Development of a laboratory course in power electronic control circuitry based on a PWM buck controller

by
Candace N. Wilson
Submitted to the Department of Electrical Engineering and Computer Science in Partial
Fulfillment of the Requirements for the Degrees of Bachelor of Science in Electrical Science and Engineering and Master of Engineering in Electrical Engineering and Computer Science at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

> May 26,2006
> Macx
© 2006 Massachusetts Institute of Technology

AUG 142006
LIBRARIES

Author \qquad
Department of Electrical Engineering and Computer Science
May 25, 2006

Certified by \longrightarrow

> Steven B. Leeb
> Professor of Electrical Engineering and Computer Science
> Thesis Supervisor

Certified by \qquad
1 Al-Thaddeus Avestruz
PhD Candidate. Debartment of Electrical Engineering and Computer Science Thesis Supervisor

\qquad

Arthur C. Smith Chairman, Department Committee on Graduate Theses

Development of a laboratory course in power electronic control circuitry based on a PWM buck controller

by
Candace N. Wilson
Submitted to the Department of Electrical Engineering and Computer Science

May 2006
In Partial Fulfillment of the Requirements for the Degrees of Bachelor of Science in Electrical Science and Engineering and Master of Engineering in Electrical Engineering

Abstract

Due to the constraints on time and resources within the typical electrical engineering curriculum, it is difficult for students to obtain Integrated Circuit design experience prior to entering industry. This project establishes the foundation for a new laboratory course in power electronics and analog circuit design. There is an introduction to power electronics, particularly the buck converter, and several basic analog circuit building blocks are introduced. A process consisting of circuit design, simulation, construction, and evaluation is developed to provide students with an introduction to Integrated Circuit design. A peak current mode PWM controller for a buck converter is developed to illustrate the fundamental power electronic and analog circuit concepts that are presented.

Thesis Supervisors:
Steven B. Leeb, Professor of Electrical Engineering and Computer Science
Al-Thaddeus Avestruz
Ph.D. Candidate, Department of Electrical Engineering and Computer Science

Contents

1 Introduction 2
2 Background 4
2.1 Buck Converter 4
2.2 Control 13
2.3 PWM Controller Using Commercial Integrated Circuits 31
3 Analog Circuit Blocks 40
3.1 Current Sources 40
3.2 Common Emitter Amplifier. 49
3.3 Emitter Follower Buffer 52
3.4 Differential Pair 55
4 Control Circuit Blocks 66
4.1 Bandgap Reference 66
4.2 Operational Amplifier 83
4.3 Comparator 93
4.4 Clock 99
4.5 Error Amplifier 105
4.6 Current Sense Amplifier 109
4.7 Logic and RS Latch 117
4.8 Leading Edge Blanking. 121
4.9 Gate Drive 126
4.10 Protection Circuits 138
5 Results 147
6 References 153
7 Appendix 154
7.1 CMOS Combinational Logic Gates 154
7.2 EAGLE Schematics 158
8 Acknowledgements 167

1 Introduction

Companies are discovering that often new electrical engineering graduates have very limited knowledge about the integrated circuit (IC) design process. As a result, the initial training period is longer and more extensive than desirable. This is largely because it is fairly challenging to duplicate the intricacies of the IC design process within the resource and time constraints of a typical electrical engineering curriculum. Additionally, it is difficult to remain informed of changes continually developing in industry and to expose students to the many practical concerns involved. This document describes an attempt to create a reasonable and feasible way to make the classroom experience more effective in terms of providing insight and understanding of the IC design process.

This project has developed the foundation for a new laboratory course. The objectives of the new course include the following: 1) introduce students to the fundamentals of power converter control theory, 2) teach students to design analog control circuitry block by block, 3) teach students to simulate models of their circuit designs, 4) instruct students on how to build and debug their circuits and compare experimental results with the simulated results. Ideally, the students will obtain something close to the IC design experience, although they will be using discrete components and constructing on a breadboard or a pre-designed PC board with sockets for inserting components.

The following is a brief overview of the structure of this document. Section 2 contains the power electronics background information required to establish the context for the circuit designs. The buck converter is presented and its general operation is
explained. There is a brief introduction to control theory. Transfer functions are developed for the buck converter and the converter's stability in a closed-loop configuration is addressed. Additionally, in this section the requirements for a PWM control circuit are discussed and an IC version, designed with common commercial operational amplifiers, comparators, and other chips, is developed. Section 3 deals with basic analog circuit building blocks. Commonly used circuits, such as current sources, common emitter amplifiers, and differential pair amplifiers, are introduced and analyzed in detail. Section 4 provides a description of each of the control circuit's functional blocks. Each block is explained and a transistor-level circuit is designed and analyzed. Section 5 contains a brief summary of the project and conclusions and results are formulated. Section 6 is an appendix consisting of diagrams and truth tables for combinational logic gates as well as the full EAGLE schematics for all of the circuit blocks presented in Section 4 as they are laid out on the PC board for the laboratory kits.

2 Background

2.1 Buck Converter

The buck converter is being used as the framework for our converter and controller design. A buck converter is a DC-to-DC power converter which takes some DC input voltage and produces a lower DC output voltage. Figure 2-1 shows the general structure of a buck converter. It consists of 2 switches (S_{1} and S_{2}) which are controlled concurrently such that when S_{1} is on (closed), S_{2} is off (open), and vice versa. This control is typically periodic with some period T , where $T=\frac{1}{f_{s}}$ with f_{s} representing the switching frequency.

Figure 2-1. Buck converter schematic.

The fraction of the period during which S_{1} is on is referred to as the duty ratio or duty cycle (D). The voltage at the node between S_{1} and S_{2}, V_{m}, is $V_{\text {in }}$ when S_{1} is on and zero when S_{2} is on, as indicated in Figure 2-2. The upper waveform in Figure 2-3 shows an example of what V_{m} looks like in practice. Note that a significant amount of ringing in the waveform can be observed at the start of every cycle. The inductor (L) and capacitor (C) serve as filtering components. They form a low pass filter which passes the

DC component of V_{m} and blocks the AC component. The second-order LC filter effectively averages V_{m} to produce the converter's output voltage:

$$
\begin{equation*}
V_{\text {out }}=\frac{V_{\text {in }} \cdot D T+0 \cdot(1-D) T}{T}=V_{\text {in }} D . \tag{2.1}
\end{equation*}
$$

NOTICE:

Figure 2-2. Voltage, V_{m} at the midpoint between the converter's switches.

The constituitive relation for an inductor is

$$
\begin{equation*}
V_{L}=L \frac{d i_{L}}{d t} \tag{2.2}
\end{equation*}
$$

Thus, when the voltage across the inductor is positive, the inductor current is increasing and when the voltage is negative, the current is decreasing. During the first part of the cycle, when S_{1} is on, the voltage across the inductor is

$$
\begin{equation*}
V_{L}=V_{\text {in }}-V_{\text {out }} . \tag{2.3}
\end{equation*}
$$

This is a positive voltage because $\mathrm{V}_{\text {out }}$ is less than $\mathrm{V}_{\text {in }}$ (by definition) so the inductor current is ramping up. During the second part of the cycle, the inductor voltage is

$$
\begin{equation*}
V_{L}=0-V_{\text {out }}=-V_{\text {out }} . \tag{2.4}
\end{equation*}
$$

This is a negative voltage, thus the inductor current is ramping back down. In equilibrium, the average inductor current is constant, meaning the current must ramp up and down equal amounts. The lower waveform in Figure 2-3 is of a buck converter's inductor current in equilibrium. We can solve (2.2) for $d i_{L}$ to obtain an expression for the inductor current ripple.

$$
\begin{equation*}
\Delta i_{L}=\frac{v_{L} \cdot \Delta t}{L} \tag{2.5}
\end{equation*}
$$

Figure 2-3. Voltage between buck converter switches and inductor current waveform

When designing a buck converter, we typically have some specification for the maximum allowable inductor current ripple. Given the current ripple spec and the inductor voltage expressed in either (2.3) or (2.4), we can derive a constraint that specifies the minimum value inductance required. Solving (2.5) for L yields the inequality

$$
\begin{equation*}
L \geq \frac{v_{L} \cdot \Delta t}{\Delta i_{L}} . \tag{2.6a}
\end{equation*}
$$

During the first part of the cycle, when S_{1} is on, we can substitute (2.3) for v_{L} and DT for Δt to obtain

$$
\begin{equation*}
L \geq \frac{\left(V_{\text {in }}-V_{\text {out }}\right) \cdot D T}{\Delta i_{L}} . \tag{2.6b}
\end{equation*}
$$

The inductor current ripple shows up as ripple in the output voltage. We can assume that the entire ripple current flows through the capacitor. See the graph of capacitor current in Figure 2-4. The charge injected into the capacitor when the current ripple is positive is

$$
\begin{equation*}
q=\frac{1}{2} \cdot \frac{\Delta i}{2} \cdot \frac{T}{2} . \tag{2.7a}
\end{equation*}
$$

Simplification yields

$$
\begin{equation*}
q=\frac{1}{8} \cdot \Delta i \cdot T \tag{2.7b}
\end{equation*}
$$

From the capacitor's constituitive relation, we obtain the following equation for voltage ripple as a function of injected charge

$$
\begin{equation*}
\Delta v=\frac{q}{C} . \tag{2.8}
\end{equation*}
$$

Substituting the expression from (2.7) for q in (2.8) gives us an expression for voltage ripple as a function of the inductor current ripple.

$$
\begin{equation*}
\Delta v=\frac{\Delta i \cdot T}{8 C} . \tag{2.9}
\end{equation*}
$$

Given a spec for the maximum allowable voltage ripple, we can solve (2.9) to determine the required value for C .

$$
\begin{equation*}
C=\frac{\Delta i \cdot T}{8 \cdot \Delta v} \tag{2.10}
\end{equation*}
$$

Figure 2-4. The inductor current ripple flows through the capacitor. This ripple current can be integrated to determine the total charge that enters the capacitor.

There are two options for the implementation of the buck converter's switches. We can either use MOSFETs for both switches (synchronous rectification), or we can use a MOSFET for S_{1} and implement S_{2} with a free-wheeling diode. The second implementation is possible because the inductor current will automatically cause the
diode to conduct when S_{1} is turned off. Examples of these switch implementations are contained in Figure 2-5. If we use synchronous rectification, we need a delay circuit, similar to the one shown in Figure 2-6, to ensure that the switches are never on at the same time.

Figure 2-5. The lower switch of a buck converter can be implemented either with a MOSFET or a diode.

Figure 2-6. A delay circuit is required to ensure that both switches are not on at the same time when the converter's lower switch is implemented with a MOSFET.

For the case when S_{2} is implemented with a diode, it is possible for the inductor current to ramp all the way down to zero, at which point the switch will turn off. This is referred to as discontinuous conduction mode (DCM). In order to ensure that this never happens (meaning the converter operates in continuous conduction mode, CCM), the inductor current ripple is not more than twice the average inductor current. Figure 2-7 shows graphically how to determine the requirements for CCM .

Figure 2-7. Graphical representation of the inductor current at the boundary between CCM and DCM operation.

The boundary between DCM and CCM is when the average inductor current, which is the same as the load current, is equal to half of the inductor current ripple. This condition is expressed mathematically as

$$
\begin{equation*}
\left\langle i_{L}\right\rangle=i_{\text {Load }}=\frac{\Delta i}{2} . \tag{2.11}
\end{equation*}
$$

To ensure CCM, (2.11) and Figure 2-7 imply the following constraint

$$
\begin{equation*}
\left\langle i_{L}\right\rangle=i_{\text {Load }}>\frac{\Delta i}{2} . \tag{2.12}
\end{equation*}
$$

For a resistive load,

$$
\begin{equation*}
i_{\text {Load }}=\frac{V_{\text {out }}}{R} \tag{2.13}
\end{equation*}
$$

Combining (2.12) and (2.13) yields

$$
\begin{equation*}
\Delta i<\frac{2 \cdot V_{\text {out }}}{R} \tag{2.14}
\end{equation*}
$$

as the requirement for CCM . Substituting the expression for Δi contained in (2.5) and solving for L gives us the minimum inductance required for the converter to remain in continuous conduction mode.

$$
\begin{equation*}
L \geq \frac{v_{L} \cdot \Delta t \cdot R}{2 \cdot V_{\text {out }}} \tag{2.15}
\end{equation*}
$$

Again, using the values for the first part of the switching cycle, (2.15) becomes

$$
\begin{equation*}
L \geq \frac{\left(V_{\text {in }}-V_{\text {out }}\right) \cdot D T \cdot R}{2 \cdot V_{\text {out }}} \tag{2.16}
\end{equation*}
$$

2.2 Control

The buck converter's output voltage is proportional to both the input voltage and the duty ratio at which its switches are operated. This relation, expressed mathematically in (2.1), is repeated here in (2.17).

$$
\begin{equation*}
V_{\text {out }}=V_{\text {in }} D \tag{2.17}
\end{equation*}
$$

So for a given input voltage, one can set D so that the converter produces the desired output voltage. However, if the input is from an unregulated supply or its value varies over some range, we need a control circuit that manipulates the duty ratio in response to variations in Vin in order to maintain a constant output voltage. . This requires a feedback loop, so that information about the output voltage can be sent to the control circuit. Feedback allows the controller to sense whether the output is too high or too low so it can send the appropriate corrective signals to the converter's switches. Figure 2-8 shows an example of a buck converter with simple control loop. The operational amplifier (op amp) computes the error between the converter's output and some reference voltage then amplifies the error by some factor, K. A comparator then compares the amplified error with a triangle wave and outputs a pulse of variable width. The width of the pulse is determined by the fraction of the period, T, set by the triangle wave that the op amp's output is greater than the level of the triangle wave. That fraction determines the duty ratio at which the switch is operated. This is known as Pulse Width Modulation, or PWM, control.

Figure 2-8. Buck converter with a PWM control loop.

In addition to regulating $\mathrm{V}_{\text {out }}$, we may be interested in controlling the output (and inductor) current. This can be accomplished by placing a small resistor between the input and S_{1} and using the voltage across this current sense resistor to estimate and constrain the inductor current. This is known as peak current mode control because when the current reaches a predetermined maximum level, the controller turns S_{1} off regardless of $\mathrm{V}_{\text {out }}$. At this point the inductor current ramps down until the start of the next cycle. See Figure 2-9 for an example of a current-mode control circuit for a buck converter. The artificial ramp provides slope compensation which is discussed in detail towards the end
of this section. The other blocks in the control circuit are introduced in Section 2.3 and covered more extensively in Section 4.

Figure 2-9. Buck converter with current-mode controller.

Modeling the Converter

Before we can design a control loop for the converter, we must have a model of the converter from which we can derive a transfer function. We can develop a linear, averaged model for the converter as explained in [1] and [2]. The switches are modeled as a dependent voltage or current source with duty ratio as a parameter. The averaged
model for a buck converter with voltage mode (duty ratio) control is contained in Figure 2-10.

Figure 2-10. Averaged model for buck converter.

There are a few different transfer functions to consider when modeling a converter. The line-to-output transfer function, $H_{v}(s)$, describes changes in the output voltage due to changes in the input voltage. The control-to-output transfer function, $H_{d}(s)$, describes changes in the output voltage due to changes in the duty cycle control variable. The output impedance, $Z_{\text {out }}(s)$, describes changes in the output voltage due to changes in the load current. We are also concerned with the inductor current. The transfer function, $H_{i d}(s)$, describes changes in the inductor current due to changes in d and $H_{i v}(s)$ is the transfer function describing changes in inductor current due to changes in the input voltage. These important transfer functions are derived for the buck converter in [1] and displayed in (2.18)-(2.22).

$$
\begin{align*}
& H_{v}(s)=\frac{v_{\text {out }}(s)}{v_{\text {in }}(s)} \\
& H_{v}(s)=\frac{D}{s^{2} L C+s \frac{L}{R}+1} \tag{2.18}
\end{align*}
$$

$$
\begin{align*}
& H_{d}(s)=\frac{v_{\text {out }}(s)}{d(s)} \\
& H_{d}(s)=\frac{\frac{V_{\text {out }}}{D}}{s^{2} L C+s \frac{L}{R}+1} \tag{2.19}
\end{align*}
$$

$$
\begin{align*}
& Z_{\text {out }}(s)=-\frac{v_{\text {out }}(s)}{i_{\text {load }}(s)} \\
& Z_{\text {out }}(s)=\frac{s L}{s^{2} L C+s \frac{L}{R}+1} \tag{2.20}
\end{align*}
$$

$$
H_{i d}(s)=\frac{i_{L}(s)}{d(s)}
$$

$$
\begin{equation*}
H_{\text {id }}(s)=\frac{V_{\text {out }}(1+s R C)}{D \cdot R\left(s^{2} L C+s \frac{L}{R}+1\right)} \tag{2.21}
\end{equation*}
$$

$$
\begin{align*}
& H_{i v}(s)=\frac{i_{L}(s)}{v_{i n}(s)} \\
& H_{i v}(s)=\frac{D(1+s R C)}{R\left(s^{2} L C+s \frac{L}{R}+1\right)} \tag{2.22}
\end{align*}
$$

Figure 2-11 shows the block diagram for a voltage-mode control loop.

Figure 2-11. Voltage-mode control loop block diagram.

If peak current mode control is used, the switches and inductor can be modeled as a dependent current source with duty ratio as a parameter. This model is shown in Figure 2-12. In this case, the transfer function from input to output voltage becomes

$$
\begin{equation*}
H_{i}(s)=\frac{V_{\text {out }}}{I_{\text {in }}}(s)=\frac{R}{R C s+1} . \tag{2.23}
\end{equation*}
$$

Controlling the peak current simplifies the model from second order to first order (i.e. 1 pole instead of 2).

Figure 2-12. Averaged Model for Peak Current-Mode Control.

The complete set of transfer functions for the current-mode control case as derived in [1] are contained in (2.24)-(2.28).

$$
\begin{align*}
& H_{i}(s)=\frac{v_{\text {out }}(s)}{i_{c}(s)} \\
& H_{i}(s)=\frac{F_{m} G_{v d}}{1+F_{m}\left(G_{i d}+F_{v} G_{v d}\right)} \tag{2.24}
\end{align*}
$$

$$
\begin{align*}
& H_{v-c m}(s)=\left.\frac{v_{\text {out }}(s)}{v_{i n}(s)}\right|_{c m} \\
& H_{v-c m}(s)=\frac{H_{v}-F_{m} F_{g} H_{d}+F_{m}\left(H_{v} G_{i d}-G_{i v} H_{d}\right)}{1+F_{m}\left(G_{i d}-F_{v} H_{d}\right)} \tag{2.25}
\end{align*}
$$

The new variables introduced in (2.24) and (2.25) are defined for a buck converter as

$$
\begin{align*}
& F_{g}=\frac{D^{2}}{2 L f_{s}} \\
& F_{v}=\frac{(1-2 D)}{2 L f_{s}} \tag{2.26}\\
& F_{m}=\frac{f_{s}}{M_{a}}
\end{align*}
$$

(2.24) and (2.25) can be normalized as shown in (2.27) and (2.28)

$$
\begin{equation*}
H_{i}(s)=\frac{G_{c 0}}{\left(\frac{s}{\omega_{c}}\right)^{2}+\frac{s}{Q_{c} \omega_{c}}+1} \tag{2.27}
\end{equation*}
$$

$$
\begin{equation*}
H_{v-c m}(s)=\frac{G_{g 0}}{\left(\frac{s}{\omega_{c}}\right)^{2}+\frac{s}{Q_{c} \omega_{c}}+1} \tag{2.28}
\end{equation*}
$$

where

$$
G_{c 0}=\frac{V}{D} \cdot \frac{F_{m}}{\frac{F_{m} F_{v} V}{D}+\frac{F_{m} V}{D R}+1}
$$

$$
\begin{aligned}
& \omega_{c}=\frac{1}{\sqrt{L C}} \sqrt{\frac{F_{m} F_{v} V}{D}+\frac{F_{m} V}{D R}+1} \\
& Q_{c}=R \sqrt{\frac{C}{L} \cdot \frac{\sqrt{\frac{F_{m} F_{v} V}{D}+\frac{F_{m} V}{D R}+1}}{\frac{R C F_{m} V}{D L}+1}}, \\
& G_{g 0}=D \frac{1-\frac{F_{m} F_{g} V}{D^{2}}}{\frac{F_{m} F_{v} V}{D}+\frac{F_{m} V}{D R}+1}
\end{aligned}
$$

Figure 2-13 shows the block diagram for a current-mode controller.

