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Abstract

Irregular phonation serves an important communicative function in human speech
and occurs allophonically in American English. This thesis uses cues from both the
temporal and frequency domains - such as fundamental frequency, normalized RMS
amplitude, smoothed-energy-difference amplitude (a measure of abruptness in energy
variations) and shift-difference amplitude (a measures of periodicity) - to classify
segments of regular and irregular phonation in normal, continuous speech.

Support Vector Machines (SVMs) are used to classify the tokens as examples of
either regular or irregular phonation. The tokens are extracted from the TIMIT
database, and are extracted from 151 different speakers. Both genders are well repre-
sented, and the tokens occur in various contexts within the utterance. The train-set
uses 114 different speakers, while the test-set uses another 37 speakers. A total of 292
of 320 irregular tokens (recognition rate of 91.25% with a false alarm rate of 4.98%),
and 4105 of 4320 regular tokens (recognition rate of 95.02% with a false alarm rate of
8.75%) are correctly identified. The high recognition rates are an indicator that the
set of acoustic cues are robust in accurately identifying a token as regular or irregular,
even in cases where one or two acoustic cues show unexpected values.

Also, analysis of irregular tokens in the training set (1331 irregular tokens) shows
that 78% occur at word boundaries and 5% occur at syllable boundaries. Of the irreg-
ular tokens at syllable boundaries, 72% are either at the junction of a compound-word

(e.g "outcast") or at the junction of a base word and a suffix. Of the irregular tokens
which do not occur at word or syllable boundaries, 70% occur adjacent to voiceless
consonants mostly in utterance-final location. These observations support irregular
phonation as a cue for syntactic boundaries in connected speech, and combined with
the robust classification results to separate regular phonation from irregular phona-
tion, could be used to improve speech recognition and lexical access models.

Thesis Supervisor: Janet Slifka
Title: Research Scientist
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Chapter 1

Introduction

Currently, robust systems to classify and detect irregular phonation do not exist.

This thesis aims to address this issue and builds upon existing studies of irregular

phonation. In this chapter, irregular phonation is defined and described in terms of

its segmental and acoustic correlates in the speech waveform. Some common types of

irregular phonation are also described and the specific aim of this thesis is detailed.

1.1 Irregular phonation

The source-filter model of speech production, as set up by Fant (1960), proposes that

human speech is a consequence of the generation of one or more sources of sound and

the filtering of these sounds by the vocal tract. One type of sound source results from

the vibration of the vocal folds and is the result of a delicate balance of the subglottal

air pressure that drives the folds apart, and the muscular, elastic and Bernoulli forces

that bring them together. Sounds produced in this manner are generally referred to

as voiced sounds.

Normal, voiced speech, or regular phonation, is characterized by the quasi-regular

vibration of the vocal folds. Although the vocal folds will oscillate quasi-regularly in

general when the variables transglottal pressure, vocal fold tension, and vocal fold

adduction - among others - are in particular ranges, irregularities in the vocal

fold vibrations are observed for certain combinations of the values of these variables.
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These irregularities in vocal fold vibration lead to the observation of irregularities in

the speech waveform, and are more pronounced than the small-scale cycle-to-cycle

variations observed in quasi-periodic, normal, voiced speech.

The small-scale variations during normal, voiced speech mentioned above have

been enumerated and defined by Titze (1995, p. 338-340):

" jitter: "a short-term (cycle-to-cycle) variation in the fundamental frequency of

a signal."

" shimmer: "a short-term (cycle-to-cycle) variation in the amplitude of a signal."

" perturbation: "a disturbance, or small change, in a cyclic variable (period,

amplitude, open quotient, etc.) that is constant in regular periodic oscillation."

" tremor: "a 1-15 Hz modulation of a cyclic parameter (e.g., amplitude or fun-

damental frequency), either of a neurologic origin or an interaction between

neurological and biomechanical properties of the vocal folds."

Papers dealing with the subject of voice quality and phonation often use the

terms "modal" and "periodic" interchangeably with regular phonation. Similarly,

"nonmodal" and "aperiodic" are often used to denote irregular phonation. This thesis

avoids the use of these terms as they are not synonymnous with regular or irregular

phonation. For example, nonmodal phonation includes irregular, aperiodic phonation

such as vocal fry as well as regular, periodic phonation such as breathy voice. Regions

in the speech waveform with very low frequency, periodic glottal pulses are also not

typical of the quasi-periodic pulses in the phonation for a given speaker at a given

time with the auditory impression of a "...rapid series of taps, rather like the sound of

a stick being run along a railing." (Catford, 1977, p.98). These regions are classified

as irregular in this thesis, in spite of being periodic.

Based on an initial survey of the literature and the specific aims of the system, a

specific definition for irregular phonation was formulated to contrast it with regular

phonation and its small-scale variations:

14



"A region of speech is an example of irregular phonation if the

speech waveform displays either an unusual difference in time

or amplitude over adjacent pitch periods that exceeds the small-

scale jitter and shimmer differences or an unusually wide-spacing

of the glottal pulses compared to their spacing in the local envi-

ronment, indicating an anomaly from the usual, quasi-periodic

behavior of the vocal folds."

Irregular phonation occurs in a number of contexts in American English, ranging

from a single glottal closure accompanying a consonantal segment to a change in voice

source characteristics over a region encompassing several segments or even syllables.

Irregular phonation also commonly occurs allophonically in certain contexts. For ex-

ample, in American English, vowel initial words may be produced irregularly at onset

(e.g "elephant") (Dilley & Shattuck-Hufnagel, 1995); in syllable-final environments,

voiceless stop consonants, particularly /t/, may be realized as a glottal stop (e.g.

in "hat rack") (Pierrehumbert, 1995); and allophonic irregular phonation may often

be associated with vowels adjacent to a glottal stop, with languages differing in the

duration of this allophonic irregularity (Blankenship, 2002).

The study of irregular phonation is also relevant for languages other than Amer-

ican English. Gordon and Ladefoged (2001) completed a survey which shows how

languages use irregular phonation contrastively to distinguish among word forms.

Hausa and certain other Chadic languages use irregular phonation contrastively for

stops. Some other Northwest American Indian languages, e.g., Kwakwila, Montana

Salish, Hupa, and Kashaya Pom, contrast irregular and regular voicing among their

sonorants. Laver (1980) and others have also suggested that certain languages use

irregular phonation to signal a speaker's turn. For example, irregular phonation may

mark the end of a turn in London Jamaican (Local, Wells & Sebba, 1985).

In acoustic terms, irregular phonation is generally associated with irregularly

spaced pitch periods and is often accompanied by other characteristics, such as full

damping, low FO, breathiness or low amplitude (Ladefoged, 1971; Fischer-Jorgenson,

1989; Klatt & Klatt, 1990; Pierrehumbert & Talkin, 1992). These characteristics are

15



believed to contribute to the perceptual impression of a glottal gesture or disturbance

in the regular voice quality (Rozyspal & Millar, 1979; Hillenbrand & Houde, 1996;

Pierrehumbert & Frisch, 1997).

Various theories and studies have tried to explain the physiological basis for irreg-

ular phonation. One theory suggests that from the perspective of vocal fold dynamics,

regular and irregular phonation may be distinguished based on the entrainment or

lack of entrainment of natural vibratory modes of the vocal folds, called eigenmodes

(Berry, 2001). Slifka (2000) conducted a study which suggests that as the glottal

configuration moves from one setting to another, it could move through regions of in-

stability leading to irregular phonation. Hanson, Stevens, Kuo, Chen & Slifka (2001)

have tried to explain the physiological variations during irregular phonation by ex-

ploring how the glottal waveform and vocal tract transfer function are affected by

the various patterns of complete/incomplete/nonsimultaneous closing of the vocal

folds during phonation. These studies contrast the incomplete closing of the vocal

folds in irregular phonation to regular phonation which has been defined as phona-

tion in which full contact occurs between the vocal folds during the closed phase of a

phonatory cycle (Titze, 1995).

1.2 Types of irregular phonation

The articulatory mechanism may affect the kinds of irregular vocal fold vibrations

produced. Over the years, researchers have classified irregular phonation into sub-

groups based on a combination of physiological, perceptual and acoustic character-

istics. Various terms have been used interchangeably to describe these sub-groups

with papers dedicated to establishing a taxonomy of irregular phonation (Gerrat &

Kreiman, 2001). This section describes some of of these terms.

* Creaky phonation : "...typically associated with vocal folds that are tightly

adducted but open enough along a portion of their lengths to allow for voicing"

(Gordon & Ladefoged, 2001, p.386). This is often accompanied by irregularly

spaced pitch periods and decreased acoustic intensity relative to regular phona-

16



tion (Gordon & Ladefoged, 2001, p.387). An example of creaky phonation is

shown in Figure 1-1 (a).

" Vocal fry : It is usually defined as a train of discrete, laryngeal excitations

of extremely low frequency, with almost complete damping of the vocal tract

between excitations (Hollien, Moore, Wendahl & Michel, 1966) giving the au-

ditory impression of a "...rapid series of taps, rather like the sound of a stick

being run along a railing."(Catford, 1977, p.98). One of vocal fry's distinct

characteristics is that the vocal folds tend to vibrate so slowly that individual

vibrations can be perceived (Colton & Casper, 1996). Vocal fry is characterized

by a very short open period and a very long period where the vocal folds are

completely adducted (Blomgren, Chen, Ng & Gilbert, 1998, p.2650). Zemlin

(1988, p.166) reported that examination of vocal fry with high speed photogra-

phy revealed that "...the folds are approximated tightly, but at the same time

they appear flaccid along their free borders, and subglottal air simply bubbles

up between them at about the junction of the anterior two-thirds of the glottis".

An example of vocal fry is shown in Figure 1-1 (b).

" Glottalization : Titze (1995, p.338) has defined it as "...transient sounds

resulting from the relatively forceful adduction or abduction of the vocal folds

[with the perceptual impression of] a voice that contains frequent transition

sounds (clicks)." Huber (1992) defines this term as an initial vibratory cycle

clearly demarcated from the rest of the periodic glottal vibrations, which is

in contrast to the more common reference of glottalization occurring at other

locations in the speech signal, including in phrase final position. An example

of glottalization is shown in Figure 1-1 (c).

