
A. Computational Study of a Geometric

Embedding of Minimum Multiway Cut

by

David Shin

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrial Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2006

@ Massachusetts Institute of Technology 2006. All rights reserved.

A uthor :........
Department of Electrical Engineering and Computer Science

May 16, 2006

Certified by..,/..

As id tR. Karger
Associate Professor

Thesis Supervisor

;w .`

Accepted by

Chairman, Department Committee on Graduate Students

ARCHIVES

MASSACHUSETTS INS1W
OF TECHNOLOGY

AUG 14 2006

LIBRAR IES

E.

S...rthur C. .. . Smith
rthur C. Smith

A Computational Study of a Geometric Embedding of

Minimum Multiway Cut

by

David Shin

Submitted to the Department of Electrical Engineering and Computer Science
on May 16, 2006, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrial Engineering and Computer Science

Abstract

In the minimum multiway cut problem, the goal is to find a minimum cost set of edges
whose removal disconnects a certain set of k distinguished vertices in a graph. The
problem is MAX-SNP hard for k > 3. Cglinescu, Karloff, and Rabani gave a geomet-
ric relaxation of the problem and a rounding scheme, to produce an approximation
algorithm that has a performance guarantee of 3/2 - 1/k. In a subsequent study,
Karger, Klein, Stein, Thorup, and Young discovered improved rounding schemes via
computation experiments for various values of k, yielding approximation algorithms
with improved performance guarantees. Their rounding scheme for k = 3 is prov-
ably optimal (i.e., its performance guarantee is equal to the integrality gap of the
relaxation), but their rounding schemes for k > 3 seemed unlikely to be optimal.

In the present work, we improve these rounding schemes for small values of k > 3,
yielding improved approximation algorithms. These improvements were discovered
by applying an improved analysis to the same set of computational experiments used
by Karger et al. We also present computer-aided proofs of improved lower bounds
on the integrality gap for various values of k > 3. For the k = 4 case, for instance,
our work demonstrates a lower and upper bound of 1.1052 and 1.1494, respectively,
improving upon the previously best known bounds of 1.0909 and 1.1539. Finally,
we present additional computational experiments that may shed some light on the
nature of the optimal rounding scheme for the k = 4 case.

Thesis Supervisor: David R. Karger
Title: Associate Professor

Acknowledgments

I would like to thank my parents and my sister Sarah. Their support over the past

years has been vital to me.

Dina Katabi and Dan Stratila allowed me to use their machines for my computa-

tional experiments. I would like to thank them for their generosity.

Finally, I must thank David Karger for the many useful ideas and insights into

this problem. I am grateful for his enthusiasm and advice.

Contents

1 Introduction

1.1 Problem Definition

1.2 Prior Work

1.3 Our Results

1.4 Presentation Overview

2 Background

2.1 The Geometric Relaxation of Calinescu, Karloff, and Rabani

2.1.1 The embedding

2.1.2 The relaxation

2.1.3 Rounding schemes

2.1.4 Integrality gap

2.2 A Study of the Relaxation by Karger, Klein,

2.2.1 Density

2.2.2 Maximum density segments

2.2.3 Some important linear programs .

2.2.4 Side parallel cuts

2.2.5 Computational experiments.....

2.2.6 Results

Stein, Thorup,

2.3 Additional Computational Experiments by Mlosk-Aoyama

3 R.evisiting the Linear Program of Karger et al.

3.1 The constraints of Karger et al.

7

and Young

3.2 Exact density bounds

3.3 Observations and results

4 Lower Bounding the Integrality Gap

4.1 Preliminaries

4.2 Finding exact minimum k-way cuts

4.2.1 Branch and bound enumeration tree

4.2.2 Lower bounds

4.2.3 Branching order

4.2.4 Empirical performance

4.3 Searching for bad embedded graphs

4.3.1 Grid graphs

4.3.2 General embedded graphs

4.3.3 Results and Observations

5 Study of Pair-Isolating Cuts

5.1 Interpreting Mosk-Aoyama's results

5.2 An alternative approach

5.3 Experimental variations

5.4 Results and conjectures

6 Conclusion

6.1 Future work

.. . . . 39

.. . . . 44

47

.. . . . 47

.. 48

.. 48

.. . . . 49

.. 50

.. 51

.. 52

. 52

.. 55

.. 56

List of Figures

2-1 Relationship between linear programs 30

2-2 A pair-isolating slice 34

3-1 A 1,2-conjugate pair of permutations. 40

3-2 A 1,2-aligned segment, split into two parts 42

3-3 Density contributions from a (1,2)-conjugate pair sub-distribution . 43

4-1 A graphical representation of a non-sparc cut 59

5-1 An example of a non-binding constraint becoming a binding one upon

addition of another constraint. 66

5-2 A graphical representation of a wedge-separator 69

List of Tables

2.1 The upper bounds on the integrality gap computed by Karger et al.. 33

3.1 The upper bounds on the integrality gap obtained by improving the

analysis of Karger et al 45

4.1 Improved lower bounds on the integrality gap. 57

Chapter 1

Introduction

In the minimum multiway cut problem, one is given a weighted graph and a size-k

subset of the vertices called the terminals. The goal is to find a minimum cut whose

removal disconnects the terminals from each other. The problem is MAX-SNP hard

for k > 3, so we are interested in approximation algorithms.

We are particularly interested in a geometric relaxation of the problem formulated

by Cl1inescu, Karloff, and Rabani. Their approach uses the common graph optimiza-

tion technique of embedding a graph into a geometric space. In order to round this

relaxed solution to a cut of the graph, one partitions the geometric space, as a parti-

tioning of the geometric space naturally induces a cut in the graph. By partitioning

the geometric space randomly according to a carefully chosen distribution, one can

use the properties of the embedding to prove bounds on the expected value of the

induced cut, thus generating an approximation algorithm.

Specifically, we have sought to investigate the integrality gap of this geometric

relaxation. This value represents the best provable approximation factor based on

Chlinescu et al.'s relaxation. The question has been resolved for the k = 3, but

remains open for k > 3.

In the present work, we establish tighter lower and upper bounds on the exact

value of the integrality gap for various values of k. Furthermore, we analyze some

previous conjectures concerning the yet-to-be-discovered optimal rounding schemes

for k > 3, while preselnting some conjectures of our own.

1.1 Problem Definition

We begin with some preliminary definitions and notation. Given a graph G = (V, E),

and a nonnegative weight function w : E --+ R, a cut is a subset C C E, and the cost

of C is given by w(C) = E cc w(e). When we are additionally given a distinguished

subset T C V, we define a T-cut to be a cut whose removal disconnects every pair

of vertices of T. In this context, the vertices of T are referred to as terminals. If

k = ITI, we also call this type of cut a k-way cut of G.

In the minimum multiway cut problem, we are given as input G, w, and T, and

seek to find a k-way cut of minimum cost. We notate the cost of the minimum k-way

cut of a graph G by wo(G). Note that the minimum multiway cut problem is a natural

generalization of the classical (s, t)-cut problem.

The minimum multiway cut problem arises in several applications. One may

formulate the scheduling of jobs on multiple processors in distributed computing

systems as a minimum multiway cut problem [11]. In computer vision, maximum a

posteriori estimates of a certain useful class of Markov Random Fields can be obtained

by solving minimum multiway cut [2]. Other applications include partitioning files

among the nodes of a network and partitioning the elements of a circuit during the

design of electronic chips into the subcircuits that are placed on different chips [4].

1.2 Prior Work

The minimum multiway cut problem was first studied by Dahlaus, Johnson, Papadim-

itriou, Seymour, and Yannakakis [4]. They showed that the problem was MAX-SNP

hard for k > 3. Additionally, they gave a simple approximation algorithm: for each

terminal, t, use the traditional minimum (s, t)-cut algorithm [5] as a subroutine to

find the minimum cut separating t from the other terminals, and take the union of the

k - 1 smallest such cuts. One can prove that this algorithm achieves an app)roxinlation

factor of 2 - 2/k.

Calinescu, Karloff, and Rabani [3] then gave a novel geometric relaxation for

the problem. Their idea was to embed the graph into the k-simplex, which is a

(k - 1)-dimensional polytope in Rk with k vertices'. This embedding is done in

such a way that the k terminals map to the k simplex vertices. Then, the simplex

is partitioned into k regions, so that each vertex of the simplex lies in a different

region. This partitioning, referred to as a k-way cut of the simplex, induces a k-way

cut in the original graph in a natural way: an edge of the original graph is in the

cut if its endpoints map to different regions of the partitioned simplex. The manner

in which this partitioning is chosen (i.e., a probability distribution over k-way cuts

of the simplex) is referred to as a cutting scheme. Calinescu et al. specify a simple

cutting scheme and use the properties of the embedding to show that the resulting

approximation algorithm achieves a performance guarantee of 3/2 - 1/k.

Subsequently, Karger, Klein, Stein, Thorup, and Young [8] extended this work by

developing cutting schemes for various values of k that yield improved approxima-

tion ratios. These cutting schemes were found through computational experiments

involving probability distributions over a class of partitions of the simplex that they

refer to as side-parallel cuts, abbreviated sparcs. They also gave a precise geometric

criterion for proving the optimality of a cutting scheme. They then used this criterion

to prove the optimality of their cutting scheme for the case k = 3, thus demonstrating

the limits o:f the Calinescu et al. embedding for k = 3. The question of the optimal

cutting scheme for k > 3, however, remained open.

Mosk-Aoyama, in his Master's thesis, considered alternatives to sparcs for the k =

4 case. He performed computational experiments involving a new class of partitions of

the simplex. which he refers to as pair-isolating cuts. The results of his computational

experiments led him to conjecture that no optimal rounding scheme for k > 3 can be

defined purely in terms of sparcs.

1As illust.rIitive examplles, the 3-simplex is an equilateral triangle, and the 4-simplex is a regular
tetrahedron. W\Ve define the k-simplex exactly in Chapter 2.

1.3 Our Results

Our goal is to further understand the geometric relaxation of Calinescu et al. Specif-

ically, we aim to establish tighter lower and upper bounds on the integrality gap of

the relaxation for various values of k. The integrality gap represents the best approx-

imation ratio one can prove using an analysis that bounds the optimum cut only by

the value of the relaxation.

We were successful on both fronts. We found stronger upper bounds by applying

a more careful analysis to the computational experiments of Karger et al. We found

stronger lower bounds through an original set of computational experiments. For

k = 4, we obtain bounds of 1.1052 and 1.1494, improving upon the corresponding

Karger et al. bounds of 1.0909 and 1.1539. In the process, we devise a branch-and-

bound heuristic algorithm to solve the minimum multiway cut problem exactly.

We also perform additional computational experiments for the k = 4 case to ex-

plore the possible role of pair-isolating cuts in optimal cutting schemes. Our conjec-

ture, on the basis of these additional experiments, is that an optimal cutting scheme

can be defined without using pair-isolating cuts. A bolder conjecture is that an opti-

mal cutting scheme can be defined purely in terms of sparcs.

