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Abstract

Integrated optical isolators will become necessary as optical networks continue to grow
and the need for monolithic integration and greater functionality increases. This thesis
presents a design for a polarization independent isolator which can be monolithically
integrated with semiconductor lasers. Theory and measurements are used to select a
material for the isolator. A polarization independent design for the isolator is chosen
with all components suitable for monolithic integration. Simulations of the isolator show
it to be capable of 24 dB of isolation. Waveguide Faraday rotators, which are a
component of the isolator, are fabricated and demonstrated.
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Chapter 1

Introduction

Optical isolators are important components in lasers. Their main function is to
eliminate noise caused by back-reflections into these lasers. The need for integrated
isolators comes from the continuing growth of telecommunication networks. Monolithic
integration of isolators with other optical components such as lasers would reduce costs
and increase functionality.

This thesis presents the design and test of a monolithically integrated optical
isolator for telecommunication networks. This chapter will begin with an explanation of
how isolators actually eliminate noise in lasers and then it will then show how
commercial bulk isolators function. Next, greater detail will be provided on the need for
monolithically integrated isolators. Because isolators are non-reciprocal devices, they
must use a non-reciprocal effect in order to function. A brief description of this
phenomenon, known as Faraday rotation, will be given in this chapter. Then previous
work on integrated isolators will be presented. Finally, an overview of this thesis will be

given.

1.1 Motivation

1.1.1 Laser Noise Due to Back-Reflections

An optical isolator is a non-reciprocal device which allows light propagation in
only one direction. It is used to prevent optical feedback in lasers and optical amplifiers.
This is important because feedback can cause noise and instabilities in lasers. In

semiconductor lasers used for telecommunications, the feedback is caused by back-
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reflections from optical fiber at the laser output. The effect of the reflecting fiber facet is
to create a double cavity state in the laser if phase coherence is maintained, or to act as an
external light source if coherence is lost.

There will be fluctuations in laser intensity and frequency for both the double
cavity state and external light source state. For the double cavity state, the fluctuations
are due to mechanical vibrations of the fiber which change the length from the reflection
point to the cavity and create phase variations. For the external light source, the
fluctuations come from the random generation of locking and unlocking states due to the
frequency changes caused by temperature variations of the laser diode. In either case, the
intensity and frequency noise are both directly proportional to the effective reflectivity of
the fiber [1]. Here effective reflectivity refers to the amount of reflected power from the
fiber that actually returns to the laser cavity.

To reduce the effective reflectivity, an isolator is placed in front of the laser. The
isolator will block the back-reflected light, thus reducing the intensity and frequency
fluctuations. The name isolator comes from the fact that if it is placed in front of a port,
then it will isolate this port from any optical power propagating towards it. Isolators are

essential for any sort of laser where low noise is desired.

1.1.2 Commerical Bulk Isolators

Because isolators only allow light propagation in one direction, they are non-
reciprocal devices, and therefore must utilize a non-reciprocal phenomenon in order to
function. The phenomenon used in commercial bulk isolators is Faraday rotation. This is
a non-reciprocal rotation of the polarization of light. It is non-reciprocal in the sense that
the rotation is independent of the direction of light propagation. If light propagates
through a Faraday rotating medium, after a single pass its polarization is rotated by an
angle 6, and after a round-trip it is rotated by 20.

To use this effect in an isolator, a Faraday rotator is placed in between two
polarizers, as shown in Figure 1-1. The polarizers are oriented at 45° with respect to each
other. In the forward direction, light will pass through the first polarizer, be rotated 45°

by the Faraday rotator, and pass through the second polarizer unattenuated. In the reverse
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direction, the light will pass through the second polarizer, be rotated 45° in the same
direction, and be blocked by the first polarizer. In this way isolation can be achieved.
However, this design is not polarization independent. If the input light is oriented

orthogonal to the first polarizer, there will be no transmission.

2olarizer Polarizer
A T~

Bl | Lo

—

Figure 1-1: Polarization dependent bulk isolator consisting of polarizers and a Faraday
rotator

Polarization independent isolators can be achieved by using birefringent walk-off
plates (BWP). The basic configuration is shown in Figure 1-2. The walk-off plate
separates the transverse magnetic (TM) and transverse electric (TE) polarizations. TM
polarization is vertical, and TE is horizontal. The TM light is transmitted straight
through, and the TE light is transmitted away from the normal of the beam splitter. In the
forward direction, the light passes through the first beam-splitter, then through a Faraday
rotator and half-wave plate, and finally a second beam splitter. The Faraday rotator
provides a non-reciprocal 45° rotation and the half-wave plate provides a reciprocal 45°
rotation. The combined effect of the non-reciprocal and reciprocal rotation transforms
the TM light into TE and the TE light into TM. At the second walk-off plate, the TE is
bent away from the normal and the TM passes straight through, and both beams combine
at a common output. The input light thus reaches the output without attenuation. In the
reverse direction, the sequence of half-wave plate and Faraday rotator leave the TE and
TM light unaltered. At the first walk-off plate, the two polarizations exit at separate
ports, and the input port is isolated.
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BWP BWP

Figure 1-2: Polarization independent isolator consisting of a half-wave plate, Faraday
rotator, and birefringent walk-off plates (BWP)

1.1.3 Need for Integrated Isolators

For optical communications, semiconductor lasers are used with an external
isolator. Figure 1-3 shows a distributed feedback laser in a butterfly package. This
isolator consists of two polarizers, a Faraday rotator, and an external magnet to bias the
Faraday rotator. These components are not in integrated form with the isolator, which is

the largest element in the laser package.
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OBA Fibeg Pigtail

Lens

Modulator

Butterfly
Package

Coax
Input

Isolator

Leads

TEC Thermistor Laser Diode

Photo Diode

Figure 1-3: Laser package with isolator

The motivation for integrated isolators comes from the growth in optical
networks. As networks become larger and more complex, greater integration of optical
functions is needed in order to increase capacity while also reducing costs. An integrated
isolator would have several benefits. First, it would reduce the size of the laser package
and allow for several lasers to be integrated with isolators on a single chip. This would
be especially useful for wavelength division multiplexed (WDM) optical networks where
several different wavelengths are used to transmit information. Second, an integrated
isolator would eliminate the costs associated with alignment of a separate optical
component. Third, it would increase mechanical stability because it would be integrated
on the same semiconductor chip as the laser.

Another technology which would require integrated optical isolators is all-optical

networks. The motivation for this type of network is the need for higher network speeds.
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Current communication networks use electronics to process information contained in
optical data packets in order to determine their destination. Optical-networks aim to do
this in the optical domain using optical switches. Research is currently being done on
using semiconductor optical amplifiers (SOA) for these switches [2].

A possible optical circuit that performs a logical function in these all-optical
networks is shown in Figure 1-4. This circuit consists of two stages of optical SOA
switches. In order to function properly, each switch stage must be buffered so that an
individual stage’s function is not corrupted by noise from other stages. The main noise
sources would be amplified spontaneous emission from the SOA’s and any sort of back-
reflection between stages. If a circuit consisted of several stages, then an isolator would
be required for each switch in each stage. The circuit would become very expensive,
large, and difficult to fabricate if each isolator was a separate bulk component. For this
type of circuit to be practical for all-optical networks, it is essential that the isolators are

in integrated form.

