Design and Implementation of a Sector-Based
Airspace Model for the MIT Extensible Air
Network Simulation
by
Colin J. Whittaker

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2006
(© Massachusetts Institute of Technology 2006. All rights reserved.

Author . é U O 7K S AN G LG
Department of Electrical Engineering and Computer Science
May 19, 2006
1 M\ .. .
(
Certified by................, e - T ——
O John-Paul Barrington Clarke

Principal Research Scientist

e //jf hesis Supervisor
" e i

7
Accepted byo S et o T TNt e p e

v -+ /
ArtKur C. Smith
Chairman, Department Committee on Graduate Theses

VASSAGHUSETTS WSTIVOYE]

OF TECHNOLOGY

ARCHIVES
AUG 14 2006

LIBRARIES

Design and Implementation of a Sector-Based Airspace
Model for the MIT Extensible Air Network Simulation
by
Colin J. Whittaker

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2006, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The MIT Extensible Air Network Simulation (MEANS) is a tool that has been de-
signed to assist airline schedulers and air traffic managers in predicting flight delays
for given air traffic scenarios. One aspect of the simulation, the determination of flight
times, has received criticism from the MEANS users as being too simplistic for their
needs. Currently, MEANS predicts flight times based on a historical distribution of
observed flight times between city pairs. This system ignores the effects of flight level
winds and airspace congestion, two major determiners of flight time.

The replacement flight time model presented divides the airspace into discrete
sectors based on existing divisions in air traffic control. Each sector has its own
wind conditions and capacity limitations which affect passing flights. Results show
that, after some calibration, the new flight time model produces accurate flight times
when the airspace is divided into ARTCC domains and does not introduce additional
errors into other parts of the simulation. Additionally, test scenarios show that the
new system is capable of modeling airspace capacity events, such as a radar failure.
Comparative results reveal that the old, distribution model produces surprisingly
accurate flight times for typical wind conditions and airspace utilization.

Thesis Supervisor: John-Paul Barrington Clarke
Title: Principal Research Scientist

Acknowledgments

A number of people have contributed to this work, and I would like to acknowledge
them here:

Professor J.P. Clarke for welcoming an outsider into the aerospace world.

Terran Melconian for developing MEANS and its related tools, keeping our servers
running, finding my bugs, and much more.

Jonathan Histon for settling the debate on how many planes can fit in the sky at
one time.

Bob Hoffman of Metron Aviation for coming through with the sector boundary
data.

Elizabeth Bly, Robin Riedel, and everyone else for building MEANS into what it
is today.

Emily Egan for everything.

And my family for being there for me.

[&1]

Contents

1 Introduction and Motivation 13
1.1 Structureof the NAS 14
1.1.1 The Role of Sectors inthe NAS 15

1.1.2 The Role of Flight Plans in the NAS 16

1.2 Structure of MEANS L 16
121 GateModule 19

1.22 Tower Module, 19

1.2.3 En Route/Airspace Module 20

1.3 Additional Desired Properties for MEANS 20
2 Design of the Sector-Based Airspace Module 23
2.1 Design Overview 23
2.1.1 The Legacy Airspace Specification. 24
2.1.2 Required Changes to the Specification 25

2.2 The Sector-Based Airspace 26
2.2.1 Sectors 27

222 Flight Plans 28

2.3 Sector Design 29
2.3.1 Capacity and Scheduling 29
2.3.2 Sector Transitions 31
2.3.3 Variations of Flight Acceptance Rules 32

2.4 Argument for Miles-In-Trail Simulation 33

7

3 Implementation Details and Flight Plan Generation

3.1 Airspace Implementation 0L

3.2 Sector Implementation

3.2.1 Sector Data Structures
3.2.2 Requirements and Invariants
3.2.3 Schedule Operations and Correctness
3.3 Flight Plan Generation

Results and Validation

4.1 Experimental Setup

4.2 Results
42.1
4.2.2
4.2.3
4.2.4
4.2.5

Actual Delay Statistics,
Historical Distribution Implementation
Sector-Based Implementation: Center Granularity

Sector-Based Implementation: Sector Granularity

Case Study of New York Area

43 Analysiso

431
4.3.2
4.3.3

5 Conclusion
5.1 Future
5.1.1
5.1.2
5.1.3
5.1.4
51.5

Flight Duration Correlation
Acceleration Considerations

Additional Overload Slots

s and Future Work

Work
Acceleration Compensation Calibration
Aircraft Cruising Speeds
Improved Flight Plans
Improved Flight Level Wind Data

New Airspace Induced Ground Hold Rules

37
37
39
42
44
45
49

53
54
95
55
56
59
62
65
70
71
74
78

List of Figures

4-4

4-5

4-6

4-9

4-10

ARTCCregions e

The relationship of component modules in MEANS
Calculation of sector crossing time

Actual flight delays
Flight delays predicted by the historical distribution implementation .

Deviations from actual delays for the historical distibution implemen-

tation L

Deviations from actual flight times for the historical distribution im-

plementation

Flight delays predicted by the sector-based implementation at center

granularity

Deviations from actual delays for the sector-based implementation at

center granularity

Deviations from actual flight times for the sector-based implementation

at center granularity L

Flight delays predicted by the sector-based implementation at sector

granularity

Deviations from actual delays for the sector-based implementation at

sector granularityo

Deviations from actual flight times for the sector-based implementation

at sector granularityo L0000

9

96

o8

99

60

61

63

4-11 Deviations from actual delays in the New York area for the historical
distribution implementationo
4-12 Deviations from actual delays in the New York area for the sector-based
implementation at center granularity
4-13 Deviations from actual delays in the New York area for the sector-based
implementation at sector granularity
4-14 Deviations from actual delays in the New York area with failures for

the sector-based implementation at centers granularity

65

66

67

68

4-15 Flight duration correlation for the historical distribution implementation 72

4-16 Flight duration correlation for the sector-based implementation at cen-
ter granularity L e
4-17 Flight duration correlation for the sector-based implementation at sec-
tor granularity
4-18 Flight delays predicted by the sector-based implementation at center
granularity with modified flight plans
4-19 Deviations from actual flight times for the sector-based implementation
at center granularity with modified flight plans
4-20 Flight delays predicted by the sector-based implementation at sector
granularity with modified flight plans
4-21 Deviations from actual flight times for the sector-based implementation

at sector granularity with modified flight plans

10

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

Statistics for figure 4-1 55
Statistics for figure 4-2 56
Statistics for figure 4-3 57
Statistics for figure 4-4 58
Statistics for figure 4-5 Lo L 60
Statistics for figure 4-6 L 60
Statistics for figure 4-7 61
Statistics for figure 4-8o 63
Statistics for figure 4-9 64
Statistics for figure 4-10 64
Statistics for figure 4-11o 66
Statistics for figure 4-12 L 66
Statistics for figure 4-13o L 67
Statistics for figure 4-14 L 69
Statistics for figure 4-18o 75
Statistics for figure 4-19o 76
Statistics for figure 4-20 76
Statistics for figure 4-21 77

New statistics for figure 4-9 with additional extra slots. Compare to

table 4.9 78

11

Chapter 1

Introduction and Motivation

The MIT Extensible Air Network Simulation, or MEANS, is a modular simulation tool
for researchers to investigate various strategies in air traffic management and airline
operations. MEANS provides a high-level simulation of the United States National
Airspace System (NAS), where each flight is treated individually. However, MEANS
does not attempt to calculate exact flight trajectories or simulate complex flight rules.
Instead, MEANS generates realistic flight and passenger delay profiles for the scenario
that is input. The complexity of the simulation is minimized, and MEANS executes
very quickly, normally simulating a day’s worth of air traffic in under five minutes.
A researcher can realistically run hundreds of randomized simulations to reduce the
impact of errors introduced by simplification on the resulting operational data. This
data can then be used in financial models of airline operations to determine the
potential cost of the schedule or strategy under investigation. [14]

MEANS provides users with a degree of flexibility through its modular design.
Each aspect of the simulation has a number of different interchangeable implemen-
tations. The implementations differ on the amount of detail simulated and the data
required for execution. Users can choose the implementation that to best suits their
needs. If none of the available implementations suit the user’s needs, they may ex-
tend MEANS with a custom implementation of their own. For example, Elizabeth
Bly S.M. 2005 built a custom control tower implementation to optimize takeoff and

landing queue ordering. [3]

13

Anchorage
ZAN

Minneapolis .
Mmp

Kansas Chty
ZKC

Albuguerqgue

7AR
Honolulu CERAP
ZHN

Guam CERAP
ZUA -

Ft. Worth
ZFW

Houston
ZHU

Figure 1-1: ARTCC regions

One increasingly important air traffic management issue that MEANS could help
study is the effects of heavy en route congestion as more and more aircraft try to
fly through the same airspace at the same time. While en route congestion has not
severely impacted air traffic management up to now, the increasing flight load on
the NAS is quickly approaching the capacity limits of the current control systems.
With a new, detailed model of the NAS, MEANS could help to better understand the
effects of airspace congestion and to devise air traffic flow management and control
strategies. However, the model must be simple enough to rapidly test a wide array
of possible new control strategies. MEANS could prove to be a valuable tool in the

effort to redesign the NAS to handle a greater flight load.

1.1 Structure of the NAS

In the United States, air traffic control is provided by a collection of radar centers of
various types. At airports, tower radar systems and Terminal Radar Approach CON-
trol (TRACON) provide radar support to departing and arriving flights. Airport

control towers typically determine which flights may take off and land as well as han-

14

dling aircraft movements on the ground. TRACONSs handle flights on approach and
departing as they transition between the airport and cruising altitudes. TRACONs
also set holding patterns for aircraft waiting to land. [4] In MEANS, the tower mod-
ule performs the duties of the TRACONSs and the airport control towers, although
the tower module does not handle aircraft movement on the ground (see section 1.2).
The Air Route Traffic Control Centers (ARTCC) manage en route flights, ensuring
safe aircraft passage through their regions of the national airspace. Approximately 25
ARTCCs provide complete en route coverage for the United States, as shown in figure
1-1 [7]. The airspace/en route module in MEANS simulates the national airspace as

a whole, including all of the ARTCCs.

1.1.1 The Role of Sectors in the NAS

Each ARTCC is divided into a number of control sectors. Each sector is typically
handled by a single air traffic controller. A sector can only have as many planes in it as
the controller can simultaneously handle, as additional aircraft in the sector increase
the likelihood of a air safety violation. The flight capacity of a sector is tracked as
a Monitor Alert Parameter (MAP). The MAP value for a sector is determined as a
function of the average crossing time for flights passing through the sector. Possible
values of the MAP value range from five for average crossing times of three minutes or
less to eighteen for average crossing times of twelve minutes or more. MAP values can
be raised or lowered by up to three at the discretion of the on-duty controllers. When
the number of flights in a sector approaches the MAP value, the sector is flagged with
a yellow alert, and then a red alert if conditions worsen. Under red alert conditions,
flights may be prohibited from entering the sector to avoid unsafe airspace congestion.
The maximum capacity of a sector may be temporarily reduced in response to bad
weather or equipment malfunctions, as a controller needs to handle each flight more
carefully. [8]

When the number of planes in a sector approaches the maximum capacity of
that sector, air traffic controllers have several available options to reduce congestion.

