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Abstract

Despite the significant effort devoted to methods for expression recognition, suitable
training and test databases designed explicitly for expression research have been largely
neglected. Additionally, possible techniques for expression recognition within an Man-
Machine-Interface (MMI) domain are numerous, but it remains unclear what meth-
ods are most effective for expression recognition. In response, this thesis describes the
means by which an appropriate expression database has been generated and then enu-
merates the results of five different recognition methods as applied to that database.
An analysis of the results of these experiments is given, and conclusions for future
research based upon these results is put forth.
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Chapter 1

Introduction

Man-Machine Interfaces (MMI) seek to eliminate the alienation users frequently ex-

perience when interacting with automated devices. To accomplish this, MMIs utilize

information regarding the state of the client to govern the course of the interaction.

This information may take to the form of physical cues, verbal cues, and information

recorded during previous interactions with the user. As MMIs approach conversa-

tional levels on par with typical human-human interactions, however, it will be nec-

essary that they also incorporate emotional cues into their repertoire. In particular,

just as humans direct the course of a conversation via emotional cues, so will it be

necessary for MMIs to recognize these cues during their own interactions with the

user [1].

While emotional cues are expressed in a variety of forms (body temperature, blood

acidity, breath rate), they are most frequently and most readily recognized via facial

expressions. Providing MMIs with the ability to correlate facial expressions with

emotional states would first require that a system be trained to readily acknowledge

facial expressions at least as successfully as humans do. Only when these primitive

recognitions are available will higher-level processing be possible.
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1.1 Aims of Research

This thesis addresses the challenge posed by expression recognition in an MMI domain

by first creating a database of images which may be used to train an MMI to recognize

facial expressions. Then, building upon existing facial recognition techniques, this

thesis investigates various approaches to facial expression recognition and ascertains

the relative efficacy of each method. Ultimately, this research will provide a framework

to direct future efforts using these techniques.

1.2 Thesis Organization

This thesis begins by describing the rationale for the creation and structure of the

expression database utilized in this research. This includes a description of the pro-

cessing methods involved in generating appropriate images. Subsequently, a discus-

sion of the various methods utilized for facial extraction from the database are given.

A description of each of the five expression recognition algorithms to be compared

follows, after which the experimental results for each of the methods are described.

The thesis concludes with a discussion of the relative success rates of each of the

methods and recommendations for their improvement.
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Chapter 2

Database Creation and Description

In [12], generating a comprehensive and labeled training database of expressions has

been stated as one of the main challenges posed before automatic facial expression

recognition. Because of the lack of appropriate databases, researchers in expression

recognition frequently use databases developed for face recognition [14,15] and per-

son identification [17]. Unfortunately, these databases usually do not contain video

sequences and also lack appropriate labeling information for the expressions. A sec-

ond set of widely used expression databases stems from behavioral science [7]. These

databases often contain specific facial muscle contractions but lack natural expres-

sions. In any of the expression databases evaluated for use as a training set, it was

evident that at least one of the following deficiencies was present:

" Poor image quality

" Too few expression samples were provided for each class

" The database did not include video sequences

" The database did not include natural expressions

" The labeling schema used was insufficient

These considerations prompted the construction of a database suitable for expres-

sion recognition research which specifically addressed the issues listed above.
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2.1 Existing Expression Databases

Table 2.1 compares some of the most commonly used facial expression databases

with the database generated for this thesis.1 Because of their wide-usage, two of these

databases will be discussed in more detail: the Cohn-Kanade database, as an example

of a FACS-based database and the Human Identification at Distance database (HID)

as an example for a database which was developed for person identification.

Name Images Sequences Subjects Expressions Remarks
Thesis Database original and > 1400 12 played and natural

processed RGB natural head movements
HID [17] 9 mug-shots 284 natural expr. often

per subj. RGB subtle or mixed
Cohn-Kanade [7] None 329 100 played FACS coded,

BW/RGB no head movement
CMU-PIE [15] > 40,000 includes some 68 played large variations

RGB talking clips in pose and illum.
FERET [14] > 14,000 None 1009 played designed for

BW identification
JAFFE [11] 213 None 10 played only Japanese

BW women

Table 2.1: Existing Expression Databases.

2.1.1 Cohn-Kanade Database

The Cohn-Kanade database can be considered today's de-facto standard for com-

parative studies in facial expression analysis. The subjects were instructed by the

experimenter to activate a specific action unit (AU) or combinations of AUs; the

recorded sequences were annotated using the FACS. The length of the sequences

varies between 9 and 60 frames. Each of the sequences starts with the neutral expres-

sion and ends when the maximum intensity of the performed AU is reached. Two

cameras recorded the face in frontal and half profile view. For now, only the frontal

views have been made available to the public.

Completeness is not claimed in this comparison - e.g. commercial databases have not been
considered at all.
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Using this database to train and test an expression recognizer for an MMI appli-

cation involves a number of drawbacks:

" No natural expressions

" No head motion

" The clips don't show the full expression over time

" Many clips show expressions, or rather activities of AUs, which usually don't

occur in real life

2.1.2 HID Database

A relatively new database has been recorded within the HID DARPA project [17].