Electronics  Electronics

Ve Ve
'U'urlH‘ VW{H Band Pass Filter

A /
—
wik
—

Jr : Isolator Absorber
B, SOA -
CLK
—
c

Optical Time Delays % "'_”:II

Figure 1-4: Circuit consisting of all optical SOA switches. Isolators are needed to buffer
different stages of the circuit [2]
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1.2 Introduction to Faraday rotation

1.2.1 Faraday Rotation from an Asymmetric Dielectric Tensor

When a magnetic field is applied in the z direction, the dielectric tensor for a

material has the form
e=¢,|-je, n* 0 (1.1)

where n is the index of refraction and &,y is purely real. The next section discusses the
physical origin of this dielectric tensor. By inserting the above expression for € into

Maxwell’s equations for a source free region, one obtains

VesE=0 (1.2)
VeuH=0 (1.3)
VxE=—jouH (1.4)
VxH = jocE (1.5)

A time harmonic dependence ¢ has been assumed in the above equations. By using the

well known vector identity
VxVxA=V(Ved)-V>4 (1.6)
Maxwell’s equations can be rewritten as
VE+0 usk =0 (1.7)

Assuming that E has the form Eq¢/“"#?, equation 3-1 becomes an eigenvalue problem:

2

.| 7t ey, 0E, E,
@ '
7| "I n* 0|E,|=pE, (1.8)
0 0 n*|E, E,
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112 .
. The eigenvectors and

Here ¢ is the speed of light in vaccum and is equal to 1/(io€o)
eigenvalues of Equation 1.8 fall into two categories. First, the z-component of the
electric field is considered. Because it has been assumed that propagation is also in the z
direction and that the material is source free, the solution is trivial:

0
E=|0] B=0 (1.9)
1
However, for the other two solutions, the eigenvectors correspond to right- and left-

circularly polarized light written as E. and E_, with propagation constants B and f.:

1

- . w

Ei= p’] Sﬁtzg\’(nzugxy) (1'10)
0

For isotropic, reciprocal materials, right and left circular polarizations are degenerate and
have the same propagation constant. Because the phase velocity is given by /B, these
two polarizations propagate at the same speed in isotropic, reciprocal materials.
However, in a non-reciprocal material which exhibits Faraday rotation, these two
polarizations are no longer degenerate and propagate at different speeds. Consider x
polarized light incident on a Faraday rotating material. The light will couple to the two

circular polarizations:

E, 11 [1
E=| o |=Lel|-jl+]/ (1.11)
ol Y2 ol [0

After propagating a distance /, the field becomes

1 1

— E , '

B =|| /" +| 7| (1.12)
0 0

At this point a simplifying assumption is made: because €,y is much smaller than n’, B is

rewritten as a first order Taylor expansion:

B. =f"~(nug"yJ (1.13)
c 2n
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Equation 1.12 can then be rewritten as

1 1
— Ee'* . »
EQ) = \/% jle wl=jle (1.14)
0 0
where
p=Litb,_ 2, (1.15)
2 c
s=bePoy_ @y, (1.16)
2 c 2n

By dropping common phase factors, Equation 1.14 becomes

1 0
E()=E,||0]|cos(8)+|1 |sin(5) (1.17)
0 0

As can be seen, the polarization now has an x component of magnitude cos(3) and a y
component of magnitude sin(8). This is just the input polarization rotated by an angle 9,
which corresponds to the Faraday rotation. The Verdet coefficient V, which is the

specific rotation per length, can be written as

poBPoB __ @y (1.18)
2 ¢ 2n

1.2.2 Classical Theory of Faraday Rotation

To understand the origins of the asymmetric dielectric tensor, it is easiest to
consider a single electron bound to a nucleus. The displacement r of the electron from its
equilibrium position is assumed to be small, so the nuclear potential is approximated by a
harmonic oscillator with oscillation frequency w,. If an electromagnetic field is incident
on the atom, then the equation of motion for the electron is

me%=—mew3;~y%+qf (1.19)
where q is the electron charge, y is the damping constant, and me is the electron mass. In

the above equation, the force due to the photon’s magnetic field is assumed to me much
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smaller than that of the electric field, and is therefore neglected. If an external magnetic

field B is applied to the atom, the equation of motion for the electron will become:

d*r 2= dr (= dr =
‘L r__ ~y~—+g| E+—xB 1.20
e T TS Y q( 7 ] (1.20)

m

If r is assumed to have the same ¢! time harmonic form as E, then Equation 1.20 can be
rewritten as:
—mewz;=—mew3;~jw7;+q(f+jw;x§) (1.21)
The polarization of a material is defined as
P=gN,r=¢E (1.22)
where N is the electron volume density in the material, and £ is the dielectric tensor of

the material. The dielectric tensor is defined here as

- h xy gxz
2
E=¢g,l€, n g, (1.23)
2
8zx Ezy

If this is inserted into Equation 1.21 the result is
(ml@? - ©* )+ joy FE = ¢*N,E+ jwq(zE x Ej (1.24)
For simplicity it is now assumed that B is in the z direction. Then all off diagonal terms

in € become 0 except for e,y and &yx. The expressions for the remaining terms in € are

then
n2 - Neqz m*(wf _w2)+ja)}’ (125)
€ {m'(02 ~0?)+ jor | - (wgB, }
£y =60 = JoN 4B, (1.26)

el (0F -0+ jor | (B,
The off-diagonal elements are complex as defined here, but to match the convention used

in Section 1.2.1, they are redefined such that

. . N, 3BZ
Jery = =8y =] - (1.27)
go(m (0)0 - )+Ja)}/)2_(quz)
The important feature to note for the dielectric tensor is that the off-diagonal terms have

opposite sign. This causes € to be a non-symmetric tensor, which breaks reciprocity in
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the material. The off-diagonal terms are proportional to the magnetic field, and are
responsible for the Faraday rotation. If the magnetic field changes sign, exy will change
sign, which will cause the Faraday rotation to be in the opposite direction.

For a more physical picture of the Faraday rotation, the effects of the forces on the
electron are considered. The nuclear potential binding the electron to the nucleus can be
modeled as a spring. The incident electromagnetic field E; will cause the electron to
oscillate with velocity v, and the magnetic field B will apply a transverse force on the
electron, causing it to rotate. The radiated light will have its polarization aligned with the
electronic oscillation. As the electron’s oscillation direction is rotated, so is the
polarization of the light it radiates. Because the force only depends on the direction of E
and B, the magnetic force will be the same irrespective of the propagation direction. If
light propagating in the forward direction has its polarization rotated by an angle 6, then
after one round-trip, it will be rotated by 26 and will not be in its initial polarization state.

Thus, it can be seen how the magnetic field breaks reciprocity.

1.3 Previous Work on Integrated Isolators

1.3.1 Introduction

There have been two main approaches to achieving integrated optical isolators. The
first approach utilizes a magnetic field applied transverse to the direction of propagation,
and the second approach utilizes a magnetic field applied parallel to the direction of
propagation. Two phenomena fall into former approach: non-reciprocal phase shift
(NRPS) and non-reciprocal loss (NRL). The phenomenon used for the latter approach is
Faraday rotation. Each approach has its own advantages and disadvantages, which are

discussed in the following sections.
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1.3.2 Non-Reciprocal Phase Shift (NRPS)

For NRPS, the magnetic field is applied transverse to the direction of propagation, as

shown in Figure 1-5.

. Propagation
—

Figure 1-5: Configuration for NRPS. The magnetic field B is applied transverse to the
direction of propagation

A magnetic field applied in the y direction will give a dielectric tensor of the

form |3]
B [ 0 jexz"
e=¢g,| 0 n’ 0 (1.28)
-je, 0 n?
while a magnetic field applied in the x direction will give:
B [ n? 0 0 |
e=¢,| 0 n’ J&,. (1.29)
i 0 -je, n’ i

The NRPS is a waveguide effect, occurring because of the coupling of transverse
and longitudinal field components. Waveguide modes can be divided into two types:
transverse electric (TE) and transverse magnetic (TM). TE modes are dominated by an
electric field in the y direction and have a negligible x component. The dominant electric
field component for TM modes is in the x direction, with the y component being

negligible.
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The effect of the off-diagonal elements is to create different propagation constants
for the forward and reverse directions. Perturbation theory can be used to calculate the

difference between the forward and reverse propagation constants [4]:

By = j208 £, [[ELE.dsdy (TM) (1.30)

&y = j20 £, [[E,E.dxdy (TE) (1.31)

where all field components are normalized to the power flow along the propagation
direction. This non-reciprocal propagation constant can be used to provide a different
phase for the forward and reverse direction.

To make an isolator using NRPS, a Mach-Zender configuration is used. The
NRPS waveguide is placed in one arm of the isolator, and a reciprocal waveguide in the
other. In the forward direction, light propagating through the two arms will be in phase at
the output and interfere constructively, traveling through the output port. In the reverse
direction, the two arms will be 180° out of phase due to the NRPS. Reverse propagating
light will interfere destructively and not be transmitted through the input port, thus

achieving isolation.

Destructive Constructive
interference interference

Figure 1-6: NRPS isolator in magnetic garnets. By applying opposite magnetic fields in
each arm, only a 90° NRPS is required [5]

NRPS isolators with 18 dB isolation have been achieved in magnetic garnets [5].

The isolator only functioned for TM polarizations because the applied magnetic field was
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applied in the horizontal direction. A diagram of the isolator is shown in Figure 1-6. It
had a NRPS waveguide in each arm with opposite magnetization. Two electromagnets
provided the external magnetic fields. This required the magnitude of 3 to only be 90°
instead of 180° in each arm. This isolator is 8 mm long, with NRPS waveguides which
are 3.3 mm long. The NRPS waveguides are made from a bismuth-, lutetium-, and
neodymium-iron garnet film (Bi,Lu,Nd);(Fe,Al)sO5».

