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Abstract

This thesis describes an automated monitoring station designed to detect flash floods occurring in
the Rio Aguan river basin, Honduras. An Atmel microcontroller polls a series of sensors in the
river, logging all data for later hydrological analysis and modeling. A high-power APRS radio is
used to alert a central monitoring facility of impending floods. Careful component choices and
power management allows the system to run for 100 days on a single deep-cycle marine battery or
practically indefinitely using a supplemental solar panel.
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Chapter 1

Introduction

Hurricanes and tropical storms frequently devastate communities in the Caribbean. In October

1998, Hurricane Mitch alone was responsible for the death of an estimated 5,000 people, with an

additional 8,000 missing and 12,000 injured[l]. At least 25 small villages in the northern part of the

country were simply swept away.

The Aguin river basin, located in the department of Col6n, was one of the areas worst affected

by Hurricane Mitch's passage. The huge quantity of rainfall generated by the hurricane caused the

river Aguinto to burst its banks, and within minutes this overflow produced a wave that swept

through valley communities.

In general, heavy precipitation, caused by tropical depressions, tropical storms and hurricanes,

continues to claim human lives in Honduras every year. There is a great need in this region for an

accurate and robust early warning system that will alert communities in the case of such emergencies

and provide them with sufficient notice to safely evacuate.

The current national early warning system relies on volunteers to report local rainfall and river

scale measurements to a regional emergency committee. This committee compiles community results

and issues emergency alerts via radio networks. Unfortunately, these systems are often poorly

maintained and understaffed, as the volunteers tend to evacuate with their families at the first sign

of excessively severe weather. In such cases, the current system has proved to be inadequate in

issuing alerts for down-stream communities.

This thesis presents an automated monitoring and alert system designed to detect flood conditions

without relying on volunteers, while staying affordable for developing countries.



Chapter 2

Design Overview

This chapter discusses the requirements for the full monitoring and alert system, then describes the

design for the solution. It concludes by specifying the division of labor between this thesis and other

students working on the project.

The following tasks were identified as the core requirements of the floodwater alert system:

* Monitor water level, recording all sensor data for later hydrological analysis and modeling

* Communicate sensor data to central monitoring facility located approximately 50 miles away

* Detect flood events early enough to give downstream communities time to evacuate

The following overall design fulfills these requirements:

The river will be monitored by redundant, field replaceable sensors whose low-cost mitigates

their potential loss during a large-scale flood. These sensors are designed to detect water-level, but

are built around a generic framework to allow detection of other parameters, such as water-flow,

temperature, etc.[2]

Autonomous monitoring stations, located above the bank of the river, will periodically poll these

sensors using an error-resistant communication link. All sensor data will be logging to temporary

storage. If the sensors indicate a flood, the monitoring station will promptly alert downstream

communities. Otherwise, the buffered sensor data will be burst-transmitted in a daily data up-

load. The use of multiple monitoring stations gives additional redundancy and the ability to track

flood propagation speeds, though requires that the communication system correctly address multiple

systems.

The central monitoring facility is responsible for working with the current national alert system to

notify at-risk communities of impending floods. Additionally, this facility is responsible for receiving

and storing the sensor data reported from all monitoring sites.



2.1 Division Of Labor

Approximately thirty people have been involved in this project, ranging from students researching

possible sensor technologies through teams investigating potential monitoring sites during spring

break in Honduras. This thesis directly interacts with four groups of people:

Sensor Design

Power System

Environmental

Monitoring

This group developed the environmental sensors used to detect the state of the

river. The hardware was designed by Kathleen Connolly[2] and interfaces with

this thesis using the communication protocol described in Section 4.2.

This group is responsible for providing a reliable 12v power supply that satisfies

the power budget presented in Section 3.2.

This team created a weather-proof case to protect the monitoring system from

the harsh environment.

This group is responsible for the software running in the central monitoring

facility, including storing and presenting the data from the remote monitoring

systems. The two students responsible for this development were Dan Jacobs

and Edgar Terrero[3, 4].

This thesis represents the hardware and software of the autonomous monitoring station, recording

data from the in-river sensors and transmitting to the central monitoring facility.