" Diplophonia : "...simultaneous production by the voice of two separate tones"

(Ward, Sanders, Goldman & Moore, 1969, p.771). Titze (1995, p.337) restricts

the two tones to be dependent, the frequency of one tone an octave lower than

the other, but this study assumes no such rational dependence. An example of

diplophonia is shown in Figure 1-1 (d).
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(a) Creaky voice
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Figure 1-1: Some different types of irregular phonation: (a) Creaky voice (b) Vocal
fry (c) Glottalization (d) Diplophonia. (Source of waveforms: TIMIT, 1990)

The examples above offer a glimpse into the range of variations in irregular phona-

tion in normal speech. Some of the definitions offer concrete physiological character-

istics associated with a particular type of irregular phonation, but a lot more remains

to be understood regarding the physiological mechanism of irregular phonation pro-

duction. Detailed models of vocal fold functions such as those developed by Titze &

Talkin (1979) and studies done by Hanson et. al. (2001) and Slifka (2005) may help

enhance our understanding about irregular phonation.
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1.3 Specific Aim

This thesis attempts to use signal-processing techniques, in either the temporal or

frequency domain, to analyze the systematic variations in examples of irregular vocal

fold vibration that distinguish them from examples of regular vocal fold vibration.

Acoustically, this translates to proposing a set of acoustic cues capable of distinguish-

ing between regions of periodic, glottal pulses and (1) regions of aperiodic pulses, (2)

single aperiodic pulses or, (3) regions of atypically large spacing between adjacent

glottal pulses (as compared to the glottal pulse spacing in the local environment).

Another aim of this thesis is to study the context for occurrences of irregular

phonation. In other words, given an occurrence of irregular phonation, is there a

specific context where it is more likely to occur than others? The following contexts

are observed: (1) utterance-boundaries, (2) word-boundaries, (3) syllable-boundaries,

(4) voiceless-stops /p/, /t/ and /k/ and (5) vowel-medial locations.
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Chapter 2

Motivation

Irregular phonation in the form of regions of creakiness, period doubling, irregular

pitch periods and amplitude modulation can occur in the speech of normal as well as

pathological talkers (Docherty, 2001, p.364). This chapter details the benefits of an

accurate classification system to distinguish between regular and irregular phonation.

2.1 Lexical Access From Features (LAFF) Project

The work done in this thesis falls under the purview of the Lexical Access From

Features (LAFF) Project (Stevens, 2002), which proposes a model where words are

represented in the mental lexicon as a sequence of segments, each of which is described

by a set of binary distinctive features. Although the results of this work are widely

applicable, this section of the thesis focuses exclusively on the role this thesis plays

within the LAFF Project. In order to adequately describe this role, a brief overview

of the project is required.

2.1.1 Theory

The LAFF Project considers words to be represented as sequences of segments (also

referred to as phonemes), each of which can be defined by a set of binary distinctive

features (Jakobson, Fant, and Halle, 1952). These features specify the phonemic
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contrasts that are used in a particular language so that a change in one feature

leads to a different word. The project proposes the existence of a universal set of

features, with every language defined by a unique subset drawn from these features.

The end goal of the project is to decompose any utterance into a series of feature

bundles, assign a probabilistic estimate to the features within a segment and arrive

at a hypothesis for the underlying word sequence. In order to achieve this goal, the

initial focus is on building a system which can correctly identify all the distinctive

features for American English.

As a first step towards the goal of arriving at a feature set, the LAFF Project

aims to identify "landmarks" for the acoustic waveform. Landmarks are regions in

the acoustic waveform which either show a peak in low-frequency amplitude, a low-

frequency minima or acoustic discontinuities. These landmarks are detected based on

amplitude changes in various energy bands (Stevens, 2002; Lin 1995; Slifka, Stevens,

Manuel, Shattuck-Hufnagel, 2004).

The type of landmark region provides evidence for a broad class of distinctive

features called "articulator-free" features. These features refer to the general char-

acteristic of the constrictions within the vocal tract and the acoustic consequences

of these constrictions. There is another class of features called "articulator-bound"

features which are derived from the acoustic cues sampled near the landmark region.

The articulator-bound features provide information about the action of the particu-

lar articulator used in producing the phoneme. Table 2.1 (Slifka et. al, 2004) shows

a list of distinctive features for American English grouped by articulator-free and

articulator-bound classes.

Each phoneme is characterized by a unique combination of these articulator-free

and articulator-bound features. The feature set is arranged in a heirarchical structure,

which implies that the entire feature set does not need to be specified since some

features can be inferred from others. Table 2.2 (Stevens, 2002) shows the lexical

representations of the words "debate", "wagon" and "help" to illustrate this point.

Each distinctive feature is considered to have a defining articulatory action and

a correspoding acoustic correlate. An example is the feature [back] for vowels. For
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Table 2.1: List of distinctive features for American English grouped by articulator-free
and articulator-bound classes (Slifka et. al, 2004)

Articulator-free Articulator-bound features
features Vowel and glide Consonant

Vowel High Lips Lateral
Consonant Low Tongue blade Rhotic
Continuant Back Tongue body Nasal
Sonorant Adv. Tongue root Round Stiff vocal folds
Strident Spread glottis Anterior I _I

Table 2.2: List of distinctive features for the words "debate", "wagon" and "help"
(Stevens, 2002)

debate wagon help
d 9 b e t w a g 9 n h e I p

vowel + + + + +
glide +

consonant + + + + + + +
stressed - + + - +

reducible + - - + -
continuant - - - - - - -

sonorant - - - - + + -

strident
lips + +

tongue blade + + + +
tongue body +

round - +
anterior + + + +
lateral -+
high + -+

low - - - + - -

back - - + - - + -
adv. tongue root + + -

spread glottis +
nasal +

stiff vocal folds - - + -I I I 1 - +
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[+back] vowels, the tongue body is displaced back to form a narrowing in the pharyn-

geal or posterior oral cavity. The acoustic consequence is a second-formant frequency

that is low and close to the first-formant frequency. Vowels classified as [-back], on the

other hand, are produced with the tongue body forward and a high second-formant

frequency (Stevens, 2002).

It is clear that based on the model proposed by the LAFF Project, landmark

detection is inarguably the first and most important step in finding the underlying

word sequence of an utterance.

2.1.2 Relevance of irregular phonation

In addition to landmarks, there are other regions in the utterance which might show

characteristics similar to those observed for landmarks (i.e. peaks, valleys or disconti-

nuities in certain frequency ranges). Some of these regions are classified as "acoustic

events". Irregular phonation is one example of such an acoustic event. The presence

of irregular phonation can hence result in incorrect landmark indentification. Due to

the frequent occurrence of irregular phonation in normal speech, detecting this par-

ticular acoustic event and distinguishing it from landmarks is especially important.

To cite one example where irregular phonation is responsible for incorrect landmark

identification, regions of irregular phonation are often classified as vowel landmarks

by the landmark identifier. If the regions of irregular phonation are correctly identi-

fied, the misclassification of landmarks could be greatly reduced, which would result

in more accurate articulator-free feature identification and also lay a more robust

framework for articular-bound feature identification.

The identification of irregular phonation could also help in the detection of ut-

terance and word boundaries and lay the groundwork for estimating the prosodic

structure of an utterance (see Chapter 8 for further discussion) - both of which are

relevant to the LAFF Project.
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2.2 Applicability beyond LAFF Project

Huber (1992, p.503) has conducted experiments to show that human listeners use ir-

regularity in speech signals for segmentation purposes. These results are collaborated

by Blomgren, Chen, Ng & Gilbert (1998) who also observed that listeners were con-

sistently able to perceive glottal fry. Huber's research (1992), with that of Kreiman

(1982), show that irregular phonation is an important demarcation cue in connected

speech, used to support the segmentation of the continuous speech utterance into

relevant information units in American English. Their research suggests that a bet-

ter understanding of irregular phonation is essential to develop accurate and robust

automatic speech recognition systems and human-like speech synthesis systems.

Irregular vocal phenomenon is also used to convey linguistic and nonlinguistic

information. Gordon & Ladefoged (2001, p.383) note that a difference in phonation

type might indicate a contrast between otherwise identical lexical items and bound-

aries of prosodic constituents in many languages. Their statement is substantiated

by research done by Dilley, Shattuck-Hufnagel & Ostendorf (1996), Pierrehumbert

& Talkin (1992) and Pierrehumbert (1995) who state that irregular phonation could

be exploited as a cue for recognizing prosodic patterns. This could improve auto-

matic detection of prosodic markers, both for corpus transcription and for speech

understanding applications (Dilley, Shattuck-Hufnagel & Ostendorf, 1996, p.438).

The detection of irregular phonation is also of interest for pathological speech.

There are numerous medical conditions that affect voice quality. Many such condi-

tions have their origins in the vocal system and the tools available for the detection

of these speech pathologies are invasive or require expert analysis. Hence, a reliable,

accurate and non-invasive automatic system for recognizing and monitoring speech

abnormalities is one of the necessary tools in pathological speech assessment (Dibazar,

Narayanan & Berger, 2002).

Since irregular phonation often interrrupts the periodicity of the speech segment,

a key understanding of it will also aid in developing better FO estimation algorithms.

If an algorithm were to be developed to correctly identify regions of irregularity,
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incorrect FO estimates for those regions could be avoided.

The relatively frequent occurence of irregular phonation in normal speech across

languages, combined with its usefulness in terms of the acoustic cues it provides,

makes its comprehensive study essential towards establishing a complete model of

speech production and in developing robust algorithms for pitch detection, speech-

synthesis and automatic speech recognition.

26



Chapter 3

Prior Work

There exists a wide range in the rate of occurrence of irregular phonation across

individual speakers (Huber, 1988; Dilley et. al., 1996; Dilley & Shattuck-Hufnagel,

1995). Irregular phonation also occurs more often at certain locations in an utterance

over others. For example, Redi & Shattuck-Hufnagel (2001) found a higher rate of

irregular phonation on words at the ends of utterances than on words at the ends

of utterance-medial intonational phrases. In spite of the speaker-to-speaker and the

context-to-context variations of irregular phonation, an ideal classification system

trained to distinguish between regular and irregular phonation should be speaker-

independent and context-independent.

There have not been many automatic classification systems proposed to classify

regular and irregular phonation. To the author's knowledge, only Ishi (2004) and

Kiessling, Kompe, Niemann, N6th & Batliner (1995) have addressed this topic ex-

plicitly.

3.1 Kiessling, Kompe, Niemann, N*th & Batliner,

1995

Kiessling et. al, 1995 proposes a recognition scheme for classifying frames of irregular

phonation (referred to as "laryngealization" in the paper) from regular phonation
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using two approaches; the first based in the frequency domain, and the second in the

temporal domain. The database used in the study contained 1329 sentences from 4

speakers (3 female, 1 male) for a total of 30 minutes of speech. Frames of irregularity

were labeled by two trained phoneticians resulting in 1191 frames.