1.4 Presentation Overview

In Chapter 2, we describe in detail the geometric embedding of Cilinescu et al., and

the works of Karger et al. and Mosk-Aoyama. Chapter 3 discusses how we were able

to tighten the analysis underlying Karger et al.'s computational experiments. The

performance guarantees given at the end of Chapter 3 represent the best known values

to date. In Chapter 4, we present our branch-and-bound heuristic algorithm to solve

minimum multiway cut exactly, and show how we were able to use this algorithm to

establish new lower bounds on the integrality gap of the relaxation. These bounds,

given at the end of Chapter 4, also represent the best known values to date.

Chapter 5 is of a more speculative nature. In it, we discuss some additional compu-

tational experiments we have performed to investigate pair-isolating cuts. We believe

these experiments to suggest that pair-isolating cuts are not a necessary component

of the optimal cutting scheme. Concluding remarks and natural directions for future

research are given in Chapter 6.

Chapter 2

Background

Our present work draws heavily upon the previous works of Calinescu et al., Karger

et al., and Mosk-Aoyama. In this chapter, we introduce the key ideas and results of

these previous works.

2.1 The Geometric Relaxation of ClMinescu, Karloff,

and Rabani

The basis of this work is the geometric relaxation of the minimum multiway cut prob-

lem formulated by Calinescu et al. In order to lay the framework for this relaxation,

we begin with some terminology and notation.

2.1.1 The embedding

The geometric space we consider is the k-simplex A = {x E RkIl - xi = 1 A x > 0}.

Note that A is a polytope of Rk with k vertices. The i-th vertex is the point identified

by the i-th coordinate vector e4, which has coordinates (e')i = 1 and (e')j = 0 for all

j j i. To avoid ambiguity. we refer to the vertices of the graph, the elements of V,

as nodes, and reserve the word vertices for the vertices of the simplex.

We measure distance in the simplex by using the LI-norm divided byv 2. Thus,

if x and y are points of the simplex, we have d(x, y) = E- xl• - yjI. If s is the

line segment in the simplex with endpoints x and y, we define the length of s to be

1s) = d(x. y). The factor of 1 is present to scale the distance between simplex vertices

to 1.

An embedding of a graph G - (V, E) into A is a mapping a : V --, A. For any

e = (u, v) E E, we let a(e) denote the line segment connecting a(u) and a(v). We

define the volume of a by

vol(a) = w(e)|a(e)I.
eEE

Consider an embedding that maps each node to a vertex of the simplex, with the

ith terminal mapping to the ith simplex vertex. Then each embedded edge has length

0 if its endpoints embed to the same vertex and 1 otherwise. Every such embedding

naturally induces a k-way cut of the graph. In this context, the set of edges in the

cut are the edges whose endpoints map to different vertices of the simplex. Thus, the

volume of the embedding is equal to the value of the induced cut.

These observations motivate the following integer program formulation (IP) of the

minimum multiway cut problem:

min vol(fl) s.t.

3 is an embedding into A
(IP)

P(u) E {e, e2 ,...,ek} Vu E V

fl(t) = et Vt E T

Here, we are assuming that the terminals are labeled 1, 2,.., k.

2.1.2 The relaxation

The integer problem is, of course, intractable, as it is equivalent to the original MAX-

SNP hard mininmum nmultiway cut problem. However, by removing the integer con-

straints, we obtain a tractable linear programming relaxation (LP):

min vol(a) s.t.

a is an embedding into A (LP)

a(t) = et Vt E T

Expressing LP as a linear program is not trivial, as the objective function involves

distances between embedded points. Distances are of the form d(x, y) = Ei lxi - yiJ,

and absolute values are not permitted in linear programs. In order to get around this

difficulty, we instead loosen such constraints to read d(x, y) > Ei lxi - yij. This is

permissible, since minimizing the objective function will force equality at every such

inequality. We then replace the given inequality with the following equivalent set of

inequalities, which do not use absolute values:

d(x,y) Ž diZ(x,y)

di(x, y) > xi - yi

di(x, y) > yi - xi.

A feasible solution to LP is a mapping a from V to arbitrary points of A. We

denote the optimal solution by a*. To convert a feasible solution a into a feasible

solution 0 of IP, we partition the simplex into k regions, one per vertex of the simplex:

k

A =U Ri s.t. eei Ri Vi
i=1

We call such a partitioning a k-way cut of A. Our converted solution, 3, is such that

/3(u) = e' iff a(u) C Ri.

With a k-way cut of A and a feasible solution a to LP, we can generate a feasible

solution to IP, and thus a k-way cut of the original graph. Specifically, each region

of the simplex generated by the k-way cut corresponds to a connected component of

the graph after the cut edges are removed. This means that we add edge (u, v) to the

cut iff a(u) and a(v) lie in different regions of the simplex.

2.1.3 Rounding schemes

In order to turn this framework into an algorithm that finds k-way cuts of the graph,

we must specify how to choose the k-way cut of the simplex. One option is to use

randomized rounding by specifying a probability distribution over k-way cut of A.

We call such a probability distribution a cutting scheme.

Note that a cutting scheme specifies how to "round" the solution of a fractional

program (LP) to a solution of an integer program (IP). For this reason, we use the

term rounding scheme interchangably with "partitioning scheme".

The rounding scheme used by Calinescu et al. is independent of the input graph.

It has the property that the k-way cut of the graph induced by the random k-way cut

has an expected cost at most 3/2 - 1/k times the volume of the computed embedding.

The induced algorithm thus has an approximation ratio of 3/2 - 1/k.

2.1.4 Integrality gap

The approach of embedding-relaxation-rounding outlined thus far is a formulaic one,

used throughout the literature to approximately solve many NP-hard graph opti-

mization problems. In every such application of this methodology, the question of

the value of the integrality gap of the relaxation arises.

Formally, in our framework, the integrality gap of the relaxation is the supremum,

over all weighted graphs G, of the ratio of the minimum cost of any k-way cut of G

divided by the volume of the minimum volume embedding of G. In other words, it

is equal to the worst case ratio between the optimal value of the integer program IP

and the optimal value of the linear program LP.

This value is significant as it represents the best approximation ratio one can prove

using an analysis that bounds the value of the rounded solution only by the value of

the relaxed solution.

2.2 A Study of the Relaxation by Karger, Klein,

Stein, Thorup, and Young

The work of Karger et al. provides additional insight into the relaxation, as well

as further results about its integrality gap. Among other things, they show that

the problems of determining the integrality gap and finding a corresponding optimal

rounding scheme can be expressed purely as a geometric question. Thus, the inte-

grality gap and approximation ratio can be obtained by studying the simplex itself,

without considering particular input graphs or embeddings.

2.2.1 Density

Let us say that a line segment s in A is cut by a k-way cut C if some region boundary

of C intersects s. Let Ok(C, s) denote the number of times that C cuts s.

Given a probability distribution P over k-way cuts of A (i.e., a cutting scheme),

and a line segment, s, in A, let the density of P on s be given by

rk(P,s) = ECEp [c(C s)]

We then define the maximum density of P, Tk(P), by

Tk(P) = sup 7k(P, s).

The supremum is taken over all segments s with endpoints in A.

The relevance of Tk(P) is the following:

Lemma 1 (Karger et al.). A cutting scheme P yields a randomized approximation

algorithm with approximation ratio at most Tk(P).

Proof. Let (a be the minimum cost embedding. Consider an edge e in G. This edge

maps to a segment a(e), which is cut in expectation at most Tk(P, a(e)) -ja(e)j tinmes.

By the Markov inequality, this upper bounds the probability that the edge is cut.

Thus, the expected cost of the induced k-way cut is at most

e e

= k(P)vol(G).

Since LP is a relaxation of IP, the minimum volume lower bounds the minimum k-way

cut. The lemma follows. O

Lemma 1 suggests that we should search for cutting schemes P with the property

that rk(P) is small. Thus, we define the minimum maximum density, k*, by

rk = infTrk(P),
P

and frame our goal as finding the value of Tr. Here, the infimum is taken over all

probability distributions over k-way cuts. In fact, the work of Karger et al. indicates

something stronger:

Theorem 2 (Karger et al.). There exists a cutting scheme whose maximum density

equals the integrality gap. Thus, Tr equals the integrality gap.

The proof is highly technical and so we omit it here. The theorem is significant,

as it implies that the value of 7r can be resolved exactly by the following twofold

strategy:

1. Find a family1 of cutting schemes {Pi} such that

lim Tk(Pi)= - .
i oo

2. Find a family of graphs, {Gi} such that

,iD-o vol(ac*(Gi)) = Tk "

1 0f course, if a single cutting scheme P could be found such that Tk(P) = r-, there would be
no need to find an entire family. However, there is no guarantee that such a cutting scheme exists.
Similar remarks apply for the fanily of graphs in 2.

Recall that Co(G) denotes the minimum k-way cut of G, and that a*(G) denotes

an optimal embedding of G.

That the family of cutting schemes exists is implied directly by the definition of rT

(with or without the theorem), but the existence of the family of graphs relies on

the theorem. If the theorem were not true, it is unclear how one would identify a

particular value as T(.

2.2.2 Maximum density segments

The work of Karger at al. demonstrates that the key property of a cutting scheme

is the maximum density the cutting scheme has on any line segment in the simplex.

Implicit in the work of Cllinescu et al. is the observation that it is only necessary

to consider infinitesimal segments in certain orientations. This is captured by the

following lemmas, which we will not prove.

Lemma 3. There is always a line segment of infinitesimal length that achieves the

maximum density.

We say that a line segment is i, j-aligned if it is parallel to the edge whose endpoints

are vertices i and j of the simplex. We say it is aligned if it is i, j-aligned for some

i,j.

Lemma 4. There is always an aligned line segment that achieves the maximum den-

sity.

These lemmnas simplify the task of computing -rk(P).

2.2.3 Some important linear programs

In this section, we introduce some linear programs that will be referred to extensively

throughout this work.

The upper bounding linear program

Karger et al. noted that the problem of finding an optimal cutting scheme could be

formulated as an infinite-dimensional linear program, with one variable for each k-way

cut of the simplex, and one constraint for every infinitesimal aligned segment. The

variables represent probabilities, thus inducing a cutting scheme, and each constraint

bounds the density of the induced cutting scheme on the corresponding segment. The

objective function minimizes the density bound. The solution to the linear program

is an assigment of probabilities to the various k-way cuts, or a cutting scheme.

The linear program is as follows:

min 7-
c= 1

SPC (PRI-0o)

sup Zpc • < T
c s

Here, the sums are taken over the set of all k-way cuts C of the simplex.