Figure 2-13. Block diagram for converter in current-mode control loop.

Compensation

An error amplifier must be designed to provide some compensation, $G(s)$, to ensure that the overall system is stable. Stable is defined as bounded-input boundedoutput (BIBO) stability, meaning any bounded input to the system produces a bounded output. It typically is not enough just to know that a system is stable. It is often critical to know how stable and how accurate the system is. Phase margin is used to indicate degree of stability. It is defined as the difference between the phase of the system and -180 degrees at the frequency when the magnitude response is equal to 1 . This frequency is referred to as the crossover frequency. Generally, increasing the phase margin makes the system more stable. Given the phase margin, various stability criteria such as peak overshoot in the step response, rise time, settling time, and peaking in the frequency response magnitude can be determined. A system's response speed is measured in bandwidth. Higher crossover frequency corresponds to higher bandwidth. Steady-state error is used as a measure of the system's accuracy. Steady-state error is the difference between the command signal (for example, the reference voltage) and the feedback signal. This indicates how well the output is following the reference. Disturbance rejection refers to the system's ability to reject disturbances in the forward path. Good disturbance rejection is accomplished by introducing high gain in the loop transfer function at low frequencies. Noise rejection is a measure of the system's insensitivity to high frequency noise. Good noise rejection is obtained by significantly attenuating the magnitude of the loop transfer function at high frequencies. Refer to [3] for an introductory treatment of control theory.

There are numerous methods of compensation. The simplest is proportional control, meaning the compensator is just some constant gain: $\mathrm{G}(\mathrm{s})=\mathrm{K}$. Proportional control can be used to stabilize a system by increasing its phase margin, but the system's bandwidth is decreased. There is a tradeoff. Using proportional control, one can't be improved without degrading the other. Additionally, lowering the gain to stabilize a system decreases the disturbance rejection and increases the steady state error. Another option is dominant pole compensation, where the compensator introduces a low frequency pole to force crossover before the phase becomes too negative. This method also lowers the magnitude and decreases bandwidth. Depending on the application, speed may not matter and proportional or dominant pole compensation may be adequate.

Lag and Lead compensation are methods that provide a bit more flexibility than the ones previously mentioned. Lag compensation adds a low frequency pole followed by a zero. The zero counteracts the negative phase introduced by the pole. Lag compensators have transfer functions of the form

$$
\begin{equation*}
G(s)=\frac{\tau s+1}{\alpha \tau s+1},(\alpha>1) \tag{2.29}
\end{equation*}
$$

This is often used to increase the low frequency gain (improving disturbance rejection and steady state error) without lowering the bandwidth or phase margin. If the lag pole is placed at the origin, it becomes proportional-plus-integral (PI) control. This integrator reduces the steady state error to zero in many applications. The drawback is that the error settling time may be significantly increased. Lead compensation adds a zero followed by a pole. The general transfer function is

$$
\begin{equation*}
G(s)=\frac{\alpha \tau s+1}{\tau s+1},(\alpha>1) \tag{2.30}
\end{equation*}
$$

This results in a positive bump in phase (as opposed to the negative one caused by lag compensation) which can be used to increase phase margin if placed near crossover. Lead compensation isn't always desirable, however, because it increases the gain at high frequencies effectively degrading the noise rejection capabilities.

PI compensation will be used for the controller because disturbance rejection, noise rejection, and steady state error are very important for this application while the error settling time isn't as much of a concern. An op-amp implemention of PI control is shown in Figure 2-14. The transfer function for this compensator is

$$
\begin{equation*}
\frac{V_{o}}{V_{i}}(s)=-\frac{R_{2} C s+1}{R_{1} C s} . \tag{2.31}
\end{equation*}
$$

Figure 2-14. Schematic of a PI compensation circuit.

Slope Compensation

The converter will be unstable for duty cycles greater than 0.5 unless we implement slope compensation. The following derivation presented in [1] explains why.

Consider the steady-state inductor current waveform in Figure 2-15. For the first part of the period, the inductor current increases with slope m_{1} until it is equal to the peak current value, I_{pk}. So we can calculate I_{pk} as

$$
\begin{equation*}
I_{p k}=i_{L}(d T)=i_{L}(0)+m_{1} d T \tag{2.32}
\end{equation*}
$$

Figure 2-15. Steady-state inductor current.

Solving (2.32) for d gives us

$$
\begin{equation*}
d=\frac{I_{p k}-i_{L}(0)}{m_{1} T} \tag{2.33}
\end{equation*}
$$

During the second part of the period, the inductor current decreases with slope $-\mathrm{m}_{2}$. We can calculate the current at the end of the period as

$$
i_{L}(T)=i_{L}(d T)-m_{2} d^{\prime} T
$$

$$
\begin{equation*}
=i_{L}(0)+m_{1} d T-m_{2} d^{\prime} T \tag{2.34}
\end{equation*}
$$

In steady-state operation, the following relations hold

$$
\begin{gathered}
i_{L}(0)=i_{L}(T) \\
d=D \\
m_{1}=M_{1} \\
m_{2}=M_{2}
\end{gathered}
$$

Substituting these relations in (2.34) yields

$$
\begin{equation*}
0=M_{1} D T-M_{2} D^{\prime} T \tag{2.35}
\end{equation*}
$$

which can be rearranged as

$$
\begin{equation*}
\frac{M_{2}}{M_{1}}=\frac{D}{D^{\prime}} \tag{2.36}
\end{equation*}
$$

Assume there is a small perturbation, $\hat{i}_{L}(0)$, in the inductor current. Figure 2-16 shows the inductor current waveforms in the case of steady-state and for a slight perturbation. The slopes of the waveforms are approximately the same. From Figure 216 , we see that $\hat{i}_{L}(0)$ can be expressed as

$$
\begin{equation*}
\hat{i}_{L}(0)=-m_{1} \hat{d} T \tag{2.37}
\end{equation*}
$$

Figure 2-16. Inductor current in steady-state and with a slight perturbation.

Similarly, the perturbation from equilibrium at the end of the period can be expressed as

$$
\begin{equation*}
\hat{i}_{L}(T)=m_{2} \hat{d} T \tag{2.38}
\end{equation*}
$$

Combining (2.37) and (2.38) results in

$$
\begin{equation*}
\hat{i}_{L}(T)=\hat{i}_{L}(0)\left(-\frac{m_{2}}{m_{1}}\right) \tag{2.39a}
\end{equation*}
$$

Or equivalently,

$$
\begin{equation*}
\hat{i}_{L}(T)=\hat{i}_{L}(0)\left(-\frac{D}{1-D}\right) \tag{2.39b}
\end{equation*}
$$

We can calculate the perturbation at the end of the next period and so on. The perturbation after n periods is

$$
\begin{equation*}
\hat{i}_{L}(n T)=\hat{i}_{L}(0)\left(-\frac{D}{1-D}\right)^{n} \tag{2.40}
\end{equation*}
$$

As n goes to infinity, the perturbation goes to zero if

$$
\left|-\frac{D}{1-D}\right|<1
$$

or equivalently,

$$
D<0.5 .
$$

Otherwise, the perturbation increases without bound. This demonstrates that the converter is unstable for duty cycles greater than 0.5 .

We can introduce a current ramp of slope m_{a} and sum it with the current sense waveform at the input of the PWM comparator. This causes the inductor current to ramp up during the first part of the period until the sum of the current ramp, i_{a}, and the inductor current reach the peak current, I_{pk}. This can be expressed mathematically as

$$
\begin{equation*}
i_{L}(d T)+i_{a}(d T)=I_{p k} \tag{2.41}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
i_{L}(d T)=I_{p k}-i_{a}(d T) \tag{2.42}
\end{equation*}
$$

This is shown graphically in Figure 2-17.

Figure 2-17. Inductor current in steady-state with slope compensation ramp.

Again, assume there is some perturbation, $\hat{i}_{L}(0)$, in the inductor current. Using the same approach as before, we can see from Figure 2-18 that the perturbation at the beginning of the period can be expressed as

$$
\begin{equation*}
\hat{i}_{L}(0)=-\hat{d} T\left(m_{1}+m_{a}\right) \tag{2.43}
\end{equation*}
$$

Figure 2-18. Steady-state and perturbed inductor current with slope compensation ramp.
and that at the end of the period as

$$
\begin{equation*}
\hat{i}_{L}(T)=-\hat{d} T\left(m_{a}-m_{2}\right) \tag{2.44}
\end{equation*}
$$

Combining (2.43) and (2.44) results in

$$
\begin{equation*}
\hat{i}_{L}(T)=\hat{i}_{L}(0)\left(-\frac{m_{2}-m_{a}}{m_{1}+m_{a}}\right) \tag{2.45}
\end{equation*}
$$

After n periods, the perturbation becomes

$$
\begin{equation*}
\hat{i}_{L}(n T)=\hat{i}_{L}(0)\left(-\frac{m_{2}-m_{a}}{m_{1}+m_{a}}\right)^{n} \tag{2.46}
\end{equation*}
$$

As we can see from (2.46), the condition that must be satisfied to ensure that the perturbation goes to zero and the system is stable is

$$
\begin{equation*}
\left|-\frac{m_{2}-m_{a}}{m_{1}+m_{a}}\right|<1 \tag{2.47}
\end{equation*}
$$

Thus, for sufficiently large compensating ramp slope, m_{a}, the system will be stable for arbitrarily large D.

2.3 PWM Controller Using Commercial Integrated Circuits

The objective is to design our own PWM control chip transistor by transistor. We will first put together a control circuit using commercial operational amplifiers, comparators, and other ICs to help develop an understanding of how the circuit and each functional block operates. Then we will use transistors to design a circuit to replace each block. An existing current mode pulse width modulation control chip, Unitrode's UC3842, was used as a starting point and guide for the initial circuit design. See Figure 2-19 for a functional schematic of the UC3842. For additional information regarding the features and capabilities of the UC3842, refer to [4]. After reviewing the operation of this and similar control chips, we can determine some of the basic requirements for our PWM controller.

Figure 2-19. Functional Schematic of Unitrode's UC3842.

We need an internal voltage reference to which feedback from the converter's output can be compared to determine if the converter is being regulated properly. There must be an error amplifier to compute the error between the converter's output and the reference voltage and to provide some compensation to ensure that the loop is stable. For peak current mode control, we need an amplifier to sense and amplify the voltage across a current sense resistor placed in series with the high-side switch. A comparator is required to compare the current sense output to the level set by the error amplifier and signal when the current is too high. The converter and controller alternate between two states. In the first state, the high-side switch is on, the low-side switch is off, and the inductor current is ramping up. In the second state, the high side switch is off, the lowside switch is on, and the inductor current is ramping down. We need an RS latch to keep track of which state the system is in. The second state is triggered by a pulse from the PWM comparator indicating that the current has exceeded the threshold. An oscillator
circuit is needed to produce a pulse at the desired switching frequency. This pulse is used to initiate the first state. We must have delay circuitry to prevent shoot-through and a gate drive circuit is required to convert the $0-5 \mathrm{~V}$ logic signal into a larger magnitude signal and source enough current to charge the capacitance associated with the MOSFETs' gates. Additionally, in order to operate the converter at duty cycles greater than 50%, we must provide some slope compensation to ensure stability. The remainder of this section briefly presents each block and an IC implementation of it. More detailed explanations of the blocks are given in Section 4.

We will assume a 12 V supply is available to power our control circuitry. The circuit uses some logic ICs which require a 5 V supply. This can be obtained from a linear voltage regulator, such as an LM7805. The desired output voltage for our converter is 5 V . We can either directly use the 5 V supply as a reference or we can use an op amp to create a 2.5 V reference from the 5 V supply. Figure 2-20 shows an LM7805 used to create a 5 V supply and a possible op amp configuration for generating a 2.5 V reference.

Figure 2-20. A linear regulator used to create 5 V supply and op amp configured to generate $\mathbf{2 . 5 \mathrm { V }}$ reference.

There are several options for the clock, or oscillator, circuit. We could use an LM555 timer, a 74LS123 or other one-shot chip, a Schmitt inverter, or one of numerous other options. Let's use a relaxation oscillator constructed with an LM311 comparator in a positive feedback configuration. The voltage across the capacitor will be used to generate our slope compensation ramp. The complete operation of the clock circuit is discussed in Section 4.4. See Figure 2-21 for a schematic.

Figure 2-21. Relaxation oscillator used to generate clock pulse and slope compensation ramp.

An RS latch can be implemented with NOR gates, such as those contained in the 74LS02 chip. Having the outputs of a pair of NOR gates each tied to one input of the other creates a latching effect. Applying a high voltage to the other input of one of the NOR gates sets the outputs of the NOR gates such that one is high and the other is low. The high input voltage can then be removed, and the gate outputs will remain the same until the state of the latch is changed by the application of a high voltage to the other NOR gate's input. RS latch operation is explained more in Section 4.7. See Figure 2-22 for a schematic.

Figure 2-22. RS latch implemented with NOR gates.

For the current sense amplifier, we need a high speed op amp to amplify the voltage drop across the current sense resistor. General op-amps, such as the LM741 or LF356, are not fast enough for this application. Texas Instruments' TLC070 was found to be an appropriate selection. The op amp used for the current sense amplifier operates with a 12 V supply. However, the inputs to the amplifier are approximately equal to the input voltage to the converter, which can be as high as 20 V . With input voltages so high, transistors within the op amp become saturated and the amplifier no longer functions properly. The average of the two inputs to the op amp is called the common-mode input. The difference between the two inputs, which is what we'd like to amplify, is called the differential-mode input. We refer to the range of common-mode inputs over which the op amp functions properly (i.e. no transistors are saturated) as the common-mode range. This maximum common-mode input is typically a bit lower than the supply voltage. So we must reduce the maximum common-mode input from 20 V to something below 12 V . This can be accomplished with a resistive voltage divider. We must use high precision, well-matched resistors because any mismatch will affect the output of the amplifier and result in our circuit having poor common-mode rejection. See Figure 2-23 and Figure 224 for output waveforms from the current sense amplifier operating normally and when
its common-mode input range has been exceeded. Figure 2-25 contains the schematic of our current sense amplifier, a TLC070 configured as a differencing amplifier with a gain of 39 .

Figure 2-23. Inductor current and current sense waveform.

Figure 2-24. Inductor current and current sense waveform when common-mode input is too high.

Figure 2-25. Current sense implemented with an op amp configured as a differencing amplifier with gain of about 39 .

The delay can be an open-loop delay of a specified amount of time generated by a circuit such as the one shown in Figure 2-26. In this circuit, the delay is set by the time constant of the resistor and capacitor. Alternatively, we can implement a circuit that senses the gate to source voltage of one of the FETs and doesn't allow the other FET to be switched on until that voltage is below some threshold. This is a much safer implementation and makes it much more difficult for shoot-through to occur. An example circuit is contained in Figure 2-27.

Figure 2-26. Open-loop implementation of delay for shoot-through protection.

Figure 2-27. Shoot-through is prevented by making sure a FET is sufficiently off before the other FET is switched on.

We need a circuit to turn the MOSFETs on and off as instructed by the signals from the delay circuit. This can be accomplished with a gate driver, such as an IR2125.

Figure 2-28 shows the typical connection of an IR2125 driving a low-side FET. Figure 2-29 shows an IR2125 configured to drive the high-side FET of a buck converter.

Figure 2-28. IR2125 gate driver used to drive low-side MOSFET.

Figure 2-29. IR2125 gate driver used to drive high-side MOSFET.

The error amplifier is just a typical op-amp, such as an LF356, configured as shown in Figure 2-14 and the PWM comparator is implemented with an LM311. See the full control schematic in Figure 2-30.

Figure 2-30. PWM peak current mode control circuit for a buck converter.

3 Analog Circuit Blocks

3.1 Current Sources

The collector current of a bipolar junction transistor can be described by (3.1).

$$
\begin{equation*}
i_{C}=I_{S} e^{v_{B E} / /_{T}}\left(1+\frac{v_{C E}}{V_{A}}\right) \tag{3.1}
\end{equation*}
$$

The constant, I_{s}, depends on the physical device characteristics of the transistor.
Collector current, i_{C}, increases exponentially with base-emitter voltage, v_{BE}. This means that a very slight change in v_{BE} causes a much larger change in i_{C}. It turns out that v_{BE} is approximately 0.6 V over a wide range of typical collector currents. The collector current also depends on collector to emitter voltage, v_{CE}, through its ratio to the Early voltage, V_{A}. The Early voltage is generally much larger than v_{CE}, so we can assume that term will be negligible and ignore it in our calculations. The denominator of the exponent in (3.1) contains the thermal voltage, V_{T}. The thermal voltage is defined in (3.2) where k is Boltzmann's constant, q is the magnitude of an electron's charge, and T is temperature in kelvins. The value of V_{T} is about 26 mV at room temperature.

$$
\begin{equation*}
V_{T}=\frac{k T}{q} \tag{3.2}
\end{equation*}
$$

In addition to the relation in (3.1), collector current is also related to the base current, i_{B}, as indicated in (3.3). The current gain, β, is a very large constant that depends on the transistor's device parameters, and is typically on the order of 100 , making collector current much larger than the base current. For an npn transistor, the current flowing out of the emitter is the sum of the currents flowing into the collector and base. Because β is
large, we can neglect base current and assume that the emitter current is approximately equal to the collector current.

$$
\begin{equation*}
i_{C}=\beta \cdot i_{B} \tag{3.3}
\end{equation*}
$$

Current sources are a fundamental building block for analog circuits. They are used to ensure that transistors are biased into the correct region of operation and often they determine the amount of gain an amplifier has. An example of a single-transistor current source is given in Figure 3-1. The voltage at the base of the transistor is set by a voltage divider consisting of R_{1} and R_{2}. The voltage at the emitter is v_{BE}, or about 0.6 V , below that of the base, so the voltage across R_{3} can be controlled by setting the voltage at the base. The voltage across R_{3} then determines the current through R_{3}. The current through R_{3} is approximately the same as Q's collector current which is the output of the current source. This current source requires a number of resistors whose values can potentially be fairly large. In an IC implementation, resistance is proportional to area so a current source like the one in Figure 3-1 would typically not be used. It is reasonable, however, for a discrete implementation where large resistors are readily available, particularly because it requires only one transistor.

Figure 3-1. Single transistor current source.

A common way of creating a current source on ICs is a circuit called a current mirror. Some reference current, $\mathrm{I}_{\text {ref }}$, is mirrored from a transistor to one or more other transistors, resulting in the current through those transistors being approximately equal to, or some scaled factor of, the reference current. A simple current mirror is shown in Figure 3-2. The reference current flows into the diode connected (meaning base and collector tied together) transistor Q_{1}. Some of the reference current, i_{A}, does not contribute to the collector current of Q_{1}, but instead provides current to the two bases.

Figure 3-2. Simple current mirror.

Since β is very large, this current is only a small fraction of the collector current. Thus, we will assume that the base currents are negligible and $\mathrm{I}_{\text {ref }}$ flows entirely into the collector of Q_{1}. Assuming that Q_{1} and Q_{2} are well matched, the current, Io, flowing through Q_{2} is approximately equal to the reference current flowing through Q_{1} because their base-emitter voltages are the same. Additional transistors may be added with their bases and emitters also connected to those of Q_{1} and Q_{2} and the reference will be mirrored to them as well. As the number of transistors increases, however, the base current being drawn from $\mathrm{I}_{\mathrm{ref}}$ increases and is no longer negligible. In this case, the collector current of Q_{1} can no longer be approximated as $\mathrm{I}_{\mathrm{ref}}$. The current, i_{A}, being drawn by the bases must be calculated and subtracted from $\mathrm{I}_{\text {ref }}$ to determine the collector current of Q_{1} that is being mirrored to the other transistors. The voltage at the collectorbase terminal of Q 1 is about 0.6 V . One way of generating the reference current is to connect a resistor from there to a voltage source, as shown in Figure 3-3. The current $\mathrm{I}_{\mathrm{ref}}$ is then defined by (3.4).

$$
\begin{equation*}
I_{r e f}=\frac{V_{C C}-0.6 \mathrm{~V}}{R_{r}} \tag{3.4}
\end{equation*}
$$

Figure 3-3. Simple current mirror with reference current set by the voltage across \mathbf{R}.