The first approach in this study used cues from the spectrum, the cepstrally

smoothed spectrum and the cepstrum of the speech waveform to disinguish between

regular and irregular phonation. These cues were extracted based on the observation

that the spectra and cepstra of irregular phonation differ from regular phonation

(for example, a lack of a regular harmonic structure was observed in the cepstrally

smoothed spectrum of irregular segments as compared to regular segments). Based

on these differences, the following five cues were proposed:

- the sum of the vertical distances of neighboring extrema in the cepstrally smoothed

spectrum below 1700 Hz.

- the average vertical distance of neighboring extrema in the cepstrally smoothed

spectrum below 1700 Hz.

- the location of the absolute maximum in the cepstrum.

- the height of the absolute maximum in the cepstrum.

- the quotient of the largest and the second largest maximum in the cepstrum of

the center-clipped signal (to eliminate the influence of the vocal tract).

These five cues were combined with normal mel-cepstral coefficients to train a

phone component recognition system. The system was originally set to distinguish

between 40 different phones using 11 mel-cepstral coefficients per frame and a Gaus-

sian classifier, automatically clustering into 5 clusters per phone and a full covariance

matrix. For all the phones which had more than 100 frames labeled as irregular in

the database, a new additional phone label was introduced increasing the number of

phones from 40 to 51. The 40 regular phones were mapped into one class and the

remaining 11 irregular phones into another. The first portion of the experiment was
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speaker-dependent for multiple speakers and yielded a recognition rate of 80% with a

false alarm rate of 8% for irregular phonation. The second portion of the experiment

used three speakers for training and one for testing to obtain a recognition rate of

67% with a false alarm rate of 7% for irregular phonation.

The second approach in this study used time domain cues. The approach proposed

an inverse filtering technique using artificial neural networks. The output of the

neural network was classified into three classes: unvoiced, regular voiced and irregular

voiced. The sample values of the neural-network filter output were used as input for

another artificial neural network trained to discriminate between the three classes.

This approach resulted in a 65% recognition rate with a false alarm rate of 12%

for irregular phonation. The paper does not mention if these results are speaker-

dependent or speaker-independent.

3.2 Ishi, 2004

Ishi, 2004 attempts to classify irregular phonation, referred to as "creaky voice", from

regular and aspirated segments of speech using the ratio of the first two peaks of the

autocorrelation function of the glottal excitation waveform as a primary cue.

In the study, the speech signal was first high-pass filtered at 60 Hz in order to

prevent the waveform from gradually rising or falling. A 1st-order LPC-analysis was

applied to the speech waveform. The estimated coefficient is referred to as the adap-

tive pre-emphasis coefficient (APE) in the study. The speech signal was then pre-

emphasized using the APE, and subsequently 18th-order LPC-analysis was applied

on the pre-emphasized signal. The obtained LPC coefficients were used for inverse

filtering of the high-pass filtered speech signal. The residual signal was treated as the

glottal excitation waveform.

The glottal excitation waveform was low-pass filtered at 2 kHz, before estimating

the autocorrelation function (ACF) to make ACF peak detection easier. The window-

size for the ACF was chosen in two steps. First, the ACF was estimated in an 80 ms

window. The time lag of the maximum peak was extracted and multiplied by four to
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be used as the new window size, restricting the window size to lie between 16 ms and

80 ms. The obtained ACF function was normalized using the following expression,

NAC(L)= x (N--L RXX)

where N is the number of samples in the frame window, L is the number of samples

of the autocorrelation lag and R., is the autocorrelation function.

The study proposes a clear periodicity in the ACF for regular phonation with the

NAC peaks close to 1, and no small peaks between time lag 0 and the first big peak,

due to the regular structure of the glottal excitation waveform. For creaky voice, the

study notes either the observation of one or more smaller peaks between time lag 0

and the first big peak due to the difference in amplitude over successive glottal pulses

in the glottal excitation waveform while for vocal fry, the study notes the presence of

a big peak with a narrow width due to the impulse-like shape of the glottal excitation

waveform. Based on these visual observations from the NAC of the glottal excitation

waveform, the first two peaks from time lag 0 in the NAC, called P1 and P2, are used

to characterize different phonation types. A threshold of 0.2 was used to detect peaks

in the NAC.

The following cues are proposed based on these two peaks P1 and P2:

Peak magnitude (NAC) value ratio NACR = 1000 x NAC(P2)NAC(P1)

Peak position (time lag) ratio TLR = 2000 X TL(P2)TL(P1)

Peak width ratio WR = 1000 x W(P2)
W(P1)

Maximum peak magnitude NACma, = NAC(Pmax )

Maximum peak position TLma2 = TL(Pmax)

Maximum peak width Wmax = W(Pmax)

Table 3.1 and 3.2 show the expected values of these cues for regular and irregular

phonation.
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Table 3.1: Expected values of the cues for regular and double periodic irregular
phonation (Ishi, 2004)

NACR TLR WR NACmax
(Single) Periodicity regular 2 1000 a 1000 ' 1000 a 1000

(Double) Periodicity irregular > 1000 $ 1000 < 1000 < 1000

Table 3.2: Expected values of the cues for low fundamental frequency irregular phona-
tion (Ishi, 2004)

TLmax Wmax
Low frequency irregular phonation Big Small

The study uses a dataset containing 404 phrase-final syllables segmented from

natural spontaneous speech of a single female adult speaker. Each syllable of the

dataset was labeled as either Creaky(C), Modal(M) or Aspirated(A) by looking at

the waveform and hearing the segments, leading to a dataset of 5619 frames.

A preliminary evaluation, using a decision tree for each of the three categories,

resulted in 91.5% of correct identification of the frames in all the categories. Specif-

ically for the creaky category, the deletion error was 13.7% while the substitution

error was 7.9% .

3.3 Comments

Although both studies show some promise in the classification of regular and irregular

phonation, a few limitations in the studies must be pointed out. Both the studies used

a limited number of speakers - Kiessling's study used four speakers while Ishi's study

used only one female speaker. Since irregular phonation is expected to show a high

degree of inter-speaker variability, the limited number of speakers is of concern. In

addition, Kiessling et. al.'s results are speaker-dependent since the same speakers are

used for training and testing the system, while Ishi's study is both speaker-dependent

and context-dependent because only a female speaker is used to gather data and the

regions of irregular phonation occur solely in phrase-final position. As stated at the
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beginning of this chapter, a robust classification scheme should make the classification

of regular and irregular phonation speaker-independent and context-independent.

Essentially, both studies have provided preliminary evidence that differences exist

between regular and irregular phonation. Kiessling et. al. (1995) perform their anal-

ysis in the frequency domain while Ishi's study (2004) is in the temporal domain. The

differences between regular and irregular phonation will be further explored in this

thesis in the hope of building a more general classification scheme for distingushing

regular phonation from irregular phonation - one that is both speaker-independent

and context-independent.
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Chapter 4

Speech corpora

4.1 Choice of Database

Speech materials used in this study come from the TIMIT corpus (1990), a phonetically-

labeled database of isolated utterances, recorded with a 16 kHz sampling rate. The

database includes time-aligned orthographic, word, and phone transcriptions. The

database consists of a total of 6300 sentences, 10 sentences spoken by each of 630

speakers from 8 major dialect regions of the United States (TIMIT, 1990). The

speech material is subdivided into portions of training and testing, making the choice

of training and testing data self-evident. In this study, only a subset of the database

is used - those utterances produced by speakers from the dialect regions "Northern"

(dri) and "New England" (dr2).

The TIMIT database is well-known within the speech community and one of its

uses is to provide speech-data for the development of automatic speech recognition

systems. An important reason for choosing the TIMIT database is the large amount

of data it provides for multiple speakers from different regions. This is especially

important for irregular phonation, where inter-speaker variation is common. In addi-

tion, both males and females are well-represented in the database. Also, the database

consists of read, continuous speech which is more consistent with speech that we

encounter everyday without extraneous supra-segmental effects one might find in an-

other database - for example, the BUFM database (Ostendorf et.al., 1995). Hence,
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an algorithm trained and tested on this data-set has wider applicability for improv-

ing existing speech-recognition, speech-parsing and speech-synthesis systems. Finally,

TIMIT is a well-know corpus which has been used extensively for speech research al-

lowing easier reproduction and corroboration of the results obtained in this thesis.

Once the TIMIT database was selected based on the reasons mentioned above, the

two dialect regions chosen were scanned for regions of regular and irregular phonation.

Vowels generally show a quasi-regular structure in normal, voiced speech. Tokens

of regular phonation were specifically extracted from stressed vowels in the database,

since they are generally characterized by long duration and are less susceptible to

co-articulation. The symbols for the vowels used as regions of regular phonation are

enumerated along with an example word in Table 4.1.

The TIMIT database contains the phone label, 'q' or glottal stop, which is used

to label an allophone of /t/ or to mark an initial vowel or vowel-vowel boundary. The

criteria for applying this label 'q' is not tied to the acoustic realization, as is the case

in this study, and is not used to label all possible cases of irregular phonation. For

these reasons, the irregular tokens were hand-labeled. The labeling was conducted by

analyzing the waveform in both the temporal and frequency domains and by hearing

the speech-waveform repeatedly when required. As stated in Chapter 1, regions within

the speech-waveform are labeled as irregular under the following conditions:

- if adjacent glottal pulses show unusual irregularities in time or am-

plitude

- if the spacing between adjacent glottal pulses is unusually large, com-

pared to the spacing of the glottal pulses in the immediate local en-

vironment.

4.2 Database characteristics

Figure 4-1 shows the distribution of regular and irregular tokens based on their dura-

tion using a boxplot (box-and-whiskers plot). The boxplot is a useful way of plotting
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Table 4.1: List of vowels used to denote regions of regular phonation along with an
example word
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bought
boy
boat
boot
toot
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butter
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Figure 4-1: Duration of regular and irregular tokens
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Table 4.2: Number of regular and irregular tokens based on duration of tokens

Duration of tokens (s) No restriction .030 s .040 s .050 s .060 s
Number of regular, male tokens 5554 5458 5345 5154 4890

Number of regular, female tokens 2642 2597 2562 2491 2378
Total number of regular tokens 8196 8055 7907 7645 7268

Number of irrregular, male tokens 794 735 607 473 339
Number of irrregular, female tokens 609 544 444 363 291

Total number of irregular tokens 1403 1279 1051 836 630

the five quantiles of the data. The ends of the whiskers show the position of the

minimum and maximum of the data whereas the edges and line in the center of the

box show the upper and lower quartiles and the median. The whiskers show the be-

havior of the extreme outliers. Table 4.2 shows the number of tokens for regular and

irregular phonation, broken down by gender, based on the duration of the tokens.
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Chapter 5

Method

This thesis uses a knowledge-based approach, rather than solely a data-driven one,

to develop a set of acoustic cues that can separate regular phonation from irregular

phonation. Different methods were explored to compute and normalize these cues.

