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Abstract

This paper presents a method of real-time multi-modal pedestrian detection from a

moving vehicle. The system uses both intensity and thermal images captured from

cameras mounted at the front of the vehicle to train cascades of classifiers, which
results in a detector that is able to detect a large percentage of pedestrians with very

few false positives. The system has also been tested with inputs of high-resolution

intensity images along with low-resolution thermal images, showing that the addition

of even a low-resolution thermal camera may return better pedestrian detection results
than using only intensity information alone.
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Chapter 1

Introduction

1.1 Motivation

Due to a recent public outcry for pedestrian safety, automakers are trying to design

more pedestrian-friendly vehicles in order to reduce the frequency and severity of

pedestrian injuries. One proposed plan involves having a vehicle automatically detect

pedestrians that are in the projected path of the vehicle in real time. Then, the

vehicle can reduce the severity of the possible impact by applying automatic brake,

or launching a structure such as an external airbag towards the pedestrian.

To implement such a system, we need a pedestrian detection algorithm that is

able to accurately and speedily detect pedestrians from a moving platform with a

very low false positive rate. The majority of past pedestrian detection systems use

only one mode of detection, such as detectors using only intensity images, detectors

using only thermal images, or detectors using only stereo images. Furthermore, most

of past detectors rely on images captured from a still camera. We propose a method

of pedestrian detection that combines information from both intensity images and

thermal IR images captured from two cameras on a moving vehicle to ensure fast and

accurate detection of pedestrians.
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1.2 Goals

In order for a pedestrian detection system to be useful to the automobile industry, we

need the detection system to be fast, accurate with a very low false positive rate, and

cheap enough to be a viable addition to the vehicle of an average consumer. Below,

we discuss in detail the following three goals of the detection system.

1.2.1 Detection Speed

We assume the vehicle to be on a non-highway city street, traveling between 15 - 40

mph. Then, to accurately detect pedestrians that are 30 to 80 yards away and to

allow the vehicle enough time after detection to respond accordingly, we need a image

capture rate of at least two frames per second, and a corresponding detection rate of

at most half a second per image. This detection rate gives the braking system of the

vehicle around 1.5 seconds to come to a complete stop before reaching the pedestrian.

1.2.2 False Positive Rate

One main concern for the automobile industry regarding the pedestrian detection

project is the possibility of having a detector with a relatively high false positive

rate. There are many objects on the streets that a detector may falsely recognize as a

pedestrian: a garbage can or a parked car on the side of the street, a small tree with

dangling branches around the corner, etc. If a vehicle equipped with the pedestrian

detection system jerked to a stop or launched an external airbag every time it passes

by one of these falsely categorized items, then not only could the detector be a huge

hassle for the owner of the vehicle, but would also cause new undeserved accidents to

the passengers of the car.

Thus, the pedestrian detection system must ensure a very low false positive rate,

while still ensuring a reasonable recall level.
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1.2.3 Hardware Price

A good, thermal IR camera that is capable of capturing high-resolution images cur-

rently sells for a few thousand dollars a piece, which is too expensive of an addition

to an average priced vehicle. However, with the current advance in technology, a

low-resolution thermal camera can potentially be purchased for as low as a hundred

dollars in the near future. If low-resolution images do indeed improve the performance

of detection over intensity images alone, then the low cost of the low-resolution cam-

era makes it an ideal choice as a practical addition to an automatic detection-braking

system in any vehicle.

1.3 Past Related Work

Pedestrian detection has been a topic of interest for researchers for at least the past ten

years. Pedestrian detection problems with fixed cameras, such as human detection

on surveillance cameras, have generally been solved using background subtraction.

However, this is not in general applicable to pedestrian detection from automobiles,

since the background of a moving vehicle is constantly changing.

As a result of the complications that arise from a moving camera, motion-based

pedestrian detection algorithms generally do not work well as a primary detection

method when the camera is mounted on a moving automobile. [11] and [27] imple-

mented motion-based approaches on moving vehicles by interpolating motion data

from successive frames to predict the background in subsequent frames based on the

motion patterns. This causes a delay of several frames before pedestrians can actually

be detected.

Most recent approaches have used single-frame approaches to pedestrian detection.

This has the advantage of allowing much quicker detection of pedestrians, at the

expense of losing the motion data that makes pedestrian detection so much easier in

surveillance environments. Many single-frame detectors are fast enough to work in

real time.