Controllers can reroute flights to less crowded neighboring sectors if congestion is

15

localized. In many situations, controllers enforce a miles-in-trail restriction, forcing
flights traveling along the same flight paths to slow down and follow the flight in front
of them at a greater distance than normal. While this strategy prevents crowding
from reaching dangerous levels, it can cause congestion delays to propagate as the

miles-in-trail restriction affects sectors feeding the overcrowded sector. [7]

1.1.2 The Role of Flight Plans in the NAS

When flying at cruising altitude, flights do not typically fly the most direct path to
their destination. Instead, they must follow a flight plan. Flight plans consist of
series of Air Traffic Service (ATS) routes connected with waypoints. An ATS route
is a “route designed for the management of air traffic operations or for the provision
of air traffic services.” [9] Routes consist of a series of straight segments connected at
navigational markers. Sector geometries match the ATS routes in many places, allow-
ing some sectors to almost exclusively handle traffic along a certain route. Normally,
a flight plan consists of an alternating sequence of ATS routes and waypoints, with
the waypoints indicating the points at which the plan switches routes. Waypoint-
waypoint and route-route transitions do occur. If two waypoints are close together,
no specific connecting route is necessary. If two routes only intersect at one point,
specifying a crossover waypoint would be redundant.

The route and waypoint system of flight planning was developed prior to widespread
global position systems and can be implemented using beacons and aeronautical land-
marks. When all aircraft come equipped with GPS gear, the FAA may convert the
current flight planning system into a “free flight” system, allowing for arbitrary way-
points. If this change occurs, the arrangement of the sectors will require adjustment

to better handle the new flight trajectories.

1.2 Structure of MEANS

The driver of the simulation is an event queue. Rather than simulating real time flight

movements, the event quene allows MEANS to only consider a flight when an event

16

Weather
Module

|

Enroute Module

1

\4
e .

aTcsce 0 LT Y S

Module

v Arrival : i Departure
(A'/' E Queue : E Queue
\

S P tad ¢ Tam |
A

Airline
Module

Figure 1-2: The relationship of component modules in MEANS

17

involving that flight reaches the front of the queue. These events include all major
state changes, such as pushing back from a gate or arriving at a destination airport’s
arrival queue. The event queue is sorted according to simulated time of occurrence,
so earlier events are processed first. The time of the event at the head of the queue is
treated as the current time for the simulation. Time is not allowed to go backwards,
so all events added to the queue must have associated times later than the current
time. Initially, the event queue is populated with the flight schedule to be simulated.

Processing these events generates additional events which propagate the simulation.

The MEANS module structure is shown in figure 1-2. Each module simulates a
different part of the air transportation network. The modules at the center of the
diagram represent simulated phases of a commercial flight. Flights start in the gate
module. Once ready to depart, the flight moves from the gate module to the taxi
module, to simulate the plane taxiing to its runway. Next, the tower module deter-
mines when the flight can take off, considering local weather and airport utilization
levels. Once the flight is airborne, the en route, or airspace, module takes control
and determines how long the flight takes to fly to its destination. When the flight
arrives at its destination, the en route module passes the flight to the arrival queue
of the destination control tower module. The tower module decides when this plane
can land, again taking local weather conditions and current airport congestion into
account. Next, the taxi module moves the aircraft from the runway to its assigned
gate. Once back at the gate, the gate module determines how long before the plane

is ready to depart on its next leg, including refueling and maintenance time.

Three of the modules simulate peripheral parts of the flight process. The weather
module provides weather and weather prediction information to the other modules.
This data allows for variable simulated flight rules, ground delay programs, and alter-
nate runway utilization. The airline module responds to disruptions in the simulated
flight schedule. For instance, if bad weather forces a ground delay program, airlines
may cancel some flights to reduce the delays experienced by other flights. The Air
Traffic Control System Command Center (ATCSCC) module is responsible for set-

ting ground delay programs in response to inclement airport weather. If flights are

18

expected to be unable to land at an airport because of weather-induced capacity
constraints, the ATCSCC prevents the aircraft destined for the affected airport from
taking off. The delay program holds the aircraft on the ground until they can be as-
signed a landing slot at their destination. This system is designed to prevent airborne
aircraft from cluttering the airspace around congested airports and wasting fuel.

A summary of the major modules and implementations follows.

1.2.1 Gate Module

The gate module is responsible for determining how long a flight stays at the airport
gate before it can push back and taxi to its runway. The exact time is determined prin-
cipally by the aircraft’s weight class. Mechanical failures and related delays are sim-
ulated stochastically. Additionally, the gate module responds to requests for ground
delay program from the ATCSCC. If the ATCSCC anticipates that the destination
airport of a flight will be congested, it will hold the aircraft on the ground. Several
different ground delay program implementations are available in MEANS. The sim-
plest never requires a ground delay. More complete implementations declare ground
delay programs automatically in response to airport conditions or as specified by an

input file. [4]

1.2.2 Tower Module

The tower module is responsible for determining which aircraft are permitted to
takeoff and land. Flights that have taxied out to the runway wait in a departure queue
until the tower gives them permission to leave. Similarly, flights that have completed
their en route travel wait in the tower’s arrival queue until the tower allows them to
land. The rates at which the tower allows aircraft to takeoff and land are generally
limited, though a trivial implementation of the tower module does provide unlimited
tower capacity. One implementation specifies exact arrival and departure rates for
each airport based on an input file. More advanced implementations determine the

arrival and departure rates from a pareto frontier. An experimental implementation

19

of the tower dynamically reorders arriving and departing flights to minimize the inter-

flight delays.

1.2.3 En Route/Airspace Module

The en route module, also called the airspace module, determines how long the flight
takes from the time it takes off until it reaches its destination airport. This time
does not include circling the airport or landing; it only includes the time until the
flight reaches the arrival queue for the tower at the destination. The most basic
implementation of the airspace module calculates the en route time as the scheduled
flight duration minus thirty minutes for airport circling and landing. A more refined
implementation uses a historical distribution of flight times between airport pairs to
estimate the flight time. For airport pairs where no historical data is available, the
en route time is function of the scheduled flight time and the distance between the

two airports.

1.3 Additional Desired Properties for MEANS

Many of the modules in MEANS provide implementations that closely model real
world phenomena. These implementations attempt to capture not just a general sta-
tistical distribution but the actual physical process of the real world behavior. By
comparison, the airspace implementations is quite limited. In fact, MEANS is inca-
pable of simulating certain scenarios because the airspace module cannot provide the
required level of detail. Specifically, all current airspace module implementations do
not consider air traffic congestion when determining flight times. Without any con-
gestion effects, MEANS cannot reasonably model scenarios involving airspace sector
capacity reductions due to inclement weather. This also means that MEANS could
not currently be used in efforts to redesign the NAS to minimize the impact of an
increased en route flight load. Also, the current implementations do not provide any
mechanism for modeling high altitude winds, which can dramatically impact flight

times. Furthermore. several of MEANS’s partners from the airline industry have ex-

20)

pressed interest in extending MEANS to simulate the European airspace. Without
additional fidelity, MEANS cannot be expanded to support the European airspace
system, which has far more complicated flight rules than the United States.

The goal of this thesis is to design and implement an improved version of the
airspace module. The new airspace model must at least account for congestion effects,
individual sector capacity changes, and high altitude winds. With these additional
features, MEANS will be capable of simulating the European airspace. Several exist-
ing simulations, such as NASA’s FACET [6] already provide such detail by precisely
calculating all aircraft trajectories as flights respond to airspace conditions while flying
to their destinations. However, the new model cannot attempt to precisely calculate
individual flight trajectories. Doing so would lengthen the execution times of MEANS
unacceptably. Instead, the new model must strike a balance between precision and
simplicity, simulating the required effects with as little computing effort as possible.
A successful implementation should attempt to model all of the required features,
not severely impact execution time, and improve on the per-flight accuracy of the en

route travel times from the previous implementations.

21

Chapter 2

Design of the Sector-Based
Airspace Module

2.1 Design Overview

The new model simulates the en route airspace as a collection of interconnected
sectors. Each sector has a single set of local conditions and a set maximum capacity.
All winds and capacity restraints apply to the sector as a whole. Flights traverse
these sectors as they follow their provided flight plans. These flight plans consist of a
series of sector crossings, or a set heading and distance required to cross the sector.
This sector crossing information is translated into a sector crossing time based on a
formula including the aircraft’s airspeed, the required crossing distance and heading,
and the current sector wind speed and heading. After a flight completes its crossing
of a particular sector, that sector hands it off to the next sector. When the flight
reaches the end of its flight plan, the final sector hands the flight off to the destination
airport’s arrival queue.

This model has been chosen because it mimics all the components of the real
world airspace required to meet our simulation goals without introducing unnecessary
complexity. Most of the desired simulation detail is derived from the sector conditions
as it applies to individual flights. The behavior of the sectors is designed to match

the behavior of real sectors as closely as possible with regard to their interactions

23

with passing flights. By simulating sectors as discrete units rather than continuous
spaces, the new system captures the sector-level effects without incurring the cost of

modeling complex internal sector behaviors.

2.1.1 The Legacy Airspace Specification

Before attempting to outline the design for the new airspace model and implementa-
tion, the exact programmatic specification of the airspace module in MEANS must
be made clear. All airspace implementations inherit two functions from the abstract
base class AirspaceBase that defines the airspace interface. The functions are pre-
dict() and accept(). The function predict() takes as parameters a flight and a takeoff
time and returns a nonbinding estimate of the time that the flight will reach its des-
tination airport. The function accept() is called by the tower module to move a flight
from the departure queue to the airspace, more or less a “take off” function. The ac-
cept() function takes the same parameters as predict(), a flight and a time of takeoff,
which is presumably the current time in the simulation. The accept() fucntion does
not return any value to the tower. After the tower calls accept(), it is the airspace’s
responsibility to set up any necessary events to cause the flight to reach the arrival
queue of its destination airport after an appropriate flight time. The current imple-
mentations of accept() create an event at the expected arrival time for the flight to

trigger the appropriate handoff function.

One important feature of the accept() function is that it does not provide any
mechanism to reject incoming flights. Even if the flight is malformed, possibly with
an invalid destination airport, the airspace cannot legally notify the caller of accept().
The only possible action for the airspace in such a situation is to crash MEANS.
hopefully with a useful error message to the operator. Dropping the offending flight
violates the expectations of the module and can lead to undefined behavior elsewhere

in the program.

2.1.2 Required Changes to the Specification

In order to properly simulate a capacity constrained airspace, the airspace must have
the option of preventing flights from taking off. If the sector into which the flight
takes off is overcrowded, the flight must not take off, as doing so would force the
sector to exceed its maximum capacity. Unfortunately, the current airspace module
specification does not provide any mechanism allowing the airspace to reject flights or
notify towers that a flight will be rejected. Without this capacity, the simulation goals
are not satisfiable. In order to achieve the stated goals, the airspace specification must
be changed. The selected changes should minimize the impact of the modification on
the rest of the system to reduce the volume of code refactoring needed to implement

the changes.

The specification was modified in two ways to satisfy these requirements. First, a
new method was added to airspace interface, check(). The check() method takes the
same arguments as predict() and accept(), a flight and a takeoff time. The function
check() returns the number of seconds the flight must wait after its desired takeoff time
before the airspace will permit it to take off. If the airspace would permit the flight
to take off right away, check() will return zero. The check() return value is generally
a nonbinding estimate. However, check()’s return value is binding in one special case.
If check() returns zero when the provided takeoff time is the current simulation time,
then the airspace guarantees that the it will accept the flight on a call to accept()
without any additional delay. The second change modifies the calling requirements of
the accept() method. The old specification permitted any call to accept(). The new
specification requires that for a given call of accept(), a matching call to check() with
the same parameters returns zero at the time of the call to accept(). This now allows

the airspace module to prevent flights from taking off by returning nonzero values for

check().