Chapter 3

Hardware Design

This chapter discusses the hardware developed for this thesis, as well as the rational behind its

design. Based on the project requirements in the previous section, the following design goals were

developed and ranked below in order of importance:

Reliable The system must reliably operate 24/7 while accurately recording water lev-

els. Redundant sensors avoid the risk of a single sensor clogging. Ideally,

communication protocols should include some form of error detection.

Power Efficient

Rugged

Easy To Install

Low Cost

Developer Friendly

The system must last at least 90 days on a single battery, as it is difficult

to replace batteries in remote locations. Alternatively, the system should

support recharging a smaller battery using solar power.

The system will be subjected environmental extremes typical of a Central

American rain forest - high humidity with tropical temperatures. All hard-

ware must be rated to withstand five years of continuous use.

The system will be installed on a riverside in rural Honduras, so the fabricated

hardware needs to be simple to assemble, test, and use.

The system must be constructed at minimal-cost, due to the budget consid-

erations of the communities and risk from theft or flood damage.

A diverse range of people will be involved in this project. Compilers and

design tools must be compatible with all major OSs while remaining low-

cost. Open Source software is used wherever possible.

We begin with an overview of the hardware, followed by a detailed description of individual subsys-

tems. We conclude this section with a computed power budget for the overall system.



3.1 Hardware Overview

The following text and Figure 3-1 present a high-level design overview of the hardware satisfying these

design goals. Subsequent sections describe individual components in greater detail and systematically

work through major design decisions.

Figure 3-1: Hardware design overview showing all ICs and major communication buses.

The switching power supply converts unregulated 12 volts into a regulated 5 volt supply to

power all internal circuitry. The distribution of unregulated 12V power to the associated radio and

downstream sensors is provided by two independent relays controlled by the microcontroller.

The Atmega8 schedules these devices' duty cycles by setting two alarms from a real-time clock

(RTC) clock chip. The Atmega8 multiplexes its single UART between three destinations, commu-

nicating asynchronously with the external radio, a local debugging port, and multiple downstream

sensors. Received sensor data is buffered in the serial EEPROM before transmission in daily radio

broadcasts to a central receiving station. A unique ID chip is used to generate an individual station

identifier, allowing multiple radios to share the same RF communication network.

All components (except the power supply) are configured for low-power suspend modes for the

majority of their life cycle. The RTC alarms wake the ATmega8 from sleep mode, which in turn

activates other components as needed. The full power budget is presented in Section 3.2.

12V 5V
Internal

Switching Supply
Supply



3.1.1 Power System

The system's regulated 5V power is provided by a step-down switching power supply built around

National Semiconductor's LM2674-5.0 IC. The circuit shown in Figure 3-2 accepts an 8 to 40 volt

input range to produce a regulated 5V output, while typically running at 90% power efficiency.

VIN

C
VOUT

"OUT

Figure 3-2: Switching regulator and supporting circuitry

This device runs at a 260kHz switching frequency, resulting in smaller filter components than

devices operating at lower frequencies. Additionally, by incorporating feedback (FB pin) to realize

high power efficiency, this regulator does not require a heatsink other than the copper traces on

a PCB. The LM2674 requires a 2.5mA operating current, which could be reduced to 50pA if the

active-low shutdown mode (OFF) were incorporated into the design. A means for accomplishing

this has not been established, as it would require signaling a powered-off device to turn on by its

unpowered components.

Using the following component values derived directly from the data sheet[5], the LM2674-5.0

guarantees an output within ±1.5% of 5V while sourcing up to 500mA. These additional components

cost $2.26, bringing the total cost of the power system to $5.36 for single-unit quantities.

Additionally, the Power System also controls the attached radio and sensors through two relays.

The first relay, model G6RN-1-DC5, provides up to 8A for the attached sensors. The second relay,

model G2RL-14-DC5, is rated at 12A to accommodate the 11.5A peak transmit draw of the Kenwood

TMD-700A APRS radio. Together, these parts cost $5.50.