NRPS can also be achieved for both TM and TE polarizations by applying an
external magnetic field at 45° to achieve in-plane and out-of-plane magnetizations [4].
This technique could be used to make polarization independent NRPS isolators.

NRPS attracted attention because unlike Faraday rotation, it did not have the strict
phase matching requirements for the TE and TM modes, which will be discussed in a
later section. The main disadvantage of NRPS when compared to Faraday rotation is that
it is an inherently weaker effect. Using Equation 1.18, the Verdet coefficient for a

Faraday rotator can be expressed as

y =25 (1.32)
c 2n
The ratio of the NRPS to the Verdet coefficient is then
Bl _|.
IT‘ - ' jaeeon [ Eszdxdy’ (1.33)

This ratio is proportional to the normalized overlap integral of the transverse and
longitudinal electric field components. This integral is much less than 1 because most of
the mode power is contained in the transverse field component. To see the difference in
isolator length using Faraday rotation and NRPS, numerical values for V and 63 are used
for a magnetic garnet waveguide in reference 4. Because an isolator needs either a 45°
Faraday rotation or a 90° NRPS in the balanced configuration, the ratio of the length of a

NRPS isolator to a Faraday rotator isolator for the material in reference 4 is

90
L yres =ﬁ=_1' > =384 (1.34)
L, 45 005

|14

As can be seen, using Faraday rotation can reduce the isolator length by an order of

magnitude.
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1.3.3 Non-Reciprocal Loss (NRL)

In the derivation of the NRPS, it was assumed that the off diagonal elements (g;)
in the permittivity tensor were purely real, leading to only a change in the real part of the
propagation constant, which corresponded to a phase shift. However, if this term were to
have an imaginary component, then the imaginary part of the propagation constant would
be changed. This would lead to different loss in the forward and reverse directions. By
incorporating this effect with an optical gain medium, such as a semiconductor optical
amplifier (SOA), an isolator can be made. If the gain is adjusted appropriately, the loss
in the forward direction can be compensated, while the loss in the reverse direction will
still be large enough to attenuate any reverse propagating light.

NRL isolators have been made by placing an absorbing magnetic layer on top of
an SOA, as shown in Figure 1-7 [6]. This isolator showed a theoretical isolation of 119
dB/cm for the TM mode. The best experimentally demonstrated NRL isolators to date
can provide isolations of 32 dB/cm [7]. The advantage of NRL isolators is that they do
not need to be placed in Mach-Zehnder configurations in order to function. A second
advantage is that the maximum possible isolation is only limited by the device length.

This allows for incredibly high isolations to be achieved.
Magnetic field // y
@ Current injection

Electrode .
of Contact layer: p’ InGaAs

p - cladding layer: p InAlAs

SEIFTESEEY Magnetic layer:  InAlAs:MnAs
S| o Guiding layer: InGaAsP(E, = 1.25um)
B a: Active layer:InGaAsP(E, = 1.55um)

[l n - cladding layer:n InP
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Figure 1-7: NRL isolator made using SOA and a magnetic absorbing layer [6]

While the prospect of a simple makes NRL isolators seem very attractive, there is
one important disadvantage. Because the optical mode penetrates into the absorbing
magneto-optic layer, the insertion loss is large. The NRL is proportional to the overlap of
the mode with the magneto-optic layer, but so is the loss. An SOA must be used just to
compensate for this reciprocal loss. For example, a one-dimensional simulation of an
SOA covered with a ferromagnetic layer has shown that a material gain of 1560 cm! is
needed to provide unity gain in the forward direction for a NRL isolator [§]. Any
practical NRL isolator must therefore be an active device. A passive isolator would be
preferable because it would not have any power consumption. Also, when using SOA’s,
spontaneous emission will be present, which may not all be absorbed by the NRL

isolator, further degrading its performance.

1.3.4 Faraday Rotation

As already discussed, Faraday rotation is used to make bulk optical isolators.
However, for waveguide structures, Faraday rotation is more difficult to utilize because
of the strict phase-matching conditions. However, if this phase-matching condition can
be achieved, the Faraday rotation could be used to make isolators which are an order of
magnitude smaller than NRPS and NRL isolators.

Waveguide Faraday rotation has been demonstrated in magnetic garnets [9].
Figure 1-8 shows the Faraday rotation for a magnetic garnet, a high birefringence
waveguide, and a low birefringence waveguide. As the length of the Faraday rotator is
increased, the high birefringence waveguide’s Faraday rotation oscillates, while the bulk
sample and low birefringence waveguides show a monotonic increase in their Faraday
rotation. Thus, by reducing the birefringence of the waveguide, the Faraday rotation

approached its maximum value.
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Figure 1-8: Faraday rotation vs. length for three different magnetic garnet samples: a bulk
sample, a high birefringence waveguide, and a low birefringence waveguide [9]

Isolators have been achieved with waveguide Faraday rotators and external bulk
polarizers [10]. However, a fully integrated isolator has not been demonstrated using
Faraday rotation because polarizers and polarizing beam splitters are difficult to achieve

in waveguide form.

1.4 Integrated Optical Isolator Design

Conventional isolators use Faraday rotators and bulk polarizers to achieve
isolation. Polarizers set at arbitrary angles are difficult to achieve in waveguide form, so
a practical integrated isolator design must not contain polarizers. Such a design was
created by Sugimoto et. al [11], which also functioned as an optical circulator. The
isolator, which is shown in Figure 1-9, is a four port device and consisted of waveguide
Faraday rotators, waveguide 3 dB couplers, and thin film polymer half-wave plates in a
Mach-Zehnder configuration. The Faraday rotators in the isolator provide a 45° Faraday
rotation. The two half-wave plates in the isolator have their slow axis oriented at 22.5°

and -22.5° with respect the horizontal, thus providing a reciprocal 45° rotation.



30

Half-wave plate &
(polyimide film)

Waveguide Faraday rotator
{(La,Ga):YG waveguide array)

'3 dB-wavelength insensitive coupler
(silica-based planar lightwave circuit)

Figure 1-9: Optical isolator consisting of 3 dB couplers, half-wave plates, and Faraday
rotators [11]

The advantage of this design is that it achieves isolation with a Faraday rotator
without using any polarizers. The entire device was 47 mm in length. Most of this
length was dominated by the 3 dB couplers, each of which had a length of 22 mm. The
waveguide Faraday rotators, which were made of a lanthamum- and gallium-substituted
yttrium iron garnet [(La,Ga):YIG], were 3 mm long. The Faraday rotators were biased
by a thin-plate type Sm-Co permanent magnet which was 6 mm long. The applied
magnetic field was 18 mT. The half-wave plates were made of 20 um polyimide films
which were inserted into grooves formed on the 3 dB couplers.

Figure 1-10 shows how TE and TM polarizations change as they propagate through
the isolator. HWP1 and HWP2 refer to the half-wave plates with slow-axes oriented at
22.5° and -22.5°, respectively. The arrows represent the polarization state, with the black
arrows representing TM inputs and the white arrows representing TE inputs. As can be
seen, for forward propagation, the polarizations are in phase at the output, but for reverse

propagation they are out of phase.
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Figure 1-10: Polarization state of TE and TM inputs as they propagate through isolator
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To understand how this design works, the Jones matrix formalism is used. A basic
tutorial on Jones matrices can be found in Appendix A. For light traveling in the forward
direction, the Jones matrices for the two arms can be expressed as:

P Ty L L ML
1 “201 -1f1 1[0 41 K53

P —FR*HWPz—l 1 -1]1 -1} 1 ©
A 201 1]-1 -0 -1 (L35

Forward propagating light in the two arms will be in phase and interfere constructively.

In the reverse direction, the Jones matrices for the two arms become:

4 =FReEwR =11 T L
L™ 201 101 =1/ [1 0 (1.37)

g | R LIt
- “20-1 -1f1 1| -1 0 (%38
Reverse propagating light in the two arms will be out of phase and interfere destructively.

It is important to note here that the isolator functions for either TE or TM inputs. It is
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polarization independent because any input can be represented as a linear combination of
TE and TM polarizations.

The 3 dB couplers will switch the light depending on the phase: light from port 1
will exit at port 2, port 2 to port 3, port 3 to port 4, and port 4 to port 1. By only utilizing
two ports, the device will act as an isolator. If all four ports are used, then it will act as a
circulator.