Adding the new specification for the existing implementations is not difficult. All
old, unconstrained airspace implementations may safely return zero for all calls to

check(), as these implementations never have any reason to reject a flight. All tower

25

module implementations need modifications to force them to call check() before they
attempt to pass flights to the airspace. If the call to check() is nonzero, the tower
skips that flight and allows other flights to take off instead.

Unfortunately, the most advanced implementations of the tower module, those
with dynamic reordering of flights waiting to take off, are not compatible with the
new specification. Imposing additional delays on the flights in the takeoff queue inter-
feres with the dynamic reordering logic. While the reordering logic can be modified
to consider airspace imposed takeoff delays, doing so is beyond the scope of this the-
sis. Consequently, the sector-based airspace implementation needs to include error
checking code to detect if it is operating alongside a noncompliant tower implementa-
tion, so that MEANS can gracefully abort with an error message. The older airspace
implementations are still compatible with these tower implementations despite the

interface change, since they never impose any takeoff restrictions.

2.2 The Sector-Based Airspace

At the core of the new implementation is the class inheriting the airspace module
base class, called AirspaceDetailed. The predict() function determines the arrival
time at the destination landing queue by querying each sector along the flight’s plan
and summing up the expected crossing time for each sector. The check() function
determines the airspace induced delay by summing up the delay imposed by each
sector along the flight path. This value is intended to underestimate the actual delay,
since other flights may induce additional delays between the call to check() and the
flight’s takeoff time. The accept() method first enters the new flight in the module’s
flight tracking data structures, and then passes the flight to the first sector in its flight
plan.

Besides being responsible for providing the external interface for the module,
AirspaceDetailed coordinates the various sectors in the simulation with each other
and all en route flights. AirspaceDetailed keeps pointers to all of the individual sec-

tor objects (see section 3.2 for more information on sectors,) in a collection associated

26

with the name of the sector for easy lookup. Additionally, AirspaceDetailed maintains
a catalog of all flight plans used in the current flight schedule. The current design
allows only one flight plan per origin-destination city pair, but this could be modified
to permit multiple possible flight plans in the future. As flights follow their flight
plans, AirspaceDetailed tracks their position in the airspace by associating each flight
with a marker indicating which flight plan segment the flight is in. When a flight
moves to a new sector, takes off, or lands, AirspaceDetailed updates these markers to
accurately reflect the progress of the flight.

From a flight’s perspective, the tower first checks with the airspace to make sure
that the flight is allowed to take off. If it is, the tower invokes AirspaceDetailed’s
accept() method, causing the airspace module to initialize the appropriate tracking
markers and insert the flight into the first sector on its flight plan. When the sector
receives the flight, it schedules a callback in the event queue to trigger the transition
of the flight to the next sector. At the time of this callback, the sector checks to see
if the next sector on the flight’s plan will accept it. If the next sector is open, then
the flight makes the transition, all necessary AirspaceDetailed state is updated, and
the process repeats in the next sector. If the next sector does not accept the flight,
then the callback is rescheduled for a later time. The sector reattempts the transition
at that time. The last sector on the flight plan transitions the flight into the arrival
queue of the destination airport instead of a subsequent sector. Once the flight has
arrived at its destination, AirspaceDetailed clears all remaining state referring to the
completed flight, both to free up memory and to ensure that any subsequent legs of

the flight are handled correctly.

2.2.1 Sectors

Besides handling flights that are in the process of crossing the sector, a sector must
maintain additional state to ensure that the airspace as a whole runs smoothly. Sec-
tors must record expected flight crossings, scheduled by flights at takeoff. This in-
formation is required for the sector to accurately predict how much delay a future

flight will encounter when it attempts to enter the sector. The sum of these delays

27

is the value returned by AirspaceDetailed’s check() function, which is the first guard
against airspace overcrowding. Since flights may be delayed en route, all data re-
garding expected flight crossings may change, and the structures in which the data is
kept must be capable of dynamically modifying the information. Additionally, sectors
must track their simulated conditions, including maximum capacity and flight level

winds, both of which are used in determining sector crossing times for passing flights.

2.2.2 Flight Plans

Associated with each origin-destination city pair is a flight plan. Each flight plan
consists of a series of segments, each segment listing a sector to cross along with the
heading and distance of the crossing. With this information, combined with knowl-
edge of aircraft cruising speeds and flight level winds, the sectors can approximate
the unconstrained crossing time of the flight (see section 3.1 for more information.)
AirspaceDetailed maintains a listing of all flight plans. Separately, AirspaceDetailed
maintains pointers for each active flight into the flight plan structure indicating that
flight’s progress. A flight’s pointer should point to a segment relating to the sector it

is currently in.

Currently, each city pair has only one flight plan associated with it, and every
flight making that trip uses that plan. Additionally, the flight plan system does not
allow for rerouting en route flights. Without keeping real time positions of every
flight, it is not possible to properly calculate a revised flight plan with correct sector
crossing distances for arbitrary rerouting. Since such a large amount of resources
would be required to simulate this relatively rare feature, explicit rerouting is left out
of the new airspace module’s design. The effects of rerouting should be captured by
other features of the system, principally by time variable sector capacities along with

capacity induced delays.

2.3 Sector Design

While the AirspaceDetailed class is responsible for most of the coordination between
sectors and for implementing the airspace interface, the individual sectors handle most
of the computational work. The sectors are principally tasked with accepting passing
flights and ensuring their correct delivery to the next sector on their flight plans or to
their destination airport. In order to fulfill that role, sectors must carry out a number
of processes. First, sectors must be capable of handling incoming flights and signaling
whether or not they accepted presented flights. Next, the sectors must calculate the
crossing time for traversing flights. Using these crossing time, the sectors must then
schedule the flights’ exits by inserting the appropriate callbacks into the event queue.
When the callbacks are triggered, the sectors must then hand the flights off to either
the next sectors on their flight plans or their destination airport. If the hand off to
another sector fails, then the sector must reschedule the callback for a time when the
handoff is expected to succeed. In order to facilitate the process, the receiving sector
should provide an indication as to when it will accept a previously rejected flight.

In addition to moving flights across the airspace, sectors play an important role
in coordinating flights throughout the system. In particular, sectors must provide
information to AirspaceDetailed regarding potential crossing times and delays to entry
in response to calls to predict() and check(). In order for the produced information
to be meaningful, the sectors must maintain data on future predicted flight crossings.
A schedule entry for each crossing flight should be created when that flight takes off,
modified if the flight encounters delays, and cleared when the flight has completed
its crossing. Consequently, sectors must be capable of performing all calculations
conjecturally, using sector conditions and flight occupancy statistics that will not be

in effect until later, if ever.

2.3.1 Capacity and Scheduling

The primary data structure in the sector tracks the current and scheduled occupancy

of the sector. This data structure must be capable of supporting all of the roles the

29

Z

sectors need to fill, as described above. Specifically, the data structure must properly
account for all flights that are currently in the sector. Without this, the sector would
have no way of knowing whether or not it had reached its maximum capacity. The
callbacks that handle the actual mechanics of the flight crossing do not present the
sectors with enough information to track sector occupancy. To provide this informa-
tion, the data structure needs to handle adding entering flights and removing exiting
flights. If a flight’s exit is delayed, the sector’s data structure must not prematurely
remove the flight. Furthermore, the data structure should track the expected exit
times for all flights in the sector so that it can produce accurate occupancy reports

for future times.

Additionally, the occupancy data structure must catalog scheduled flights that
have not yet reached the sector. At takeoff, each flight schedules crossings for each
sector for the appropriate time interval. The structure must be capable of processing
this information to give correct estimates of future sector occupancy. Furthermore,
the structure may be required to reschedule scheduled crossings if flights encounter
unexpected delays prior to reaching the sector. Combined with the records of the
flights currently in the sector, the data structure should provide a reasonable, accu-
rate prediction of sector occupancy for the near future. Flights that have not yet
taken off are not included in the structure’s listing. Consequently, predicted occu-
pancies will not be meaningful for times more than a flight’s duration in the future.
Fortunately, this sector occupancy information is used for flight planning and should
not need occupancy estimates any farther in the future than that. In particular, the
information is used to calculating delays for flights waiting to takeoff. Prior to takeoff,
the tower must perform a check() call on the flight to ensure that it will not encounter
any delays en route to its destination. In order to do this, each sector must know
its expected occupancy for the estimated crossing time so that it can report whether
or not it can handle the flight. As specified, the data structure should be capable of

providing this informatiou.

In general, the occupancy data structure will support two basic operations, up-

dates to the schedule information and queries about occupancy at a given time. In

30

order to support efficient updates, the structure should not require extensive exami-
nation or correction of stored records. Ideally, only the records being changed would
be modified, and these records could be looked up efficiently. Since each record would
catalog either a flight entering or leaving the sector, each record could contain a field
for the change in occupancy of the sector at that time. To change the state of the
structure, no records other than those directly modified would need correction. How-
ever, calculating the scheduled occupancy of the sector at a given time would require
a complete traversal of the data structure to sum up all of the individual changes up
to that time. On the other hand, to support efficient occupancy queries, the structure
should provide lookups of the occupancy itself. This could be implemented by associ-
ating each record with the total number of aircraft in or predicted to be in the sector
at the time of the record. Of course, any modifications to the structure would require
a complete structure traversal to correct all totals to reflect any changes. Since both
of these operations are common in sector operations, neither design option is clearly
favored. The selected implementation of the structure merges the two possibilities to

provide reasonable performance for all standard operations.

2.3.2 Sector Transitions

Once a flight’s callback is triggered, the sector must first determine where the flight
is headed next. AirspaceDetailed tracks this information and can easily provide it
upon request. If there is not a following sector, then the flight has arrived at its
destination. The sector transfers the flight to its destination’s arrival queue and
notifies AirspaceDetailed that the flight has left the airspace. If there is another
sector on the flight’s plan, then the sector attempts to pass the flight to the next
sector. If the next sector accepts the flight, the new sector notifies AirspaceDetailed
that the flight has advanced a segment on its flight plan and integrates the flight into
its internal structures. All the previous sector has to do is to remove the passed flight
from its data structures. If the next sector is full, it rejects the flight and indicates
a delav interval after which it should accept the flight. This interval is calculated

by examining the occupancy data structure and finding the next time that the total

31

occupancy of the sector drops below the maximum capacity. The sector holding
the flight must reschedule the transition for the flight, so that the transition will
eventually succeed, and update any internal state referring to the flight’s exit time.
Additionally, the sector should reschedule the crossings for every following sector, so
that the scheduled crossings reflect the flight’s deviation from its original crossing

schedule.