The current mirror in Figure 3-2 is only accurate for well matched transistors. Any slight mismatch between the transistors means that they will have different values of IS so applying (3.1) we see that their collector currents will not be identical even though they have the same v_{BE}. Additionally, collector current has significant temperature dependence. The variables $\mathrm{I}_{\mathrm{S}}, \mathrm{v}_{\mathrm{BE}}$, and v_{T} all vary with temperature. So unless the transistors are at the same temperature, which is difficult to ensure with discrete components in separate packages, the collector currents will differ. In some cases, temperature mismatches can lead to a thermal runaway situation. The current flowing through a transistor causes its temperature to increase. The increase in temperature leads to a further increase in current which causes temperature to increase even more. The matching and thermal stability issues can be addressed by adding resistors to the emitters as shown in Figure 3-4. The emitter resistors provide negative feedback which provides some stability to counteract thermal runaway. When the collector current of Q_{2} increases, the current through R_{2} goes up as well. This means the voltage drop across R_{2}, and thus the voltage at the emitter of Q_{2}, also increases. The voltage at the bases of the transistors is held constant because the collector current of Q_{1} (and as a result, its v_{BE}) is
unchanged. So the increase in the emitter voltage of Q_{2} results in a decrease in $\mathrm{v}_{\mathrm{BE} 2}$ which causes $\mathrm{I}_{\mathrm{C} 2}$ to decrease. Thus R_{2} is providing negative feedback which counteracts an increase in $\mathrm{I}_{\mathrm{C} 2}$. Doing KVL around the emitter resistor and v_{BE} loop of the circuit yields

$$
v_{R 1}+v_{B E 1}=v_{B E 2}+v_{R 2}
$$

Substituting the results of applying Ohm's law and solving (3.1) for v_{BE} we get

$$
i_{C 1} R_{1}+V_{T} \ln \left(\frac{i_{C 1}}{I_{S 1}}\right)=V_{T} \ln \left(\frac{i_{C 2}}{I_{S 2}}\right)+i_{C 2} R_{2}
$$

Solving for $i_{C 2} R_{2}$ yields

$$
i_{C 2} R_{2}=i_{C 1} R_{1}+V_{T} \ln \left(\frac{i_{C 1}}{I_{S 1}}\right)-V_{T} \ln \left(\frac{i_{C 2}}{I_{S 2}}\right)
$$

We can combine the two natural log terms to obtain

$$
i_{C 2} R_{2}=i_{C 1} R_{1}+V_{T} \ln \left(\frac{i_{C 1}}{I_{S 1}} \cdot \frac{I_{S 2}}{i_{C 2}}\right)
$$

Dividing both sides by R_{2} gives us the output of the current mirror

$$
\begin{equation*}
i_{C 2}=i_{C 1} \frac{R_{1}}{R_{2}}+\frac{V_{T}}{R_{2}} \ln \left(\frac{i_{C 1}}{I_{S 1}} \cdot \frac{I_{S 2}}{i_{C 2}}\right) \tag{3.5a}
\end{equation*}
$$

Assuming Q_{1} and Q_{2} are matched, $I_{S 1}=I_{S 2}$ and (3.5a) reduces to

$$
\begin{equation*}
i_{C 2}=i_{C 1} \frac{R_{1}}{R_{2}}+\frac{V_{T}}{R_{2}} \ln \left(\frac{i_{C 1}}{i_{C 2}}\right) \tag{3.5b}
\end{equation*}
$$

Figure 3-4. Current mirror with emitter resistors to improve accuracy and temperature stability.

The equation in (3.5a) shows that if there are not extreme differences between the I_{S} and I_{C} values of the two transistors and if the voltage drops across the emitter resistors are much larger than V_{T}, the natural \log term is negligible and (3.5a) can be simplified to

$$
\begin{equation*}
i_{C 2}=i_{C 1} \frac{R_{1}}{R_{2}} \tag{3.6}
\end{equation*}
$$

So, by adding emitter resistors and ensuring that the voltage drop across them is much larger than 26 mV , we've gained stability against thermal runaway and the relationship between the output current and the reference current now depends primarily on the ratio of R_{1} to R_{2}, regardless of how well matched the transistors are. Setting $R_{1}=R_{2}$ mirrors the reference current to the output, but we also have the additional flexibility of choosing R_{1} not equal to R_{2} and having an output current different from the reference current by some predetermined factor.

In the current source circuits we've discussed thus far, the goal was to generate a constant current of some value that had little variation with changes in transistor device parameters or temperature. There are some situations in which we actually want a current that increases predictably with temperature. These are known as proportional-to-absolute-temperature (PTAT) current sources. Consider the circuit in Figure 3-5. Applying KVL to the lower loop yields

$$
v_{B E 1}=v_{B E 2}+v_{R} \approx v_{B E 2}+i_{C 2} R
$$

which implies that

$$
\Delta v_{B E}=v_{B E 1}-v_{B E 2}=i_{C 2} R
$$

Solving (3.1) for V_{BE} and substituting yields

$$
V_{T} \ln \left(\frac{i_{C 1}}{I_{S 1}}\right)-V_{T} \ln \left(\frac{i_{C 2}}{I_{S 2}}\right)=i_{C 2} R .
$$

We can combine the two natural log terms to obtain

$$
V_{T} \ln \left(\frac{i_{C 1}}{I_{S 1}} \cdot \frac{I_{S 2}}{i_{C 2}}\right)=i_{C 2} R
$$

Substituting (3.2) for V_{T} yields

$$
\left(\frac{k T}{q}\right) \cdot \ln \left(\frac{i_{C 1}}{I_{S 1}} \cdot \frac{I_{S 2}}{i_{C 2}}\right)=i_{C 2} R .
$$

The output current is then expressed as

$$
\begin{equation*}
i_{C 2}=\frac{1}{R} \cdot\left(\frac{k T}{q}\right) \cdot \ln \left(\frac{i_{C 1}}{I_{S 1}} \cdot \frac{I_{S 2}}{i_{C 2}}\right) \tag{3.7}
\end{equation*}
$$

This derivation shows that the voltage across (and current through) R is directly proportional to temperature, assuming that the natural \log term can be held relatively constant. Because β is large, $\mathrm{i}_{\mathrm{C} 2}$ is approximately equal to the current through R and so is also PTAT. In general, the difference between two base-emitter voltages is PTAT.

Figure 3-5. Basic PTAT current generator.

Figure 3-6 contains an implementation of a PTAT current source. The current mirror formed by Q_{3} and Q_{4} keeps the collector currents of Q_{1} and Q_{2} the same. So I_{Cl} and $\mathrm{I}_{\mathrm{C} 2}$ cancel each other in the natural \log term of (3.7). By connecting two transistors in parallel to serve as Q_{2}, we have doubled the area of Q_{2} which means that $I_{S 2}$ is now twice as large as $\mathrm{I}_{\mathrm{S} 1}$ (assuming the three transistors are well matched) so (3.7) simplifies to

$$
i_{c 2}=\frac{1}{R} \cdot\left(\frac{k T}{q}\right) \cdot \ln (2)
$$

So $i_{\mathrm{C} 2}$ and i_{Cl} are PTAT, as desired. Connecting these two transistors in parallel is analogous to how transistor areas are scaled in an integrated circuit. In order to extract this PTAT current, Q_{5} is connected as shown in Figure 3-6 so that the current is mirrored there as well. The collector current of Q_{5} is our PTAT output current. This current can now be applied directly to a circuit or it can be converted to a PTAT voltage via a resistor. The output current is determined by the ratio of Q_{1} and Q_{2} 's areas. By varying R and the number of transistors connected in parallel to form Q_{1} or Q_{2}, we can control the value of $\mathrm{I}_{\text {PTAT }}$.

Figure 3-6. Implementation of a PTAT current source.

3.2 Common Emitter Amplifier

One widely used analog circuit building block is the common emitter (CE) amplifier. The basic CE amplifier consists of a single transistor configured as shown in

Figure 3-7. The input signal is applied across the base-emitter junction and the output is taken from the collector. We replace the transistor with its small signal model to determine the characteristics of the circuit. An equivalent circuit for analysis is shown in Figure 3-8. For a derivation of the small-signal model for a bipolar junction transistor, refer to [5].

Figure 3-7. Common emitter amplifier schematic.

Figure 3-8. Small signal model for common emitter amplifier.

Assume a small signal input, v_{in}, is applied as shown. The input shows up across r_{π}, thus $v_{\pi}=v_{i n}$. The value of the dependent current source is then $g_{m} v_{i n}$. By applying KCL at the output node, we can see that $-\mathrm{g}_{\mathrm{m}} \mathrm{v}_{\mathrm{in}}$ flows through the parallel combination of
r_{0} and R_{L}. Assuming r_{o} is much larger than R_{L}, r_{o} can be neglected. Thus the output voltage is

$$
\begin{aligned}
v_{\text {out }} & =-g_{m} v_{\text {in }} \cdot\left(R_{L} \| r_{o}\right) \\
& \approx-g_{m} v_{\text {in }} \cdot R_{L}
\end{aligned}
$$

The gain of the circuit is then

$$
\begin{equation*}
a_{v}=\frac{v_{\text {out }}}{v_{\text {in }}} \approx-g_{m} \cdot R_{L} \tag{3.8}
\end{equation*}
$$

Input resistance is the resistance seen looking into the input terminal of the amplifier. It is the resistance seen by the output of some previous stage or some input source that may drive this circuit. The input resistance is defined as

$$
\begin{equation*}
R_{i n}=\frac{v_{i n}}{i_{i n}} \tag{3.9}
\end{equation*}
$$

For the CE amplifier, $\mathrm{R}_{\mathrm{in}}=\mathrm{r}_{\pi}$. Analogous to input resistance, output resistance is the resistance seen looking into the circuit from the output terminal. The formal definition is

$$
\begin{equation*}
R_{\text {out }}=\left.\frac{v_{\text {out }}}{i_{\text {out }}}\right|_{v_{\text {in }}=0} \tag{3.10}
\end{equation*}
$$

In this case, setting v_{in} to 0 turns off the dependent current source, making it an open circuit. The resistance seen from the output is then the parallel combination of r_{0} and the load resistance, R_{L}. For cases where R_{L} is much smaller than $\mathrm{r}_{\mathrm{o}}, \mathrm{R}_{\text {out }}$ is simply R_{L}.

3.3 Emitter Follower Buffer

Another useful analog block is the common collector (CC) or emitter follower (EF) configuration. This circuit, depicted in Figure 3-9, consists of a single transistor with an input voltage applied at the base and output taken at the emitter. The equivalent small signal circuit, shown in Figure 3-10, can be analyzed to determine the characteristics of the EF.

Figure 3-9. Emitter follower schematic.

Figure 3-10. Small signal model for emitter follower.

Applying KCL at the output node yields

$$
\left.i_{i n}+\beta_{0} i_{\text {in }}+\frac{0 V-v_{\text {out }}}{r_{o}}-\frac{v_{\text {out }}-0 V}{R_{L}}=0 \quad \text { (because } g_{m} v_{\pi}=\beta_{0} i_{i n}\right)
$$

Substituting for $\mathrm{i}_{\text {in }}$ results in

$$
\frac{v_{\text {in }}-v_{\text {out }}}{r_{\pi}}+\beta_{o}\left(\frac{v_{\text {in }}-v_{\text {out }}}{r_{\pi}}\right)-\frac{v_{\text {out }}}{r_{o}}-\frac{v_{\text {out }}}{R_{L}}=0 .
$$

Upon simplification we get

$$
\begin{equation*}
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{1}{1+\frac{r_{\pi}}{\left(\beta_{0}+1\right)\left(r_{o} \| R_{L}\right)}} \tag{3.11a}
\end{equation*}
$$

Assuming $\beta_{0} \gg 1$ and $r_{o} \gg R_{L}$, we can use the relation $r_{\pi}=\frac{\beta_{0}}{g_{m}}$ to obtain

$$
\begin{equation*}
\frac{v_{\text {out }}}{v_{\text {in }}} \approx \frac{g_{m} R_{L}}{1+g_{m} R_{L}} \tag{3.11b}
\end{equation*}
$$

The gain of the EF is less than 1. It turns out that, due to the transistor's factor of β current gain, any resistance connected to the emitter seems larger by a factor of $\beta+1$ when viewed from the base of the transistor. Likewise, when looking into the emitter, r_{π} and any resistance connected to the base seem smaller by a factor of $\beta+1$. See [] for a derivation of this. Using this information, we can determine $\mathrm{R}_{\text {in }}$ and $\mathrm{R}_{\text {out }}$ without too much hassle, as indicated by (3.12). Otherwise we would have to apply a test input source and analyze the circuit to determine the ratio of the input and output voltages and currents.

$$
\begin{aligned}
R_{\text {in }} & =r_{\pi}+\left(\beta_{0}+1\right)\left(r_{o} \| R_{L}\right) \\
& \approx r_{\pi}+\left(\beta_{0}+1\right) R_{L} \\
R_{\text {out }} & =r_{o}\left\|R_{L}\right\| \frac{r_{\pi}}{\beta_{0}+1}
\end{aligned}
$$

Because r_{o} is very large,

$$
\begin{align*}
& R_{\text {out }} \approx R_{L} \| \frac{r_{\pi}}{\beta_{0}+1} \\
& R_{\text {out }} \approx R_{L} \| \frac{1}{g_{m}} \tag{3.12b}
\end{align*} .
$$

When $\beta_{0} \gg 1, r_{o} \gg R_{L}$, and $g_{m} R_{L} \gg 1$, the gain of the emitter follower is approximately 1. This unity gain and the fact that the amplifier reduces the effective
output resistance and increases the effective input resistance seen by adjacent stages by a factor of $\beta+1$ make the EF amplifier a good buffer to use before, between, and after other stages.

3.4 Differential Pair

We often need to take some differential voltage as input and amplify it. This can be done with the differential pair circuit block shown in Figure 3-11. Assume a differential voltage, v_{d}, is applied across the input terminals. We model this as $+\frac{1}{2} v_{d}$ applied to the base of Q_{1} and $-\frac{1}{2} v_{d}$ applied to the base of Q_{2} as indicated in Figure 3-11.

The change in collector current for a given change in V_{BE} can be calculated as follows: Ignoring the Early effect, (3.1) becomes

$$
\begin{equation*}
i_{C}=I_{S} e^{v_{B E} / V_{T}} \tag{3.13}
\end{equation*}
$$

We differentiate (3.13) with respect to v_{BE} to obtain

$$
\frac{\partial i_{C}}{\partial v_{B E}}=\frac{1}{V_{T}} \cdot I_{S} e^{v_{B E} / V_{T}}
$$

This expression is equivalent to

$$
\begin{aligned}
\frac{\partial i_{C}}{\partial \nu_{B E}} & =\frac{i_{C}}{V_{T}} \\
& =\frac{I_{C}}{V_{T}} \text { (when evaluated at the DC operating point). }
\end{aligned}
$$

So we can see that

$$
\begin{equation*}
\frac{\partial i_{C}}{\partial v_{B E}}=\frac{I_{C}}{V_{T}} \equiv g_{m} . \tag{3.14}
\end{equation*}
$$

The change in collector current for a given change in V_{BE} is known as the transconductance and is typically associated with the variable g_{m}. (3.14) can be used to determine what the change in $\mathrm{i}_{\mathrm{C} 1}$ and $\mathrm{i}_{\mathrm{C} 2}$ will be as a result of the applied differential input voltage. The expression in (3.14) implies

$$
\begin{equation*}
\Delta i_{C}=g_{m} \cdot \Delta v_{B E} . \tag{3.15}
\end{equation*}
$$

So the change in $\mathrm{i}_{\mathrm{C} 1}$ will be $g_{m} \cdot\left(+\frac{1}{2} v_{d}\right)$ and the change in $\mathrm{i}_{\mathrm{C} 2}$ will be $g_{m} \cdot\left(-\frac{1}{2} v_{d}\right)$. These currents flow through the load resistors. To obtain a differential voltage output, we can take the difference between the voltages at the two collectors, indicated as $v_{o d}$ in

Figure 3-11. The change in voltage at the collectors in response to the change in i_{C} is $-\Delta i_{C} \cdot R_{L}$. So at the collector of Q_{1} we get

$$
v_{o 1}=-\Delta i_{C 1} \cdot R_{L} .
$$

Substituting for Δi_{C} yields

$$
\begin{equation*}
v_{o 1}=-g_{m} \cdot \frac{v_{d}}{2} \cdot R_{L} \tag{3.16a}
\end{equation*}
$$

At the collector of Q_{2} we get

$$
v_{o 2}=-\Delta i_{C 2} \cdot R_{L} .
$$

Again, substituting for Δi_{C} yields

$$
\begin{align*}
& v_{o 2}=-g_{m} \cdot\left(-\frac{v_{d}}{2}\right) \cdot R_{L} \tag{3.16b}\\
& v_{o 2}=g_{m} \cdot \frac{v_{d}}{2} \cdot R_{L}
\end{align*}
$$

The differential output voltage in response to v_{d} is

$$
v_{o d}=v_{o 1}-v_{o 2} .
$$

Substituting the results from (3.16) yields

$$
v_{o d}=-g_{m} \cdot \frac{v_{d}}{2} \cdot R_{L}-g_{m} \cdot \frac{v_{d}}{2} \cdot R_{L}
$$

which can be simplified to

$$
\begin{equation*}
v_{o d}=-g_{m} \cdot v_{d} \cdot R_{L} . \tag{3.17}
\end{equation*}
$$

The gain of the differential amplifier is

$$
\begin{equation*}
a_{v}=\frac{v_{o d}}{v_{d}}=-g_{m} \cdot R_{L} . \tag{3.18a}
\end{equation*}
$$

If we were to define the differential output voltage as $v_{o d}=v_{o 2}-v_{o 1}$, the amplifier would be non-inverting and the gain would be

$$
\begin{equation*}
a_{v}=\frac{v_{o d}}{v_{d}}=g_{m} \cdot R_{L} . \tag{3.18b}
\end{equation*}
$$

Figure 3-11. Differential pair amplifier schematic.

If, instead of a differential output voltage, we wanted a single-ended output voltage referenced to ground, we could take either $\mathrm{v}_{\mathrm{o} 1}$ or $\mathrm{v}_{\mathrm{o} 2}$ as our output. A single-ended output is advantageous because it is referenced to ground, however the gain is reduced by a factor of 2 . For instance, with $v_{o 1}$ taken to be the output

$$
\begin{equation*}
a_{v}=\frac{v_{o 1}}{v_{d}}=-\frac{1}{2} \cdot g_{m} \cdot R_{L} . \tag{3.19}
\end{equation*}
$$

From the gain expressions derived above, we can see that the gain of the differential pair is proportional to the bias current (through \mathbf{g}_{m}) and the load resistance. Because power dissipation is proportional to current, it is not ideal to use large bias currents to increase the gain. Large resistors are impractical for integrated circuits because resistance is proportional to area and a primary objective in integrated designs is
to minimize size. The solution is to use transistors, instead of resistors, to load the differential pair. This configuration, known as an actively loaded differential pair, is shown in Figure 3-12. The small signal model for the bipolar junction transistor includes an output resistance, designated by r_{0}. This is the resistance seen looking into the collector of the transistor. The output resistance is proportional to the Early voltage, V_{A}, and is typically very large.

$$
\begin{equation*}
r_{o}=\frac{V_{A}}{I_{C}} . \tag{3.20}
\end{equation*}
$$

The effective resistance seen at the output node is

$$
R_{L, e f f}=r_{o 2} \| r_{o 4}
$$

which becomes

$$
=\frac{V_{A n}}{I_{C 2}} \| \frac{V_{A p}}{I_{C 4}}
$$

upon substitution of (3.20).

