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ABSTRACT

The inconsistencies, both of theoretical and experimental
natures, which arise from the current theory of multi-photon optical
detection are pointed out. An ad-hoc model for two-photon detection,
which has none of these inconsistencies is proposed, and, its
performance in optical receivers employing homodyne and heterodyne
detection is analyzed. It is found that the two-photon systems have
signal-to-noise ratios that are independent of quantum efficiency,
but are otherwise identical to the signal-to-noise ratios of the
corresponding single-photon systems. It is also shown that the use
of time dependent perturbation theory, to characterize multi-photon
detectors is not valid when the expected number of photo-electron
counts is large. Other methods of calculating the interesting
statistical quantities are considered.
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CHAPTER 1

INTRODUCTION

In the years since the invention of the laser, an extensive

body of knowledge, called quantum mechanical communication theory,

has been developed. It is the goal of this theory to determine

fundamental performance limits on optical communication systems,

as dictated by the laws of quantum mechanics. The recourse to

quantum mechanics is necessitated by the inability of classical

physics to adequately explain phenomena occuring at optical

frequencies. Although classical electromagnetic theory may serve

quite well to describe the propagation of optical disturbances, it

fails to satisfactorily describe the interaction of optical

disturbances with material media, i.e. detectors, and we find that

in order to fully understand the phenomena that we observe, a quantum

mechanical description is required. At optical frequencies, the

uncertainty principle plays a significant role in the outcome of

experiments. We can no longer assume that noise is independent of

the detection process. In many cases, the simple additive white

Gaussian noise model must be replaced by more complicated shot-noise

models that take into account the discrete nature of light. [1]

The block diagram for an ideal quantum limited optical

detection system is shown in Figure 1.1. We first have an ideal

photodetector. The purpose of the photodetector is to convert
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optical disturbances into electrical signals. The photodetector is

composed of a material from which electrons are easily ejected by the

impinging photons. The detector is assumed to be ideal in the sense that

its bandwidth is far broader than any other component in the system.

The restriction to quantum limited detection system allows us to focus

on the fundamental quantum noise process. We can add other noise

processes such as dark current, thermal, and background noise later.

The second block of the diagram is a filter which incorporates any

non-ideal features of a "real" photodetector into whatever external

filtering we may see fit to add. After this filter, we may require

some additional processing (demodulation, decision/estimation, etc.)

before obtaining the desired signal s(t).

Because of the discrete nature of light, a close observation

of the output current i(t) reveals it to be a discontinuous signal

composed of many separate "lumps" or impulses of electrons that have

been ejected from the photodetector. This is shown in Figure 1.2a.

The arrival times of these current impulses, which represent the

times at which electrons are ejected in response to the absorption

of photons, are random. We can thus associate with the output of

the detector a counting process N(t). A typical sample function of

N(t) is shown in Figure 1.2b. For a given time interval [O,T] if

we know the total number of counts in the interval N(T), and all

the arrival times ( 1l2""' ... TN(T)) we know the sample function

exactly. The current i(t) is a random process whose exact statistics

depend upon many things including the quantum mechanical state of
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the illuminating radiation. Often it is easier to first determine

the statistics of N(t) and then relate them to those of i(t) via

the relation

i(t) e dN(t)i(t) = e , (1.1)

where e is the charge of the electron. In the classical formulation,

given that we know the statistics of the illuminating radiation,

N(t) is always a Poisson process with a rate parameter proportional

to the illuminating intensity. In the more general quantum

mechanical treatment, N(t) need not be Poisson.

In the past, most work centered on receivers employing

single-photon photoemissive detectors, i.e. detectors whose

constituent atoms may be ionized by the absorption of a single photon

of a given frequency. More recently, there has been an interest

in optical systems employing detectors which must absorb more than

one photon (multi-photon detectors). There are fundamental

questions that arise for these detectors such as what operators can

be measured by these devices, as well as more practical ones such

as what performance gains, if any, can be realized by these devices

if they are used in communication systems. In the remainder of this

chapter the results of the theory of single photon detectors will be

presented. 'This will serve as a stepping stone to the theory of

multi-photon detectors which is the main concern of this thesis.
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The quantum mechanical description of single photon photo-

detection is now well understood. [2]-[6] We will examine the

single photon results as a conceptual point of departure for the

remainder of this work, as well as to establih notation.

Field Operators

We will make extensive use of the field operators as

described in [4]. Specifically, we will consider a quasimonochromatic,

paraxial field illuminating a receiver with entrance pupil A, located

in the z = L plane, over a time interval T. The normalized field

operator at the receiver is given by the modal expansion

E(x,t) = C ak (k(t,x) (1.2)
k

where x = (x,y), {ak } are photon annihilation operators, and the

{lk(t,x)} form a complete orthonormal set on A x T.

The {ak} obey the following commutation relations

[aka j] = 6 kj (1.3)

[ak,aj] = 0 (1.4)

and the field commutator is therefore
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[E(t,x),Et(t ' , x ' ) ] = 6(x-x') 6(t-t') (1.5)

We shall be interested in taking expectations with respect

to arbitrary states of the radiation field. These expectations

will be denoted either by brackets < > or by a trace, Tr p, where

p is the density operator of the field. For example, the expected

value of the operator Et(t,x) E(t,x-) is represented by

<Et(t,x) E(t,x)>

or

Tr(pEt(t,x) E(t,x))

Field States

We shall consider certain types of field states that are

of interest to communication engineers.

(1) Number States

The number state, denoted IN> for a single mode field,

contains exactly N photons. For a multi mode field the notation is

Inl , n2 , . . . , n n . . . > where ni is the number of photons in the ith mode.

(2) Coherent States

The coherence state (CS) is denoted by jI>. It is the

type of state that is produced by conventional light sources, lasers,
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ideal antennas, etc. [7]. Any optical field state that has thus far

been observed in the laboratory has been either a coherent state or

a classically random superposition of coherent states. Coherent

states generate the well known Poisson statistics associated with

optical detection. A multi-mode coherent state is denoted by

jall'a2,...,m,...> with each ai associated with the ith mode in (1.2).

(3) Two Photon Coherent State

The two photon coherent state (TCS) is a novel quantum

state that has very interesting statistical properties, but has yet

to be observed in the laboratory [8]. A single mode TCS is sometimes

denoted as 18>g with the g to distinguish it from a coherent state.

It can be shown [5] that in certain receiver configurations TCS

radiation has the potential to yield much higher signal-to-noise

ratios than the same structure using CS radiation. Often we will

have a multi-mode field in which there is a single TCS mode, and all

the rest are CS. In this instance, we find it convenient to use

the density operator notation with the state of the field being

represented by p where p is given by

p = IB> <BI 0( I ><ol. (1.6)

Multicoincidence Rates

One of the problems encountered in using quantum mechanics

to describe optical detection is to relate the quantum measurement

performed by the detector to the random process that we take to be
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the output of said detector.

One particularly convenient vehicle for this purpose is

the so called product density or multicoincidence rate (MCR) [2],

[5],[9]. We have the following definition. For a counting process

N(t) the mth order MCR is

k
wm(t t 22..t m) 4 lim Pr[( I1 (N(ti+At) - N(ti)) =l)]/Atk

At-_* i=l
(1.7)

Knowledge of the MCRs for all m > 1 provides complete

statistical characterization of N(t). More important to our work

however, are the following results derived in [5] concerning just

the mean and covariance functions of N(t)

t
E(N(t)) 4 mN(t) : Ow1 (T) dT (1.8)

E(N(t) - mN(t))(N(s) - mN(s)) 4 KNN(t,s)

min t,s It ýs

= w1 (T)dT + {dT dT'[w2 (T,T')-w1 (T)w 1 (T')]

(1.9)

Several authors have shown [2],[3], that for a single photon

photoemissive detector, the MCRs are given by
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Wm(t 't2*"'" 'tm) = dxl 1 dx2... dxm Wm(tl Xl ;t2x2;. " "tmxm)

A aA (1.10)

where

wm(tl '.x;t2,x2t"" m'XM) l mTr(pE (tl ' )E (t2 x2)... E (tmx)

x E(tI x1)E(t2,D 2)...E(tm,xm)) (1.11)

0 < n < 1 is the quantum efficiency of the detector and p is the

density operator of the field.

