
A Natural Interaction Reasoning System for Electronic Circuit Analysis in an

Educational Setting

by

Chang She

B.S. Electrical Engineering and Computer Science

B.S. Political Science

Massachusetts Institute of Technology, 2005

SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ENGINEERING

IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2006

02006 P

Signature of Author:

Certified by:

Accepted by:

Chairman, Department Committee on

MASSACHUSETTS INSTMUTE.
OF TECHNOLOGY

AUG 1 4 2006

3RARIES

I oipuLi acience
May 26, 2006

Randall Davis
-A V ineering

pervisor

.Smith
Graduate Theses

BARKER

Natural Interaction Reasoning System for Electronic Circuit Analysis in an Educational
Setting

By

Chang She

Submitted to the Department of Electrical Engineering and Computer Science
On May 26, 2006

in partial fulfillment of the requirements for the
Degree of Master of Engineering in

Electrical Engineering and Computer Science

Abstract

This thesis presents a sketch-based interaction system that can be used
to illustrate the process of reasoning about an electrical circuit in an
educational setting. Recognition of hand-drawn shapes is accomplished in
a two stage process where strokes are first processed into primitives like
lines or ellipses, then combined into the appropriate circuit device symbols
using a shape description language called LADDER. The circuit is then
solved by a constraint-propagation reasoning component. The solution is
shown to the user along with the justifications that support each deduction.
The level of detail and the speed of the solution playback can be
customized to tailor to a student's particular learning pace. A small user
study was conducted to test the performance of the recognition component,
which revealed several recognition problems common to almost all of the
users' experiences with the system. Suggestions for dealing with these
problems are also presented

Thesis Supervisor: Randall Davis

Title: Professor of Computer Science and Engineering,
Director of Research, MIT CSAIL

2

Acknowledgements

First and foremost I am deeply beholden to my advisor Randy Davis for being such a
wonderful mentor. This thesis would never have been possible without all of his guidance
and support. I would also like to thank Professor Gerald Sussman and Chris Hanson for
helping me understand and use the circuit reasoning system they developed.

I am very grateful also for the amazing colleagues in my research group. In particular, I
would like to thank Tracy Hammond for all of her assistance on the LADDER framework
and Tom Ouyang for many enlightening discussions as well as help with handwriting
recognition.

Finally, I am forever indebted to my parents Youtian and Aiqin for their understanding,
encouragement, and endless patience when I needed them the most.

3

Table of Contents

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

1. INTRODUCTION

2. METHODS
2.1. Recognition of Circuit Devices
2.2. Representational Translation
2.3. Constraint-Propagation Circuit Reasoning
2.4. Reasoning Playback

3. RESULTS
3.1. Experimental Setup
3.2. Experimental Results and Discussion
3.3. Stroke Level Problems
3.4. Constraint Level Problems

4. RELATED WORK

5. CONCLUSION
5.1. Future Work
5.2. Contributions

6. REFERENCES

APPENDIX A. - User Manual

APPENDIX B. - User Study Data Tables

APPENDIX C. - Guide to System Implementation

4

2

3

4

5

10
11
15
18
21

22
23
27
29
31

35

37
37
41

42

43

47

49

1. Introduction

This thesis presents a sketch-based interaction system that can be used to illustrate the

process of reasoning about an electrical circuit. The illustration of complex processes has

always been a very important task in education. In physics, illustration of the interaction

between objects helps to show the underlying physical forces at work. In genetics,

diagrams are used to illustrate the sequence of gene expression and protein activity in

complicated genetic pathways. And in electrical engineering, the circuit diagram is the

most important tool both in illustrating the underlying electromagnetic forces at work and

to show the many layers of abstraction that make analysis of complex devices possible at

all.

Unfortunately, in almost all instances these illustrations are static and their

explanatory power may be limited without accompanying verbal explanations. Although

it is possible to animate diagrams with tools such as PowerPoint or software specialized

for the particular domain of interest, these tools often come with several disadvantages.

Presentation software with animation tools like PowerPoint typically require each

example to be animated separately. CAD-like tools such as SPICE (for electronic circuits)

have difficult-to-use interfaces with either drag-and-drop methods or even textual

descriptions. Moreover, tools like SPICE or Matlab uses matrix methods to solve circuits

- a process that is very non-intuitive and often non-reproducible by humans.

This thesis presents a system designed to overcome these deficiencies in an

educational setting for the circuit domain. A more natural user interface recognizes hand-

drawn sketches of circuit devices. Recognition occurs online so that the user receives

feedback while drawing. After the circuit has been recognized, a limited constraint-

propagation reasoning system is used to solve the circuit. Constraint-propagation style

reasoning is much more comprehensible than matrix methods because fewer variables are

used at each step of reasoning and because the justification for each computed value can

be made available. At the time of writing, the reasoning system is limited to parts of the

circuit that can be solved without resorting to a system of simultaneous equations. Finally,

the deduced values along with their justifications are played back to the user. In this

manner, useful examples can be illustrated and explained in an unsupervised setting.

5

Take the following interaction for example: Figure 1.1 shows a hand-drawn circuit

diagram recognized by the system consisting of two voltage sources, three resistors, and a

transistor. The voltage source on the left has a DC voltage of 15 volts while the voltage

source on the right has a DC voltage of 5 volts. The three resistors are also labeled with

their respective resistance values. The parameters for the transistor have not been

specified by the user (as a reminder to the reader, we have added to the figure labels for

the 3 terminals of the transistor - base, collector, and emitter).

Once the user presses "start", the circuit is given to the reasoning system and the

deduction process begins. First, the ground is inferred to have a potential of 0 (by

definition) and the plus terminals of the two voltage sources are shown to have values of

15 volts and 5 volts, as specified by the voltage source parameters. The system also

displays the default parameters for a transistor (beta = 100 and 10 = -10 amperes).

---- collector

10
R1

base

5V emitter
R2

5.957
R3

10

Figure 1.1. A hand-drawn circuit diagram consisting of two voltage sources, three resistors, and a
transistor. The voltage source on the left has a DC voltage of 15 volts while the voltage source on the
right has a DC voltage of 5 volts. The resistors R1, R2, and R3 are labeled with their respective
resistance values. The names of the 3 terminals for the transistor have been added as a reminder to
the reader, but the transistor's parameters have not been supplied by the user.

6

Now the system analyzes the transistor. Because the values of the parameters have

not been specified by the user in this example, the system operates on a set of default

assumptions that is common when first analyzing a transistor. It assumes that there is no

base current. It also assumes that the transistor operates in the amplifying region,

meaning that there is a positive current flowing from the collector down to the emitter.

Lastly, it assumes that the base-emitter voltage is 0.6 volts. Based on these assumptions,

the system can now deduce the collector current (0.5 A) and the potential of the base (5.6

V).

Next, the system turns its attention to the resistor R3. The resistance parameter

specified in the beginning, combined with the deduced voltage difference across R3,

enables the system to apply Ohm's law in order to compute the current flowing through

R3. Once the value for a variable (in this case the current through R3) has been deduced,

the system shows the justification for the deduction, followed by the deduced value. First,

the name of the law ("Ohm") used in the deduction is displayed. Then the body of the

Law (V = I * R) is shown in prefix notation. Next, the system fills in the values for all

other variables in the equation (voltage = 5 V and resistance = 10 Ohms). Finally, the

system shows that the current flowing down through R3 is 0.5 amperes (Figure 1.2).

From there, Ohm's law is applied once again to obtain the current flowing through

resistor R1. Finally, because the system also knows the resistance and the voltage across

R2, it applies Ohm's law one last time to deduce the current flowing through R2. At this

point, the system stops because all node potentials and branch currents in the circuit have

been determined.

7

15 V

Deduced value
R1"

and justifications
I = IE-12A

5.6 V

0DA

5 V

R2
R3

Figure 1.2. Knowing the voltage difference and the resistance of R3 enables the system to deduce the
value of the current flowing through it. The system displays the name of the relation (ohm) first.
Then, the body of the relation (V = I*R) is shown. Next the system fills in the values of the other
variables (5 = 10 * Iporti). Finally, the system displays the deduced value, 0.5 amperes.

The system can also be used to guide students through circuit synthesis problems. In

synthesis problems, students are often asked to determine the appropriate device

parameters given a set of assumptions about the circuit. Suppose we are given the same

circuit as shown in Figure 1.1, except this time the resistance for R2 was not given. We

are asked to determine what the resistance value must be in order for the default transistor

assumptions to hold true.

The analysis starts in exactly the same manner as the previous example. However,

once the system finishes analyzing all other parts of the circuit, it cannot use Ohm's law

to deduce the current flowing through R2 because the resistance value was not given.

Instead, the system uses the assumption about the transistor to help with the reasoning

process. Because the transistor is assumed to have no current flowing through its base

terminal, the current flowing through R1 must equal the current flowing through R2. The

system then shows that 0.94 amperes is flowing through R2. Finally, the current and

voltage across R2 enables the system to apply Ohm's law to determine the missing

resistance value that would be consistent with the transistor assumptions (Figure 1.3).

8

R1

10 = 1E-12A
s.6 V be jiO

Missing resistance -94 A

parameter deduced

R3

R2

0 V, r 'itane 0.n 94

Figure 1.3. When a parameter is missing but can be deduced, the system will also show the value. In
this example, while the resistance for R2 was not given, there is only one value that it can have given
the assumptions that the system has made about the transistor (no base current, positive current
from the collector to the emitter, and 0.6 volts across the base to the emitter).

