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Abstract

We consider the problem of constructing a directed acyclic graph that encodes temporal
relations found in a text. The unit of our analysis is a temporal segment, a fragment of
text that maintains temporal coherence. The strength of our approach lies in its ability to
simultaneously optimize pairwise ordering preferences and global constraints on the graph
topology. Our learning method achieves 83% F-measure in temporal segmentation and
84% accuracy in inferring temporal relations between two segments.
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Chapter 1

Introduction

Understanding the temporal flow of discourse is a significant aspect of text comprehen-

sion. Consequently, temporal analysis has been a focus of linguistic research for quite

some time. Temporal interpretation encompasses levels ranging from the syntactic to the

lexico-semantic [23, 20] and includes the characterization of temporal discourse in terms

of rhetorical structure and pragmatic relations [10, 25, 21, 16].

Besides its linguistic significance, temporal analysis has important practical implica-

tions. In multidocument summarization, knowledge about the temporal order of events can

enhance both the content selection and the summary generation processes [2]. In ques-

tion answering, temporal analysis is needed to determine when a particular event occurs

and how events relate to each other. Some of these needs can be addressed by emerging

technologies for temporal analysis [27, 18, 15, 4].

This thesis characterizes the temporal flow of discourse in terms of temporal segments

and their ordering. We define a temporal segment to be a fragment of text that does not

exhibit abrupt changes in temporal focus [26]. A segment may contain more than one

event or state, but the key requirement is that its elements maintain temporal coherence. For

instance, a medical case summary may contain segments describing a patient's admission,

his previous hospital visit, and the onset of his original symptoms. Each of these segments

corresponds to a different time frame, and is clearly delineated as such in a text.

Our ultimate goal is to automatically construct a graph that encodes ordering between

temporal segments. The key premise is that in a coherent document, temporal progression



is reflected in a wide range of linguistic features and contextual dependencies. In some

cases, clues to segment ordering are embedded in the segments themselves. For instance,

given a pair of adjacent segments, the temporal adverb next day in the second segment

is a strong predictor of a precedence relation. In other cases, we can predict the right

order between a pair of segments by analyzing their relation to other segments in the text.

The interaction between pairwise ordering decisions can easily be formalized in terms of

constraints on the graph topology. An obvious example of such a constraint is prohibiting

cycles in the ordering graph. We show how these complementary sources of information

can be incorporated in a model using global inference.

We evaluate our temporal ordering algorithm on a corpus of medical case summaries.

Temporal analysis in this domain is challenging in several respects: a typical summary

exhibits no significant tense or aspect variations and contains few absolute time markers.

We demonstrate that humans can reliably mark temporal segments and determine segment

ordering in this domain. Our learning method achieves 83% F-measure in temporal seg-

mentation and 84% accuracy in inferring temporal relations between two segments.

Our contributions are twofold:

Temporal Segmentation We propose a fully automatic, linguistically rich model for

temporal segmentation. Most work on temporal analysis is done on a finer granularity than

proposed here. Our results show that the coarse granularity of our representation facilitates

temporal analysis and is especially suitable for domains with sparse temporal anchors.

Segment Ordering We introduce a new method for learning temporal ordering. In con-

trast to existing methods that focus on pairwise ordering, we explore strategies for global

temporal inference. The strength of the proposed model lies in its ability to simultaneously

optimize pairwise ordering preferences and global constraints on graph topology. While

the algorithm has been applied at the segment level, it can be used with other temporal

annotation schemes.



Chapter 2

Related Work

Temporal ordering has been extensively studied in computational linguistics [21, 26, 14,

16, 17]. Prior research has investigated a variety of language mechanisms and knowledge

sources that guide interpretation of temporal ordering, including tense, aspect, temporal

adverbials, rhetorical relations and pragmatic constraints. In recent years, the availability

of annotated corpora, such as TimeBank [22], has triggered the use of machine-learning

methods for temporal analysis [18, 15, 4]. Typical tasks include identification of temporal

anchors, linking events to times, and temporal ordering of events.

Since this thesis addresses temporal ordering, we focus our discussion on this task. Ex-

isting ordering approaches vary both in terms of the ordering unit - it can be a clause,

a sentence or an event - and in terms of the set of ordering relations considered by the

algorithm. Despite these differences, most existing methods have the same basic design:

each pair of ordering units (i.e., clauses) is abstracted into a feature vector and a supervised

classifier is employed to learn the mapping between feature vectors and their labels. Fea-

tures used in classification include aspect, modality, event class, and lexical representation.

It is important to note that the classification for each pair is performed independently and

is not guaranteed to yield a globally consistent order.

In contrast, our focus is on globally optimal temporal inference. While the importance

of global constraints has been previously validated in symbolic systems for temporal anal-

ysis [11, 28], existing corpus-based approaches operate at the local level. These improve-

ments achieved by a global model motivate its use as an alternative to existing pairwise



methods.



Chapter 3

Representation of Temporal Flow

3.1 Introduction

Our goal is to learn the chronological order of events found in narrative text. To do so, we

propose a two-layer annotation scheme for text that specifies temporal order.

Temporal Segments We see the text as a sequence of temporal segments, where the

temporal focus within each temporal segment is constant, but there are abrupt changes in

temporal focus between segments. The first layer of annotation is the segment boundaries

marked in the text.

Temporal Directed Acyclic Graphs (TDAGs) Building on temporal segments as nodes,

we represent chronological precedence relations found in a text with a Temporal Directed

Acyclic Graph (TDAG). If two temporal segments have a chronological order, the TDAG

corresponding to the text has a directed edge from the earlier to the later segment. Unre-

lated temporal segments do not have a connection in the TDAG.