We now have a connection between the classical random

process output by the detector and the statistics associated with

the state of the field and the detection process.

Equations (1.8-1.9) follow directly from a relatively

simple, straightforward application of time dependent perturbation

theory for atoms in an electromagnetic field. It can also be

shown [6] that the operator measured by a single photon photoemissive

detector of unity quantum efficiency is

dT dx E (T,x) E(T,x) (1.12)

o A

In this work, we will use the term measure in the

following sense: a detector whose output is a classical random
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process N(t) measures an operator O(t) if in all calculations

involving statistics of processed versions of N(t), we obtain the

same answers by using quantum expectations on the processed versions

of 0(t) as we do for classical expectations on the processed versions

of N(t). For instance, we can replace terms like E(N(t)N(s)) with

Tr(p 0(t)O(s)). We will denote this equivalence N(t) - O(t). So,

in view of (1.12)

N(t) - dt J di E (T,x) E(T,x) (1.13)
o A

Equation (1.13) follows from (1.10-1.12) in the following

way: In [6] it was shown that a device that measured the operator

in (1.12) had the same statistics as a counting process N(t) with

the MCRs of (1.9-1.10). This was done by noting (1.13) implied

the same characteristic functional as a counting process with

MCRs given by (1.9-1.10). Since single photon detectors were

known to have such MCRs, equation (1.13) was proved.

In the next chapter, we will see now the obvious generalization

of the preceding results to the case of multi-photon detectors fails.

In Chapter Three we will present a model for the two photon detector

that seems, thus far, to be satisfactory from both theoretical and

experimental standpoints. We shall examine the performance of this

model in homodyne and heterodyne receiver structures in Chapter Four.

In Chapter Five, possible reasons for the breakdown of present
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theory will be examined. In Chapter Six, a brief summary of our

results is given, along with suggestions for further work is given.
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CHAPTER 2

BREAKDOWN OF THEORY

In this chapter we will examine attempts that have been

made to generalize the results presented in the last chapter to

the case of multiple photon absorption. As was mentioned earlier,

it is desirable to do this from both the standpoint of obtaining

possible gains in optical communication performance, as well as

gains in understanding of the quantum measurement process.

From [6] the speculation can be made that a k-photon

photoemissive detector measures the operator

t
dT dx Etk(,,x) Ek(T,x) (2.1)

o A

This seems to be entirely reasonable since the expressions for the

MCRs were thought to be of a form similar to (1.11). Namely, for

a k photon process, the mth order MCR would be

Wm(tl · x ;t2x-2;""tm,xm) = mTr(pEk (tl,xl)E (t2 ) ... E (tm'xm

x E (ti ,xl )E(t2x2) ... E (tmxm)

(2.2)
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where T1 is an efficiency factor, 1 < m < c. We may also supress the

space dependency as in (1.10).

For the case of two photon absorption, we have k = 2 and

(2.2), (1.8) predicts a value for mN(t) which varies as the square

of the illuminating intensity. When the density operator p for the

field is a coherent state, (2.2) in conjunction with (1.8), (1.9)

yields the following results

Pt P

mN(t) = dT dxl(T,x)14  (2.3)
o A

rmin t,s

kNN(t,s) = n d dxIE(T,x)1 4  (2.4)
0o A

where e(t,x) = <E(t,x)> is the classical field associated with

this state.

It would appear that the output of a two photon detector

is a Poisson process with a rate dependent upon the square of

the illuminating intensity, rather than just the intensity as is

the case with single photon detection. This is not surprising,

since by making the apriori assumption that the output is Poisson,

it can be shown that the MCRs given by (2.2) result [10].

Although the above formulation works satisfactorily when

p describes a field with a classical analog, and leads to no

theoretical or experimental inconsistencies [11], [12], if it is
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indeed correct, it should hold for a field in an arbitrary state.

We will now show that (2.2) leads to serious inconsistencies when

p describes a field with no classical analog.

Consider a single-mode field in a number state IN>. The

density operator for this field is

p = IN><NIQ I• 10><01 (2.5)

For N > 4, if we perform two photon absorption on the field we

find, from (2.2) with K = 2 and (1.9), that the variance of the

process N(t) is

Var(N(t)) = KNN(t,t) = N(N-1) f(t) n[l+n f(t)(6-4N)] (2.6)

where n is the efficiency, and f(t) is

t

f(t) = dT dxl1 (T,x)I (2.7)

where 1 is associated with the single non-vacuum mode of the field.

We see that Var N(t) will become negative for large values of N,

clearly a contradiction. Thus, we are faced with a serious

breakdown of the theory unless we allow r to depend on the field

state. Allowing n to vary however, is inconsistent with our notion

that a device must measure some operator, and it is the same
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operator for any state of the field. A similar calculation for a

TCS field also yields negative count variances so we may rest

assured that the behavior of (2.6) is not solely due to some

peculiarity of number states.

We are thus led to the conclusion that (2.2) is incorrect.

We may obtain further, though not as strong, support for this

conclusion by a close examination of experimental work. A number

of authors have performed two-photon absorption experiments in

which they found average detector outputs which did not vary strictly

as the square of the illuminating intensity [13],[14]. As an

example, Shiga and Immanura [14], found that the average number of

photoelectrons obeyed

Ne = N2 + aN (2.8)
e  p p

where Ne was the number of photoelectrons/sec cm2, Np was the

photon flux in photon/cm2 sec, l 10- 34 and a - 10-12

It should be stressed that these experimental results,

by themselves, are insufficient grounds for discarding (2.2).

Indeed, several papers have offered explanations of the linear

term in (2.8), all of which attribute it to a very broad absorption

linewidth at the single photon absorption frequency [14],[15].

The linear term might also arise from impurities in the target, or

emissions from the substrate upon which the target was deposited.
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The results do indicate, however, that we should not assume apriori

that the output of a two photon detector will be a Poisson process

with a rate dependent upon the square of the illuminating intensity.

At this point, it is instructive to consider the way in

which (2.2) was obtained. In a few cases quantum mechanical

derivations have been attempted, but only for quantities corresponding

to the mean function of a two photon process [16],[17]. In other

instances, the form of (2.2) has been postulated on the basis of

experiment, or as has been mentioned earlier, by an apriori assumption

of Poisson statistics. However, since these experiments involved

only classical fields of high intensity, no inconsistency arose.

Furthermore, these experiments all measured what amounts to the

mean function of the output of the detector.

Since no quantum mechanical derivation for w2 (t l,t 2 ), or

equivalently, KNN(t,s) for a two photon process is to be found

in the literature, the author attempted one, with disappointing

results. The expression obtained by using perturbation theory for

two photon absorption is identical to (2.2). Under close examination,

it appears that we are trying to apply perturbation theory in a

regime where it is not valid. Further discussion of this issue

along with a brief sketch of the perturbation theory derivation

will appear in Chapter 5.

Since we do not yet know what the correct expressions for

the mean and covariance functions for multiple photon absorption
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are, we are free to speculate on possibilities so long as the

speculations remain reasonable, and are consistent with available

experimental evidence. In this spirit, and restricting ourselves

henceforth to two photon processes, we will examine an ad-hoc model

proposed by Shapiro that promises to meet the above requirements.