Table 3.1: Components required for power system

Component Desc Vendor Model Cost
- High Efficiency 500mA Regulator National Semi. LM2674-5.0 3.10

CIN 100uF 50v Radial Electrolytic ECG UVR1H101MPD 0.26
CB 0.01uF 50v Radial Ceramic Kemet C315C103K5R5CA 0.20
L1 47uH Choke RF Hi Current J W Miller Magnetics 5800-470 1.48
D1  Schottky Diode. 1.1A 50v International Rectifier 11DQ05 0.22

CoUT 100uF 10v Radial Electrolytic ECG ECE-A1AKS101 0.10



3.1.2 Storage System

We chose serial EEPROMs as the storage media due to their high reliability (100,000 write cycles),

long data retention (100 years), low power requirements, and low cost. Atmel's AT25xxx devices

were selected because they guarantee compatibility with the hardware SPI interface of the Atmega8,

and offer a wide range of memory sizes (1-128Kb) in pin-for-pin compatible packages.

I---+-----I

+5VIi -
1

PinB2
2

Atmega8 MISO
6

SCK6
5

MOSI
L-----------------J

8
7
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Figure 3-3: SPI Serial EEPROM and associated circuitry

Requiring no extra parts, the EEPROM's wiring is rather straightforward. The three SPI com-

munication pins (Serial Out, Serial In, Serial Clock ) connect directly to the corresponding ATmega8

hardware SPI pins.

The active-low Chip Select (CS) pin enables communication with the AT25320 on a multi-device

SPI bus. Except when writing data to the EEPROM, the microcontroller holds this line at Vcc to

disable the device and allow other devices to communicate on the SPI bus.

Signal Hold (HLD) allows the SPI communication to be paused in mid-transmission. This

feature is not used, and is thus disabled by tying the line to Vcc.

The Write Protect pin (WP) is the hardware aspect of a two-part scheme to prevent data from

being written to the device. This pin is connected directly to Vcc since the EEPROM never needs

to be read-only in this application and it also simplifies the software configuration.

Normal read and write operations typically requires 4mA, though the device only uses 2.0 PA

when in shutdown mode (CS = Vcc). If this small current was a concern, the EEPROM could be

powered on demand directly from a spare ATmega8 I/O pin capable of sourcing 20mA.

As no additional components are required, the total cost of the storage system is $3.09, in

single-unit quantities.

Table 3.2: Components required for storage system

-

CS Vcc
SO AT25320A HLD

SCK 32k EEPROM V

SI GND

Component Desc Vendor Model Cost

32k SPI Serial EEPROM Atmel AT25320A 3.09



3.1.3 Identification System

Rather than relying on a software ID for communication tasks -- and risk a potentially misconfigured

identifier - this design incorporates a hardware ID, through Maxim's DS2401 Silicon Serial Number.

This device provides a 64-bit unique ID stored in a factory programmed ROM, requiring only a

single connection for both power and data.

+5V

r------------------i
R1

PinC5 2- Data DS24013
1 Unique ID NC

Atmega8 GND

L -------------

Figure 3-4: DS2401 Silicon Serial Number and associated circuitry

The 64-bit ID is divided into an 8-bit family code (0x01), a 48-bit unique ID, and an 8-bit CRC.

This CRC and the "Dallas 1-wire protocol" are described in the application note[6].

As the DS2401 is accessed infrequently and its power requirement is minimal (5pA when active

and 0 standby current), this device is ignored in the power budget found in Section 3.2.

Ignoring the negligible cost of a pullup resistor, the single-unit total cost of the storage system

is $2.28 for the through-hole package used, while the surface mount version of this part costs less

than a dollar.

Table 3.3: Components required for identification system

Component Desc Vendor Model Cost

Silicon Serial Number Dallas/Maxim DS2401Z 2.28
R1 5k Pullup Resistor - - -



3.1.4 Timekeeping System

Maxim's DS1305 Real-Time Clock provides a full calendar/clock system and two programmable

alarms. Given an attached battery, this chip will transparently switch to its backup supply upon

power failure.

+5V

I------------------
Interrupt 0

PinB1

Atmega8 MISO
MOSI
SCK

L -----------------

Figure 3-5: DS1305 Real-Time Clock and associated circuitry

The DS1305 uses the standard SPI wiring scheme - Serial Data Out, Serial Data In, and Serial

Clock are all connected to the corresponding ATmega8 pins and Chip Enable is grounded except

during clock communication.