Different approaches have used different types of sensors. Most work has been
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performed on detecting pedestrians from visual intensity images. [3] used a shape-

based approach that is very accurate except when the pedestrian is partially occluded.

[19] used an approach based on wavelet features over the set of all shifted windows

of various sizes over an image. This approach, while being very accurate, is not fast

enough to run in real time.

Infrared (thermal) images have also been used in pedestrian detection. [2], [28],

and [6] have all used various algorithms combined with infrared imagery to detect

pedestrians from moving vehicles. Infrared imagery has the advantage that many

objects which may resemble pedestrians visually can be easily distinguished from

pedestrians because they give off no body heat. However, the levels in the thermal

image may also be strongly affected by the weather and ambient conditions. Various

machinery may also give off large amounts of heat, and be confused with pedestrians.

[18] used a probabilistic template-based approach with infrared images, and achieved

a reasonable detection rate, at 11 frames per second. However, that system averaged

one false-detection per frame, which is unacceptable in a collision-avoidance system.

[29] and [15] used stereo images with visual and thermal images, respectively, and

achieved a very high accuracy rate of detection. However, processing stereo images

requires significant computation, and currently cannot be done in real-time on a video

stream.

In 2001, Paul Viola and Michael Jones proposed a boosted cascade algorithm

that is capable of rapidly processing images and achieving a high detection rate of

15 frames per second [26]. The training algorithm is based on AdaBoost, while the

classifying algorithm uses a cascade structure to reduce computation time and increase

performance. The cascade process can be thought of as a decision tree, where each

image is tested against a series of classifiers. When an image tests true for the first

classifier, it is then tested against the second classifier in the sequence, until either it

has failed enough classifiers to be classified as "false", or it can be classified as "true".

If for each stage of the cascade, the false negative rate is guaranteed to be below a

certain small threshold, then the result of the cascade will correctly classify a very

large percentage of the positive data, while rejecting the vast majority of the negative
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data in an early stage of the cascade. Clearly, this process reduces the average number

of classifying tests per data point. By choosing classifiers where the vast majority of

the images fail as early stages of the cascade, we can significantly reduce the number

of images that need to be processed by the second classifier, which in turn improves

the overall performance.

Another main feature of the Viola and Jones paper is the introduction of a set of

over-complete Haar-like features that can be computed in linear time using a method

called integral image [26]. This allows for the very quick calculation of features

over millions of different possible locations. In 2002, [14] extended this set of over-

complete Haar-like features to also include features that are 450 rotated from the

original Viola and Jones features. This new set of features, like the original basic

features, can also be calculated very quickly, and may be useful in capturing certain

domain knowledge that cannot be previously represented. For example, the arms

of a walking pedestrian may be closer to 45' relative to the ground than completely

vertical, and this information can be captured much better with rotated features than

just the basic features. However, the additional features may also cause complexities

in the training of the classifiers.

In 2003, Viola, Jones, and Snow implemented a new method of pedestrian de-

tection that combines the intensity images with motion information for improved

detection [27]. According to the authors, this was the first approach that combines

multiple modes of information for pedestrian detection. This implementation used the

same boosting cascade algorithm described above. In each round, Adaboost selects

a set of filters including both the intensity filters and motion filters, and the output

classifier is a linear combination of the selected features. The combined implemen-

tation of intensity with motion was able to detect pedestrians from low-resolution

intensity images with a very low false positive rate.

Several researchers have tried to combine multiple types of sensors in order to

achieve more robust systems to detect pedestrians. [12] combined infrared images

with radar data, in order to more accurately detect pedestrians in all conditions.

This method worked well, but radar equipment is still too bulky and expensive for
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the automobile market. [8] used radar and infrared images also, and added a laser

scanner, which allowed even more accuracy.

One notably interesting project [25] has used a combination of thermal and visual

images for pedestrian detection, and achieves a very high accuracy. However, this

implementation was for surveillance use, and used a background-subtraction motion-

based algorithm.