Although there is no guarantee that this model is correct, it may,

however, give us insight into the operation and behavior of the

correct model when it is found. In the next two chapters we will

present this model and evaluate its performance in certain optical

communication systems.
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CHAPTER 3

THE AD-HOC MODEL

In this chapter, we will develop a model for two-photon

detectors based on purely ad-hoc considerations. This model,

proposed by Shapiro, suffers no contradictions and agrees with the

limited available experimental results. For a two-photon detector

we will assume

N(t) - d dt dp dE n s(p,")E (T,x)E(T,x)E (T-p,x-i)E(T-p,x-)
o A Jo JA

(3.1)

where n is a positive constant and s(p,) is a time-space sensitivity

function that will be described later. Physically, this model

includes two absorptions; (one for each EtE pair). The first occurs

at the space time point (x-T,T-p) and the second occurs at a later

time, and different location (x,T). The model averages over all

possible space-time shifts between the absorptions, weighted by

the sensitivity function s(t,x). This allows us to incorporate

our expectation that absorptions occurring very far apart in

space and/or time have little probability of causing the emission

of a photoelectron. Finally, to obtain the total photon count

from the detector up until time t, the contributions from all over
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the detector surface are accumulated by integrating over x, and the

counts are accumulated by integrating over T. We note that the

operator in (3.1) is not in normal order form, and herein lies the

difference between this model and the models based on the MCRs of

equation (2.2).

We must put (3.1) into normal order form in order to work

with it. To do so, we use (1.5) to move all the adjoint field

operators to the left of all the field operators. After doing this

we find

N(t) ~ dT x dp d s(p,)E (T-p,-)E (,x)E(-p,x-)E(,x)

,o -A Jo -A

x 1 s(O,U) dT dx E (T,x)E(Tix) (3.2)

o A

where s(O,U) is the sensitivity function evaluated at t = 0,

X = (0,0). Now we being to see how this model can account for

the linear component in the detector output as described in the

last chapter.

Before proceeding further we must place some constraints

upon the sensitivity function. We will assume that s(t,x) describes

a joint probability distribution upon the space-time separations

that give rise to an emission. That is to say, s(p,T) dpdE is

the probability that two absorptions separated by p seconds in time

and by vector T in space will give rise to an emission. This implies

that s(t,x) > 0 and
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Sdt dx s(t,x) = 1
o A

We will also assume that the space-time dependence of s(t,x)

is separable, i.e.,

S'(t) S"(x) 0 < t < 0, x E A

s (t,x) =

0 otherwise

with

S'(t)dt = dx S"(x) = 1

This amounts to statistical independence of the space and time

components of S, which cannot generally be true. Indeed, if the

spatial separation of absorptions is greater than the speed of

light times the temporal separation, no emission can take place

at the instant of the second absorption. The above difficulty is

resolved, however, by previous approximations made in obtaining

the commutator (1.5), which have washed out the field causality.

As a result though, our model will be invalid for extremely small

values of t.

A further assumption on the properties of s(t,x) is that

it is much "narrower" (i.e. has much greater bandwidth) than any

modulation on the field. This enables us to consider s(t,x) as an
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impulse which will greatly simplify the calculations that follow.

A final assumption deals with the value of s(O,0). In

view of the experimental results discussed in the last chapter we

will assume s(O,O) to be non-zero.

The parameter n in the model corresponds roughly to the

quantum efficiency, although unlike the single photon case, f is

not dimensionless, but rather has the dimensions of (cm2sec). The

exact physical interpretation of n is still unclear, and though we

shall refer to it as an efficiency factor, there is no reason that

prevents rn from taking on values greater than 1.

We must take care that all operators are in normal order

form before performing any integrations, especially those involving

s(t,x). Failure to do so can result in the appearance of infinities

in the results. This is because s(t,x) is only approximately

impulsive, whereas the use of the commutator relation (1.5) introduces

true impulses. For example, let us compute mN(t), the mean

detector count, in two ways. Using the normal ordered form (3.2),

performing the integrations on p and and taking quantum

expectations we obtain

t ( t r
mN(t) = J dT dx<Et(Tx)E2(Tx)> + , s(O,O) dT dx<E (T,x)E(T,x)>

o A o A
(3.3)

where we have made the approximation s(t,x) z 6(t)6(x). Were we
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to make the same approximation in (3.1) without first putting it

into normal order form we would obtain

N(t) ~ J dt JA dx Et(T,x)E(UT,x)Et (T)E(T,x) (3.4)

Were we now to put this into normal order form and take quantum

expectations we would have

mN(t) = n dT dx<Et2(T,x)E2(T,x)>+n dT dxT<E (T,x)E(T,x)>6(O)(0)

o A -o A (3.5)

Henceforth the approach that leads to (3.3) will be used

exclusively.

It is interesting to see how mN(t) predicted in (3.3)

compares with what we know experimentally about two-photon

absorption. Let us consider the field to be in a single mode

coherent state described by the density operator

p = I N><N1 () II0><0I (3.6)

The observation interval is T seconds long and the detector area

is A (cm2). Thus, the operator for the field mode of interest

can be taken to be
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E(t,x) - e-
Using (3.6) and (3.7) in (3.3), TAnd defining

Using (3.6) and (3.7) in (3.3), and defining

N mN(t)
Ne TA

to be the average number of remitted photoelectrons/sec cm2, and

N - N/AT
p

to be the incident photon

(3.9)

flux in photons/sec cm2, we obtain

N = n N2 + rn s(0,O) Npe p p
(3.10)

Thus we see that our model predicts a photocurrent that has both

a linear and quadratic component. For high input intensities

the quadratic term dominates and we have

N ni N2  (3.11)
e P

which is the usual result for two-photon absorption, both

experimentally and theoretically.

On the other hand, if Np is not sufficiently large, the

linear term will dominate. Thus, our model predicts an average

(3.7)

(3.8)
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photocurrent of the form observed by Shiga, Immanura, and others

as discussed in Chapter 2. Finally, let us push this model to the

limit by postulating an explicit form for s(t,x) so that theory

may be compared quantitatively with the experimental values given in

the last chapter.

Many atomic systems exhibit an exponential time behavior

with time constants on the order of 10-8 seconds, though this may

vary by several orders of magnitude. Thus, we shall suppose

I- e- t/ t > 0

S'(t) = (3.12)

0 otherwise

-8
with T = 108 sec.

The spatial extent of atomic systems is on the order of a
o

few angstroms (1 A = 10-8 cm). For simplicity, we will assume the

atom or molecule doing the absorbing to be symmetric with an

effective radius of say 3 A. We shall take for S"(x)

S"(x) e- e-(x2+y2)/2 2  (3.13)

with a = 10- 8 cm. Hence, we have the space-time sensitivity

function
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s(t,x) = (2 To2)-1 e-t/[ e-(x2+y2)/22  (3.14)

where

s(0,U) = (2Ta2T)-1

= 1.6 x 1023 (sec cm2 -1 (3.15)

In Chapter 2, we presented experimentally results that

would require the following values for the parameters in our model

(see (2.8))

= 10-34 (sec cm2 )+1

(3.16)

1 s(0,U) = I0-12 (sec cm2 -1

Our postulated form for s(O,U) gives us a value for s(0,O) of

1023. Using the second equation in (3.16) we find that to obtain

these numbers with our model, we must make n equal to approximately

10-35 (sec cm 2 ). Under this assumption our simple-minded model

for s(t,x) gives results that are consistent with experiment to

within an order of magnitude. It should be emphasized that these

numbers have little value other than to give encouragement. The

numbers are highly sensitive to small changes in our assumptions.

