, the results do not indicate 
exactly how an airline achieves the turn time reduction.  One 
of the biggest challenges in modeling ground operations is 
determining which resources and activities to include in the 
model.  The turn process involves numerous distinct sets of 
crews conducting distinct activities, including baggage 
unloading and loading, catering, cleaning, maintenance, 
passenger deplaning and boarding, and so forth.  During 
visits to airline ground operations centers, key airline 
personnel indicated that the baggage handling process could 
be one bottleneck in the turn process.  Therefore, we 
decided to include baggage handler constraints in the 
ground operations model.  The extent to which these 
constraints explain the variability in the actual turn process 
is discussed later. 
 
During visits made to airline ground operations, airlines 
made last-minute decisions to hold departing aircraft to 
accommodate connecting passengers from a delayed arrival 
flight.  In order to incorporate this decision process into the 
model, the ground operations model explicitly considers 
passenger flows.   If a passenger connection is missed, the 
total delay to that passenger, which is the time until the next 
departure to the same destination, is included in the 
objective function.  This means that the ground operations 
model determines the trade-off of delaying an aircraft to 
allow for passenger connections and re-routing passengers 
who miss connecting flights. 
 
Even after carefully deciding which factors to consider, 
some simplifying assumptions need to be made in order to 
maintain the tractability of the problem.  First, baggage 
handlers are assigned to aircraft irrespective of their 
previous aircraft assignments.  This assumption means a 
baggage handler can be assigned to a different aircraft in 
every time unit.  At most hub airports, however, baggage 
handlers are assigned in teams to a particular aircraft for 
unloading and loading.   Therefore, the resulting assignment 
of baggage handlers may not map to a feasible assignment 
of baggage handler teams. 
 
Second, the ground operations model is a deterministic 
model, meaning there is no stochasticity incorporated in its 
design.  In particular, the taxi-in times of the aircraft are 
assumed constant.  As discussed above and seen in Figures 
18 and 19, this is not true in practice.   The extent to which 
this assumption affects the model remains to be addressed.   
 
Finally, the objective function is measured in passenger-
minutes, which is not a metric directly linked to the airline's 
cost structure. The translation of this metric to dollars is 
difficult. However, the metric does link both operational 
efficiency and the passenger experience, both of which have 

an effect on the profitability of the airline.  Some sensitivity 
analyses with respect to the objective function are discussed 
in [12]. 
 
The specifics behind the formulation of the integer 
programming model are not within the scope of the paper; 
interested readers can refer to [12].  The run time of the 
ground operations model has shown to be acceptable.  
Problems including about 80 aircraft and covering a 3-hour 
time horizon solve in about 1 minute.  A detailed 
description of problem size and run time is included in [12]. 
 
3.3.4 Model Calibration and Validation 
To determine whether the ground operations model is 
effective in predicting departure time, its pushback time 
estimates were compared to those from a simpler, “naïve” 
model.  The naïve model is designed with a constant turn 
time, based on the minimum scheduled turn time.  The basic 
difference between the models, therefore, is that the ground 
operations model provides more flexibility and considers 
ground crew resources and passenger flows in determining 
departure time. 
 
Since the departure times of the aircraft in a particular 
scenario are interdependent in the ground operations model 
(the aircraft share finite resources), multiple independent 
scenarios were considered in order to compare the two 
models.  The metric considered is departure error, defined as 
the model’s prediction of departure time minus the actual 
departure time.  For each scenario and for each model, the 
average departure error and the mean-squared departure 
error were calculated, with the results depicted in Table 3 
below.  The data included in the analysis is for twelve days 
in January, 1998 from 16:00 to 19:15. 
 
Notice that the mean-squared departure errors for the two 
models are significantly different; the ground operations 
model errors are generally significantly smaller than the 
naïve model’s errors.  In fact, a Wilcoxon signed rank test 
confirms that the MSE values for the model are less than 
those for the naïve model with a significance level of 0.2%.  
This implies that the additional factors considered in the 
ground operations model are influencing the turn process 
and are improving the departure time predictions.  However, 
the confidence interval of the average departure delay for 
the ground operations model does not cover zero.  In fact, 
the confidence interval contains only negative numbers.  
This means the ground operation model’s departure time 
estimates tend to be earlier than the actual departure time, 
implying there is some bias in the predictions. 
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Table 3:  The ground operations model produces more accurate 
departure time estimates than the naïve model, however, the errors do 
not cover zero, indicating bias in the ground operations model. 