It may surprise the student in an introductory circuit theory course that many

expert deductions can be made without resorting to setting up any systems of

simultaneous equations. However, in the above example, we saw that by using a simple

set of assumptions about circuit devices, the system was able to use single step

deductions to solve seemingly complex circuits. Moreover, showing the appropriate

justifications for each deduction helps the user to understand how the deduction was

made. This may help students gain a firmer grasp of circuit concepts such as Ohm's law

or the implications of operating assumptions about a device. This type of learning would

not be possible if the circuits were solved using matrix methods. Even though KVL, KCL,

and device laws are still used to create the matrix equations, traditional matrix solution

techniques such as LU decomposition or QR factorization do not preserve the

configuration of the matrix. As a result, it is unclear how one would create and maintain a

mapping between rows or columns of entries in the solution matrix and a particular

device or device law.

9

2. Methods

The system presented in this thesis is an integration of a sketch recognition

component with a constraint-propagation style circuit reasoning component. The input is

given by the user in the form of hand-drawn circuit diagrams using devices like a Tablet

PC. The strokes on the drawing surface are then broken down and classified as primitive

shapes like lines, ellipses, and polygons. Groups of primitive shapes that satisfy the

appropriate geometric constraints are then combined to form the corresponding circuit

device symbols. The recognition process occurs in tandem to user input so that the

recognition feedback for the user is almost immediate.

Once the circuit is complete, the system translates the graphical representation of the

circuit into the representation required by the reasoning system. The circuit is then fed to

the reasoning component, deriving values for the unsolved node potentials, branch

voltages, and device parameters. Lastly, the derived values are shown to the user along

with the justifications for the deductions (Figure 2.1.).

Sub-shape
(plus, arrow, etc)

Line, Arc, Represen-
Stroke Ellipse, CLADDER ircuit Component 1 nal

Classifier Polygon, DrawnShape representation Translator
GeneralPath

Text

(Iex. Circuit Component

B Reasoning Representation
77

Me

Shape Sequences Display Deduced Values
User Controller Justifications

And Results

Figure 2.1. Input is given by the user in the form of raw strokes, possibly drawn using the stylus on a

Tablet PC. The strokes are recognized and combined into the appropriate circuit devices. Text input

is handled separately from the stroke classifier. Then the system translates the circuit into the circuit

language used by the reasoning component. The reasoning component deduces values for the

unsolved parts of the circuit and the system displays those values along with the appropriate

justifications to the user.

10

2.1. Recognition of Circuit Devices

Recognition begins as soon as the user starts drawing the circuit. The basic unit for

recognition is a stroke, defined as everything drawn by the user between pen-down and

pen-up. The process that takes raw strokes to recognized circuit devices is a two stage

approach in which strokes are first classified as primitive shapes, and the primitive shapes

are then hierarchically combined into increasingly complex shapes.

The first stage of recognition is classification of strokes into primitive shapes. The

stroke classifier is based on Sezgin and Davis (2003, 2001). Raw strokes given by the

user are first given to the corner detector. Sezgin's corner detection algorithm is an

improvement over many existing algorithms because it combines results from stroke

speed and curvature data to detect the corners in a stroke. Once corner detection is

complete, a stroke fit is generated for the primitive shapes of line, ellipse, arc, polygon,

and general path. A polygon is a combination of lines while a general path is a

combination of lines, arcs, and polygons. The fit with the minimum least squared error is

then selected as the final classification for the stroke.

In addition to the graphical portions of a circuit, device parameters also need to be

specified. Parameters are specified by the user via text labels. Text input is not directly

sketched on the drawing surface and is not processed by the stroke classifier. Instead, text

can be given by the user either by typing or by using the text recognizer supplied in the

Microsoft Tablet PC Recognizer Pack.

Once the primitive shapes have been generated, the recognition processes advances to

the second stage where groups of simpler shapes that satisfy appropriate constraints are

combined into more complex ones. This stage of the recognition process occurs under the

LADDER shape description framework designed by Hammond and Davis (2004, 2001).

LADDER is a shape description language that allows shapes to be recognized by

describing the components of a shape and the relationship between the components. The

LADDER language also allows recognized shapes to be components in more complex

shapes. For example, a voltage source is described as a combination of lines, a plus sign,

11

and an ellipse (Figure 2.1.1). A plus sign, because it is not a primitive shape, must also be

described, in this case as a horizontal line intersecting a vertical line at its center.

(define voltage-source

(components
(Line top)
(Line bottom)
(Plus pl)
(Line minus)
(Ellipse circle)

0)

Figure 2.1.1. In order to recognize a shape using LADDER, the components of the shape must be
specified. In this example, a voltage source is made of 3 lines, a plus sign, and a circle.

A shape description cannot stop at listing its components, or otherwise the lines and

the ellipse shown in Figure 2.1.1 would be considered a voltage source. We need to

specify the relationship between the component shapes. For example, the plus and minus

signs must be inside the ellipse, while the lines representing the terminal wires of the

voltage source should intersect the circle at one end, be parallel to each other, and be

perpendicular to the minus sign (Figure 2.1.2.). Note that constraints are transitive. By

specifying that the lines "top" and "bottom" should be parallel and that "top" should be

perpendicular to the minus sign, the constraint that "bottom" should also be perpendicular

to the minus sign no longer needs to be explicitly stated. Specifying redundant constraints

does not affect the correctness of the system, but does slow down the recognition process.

12

(defne voltage

(components
(Line top)
(Line bottom)
(Plus p)
(Line minus)
(Ellipse circ))

(constraints
(contains circ p1)
(contains circ minus)
(perpendicular minus top)
(paralel top bottom)
(intersects circ top.pl)
(intersects circ bottomnpl)
(opposideSide minus bottompl plus-center)

(opposideSide minus top-pI bottoinp 1))

Figure 2.1.2. Appropriate constraints must be specified in addition to the list of components

Constraints can also be added for purposes of convenience. In Figure 2.1.2., the

second-to-last constraint specified is (opposideSide minus bottom.pl plus.center). This

constraint means that the endpoint "p1" of the line called "bottom" and the center point

of the plus sign should be on opposite sides of the minus sign. This constraint does not

actually help the system recognize a voltage source. The voltage source would look

exactly the same if we were to switch the lines "top" and "bottom". Instead, the purpose

of this constraint is to help the system identify which line ("top" or "bottom")

corresponds to which terminal of the voltage source. Once this is done, devices connected

to the lines "top" and "bottom" can be matched with the correct terminals so that the

reasoning component does not need to perform this check explicitly. Convenience

constraints like the one just described are included in other directional components as

well (e.g., current source).

One may be tempted to specify orientation-dependent location constraints like

"above" and "below" (e.g., "top" is above "bottom"), doing so would make the system

reject true positives in different orientations. Figure 2.1.3 shows examples of true

13

+

positives in different orientations that would be rejected by using orientation-dependent

constraints.

Figure 2.1.3. If orientation-dependent location constraints like "above" and "below" are used, these
valid examples of voltage sources would be rejected.

Finally, the recognition of a wire is an interesting problem that must be handled by

taking advantage of context. Seen in isolation, there is no way for the system to tell

whether a line that has just been drawn is part of a circuit device or a wire. Knowledge of

the context can help resolve this issue. In the electrical engineering domain, wires are

used to connect circuit devices. Therefore, for a line to be considered a wire, it must be

connected to at least two other shapes. Moreover, the shapes that the wires are connected

to must be shapes that have been recognized to be complete circuit devices. For example,

Figure 2.1.4.a shows a line intersecting a voltage source. The line could be part of a

capacitor (Figure 2.1.4.b) or it could be a wire (Figure 2.1.4.c). Therefore, the system

waits until there is additional input before deciding whether to classify the line as a wire.

14

-1

(a) (b) (c)

Figure 2.1.4. In (a) voltage source is shown to intersect a line at its positive terminal. At this point, the
system does not yet no whether it is a wire. (b) shows that the user intended for a line to be part of a
capacitor, and thus is not considered a wire, while (c) shows that after the user draws a resistor
connected to the line, the line changes colors to show that it was recognized as a wire.

2.2. Representational Translation

Once the circuit devices are recognized correctly, we would like to analyze the circuit.

However, before handing off the circuit for analysis, the system must act as a translator

between the recognizer and the reasoner because the two components use very different

representations for circuit devices. This difference in representation arises primarily

because the two types of circuit descriptions contain fundamentally different information.

The domain knowledge needed for the display and recognition of circuits is mainly

geometric: to recognize circuits, the system needs to know information about how the

device is drawn, what sub-shapes the device consists of, and what constraints must these

sub-shapes satisfy in order for them to be classified as a complete circuit device.

By contrast, the representation used in the circuit reasoning component contains

information about how the device behaves rather than what it looks like. This information

includes relations between the parameters and terminals, the different models under

which the circuit can be analyzed, and also the various sets of assumptions under which

the circuit operates. Figure 2.2.1 shows a graphical description of a voltage source

followed by a behavioral description of the voltage source. The behavioral description

contains nothing about how the shape is drawn while the graphical description contains

nothing about how the parameters and the terminals are related to each other.