Figure 3-12. Actively loaded differential pair amplifier.

Note that the early voltages for npn and pnp transistors are different. V_{A} is typically significantly larger for npn transistors. The increased resistance seen at the output node significantly increases the amount of gain the circuit can provide. In the case of the resistively loaded differential pair, the effective load resistance seen at the collectors is actually R_{L} in parallel with the transistor's r_{0}. However, because r_{o} is so much larger than R_{L}, we were able to ignore it in the previous calculations. The actively loaded differential pair provides a significant increase in gain, but this circuit is only useful when a single-ended output is desired because we can only take the output from the collector of Q_{2} as opposed to in the resistively loaded case where we could take a differential output voltage.

Figure 3-13 contains a graph of the $v_{o d}$ versus v_{d} transfer characteristic for a differential pair amplifier. The circuit only amplifies linearly over a small range, about $\pm 25 m V$, of differential input voltages. Beyond this range, all of the bias current is flowing through either Q_{1} or Q_{2} so a further increase in the magnitude of v_{d} doesn't
change the collector currents or output voltage. Emitter resistors can be added to the input transistors, illustrated in Figure 3-14, to widen the linear range of the amplifier. For a factor of m increase in linear range, set $\frac{1}{2} R_{E} I_{C C}$ equal to $m V_{\mathrm{T}}$. Figure $3-15$ shows the v_{od} versus v_{d} transfer characteristic for the case where $\frac{1}{2} R_{E} I_{C C}$ is about $20 \mathrm{~V}_{\mathrm{T}}$. Upon examining the slope of the curve in Figure 3-15, we can see that the gain of the circuit is reduced by approximately the same factor by which the linear range is increased. The following calculations show that the gain is approximately the ratio of R_{L} to R_{E} if we take the output voltage differentially.

Increasing linear range by m

$$
\begin{equation*}
\frac{1}{2} R_{E} I_{C C}=m V_{T} \tag{3.21}
\end{equation*}
$$

implies a reduction of the gain by a factor of m yielding

$$
a_{v} \approx \frac{1}{m} g_{m} R_{L} .
$$

Substituting the results of (3.21) and the expression for gm gives us
which simplifies to

$$
\begin{align*}
& a_{v}=\left(\frac{V_{T}}{\frac{1}{2} R_{E} I_{C C}}\right) \cdot\left(\frac{\frac{1}{2} I_{C C}}{V_{T}}\right) \cdot R_{L} \tag{3.21}\\
& a_{v}=\frac{R_{L}}{R_{E}}
\end{align*}
$$

Figure 3-13. Transfer characteristic of vod vs. vd for differential pair amplifier.

Figure 3-14. Schematic of differential pair amplifier with emitter resistors to increase linear range.

Figure 3-15. characteristic of vod vs. vd for differential pair amplifier with emitter resistors.

The gain of the differential pair, as indicated earlier, is proportional to g_{m}. Because the expression for g_{m} contains V_{T} in its denominator, the circuit gain is inversely proportional to temperature. This temperature dependence may be undesirable. If the gain needs to be relatively independent of temperature, we need to introduce a factor that is directly proportional to temperature to cancel the inverse temperature dependence of g_{m}. This can be accomplished by using a PTAT current source for I_{CC}, such as the one discussed in Section 3.1. If the bias current, I_{CC}, is proportional to temperature by some factor, $\mathrm{A}, \mathrm{g}_{\mathrm{m}}$ can be calculated as follows.

$$
I_{C C}=A \cdot T
$$

The collector currents are

$$
I_{C 1}=I_{C 2}=I_{C}=\frac{1}{2} A \cdot T .
$$

From (3.14)

$$
g_{m}=\frac{I_{C}}{V_{T}}
$$

Substituting for I_{C} and V_{T} yields

$$
g_{m}=\frac{\frac{1}{2} A \cdot T}{\frac{k T}{q}}
$$

which can be reduced to

$$
g_{m}=\frac{A \cdot q}{2 k} .
$$

As a result of the PTAT current source, g_{m} (and so the gain of the amplifier) is no longer temperature dependent.

The differential pair is a typical input stage for an amplifier and can be followed by additional gain stages and an output stage to construct an operational amplifier. See Figure 3-16 for an example.

Figure 3-16. Example of an operational amplifier with a differential pair input stage.

4 Control Circuit Blocks

4.1 Bandgap Reference

In order to regulate output voltage, there must be some internal, reliable point of reference. Ideally, there should be a voltage reference that is stable across variations in temperature and supply voltage. The voltage across the base emitter junction of bipolar junction transistors has a negative temperature coefficient, meaning the voltage decreases as temperature increases. Bandgap voltage references operate by effectively summing a base emitter voltage with a voltage that has a positive temperature coefficient. A voltage that increases with temperature is referred to as Proportional to Absolute Temperature (PTAT) as mentioned in Section 3.1. By summing these two voltages with appropriate linear scaling, it is possible for the temperature coefficients to cancel, resulting in a voltage with little to no temperature dependence. This concept, illustrated in Figure 4-1, is what we will use to create our internal reference.

Figure 4-1. A bandgap reference uses a positive temperature coefficient to cancel the negative temperature coefficient of a transistor's base-emitter junction to produce a voltage that is independent of temperature.

As mentioned in the preceding paragraph, a voltage with a negative temperature coefficient can be derived from a transistor's base emitter voltage. It turns out that the difference between two base emitter voltages is a PTAT voltage. Ignoring the effects of finite output resistance (Early effect), the equation for collector current is (3.13), repeated below for convenience.

$$
\begin{equation*}
i_{C}=I_{S} e^{v_{B E} / V_{T}} \tag{3.13}
\end{equation*}
$$

The variables I_{S} and V_{T} are described in Section 3.1. Solving (3.13) for base emitter voltage we obtain

$$
\begin{equation*}
v_{B E}=V_{T} \ln \left(\frac{i_{C}}{I_{S}}\right) \tag{4.1}
\end{equation*}
$$

Take the difference between two base emitter voltages.

$$
\Delta v_{B E}=v_{B E_{1}}-v_{B E_{2}}
$$

Substituting (4.1) for v_{BE} results in

$$
\Delta v_{B E}=V_{T} \ln \left(\frac{i_{C_{1}}}{I_{S_{1}}}\right)-V_{T} \ln \left(\frac{i_{C_{2}}}{I_{S_{2}}}\right)
$$

Combining the natural log terms yields

$$
\Delta v_{B E}=V_{T} \ln \left(\left(\frac{i_{C_{1}}}{I_{S_{1}}}\right)\left(\frac{I_{S_{2}}}{i_{C_{2}}}\right)\right)
$$

We can substitute (3.2) to obtain

$$
\begin{align*}
\Delta v_{B E} & =\frac{k T}{q} \ln \left(\left(\frac{i_{C_{1}}}{I_{S_{1}}}\right)\left(\frac{I_{S_{2}}}{i_{C_{2}}}\right)\right) \tag{4.2}\\
& =c T .
\end{align*}
$$

The difference is directly proportional to temperature with some proportionality constant, c, which depends on the ratios of the collector currents and transistor saturation currents (I_{S}), in addition to Boltzmann's constant, k , and electron charge, q .

The following expression, stated in [6], can be used to determine the temperature coefficient of the base emitter voltage.

$$
\begin{equation*}
v_{B E}=V_{G 0}\left(1-\frac{T}{T_{0}}\right)+V_{B E O}\left(\frac{T}{T_{0}}\right)+\frac{m k T}{q} \ln \left(\frac{T}{T_{0}}\right)+\frac{k T}{q} \ln \left(\frac{J_{C}}{J_{C 0}}\right) \tag{4.3}
\end{equation*}
$$

The bandgap voltage of silicon at $0^{\circ} \mathrm{K}, \mathrm{V}_{\mathrm{G} 0}$, is approximately 1.206 V and m is a constant equal to 2.3. The collector current density is indicated by the variable J_{C}. The subscript 0 indicates a quantity evaluated at a reference temperature. If the 0 subscript is not present, the quantity is evaluated at the actual temperature, T. As discussed in [6], the current densities are PTAT, implying that

$$
\begin{equation*}
\frac{J}{J_{0}}=\frac{T}{T_{0}} \tag{4.4}
\end{equation*}
$$

The bandgap reference voltage will have the following form

$$
\begin{equation*}
V_{r e f}=v_{B E}+K \cdot \Delta v_{B E} \tag{4.5}
\end{equation*}
$$

Plugging (4.2) and (4.3) into (4.5) yields

$$
V_{r e f}=V_{G 0}\left(1-\frac{T}{T_{0}}\right)+V_{B E 0}\left(\frac{T}{T_{0}}\right)+\frac{m k T}{q} \ln \left(\frac{T_{0}}{T}\right)+\frac{k T}{q} \ln \left(\frac{J_{C}}{J_{C 0}}\right)+K \cdot \frac{k T}{q} \ln \left(\left(\frac{i_{c_{1}}}{I_{S_{1}}}\right)\left(\frac{I_{S_{2}}}{i_{C_{2}}}\right)\right)
$$

which simplifies to

$$
\begin{equation*}
V_{r e f}=V_{G 0}+\frac{T}{T_{0}}\left(V_{B E 0}-V_{G 0}\right)+(m-1) \frac{k T}{q} \ln \left(\frac{T_{0}}{T}\right)+K \cdot \frac{k T}{q} \ln \left(\left(\frac{i_{C_{1}}}{I_{S_{1}}}\right)\left(\frac{I_{S_{2}}}{i_{C_{2}}}\right)\right) \tag{4.6}
\end{equation*}
$$

To determine (and ideally set to zero) the temperature dependence, we differentiate (4.6) with respect to temperature then set the derivative to zero. Note that the temperature coefficient will only be zero at the reference temperature. As the temperature deviates around the reference temperature, the reference voltage will have some (small) temperature dependence. Differentiating (4.6) gives

$$
\begin{aligned}
\frac{\partial V_{r e f}}{\partial T} & =\frac{1}{T_{0}}\left(V_{B E 0}-V_{G 0}\right)+(m-1) \frac{k}{q} \ln \left(\frac{T_{0}}{T}\right)-(m-1) \frac{k}{q}+K \cdot \frac{k}{q} \ln \left(\left(\frac{i_{C_{1}}}{I_{S_{1}}}\right)\left(\frac{I_{S_{2}}}{i_{C_{2}}}\right)\right) \\
& =\frac{1}{T_{0}}\left(V_{B E 0}-V_{G 0}\right)+(m-1) \frac{k}{q}\left(\ln \left(\frac{T_{0}}{T}\right)-1\right)+K \cdot \frac{k}{q} \ln \left(\left(\frac{i_{C_{1}}}{I_{S_{1}}}\right)\left(\frac{I_{S_{2}}}{i_{C_{2}}}\right)\right)
\end{aligned}
$$

For zero temperature dependence,

$$
\frac{\partial V_{r e f}}{\partial T}=0 .
$$

$T=T_{0}$ implies

$$
\begin{equation*}
V_{r e f 0}=V_{B E 0}+K \cdot \frac{k T_{0}}{q} \ln \left(\left(\frac{i_{C_{1}}}{I_{S_{1}}}\right)\left(\frac{I_{S_{2}}}{i_{C_{2}}}\right)\right)=V_{G 0}+(m-1) \frac{k T_{0}}{q} \tag{4.7}
\end{equation*}
$$

At room temperature $\left(\mathrm{T}_{0}=298^{\circ} \mathrm{K}\right)$,

$$
V_{r e f 0}=V_{G 0}+(m-1) \frac{k T_{0}}{q} \approx 1.12394 V
$$

Given this value and $\mathrm{V}_{\mathrm{BEO}}$, the appropriate scaling factor, K , and collector and saturation currents can be selected so that $\mathrm{V}_{\text {refo }}$ will have the desired value and zero temperature coefficient. In a circuit implementation, K is typically controlled by a ratio of resistors.

Figure 4-2 shows an example of a simple, open-loop band-gap reference circuit presented in [7]. The output, $\mathrm{V}_{\text {ref, }}$, is composed of the base-emitter voltage of Q_{3} and the voltage across R_{2}. Because the voltage across R_{3} is the difference between $V_{B E 1}$ and $\mathrm{V}_{\mathrm{BE} 2}$, it is PTAT and the resulting current through R_{3} is PTAT (ignoring any temperature dependence the resistors may have). Ignoring base currents, the current through R_{2} is the same as the current through R_{3}. This PTAT current through R_{2} makes V_{2} PTAT, so $V_{\text {ref }}$ is composed of a V_{BE} and a PTAT voltage, as desired. The scaling factors and currents can be obtained through analysis of the circuit as follows.

$$
V_{3}=I_{3} R_{3}=v_{B E 1}-v_{B E 2}
$$

Substituting from (4.1) yields

$$
\begin{align*}
& V_{3}=V_{T} \ln \left(\frac{I_{C 1}}{I_{S 1}}\right)-V_{T} \ln \left(\frac{I_{C 2}}{I_{S 2}}\right) \tag{4.8a}\\
& V_{3}=V_{T} \ln \left(\frac{I_{C 1}}{I_{S 1}} \cdot \frac{I_{S 2}}{I_{C 2}}\right)
\end{align*}
$$

Assuming the transistors are matched, meaning they have the same device parameters, $\mathrm{I}_{\mathrm{S} 1}=\mathrm{I}_{\mathrm{S} 2}$ and (4.8a) simplifies to

$$
\begin{equation*}
V_{3}=V_{T} \ln \left(\frac{I_{C 1}}{I_{C 2}}\right) \tag{4.8b}
\end{equation*}
$$

Since $I_{2}=I_{3}=\frac{V_{3}}{R_{3}}$,

$$
\begin{align*}
V_{2}=I_{2} R_{2} & =\frac{R_{2}}{R_{3}} V_{T} \ln \left(\frac{I_{C 1}}{I_{C 2}}\right) \\
& =\frac{R_{2}}{R_{3}} \cdot \frac{k T}{q} \ln \left(\frac{I_{C 1}}{I_{C 2}}\right) \tag{4.9}
\end{align*}
$$

(4.9) has the same form as the PTAT term in (4.7) with $K=\frac{R_{2}}{R_{3}}$. If the transistors are matched, $\mathrm{v}_{\mathrm{BE} 1}=\mathrm{v}_{\mathrm{BE} 2}$ and $\mathrm{V}_{1}=\mathrm{V}_{2}$. In this case, the ratio of the collector currents, $\mathrm{I}_{\mathrm{C} 1}$ and $\mathrm{I}_{\mathrm{C} 2}$, can be controlled by the ratio of the resistors, R_{1} and R_{2}. The circuit's output voltage is then

$$
V_{r e f}=v_{B E 3}+V_{2}
$$

Substituting from (4.3) and (4.9) gives us

$$
\begin{aligned}
V_{r e f} & =V_{G 0}+\frac{T}{T_{0}}\left(V_{B E 3_{0}}-V_{G 0}\right)+(m-1) \frac{k T}{q} \ln \left(\frac{T_{0}}{T}\right)+\frac{R_{2}}{R_{3}} \cdot \frac{k T}{q} \ln \left(\frac{I_{C 1}}{I_{C 2}}\right) . \\
& =V_{G 0}+\frac{T}{T_{0}}\left(V_{B E 3_{0}}-V_{G 0}\right)+(m-1) \frac{k T}{q} \ln \left(\frac{T_{0}}{T}\right)+\frac{R_{2}}{R_{3}} \cdot \frac{k T}{q} \ln \left(\frac{R_{2}}{R_{1}}\right) .
\end{aligned}
$$

Differentiating with respect to temperature yields

$$
\frac{\partial V_{r e f}}{\partial T}=\frac{1}{T_{0}}\left(V_{B E 3_{0}}-V_{G 0}\right)+(m-1) \frac{k}{q}\left(\ln \left(\frac{T_{0}}{T}\right)-1\right)+\frac{R_{2}}{R_{3}} \cdot \frac{k}{q} \ln \left(\frac{R_{2}}{R_{1}}\right) .
$$

Setting $\frac{\partial V_{r e f}}{\partial T}=0$ at $T=T_{0}=298^{\circ} \mathrm{K}$ gives us

$$
V_{B E 3_{0}}+T_{0} \cdot \frac{R_{2}}{R_{3}} \cdot \frac{k}{q} \ln \left(\frac{R_{2}}{R_{1}}\right)=V_{G 0}+T_{0}(m-1) \frac{k}{q} \approx 1.2394 V .
$$

Plugging in the appropriate values for $\mathrm{T}_{0}, \mathrm{k}$, and q , and using a typical (for Fairchild Semiconductor's 2 N 3904 npn transistor) V_{BE} value of 0.65 V results in the following expression which can be used to select appropriate resistor values for the circuit of Figure 4-2.

$$
\frac{R_{2}}{R_{3}} \ln \left(\frac{R_{2}}{R_{1}}\right) \approx 22.94947
$$

Figure 4-2. Discrete implementation of open-loop bandgap reference.

Typical bandgap reference circuits produce an output voltage of around 1.2 V . To obtain a stable voltage reference of some other value, the bandgap voltage is used as the input to a voltage regulator circuit, like the one presented in Section 4.2. Figure 4-3 contains the schematic for a bandgap reference circuit that allows the output voltage to be scaled to some desired value without the use of a separate voltage regulator circuit. Analysis of the circuit reveals that the voltage at the bases of Q_{1} and Q_{2} is the typical bandgap voltage of about 1.2 V . Thus, we can use the voltage divider formed by R_{3} and R_{4} to obtain a larger output voltage at the emitter of Q_{3}.

Figure 4-3. Schematic for bandgap reference circuit with output voltage that can be adjusted by changing the ratio of R_{3} to R_{4}.

The example bandgap reference circuits presented thus far have a few shortcomings that make them non-ideal for certain applications. The circuits in Figure 42 and Figure 4-3 are both open loop implementations. This means there is no method for counteracting any deviations from the desired operating point. The circuit in Figure 4-2 relies on the voltages V_{1} and V_{2} being equal so that the current ratio can be controlled by the ratio of R_{1} to R_{2}. However, V_{1} and V_{2} may not be the same because Q_{1} and Q_{3} may not be perfectly matched. In this case, we have no control over the ratio of $\mathrm{I}_{\mathrm{C} 1}$ to $\mathrm{I}_{\mathrm{C} 2}$. Bandgap reference circuits use operational amplifiers (op amps) to provide feedback and stabilize the operating point. An example of such a circuit is contained in Figure 4-4.

Figure 4-4. Closed-loop implementation of a bandgap reference.