To better understand this bias, the distributions of the actual 
departure delay and the delay predicted by the ground 
operations model were plotted.  This aggregated analysis is 
necessary because the passenger connection data used in the 
ground operations model is simulated rather than observed 
data, meaning the departure time decisions made for a 
particular aircraft are likely to deviate from actual.   
However, we would expect the delay decisions to be similar 
over the entire set of aircraft.  The distributions for the 
actual delay and the ground operations model delay are 
shown in Figure 28 below.  
 
It is important to note that the data set used to generate 
Figure 28 excludes aircraft for which the difference between 
actual departure delay and actual arrival delay exceeds 40 
minutes.  These data points were excluded because delays of 
that magnitude (greater than 40 minutes) are unlikely to be 
caused by ground crew resource issues, gate availability or 
passenger connections.   Therefore, some factor(s) external 
to the ground operations model influenced the departure 
time.  Despite the omission of these identified data points, 
5% of departures experienced delays exceeded 40 minutes, 
while the ground operations model predicted only 2% of 
departures would incur such delays.  However, these 
excessive actual delays are still likely attributable to factors 

external to the ground operations model.  For example, 
mechanical problems, ground delay programs and delayed 
cockpit crews can all lead to delays of 20 minutes or more.  
If an aircraft is already delayed 20-30 minutes, the departure 
delay exceeds 40 minutes but is still included in the model.   

Histogram of Departure Delays For 12 Days in January, 1998 From 16:00 to 19:15
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Figure 28:  The number of aircraft with predicted delays of 1-4 
minutes is far fewer than the number of aircraft actually incurring 1-4 
minutes of delay.  Further, the number of aircraft with predicted on-
time departures far exceeds the actual number of on-time departures. 

The major difference in the distributions exists at departure 
delays of 1-4 minutes.  The ground operations model 
assigns on-time departures to aircraft that were actually 
delayed 1-4 minutes.  The departure process is an extremely 
complex process involving the synchronization of many 
resources and sub-processes.  Before an aircraft is ready for 
departure the passengers must deplane the arrival and board 
the departure, baggage handlers must unload and load the 
baggage, caterers and cleaning crews must remove rubbish 
and replenish food and beverage supplies, the aircraft must 
be checked for flight safety and refueled, the cabin and 
cockpit crews must arrive and prepare for departure, and so 
forth.   Variability exists in each of these sub-processes.  A 
delay of a few minutes could be caused by numerous factors 
external to the ground operations model. Recent 
improvements in the computational performance of the 
model formulated so far will enable inclusion of some of 
these factors. 
 
It could be possible to adjust the parameters of the ground 
operations model to reduce the differences in the results.  
However, optimizing the parameters, meaning setting the 
parameters to yield departure time predictions close to 
actual departure times, is an extremely difficult challenge.  
The model is sufficiently complicated that it’s impossible to 
determine a priori how the parameter changes will affect the 
solution.  Further, and more importantly, it is difficult to 
identify an optimal parameter setting.   It is unknown how 
much of the deviation from actual departure times is 

 Ground 
Operations 
Model 
Departure 
Error 

Naïve Model  
Departure Error 

Scenario MSE Avg MSE Avg 

1 168.66 -0.33 882.21 6.28 

2 46.95 -2.29 113.31 0.98 
3 46.00 -0.08 107.54 3.74 
4 33.04 -1.71 157.02 3.95 
5 697.38 -5.27 1,347.09 -3.42 
6 563.72 -9.08 1,160.26 -5.86 
7 288.54 -3.73 646.04 1.88 
8 12.67 -0.67 53.27 1.78 
9 16.78 1.07 396.37 8.22 
10 122.09 -5.00 382.53 2.98 
11 572.92 -7.81 2,409.85 0.69 
12 113.02 -4.47 1,757.24 6.07 

Average 223.48 -3.28 784.39 2.28 

Std. Error 248.32 3.17 752.20 3.98 

Lower Bound 82.98 -5.08 358.81 0.02 

Upper Bound 363.98 -1.48 1,209.98 4.53 
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attributable to the use of sub-optimal parameters and how 
much is attributable to including insufficient information 
about the ground operations process in the model.   This is a 
fundamental and new research problem encountered in 
many other types of operations (e.g. military operations) and 
is currently being addressed. 