Because the circulator used mirco-optic components on a silicon optical bench, it
was not monolithically integrated. However, if all of the individual components (3 dB
coupler, Faraday rotator, and half-wave plate) are in waveguide form, then this design
will be ideal for an integrated optical isolator. Therefore, this design will be used in this

thesis for the integrated isolator.

1.5 Thesis Overview

This thesis deals with the design and fabrication of an integrated optical isolator.
The first step to making an integrated isolator is to select a design, which has been
accomplished in this chapter. Also, in this chapter, it has been argued why it is best to
use Faraday rotation as the non-reciprocal effect for the isolator.

Chapter 2 will study Faraday rotation in semiconductors. In this chapter a
different approach will be introduced to explain Faraday rotation. This approach will be
extended to understand the contributions to Faraday rotation from magnetic dopants and
interband transitions in semiconductors. Data will be presented on Faraday rotation in
several different materials. Finally, based on this theory and data, a material will be
selected for the integrated isolator.

Chapter 3 will go into the details of the design of the integrated isolator. Analysis
will be done to determine the limits on isolation and also fabrication tolerances for the
device. Finally, simulation results on the isolator performance will be presented.

Measurement and characterization of the waveguide Faraday rotator will be the
topic of Chapter 4. The experimental setup for characterization of the Faraday rotator
will be described in detail. Data on the optical loss, birefringence, and Faraday rotation

of the waveguides will be presented.
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Chapter 5 will summarize the results of this thesis and evaluates the progress
made towards the realization of an integrated optical isolator thus far. The chapter
concludes with a discussion of future work to be done in the design and fabrication of an

integrated optical isolator.
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Chapter 2
Faraday Rotation in

Semiconductors

To make an integrated isolator, a material is needed which can be monolithically
integrated with semiconductor lasers. Commercial isolators are made from magnetic
garnets such as YIG (yttrium iron garnet). These garnets are ideal for isolators because
they have a high Verdet coefficient and low absorption. However, the problem with
magnetic garnets is that they cannot be grown on common semiconductor substrates such
as InP. Integration of an isolator with a semiconductor laser would be possible if a
semiconductor could be used for the isolator material.

In order for a material to be used for an isolator, it must meet one important
criterion: it must be able to provide a large Faraday rotation while also having minimal
optical loss. Specifically, for the isolator design in this thesis, the material must be able
to provide 45° of rotation while also having a loss below 1 dB. The length of the Faraday
rotator is then set by two equations:

VI =45 2.1)
10log (e )= -1 .2)

where V is the Verdet coefficient in >mm™ and o is the absorption coefficient in mm’.

By solving these two equations for /, the figure of merit for an isolator material becomes

LYY (2.3)

(24
This chapter aims to better understand Faraday rotation in semiconductors in

order to see if they can be used for isolators. It will analyze three different contributors to
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the Faraday rotation: free carriers, interband transitions, and magnetic dopants.
Experimental results on the Faraday rotation in different semiconductors will be

presented. The chapter will conclude by selecting a material for the isolator.

2.1 Free Carrier Faraday Rotation

For free carriers in a uniform medium the restoring force of the nucleus
approaches zero. The permittivity can then be found by using Equation 1.4 and setting

®, to zero. The off-diagonal term becomes

N.g’B
g =N 1 (24)

7o (1_j 2y _(qu)2+72)

*

m @ (m‘a))z

The mass is written as m" in order to indicate that it represents the effective carrier mass.

The damping term can be expressed in terms of the effective mass and a scattering time t:
r=— (2.5)

For semiconductors, 7 is usually on the order of picoseconds. The applied magnetic field

is on the order of a Tesla. The wavelength of importance is 1.55 um, which corresponds

to ® on the order of 10"° sec’!. Using these values, the terms in the denominator become

4 _ 1 oo (2.6)
m (14
LTS 2.7)
m

These terms are both much less than one and can be neglected in the denominator.
By inserting Equation 2.4 into Equation 1.18, the free carrier Faraday rotation
becomes

@fy__ Ng'B__ (2.8)
¢ 2n 2cgon(m )2(1)2

Vfc‘:_’

Rewriting this expression in terms of optical wavelength, one has:
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N,q’BA?

*
87r2c3€on(m )2

A key feature of Equation 2.9 is that the Faraday rotation is inversely proportional

Ve =- 29)

to the square of the effective mass of the free carriers and proportional to the carrier
concentration. This allows the Faraday rotation to be used for measuring these quantities
in semiconductors [12].[13].[14]. Another feature of Equation 2.9 is that the Faraday
rotation is proportional to q3 . This means that electrons and holes have Faraday rotations
of opposite sign. A final feature of Equation 2.9 is that the Faraday rotation is directly
proportional to the wavelength squared. For long wavelengths, the free carriers will be
the dominant contributors to the Faraday rotation in a semiconductor, whereas with
shorter wavelengths closer to the bandgap, interband transitions will be more important.
An important question to ask now is if the free carrier Faraday rotation is strong
enough for an optical isolator. To answer this, the loss due to free carriers must be
known. This can be done by using the imaginary part of the index of refraction. The
expression for the imaginary part of the refractive index can be found by using Equation

1.25:

2 [ 2 2 .
n =, + jn )}t = 2ed (o} - o)+ oy (2.10)

g (m'(w2 - o)+ joy | - (wgB,Y

For semiconductors, m” >>y and m’©>>gB,, as shown in Equations 2.6 and 2.7. Using

these results and Equation 2.5 for v, the expression for n; becomes

2
n oo Ned

- Ned 2.11
" 2eno’m't @1

1 is the effective scattering time of the free carrier, which can be expressed in terms of the

mobility:

=T A 2.12)

This only gives an upper limit on 1 because the mobility does not take into account

electron-electron scattering, which also contributes to the damping term .
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The imaginary portion of the propagation constant corresponds to a power
attenuation of the form ¢, where a. is the absorption coefficient. By using Equation
2.12, the expression for a becomes

N, q|3/12

a=2%n = (2.13)

¢ 4n*ce n, (m')z,u
The factor of two is included because the power loss is being considered here. With this
result and Equation 2.9, the figure of merit for free carriers becomes:
vV _Bu (2.14)
a 2
Using a value of 1 T for B and typical values for p (1,000 to 10,000 cm?/V/s), one obtains
a figure of merit between 0.05 and 0.5. For an isolator, this figure of merit should be at

least 195, so free carriers will not be desirable for providing Faraday rotation.

2.2 Interband Faraday Rotation

To understand how interband transitions and magnetic dopants in semiconductors
contribute to Faraday rotation, a different approach to analyzing Faraday rotation is
taken. In Section 1.2 it was shown that in a magneto-optical material right- and left-
circular polarizations have different propagation constants, and it is the difference in
these propagation constants that cause Faraday rotation. This can be written as:

b
;

V=ﬁ+_ﬂ~ :__a_)_(n+_n—) (215)
2 c 2

B has been rewritten here as on/c, with n, and n. corresponding to the indices of
refraction for right and left circularly polarized light.

The index of refraction is a function of the electronic transition energy E;, (the
transition from electronic level 1 to level 2). For small perturbations in the transition
energy, denoted as AE),, the difference in index of refraction can be Taylor expanded

about the unperturbed transition energy to give:

B on

moon= o (AE;, - AE) (2.16)
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where the superscripts indicate the perturbations for right- and left-circularly polarized
light. Thus, with knowledge of the functional form of the index of refraction and the
value of the perturbations to the transition energy, the Faraday rotation can be calculated

for any material.

2.2.1 Index of Refraction as a Function of Transition Energy

The first step to calculating the Faraday rotation from interband transitions is to
find the partial derivative of the index of refraction with respect to the transition energy.
For semiconductors, the transition energy E;, of interest is the bandgap energy E,. A

simple model for the refractive index is given by

n*—1=n’+ (2.17)

E; —(E)
F is the oscillator strength of the transition, and n, is the contribution from all other
sources excluding the interband transition to the refractive index. Inserting the partial
derivative of this function with respect to E, into the expression for the Faraday rotation,
one obtains:

V*

= 2—110;_(5; - Ez)z AE, -AE,

4

2
F1_E *_AE) (2.18)

It can be seen that the Faraday rotation will increase rapidly as the photon energy
approaches the bandgap energy. By engineering the bandgap of a semiconductor, it is
possible to increase its Faraday rotation for a desired wavelength.