Actually, a much more precise formulation is required, as the set of all k-way

cuts is uncountable, making the sums in the constraints meaningless. The variables

should rather take the form of a measure defined on some a-field of subsets of the

set of all k-way cuts of the simplex, and the constraints should rather take the form

of Lebesgue integrals2 . Nevertheless, we present this (incorrectly formulated) infinite

linear program for sake of simplicity. Throughout this work, we will only use dis-

cretized versions of PRI-oo, for which an appropriate transformation from measures

and Lebesgue integrals to discrete probability distributions and sums can be made.

In particular, the approach taken by Karger et al. was to partition a subset of the

uncountably many k-way cuts into a finite collection of subsets, Q. They assigned a

probability distribution over each Q E Q, so that Q, together with some probabilities

{pQ}Q-Q summing to 1, induced a probability distribution over the set of all k-way

cuts: namely,. choose a Q E Q with probability pQ, and then choose a cut from

Q according to the probability distribution assigned to it. We call each Q E Q a

sub- distribution.
2 The reader is directed to [1] for a technical treatment of these Imeasure theory concepts.

Furthermore, Karger et al. partitioned the simplex into a finite collection of cells,

W, and observed that the supremum of PRI-oc could be taken over all segments s

wholly contained in some cell W' E W (by Lemma 3). For any X C A, let S(X)

denote the set of line segments whose endpoints lie in X. The linear program PRI-oo

then becomes a legitimate one:

min -r 7

SPQ (PRI-oo 2)Q

sup EpQ - (Q, s) VW E W
sES(W) Q

The significance of this linear program is summarized by the following theorem.

Theorem 5. The objective value of PRI-oo 2 is equal to the maximum density of the

cutting scheme specified by its variables.

Still, the suprema in the constraints represent an infinite number of constraints,

making the linear program impractical, though legitimate. To get around this, let

0(Q,W)= sup Tk(Q,s),
sES(W)

and note that for any subset W C A,

sup p Q .-rk(Q, s) EPQ. sup 7k(Q,s) = EPQ - (Q,W). (2.1)
seS(W) Q Q SES(W) Q

By computing an upper bound, O(Q, W), on 0(Q, W), for each Q E Q and W E

W, we may use (2.1) to arrive at a finite linear program:

min T

E PO = 1SQ (LP-UB)

PQ · '(Q, W) < 7 VW C W
Q

The significance of this linear Program is summarized by the following theorem.

Theorem 6. The objective value of LP- UB is an upper bound of the maximum density

of the cutting scheme specified by its variables.

Remark 2.2.1. The two factors that can cause an optimal solution of LP-UB to be

non-optimal for PRI-oo 2 are:

* The slack lost in the application of (2.1), and

* The gap between O(Q, W) and O(Q, W).

The lower bounding linear program

In a similar fashion, the problem of finding a worst-case graph can be formulated

as an infinite-dimensional linear program. By "worst-case graph", we mean a graph

G for which the ratio (a) is maximal. Since the given ratio can only decrease by

replacing a* with a non-optimal embedding a, we can in fact formulate an infinite-

dimensional linear program to find a worst-case embedded graph: that is, a graph G

together with an embedding a for which the ratio wo(G) is maximal. Note that an

embedded graph is simply a set of embedded nodes, a(1),a(2),..., a(k),..., a(n),

where a(i) is set equal to the i-th vertex of the simplex for 1 < i < k, together with

an assignment of edge weights for each pair of embedded nodes3 . For full generality,

our set of embedded nodes can be taken to equal the entire simplex, in which case the

embedded graph can be fully expressed by an assignment of edge weights to simplex

segments.

Thus, this infinite linear program has a variable for every segment of the simplex,

and a constraint for every k-way cut of the simplex. The variables represent edge

weights, and the constraints bound the cost of the mininmum k-way cut of the graph.

One further constraint is used to set the volume of the embedding to 1, so that the

quantity to be maximized is simply the cost of the mininum k-way cut of the graph.

This can be done because the ratio is invariant under a scaling of the edge

3We may use a set (as opposed t.o a imultiset) of embedded nodes, since if two nodes embed to
the same point of the simplex, they will never be separated by a. cut, allowing us to consider instead
the graph formed by merging the two nodes into one.

weights. The objective function maximizes the cost of the minimum k-way cut of the

graph.

The linear program is as follows:

max A

. 1 (DUAL-oo)

inf S w> A
s cut by C

The infimum is taken over all k-way cuts C of the simplex, and the sums are taken over

all segments of the simplex. As before, the sums are meaningless as they are taken

over uncountable sets, making this linear program formulation erroneous. Again,

we point ouLt that we will only use discretized versions of DUAL-o, for which an

appropriate transformation from measures and Lebesgue integrals to discrete weight

assignments and sums can be made.

In particular, one natural approach is to consider a fixed embedding of a finite

graph. We can do this by selecting a finite subset of points in the the simplex, V C A,

and by defining a graph, G(V), whose vertices are the points of V, and whose edges

are the elements of S(V). We let cuts(V) denote the set of k-way cuts of G(V). The

infimum of DUAL-oo then becomes a minimum over a finite numbers of cuts. The

linear program DUAL-oo then becomes

max A

s S(1) (LP-LB)
seS(V)

wS > A VC E cuts(V)
sEC

We call this linear program LP-LB, since the resultant value of A represents a lower

bound on Ti, with the resultant {w8 } specifying an embedded graph that achieves

that value. Unlike the linear program LP-UB, however, it is not clear that this linear

program can be of imich Jpractical computational use, as the number of constraints

is exponential in the size of the embedded graph. Karger et al. were able to bypass

PRI-oo dual D U A L -oo

discretize

PRI-OO2 discretize

slack

LP-UB ILP-LB

Figure 2-1: The relationship between the linear programs PRI-oo, PRI-oo 2, DUAL-
00, LP-UB, and LP-LB.

this difficulty for the k = 3 case by exploiting planarity to replace the exponentially

many constraints with a provably equivalent set of polynomially many constraints.

One can see that this DUAL-oo is actually the dual of PRI-oo. This, along with

strong duality, is in fact the key observation behind Theorem 2. The argument,

however, requires some more rigor than what we have presented. Karger et al. take a

more rigorous measure-theory based approach by considering finite discrete versions

of both linear programs and by taking a limit as the discrete programs approach the

given continuous ones.

The relationship between the linear programs PRI-oo, PRI-oo 2 , DUAL-oo, LP-

UB, and LP-LB are summarized by Figure 2-1.

2.2.4 Side parallel cuts

For small values of k, Karger et al. were able to solve instances of LP-UB using the

linear program software CPLEX. In this section, we describe a particular type of cut

they used in their set up. They refer to this type of cut as a side parallel cut, or sparc.

Define A,,= p = {x E A'x, = p} and Ax__p = {x E Axi >_ p} (similarly A,,<p).

Note that Azx=p is a hyperplane that runs through the simplex, parallel to the face

opposite vertex i, at a distance p from that face. We call such a hyperplane a side

parallel slice. This hyperplane cuts the simplex into two regions: the corner, Ax;:>p,

and the base. A,,<p,.

A spa.r is defined)by Karger et al. as a k-way cut of the simplex (that is. a

partition of A into regions 1, 2,..., k) resulting from the following procedure.

1. Choose a permutation a of the simplex vertices.

2. Process the vertices in the order specified by a. For each vertex i, except the

last, choose a slice distance pi E [0, 1].

3. When vertex i is processed, assign to region i all the points in Ax>pi (the

corner) that have not already been assigned to a previous region. We say that

vertex i captures the points assigned to region i, and that it cuts a segment if

it captures some of the points in the segment, but not the entire segment.

4. After the first (k - 1) vertices have been processed, assign the remaining unas-

signed points of the simplex to the final k-th region.

When a is chosen uniformly at random from the set of all permutations, and the

slice distances are P1, p2,... , Pk-1, we call the resulting sparc a [P1, P2, ... Pk-1]-sparc.

2.2.5 Computational experiments

We can now describe the particular setup Karger et al. used for LP-UB. For their

setup, they fixed an integer discretization level d, and used one sub-distribution for

each element of {0, 1,..., d - 1}k - 1 . The sub-distribution for (ql, q2 , ... ,q k-1) is in-

duced by choosing a value pi uniformly at random from [ql/d, (qi + 1)/dj for each i,

and then by taking a [pl, 2, ... , Pk-1]-sparc. We refer to this specific sub-distribution

as a sparc range.

For their cells, they used the regions of A formed by slicing the simplex along the

hyperplanes xi = j/d for 1 < i < k and 1 < j < d - 1. Thus each cell takes the form

{(X1, . -- ,Xk) : wi/d < x < (wu + 1)/d}.

With this choice of cells and sub-distributions, a set of upper bounds Vp(Q, W)

could be computed. Section 3.1 discusses how exactly Karger et al. computed these

bounds. In Section 3.2, we will show how we were able to compute stronger bounds.

For the k = 3 case, Karger et al. were also able to solve instances of the linear

program LP-LB for appropriately chosen embedded graphs. The embedded graph

they used was chosen by fixing an integer discretization level d and by using all

points in the simplex of the form (al/d, a2/d, a3/d) with al, a2, a3 E Z as embedded

nodes. Rather than listing the exponentially many constraints, however, they were

able to rely on max-flow/min-cut duality and the planarity of the simplex to devise

an equivalent linear program with only polynomially many constraints. They could

not use an analogous strategy for k > 3, and so were unable to obtain better lower

bounds on 7- for k > 3.

2.2.6 Results

For the k = 3 case, Karger et al. were able to observe convergent behavior for the

solutions of both LP-UB and LP-LB as the discretization level increased. This led to

the following discoveries:

1. A cutting scheme P for which they could prove analytically that T3(P) = 12/11.

2. A family of embedded graphs, {aj(Gi)} such that

lim wo(G%) 12
i- -oo vol(oai(Gi))9 11-

These discoveries together imply that T3 = 12/11.

For greater values of k, solutions to LP-UB led to computer generated proofs of

upper bounds for T-. These values are summarized in Table 2.1. Their experiments

revealed an interesting fact: in all cases, the optimum cut distribution made use of

'"corner cuts." That is, the output distribution had the following form: with some

probability, place each slice at a single distance chosen uniformly between 0 and

1/3 from its terminal; otherwise, use a (joint) distribution that places each slice at

distance greater than 1/3 from its terminal.

discretization corner cut
k level probability bound
4 36 .289 1.1539
5 18 .314 1.2161
6 12 .376 1.2714
7 9 .397 1.3200

Table 2.1: The upper bounds on the integrality gap computed by Karger et al.