4 Applications 

The three models discussed in this paper have or are being 
applied to current issues in the air transportation system.   
This section describes three such applications.  First, the 
models can be integrated to improve predictions of aircraft 
movement times on the ground.  Second, the departure 
model can be used to evaluate the impact of congestion 
control on the airport surface.  And finally, a semi-
integrated arrival and ground operations model is being used 
to quantify the benefits of procedural changes and decision 
support tool enhancements. 
 
4.1 Prediction 
One immediate potential application for the three models 
developed for airport operations is to create extend existing 
predictive capabilities to factor in delays due to airport 
operations.   

Arrival Process
(Taxi-In)

Departure Process
(Taxi-Out)

Ground Process
(Gate-Turn)

Airport System

 
Figure 29: Developing an integrated ground-operations model. 

The purpose of such predictive capabilities is to predict 
anticipated congestion periods better and so that appropriate 
measures may be taken. The necessary elements for building 
such a system include the ability to incorporate new 
information as it becomes available (e.g. knowledge of a 
pushback request or knowledge of a take off), and the ability 
to propagate the evolution of the airport system into the 
future. Conceptually, building such a predictive delay 
capability is not new; for example Shumsky in his thesis 
presents departure delay prediction algorithms [3]. The 
value of such a tool depends upon the quality of the models 
used. It also is fundamentally limited by the amount of 
stochastic noise present in the system, which is important in 
the framework of this paper. As a consequence, planned 
delay predictive capabilities relying upon the presented 
models as well as other empirical models [13] will 
necessarily be probabilistic and will include mean values as 

well as standard deviations.  Building such a tool for most 
major US airports is the object of current research and 
development efforts. 

4.2 Departure Congestion Control via Gate-Holding 
Queues 

In [4,11,14], a simple control strategy was proposed and 
investigated to control departure congestion and runway 
queuing.  It is apparent from the departure throughput plots 
that the runway system has a finite capacity.  Based on this 
observation, it was proposed that departing flights could be 
held at the gate if the departure surface congestion exceeded 
some control threshold (denoted “NC”); the held flights 
would be immediately given pushback clearance when the 
departure surface congestion dropped to an acceptable level.   
This control approach is formally identical to the window 
flow control mechanism used in packet switched data 
networks such as TCP/IP networks [15]. This control 
scheme was shown to effectively trade runway queuing 
delays for gate-hold delays at Boston Logan Airport.  This 
tradeoff was deemed worthwhile because gate-hold delays 
are relatively inexpensive in both financial and 
environmental costs, since the aircraft engines are not 
running.  Further investigation indicated that even strict 
adherence to this control scheme would cause only a small 
increase in the occurrence of gate shortages, and would not 
substantially increase total delays. 
 
A similar departure throughput saturation effect can be seen 
at the three airports studied in this paper.  The effect of the 
control scheme proposed above was investigated for ATL 
during segment #3 (secondary runway orientation during 
inclement weather).  Monte Carlo simulations were 
conducted to simulate the behavior of the proposed 
departure process queuing model, with the addition of a 
gate-holding queue whose behavior was controlled by the 
control threshold NC and the departure surface congestion.  
Calibrated distributions of taxi-out times and runway 
throughput were used to simulate the taxi-out process.  The 
system input was taken to be the sequence of actual push 
backs recorded in the ASQP database.   
 