The separation of these cues was subsequently tested using various statistical clas-

sifiers in smaller pilot studies, and a process of iteration resulted in the final choice

of four acoustic cues which can distinguish between regular and irregular phonation.

This chapter describes these acoustic cues.

5.1 Cue selection

Fundamental frequency, normalized root mean square amplitude, smoothed-energy-

difference amplitude and shift-difference amplitude are the four cues chosen to distin-

guish regular phonation from irregular phonation. Their method of computation and

a detailed overview on the rationale behind choosing these cues will be presented in

the following section. These cues are chosen based on the observation that irregular

phonation is accompanied by clear peculiarities in the signal in the form of either

a lack of periodicity, strong variations of the amplitude, very long pitch periods or

special forms of the damped wave which are not observed in regular phonation.
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Table 5.1: Expected behavior of an ideal FO estimator to distinguish between regular
and irregular phonation.

FO output
Irregular (abnormal spacing) < 72 Hz (Blomgren et al., 1998)
Irregular (lack of structure) 0 Hz (i.e. No fundamental frequency estimate)

Regular 86 Hz - 170 Hz (males) (Blomgren et al., 1998)
175 Hz - 266 Hz (females) (Blomgren et al., 1998)

5.1.1 Fundamental Frequency (FO)

This thesis essentially aims to detect two broad categories of irregular phonation -

the first type shows distinct irregularities in time or amplitude and is characterized by

a lack of structure in the waveform while the other type has abnormal spacing between

adjacent glottal pulses relative to the glottal pulse spacing in the local environment.

Both these descriptions differ from the quasi-periodic structure of the waveform for

regular phonation. This distinction suggests that fundamental frequency could be

a valuable cue in separating regular phonation from irregular phonation. Table 5.1

lists the ideal behavior for a FO estimator to classify regular phonation from irregular

phonation showing the expected FO ranges for the two types of irregular phonation

as well as gender-based, expected FO ranges for regular phonation.

The absence of a robust FO estimator which applies to both regular and irregular

phonation is a roadblock in using this cue. Most estimators are specifically designed

to compute FO estimates for examples of regular phonation. This thesis uses an

FO estimator, based on the filtered-error-signal-autocorrelation sequence to minimize

formant interaction, which can provide a reasonable level of separation in the FO es-

timates for both regular and irregular phonation (see Table 5.2). A detailed overview

of this method is available in Markel & Gray (1976), but the algorithm is briefly

outlined here.

In order to compute the FO estimate, the speech segment is first low-pass filtered

using a 12h -order Chebyshev filter with the stop-band ripple 30 dB down and the

stopband edge frequency at 1000 Hz. The segment is then pre-emphasized using a 500

Hz single-pole high-pass filter which boosts amplitudes at higher frequencies. This
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step counteracts the net decrease in amplitude of -6 dB/octave at higher frequencies

(resulting from the sum of a -12 dB/octave decrease in amplitude from the voicing

source and a +6 db/octave rise due to the radiation characteristics) during speech

production. After processing the resulting segment through a Hamming window of

equal length, the autocorrelation sequence for the segment is found. The Levinson-

Durbin recursion algorithm is used to find a set of coefficients that model the vocal

tract as an all-pole filter using what is commonly referred to as the "autocorrelation

method". The coefficients from the Levinson-Durbin algorithm model the vocal tract

as a transfer function in the form,

H(z) = an X Zn

where a represents the coefficients from the Levinson-Durbin algorithm.

The original segment is filtered using the coefficients from the Levinson-Durbin

algorithm to yield the error signal, which is an indicator of the glottal activity at the

source. The autocorrelation sequence for the error signal forms the basis for the FO

computation. The autocorrelation sequence is first normalized by the peak amplitude

at zero lag. Subsequently, all peaks greater than 0.46 over a range from 2.5 ms to

half the length of the autocorrelation sequence are selected. The choice of 0.46 as a

threshold value is not mentioned in the Markel & Gray algorithm and was selected

based on analysis documented in Table 5.2. Specifically, choosing 0.46 as a threshold

value results in reasonable FO estimates for a majority of the regular and irregular

tokens.

The choice of a particular peak's index provides an estimate for the fundamental

period of the segment. The FO estimate is calculated by taking the inverse of the

fundamental period. The steps involved in choosing the correct peak index have been

itemized below:

- If no peaks > 0.46, then the FO estimate is 0.

- If only one peak is > 0.46, then the associated index is estimated as the funda-

mental period.
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Table 5.2: Number of F0 estimates below 72 Hz for regular and irregular tokens
using different threshold values for the peak-detector in the FO estimator. Ideally, a
majority of the irregular tokens, but very few regular tokens, should have F0 values
less than 72 Hz.

Threshold No. of regular tokens < 72 Hz No. of irregular tokens < 72 Hz
(out of 8055 tokens) (out of 1279 tokens)

0.40 584 810
0.41 652 840
0.42 736 873
0.43 838 893
0.44 925 914
0.45 1020 936
0.46 1157 951
0.47 1264 977
0.48 1394 1005
0.49 1514 1022
0.50 1668 1047

- If more than one peak is > 0.46, then a test is conducted to determine if all

the peak indices are proportional to each other within a threshold of 0.02. If

the peaks indices do meet this criteria, then the second peak index is estimated

as the fundamental period. The first peak is ignored since its choice leads to

halving of the actual F0 value.

- if all the above-mentioned criteria fail, the maximum peak above the threshold

value is selected and its index determined as the fundamental period.

Figure 5-1 illustrates the F0 computation on a regular and an irregular token

respectively.

5.1.2 Normalized Root Mean Square Amplitude

Most of the examples of irregular phonation encountered during labeling match de-

scriptions of vocal fry. The number of glottal pulses per unit time for vocal fry is

less than the number for regular phonation due to the abnormal spacing of glottal

pulses. Other types of irregular phonation show a similar behavior where irregulari-
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Figure 5-1: (a) Example of a regular token. (b) The autocorrelation function for (a).
(c) Example of an irregular token. (d) The autocorrelation function for (c). The
horizontal line indicates the threshold value of 0.46 used in the FO computation. (b)
has multiple peaks greater than 0.46; the fundamental period is correctly chosen by
the second peak greater than 0.46. In contrast, (d) has no peaks greater than 0.46
and the FO estimate equals the default value of 0.
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ties in the spacing between glottal pulses lead to a lower number of glottal pulses per

unit time compared to regular phonation. This observation suggests that the average

signal amplitude estimated over a fixed time window should be greater for a regular

segment than for an irregular segment. Figure 5-2 illustrates this hypothesis using

an example of a regular and an irregular token.

Root mean square (RMS) amplitude is a common tool used in signal processing to

estimate the average amplitude of a signal. The result for the RMS amplitude of the

token is normalized by the RMS amplitude of the entire speech signal from which the

regular or irregular token is extracted to account for inter-speaker variation in signal

amplitude. The assumption using this method of normalization is that the speaker

uses the same "speaking level" over the course of the utterance. The mathematical

formulation to compute this cue is,

( LU s[1]2)O.5
ARMS - 2n=.5

where s[n] is the regular or irregular token, S[n] is the entire speech signal or utterance

in the case of the TIMIT database, N is the length of the entire speech signal in

samples and L is 30 ms of the regular or irregular token in samples.

5.1.3 Smoothed-energy-difference amplitude

Most examples of irregular phonation in the data-set either match descriptions of

vocal fry with widely spaced glottal pulses or show abruptness in the time-domain

waveform. This abruptness can be manifested in the form of an "impulse-like" tri-

angular pulse, a sudden change in amplitude of a glottal pulse or the appearance of

an additional glottal pulse within the normal glottal cycle. It is hypothesized that

all these behaviors should be characterized by a rapid transition of energy within the

irregular segment. Regular phonation, on the other hand, will not generally show

such rapid variations in energy. In order to test this hypothesis quantitatively, the

smoothed-energy-difference amplitude cue was formulated.

First, the 512-point Fast Fourier transform (FFT) for the token is computed. A
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Figure 5-2: (a) Example of an irregular token. (b) Example of a regular token. Both
are taken from the same speaker and are of the same duration to avoid inter-speaker
variablity in signal amplitude. The dashed vertical lines indicate the glottal pulses in
the token. (b) has five glottal pulses, compared to three for (a) and hence a higher
average signal amplitude.

43



Hamming window size of 16 ms was chosen to window the token while calculating the

FFT in the form,
512

X [k] = 1 x[n]w[n]e-jw,"
n=1

where x[n] is the input segment, w[n] is the 16 ms Hamming window and X[k] is the

FFT of x[n].

Since the FFT is symmetric in frequency, only the first 256 points of the FFT

are analyzed. The window is shifted by 1 ms and the FFT is calculated recursively

across all the segments in the token. These values are squared eventually giving a

matrix of size (256 x nFrames), where nFrames is the number of frames in the token

where the FFT has been computed. This matrix contains the energy information for

the token across all frequencies. The energy in each frame is averaged between 300

Hz - 1500 Hz and the 10 * logio of the values are used to compute a matrix of size

(1 x nFrames) giving one averaged energy value per frame for the token.

The choice of lower frequencies is valid since most of the energy in vowels, which

are used as examples of regular phonation, is concentrated in this range of frequencies

with the first formant rarely dipping below 300 Hz. The upper limit of 1500 Hz was

chosen since it resulted in the best separation in the smoothed-energy-difference values

for regular and irregular tokens as documented in Table 5.3.

The energy values found previously were averaged in time using different smooth-

ing window sizes - the initial choices being 10 ms and 16 ms respectively. The choice

of (10 ms, 16 ms) was based on the rationale that both these window sizes would in-

clude at least one glottal pulse in the time-domain waveform for regular phonation

resulting in a small difference between the two smoothed-energy waveforms. How-

ever, in many cases of irregular phonation with widely-spaced glottal pulses, a 10 ms

window size would not encompass one glottal pulse resulting in a larger difference in

energy between the pair of smoothed-energy waveforms.

The difference between the smoothed averaged energy values using the two win-

dow sizes, called the smoothed-energy-difference waveform, helps separate abrupt

variations in energy from smoothly-varying variations in energy. Since the energy in
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Table 5.3: Number of smoothed-energy-difference estimates below 2 for regular and
irregular tokens using different higher frequency bands. Ideally, a majority of the
regular tokens, but very few irregular tokens, should have smoothed-energy-difference
values less than 2.