This chapter begins with a detailed definition of the representation and annotation scheme.

We conclude with a comparison between our approach and the pre-existing approaches, as

well as discussion of the strengths and weaknesses of our representation and annotation.



S13 S1

S1 A 32-year-old woman was admitted to the hospital because of left subcostal pain...
S2 The patient had been well until four years earlier,
S5 Three months before admission an evaluation elsewhere included an ultrasono-

graphic examination, a computed tomographic (CT) scan of the abdomen...
S7 She had a history of eczema and of asthma...
S8 She had lost 18 kg in weight during the preceding 18 months.

S13 On examination the patient was slim and appeared well. An abdominal examination
revealed a soft systolic bruit... and a neurologic examination was normal...

Figure 3-1: An example of the transitive reduction of a TDAG for a case summary. A
sample of segments corresponding to the nodes marked in bold is shown in the table.

3.2 Representation

3.2.1 Temporal Segments

We claim that blocks of temporally related, textually sequential clauses - which we call

temporal segments - are the language vehicle for communicating narratives. We view

text as a sequence of temporal segments. The length of a segment can range from a single

clause to a sequence of adjacent sentences. Temporal focus is retained within a segment,

but fundamentally changes between segments. We argue that for the purposes of the com-

munication of the text to the reader, events within a segment occur at single time.

When writers communicate a narrative, they do not time-stamp every event or state-

clause with an explicit reference to time. Rather, for the majority of events, they demarcate

chronological progression with grammar or discourse structure that relates clauses to more

temporally explicit statements.

Consider the following example:

A 12-year-old boy was evaluated in the hematology clinic of this hospital...

For one week, he had had fatigue that had caused him to miss school, and his

appetite had decreased. He also had intermittent cramping, pain in his arms and



legs, and anterior chest pain that was worse with movement, deep breathing,

and coughing. (Case 19-2004, NEJM Corpus)

Based on the above passage, readers can understand that the boy was evaluated at some

time in the past. They can also interpret that, for a week before the clinic visit, the boy

had the symptoms described in the latter lines of the excerpt. Although the statements

about symptoms contain some temporal information (e.g. they are all in the past tense),

the strongest evidence for their position in the order of events can be determined from the

words "for one week, he had had..."

The second and third sentences of the example form a temporal segment: they are a

set of textually contiguous phrases that happened at the same time. However, note that the

event clauses within the temporal segment do not necessarily start, end or progress together.

In fact, we could clarify the text (without contradicting it) with additional text to the effect

that the symptoms had occurred in some specific order: "his decreased appetite caused the

fatigue," "the cramping symptoms only appeared on the last day before his evaluation at

the clinic," or "he missed the second and third day of school that week." All we mean by

calling the sentences a temporal segment is that the author of the text is not communicating

to us information that specifies and order between the events; the author grouped the events

to share a temporal reference.

The first sentence ("A 12 year-old boy was evaluated") also qualifies as a temporal

segment, if we do not consider the context of the excerpt. It is distinct from the temporal

segment of symptoms because it clearly happens at another time.

Consider these illustrative examples of where temporal segment boundaries occur. Each

segment boundary is marked with "####":

* "Periumbilical pain had begun the day before the initial admission, #### after the

patient had eaten cookies and an apple" (Case 21-2000). "After" indicated that eating

the cookies is in a different temporal segment from the pain that followed.

* "#### The abdominal pain worsened." (Case 21-2000). The verb indicates a change

in pain from whatever the pain intensity was before. A new temporal segment begins.



* "The temperature was 37.8 degrees Celsius, the pulse was... #### On physical ex-

amination, the patient appeared to be comfortable at rest" (Case 20-1997). This

boundary is based on world knowledge: A segment boundary belongs here because

patient's vital signs are taken first, before physical examination.

In figure 3-1 there are more examples of temporal segmentation.

Annotators received detailed instructions (see Appendix). The annotation guidelines

first introduce the concept of temporal segments, giving an intuitive explanation. The direc-

tions also include prototypical examples, common misconceptions, and default annotation

procedure for certain ambiguous situations.

3.2.2 Temporal Directed Acyclic Graphs

We represent the order of events as a Temporal Directed Acyclic Graph (TDAG), one per

narrative document. We define a TDAG as follows: Edges capture chronological prece-

dence relations between nodes, where nodes represent text from the document. However,

for a TDAG, precedence means that two nodes can be ordered if the start of one node clearly

precedes start of the other. Because the graph encodes an order, cycles are prohibited. We

do not require the graph to be fully connected if the precedence relation between two nodes

is not specified in the text, then the corresponding nodes are not to be connected; where

the contents of two TDAG nodes cannot be ordered, then there should be no edge between

them.

We use the nodes of the TDAG to represent temporal segments. The combined repre-

sentation is a meaningful abstraction: it is the temporal order between segments of text,

each of which has a unifying internal temporal focus. For properly segmented text, all

clauses within each segment correctly inherit from their parent segments the chronological

relationships that their parent segments have.

Returning to the isolated examples above, the order required in the TDAG is clear. In

each of these two cases, the progression is clearly forward.

* "Periumbilical pain had begun the day before the initial admission, (FORWARD)

after the patient had eaten cookies and an apple" (Case 21-2000).