Due to the op amp's large open loop gain (see Section 4.2), the voltages at its input terminals must be the same. From Figure 4-4, we can see that this means the voltage across R_{3} is the difference between $\mathrm{v}_{\mathrm{BE} 1}$ and $\mathrm{v}_{\mathrm{BE} 2}$. So the voltage across (and current through) R_{3} is PTAT. Because R_{2} is in series with R_{3}, the current and voltage associated with R_{2} are also PTAT. The voltages at the op amp's input terminals being equal gives us the following relation

$$
\begin{align*}
& V_{R 2}=V_{R 1} \\
& I_{C 2} R_{2}=I_{C 1} R_{1} \\
& \Rightarrow \frac{I_{C 1}}{I_{C 2}}=\frac{R_{2}}{R_{1}} . \tag{4.10}
\end{align*}
$$

We can use (4.2) to determine R_{3} 's voltage and current. We obtain results identical to those presented in (4.8a) and (4.8b), repeated again here for convenience.

$$
V_{3}=I_{3} R_{3}=v_{B E 1}-v_{B E 2}
$$

$$
\begin{align*}
&=V_{T} \ln \left(\frac{I_{C 1}}{I_{S 1}}\right)-V_{T} \ln \left(\frac{I_{C 2}}{I_{S 2}}\right) \tag{4.8a}\\
&=V_{T} \ln \left(\frac{I_{C 1}}{I_{S 1}} \cdot \frac{I_{S 2}}{I_{C 2}}\right) \\
& I_{S 1}=I_{S 2} \Rightarrow \\
& V_{3}=V_{T} \ln \left(\frac{I_{C 1}}{I_{C 2}}\right) \tag{4.8b}
\end{align*}
$$

The current through R_{3} and R_{2} is then

$$
\begin{equation*}
I_{C 3}=\frac{V_{3}}{R_{3}}=\frac{V_{T}}{R_{3}} \ln \left(\frac{I_{C 1}}{I_{C 2}}\right) . \tag{4.11}
\end{equation*}
$$

The output voltage of the circuit is the sum of v_{BE} and the voltage across R_{1}. We can use (4.10) and (4.11) to solve for the voltage across R_{1} as follows.

$$
V_{R 1}=V_{R 2}=I_{C 2} R_{2} .
$$

Substituting (4.11) for $\mathrm{I}_{\mathrm{C} 2}$ gives

$$
V_{R 1}=\frac{V_{T}}{R_{3}} \ln \left(\frac{I_{C 1}}{I_{C 2}}\right) \cdot R_{2}
$$

Using the result from (4.10) yields

$$
\begin{equation*}
V_{R 1}=\frac{V_{T}}{R_{3}} \ln \left(\frac{R_{2}}{R_{1}}\right) \cdot R_{2} \tag{4.12}
\end{equation*}
$$

Thus, $\mathrm{V}_{\text {ref }}$ can be calculated as

$$
\begin{aligned}
V_{r e f} & =v_{B E 1}+V_{R 1} \\
& =V_{G 0}+\frac{T}{T_{0}}\left(V_{B E 1_{0}}-V_{G 0}\right)+(m-1) \frac{k T}{q} \ln \left(\frac{T_{0}}{T}\right)+\frac{R_{2}}{R_{3}} \cdot \frac{k T}{q} \ln \left(\frac{R_{2}}{R_{1}}\right) .
\end{aligned}
$$

Differentiating and solving just as we did for the circuit of Figure 4-3 leads us to the same result,

$$
\begin{equation*}
\frac{R_{2}}{R_{3}} \ln \left(\frac{R_{2}}{R_{1}}\right) \approx 22.94947 \tag{4.13}
\end{equation*}
$$

for zero temperature dependence at room temperature. Using (4.13), we can select the appropriate resistor values for our bandgap reference circuit.

Our bandgap reference circuit requires an op amp that we must implement with transistors. The primary requirement for this circuit is fairly large gain. We will use a design with an actively loaded differential pair input stage followed by a second gain stage consisting of a common emitter amplifier. The complete transistor-level schematic for the bandgap reference, including op-amp, is shown in Figure 4-5. The differential pair consists of pnp transistors Q_{3} and Q_{4} and the common emitter amplifier consists of Q_{7} and R_{L}. The $0.1 \mu \mathrm{~F}$ capacitor helps to keep the output voltage constant. In an IC implementation of the circuits presented in this section it is likely that emitter areas,
instead of only resistors, would be scaled to achieve the desired ratios. See below for a design example.

Figure 4-5. Transistor level implementation of closed-loop bandgap reference.

Design Calculations

We begin the design of our bandgap reference by using (4.13), repeated below, to choose values for the resistors $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3}.

$$
\begin{equation*}
\frac{R_{2}}{R_{3}} \ln \left(\frac{R_{2}}{R_{1}}\right) \approx 22.94947 \tag{4.13}
\end{equation*}
$$

We can simply choose a convenient ratio for R_{2} to R_{1} and solve for the required value of R_{3}. Since we are using discrete components, we may have to try a few different ratios to
get results that are close enough to the standard resistor values we have available.
Choosing $\mathrm{R}_{2}=11 \mathrm{k} \Omega$ and $\mathrm{R}_{1}=910 \Omega$ gives us

$$
\begin{gathered}
\frac{11 k \Omega}{R_{3}} \ln \left(\frac{11 k \Omega}{910 \Omega}\right) \approx 22.94947 \\
\Rightarrow R_{3}=\frac{11 k \Omega}{22.94947} \ln \left(\frac{11 k \Omega}{910 \Omega}\right) \\
R_{3}=1.1945 k \Omega
\end{gathered}
$$

The result is approximately $1.2 \mathrm{k} \Omega$, which is a standard value. We will use an LM394 SuperMatch pair for Q_{1} and Q_{2} so their temperatures and v_{BE} 's will be well matched.

Next, we calculate the open loop gain of the op amp circuit in Figure 4-5. From Section 3-4, we know that the gain for an actively loaded differential pair is

$$
a_{v}=g_{m} R_{L}
$$

where R_{L} is the net resistance seen at the output of the stage. In this case, we can see that R_{L} is the parallel combination of r_{04}, r_{06}, and $r_{\pi 7}$. The $D C$ bias value of the voltage at Q_{6} 's collector is the same as that of Q_{5}. Thus the DC value at the base of Q_{7} is the same as that at the bases of Q_{5} and Q_{6}. So assuming all transistors are nearly identical, the DC bias current of Q_{7} will be the same as the current through Q_{5} and $\mathrm{Q}_{6}, \frac{1}{2} I_{C C}$. Transistor parameter values can be obtained from the datasheets distributed by the manufacturer. Let's assume values of 100 for $\beta_{\mathrm{n}}, 100 \mathrm{~V}$ for V_{An}, and 50 V for V_{Ap}. Using these estimated parameters, we can calculate $\mathrm{g}_{\mathrm{m}}, \mathrm{r}_{\mathrm{o}}$, and r_{π} as follows.

$$
\begin{aligned}
& g_{m 5}=g_{m 6}=g_{m 7} \\
&=\frac{\frac{1}{2} I_{C C}}{V_{T}} \\
&=\frac{I_{C C}}{52 m V} \\
& r_{o 4}=\frac{V_{A p}}{\frac{1}{2} I_{C C}} \\
&=\frac{100 \mathrm{~V}}{I_{C C}} \\
& r_{o 6}=\frac{V_{A n}}{\frac{1}{2} I_{C C}} \\
&=\frac{200 \mathrm{~V}}{I_{C C}} \\
& r_{\pi 7}=\frac{\beta_{0 n}}{g_{m 7}} \\
&=\frac{5.2 \mathrm{~V}}{I_{C C}} \\
&
\end{aligned}
$$

The gain of the first stage is

$$
a_{v 1}=g_{m} R_{L}
$$

Substituting the effective load resistance results in

$$
\begin{aligned}
a_{v 1} & =g_{m} \cdot\left(r_{o 4}\left\|r_{o 6}\right\| r_{\pi 7}\right), \\
& =\frac{I_{C C}}{52 m V} \cdot\left(\frac{100 \mathrm{~V}}{I_{C C}}\left\|\frac{200 \mathrm{~V}}{I_{C C}}\right\| \frac{5.2 \mathrm{~V}}{I_{C C}}\right) .
\end{aligned}
$$

The gain of the second stage is

$$
\begin{aligned}
& a_{v 2}=g_{m} R_{L} \\
& a_{v 2}=\frac{I_{C C}}{52 m V} R_{L}
\end{aligned}
$$

For $\mathrm{I}_{\mathrm{CC}}=1 \mathrm{~mA}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,

$$
\begin{aligned}
& a_{v 1} \approx 92.76 \\
& a_{v 2} \approx 192.3 \\
& a_{v}=a_{v 1} a_{v 2} \approx 17839 \\
& \quad \approx 18,000
\end{aligned}
$$

The op amp has a fairly large open-loop gain of almost 18,000 . We could even reduce I_{CC} a bit to lower power consumption. As long as the gain is in excess of about 1,000 , our bandgap reference should be accurate.

The full Eagle schematics with documented component values for the bandgap reference and all other circuit blocks are contained in the appendix.

4.2 Operational Amplifier

The ideal single-ended operational amplifier (op amp) takes a differential input, provides infinite gain, has infinite input resistance, R_{in}, and zero output resistance, $\mathrm{R}_{\text {out }}$. The implications of this ideal model are that the voltages at the two input terminals are equal (otherwise the output voltage would be infinite), no current flows into the input terminals, and the op amp can source and sink infinite current at its output. In reality, op amps have finite gain, a_{0}, finite input resistance, and non-zero output resistance. However, for a reasonably well designed op amp, the gain and $\mathrm{R}_{\text {in }}$ are very large and $\mathrm{R}_{\text {out }}$ is very small. In this case, we can assume the ideal model when analyzing the circuit.

Op amps are often used in a feedback configuration where there is some network, f, providing feedback from the output to one of the input terminals. An example of an op amp in a negative feedback configuration is contained in Figure 4-6. Figure 4-7 shows the block diagram for an op amp with gain a_{0} and feedback network f. An application of Black's Formula (see [3] for information regarding Black's Formula) yields the following transfer function from input to output voltage:

$$
\begin{equation*}
\frac{v_{o}}{v_{i}}=\frac{a_{0}}{1+a_{0} f} . \tag{4.14}
\end{equation*}
$$

Figure 4-6. Operational amplifier in negative feedback configuration.

Figure 4-7. Block diagram of a feedback amplifier.

Because a_{0} is ideally very large, $a_{0} f \gg 1$ and (4.14) simplifies to:

$$
\begin{equation*}
\frac{v_{o}}{v_{i}} \approx \frac{1}{f} . \tag{4.15}
\end{equation*}
$$

(4.15) implies that if the op amp has large open-loop gain, a_{0}, the gain of the circuit when operated with feedback is dependent only on the gain of the feedback network and so will be relatively insensitive to variations in a_{0}. This well-defined, controllable gain is the reason that op amps are typically used with feedback.

With the application of feedback, an op amp can be used as a linear voltage regulator. For a feedback network consisting of only passive elements, the magnitude of
f is less than or equal to 1 . Thus, (4.15) indicates that v_{o} will be greater than or equal to v_{i}. We will use this concept to derive a 2.5 V reference, 5 V supply, and 12 V supply from the bandgap voltage. An example of an op amp used as a voltage regulator is shown in Figure 4-8. The resistive voltage divider formed by R_{1} and R_{2} is the feedback network. Its gain, f, is simply

$$
\begin{equation*}
f=\frac{R_{2}}{R_{1}+R_{2}} \tag{4.16}
\end{equation*}
$$

The transistor, Q , is a pass element. The op amp sets Q to pass the amount of current needed to obtain the relation between $v_{\text {in }}$ and $v_{\text {out }}$ described by (4.14). The remainder of the voltage, the difference between V_{CC} and $\mathrm{v}_{\mathrm{out}}$, is dropped across Q .

Figure 4-8. Op amp used as a voltage regulator.

Looking again at Figure 4-8, we see that $\mathrm{Q}, \mathrm{R}_{1}$, and R_{2} essentially form an emitter follower (EF) buffer at the output of the op amp similar to the one presented in Section 3.3. To create our voltage regulator, we need a circuit that takes a differential input, has high open-loop gain, and has an EF buffer output stage that provides a fraction of the
output voltage as feedback to the negative input terminal. See the schematic in Figure 49. The circuit uses an actively loaded differential pair to provide high open loop gain. See below for a design example.

Figure 4-9. Transistor-level schematic of the voltage regulator.

Design Calculations

The voltage output of our bandgap reference circuit is about 1.22 V . For the purpose of these design calculations, we shall assume that the bandgap voltage is 1.25 V Note that this approximation is reasonable because we have the ability to choose the relative sizes of the resistors to compensate for the bandgap voltage being a bit smaller than we assume.

Assume I_{CC} in Figure $4-8$ is 2 mA . The collector currents are

$$
I_{C 1}=I_{C 2}=I_{C}=1 \mathrm{~mA} .
$$

This implies that the transconductance is

$$
\begin{aligned}
g_{m} & =\frac{I_{C}}{V_{T}} \\
& =\frac{1 m A}{25 m V} \approx 0.04
\end{aligned}
$$

The effective load resistance seen at the output of the differential pair is the parallel combination of three resistances: that seen looking into the collector of Q_{2}, into the collector of Q_{4}, and into the base of Q_{5}. This effective resistance can be expressed as

$$
\begin{equation*}
R_{L}=r_{o 2}\left\|r_{o 4}\right\|\left(r_{\pi 5}+\left(\beta_{0}+1\right) \cdot\left(R_{1}+R_{2}\right)\right) \tag{4.17}
\end{equation*}
$$

Recall from Section 3.4 that the resistance seen looking into the collector of a transistor is

$$
\begin{equation*}
r_{o}=\frac{V_{A}}{I_{C}} . \tag{4.18}
\end{equation*}
$$

The transistors we will primarily be using are the 2 N 3904 (npn) and the 2N3906 (pnp). According to the models specified in datasheets for these transistors, the Early voltage is about 74 V for the $n p n$ transistors and about 19 V for the pnp transistors. We can plug these values into (4.18) to calculate r_{02} and r_{04} as follows.

$$
r_{o 2}=\frac{V_{A n}}{I_{C}}
$$

$$
=\frac{74 \mathrm{~V}}{1 m A}=74 \mathrm{k} \Omega
$$

$$
\begin{aligned}
r_{o 4} & =\frac{V_{A p}}{I_{C}} \\
& =\frac{19 \mathrm{~V}}{1 \mathrm{~mA}}=19 \mathrm{k} \Omega
\end{aligned}
$$

In order for the circuit to have a good output buffer, the resistance seen looking into the base of Q_{5} must be very large. The typical current gain, β, for our npn transistors is about 200. If we choose R_{1} and R_{2} to have a sum of about $10 \mathrm{k} \Omega$, their resistance looks to be about 200 times larger, or $2 \mathrm{M} \Omega$, when viewed from the base of Q_{5}. The total resistance seen looking into Q_{5} 's base is then the sum of $\mathrm{r}_{\pi 5}$ and $2 \mathrm{M} \Omega$. The input resistance of a BJT, r_{π}, is given by the following expression

$$
\begin{equation*}
r_{\pi}=\frac{\beta_{0}}{g_{m}} \tag{4.19}
\end{equation*}
$$

We can calculate the current through R_{1} and R_{2}, which is approximately $I_{C 5}$, because we know that the voltage across the resistors is the output of our voltage regulator. For the 12 V supply, we get

$$
I_{C 5}=\frac{V_{\text {out }}}{R_{1}+R_{2}}
$$

$$
\begin{aligned}
& =\frac{12 \mathrm{~V}}{10 \mathrm{k} \Omega} \\
& =1.2 \mathrm{~mA}
\end{aligned}
$$

This implies that the transconductance is

$$
\begin{aligned}
g_{m 5} & =\frac{I_{c 5}}{V_{T}} \\
& =\frac{1.2 m A}{25 m V} \\
& =0.048
\end{aligned}
$$

Substituting this value for g_{m} and 200 for β in (4.19) yields

$$
\begin{aligned}
r_{\pi} & =\frac{200}{0.048} \\
& =4.2 \mathrm{k} \Omega
\end{aligned}
$$

when the output of our voltage regulator is 12 V . For the 5 V supply and 2.5 V reference, the lower voltage across the resistors means that $\mathrm{I}_{\mathrm{C} 5}$ and g_{m} will be smaller so r_{π} will be even larger.

Combining the calculated value for r_{π} with the $2 \mathrm{M} \Omega$ resistance calculated above results in a net resistance seen looking into the base of Q_{5} that is still approximately $2 \mathrm{M} \Omega$. This resistance is so much larger than the $19 \mathrm{k} \Omega$ and $74 \mathrm{k} \Omega$ in parallel with it that
we can neglect it. So the effective resistance seen at the output of the differential pair simplifies to

$$
R_{L}=r_{o 2} \| r_{o 4} .
$$

So the approximate load resistance is

$$
74 k \Omega \| 19 k \Omega \approx 15 k \Omega
$$

Using the effective R_{L} and g_{m} calculated above for the differential pair, we can determine the open loop gain, a_{0}, using

$$
a_{0}=a_{v}=g_{m} R_{L} .
$$

Plugging in the values for g_{m} and R_{L} gives a gain of

$$
a_{0}=(0.04) \cdot(15 k \Omega)=600
$$

While typical values of a_{0} are ideally much greater than 1000,600 is a reasonable open loop gain and for small enough output voltages (equivalently, large enough f), the product $600 f$ is sufficiently greater than 1 and the approximation made in (4.15) is valid. If we want to increase the open-loop gain, we can increase the value of the current source, I_{CC}.

Creating a 12 V supply from a 1.25 V input implies a closed-loop gain of

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{1}{f}=\frac{12 \mathrm{~V}}{1.25 \mathrm{~V}} .
$$

This implies

$$
\begin{aligned}
f & =\frac{1.25 V}{12 V} \\
& \approx 0.104 .
\end{aligned}
$$

We know that f is the voltage divider formed by R_{1} and R_{2} so we calculate

$$
\frac{R_{2}}{R_{1}+R_{2}}=0.104
$$

which implies that

$$
R_{1} \approx 8.6 R_{2} .
$$

Thus by choosing $\mathrm{R}_{1}=8.6 \mathrm{k} \Omega$ and $\mathrm{R}_{2}=1 \mathrm{k} \Omega$, we get the desired gain and the sum of the resistors is almost $10 \mathrm{k} \Omega$ so the input resistance of the EF buffer is high.

The output resistance of the voltage regulator is the sum of R_{1} and R_{2} in parallel with the resistance seen looking into the emitter of Q_{5}. The resistance seen looking into the emitter of Q_{5} is the sum of $\mathrm{r}_{\pi 5}$, which is $4.2 \mathrm{k} \Omega$, and the previously calculated $15 \mathrm{k} \Omega$
seen at the output of the differential pair divided by the current gain, β. We calculate this to be about

$$
\frac{4.2 k \Omega+15 k \Omega}{200} \approx 96 \Omega .
$$

The $9.6 \mathrm{k} \Omega$ resistance of R_{1} and R_{2} is negligible in parallel with 96Ω, so the effective output resistance is about 96Ω.

The 5 V and 12 V supplies must provide current to the circuits that they power. This current must flow through the output transistor, Q_{5} of Figure 4-9. The amount of current that Q_{5} can supply is limited by the amount of base current that the differential pair can provide for Q_{5}. By adding another transistor, Q_{6}, between the differential pair and Q_{5} as in Figure 4-10, the amount of current that the voltage regulator can provide is increased by a factor of β. This is because Q_{6} increases the amount of base current available to Q_{5} by a factor of β. The addition of Q_{6} also decreases the output resistance of the regulator by a factor β.

Figure 4-10. Voltage regulator with increased current sourcing capacity.

4.3 Comparator

A comparator is a device with two input terminals, one non-inverting and the other inverting. The comparator produces a single-ended output which is high (near the positive supply rail) when the voltage at the non-inverting input terminal exceeds the voltage at the inverting input terminal. The output is low (near the negative supply rail, which is often ground) when the voltage at the non-inverting input terminal is lower than that of the inverting input terminal. This behavior can be obtained from an op-amp (in an open loop configuration) with sufficient gain such that any small difference between the voltages at the inputs is amplified enough to drive the output to one supply rail or the other.

A differential pair input stage is a good place to start. We know that for a singleended output the gain will be about $\frac{1}{2} g_{m} R_{L}$ so we can choose the bias current and R_{L}
accordingly. A schematic is shown in Figure 4-11. The total bias current in Q_{1} and Q_{2} is I_{CC}. For an applied differential input voltage, v_{d}, there is a decrease of $\frac{1}{2} g_{m} v_{d}$ in $\mathrm{I}_{\mathrm{C} 1}$ and an equal increase in $\mathrm{I}_{\mathrm{C} 2}$. Note that the change caused by v_{d} is in the opposite direction compared to that of the differential pair circuit analyzed in Section 3-4. This is due to the fact that this circuit uses pnp transistors instead of npn. The change in current causes a decrease of $\frac{1}{2} g_{m} v_{d} R_{1}$ in the voltage across R_{1} and an equal increase in the voltage across R_{2} (assuming $\mathrm{R}_{1}=\mathrm{R}_{2}$).