1.4 Approach

We will use the cascade classifier introduced by Viola and Jones to train two separate

detectors, one over a set of intensity images, and another over a set of corresponding

thermal images. Then, given inputs of corresponding intensity and thermal images,

the detector can output the presence and the location of pedestrians in the image pair

with a reasonable recall rate and a very low false-positive rate. Also, each thermal test

image can be downscaled to various low-resolution thermal images, and the detection

rate of the intensity and low-resolution thermal image pairs can also be tested.
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Chapter 2

Implementation

2.1 Data Collection

The pedestrian detector is trained and tested using a combination of intensity images

and their corresponding thermal IR images. The intensity images are gathered from

frames of a video clip, while the thermal IR images are collected from a high-resolution

Raytheon NIGHTDRIVER thermal IR camera. Both cameras are mounted to the

front of a pushable cart in vertical alignment, so that we can simultaneously capture

the thermal and intensity images of the same moving objects.

(a) Sony VX-2000
camera (intensity)

(b) Raytheon
NIGHTDRIVER IR
camera (thermal)

Figure 2-1: Data Collection Equipment
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The NIGHTDRIVER thermal camera does not have any zoom abilities. Thus,

we adjusted the zoom level in the intensity camera so that both cameras captured

approximately the same range of scenery. For a person standing upright to appear

completely within the range of both cameras, the person must be at least 20 yards

away from the front of the push-cart.

We took six indoor sequences and seven outdoor sequences with the push-cart. 1

Each sequence is from two to six minutes in length, and contains natural scenes of

pedestrians walking about streets or corridors. Since we chose to leave the push-cart

in place during the capture of each individual sequence, the background information

remains approximately the same for each individual sequence. However, we made

sure to vary the location of the push-cart between sequences, so that the background

from one sequence onto the next is significantly different.

It is interesting to note that while the background of the thermal images remain

largely an uniform level of gray in the indoor sequences, the background of the thermal

images from the outdoor sequences contain much more variation. In the indoor scenes,

the only significant sources of heat other than pedestrians are certain lamp posts and

some surfaces underneath sunlight. In the outdoor scenes, however, locations of high

heat range from underneath cars and trucks to factory chimneys, to heat leaks from

building frames and asphalt pavements that have been heated up by sunlight.

Eventually, we chose to focus mostly on the outdoor data sets. The indoor back-

grounds contained so little noise that the detectors trained using the indoor data were

able to pick out pedestrians just by picking out the lighter-shaded warm bodies from a

uniformly dark background. With the outdoor data set, there are enough noise in the

background that the detectors have to learn the actual shape and infrared properties

of a human body.

In addition to the sequences that we collected using the push-cart, we were also

able to use some of the intensity frames containing pedestrians from the online La-

'This thesis was part of a larger collaboration project. Jasper Vicenti trained the intensity-only
and thermal-only detectors, C. Mario Christoudias wrote the matlab file to average the detected
bounding boxes. I did most of the data collection and labeling, as well as combining the two
detectors and testing the detectors on the low-resolution thermal images.
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(a) An intensity indoor frame (b) A thermal indoor frame

Figure 2-2: Sample Indoor Frames

(a) An intensity outdoor frame (b) A thermal outdoor frame

Figure 2-3: Sample Outdoor Frames
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belMe database [22]. The LabelMe database contains tens of thousands of annotated

intensity images, and thus gives a much wider range of background variation. Each

object in an image in the database contains an approximate bounding box and a short

annotation describing the type of object. To pick out scenes containing a pedestrian,

we first searched for terms such as pedestrian or person walking, and then hand se-

lected a handful of images that satisfy our training needs. The only drawback is

that the database contains only intensity images, and has no corresponding thermal

images. Thus, we used the LabelMe database only to boost our background variation

in the training stages of intensity classifier.

2.2 Thermal and Intensity Alignment

For the indoor clip sequences, we manually aligned the intensity video clip with the

thermal video clip so that both clips begin and end with the same frame. Then,

we exported the clips to frames at a rate of 30 frames/second. For the outdoor clip

sequences, we followed the same procedure, but chose to export the clips to frames

at a rate of 3 frames/second. This is mainly due to the fact that two frames that are

separate by only one thirtieth of a second are very similar, and that the movement of

the pedestrian during this amount of time is not enough for both frames to be useful.