* "The temperature was 37.8 degrees Celsius, the pulse was... (FORWARD) On phys-

ical examination, the patient appeared to be comfortable at rest" (Case 20-1997).

Figure 3-1 shows a sample of several temporal segments from a medical case summary.

Consider the segment S13 of this text. This segment describes an examination of a patient,

encompassing several events and states (i.e., an abdominal and neurological examination).

All of them belong to the same time frame; the chronological order between these events

is not explicitly outlined in the text.

We can infer the order between most segments by transitivity. For example, S2 in

Figure 3-1 precedes all events. S8, which started 18 months ago, precedes S5, which began

three months ago. S13, which happened at the hospital, follows admission, S1, and all

events that came before admission. The figure also includes segments that are not easy

to order, even though they are textually and temporally close. For instance, consider the

segments S5 and S7, which describe the patient's previous tests and her history of eczema.

Any order between the two events is consistent with our interpretation of the text, therefore

we cannot determine the precedence relation between the segments S5 and S7.

For our task, we add another component to the TDAG definition: some statements about

the patient in the document cannot be ordered with respect to other events. For example,

"the patient often gardened" is somewhat "out of time". It is typically impossible to read

from the text the starting time of these statements. However, we do know that these fact-

statements were included because they were relevant for the hospital stay: therefore, they

must predate the hospital admission time.

Another way we look at these "out of time" statements is as being related to what

we will call the central event time of the case history. This is distinct from speech time,

reference time, and document time [23]. The central event of our medical case records

is the primary hospital admission. Using hospital admission time was sensible from the

standpoint of Medical Informatics because patient attributes that have a very vague event

time are included as relevant attributes with respect to the time of admission. The patient

attributes are relevant to medical community readers of the case records because the patient

has the attributes when she is admitted.

An example is in Figure 3-1, S7, is interpreted as a statement about the patient, all



we know is that the history of eczema was present before admission. Annotators were

given a simple description of the TDAG representation. They were also given several

example documents and their associated TDAGs. Annotators claimed the task was easy

to understand.

3.2.3 Other Temporal Representations

In contrast to many existing temporal representations [1, 22], TDAG is a coarse annotation

scheme: it does not capture interval overlap and distinguishes only a subset of commonly

used ordering relations. Our choice of this representation, however, is not arbitrary. The

selected relations are shown to be useful in text processing applications [28] and can be

reliably recognized by humans. Moreover, the distribution of event ordering links under a

more refined annotation scheme, such as TimeML, shows that our subset of relations covers

a majority of annotated links [22].

3.3 Strengths and Weaknesses of Temporal Segments &

TDAGs

In this section, we first discuss criteria for evaluating temporal representation schemes and

annotation. Having established the criteria, we analyze the strengths and the weaknesses

of our approach, paying particular attention to how it compares with other temporal repre-

sentations.

3.3.1 Standards for a Temporal Annotation Scheme

There are several criteria to keep in mind. Mani, Wilson, Ferro, and Sundheim in [19]

suggest the following evaluation criteria for an annotation scheme:

* Simplicity with Precision: Simple enough to be used by humans, yet precise for

natural language processing tasks.



* Naturalness: Able to reflect the full range of temporal distinctions which humans are

capable of annotating.

* Expressiveness: Able to fully express the information present in the text, to whatever

extent humans are capable of annotating.

* Reproducibility: Consistent examples are available for annotators and are easy to

create.

For practicality, we amend these standards with one more requirement:

* Computability: The representation should be computationally tractable for whatever

task it is intended.

As noted by Mani and his colleagues, a fully natural annotation scheme will be beyond

the reach of current automatic systems. Ideally, our annotation scheme would be a subset

of the more complete schema, but it is not easy to extract our representation of temporal

segments and TDAGs from more intricate temporal annotation schemes. To satisfy the

computability criteria for our statistical NLP approach, we sacrifice some naturalness and

expressiveness. However, the temporal relations we can extract with our approach are

significant and useful.

3.3.2 Strengths of our Representation and Annotation Scheme

In this section we consider the strengths of our approach. The annotation represents the

most valuable information in a concise, computable form. Annotators demonstrated strong

comprehension the annotation task and we have high inter-annotator agreement. In addi-

tion, our work has ramifications for linguistics.

The Representation Effectively Reveals the Most Valuable Information

Paul Grice [12], first stated the cooperative principal of Pragmatics, "Make your contri-

bution such as it is required, at the stage at which it occurs, by the accepted purpose or

direction of the talk exchange in which you are engaged." The cooperative principal claims



that people tend to form their communications to effectively and efficiently transfer infor-

mation. The cooperative principal gives rise to Grice's four maxims of conversation, widely

recognized as foundational in Semantics Pragmatics: the maxims of quality, quantity, rel-

evance, and clarity.

The Maxims Give Credence to the Concept of Temporal Segments

Quantity and Relevance: make your communication as informative as required, and not

more so. Writers communicate in temporal segments because they are trying to communi-

cate the information that is most important, not all the information associated with every

event. Temporal Segments and TDAGs are an attempt to represent the information that

authors are trying to communicate.

* Clarity: be brief, unambiguous, and orderly. Temporal segments are orderly; seg-

ments are an efficient mechanism authors use to be brief without being ambiguous.

* Quality: do not say that for which you do not have complete evidence. Linguists

claim that the Gricean Maxims can be viewed from the listeners' standpoint. Tem-

poral Segmentation and TDAGs are minimalist and do not try to extract information

that is not clearly delineated in the text. Temporal Segmentation is an attempt to put

text with uncertain temporal order into blocks, because the blocks can be ordered

with more certainty.