2.3 Additional Computational Experiments by Mosk-

Aoyama

Although the optimal cutting scheme for k = 3 can be expressed as a distribution over

sparcs, there is no guarantee that this will be true for general k. Mosk-Aoyama, in

his Master's thesis, explored alternatives to sparcs for the k = 4 case. He considered

cuts that first isolate two pairs of vertices from each other, then separate each pair

of vertices. He refers to such cuts as pair-isolating cuts. All such cuts he considered

began with a pair-isolating slice: a hyperplane that is parallel to the two edges of the

simplex connecting the pairs of vertices that they isolate. Such a hyperplane is shown

in Figure 2-2. He then considered two different alternatives for how to separate the

pairs of vertices. One was to separate them via a hyperplane parallel to a side of the

simplex, and the other was to separate them via a hyperplane perpendicular to an edge

of the simplex. He calls the pair-isolating cut induced by using a pair-isolating cut

in conjunction with one of these two types of vertex-separating slices a pair-isolating

side-parallel cut (abbreviated pair-side cut) and a pair-isolating edge-perpendicular

cut (abbreviated pair-edge cut), respectively.

For his computational experiments, Mosk-Aoyama had to formulate appropriate

versions of LP-UB, which entailed defining sub-distributions {Qi} and cells {Wj},

and computing density bounds ý4(Qi, WU). For this, he first fixes a discretization

level d > 1. He then defines sub-distributions over pair-side cuts and pair-edge cuts

which we will call pair-side cut 7anges and pair-edge cut ranges (analogous to Karger

et al.'s spare ranges), and uses as his sub-distributions the set of all sparc ranges.

Figure 2-2: A pair-isolating slice. The intersection of the pair-isolating slice and the
simplex is represented by the dashed region. This slice isolates the pair of vertices
connected by the horizontal edge from the pair of vertices connected by the vertical
edge.

pair-side cut ranges, and pair-edge cut ranges. For his cells, Mosk-Aoyama considers

the possible orientations of all hyperplanar boundaries that can be generated by any

cut chosen from his set of sub-distributions. He then performs d equally spaced

hyperplanar slices of the simplex along each one of these orientations, and takes the

resultant regions of the simplex as his cells. Note that this can be seen as a natural

generalization of the way in which Karger et al. define their cells with respect to their

choice of sub-distributions.

Mosk-Aoyama's results indicate that at a fixed discretization level, the introduc-

tion of pair-side cuts and pair-edge cuts slightly improves the objective value of LP-

UB. This led him to postulate that an optimal cutting scheme for k = 4 cannot be

described as a probability distribution over sparcs. We will investigate this postulate

in further detail in Chapter 5.

Chapter 3

Revisiting the Linear Program of

Karger et al.

In Section 2.2.3, we described an infinite-dimensional optimization problem, PRI-oo,

that captures the problem of computing the minimum maximum density -r. Karger

et al. formulated the finite linear program LP-UB, whose objective value is provably

an upper bound on Tr. In this chapter, we discuss how we were able to loosen some

of the constraints of that linear program in order to obtain stronger upper bounds.

These upper bounds are given in Table 3.1, near the end of this chapter.

3.1 The constraints of Karger et al.

Recall the discretized version of PRI-oo used by Karger et al. for their computational

experiments:

min 7

Q (LP-UB)
Q

pj-jQ(Q W) W - VWc W

Here, WV is a collection of cells, and the sums are taken over Q, a collection of

sub-d(istributions. The values {pQ} specify a probability distribution over the sub-

distributions. Each 4,(Q, W) is an upper bound on the value O(Q, W) defined by:

O(Q, W) = sup TA(Q, s).
sES(w)

Recall that S(W) denotes the set of all segments whose endpoints lie in W. Let

S 1,2(W) denote the set of all 1, 2-aligned segments of S(W), and define the quantity

01,2(Q, W) by

01,2(Q, W) = sup Tk(Q, s).
SES 1,2(W)

Karger et al. noted that O(Q, W) - 01,2(Q, W). This fact follows from Lemma 4 and

the fact that each sub-distribution Q is symmetric with respect to all the vertices.

We may thus focus our attention on 01,2(Q, W).

Karger et al. computed the upper bounds O(Q, W) as follows. Note that each

sparc range Q can be itself thought of as a uniform probability distribution over k! sub-

distributions, one per permutation of { 1,..., k}. If we let Q, be the sub-distribution

corresponding to the permutation a, we have that

01,2 (Q, W) = sup • ((Q, s). (3.1)

Now, note that

sup >'rk(Qu,s) < sup Tk(Q,,s) (3.2)
SES1,2(WV) r sES1,2(VW)

E 01,2(Qa, 1¥).

To compute a bound '(Q, W), then, we can compute the values 01,2(Q0,, WI), and set

(Q,W) =) -E o2(Qr, W). (3.3)

36

To see that O(Q, W) is an upper bound on 01,2(Q, ii), note that

01,2(Q, W) = sup 1

S SESi 2(W)<ESUP -k.(QS)
I- Y OI,2(Qa,

W)

= (Q, W).

Here, we have made use of equations (3.1) and (3.2).

The values 01,2(Qa, W) can be computed as follows. The vertices are processed in

the order specified by cr, and the f-th slice distance pe is applied to the e-th vertex in

the permutation, o(e).

When applying the f-th slice distance, we have three distinct possibilities. If the

f-th coordinate of the sparc range is different from that of the cell, then the f-th

slice will not pass through the cell: depending on whether the coordinate is larger

or smaller the slice will either capture the entire cell or none of the cell. If the f-th

coordinates are the same, then the slice might pass through the cell. In this case, we

can use the fact that the slice is uniformly distributed over a range.

A 1, 2-aligned segment can only be cut if the slices for vertex 1 or 2 go through

the cell. If only one of the two slices goes through the cell, and no earlier slice goes

through the cell, then the density of Q, on the segment is exactly d (the length of

the segment divided by the width of the cell). If both slices go through the cell, the

density is at most 2d, implying that Tk(Q,, W) 5 2d, and thus that 01,2(Q1, W) < 2d.

In fact, we can see that 01,2(Qa, W) is exactly equal to 2d in the case when both

slices go through the cell, and no earlier slice goes through the cell. It is not necessary

to prove this in order to perform our goal of simply establishing an upper bound on

01.2(Q, W), but we include a proof for completeness:

Lemma 7. When the slices for both vertex 1 and 2 go through the cell, and no earlier

slice goes through the cell,

01.2 (Q, W) = 2d.

Proof. Assume without loss of generality that the slice for vertex 1 comes before the

slice for vertex 2. Consider then an infinitesimally small segment s that is arbitrarily

close to the hyperplanes xl = wl and x 2 = w2 . Then, the probability that the first

slice captures s is negligible, implying that the density contributions of the two slices

can be added independently, for a total density arbitrarily close to d + d = 2d. Thus,

01,2(Qa, W) > 2d - E for all E > 0, implying that 01,2(Q,, W) = 2d. O

We can summarize our analysis by giving an explicit formula for 01,2(Q,, W). To

do this, we first give an explicit formula for X(Qo, W), the number of slices of Q,

that can cut a 1, 2-aligned segment contained in W. Let the coordinates of Q be

(q1,... , qk-1), and let W be the cell given by

{(x 1, ., Xk): wild < xi < (wi + 1)/d}.

For any i E {1,..., k}, let

fi(Q, W) =
if 3m < o-l (i) : qm < wU(m)

otherwise.

The value of fi is 0 if some slice earlier than the i-th slice captures the cell W.

Define 6(m, n) to be 1 if m = n and 0 otherwise.

Then, we have that

x(QU, W) = (f"f(Q, W)6(q,-I(l), w1) + f2W(Q, W)6(q,-1(2), w2))

Our explicit formula for 01,2(Q~, W4) then reads:

Cobining this with equation (Q3.3), we obtain the density bound used by Karger et).

C',ombiniing this with equation (3.3), we ob)ta.in the density bound used by Karger et

al.:

'0(Q, W) = E x(Q, W). (3.4)

3.2 Exact density bounds

The analysis of the previous section relies on the application of inequality (3.2). A

certain amount of slack is lost in doing so, resulting in sub-optimal density bounds

4(Q, W). An intuitive explanation for this lost slack can be found in our proof of

Lemma 7. In the proof, the segment s for which Tk(QU, s) attains its maximum

value is chosen adaptively with respect to the permutation a. On the other hand,

equality can clearly only take place in (3.2) if that segment is chosen irrespective of

the permutation a.

As a result, the computed objective value of LP-UB only represents an upper

bound of the maximum density of the corresponding cutting scheme. In this section,

we show how to calculate the values 0(Q, W) exactly. Furthermore, we prove that with

these new density bounds, the computed objective value of LP-UB in fact represents

the exact value of the maximum density of the corresponding cutting scheme.

We begin by defining an alternate type of sub-distribution, closely related to a

sparc range. As with sparc ranges, we fix an integer discretization level d and use

one sub-distribution for each element of {0, 1,..., d- l}k - 1 . The sub-distribution for

(qi, q2, ... qk-l) is induced by choosing a single value p uniformly at random from

[0, 1/d], and then by taking a [ql + p, q2 + P,..., qk-1 + p]-sparc. We call this type of

sub-distribution a uniform sparc range.

Let Q, denote the set of uniform sparc ranges, and let W denote the same set

of cells used by Karger et al. For our setup of LP-UB, we use Q, as our sub-

distributions and W as our cells. One can prove that, if Q and Qu are a sparc range

and uniform spare range, respectively, defined by the same set of coordinates, then

0(Q, UW:) = o(Qu, IW). We use uniform sparc ranges, rather than spa.rc ranges, solely

to simplify our conmputation of O(Q, W). Again, we have that 01,2(Q, W) = O(Q,),

and so we fbcus our attention on the computation of 01,2(Q, W) for Q E Q,, and

a : [7,3,1,4,2,6,5]

a' : [7,3,2,4,1,6,5]

Figure 3-1: A 1,2-conjugate pair of permutations, for the k = 7 case. Note that the
two permutations are identical except for the positions of 1 and 2.

WE cW.

As before, each uniform sparc range Q can itself be thought of as a uniform proba-

bility distribution over k! sub-distributions, one per permutation of {1,..., k}. Alter-

natively, we can partition the set of permutations of {1,..., k} into L 1, 2-conjugate

pairs. Two permutations a and a' are considered to form a 1, 2-conjugate pair if they

differ only in that the positions of 1 and 2 are switched between them. Then, each

uniform sparc range Q can be thought of as a uniform probability distribution over

k! sub-distributions, one per 1, 2-conjugate pair.

Let Q,,,, be the sub-distribution corresponding to the permutation pair (a, a').

As before, we have that

sup Pk(Q,'a, s) _ sup Tk(Qa,~', s) (3.5)
sES,2()) () SES1, 2(W)

Thus, we have

01,2(Q, W) s= up (Q,,,', s)

(a,,) k! sES 1 2 (W)

2

- E 01,2(Q,', ,W). (3.6)

Here, the suprenma are taken over 1, 2-aligned segments, and the sumns are taken over

all 1, 2-conjugate pairs.