This database was designed to test algorithms for person identification and for human

motion analysis. It includes ten mug shots per subject and video sequences of the

subjects speaking and walking. Of interest for expression analysis are the video

clips which show the natural expressions of the subjects while watching a ten minute

video. This video contained scenes from various movies and television programs

intended to elicit different emotions. Based on the judgment of the experimenter,

facial expressions where cut into five second clips and assigned one of the following

eleven labels: happiness, sadness, fear, disgust, anger, puzzlement, laughter, surprise,

boredom, disbelief or blank stare.

At the time of writing, no publicly available database which includes a fairly large

number of annotated video clips of natural expressions has been encountered by the

author. In the future, databases of this kind might be extremely helpful, perhaps es-

sential, for evaluation algorithms with respect to their real-world applicability. Still,

this database by itself is not sufficient for training and evaluating expression recogni-

tion systems for several reasons:

o Most of the natural expressions are very subtle and far beyond what is currently

recognizable by state-of-the-art systems
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* Some clips contain mixtures of expressions (e.g. puzzlement which turns into

surprise) which are not reflected in the labels

" There are rarely more than two clips per subject and expression class.

2.2 Database Considerations

Several considerations must be made before creating an expression database. In

particular, automated facial expression recognition within an MMI setting poses a

number of problems that must be addressed by the database:

* (a) Pose invariance. Slight changes in the pose of the face are usually handled by

applying an alignment phase prior to extracting the features for classification.

Aligning a face to a canonical view requires the computation of correspondences

between a reference image and the image to be aligned. The correspondences

can be computed sparsely, i.e. by matching or tracking a few facial features (see

e.g. [16]), or across large parts of the face (see e.g. [21]). This thesis makes use

of an alignment algorithm which computes a dense correspondence map based

on optical flow field (see Figure 2-2).

" (b) Exploiting temporal information. Important temporal context information

is lost when single images are classified independently [13]. This problem can

be dealt with on various levels of complexity. For example, the results of the in-

dependently classified images can be merged to classify a whole image sequence.

A more sophisticated approach is to model state transitions in expressions by

Hidden Markov Models (see e.g. [10]). This thesis performs each recognition

experiment only on single images which were processed (see Figure 2-2) from

their original temporal sequence.

" (c) The generalization problem - classifying the expressions of a person who has

not been part of the training set. The expressions between people might vary

due to differences in the shape and texture of their faces and differences in the

12



way they perform a facial expression. Texture dependencies can be removed

by using optical flow as input to the classifier [3]. One method to remove the

shape dependency involves performing the warp to a synthetic reference face

(see Section 3.1) [18].

e (d) Subtleness of natural expressions. Often, natural expression show a degree

of subtleness which is not present in databases of played expressions. This

thesis provides a preliminary investigation of the effect of training a system on

played expressions, and then testing on natural expressions. This mimics the

requirements imposed upon an MMI system trained in an artificial environment

and then deployed in a real-world setting.

2.2.1 Labeling Methodology

The expression labeling stratagem used in this thesis was chosen to address the par-

ticular aspects of the MMI domain described above. For both played and natural

expressions labels used include: neutral, happy, surprise, fear, sadness, disgust, and

anger. Within the natural expressions, particular expressions were expanded depend-

ing on the form they took. That is, happiness became smile and laugh, and the

categories shock, puzzlement, dislike were added. The suitability of these expression

categories within an MMI application may vary depending on the domain-additional

expressions such as annoyed, confused or bored may be useful in some circumstances

and should be considered in the creation of future databases.

2.3 Expression Recording Methodology

The facial expression database was specifically intended as a training and test database

for expression recognition systems within an MMI setting. In this setting, the person

will be close to the camera, either looking straight into the camera or at an object

close by, e.g. a computer screen, or kiosk terminal. It is likely that head motion oc-

curs in and out of the image plane when the user naturally interacts with a computer.
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Thus, the head motion of each of the subjects in the database was not constrained

during the recording of their expressions.

Robert Fischer [5] performed the video capture using two digital video cameras.

Recordings were taken from both frontal and half-profile views (about 30' from cen-

ter) of each of the subjects. The scene was illuminated by a ceiling light and a

photographic lamp with a diffuser, which was placed behind the camera at a height

of approximately 2 meters. Table 2.2 lists the specifications for the video-capture

equipment used.

Camera Sony DCR-VX2000
Video standard NTSC
Color format RGB
Frame rate 29.97 fps, non drop-frame
Frame size 720 x 480

Table 2.2: Specifications for Recording Apparatus.

2.3.1 Played and Natural Recordings

As mentioned previously, the database consists of two parts: played and natural

expressions. In the first part of their recording session, subjects were asked to display

six basic emotions: happiness, sadness, fear, disgust, surprise and anger. Data from

these categories were each labeled as such and as being played, not natural. Intending

to create a database demonstrating the widest gamut of expressions, this labeling

schema was believed to be more suitable than a more granular degree or valence-

based labeling. Furthermore, degree-based labeling can be ambiguous, considering

the range of values, and unique responses provided by each of the subjects.