Naturalness - Ease of Annotation

Annotators found the segmentation and segment ordering tasks straightforward. Upon

hearing an intuitive explanation of the representation and seeing an example document,

annotators understood almost immediately what temporal segments and precedence graphs

represented. For temporal segmentation, a page of specific instructions was required to

make the annotators aware of non-obvious and easily missed segment boundary decision

factors. Take for example, "the child's mother said he had run a high fever." The relevant

event is the high fever, not the mother's speech. Subtleties like this one can have an effect

on the segmentation.



Reproducibility - Inter-Annotator Agreement

As we will show with formal agreement results in Chapter 6, there was high inter-annotator

agreement. Inter-annotator agreement is proof we have reproducibility.

Computability - For Accuracy

Insofar as segmentation of text into temporal segments is accurate, segmentation can im-

prove temporal ordering accuracy. If the segments are linguistically correct, the aggrega-

tion of information from distinct atomic event-clauses into temporal segments means there

is more information on which to base ordering decisions. When we did attempt to apply

our temporal ordering methods to an unsegmented text, the methods performed very poorly

see Chapter 7.

Computability - For Speed

Without segmenting into temporally consistent chunks, a time precedence graph among all

events must order each event in the text with respect to all other events. For the documents

in our medical records corpus, chunking into temporal segments dramatically reduces the

number of units that must be ordered (from an average of well over a hundred per document

to under thirty). This difference increases by an order of magnitude when relation between

all node pairs is known after full transitive closure is applied to the TDAGs. To expose

enough information for learning, transitive closure is required.

Advantage for Linguistics

Our work is a real world test of a concept of temporal segments similar to Webber's con-

cept of temporal focus [25]. Success of the representation constitutes a confirmation of a

theory in Discourse Linguistics. To a lesser extent, success of the TDAG representation

also benefit linguistics: Features that prove useful for learning the temporal ordering could

help linguists understand what linguistic cues help people order events.



3.3.3 Disadvantages

The annotation scheme of temporal segments and TDAGs has one major shortcoming: it

is coarse. However, compared to other annotation standards, our annotation scheme is less

expressive.

Limited Relations

While other schemes are expressive and natural, with broad coverage of temporal relations,

we represent only one. We could argue that temporal segments give us some knowledge of

the relations between clauses within the temporal segment. However, temporal segments

often contain both events ordered as by the narrative-progressive (precedence) relation and

events that are truly contemporaneous. In reality, temporal segments only tell us that there

is not enough evidence to order the events within the temporal segment. The only strong

claim is that for the purposes of the text, we can view the contents of temporal segments

as concurrent and we know that the clauses within two temporal segments have the same

temporal order as their parent segments.

Further Limitations

Intervals are represented in virtually all other schemas. Some also represent event repeat

frequency. We only guarantee the start time of each temporal segment. In some situations

interval annotation could be very useful: "The patient had a high fever for two weeks" tells

us something different than "the patient had a high fever for two days."

However, our representation does not eliminate any information about temporal order,

frequency, or intervals. Therefore, as a pre-processing step, our representation and method

would only help, not hinder, a system designed to extract more information.

3.3.4 Unresolved Questions Regarding the Annotation Scheme

Cross-Language Portability Some other temporal annotation schemes have been evaluated

for language portability. Though we strongly suspect that temporal segments and TDAGs

will generalize well to other languages, we have not investigated language portability.



Chapter 4

Method for Temporal Segmentation

Our first goal is to automatically predict shifts in temporal focus that are indicative of

segment boundaries. Linguistic studies show that speakers and writers employ a wide range

of language devices to signal change in temporal discourse [3]. For instance, the presence

of the temporal anchor last year indicates the lack of temporal continuity between the

current and the previous sentence. However, many of these predictors are heavily context-

dependent and, thus, cannot be considered independently. Instead of manually crafting

complex rules controlling feature interaction, we opt to learn them from data.

We model temporal segmentation as a binary classification task. Given a set of candi-

date boundaries (e.g., sentence boundaries), our task is to select a subset of the boundaries

that delineate temporal segment transitions. To implement this approach, we first identify

a set of potential boundaries. Our analysis of the manually-annotated corpus reveals that

boundaries can occur not only between sentences, but also within a sentence, at the bound-

ary of syntactic clauses. We automatically segment sentences into clauses using a robust

statistical parser [6]. Next, we encode each boundary as a vector of features. Given a set

of annotated examples, we train a classifier1 to predict boundaries based on the following

feature set:

Lexical Features Temporal expressions, such as tomorrow and earlier, are among the

strongest markers of temporal discontinuity [21, 3]. In addition to a well-studied set of

domain-independent temporal markers, there are a variety of domain-specific temporal

' BoosTexter package [24].



markers. For instance, the phrase initial hospital visit functions as a time anchor in the

medical domain.

To automatically extract these expressions, we provide a classifier with n-grams from

each of the candidate sentences preceding and following the candidate segment boundary.

Topical Continuity Temporal segmentation is closely related to topical segmentation [5].

Transitions from one topic to another may indicate changes in temporal flow and, therefore,

identifying such transitions is relevant for temporal segmentation.

We quantify the strength of a topic change by computing a cosine similarity between

sentences bordering the proposed segmentation. This measure is commonly used in topic

segmentation [13] under the assumption that change in lexical distribution corresponds to

topical change.