The tradeoffs between runway queuing, gate-hold queuing, 
and total queuing delay are shown below in Figure 30.  Note 
that the simulation results suggest that, at least in the case of 
ATL under the specified conditions, it may be possible to 
directly reduce runway queuing by 40% without increasing 
total queuing delay, and further reductions in runway 
queuing are possible at the expense of increased total delay. 
This is a significant number, which confirms earlier 
estimates for that airport [16]. The percentage of flights that 
are held at the gate for any length of time is indicated in 
Figure 31.  While the results offer strong evidence of 
significant potential environmental savings, more in-depth 
investigation is required to determine whether such a control 
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scheme will cause gate shortages or affect the airlines 
inequitably. 
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Figure 30: Effect of window control scheme on delay distribution 
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Figure 31: Percentage of flights held at gate. 

4.3 Benefits of Alternate Procedures and Improved 
Decision Support Tools 

As noted in the introduction and shown in Figure 32, CTAS 
produces more accurate arrival time estimates than the 
airlines currently use to manage their ground operations [3].  
The improved accuracy of the arrival time estimates could 
translate to more efficient use of ground resources.  
Furthermore, procedural changes combined with new or 
modified decision support tools could take airline sequence 
preferences into account when merging arriving aircraft.  
Therefore, an airline could potentially influence the order in 
which its arriving traffic landed.  
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Figure 32: Arrival management tools such as CTAS provides more 
accurate arrival time estimates at Hub Airports than airlines currently 
uses to manage their ground operations 

To measure the potential benefits of sharing improved 
arrival time estimates with the airlines and of incorporating 
airline preferences in the sequence, an integrated arrival and 
ground operations model is necessary.  This integrated 
model would determine the times of landing, arrival at gate 
and pushback from gate in order to minimize delays under 
resource constraints.  Ideally, the model would integrate the 
model structures of the arrival model and ground operations 
model discussed above.  In effect, a queuing model would 
determine the taxi-in and gate arrival times, while the 
optimization model would determine each aircraft’s 
movement times including landing, arrival at gate, and  
pushback from gate.  However, the implementation of this is 
not feasible at this point.  The queuing model requires as 
input the congestion levels of arriving aircraft, meaning the 
landing times would have to be given.  The optimization 
model, on the other hand, solves for landing, arrival at gate 
and push back times, given taxi-in time as an input.  It is 
impossible to solve these problems simultaneously.  A 
heuristic approach wherein the models are solved iteratively 
until they converge on an optimal solution is under 
development. 
 
For now, we have designed the Airline Sequencing Model 
(ASM), an optimization model based on the aircraft turn 
model presented earlier, that considers departure schedule, 
physical gate resource and ground crew resource constraints 
in determining an arrival sequence that minimizes passenger 
delay.   In this model, the taxi-in time is assumed to be 
constant.  All constraints considered in the ground 
operations model discussed in the previous section are 
included in ASM.  A number of additional constraints are 
included in ASM to restrict the landing and arrival at gate 
times.  First, the model prevents an aircraft from arriving at 
the gate until it has landed and taxied to the gate.  Another 
important consideration in the model is airline fairness, 
meaning ASM guarantees that an airline does not improve 
its operational performance at the expense of another 
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airline's.  Fixing the airline’s landing times in the model 
enforces airline fairness; an airline is allowed to shuffle 
aircraft landing times only within its set of input landing 
times.   Finally, ASM considers gate compatibility and 
availability.  An arriving aircraft can only come to the gates 
if a gate compatible with its aircraft type is available.  
Further details of this model and the results from the 
analysis are included in [12]. 
 
It is also important to note that ASM can eventually be used 
by an airline to manage its arriving aircraft.  Assuming that 
new procedures incorporated the capability for preferential 
arrival sequencing, an airline could use ASM to determine 
its optimal sequence.  Since ASM solutions are generated 
quickly [12], its solutions can be incorporated into the 
models currently used by the airlines to help manage gate 
and ground crew resources. 

5 Conclusion 

This paper has considered modeling operations at busy hub 
airports. Models of aircraft arrival, turn-around and 
departure operations have been proposed that account for 
the dominant airport dynamics at each stage. These models 
have been calibrated. It was shown how these models can be 
concatenated to build an airport congestion prediction 
capability, and how these models can be used to evaluate 
some improvements in airport operations. 
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