Moreover more accurate forms for S'(t) and S"(x) could lead to

substantial disagreement with experiment. This is especially true
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since our model provides no interpretation for n, and hence no way

to estimate its value. We shall now turn to calculating KNN(t,s).

We have that

KNN(t,s) = E(N(t) N(s)) - E(N(t)) E(N(s)) (3.17)

so, the first step to take is to normal order the operator

corresponding to N(t) N(s). Using (3.2) we find the operator

corresponding to N(t) N(s) is

t ds j s ) 0 r
d d' dx d' dp dp' d- d-' 1 2 S(p,-)s(p',-" )E (T -p,x - f)E (T,• )

o do 0 -A A o o A EA I(

x E(T-p,x--)E(-r,x)E t(T'-p ',x"-T')Ei (T' ,x')E(T'-p'qx'-ý"')E(T' ,x')

+t r rs r,
+ S(0,U) dT dx dT' dx'

o A o A o

dp' d•' s(p',f•')E (T,x)E(T,x )

S A

+ ~ s(O,-U)
rt sf r

dT dx dr',
o ýA ,o ,A o

x E(Tr-p,x--)E(T ,x)E i " (T',x' )E(T',x')

+ o2 s2(0,O) dt dT' dxi dx' E ( )E(T,x)E (T',x')E(T',s')

(3.18)

x E (t '-p ' ,x'-' )E (T ' ,x')E(T'-p' ,x'--')E(T',x ')

r
dp' dý s(p,ý)E"I (T-psx-ý)Et (,r,x)

A
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Using (1.5) to normal order each of the four terms, and evaluating

the integrals as discussed previously, we obtain

S d smin2

o A o

t,s r
d-r dx E t2(T,x) E2 (T,x)

At s 0s
+ 2  dTd' dx d' E(T,x)E(' ,)E(x) E2 (T' ,')

o A A

+ 42{ dT dx Et(T,x) E3 (T,X) (from the first term of (3.18))
A

min t,s

+ 2ni2 s(OU){ dT dx Et2 (,x) E2 (T,x)
o A

+ i2 s(O,O) dT dT' dx dx' Et (T,x)Et2 (T' , x ' )E(T, x )E2 (T' ,x')
o A JA

(from the second term)

min t,s
+ 2n2 s(0,i) d dx E2(T,x)E2(T,x)

t rs
+ 2 s(0,U) dT dT r dT x dx' E (T,x)E2(T ' , - ')E 2 (T, x )E(T',x')

o (fromA Athe third term)
(from the third term)

r rS r
+ Et s((0,i) •T d-1 ,j dx' E (T,x)E (T,x) E(T,x)E(T',I')

( 0 J dJ A A

+ Tn2 S2(o,i)
min t,s

dTr dx Et(T,x)E(T,x)

o Athe last term)
(from the last term)
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If we now perform quantum expectations and subtract off E(N(t) E(N(s))

(using (3.3)) we obtain

= °a I C rmin ts IP t- E2

NN(ts) = 4 s(O,) + dp dýs2(p,) d dx<E (T,x)E 2 (T,X)>

o A o A

+ 2{ dT dT' dx dx'(<E (T,x)E (T ' ,x)E2()E2( ) E ( T ' , x ' )>

A A

- <E (T,x)E 2 (T,X)> Et (T',X ')E 2 (T',x ')>)

min t,s t Os

+ n2 s2(O,)~ dT dx<Et(T,x)E(T,x)> + dT dT dJ dx'

J J JA JA

x (<E (,(T,x)E (T,x)E(,x)E(c' ,x')>

- <Et(T,x)E(T,x)><E (T'I,x')E(T',x')>)

rmin t,s 3

+ 4n2j dT dx<E(T,x)E3(T,x)>
o A

+ 2 s(OX,) dT dT' di dx'<E 2(T,x)E (T ' ,x ' ) E2 ( T ,x ) E ( T ' , x ' ) >

A A

- <Et2 (~,x)E2(Tx)><E± (T ' ,x' )E(' ,x' )>

rt rs r
+ -f2 s(o,U) d- d-r' I dc '<Et(,x)Et(T',x')E(T,x)E (T,x)>

- <Et(T,x)E(T,x)><Et (T',x')E2 (T', x ' )> (3.19)
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Although at first (3.19) may seem very complicated, upon

close examination, it presents an interesting structure. The first

two terms are essentially what one would expect for the covariance

function using the old model (i.e. equation (2.1) with k = 2).

The second two terms essentially give the covariance function for a

single photon device (i.e. equation (1.9)). The remaining terms

arise from the interaction of the first and second order processes.

We may now use (3.19) to calculate the variance for a single

mode field in a number state. (This case gave a negative variance

using the MCR model (2.2), as shown in Chapter 2.)

Using (2.5) in (3.19) we find for N > 4

Var N(t) = KNN(T,T)

= N(n-l) 2 f(T) d ds(T,x) + 6f(T) - 8f'(T)/f(T)

o JA

+ 4N - f(T) (3.20)

where f(T) is given by (2.7) and f'(T) = TdT dx 61(T,x)I' . Since
T o A
OdTfA dx s2 (T,x) >> 1, the only way, in general, to have a negative

variance is for the last term in (3.20) to be negative. It is easy

to show that this can never be.
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We must show that

f'(T) > f 2 (T)

I{TdT dx1 i1
o JA

(T,x) 14
T

<I dTr dxjIl(T,x)I6
o A

The left hand side of the inequality can be rewritten as

l ,X)] (3.22)

and we have from the Schwarz inequality

23'
IL dTdxf14 1 (T,x) I

ldTI
dxj4 1 (T,3)12

(3.23)

The last factor in (3.23) is unity since the p's are orthonormal.

Thus we have

( r

d-d 2)

T

<_ dr dA xl1,(( ,x) )

o JA

thereby proving (3.21).

(3.21)

IITdt dx V1 (-T,x)
Jo A

fT
dT0

(3.24)

r

,

-r

v a1

dx-I ýl (1,r )3 3• ,X) I

t

dSTjfi(' ·x) 1jfi((['X~j
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In other words, with the ad-hoc model (3.1) we do not predict

negative variances for large values of N in number-state field

detection.

So far we have shown that the model as described by (3.1)

agrees with experimental data, and is well behaved. In the next

chapter, we will use this model to evaluate two-photon detection

performance in various communication systems. Before doing this,

we will recast our results into a more useful form. In Chapter 1,

we noted that the actual current output by a photodetector is

proportional to the derivative of the associated counting process

(see equation (1.1)). The mean and covariance functions of the

current i(t), using (1.1) are given by

i-t- = e mN(t )  (3.25)

Kii..(ts) = e2  K (3.26)
Satas KNN(ts) 3.26)

Applying (3.24-3.25) to (3.19) and (3.3) we find

i~tT = e dx<E(t,)E )> + e s(O,) dx<E(t,x)E(t,x)>

A JA(3.27) (3.27)
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Kii(t,s) = e2TI 4 s(O,U)+ dT dxs2(Tx) dx<E (t,x)E2(t,x)>6(t-s)
.o AA t 2

+ e22 dxc dx'(<E (t,x)E (s,x')E 2 (t,X)E(s,)>-<E (t,)E (t,x)>

A A

xE2
x <E (s,x')E2(s,x ' ) > )

+ e2~' s(O,X)

+ e2 ' 2 s(O,U)

I dx<Et(t,x)E(t,x)>6(t-s)
A

dx d-x'(<E (t,5x)E(s,ýx')E(t,5x)E(s,x')>-<E (t,x)E(tx)>

A A

+ e22 s(O,O) dx dx'<E (t,x)Et(s,I')E2(t,x)E(s,x')> -<Et2 (t,)E 2 (t,X )>

x <Et(s,x ' )E(s,x')>

+ e 2 n2 S(O,-) dx dx'<Et(t,x)E 2 (s, x ' )E(t,x)E2(s,x')>-<Et(t,x)E(t,x)>

A

x <Et ( ,x')E2(s,x ' ) >
(3.28)
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In the next chapter, we will deal with systems using fields

of high intensity, thus we will not need to retain all the terms in

the above two equations.
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CHAPTER 4

COMMUNICATION PERFORMANCE OF THE TWO-PHOTON PHOTODETECTOR

In this chapter we will examine the near-field performance

of optical communication systems which use two-photon detectors.