Figure 4-11. Differential pair to be used as the input stage for a comparator.

If we connect the base of an npn transistor (in common emitter configuration) to the varying terminal of R_{1}, we obtain the desired amplification of the change in voltage. See Figure 4-12 for a schematic. When the voltage at that node is below a $v_{B E}$ drop (about 0.6 V), Q_{3} will be off so no current will flow through R_{3} and the output voltage will be high. When the voltage drop across R_{1} increases to more than a V_{BE} drop, Q_{3} will
turn on, current will flow through R_{3}, and the output voltage will go low. Since a positive differential input voltage applied from Q_{1} to Q_{2} causes the current through R_{1} to decrease (which results in a high output voltage), the base of Q_{1} is the non-inverting input terminal to the comparator and the base of Q_{2} is the inverting one. See below for the design calculations.

Figure 4-12. Schematic of comparator with clamping diode, D, to increase circuit response time.

Design Calculations

Let $\mathrm{I}_{\mathrm{CC}}=2 \mathrm{~mA}$. Let $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{\mathrm{L}}$.

$$
I_{C C}=2 m A \Rightarrow I_{C 1}=I_{C 2}=I_{C}=1 m A
$$

The transconductance is

$$
g_{m}=\frac{\partial i_{C}}{\partial v_{B E}}=\frac{I_{C}}{V_{t h}}=\frac{1 m A}{25 m V}=0.04
$$

If a 25 mV differential voltage is applied, all 2 mA of bias current will flow through the transistor with the larger v_{BE} (the one whose base is at the lower voltage). This 2 mA of current must be enough to cause the voltage drop across R_{L} to exceed a V_{BE}
drop and turn on Q_{3}. If we set $\mathrm{R}_{\mathrm{L}}=510 \Omega$, the voltage drop will be a little over 1 V , which should be sufficient.

$$
\begin{aligned}
V_{R_{L}} & =I_{C C} R_{L} \\
& =2 \mathrm{~mA} \cdot 510 \Omega=1.02 \mathrm{~V}
\end{aligned}
$$

For a differential input of significant magnitude (which will typically be the case for our application), the current through R_{1} will either be 2 mA (for v_{d} negative) or negligible (for v_{d} positive), causing the comparator's output voltage to be either vCE.sat or V_{CC}, respectively. We include a clamping schottky diode between the base and collector of Q_{3} to prevent the collector voltage from dropping too far below the base voltage into saturation. As Figure 4-13 shows, the time it takes Q_{3} to recover from saturation increases the delay of the comparator's output substantially. Including the schottky diode means that the low output voltage will no longer be $\mathrm{v}_{\mathrm{CE}, \text { sat, }}$, but instead will be just a schottky diode drop below 1 V (at about 0.7 to 0.8 V). This is not a problem because the threshold voltage for the MOSFETS we will be using is about 2 V , so 0.8 V will be recognized as a logic low.

Figure 4-13. Square wave input to comparator (trace 1), output of comparator with clamping diode (trace 2), and output of comparator without clamping diode (trace 3). The rise time is only about 9ns with the clamping diode, compared to about 387 ns when there is no clamping diode.

Hysteresis

A positive feedback loop around a comparator can be used to create hysteresis.
The positive feedback causes the voltage at the non-inverting input terminal to change in the direction of the output voltage when the output voltage changes (due to the voltage at the other input terminal being increased or decreased beyond the threshold set at the noninverting terminal). See Figure 4-14 for a schematic of this configuration. The calculations below demonstrate how this circuit can be used to create the desired threshold levels.

Figure 4-14. Comparator in positive feedback configuration.

When the input voltage is below the voltage at the non-inverting input terminal $\left(\mathrm{V}_{\mathrm{p}}\right)$, the output voltage is high $(5 \mathrm{~V})$ and the voltage V_{p} is given by the following voltage divider relation:

$$
\begin{equation*}
V_{p}=5 V\left(\frac{R_{2}}{R_{2}+R_{1} \| R_{3}}\right)=V_{T, h i g h} . \tag{4.20}
\end{equation*}
$$

This is the high threshold voltage. The input voltage must be raised above this value for the output voltage to go low (approx. 0 V). When the output voltage goes low, V_{p} is given by the following voltage divider relation:

$$
\begin{equation*}
V_{p}=5 V\left(\frac{R_{2} \| R_{1}}{R_{3}+R_{2} \| R_{1}}\right)=V_{T, l o w} \tag{4.21}
\end{equation*}
$$

$\mathrm{V}_{\mathrm{T}, \text { low }}$ is lower than $\mathrm{V}_{\mathrm{T}, \text { high }}$ so this circuit creates a gap between the threshold voltages that the input must pass to cause the output voltage to change state. This circuit can be used to keep noisy input signals from causing the output voltage to falsely switch states.

Another application for the comparator with positive feedback is in relaxation oscillator circuits. For more information on using this circuit as an oscillator, see Section 4.4 which covers the clock.

4.4 Clock

The comparator with positive feedback, presented in Section 4.3, can be used as a relaxation oscillator if a capacitor is connected to the negative input terminal and charged and discharged through a resistor connected to the comparator's output. See [8] for a more comprehensive discussion of relaxation oscillators. The resulting voltage waveforms are a square wave at the comparator's output varying between 0 V (approximately) and 5 V , a square wave at the positive input terminal varying between $\mathrm{V}_{\mathrm{T}, \text { low }}$ and $\mathrm{V}_{\mathrm{T}, \text { high, }}$, and a triangle waveform at the negative input terminal as the capacitor voltage ramps up and down between the two thresholds. Example plots are shown in Figure 4-15. The time it takes for the capacitor to charge and discharge, and thus the period of the waveforms, is determined by the time constant defined by the product of the capacitance and the resistance through which it charges and discharges. To obtain an output with a duty ratio other than 0.5 , the charge and discharge times must be unequal. This can be accomplished by using separate charge and discharge resistors, with diodes in series to ensure that the current through them will only flows in the desired direction.

Figure 4-16 contains a schematic.

Figure 4-15. Capacitor voltage (trace 3), comparator output voltage (trace 1), and voltage at the positive input terminal (trace 2).

Figure 4-16. Schematic of clock circuit designed around comparator in positive feedback configuration.

In the current comparator design, the output is connected to the 5 V supply through a resistor, R. R in series with R_{1} of Figure 4-16 is the net resistance that C must charge through. R is typically too large to be neglected and so must be considered in the calculation of the time it takes the capacitor to charge. To remove the dependence of the
capacitor's charge time (and oscillator's frequency) on R , we can add a CMOS inverter to the output of the comparator. The resistor R is now replaced by the on resistance of the p-type MOSFET, which is typically small enough to be ignored. This addition gives us the clock circuit in Figure 4-17. The complete transistor level schematic for the clock circuit with CMOS comparator output is shown in Figure 4-18. The calculations for designing an oscillator of some specified frequency are described below.

Figure 4-17. Schematic of clock circuit with CMOS inverter added to the output of the comparator.

Figure 4-18. Transistor level schematic of clock circuit.

Design Calculations

The desired frequency of oscillation is 50 kHz .50 kHz corresponds to a period, T , of $20 \mu \mathrm{~s}$, meaning the sum of the charge and discharge time for the capacitor is about $20 \mu \mathrm{~s}$. We need the oscillator output to be a narrow pulse, so the charge time must be much shorter than the discharge time. Let's try to set the discharge time at about 100 times the length of the charge time. That is equivalent to setting R_{2} to be 100 times larger than R_{1}. If we choose $R_{3}=R_{4}=R_{5}=20 \mathrm{k} \Omega$, then the threshold voltages at the positive input terminal can be calculated using (4.20) and (4.21) as follows

$$
\begin{aligned}
& V_{T, \text { high }}=5 V\left(\frac{20 k \Omega}{20 k \Omega+20 k \Omega \| 20 k \Omega}\right) \approx 3.33 V \\
& V_{T, l o w}=5 V\left(\frac{20 k \Omega \| 20 k \Omega}{20 k \Omega+20 k \Omega \| 20 k \Omega}\right) \approx 1.67 V
\end{aligned}
$$

So the capacitor voltage will oscillate between 1.67 V and 3.33 V . Using these initial conditions and the equation for charging and discharging a capacitor expressed in (4.22), we can determine the necessary relationship between C, R_{1}, and R_{2} to obtain 50 kHz oscillation frequency.

$$
\begin{equation*}
v_{C}=v_{f}+\left(v_{i}-v_{f}\right) e^{-t / R C} \tag{4.22}
\end{equation*}
$$

The capacitor is being charged by the 5 V supply from an initial voltage of 1.67 V so we can modify (4.22) to obtain

$$
\begin{equation*}
v_{C}=5 \mathrm{~V}+(1.67 \mathrm{~V}-5 \mathrm{~V}) e^{-t / R C} \tag{4.23}
\end{equation*}
$$

We can solve (4.23) for the time it will take the capacitor voltage to charge to the high threshold value of 3.33 V .

$$
t_{1}=-R_{1} C \cdot \ln \left(\frac{3.33 V-5 V}{1.67 V-5 V}\right)=-R_{1} C \cdot(-0.69)
$$

When the capacitor is being discharged from 3.33 V , (4.22) is modified as follows

$$
\begin{equation*}
v_{C}=0 V+(3.33 V-0 V) e^{-t / R C} \tag{4.24}
\end{equation*}
$$

We can solve (4.24) for the time it will take the capacitor to discharge to the low threshold value of 1.67 V .

$$
t_{2}=-R_{2} C \cdot \ln \left(\frac{1.67 V-0 V}{3.33 V-0 V}\right)=-R_{2} C \cdot(-0.69)
$$

The period, T, is the sum of t_{1} and t_{2}. Thus by choosing some value for C, say lnF, and setting $R_{2}=100 R_{1}$, we can solve for the values of R_{1} and R_{2} that will make the period approximately $20 \mu \mathrm{~s}$.

$$
T=t_{1}+t_{2}
$$

Plugging in the expressions computed for t_{1} and t_{2} yields

$$
\begin{aligned}
T & =0.69 \cdot C \cdot\left(R_{1}+R_{2}\right) \\
& =0.69 \cdot C \cdot 101 R_{1}
\end{aligned}
$$

We can solve for R_{1} as follows

$$
R_{1}=\frac{T}{69.69 \cdot C} .
$$

Substituting

$$
\begin{aligned}
& T=20 \mu s \\
& C=1 n F
\end{aligned}
$$

leads to the values

$$
\begin{aligned}
& R_{1} \approx 287 \Omega \\
& R_{2} \approx 28.7 \mathrm{k} \Omega
\end{aligned}
$$

Choosing $\mathrm{R}_{1}=300 \Omega$ and $\mathrm{R}_{2}=27 \mathrm{k} \Omega$ results in

$$
\begin{gathered}
t_{1} \approx 0.69 \cdot \ln F \cdot 300 \Omega \approx 0.207 \mu \mathrm{~s} \\
t_{2} \approx 0.69 \cdot \ln F \cdot 27 \mathrm{k} \Omega \approx 18.63 \mu \mathrm{~s} \\
t_{1}+t_{2} \approx 18.84 \mu \mathrm{~s}
\end{gathered}
$$

which implies an clock frequency of

$$
f=\frac{1}{T} \approx 53 k H z
$$

4.5 Error Amplifier

The error amplifier serves dual roles of being the summing junction for the reference voltage and the feedback from the converter and also providing the compensation, $\mathrm{G}_{\mathrm{C}}(\mathrm{s})$. As determined in the discussion of control and compensation in

Section 2.2, we would like to use PI compensation. This can be accomplished with an op-amp configured as shown in Figure 4-19. However, in addition to designing the error amplifier to obtain the necessary $G(s)$, we would also have to compensate the op-amp itself to ensure its stability in that feedback configuration.

Figure 4-19. Operational amplifier used to provide PI compensation.

To simplify things, an open loop PI compensation scheme can be implemented as shown in Figure 4-20. Adding the capacitor C_{2} in Figure 4-20 inserts an additional pole in the transfer function so we've got lead compensation in addition to the integrator. In this circuit, an actively loaded differential pair produces a current that is proportional to the error (reference voltage minus feedback). That current then flows through a net impedance (at the base of Q_{3} in Figure 4-20) to create the desired compensation transfer function derived in Section 2.2. Transistor Q_{3} is used as an emitter follower buffer so that loading effects due to the next device (in this case, the comparator) do not interfere with the compensation.

Figure 4-20. Open-loop implementation of error amplifier.

Design Calculations

Assume some differential error voltage, v_{e}, is applied across the input terminals of the error amplifier in Figure 4-20. The error voltage is the difference between $\mathrm{V}_{\text {ref }}$ and V_{fb}. From the analysis of an actively loaded differential pair in Section 3-4, we know that the output current, i_{o}, will be equal to $\mathrm{g}_{\mathrm{m}} \mathrm{v}_{\mathrm{e}}$. Ignoring the output buffer, we have the equivalent circuit shown in Figure 4-21. The transfer function from v_{e} to the output can be calculated as follows:

$$
\begin{equation*}
Z_{e q}=\left(R_{1}+\frac{1}{s C_{1}}\right)\left\|\frac{1}{s C_{2}}\right\| R_{2} \tag{4.25}
\end{equation*}
$$

Figure 4-21. Equivalent circuit for calculating error amplifier transfer function, $\mathbf{G}_{\mathrm{C}}(\mathbf{s})$.
R_{2} is very large and can be ignored for these calculations. Thus we get that the equivalent impedance expressed in (4.25) can be determined as follows.

$$
Z_{e q}=\left(R_{1}+\frac{1}{s C_{1}}\right) \| \frac{1}{s C_{2}}
$$

or equivalently,

$$
\begin{align*}
Z_{e q} & =\frac{\left(R_{1}+\frac{1}{s C_{1}}\right) \cdot \frac{1}{s C_{2}}}{R_{1}+\frac{1}{s C_{1}}+\frac{1}{s C_{2}}} \\
& =\frac{R_{1} C_{1} s+1}{s\left(R_{1} C_{1} C_{2} s+C_{1}+C_{2}\right)} \tag{4.26}\\
& =\frac{R_{1} C_{1} s+1}{s\left(R_{1}\left(C_{1} \| C_{2}\right) s+1\right)} \cdot \frac{1}{C_{1}+C_{2}}
\end{align*}
$$

The equivalent impedance expressed in (4.26) is the transfer function from the input current to the output voltage. We can use (4.26) to find the transfer function from the error voltage input to the output voltage.

$$
\begin{aligned}
v_{\text {out }} & =i_{o} Z_{e q} \\
& =g_{m} \nu_{e} Z_{e q}
\end{aligned}
$$

So the transfer function from error to output is

$$
\begin{aligned}
\frac{v_{\text {out }}}{v_{e}}(s) & =g_{m} Z_{e q} \\
& =\frac{R_{1} C_{1} s+1}{s\left(R_{1}\left(C_{1} \| C_{2}\right) s+1\right)} \cdot \frac{g_{m}}{C_{1}+C_{2}}
\end{aligned}
$$

Substituting for g_{m} gives

$$
\begin{equation*}
\frac{v_{\text {out }}}{v_{e}}(s)=\frac{R_{1} C_{1} s+1}{s\left(R_{1}\left(C_{1} \| C_{2}\right) s+1\right)} \cdot \frac{\frac{1}{2 \cdot V_{T}} I_{C C}}{C_{1}+C_{2}} \tag{4.27}
\end{equation*}
$$

which can be used to choose I_{CC} and the resistor and capacitor values that will provide the correct compensating transfer function.

4.6 Current Sense Amplifier

We are using a small, current sense resistor in series with the high-side MOSFET to estimate the inductor current. We need a current sense amplifier that takes the small voltage drop produced across the current sense resistor and amplifies it. As discussed in Section 2.3, the current sense amplifier will not function properly when either of its inputs (or the common-mode) is too close to or greater than the supply voltage. This is
because transistors in the amplifier will be saturated. Since the input voltage to the comparator can be much higher than the control circuit's typical analog supply voltage, the voltages on either side of the current sense resistor must first be lowered with a resistive voltage divider before they can be input to the current sense amplifier.

Closed-Loop Differential Amplifier

The current sensing function can be performed by a closed-loop amplifier that takes the differential input voltage and provides the required amount of gain. This can be accomplished by an op amp configured as a shown in Figure 4-22. The circuit takes the difference between the voltages V_{1} and V_{2} and amplifies it by a factor of $\frac{R_{2}}{R_{1}}$. This circuit can be implemented with almost any transistor-level op amp design.

Figure 4-22. Circuit for amplifying the difference between two voltages, V_{1} and V_{2}.

A possible transistor-level implementation of the closed-loop amplifier is depicted in Figure 4-23. This circuit consists of a differential amplifier followed by a closed-loop op amp with gain of about $1+\frac{R_{1}}{R_{2}}$. Splitting the gain among two stages in this way
increases the bandwidth, or speed of the circuit as opposed to having all the gain provided by a single stage.

Figure 4-23. Closed-loop implementation of current sense amplifier.

Transconductance Amplifier

A transconductance amplifier takes a voltage input and produces an output current. The output current is proportional to the input voltage by a factor, G_{m}, which is the transconductance of the amplifier. Figure 4-24 contains a schematic. A transconductance amplifier is a good choice for our current sense application because it is a fairly straightforward circuit that takes in a differential voltage, such as the voltage across the current sense resistor, and outputs a current, which can be easily converted to a voltage by putting it through a resistive load. Additionally, the transconductance amplifier exhibits a much faster response than a closed loop voltage amplifier as can be seen from the fall times of the waveforms in Figure 4-25.

Figure 4-24. Schematic of transconductance amplifier with load resistor, R_{L}.

Figure 4-25. Waveforms of the current through the current sense resistor, the output of the closed loop current sense amplifier, and the transconductance amplifier. The transconductance amplifier exhibits a much faster response (fall time).

Assume a differential voltage, v_{d}, is applied across the input terminals. The v_{BE} of Q_{1} increases by $\frac{1}{2} v_{d}$ and the v_{BE} of Q_{2} decreases by $\frac{1}{2} v_{d}$. As a result, the current through Q_{1} increases by $\frac{1}{2} v_{d} g_{m}$ and the current through Q_{2} decreases by the same amount. Because the collectors of Q_{1} and Q_{3} are connected, the current through Q_{3} must also increase by $\frac{1}{2} v_{d} g_{m}$. By the same argument, there is a decrease in the current through Q_{5}. Transistors Q_{3} and Q_{4} form a current mirror, which means the current through Q_{4} is forced to increase by $\frac{1}{2} v_{d} g_{m}$ as well. Likewise, the current mirror formed by Q_{5} and Q_{6} forces the current through $\mathrm{Q}_{6}, \mathrm{Q}_{7}$, and Q_{8} to decrease by $\frac{1}{2} v_{d} g_{m}$. At the output node, the increase in Q_{4} 's current and the decrease in Q_{8} 's current result in a net output current of

$$
i_{o}=i_{c 4}-i_{c 8} .
$$

Substitution yields

$$
\begin{align*}
i_{o} & =\frac{1}{2} g_{m} v_{d}-\left(-\frac{1}{2} g_{m} v_{d}\right) \tag{4.28}\\
& =g_{m} v_{d} .
\end{align*}
$$

If a resistive load, R_{L}, is connected at the output, the output voltage and net voltage gain of the circuit are

$$
\begin{aligned}
v_{\text {out }} & =i_{o} R_{L} \\
& =g_{m} v_{d} R_{L}, \\
a_{v}= & \frac{v_{\text {out }}}{v_{d}}=g_{m} R_{L} .
\end{aligned}
$$

Recall that g_{m} is inversely proportional to temperature. Thus the gain of this amplifier is inversely proportional to temperature. This means the slope of the output from the current sense amplifier changes with temperature. We can counteract this unwanted temperature dependence by using a PTAT current source, as described in section 3.1, for I_{CC}.