Most of the subjects had prior experience in acting. Each subject was asked to

repeat each expression between 10 and 20 times in order to get a sufficiently large

number of examples.

In order to obtain natural expressions, the subjects watched a twenty minute movie

that consisted of short video clips. The clips covered a large variety of topics, such

as funny commercials, scenes of surgery and war documentaries. Similar to the HID
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database, the labeling of the recorded natural expressions was done by the judgment

of the experimenter (the current video clip watched by the subject likewise suggesting

which emotions were most likely to arise). Whenever possible, single expressions were

isolated and cut from neutral state to neutral state.

2.4 Statistical Overview of Database

Of the total of twelve subjects eight were female and four male. The age of the

subjects ranged from eighteen to thirty years; three were of African, one of Asian and

one of Indian ethnicity - the remainder were Caucasian. Altogether, 1407 sequences

were captured from video, averaging 117 sequences per subject and 176 sequences per

class. Figure 2-1 shows sample images of each of the subjects.

subject 100 101 102 103 104 105 106 107 500 501 502 503
Sex f f f f f f f f m m m m

Age 20 19 21 22 25 25 29 18 22 30 19 21
Ethnicity Cauc Cauc African Indian Cauc Cauc Cauc Asian African Cauc Cauc African

Table 2.3: Subject Background Information.

Figure 2-1: Sample Images of Each Subject.
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Subjects in Figure 2-1 are given in pairs, from left to right, top to bottom, in the

following order: 100, 101, 102, 103, 104, 105, 106, 107, 500, 501, 502, 503.

2.5 Alignment and Preprocessing

The initial labeling and video acquisition was accomplished in previous work by

Robert Fischer [5]. Using these video sequences, images were generated and then pro-

cessed independently for use in this thesis. Once the videos had been separated into

image sequences it was necessary to extract only that portion of the image relevant to

recognition in a controlled manner. The occasional error in cropping and alignment

made it necessary to manually remove several sequences. Additionally, played ex-

pression sequences were edited by hand so that only those images demonstrating the

expression under investigation were included in the database. This prevented inter-

mediary neutral expressions in the video sequence from interfering with the training

of the recognition methods. Figure 2-2 outlines the processing methods employed:

4) This mask ,, then oaedi

7)~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~3 Fergo rti mg ersttogageiiae IAtsbet r o eac h tobjcpt e a h n o pcal fon

a prede d re c l 9 o w b g which

thIagee that w Il be tsed in the with the face in the nskced image

FM et o 22 x22reiohbot wdicei

Figure 2-2: Generalized Image Processing Method.

In (1) each of the video sequences was processed to generate a sequence of images.

These are the images tabulated in "Single Images Before Processing" of Tables 2.4

and 2.5. In (2) the Viola-Jones face detector [2,19, 20] was used to extract a 222x222

region around the face in each image2. As shown in (3), a neutral reference image
2To account for rotations in the subject's head, each of the images was rotated between -30 and

±30 degrees. The software then returned a 222 x 222 pixel cropping of the image at the location
and rotation for which the OpenCV recognition metric returned the greatest value.
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was then chosen for each of the twelve subjects and a binary mask was drawn on this

image. The region inside this mask was used in the first of two alignment steps. In

this first step, the mapping returned by the optical flow between the masked region

of the reference image and one of the subject's corpus images was used to generate a

similarity transform. This transform was then applied to the corpus image to align it

with the subject's reference image. The process was repeated for every image in the

corpus. Thus, by stage (4) each of the subjects has had the entirety of the images in

his or her corpus aligned to a reference image particular to that subject. It was still

necessary to align each of the subject's corpora to each other so that all images in

the database were aligned to one another. In (5), this was accomplished by manually

selecting four points3 in the reference image. By selecting the equivalent four points

in the reference images of the other subjects a second similarity transformation which

would minimize the error between those points was computed. Each of the twelve

transformations for each of the twelve subjects was then applied to the images of

their respective corpora so that all images of the database were now aligned with one

another. All the images in this globally aligned database were then gray-scaled and

cropped to a 99 x 123 region about the face (6). Before each classification method

was performed, the images were further masked as shown in (7) to extract only the

expression-relevant portions of the face.

Tables 2.4 and 2.5 delineate the final state of the database. Each subject's corpus

of natural images was used as it was returned by the final stage of processing in Figure

2-2. Played expressions, however, were manually inspected to ensure that only those

images of the sequence which demonstrated the labeled emotion were present. This

explains the significant difference in the numbers of "Single Images Before Processing"

and "Processed Images" for the played expressions in Table 2.4.

Finally, it should be noted that while subject 103 is made available in the final

processed images of the database and included in the tables below, her images were

ultimately not used during the experimentation phase of this thesis. Several of her

3These points were the center of each eye, the midpoint between the nostrils, and the center
meeting point between the lips.
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image sequences contain expressions which were ambiguous and did not agree with the

labels assigned to the sequence. Removing these sequences would have significantly

diminished the size of her corpus relative to the other subjects, so she was instead

excluded from the trials.