2.3.3 Variations of Flight Acceptance Rules

In most cases, the rules determining whether or not a sector accepts a presented flight
are quite simple. The sector accepts flights so long as the total number of flights in the
sector does not reach the sector’s maximum capacity. Two special cases are required
for reasonable operation of the new airspace. First, flights taking off must always
be accepted by the first sector on their flight plan. The airspace interface does not
permit a flight to be rejected from the airspace entirely, so the first sector must accept
the flight even if it causes that sector to exceed its capacity. Tower modules must
still call AirspaceDetailed’s check() method before attempting to force aircraft into
the airspace, so this rule change should not cause sectors to exceed their capacities in
practice. This change is only required to guarantee that flights do not get lost during
the handoff between the tower and the airspace modules.

The second special case involves sectors at their maximum capacity. Since sectors
at their capacity reject incoming flights, deadlock could arise if full sectors require
each other to accept flights. If each full sector requires another full sector to accept
a flight before it will accept flights, then no progress is possible, and the simulation
will not terminate. In order to prevent this problem in most cases, flights originating
from full sectors are subject to a different set of acceptance rules. In particular,
the receiving sector must accept the flight so long as it does not exceed the sector’s
capacity by more than one. This rule gives full sectors special access to an occupancy
slot unavailable to unconstrained sectors. Since this extra slot is only used to clear
potentially deadlocking situations, it does not routinelv cause sectors to exceed their

normal capacity limits.

32

The provision of a single extra slot prevents deadlock in all but very rare cir-
cumstances. In order for the new system to deadlock, a collection of interdependent
sectors must all exceed their capacity by one. This would nullify the specially pro-
vided extra capacity slot. Prior to such a situation, all of the interdependent sectors
except one would exceed their capacity by one. In this state, the number of available
extra slots across collection sectors is one. In order to transition from this prior state
to the deadlocking state, the remaining slot must be occupied by a flight entering the
collection. The deadlocking flight cannot come from another sector in the collection,
as the originating sector would open up a slot in the process. Also, the deadlocking
flight cannot come from an outside sector that has not reached its capacity, as its
flights are subject to the original acceptance rules. The only possible origin of the
deadlocking flight is a temporarily full sector outside of the interdependent collection.
The offending sector could be full from a spike in otherwise unconstrained traffic and
could force the deadlocking flight into the collection using the special acceptance rule.
Since the original acceptance rules rarely resulted in deadlock, and the new rules only
fail under specific and unlikely circumstances, this solution is expected to functionally

eliminate deadlock from the system.

2.4 Argument for Miles-In-Trail Simulation

In order for the proposed airspace design to be useful, it must simulate real world air
traffic effects. While the individual sectors handle unimpeded travel times appropri-
ately, it is not clear that a purely capacity limited sector structure can adequately
simulate miles-in-trail restrictions. By applying Little’s Law from processor architec-
ture theory [11] to the aircraft in a sector, it can be shown that a capacity limited
system reasonably approximates a miles-in-trail limitation. Little’s Law states that
the average number of instructions in a processor is the product of the throughput of
the processor, in instructions per second, and the latency of each instruction. Rear-
ranging terms. the law also states that the throughput of a processor is the average

number of instructions “in flight” divided by the latency of each instruction. Increas-

33

ing the number of simultaneous instructions or decreasing the latency increases the
throughput of the processor. Applying this to flights in a sector, the throughput of a
sector, in flights per unit time, is the average occupancy of the sector divided by the
sector crossing time of a flight. While these flights do not necessarily follow the exact
same path, all existing flight paths can be collapsed into a single path for the purpose
of this argument. One mapping to the single path case is to assign sector occupancy
slots to the different flight paths in a round robin fashion, thereby interleaving the

different paths into one.

Little’s Law as applied to sector throughput and the single path assumption can
be used to demonstrate that a miles-in-trail restriction is identical to a capacity
constrained system in terms of sector throughput. First, consider a miles-in-trail
restricted sector. The number of flights the sector can handle simultaneously is the
sector crossing distance divided by the miles-in-trail distance, since the sector only
allows one plane every miles-in-trail miles. The latency is the average crossing time
for traversing flights. Notice that the sector throughput decreases as the miles-in-
trail distance increases, as the sector can hold fewer flights at the same time. Now,
consider a purely capacity constrained sector. The number of flight the constrained
sector can handle simultaneously is simply its maximum capacity. The latency is
again the average crossing time. By decreasing the maximum capacity of the sector,
the maximum throughput of the sector is reduced just the same as if the miles-in-
trail distance had been increased. From a sector throughput point of view, there is no
difference between increasing a miles-in-trail restriction and decreasing a maximum
capacity. While the inter-flight times are not guaranteed to be the same, the ability

to simulate the throughput effect a miles-in-trail restriction for a sector is sufficient

for MEANS.

Since miles-in-trail restrictions propagate in the real world as congestion spreads,
the capacity constrained system should also propagate any throughput reductions that
would normally arise. This is indeed the case. When a sector reaches its maximum
capacity. additional flights into the constrained sector must wait until a slot opens up.

By waiting. these flights experience a greater latency in sectors neighboring the con-

34

strained sector than if they had been allowed to travel without the transition delay.
From the above argument, increasing the latency of the flights reduces the maximum
throughput of the adjoining sector. This reduction in throughput correctly simulates
the reduction in throughput from the propagation of a mile-in-trail restriction into
adjacent sectors. Furthermore, if the congestion does not clear, the sectors neighbor-
ing the original overcrowded sector reach their maximum capacities. In this case, the
increased latencies and corresponding decrease in throughput spread to additional

sectors, simulating the continuing propagation of a miles-in-trail restriction.

35

30

Chapter 3

Implementation Details and Flight

Plan Generation

3.1 Airspace Implementation

The implementation of the airspace interface, AirspaceDetailed, is responsible for co-
ordinating between sectors, tracking the progress of each flight, and providing the
airspace interface. In order to maintain precise control over the sectors, AirspaceDe-
tailed creates all of the sectors in the system and stores references to them in a map
associating each sector’s name with its pointer. This structure holds the primary
copies of the pointers to the sectors. Other copies of the pointers can exist, but they
cannot be used to destroy the sector objects. Only when this data structure is decon-
structed are the individual sectors deleted. While this structure retains the primary
copies of each sector, it is only used to help create the flight plans in the system.
When the flight plan configuration file is loaded into AirspaceDetailed at startup,
the file refers to each sector by name. The sector name map converts the name in
the file to a copy of the object reference for the named sector. The sectors are not
actually named in the flight plans that AirspaceDetailed stores, (refer to section 2.2.2
for more information on flight plans.) All sector access in the simulation after startup
is done throngh the copies of sector references in the flight plans. By performing the

string name to reference conversion at startup, the bulk of the simulation can avoid

37

a potentially expensive map lookup for each sector access.

The flight plans are stored as vectors, with each flight plan vector identified in a
map by its origin and destination airports. As mentioned before, there is only one
flight plan per origin-destination pair. The data structure could be modified in the
future to support multiple flight plans by having each origin-destination pair map to
a vector of flight plan vectors. The flight plan associated with each flight is simply
the flight plan listed in the map with the appropriate origin and destination. For
flights in the air, AirspaceDetailed associates the aircraft with an index into the flight
plan vector to track the progress of the flight. Flights that have not taken off and
flights that have already landed do not have associated indices. While the index is
not publicly visible, sectors can retrieve the current flight plan segment and the next
flight plans segment, which is null if the aircraft is on its last segment. Additionally,
sectors can request that AirspaceDetailed advance an aircraft to its next segment
in response to a sector transition. If the aircraft was previously on the ground,
AirspaceDetailed creates an entry for the newly airborne flight and marks that the
flight is in its first flight plan segment. If the aircraft was in the last segment of its
flight plan, AirspaceDetailed clears the entry for the flight to indicate that the flight

is now on the ground.

In addition to tracking the current location of each flight, the position informa-
tion associated with each flight is needed to properly reschedule sector crossings for
flights that have been delayed en route. When a flight is delayed, AircraftDetailed
must notify each sector after the flight’s current segment to reschedule the expected
crossing. Initial scheduling does not require the position information, as it always

contacts each sector except the first sector in the flight plan.

To support the new airspace interface, AirspaceDetailed must provide a predict()
method, a check() method, and an accept() method. The function predict() calcu-
lates the expected arrival time for a flight at its destination airport given a flight
and its takcoff time. AirspaceDetailed calculates this value by querying the sectors
associated with each segment on the flight’s plan in order. Each sector responds

with the expected total crossing time for the sector, the s any entrance delay from

38

overcrowding and the expected flight time for the crossing. The sum of these total
crossing times is the total expected duration of the flight, so the expected arrival time
is the sum of the crossing times and the takeoff time. Intermediate sums are used
to determine the time the flight arrives at each sector on its flight path, so that the
sectors can determine the appropriate conditions when calculating the crossing times.
The function check() returns the total delay expected for a given flight taking off at
the provided time. AirspaceDetailed calculates this value similarly to the calculations
in predict(). Intermediate flight time sums are again used to determine the entry time
for each of the sectors along the flight plan. However, instead of returning the arrival
time, check() returns the sum of the delays. The calculation of the total crossing time
for each sector returns the entry delay time in addition to the total crossing time. If
the value returned by check() is zero, then no delays are expected for the flight as it
follows its flight plan.

Calling accept() triggers AirspaceDetailed to enter the requested flight into the
airspace. AirspaceDetailed first calls check() to ensure that the flight is permitted to
take off. Next, AirspaceDetailed forces the first sector on the flight’s flight plan to
accept the flight. Because the airspace interface does not allow the sector to reject
the flight, capacity limits for the first sector are ignored. The prior call to check()
guarantees that any capacity limits are enforced. In the process of entering the flight
into the first sector, the sector calls into AirspaceDetailed to initialize all appropriate
tracking state for the flight. Finally, AirspaceDetailed schedules sector crossings for
each subsequent sector on the flight’s path. The initial sector already contains the
flight, so scheduling the flight is unnecessary. When each sector schedules the flight,
it returns the expected exit time for the crossing, which is then used for the entrance

time for the following sector.

3.2 Sector Implementation

To support AirspaceDetailed, sectors must be able to appropriately enter and exit

each flight passing through. allow for flights to be scheduled and rescheduled. and

39

provide estimated crossing times for anticipated sector crossings. Entering flights can
presented to the sector in three ways. First, flights taking off must be accepted. Sec-
ond, flights entering from an overcrowded sector are subject to lenient entrance rules,
allowed to exceed the sector’s capacity by one. Third, flights entering from uncon-
strained sectors are subject to normal entrance rules and cannot cause the sector to
exceed the sector’s maximum capacity. Once a flight has been accepted, the sector
treats flights the same in all three cases. First, a call is made to AirspaceDetailed to
increment the flight’s location index, then sector checks that it is the current sector
according to AirspaceDetailed, ensuring the flight is in the correct sector. Next, the
sector calculates the flight time for the crossing according to its current wind con-
ditions, the heading and distance of the crossing, and the aircraft’s speed. Since a
detailed matching of aircraft tail numbers to cruising speeds was not available, all
aircraft speeds are approximated as 450 knots, which is a reasonable approximation
of the cruising speed for most airliners [12]. Future versions can provide better air-
speed estimates for better precision. The exact calculation, summarized in figure 3-1,
assumes the aircraft is tracking towards its destination, meaning that the aircraft
angles itself to maintain the appropriate ground heading despite any wind. The ef-
fective ground speed is wy, + /|n|? — w2. w, is the portion of wind velocity in the
direction the aircraft is traveling. The square root is the portion of the aircraft speed
in the traveling direction, derived via the Pythagorean Theorem from the aircraft’s
airspeed, |n|, and the portion of the wind velocity orthogonal to the flight direction,
labeled w,. w, and w, are calculated by first subtracting out the flight heading from
the wind heading before deriving the vector components of the wind. Finally, all
necessary sector state is updated to reflect the new flight and its anticipated exit

time.