Upper frequency No. of regular tokens < 2 No. of irregular tokens < 2
(Hz) (out of 8055 tokens) (out of 1279 tokens)
900 5881 147
950 5887 150
1000 5886 149
1050 5889 149
1100 5890 149
1150 5895 147
1200 5905 148
1250 5911 147
1300 5910 145
1350 5913 145
1400 5914 144
1450 5916 144
1500 5921 143

regular phonation is smoothly varying, few peaks are expected in its smoothed-energy-

difference waveform. On the other hand, the smoothed-energy-difference waveform

should show a more jagged structure for irregular phonation.

Inadvertent peaks might be produced at the beginning and end of the smoothed-

energy-difference waveform due to filtering artifacts when averaging by different win-

dow lengths. In order to avoid these erroneous peaks, max(smoothing-window-size)/2+

1 samples from the beginning and end of the waveform are excluded from analysis.

Figures 5-3 and 5-4 show typical smoothed-energy-difference waveforms for regular

and irregular phonation respectively. Taking advantage of the presence of jagged

peaks in the smoothed-energy-difference waveform for irregular tokens and their ab-

sence in regular tokens, the smoothed-energy-difference cue is the largest peak in the

smoothed-energy-difference waveform.

The lower window size was decreased to 8 ms and 6 ms respectively keeping

the upper smoothing window size fixed at 16 ms, as shown in Table 5.4, to see if this

change resulted in a greater separation between regular and irregular tokens. A trade-
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Table 5.4: Number of smoothed-energy-difference estimates below 2 for regular and
irregular tokens using different lower smoothing window sizes kepping the upper
smoothing window size at 16 ms. Ideally, a majority of the regular tokens, but
very few irregular tokens, should have smoothed-energy-difference values less than 2.

Lower smoothing No. of regular tokens < 2 No. of irregular tokens < 2
window size (ms) (out of 8055 tokens) (out of 1279 tokens)

10 7293 389
8 6619 222
6 5921 143

off is observed with a decrease in the smoothing window size not only reducing the

number of irregular tokens, but also the number of regular tokens, with small-valued

peaks. Ideally, a majority of the regular tokens but very few irregular tokens, should

have small smoothed-energy-difference values. In order to weigh this cue towards

the correct identification of irregular tokens - since it is hypothesized that the FO

and the normalized RMS cues should be robust in identifying regular phonation - a

choice was made to accept this trade-off and the lower window size is chosen to be 6

Ms.

5.1.4 Shift-difference amplitude

The method to compute this cue, referred to as shift-difference amplitude in this the-

sis, is largely based on work done by Kochanski, Grabe, Coleman & Rosner (2005)

with minor modifications. It is a measure of aperiodicity and Kochanski et. al.

(2005) used it to detect prominence in speech. In the context of this thesis, shift-

difference amplitude is used to distinguish regular and irregular phonation since ir-

regular phonation can often be characterized by a lack of periodicity in contrast to

regular phonation.

The computation is based on the difference between adjacent segments of the

time-domain waveform. The method assigns values close to 0 to regions of perfect

periodicity and values in the vicinity of 1 for aperiodic segments.

To compute this cue, the audio signal has low frequency noise and DC offsets
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Figure 5-3: (a) A typical regular token. (b) The spectrogram for the token showing
the energy in the signal at lower frequencies. The horizontal dashed lines show the

limits of 300 Hz and 1500 Hz over which the energy is averaged per frame. (c) The

averaged energy waveform. (d) The averaged energy waveform after being smoothed
in time using a window size of 6 ms. (e) The averaged energy waveform after being
smoothed in time using a window size of 16 ms. (f) The difference between the two

smoothed waveforms. The regions to the left and right of the vertical lines are left

out from analysis due to artificial peaks created during the averaging process.
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removed with a 50 Hz 4th-order time-symmetric Butterworth high-pass filter and is

then passed through a 500 Hz single-pole high pass filter for pre-emphasis. The

aperiodicity measure is calculated by taking 10 ms of the middle section of the token,

windowing it by a Gaussian with 20 ms standard deviation, and comparing it to other

sections shifted by 2 ms to 10 ms in increments of the sampling rate. If the segment

is periodic, then one of the shifted windows will match the original window resulting

in a minimum difference. The value of this cue is proportional to the value of the

difference between the shifted windows leading to the term "shift-difference" method.

For each possible shift, between 2 ms and 10 ms to the left and right,

d6[n] = (s[n+6/2] -s[n - 6/2]) 2

is computed where s[n] is the middle section of the filtered segment at time n. The

middle section is multiplied to itself to give P[n] = s[n]2 . This value is a measure of

the energy in the original filtered segment. Both d[n] and P[n] are convolved with

20 ms standard deviation Guassians to yield d[n] and P[n].

d[m] = min~{d6[n]}

is the minimum difference over all the shifts 6. In order to normalize the output, the

shift-difference amplitude cue is

(d[n]/P[n])05

The steps above have been originally outlined by Kochanski et al. (2005). The

only change made in this implementation is in the extent of the shifts which are

between 2 ms and 10 ms, instead of between 2 ms and 20 ms. This change is due to

the classification of abnormally wide-spaced glottal pulses as irregular in this thesis, in

spite of being periodic. If shifts as high as 20 ms were to be allowed, the shift-difference

amplitude for these specific instances of irregularity would result in estimates more
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Table 5.5: Expected behavior of the cues for regular and irregular segments.

FO Normalized RMS Smoothed-energy-diff. Shift-diff.
Regular Higher Higher Lower Lower

Irregular Lower Lower Higher Higher

consistent for regular tokens.

Table 5.5 is a summary of the expected contrast in the values of these cues for

regular and irregular tokens.
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Figure 5-5: (a) A typical regular token after high-pass filtering and pre-emphasis.
The solid line shows the middle segment of the token, while the dashed line marks
the shifted segments after shifting the window by 2.6 ms in either direction. (b) The
left-shifted segment. (c) The middle segment. (d) The right-shifted segment. (e)
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output shift-difference magnitude is the (f)/(e) which for this particular time-shift
is 0.09, consistent with expectations for regular tokens.
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Chapter 6

Analysis

This chapter analyzes the distribution patterns of fundamental frequency, normal-

ized root-mean-square amplitude, shift-difference amplitude and smoothed-energy-

difference amplitude for all the regular and irregular tokens from the dataset. In

addition to displaying the distribution patterns, a two-sample t-test with the null

hypothesis that the means of the acoustic cues are equal for regular and irrregular

phonation is used to test the significance of their separation. Finally, a failure analysis

is conducted to understand the behavior of the tokens where the acoustic cues fail to

separate regular and irregular phonation.

6.1 Overview

This thesis proposes a token-based recognition scheme, in favor of a frame-based

recognition scheme, to classify regular phonation from irregular phonation.

All the labeled tokens, for both regular and irregular phonation, were decomposed

into smaller units of 30 ms to compute fundamental frequency, normalized RMS

amplitude and shift-difference amplitude. In the case of fundamental frequency and

shift-difference amplitude, the minimum of these values was selected as the output

cue value for the token. However, in the case of normalized RMS amplitude, the

mean of the values was taken as the output cue value for the token.

The decomposition of the tokens into 30 ms segments was necessary for the above-
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Table 6.1: Two-sample t-test on the four acoustic cues with the null hypothesis that
the means are equal (df 9332).

t-statistic p-value
FO 32.16 << 0.001

Normalized RMS 36.59 << 0.001
Smoothed-energy-difference -61.92 << 0.001

Shift-difference -74.99 << 0.001

mentioned cues to avoid misleading cue values. The reasons are cue-specific and are

expanded below:

" Fundamental frequency (FO) & Shift-difference amplitude - the decom-

position prevented the normal variations in fundamental frequency and peri-

odicity from biasing the fundamental frequency and shift-difference amplitude

estimates.

" Normalized RMS amplitude - the decomposition prevented unequal token

lengths from affecting the amplitude.

The smoothed-energy-difference amplitude was not explicitly calculated over smaller

30 ms segments because its manner of computation intrinsically decomposes the token

into smaller segments.

6.2 Distribution pattern

Figure 6-1 shows the distribution of the four acoustic cues for regular and irregular

tokens. The significance of the separation between regular and irregular phonation

for each acoustic cue was quantitatively tested using a two-sample t-test, the results

of which are shown in Table 6.1.

The t-statistics for all four acoustic values are large in magnitude with small p-

values (df 9332) indicating that a significant separation exists between the means of

the acoustic cues for regular and irregular phonation.
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6.3 Failure analysis for each cue

According to Figure 6-1, the values of each acoustic cue for irregular phonation are

sometimes more consistent with those for regular phonation and vice-versa. A detailed

analysis of the tokens from which these acoustic cue values are computed is conducted

in this section for each cue separately. However, only two representative examples

of regular and irregular phonation respectively are discussed and presented in this

section for each cue.

6.3.1 Fundamental Frequency (FO)

Irregular tokens

The FO estimates for irregular phonation are expected to be either very low or 0

(indicating that the signal has no periodic structure). However, as shown in Figure

6-1, some F0 estimates for irregular phonation are as high as 400 Hz. The tokens

associated with these unexpectedly high F0 values were analyzed, showing that most

of the irregular tokens which result in high F0 values match descriptions of vocal fry

with widely spaced glottal pulses as shown in Figure 6-2.

This observation suggests that the FO algorithm only distinguishes between regular

phonation and examples of irregular phonation showing a lack of structure in the

waveform. These types of irregular phonation are characterized by a lack of periodicity

and will often have no peaks greater than the threshold resulting in a F estimate

with value 0.

The algorithm fails to correctly estimate the fundamental frequency for tokens

that match the description of vocal fry with a FO < 72 Hz (Blomgren et. al., 1998).

The reason for this failure is that the F0 computation chooses either the first peak

(when only one peak is > threshold) or the second peak (when multiple peaks are

> threshold and proportionally aligned) in the autocorrelation function to estimate

the fundamental period. The choice of either of these peaks is based on the expected

FO ranges in regular phonation. It is not valid as a fundamental frequency estimate

for widely spaced glottal pulses which should have a fundamental period much larger
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than indicated by the first or second peaks.

It is hypothesized that the misleadingly high FO estimates for vocal fry will be

offset by other cues such as normalized RMS amplitude and shift-difference amplitude

to distinguish it from regular phonation. Since there are a fewer number of glottal

pulses per unit time in vocal fry, its normalized RMS amplitude will be lower than

examples of regular phonation. The shift-difference amplitude is expected to be large,

since the glottal pulses are spaced far apart, in contrast to regular phonation. For the

two examples in Figure 6-2, the FO estimates are (356 Hz, 340 Hz) respectively.

However, these misleadingly high FO estimates are offset by the normalized RMS am-

plitude values, which are (0.18, 0.44) respectively, and the shift-difference-amplitude

values, which are (0.83, 0.52) respectively. The values for these cues follow the trend

enumerated in Table 5.5. Specifically, the normalized RMS and shift-difference am-

plitude values for these irregular examples are 1 stdv. below (for normalized RMS

amplitude) and 4 stdv. above (for shift-difference amplitude) their respective means

for regular tokens.