Implicit in the work of CAlinescu et al. is an exact computation of the maximumn

density TA.(Q.o,) = supsg Tk(QT,&, s) when a and a' differ in their relative ordering

of 1 and 2. The value they compute for this quantity is 1.5. Since a and a' differ

in their relative ordering of 1 and 2 when (a, a') is a 1,2-conjugate pair, we are able

to apply their analysis to compute the values of 01,2(Q,,,', W) for 1,2-conjugate pairs

(a, a').

Both a and a' are equally likely to be selected from Q,,,,, so that for any fixed

segment s,
1

Tk(Q,,,', s) = 2 (-k(Q, s) + Tk(Q,', s)). (3.7)

For 1, 2-conjugate pairs where only one of the slices for vertex 1 or vertex 2 can

pass through the cell, the analysis of the previous section applies; we have that

Tk(Q,, s) = 7rk(Q~,, s) = d, and so

91,2(Q,,o', W) = sup k(Qa,,,, s) = d.
sES1,2 (W)

The interesting case is when a and a' are permutations such that both the slices

for vertex 1 and vertex 2 can pass through the cell.

Consider a 1, 2-aligned segment s. Define the following quantities:

mi -= min l -Wl
xEs

.M = max x - wi
xEs

m2 m= 12in2 -W2
XEs

AM2 = max 2 -W2
xES

Note that Is = M8 - mi = M2 - m2 . Without loss of generality, we may assume

that M1 < 'n2. This is because a 1, 2-aligned segment can be split in two with one

part closer to the hyperplane xl = wi and one part closer to the hyperplane x2 = w2,

and our assumption then applies to each part separately (see Figure 3-2). Suppose

that a is the permutation where 1 precedes 2, and that a' is the permutation where

2 precedes 1. Let us consider each of Tk(QU, s) and Tk-(Q,,, s) in turn.

First. it is easy to see that Tk(Q,, s) = 2d. This is because s will be cut iff

1

Figure 3-2: A 1,2-aligned segment, split into two parts, with one part closer to the
hyperplane xl = wl and one part closer to the hyperplane x2 w 2. The dividing
hyperplane, represented by the vertical dashed line, can be expressed as x1 - X2 =

wl - w2. In this case, the assumption that M1 < m2 holds for the part of the segment
to the right of the dashed line.

p E [ml, M1] U [mn2 , M2], which is a subset of [0, d] of measure 21s . On the other

hand, we can see that Tk(QM,, s) = d, since s will be cut iff p E [m2, M2], a subset of

[0, d] of measure IsI. The reason that s will not be cut if p E [ml, M1] is that the slice

for vertex 2 will capture all of s before the slice for vertex 1 has a chance to cut it.

Figure 3-3 summarizes this argument.

Plugging into (3.7), then, we have that k(Q,,,', s) = 1.5d, and thus that

01,2(Q1,a', W) = sup Tk(Q,,a', s) = 1.5d.
sES1,2(W)

If we define X as in the previous section, this analysis shows:

01.5d if x(QU, W) = 2

d(- (x(Q,, W) + x(Q,,, W)) else.

Combining with (3.6) gives

O(Q, W) < ()),

where g(x) = 1.5 if x = 2 and g(x) = x otherwise.

1 2
M1 M,

I . I
o m, m2 1/d

o:

/
/

/
\

\ /

V

1 2 1 2

7-

1 2 1 2

Figure 3-3: A summary of the density contributions from a (1,2)-conjugate pair sub-
distribution. At the top, we have a cell with a 1,2-aligned segment obeying the
constraint M1 • m 2 . Directly below is the 1/d-length interval [0, 1/d], with the dis-
joint sub-intervals [mi, MI] and [fm2 , M2] highlighted. The next row shows partitions
generated by o, and the bottom row shows partitions generated by a'. In both rows,
the left side shows the case when p E [ml, M1], and the right side shows the case
when p E [rm2, l 2]. The key observation is that the segment is not cut when the
permutation is a' and when p E [rrnl, A 2].

In fact, our analysis demonstrates that for segments s E S1,2(W), with the prop-

erty that M1 2 , m Tk (Q,~,, s) exactly equals 01,2(Q~,I,, W) for all Q E Q, and all

1, 2-conjugate pairs (a, a'). Thus, the inequality of (3.5) is tight, implying that

O(Q, W) = g((Q,, W)). (3.8)

Note that without g, the right hand side simply becomes the density bound of Karger

et al. given in (3.4).

Moreover, this implies that the inequality in (2.1), back in Section 2.2.3, is tight

for the same reason. Thus, by substituting these values of 0(Q, W) for 4(Q, W) in LP-

UB, we obtain a linear program equivalent to the linear program PRI-oo0, allowing

us to apply Theorem 5. The implication is that our analysis of the performance of

the cutting schemes outputted by our computational experiments is exact.

3.3 Observations and results

We wrote a simple program to generate the linear programs described in this chap-

ter automatically, and used CPLEX to solve them. While it is difficult to "prove"

programs correct, our computations reproduced the results of Karger et al. prior to

incorporating the function g in Equation (3.8), giving us confidence in the program's

correctness.

Table 3.1 summarizes the results of our computational experiments. Under the as-

sumption that the programs were correct, the listed bounds are proven upper bounds

on the integrality gap. The cutting schemes outputted by the program have maxi-

mum density exactly equal to the given bounds. One unusual phenomenon we noticed

was the corner cut probability did not decrease monotonically with respect to k as it

had when using the Karger et al. bounds. In particular, the corner cut probability

for k = 7 was higher than for other values of k. We have no hypothesis for why

this might be the case. Perhaps the notion of corner cuts is not as significant as was

originally suspected. In other respects. we did not notice any qualitative difference

discretization Karger et al. bounds Improved bounds
k level corner cut prob. bound corner cut prob. bound
4 36 .289 1.1539 .299 1.1494
5 18 .314 1.2161 .326 1.2071
6 12 .376 1.2714 .360 1.2573
7 9 .397 1.3200 .284 1.2967

Table 3.1: The upper bounds on the integrality gap obtained by improving the anal-
ysis of Karger et al.

in the solution to the linear program as a result of modifying the bounds.

Chapter 4

Lower Bounding the Integrality

Gap

In this chapter, we present some approaches used to lower bound the value of T7. Our

approach has successfully generated computer-aided proofs of lower bounds on Tk-, as

shown in Table 4.1 near the end of the chapter.

4.1 Preliminaries

Recall that wo(G) denotes the cost of the minimum k-way cut of G. For any em-

bedding, a, of G into Ak, let 'y(G, a) = ~o(G) Let a*(G) denote the minimum

volume embedding of G into Ak, and let -'(G) = '(G, a*(G)) for all G. Note that

y(G, a) < y(G) for all embeddings a.

Theorem 2 tells us that 7-* is a value such that -y(G) K -F for all G. In order to

prove a lower bound of To on TkZ, then, it suffices to demonstrate a particular graph

Go a.nd a pa.rticular embedding ao such that y(Go, cao) > 7o. In fact, Theorem 2

guarantees the existence of such an embedded graph for any fixed 70 < T,, motivating

us to search for bad embedded graphs.

4.2 Finding exact minimum k-way cuts

We wish to find embedded graphs a(G) for which the quantity 7(G, a) = woi(G)

is large. In order to compute this value, we need to compute the quantity wo(G).

Unfortunately, finding the minimum k-way cut is a MAX-SNP hard problem (which

is the reason we are performing this study in the first place). Thus, we set out to

devise exact algorithms to solve minimum multiway cut efficiently in practice. Our

approach uses the typical branch-and-bound paradigm.

In the remainder of this section, we will revert to using vertices to describe the

elements of V. Nodes will refer to the elements of the enumeration tree.

4.2.1 Branch and bound enumeration tree

Note that any minimal k-way cut of a connected graph leaves every vertex connected

to a unique terminal; i.e., it never disconnects a vertex from all the terminals. Thus,

any minimal k-way cut of a connected graph can be thought of as an assignment of

vertices to terminals, f : V - T, such that f(t) = t Vt E T. Conversely, any such

assignment corresponds to a k-way cut of the graph: take as the cut the set of all

edges (u, v) for which f(u) # f(v). In this context, the cost of a cut is the sum of

the weights of the edges (u, v) such that f(u) # f(v).

This leads to the following equivalent phrasing of the minimum multiway cut

problem: given a weighted graph G = (V, E), together with a set T C V, find an

assignment f : V -+ T, with f(t) = t for all t E T, that minimizes the quantity

EEeLW(e), where L = {(u,v) E E : f(u) # f(v)}. We let t 1,t 2 , ... , tk be the

elements of T. This is in fact an instance of the more general discrete metric labeling

problem, abbreviated DMLP. A DMLP branch-and-bound heuristic is described in

[10], and our approach is based on it.

In the branch-and-bound enumeration tree, node i of the enumeration tree repre-

sents a partial assignment, fi : Si --* T, of the vertices of some subset Si C V such

that T C Si, and such that fi(t) = t Vt E T. The root node, r, is associated with the

partial assignment where S,. = T. The children of any node i of the enumeration tree

are obtained as follows. Pick a vertex u E V - Si and generate k children of i. Let

j(1),j(2),.. .,j(k) be the children of i in the enumeration tree. For each j(1), fj(l) is

an extension of fi. 1\ore precisely, fj(1) : Si U {u} -- T, with fj(Q)(u) = ti. Then, any

child of i represents a partial assignment of Si U {u}.

Note that the leaves of this tree represent complete assignments. For each leaf f

let val(f) be the cost of the k-way cut represented by C. We wish to find the leaf C

for which val(e) is minimized.

There are a couple details to address to complete the description of this branch-

and-bound algorithm:

* Lower bounds: given an internal tree node, i, find a good bound b(i) such

that val(C) > b(i) for all leaf-descendents f of i.

* Branching order: determine which node to process next.

4.2.2 Lower bounds

In order to make our branch-and-bound algorithm run efficiently, we need, for any

node i, a good bound b(i) such that val(f) > b(i) for all leaf-descendents f of i. The

reason this is desirable is that if b(i) is greater than the cost of an already-discovered

k-way cut, it allows us to skip over the entire sub-tree (a technique known as pruning).

In our context, we seek a lower bound on the value of any k-way cut generated by an

extension of a given partial assignment fi : Si -- T.

To this end, consider the graph, Gi, formed from Si and fi by contracting each

u E Si into the terminal fi(u). Note that any k-way cut of G induced by the partial

coloring fi corresponds to a k-way cut of Gi. It suffices to find a lower bound on the

value of any k-way cut of Gi.

For this, we can use any deterministic constant-factor approximation algorithm

that approximately solves mininmum multiway-cut on Gi. If an a-approximation al-

gorithm is used, and the resulting k-way cut found has value x, then the lower bound

would be x/a. In fact, we can do much better if there are heavy weight edges be-

tween pairs of terminals in Gi. since those edges must be cut by any k-way cut of Gi.