A callback is entered into MEANS’s event queue for the calculated exit time.
When the callback is triggered, the sector attempts to transition the flight into the
next segment of its flight plan. If AirspaceDetailed reports that the aircraft has arrived
at its destination, then the sector hands the flight off to the destination arrival queue.

notifies AirspaceDetailed that the flight has landed, and logs the transition in the

40

Crossing time = Crossing distance / |Ground speed|

Figure 3-1: Calculation of sector crossing time

internal state. If the aircraft is headed into another sector, then if the next sector
accepts the flight, then the current sector only logs the flight transition internally, as
all additional computational work is handled by the next sector. If the next sector
rejects the flight, the next sector gives an estimate for how long the flight will have
to wait before being allowed entry. The current sector reschedules the exit of the
flight for after the delay, notifies AirspaceDetailed to reschedule all subsequent sector
crossings to reflect the added delay, and enters another callback into the event queue

for the new exit time.

Sectors handle scheduling and rescheduling crossings in much the same way. The
only difference is that when rescheduling a sector crossing, the sector first clears the
existing schedule entry. In either case, the expected entry time is provided to the
scheduling or rescheduling function, which then calculates the flight time required to
cross the sector. The expected exit time is simply the anticipated entry time plus
the required transit time. Any delays the flight encounters if it is denied immediate

entrance into the next sector are not incorporated into the expected exit time.

To provide estimated crossing times to AirspaceDetailed, the sectors must sum
the flight time and any entrance delay due to sector capacity constraints. The flight
time calculations are described above. The entry delay is determined by examining
the sector’s schedule from the requested entry time forward to find the earliest time
at which the sector wonld accept an additional flight. The entry delay itself is used by

AirspaceDetailed in the check() calculations and is optionally returned by reference

41

to the caller along with the total estimated crossing time.

3.2.1 Sector Data Structures

Sectors have three data structures to hold all the state required to perform these
operations. The first structure holds a listing of all the flights currently in the sector.
The second holds a listing of all the flights that are scheduled to be in the sector.
The third structure maintains a schedule for the occupancy of the sector. In all three
structures, flights are identified by the airline and tail number of the aircraft, and
by the segment index of the sector crossing in the flight’s plan. The segment index
allows for flights to pass through the same sector more than once. Without a segment
index reference, it would not be possible to differentiate the separate crossings.

The schedule structure associates times with sector events, such as flight entrances
or exits. Each event contains the identifier of the associated flight, the change in the
occupancy of the sector in response to the event, and the total number of scheduled
aircraft remaining in the sector after the event occurs. The data is stored in a mul-
timap, since several flight events can occur at the same time. A multimap maps keys
to values. In this case, the keys are the times and the values are the events. Mul-
tiple events may be associated with a single time. The multimap stores the entries
in key sorted order, so the structure is incrementally searchable, meaning that given
one entry, the next entry in time and the previous entry in time are easily obtained.
This is important, since a lookup for a given time will only yield one of the events
occurring at the listed time. The rest must be obtained through incremental search.
Also, incremental search is required for schedule scanning operations. One example
of this is the determination of the next time after a given time that the occupancy of
sector is below its capacity, and a flight denied entrance may be allowed to enter. A
multimap is not capable of efficient indexed lookup. In general, the entire structure
must be analyzed to find the nth entry. Instead, the structure allows for efficient
lookups of the events given a time of occurrence. The total number of aircraft in the
sector is the sum of all of the changes in sector occupancy for all of the events up to

and including the event holding the total. While the storage of the change in occu-

42

pancy may seem redundant, storing the changes per event allows for more efficient

correction of the schedule structure in response to schedule changes.

Additionally, a special scheduled flight event exists at the sector’s notion of the
current time that represents the entrance of all flights currently in the sector. This
block has a special identifier and has its change in occupancy set to the number of
aircraft currently in the sector, possibly zero. The use of this special block is preferred
to individual markers for flight entrances. Not only does it reduce the number of
entries in the system, the use of the special block also guarantees that the schedule

always has at least one entry, which reduces the number of computational edge cases.

The structure containing a sector’s current flights maps flights to exit times. The
callback to exit the flight from the sector is scheduled for the time associated with the
flight in this structure. If a flight fails to exit the sector at its scheduled time, then
the exit time associated with the flight is updated to reflect the delay. The exit time
refers to the flight’s exit event as stored in the schedule structure, so any changes
to exit time in one structure must be mirrored in the other. When a flight exits a
sector, its entry in this data structure is removed. Also, the number of entries in
this structure is the current occupancy of the sector, as used by the sector to decide

whether or not to accept an additional flight.

The structure containing scheduled flights is very similar to the structure of current
flights. It maps each scheduled flight to an anticipated entry time and an expected
exit time. These times are not binding, but they do reference specific entries in the
schedule structure. Consequently, if a flight is rescheduled, both this structure and
the schedule must be corrected. While the times associated with the scheduled flight
are tentative, the flight crossing itself is expected to occur. Flights in the list of
scheduled flights must at some point enter the sector, as the schedule entry is only
cleared when the flight enters the sector. In the event that en route flight rerouting
is added in the future, this structure will have to be capable of removing rerouted

flights.

43

3.2.2 Requirements and Invariants

Given the complexity of the sector’s data structures and the level of optimization
employed in their implementation, it is vital to first establish the logical invariants
for the structures that guarantee correctness. The structure containing the set of
current flights must always contain all flights in the sector and no more. In order
for this requirement to be satisfied, this data structure must be empty at both the
beginning and end of the simulation. At both these times, all sectors are guaranteed
to be empty, since the simulation starts with no flights in transit and only terminates
once all active flights have arrived at their destinations. This implies that the number
of flights entering a sector of the course of the simulation must equal the number of

flights exiting the sector.

The structure containing the scheduled flights must contain only flights that will
at some future point enter the sector. Therefore, flights that are already in the sector
and flights that will not pass through the sector should never appear in the structure
of scheduled flights. Additionally, the correctness of the structure requires that only
flights that have taken off appear in the scheduled flight structures. This is necessary
because the identification of the flights does not guarantee correct differentiation
between different legs of the same flight with the same aircraft. Also, it follows from
the previous requirements that the scheduled flights structure must also be empty at

the beginning and termination of the simulation.

Because of the independent but related fields in each schedule event, great care
is needed to preserve the integrity of the schedule data structure. Most importantly,
every listing of the total number of the aircraft in the sector after a schedule event
must equal the sum of all of the changes in sector occupancy listed in the schedule
up to and including that event. Also, each flight in the schedule has an entry event,
either as a scheduled entry or as part of the special current flights event, and an exit
event, since it must not remain in the sector indefinitely. Since each entry event has
a corresponding exit event, the listed occupancy after the last event in the schedule

must be zero. The special current flights event, marking the collected entry of all

41

flights currently in the sector, must increase the occupancy by the number of flights
in the sector as listed in the current flights data structure. Also, the current flights
event must be listed in the schedule under the sector’s notion of the current time
of the simulation. If the sector’s current time changes, then the special event must
be moved. Additionally, besides the special current flights event, each scheduled
event must relate to a flight in either the current flights or the scheduled flights
structures. These structures contain the times at which events relating to particular
flights occur. Without the times, the entire schedule would need to be searched to
find events relating to a particular flight. Similarly, for each flight in each of these
structures, the schedule may only contain events relating to the flight at times these
structures associated with the flight and must contain an event at each such time.
Finally, the schedule should never list the occupancy of the sector as less than zero.
Since schedule events occurring at the same time may get reordered during schedule
maintenance, it is sufficient to require that the listed occupancy never drop below

zero for the last event in the structure occurring at any given time.

3.2.3 Schedule Operations and Correctness

While the operation and correctness of the current flights structure and the schedule
flights structure are fairly straightforward, the schedule structures operation requires
further elaboration. Each schedule operation is detailed and proved to maintain the
required invariants of the schedule structure provided only that the invariants were
maintained at the beginning of the operation. This, combined with a proof that the
schedule initializes into a valid state is sufficient to conclude by induction that the
schedule is correct for any reachable state.

One key insight into the schedule operations enumerated below is that each op-
eration results in a zero net change in the schedule’s final occupancy. For each flight
added to the schedule, one is correspondingly taken away. If this were violated,
then the occupancy of the sector listed in the final event in the schedule would not
continue to be zero as required. Furthermore. after each of these zero net change

operations, only events occurring hetween the first and last schedule modification of

the operation require corrections to their total occupancy data. All events before
the first schedule modification do not require correction, since no events before them
have been modified, leaving the running sum unchanged. Also, events after the last
schedule modification do not require correction, as the sum of the modifications to
the sector’s occupancy prior to the event is zero. This means that in order to correct
the occupancy totals to match the updated events, only events between the earliest
and latest change require correction. This optimization bounds the number of correc-
tions require to the largest possible span of a modification, which is considerably less
than the total number of events in the schedule. In order to use this optimization,
each operation must be demonstrated to result in a zero net change. This is required
anyway to preserve the total occupancy of zero for the end of the schedule. In each
of the following cases, if the net change is shown to be zero, then the optimized cor-
rection algorithm runs on the modified portion of the schedule at the conclusion of

the operation.

Accepting a Flight

First, the schedule may process the entry of an unscheduled flight into the sector.
This would occur if the flight took off into the sector without first crossing any other
sector. In response to this action, the flight is added to the structure of current
flights with an associated exit time calculated appropriately. An event is entered into
the schedule with a change of negative one at the exit time to represent the flight’s
predicted exit, as mirrored in the current flights structure. Finally, the special event
containing the current flights increments its change by one to reflect the additional
flight, and reinserts itself into the schedule at the time the flight entered the sector,
and the sector’s current time is updated to reflect the change.

The net change in scheduled occupancy for this operation is zero, since the spe-
cial event had its listed change incremented and the new exit event decrements the
total. Therefore, the correction algorithm described above may run correctly, fixing
all inconsistencies in the scheduled occupancies, and the final scheduled occupancy

of sector remains zero. Also. this operation will not cause the sector to have any

46

periods of negative occupancy, since the entry must occur before the new exit event.
In between, all scheduled occupancies will be incremented. Therefore, so long as the
schedule was in a legal state prior to the event, processing the entry of an unscheduled
flight does not invalidate the schedule.

Processing scheduled flights entering a sector works in much the same way. The
only difference is that prior to the operations described for the unscheduled case, the
sector must clear all data relating to the scheduled flight. This includes removing
both the scheduled entrance and exit from the schedule and removing the flight from
the scheduled flights structure. By removing these entries at the same time, the
scheduled flights structure and the schedule remain synchronized as required. The
remainder of the operation is identical to the previous case.

Since both the scheduled entrance and exit are removed, the net impact on sector
occupancy is still zero. The sector occupancy cannot be driven below zero in this
case. Removing the events regarding the scheduled crossing removes a temporary
increment to the sector’s scheduled occupancy and does not introduce additional
negative occupancy changes. Again, this operation is correct and will result in valid

schedule state provided the state was valid at the start of the operation.