Though the intensity camera was zoomed to capture approximately the same field

of view as the thermal IR camera in all the clip sequences, the frames exported

from the two clips still needed to be aligned to achieve higher accuracy. For the

alignment between intensity and thermal frames for each clip sequence, we manually

chose 15 points from the intensity frame, and found the corresponding 15 points from

the thermal frame. Then, we calculated the affine transformation that most closely

match the transformation from the 15 intensity points to the 15 thermal points using

the following equation:

[u v] = Ex y 1] * Tinv

Where (u, v) are the coordinates of the intensity points, (x, y) are the coordinates

of the thermal points, and Tiny is the 3x2 matrix that is the inverse of the trans-

20



(a) Intensity points chosen for alignment

(b) Thermal points chosen for alignment

Figure 2-4: Corresponding Points Chosen for Alignment of Intensity and Thermal
Frames
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(a) Intensity frame

(b) Warped thermal frame

(c) Overlap of warped thermal with intensity

Figure 2-5: Intensity and the Corresponding Warped Thermal Frame
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formation matrix that we want. Solving for the six elements of Tiny gave us the

corresponding affine transformation between the thermal and intensity images.

Since the push-cart was stationary within each individual clip sequence, we used

the same affine transformation to warp all of the thermal frames into new thermal

frames that align well with the corresponding intensity frames for each clip sequence.

We also removed the stripe of gray scale that was present at all of the initial thermal

frames. For any area in the intensity frame that was outside of the field of view of

the thermal camera, we colored the corresponding area in the warped thermal frame

completely black.

2.3 Labeling

i.

10 200 300 400 500 600 700

Figure 2-6: Examples of Positive and Negative Labels Within a Frame (green =

positive, red = negative)

Once we obtained enough frames, we then labeled positive and negative pedestrian

examples in both the intensity frames and the thermal frames. A positive label

consists of the frame number and the coordinates of the tightest rectangular bounding

box surrounding a walking or standing pedestrian in the frame. A negative label

consists of the coordinates of a similar looking rectangular box, but the bounding

23



box contains no pedestrians. With the alignment of the intensity and the thermal

frames, we can manually label the positive examples in the intensity frames, and

automatically generate all of the positive labels for the warped thermal frames.

Figure 2-7: Examples of a Positive Label in labeler

Labeling all the pedestrians in the tens of thousands of frames by hand is a tedious

and time-consuming task. To faciliate the labeling process, we use the fact that the

location of a pedestrian in a given sequence does not change by very much from one

frame onto the next, if the frames are taken within fractions of a second within each

other.

Thus, we wrote a Matlab script, labeler, to help us with the labeling process.

Each time a pedestrian first appears in a frame, the user of labeler can click on a

few points on the outline of the pedestrian. Then, labeler will calculate the tightest

rectangular bounding box of the pedestrian from those outline points inputted by the

user.

For each subsequent frame, labeler will display the bounding boxes from the pre-

vious frame onto the current frame one by one, and ask the user for adjustments.

Then, the user has the option of accepting the bounding box from the previous frame

(if the pedestrian is standing still), stretch or squeeze the rectangular bounding box

24



(a) Previous frame (b) Previous frame's (c) Adjusted bound-
bounding box on ing box on current
current frame frame

Figure 2-8: Adjustment of a Positive Label Through labeler

vertically or horizontally, shift the bounding box up, down, left, or right, or discard

the bounding box altogether, all through a sequence of keyboard commands. At all

time during the labeling and adjustment period, labeler continues to display the most

current bounding boxes of pedestrians to the user. The ability for the user to adjust

current labels also results in labels of a much higher quality.

The number of pixels in the shifting and stretching adjustments can be decided

by the user, depending on the resolution of the images and the number of pixels the

average pedestrian takes up in each image. Then, an experienced user can label each

pedestrian with just three keystrokes on average. For frames containing only one or

two pedestrians, this correspond to a labeling rate of less than a second per frame.

The negative examples were randomly generated over the set of input images. For

each image, a few rectangular boxes of 128x256 pixels were chosen randomly from

the area outside of the bounding box of the positive label. Each of these rectangular

boxes made up the coordinates of a negative label.

All in all, we collected 21782 outdoor intensity-thermal image pairs with around

7000 labeled pedestrians, and 48380 indoor intensity-thermal image pairs with around

20000 labeled pedestrians. To see some examples of positive and negative labels, for

both the intensity and the thermal IR images, see Appendix A.
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2.4 Training

We trained two separate pedestrian detectors: one for the intensity data, and an-

other for the thermal IR data. Both detectors were implemented in C++, using the

OpenCV libraries, following the boosting algorithm described by Viola and Jones and

extended by Lienhart.