Regular tokens

In addition to unexpected FO values for irregular tokens, regular tokens sometimes

show low fundamental frequency values outside of expected ranges. On further anal-

ysis, it was found that a vast majority of these FO values are equal to zero, which is

the default FO estimate when the algorithm fails to find a fundamental period.

This failure is correlated to the choice of the threshold value in the FO computation

as shown in Table 5.2. Increasing the threshold value increases the number of irregu-

lar tokens with no fundamental frequency estimate, but also does the same for regular

tokens. Figure 6-3 shows two example of regular phonation with FO estimates equal

to 0 due to the high threshold value. As in the case of the inappropriate FO estimates

for irregular phonation, it is expected that the remaining cues will prove sufficient

in distinguishing these particular regular tokens from irregular tokens. For the two

examples shown in Figure 6-3, the normalized RMS amplitude, shift-difference am-

plitude and smoothed-energy-difference amplitude are (0.66, 0.30, 0.63) and (2.84,
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Figure 6-2: (a) Example of vocal fry. (b) The autocorrelation function for (a).
(c) Another example of vocal fry. (d) The autocorrelation function for (c). The
horizontal line indicates the threshold value of 0.46 used in the FO computation. In
both (b) and (d), the fundamental period is inappropriately chosen by the only peak
greater than 0.46.
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Figure 6-3: (a) Example of a regular token. (b) The autocorrelation function for (a).

(c) Another example of a regular token. (d) The autocorrelation function for (c).
The horizontal line indicates the threshold value of 0.46 used in the FO computation.

In both (b) and (d), none of the peaks are greater than 0.46 leading to misleading

FO estimates of 0.

0.22, 2.29) respectively. For the first example, the normalized RMS cue (with value

0.66) is lower than expected and is almost equal to the mean of the normalized RMS

value for irregular tokens. However, the shift-difference amplitude and the smoothed-

energy-difference amplitude for this example are approximately 1 stdv. below and 2

stdv. below their mean values for irregular tokens respectively. For the second exam-

ple, the normalized RMS amplitude is 4 stdv. above, the shift-difference amplitude is

2 stdv. below, and the smoothed-energy-diffference amplitude is 1 stdv. below their

respective means for irregular tokens.
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Additional Comments

While analyzing the fundamental frequency ranges for regular and irregular phona-

tion, it was observed that vocal fry for female speakers was sometimes characterized

by a fundamental frequency as high as 100 Hz. Some of these instances were individ-

ually analyzed and their pitch periods manually corroborated given the tendency of

the FO algorithm to fail when dealing with instances of vocal fry.

While these FO values were in contrast to the FO values of the female speaker

during regular phonation and resulted in a perceptual impression of irregularity, the

result was surprising given the ranges of vocal fry obtained by earlier studies (Mc-

Glone, 1967; McGlone & Shipp, 1971; Blomgren et. al., 1998). Blomgren et. al (1998)

reported a small difference between the FO values for vocal fry between males (range

of 24 Hz - 77 Hz) and females (range of 24 Hz - 72 Hz). Figure 6-4 shows that females

can produce vocal fry with F0 values higher than the range proposed in Blomgren et.

al. (1998) and more consistent with FO values for regular, male phonation. While

an in-depth analysis of the fundamental frequency ranges for vocal fry is beyond the

scope of this thesis, these examples of vocal fry showing higher F values for female

speakers should be further studied.

6.3.2 Normalized RMS amplitude

Irregular tokens

An analysis of irregular tokens with an inappropriately high normalized RMS ampli-

tude shows that most of them are characterized by a high first formant amplitude

as shown in Figure 6-5. The FO, shift-difference amplitude and smoothed-energy-

difference amplitude for (a) and (b) in Figure 6-5 are (0, 0.60, 2.86) and (0, 0.30,

2.83) respectively. These cue values offset the misleading normalized RMS ampli-

tudes (3.69, 3.23) for the two irregular examples. For the first example, FO is 2 stdv.

below, shift-difference amplitude is 4 stdv. above and smooothed-energy-difference

amplitude is 1 stdv. above their respective means for regular tokens. The separa-

tion is similar for all the cues in the second example except for the shift-difference
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amplitude which is 1 stdv. above its mean for regular tokens.

Regular tokens

Some examples of regular tokens have normalized RMS values that are also in lower

than expected ranges. Figure 6-5 illustrates two such examples. Most of these regular

tokens are characterized by a low amplitude not consistent with the "speaking-level"

of the entire speech-waveform. Hence, normalizing the RMS amplitude of the token by

the RMS amplitude of the signal does not produce the desired result of increasing the

normalized RMS amplitude in these specific cases. In other words, the normalization

method accounts for inter-speaker variation, not intra-speaker variation, in amplitude

of the time-domain waveform.

The two examples shown in (c) and (d) of Figure 6-5 have FO, shift-difference

amplitude and smoothed-energy-difference values of (96, 0.25, 2.04) and (182,

0.37, 1.97), offsetting the inappropriately low normalized RMS estimates of (0.27,

0.55) respectively. For the first regular example, FO is 0.5 stdv. above, shift-difference

amplitude is 1 stdv. below and smooothed-energy-difference amplitude is 1 stdv.

below their respective means for irregular tokens. The separation is similar for the

second example, except for FO which is 1 stdv. above its mean value for irregular

tokens.

6.3.3 Smoothed-energy-difference amplitude

Irregular tokens

Inappropriately low smoothed-energy-difference amplitude values are found for some

irregular tokens. The unifying characteristic of these examples is that they have only

one or two glottal pulses in the token and either match descriptions of vocal fry or

glottalization. Figure 6-6 shows an example of vocal fry with only two glottal pulses.

The limited number of glottal pulses results in fewer transitions of energy within the

speech waveform as seen by the lone undulation in the energy waveform in (c) of

Figure 6-6. This behavior is not characteristic of the jagged structure expected in the
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Figure 6-6: Illustration of misleading smoothed-energy-difference estimates for irreg-
ular phonation. (a) Example of vocal fry with only two glottal pulses. See Figure
5-3 for an explanation on how to interpret the remaining panes.

energy waveform for irregular tokens. Hence, smoothing the energy-waveform using

different window sizes does not result in a peak value.

The misleading cue values are expected to be offset by the FO, normalized RMS

and shift-difference amplitudes. The example in Figure 6-6 has a FO value of 0, a nor-

malized RMS amplitude of 1.53 and a shift-difference amplitude of 0.71. Although

the normalized RMS amplitude for this cue is inappropriately high and is greater

than the mean of the normalized RMS cue for regular tokens, the FO is 2 stdv. below

and the shift-difference amplitude is 5 stdv. above their respective means for regular

tokens.
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Regular tokens

Among the 2134 instances of regular tokens with inappropriately high smoothed-

energy-difference values (> 2), 1930 instances were generated by male speakers. This

suggests that a strong correlation exists between speaker gender and inappropriate

smoothed-energy-difference estimates for regular phonation. Another common char-

acteristic of these examples is a high second formant frequency as seen in Figure

6-7.

These characteristics suggest that the combination of the wider spacing of the

glottal pulses for male speakers compared to female speakers and the low amplitude

because of high F2 leads to high smoothed-energy-difference estimates for regular

tokens. Specifically, the lower window size of 6 ms will encompass a glottal pulse

for a female speaker, and hence the difference in the averaged energy for smoothing-

window sizes of 6 ms and 16 ms will be small. For male speakers, it is unlikely that the

lower window size of 6 ms will encompass a glottal pulse, which combined with the low

amplitude because of the high second formant frequency, results in a rapid transition

of energy for different smoothing window sizes and a high smoothed-energy-difference

output.

The example in Figure 6-7 has FO, normalized RMS and shift-difference ampli-

tudes of (110, 1.29, 0.31) respectively. The FO is 0.5 stdv. above, the normalized

RMS is 1 stdv. above and the shift-difference amplitude is 1 stdv. below their re-

spective means for irregular tokens. These values should offset the misleadingly high

smooothed-energy-difference estimate of 2.06 in this example.

6.3.4 Shift-difference amplitude

Irregular tokens

Irregularities in the form of isolated glottal pulses are the main reason for inappropri-

ately low values of shift-difference amplitude for irregular tokens as shown in Figure

6-8. If the isolated pulse occurs in the middle of the token, the difference between the

shifted segments is negligible resulting in an unexpectedly low shift-difference esti-
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the remaining panes.
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mate for the irregular token. Again, the remaining three cues are expected to classify

the token as irregular. For the example in Figure 6-8, the FO, normalized RMS

amplitude and smoothed-energy-difference amplitude are (0, 0.3289 and 6.4789)

respectively. The FO is 2 stdv. below, the normalized RMS amplitude is 1.5 stdv.

below and the smoothed-energy-difference amplitude is 4 stdv. above their respective

means for regular tokens.

Regular tokens

Some regular tokens show inappropriately high shift-difference amplitudes. Out of

these tokens, a few are characterized by decaying amplitude (perhaps they occur in

utterance-final position) as in (a) of Figure 6-9. The difference between adjacent

segments within the same token is therefore larger than expected compared to other

regular tokens. Other cases are borderline regular as shown in (b) of Figure 6-9 and

do not show a completely regular structure in the time-domain waveform. The FO,

normalized RMS amplitude and smoothed-energy-difference amplitude for the two

cases are (115, 0.84, 2.29) and (119, 1.04, 0) respectively which should offset the

inappropriately high shift-difference values of (0.54, 0.57) respectively. For the first

example, the FO and normalized RMS amplitude are 0.5 stdv. above their respective

means for irregular tokens, while the smoothed-energy-difference amplitude is 1 stdv.

below its mean for irregular tokens. The second example shows a similar separation

from the irregular tokens except for the shift-difference amplitude cue which is 2 stdv.

below its mean for irregular tokens.

6.3.5 Summary

Table 6.2 presents a summary of the most common causes of failure for each cue

for both regular and irregular tokens. It must be emphasized that for tokens where

one cue fails to generate the expected value, the other cues are generally expected

to provide information to adequately classify the token as regular or irregular as

illustrated in the previous section.
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Figure 6-8: Illustration of misleading shift-difference estimates for irregular phona-
tion. (a) A typical irregular token after high-pass filtering and pre-emphasis. The
solid line shows the middle segment of the token, while the dashed line marks the
shifted segments after shifting the window by 10 ms in either direction. (b) The
left-shifted segment. (c) The middle segment. (d) The right-shifted segment. (e)
The squared middle segment. (f) The squared difference between (b) and (d). The

output shift-difference magnitude is the (f)/(e) which for this particular time-shift
is inappropriately low at 0.05.