Positional Features Some parts of the document are more likely to exhibit tempo-

ral change than others. This property is related to patterns in discourse organization of a

document as a whole. For instance, a medical case summary first discusses various devel-

opments in the medical history of a patient and then focuses on his current conditions. As

a result, the first part of the summary contains many short temporal segments. We encode

positional features by recording the relative position of a sentence in a document.

Syntactic Features Because our segment boundaries are considered at the clausal level,

rather than at the sentence level, the syntax surrounding a hypothesized boundary may be

indicative of temporal shifts. This feature takes into account the position of a word with

respect to the boundary. For each word within three words of the hypothesized boundary,

we record its part-of-speech tag along with its distance from the boundary. For exam-

ple, NNP+i encodes the presence of a proper noun immediately following the proposed

boundary.



Chapter 5

Learning to Order Segments

Our next goal is to automatically construct a graph that encodes ordering relations between

temporal segments. One possible approach is to cast graph construction as a standard bi-

nary classification task: predict an ordering for each pair of distinct segments based on their

attributes alone. If a pair contains a temporal marker, like later, then accurate prediction

is feasible. In fact, this method is commonly used in event ordering [18, 15, 4]. However,

many segment pairs lack temporal markers and other explicit cues for ordering. Determin-

ing their relation out of context can be difficult, even for humans. Moreover, by treating

each segment pair in isolation, we cannot guarantee that all the pairwise assignments are

consistent with each other and yield a valid TDAG.

Rather than ordering each pair separately, our ordering model relies on global inference.

Given the pairwise ordering predictions of a local classifier', our model finds a globally op-

timal assignment. In essence, the algorithm constructs a graph that is maximally consistent

with individual ordering preferences of each segment pair and at the same time satisfies

graph-level constraints on the TDAG topology.

In Section 5.2, we present three global inference strategies that vary in their computa-

tional and linguistic complexity. But first we present our underlying local ordering model.

'The perceptron classifier.



5.1 Learning Pairwise Ordering

Given a pair of segments (i, j), our goal is to assign it to one of three classes: forward,

backward, and null (not connected). We generate the training data by using all pairs of

segments (i, j) that belong to the same document, such that i appears before j in the text.

The features we consider for the pairwise ordering task are similar to ones used in

previous research on event ordering [18, 15, 4]. Below we briefly summarize these features.

Lexical Features This class of features captures temporal markers and other phrases

indicative of order between two segments. Representative examples in this category include

domain-independent cues like years earlier and domain-specific markers like during next

visit. To automatically identify these phrases, we provide a classifier with two sets of n-

grams extracted from the first and the second segments. The classifier then learns phrases

with high predictive power.

Temporal Anchor Comparison Temporal anchors are one of the strongest cues for the

ordering of events in text. For instance, medical case summaries use phrases like two days

before admission and one day before admission to express relative order between events. If

the two segments contain temporal anchors, we can determine their ordering by comparing

the relation between the two anchors. We identified a set of temporal anchors commonly

used in the medical domain and devised a small set of regular expressions for their com-

parison.2 The corresponding feature has three values that encode preceding, following and

incompatible relations.

Segment Adjacency Feature Multiple studies have shown that two subsequent sen-

tences are likely to follow a chronological progression [3]. To encode this information, we

include a binary feature that captures the adjacency relation between two segments.

5.2 Global Inference Strategies for Segment Ordering

Given the scores (or probabilities) of all pairwise edges produced by a local classifier, our

task is to construct a TDAG. In this section, we describe three inference strategies that aim

2We could not use standard tools for extraction and analysis of temporal anchors as they were developed
on the newspaper corpora, and are not suitable for analysis of medical text [27].



to find a consistent ordering between all segment pairs. These strategies vary significantly

in terms of linguistic motivation and computational complexity. Examples of automatically

constructed TDAGs derived from different inference strategies are shown in Figure 7.

5.2.1 Greedy Inference in Natural Reading Order (NRO)

The simplest way to construct a consistent TDAG is by adding segments in the order of

their appearance in a text. Intuitively speaking, this technique processes segments in the

same order as a reader of the text. The motivation underlying this approach is that the reader

incrementally builds temporal interpretation of a text; when a new piece of information is

introduced, the reader knows how to relate it to already processed text.

This technique starts with an empty graph and incrementally adds nodes in order of

their appearance in the text. When a new node is added, we greedily select the edge with

the highest score that connects the new node to the existing graph, without violating the

consistency of the TDAG. Next, we expand the graph with its transitive closure. We con-

tinue greedily adding edges and applying transitive closure until the new node is connected

to all other nodes already in the TDAG. The process continues until all the nodes have been

added to the graph.

5.2.2 Greedy Best-first Inference (BF)

Our second inference strategy is also greedy. It aims to optimize the score of the graph. The

score of the graph is computed by summing the scores of its edges. While this greedy strat-

egy is not guaranteed to find the optimal solution, it finds a reasonable approximation [7].

This method begins by sorting the edges by their score. Starting with an empty graph,

we add one edge at a time, without violating the consistency constraints. As in the previous

strategy, at each step we expand the graph with its transitive closure. We continue this

process until all the edges have been considered.



5.2.3 Exact Inference with Integer Linear Programming (ILP)

We can cast the task of constructing a globally optimal TDAG as an optimization problem.

In contrast to the previous approaches, the method is not greedy. It computes the optimal

solution within the Integer Linear Programming (ILP) framework.