Exiting a Flight

The cases where a flight exits into another sector and exits to its destination airport
are identical from the perspective of the current sector’s schedule. First, the schedule
event corresponding to the flight’s exit and the entry relating to the flight in the
structure of current flights are deleted. Also, the special event has its change value
decremented to reflect the departed flight and is reinserted into the schedule at the
time of the flight’s exit.

Again, the requirement of a zero net change is satisfied, as is the required matching
between the schedule and the current flights structure. While the removal of the flight
cannot bring the scheduled occupancy of the sector below zero, moving the special
event with the current flights could. That does not occur in this case. since for every

increment stored in the special event, a corresponding decrement representing the exit

47

of that flight exists at some later scheduled time. The reinsertion of the special event
cannot move it later than any remaining exit events, since doing so would mean that
the exit event’s callback did not occur. Therefore, exiting a flight is correct provided
that the schedule was correct before the operation.

In the event that a flight attempts to exit the sector and fails due to overcrowding
in the next sector, relatively little work is required to update the schedule. The
current flights structure changes the exit time associated with the flight to the new
exit time, and the schedule similarly moves the flight’s exit event to the new time,
preserving the correlation between the structures. The special event with the current
flights is not moved.

Since no events were added or removed, only moved, the schedule’s final occupancy
is unaffected and still zero. Since the exit time is pushed back, the only difference in
sector occupancy is noticed between the old and the new exit times as an increment.
Therefore, the scheduled sector occupancy can never fall below zero, and the operation

is valid so long as the schedule was in a correct state before the attempted exit.

Scheduling and Rescheduling a Flight

After takeoff, each anticipated flight crossing is inserted into the schedule. This is
accomplished by creating a scheduled flight entry for the flight along with anticipated
entry and exit times, and inserting into the schedule events corresponding to these
events at the appropriate times.

Since one flight entry and one flight exit are inserted into the schedule, the net
change is zero, as required. Since the scheduled time of the extra flight entry precedes
the schedule time of the flight exit, the scheduled occupancy of the sector cannot fall
below zero because of this operation. The schedule event containing the current
flights is not moved or modified. Therefore, the scheduling operation results in a
correct schedule state assuming a previously correct schedule state.

Rescheduling a flight crossing is very similar to scheduling a flight crossing from
the perspective of the schedule structure. First, the old schedule entry is cleared, just

like the schedule entry was cleared during a scheduled flight entrance operation. The

48

same procedure and reasoning applies here, so this portion of the operation has been
shown to be correct. Next, the new schedule entries are added to reflect the new
anticipated crossing times. This operation is identical to that described and proved
correct in the previous case. Therefore, just like the preceding cases, the rescheduling
operation is correct provided only that the schedule structure was in a valid state

prior to the operation.

Start-up Correctness

Finally, to conclude by induction that the schedule remains valid in any reachable
state, the initial state of the schedule structure must be valid. At simulation startup,
both the current flights structure and the scheduled flights structure are empty. The
schedule has a single entry, the special event for current flights listed at the simulation
start time holding no flights. The schedule correctly does not have any events relating
to nonexistent flights, and the number of flights in the current flights structure equals
the value in the special event at zero. The only total occupancy figure, the one
belonging to the special event, is correct at zero. Furthermore, since the special event
is also the last event in the schedule, the schedule also correctly concludes with a
total scheduled occupancy of zero. Therefore, the schedule structure is in a valid
state upon initialization. Thus, the proof by induction that any reachable state of

the schedule structure is valid is complete.

3.3 Flight Plan Generation

While most of the data required to operate MEANS is readily available, public listings
of flight plans are inadequate for the purposes of the simulation. Available listings do
not cover all origin-destination city pairs and are highly irregular in format. In order
to test the new airspace system, approximate flight plans are needed. The plans need
to be gencrated using only a list of all city pairs required and a description of all
of the sectors under consideration. The sectors are described as lists of geographic

coordinates detailing the outlines of the sectors.

49

To develop the flight plan, first all geographic coordinates in terms of latitude
and longitude are converted into nautical miles north and east of Topeka, Kansas,
using the degrees to nautical miles conversions found at Topeka, Kansas. Topeka was
selected because it is roughly in the center of the continental United States. The
overall flight path generated is a straight line in the new coordinate space from the
origin to the destination. This path is tested every one hundred nautical miles to
determine which sector that point of the path is in. If a sector transition is detected,
the transition point is refined to within ten nautical miles. This error distance is
traversed by modern airliners in under two minutes, so it will not severely impact
the results of the simulation. The flight plan generated includes each sector crossing
with its calculated distance at the heading of the overall flight path. All distances
are scaled so that the total distance of the flight plan equals the great circle distance

between the origin and destination airports.

To simplify the determination of sector membership of a given point, each sector
is collapsed into a single point at the average of all of the points making up the
perimeter of the sector. A point is classified as in a sector if it is closer to that
sector’s representative point than it is to the center points of any other sector. While
this method may seem to oversimplify the problem, it produces reasonable results.
Most of the sectors are shaped such that they are reasonably approximated in a closest
point algorithm. Also, most sectors have elaborate border geometry, meaning that
a precise calculation of sector membership would be prohibitively computationally
intensive. Furthermore, since the flight path itself is an approximation and sector
transitions are only accurate within ten nautical miles, the added degree of precision

may not even result in noticeably different flight plans.

The generated flight plans are intended to be temporary approximations of the
actual flight plans. Hopefully in the future, the MEANS project will receive or compile
enough flight plan data that these approximations are no longer needed. Since the
generated flight plans must be used for the time being, it is important to pinpoint
their deficiencies. Besides only being accurate to within ten nautical miles, the flight

plans also relyv on the straight line flight path approximation and simplified sector

50)

membership calculations. Combined, these approximations mean that the sectors
crossed in the flicht plan may not precisely match the sectors actually crossed on
a real flight plan. The sector listings should be close enough for testing purposes.
Also, the total distance for the flight plan, set to be the great circle distance between
the departure and arrival airports, is an underestimate. Real flights have to position
themselves for landing approaches and must fly set departure patterns. Consequently,
both the flight path distance and corresponding flight time of the plans generated will
be somewhat less than their real values. Furthermore, this method of generating flight
plans will not work well for areas outside of the United States. For European flights,
at a minimum Topeka must be replaced as the origin city. For worldwide flights,
great circle routes would invalidate the assumed straight line routes, rendering this

technique of flight plan approximation useless.

Chapter 4

Results and Validation

In order to determine the usefulness of both the old historical distribution system and
the new sector based system, two analysis metrics are used. First, the distribution
of all simulated flight delays is compared with the distribution of all actual flight
delays. The closer the simulated distribution matches the actual distribution with
regard to shape and key parameters such as mean and standard deviation, the better
the simulated results. Second, for each flight, the simulated delay is compared with
the actual delay. In a perfect simulation capturing all of the factors present in the
real world, all of the delays will be the same. Naturally, no simulation is perfect, and
some variation in the per flight delays will appear. Charting the difference between
the actual delay and the simulated delay shows the degree to which the simulated
delay matches reality. Better simulations yield charts centered close to zero with as
little variance as possible. Both of these measure the error of MEANS as a whole
rather than specifically the error of the en route portion. Consequently, the historical
distribution airspace module is used as a control. The system presented in this thesis
is evaluated based on the changes seen in the overall results obtained by replacing the
old airspace implementation with the new one. Additional metrics are introduced as

needed.

53

4.1 Experimental Setup

The day of March 2, 2005 serves as the basis for the experiments to determine the
merits of the new airspace system. The quality of the data available to the MEANS
project is best for this month. The exact day selected is the first Wednesday of the
month. The schedule of flights to simulate is generated from Bureau of Transportation
Statistics’ On-Time Performance (BTS OTP) data, containing all flights for the major
carriers in the United States [2]. To compensate for additional flights belonging to
smaller carriers and to private owners, additional padding flights are introduced to
present realistic flight loads to airport control towers. The volume of these padding
flights is derived from Aircraft Situation Display to Industry (ASDI) data, which
consist of actual arrival and departure counts for fifteen minute intervals at major
airports [1]. Airport area weather and weather predictions used in the simulation
are simple replays of actual historical conditions and predictions. The distribution
of flight times in between city pairs observed during 2005 provide the basis for the

historical distribution airspace implementation.

Additional data is needed to operate the new sector based airspace implementa-
tion. First, flight level wind readings come from the Radiosonde Observation (RAOB)
database [10]. This database does not provide enough readings to provide a separate
reading for each sector. Instead, one reading is selected per ARTCC, and that read-
ing is applied to each of the sectors in that center. Sector and ARTCC boundaries
provided by the FAA provide a basis for the flight plan generation program detailed
in section 3.3. Flight plans are generated for both sector crossings and center cross-
ings to allow for testing at different granularities. A flight plan is generated for each
city pair flown in the selected flight schedule. The maximum capacity for all sectors
is set at fifteen, which is roughly the average for sector capacities as determined by
their MAP values. The exact capacities for all sectors is not publicly available. For
centers, the maximum capacity is the sum of all of the capacities of their component

sectors.

4.2 Results

4.2.1

The overall delay distribution for the flights reported in the BTS OTP data, shown in
figure 4-1, shows a roughly normal distribution with a noticeable rightward skew. The
distribution is centered around zero, meaning that on average flights arrived roughly
on time during this day. No flights arrived more than an hour early, and only a small
fraction of the flights arrived more than two hours late. This is understandable, since

it is highly unlikely that flights will arrive substantially early, and except under severe

Actual Delay Statistics

circumstances, flights rarely arrive extremely late.

Number of flights

¢

200+

£ g

Y
3

-50

Table 4.1: Statistics for figure 4-1

0 50

100

Minutes late

n 19916
mean 4.0
median -1
std dev 24.6
range -52 — 586
> 200 30

< -55 0

150

Figure 4-1: Actual flight delays

200

4.2.2 Historical Distribution Implementation

The MEANS experiment to generate this data took three minutes to complete. The
distribution of delays produced by MEANS using the older, historical distribution
airspace implementation is shown in figure 4-2. While the general shape of the dis-
tribution is roughly correct, the large secondary spike is unusual. Additionally, the
per-flight differences from the actual delays in figure 4-3 are relatively small, forming
a roughly normal curve around zero minutes of deviation. Besides the spike, these
figures show that the old system produced better results than originally thought.
However, both distributions are centered about twelve minutes too early relative to
the actual delays. Since these figures show the delay on arrival, it is not clear which

component of MEANS is responsible for the systematic early arrival of the flights.

Number of tiights

50 100 150 200
Minutes late

Figure 4-2: Flight delays predicted by the historical distribution implementation

Table 4.2: Statistics for figure 4-2

n 20072
mean -8.3
median -14
std dev 30.6
range -104 - 583
> 200 68

< -55 30

600 T T ¥ -

Number of flights

-100 -50 o 50 100
Simulated minutes late — Actual minutes late

Figure 4-3: Deviations from actual delays for the historical distibution implementa-
tion

Table 4.3: Statistics for figure 4-3

n 19794
mean -12.4
median -12
std dev 36.6
range -602 — 558
> 120 214

< -120 131

The difference in flight time between the actual flights and the simulated flights,
removing all other aspects of the simulation, is shown in figure 4-4. Since the actual
flight times are recorded from wheels up time to wheels down time, the simulated time
includes waiting in the arrival queue to land in addition to the en route time. While
the figure shows a slight secondary spike, the distribution is very tight and centered
almost exactly at zero. This suggests that the airspace module is not to blame for the
early arrivals of the simulated planes. Also, this data suggests that the older airspace
module is significantly better than previously thought, introducing very little error
into the simulation. The secondary spike is still an issue. It most likely arises from
a secondary flight time calculation method employed when a historical distribution

is not available. If no historical distribution is available, the flight time is calculated

57

as a function of the distance between the two airports and the scheduled duration of

the flight.