15

Behamioral Description:

Name: voltage source Name: voltage source

Components: Terminals: portl. port2
Line portI
Line port2 Parameters: voltage
Plus p1
Line minus Relations:
Ellipse circ KVL: Voltage =Potential(portl)
Text voltage - Potential(port2)

Constraints: KCL: Current(port1)= - Current(port2)
(contains circ plus)
(contains circ minus)

Figure 2.2.1. A comparison between a graphical description of a voltage source and a behavioral
description of a voltage source. The graphical description does not include KVL and KCL relations
while the behavioral description contains none of the component shapes and constraints they have to
satisfy.

Perhaps the most important difference is the type of connectivity information used by

the recognition versus the reasoning components. The recognition component accepts

geometric connectivity, which is the way that users naturally express connections

between devices. In Figure 2.1.4.c, the wire connecting the terminals of the voltage

source and the resistor expresses the fact that those two terminals are connected.

On the other hand, the reasoning system uses topological connectivity. The reasoning

component is most concerned with the notion that connected terminals are equipotential

and that current can flow from one terminal to the other. By contrast, it does not care at

all about the graphical locations of these connections.

To make the user always draw topological connections is very unnatural. Without

using wires, the user would be required to draw in a way such that if two terminals were

connected, then the lines that represent their terminals would have to terminate at a

common point. Figure 2.2.2 shows an example of how unnatural it would be to require

users to draw topological connections. With simple circuit diagrams, this requirement

would be merely annoying. With complex circuits, a diagram would be extremely

difficult to create.

16

Graphical Description-

Forcing the reasoning component to include the notion of a wire is also awkward.

While it is natural for humans to think about wires when drawing or physically

constructing a circuit, the notion of wires is unnecessary for the analysis of a circuit.

Adding wires to the reasoning component can be achieved by adding a new device called,

for example, a "wire-segment". The wire-segment will have two equipotential terminals.

It would have another relation setting the sum of current flowing into its two terminals

equal to zero. Based on this description, for a circuit node that contains N terminals, N-1

wire-segments need to be created between distinct pairs of terminals. In Figure 2.2.2.a,

this means that 3 wire-segments are required to represent each of the 2 wires in the circuit.

This description of a wire is equivalent to the notion of a circuit node. While it would

make the translation process easier, it would introduce delays into the reasoning process.

Because the reasoning process is occurring at the same time as the results are being

shown to the user, introducing delays into the reasoning process may negatively affect the

user experience.

(a) (b)

Figure 2.2.2. In (a) and (b), two equivalent parallel resistor networks are shown. (a) shows how a

human naturally sketches using the concept of wires to express connectivity. (b) shows how the user

would be required to draw if only topological connections were allowed.

The translation from the graphical description to the behavioral description of a

circuit is accomplished in two steps. First, a mapping is created between the shapes that

represent a device and their reasoning counterparts of the same name. The text

components of each device are mapped to the appropriate parameters. For a voltage

source, the text component named "voltage" is mapped to the parameter named "voltage".

Resistances, capacitances, and inductances are handled in the same manner. A mapping

17

between the device terminals and their graphical representations are also created. In

Figure 2.2.1 for example, port1 and port2 of a voltage source corresponds to the lines of

the same names respectively.

Once this mapping is created, the system proceeds to step two of the translation

process, which creates the topological connections between devices. The system first

creates a list of all terminals of all devices in the circuit. It picks the first terminal in the

list and retrieves its graphical representation. Next, the line that corresponds to the

terminal is tested for geometric intersection with the lines that represent all the other

terminals. Those that are connected will be placed into one single circuit node. Then the

system recursively performs this connectivity check, starting with the terminals that were

connected to the initial terminal. In order to prevent loops, the terminals that have been

connected previously are not checked again. This recursive process finds all terminals

reachable via terminal-to-terminal or terminal-to-wire-to-terminal connections. All

terminals found are topologically connected to a single circuit node and are removed

from the list of terminals to check. Then, the system creates a new circuit node and

repeats the same process until no terminals remain.

While creating the topological connectivity information, the graphical location of

intersection between pairs of device terminals is saved. This information is used to aid

the playback of deduced values and their justifications.

2.3. Constraint-Propagation Circuit Reasoning

After the circuit has been translated into the appropriate representation, it is given to

the reasoning component. The circuit reasoner used in this thesis was built by Hanson

and Sussman (2003) and uses constraint satisfaction to solve the circuit, instead of the

matrix methods that are more commonly seen in circuit simulation systems like Matlab.

As stated in Stallman (1977), the constraint propagation style of reasoning can make

deductions based on limited information in a way similar to the behavior of expert circuit

analyzers. This reasoning process also generates justifications for each deduction and

these justifications can be examined by the user to help learn the appropriate relations and

assumptions that come with each circuit device.

18

The reasoning component accepts input in the form of circuit device descriptions in

the circuit language specified by Hanson and Sussman (2003). This circuit language

description contains information such as device terminals, parameters, and relations. The

relations are then used to create the constraints that must be satisfied by the various

terminals and parameters in the circuit.

For example, let us examine a resistor. The resistor obeys Ohm's law, meaning that

the voltage difference between its terminals is equal to the product of the resistance and

the current flowing through it (commonly expressed as V = IR). This constraint contains

three slots (V, I, and R) that can be filled with values. If all slots except one have been

filled, the value for the remaining slot is computed. Whenever a slot is filled in with a

numerical value, this value is then given to all other constraints that use the same slot.

This is the propagation step. This process of constraint solving and propagation is

repeated until no more deductions can be made.

In addition to relations like Ohm's Law and Kirchoff's Laws, the circuit language

also contains the concept of groups of mutually exclusive relations. This is used by more

complex devices to express notions like operating region or different parameter

assumptions. For example, a transistor is said either to be beta-infinite or beta-finite.

Under the beta-infinite condition, there is no current flowing through the base terminal.

Under the beta-finite condition, the base current is equal to the collector current divided

by a factor of 100.

One very important issue to realize is that this process of constraint propagation is not

a complete inference system. In particular, it cannot solve circuits that require

simultaneous equations. This greatly limits the types of circuits the system can solve.

While local constraint propagation enables to system to solve complex circuits like the

one presented in Figures 1.1, it does not allow the system to solve a simple voltage

divider resistor network (Figure 2.3.1). In the example shown, solving one resistor would

enable the system to solve the other resistor. However, because both resistors have two

empty slots (current and voltage difference) in their Ohm's Law constraints, the system

would need to simultaneously solve two equations (one for each resistor) in order to

deduce the current flowing through the circuit and the potential between the two resistors.

19

A possible way to work around the lack of a complete inference system is to use the

notion of equivalent devices. For example, we could define a new device called a "series-

resistor-network". The device would have an indefinite number of parts, all of which are

required to be resistors. The device would have two terminals and obey KVL, KCL, and

Ohm's Law. Its resistance value would be equal to the sum of the resistance values of all

of its resistor parts. In effect, we have combined the resistors in the network into a single

equivalent resistor. If the terminal potentials and all of the resistance values are known,

the Ohm's Law constraint for the series-resistor-network device only needs a single step

deduction to compute the current that is flowing through it. Once the current has been

calculated, the node voltages along the resistor network can be computed by the Ohm's

Law constraints for each of its resistor parts. In this manner, the circuit in Figure 2.3.1

can be solved without a complete inference system. Similar new macro-devices (e.g.,

"parallel-resistor-network") can also be defined to handle additional circuit types. This

idea of using equivalent devices is discussed in more detail in Sussman (1977).

The new devices for series and parallel resistor networks are more than just a clever

hack to fill the gap for the reasoning component. In fact, students in introductory circuit

theory classes are often taught to analyze resistor networks in exactly the same way.

Therefore, the proposed new circuit devices would actually have significant educational

value in addition to enabling the reasoner to solve a larger class of circuits. Unfortunately,

these additions to the system could not be accomplished because there is currently no

construct in the circuit language that allows for the definition of a device with an

indefinite number of parts.

20

Figure 2.3.1. The reasoning component used in this thesis is not a complete inference system. It

cannot solve circuits that require simultaneous equations. In this series resistor network, each of the

two resistors has two empty slots (current and voltage difference). Thus, we would need to solve a

system of two equations in order to deduce the current flowing through the circuit and the potential

between the two resistors.

2.4. Reasoning Playback

Once the reasoning process begins, results are shown to the user after each reasoning

step. For each newly deduced value, the system queries the reasoner for the relation that

justifies the deduction. Figure 2.4.1 shows an example of the playback sequence. First,

the name of the relation is shown to the user. Next, the body of the relation is shown. The

relation is displayed in prefix notation with the mathematical operators (e.g., =, +, *)

shown before the arguments. This is a consequence of the fact that the reasoning

component expresses its constraints in prefix notation. Third, the system queries the

reasoner for the values of the supporting variables in the relation and displays the relation

again, but with all the supporting variable values filled in. Then, the system shows the

deduced value. Finally, the justification disappears, leaving only the deduced value as the

system proceeds to the next deduction. The system repeats this process of one-step

propagation and deduction playback until no more deductions can be made.

21

Figure 2.4.1. A partial sequence of the reasoning playback. First, the name of the law (Ohm) used in

the deduction is shown. Then the body of the relation is displayed (= Voltage (* resistance Iporti)).
Next, the values for all variables except for the variable being deduced are shown. Last, the deduced

value is shown (the current for the resistor is shown to have a value of 0.75 amperes downwards).