For specific semiconductors, explicit expressions exist for the index of refraction
based on curve fitting to experimental data. For the quarternary material In;.xGaxAs,Py.y

lattice matched to InP, the expression for the index of refraction is [15]

E, E,E’ ¢
nt-l=l+—f4 =44 3E‘12E - (2.19)
E,  E 2E(E}-E})

o

where E is the photon energy and
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E, =0.595x*(1- y)+1.626xy —1.891y + 0.524x +3.391  (2.20)
E, =(12.36x~12.71)y + 7.54x + 28.91 (2.21)

For In; xGaxAsyP.y lattice matched to InP, the bandgap E, is given by
2
E,=135-0.72y+0.12y (2.22)

Figure 2-1 shows On/0E; as a function of wavelength for both InP and In;.
«GaxAsyP1y (x=.290 and y=.628). The bandgap of InP is 0.89 um, and that of InGaAsP
is 1.30 um. At a wavelength of 1.55um, |On/OE,| for InGaAsP is larger than InP by a
factor of 10, so it is expected that the Faraday rotation for InGaAsP should be 10 times as
large as for InP just due to the bandgap. Also, it can be seen that |On/OE,| increases as the
wavelength approaches the bandgap for both materials. Thus, it can be seen how

bandgap engineering can be used to increase Faraday rotation.
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Figure 2-1: on/0E, vs wavelength for InP and In;.xGaAs,Py., (x=0.290, y=0.628)

2.2.2 Perturbations to Transition Energy Due to Magnetic Field

The Hamiltonian of an electron in an external magnetic field B can be written as

H =-MeB=—%(L+45)eB (2.23)
2m
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where M is the magnetic moment of the electron, q is the electron charge, m’ is the
effective electron mass, L and S are the angular momentum and spin operators, and g is
the electron g factor. This can be rewritten in the basis of total angular momentum J,

which is defined as L+S:

| <1

JeB _ —q (L+gS)e(t+5).B,

_.q — —_ [
H< = L S *— — 2.24
" 2m ( T8 ) J‘|J‘ 2m J? 2.24)
Using the identity
- 2 _ 2 _ 2
Tes-t =L =5 (2.25)
2
The Hamiltonian can be rewritten as
2 2 2
H’-: _q* (g+l).] +(g—1)(S -L )JZBZ (2.26)

2m 2J?
Now that the Hamiltonian is in the total angular momentum basis, the energy splitting for

any state can be written as

AE;, ==Tlg,m B, (2.27)
2m

where m; is the total angular momentum component along the z axis, j is the total angular
momentum, h is Planck’s constant divided by 2x, and g;. is the Landé g factor, which is

defined as

[ _g+l (@-Dsts+D-1I+D) (2.28)
) 2j(j +1)

where j, [, and s correspond to the magnitude of the total angular momentum, orbital
angular momentum, and spin. The above expression results from the fact that the
eigenvalue of an angular momentum operator A?is Ra(a+1).

For a semiconductor, the transitions of importance are between the conduction
and valence band. The conduction band is mainly s-orbitals, so 1=0, and the free carriers
are electrons, so q is negative. The valence band has p-orbitals, so 1=1, and the free
carriers are holes, so q is positive. The energy levels will split as shown in Figure 2-2,
with each level designated by its total angular momentum quantum numbers ( [j,m;)).
The electronic transitions of interest involve an electron losing or gaining one quantum of

angular momentum and are indicated by the arrows in Figure 2-2. Because angular
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momentum must be conserved in the transition, a photon with a right- or left-circular

polarization, represented as 6. or ¢, is emitted.
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Figure 2-2: Energy splitting of valence and conduction bands due to application of

magnetic field

The energies for the transitions in Figure 2-2 are

AE+=E,-E,, :Eg -(C+7)
AE" =F,-E, =Eg +(C-V,)

AE" =E,-E), =E -(C-V,)

AE" =E,-E,,=E +(C+V)

where

1m
C =,uBBz 5_(‘)gc

me

1 m,
Vi =pugB, 5:—.(& +2)
b

1
Vy = upB, gm—i’(gv +2)
my,

(2.29)
(2.30)
2.31)

(2.32)

(2.33)

(2.34)

(2.35)

up is the Bohr magneton which is defined as |q|#/(2m,) and has a value 6.078 x 107 eV/T,

and m, is the free electron mass. The subscript on the g factors indicate valence and
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conduction band, while the subscript on the effective masses indicate conduction, heavy
hole, and light hole bands. The Faraday rotation is proportional to the energy difference
for transitions for left- and right-circular polarized photons. The largest energy

difference is for the conduction to light-hole transition:

*

AE" - AE™ = (Ecz - Elm)‘ (Ecl - Elh2)= /'IBBZ(Z: & —z_]i,(ivg—f_z“)) (2.36)

The g factor for free electrons is 2, but in a semiconductor it differs from this value. It
can be calculated using simple k-p theory. For the conduction and valence band, the g
factor is given by [16]:

g, =2- 2£,8 (2.37)

¢ 3E, (E et A)

g, =1 +%§—2AAI) (2.38)
A is the spin-orbit splitting energy and E, is the energy equivalent matrix momentum
element, expressed as 2|P/m,, and P is the momentum matrix element. These
parameters are well known for most semiconductors.

Using these results, the expression for the Verdet coefficient becomes:

yo @ on uBBz(m" . _ﬂ(&_{)} 239
m

C *
m, 3
Thus, an explicit expression for the interband Faraday rotation in semiconductors is

obtained in terms of well known parameters.
2.2.3 Perturbations to Transition Energy Due to Magnetic Dopants

If magnetic dopants are introduced into a semiconductor, the energy splitting can
be enhanced further. This is due to an sp-d exchange interaction between the magnetic
dopant electrons and the band electrons. This interaction can be described by a

Heisenberg-type Hamiltonian [17]:
Hy =Y J[r-R oo (2.40)
R;
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where J(r-R;) is the exchange integral, R; is the site of each magnetic dopant atom, §; is
the spin operator for the magnetic dopant electrons, and o; is the spin operator for the free
carriers in the semiconductor. The new energy levels due to this Hamiltonian can be
found using k-p theory. The resulting levels split just as the levels found for intrinsic
semiconductors, but the magnitude of the splitting is different. Figure 2-3 shows the

energy levels and electronic transitions for right- and left- handed circular polarizations.
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Figure 2-3: Energy splitting of valence and conduction bands due to sp-d exchange
interaction with magnetic dopants

The transition energies are

AE" =E,—E, =E, +(34+B) (2.41)
AE* =E,,—E,, = E, +3(B-4) (2.42)
AE™ =E, ~E,,=E,-3(B-4) (2.43)
AE"=E,-E, =E, ~(34+B) (2.44)

where the splitting terms are given by [18]

A= l0{ M (2.45)
6 guly

B = l M (2.46)
6" gy iy
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o and B are the exchange integrals for the conduction and valence band electrons, gy is
the Landé g factor of the magnetic dopant spins, and M is the magnetization of the dopant
per unit volume.

The largest difference in right- and left-circular polarized transition energies is

AE* = AE™ = (E.y — Epy )~ (B~ Eno)=6(B- ) =L=% 0 (2.47)

mHp

The magnetization of the dopants for low concentrations can be expressed as [19]

S(S +1)
M =xN PR "R 2.48
X. o(gM.uB) 3%, T ( )

where x is the dopant concentration, N, is the number of unit cells per volume, kg is
Boltzman’s constant, T is the temperature, B is the applied magnetic field, and S is the
electronic spin of the magnetic dopant atom.

With this result the Verdet coefficient due to magnetic dopants becomes
@ On

SIS +1)
V=—"——-a}xN
2c OF, a)x (&0 tts) 3k, T

B (2.49)

The important thing to note from this expression is that the Verdet coefficient is
proportional to the magnetic dopant concentration. This is similar to free carrier Faraday
rotation, but the difference here is that there is minimal loss caused by the magnetic
dopants. It has been shown that in semiconductors such as InP, the introduction of
magnetic dopants will have negligible contribution to the optical loss for wavelengths
below the bandgap [20]. Therefore, magnetic dopants are an effective way to enhance
the Verdet coefficient without increasing the loss.