Each detector is composed of a cascade of weak classifiers, which in turn are

each composed of a small number of features. For each stage of the cascade, we ran

iterations of a varation of Adaboost until at least 50% of the negative data returns

a negative result, while at most 0.5% of the positive data returns a negative result.

Only data points that returns a positive result for the classifier at each stage can pass

on to the next stage of the cascade. All other data points that return a negative result

at a particular stage are immediately rejected by the cascade. Thus, the cascade is

able to rapidly reject a very large percentage of negative data in the first two or three

stages, which results in a very fast overall detector.

The features pool used for both classifiers are the over-complete set of basic Haar-

like features. Integral image, as first mentioned in [26], was used to ensure fast

calculation of all features. The set of rotated Haar-like features from [14] was not

used for two reasons. First, the basic Haar-like features are already over-complete,

and sufficient for our knowledge base of describing pedestrians of various upright

poses. Also, adding the rotated features greatly increases the size of the feature pool,

which results in a slower and over-fit training process.

Figure 2-9: Set of Basic Haar-like Features Used

The training input to both classifiers are the scaled subimages within the bounding

boxes of the labels. For each label, the rectangular region within the bounding box

stated by the label is first cropped, and then resized to 32x64 pixels. Then, the resized
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input image is large enough to still contain all the crucial features of pedestrians, while

small enough to make the calculations of all possible features possible.

Finally, the intensity detector is trained using 1100 positive samples and 60000

negative samples, while the infrared detector is trained using 500 positive samples

and 45000 negative samples.

2.5 Testing

To test the intensity-only and thermal-only detectors, we simply ran each detector

over a set of 50 images. For each image, the detector loops through all the possible

rectangular bounding boxes present in the image, and decides for each bounding box

whether it indeed contains a pedestrian.

For each pedestrian present in a test image, the detector returns the number

of bounding boxes found around the pedestrian. Bounding boxes below a certain

size threshold are immediately discarded, since it is impossible to reliably detect the

presense of pedestrians that are only a few pixels tall. The rest of the bounding

boxes are averaged together to create one final bounding box around the outline of

the detected pedestrian.

To create a detector that combines intensity and thermal information, we ran the

intensity-only detector over the intensity images, and the thermal-only detector over

the thermal images. Then, we combined the resulting bounding boxes of the intensity

and the thermal only detectors, and found the final bounding box of the pedestrian.

2.6 Low-Resolution Thermal Images

We also tested the performance of the thermal-only and the combined intensity and

thermal detectors under inputs of low-resolution thermal images. The same testing

procedure outlined in the previous section was used, replacing high-resolution thermal

images with low-resolution thermal images.

The low-resolution thermal images used in the testing phase of the pedestrian
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(a) 720x480 (1) (b) 72x48 (10) (c) 36x24 (20) (d) 24x16 (30)

(e) 18x12 (40) (f) 15x10 (50) (g) 12x8 (60)

Figure 2-10: Low-Resolution Thermal Images of Various Down-Scaling Factors

detector were obtained by downscaling the original high-resolution thermal images.

From the original 720x480 pixel high-resolution test images, each image was down-

scaled in Matlab using bicubic interpolation to create low-resolution test sets of im-

ages of 72x48, 36x24, 24x16, 18x12, 15x10, and 12x9 pixels. A sample of the original

high-resolution thermal image and its six downscaled low-resolution images is shown

above.
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Chapter 3

Results

3.1 Intensity Detector

The intensity detector contains a total of 30 stages of weak classifiers, using a total

of 2868 features.

The first three stages of the intensity detector contains 19, 33, and 37 features,

respectively. The number of features increases to 81 for stage 10, and 131 for stage

20. The small number of features in the first three stages allows the majority of

the negative samples to be rejected quickly, while the larger numbers in the later

stages allow for a more detailed description of pedestrians through a large number of

features.

The first six features of the first stage of the intensity detector are shown in the

figure below. Notice that out of the millions of possible features, the first two features

Figure 3-1: Intensity Detector Results
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Figure 3-2: First Six Features of the Intensity Detector

chosen represent the legs and the head of an upright pedestrian, respectively.

3.2 Thermal Detector

The thermal IR detector contains a total of 18 stages of weak classifiers, using a total

of 416 features.