After the sequence for one deduction is complete, the justification disappears, leaving only the

deduced value (the values 15 V and 0 V are the remains of previous deductions).

Prior to starting the playback sequence, the user can change the speed at which each

step is shown and can choose whether to show the justification for each device type and

relation. During the playback sequence, the user can pause as well as rewind the playback.

These options allow the system to be tailored to the individual learning needs of the user.

3. Results

The performance of the recognition component was tested in a pilot study. An

overview of the results is given here. A more detailed discussion of the study, including

the experimental setup and analysis of the results, is contained in sections 3.1 - 3.4. The

results of the study showed that the recognizer in general was not sensitive enough. In

other words, many shapes that should have been valid circuit symbols were rejected by

the recognizer. Recognition errors were evenly split between stroke level problems and

constraint specification problems. A few false positives were generated due to under-

specification of constraints for certain shapes.

22

10 V

2Ip rt-44-i

0l

There were two main stroke level problems. One problem was that, due to a low

sampling rate, some strokes contained too few points and were not classified correctly.

The other problem was that short line segments were often not classified correctly.

Constraint specification problems mainly concerned shapes with repeated parts like a

resistor or ground symbol. The variety with which users tended to draw these shapes

showed that the descriptions for these shapes were over-constrained.

Several deficiencies of the LADDER framework and the stroke processor were

revealed. First, shapes with repeated motifs like resistors turned out to be difficult to

describe. Second, symbols like the one for an inductor presented additional challenges

because its sub-structures are not easily segmented using the corner detection algorithm

in the stroke classifier. And third, specifying relationships between shapes (instead of

between components) was awkward.

A test of the reasoning component was not conducted. To gauge the effectiveness of

the reasoning component, a larger user study should be conducted to test whether

students in a circuit theory class using the system are able to gain a better understanding

of the material. Experimental issues for this possible study are discussed in section 5.

3.1. Experimental Setup

Subjects for the pilot study were asked to reproduce circuit diagrams that were shown

to them. The performance of the recognition component of the system was measured in

relation to several key metrics. The experiment was designed to measure the frequency of

false positives and false negatives, whether errors occurred mainly at the stroke level or

the constraint specification level (defined later), whether the method for parameter

specification was intuitive, and how much effect the input media had on recognition

performance.

The study consisted of 10 users divided evenly into two groups. The first group

sketched the circuit diagrams on a 40" plasma display via an interactive overlay on top of

the display. The second group sketched the circuit diagrams on a Tablet PC with a 12"

screen. The purpose of this separation was to understand the effect of the input device on

the usability of the system's user interface.

23

Each subject was asked to reproduce 15 circuit diagrams on the computer. Each

diagram was drawn from sample problems used in an introductory circuit theory course.

The subject was told to draw at a reasonable speed using the same degree of care as they

would for an important homework assignment. This request was made as the study was

not designed to robustly measure how well the system handles noisy input.

For each circuit diagram, the user was first shown the sample drawing and then asked

to reproduce it on the computer. At all times, examples of how individual circuit devices

should be sketched were available to the user for reference. The actual diagram they were

asked to sketch was not available for reference while they were drawing. This

requirement was made so that the subject would not copy the sample drawings stoke for

stroke. However, if the subject forgot what the diagram looked like, he or she was

allowed to stop drawing and refer to the diagram before starting again.

After the user completed a drawing, he or she was asked to specify parameters for

some or all of the circuit devices. The parameters were described to the user verbally (e.g.,

the voltage source has a strength of 10 volts). The subject was then asked to double click

on where they wished to place the parameter and write the value into the text recognition

popup window. This part of the study was designed to test whether the system's method

for parameter specification was intuitive. For voltage and current sources, the first text

input placed within the ellipse component of the shape was considered to be the value of

the voltage and current parameters, respectively. For devices like resistors, inductors, and

capacitors, the parameters were required to be within a 50-pixel distance from the center

of the respective components.

The user had access to an "undo" button that would erase their last stroke. The

number of times that the user used the undo button was counted in order to control for the

differing level of patience for each user. Feedback to the user was limited for the

purposes of the study. While stroke level recognition results were shown to the user, the

color changes that reflected shape recognition was not shown. This was designed to

eliminate the effect of each user's ability to interpret color changes.

Out of the 15 diagrams each user was asked to draw, three from the first set of five

were identical to three from the last set of five. This was designed to test whether users

were able to adapt to the system over the course of the study. Without the color changes

24

that reflect shape recognition, this part of the experiment was essentially measuring

whether the user could observe errors in stroke classification and adapt accordingly (e.g.,

by drawing more carefully or by breaking down strokes).

Once the user completed the drawings, the data was recorded for several metrics used

to gauge the performance of the system. First, the number of circuit devices correctly

recognized was measured as a percentage of the total number of circuit devices in each

diagram. In this metric, ground symbols were considered a circuit device but wires were

not. The reason why wires were not included is because correct recognition of wires

depends almost entirely upon correct recognition of the circuit devices the wire intersects.

Thus, including wires in this first metric would double the effect of the intersecting

devices on the recognition score. The total number of correctly recognized devices is very

useful for showing how natural the sketch-based interface was overall. However,

additional metrics were needed because this measure does not give information indicating

the type of errors that occurred the most or suggest how to improve the system to correct

these errors.

After the number of correctly recognized devices was recorded, the incorrectly

recognized shapes were analyzed and placed into one of two categories. The first

category consists of devices not correctly recognized because of stroke level errors.

Figure 3.1.1 .a shows a drawing intended to be a capacitor that was not recognized

because one of its lines was classified as an arc. The second category consists of devices

not correctly recognized because of a constraint level error. A constraint level error is

defined as a false negative where all component primitives of the shape were correctly

classified, but the constraints were not satisfied. Figure 3.1 .1.b shows another intended

capacitor that was not correctly recognized. While all 4 of its component lines were

correctly recognized, the two halves of the capacitor were drawn too far apart to satisfy

the constraints specified in the capacitor's LADDER description.

25

(a) (b)

Figure 3.1.1. (a) shows a drawing intended to be a capacitor that was not recognized because one of

its lines was classified as an arc. The bottom half is yellow showing that the recognizer correctly

recognized that half of the capacitor. However, the top half was not correctly recognized as the line

and the arc are shown in their original colors. In (b), both halves of the capacitor were correctly

recognized, however, they were placed too far apart to be considered a capacitor by the system. This

comparison illustrates the difference between a stroke level error and a constraint level error.

This separation of error types was useful for separating the performance of the stroke

classifier from that of the LADDER framework so that future work can better focus on

the parts of the system that would make the most impact on performance. However,

because the two parts of the recognizer work in sequence, stroke level errors may be

masking constraint level problems. For example, if the arc in Figure 3.1. .a was corrected,

it is still not clear whether the two halves of the capacitor are close enough to be correctly

recognized. Thus, the estimation of constraint level errors in this study is most likely an

underestimate of the true measure of the constraint level errors of the system.

The measurement of constraint level errors also brought out the question of threshold

values for constraints. For example, the capacitor in 3.1 .1.b was not correctly recognized

because the two halves were placed too far apart to meet the constraint which specified

that the joints (i.e., where the two lines of each half meet) of the two halves must be

"near" to each other. However, we should ask the question of how near shapes must be to

be considered "near" to each other. How do we decide the threshold between what is

considered near and what is not? While an optimal threshold value can always be

26

empirically determined, it turns out that a single static threshold value may not be good

enough. Instead, threshold values may be best determined dynamically using contextual

information. Section 3.4 discusses this issue in greater detail.

3.2. Experimental Results and Discussion

In general, experimental results showed that the system failed to recognize many of

the circuit symbols drawn by the users. Out of the 100 possible circuit devices in all 15

diagrams, an average of 47% were recognized correctly for each user. The group

averages were significantly different from each other. While the Tablet PC group

averaged 53%, the interactive overlay group averaged 41% (Table 3.2.1). Three common

recognition problems were identified. Constraints for resistors were overly restrictive and

rejected many good instances of resistors. Devices connected by a single straight line

were not recognized correctly. Finally, shorter line segments were often classified as arcs

by the stroke processor. These and other common problems are discussed separately in

sections 3.3 and 3.4.

The slow speed of the online recognition process was a source of many complaints

from the users. Because roughly half of the shapes were not recognized, many primitive

shapes remained on the drawing surface and were checked for shape constraint

satisfaction whenever a new stroke was drawn. For the more complex diagrams, users

often had to wait 5 to 10 seconds before the recognition process was complete.

Users in the overlay group complained about the difficulty of drawing on the

interactive display unit. Because there was a significant distance between the image and

where the pen made physical contact with the overlay, users often could not see exactly

where they were drawing. The same effect was much weaker for the Table PC simply

because the pen was much closer to the image. Moreover, while users of the Tablet PC

could move the mouse pointer by hovering the pen over the drawing surface, the mouse

pointer on the overlay did not move until a mouse button press was registered. This

meant that users in the overlay group did not really know where the stroke would start

before he or she started drawing. These drawing difficulties may be the primary cause of

the difference in the average recognition scores between the two user groups.

27

In addition to verbal feedback from the user, the number of undos used also suggested

that the overlay was more difficult to draw on. While the overlay group used the undo

button an average of 3.51 times per circuit diagram, the tablet group only used it an

average of 0.96 times per diagram (Table 3.2.1).