Original Number of Played Video Clips
subject neutral happiness surprise fear sadness disgust anger natural

100 6 9 11 16 9 13 14 33
101 10 11 7 8 5 11 8 26
102 7 17 11 14 15 14 9 20
103 11 14 23 25 11 15 12 25
104 6 14 19 18 14 9 19 27
105 9 14 24 16 10 9 12 31
106 7 16 15 12 16 9 18 26
107 7 24 43 33 18 27 11 19
500 5 12 8 12 14 11 17 23
501 6 13 20 10 12 8 8 21
502 2 12 14 14 7 9 13 28
503 6 12 19 10 11 13 16 30

Single Images Before Processing
subject neutral happiness surprise fear sadness disgust anger natural

100 1200 896 984 1414 1500 1136 1243 4369
101 1800 1550 558 661 1176 1075 963 5253
102 1260 2627 1018 1791 2532 1562 796 3469
103 774 1301 1234 1713 1464 1693 1553 3107
104 1080 1621 1024 1111 1632 637 1711 6063
105 617 1412 1485 1171 1985 688 1968 3158
106 1260 1842 1232 995 2615 724 1673 4857
107 1260 1787 2854 2380 1860 2265 1031 2762
500 900 1612 771 1211 2444 1427 1985 4503
501 538 1160 1670 1066 1469 640 561 2332
502 200 1182 1159 1051 1094 740 1060 3168
503 1080 1362 1593 1633 1720 1502 1880 5701

Processed Images
subject neutral happiness surprise fear sadness disgust anger natural

100 1200 609 324 929 1363 861 958 4369
101 1800 1242 321 418 521 687 702 5253
102 1260 1491 626 1180 1989 949 503 3467
103 774 1301 1234 1713 1464 1693 1553 3107
104 1080 963 507 927 1590 582 1204 6054
105 617 1027 749 748 1822 483 1145 3158
106 1260 1231 391 330 1904 328 627 4857
107 1260 1046 1017 1006 717 931 436 2762
500 900 1065 418 620 1253 874 1478 4306
501 538 979 498 336 1045 400 442 2332
502 200 775 658 556 647 456 612 3168
503 1080 817 853 1238 895 953 1176 5701

Table 2.4: Enumeration of Available Played Data.
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Natural Clips
subject neutral smile laugh surprise fear shock disgust dislike puzzlement

100 6 5 5 2 4 1 3 4 6
101 10 5 6 1 1 0 3 1 5
102 7 2 11 0 0 0 2 3 1
103 11 3 5 6 0 0 3 5 1
104 6 1 11 5 0 0 6 0 1
105 9 1 11 1 0 2 6 5 2
106 7 2 6 2 1 1 2 4 5
107 7 3 4 0 0 4 2 3 1

500 5 2 8 0 0 0 2 1 3

501 6 2 10 2 0 0 2 2 0
502 2 3 6 0 0 0 3 6 1
503 6 2 6 3 0 0 3 4 5

Single Images Before Processing

subject neutral smile laugh surprise fear shock disgust dislike puzzlement

100 1200 553 513 81 431 34 281 245 636

101 1800 670 853 69 245 0 331 129 549

102 1260 185 1410 0 0 0 105 386 81
103 774 200 856 340 0 0 153 520 70

104 1080 72 2232 826 0 0 1222 0 86

105 617 88 980 87 0 135 440 333 123
106 1260 202 870 203 171 125 281 535 540

107 1260 308 360 0 0 270 126 249 49

500 900 288 1565 0 0 0 318 51 374

501 538 182 1026 115 0 0 95 126 0

502 200 287 790 0 0 0 296 574 100

503 1080 308 1258 225 0 0 582 546 523
Processed Images

subject neutral smile laugh surprise fear shock disgust dislike puzzlement

100 1200 553 513 81 431 34 281 245 636
101 1800 670 853 69 245 0 331 129 549

102 1260 185 1408 0 0 0 105 386 81
103 774 200 856 340 0 0 153 520 70
104 1080 72 2223 826 0 0 1222 0 86
105 617 88 980 87 0 135 440 333 123
106 1260 202 870 203 171 125 281 535 540

107 1260 308 360 0 0 270 126 249 49

500 900 288 1447 0 0 0 317 51 374

501 538 182 1026 115 0 0 95 126 0
502 200 287 790 0 0 0 296 574 100
503 1080 308 1258 225 0 0 582 546 523

Table 2.5: Enumeration of Available Natural Data.
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Chapter 3

Methods for Expression

Recognition

A multitude of potential methods for expression recognition exist [4,8,9], some de-

rived upon previously successful work in face identification and some independently

produced for the expression domain. Methods utilizing texture-value features and/or

involving optical flow were the focus of research for this thesis. The following are the

five methods investigated in this thesis:

1. Optical flow fields classified using Null Space Principal Component Analysis

(NSPCA)

2. Optical flow fields classified using Support Vector Machines (SVM)

3. Texture-value features classified using SVMs

4. Combined internal classification outputs of the SVMs used in (2 and (3 above

classified again using SVMs - a hierarchy of classifiers

5. Combined feature sets of (2 and (3 above classified using SVMs
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3.1 Features

Three different feature types were employed in this thesis. The means for their gen-

eration and the highlighting attributes of each feature type are provided below.