For a document with N segments, each pair of segments (i, j) can be related in the

graph in one of three ways: forward, backward, and null (not connected). Let sij, s j,-j

and si,.,j be the scores assigned by a local classifier to each of the three relations respec-

tively. Let Ij, Ij, and I,,j be indicator variables that are set to 1 if the corresponding

relation is active, or 0 otherwise.

The objective is then to optimize the score of a TDAG by maximizing the sum of the

scores of all edges in the graph:

N N

max si-+i + Si1-y + si-Aim (5.1)
i=1 j=i+i

subject to:

I j, Ij, Ii.,j E {0, 1} V i, j = 1, ... N,li < j (5.2)

Iij + Iij + Imj = 1 V i,j = 1,... N, i < j (5.3)

We augment this basic formulation with two more sets of constraints to enforce validity of

the constructed TDAG.

Transitivity Constraints The key requirement on the edge assignment is the transitivity

of the resulting graph. Transitivity also guarantees that the graph does not have cycles. We

enforce transitivity by introducing the following constraint for every triple (i, j, k):

1Ij4 + j--+k - 1 <_ I--k (5.4)

If both indicator variables on the left side of the inequality are set to 1, then the indicator

variable on the right side must be equal to 1. Otherwise, the indicator variable on the right

can take any value.



Connectivity Constraints The connectivity constraint states that each node i is con-

nected to at least one other node and thereby enforces connectivity of the generated TDAG.

We introduce these constraints because manually-constructed TDAGs do not have any dis-

connected nodes. This observation is consistent with the intuition that the reader is capable

to order a segment with respect to other segments in the TDAG.

i-1 N

( Iiýy + 1 Ij,) < N - 1 (5.5)
j=1 j=i+1

The above constraint rules out edge assignments in which node i has null edges to the rest

of the nodes.

Solving ILP Solving an integer linear program is NP-hard [9]. Fortunately, there exist

several strategies for solving ILPs. We employ an efficient Mixed Integer Programming

solver lpsolve3 which implements the Branch-and-Bound algorithm. It takes less than five

seconds to decode each document on a 2.8 GHz Intel Xeon machine.

3
http://groups.yahoo.com/group/lp_solve





Chapter 6

Evaluation Set-Up

We first describe the corpora used in our experiments and the results of human agreement

on the segmentation and the ordering tasks. Then, we introduce the evaluation measures

that we use to assess the performance of our model.

6.1 Corpus Characteristics

We applied our method for temporal ordering to a corpus of medical case summaries. The

medical domain has been a popular testbed for methods for automatic temporal analyz-

ers [8, 28]. The appeal is partly due to rich temporal structure of these documents and the

practical need to parse this structure for meaningful processing of medical data.

We compiled a corpus of medical case summaries from the online edition of The New

England Journal of Medicine.' The summaries are written by physicians of Massachusetts

General Hospital. A typical summary describes an admission status, previous diseases

related to the current conditions and their treatments, family history, and the current course

of treatment. For privacy protection, names and dates are removed from the summaries

before publication.

The average length of a summary is 47 sentences. The summaries are written in the

past tense, and a typical summary does not include instances of the past perfect. The

summaries do not follow a chronological order. The ordering of information in this domain

http: / ,content.nejm.org



is guided by stylistic conventions (i.e., symptoms are presented before treatment) and the

relevance of information to the current conditions (i.e., previous onset of the same disease

is summarized before the description of other diseases).

6.2 Annotating Temporal Segmentation

Our approach for temporal segmentation requires annotated data for supervised training.

We first conducted a pilot study to assess the human agreement on the task. We employed

two annotators to manually segment a portion of our corpus. The annotators were provided

with two-page instructions that defined the notion of a temporal segment and included

examples of segmented texts. Each annotator segmented eight summaries which on aver-

age contained 49 sentences. Because annotators were instructed to consider segmentation

boundaries at the level of a clause, there were 877 potential boundaries. The first annota-

tor created 168 boundaries, while the second - 224 boundaries. We computed a Kappa

coefficient of 0.71 indicating a high inter-annotator agreement and thereby confirming our

hypothesis about the reliability of temporal segmentation.

Once we established high inter-annotator agreement on the pilot study, one annotator

segmented the remaining 52 documents in the corpus. 2 Among 3,297 potential bound-

aries, 1,178 (35.7%) were identified by the annotator as segment boundaries. The average

segment length is three sentences, and a typical document contains around 20 segments.

6.3 Annotating Temporal Ordering

To assess the inter-annotator agreement, we asked two human annotators to construct

TDAGs from five manually segmented summaries. These summaries consist of 97 seg-

ments, and their transitive closure contain a total of 1,331 edges. We computed the agree-

ment between human judges by comparing the transitive closure of the TDAGs. The anno-

tators achieved a surprisingly high agreement with a Kappa value of 0.98.

After verifying human agreement on this task, one of the annotators constructed TDAGs

2It took approximately 20 minutes to segment a case summary.



for another 25 summaries. 3 The transitive reduction of a graph contains on average 20.9

nodes and 20.5 edges. The corpus consists of 72% forward, 12% backward and 16% null

segment edges inclusive of edges induced by transitive closure. At the clause level, the

distribution is even more skewed - forward edges account for 74% edges, equal for 18%,

backward for 3% and null for 5%.

6.4 Evaluation Measures

We evaluate temporal segmentation by considering the ratio of correctly predicted bound-

aries. We quantify the performance using F-measure, a commonly used binary classifica-

tion metric. We opt not to use the Pk measure, a standard topical segmentation measure,

because the temporal segments are short and we are only interested in the identification of

the exact boundaries.