The device is powered through the Vccl interface, while the Vcc 2 trickle-charge features for

rechargeable batteries are disabled. Instead, a 3v primary battery is connected directly to VBAT to

provide backup power.

The chip is configured so that both programmable alarms toggle the interrupt 0 (INTO) output

of the DS1305, so only one interrupt pin is required of the microcontroller. When the microcontroller

is woken from sleep mode, it queries the DS1305 to determine which alarm generated the interrupt.

VCCIF is configured so the device uses 5V data signals, while SERMODE is tied high to configure

SPI communication instead of Three-wire. The Power-Fail Alarm pin is not used in this design, as

the microcontroller would also lose power during such an event.

The DS1305 uses a standard 32.768kHz crystal for timekeeping, and is specified to be accurate

to a minute per month. A one week test found a 40-second drift in the clock, though this could

result from a crystal damaged by soldering leads onto a surface-mount part.



This device was designed for low-power systems and operates with 1.3 mA during SPI communi-

cation. However, it requires only 81yA for timekeeping while using the 5v Vccl supply and, during

power-fail, it requires only 400nA from a battery source on VBAT. Using a low-cost, 35mAh lithium

coin cell provides almost 10 years of reliable timekeeping'

The DS1305 requires roughly $2 in supporting hardware, bringing the total cost to $4.31 in

single-unit quantities.

Table 3.4: Components required for timekeeping system

Component Desc Vendor Model Cost

- Serial Alarm Real-Time Clock Dallas/Maxim DS1305 2.28
R1 5k Pullup Resistor
Y1 32.76kHz Crystal, 6pF ECS ECS-.327-6-17 1.08
B1 12mm 3v Lithium Coin cell Panasonic CR1220 0.95

3.1.5 Communication System

The system design requires that the microcontroller communicate with three independent devices: an

external radio, a local debugging port, and multiple environmental sensors. Rather than upgrading to

an expensive microcontroller with three UARTs, the following design multiplexes the single Atmega8

UART over three different communication channels.

+5V

Figure 3-6: Analog Multiplexer switches Atmega UART between RS232 & RS485 converters

1 In practice, a shorter lifetime is expected due to the battery's self-discharge.



The 74HC4052 analog multiplexer/demultiplexer utilizes low-power CMOS circuity to electroni-

cally switch a common pair of I/O pins between four pairs of bi-directional data ports. This device is

designed to handle a wide range of analog voltages, thus VEE is grounded to set the lower threshold

of valid voltage range. The active low enable pin can disable the device, though this provides little

additional power savings so the pin grounded as well. Two extra I/O pins are required for port

address selection.

Port zero and two of the 74HC4052 use a MAX232 level-shifter to convert TTL voltages to those

compatible with RS-232 devices. Crosstalk between the two pairs of driver/receivers is not an issue,

as only one of the radio and debug channels is in use at any time. Four luF capacitor are required to

created the ±11 volt signal needed to implement the RS-232 protocol. A fifth capacitor buffers the

MAX232's power supply during periods of peak usage. Note that the VS_ cap holds a "negative"

voltage and thus has the positive pin connect to ground.

Port three of the 74HC4052 connects to the MAX487 level shifter, which converts TTL voltages

into the RS-485 differential outputs A and B. This half-duplex driver can communicate with devices

as far as a kilometer away when using shielded, twisted pair cables. The above design assumes

that RS-485 termination in incorporated into the sensor cabling[2]. The Driver Enable and active-

low Receiver Enable pins are tied together to simplify device interface. However, the MAX487

shutdown mode is only activated when DE=GND and RE=Vcc, requiring two separate control pins

for additional power savings.

Each level converter requires about 10mA during actual serial communication. The MAX487

features at 10pA sleep mode and could be "shutdown" by powering it directly from a general I/O

line from the Atmega8.