Our analysis presumes the validity of the detector model developed in

the last chapter. We shall consider both homodyne and heterodyne

reception configurations for systems that employ either CS or TCS

transmitters.

Consider a simple analog communication scheme in which a

real-valued random variable m, with density function p(m), is

transmitted via linear modulation of a single mode field. That is,

to transmit m we place the mode associated with operator al in (1.2)

into state pm so that the density operator for the entire signal

field is ps where

Ps pm (  I0><01 (4.1)

The linear modulation constraint requires

Tr(p al) = Km (4.2)

where K is a positive constant. To permit fair comparison between
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various different systems we constrain the average energy of the

transmitted signal to be less than or equal to Ns:

dm p(m) Tr(p ala) < N (4.3)

The performance measure we will employ is the average signal-to-noise

ratio (SNR) defined by

Sdm p(m)(E(ylm))2
SNR (4.4)

i dm p(m) var(ylm)

where y is the receiver output. This formulation is identical to

that employed in [5].

The general homodyne/heterodyne receiver structure, using a

two-photon detector, is shown in Fig. 4.1. The signal field is

combined with the local oscillator field via a beamsplitter of

intensity transmission c. Thus, the field operator for the total

field falling on the detector is

ED(t,x) = E Es (t,x) + (1-E) EL(t,x) (4.5)

In this analysis we shall take both the signal and local oscillator

fields to be single mode, normally incident plane waves with

uniform spatial variation over the receiving aperture. Both Es and

EL have modal expansions given by (1.2). To differentiate between
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the al mode corresponding to Es and the al mode corresponding to EL,

we shall henceforth refer to the al mode of Es as as, and the al mode

of EL as aL. Thus we may write (4.4) explicitly as

- jw  t  i < jw•if t

ED(t,x) = ( as + (l- )"a Le ) + V.S.M.'s (4.6)

for x e A, 0 < t < T, The V.S.M.'s are vacuum state modes that will

give no contribution to our final results. A is detector aperture,

and T is the observation interval. The density operator for the

local oscillator, pL' is given by

PL= IN ><N I 2 1l0><01 (4.7)

where IN > is a coherent state. The density operator for the total

field is therefore

PD = Ps ) PL (4.8)

The optical carrier frequency wo is much greater than the intermediate

frequency lif for both heterodyne and helerodyne reception; in the

case of homodyne detector wlf = 0. In both cases, we will assume NL

to be much greater than the average signal energy <asas>, and

ultimately we will allow NL to become infinite.

With this in mind, we can see that the quantities of interest

in (3.27) and (3.28) can be simplified by keeping only the highest



-44-

order terms. For the mean and covariance functions of the detector

output we have therefore

Tt = e dx<ED(t,x) ED(t,x)>
A

(4.9)

K (t,s) =
11

x2t2l t2 --
e dx dx'[<E(t,x)E (s,x')ED(t,x)EL(s,x')>

JA -A

tF2  2 t 2  ---
-<ED (t,x)ED(tx)><ED (s,x')E2(s,x')>]

+ 4n 2 d<ED tx)ED(tx)> 6(t-s)
A

(4.10)

where we must remember that both of the above quantities are

expectations conditioned upon knowing m.

In view of the uniform spatial dependence of ED, we can

achieve a notational simplication by performing the integrations

in (4.9)-(4.10) and defining

nf n/ADT (4.11)

and

-jw t jwi ft
E(t) E= e (½a + (S - ) aLe )i (4.12)

We then obtain
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t = <Et (t)E2(t)> (4.13)

Kii(t,s) = ei Et (t)Et2(s)E2( t)E2(s)> - <Et 2 (t)E2(t)><Et 2 (s)E 2 (s)>T

- 4 <Et"(t)E3(t)>T6(t-s (4.14)

The constant n is now dimensionless and appears in the

expressions in the same way a quantum efficiency would, although

as mentioned before, the validity of this interpretation is still

an open question. We have kept certain third order terms and left

out others from the expression for Kii(t,s) as given by (3.28). It

will turn out that only terms proportional to NL will survive, and

the contributions from the neglected terms of third order in ED in

(3.28) will all cancel at this order in NL and the remaining parts

will all be negligible as NL . 0.

Writing out (4.13) explicitly, by substituting (4.11)-(4.12)

into (4.13), we obtain

i e - 2 t2st
2  2jmi f t

i(t) = - H2<as2 a>+E(l-E)<a >NLe

3/2  2 t2  1 Jj i t -jw if t
+ 23/2(1-E)<a a e if +e(l-)<as>N Le -

ss L s L

L) N+2E <as>N/ e +2 3/2(1-)<a >N e-jift

+ 2c 1- 3/2<as L >N3/2 ift <aa s N L (4.15)+N 2 )el.15S
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Keeping only the highest order terms in (4.15) we find

i-TT = NL  + <a 2 + <as e 2t eN2( 1- )2 + {((1-a)NL > e ifT L 2 s

(4.16)

In the case of homodyne detection wif = 0 and we have

-- 21

iT(T = er N 1 + 4 - NN 2;(1_6)2 1 + 4 61rN,T L N
(4.17)

In order to evaluate (4.14) we must substitute in (4.12) and expand.

If we keep the highest order terms, we find only terms proportional

to N3 survive. The terms proportional to N4 and 7/2 all cancel,

and terms proportional to powers of NL less than 3 are negligible

when NL is large. After much tedious algebra we obtain

Kii (t,s) = 4(1-E)3NL 3  6(t-s)+2E[(<aas >-<at><a >)cos (t-

<2 Jif(t+s) j (t+Si]
+ E <a >-<a > )e +(<a 2>-<a >2 )e Wif(t+

(4.18)

In the case of homodyne detection (4.18) simplifies to
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Kii (t,s) = 22 4(1-E)N T 6(t-s)+2(<a a>-<a><
T 2  ( - ) t2

+ c(<at ><at>2) + E(<a2 >-<a>2 (4.19)

We will now consider homodyne and heterodyne detection individually.

Homodyne Detection

For homodyne detection, the block labeled "Processing" in

Fig. 4.1 is shown in detail in Fig. 4.2. The first step is the

removal of the constant bias term, due to the local oscillator, in

(4.17). This is done by letting B in Fig. 4.2 equal f N 2(l-_)2.