Number of flights

1200

-100

— o 50
Simulated flight ime - Actual flight time

Figure 4-4: Deviations from actual flight times for the historical distribution imple-
mentation

Table 4.4: Statistics for figure 4-4

n 19794
mean -14
median -4
std dev 19.2
range -92 - 190
> 120 149

< -120 0

4.2.3 Sector-Based Implementation: Center Granularity

In this experiment, the new airspace module is configured to simulate air traffic at
the ARTCC level. This simulation took only fifteen seconds longer than the original
simulation, an eight percent increase, suggesting a minimal runtime impact of the
new system. Figures 4-5 and 4-6 correspond to the first two figures from the previous
section. While the shape of the overall distribution more closely matches the actual
distribution, both figures are shifted another eleven minutes too early. As shown in
figure 4-7, despite having an exceptionally tight distribution of flight time deviations,
the additional eleven minutes is indeed a product of the new airspace implementation.
While the new system appears promising at this point, the fact that it has introduced

a systematic error of eleven minutes is worrisome.

Number of flights

Minutes late

Figure 4-5: Flight delays predicted by the sector-based implementation at center
granularity

59

Figure 4-6: Deviations from actual delays for the sector-based implementation at

center granularity

Number of flights

Table 4.5: Statistics for figure 4-5

n 20072
mean -18.9
median -25
std dev 30.6
range -118 - 574
> 200 45

< -55 29

-50 [}
Simulated minutes late - Actual minutes late

50

Table 4.6: Statistics for figure 4-6

n 19794
mean -23.0
median -23
std dev 36.0
range -616 - 530
> 120 195

< -120 170

60

Figure 4-7: Deviations from actual flight times for the sector-based implementation

at center granularity

Number of flights

1200

1000+

800

200

-50 o
Simulated flight time - Actual flight time

50

n 19794
mean -13.8
median -16
std dev 18.5
range -82 - 205
> 120 89

< -120 0

61

Table 4.7: Statistics for figure 4-7

4.2.4 Sector-Based Implementation: Sector Granularity

For this experiment, MEANS is configured to simulate individual sectors. The run-
time of the experiment was five and a half minutes, two and a half minutes longer
than the same experiment with the old implementation. Since there are roughly
fifteen sectors per ARTCC, the new airspace module must coordinate fifteen times
more components. The increase in runtime is ten times larger than the increase for
the center level experiment, which indicates a roughly linear growth in the runtime
of the simulation with additional sectors.

As shown in figures 4-8 and 4-9, this experiment produces the best shaped overall
delay curve, and a more symmetrical per-flight delay difference than the same exper-
iment at center granularity. The differences in flight times shown in figure 4-10 are
almost as good as the previous experiment. The flights are still arriving eleven min-
utes too early, suggesting that the problem observed in the previous case still applies
when addition detail is added. However, the means and standard deviations of the
first two figures suggests a serious problem. Figures 4-8 and 4-9 have extreme tails to
the right, containing roughly fifteen percent of the total flights between 200 and 1000
minutes late. Since this tail is not nearly as noticeable in figure 4-10, the simulated
flight time cannot be entirely responsible for the problem. Instead, the problem must
relate to aircraft not being able to take off due to excessive airspace induced ground
holds. Since the capacity of the airspace over each airport has been reduced to fifteen
by switching to sector level simulation, passing air traffic could easily oversaturate the
sector, prevent aircraft from departing normally. While the system avoids deadlock
in the air, flights waiting to enter the airspace may be held indefinitely, since they do

not have access to the deadlock preventing additional sector occupancy slots.

Number of flights

Minutes late

Figure 4-8: Flight delays predicted by the sector-based implementation at sector
granularity

Table 4.8: Statistics for figure 4-8

n 20072
mean 85.5
median -19

std dev 218.7
range -118 — 1423
> 200 3627

< -55 15

i g

Number of flights
n
8

-100 -50 0o 50 100
Simutated minutes late - Actual minutes late

Figure 4-9: Deviations from actual delavs for the sector-based implementation at
sector granularity

63

Table 4.9: Statistics for figure 4-9

n 19794
mean 81.0
median -15

std dev 218.8
range -5631 - 1132
> 120 3968

< -120 133

1200

Number of flights

50 100

-50 [
Simulated flight time — Actual flight time

Figure 4-10: Deviations from actual flight times for the sector-based implementation
at sector granularity

Table 4.10: Statistics for figure 4-10

n 19794
mean -10.0
median -14
stcd dev 24.0
range -83 — 487
> 120 118

< -120 0

044

4.2.5 Case Study of New York Area

In addition to accurate overall simulation, MEANS should also simulate effects within
an individual market. To test this, figures 4-11, 4-12 and 4-13 were generated using
only flights arriving at or departing from LGA, JFK, and EWR, all New York City
area airports. Looking first at figure 4-11, generated by the historical distribution
implementation, while the general distribution is no worse than in the comparable
system-wide case in figure 4-3, the distribution has shifted an additional ten to fifteen
minutes too early. Both examples of the new system in figures 4-12 and 4-13 are
shifted eleven minutes earlier than the historical airspace model, just as in the overall
case. Since the relationship between the different airspace implementations remains
the same, the overall shift to the left is most likely an artifact of another module of
MEANS behaving poorly for the New York area airports. However, this data does
not suggest that either the old or new airspace models handles individual markets

any differently than it handles the entire airspace.

Number of flights
8 8

n
=3
T

10+

-100 -50 0 50
Simulated minutes late - Actual minutes late

Figure 4-11: Deviations from actual delays in the New York area for the historical
distribution implementation

Table 4.11: Statistics for figure 4-11

n 2112
mean -27.8
median -23
std dev 35.4
range -515 — 558
> 120 4

< -120 26

50

Number of flights
8 8

n
=]

10

-100 -50 0 50 100
Simulated minutes late - Actual minutes late

Figure 4-12: Deviations from actual delays in the New York area for the sector-based
implementation at center granularity

Table 4.12: Statistics for figure 4-12

n 2112
mean -39.0
median -34
std dev 35.3
range -531 - 530
> 120 4

< -120 40

66

Number of flights

-50) 50
Simulated minutes late - Actual minutes late

Figure 4-13: Deviations from actual delays in the New York area for the sector-based
implementation at sector granularity

Table 4.13: Statistics for figure 4-13

n 2112
mean 15.5
median -25
std dev 156.5
range -531 - 833
> 120 196

< -120 36

67

Introducing a Failure

One of the primary goals of the new airspace implementation is to simulate severe local
failures. A special experiment reducing the New York ARTCC capacity to ten percent
of its normal value between noon and 6PM tests this capability. This reduction is an
artificial creation, but it could have come about in response to a failed radar system
or severe weather in the area. The simulated impact on the New York area flights is
shown in figure 4-14, generated by the new sector-based implementation operating at
center level granularity. While actual data is not available for this hypothetical case,
the figure clearly shows that the capacity reduction severely impacted delays for the
flights operating in that area. These delays arise from aircraft being unable to take off
into the reduced and overburdened airspace as well as inbound flights having trouble
reaching their destinations. Additional testing on documented events is required to
fine tune this failure model, but this data shows that the basic mechanism works as

intended.

Number of flights

-100 ~50 0 50 100 150 200
Simulated minutes late — Actual minutes late

Figure 4-14: Deviations from actual delays in the New York area with failures for the
sector-based implementation at centers granularity

08

Table 4.14: Statistics for figure 4-14

n 2112
mean 30.8
median -9

std dev 93.0
range -531 - 529
> 120 364

< -120 15

69

4.3 Analysis

These tests confirm that the new airspace implementation works correctly and gen-
erates flight times that approximate reality, despite some problems. A secondary
discovery in the results is that the older, historical distribution airspace implementa-
tion produces better flight times than originally thought. This difference between the
simulated and actual flight times from figure 4-4 are quite small, and the distribu-
tion of errors is correctly centered at zero. Previously, no information regarding the
accuracy of the historical distribution model was available. However, the historical
distribution gives weight to flight times under normal wind and airspace load con-
ditions. The day chosen for the experiment did not have unusual wind patterns or
major capacity constraints, so the flight times produced by the historical distribution
are as good as they can get. Under adverse conditions, like unusual winds or major
capacity disruptions like the one explored in section 4.2.5, the historical model would
perform less well. Another observation regarding the results is that the other modules
in MEANS appear to be responsible for simulated flights arriving roughly twelve min-
utes too early. This bias seriously hampers MEANS usefulness in predicting delays
and late arrivals. As shown in section 4.2.5, this bias is not uniform across the sys-
tem. One possible source of this bias is the taxiing module, which computes optimal
taxi times, assuming no restrictions in aircraft maneuvering. It is possible that these
simulated taxi times are consistently too short. While discovering and repairing this

bias is important to the MEANS project, doing so is out of the scope of this thesis.

While the preliminary results indicate that the new airspace implementation works
correctly, the results bring forward two questions about the new system’s usefulness.
First and most critically, the new system predicts flight times that are almost uni-
formly eleven minutes too short. The consistent bias in the flight times presents a real
hurdle to the viability of the new implementation. Without finding the cause of the
bias and repairing it, the new system may only be useful to simulate unusual cases
rather than serving as a complete replacement to the old system. The second issue

with the new system regards the extremely large rightward tail on the delays predicted

70

at the sector granularity. Since the flight times generated by the new system at the
sector granularity do not exhibit as extreme a rightward tail as the overall delays, the
problem seems to be with the ground holds associated with airspace overcrowding.
This effect will require additional investigation before the new system should be used

for per sector simulation.

4.3.1 Flight Duration Correlation

One possible source of the bias in flight times predicted by the new implementation
is that the airspeeds are too high or the flight paths are too short. The airspeeds
are not precisely matched to the individual aircraft, so the airspeeds could be wrong.
Also, the simplified flight paths used to generate the flight plans may cut portions
of the flight, reducing the overall flight mileage and incorrectly lowering the flight
times. In both of these cases, the magnitude of the error would be correlated to the
duration of the flight. To see if this is the case, consider the relationship between
the actual duration of the flight and the simulated duration of the flight for the
different implementations and granularities, as shown in figures 4-15, 4-16, and 4-17.
The line actual duration = simulated duration is charted for reference. None of the
three graphs show increasing variance with duration. In fact, there appears to be
a slight decrease in variance with flight duration, particularly the negative variance
responsible for the bias. The only noteworthy element of these plots is that figure 4-17
shows that the sector granularity experiment of the new airspace system produced
some overly long outliers for longer flights. This suggests that whatever issue is
affecting take off delays may be impacting flight times as well. In any case, incorrect

airspeeds or flight path lengths do not appear to be the cause of the bias.