Because of this, we first remove all edges between pairs of terminals in Gi and use

the approximation algorithm on the resulting graph to obtain a cut of value y. Then,

if we let z be the total weight of these removed edges, our lower bound is z + y/a.

Without this heuristic, the lower bound would simply be (z + y)/a, a smaller quan-

tity. A second refinement is based on the observation that if some vertex is adjacent

to each of the k contracted terminals, then exactly (k - 1) of those connecting edges

must be cut. If we let w be the weight of the minimum weight edge connecting the

vertex to the contracted terminals, we can increment z by (k - 1)w and decrement

each of those edge weights by w. A similar argument shows that this heuristic results

in a better lower bound.

As for how to obtain a constant-factor approximation to the minimum k-way cut of

Gi, there are a few options. One option is to use the (2-2/k)-approximation algorithm

of Dahlhaus et al. (described in Section 1.2). Another is to use the Calinescu et al.

embedding and to take the minimum sparc-induced k-way cut, which achieves the

bounds shown in Table 3.1. However, the bound produced by the Dahlhaus et al.

scheme is relatively weak, while finding the minimum sparc-induced cut after applying

the Calinescu et al. embedding is too costly, as it requires the enumeration of O(k! -

nk- 1) sparcs. The middle ground we chose was a derandomization of the randomized

algorithm given by C5.linescu et al. Their algorithm involves choosing a single value

p uniformly at randomly from [0, 1] and choosing either the identity permutation or

the permutation a such that a(k) = k and a(i) = k - i for all i < k, each with

probability 1/2. It then performs the sparc given by setting all the slicing distances

equal to p and by ordering the terminals according to the selected permutation. This

achieves an expected approximation guarantee of 3/2 - 1/k. We enumerated all O(n)

possible cuts generated in this manner, together with their respective cut values and

probabilities, to compute the expected cut value exactly. Note that this value is

preferable to the niiinnun of the O(n) possible cuts, as it produces a. larger lower

bound.

4.2.3 Branching order

In order to specify a branching order, we first fix an ordering on the non-terminal ver-

tices, so that each level of the tree corresponds to a non-terminal vertex. Preferably,

this ordering should be such that there is a good chance that some subtrees rooted

high up in the tree can be pruned during the course of the computation.

We captured this idea by computing, for each non-terminal vertex v, the weight

of the minimum path from v to each of the terminals. We let the rank of v equal the

difference between the maximum and the minimum of the k resulting values. The

vertex ordering was performed in decreasing order of rank. The intuition behind this

heuristic is that a vertex that is close to one terminal but far from some others should

probably be assigned to the closer terminal, so we expect the other branches to be

cut off relatively quickly.

This resolves the question of how to order the non-terminal vertices of the graph.

In other words, it matches each level of the branch-and-bound tree with a vertex of

the graph. We must still answer the question of how to choose which (tree) node to

process among a set of active nodes. The heuristic we chose to use was to compute,

for each node i, the lower bounds b(j) for each child j of i. The next node to process is

then the node i for which the quantity max{b(j) - b(j') I j, j' children of i} is largest.

The intuition behind this heuristic is similar to that of the rank notion used for vertex

ordering. If' two children of a node differ widely in their lower bounds, the hope is

that the child with the small lower bound will lead to the discovery of a small cut,

which allows the subtree rooted at the child with the large lower bound to be pruned.

4.2.4 Empirical performance

For all our clever scheming, we found that our Java implementation of this algorithm

only offered a slight improvement in performance over the straightforward approach

of feeding CPLEX an integer program. One way to formulate the minimum multiway

clit problem as an integer program, for instance, is to define a O.l-valued distance

variable between pairs of vertices, and to impose that the dista.nce variables obey

a metric and that terminals lie at distance 1 from each other. The quantity to be

minimized is then the sum ,, d(u, v)w(u, v), where d and w represent the distance

and weight functions, respectively.

This came as a surprise to us, and perhaps is a testament to the power of the

CPLEX software. Still, we believe our branch-and-bound algorithm to have some

potential value - that with some better heuristics and a better implementation, it

should be capable of outperforming a generic integer program solver.

4.3 Searching for bad embedded graphs

Section 4.2 shows how one can compute the minimum k-way cut of a small graph

exactly. With this procedure, then, we can evaluate the quantity 7(G, a) for small

embedded graphs a(G). In this section, we describe one approach we used to search

for small embedded graphs, a(G), for which 'y(G, a) was large. This approach led to

the lower bounds shown in Table 4.1, which represent the best known lower bounds

to date.

4.3.1 Grid graphs

The set of all embedded graphs represents a large search space. We restricted our

search by fixing an integer discretization level d, and by considering the size-d grid

graph. The size-d grid graph is an embedded graph that can be described as follows:

the embedded nodes consist of all points in the simplex whose coordinates are mul-

tiples of 1/d, and the embedded edges consist of all segments connecting embedded

nodes that are at distance 1/d from each other. A combinatorial argument shows

that this embedded graph has n = (d+kl)) nodes and m = () (d+k-2) = 0(k2n)

edges. Our search space was then the set of weight functions w : Ed - R, where Ed

is the set of edges of the size-d grid graph.

With this particular embedding ad, our task is to maximize the quantity

__ .wo(G)

vol(ad(G))

Since scaling w by a constant does not change the value of J', we restricted our search

to those w for which vol(ad(G)) = 1. We could then maximize y(G, ad) and thus find

the optimal w by solving the following linear program:

max A s.t.

Ews' = l

wS > VC E D*
sEC

Here, D* denotes the set of all k-way cuts of G.

We can also take advantage of the symmetry of ad to impose further constraints.

Specifically, the symmetry of ad allows us to assume that our weight function is also

symmetric; i.e., that the edge weights remain invariant under any of the k! symmetric

transformations of the simplex. To see this, consider an arbitrary weight function w

such that _,. w8 .- = 1. Now let w* be the weight function that assigns to edge e

the average of w'(e) taken over all k! symmetric versions of w. It is clear that w* also

satisfies E• w,- = 1, and that it is symmetric. To complete the argument, consider

any cut C. Then, w*(C) is equal to the average of w'(C) where w' is taken over all

symmetric versions of w. Alternately, this can be expressed as the average of w(C')

where C' is taken over all symmetric versions of C. This quantity can be bounded

below by the value of the minimum cut with respect to w. It follows that w*(C) is

at least as large as the cost of the minimum cut with respect to w, from which our

claim follows. With our symmetry argument, our new linear program is:

max A s.t.

1
Ew, - =d

S(LP2)

ZwS > A VC E D*
sEC

e s = m~v8l't Vs on 5

Here. s - s' means that s and s' are equivalent under one of the k! svymmetries of the

simplex. By adding these symmetry constraints, we effectively reduce the number of

weight variables by a factor of O(k!).

Unfortunately, even with this optimization, the linear program has exponentially

many constraints. As thus, we could not hope to fit LP2 into memory for reasonably

large n. On the other hand, we only expected a small fraction of the constraints to

be binding' in an optimal solution, so we turned our efforts towards finding a small

subset of D* which corresponded to binding constraints. To this end, we considered

the following linear program, parameterized by a subset D C_ D*:

max A s.t.

Ew,'-=d
Z (LP2(D))
Ews > A VC E V:
sEC

W s = W s , Vs , S8

Let (A(D), w(D)) be an optimal solution of the linear program LP2(D). We reiterate

our goal more precisely: to find a small subset) C D* such that A(Z) = A(, *) .

We initialized D to some proper subset of D*, and solved LP2(D) to find (A\(D), w(D)).

We then updated our graph weights by setting w +- w01) . Next, we found a violating

constraint of LP2 - i.e., a k-way cut C E D* - D such that w(Z)(C) < A(X) . We set

D +- D U {C}, and repeated. When no more violating constraints could be found,

the final value of A(D) would be equal to our desired value of A()*).

The method just described is a well-known technique in linear programming. It is

called column generation, and is commonly used to identify the binding constraints of

large linear programs, typically in hopes of reducing the problem instance to a more

computationally manageable size. This is precisely the problem we have at hand.

Column generation was pioneered by Gilmore and Gomory in 1961 [7]; a survey of

column generation techniques and applications can be found in [9].

There are still a couple issues to resolve in our particular context. First, how are

1In linear programming, a constraint, is binding if the removal of the constraint changes the
optimum value of the program

we to find violating constraints? Second, how should D be initialized? The second

issue is of interest, because if finding violating constraints is expensive, we would want

a large initial D in order to minimize the number of times a violating constraint had

to be found.

We begin by addressing the second issue. Recall that the embedding a is fixed in

this setting. We chose to initialize D to the set of all O(k! -n k - l) sparc-induced cuts.

This seemed to work well in practice.

As for the first issue, we are again faced with the problem of solving an NP hard

problem, as finding the minimum k-way cut reduces to the NP hard decision problem

of determining whether there exists a k-way cut of weight < A. Again, we used our

branch-and-bound strategy to solve this problem in a reasonable amount of time.

Note that we have a choice: we can stop as soon as a cut of weight < A is found, or

we can search for the minimum cut. We chose the first option, as it was much faster.

The following summarizes our procedure for finding the weight function w that

minimizes 7y:

1. Initialize D to the set of all sparc-induced k-way cuts of G.

2. Solve the linear program LP2(D) to find w(D) and A(D).

3. Use the branch-and-bound strategy outlined in Section 4.2 to find a violating

cut C, if one exists. If a cut is found, set D +- D U {C}, and return to step 2.

Otherwise, proceed to step 4.

4. Return w(D) as the optimal weight function w.

4.3.2 General embedded graphs

Grid graphs are computationally convenient: they exhibit symmetry and only have

O(n) edges. The symmetry property is especially important in our column generation

paradigm, since the discovery of a single violating cut effectively leads to the discovery

of O(k!) violating cuts, one for each symmetric version. This greatly reduces the

number of column generation iterations.

Nevertheless, one must ask the question of whether an arbitrary embedded graph

can achieve a greater value of y,(G, a). We thus sacrificed some of the computational

simplifications of grid graphs and generalized our experiment to arbitrary embeddings.

For a given embedding a, this generalization was straight-forward: we removed the

edge weight symmetry constraint from the various linear programs, and replaced the

constraint

Ews"=l

everywhere with the more general constraint

ZE e Isi = 1.
S

We also worked with complete graphs for maximum generality, since a missing edge

can be modeled by an edge with weight 0. Our search space was then the set of

weight functions w : E -+ IR, together with the set of embeddings a.

We then chose initial values for w and a and did the following:

1. Fix w, and solve for the embedding a that maximizes -y(G, a) (i.e., minimize

the volume of the embedding).

2. Fix a, and solve for the weight function w that maximizes y(G, a) (i.e., induce

the worst possible ratio).

3. Repeat 1-2 until w and a remain fixed.

Performing step 1 is straightforward; one simply needs to solve the linear program

LP. Performing step 2 was the subject of the prior section.