Like the intensity detector, the thermal detector also had classifiers with relatively

small numbers of features for the first few stages, resulting in very fast rejections of

the majority of the negative subframes. The first two chosen features of the thermal

detector highlight the fact that an upright pedestrian generates a lot of heat in his

entire body compared to the surroundings, and that the face of the pedestrian usually

appears as the most warm area in a given image.

Figure 3-3: Thermal Detector Results
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Figure 3-4: First Six Features of the Thermal Detector

3.3 Low-Resolution Thermal Results

We took 50 indoors thermal test images and their downscaled corresponding test

images, and tested each set of 50 thermal images of various resolutions with the

thermal detector. Then, we plotted the precision-recall curve for each of the detectors.

Due to the few number of samples, only local maxima points should be considered

when reading the precision-recall curves. The dotted line in the precision-recall graph

on the following page represents the detection results of the high-resolution thermal

images, while each of the solid lines represents the detection results of using low-

resolution thermal images of a specific downscaling factor. Note that on the precision-

recall curve, there is no detection performance drop with low-resolution images with

downscaling factors of 30 or less. Thus, a low-resolution image of 24x16 performs just

as well as the high-resolution image of 740x480. With a downscaling factor of 40 or 50,

there is a noticeable drop in the precision-recall curve. The detection performs drops

even more with a downscaling factor of 60, which corresponds to thermal images of

only 12x8 pixels.

We repeated the same experiment with 50 outdoors test images. This time, the

detection did not drop significantly until a downscaling factor of 50, showing that

low-resolution images of 18x12 still resulted in very good detection rates.
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(a) 720x480 (1) (b) 72x48 (10) (c) 36x24 (20) (d) 24x16 (30)

(e) 18x12 (40)

Figure 3-5: Thermal Images of

tors
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(a) 720x480 (1) (b) 72x48 (10) (c) 36x24 (20) (d) 24x16 (30)

(e) 18x12 (40) (f) 15x10 (50)

Figure 3-7: Thermal Images of Various Low-Resolutions and Their Downscaling Fac-
tors
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3.4 Comparison of Various Detectors

The graph below shows the precision-recall curves of the intensity-only detector, the

thermal-only detector, and the combined intensity-thermal detector for the outdoors

data. The x-axis shows the recall rate, while the y-axis shows the precision rate. Only

subimages that survived past a certain number of stages were used in the calculation.

For outdoors data, the intensity-only detector outperformed the thermal detector,

and thus, there is not a significant improvement to the intensity-only results when the

thermal information is added to the detector. With a 0.88 precision rate, the recall

rate for both the intensity-only detector and the combined detector is slightly more

than 0.5, while the recall rate for the thermal-only detector is only at around 0.13.

Due to the high level of IR noise in outdoor images, intensity information is much

more valuable than thermal information in the correct detection of pedestrians. Thus,

any combined intensity and thermal detectors performed only about as well as the

intensity-only detector, regardless of the resolution of the thermal images.

0.8 -

0.7 -

0.6-

0.5 -. thermal
- intensity

both
0.4

0 0.1 0.2 0.3 0.4 0.5 . 0.7

Figure 3-9: Precision-Recall Curve of Combined Detector (Outdoors)
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Figure 3-10: Precision-Recall Curve of Combined Detector (Indoors)

For detection indoors, however, the intensity-only detector did not perform very

well on the test data (since the detector was trained using mostly outdoors data, and

the outdoors and indoors features vary significantly for an intensity detector), and

was not able to detect with a recall rate of higher than 0.2. The thermal detector,

however, was able to detect pedestrians in high-resolution thermal images with a

recall rate of 0.78 at a precision rate of 0.88. Low-resolution thermal images, in this

case, outperformed even the high-resolution thermal images by a bit, since the down-

scaling of the thermal image likely averaged out the slight noise around the thermal

image of each pedestrian. With the low-resolution thermal-only detector, we were

able to achieve a recall rate of 0.75 at a precision rate of 0.90.

The best detector, however, is the combined low-resolution (24x16 pixels) ther-

mal and high-resolution intensity detector. By adding the additional high-resolution

intensity information, the combined detector was able to achieve a recall rate of 0.81

at a precision rate of 0.90.