As mentioned in the discussion of differential pair amplifiers in section 3.4, this amplifier only behaves linearly over a small range (about 25 mV) of differential input voltages. With a peak inductor current of 550 mA and a current sense resistor of 0.33Ω, we need to be able to linearly amplify differential inputs in excess of 180 mV (with the voltage divider reducing the common mode input by a factor of 2 , the maximum differential input is actually about 90 mV). To extend the linear range, emitter resistors can be added as in Figure 4-26. These resistors also reduce the gain by approximately the same factor that they increase the linear range by (approximately $\frac{I_{C C} R_{e}}{2 V_{T}}$) so we must account for this attenuation in our calculation of the amplifier's gain.

Figure 4-26. Transconductance amplifier with emitter resistors to extend linear range.

Design Calculations

To extend the linear range of the amplifier by 10 to about 250 mV requires

$$
\frac{I_{C C} \cdot R_{E}}{2 V_{T}}=10
$$

or equivalently,

$$
I_{C C} R_{E}=500 \mathrm{mV}
$$

Assuming $I_{C C}=4 m A$, this implies

$$
R_{E} \approx 125 \Omega
$$

If $I_{C C}=4 m A$, then $I_{C}=\frac{I_{C C}}{2}=2 m A$. The transconductance is

$$
\begin{aligned}
g_{m} & =\frac{I_{C}}{V_{T}} \\
& =\frac{2 m A}{25 m V} \approx 0.08
\end{aligned}
$$

In order to get a gain of about 40 from the amplifier, taking the factor of 10 attenuation due to the emitter resistors into consideration, we require

$$
g_{m} R_{L}=0.08 \cdot R_{L} \approx 400
$$

which implies

$$
R_{L} \approx \frac{400}{0.08} \approx 5 k \Omega
$$

The larger R_{L}, the slower the amplifier will be. We can make adjustments and tradeoffs between $R_{L}, I_{C C}$, and R_{e} to ensure that the amplifier's response is fast enough while maintaining enough gain and linear range.

Slope Compensation

As discussed in Section 2, our system under peak current mode control is not stable when operating at duty cycles of greater than 50%. The method for removing this instability is to introduce a slope compensation ramp. The compensation ramp is summed with the current sense waveform at the PWM comparator's non-inverting input. We can use the voltage across the capacitor in the oscillator circuit to create our ramp.

The capacitor voltage should be connected to an EF buffer so that it won't be disturbed. We connect a capacitor to the output of the EF to block the DC component then resistively sum the remaining $A C$ component with the output from the current sense amplifier. This slope compensation scheme is illustrated in Figure 4-27.

Figure 4-27. Circuit for generating slope compensation ramp.

4.7 Logic and RS Latch

Logic

Digital logic circuits take a binary input of either low or high and similarly, produce an output that is low or high. Often, complementary (n-type and p-type) MOS devices are used to implement logic circuitry on an IC because they are smaller and dissipate less power than bipolar junction transistors. Input voltages below the threshold voltage of the n-type FETs are considered logic low and those above the threshold set by the threshold voltage of the p-type device are logic high. CMOS circuits produce a low output of approximately 0 V and a high output approximately equal to the supply voltage, which we will assume to be 5 V . See Section 7.1 for symbols, truth tables, and circuit implementations for several common combinational logic gates.

RS Latch

Our control circuit has two states of operation. The first state is triggered by a clock pulse. In this state, the high side FET is on and the inductor current is ramping up. The second state is triggered by a pulse from the comparator when the voltage output of the current sense amplifier exceeds that of the error amplifier. In the second state, the low side FET is on and the inductor current is ramping down. An RS latch serves as a memory device, allowing the circuit to maintain its present state after the signal that triggered the state is no longer being applied.

An RS latch implemented with NOR gates is illustrated in Figure 4-28. The inputs, labeled R and S, are the command signals that set and reset, respectively, the primary output, Q . The other output, Q ', is an inverted version of Q . Assume both inputs are low. When S goes high, Q ' goes low. Q is high because both R and the other input Q' are low. If S is switched low, Q' remains unchanged because the other input to the NOR gate, Q , is still high. Thus there is no change in the circuit's state although the command signal that triggered the state is no longer being applied. If R goes high, Q goes low. This causes Q^{\prime} to go high because S is still low. Again, we can see that switching R back low has no affect on the state of the outputs. If both R and S are high, both Q and Q ' will be low and the circuit will no longer function properly.

Figure 4-28. RS Latch implemented with NOR gates.

For our RS latch, the clock pulse will be the set the latch and the output of the comparator will reset $i t$. The output, Q , will be used to signal the gate drive circuitry that the high side FET should be on. By taking the signal from Q , as opposed to Q^{\prime}, we have made the latch reset dominant. This means that anytime R is high, which occurs when the inductor current is too high, the output will be low, regardless of the value of S . This is a safety feature to ensure that the high side FET will be shut off when the inductor current becomes too large. To prevent the latch from behaving unpredictably in the case that both R and S are high at the same time, we include the AND gate in Figure 4-29. The AND gate takes Q and the inverse of the clock pulse as input and its output goes to the gate drive circuitry. The AND gate ensures that the high side FET will not be turned on until after the clock pulse. This prevents the occurrence of a situation wherein the signal to the gate drive circuitry may be incorrect because both inputs to the latch went high simultaneously. A schematic for the CMOS implementation of the RS latch is shown in Figure 4-30.

Figure 4-29. RS latch circuit with AND gate to keep high-side MOSFET from turning on until after the clock pulse.

Figure 4-30. CMOS implementation of RS latch circuit.

4.8 Leading Edge Blanking

When the high side FET is turning on, charging of parasitic capacitances associated with the FET, in addition to interactions between other parasitic elements, creates a significant amount of noise and a large spike in the current flowing through the FET. Figure 4-31 shows the waveform of the current flowing through the current sense resistor and the FET. This current spike causes a spike in the voltage seen by the current sense amplifier and could result in the false triggering of the PWM comparator, making it impossible for the control circuit to turn the high side FET on long enough each period for the proper output voltage to be maintained.

Figure 4-31. There is a large spike in the current through the high-side switch as it turns on at the beginning of each period.

It is often possible to attach a resistor and capacitor to the output of the current sense amplifier creating a low pass filter to reduce the high frequency noise in the signal and hopefully get rid of any large spikes that may falsely trigger the comparator. This is done by choosing the corner frequency of the low pass filter, approximated as

$$
f_{3 A B}=\frac{1}{2 \pi \cdot R \cdot C},
$$

to be much lower than the frequency at which the noise occurs so the noise will be filtered out. The corner frequency must be higher than the switching frequency, however, so the amplifier's output can still follow its input signal accurately.

An alternative to the use of an RC filter for dealing with the noise is to blank the output of the comparator for a specified amount of time every period when the high side FET turns on so that the comparator can not trigger the reset of the latch during that time. This technique, known as Leading Edge Blanking (LEB), can be accomplished with a blanking pulse, similar to the clock pulse. We cannot directly use the clock pulse, however, because we have designed our circuit so that the high side FET doesn't begin to turn on until after the clock pulse. So ideally, the blanking pulse needs to be a delayed version of the clock pulse or some pulse that is triggered by the falling edge of the clock pulse. If we produce an inverted version of the blanking pulse that was just described and use an AND gate to combine it with the output from the PWM comparator, as in Figure 4-32, the comparator will not be able to reset the latch for the duration of the blanking pulse, which ideally is the same as the duration of the noise we are trying to blank out.

Figure 4-32. Inverse Leading Edge Blanking pulse prevents comparator from resetting latch for a specified amount of time at the beginning of every switching period.

Consider the circuit in Figure 4-33. The voltage across the capacitor will be a delayed version of the clock pulse. By connecting the capacitor to the clock pulse via two different resistors with diodes to control the direction of current flow, the amount by which the rising and falling edges are delayed can be set independently. Assume that R_{1} and R_{2} are chosen such that the rising edge is delayed just a small amount, but the falling edge is delayed by the desired duration of the blanking pulse. This capacitor voltage will serve as our blanking pulse. The transistors M_{1} and M_{2} form a CMOS inverter which provides an inversion so the output is an inverted blanking pulse that can be combined with the PWM comparator output via an AND gate as shown in Figure 4-32.

Calculations to determine appropriate values for the capacitor and resistors are demonstrated below.

Figure 4-33. Inverse LEB pulse generated from the clock pulse.

Design Calculations

Assume that the duration of the clock pulse is 200 ns and that the noise on the leading edge of the current sense output also lasts about 200 ns . We will design our LEB pulse to be the clock pulse with rising edge delayed by about 50 ns and falling edge delayed by about 250 ns . The capacitor charges through R_{1} according to the relation

$$
\begin{equation*}
v_{C}=v_{f}+\left(v_{i}-v_{f}\right) e^{-1 / R_{1} C} . \tag{4.29}
\end{equation*}
$$

The capacitor is charging from about 0.6 V to 4.4 V due to the voltage drops across the diodes. The threshold voltage for the pMOS device (ZVP4105A) is about -2 V . The threshold voltage for the nMOS device (2 N 7000) is about 2.1 V . This means the capacitor voltage must increase to about 3 V (assuming a 5 V supply) before M_{1} is on, M_{2} is off, and the inverse blanking pulse is initiated. We plug the initial and final values into (4.29) to
determine the values of R_{1} and C necessary for the capacitor voltage to charge to 3 V in about 50 ns .

$$
3 V=4.4 V+(0.6 V-4.4 V) e^{-50 n s / R_{1} C}
$$

Manipulating then taking the natural logarithm of yields

$$
\ln \left(\frac{3 V-4.4 V}{0.6 V-4.4 V}\right)=-\frac{50 n s}{R_{1} C} .
$$

We can solve for $\mathrm{R}_{1} \mathrm{C}$ as follows

$$
\begin{aligned}
R_{1} C & =-\frac{50 n s}{\ln \left(\frac{3 V-4.4 V}{0.6 V-4.4 V}\right)} \\
& \approx 5.0 \times 10^{-8} .
\end{aligned}
$$

Choosing C to be 100 pF implies R_{1} should be approximately 500Ω. We can go through a similar procedure to determine R_{2} such that the capacitor voltage discharges from 4.4 V to the threshold of 2.1 V in about 250 ns .

$$
2.1 V=0.6 V+(4.4 V-0.6 V) e^{-250 n s / R_{2} C}
$$

Manipulating then taking the natural logarithm of yields

$$
\ln \left(\frac{2.1 V-0.6 V}{4.4 V-0.6 V}\right)=-\frac{250 n s}{R_{2} C}
$$

We can solve for $\mathrm{R}_{1} \mathrm{C}$ as follows

$$
\begin{aligned}
R_{1} C & =-\frac{250 n s}{\ln \left(\frac{2.1 V-0.6 \mathrm{~V}}{4.4 V-0.6 V}\right)} \\
& \approx 2.69 \times 10^{-7} .
\end{aligned}
$$

Since we have already chosen C to be 100 pF , we can solve the expression for R_{1}. The result is that R_{1} needs to be about $2.69 \mathrm{k} \Omega$. The component values for our LEB circuit are summarized below.

$$
\begin{aligned}
& C=100 p F \\
& R_{1}=510 \Omega \\
& R_{2}=2.7 \mathrm{k} \Omega
\end{aligned}
$$

4.9 Gate Drive

The signal from the RS latch tells us when the converter's MOSFETs should be switched on and off. We need a gate drive circuit to take this 0 -to- 5 V logic signal and convert it into a larger magnitude signal that is capable of sourcing and sinking the current necessary to charge and discharge the MOSFET gate capacitors. An example of a MOSFET gate driver is shown is Figure 4-34. The signal PWM is the logic output from
the RS latch signaling when the FET should be turned on. When PWM is high, Q_{1} is on and Q_{2} is off. The voltage at the node where the emitters of Q_{1} and Q_{2} connect, V_{m}, increases to approximately V_{CC} and charge is pulled from C to charge up the FET's gate. The gate to source voltage of the FET, M, increases and the switch turns on. When PWM goes low, Q_{1} turns off and Q_{2} turns on. The voltage V_{m} goes low $(\sim 200 \mathrm{mV})$ and the gate discharges through Q_{2}, turning off M . A resistor, R_{g}, is connected between the gate drive circuit and M's gate to damp out ringing.

Figure 4-34. Example of a MOSFET gate driver.

The gate drive circuit shown in Figure 4-34 can only be used to drive a MOSFET whose source is connected to ground. If the source of the FET isn't grounded, we need a high-side floating gate driver to drive the gate voltage high enough above the nongrounded source to turn the FET on. A simple high side driver is shown in Figure 4-35.

Assume PWM is low so M_{HS} is off. Then the free-wheeling diode, D, is conducting and the voltage at the node with the source of $\mathrm{M}_{\mathrm{HS}}, \mathrm{V}_{\text {src }}$, is about $0 \mathrm{~V} . \mathrm{C}_{\text {bst }}$ charges up through $D_{\text {bst }}$ until the voltage across it is approximately V_{CC} (one diode drop less). For PWM low, M_{1} is on so current flowing through R_{1} and R_{2} results in a low voltage at the bases of Q_{1} and Q_{2}, V_{m}. Thus Q_{1} will be off and Q_{2} will be on, which confirms that $V_{G S}$ will be below the threshold voltage and M_{HS} will be off. When PWM switches to high, M_{1} shuts off and stops current from flowing through R_{1} and R_{2}. This brings V_{m} high so Q_{1} turns on and Q_{2} turns off. Charge is pulled from $\mathrm{C}_{\mathrm{bst}}$ and the gate of the MOSFET begins to charge through Q_{1}. As M_{HS} 's V_{GS} increases, the inductor current is transferred from D to M_{HS}. When the inductor current has fully transferred to M_{HS}, D turns off and $\mathrm{V}_{\text {src }}$ increases to approximately V_{in}. Because the voltage across $\mathrm{C}_{\mathrm{bst}}$ remains unchanged, the voltage at the collector of Q_{1} is now approximately V_{CC} volts above the input voltage. This occurrence is known as bootstrapping. The capacitor $\mathrm{C}_{\mathrm{bst}}$ is used to create a bootstrap voltage supply that is high enough above the voltage at the source to turn M_{HS} on, although our available external supply, V_{CC}, may not be high enough. Thus, no matter how high V_{in} (and the voltage at the source) is raised, $\mathrm{C}_{\mathrm{bst}}$ allows the gate voltage to be driven high enough for the high side FET to be on. The difference in voltage between V_{CC} and the bootstrap supply shows up across the reverse biased $\mathrm{D}_{\text {bst }}$ -

Figure 4-35. Circuit for driving the gate of the high-side MOSFET.

The high side drive circuit in Figure 4-35 has a few disadvantages. Assume PWM is high so M_{HS} is on. When PWM switches low, V_{m} rapidly goes low. The voltage at the source of M_{HS} decreases slowly, however, as the gate capacitance discharges with some non-zero time constant. So there is a period of time each switching cycle when the base of Q_{2} is at a much lower voltage than its collector. The repetitive forward biasing of the base-collector junction damages the transistor and significantly reduces its life expectancy. The structure consisting of an npn transistor on top of a pnp transistor, as Q_{1} and Q_{2} are in Figure 4-35, is called a push-pull output stage. Currently, integrated designs much more commonly use a totem-pole output stage, that is two npn (or pnp) transistors stacked one above the other. With the totem-pole configuration, the two bases can no longer be tied together because they must be driven by complementary signals. This requires some additional circuitry to invert the PWM signal.

A high-side gate drive circuit that doesn't have the same drawbacks as the one presented in the previous paragraph is shown in Figure 4-36. This circuit uses a
differential pair input stage. The PWM signal from the RS latch is compared against some DC bias voltage, such as 2.5 V . When PWM is high, all of the bias current, I_{CC}, flows through Q_{1}. The voltage drop across R_{1} brings the base of Q_{3} low enough for Q_{3} to conduct. The current flowing through R_{3} then brings the voltage at the gate of M_{1} high. M_{1} turns on and charges the gate of the high-side FET, M_{HS}, switching the FET on. Because there is no current flowing through R_{2}, the voltage at the base of Q_{4} is high and Q_{4} is off. This means no current flows through R_{4} so the voltage at the gate of M_{2} is the same as the voltage at its source and M_{2} is off. We can see that when the drive signal goes low, all of I_{CC} flows through Q_{2} and going through the same analysis leads us to the result that M_{1} is off, M_{2} is on, and the gate of $M_{H S}$ discharges through M_{2} turning the high-side FET off. Just as in the previous high-side drive circuit, this circuit uses a diode and capacitor to create a bootstrap supply voltage that is capable of driving M_{HS} 's gate high enough above the voltage at its source. Schottky diodes connected to Q_{3} and Q_{4} prevent the voltage at the base of the transistor from dropping too far below the collector voltage. Schottky diodes are also connected to Q_{1} and Q_{2} so they aren't driven too far into saturation. When transistors are driven into saturation, in addition to the damage caused to the transistor, the time that it takes them to recover in order to switch states introduces a delay that can significantly reduce the speed of a circuit. By using a differential pair input stage, we get an output from both the collector of Q_{1} and Q_{2} so we have the two complementary signals required for driving the totem-pole. Note that instead of using a BJT totem-pole output stage, we are using a FET totem-pole output stage and have added transistors Q_{3} and Q_{4} to drive the totem-pole. This is to increase the current-carrying capability of the output stage so that more current can be supplied to
M_{HS} to charge it quickly. The current to charge the FET is pulled from $\mathrm{C}_{\mathrm{bst}}$. We can use the following analysis to determine how large $\mathrm{C}_{\mathrm{bst}}$ needs to be in order to charge M_{HS} within some specified period of time.

Figure 4-36. Improved high-side gate drive circuit.

The amount of charge needed to turn on the FET depends on the gate capacitance of the FET. The required gate charge, $\mathrm{Q}_{\text {gate }}$, is typically specified in the device's datasheet. If the FET needs to be turned on in t_{on} seconds, the current that must flow through M_{1} to charge the gate is

$$
\begin{align*}
I & =\frac{d q}{q t} \\
& =\frac{Q_{\text {gate }}}{t_{o n}} . \tag{4.30}
\end{align*}
$$

The bootstrap supply capacitor should maintain a relatively constant voltage across its terminals. There is some ripple in this voltage caused by the current the capacitor supplies to the BJT's and for charging M_{HS} 's gate. Applying the constituitive relation for a capacitor and also the relationship between capacitor voltage and charge, we obtain this expression for the voltage ripple

$$
\begin{equation*}
\Delta V=\frac{I}{C \cdot f_{s}}+\frac{Q_{\text {gate }}}{C} \tag{4.31}
\end{equation*}
$$

where I is the sum of the bias current in the differential pair and the current flowing through Q_{3} and Q_{4}, f_{s} is the switching frequency set by the clock, and $\mathrm{Q}_{\mathrm{gate}}$ is the charge required to turn on M_{HS}. Setting a maximum value for $\Delta \mathrm{V}$ yields a minimum value for the capacitor. The value for $\mathrm{C}_{\text {bst }}$ chosen when designing the gate drive circuit should be at least twice as large as the minimum value calculated to account for charges and currents that may not have been considered (such as charging the gates of M_{1} and M_{2}) and to ensure that there will be enough charge to turn M_{HS} completely on.

The high-side drive circuit in Figure 4-36 can be modified to drive the low side FET as well. The blocking diode, $\mathrm{D}_{\mathrm{bst}}$, is no longer necessary and all the components connected to the source of the converter FET are also connected to ground. The circuit is shown in Figure 4-37. The input from the RS latch to the low side drive circuit needs to be an inverted version of the input to the high side drive circuit. This can be accomplished with an inverter or alternatively, the RS latch signal can be applied to Q_{2} and the 2.5 V bias can be applied to Q_{1}. Switching the inputs in that way would result in
the high-side FET and low-side FET being controlled by complementary switching signals. As in the high side circuit, the capacitor C provides current to charge M_{LS} 's gate. (4.31) can be applied here also to determine the minimum value for C.