3.1.1 Optical Flow

Optical flow [6] generates a matrix of vectors originating from pixel positions in one

image and terminating at pixel positions within another image. These vectors repre-

sent the mapping between the pixel intensities in one image and the pixel intensities

in another. These displacement vectors may be used to describe correspondences

between similar images.

A naive approach to generate expression features using optical flow would involve

directly taking the flow between each subject's reference image (a neutral expression)

and each image of their corpus and use the flow fields in the training and testing

of each classifier. These are the flows shown in the top right of Figure 3-1 labeled

"Optical Flow 2". Each arrow in the top portion of this figure represents a separate

flow field.

It would not be optimal to train on this flow, however, as it contains significant

excess information, unrelated to the individual's expression. In particular, this flow

still contains information regarding related to the identity of the subject. Directly

comparing the flows from two different subjects will not yield viable information

regarding their expressions until this information has been removed.

For this purpose a synthetic image' created from images outside the database was

used. The optical flow can be taken between this synthetic image and the reference

image of each subject. Because both the synthetic image and the subject exhibit

neutral expressions in these images the optical flow taken between this synthetic image

and the subject's reference image will indicate deformations related to the change in

identity between the face in the synthetic image and the face in the reference image.

'The synthetic image was acquired by morphing images from a website which
itself provided the averaged morph of a variety of individuals "http://www.uni-
regensburg.de/Fakultaeten/phil-Fak-II/Psychologie/PsylI/beautycheck/english/"
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This flow is in the top left of Figure 3-1 and is referred to as "Optical Flow 1". This

flow was computed for each of the subject's reference images.

Optical Flow (1) Optical Flow (2)

Warp Between Flows

0,-1 0, -1_ _ 1, 0 0, 0

1, 0 - I 1 - 1, -1 1, -It

Resultant Optical Flow

-1, -1 1, -1

1, -1 1,0

Figure 3-1: Visualization of Optical Flow Warp.

Using these two types of flow fields, it was then necessary to generate new flows

for all the subjects which only illustrate changes resulting from the subject's expres-

sion. This was accomplished by mapping each of the subject's expressions to the

synthetic image using these two flows, so that each subject's expression information

was normalized to the identity information of the synthetic image. In other words,

the expression taking place on the subject's face would now appear as if it were taking

place on the synthetic face.

This mapping was achieved by using Optical Flow 1 to index into the values of

Optical Flow 2. Figure 3-1 illustrates this operation. The operation is equivalent to

an image warp (warp : Flow x Image -- Image) using another optical flow field

instead of an image (warp: Flow x Flow -+ Flow). The optical flows resulting from
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this warp operation were then masked as described in step (7) of Figure 2-2. These

masked flows were the optical flows used by the classifier for training and testing.

3.1.2 Texture-value

The same mask applied to the optical flows was again used to extract the equivalent

portion of each image from each subject's expression corpus. Histogram equalization

was then performed on the gray values within the masked region to remove variations

caused by lighting. The outputted image from this equalization was used by the

classifier for training and testing.

3.1.3 Combined Feature Files

The optical flow features and the texture-value features were concatenated into one

new feature set. Because the ranges of these two feature sets did not agree it was

necessary that they be normalized. This was accomplished by computing the mean

and variance of a large training set, first for the optical flow features and then for

the texture features. The mean of the set was then subtracted from each data point

of that method and the result then divided by the standard deviation of the large

training set. The particular set used for the calculation of the mean and variance was

the training set for the 5 vs. 6 test, which will be described later in this thesis.

3.2 Classifiers

Three classifiers were used to train and test the previously described feature data.

They include a modified classification system using Principal Component Analysis

(PCA) and the null space of the returned eigenspace, as well as a group of linear and

gaussian trained Support Vector Machines(SVMs).
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3.2.1 Null Space Principal Component Analysis (NSPCA)

Algorithm

For each expression's training set of features, PCA was applied to the covariance ma-

trix of the training set to return the N leading eigenvectors and eigenvalues. These

eigenvalues drop off exceedingly quickly - the latter ones being many orders of mag-

nitude less than their predecessors. As the following figure demonstrates, almost all

the training sets used in this thesis reach an approximately level value for succeeding

eigenvalues after N = 30;

x10

3.5

3-

2.5 -

Magnitude

1.5-

0.5

0 I
5 10 15 20 25 30 35 40

index of Eigenvalue

Figure 3-2: Example Covariance Matrix Eigenvalue Decay.