The unknown terms in Equation 2-49 are the exchange integrals o and . These
terms are difficult to calculate and must be determined experimentally. The difference of
these exchange integrals will determine the sign of the Faraday rotation. Previous results
have shown that the Faraday rotation in semiconductors caused by magnetic dopants such
as Fe is negative [21]. Therefore, by increasing the dopant concentration in a

semiconductor, the Faraday rotation can become zero or even negative.
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2.3 Faraday Rotation Measurement

2.3.1 Experimental Setup

The experimental setup for measuring the Faraday rotation in bulk samples is
shown if Figure 2-4. The samples are placed in an electromagnet capable of providing
magnetic fields as strong as 2 Tesla. A 50 dB extinction ratio polarizer at the input
provides linearly polarized light oriented at 45° from the horizontal axis. After the light
is rotated by the sample, a polarizing beam-splitter with 50 dB of extinction separates the
horizontal and vertical polarizations. Two photodetectors measure the powers of the

polarizations.

B

Polarizing
Beam Splitter

r—\‘ Photodetector

Photodetector

Polarizer

Collimator

Magnet

Figure 2-4: Experimental setup for measuring Faraday rotation in bulk samples

The Jones’ matrix formalism is used to analyze the setup. The sample which
provides a Faraday rotation O can be modeled as a Jones’ matrix of the form

{cos( 6,) -—sin(8, ):|

sin(6,.) cos(6,) @0



47

Ideally the input polarization should be at 45°, but the input may not be exactly at this

angle. If the input light is at an angle 45°+8, then the output from the sample can then be

modeled as

o [cos(@F) —sin(@, ):||:COS(45 + 5)} E, [005(45 +58)cos@,) —sin@5+ 8)sin(@; )}

out —

sin@,) cos@@;) | sin@5+9) - J2| sin@5+ 8)cos@, ) +cos@d5+ 8)sin@;)
(2.51)
The normalized difference in the powers for the two polarizations is then:
2 2
_’Ex‘ _,Ey} _ . . oY)
=——— 5 = —c0s(26)sin(26;) - sin(28) cos(26;) (2.52)
£ +[5,

The error in input angle & will cause an error in the calculated angle. By switching the
sign of the magnetic field, the sign of O will also switch. By subtracting dP for the
positive and negative magnetic field the error due to the imbalance can be reduced:

dP* —dP™ = -2co0s(26)sin(26,.) (2.53)
For & as large as 10°, cos(28) is 0.94. Thus a 10° error in the input will only result in a

6 % error in the measured value of Or In practice, & is kept below 1° for bulk

measurements, resulting in 0.1 % error in the Faraday rotation measurement.

2.3.2 Cavity Enhanced Rotation:

Because some samples had very clean, reflective surfaces, an optical cavity was
created. When a Faraday rotating material is placed in an optical cavity, the rotation is
enhanced on resonance. In order to extract the single pass rotation, a closer analysis of

cavity enhanced rotation is provided here.
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Figure 2-5: Transmission through an optical cavity of length /, propagation constant 3,
and field transmission and reflection coefficients ¢ and r

To understand this phenomenon, it is helpful to first understand the transmission
characteristics of an optical cavity. Figure 2-5 shows a picture of a simple optical cavity
of length /. 3 is the propagation constant of the cavity material, and ¢ and r are the field
transmission and reflection coefficients of the surfaces at the ends of the cavity. The
transmission is given by

_ Eotze“m’
- 1-r2e 28

E, = Eot?'e“"ﬁ"(l +r2e By (220 f +) (2.54)

For a Faraday rotating material, the allowed polarization states are circular polarizations,
each with a different B. The Faraday rotation through the cavity will be given by the

phase difference between the two circular polarizations:

0, =¥ (2.55)

The phase of the transmitted light is

Im{E, } Sf1+72
ZE, =—tan™'| ——= | =tan™' | ——-tan(f/ 2.56
, [Re{E,}) (l_rz (ﬁ)] (2.56)
For a Faraday rotating material, the propagation constant is given by
£
B. =2{ni "”J:ﬁoir/ (2.57)
c 2n

where f3, is the propagation constant under no applied magnetic field and V' is the Verdet

coefficient. On resonance, the round-trip phase through the cavity is 2w, and tan(f,/)=0.
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Therefore, tan(fB,/+Vl)~ +VI. Under this approximation, the Faraday rotation on

resonance becomes

__1+r2
1-72

0, Vi (2.58)

Because V7 is the Faraday rotation with no cavity present, it can be seen that the effect of
the cavity is to enhance the rotation by a factor of (1+r2)/(1-r2). This factor can be

calculated from the power transmission spectrum of the cavity. The transmitted power is

. E|'t
P= | El = . - (2.59)
1+r" =2r°cos(28])
The ratio of the maximum transmission to minimum transmission is then
2 2
Pow _ (147 )2 260
Pmin (1 - }"2 )

Thus, by measuring the Faraday rotation on resonance and the power transmission
spectrum, the single pass Faraday rotation 05, can be expressed as

P..
gsp = 0max P:: (261)

where O« is the Faraday rotation on resonance. This method allows for the extraction of
the Verdet coefficient of a material from its cavity enhanced rotation. The analysis of
cavity enhanced rotation presented in this section differs from previous work [22],

however, the same result (Equation 2.61) is obtained.

2.3.3 Experimental Results

The samples measured included iron doped InP (Fe:InP), sulfur doped InP
(S:InP), and InGaAsP, both undoped and iron doped. The sulfur is a donor and provides
free electrons to the InP. There are no free carriers in iron doped InP because the iron
creates a state in the bandgap which traps the free carriers. This is why Fe:InP is known

as semi-insulating InP.
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The Verdet coefficient of S:InP is shown in Figure 2-6. As can be seen, at longer

wavelengths, the Faraday rotation increases. In this region the free carrier rotation is

dominant.
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Figure 21-86: Verdet coefficient of S:InP vs wavelength. The free carrier concentration is
3.6x 10" em™

By fitting a second order polynomial to the curve at longer wavelengths, as shown
in Figure 2-6, the carrier concentration was calculated. For this sample, the actual carrier
concentration is 3.6 x 10" cm'3, and the calculated carrier concentration is 3.7 x 10'
cm”, thus showing close agreement with Equation 2.9.

The total rotation is found by adding the free carrier rotation and interband
rotation. Figure 2-7 shows the theoretical Verdet coefficient for S:InP, along with the
measured Verdet coefficient. Also plotted in Figure 2-7 is the theoretical interband
Verdet coefficient calculated using Equation 2.39 and the theoretical free carrier rotation
calculated using Equation 2.9. The value of the experimental Verdet coefficient is larger
than the theoretical value by a factor of 2. This is because the theoretical interband

rotation is too small by a factor of 8.
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Figure 2-7: Theoretical and experimental Verdet coefficient of S:InP

Figure 2-8 shows the measured Verdet coefficient and optical loss versus
wavelength for the Fe:InP. The Fe concentration is 2.9 x 10 ¢m™ and the Verdet
coefficient of Fe:InP is half as large as for undoped InP. This indicates that the
contribution of Fe atoms to the Faraday rotation is actually opposite that of the intrinsic
contribution.

The loss measurements were made using ellipsometry. The error of the loss
measurement below the bandgap is 0.04 mm™, which is larger than the largest measured
loss. The loss minimum in Figure 2-8 may not be a true minimum, but instead may be
due to measurement error.

The figure of merit V/a. for this material at a magnetic field of 1 Tesla is shown in
Figure 2-9. With the uncertainty in the loss measurement, the maximum figure of merit

ranges between 51 to 157, which is not large enough for an optical isolator.
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Figure 2-8: Experimental Verdet coefficient and optical loss vs wavelength for Fe:InP.
The Fe concentration is 2.9 x 10" cm™
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Fe: InP 1 um

Fe: InGaAsP : 0.5 ym

Fe: InP 1 um

Fe: InP 350 pm

Figure 2-10: Fe:In;xGacAs,P1.y (x=.290 and y=.628) structure used for Faraday rotation
measurements

Fe:In;xGasAs,P1, (x=.290 and y=.628) lattice matched to InP was epitaxially
grown on an Fe:InP substrate as shown in Figure 2-10. This sample had very clean
surfaces, so it acted as an optical cavity. No cavity effect was observed in the Fe:InP and
S:InP samples because their surfaces were scratched and did not act like smooth mirrors.
The measured Faraday rotation and power spectrum versus wavelength for the
Fe:InGaAsP is shown in Figure 2-11. On resonance, the rotation is a maximum, as
predicted by the theory. Samples of Fe:InGaAsP with various Fe concentrations were

measured and the single pass rotation was extracted using Equations 2.61.
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Figure 2-11: Cavity enhanced Faraday rotation and power spectrum versus wavelength
for Fe:InGaAsP sample at a magnetic field of 1.3 T

Because the substrate was over 700 times thicker than the InGaAsP, the measured
rotation was dominated by the substrate. To obtain the rotation of the InGaAsP from the
measured rotation of the entire structure, the substrate rotation was subtracted off from
each samples total rotation. The results on Fe:InP were used to calculate the substrate
rotation.