Overall, there were slightly more recognition errors in the constraint category than in

the stroke category. The division of errors was roughly even for the overlay group. For

the tablet group, the amount of constraint errors (as a percentage of total errors) was

significantly higher than the amount of stroke level errors. For the constraint level, the

error rate of the overlay group was slightly higher than that of the tablet group. However,

there was a much larger difference between the two groups at the stroke level (Table

3.2.1). This would seem to suggest that, even with the increased use of the undo button,

users in the overlay group still found it harder to draw the correct strokes than the tablet

users.

Overlay Tablet Mean Difference

Total devices drawn 100 100 100 0

Average # of Devices recognized 41 53 47 -12

Average # of Stroke level errors 30 20.3 25.15 9.7

Average # of Constraint level errors 29 25.7 27.35 3.3

Stroke error / total error 51% 44% 47.5% N/A

Constraint error /total error 49% 56% 52.5% N/A

Undos per diagram 3.51 0.96 2.24 2.55

Table 3.2.1. The overlay group performed substantially worse than the tablet group. The average
number of devices recognized was higher in the tablet group by 12%. While the difference in
constraint level errors between the two groups was small, the difference in stroke level errors
between the two groups was very large. The overlay group also tended to use the undo button much
more than the tablet group.

Parameter placement also revealed differences between the two user groups. Users in

the overlay group were very consistent in whether they placed the parameter on top of the

circuit device or on nearby blank space. This seemed to suggest that users can be divided

into two groups, one that naturally preferred to place parameters on top of devices and

one that preferred to place parameters next to devices. However, the tablet group showed

a rather different pattern. While some tablet users consistently placed parameters on top

28

of devices, not a single user consistently placed them next to the devices. This difference

was most likely caused by the tablet's smaller screen size. When there is little space

between devices, even if the user would prefer to place the parameter next to device, he

or she may be forced to place it on top of the device instead.

The results for the three pairs of identical drawings were also analyzed and compared

across the two groups. While the tablet PC group showed an average of 17%

improvement in correctly recognized symbols, the overlay group only showed a I %

improvement. Table 3.2.2 shows the average number of additional components

recognized for each of the three pairs as well as the percent improvement in recognition

for each user group. One possible explanation for this difference was that users in the

overlay group were frustrated with the user experience and drew less carefully for the last

few diagrams.

Pair 1 Pair 2 Pair 3 % improvement

Overlay Group 0.00 -0.40 0.60 0.01

Tablet Group 0.33 2.00 0.33 0.17
Table 3.2.2. The overlay group showed a significant decrease in the average number of symbols
correctly recognized while the tablet group showed a significant increase. One possible explanation
for this difference was that users were simply too frustrated with the overlay's user experience.

3.3. Stroke Level Problems

One common stroke level error was that short line segments were often classified as

arcs. The root of this stroke processing problem lies in the fact that due to the sampling

rate of the input interface, a short line segment may consist of only 3-5 points. If these

points were not exactly collinear, what looks more like a straight line to the user may

produce a smaller error for an arc fit in the stroke classifier.

One solution to this problem would be to increase the sampling rate of the drawing

surface. However, if that is not possible, the problem may also be corrected by using

contextual information in the shape recognizer. For example, Figure 3.3.2 shows a shape

intended to be a voltage source that was not recognized because the line that was

supposed to be the minus sign was classified as an arc. Conceivably, the shape recognizer

could see that all other components and constraints specified in the shape definition have

29

been satisfied and decide to look at what would happen if the arc was changed to a line.

The system would see that doing so would result in a correctly recognized shape, and

therefore decide to go ahead and complete the correction.

Figure 3.3.1. The intended voltage source was not correctly recognized because the minus sign
designating its negative terminal was incorrectly classified as an arc. To fix this problem, the
recognizer may use contextual information to decide whether to correct a stroke.

Segmenting the sub-strokes of an inductor also poses a difficult problem for the

stroke classifier. Because the classifier relies on corner-detection to break down complex

strokes into sub-strokes, shapes without well-defined corners in its substructure (like the

inductor shown in Figure 3.3.1 .a) could not be properly handled. In order to correctly

recognize the coils for an inductor, a different method for stroke processing that does not

depend solely on corner-detection needs to be used in order to process the corner-less

spiral structures.

Another commonly accepted way to draw inductors does have well defined corners

(Figure 3.3.1 .b). However, if the entire inductor were to be drawn in a single stroke (as

users tend to do), the stroke processor would not be able to consistently segment out all

of the arcs in the inductor. While the stroke processor can easily separate out the two

lines from the rest of the inductor, it would then break down the arcs into a combination

of smaller lines and arcs. Thus, the user must draw each arc of the inductor with separate

strokes. To minimize the inconvenience imposed by this restriction, an alternate

representation of an inductor was used (Figure 3.3.1 .c). The number of arcs in an inductor

was reduced to one so that it took 3 strokes to draw as opposed to 5 or 6.

30

(a) (b) (c)

Figure 3.3.2. (a) and (b) are commonly accepted alternatives to drawing an inductor. The example
shown in (a) cannot be handled by the stroke process because it does not have corners which the
stroke processor use to break down complex strokes. On the other hand, (b) does have well defined
corners. However, the stroke recognizer cannot break down the arcs between the corners consistently.
If (b) were to be drawn in one stroke, the recognizer would most likely break down each arc into
smaller arcs and lines. Therefore, the strokes in an inductor must be drawn separately. (c) is the
representation of an inductor used in this thesis in order to reduce the annoyance of having to draw
each stroke separately.

3.4. Constraint Level Problems

One common constraint level problem in the user study was the fact that all devices

were specified with their terminal wires. For example, the inductor was defined to be a

line (portl) attached to an arc attached to another line (port2). This meant that connected

devices cannot be recognized unless the user used two strokes to draw the straight line

between them (Figure 3.4.1). During the user study, the requirement for the user to break

down what should intuitively have been contiguous straight lines made the user

experience much less natural than it would otherwise have been. Even though each user

was reminded to break down strokes between connected devices, there was an average of

12.535 such connections across the 15 circuit diagrams that were not broken by the user.

31

Eliminating this unnecessary constraint would make the user experience much smoother

and may result in a significant gain in recognition performance. To eliminate this

requirement, the terminal lines should be defined as contextual shapes connected to the

device rather than part of the device itself.

Lift pen

Figure 3.4.1. The two series capacitors at the top would not be recognized correctly. One would be
recognized as a capacitor and the other one would be missing a line component. Only if the line
between the capacitors were drawn with two separate strokes could both capacitors be recognized
correctly.

Another common problem was that resistors were often not correctly recognized

because the constraints that describe the resistor were too restrictive. In the system, the

LADDER description for a resistor was defined to have an indefinite number of

alternating parallel lines. While the indefinite number of lines made the shape description

more adaptable to user drawing habits, the constraint that alternating lines must be

parallel seemed to be too restrictive. Many shapes that clearly should have been

considered valid resistors were not correctly recognized because some of its alternating

lines were not parallel. In Figure 3.4.2 for example, a resistor was not recognized because

lines A, B, and C were not parallel to each other. Instead, a resistor should have been

specified so that consecutive lines had to have acute angles. This would have been a

much looser constraint and most likely would have substantially reduced the number of

false negatives.

32

B
A

C

Figure 3.4.2. A shape that should have been a valid resistor was not correctly recognized because the
lines A, B, and C were not considered parallel to each other.

Specifying an indefinite number of lines for a resistor was also awkward under the

LADDER framework. In order to achieve this flexibility, recursive definitions for the

body of the resistor (the section between its two terminal lines) had to be made. The first

definition (resistor body type A) was specified to have 4 lines. A second definition (type

B) was specified to have an instance of type A plus an additional line. Type B was then

defined to be a sub-type of A. These two type definitions create a looping hierarchy that

enables the system to accept an arbitrary number of lines as the resistor's main body.

For example, suppose we first drew 4 lines that were recognized as a resistor body

type A. Next, we draw an additional line. This meets the definition for resistor body B.

However, because B is a sub-type of A, the newly acquired instance for B is also

considered an instance for A. Therefore, when we draw a sixth line, we once again satisfy

the definition for resistor body B. While it was possible to specify the notion of an

undetermined number of connected lines using this recursive technique, it is generally

desirable to not have to do so via such a convoluted work-around. What is really needed

is a mechanism in LADDER to describe a list of indefinitely repeated sub-shapes.

Describing the relationships between shapes (as opposed to between components of a

shape) was similarly awkward. In the circuit domain, the concept of a wire must use

contextual shapes to determine whether a line should be considered a wire. However, the

LADDER framework does not have a natural way to specify the relationship between a

wire and the contextual shapes it must intersect. A work-around exists in LADDER in the

33

form of contextual components. A contextual component is a component of the shape that

can be shared between shapes. Thus, a wire was defined to be a line that intersects two

circuit devices (or wires). The problem with specifying the contextual shapes to be a

(special) component of the wire is that many behaviors of a regular component are

imposed onto the contextual component unless explicitly stated otherwise. For example,

if one clicks on a wire to select it, the contextual devices it is connected to would also be

selected. An additional check must be explicitly created so that contextual shapes are not

selected along with the normal components. Other editing and display behaviors like

deletion and coloring also face the same problem of an ambiguous delineation between

something that is a part of a shape and something that is related but not truly a part of the

shape.