The null space was chosen to be the space orthogonal to the eigenspace spanned

by the first N = 30 eigenvectors.2

Algorithm Walk-Through

The following is a step-by-step explanation of the NSPCA algorithm and can be

overlooked by readers familiar with the process.
2 The "null space" in the null space analysis is not a true null space in the sense that the values

are null. Rather they are sufficiently small as compared to the largest eigenvalues that they are
being approximated as being so.
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Training

The training set is composed of a stack of feature vectors, generating a matrix B of

dimensions M x N where M is the number of feature points and N the dimension of

a feature point. As an example: the masked portion of the face on which the flow is

computed is approximately 100 x 100 pixels. Since each pixel generates an x and y

component in the flow, a vector of 20,000 points results. Since M is rarely larger than

8,000 it would be greatly preferred to base the generation of and later computations

involving the covariance matrix upon this dimension, rather than the much larger N.

Thus, a familiar optimization' involving the transpose of the data matrix was used

to compute the eigenvalues and eigenvectors of the covariance matrix of each training

set. This effectively reduces the order of complexity for the computation from O(N 2 )

to O(M 2 ).

Testing

Testing proceeded by iterating over each of the eigenspaces returned for each of the

expressions' feature sets and then projecting the test feature into the eigenspace of

that feature set. The set whose eigenspace returned the minimal norm was the set

whose classification was given to the test feature. This norm is equivalent to the

error of the projection illustrated in Figure 3-3. If A is the matrix of eigenvectors in

columns as returned from the PCA, x the mean of the training set, and x is the flow

of the test image, the length ins of the null space component ns is given by:

ins= |nsJJ = 11(I - AA T )(x - R)|1 (3.1)

3 The details of this optimization are available in the lecture notes of Dr. Bernd Heisele available
at: http://stellar.mit.edu/S/course/9/fa3/9.913/index.html
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Figure 3-3: Visualization of the Projection and Resultant Distance Metric.

The length, ins, is inversely proportional to the test feature's similarity to the

members of the training set who generated the eigenspace. The smaller the value

of i,, the more likely that this test feature should be classified as a member of the

training set from which the eigenspace originated.

3.2.2 Support Vector Machines

In addition to the NSPCA classification method described above, SVMs were used for

classification in a one-versus-all strategy. All SVMs were run using a linear classifier

with the exception of the trials run upon the texture-value method, whose SVM

utilized a set of Gaussian classifiers with a-= 20.0. The C-value was set to one for all

experiments.

Hierarchical SVM Classifier

Each SVM produces classifier outputs after a testing session - the maximum value

indicating the training class whose expression label will be assigned to the test point.

For example, given six possible training categories, the SVM will output six separate

values when computing the proper labeling of an inputted test feature. By concate-
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nating these values, as they were output from the training of two different methods,

a new dataset of feature points could be created and then fed to another SVM for

training and testing. Figure 3-4 illustrates this resulting hierarchical structure.

6 outputs

SVM
6 outputs, one per
expression

qV 
SVM

Optical Flow Features Texture-value Features

Figure 3-4: Hierarchical SVM Classifier.

This process was performed for the optical flow and texture-value data. Training

flows were run through the SVM against themselves, to generate the necessary

classifier data for training.
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Chapter 4

Experimental Results

4.1 Overview

A completed expression recognition system, deployed in field, would ideally be able

to

" Recognize expressions from a single individual over the course of several sessions.

" Recognize natural versions of an expression having trained on played versions

of that expression.

" Recognize expressions of other individuals, having trained on a different set of

individuals.

Thus, a canon of tests were run to verify the applicability of each technique to each

of these desired abilities. Individual tests were run to ascertain the first objective,

trials trained upon played expressions and then tested upon natural expressions were

used to ascertain the second, and finally group tests between groups of subjects were

used to ascertain the third.

As remarked in the preprocessing section of this thesis, the image sequences for

played expressions were inspected by hand and only those images demonstrating the

labeled emotion were retained. Of the resulting images the first third were used for

testing and the later two-thirds for training. The final tabulation of training and
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test played data for each subject is provided in Table 4.1. Recall that subject 103

was removed from experimentation as many of her expressions were ambiguous and

difficult to classify consistently.

subject Tested Trained
100 1680 3364
101 1296 2595
102 2244 4494
104 1924 3849
105 1989 3985
106 1602 3209
107 1716 3437
500 1900 3808
501 1232 2468
502 1233 2471
503 1975 3957

Table 4.1: Final Numbers of Played Expression Images used for Testing.

As natural expressions were meant to demonstrate the subtlety of real-world clas-

sification, their sequences were not manually edited. Additionally, as they were only

used for testing, and not for training in the following experiments, the entirety of

available images for each natural expression were used in the natural test sets.

In the following tables, the label "OF/NSPCA" refers to a trial in which the opti-

cal flow features were classified using NSPCA. Similarly, "OF/SVM" refers to optical

flow features applied to a SVM classifier, "Texture-Value/SVM" to texture-values

applied to an SVM classifier, and "Hierarchical-Classifiers/SVM", to the the hier-

arhcical classifier, and "Combined-Features/SVM" referring to the combined feature

types as classified by an SVM.