4.3.3 Results and Observations

The algorithm described in this chapter was implemented via a combination of Java

and CPLEX. While it is difficult to prove every part of the program correct, it is

possible to independently compute both the value of the minimum nmultiway cut of

the output graph and the value of the embedding, and to compare the quotient of these

k n bound previous bound
4 35 1.1052 12/11 1.0909
5 35 1.1098 32/29 1.1034

Table 4.1: Improved lower bounds on the integrality gap.

values with the value of y(G, a) outputted by the program. We could have confidence

in the correctness of the minimum multiway cut implementation because we had two

different implementations (the branch-and-bound algorithm and the integer program)

that agreed on the given inputs. We could have confidence in the correctness of the

embedding implementation because of the simplicity of the program, and by hand-

checking the program outputs for small inputs by hand.

The size of the graphs we could consider was severely restricted by the fact that

our procedure's running time is theoretically asymptotically exponential in n. Nev-

ertheless, we were able to run our algorithm on large enough instances to obtain new

lower bounds on the integrality gap for small values of k. The previously best known

lower bound for k > 4 was 8/(7 + ki_), discovered by Freund and Karloff [6]. Our

results are summarized in Table 4.1. Unfortunately, for k > 5, we could not run our

algorithm on large enough instances to generate improved lower bounds.

There are some interesting observations to point out. We found that the gener-

alized experiment of Section 4.3.2 offered no improvement over the grid graph-based

experiment of Section 4.3.1. When our input graph had the same number of nodes

as the size-d grid graph for some d, the generalized algorithm typically converged, in

just a few itera.tions, to the size-d grid graph, regardless of the initial weight function

or embedding. The only other local optima we could discover in the search space were

somewhat pathological examples (such as embeddings where two embedded nodes co-

incide). When our input graph was not of the appropriate size, the final embedding

was such that each embedded node sat at the location of an embedded node of the

next largest size-d grid graph. This seems to provide empirical evidence indicating

that the grid graph is optimal among all possible worst-case embeddings.

Finally. we should comment. on the nature of the cuts corresponding to the vio-

lating constraints we found. For the k = 5 case, we found no violating constraints.

For the k = 4 case, violating constraints were found; we wrote a program to help

visualize these cuts, in hopes of finding some obvious structure that would allow us

to extend these cuts into a class of k-way cuts of the simplex. A typical cut is shown

in Figure 4-1. Unfortunately, we could find no such structure - these cuts could not

be expressible as sparcs, pair-isolating cuts, or any other sort of "natural" cut that

we could conceive of. Perhaps if we could solve much larger instances of the problem,

patterns may have emerged. The MAX-SNP hardness of the computation of 'y(G),

however, may make this an impractical line of future research. Furthermore, one can-

not logically infer that these violating cuts correspond to cuts that are used by the

optimal cutting scheme, possibly rendering such an investigation moot. They could

simply be an artifact of the discretization. More will be said of this latter point in

Chapter 5.

Figure 4-1: A graphical representation of a non-sparc cut corresponding to a binding
constraint for the k = 4 case. The edges belonging to the cut are highlighted in the
three dimensional representation on top. Note that the edges belonging to the cut
either lie completely within the bottom face or are incident to the bottom face. The
bottom face is shown on bottom. with the nodes labeled by the assigned terminal.
The empty label corresponds to the opposite terminal; all other nodes of the simplex
would share this label if they were depicted.

59

Chapter 5

Study of Pair-Isolating Cuts

Aoyama showed that for a fixed discretization level, the optimal cutting distribution

using sparcs and pair-isolating cuts yielded a smaller maximum density than the

optimal cutting distribution using simply sparcs. As a result, he postulated that an

optimal cutting scheme for k = 4 may not be describable as a probability distribution

over sparcs, although he recognized that this postulate could not be logically inferred

from his computational experiments.

We have performed some additional computational experiments on the k = 4 case

to further investigate this postulate. Although our results cannot confirm or deny his

postulate, they seem to suggest that the addition of pair-isolating cuts in fact does

not yield a better cutting scheme.

5.1 Interpreting Mosk-Aoyama's results

Mosk-Aoyama's computational experiments seem to indicate that a cutting scheme

involving sparcs and pair-isolating cuts can achieve a smaller maximum density than

a cutting scheme involving just sparcs. Although he mentions that the postulate

did not necessarily follow from his computational results, we offer a more in-depth

analysis of why this need not be the case, based on our discussion from section 2.2.3.

Recall the formulation of the linear program LP-UB. We have sub-distributions

{Qi}, cells { Wj }. and density bounds { iP(Q, WIj) }, organized as follows:

min •

Let Q, W, and T represent the sets {Qi}, {Wj}, and { (Qi, Wy)}, respectively.

We index each of these sets by the discretization level (d) used and whether they are

the sets used in the framework of Karger et al. (K) or Mosk-Aoyama (M):

Ld ddd

d Ld d

Additionally, let -(K) and 7•-d) represent the objective values of LP-UB under the

Karger et al. and Mosk-Aoyama framework, respectively.

Mosk-Aoyama's postulate was borne from the observation that, for small fixed d,

(K) > M). (5.1)

A problem with this reasoning, however, is that W(M) represents a (strictly) finer

discretization of the simplex than W (K) does - each cell of W(K) can be expressed

as a union of multiple cells of W(M). This fact may be slightly obscured by the

parametrization of the sets of cells by the same value of d. It is thus not clear how

to compare the amount of slack lost in inequality (2.1) by the density bounds Xp(K)

and IF("), respectively.

As a result, the empirical observation of (5.1) could arise from the sub-distributions

of Q&)_ - Q0K), from the granularity difference between WY() and W4K), or from the

looseness of the bounds p(K) (or some combination of the three). Even if the cause

of the empirical observation could somehow be wholly pinned to the first, it may

be the case, as Mosk-Aovama. observes, that the difference between dK) and rd

approaches 0 as d -- oc. The presence of these conflicting factors makes it. difficult

to have confidence in Mosk-Aoyaima's postulate.

5.2 An alternative approach

The discussion of the previous section reveals an inherent difficulty with an approach

that relies on the linear program LP-UB to try to reason about the roles of cer-

tain types of cuts in an optimal cutting scheme. The difficulty lies in the task of

comparing the amount of slack lost in inequality (2.1) when using different sets of

sub-distributions and cells.

For this reason, we performed computational experiments based on the linear

program LP-LB in an effort to gain additional insight concerning the optimal cutting

scheme without having to deal with the complication of slack-losing inequalities like

(2.1).

Recall the formulation of LP-LB. We have a finite set V C A, and a graph, G(V),

whose vertices are the points of V, and whose edges are the elements of S(V). We

let cuts(V) denote the set of k-way cuts of G(V). The linear program is then:

max A

s(v) 8 1 (LP-LB)
sES(V)

w8 > A VC E cuts(V)
sEC

A natural choice for our embedded graph is the size-d grid graph. As noted

in Section 4.3.1, this graph allows us to add symmetry constraints that effectively

reduce the number of weight variables. Furthermore, as noted in Section 4.3.3, we

have empirical evidence that seems to indicate that the grid graph is optimal among

all possible worst-case embeddings.

If some constraints induced by pair-isolating cuts turn out to be binding con-

straints, this would seem to indicate, by complementary slackeness, that an optimal

cutting scheme should assign nonzero probability to pair-isolating cuts. Conversely,

if none of those constraints are binding constraints, this would seem to indicate that

some optimal cutting scheme may assign zero probability to pair-isolating cuts. Un-

fortunately, this intuition cannot be made rigorous. The reason is that complentary

slackeness can only be applied to the (undiscretized) infinite linear programs PRI-oo

and DUAL-oo, as these linear programs are truly duals of each other. The linear pro-

gram at hand, LP-LB, is only a, discretization of DUAL-oo; its dual has no obvious

relation to PRI-oo. The relationships between these linear programs were given in

Figure 2-1, which we repeat below:

P R I- I dul DUAL-oo

discretize

PRI-oo2 discretize

slack

LP-UB LP-LB

We allowed this pseudo-argument to guide our experiments, despite the fact that

the intuition behind it could not be made rigorous.

As mentioned at the end of Section 4.3.3, when using the size-d discretization grid

for small values of d, we found that none of the cuts corresponding to the binding

constraints of LP-LB could be expressed as pair-isolating cuts. Due to computational

limitations, however, we could only verify this for d < 4. This, in itself, did not make

for very compelling evidence against the utility of pair-isolating cuts.

To get around the problem of computational infeasibility, we replaced the set

cuts(V) in LP-LB with a smaller set of cuts, and investigated whether any of the

binding constraints of the resultant linear program corresponded to pair-isolating

cuts. This modified linear program is given in Section 4.3.1; we repeat it here:

max A s.t.

Z 1
.1 (LP2(D))

_ s > AX VCED
,qCC

7'V; "'.;/ Vs ,- S'

Specifically, we felt that it would be useful to compare the objective values of

LP2(D) obtained by setting D equal to

1. S, the set of all sparc-induced cuts

2. SUP, the set of all sparc-induced cuts, together with the set of all pair-isolating

cut-induced cuts

If the second objective value is equal to the first, this would imply that the constraints

corresponding to pair-isolating cuts in the second linear program are not binding.

This would seem to imply that those same cuts are not binding in LP-LB. However,

we must note a hole in our pseudo-argument here: it is not generally true that

a non-binding constraint of a linear program remains non-binding when additional

constraints are added. See, for instance, Figure 5-1.

It is important to realize that the resultant objective values are not provable

lower bounds on the integrality gap Tk. Provable lower bounds can be obtained by

proceeding with column generation to generate a linear program equivalent to LP-

LB. This was done in Chapter 4, but the experiment presented here is of a different

nature.

Nevertheless, we proceeded with this doubly-holed experiment.

5.3 Experimental variations

Recall our definition of pair-isolating cuts: cuts that first isolate two pairs of vertices

from each other, then separate each pair of vertices. This represents a broad class

of cuts. Two particular sub-classes of interest are the set of pair-side cuts and pair-

edge cuts (defined in Section 2.3). Our most basic implementation of the experiment

described in the previous section took the set of cuts to be those induced by sparcs,

by pair-side cuts, and by pair-edge cuts.

We then created a variant of this experiment that considers a much broader class

of pair-isolating cuts. Namely, it considers those cuts generated by performing a pair-

isolating slice (as defined in Section 2.3). followed by any arbitrary cut of the resulting

/

Figure 5-1: An example of a non-binding constraint becoming a binding one upon ad-
dition of another constraint. In both drawings, the lines represent constraints, and the
shaded regions represent the feasible regions. The objective direction is the downward
direction. Note that in the drawing on the left, the leftmost vertical line represents a
non-binding constraint. In the drawing on the right, a single constraint, represented
by the dashed line, has been added. The previously non-binding constraint becomes
binding in this case.