The Verdet coefficient of InGaAsP can be calculated using the following

expression:

6, -6
V, =2 % 2.62
InGaAsP B, IlnGaAsP ( )
where 0, is the measured rotation in the sample, 6 is the calculated rotation of the
substrate, /j,Ga4sp is the thickness of the InGaAsP, and B is the applied magnetic field.

The substrate rotation is calculated using the measured rotation for the Fe:InP sample:

o, = v,Bi, = Zremrls (2.63)

Fe:InP
where Ir..;,p and [; are the lengths of the Fe:InP sample and the substrate of the InGaAsP
samples, respectively. Opepmp is the measured rotation for the Fe:InP sample and B
cancels out because it is the same for each measurement. Inserting this into Equation

2.62 gives
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lS

00 - gFeLInP /
VinGaase = bt (2.64)
Bl InGaAsP
The error in Vi,ga4sp 1s given by
2 2
aVn K aVn 7aAs.
(s} =[] 0P o[ Fs | a0 269
0 Fe:InP

Because the uncertainty in each rotation measurement is 0.01°, the error in ViGaasp

A6 [
(AVjgaase) = 1+ (2.62)
BlInGaAsP [Fe:InP

By inserting numerical values for all of the constants, the error becomes

becomes

(2.66)

0.01° 0.350mm 0
AViGasse = ( ) )

=187
(13157 Y5x10 ™ mm)\ "~ \0.487mm mm-T

Figure 2-12 shows the Verdet coefficient versus Fe concentration in the InGaAsP
at a wavelength of 1.55um. As can be seen in the plot, as the Fe concentration is
increased, the Verdet coefficient becomes more and more negative, which agrees with the
results for Fe:InP. Also, the rotation is linearly proportional to the iron concentration, as
expected for low iron concentrations. The linear fit to the data in Figure 2-12 predicts a
value of 96.7 = 18.7 °/mm/T for the Verdet coefficient for undoped InGaAsP at a
wavelength of 1.55um, while Equation 2.39 predicts a value of 48.2 °/mm/T.
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Figure 2-12: Verdet coefficient versus iron concentration of Fe:InGaAsP at a wavelength

of 1.55um
Material V [(/mm/T] [V [*/mm/T] o [mm'] [Experimental
(experiment) [theory) V/aat 1T

(Target=195)

YIG 130 0.11 1182

InP 7.8 1.0 0.02 390

Fe:InP : 2.6 0.02 130

29x 10" cm?

InGaAsP 96.7 48.2

Fe:InGaAsP : -181.4

8.0x 10 cm™

Table 2-1: Verdet coefficient, absorption coefficient, and figure of merit for different

materials at 1.55um

Table 2-1 shows the Verdet coefficient, optical loss, and figure of merit for

various materials at 1.55pm. For the figure or merit, it is assumed that the external

magnetic field is 1 T. As can be seen from the table, undoped InGaAsP has a Verdet

coefficient comparable to YIG. This indicates that this material is a viable candidate for

an integrated optical isolator. The main reason for the enhanced strength of the Faraday
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rotation is the decreased bandgap of the InGaAsP. By adjusting its composition to reduce
the bandgap, the Verdet coefficient of InGaAsP could be increased even more. The
optical loss for InGaAsP is not listed in the table because the sample was too thin for loss
measurements. However, in Chapter 4 optical loss measurements for InGaAsP

waveguides will be shown.

2.4 Summary

The aim of this chapter was to present a theoretical model for semiconductor
Faraday rotation in order to determine what sort of material would be ideal for an optical
isolator. The first key result is that by tuning the bandgap closer to the operational
wavelength, the Faraday rotation can be increased. The second key result is that the
addition of magnetic dopants will contribute to the Faraday rotation via an sp-d exchange
interaction. Thus there are two parameters, bandgap and magnetic dopant concentration,
which can be used to control the Faraday rotation.

It was found that InGaAsP is a suitable material for an optical isolator. It is lattice
matched to InP, which is the substrate for semiconductor lasers used for
telecommunications. These are the lasers for which the isolator is being designed, so the
use of InGaAsP allows for monolithic integration. The bandgap of InGaAsP can be
tuned by controlling its composition, thus allowing for tuning of the Faraday rotation.
Magnetic dopants provide a Faraday rotation of the opposite sign of undoped InGaAsP.
They can be used to increase the Faraday rotation with heavier doping concentrations.
The next step is to design an integrated isolator using this material. This is discussed in

Chapter 3.
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Chapter 3

Integrated Isolator Design

The design used for the isolator was discussed in Chapter 1. The design is shown
again here in Figure 3-1. It is a four port device which acts as a circulator. When only
two ports are used, the device functions as an isolator. It consists of two Faraday rotators
which provide 45° of non-reciprocal rotation, two half-wave plates which provide 45° of
reciprocal rotation, and two 3 dB couplers. The half-wave plates provide their rotation by
having their slow-axis, defined by the vector s in Figure 3-1, oriented at 22.5° and -22.5°
to the horizontal. This chapter will go through the design of each of these components in
waveguide form. It will then discuss the effect of fabrication errors on isolator
performance. Finally, simulation results for the isolator bandwidth will be presented. An
eigenmode propagation code was written to simulate the isolator bandwidth using 2-D
optical mode profiles of the waveguide structures calculated using a fully-vectorial mode
solver written by Mike Watts.

Half-Wave
Plate 1 Faraday Rotator

+45°
Rotation

+45°
Rotation

Faraday Rotator Half-Wave
Plate 2

Figure 3-1: Integrated isolator block diagram
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3.1 Faraday Rotator

3.1.1 Theory

To understand the effects of birefringence on Faraday rotation, it is easiest to view
the problem not as a polarization rotation, but as a coupling of transverse electric (TE)
and transverse magnetic (TM) polarizations. The coupled mode equations modeling

Faraday rotation are [23]

0 .

I == Ay + VA, 3.1)
4

o4 .
= VA, B Ay (3.2)

V is the Verdet coefficient, A represents the field amplitude, and B is the propagation
constant for the TE and TM modes. By assuming that the fields have an e?** dependence,

the eigenvectors v and eigenvalues A of this system of equations are found to be

_ 1]
V1={jA+V’ A =—j(B, +v¥) (3.3)

Vo

_ 1]
Vy, = j_A_:__'/_/_ Ay, ==j(B, —vw) (3.4)

Vo

where

A= (ﬂTE—zﬂm) (3.5)
B, = (ﬂTE ';IBW) (3.6)

w=vA + 72 (3.7)
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The eigenvectors represent the polarization states of the system, and the eigenvalues
represent their propagation constants. Using the results of Appendix A, the Jones’ matrix

for a birefringent Faraday rotator of length L is given by

S=ADA™ =

cos(yL)+ jésin(y/L) —Ksin(yIL)
y 1 4 A (3.8)

—sin(yL) cos(yL)— j—sin(yL)

4 4

where the matrix A has the eigenvectors v and v, in its columns, and D is a diagonal

Al A2L

matrix with the eigenvalues ¢*'" and e along its diagonal. The common phase factors

have been dropped in the above expression. In the limit of no Faraday rotation (V=0),
this matrix reduces to
3 j(ﬂrrzﬁm ) I 0
e
= (i), (3.9)
0 e ?

Ll

This is just the Jones® matrix of a reciprocal birefringent element. In the opposite limit
where there is no birefringence (A=0), the Jones’s matrix becomes

§_ cos(VL) —sin(VL)
“|sin(PL)  cos(VL)

(3.10)
This is the Jones matrix for a Faraday rotation through an angle VL. If birefringence is
present, the rotation will be less than VL. If A>>V| then the effect of the birefringence
will dominate and the Faraday rotator will act like a reciprocal birefringent element. In
the opposite limit, the Faraday rotator will function properly. Thus, it can be
mathematically seen how the birefringence suppresses the Faraday rotation.

For a more intuitive explanation for waveguide Faraday rotation, it helps to think
in terms of power exchange. The Verdet coefficient can be viewed as the rate of power
exchange between the TE and TM modes. In a birefringent free waveguide, both modes
have the same propagation constant, which means they have the same phase velocity. If
the two modes are traveling at the same velocity, then it is easy for them to exchange

power. In fact, in this limit, all the power from one mode can be transferred to the other.