Table 6.2: Common causes of failure for each cue for regular and irregular tokens.

Cause of failure
(Regular tokens) (Irregular tokens)

FO Low threshold value Widely spaced glottal pulses

Normalized RMS Low amplitude High F1 amplitude
Smoothed-energy-diff High F2 Only one or two glottal pulses in token

Shift-diff Borderline regular Isolated glottal pulses
Decaying amplitude
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69

decaying amplitude

- -M

(b) borderline regular

A

0.03

(a)

11 -

0 0 a



6.4 Failure analysis for all cues

There are a few cases where all four acoustic cues return unexpected values for both

regular and irregular tokens.

Most of the irregular tokens that show such behavior are either examples of vocal

fry produced by females with F0 values higher than the expected vocal fry range (as

outlined by Blomgren et. al.,, 1998) or examples of diplophonia with glottal pulses

alternating in amplitude as shown in Figure 6-10.

The incorrect estimates due to examples of vocal fry with high F0 values could be

eliminated by making the classification system gender-dependent. Essentially, these

tokens are irregular relative to other regular tokens produced by females since the

spacing between the glottal pulses is wider relative to the regular glottal pulse spacing

for females. However, this wider spacing of glottal pulses for females is consistent with

the regular spacing of the glottal pulses for males as seen in (a) of Figure 6-10. The

values of the acoustic cues for these particular examples of vocal fry for females are

therefore consistent with the acoustic cue values of regular tokens for males.

The examples of diplophonia with misleading acoustic values show a very regular

structure except for the alternating glottal pulse amplitudes as seen in (b) of Figure 6-

10. It can be surmised that additional cues are needed to distinguish these particular

types of irregular phonation from regular phonation.

Regular tokens with unexpected acoustic cue values are mostly examples which

should not have been classified as regular in the first place as seen in (c) and (d) of

6-10. Since the regular tokens have not been individually hand-labeled and are ex-

tracted from stressed vowels, these occasional mislabels are expected and the resulting

incorrect classification is acceptable.

The existence of a category between regular and irregular phonation must also be

acknowledged. A few tokens in the data set fell under this category and should not

be classified as either regular or irregular. These tokens show a waveform structure

which is neither periodic nor aperiodic. Future work on this topic could include a

third category of tokens which are neither clearly regular nor clearly irregular, based
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on the definitions in Chapter 1.
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Chapter 7

Classification

This chapter gives a brief background on Support Vector Machines (SVMs) and out-

lines the results obtained in the classification of regular and irregular phonation using

SVMs.

7.1 Support Vector Machines

7.1.1 Theory

SVMs are learning machines for pattern classification and regression tasks based on

statistical learning theory (Vapnik, 1995). Given a set of training vectors {xj}{_ 1 ,

and the corresponding class labels {yj} i such that

y2 E {-1,+1} and xi c R

SVMs select a set of support vectors {x' T }ij that is a subset of the training set

{xi}_ and find an optimal decision function

Nsv

f (x) = sign(j: yiaiK(xV, x) - b)
i=1

where K is an em a priori chosen kernel function. The weights aj, the set of support

vectors {x}v}Nsv and the bias term b are found from the training data using quadratic
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optimization methods. A Gaussian kernel is used in this study to classify regular and

irregular phonation. For the gaussian kernel,

K(xi, x) = exp(--y Ixi. - x|2)

The experiment in this study was carried out using the OSU SVMs Toolbox

(http://www.ece.osu.edu/~maj/osu-svm/).

7.1.2 RBF (Gaussian) kernel

The Gaussian kernel requires two parameters: C and -y. It is not known beforehand

which C and -y will be the best for a particular problem. In order to find the best

(Cy) so that the classifier can accurately predict the unknown testing data, 3-fold

cross-validation was used (Hsu, Chang, Lin).

The first 960 tokens of both regular and irregular phonation were used as the

training set during cross-validation. In 3-fold cross-validation, the training set is

divided into 3 subsets of equal size. Sequentially, one subset is tested using the

classifier trained on the remaining 2 subsets. Thus, each instance of the whole training

set is predicted once. The cross-validation accuracy is the percentage of data which

are correctly classified.

Using a "grid-search" on C and -y, various pairs of values were tried. The (C,y)

which resulted in the best classification rates equal to (256, .0312).

7.1.3 Results

The training and test data need to be scaled to prevent cues in higher numeric ranges

from dominating the smaller numerical ranges which could lead to numerical difficul-

ties. In order to prevent this problem, the distribution for each cue in the training set

is converted to zero mean, unit variance for both regular and irregular tokens. Since

the test-data also needs to be normalized appropriately, the distribution of each of

the cues in the test-set is normalized using the mean and variance of the associated

cue in the training set for both regular and irregular tokens.
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Figure 7-1 shows the Receiver Operating Characteristic (ROC) curves for the

correct classification of irregular tokens based on the SVM outputs. An ROC curve is

a graphical representation of the trade off between the false negative and false positive

rates for every posssible threshold. The diagnostic test is successful when the ROC

curve climbs rapidly towards the upper left hand corner of the graph. This means

that (1 - the false negative rate) is high and the false positive rate is low. The test

is unsuccessul when the ROC curve follows a diagonal path from the lower left hand

corner to the upper right hand corner. This behavior means that every improvement

in the false positive rate is matched by a corresponding decline in the false negative

rate.

The rise of the ROC curve to the upper left hand corner can be quantified by

measuring the area under the curve - the larger the area, the better the diagnostic

test. If the area is 1.0, the test is ideal, because it achieves both 100% sensitivity

(synonymnous with the true positive rate) and 100% specificity (synonymnous with

the true negative rate). If the area is 0.5, then the test has effectively 50% sensitivity

and 50% specificity. This is a test that is no better than flipping a coin. In practice,

a diagnostic test has an area somewhere between these two extremes. The quality of

the test is judged by the proximity of the area under the curve to 1.

For each ROC curve in Figure 7-1, only 959 irregular tokens are used for training

since the number of irregular tokens is limited in the data-set. However, the number

of regular tokens used for training is increased from 959 -+ 1500 -* 2500 -4 3500.

Figure 7-1 shows an improvement in the classification scheme as the training size of

regular tokens is increased, but this improvement decreases after 2500 samples.

The same test-set, consisting of 4320 regular tokens and 320 irregular tokens, is

used in the SVM as the training size of regular tokens is increased. The unequal size

of the test-set should not affect the performance of the SVM and is merely an artifact

of having an unequal number of regular and irregular tokens.

The area under the ROC curves is close to 1 using 2500 regular tokens for training

as shown in table 7.1 showing that the SVMs can classify regular and irregular phona-

tion well. Using a threshold of 0 in this case, a recognition rate of 91.25% is obtained
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Table 7.1: Area under ROC curve using 959 irregular tokens and different number
of regular tokens for training the SVM. The same test-set, consisting of 4320 regular
tokens and 320 irregular tokens, is used in all the cases.

No. of regular tokens Area under ROC
959 0.74
1500 0.87
2500 0.93
3500 0.90

for irregular phonation with a false alarm rate of 4.98% while regular phonation is

classified with a recognition rate of 95.02% and a false alarm rate of 8.75%. The

threshold value can be adjusted based on the requirements of the system to increase

the recognition rate for a particular class, but this would also result in an increase in

the false error rates for that class.

76



f if Ipr p ~ ~
I P*

it for0

je* ,o,l

I -

,'
I-'

U

.3

No. of regular tokens used for training

.2*0

0

a-

.C

0)

.

N.

-
0

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
False positive rate in identification of irregular tokens

Figure 7-1: ROC curves for the classification of irregular tokens

77

pI 3

1~

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.11

0'
0

959
-"1500
-- 2500

- -3500

1

10

-



78



Chapter 8

Irregular phonation as a

segmentation cue

The large scale labeling associated with the thesis offered an opportunity to study

aspects of the communicative function of irregular phonation in a speaker-independent

setting. Specifically, it enabled a study on the efficacy of irregular phonation as a

reliable cue towards the segmentation of continuous speech in American English.

8.1 Introduction

A large body of research exists regarding the range of acoustic cues used to mark

boundaries in the speech stream. These cues serve a segmentation purpose for various

types of units - including syllables, words, phrases, utterances and dialogues. In

American English, these cues include the aspiration of voiceless stop consonants in

syllable-initial position (for stressed syllables), segmental lengthening prior to a major

prosodic boundary such as the utterance, and signal amplitude changes in the vicinity

of a silent pause as the speaker suspends the sound source. In particular, prior

work has focused on specifying the factors which determine the likelihood that a

word boundary will be marked with irregular phonation. In general, these factors

may arise from a segmental context and/or a prosodic environment. For example,

irregular phonation tends to occur at word boundaries between vowels (Umeda, 1978),

79



and at syllable final /t/ and sometimes /p/ (Pierrehumbert, 1994). The occurrence

of irregular phonation at word-initial vowels and its relationship with the prosodic

structure of the utterance has also been explored (Dilley & Shattuck-Hufnagel, 1995;

Pierrehumbert, 1995). Their studies show that irregular phonation at word-initial

vowels occurs more often at the beginnings of intonational phrases, and to a greater

degree if the word is pitch-accented.

As stated, these studies focus on determining the factors that influence the likeli-

hood that a word boundary will be marked with irregular phonation. In this chapter,

a related question is addressed with a slightly different focus - given the presence

of irregular phonation, what is the likelihood of a word boundary at that location?

Similarly, if irregular phonation does not occur at a word boundary, in what context

does it occur? The results directly support the use of automatically detected regions

of irregular phonation in spoken language systems. First, these irregular regions can

help determine the probability of a word-boundary location. Also, with limited ad-

ditional context, the probability estimate for a word-boundary can be strengthened.

Specifically, two cases are examined in more detail - voiceless stop consonants and

vowel-vowel junctions.

The ends of utterances (and phrases) have also been observed to be marked with

irregular phonation (Lehiste, 1979; Kreiman, 1982). Given the structure of the TIMIT

database as isolated utterances, utterance-initial and utterance-final irregular phona-

tion as well as syntactic level phrase-initial and phrase-final irregular phonation are

examined.

8.2 Data set

Only the training data set was used for this portion of the study resulting in 1331

hand-labeled irregular tokens from 114 speakers. The word transcription of the

TIMIT database was used to determine word and utterance boundaries. Regions

of irregular phonation were classified in relation to the syntactic boundaries of syl-

lable, word, phrase and utterance. Phone-related instances for /p/, /t/, /k/ and
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Table 8.1: Syntactic boundary labels for irregular token occurrence.