Together, these components cost approximately $5 in single unit quantities. Using the 74HC4052

is a significant cost savings over upgrading the Atmega8 to a higher-end microcontroller with three

hardware UARTs. Additionally, the TI RS-232 converter cost less than one-eighth the price of the

equivalent Maxim part (MAX232).

Table 3.5: Components required for Communication System

Component Desc Vendor Model Cost

Analog MUX/DEMUX TI 74HC4052 0.53
DUAL RS232 DRVR/RCVR TI MAX232 0.90

RS485 Level Shifter Maxim MAX487 2.81
C[1-5] luF 50v Radial Panasonic ECE-A1HKKO10 0.14



3.2 Power Budget

The systems described previously are optimized to be as power efficient as possible. The following

table illustrates the average power required for each task the system accomplishes, while the sub-

sequent calculations compute average power and system lifetime from a typical deep-cycle marine

battery.

Table 3.6: Estimated daily power consumption, by task

Task Power (mA) Duration (s) Frequency Total (s) 11 Charge (mA*hour)
Sleep 3.10 - - 82500 71.197
Sensor 575.00 20 6/hour 2880 460.00

Radio Rx 1100.00 30 1/hour 720 220.00
Radio Tx 11600.00 120 1/day 120 386.67

Total 86400 1137.86

Let us examine the tasks of Table 3.6 in more detail:

Sleep

Sensor

Radio Receive

Radio Transmit

With all devices in sleep mode, the only significant power draw is the 3mA

quiescent current drawn from the 5v power supply.

The 500mA budgeted for powering the downstream sensors composes the ma-

jority of this task, while the sensor relay and microcontroller consume another

60mA. An estimate of 20 seconds are required for the sensor to return a stable

reading from a cold power-on. The design call for sampling every 10 minutes,

or six times an hour.

The radio is powered once every hour to check if the base station is attempting

communication. The radio requires 1A in receive mode, and a further 100mA

are consumed between the radio relay, microcontroller, and RS-232 converter.

The radio listens for broadcasts for thirty seconds.

The radio transmits the accumulated sensor data once a day, requiring an es-

timated two minutes at 9600 baud. The radio consumes 11.5A for high-power

transmission, and a further 100mA are needed by the radio relay, microcon-

troller, and RS-232 converter.

An estimated charge of 1138 mA-hours per day computes to an average power consumption of

approximately 47mA. Powering the system from a single 120 amp-hour deep-cycle marine battery

would yield an estimated lifetime of 105 days. Assuming some form of supplemental power supply,

such as solar energy, this system could last indefinitely, and the battery could be scaled back to only

supply a few clays of "reserve" energy to ride out a stretch of cloudy weather.



Chapter 4

Software Design

This chapter presents a high-level overview of the software running on the Atmega8 microcontroller,

then discusses the lower-level modules and concludes with specifications for the sensor and radio

communication protocols.

On initial boot, the Atmega8 configures the RTC, verifies the attached radio, and detects en-

vironmental sensors using the algorithm described in Section 4.2.2. Having completed these tasks,

the microcontroller powers down the peripherals and put itself into a low-power sleep mode. The

Atmega8 wakes from sleep either by a preconfigured alarm from the RTC, or by a local button press

to enter debugging mode.

Since the two RTC alarms map to the same physical interrupt, the Atmega8 must query the RTC

to determine if it is time to poll the attached sensors (alarm 0) or interact with the radio (alarm 1).

Once this mode is know, the Atmega8 wakes the required peripherals and completes the task.

The default duty cycle has downstream sensors queried every 10 minutes, with the resulting

data stored in the local EEPROM until the next transmission cycle. If the sensors detect a flood

condition, the radio is immediately powered to transmit an alert to the base station. Otherwise, the

radio defaults to listening for communication requests from the central base station for 30 seconds

an hour, and transmitting recorded sensor information once a day. Sections 4.2 and 4.3 describe the

protocols used to communicate with the sensors and base station.

By pressing a switch, a local user can wake the Atmega8 from sleep mode and place it into a

debugging mode. Using a standard communication packages, such as hyperterm or minicom, the

user can examine the program state and initiate self-tests of the peripherals, sensors, and radio. The

Atmega8 intelligently multiplexes communication through its single UART, pausing the stream to

the user to communicate with the radio or sensors, then resuming the debug stream to transmit

results to the user.