In the detection results below, note that the intensity-only detector missed quite a
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few pedestrians, while both the thermal-only detector and the combined intensity and

low-resolution thermal detector were able to detect many more pedestrians. Thus,

the thermal information, even at a very low resolution, was able to help with the

detection performance compared to an intensity-only detector.

(a) intensity only (b) low-resolution thermal only

(c) both intensity and low-resolution
thermal

Figure 3-11: Comparison of Detection Results of Various Detectors

More detection results can be found in Appendix B.
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Chapter 4

Conclusion

4.1 Summary

This paper presents a pedestrian detector from a moving platform. The detector

combines intensity information with thermal IR information, both captured from

cameras mounted to the front of the moving platform. The information from the

thermal images can easily narrow down the possible places where a pedestrian can

be, while a high-resolution intensity image can be used to check for the exact outlines

of the pedestrian.

We trained one detector using just intensity images of pedestrians and non-

pedestrians, and a separate detector using just the thermal images. Both detec-

tors were implemented using the rapid object-detection algorithm proposed by Viola

and Jones, and each contains a cascade of weak classifiers. Each weak classifier is

composed of a small number of features, where the feature pool consists of the over-

complete set of basic Haar-like features. Then, each collection of weak classifiers can

be calculated on all the possible bounding boxes of pedestrians of a test image to

determine which bounding boxes are the ones that contain pedestrians. The com-

bined intensity-thermal detector simply aggregates the collection of bounding boxes

returned by both the intensity-only detector and the thermal-only detector at the

post-processing stage.

The result of our detector shows that thermal information is very valuable in
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pedestrian detection, especially in indoor scenes. A detector trained using thermal-

only images significantly out-performs a similar detector trained using intensity-only

images for indoor scenes, and is comparable in performance to that of an intensity-only

detector in outdoor scenes. The combined intensity and thermal detector performs

at least just as well as the best intensity-only detector, and often out-performs the

intensity-only detector.

For the data sets that we tested, a 24x16 low-resolution thermal image is sufficient

for containing all of the useful infrared information for pedestrian detection purposes.

A thermal-only detector works just as well on low-resolutio 24x16 images as it does on

high-resolution 720x480 images. Thus, for a combined detector using both thermal

and intensity information, only a low-resolution thermal image of 24x16 is necessary.

With some more adjustments to the detection thresholds and post-detection pro-

cessing, a detector utilizing a combination of high-resolution intensity and low-resolution

thermal information can become a low-cost, reliable real-time pedestrian detector to

be used by the automobile industry.

4.2 Future Work

The reliability of the detector cannot be verified until more training and testing inputs

of intensity-thermal image pairs can be collected, preferably from an actual moving

car rather than a push-cart. The motion-blur from a vehicle traveling at a high speed

may present new challenges for the detector.

The detector's performance in a range of weather and temperature conditions will

need to be examined. Most of the current thermal data was taken either indoors or

outdoors in Massachusetts in the month of March. Since the ambient temperature

varies significantly from January to July, and from a rainy day to a sunny day, more

data from all seasons is needed to guarantee the performance of the detector. It could

be the case that different parameters for the detector are needed in different seasons,

in which case the detector may take in the outdoor temperature as an input value.

It would also be interesting to test is how well the detector performs at detecting
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children. The current detector works very well for detecting upright adults in images.

However, it is unclear how well the detector works at detecting child-sized pedestrians,

or pedestrians that have fallen over on the ground or are bent over at the waist.

Currently, the thermal information and the intensity information are only com-

bined after both detectors return their detection results. By combining the thermal

and intensity features in the training stage, we could create just one cascade of classi-

fiers, where each classifier can contain a number of both intensity features and thermal

features. This would likely improve the performance of the detector, as only the best

features out of the combined thermal and intensity feature pool would be picked.

Motion information could also be incorporated into the detector. Though motion-

based detection methods are not very practical from a moving vehicle over a large

time period, the background motion from one frame onto the next can be small

enough for the foreground objects to still stand out. Like the addition of thermal

information to an intensity-only detector, the addition of new motion information

could also significantly improve the performance of the overall detector.

Finally, we need to build a cheap but reliable low-resolution thermal camera.