4.2 Individual Tests

The played training data for each subject was trained upon for each of the five meth-

ods and then tested upon each played expression's test data.
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Subject OF/NSPCA OF/SVM Texture-Value/SVM Hierarchical-Classifiers/SVM Combined-Features/SVM
100 90.2% 89% 91.7% 89.2% 89.5%
101 90.4% 91.7% 89.8% 91.2% 91.3%
102 93.1% 93.3% 94.7% 93.6% 94%
104 92.3% 94.7% 91.3% 94.8% 92.2%
105 79.8% 75.9% 87.8% 76.2% 83.8%
106 93.3% 93.6% 96.4% 93.1% 96%
107 91% 95.5% 93.4% 95.9% 94.3%
500 88.1% 87.4% 86.3% 87.5% 84.7%
501 86.9% 87.7% 95.7% 87.3% 93.9%
502 95.1% 95.3% 98.5% 95.5% 98%
503 97.7% 92.6% 97.1% 92.9% 97.1%
Average 90.7% 90.6% 93% 90.7% 92.3%
Std. Dev. 4.5% 5.4% 3.8% 5.4% 4.4%

Table 4.2: Results: Single Experiments.

Generally speaking, all the methods did quite well on this test, which is to be

expected considering the similarity between the training and test data. This appears

to be true regardless of the classifier or feature set used.

4.3 Played vs. Natural Tests

Consulting Tables 2.4 and 2.5 one will note that only four expressions were common to

both played expressions and natural expressions. These four expressions were trained

upon using played data, and, as was available per subject, tested upon using the

natural expressions. Recall that all available images for each natural expression were

used for testing, in light of the paucity of images.

Subject OF/NSPCA OF/SVM Texture-Value/SVM Hierarchical-Classfiers/SVM Combined-Features/SVM
100 68.5% 25.4% 53% 27% 61.4%
101 59.3% 55.2% 41.3% 56.7% 60.6%
102 37.6% 60% 61.7% 57.9% 56.9%
104 70.1% 67.5% 70% 67.4% 76.4%
105 43.4% 37.9% 33.8% 38.2% 34.6%
106 42.7% 52.7% 56.5% 51.6% 60.4%
107 51.6% 53.5% 72.4% 47.2% 71%
500 6.3% 30.3% 18.2% 27.6% 18.6%
501 33.9% 48.7% 41.1% 50.5% 47.2%
502 80.1% 46% 0% 43.6% 20.1%
503 54.2% 55.5% 43.2% 63.2% 48%
Average 49.8% 48.4% 44.7% 48.3% 50.5%
Std. Dev. 19.5% 12.1% 20.8% 12.7% 18.3%

Table 4.3: Results: Played vs. Natural Expressions.

All the methods generally performed worse for this experiment, which is again

to be expected as the training data varies significantly from the test data. Future
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expression databases must be certain to include natural expressions in their training

corpus for, as these results demonstrate, the difference between played subject data

and natural data is significant. The subtlety of natural expressions challenges the

recognition method to achieve a high resolution in its classification technique.

The extremely low recognition rates for subjects 500 and 502 can be explained by

the very few natural expressions they possess. The results for these subjects should

not be considered statistically significant.

4.4 Group Tests

Two tests were performed to ascertain viability of each method for group recognition.

In the first, related to hereafter as 5 vs. 6, the played expressions of five subjects (100,

101, 102, 502, 503) were trained upon, and then tested against the played expressions

of six subjects (104, 105, 106, 107, 500, 501). In a second test, hereafter referred to

as 5 vs. same 5, the five subjects trained upon previously now had their test data

used to test each method.

Subject OF/NSPCA OF/SVM Texture-Value/SVM Combined-Classifiers/SVM Combined-Features/SVM
5VS6 35.8% 50.5% 51.5% 47.3% 58.2%
5VSsame5 90.9% 89% 92.6% 88.6% 94.2%

Table 4.4: Results: Group Experiments.

The warping method applied in Figure 3-1 was explicitly chosen for its ability to

generalize expression data beyond the identity of a particular subject (as in 5 vs. 6).

Surprisingly, however, the four methods involving the optical flow did not perform

better than the texture-value method. In fact, OF/NSPCA did much worse than the

other methods.

This may not be the case in experiments where the training and test data is less

forgiving to the texture-value features. Recall that the training and test data for

5 vs. 6 contains individuals of both Caucasian and African ethnicity, as well both

male and female sexes. Had this not been the case, and certain sexes or ethnicities

had been present in the training, but not the test set, then the texture-value method

would be forced to classify on a range of textures differing from those on which it
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was trained. Under these conditions the optical flow method should be less affected

as it does not rely upon the luminosity of the subject's images, the subject's identity,

nor upon the subject's skin color. Possible reasons for why the optical flow features

did not dramatically surpass the texture-value features are provided in the following

chapter.

Additionally, these results would imply that it is important to choose a proper

classifier when working with test data significantly differing from the training data.

The poor performance of OF/NSPCA in 5 vs. 6 was improved 10% by instead

classifying with an SVM in OF/SVM. Yet, both methods did approximately the

same in 5 vs. same 5 where the training and test data were quite similar.

A Receiver Operating Characteristic (ROC) curve permits a more detailed com-

parison of each method's relative utility. Figures 4-1 and 4-2 illustrate the percent

false positive classification on the X-axis and the percent correct classification on the

Y-Axis for each of the methods described above on both experiments 5 vs. 6 and 5

vs. same 5. Thus, the faster the graph rises and the larger the area beneath it, the

better the classification method.