4.1 Module Overview

The main program is supported by the following six modules.

Main Routine I
I I

r

I

r

I

I

I
I

I
I

I

I
I

UART

~I

EEPROM 1-Wire

Delay

Figure 4-1: Software Module Hierarchy

Starting from the lowest level of Figure 4-1:

SPI This module implements the low-level code needed to communicate using the At-

mega8's Serial Peripheral Interface (SPI) bus. This code started from examples in the

Atmel documentation and was extended to support the different SPI timing modes

used by the attached SPI devices.

Delay This library is a simple suite of delay routines to give precise millisecond and mi-

crosecond delays. The library was found on AvrFreaks[7] and was written by Martin

Thomas and Peter Dannegger.

UART This module implements the low-level interface to the Atmega8's hardware Universal

Asynchronous Receiver Transmitter (UART). As only short messages are sent, this

code implements the minimalistic examples in the Atmega8 documentation and does

not include additional buffering or collision detection.

EEPROM This module provides a full interface for Atmel's AT25x series of EEPROM devices.

This code is extracted from Atmel documentation and provides additional functionality

to detect and verify an attached EEPROM.

l 1,,, =
I C,,, I,,,



RTC This module implements a straightforward interface into Maxim's DS1305 Real-Time

Clock, mapping device programming into simple read and write aliases into the clock's

memory registers. This memory interface is described in Maxim's DS1305 datasheet [8].

1-Wire This module returns the UID stored in an attached DS2401 Silicon Serial Number and

verifies the embedded CRC. This module was found on AvrFreaks[7], author unknown.

4.2 Sensor Protocol

The following protocol mimics the easy-to-understand spirit of the Serial ASCII Instrumentation

Loop (SAIL) communication standard[9]. Both protocols ease debugging by using a syntax that

is entirely human-readable, being composed of alphanumeric characters separated by spaces and

terminated with a newline. In-the-field diagnostics can thus be accomplished by connecting a RS-

485 line-level converter to a laptop serial port and examining the communication stream in any

common communication suite (hyperterm, minicom, etc)

The protocol is driven by a single master device interacting with one or more slave sensors. As

the sensors report only a few bytes of data, the protocol uses a relatively slow data rate (9600 or

19200 baud) to minimize transmission errors across long communication cables. Additionally, the

protocol supports using a CRC to verify data transmissions.

The form of a command is "# [BAU]Address Command Argument\n".

All commands begin with the pound sign ("#") followed by the upper-case character "B"," A",

or "U" and terminate with a carriage return ("\n"). The choice of character sets the method of

addressing, either by Broadcast, Alias, or Unique ID. All sensors respond to broadcast commands,

while only a specific device will react to its assigned Alias or hardware Unique ID (UID). An

Alias can be one of sixteen values (represented as a single ASCII hexadecimal character), while an

UID represents the 64-bit DS2401 ID (transmitted as 16 hex characters). Examples of Address

components are shown in Section 4.2.1.

There are only eight valid commands, which are either transmitted as full English words (to

increase human understanding) or are abbreviated as a their first letter to reduce transmission

overhead. The receiving sensor automatically truncates all but the first letter of a command. Com-

mands either have no argument (eg, STATUS) or a single-character argument (eg, ALIAS A). All

commands generate a response from the addressed device, with "OK\n" composing the simplest

possible reply. These commands and responses are listed in Table 4.1:



Table 4.1: Valid commands in sensor protocol, all data in hex.

Cmd English Arg Description Response

L LED 0,1 Turns LED on if =1, else turns off OK

E ECHO 00-FF Echo received byte Input Byte

U UID - Delay, clears alias, returns DS2401 UID UID (16 chars)

A ALIAS 0-F Alias is programmed into EEPROM OK

I IGNORE - Ignores all commands save "W" OK

W WAKEUP - Respond to further commands OK

D DATA - Returns sensor data Data + CRC

S STATUS - Returns device status OK or ERR

4.2.1 Sensor Protocol Examples

Turning on the debugging LEDs of all attached sensors could be accomplished by sending the

broadcast command "#B LED 1\n", or the equivalent abbreviated form "#B L 1\n". The

devices' response of "OK\n" might be garbled due to slightly different propagation delays as

multiple devices simultaneously sent the same text to the master.