Figure 4-37. Low-side gate drive circuit analogous to the high-side circuit of Figure 4-36.

Shoot-Through Protection

The gate drive circuitry should control the switches in a manner that ensures that each FET is turned off before the other is turned on. While the signals to the FET gates are inverted versions of each other, the time it takes the switch to turn completely on or off is non-negligible and during the switching instances, there is a period of time when both FETs will be on simultaneously, shorting the input voltage to ground. This occurrence is termed shoot-through.

In order to prevent shoot-through, we would like to implement some circuitry to determine that the high side (or low side) FET has completely turned off before turning on the low side (or high side) FET. This can be accomplished with a circuit that indicates whether or not the gate to source voltage $\left(\mathrm{V}_{\mathrm{GS}}\right)$ of the FET is above some level. The output of this V_{GS} sensing circuit would then serve as input, along with the drive signal from the RS latch, to some logic circuitry that will determine when it is safe and appropriate to turn on the FET. We will use a NAND gate to determine when the FET should be turned on, based on outputs from the RS latch, the shoot-through protection circuitry, and any other relevant signals. This logic is "active low" because the NAND gate requires that all inputs be low for it to produce a high output, signaling that the FET is to be turned on.

Consider the high side V_{GS} sensing circuit in Figure 4-38. The base-emitter junction of Q_{1} is used to sense $V_{G S}$ of the high side FET. Because β is large, base current can be neglected. This implies that there is no voltage drop across R_{3} and so V_{BE} is equal to V_{GS}. When the FET is on, V_{GS} is greater than 0.6 V so Q_{1} is on and conducts current. This current results in the voltage at the base of Q_{2} being about 1.2 V (2 diode drops above ground). So Q_{2} is on, which means the voltage at the base of Q_{3} is low. This means that Q_{3} is off and the output at its collector is high. Thus, when the FET is not completely off (as indicated by V_{GS} being above a certain threshold), the signal going to the NAND gate will be high, preventing the low side FET from being turned on. When $\mathrm{V}_{G S}$ drops below about $0.6 \mathrm{~V}, \mathrm{Q}_{1}$ turns off. This causes the voltage at the base of Q_{2} to low, turning Q_{2} off. The voltage at the base of Q_{3} goes high turning Q_{3} on and causing the output at Q_{3} 's collector to go low. Thus when V_{GS} is low, indicating that the FET has
completely turned off, a low signal is sent to the NAND gate indicating that it is safe to turn on the low side FET. Because our enable signal is actually of the opposite sign, meaning low to enable and high to disable, the signal is called enable' as indicated in Figure 4-38. The diodes D_{1} and D_{2} clamp the voltage at the base of Q_{2} at about 1.2V. The resistor, R_{1}, provides a discharge path for parasitic capacitances. The resistor, R_{2}, prevents too much current from being pulled away from the gate of the FET. The diode, D_{3}, clamps the voltage drop from the collector to the base of Q_{1} so that the transistor doesn't go into severe saturation, causing a delay in the circuit's operation.

Figure 4-38. This low-side enable' circuit senses $V_{G S}$ of the high-side FET to determine when it is safe to turn on the low-side switch.

To sense $\mathrm{V}_{\text {GS }}$ of the low side FET, we can use a circuit similar to the one presented in the previous paragraph for the high side. See Figure 4-39. This circuit is more straightforward than the previous one because the source of the FET is grounded. When the V_{GS} of the low side FET is above $0.6 \mathrm{~V}, \mathrm{Q}_{1}$ is on, Q_{2} is off, and the output signal is high so the high side FET will not be turned on. When V_{GS} of the low side FET drops below $0.6 \mathrm{~V}, \mathrm{Q}_{1}$ turns off, Q_{2} turns on, and the output signal goes low signaling that
it is ok to turn on the high side FET. For an example on how to choose component values, see the calculations below.

Figure 4-39. This high-side enable' circuit senses VGS of the low-side FET to determine when it is safe to turn on the high-side switch.

Design Calculations

The resistors connected to the bases of the Q_{1} transistors in both V_{GS} sensing circuits prevent a voltage source from being applied directly across the base-emitter junction of the transistors. These resistors should be small, on the order of about 100Ω. The load resistors on the CE stages should be about $10 \mathrm{k} \Omega$ so they don't dissipate too much power. In the high-side circuit, R_{2} of Figure 4-38 needs to be large to prevent too much current from being drawn away from the FET's gate. When Q_{1} is on, the current flowing through R_{1} is

$$
\begin{align*}
I_{R 1} & =\frac{V_{R 1}}{R_{1}} \\
& =\frac{1.2 \mathrm{~V}}{R_{1}} . \tag{4.32}
\end{align*}
$$

The current flowing into the base of Q_{2} is

$$
I_{B 2}=\frac{I_{c 2}}{\beta_{0}} .
$$

Assuming $\mathrm{R}_{4}=10 \mathrm{k} \Omega$,

$$
\begin{aligned}
I_{B 2} & \approx \frac{5 \mathrm{~V} \div 10 \mathrm{k} \Omega}{200} \\
& \approx 2.5 \mu \mathrm{~A} .
\end{aligned}
$$

The remainder of the current flowing through Q_{1} and R_{2} flows through diodes D_{1} and D_{2}. The total current though R_{2} varies with voltage at the gate of the FET according to the following expression.

$$
\begin{align*}
I_{R 2} & \approx \frac{V_{\text {zate }}-V_{D S, \text { sat }}-1.2 \mathrm{~V}}{R_{2}} \\
& \approx \frac{V_{\text {gate }}-200 \mathrm{mV}-1.2 \mathrm{~V}}{R_{2}} \tag{4.33}
\end{align*}
$$

Depending on the voltage at the gate, which is determined by the input voltage to the converter, we can use (4.32) and (4.33) to choose values for R_{1} and R_{2} such that the current through R_{2} is acceptably small, but enough to supply Q_{2} 's base current and provide a 1.2 V drop across R_{2}. Reasonable values are:

$$
\begin{aligned}
& R_{1}=51 \mathrm{k} \Omega \\
& R_{2}=100 \mathrm{k} \Omega
\end{aligned}
$$

4.10 Protection Circuits

Shutdown Capability

Control IC's typically have a shutdown capability which allows the user to disable the chip by applying some signal (high or low, depending on the design) to a designated shutdown pin. We would like to include a similar capability in our circuit. One option is to modify the AND gate at the output of the RS latch to be a 3-input AND gate with one input serving as the shutdown pin. The idea is illustrated in Figure 4-40. This can be accomplished rather easily by placing an additional n-type MOSFET, M_{3}, in series with the two n-type MOSFETs, M_{1} and M_{2}, in the NAND gate and an additional p-type MOSFET, M_{6}, in parallel with M_{4} and M_{5}. A schematic for the modified AND gate is shown in Figure 4-40. This circuit effectively creates an inverse shutdown pin. By tying this pin to +5 V , the control circuit is enabled and functions normally. If the voltage at this pin is lowered to 0 V , the PWM output is lowered to 0 V limiting the duty ratio and converter output to 0 until the pin voltage is brought high again.

Figure 4-40. Adding an additional input to the AND gate of the RS latch provides shutdown capability for the control circuit.

Under-Voltage Lockout

We would like to incorporate an under-voltage lockout feature into our controller to shutdown the control circuitry when the input voltage to the converter goes below a certain level. This can be accomplished with a comparator whose inputs are a scaled version of the input voltage and our low voltage threshold. Using hysteresis to create 2 different levels for the low voltage threshold, as described in Section 4.3, we minimize the likelihood of noisy signals causing the comparator output to oscillate. The output of the comparator is an UVLO pulse that can be combined with the shutdown function presented in the previous sub-section to form a shutdown signal to send to the AND gate of the RS latch. A schematic is shown in Figure 4-41. When the input voltage is above the threshold voltage set at the comparator's positive input terminal, the comparator output is low. So the inverted output connected to the AND gate is high. The output of this AND gate is the inverted shutdown signal that is sent to the RS latch. So when the converter's input voltage is high enough, the RS latch is enabled. The voltage at the
positive input terminal of the comparator is the low threshold voltage. When the converter's input voltage goes below the threshold, the comparator output switches to high. This causes the voltage at the comparator's positive input terminal to increase to the high threshold voltage. The input to the AND gate is now low, so a low signal is sent to the AND gate of the RS latch effectively shutting off the converter.

Figure 4-41. Under-voltage lockout circuit for the converter's input voltage.

Assume we use 15 V for V_{CC} in Figure 4-41. Modifying expressions (4.20) and (4.21) from Section 4.3 results in the following equations for the high and low threshold voltages.

When the comparator output is high:

$$
\begin{equation*}
V_{p}=15 V\left(\frac{R_{1} \| R_{2}}{R_{3}+R_{1} \| R_{2}}\right)+5 V\left(\frac{R_{2} \| R_{3}}{R_{1}+R_{2} \| R_{3}}\right)=V_{T, \text { high }} . \tag{4.36}
\end{equation*}
$$

When the comparator output is low:

$$
\begin{equation*}
V_{p}=15 V\left(\frac{R_{2} \| R_{1}}{R_{3}+R_{2} \| R_{1}}\right)=V_{T, \text { low }} . \tag{4.37}
\end{equation*}
$$

Let's set the minimum input voltage at 7 V . Since the maximum input voltage of 20 V is well beyond the common mode range of our comparator, we will use a voltage divider to cut the input voltage in half. This means the low voltage threshold should be set at half of 7 V , or 3.5 V . To establish a significant hysteresis margin, we will require that the input voltage be raised above 10 V to enable the RS latch after it has been shut down due to low input voltage. This means the high voltage threshold should be set at half of 10 V , or 5 V . We can plug these thresholds into (4.36) and (4.37), choose a value for one of the resistors, and solve for the other 2. If we set $\mathrm{R}_{1}=10 \mathrm{k} \Omega$, the following calculations result:

$$
V_{T, \text { high }}=5 V=15 V\left(\frac{R_{1} \| R_{2}}{R_{3}+R_{1} \| R_{2}}\right)+5 V\left(\frac{R_{2} \| R_{3}}{R_{1}+R_{2} \| R_{3}}\right)
$$

Dividing both sides by 5 and substituting for R_{1} yields,

$$
1=3 \cdot\left(\frac{10 k \Omega \| R_{2}}{R_{3}+10 k \Omega \| R_{2}}\right)+\left(\frac{R_{2} \| R_{3}}{10 k \Omega+R_{2} \| R_{3}}\right) .
$$

Explicitly writing out the expressions for the parallel resistor combinations gives us

$$
1=3 \frac{\frac{R_{2} \cdot 10 k \Omega}{10 k \Omega+R_{2}}}{R_{3}+\frac{R_{2} \cdot 10 k \Omega}{10 k \Omega+R_{2}}}+\frac{\frac{R_{2} \cdot R_{3}}{R_{3}+R_{2}}}{10 k \Omega+\frac{R_{2} \cdot R_{3}}{R_{3}+R_{2}}}
$$

which can be simplified to

$$
\begin{equation*}
\mathrm{I}=\frac{30 k \Omega \cdot R_{2}+R_{2} \cdot R_{3}}{R_{2}\left(R_{3}+10 k \Omega\right)+R_{3} \cdot 10 k \Omega} \tag{4.38}
\end{equation*}
$$

For the low threshold,

$$
V_{T, \text { low }}=3.5 \mathrm{~V}=15 \mathrm{~V}\left(\frac{R_{2} \| R_{1}}{R_{3}+R_{2} \| R_{1}}\right)
$$

Dividing both sides by 15 and substituting for R_{1} yields

$$
\frac{3.5}{15}=\left(\frac{R_{2} \| 10 k \Omega}{R_{3}+R_{2} \| 10 k \Omega}\right)
$$

Explicitly writing out the expressions for the parallel resistor combinations gives us

$$
\frac{3.5}{15}=\frac{\frac{R_{2} \cdot 10 k \Omega}{R_{2}+10 k \Omega}}{R_{3}+\frac{R_{2} \cdot 10 k \Omega}{R_{2}+10 k \Omega}}
$$

which can be simplified to

$$
\begin{equation*}
\frac{3.5}{15}=\frac{R_{2} \cdot 10 k \Omega}{R_{3}\left(R_{2}+10 k \Omega\right)+R_{2} \cdot 10 k \Omega} \tag{4.39}
\end{equation*}
$$

Combining (4.38) and (4.39) and solving yields $R_{2} \approx 6429 \Omega, R 3 \approx 12857 \Omega$.
Using $\mathrm{R}_{1}=10 \mathrm{k} \Omega, \mathrm{R}_{2}=6.2 \mathrm{k} \Omega$, and $\mathrm{R}_{3}=13 \mathrm{k} \Omega$ results in $\mathrm{V}_{\mathrm{T}, \text { low }}=3.41 \mathrm{~V}$ and
$\mathrm{V}_{\mathrm{T}, \mathrm{high}}=4.89 \mathrm{~V}$. Multiplying these thresholds by 2 gives the minimum V_{in} value before lockout of 6.82 V and 9.78 V as the minimum input voltage to restore the converter disabled due to low input voltage.

The output stage of the comparator should be an inverter tied to the 5 V supply. The on resistance of the output transistor is low compared to the resistor values chosen above, so it shouldn't significantly alter out calculated thresholds. A transistor-level schematic is shown in Figure 4-42.

Figure 4-42. Transistor-level schematic of under-voltage lockout circiut.

Over-voltage Protection

We need to include some circuitry to protect the controller from damage due to excessive input or supply voltages. Due to common-mode and power dissipation limitations, the control circuit can not handle input voltages greater than 22V. Placing a 22 V zener diode across the input terminals to the converter will clamp the input at 22 V . Figure 4-43 contains an over-voltage protection circuit with a 22 V zener diode, D_{1}. When $V_{\text {in }}$ becomes too large, D_{1} begins to conduct and the voltage at the base of Q_{6} increases. This causes Q_{6} to turn on and the voltage at its collector, $\mathrm{V}_{\text {out }}$, goes low. If we AND this signal, along with the under-voltage signal and that from the user-applied shutdown' signal, the result is a signal that is sent to the RS latch and will shut the converter off if either of three conditions exists: $V_{\text {in }}$ is too high, $V_{\text {in }}$ is too low, or the user has pressed the "shutdown button". See the illustration in Figure 4-44. A similar configuration with a zener diode can be used to ensure that the supply voltage for the control circuitry doesn't exceed an acceptable level.

Figure 4-43. Over-voltage protection circuit for the converter's input voltage.

Figure 4-44. Functional diagram of shutdown circuit block.

Control Circuit Supply Voltage

We also need over-voltage protection and under-voltage lockout circuitry for the 15 V supply being input to the control circuit. In this case, we can no longer use comparators or logic, because they all require the supply voltage to be correct. Instead, we can use the concept demonstrated in Figure 4-43 for both the over and under-voltage protection. Our circuit is shown in Figure 4-45. When the supply voltage exceeds the threshold set by D_{4}, as described already, M_{2} will be off and so no current will be supplied to the control circuitry. Similarly, D_{3} sets the low threshold. When the supply voltage drops below that threshold, D_{3} will stop conducting, causing Q_{26} (and M_{2}) to shutoff.

Figure 4-45. Under-voltage and over-voltage protection for control circuit's supply voltage.

5 Results

This project has established the foundation for a new course in power electronic control circuitry. Students will be exposed to a wide range of topics including power electronics, analog circuit design, and the integrated circuit design process. The following list outlines the major areas of emphasis.

- Design Process
- Hand Calculations
- Run Simulations
- Build, Analyze, and Debug
- Analog Circuit Building Blocks
- Current Sources \& mirrors
- Differential Pair
- Common emitter amplifier and emitter follower buffer
- Input, gain, and output stages
- Power Electronics and Control
- Converter Topology
- Voltage Control
- Current Control
- Transfer function of converter and closed loop system (stability)

We've designed a series of circuits which together perform the function of a currentmode PWM control chip. The prototype controller and converter built produce a 5.04 V output and operate over 7 V to 20 V input range. The output power of the converter is 2.54 Watts and the input power is about 3.03 Watts. That translates to an efficiency of 83.8%. The average inductor current is about 500 mA and the current ripple is about 112 mA . The output voltage ripple is about 180 mV . Figure $5-1$ shows waveforms of the inductor current, the output voltage, and the clock pulse.

Figure 5-1. Waveforms of inductor current (top), converter output voltage (center), and clock pulse (bottom).

The control circuit has been designed as a modular kit with each functional block on its own removable board. This allows the students to design, build, and test each board individually and also makes it easy for blocks to be replaced. Figure 5-2 shows an example of one of the small circuit blocks.

Figure 5-2. Typical $3^{\prime \prime} \times 2^{\prime \prime}$ module that plugs in to the large board.

The blocks plug in to the main kit via SIP connectors as illustrated in Figure 5-3. The blocks can be removed and plugged into a breadboard for testing. They also contain switches that isolate the circuit from the SIP connector, allowing the block to be isolated for testing without being physically removed from the main board.

Figure 5-3. Side view of laboratory kit. Individual modules plug in to main board via SIP connector with $0.1^{\prime \prime}$ spacing for breadboard compatibility.

A picture of the first prototype is contained in Figure 5-4. The controller consists of about 150 transistors, including CMOS devices. Figure 5-5 shows a breadboard version of the control circuit driving a buck converter built on a totem board.

Figure 5-4. First prototype of "control chip" laboratory kit.

There is room for a number of modifications and additions to the designed
laboratory kit. In future, we should consider adapting the controller for other converter topologies and developing a way for students to easily implement their own circuit designs on the kit. Additional controller features that might be interesting for students to learn about and design include soft-start and feed-forward compensation. Adapting the
kit to allow for either voltage-mode or current mode control could also be of interest down the road.

Figure 5-5. Control circuit driving buck converter built on a totem board.

6 References

[1] R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics. Norwell, MA: Kluwer Academic, 2001.
[2] J. G. Kassakian, M. F. Schlecht, and G. C. Verghese, Principles of Power Electronics. Reading, MA: Addison-Wesley, 1991.
[3] K. Lundberg, Notes on Feedback Systems. Cambridge, MA: Kent H. Lundberg, 2004.
[4] Texas Instruments, "Current Mode PWM Controller," [online document], May 2002, [2005 July 20], Available HTTP:
http://focus.ti.com/lit/ds/symlink/uc3842.pdf
[5] H. Gray et al., Analysis and Design of Analog Integrated Circuits. New York, NY: John Wiley and Sons, Inc., 2001.
[6] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York, NY: John Wiley and Sons, Inc., 1997.
[7] A. B. Grebene, Bipolar and MOS Analog Integrated Circuit Design. New York, NY: John Wiley and Sons, Inc., 1984.
[8] P. Scherz, Practical Electronics for Inventors. New York, NY: McGraw-Hill, 2000.

7 Appendix

7.1 CMOS Combinational Logic Gates

NAND Gate

INPUT		OUTPUT
A	B	$X=\overline{A B}$
0	0	1
0	1	1
1	0	1
1	1	0

INPUT		OUTPUT
A	B	$X=A B$
0	0	0
0	1	0
1	0	0
1	1	1

Circuit can be implemented by following NAND gate with an inverter.

OR Gate

INPUT		OUTPUT
A	B	$X=A+B$
0	0	0
0	1	1
1	0	1
1	1	1

Circuit can be implemented by following NAND gate with an inverter.

7.2 EAGLE Schematics

Clock

Error Amplifier

Current Sense Amplifier

Transconductance Amplifier

PWM Comparator and RS Latch

Gate Drive

Shutdown and Protection

Buck Converter Board

8 Acknowledgements

I would like to express my sincere gratitude to:

My thesis supervisors, Professor Steve Leeb and Al Avestruz, for all of the guidance they provided me with throughout this project.

Dean Isaac Colbert, Peggy Carney, Susan Rosevear, and their respective offices for providing my financial support.

The Grainger Foundation for their generous funding of this project.

My family, especially my mother, and friends for all of their love and support throughout this endeavor.

The Office of Minority Education and its staff for their support and encouragement.

The members of LEES for providing helpful information and much needed assistance.