Our second evaluation task is concerned with ordering manually annotated segments.

In these experiments, we compare an automatically generated TDAG against the annotated

reference graph. In essence, we compare edge assignment in the transitive closure of two

TDAGs, where each edge can be classified into one of the three types: forward, backward,

or null.

Our final evaluation is performed at the clausal level. In this case, each edge can be

classified into one of the four classes: forward, backward, equal, or null. Note that the

clause-level analysis allows us to compare TDAGs based on the automatically derived seg-

mentation.

31t took approximately one hour to build a TDAG for each segmented document.





Chapter 7

Results

We evaluate temporal segmentation using leave-one-out cross-validation on our corpus of

60 summaries. The segmentation algorithm achieves a performance of 83% F-measure,

with a recall of 78% and a precision of 89%.

To evaluate segment ordering, we employ leave-one-out cross-validation on 30 anno-

tated TDAGs that overall contain 13,088 edges in their transitive closure. In addition to the

three global inference algorithms, we include a majority baseline that classifies all edges as

forward, yielding a chronological order.

Our results for ordering the manually annotated temporal segments are shown in Ta-

ble 7.1. All inference methods outperform the baseline, and their performance is consistent

with the complexity of the inference mechanism. As expected, the ILP strategy, which

supports exact global inference, achieves the best performance - 84.3%.

An additional point of comparison is the accuracy of the pairwise classification, prior to

the application of global inference. The accuracy of the local ordering is 81.6%, which is

lower than that of ILP. The superior performance of ILP demonstrates that accurate global

inference can further refine local predictions. Surprisingly, the local classifier yields a

higher accuracy than the two other inference strategies. Note, however, the local ordering

procedure is not guaranteed to produce a consistent TDAG, and thus the local classifier

cannot be used on its own to produce a valid TDAG.

Table 7.2 shows the ordering results at the clausal level. The four-way classification

is computed using both manually and automatically generated segments. Pairs of clauses



Algorithm Accuracy
Integer Linear Programming (ILP) 84.3
Best First (BF) 78.3
Natural Reading Order (NRO) 74.3
Baseline 72.2

Table 7.1: Accuracy for 3-way ordering classification over manually-constructed segments.

that belong to the same segment stand in the equal relation, otherwise they have the same

ordering relation as the segments to which they belong.

On the clausal level, the difference between the performance of ILP and BF is blurred.

When evaluated on manually-constructed segments, ILP outperforms BF by less than 1%.

This unexpected result can be explained by the skewed distribution of edge types - the two

hardest edge types to classify (see Table 7.3), backward and null, account only for 7.4% of

all edges at the clause level.

When evaluated on automatically segmented text, ILP performs slightly worse than

BF. We hypothesize that this result can be explained by the difference between training and

testing conditions for the pairwise classifier: the classifier is trained on manually-computed

segments and is tested on automatically-computed ones, which negatively affects the accu-

racy on the test set. While all the strategies are negatively influenced by this discrepancy,

ILP is particularly vulnerable as it relies on the score values for inference. In contrast, BF

only considers the rank between the scores, which may be less affected by noise.

We advocate a two-stage approach for temporal analysis: we first identify segments

and then order them. A simpler alternative is to directly perform a four-way classification

at the clausal level using the union of features employed in our two-stage process. The

accuracy of this approach, however, is low - it achieves only 74%, most likely due to the

sparsity of clause-level representation for four-way classification. This result demonstrates

the benefits of a coarse representation and a two-stage approach for temporal analysis.



S2 -

(a) Reference TDAG

(b) ILP generated TDAG with an accuracy of 84.6%

(c) BF generated TDAG with an accuracy of 71.4%; NRO produces the same graph for
this example.

Figure 7-1: Examples of automatically constructed TDAGs with the reference TDAG.



Algorithm Manual Seg. Automatic Seg.
ILP 91.9 84.8
BF 91.0 85.0
NRO 87.8 81.0
Baseline 73.6 73.6

Table 7.2: Results for 4-way ordering classification over clauses, computed over manually
and automatically generated segments.

Algorithm Forward Backward Null
ILP 92.5 45.6 76.0
BF 91.4 42.2 74.7
NRO 87.7 43.6 66.4

Table 7.3: Per class accuracy for clause classification over manually computed segments.

S1 A 32-year-old woman was admitted to the hospital because of left subcostal pain...
S2 The patient had been well until four years earlier,
S3 when she began to have progressive, constant left subcostal pain, with an inter-

mittent increase in the temperature to 39.4°C, anorexia, and nausea. The episodes
occurred approximately every six months and lasted for a week or two;

S4 they had recently begun to occur every four months.
S5 Three months before admission an evaluation elsewhere included an ultrasono-

graphic examination, a computed tomographic (CT) scan of the abdomen...
S6 Because of worsening pain she came to this hospital.
S7 The patient was an unemployed child-care worker. She had a history of eczema and

of asthma...
S8 She had lost 18 kg in weight during the preceding 18 months.
S9 Her only medications were an albuterol inhaler, which was used as needed,
S10O and an oral contraceptive, which she had taken during the month before admission.
Sl1 There was no history of jaundice, dark urine, light stools, intravenous drug abuse,

hypertension, diabetes mellitus, tuberculosis, risk factors for infection with the hu-
man immunodeficiency virus, or a change in bowel habits. She did not smoke and
drank little alcohol.

S12 The temperature was 36.5 0 C, the pulse was 68, and the respirations were 16...
S13 On examination the patient was slim and appeared well... An abdominal examina-

tion revealed a soft systolic bruit... and a neurologic examination was normal...
S14 A diagnostic procedure was performed.