The master could request data from the device with alias "0" by sending "#AO DATA\n".

The same sensor could be addressed by the hexadecimal representation of its hard-coded UID, such

as "#U0123456789ABCDEF D\n". In either case, the sensor device would respond with a

reading from its environment.

4.2.2 Sensor Discovery

An algorithm based on Dallas-Semi's 1-wire protocol[6] is used to discover all sensors attached to

the RS-485 communication bus.

The Master first broadcasts the UID command ("#B U\n"), causing all slaves to clear their

current alias, pause a pseudo-random number of milliseconds, then respond with their UID. The

delay minimizes the chance of collisions, though all UIDs are verified through their embedded CRC.

The Master device then picks the first recognizable UID, directly addresses it, and assigns it the

first alias, causing the sensor to store its new alias into on-board EEPROM. This sensor is then

given the IGNORE command, and ignores all future communication until specifically invited back

into the conversation with the WAKEUP command or reset by cycling power.

The Master now repeats this process with the next valid UID until all devices are identified and

aliased. At this point, all devices are woken up and normal usage occurs.



4.3 Radio Protocol

This project currently uses a simple protocol to allow a single monitoring site to communicate with

a single base station. Accordingly, it only needs to support four tasks, namely reconfiguring the

default sensor and radio duty cycles, updating the clock to account for drift, transmitting stored

data to the base station, and sending flood alerts. At the same time, the protocol needs to support

future expansion, allowing for multiple monitoring sites to either act as packet relays to the most

extreme sensor or to communicate through a digital repeater with extended range.

The APRS protocol[10] supports all these tasks, as described in the following sections. Our

chosen radio handles the actual APRS packet encoding and transmission, so the Atmega8 is only

responsible for initializing the radio into the proper mode and generating the data payload.

4.3.1 APRS Standard

The Automatic Position Reporting System (APRS) uses the AX.25 Amateur Packet-Radio Link-

level protocol[11, 12] for low-level communication. By utilizing AX.25 Unnumbered Information (UI)

frames, APRS packets are transmitted without expecting any response or guaranteeing reception.

At a higher level, APRS supports a messaging protocol that allows users to send short mes-

sages and expects to receive acknowledgment. Similarly, the APRS protocol contains provisions

for streaming telemetry data and querying station status and capabilities. This project uses these

features to report project health and transmit buffered sensor data to the base station.

4.3.2 Status Reporting

The APRS protocol uses a Status Report to announce a station's current mission or other single-line

status to all receivers within range. Table 4.2 summarizes Chapter 16 "Status Reports" of the APRS

Protocol Reference[10]:

Table 4.2: Status Report Format

Field Info Time Status Text
Format > DDHHMMz Text
Bytes 1 7 0-55

Example > 160900zRadio Online

The optional timestamp is in a DayHourMinute format, and must be sent in zulu (UTC/GMT)

form. The text may contain any printable ASCII character except "(" and "~"



The monitoring system transmits only four different status messages: "Radio Online" when the

radio powers on, "Radio Offline" immediately before powering down, "Radio OK" if the central site

queries the online radio, and "Flood Detected" if the sensors indicate that is the case. The example

in Table 4.2 shows a hypothetical status update sent when the radio powered on at 09:00 on the

16th of the month.

4.3.3 Messaging

APRS supports messages composed of free format text strings, intended to convey human-readable

information. These messages are intended for a single recipient and can optionally require acknowl-

edgement upon reception. This system utilizes APRS messaging to receive and respond to commands

from the central base station. The full specification is described in Chapter 14 "Messages Bulletins,

and Announcements" of the APRS Protocol Reference[10] and summarized in Table 4.3:

Table 4.3: Message Format

Field Info Addressee Message Text Message ID
Format : Station Address : Text { xxxxx
Bytes 1 9 1 0-67 1 5

Example :SITE00001:Set Clock 081605 090000{001
:BASECAMP_:ack001

An APRS message is a text string with a specified addressee; a fixed 9-character field (padded

with spaces if necessary) following the ":" data type identifier. The addressee field is terminated by

another ":", then followed by the text of the message. This message text can include any printable

ASCII character, save for ",~,{".