This gives

(4.20)71 =7 N 2(1-_e)

where we are still conditioned on m. We now integrate over

the observation interval to obtain

<at + a >
E(ylm) = 2 = Km (4.21)

where we have set the scaling factor Ho in Fig. 4.2 to be

H = (4 en(l-E) 3/2 1 N3/2) 1  (4.22)0 L
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The conditional variance can be obtained by noting that

Kii(t,s) = Kii,(t,s) when we know m, and thus

ot t
Var(ylm) = H2  dt ds Ki'i,(t,s)

0 0

= l2e 4(1-_)3NH o(1+2[<astas>-<as><as>]+E(<ast2 >-<at>2 )

+ E(<as>-<a >2 ))

S 2(<a tas>-<a ><as>)+<at >-<at>2+>-<a >-<a2 + l-4

4 sas s s s s s s+ 4E

(4.23)

where we have used (4.19) and (4.22). If we define the operator

a to be

as

t aa + a
S
2

we can rewrite (4.21) and (4.23) in terms

(4.24)

of as as

E(yim) = <as >

Var(vlm) = <Aa2 > + -

where Aa aS S
1 1

- <a >.
s1

Note that these results have been left in terms of expectations

(4.25)

(4.26)\u ( 4EE



-50-

with respect to arbitrary field states. From the above and (4.4)

we find

Sdm p(m) <as >2

SNRH (4.27)
0 dm p(m) <Aa2 > +

In [5] the SNR for near-field homodyne detection employing

a single-photon detector of quantum efficiency n was found to be

(in our notation)

i dm p(m) <as >2

SNRH 1 (4.28)
H dm p(m) <Aa 2 > +

s1 4ne

which is identical to (4.27) except for the appearance of the quantum

efficiency in (4.28). Thus we note the potential for the two-photon

device to significantly outperform single-photon devices. For unity

beamsplitter transmission, the ratio of the SNR for the two-photon

detector to the SNR of the single photon detector is

SNRTwo-photon 1 - (4.29)SNR 1 + J I)
One-photon 4a -

where a2 = dm p(m)<Aa2 >. The right-hand side of (4.29) is always

greater than or equal to 1, and is much greater than 1 for n << 1.

This rather surprising result can be seen "physically" from
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the following argument based on dimensional analysis. In the single

photon case the output of the detector is associated with a counting

process with a mean function proportional to n and a covariance

function consisting of two terms, one of which is proportional to

n and the other to n2 (see (1.8) and (1.9)). The SNR is the ratio of

the squared mean of the output divided by the variance. If we

divide both numerator and denominator by n2 , we see that this still

leaves one term in the denominator with a I/rI dependency. In our

two-photon model the dominant noise contributions are proportional

to n2 while the mean function is still proportional to n. When we

form the ratio of the squared mean to the variance, the powers of n

are equal in both the numerator and denominator and their effects canal.

(We remind the reader that in the two-photon case the quantity n may

not have the precise interpretation of an efficiency, but its

position in the equations suggests we treat it as such.)

In the limit of unity beamsplitter transmission (4.27) reduces

to

dm p(m) <as>2
SNRH = (4.30)

o [dm p(m) <Aa2 >

In [5], (4.30) was maximized subject to the constraints set forth

earlier with the following results. For homodyne detection the

maximum attainable SNR using CS radiation is
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max SNRcs = 4Ns  (4.31)

and the maximum attainable SNR using any field state is

max SNRTCS = 4Ns(N s + 1) (4.32)

which is realized with a TCS transmitter.

Heterodyne Detection

For heterodyne detection, the block labeled "Processing"

is shown in Fig. 4.3. The first step here involves translating

the signals of interest down to baseband through multiplication by

cos Wift. We then integrate over the observation interval (low pass

filter) to obtain the output y.

Using (4.16) in the above scheme we obtain

<a + a >
e(ylm) = 2en NL(1-c)2H1(/(l)N )  s 2 s (4.33)

which can be written as

<a + a >
E(ylm) = 2 = Km (4.34)

when we set the scale factor H1 to be



-53-

Iv

Ln
0

)

7

CT

r-

Cou0
S.

4-

3.
3

a,
a,

/\ý



-54-

H = (2en N3/2 (-E)3/2 )-1 (4.35)

we can calculate the conditional variance from

Var(ylm) = H dt ds cos ift cos Wifs Kii(t,s) (4.36)

Using (4.18) and (4.35) in the above expression we obtain

Using (4.18) and (4.35) in the above expression we obtain

<at 2 >-<at 2

Var(y =m) + a1 a aa >->< a > + s s
a2 2 ss s s 2 +

(4.37)

Using (4.24) we can rewrite (4.34) and (4.37) as

E(yjm) = <as > (4.38)

Var(ylm )  1-= + <Aa2 > + 1(4.39)

and thus, the SNR is

Sdm p(m) <as1 >2
SNRHe = (4.40)

+- dm p(m) <Aa> + 1
1 4
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Equation (4.40) should be compared with the result for the

single photon detector from [5]:

J dm p(m) <as>2
SNRHe = (4.41)1,-nE + dm p(m) <Aa2 > +

2-nc s1 4

We again see the independence of the two-photon system to quantum

efficiency. For the same transmitter used in the homodyne analysis,

the maximum SNR's for CS and TCS radiation in the limit of E + 1,

are

max SNRcs = 2Ns  (4.42)

max SNRTCS = 2Ns  (4.43)

Optimizing the transmitter field state for heterodyne detection will

produce at most a 3 db SNR improvement over (4.43) as argued in [3].

We have seen that by using the detector described by (3.1)

in homodyne/heterodyne receiving systems, we can obtain signal-to-noise

ratios that are independent of the detector efficiency factor, but

otherwise equivalent to the performance limits of single-photon

devices. The freedom from quantum efficiency dependence would make

two-photon devices superior to single photon devices at operating

wavelengths where the quantum efficiency of the single photon device

becomes substantially less than unity or, in circumstances where the
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quantity dm p(m) <Aa2 > is much less than 1 (see equation (4.29)).

Physically, the n independence arises from the nature of the dominant

noise contribution and exploiting this might be a useful way of

verifying the validity of our model.
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CHAPTER 5

THE FAILURE OF PERTURBATION THEORY

As was mentioned in Chapter 2, the incorrectness of (2.2)

is probably due to an improper application of time-dependent

perturbation theory. In this chapter we will attempt to clarify this

idea as well as explore some possible alternatives to the perturbative

approach. This is necessary because, as the title of this thesis

indicates, the model that has been described thus far is purely

ad-hoc in nature. If it is indeed correct, it should be possible

to derive it starting from fundamental physical principles.

In deriving expressions for the MCR's via time dependent

perturbation theory the problem to be solved is the following: given

the state of the system (field plus atom) at time t = to , what is the

state at t = t1 when the system is acted upon by an interaction

Hamiltonian Hi(t)? The solution is well known and can be found in

any text on quantum mechanics. The argument will be sketched below.

Consider a system whose state at t = to is Il(t o)>, and that

is acted upon by an interaction Hamiltonian Hi(t). The state at

a later time t = t1 is then Ip(tl)> given by

(t I )> = U(tl ,tio) (to)> (5.1)
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where U(tl,t o) is the state-evolution operator

U(tlto)= 1+ dt'H(t')+ 2 1dt dt"H (t')H (t") + ...

+ t t 0 it 0( 5 .2 )

The series expansion is necessary since the Hamiltonian operators

do not, in general, commute at different times. The probability of

finding the system in a specified state jc> at t = t1 is then

l<ýlt(tl ) > I
2 or

1<p(|l(t1,t0)M(to )>12  (5.3)

In first order theory, it is assumed that the term of first

order in HI(t) in (5.2) provides the major contribution to the

probability in (5.3), and all the rest are neglected. For the case

of photon absorption by an atom, the interaction Hamiltonian is

H (t) = -e q(t) F(t, ) (5.4)

In this expression r is the position of the nucleus, q(t) is

the position operator of the electron relative to the nucleus, e

is the charge of the electron and ~(t,T) is the field operator

E(t,r) = E(t,r) + E (t,r) (5.5)

From this point, several authors have gone on to develop a

successful theory of single-photon absorption. By successful, we
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mean a theory that does not result in any inconsistencies, and one

that agrees well with experimental results. We will examine how to

extend this development to the case of two-photon absorption.

To deal with two-photon absorption, we must use second-order

theory. Thus, we are assuming that the third term in (5.2) is small

and that any terms beyond that are inconsequential.