/

two regions of the simplex. At first, this may seem computationally infeasible, as the

set of all such cuts is exponential in size. However, we were able to bypass this

difficulty with a clever application of max-flow/min-cut duality. Rather than list the

exponentially many cuts separating the two terminals of each region, we wrote flow

variables for pairs of adjacent vertices, and equated the flow between terminals to the

value of the cut for that region.

In order to give the explicit linear program, we introduce some notation. Let P

denote the set of pair-isolating slices. Note that P can be taken to be finite, since

we only need to consider slices which induce different cuts in the finite point set V.

Each plane rr E P induces a cut E, C V x V, and partitions V into two point sets,

A , and B,. Let a0) and a,) be the two terminals of A, and let b7) and b(2) be the

two terminals of B. We may then explicitly write the linear program as follows:

max A s.t.

Z w. Is. = 1

{ff)v} a flow from a() to a2) through A, (FLOW-LP)

{f6r E Pa a77
2Vrr e F: {g()v} a flow from bW) to b() through B,

f(7)(a), a(2)) + g(r)(b), b(2)) sEE, A

Finally, for an additional touch of generality, we replaced P, the set of all planes

induced by pair-isolating slices, with a more general class of pair-isolating geometric

objects'. As alternatives, we considered P*, the set of all planes that separate pairs

of vertices. *We also considered W, the set of all wedge separators. We define a wedge

separator to be the non-planar geometric object produced by the following procedure:

1. Choose a point p in the interior of the simplex.

2. For each face of the simplex, choose a projection of p onto that face, taken along

a vector parallel to an edge of the simplex. Note that there are three possible

'Recall t.hat a pair-isola.ting slice is taken by using a plane parallel to two edges of the simplex.

projection points for each face.

3. Label the four projection points as pi, P2, P3, and p 4 in some order.

4. Return the set Zplpp2 U Zp2PP3 U Zp 3pp4 U Zp 4pp1 , where Zabc denotes the

set of all points contained in the planar region enclosed by the rays ba and bc.

Such a set of points is called a wedge; thus, a wedge-separator is the union of

four wedges. When ba and bc are antiparallel, Zabc is undefined. We ignore

such cases.

Figure 5-2 shows a graphical representation of a wedge-separator.

One can see that W is a superset of P: a wedge separator generated by taking

all projections along vectors parallel to either of two opposite edges of the simplex is

a pair-isolating slice. The idea of wedge separators came from Karger et al. Their

optimal cutting scheme for k = 3 uses what they refer to as ball cuts, generated by

choosing an internal point and by taking side-parallel projections of that point to the

three sides. A wedge separator seems to be a natural extension of this idea.

The computational complexity of FLOW-LP can be analyzed as follows. Let

n = [VJ, so that n = 0(d3). There are then O(M. - n) variables, where M is the

number of pair-isolating objects under consideration. The factor of n is present to

account for the flow variables. If we consider the set of all planes as pair isolators, this

gives M = O(n3) = O(d'), since each plane can be identified by three non-collinear

points of the discretization grid. If we consider the set of all wedge separators, this

gives M = O(n) = O(d3).

5.4 Results and conjectures

The discretization level we were able to use depended on whether or not we worked

with the max-flow/min-cut paradigm, and by the set of pair-isolating objects we

considered. When using the set of all planes and the set of all wedge separators

in the max-flow/min-cut paradigm, we were able to achieve a discretization level of

d = 8.

/ \
/

//

/

I

Figure 5-2: A graphical representation of a wedge separator, shown from two different
angles. The four colored planar regions represent the four wedges. rhe center point
p is the point at which the four colored regions meet. In this particular example, the
green anud yellow wedges lie in the same plane (in a black and white version, these
should be the two lightest colors).

r

-x_-

Our results can be stated very succinctly. At no discretization level did any type

of pair-isolating cut offer any improvement over sparcs. This leads us to the following

conjecture:

Conjecture 8. Pair-isolating cuts are not a necessary component of an optimal cut-

ting scheme for the k = 4 case.

As noted, our reasons for inferring this conjecture are based on a doubly-holed

argument. We outline the argument here. If pair-isolating cuts are necessary for an

optimal cutting scheme, then those cuts will be binding constraints of DUAL-00, the

continuous version of LP-LB. This is implied by complementary slackness between

PRI-o0 and DUAL-oo. Then, we may think of LP-LB as being generated by adding

additional constraints to DUAL-oo. These constraints force some of the edge weights

to be zero and force others to be equal to each other. Our argument assumes that

for sufficiently high discretization levels, the addition of these constraints preserve

the bindingness of the binding constraints of DUAL-oo. This is the first hole of

our argument. It is not generally true that adding constraints to a linear program

preserves the bindingness of others. However, in this context, there is reason to believe

this should be the case for sufficiently high discretization levels, since the objective

value of LP-LB approaches the objective value of DUAL-oo as the discretization

level approaches oo. This fact was proven by Karger et al. The second hole of

our argument is independent of the first. Even if pair-isolating cuts correspond to

binding constraints in LP-LB, those constraints may not be binding with respect to

a proper subset (sparcs plus pair-isolating cuts) of all the constraints. This makes

the opposite assumption of the first hole: that the addition of constraints to a linear

program preserves the non-bindingness of others.

A stronger conjecture, based on our inability to conceive of other "natural" cuts

for the k = 4 case besides sparcs and pair-isolating cuts, leads us to a more speculative

conjecture:

Conjecture 9. Sparcs are sufficient to describe the optimal cutting scheme for the

k = 4 case.

If Conjecture 9 is true, then sparcs are sufficient to describe the optimal cutting

scheme for both k = 3 and 4. It is thus natural to conjecture the following:

Conjecture 10. Sparcs are sufficient to describe the optimal cutting scheme for all

V.

Chapter 6

Conclusion

In this project, we have studied the integrality gap of the geometric relaxation given

by Calinescu, Karloff, and Rabani for the minimum multiway cut problem. We

have applied a stronger analysis to the computational experiments formulated by

Karger, Klein, Stein, Thorup, and Young, to derive stronger upper bounds on the

integrality gap. We have also devised an optimal minimum multiway cut branch-

and-bound based algorithm, and have used this in a column generation paradigm to

derive stronger lower bounds on the integrality gap.

The ultimate goal of researching the Calinescu et al. relaxation is to determine

the optimal cutting scheme, as Karger et al. were able to do for the k = 3 case.

This goal has eluded us. However, we believe that our computational experiments

may shed some light on the nature of the optimal cutting scheme. In particular,

our experimental results seem to indicate that an optimal cutting scheme for the

A; = 4 case may be expressible without pair-isolating cuts. Our inability to conceive

of other "natural" cuts for the k = 4 case besides sparcs and pair-isolating cuts leads

us to conjecture that the optimal cutting scheme for the k = 4 case mlay in fact be

purely expressible as a probability distribution over sparcs. This conjecture is directly

contrary to the conjecture of Mosk-Aoyama.

6.1 Future work

There are several natural directions in which to pursue the further study of the

C&linescu et al. geometric relaxation. The ultimate goal, as noted, is to determine

the optimal cutting scheme exactly. This can be thought of as two separate open

problems: one is to construct an optimal cutting scheme, and the other is to construct

a worst-case graph. It is unclear how one could recognize either as optimal without

the other. If sparcs are indeed sufficient to construct the optimal cutting scheme for

k > 3, it seems that careful examination of discretized solutions, combined with some

brilliant pattern recognition, should lead to an analytical construction of an optimal

cutting scheme. Despite our numerous efforts, this approach failed us, but we believe

this to be the most promising line of research.

If, on the other hand, our conjecture is incorrect, and sparcs are not sufficient,

the search for an optimal cutting schene becomes difficult. One must conceive of

other classes of cuts, and one must either design computational experiments that

incorporate these cuts or reason about the segment densities induced by these cuts

analytically. Even for a relatively simple class of cuts like the pair-isolating cuts,

we have discussed the difficulty of the designing tightly constrainted computational

experiments in Section 5.1, and the resisted efforts of Mosk-Aoyama in his thesis seem

to indicate the difficulty of making advances on the analytical side.

As for the problem of finding a worst case graph, our efforts have produced a

stronger lower bound for various values of k > 3, but it will likely be difficult to

extend our approach to find a tight matching lower bound as the efforts of Karger et

al. did for the k - 3 case. The reason is that our procedure for determining worst-

case graphs depends on a procedure that runs in time exponential in the graph size.

We have utilized heuristics to ease the computational difficulty, but an exponential

running time cannot be easily hidden. As a result, our discretization is too coarse,

leaving us with insufficient data to recognize a pattern. Furthermore, even if a pattern

could be found, it is not clear how one can analytically establish a lower bound on

the graph's minimium mlultiway cut, as we cannot rely on planarity as Karger et al.

did for the k = 3 case. We made numerous attempts to generalize Karger et al.'s

lower bound proof for k > 3, but none were successful.

Bibliography

[1] M. Adams and V. Guillemin. Measure Theory and Probability, 1996. Birkhdiuser

Boston.

[2] Y. Boykov, O. Veksler, and R. Zabih, 1998. Markov Random Fields with Efficient

Approximations. In Proceedings of IEEE conference on "Computer Vision and

Pattern Recognition", pages 648-655, 1998.

[3] G. Calinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm

for multiway cut. In Proceedings of the Thirtieth Annual ACM Symposium on

Theory of Computing, pages 48-52, 1998.

[4] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-

nakakis. The complexity of multiterminal cuts. In SIAM Journal on Computing,

23 (4): 864-894, 1994.

[5] J. Edmonds, R. Karp. Theoretical improvements in algorithmic efficiency for net-

work flow problems. In Journal of the ACM, pages 248-264, 1972.

[6] A. Freund and H. Karloff. A lower bound of 8/(7 + -~-) on the integrality ra-

tio of the Cilinescu-Karloff-Rabani relaxation for multiway cut. In Information

Processing Letters, 75 (1-2): 43-50, 2000.

[7] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting

sto(k p)roblem. In Operations Research 9, pages 848-859. 1961.

[8] D. R. Karger, P. Klein, C. Stein, M. Thorup, and N. E. Young. Rounding algo-

rithins for a geometric embedding of minimum multiway cut. In Proceedings of the

Thirty-First Annual ACM Symposium on Theory of Computing, pages 668-678,

1999.

[9] M. Liibbecke and J. Desrosiers. Selected topics in column generation. In Opera-

tions Research 53, pages 1007-1023, 2005.

[10] G. Nicosia, A. Pacifici. Exact algorithms for a discrete metric labeling problem.

In Proceedings del CTW04 Workshop on Graphs and Combinatorial Optimization,

2004.

[11] H. S. Stone. Multiprocessor scheduling with the aid of network flow algorithms.

In IEEE Transactions on Software Engineering, 1977.