ROC - 5VS6 ROC - SVSsrnn5
60 100

900-

0. 70
40 -

30 - 60

/ , ~40
20 - Com bned-Features/S VM

2- Combined-Features/SVM 30 --- Hlerarchical-Classifiers/SVr

- - Hierarchica4Classifier SV - - - - Taxtura-ValusYSVM
- - Texture-Value/SVM 20 , ,OF/SVM

10 -OF/SVM -- OFNSPCA

- - OFRNSPCA

0 0 2 4 6 6 10 12
0 10 20 30 40 50 60 70 False PositivesI%]

False Positives 1%]

Figure 4-1: ROC curve for 5VS6. Figure 4-2: ROC curve for 5VSsame5.

Clearly, combining the feature files of the texture-value and optical flow methods

generated a significantly improved classifier. It was not anticipated that the texture-

value features would surpass the NSPCA as vividly as shown in these curves.
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Chapter 5

Discussion

5.1 Postulates for Improved Methods

An explanation for the optical flow's inability to dramatically improve upon the

texture-value's results is provided below. Additionally, techniques which will improve

the quality of the classification and restore the optical flow's predicted versatility are

put forth.

5.1.1 Localization of Relevant Image Regions

Currently, the optical flow takes place over the entirety of the face not masked out by

the mask in (7) of Figure 2-2. While this removes significant portions of the image ir-

relevant to expression recognition, remaining portions of the image may still adversely

affect training. As it is, even after masking, the flow still incorporates information

about the nose, portions of the cheek region, and chin which were not directly in-

volved with the creation of an expression. This inclusion provides an opportunity for

errors in the flow to become prominent during the classification process and should

be excluded. These errors are discussed in detail in the following section.
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5.1.2 Deformation Models for Improved Optical Flow

During the course of this research, it was made clear that obtaining a satisfactory

flow is not only imperative to successful recognition, but extremely difficult to obtain.

The failure of the optical flow features to increase performance dramatically over the

texture-valued features may be explained by this difficulty. Figure 5-1 exemplifies the

nature of a faulty flow.

Figure 5-1: Side-by-Side Demonstration of Optical Flow Failure.

Each pair of images in the figure consists of the original image of subject 100, and

the resultant image generated when the optical flow is used to warp the synthetic

image. As mentioned previously, the goal is to map subject 100's expression onto the

synthetic face. In the first pair, in which subject 100 possesses a mostly neutral ex-

pression, there is a strong correspondence between the warped image and the original

image - signifying a good optical flow. In the next pair, subject 100 begins to open

her mouth, and again the flow computation continues to find a good correspondence

between her upper and lower lip and the lips of the synthetic image.

By the third pair of images, however, the gap between the lips has proven beyond

the capabilities of the flow, and while it is still possible to ascertain the expression

present in the synthetic warp, a significant amount of important information has been

lost. These anomalies are not particular to the mouth, but include other such features
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as the eyebrows. Note how the correspondence between the eyebrows has been lost

in the third pair and a sharp, arching ridge is present that should not exist.

Future research should direct efforts to constructing a model for optical flows which

will prevent this behavior. Specifically, a synthetic version of the facial motion in a

2-dimensional analog should be used to constrain the OF computation (e.g. motion

of eyebrows, lips, etc.). This deformable model could be used as a foundation from

which new flows are computed before performing the warp operation described in

Figure 3-1.
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Chapter 6

Conclusion

This thesis has enumerated the properties required in an adequate facial-expression

database. The tools used to create and process such a database have been described

and the database images resulting from the application of these tools have been

tabulated. Three varieties of features and three different classifiers were then used

with the images of this database to determine the relative efficacy of five different

classification methods. From these trials it was concluded that:

" The best possible classification method was the SVM applied to the combined

optical flow and texture-value feature files. Achieving a 94.2% successful clas-

sification rate for groups of subjects, and a 92% average for individuals, this

classifier was able to classify both individuals and groups well.

" Generalizing data from one set of individuals to another was difficult for all the

classifiers. Even the best classifier dropped from 94.2% to 58.2% when the test

set was switched from a group of individuals in the training set to a different

group of individuals outside that set.

" Natural expressions are much more subtle than played expressions and will

challenge a classifier's ability to classify minute changes. In spite of this, the

classifiers used in this thesis were still able to classify approximately half of their

natural test data correctly.
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" For training and test sets that are similar, the classifiers used in this thesis

achieve approximately the same recognition rates. Conversely, when the two

sets do differ, performance was improved with the use of an SVM rather than

the NSPCA classifier.

* The optical flow, as it was computed for this thesis, is occasionally faulty and

must be complimented by a model to guide the computation of the flow. The

computation and application of such a model should be the focus of future

research.

* Finally, the texture-value features performed quite well, despite their simplicity.

In all the experiments, they were able to achieve rates commensurate with that

of the optical flow. This may not be the case in a database possessing a wider

gamut of textures.
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