Then we could test the benefit of the addition of low-resolution thermal information

to high-resolution intensity images to detection performance.
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Appendix A

Sample Labels

Here are some examples of both positive and negative intensity and infrared labels.

posOO003O.jpg posOO0031.jpg posOO0032.jpg posOOD033.jpg posO0OO34.jpg posOO0035.jpg

posOO0O36.jpg posOO0O37.jpg posOO0O38.jpg posOO0O39. jpg posOO0040.jpg posOO0041.jpg

posOO0042.jpg posOO0O43 jpg pos000044.jpg pos000045.jpg posOO0O46.jpg posOO047.jpg

posOO048.jpg posOO049.jpg posO0005o.jpg pos000051.jpg posOO0052.jpg posOO0053.jpg

Figure A-1: Examples of Positive Intensity Labels
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neg0001.jpg neg0002.jpg neg0003.jpg negOO0004.jpg neg0005.jpg

negOO0006.jpg negOO007.jpg neg0008.jpg neg0009.jpg negOO0010.jpg negOO001l.jpg

negOO0012.jpg negOO0013.jpg negOO0014.jpg negOOGOI5.jpg negOO0016.jpg negOO0017.jpg

negOO0018,jpg negOO0019.jpg negOO0020.jpg negOO002l.pg negOO022.jpg

Figure A-2: Examples of Negative Intensity Labels

.pg
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posOO0497.jpg posOO0730.jpg pos000793.jpg pos000823.jpg pos000839.jpg posOO0872.jpg

posOO089o.jpg psO00O898.jpg pos000932.jpg pos000997.jpg pos001094.jpg posOO 1135.jpg

pos001296.jpg posOO1304,jpg posOO1307.jpg pos001443.jpg pos001476.jpg pos001542.jpg

posOO1558.jpg pos001578.jpg posDOI58O.Jpg posOO1608.jpg posOO1902.jpg

Figure A-3: Examples of Positive Infrared Labels

posOOI958. jpg
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g Ojp neg0001.jpg neg00002.jpg neg0003.jpg neg0004.jpg neg0005.jpg

negOO0006.jpg neg00007.jpg neg0008.jpg negOO0009.jpg negOOOGOO.jpg negOO001 1.jpg

negOO0012.jpg negOO0013.jpg neg00014. jpg negOO0015.jpg negOO0016.jpg negOO0017.jpg

negOO0018.jpg negOO0019.jpg negOO002O.jpg negOO002I.jpg negOOO22.jpg

Figure A-4: Examples of Negative Infrared Labels

negOO0023.jpg
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Appendix B

Sample Detection Results

Below are some more examples of detection results of various detectors

Figure B-1: Intensity-Only Detector Results

45



Figure B-2: Thermal-Only Detector Results
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B.1 Indoors-Comparsion of various resolution thermal-

only detectors

Figure B-3: 720x480 Thermal-Only Detector Results
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Figure B-4: 72x48 Thermal-Only Detector Results
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Figure B-5: 36x24 Thermal-Only Detector Results

49



Figure B-6: 24x18 Thermal-Only Detector Results

50



Figure B-7: 18x12 Thermal-Only Detector Results
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Figure B-8: 12x9 Thermal-Only Detector Results

52



Figure B-9: 10x6 Thermal-Only Detector Results
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B.2 Outdoors-Comparsion of various resolution thermal-

only detectors

Figure B-10: 720x480 Thermal-Only Detector Results
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Figure B-11: 72x48 Thermal-Only Detector Results
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Figure B-12: 36x24 Thermal-Only Detector Results
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Figure B-13: 24x18 Thermal-Only Detector Results
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Figure B-14: 18x12 Thermal-Only Detector Results
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Figure B-15: 12x9 Thermal-Only Detector Results
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Figure B-16: 10x6 Thermal-Only Detector Results
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B.3 Outdoors-Intensity-Only detector and Com-

bined Intensity and Thermal detectors

Figure B-17: Intensity-Only Detector Results
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Figure B-18: Combined Intensity and High-Resolution Thermal Detector Results
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Figure B-19: Combined Intensity and Low-Resolution Thermal Detector Results
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B.4 Indoors-Intensity-only, thermal-only, and com-

bined intensity and thermal detectors

Figure B-20: Intensity-Only Detector Results
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Figure B-21: Thermal-Only Detector Results
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Figure B-22: Low-Resolution Thermal-Only Detector Results
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Figure B-23: Combined Intensity and High-Resolution Thermal Detector Results
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Figure B-24: Combined Intensity and Low-Resolution Thermal Detector Results
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