The sender requests message acknowledgment by including the optional Message Identifier, which

is composed of the "{" character, followed by up to five alphanumeric characters. The sending station

will repeatedly transmit such a message until it receives an acknowledgment or times out.

The receiving station uses a similar format for message acknowledgement, simply replacing the

message text with "ack" followed by the five-character message ID.

The central receiving site commands a monitoring station through five special APRS messages,

shown in Table 4.4.

The example in Table 4.3 shows a transmission from BASECAMP commanding SITE00001 to

update its clock to transmitted timestamp and requesting acknowledgement. SITE00001 responds

that it received the message, and thus performed the command.



Table 4.4: Commands sent to monitoring station via APRS Messages

Command Arguments Action

Set Freq HHMM HHMM HHMM Updates Sensor Poll, Radio Rx, Radio Tx daily interval
Set Clock MMDDYY HHMMSS Sets clock to included timestamp (GMT)
Send Status - Sends status message (Section 4.3.2)
Send Time Sends current timestamp
Send Data Sends last day's telemetry data

4.3.4 Telemetry Transmission

APRS supports a standard telemetry data format used by a number of transceivers, and included

in amateur rocketry and weather balloon projects[13]. The full specification is described in Chapter

13 "Telemetry Data" of the APRS Protocol Reference[10] and summarized in Table 4.5:

Table 4.5: Telemetry Report Format

Field Info Sequence Value 1 Value 2 Value 3 Value 4 Value 5 Digital
Format T #xxx, aaa, aaa, aaa, aaa, aaa, bbbbbbbb
Bytes 1 5 4 4 4 4 4 8

Example T#001,211,211,211,000,000,00000000
T#002,211,212,212,000,000,00000000

The Information field uses "T" to identify this message as telemetry data.

The Report Sequence is a 3-character value, typically a 3-digit sequence. The receiving station

can verify packet count and request that missing data be resent.

There are five 8-bit unsigned analog data values (expressed as 3-digit decimal numbers in the

range 000-255), followed by a single 8-bit binary number.

Upon receiving the "Send Data" command from the base station, the system sends a status

message announcing the start time of the collected data and the number of frames to be transmitted.

Assuming the default rates for reading the sensors (6/hour), 24 hours of data is sent as 144 frames.

Note that this limits the system to six attached sensors, or requires the Telemetry Format to be

modified. If fewer sensors are attached, multiple data samples could be compressed into a single

data frame to decrease transmission time. The example above shows the first two frames of a data

sequence with three attached sensors reporting similar values.



Chapter 5

Conclusions

This thesis presents an automated system to warn at-risk communities of impending floods. Inspired

by work in Honduras, this system can be deployed in other locales as a flash flood monitor. The

design is extensible to autonomously monitor a wide range of environmental parameters, occurring

in remote locations, for long periods of time.

The system exceeds its design requirements, lasting for over 100 days on a single deep-cycle bat-

tery, costing less than $40 in components, and utilizing freely accessible compilers and development

tools. Further., the system is believed to be rugged and easy to install, although the proof will be

in the actual field deployments. However, as with any system of this complexity, there is additional

work to be completed.

5.1 Future Work

This project will be extended for a number of years, gradually scaling to a full system composed

of multiple monitoring sites broadcasting through a high-power repeater to a staffed monitoring

center. As additional features are incorporated into the monitoring system, long-term reliability

and integration testing must occur before shipping the system to Honduras.

Particular goals for the near future are:

The power-hungry Kenwood TD-700A radios should be replaced with custom APRS driver hard-

ware and more efficient radios.

Use of the the APRS protocol should be expanded to handle addressing multiple locations and

recover from packet collisions as multiple monitoring sites are brought online.

Finally, extending the number of sites covered will require some form of packet repeater to ensure

the radios can still communicate with the distant central monitoring site. This will require either

the purchase of a repeater or modification of monitoring station hardware to perform the same

functionality.
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