Finally, the difficulty of threshold definition in determining the satisfaction of

constraints among the components of a shape was made more apparent by the user study.

For example, in the current implementation of LADDER, anything within 5 pixels of a

point is considered to intersect that point. The problem with defining this static threshold

is that it cannot take into account differences in the size of shapes drawn. This turned out

to be an issue for drawing complex diagrams where each device needed to be small.

Figure 3.4.3 shows two shapes that would have met the definition for half of a capacitor

(defined to be two lines where line I is the perpendicular bisector of line 2 and an

endpoint of line 1 touches line 2). In both shapes, an endpoint of line 1 is within the

threshold for intersection with line 2. However, while the shape on the left could very

well be part of a capacitor, it is fairly clear that the shape on the right is actually a plus

sign.

This particular difficulty in LADDER was overcome by adding a new constraint to

the definition of a capacitor. The new constraint was that the two lines making up half of

the capacitor cannot cross at their centers. This kept the left shape in 3.4.3 valid, but

made the system reject the plus sign on the right. However, LADDER should not make it

necessary for its users to specify such a constraint because a constraint like this contains

knowledge about the implementation details of LADDER instead of fundamental

geometric information about how the shape should be drawn.

34

1-I

Line 2

Line 2
Line 1

Line 1

Figure 3.4.3. In both shapes, an endpoint of line 1 is within the threshold for intersection with line 2.
However, while the shape on the left could very well be part of a capacitor, it is fairly clear that the
shape on the right is actually a plus sign.

4. Related Work

As a synthesis of sketch-recognition and circuit reasoning, this thesis draws upon

previous work in the two respective areas. Sketch-recognition systems have been around

for a long time. Masayuki (1984) designed a system to recognized logic gates; Mahoney

and Fromherz (2002) built a system to recognize stick figures; Hammond (2001)

designed TAHUTI to handle UML diagrams. In the electronic circuit domain, Gennaria

et al. (2005) created a system that uses ink density and a statistical classifier to identify

circuit devices. Domain knowledge about circuits is used to help eliminate candidates

that do not meet common circuit device constraints (e.g., a resistor should have 2

connectors while a transistor should have 3).

However, these systems all have a common problem - while they can involve

domains with a deep and rich body of knowledge, these systems are very difficult for

domain experts to build or to improve upon. The reason for this difficulty is because

35

these systems do not have a clean separation between the basic stroke classification and

the recognition of the domain shapes. Stroke classification requires signal processing

knowledge and statistical expertise that is often totally unrelated to the domain

knowledge that the system is built for.

By contrast, LADDER (Hammond 2004, 2001) enables a much cleaner separation

between stroke processing knowledge and domain knowledge because it clearly divides

the information from the user input into two categories; one for recognizing primitive

shapes and a second one for recognizing complex domain shapes. Once the domain

expert learns the LADDER language, he/she can easily specify how the domain shapes

are drawn while a signal processing expert can improve upon the stroke classifier to aid

in the recognition of the primitive shapes (e.g., lines, ellipses, arcs).

Automated electronic circuit analysis systems have an even longer history.

Stallman and Sussman (1977) designed one of the first systems for constraint-

propagation style circuit reasoning. De Kleer and Sussman (1978) built a system for

automated circuit synthesis with the same style of reasoning. Constraint-satisfaction has a

great advantage over matrix methods because its process is much more comprehensible to

humans. Whenever a new value is deduced, the reasoner can generate the proper

justifications for it, based on the constraints that were involved in the deduction.

Hanson and Sussman (2003) improved upon previous work by building a more

complete circuit language that can be used to specify circuit devices. The user can

combine device definitions to create more complex macro-devices - much like LADDER

enables users to define shape hierarchies to create more complex domain shapes.

Finally, several systems that integrate sketch interfaces with a reasoning system

have been designed. Alvarado and Davis (2001) built ASSIST to handle hand-drawn

diagrams of physical objects and to simulate their motions. Liwicki and Knipping (2005)

developed a system to handle digital logic circuits.

However, the analog circuit domain is fundamentally different from physics or

digital circuits. It is not possible to animate the action of electric circuits as is done for

physical objects. Unlike the motion of a ball on a plane, showing the flow of electrons

has very little meaning to the user. Analog circuits are also different from digital logic

circuits because in digital circuits only the binary input and output values are relevant. By

36

contrast, analysis of analog electronic circuits must often take into account different

models and regions of operation. Therefore, simply showing a computed value for a part

of the circuit is of limited use. Justifications are needed as well.

5. Conclusion

5.1. Future Work

While the statistical significance of the pilot study is limited, the results do suggest

that the recognition component of the system is too slow and could not adequately handle

the variation in how a user draws circuit devices. Future research should focus first on

improving the recognition sensitivity as well as the speed of online recognition. One

important question to answer is whether the online recognition process can be made fast

enough to allow for a more natural user experience. The recognizer constructed for the

LADDER framework is intended to be a domain-independent shape recognizer. It is

reasonable to posit that heuristics are possible when specialized recognizers using the

LADDER framework are created for a particular domain. For example, the recognizer

could use the number of corners as a heuristic to aid the recognition of resistors. Because

users tend to draw devices with a single stroke, the number of corners in one stroke

should be much higher for a resistor than any other circuit device. On the other hand, if a

segmented stroke contains a large number of arcs, then the recognizer should look to see

if an inductor has just been drawn. It may be possible for this heuristic to be generalized

so that stroke level information (e.g., number of corners and arcs within a single stroke)

can be used to tell the recognizer which shape definitions to check first. Designing and

implementing heuristics for the electronic circuits domain may also help create a

generalized mechanism to add recognition heuristics for the LADDER framework.

Another interesting research task would be to create the necessary components to

enable the system to better recognize resistors and inductors. A better way to recognize

resistors needs new language constructs in LADDER to allow for the specification of

indefinitely repeated motifs. Recognizing the inductor requires the stroke level processor

to successfully segment the substructures in an inductor.

37

Defining relationships between shapes is also an important feature that needs to be

developed in the LADDER framework. In the current incarnation of the LADDER

system, one can specify "contextual components" to get around this problem. However,

the context in which a shape is analyzed should not be considered components of the

shape. In other words, there should be a clear delineation between what is and is not

considered a part of the shape.

On the reasoning side, additional circuit language constructs that allow for devices to

have an undetermined number of parts should be created in order to enable the definition

of equivalent resistor networks. A more complete inference system should also be created

to enable the reasoning component to analyze circuits that cannot be solved without a

system of equations. Stallman (1977) provides an example of a complete inference

system able to solve simultaneous equations using symbolic manipulations.

The system should also have a mechanism that allows the user to represent groups of

circuit devices with a single shape. For example, Figure 5.1.1.a shows a circuit that is

called the common-emitter amplifier, a classic example circuit in many circuit theory

courses. When a student first learn about common-emitter amplifiers, it is useful to draw

all of the devices that make up this amplifier so that its characteristics can be fully

analyzed. However, a student who is analyzing how amplifiers are used in loudspeakers

will only care about the amplifier's input-output relation. Thus, instead of requiring the

user to draw all of the component devices, the system should allow the user to designate a

new and much simpler shape (Figure 5.1.1 .b) to represent the entire common-emitter

amplifier. In this manner, as more complex devices are added to the repertoire of the

student, the system can be used to create and illustrate the increasingly complex layers of

abstraction needed for analysis. Sussman (1977) presents an example of a descriptive

language that can be used to create macro-devices from a combination of simpler ones.

38

ut

input

input output

(a) (b)

Figure 5.1.1. (a) shows a circuit called the common-emitter amplifier. However, if the student is using
the amplifier as a component of a more complex device, only the input-output characteristics are
relevant. As a result, the system should provide an easy way to allow the user to designate that the
shape in (b) represents the entire group of circuit components shown in (a).

The issue of parameter specification should also be explored further. As circuit

devices become increasingly complex, the number of parameters becomes more and more

of a problem for the user. When multiple parameters exist for a given device, the user

may be required to place multiple text inputs on or nearby the shape representing that

device. The system should have an easy way for the user to designate which text input

specifies the value for which parameter. This method of parameter specification should

also allow the user to specify parameter values for complex devices without turning the

drawing surface into a symphony of Greek letters.

To obtain a more rigorous measurement of the system's performance, larger user

studies should be performed. First, as the recognition component is improved, a study

with a much larger user base can give us more confidence about the sensitivity and

specificity of the system. Moreover, it can also give us more accurate measurements of

whether errors are caused by basic stroke processing or by incorrect shape descriptions

and what the thresholds are when solving the constraints.

Additional usage scenarios should also be created to give users more options for

interacting with the system. One important usage scenario would be to allow the user to

specify guesses for the unsolved parts of the circuit. The system will then check whether

the answer is correct and give immediate feedback to the user. This type of usage

39

scenario would be an excellent tool in helping students complete practice problems in

circuit analysis. Moreover, it would also enable the system to handle synthesis problems.

Synthesis problems are fundamentally different from analysis problems because they are

much less constrained. When designing circuits, there are often a large range of values

that can be used for the parameters of each device. Therefore, the inference system

cannot use the available constraints to deduce a unique answer. To give students guidance

in synthesizing circuits, the system must also check for inconsistencies in parameter

value combinations in addition to making deductions.