Word level Phrasal level Stops Other
Word-final Utt-final p Vowel-vowel

Word-initial Utt-initial t
Syll-final Phrase-final k

Syll-initial Phrase-initial
Last phonation in utt.
First phonation in utt.

vowel-vowel sequences were classified using the TIMIT phonetic transcription. A sum-

mary of the classification categories is given in Table 8.1 for four categories - word

level, phrasal level, voiceless stop consonants and vowel-vowel boundaries. Within

the word-level and phrasal-level categories, the labeling is mutually exclusive. For

example, a word-initial occurrence of irregular phonation is not counted as syllable-

initial. Similarly, an utterance-initial occurence of irregular phonation is not marked

as phrase-initial.

8.3 Results

Figure 8-1 shows the percentage, as well as the absolute number, of irregular tokens

that occur at word and syllable boundaries. Out of all the irregular tokens, 78%

occur at word boundaries - 45% at word-final locations and 33% at word-initial

locations. An additional 5% of the irregular tokens occur at syllable boundaries.

These tokens were re-analyzed, leading to two main observations. First, of the 69

irregular tokens occurring at syllable boundaries, 50 occurred (72%) either at the

junction of a compound word (e.g. "outcast") or at the junction of a base word

and a suffix. For example, irregular phonation was noted at the end of 'equip' in

'equipment'. Secondly, 52 of the 69 irregular tokens (75%) at syllable boundaries

conincided with a voiceless stop location (either /p/, /t/ or /k/).

Figure 8-2 shows the percentage, as well as the absolute number, of irregular to-

kens at phrasal boundaries. Combined, 48% of the irregular tokens occur at phrasal
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Syllable-initial

45% (596) S-ylable-final 5% (62)

Word-initial

33% (441)

Figure 8-1: Breakdown of irregular phonation at word and syllable boundaries. The
absolute number is shown next to the percentage within brackets. (Based on 1331
tokens)

boundaries - 27% at utterance boundaries while another 21% at syntactic phrase

boundaries. In Figure 8-2, the irregular tokens occurring at the last instance of phona-

tion within the utterance are combined with the utterance-final tokens. Similarly, the

irregular tokens at the first place of phonation within the utterance are combined with

the utterance-initial tokens.

Figure 8-3 shows the percentage, as well as the absolute number, of the irregular

tokens that occur at voiceless stop /p/, /t/ or /k/ and at vowel-vowel junctions. A

total of 24% of the irregular tokens occur at voiceless stop consonants and 10% occur

at vowel-vowel junctions.

A further study of the irregular tokens at voiceless stop locations and vowel-vowel

junctions was conducted in relation to word-boundaries (Figure 8-4). All the irregular

tokens at vowel-vowel junctions occur at word-boundaries, i.e. either in word-initial

or word-final position. For the irregular tokens at voiceless stops, 268 of the 326

occur at word-final position while another 44 occur at syllable-final position. All 44

of the syllable-final irregular tokens for voiceless stops occur either at the junction of

a compound word or at the junction of a base word and a suffix.

Additional analysis was conducted on cases of irregular phonation which do not
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12% (160) ial

9% (117)

Figure 8-2: Breakdown of irregular phonation at syntactic phrase and utterance

boundaries. The absolute number is shown next to the percentage within brackets.

(Based on 1331 tokens)

20% (271)

4% (47)
k-

<1% (9)

10% (135)

Figure 8-3: Breakdown of irregular phonation at voiceless stops and vowel-vowel

boundaries, The absolute number is shown next to the percentage within brackets.

(Based on 1331 tokens)
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Figure 8-4: Breakdown of irregular phonation at word level boundaries for vowel-
vowel junctions and voiceless stops.
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Table 8.2: Contexts in which irregular phonation at word-medial position occur in
the data set.

Before or after a voiceless consonant
Before or after a voiced consonant

Before or after a sonorant consonant
Function word 'a'

Other

coincide with either a word or syllable boundary in order to determine the context in

which the irregular phonation occurs. Table 8.2 lists the five broad contexts in which

these irregular tokens occur.

A total of 225 irregular tokens occur at neither word nor syllable boundaries.

Figure 8-5 shows their distribution among the five categories listed in Table 8.2.

Of the 225 irregular tokens not at word-boundaries, 158 occur adjacent to a voiceless

consonant. Analyzing these tokens showed that 130 of these occur either in utterance-

final location or before a pause in the utterance. In Figure 8-5, utterance-final voiced

consonants (stops & fricatives) are grouped with the voiceless consonants since such

realizations are largely devoiced. One such example is shown in Figure 8-6 (a) where

the word "subject" occurs in utterance-final location and the irregular token precedes

the voiceless stop /k/.

Of the 9 irregular tokens which occur adjacent to a voiced consonant, 6 are at

utterance-initial or phrase-initial position. And, of the 31 irregular tokens next to

sonorant consonants, 16 occur either at the last word of the utterance or at pre-

pausal locations. The 7 irregular tokens at function words encompass the entire word

and hence are classified as neither word-initial nor word-final. The remaining 20

irregular tokens classified under the "Other" category include 10 tokens which show

irregular phonation in vowel-medial position. This particular behavior is observed

across multiple speakers. Figure 8-6 (b) shows one particular example where the

irregular token occurs within the vowel /ae/ in the word "packing".
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9% (20)

70% (158)

Figure 8-5: Breakdown of irregular phonation which does not occur at word or syllable
boundaries.

(a) subject. "

05 0 rf~r r 1 ~

<"rlrl 'rrrT' irregula~r ponation

Time

(b) "...has a packing shed."
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N

Figure 8-6: Two examples of irregular phonation which do not occur at word bound-
aries. (a) is an example of an irregular token adjacent to a voiceless consonant in
utterance-final location while (b) shows an irregular token in vowel-medial position.
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8.4 Discussion

This chapter addresses the question of whether or not all detected instances of irreg-

ular phonation in American English are associated with a boundary location. The

results are collected in a speaker-independent analysis across 114 different speakers

and show that 78% of the irregular tokens occur at a word boundary. Batliner et

al. (1993) examined instances of irregular phonation for German speech. One-third

of the database consisted of real spontaneous utterances gained from human-human

clarification dialogues, while the rest consisted of the same utterances read by the

same speakers nine months afterwards. From a total of 1191 irregular portions of

speech, 58% occurred in word-initial position and 18% occurred at the end of a word.

The results of the present study for American English are highly consistent with the

results of Batliner et al. (1999), and support the conclusion that irregular phonation

is a strong acoustic cue for the detection of word boundaries.

These results are applicable to the development of spoken language systems for

lexical access or automatic speech recognition. The detection of a subset of the

word boundaries in a speech stream (based on robust acoustic cues such as irregular

phonation and regions of silence) can provide segmentation of the speech stream into

limited regions for proposing a cohort of word candidates. Appropriately limiting

the search region prevents the cohort from growing unmanageably large. The results

of the present study are in conjunction with an effort towards the development of a

system for automatic classification of regions of phonation as either regular or irregular

discussed earlier in Chapters 5, 6 and 7.

A secondary question examined the 22% of the tokens of irregular phonation which

did not occur at a word boundary and asked if there are still consistent observable

trends in relation to other types of boundaries. Of these 22% of the tokens (294 in

total), 50 were found to occur at syllable boundaries located at the junction of a

compound word or between a base word and a suffix (such as -ment, -ly, or -en). An

additional 130 tokens, which do not occur at a syllable boundary, occur in the vicinity

of a voiceless (or devoiced) consonant at the end of an utterance, and 6 tokens, occur
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following a nominally voiced stop consonant at the start of an utterance (/b/, /d/ or

/g/).

Recently, the physiological correlates to irregular phonation in utterance-final lo-

cation, for utterances ending with a vowel, have been quantitatively studied by Slifka

(2005). She found that when the end of the utterance coincides with the speaker

taking a breath, the conditions associated with the respiratory actions to finish one

breath and prepare for the next inhalation tend to give rise to a particular type

of irregular phonation - one that is produced with relatively widely abducted vocal

folds or produced as the vocal folds are in the process of continuing to abduct. This

configuration yields irregular phonation which is highly damped and is in contrast

to definitions of glottalization associated with tightly adducted vocal folds. In the

present data, 58% of the tokens not occurring at a word or syllable boundary occurred

in the vicinity of the end of an utterance. For example, in an utterance ending in

the word 'subject,' the utterance ends with a voiceless consonant production, but the

last instance of phonation in the utterance is irregular. In such cases, a physiological

basis similar to that in Slifka (2005), may create conditions conducive to irregular

phonation.

Overall, for the 22% of irregular tokens which do not occur at a word boundary,

63% of them do occur in a boundary-related environment (such as syllable or ut-

terance). These results further support the conclusion that, if in a spoken language

system, an instance of irregular phonation is detected, the probability of a speech

boundary at that location should be very high. The type of the boundary will de-

pend on additional analysis which might include acoustic cues related to the specific

nature of the irregular phonation, other acoustic cues related to the prosodic struc-

ture (such as duration and intonation), or the information regarding the segmental

context.
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Chapter 9

Conclusion

This thesis has presented a knowledge-based classification scheme to distinguish be-

tween regular and irregular phonation with accuracy rates greater than 90%. With

four cues (fundamental frequency, normalized RMS amplitude, smoothed-energy-

difference amplitude and shift-difference amplitude), a clear separation between reg-

ular and irregular tokens using Support Vector Machines (SVMs) was found. The

results are especially significant since the proposed system uses tokens from multiple

speakers - 114 different speakers for training and 37 different speakers for test-

ing. Given the high inter-speaker variation of irregular phonation, the high accuracy

rates using multiple speakers proves the robustness of the proposed cues. In addi-

tion, both male and female speakers are well represented in the data-set and the

regular and irregular tokens used for training and testing occur in various contexts

(i.e. utterance-initial, phrase-final, utterance-final etc.). These characteristics of the

data-set are in contrast to the characteristics of those used in previous studies which

were either speaker-specific, gender-specific and/or context-specific. This thesis has

demonstrated that it is possible to make the classification of regular and irregular

phonation gender-, speaker- and context-independent with high accuracy rates.

Additionally, this thesis has also conducted an in-depth study on instances of irreg-

ular phonation and their place of occurrence. It is observed that irregular phonation

occurs often at word-boundaries. Those instances of irregular phonation which do not

occur at word-boundaries are usually associated with some other speech-boundary.
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Given that regions of phonation can be classified as regular or irregular with a high

degree of consistency, these results confirm that regions of irregular phonation can

reliably serve as a segmentation cue for speech recognition, speech parsing and speech-

synthesis. Future studies also offer the possibility of combining several cues with ir-

regular phonation to build the prosodic structure of an utterance in a spoken language

system.
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