Our state vector must jointly describe the state of the

atom and the field. At t = t0 the field will be in some initial

state, and the atom will be in its ground state. Thus, at t = to the

state vector will be denoted as

ii,g> (5.6)

where the i corresponds to the initial state of the field and g

corresponds to the ground state of the atom. At t = tl, the state

vector will be denoted as

If,e> (5.7)

where f corresponds to a final state of the field and e corresponds

to an excited atomic state.

Before proceeding further, it will be helpful to rewrite

some of the above in a form that is convenient for generalization

to systems of more than one atom. In photocounting experiments,

what is done in essence is to open a shutter in front of the atom
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for t1 - to seconds and then close it. This is effectively the

same procedure as turning on the interaction Hamiltonian at t = to

and turning it off at t = t1. Thus, we may rewrite (5.4) as

HI(t) = -e q(t) jt,r)(M(t-t o) - (t-tl)) (5.8)

where A(t) is the unit step function. We may now let the integrals

in (5.2) range from 0 to c

0(tlt o )= I+ dt' Hi(t)+ dt' dt"H (t')H (t")+... (5.9)

0 0 0

where the integration limits are now implicitly contained in the

Hamiltonians.

The initial and final atomic states are orthogonal, and

since we are interested only in two-photon absorption, we will restrict

ourselves to quasimonochromatic input fields (initial field states)

whose photons possess half the energy necessary to ionize the

atom. Thus, the only contributing term in (5.9) is the third [16],

and we must calculate the quantity

<f,eJ {dt' dt" H (t') HI(t") ig> (5.10)
0 o

Substituting (5.8) and (5.5) into the above, we obtain
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<f,e - 2- dt' dt" q(t')(E (t,-)+E(t,))q(t")(Et (t" ,,)+E(t" ,))
0 J0

x (P(t'-to)-(t' -tl ) (1•(t"-to)-l(t"-tl )) Iig>

(5.11)

The field operators act only on that part of the state

vector corresponding to the field, and the atomic operators act only

upon that part of the vector corresponding to the atom. Thus, we

can rewrite (5.11) as

- dt' dt"<elq(t')q(t") g><flEt(t',-)+E(t',r) Et(t",r)+E(t",r ) i>
0 0

x u(t'-t")(u(t-to- t,) ( (t-to))
(5.12)

where the use of the step function y(t'-t") allows us to let both

the t' and t" integrals have the same limits.

In the interaction picture that we are using, the time

dependent position operators q(t), are given by

iHatt iH att

q(t) = e q(O) e (5.13)

where Hat is the unperturbed atomic Hamiltonian, and q(O) is the

position operator at t = 0. Both le> and jg> are eigenstates of
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Hat, and we will use the convention Hatlg> = 0 and Hat le> = eje>.

If we substitute (5.13) into (5.12) and also employ the

identity operator

I = 1 lj><ji (5.14)
i

where the {jj>} comprise the complete set of eigenvectors of Hat'

we obtain

g•er2, ie t' -i . (t -t")
e) dt dt" e e q ej g <fi(E (tl',)+E(t', ))

x (E (t",r])+E(t",)I i>i(t'-t")()(t'-to)

x (I(t"-to)-ll(o I )) (5.15)

where q = <lq(O)Im>, and m. = j/.
r,m 3

In general, there will be many possible final states of

the field. We are interested only in those final states If> that

can be reached by the annihilation of two-photons with no reradiation

and/or reabsorption. We will have to sum over all appropriate

states when we calculate the magnitude squared of (5.15). This sum

can be extended over a complete set of states if we first notice

that those terms of interest will come only from that part of the

field operator expectation in (5.15) that has only the two positive

frequency parts of the field. Thus, we keep only the term
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corresponding to two annihilations (i.e. <flE(t',r)E(t",,r)li>) in

(5.15).

We also do not, in general, have exact knowledge of the

initial field state so we must average over all such states through

use of a density operator p. Keeping all this in mind, we find that

the probability of going from the ground state to an excited state

in t1-to seconds is via (5.3)

- iwe(t'-s') -im.(t'-t")
Pr ge(tt ) = dt' dt" ds' ds" e q .q.jge

0 f0 10 0

imr(s'-s")x p(t'-t") •r qerqge q(s'-s")
r er eg

x Tr(pEt(s ',r)Et(s",-)E(t',r)E(t",r))

x(j (t'-to)-I(t'-tl)) ( (t"-to )-P(t"-tl) )

x (M(s'-to )+i(s'-tl))(1P(s"-to)-P(s"-tl)) (5.16)

Now, let us consider the factor in (5.16)

2 q ejqjg e (t'-t") (5.17)

If we use the approximation for a step function
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P(t) z 2•-
J--00

.-imt
dw e +ido

W+TE
e << 1 (5.18)

we can rewrite (5.17) as

Sdw
2 g (7 l) e

(5.19)

where
12 1

e(1)= i ej jg • +i

and we have used the change of variables wl = W + w.j Thus (5.16)

becomes

Prg+e (t ,t0)
rc r" d c rc r

27f 27r
_ d0 o270 0'i o 0o0 d " e

i ei2 (s'-s") ie(t'-s' ) e 1 e 2Se e ge(wl )ge(w2)

x Tr(pE (s' ,r)E (s",,r)E(t ' ,,r)E(t",-r))

x (P(t'-to)-P(t'-tl ) ) (PI(t"1-t o )-P(t "-tl) )

x (iP(s'-to)-.P(s'-tl ))(-P(s"-to)--](s"-tl )) (5.20)

In most detectors, the excited states approximate or form a

continuum. Thus we will average over all excited states je> with a

-i l(t'-t")

-i l (t'-t")
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weight P(e) which is the probability that an electron in excited

state le> is registered by the post detection counter [3]. The

probability of detecting two photons, or equivalently, of getting

a count in t1-t seconds is therefore

Pr[N(tl) - N(to) = 1] = Y P(e) Pge(tl5to)
e

(5.21)

Following Glauber [3] we introduce a sensitivity function

S(m3) - 27 I P(e) ge(wl) ge(w 2) 6(m3-We )e
(5.22)

Using (5.22) and (5.20), we rewrite (5.21) as

di di d f i jPr[N(tl)-N(to)=l] = dw 2 C dt' dt" ds' ds"

-o -o -_o o0 0 0

Tr(pEt (s' ,)Et (s",r)E(t',r)E(t",5))

x (~(s"-t )-
~ (5.23)

We now assume that the detector is extremely broadband relative

to the bandwidth of the incident field and so take s(w3) to be

approximately constant

x e
im3(t'-s') im2(s'-s") -ial(t '-t")

v

x (M(t'-to )- (t'-tl) ) (P(t"-to)-1 (t"-tl))(lJ(s '-to )-,(s'-tl) )
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s(m 3 ) - n (5.24)

We can now remove it from the integral and perform the w3 integration

obtaining an impulse. We can similarly find impulses from the other

w integrals. Integrating out the impulses leads us to our final

result

Pr[N(tl)-N(t )=l] = : ndt' Tr[pE2t(t',I)E2(t -,)](i(t'-t 0 )-(t-t 1))
J0

By adjusting the limits of integration, we can remove the step

functions from the above expression and obtain

Pr[N(t)-N(t)=] = dt' Tr(pEt2(ti, )E (t',F)) (5.25)
t
0

We are interested in times such that t = t + 6 where 6 is tending

towards zero. Passing to this limit, and dividing both sides of

(5.25) by 6 we obtain

t +6

lim Pr(N(t +6)-N(t )=1)/6= lim dt'Tr[pE t(t' ,F)E2(t ,r)]/6

-to (5.26)