Once the recognition component is deemed to be sufficiently usable, a user study

should be run to gauge the instructional value of the reasoning system. The user study

should be set in a circuit theory classroom setting with one experimental subgroup that

uses the circuit tutor as an instructional and supplemental learning tool. Students should

be tested on their understanding of the material to see if there is any difference in

performance between the experimental group and the rest of the class. Moreover, because

the reasoning system provides its own guided flow of explanations, it may also be useful

to measure the time savings for the instructor when preparing lesson plans. Of course, the

time that the instructor spends learning how to use the software should be measured

separately.

As with any experiment that involves humans, complete control is impossible to

achieve. Several important issues need to be addressed in order to make this user study

more effective. First, how can the software be available outside the classroom

environment? While the system can still be useful even within the classroom, we suspect

that its effect will be most prominent when used in an unsupervised setting. Second, if the

software is available to students after class, how can control be maintained? Naturally

students from the control group may be curious to use the software as well. Lastly, the

system is only useful if the student uses it. However, one may reasonably guess that those

who use the system most will be the students who are the most motivated. In general,

these students can be expected to perform better than the rest of the class. Therefore, if

we wanted to measure the effect of the system per amount of usage, we must separate out

this self-selection effect from the effect of the system. All of these important issues must

be considered when designing the user study.

40

5.2. Contributions

The system presented in this thesis integrates a sketch-recognition system with a

constraint-propagation circuit solver to create a natural interaction circuit tutoring tool.

The system provides several key improvements over the circuit illustration and tutoring

systems available today. First, the user can sketch desired examples by hand instead of

needing to learn how to use the drag-and-drop interfaces of CAD-like systems. Moreover,

if sketch-based systems become widely available, it also means that the user no longer

needs to learn a new way of creating diagrams whenever the software changes (for

example, using Verilog versus SPICE).

Secondly, the construction of the recognition system was also a field test for the

LADDER framework. The LADDER framework was designed to free builders of

domain-specific sketch-recognizers from needing to also be an expert in the statistical

processing of low-level stroke classification (Hammond 2004). This is the first time that

the LADDER framework was used to create such a sketch-recognition system. Several

deficiencies of LADDER were identified, and possible ways to deal with those problems

are described in section 5.1.

The integration of the reasoner with the recognizer also provides several benefits. The

reasoning system automates the generation of guided examples. This may save time for

instructors and allow examples to be automatically explained in unsupervised settings.

The ability to allow students to create examples and to customize the detail level and

speed of the explanations means that the system can be adapted to the pace and learning

style of each individual student. In this manner, the automated reasoning and immediate

feedback may make this system a very useful learning supplement. Further user studies

can show the extent to which this effect helps students learn in a circuit theory class.

41

6. References

Alvarado, C., and Davis, R. 2001. "Resolving ambiguities to create a natural computer-based
sketching environment", Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), Seattle (WA), 1365-1374.

De Kleer, J. and Sussman, G.J., 1978. "Propagation of Constraints Applied to Circuit Synthesis",
Massachusetss Institute of Technology Artificial Intelligence Laboratory Memo No. 485.

Gennaria, Leslie., Levent Burak Karaa, Thomas F. Stahovichb, Kenji Shimadaa, 2005.
"Combining geometry and domain knowledge to interpret hand-drawn diagrams". Computers &
Graphics, 29 (2005) 547 - 562.

Hammond, T., and Davis, R. 2004. "Automatically Transforming Symbolic Shape Descriptions
for Use in Sketch Recognition", AAAI.

Hammond, T., and Davis, R. 2003. "LADDER: A Language to Describe Drawing, Display, and
Editing in Sketch Recognition", Proceedings of the 2003 International Joint Conference on
Artificial Intelligence.

Hammond, T., and Davis, R. 2002. "Tahuti: A Sketch Recognition System for UML Class
Diagrams", AAAI Spring Symposium on Sketch Understanding.

Hanson, C., and Sussman, G.J., 2003. "Circuit Language for the Intelligent Book", Intelligent
Book Project, MIT Project for Mathematic and Computation.

Liwicki, M., and Knipping, L. 2005. "Recognizing and Simulating Sketched Logic Circuits".
Proceedings of the 9th International Conference on Knowledge-Based Intelligent Information &
Engineering Systems, LNCS, Volume 3683, pp. 588 - 594.

Mahoney, J.V., and Fromherz, M.P.J. 2002. "Handling Ambiguity in Constraint-based
Recognition of Stick Figure Sketches", SPIE Document Recognition and Retrieval IX Conference,
San Jose, CA.

Masayuki, N., and Takeshi, A., 1984. "Pattern recognition for logical circuits diagrams
written by freehand". Technical Report 015 - 002, SIGNotes Computer Graphics and cad

Sezgin, T. M.; Stahovich, T.; and Davis, R. 2001a. "Sketch based interfaces: Early processing for
sketch understanding", The Proceedings of 2001 Perceptive User Interfaces Workshop (PUI'01).

Sezgin, T.M., 2001b. "Feature Point Detection and Curve Approximation for Early Processing of
Free-Hand Sketches", Master's Thesis, Massachusetts Institute of Technology.

Stallman, R., and Sussman, G. J., 1977. "Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided Circuit Analysis", Artificial Intelligence 9:135.

Sussman, G.J., 1977. "SLICES: At the Boundary Between Analysis and Synthesis". MIT
Artificial Intelligence Memo No. 43.

42

Appendix A. User Manual

Software Requirements

To run the reasoning component, the user should download the latest version of

MIT/GNU Scheme and install it in the default directory (C:\Program Files\MIT-GNU

Scheme).

Launching the System

After MIT/GNU Scheme has been installed, the user can now launch the system by

running "CircuitTutorMain" under the package edu.mit.sketch.language.circuitTutor.gui.

Main User Screen

The main user screen is split into three areas. First, the text area at the top of the window

is used to relay messages to the user. The drawing surface in the middle is where users

will sketch the circuit. The slider and the buttons on the bottom of the window can be

used to trigger commands for both sketch editing and circuit analysis.

Drawing Surface

When the user places the pen down on the drawing surface, sketching begins. The path

traced by the user between pen down and pen up is considered a stroke. The stroke is then

processed by the recognizer. The color of the stroke can be changed by the recognizer

depending on how the stroke was classified. When primitive shapes meet the constraints

for a more complex shape, the primitive shapes may also change colors.

43

Selection and Deletion are the editing commands that are triggered using the pen. When

the user clicks on a location on the drawing surface, the shape whose strokes passes

through the clicked location is selected. The user can choose to click on a selected shape

to choose a sub-shape of it, or to click on an empty spot on the drawing surface to

deselect all selected shapes. Once shapes are selected, the next stroke is checked to see if

it intersects the selection. If the stroke intersects any of the selected shapes, then all

selected shapes are deleted, along with the new stroke. If the new stroke does not

intersect any of the selected shapes, then all selected shapes are deselected and the new

stroke is processed by the recognizer.

When the system is recognizing strokes, often times the drawing surface may not register

the new strokes being drawn by the user. If "Recognizing..." is displayed on the upper-

left hand corner of the drawing surface, it is recommended that the user allow the

recognizer to finish before drawing another stroke.

Command Buttons and Slider

Slider - controls the speed of the reasoning playback. Sliding the indicator to the left

speeds up the playback, sliding to the right slows down the playback. The speed cannot

be changed after the user presses the "START" button.

Disable/Enable Drawing Board - toggles whether the drawing surface accepts user input.

Load Component List - can be used to change the list of LADDER shape descriptions

that the system uses to recognize shapes. CircuitTutor.ldl is the list used by the system in

this thesis.

Clear - clears the drawing surface of all shapes. This action cannot be undone.

44

Print Shapes - writes the text representations of the drawn shapes to the user message

area at the top of the main user screen.

Undo - removes that last stroke that was drawn. If the last action was a deletion, the

deleted stroke is restored.

Options - Clicking on this button will bring up a popup window containing the devices

and relations that the system handles. This allows the user to specify which reasoning

justifications to display and which ones to skip.

Start - begins the reasoning process.

Pause/Continue - pause or resume the reasoning playback.

Back - while the system is paused, rewinds the reasoning playback by one step of the

reasoning process.

Forward - Proceeds to the next step of the reasoning playback process.

Text Recognition

The text recognizer is a popup window triggered by double-clicking or right-clicking on

any spot on the drawing surface. The recognizer window has a user input box where the

user writes the text that he or she wishes to place on the drawing surface.

OK - recognizes the strokes drawn on the user input box. It automatically selects the

highest ranked guess made by the text recognizer and places it on the drawing surface.

Cancel - cancels the text recognition. Nothing is added to the recognizer.

45

Recognize - Shows a list of possible candidates for the strokes that the user drew in the

text input box. The user can choose a candidate and then press the "ok" button to add the

selected candidate string to the drawing surface.

Clear - clears all strokes drawn by the user in the text input area.

Circuit Analysis

Before analyzing the circuit, the options and the display speed can be adjusted for the

user. Once the user clicks "START", the drawing surface as well as the options and

display speed buttons will be disabled. Only after the "RESET" button is pressed will the

drawing surface be enabled again. After the user presses start, the deduced values for the

circuit as well as their justifications will be shown on the drawing surface. The text that is

used to display the deduced values does not participate in recognition and is removed

when the "RESET" button is pressed.