(d) An example of a case summary

Table 7.4: Text corresponding to Figure 7



Chapter 8

Conclusions

This thesis introduces a new method for temporal ordering. The unit of our analysis is

a temporal segment, a fragment of text that maintains temporal coherence. After investi-

gating several inference strategies, we concluded that integer linear programming and best

first greedy approach are valuable alternatives for TDAG construction.

In the future, we will explore a richer set of constraints on the topology on the ordering

graph. We will build on the existing formal framework [ 11] for the verification of ordering

consistency. We are also interested in expanding our framework for global inference to

other temporal annotation schemes. Given a richer set of temporal relations, the benefits

from global inference can be even more significant.





Chapter 9

Appendix

9.1 Temporal Segment Annotation - Guidelines for An-

notating the NEJM Corpus

9.1.1 Introduction

When we communicate a narrative, we do not put a time stamp on every event. Rather, we

explicitly communicate temporal information in some statements and use sentence struc-

ture and discourse structure to connect other statements to the statements that are more

explicit.

Consider the following example from the NEJM corpus of cases:

A 12-year-old boy was evaluated in the hematology clinic of this hos-

pital.. For one week, he had had fatigue that had caused him to miss school,

and his appetite had decreased. He also had intermittent cramping, pain in his

arms and legs, and anterior chest pain that was worse with movement, deep

breathing, and coughing. (Case 19-2004)

As readers, we understand that the boy was evaluated, at some time in the past. Also,

for a week before the clinic visit, the boy had the symptoms described in the latter lines of

the excerpt. Though the statements about symptoms do have some temporal information

(e.g. all past), they actually get their place in the order of events from the phrase "for one



week".

The second and third sentences form a temporal segment: they all occur "at the same

time". This doesn't mean that they all started together, ended together or must have pro-

gressed together. In fact, we could clarify the text (without contradicting it) with more text

saying that the symptoms had occurred in some specific order. All we mean by calling the

sentences a temporal segment is that the author of the text is not communicating to us information that wou

the author grouped the events to share a temporal reference.

9.1.2 Annotation Task

The task is to define the segments by placing a mark at the beginning of each segment

(which does not have to be after a period or even after a punctuation mark). There are some

guidelines to keep in mind:

1. You will sometimes see insertion, where almost everything in a section of text is

in the same temporal segment, except for a short bit referring to another time. You

might also find nesting, where there is a big temporal segment with another temporal

segment "inside" it (e.g. A segment that is "yesterday" with a segment referring to

"four o'clock" inside it). If you see nesting or insertion, place a temporal segment

marker at every boundary. Put temporal segment markers where you would otherwise

nest or insert (if there were markers for nesting or inserting); this means that [a[b]]

becomes [a][b]. Likewise, [a[b]a] becomes [a][b][c].

2. In general, resist the temptation to join statements into a single segment when the

statements explicitly state an order: "Last week he grew tired, then became ill, then

became unconscious" is three temporal segments, not one.

3. Place a boundary between events that do not have explicit words telling you their

order, but absolutely must follow one another. (e.g. She went to another hospital,

where she was told that her electrocardiogram was normal...)

4. Ignore verbs about how the events of the narrative are communicated. "The patient's

mother noted that he felt warm" should be interpreted as only being about the warmth



of the patient. The time of the mother's report is not relevant.

5. Statements about the document, such as references to Tables, typically communi-

cate something that was observed in the surrounding temporal segment. They also

sometimes refer to the time when you (the reader) can see the document. Ignore the

temporal information not relevant to the narrative; do not include references to the

time of reading in your decision about whether or not to place a TCB marker. This

is similar to the guideline above (4) because the fact that you currently see "the pa-

tient's heart-rate with respect to time sugar levels in Figure 4" has no relevance to

the temporal segments in the narrative. Upon occasion, references to time-of-reading

observations do not mention helpful words like "Table" or "Figure".

6. Ignore temporal statements regarding routine medical procedures that do not have

bearing on the order of events in the narrative about the patient: "A CT scan of

the thorax, obtained after the oral administration of contrast material, showed a new

nodule." This should be one segment because we consider the temporal information

to be part of the routine explanation of the parameters of the medical procedure.

7. When dealing with statements about the patient or the patients family that deal with

past history (the patient was a retired nurse, the patient had a history of asthma,

the patient's mother died of Tuberculosis) or general current state (the patient trav-

eled frequently, the patient's siblings were all in good health) but there is no explicit

time, mark history, recent history and general time-of-admission state as separate

segments. Sequential references that are all the same type of state or history can be

viewed as one segment.

8. The definition of temporal segment does not require a verb if there are explicit tempo-

ral markings. This leads us to mark the following. "The patient reported a four-month

history of night sweats, #### a three-month history of 'generalized arthralgias,' ####

a two-week history of headache, #### and recent loss of 4 or 5 kg in body weight".

("####" is our boundary marker.) Typically, however, words that share a verb are in

the same temporal segment.



9. Typically, there is a long segment where all events are events that happen at the

hospital. Unless there is clear order of precedence, consider sections where you

cannot be sure of the order to be part of one segment.

10. Information about frequency of events often does not tell you about the boundary

between temporal segments. "From then on, the patient experienced a high fever

every 2 weeks..." is one segment.

11. These guidelines are by no means complete. Please footnote decisions you make that

need a rationale beyond (or not in agreement with) these guidelines.
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