The left hand side of (5.26) is just the first order MCR for the

process N(t) (by (1.11)) and the right side is the derivative of the

integral. Thus
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Wl(t,-) = n Tr(p Et2(t,-)E2(t,r)) (5.27)

If we take E(t,r) to consist of paraxial plane waves as in [4], the
jk z

z-dependence of the field will be of the form e and (5.27)

reduces to

Wl(t,x) = n Tr(p Et (t,x)E (t,x)) (5.28)

To calculate higher order MCRs, we must add more atoms to

the detector, and go to higher order perturbation theory. For

instance to calculate 2 (t l ,t2) our Hamiltonian would be

HI (t) = -e[qlt):(t,rl ((t-t)-I(t- (tl )))+((t-t 2  ( t - (t2+)

x q2 '(t, 2)]

and we would have to use the fourth-order term in (5.9). The

manipulations are the same; there are just four times as many and

ultimately we obtain

W2 (t 1Xl 1 ;t 2 'x2) = n2Tr(p Et2(tx 1 )E(t2)EE(t2x 2 )E2(tl ,xl)E2(t 2,x2))

The above derivation closely parallels those of Glauber [3]

and Mollow [16] and the reader is referred to these papers for

further details.

It would appear from the preceding development that we
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have a derivation of the MCRs for two-photon absorption. Yet, as

was seen in Chapter 2, these MCRs cannot be correct. We will now

examine certain inconsistencies associated with the perturbative

approach.

Consider the average number of counts one registers over the

interval (O,t). By (1.8), the expected number of counts is

E(N(t)) = 1 (T)dT

but, by (5.27) and (5.26) E(N(t)) is

E(N(t)) = n dt' Tr(p E (t,r),E2(t,r)) (5.29)

o

and by (5.25) we have

E(N(t)) = Pr(N(t) - N(O) = 1) (5.30)

As we increase the field amplitude, the expected number of counts

over a finite interval will also increase and can easily be much

greater than 1. On the other hand, from (5.30) we see E(N(t))

should never exceed 1, since a probability is always less than or

equal to one. We do note however, that in the limit of small

E(N(t)) or equivalently small field amplitudes, E(N(t)) z Pr(N(t) = 1)

and in this case the results of (5.30) are consistent. Thus it

would seem, that when the field amplitudes become large, so that the
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expected number of counts >>1, perturbation theory is no longer a

valid means for determining the probability of absorption. As

further support we recall the negative variance behavior seen in

Chapter 2 resulted when the number of photons in the field, and

hence the amplitude of the field became large. It is probably

incorrect to assign all of our problems to the breakdown of

perturbation theory for strong fields, because the same inconsistencies

are present in the derivation of the MCRs for the single-photon

case, yet the single-photon results (equation (1.11)) work well in

all applications thus far encountered. Whether the apparent

correctness of the single photon perturbation results is merely

fortuitous or has deeper significance is still an open question.

It would seem that the only way to correctly determine the

two-photon absorption MCRs is by employing some method other than

perturbation theory to solve Schr'dinger's equation for the atom-field

system. A number of authors have done work towards this end [18],[19],

[20]. Of these studies, only one was specifically directed at

multi-photon absorption [18], the other two consider only single-photon

absorption. Unfortunately, the work on multi-photon absorption, as

it now stands, is not valid for small k (i.e. k = 2; two-photon

absorption). The other two methods give results which agree with the

perturbation analysis. Of these two the method used in [20] seems

to be the most promising as far as generalization to two-photon

absorption is concerned. The density matrix approach is used, with
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no approximations other than to assume that the number of atoms in the

detector is large, to derive the counting distribution. The method

also predicts a time varying quantum efficiency of the form

n(t) = n(l-e -Yt) where the parameter y is proportional to the number

of atoms in the detector, and the atomic transition rate atoms from the

ground state to an excited state. If this method could be generalized

to calculate the counting distribution for two-photon absorption,

then we would have a check for the mean and covariance functions

predicted by the model developed in Chapter 3.

There is another possible approach to the problem, and that

is to solve (5.9) diagramatically. Usually, one resorts to

perturbation theory when the expansion in (5.9) is too complicated to

reduce, as is almost always the case. If we could determine a closed

form solution for U(tl ,t o ) we could use it freely, since the infinite

series in (5.9) is the exact solution.

There is a graphical approach to solving (5.9) which uses

devices known as Feynman Diagrams. The diagrams are essentially

"pictures" of each term in (5.9). Each term may have more than one

diagram associated with it since there may be more than one process

contributing to it. For instance, there may be many different

physical processes involving reradiation, and reabsorption which have

the same effect we are looking for, namely the net loss of two photons

from the field, and the atom in an excited state. Perturbation

theory considers only the simplest (lowest order) way for this to

occur. The Feynman diagrams are in unique correspondence to the
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processes they describe. Thus, if we know the diagrammatic expansion

of (5.9) for the case of the photo-electric effect we could see

immediately if there were any higher order terms of interest,

selectively sum over the appropriate terms and obtain an expression

for U(tl ,t o ) that is more complete than the perturbative approximation.

An infinite number of such higher-order processes might in fact

contribute significantly. For further information, the reader is

referred to one of the texts on the many-body problem, and especially

[21] as an introduction to Feynman diagrams.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

We have seen that the natural generalization of the

multicoincidence rates to two-photon absorption leads to inconsistent

results. Specifically, the use of the expression

wm(t 1xl ;t2,x2; tmxm) = Tr(p E (tl x1)E (t2,x 2 )5 E (tm, m

x E2 (t,1X1)E2 (t 2 'X2 ). .E2 (tm xm))

(6.1)

for the mth order multicoincidence rate for a two-photon detector

leads to a negative count variance (see equation (2.6)) when p

describes a single mode field in a number state. Moreover, when p

describes a classical field, although we get no theoretical breakdowns,

the results do not always agree with available experimental evidence.

We have noted that similar inconsistencies arise when TCS radiation

is considered, and we have seen that an attempt to derive the correct

MCRs via perturbation theory leads back to (6.1).

At this point, a model for two-photon detection was

proposed on a purely ad-hoc basis. This model assumes that the

operator measured by a two-photon detector is
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dT dx dp dn s(p, ) E (T,x)E(T,x)E (T-p,x-r)E(T-p,x- )

o A o A (6.2)

Use of the above expression yields results which differ significantly

from those obtained from (6.1). They behave properly, and can be made

to agree with all available experimental results.

When the model in (6.2) is applied to optical communication

systems employing other homodyne or heterodyne receivers we find

that the performance is equivalent to that of single-photon systems

except that the two-photon systems have signal-to-noise ratios that

are independent of quantum efficiency. Thus, a two-photon receiver

has the potential for significantly better performance at those

wavelengths where high quantum efficiency single-photon detectors

cannot be fabricated.

In the last chapter we saw why perturbation theory gives

inconsistent results. We discovered that the perturbation

approximation becomes invalid when E(N(t)) >> 1, even though this

approach applied to single-photon devices gives perfectly usable

results with no apparent inconsistencies. We mentioned several

alternatives to perturbation theory that might be employed in

deriving counting statistics and/or multi-coincidence rates for

multi-photon detectors.

At this time, the question of what the correct MCRs are

is still unanswered. Further research into this area could be in

one of two directions. First, there should be some work towards
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checking experimentally the validity of the model presented here.

A simple photo-counting experiment which measured the dependence of

the count variance upon intensity would go a long way towards

establishing the validity of this model. A more elaborate experiment

could be undertaken to verify the quantum efficiency independence

predicted for homodyne receivers.

Regardless of whether this model is a good one, work should

be done to establish the interesting statistical quantities from

fundamental physical principles, because only after we have done this

will we have a thorough understanding of two-photon absorption.
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