46

Appendix B. User Study Data Tables

Summary Statistics:

Overlay Tablet Mean Difference

Total devices drawn 100 100 100 0

Average # of Devices recognized 41 53 47 -12

Average # of Stroke level errors 30 20.3 25.15 9.7

Average # of Constraint level errors 29 25.7 27.35 3.3

Stroke error / total error 51% 44% 47.5% N/A

Constraint error /total error 49% 56% 52.5% N/A

Undos per diagram 3.51 0.96 2.24 2.55

Results for the Interactive Overlay Group broken down by diagram:

1 2 3 4 5 6 7 8

recognized 1.60 2.20 2.20 4.00 3.00 1.20 2.20 1.40

Stroke errors 1.20 0.40 1.80 1.60 1.00 1.40 2.60 2.80

Constraint errors 0.20 1.40 2.00 2.40 3.00 1.40 1.20 2.80

Undo # 4.40 1.80 1.00 5.80 4.00 3.80 2.60 5.00

9 10 11 12 13 14 15 Mean

recognized 4.00 6.80 1.80 2.60 2.80 3.60 1.60 41.00

Stroke errors 3.00 6.00 1.80 0.80 3.00 1.80 0.80 30.00

Constraint errors 2.00 3.20 2.40 1.60 3.20 1.60 0.60 29.00

Undo # 7.80 4.60 1.40 3.60 2.20 3.20 1.40 3.51

47

Results for the Table PC Group broken down by diagram:

1 2 3 4 5 6 7 8

recognized 1.33 2.00 2.33 3.67 3.67 2.67 3.33 4.00

Stroke errors 0.00 0.33 1.67 1.67 1.00 0.33 2.67 1.33

Constraint errors 1.67 1.67 2.00 2.67 2.00 1.00 0.00 1.67

Undo # 0.00 0.00 0.00 1.00 1.33 1.67 1.33 1.67

9 10 11 12 13 14 15 Mean

recognized 5.67 7.67 4.33 2.67 4.33 4.00 1.67 53.33

Stroke errors 1.00 5.67 0.67 0.67 1.67 1.67 0.00 20.33

Constraint errors 2.33 2.67 1.00 1.67 3.00 1.00 1.33 25.67

Undo # 1.00 1.33 0.00 3.00 1.67 0.33 0.00 0.96

Improvement in Number of Devices Recognized between pairs of identical diagrams:

#1, #15 #3, #11 #5, #14 % improvement
Overlay Group 0.00 -0.40 0.60 0.01
Tablet Group 0.33 2.00 0.33 0.17

48

Appendix C. Guide to System Implementation

The software architecture of the system presented in this thesis can be divided into 5

major parts - the user interface, the recognizer, representational translation, the reasoner,

and the reasoning playback. The majority of classes reside in the Java package

"edu.mit.sketch.language.circuitTutor". Unless otherwise stated, all package names used

in this section are relative to this root package.

C.1. User Interface

Most of the user interface resides in the package named gui. The text recognizer was

build using C# and does not fall under the circuitTutor source directory. The components

and subpackages of the user interface are described below.

Package: gui

CircuitTutorMain is the class that is used to launch the system. It contains

nothing other than a main method, which constructs the JFrame containing the

various parts of the user interface.

CircuitTutorFrame is a container for the other parts of the user interface.

CircuitDrawCheckPanel coordinates amongst the different gui components that

is shown on the main user screen. It contains a JTextArea object used to relay

system messages to the user, a CircuitDrawPanel object that is the drawing

surface, and a JPanel object containing the command buttons available to the user.

This class also contains references to the reasoning controller (AnalysisController)

and the reasoning playback controller (InferenceDisplayController) in order to

connect the gui, the recognition component, and the reasoning component.

49

CircuitDrawPanel is the drawing surface that the user sketches on. It contains

MouseListeners to relay user strokes to the recognition component. It also

contains methods used by other classes to add shapes to the recognition

component directly.

AnalyzeButtonsPanel inherits from JPanel. It contains the command buttons for

the user to interact with the system as well as the slider used to adjust the speed of

reasoning playback.

Package: gui.analysisOptions

AnalysisOptionsPopup inherits from JDialog. It is the popup window that allows

the user to specify which relations are displayed when the justifications for

deducted values are shown. The list of relations is organized by device type. This

dialog also allows the user to (de)select all relations, all KVL relations, or all

KCL relations at once.

RuleNode & RuleNodeRenderer inherit from the JTree abstraction and is used by

the AnalysisOptionsPopup to organize and display the relations in a tree structure.

Package: gui.editing

SelectionListener handles the actions of the system when a user clicks on a shape.

The SelectionListener performs two main tasks. First, when the user clicks on the

drawing surface, it checks whether the user has clicked on a shape. Second, the

SelectionListener listens for changes to the list of selected shapes so that it can

automatically changes the color of the selected and deselected shapes accordingly.

50

DeletionHandler handles the actions of the system when a user deletes selected

shapes. This is accomplished by intercepting strokes before they are passed to the

recognizer. The DeletionHandler checks if a stroke that was just drawn intersects

any of the shapes that were selected. If so, all selected shapes are deleted. The

deletion stroke is deleted from the drawing surface as well without ever going

through the recognition process.

ViewableSelectedSynchronizingListener is a listener added to the list of visible

shapes on the drawing surface, when a shape is deleted from the visible shapes list,

ViewableSelectedSynchronizingListener will automatically delete the same shape

from the selected shapes list.

Package: textRecognizer

ClnkHandler communicates with the C# text recognition component by sending

and receiving strings via a TCP socket connection. It inherits from Thread and

whenever it receives string input from the text recognizer, it sends the input to the

TextRecognizer.

TextRecognizer creates a new CInkHandler thread and launches the text

recognition window (written in C#). It has a method that allows other classes to

specify where the popup window should appear, and also a method that sends the

string input from the ClnkHandler to the drawing surface.

Non-Java Code

TextRecognizer.exe (not to be confused with TextRecognizer.java in package

gui.textRecognizer) is the text recognition panel written in C#. It does not reside

in the Java packages. Instead, it can be found in

51

drg/language/circuitTutor/TextRecognizer. The C# source code for the text

recognizer can be found in code/windows/TextRecognizer. This application is the

popup window that is triggered when the user double clicks on the drawing

surface. It communicates with the main system by sending and receiving strings

via a TCP socket connection.

C.2. Recognizer

The code for the LADDER framework was built by Tracy Hammond. Only the

extensions to the LADDER recognizer are listed here

Package: toolkit

SimpleClassifier3Biased is a stroke classifier that inherits from the stroke

classifier built by Metin Sezgin. It biases the classification process so that arcs do

not have to be drawn as carefully to be classified correctly.

CircuitTutorActionFactory handles communication between the drawing surface

and the recognizer. Strokes drawn by the user are first given by the

CircuitTutorActionFactory to the DeletionHandler to see if the stroke should

delete any selected shapes. If the new stroke is not a deletion stroke, then the

CircuitTutorActionFactory will hand it off to the recognizer.

52

C.3. Representational Translation

The representational translator component consists of classes and subpackages under

the package named "reasoner".

Package: reasoner

ComponentLoader translates the shapes drawn by the user into the appropriate

representation for the reasoner. To do so, it uses an intermediate representation of

circuit devices. The intermediate representation has methods that return the

appropriate Scheme expressions (String objects) that define each circuit device

instance for the reasoner.

Package: reasoner.circuitRepresentation,

reasoner.circuitRepresentation.primitives

The classes contained in these two packages make up the intermediate

representation used by the ComponentLoader. The circuitRepresentation package

contains the generic definitions while the circuitRepresentation.primitives

subpackage defines specialized types to represent common devices like a voltage

source, current source, resistor, capacitor, inductor, ground, and transistor.

Instances of these types should be created with the class

PrimitiveComponentFactory.

53

C.4. Reasoner

The reasoning component was developed by Hanson and Sussman (2003). The

reasoner was written in Scheme and is contained in the file named "reasoner-write-to-

java.com". This file resides in the directory "drg/language/circuitTutor/reasoner". The

reasoner communicates with the other parts of the system via a TCP socket connection.

Several classes were created to allow the system to interact with the reasoner.

Package: reasoner

AnalysisController is in interface that handles communication between the

recognition component and the reasoner.

CircuitAnalysisController implements the AnalysisController interface. It calls

ComponentLoader to translate the shapes into the appropriate circuit

representation before sending the circuit to the reasoner (Scheme) for analysis.

Package: toolkit

SchemeConnectionManager is a thread that communicates with the reasoner via

a TCP socket connection. It provides methods to write Scheme expressions to the

reasoner so that the flow of analysis can be controlled. It also saves the output

from the reasoner so that it can be read at another time.

54

C.5. Reasoning Playback

Package: reasoner

InferenceDisplayController is an interface between the reasoning system and the

drawing surface. It provides methods that allow the user to pause, rewind, and

change the speed of the reasoning playback.

CircuitDisplayController implements InferenceDisplayController. It receives the

circuit from the AnalysisController and uses the ReasoningDisplay to place the

appropriate reasoning output onto the drawing surface.

ReasoningDisplay uses the SchemeConnectionManager to communicate with the

reasoner to obtain the appropriate values and justifications. It filters the

justifications, showing only the ones requested by the user. It also controls the

pace of the playback according to the display speed set by the user. The

ReasoningDisplay runs on its own thread so that displaying the justifications can

happen in tandem to user commands (e.g., pause and reset).

55