71

700 . . — — T v %
e
600 e 4
-
.
e
//.n
500} = 1
2 v

¢ e
= oo
Z aoo} 4]
=g .
e W e R
2 SR
2 300} =
£ .
«n nee

200} , - 1

100} - J

° L . . A . A
0 100 200 300 400 500 600 700
Actual flight time

Figure 4-15: Flight duration correlation for the historical distribution implementation

700 T T T T T Y
600 r . / 4

Ry
W

500 yd : 1
o 4
E
= 400} 1
=
£
3
3 300t 1
E
1]

200

L e . s L
4] 100 200 300 400 500 600 700
Actual flight time

Figure 4-16: Flight duration correlation for the sector-based implementation at center
granularity

g

6001 . . ‘. v

Simulated fight time

’ . . - .
0 100 200 300 400 500 600 700
Actual fight time

Figure 4-17: Flight duration correlation for the sector-based implementation at sector
granularity

73

4.3.2 Acceleration Considerations

The approximate flight trajectories should capture the entire flight distance. However,
they do not factor in the effect of acceleration during the ascent to flight level after
takeoff and the deceleration during the descent from flight level before landing. Since
the new implementation assumes constant airspeed, the simulated aircraft flies too
fast for the beginning and ending of its journey. Assuming a constant acceleration
from 200 knots to 450 knots over the first twenty minutes of the flight, the flight
will travel roughly 108 nautical miles during that time. If the aircraft were traveling
that distance at a constant 450 knots, it would take only fourteen minutes. If the six
minute difference applies at both the beginning and ending of the flight, this could
explain the entire eleven minute bias.

To test the impact of ignored accelerations, the experiments at both the center and
sector granularity for the sector-based implementation are repeated with an additional
100nm flight segment inserted at the beginning of the flight plan. This segment crosses
an artificial sector with infinite capacity. At 450 knots, the flights take about thirteen
minutes to cross, which should negate the bias seen earlier. Additionally, the added
sector at takeoff may compensate for the unusual behavior of the airspace induced
ground holds in the sector granularity experiment.

The new delay distributions are shown in figures 4-18 and 4-20, and the new flight
time deviations are shown in figures 4-19 and 4-21. In all cases, the airspace induced
bias is almost completely eliminated. At the center level, this experiment produced
the best delay distribution and the smallest deviation from the actual flight times. At
the sector level, the same improvements apply to the bulk of the distributions, but
the troublesome rightward tail remains. Clearly, adding compensating flight segments
has solved the issue of bias. Unfortunately, this technique did not solve the rightward

tail problem in the sector granularity experiment’s delays.

74

1000 +—

Number of flights

Minutes late

Figure 4-18: Flight delays predicted by the sector-based implementation at center
granularity with modified flight plans

Table 4.15: Statistics for figure 4-18

n 20070
mean -5.1
median -12
std dev 32.0
range -105 - 611
> 200 76
< -55 1
10001
200} d

Simulated flight time - Actual flight time

Figure 4-19: Deviations from actual flight times for the sector-based implementation
at center granularity with modified flight plans

Table 4.16: Statistics for figure 4-19

n 19792
mean -1.0
median -2
std dev 17.3
range -73 - 219
> 120 92

< -120 0

Number of flights

-50 [} 50 100 150 200
Minutes late

Figure 4-20: Flight delays predicted by the sector-based implementation at sector
granularity with modified flight plans

Table 4.17: Statistics for figure 4-20

n 20070
mean 101.0
median -5

std dev 221.6
range -105 - 1372
> 200 3724

< -55 1

Number of flights

1200

1000}

-50

0 50
Simulated flight time - Actual flight time

Figure 4-21: Deviations from actual flight times for the sector-based implementation
at sector granularity with modified flight plans

Table 4.18: Statistics for figure 4-21

n 19792
mean 1.7
median -1
std dev 20.4
range -74 - 361
> 120 96

< -120 0

77

4.3.3 Additional Overload Slots

One additional possibility for repairing the sector based experiments rightward tail
is to make the flight acceptance rules for crowded sectors to even more lenient. In
practice, air traffic controllers have the option to raise a sector’s capacity by up to
three [8]. It follows that raising the number of flights over the capacity of a sector to
admit from adjacent crowded sectors to three might solve some of the rightward tail
problems seen in the delay graphs. Table 4.19 represents the statistic generated from
repeating the experiment in section 4.2.4 with this modification. The overall graphs
did not have a noticeable change. The statistics indicate that while this did in fact
reduce the tail’s extent and magnitude, it only reduced them by a small amount. The

crucial problem of airspace induced ground holds remains unsolved.

Table 4.19: New statistics for figure 4-9 with additional extra slots. Compare to table
4.9

n 19794
mean 73.2
median -15

std dev 206.6
range -531 - 1037
> 120 3819

< -120 134

78

Chapter 5

Conclusions and Future Work

The results indicate that the new sector-based system of modeling individual ARTCCs
and employing compensating flight segments is the best airspace implementation to
date. It surpasses the older system based on historical flight time distributions in
terms of delay distribution shape and deviations from actual flight times. Addition-
ally, the new system is capable of modeling unusual flight level wind conditions and
airspace capacity modifications, which the distribution based system could not model.
Despite the numerous approximations and assumptions in the new model required for
testing, it is ready to replace the existing implementation.

Despite showing some promise, the new implementation does not seem useable
when modeling individual sectors. In all cases, a large tail to the right of the sim-
ulated delay curve accounting for approximately fifteen percent of the data points
renders the results generated practically useless. The source of the tail appears to be
unnecessary airspace induced ground holds in response to overcrowding in en route
sectors. Ignoring the tail, the sector level simulations produced the most symmetric
deviations from actual flight times and produced an overall delay distribution that
most closely matched the actual distribution. While not ready for active use currently,
sector level simulation using the new airspace implementation will be the method of
choice if the tail can be removed.

One possible reason for the different behavior of the new implementation at differ-

ent granularities is that the larger area of the centers mitigates some of the effects of

79

the approximations in the system. At the center level, small scale differences between
the simulated flight path and the actual flight path are hidden by the relatively large
ARTCC areas and capacities. These differences could include approximation errors
of the flight plan generator and small scale reroutings in response to local crowding
or severe weather. The net effect of these differences on the center crossings would
not be large and would typically not modify the order of center areas crossed. At the
more fine grained sector level, small modifications to the predicted flight plans often
result in crossing other sectors than those in the simulation. Inaccurate flight plans
could artificially congest some sectors and form bottlenecks. This would result in the
delay tails observed.

Additionally, the analysis required for understanding the behavior of the presented
implementation provides insight into the other MEANS components. This research
demonstrates the accuracy of the original distribution based airspace. In fact, early
analysis revealed a serious bug in the script responsible for generating the required
distributions. Without this analysis, this defect might have gone undetected. Now,
the historical distribution implementation is thoroughly understood and known to be
mostly defect free. Also, analysis into the overall flight delays of MEANS revealed a
twelve minute bias in some module or modules other than the airspace module. Once
the source of this bias is found and fixed, MEANS will produce flight delays that

almost exactly match the actual values.

5.1 Future Work

5.1.1 Acceleration Compensation Calibration

While the compensating flight segment works perfectly in the presented experiments,
more research is needed to precisely quantify and understand the effects and param-
eters of this extra segment. At the very least, the compensating segment should be
broken in half, putting one half before the first actual segment and the other half after

the last. This more accurately represents the additional flight time arising from take-

80

off and landing accelerations. However, the current technique of putting the entire

compensating distance at the beginning of the flight appears to work accpetably.

5.1.2 Aircraft Cruising Speeds

For the purposes of this thesis, all aircraft cruising speeds are assumed to be 450
knots. This is not the case in the real world. Accurately mapping aircraft to cruising

speeds would reduce the remaining errors in the predicted flight times.

5.1.3 Improved Flight Plans

The flight plans used in this thesis are approximations. Accurate information on
sector crossings and distances would also reduce the errors in predicted flight times.
Additionally, accurate sector crossing information might reduce incorrect localized
overcrowding for the sector level simulation, possibly reducing the observed delay
tail. At the center level, this is less of an issue because the large overall capacity of

the ARTCC can mitigate the effects of local overcrowding.

5.1.4 Improved Flight Level Wind Data

In all sector level experiments, all sectors belonging to the same center have the same
wind conditions simply because the available data is too sparse to provide readings
for each sector. Finding a better source of flight level wind data than the RAOB

database could reduce the error in the flight times even further.

5.1.5 New Airspace Induced Ground Hold Rules

As the severe tail in the delays predicted by the sector level simulation indicate, the
rules governing ground holds dictated by the airspace neced to be reevaluated. The
current system of holding flights until they encounter no expected airspace delay
is clearly too constraining. Both the flight entrance rules and the computation of

check() appear to limit aircraft movement more than necessary. Discovering and

31

implementing a new rule set should eliminate the delay tail and allow the more
precise sector level simulation to be used confidently. For center level simulation,
overcrowding is less common since the larger total capacity of the centers minimizes
the impact of localized crowding. Consequently, ground holds far are less common
under the current rule set, so the impact on the center level simulation of a new rule

set is minimal.

82

Bibliography

[1] Aircraft Situation Display to Industry (ASDI).
http:/ /www.fly.faa.gov/ASDI/asdi.html.

[2] Airline On-Time Statistics.

http: //www.bts.gov/programs/airline_information/airline_ontime_statistics/.

[3] Elizabeth Bly. Effects of Reduced IFR Arrival-Arrival Wake Vortex Separation
Minima and Improved Runway Operations Sequencing on Flight Delay. Master’s
thesis, Massachusetts Institute of Technology, Department of Aeronautics and

Astronautics, February 2005.

[4] John-Paul Clarke, Terran Melconian, Elizabeth Bly, and Fabio Rabbani. MEANS
- MIT Extensible Air Network Simulation. Submitted for publication, 2006.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, Cambridge, Massachusetts, second
edition, 2001.

[6] Jonas Dino. Future ATM Concepts Evaluation Tool (FACET).

http://www.nasa.gov/centers/ames/research/lifeonearth/lifeonearth-facet.html,

March 2006.

[7] Michelle Eshow. Airspace, Procedures, and Flight Plans.
http://sdg.les.mit.edu/workshop/atc_overview. PDF, September 2006. Ses-

sion 1 of the Redesigning Air Traffic Control workshop.

83

[8] Section 7. Monitor Alert Parameter.
http://www.faa.gov/Atpubs/FAC/Ch17/s1707.html, February 2006. Part
of Chapter 17 of FAA Order 7210.3, Facility Operation and Administration.

[9] Chapter 20. AIR NAVIGATIONAL ROUTES.
http://www.faa.gov/atpubs/AIR /air2001.html, February 2006. Part of
FAA Order 7400.2F, Procedures for Handling Airspace Matters.

[10] Mark Govett. Radiosonde Database Access. http://raob.fsl.noaa.gov/.

[11] John L. Hennessey and David A. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann, Boston, Massachusetts, third edition, 2003.

[12] John Lundgren. Airliners.net: Aircraft info and history section.

http://www.airliners.net/info/.

[13] Terran Melconian. Effects of Increased Nonstop Routing on Airline Cost and
Profit Master’s thesis, Massachusetts Institute of Technology, Department of

Aeronautics and Astronautics, September 2001.
[14] MIT Extensible Air Network Simulation. http://means.mit.edu/means/.

[15] National Geospatial-Intelligence Agency. Digital Aeronautical Flight Information
File. https://164.214.2.62/products/digitalaero/index.cfm, January 2006.

[16] Ed Williams. Aviation Formulary V1.42.
http://williams.best.vwh.net /avform.htm, July 2004.

34