This would correspond to a 90° Faraday rotation. If birefringence is present, the modes
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will not travel at the same velocity. In this case, full power transfer will never be
achieved. Thus, no matter how long the Faraday rotator is, a 90° will never be possible.

This is the source of the Faraday rotation suppression.
3.1.2 Faraday Rotator Limits on Isolation

To see how much birefringence can be tolerated, a Jones’ matrix analysis of the
isolator is used. For the Faraday rotator (FR), VL=n/4. If no birefringence is present,

this will give a 45° rotation, but if there is birefringence, the Jones matrix will become
-b
FR(45%) = {“ ; } G.11)
b a

where

b= —‘A— sin{g 1+(§)2] (3.13)

In the forward direction, the Jones’ matrices of the two arms of the circulator are

1 la+b a -b
- 59)* FR=— 3.14
A = HWR22.5°)* FR 2[a-b _(a.+b)} (3.14)
4 —FR*HWP(—225°)—-1—[ ath _(a—b)} (3.15)
. T 2l-@ b @+ |

where HWP stands for half-wave plate and the angle represents the orientation of the
slow axis.

In the reverse direction, the Jones’ matrices of the two arms are

4 =FR*HWR22.5°)=%[;;[; _‘;ff b} (3.16)
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1| a=b —(a +b)
A =HWR-225)* FR=— 3.17
2 R-225) \/ELa+b a +b } ( )
When the reverse Jones’ matrices are added together, the result is
_ a-b jlm{a}
A1+A2—\/§[_jlm{a}+b , } (3.18)

where Im{a} refers to the imaginary part of a. With perfect 3 dB couplers, the maximum
possible isolation will be given by any light in one arm which is not exactly out of phase
with the light in the opposite arm. To calculate this, assume that “the input light with
power normalized to one has equal TE and TM components. Then the isolation can be

defined as the power of the Jones’ vector obtained after multiplying the input with

Equation 3.18:

Isolation =

{a—b+jlm{a}r (3.19)

2b~ jIm{a}

(4 + 4, )%m 2

The isolation as a function of A/V is plotted in Figure 3-2. For the isolator to achieve at

least 15 dB of isolation, A/V must be less than 0.13.
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Figure 3-2: Isolation vs. A/V

The length of the Faraday rotator is determined by its Verdet coefficient. Based
on the results of Chapter 2, the Verdet coefficient is assumed to be 100°/mm for

simulations in this chapter, which corresponds to a length of 450 um for the Faraday
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rotator. Using this value for V, A must be less than 13 °/mm in order for the isolation to
remain below 15 dB. At a wavelength of 1.55 pm, this corresponds to a waveguide
birefringence of 1.1 x 107, where the waveguide birefringence is defined as the

difference in TE and TM mode effective indices (nrg-ntw).

3.1.3 Faraday Rotator Design

Rotationally invariant mode profiles would eliminate the birefringence because
then the TE and TM modes would be indistinguishable under a 90° coordinate rotation.
By etch-tuning a high-mesa waveguide, the mode profiles can be made rotationally
invariant [24]. The high-mesa waveguide consists of a 0.5 pm Fe:In;..Ga,As,P.y

(x=0.28, y=0.63) core with a 1.0 pm Fe:InP cladding on top and bottom.

Fe:InP

Fe:InGaAsP
Fe:lInP

—

Figure 3-3: High-mesa etched waveguide cross-section and optical mode profile. The
waveguide width is 1.4pm, the core thickness is 0.5 pm, and the wavelength is 1.55um

Figure 3-3 shows the high-mesa waveguide structure and the optical mode profile
for a waveguide with a width of 1.4 um at a wavelength of 1.55 um. The high-mesa
structure has low mode confinement in the vertical direction because of a low index
contrast, and high confinement in the horizontal direction because of the high index

contrast.
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Figure 3-4: Birefringence of Faraday rotator vs. waveguide width at a wavelength of
1.55um

Tuning the width will tune the mode shape until a rotationally invariant profile is
achieved. Figure 3-4 shows the theoretical birefringence as a function of waveguide
width at a wavelength of 1.55 pym. To maintain at least 15 dB of isolation, the waveguide

width must be accurate to within 0.01 pm.

3.2 Multimode Interferometer

3.2.1 Theory

To achieve the power splitting a multimode interferometer (MMI) is used. This
device is a multimode waveguide which utilizes the interference between different modes
to achieve the power splitting. The interference between the modes can be used to
produce multiple images of the input field along periodic lengths of the waveguide [25].
A general diagram of an MMI is shown in Figure 3-5. In consists of two input and output

ports. To function as a 3 dB coupler, light incident on one input port must have its power

evenly divided into the two output ports.
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Figure 3-5: General diagram of MMI. Light at the input port on the left has its power
evenly divided between the two output ports

For tightly confined modes, the propagation constant for each mode is
approximately parabolic with respect to the mode order. The lateral wavenumber kp, and
propagation constant B, are related by the expression

2
ki + B = (9 n] (3.20)

c

where n is the refractive index of the waveguide core and m is the mode order. For
tightly confined modes, the lateral wavenumber can be approximated as

m+1)r
ko =% (3.21)
where W is the waveguide width. By using Equation 3.21, along with the fact that

kmi’<<(wn/c)’, the propagation constant is approximately given by

2.2
Qn_(m+1) T°c

3.22
c oW? ( )

B =
m

This can be rewritten as

B, = B, —am(m+2) 3.23)

where B, is the propagation constant of the higher order modes, Bo is the propagation

constant of the zero order mode, and a is given by

rle

T oW’

a (3.24)

This parabolic relation of the propagation constant to mode order is the key for an MMI
to function properly.

An input mode on one side of the MMI can be expanded in terms of the guided
modes of the MMI
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v (x,3,0)=2 ¢, 8, (x ) (3.25)

where y(x,y,0) is the input field, ¢y, are the mode excitation coefficients, and ¢x(x,y) are
the modes of the MMI. Because the MMI modes are orthogonal, the mode excitation

coefficients are given by

08 ypa

T [ e 0 20
The field at a distance L will be given by
V(5L = D Cphy(x,y)e P (3.27)
which after common phase factors are dropped becomes
w(x,y,L)=) c,@,(x,y)e’ """ (3.28)

To split the power of the input mode, two images of the input mode must be created. To
see how this image creation occurs, the following properties are used:
even m = even

m(m +2) = { dd = o (3.29)

and

_ | $a(x,y) m=even
@, (—x,y) = {_ b (ey) m=odd (3.30)

which comes from the symmetry properties of the MMI modes.

If L is chosen so that
L=—" (3.31)

the propagated field becomes

jm (m+2)§

w(x,y,z”—a) =Y ¢, 8, (x,)e (3.32)

m

Utilizing the symmetry properties of the modes, this expression can be rewritten as
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V(533 = D enbn (5 0) = D et (:9)

m=even m=odd

T4 (3.33)

o
=—5iw(x,y,0>+ v (-x,,0)

This equation represents a pair of images with half of the incident power located at a
distance of m/2a from the input. This two-fold imaging can be used to make 3 dB
couplers.
If the field from Equation 3.33 propagates another n/2a, the output field will be
VYD) = Y Cnln(51) = D Cutn(%,3) =W (=%,2,0) (3.34)
a m=even m=odd
which represents the input field at the opposite output port. However, if there is an
additional © phase shift introduced between the two field images, then Equation 3.33 can
be rewritten as
T .
w(x,y,=—=)= D ¢ b, (x,¥)=J D Cpbn(x,¥) (3.35)
2 a m =odd m=even
After propagating another n/2a distance, the output field will not switch ports:
4 . .
w(x, y,;) =—j Y Cuby (. 1) = D Cun (. ) =y (x,3,0) (3.36)

m=even m=odd
Thus, the addition of a © phase shift to one of the images can be used to control the exit

port of the input light.

3.2.2 MMI Limits on Isolation

For a Mach-Zehnder isolator, imbalances in the MMI will ultimately limit the
maximum isolation. The imbalance is defined as

P
P1 ‘2i"(P1_P2)
n= = (3.37)
2 70"'(})1 _Pz)
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P, and P, are the powers in the two output ports of the MMI and Py is the total input
power. In order to calculate the maximum possible isolation, it is assumed that the
second MMI in the isolator has no imbalance. Then the balanced power would all be sent
to the port where no isolation is required and the unbalanced power would be divided
evenly between both ports. Thus, in the port where isolation is desired, there would be
half of the imbalanced power. The maximum isolation, which is the normalized power in
the port where isolation is desired, can be expressed as
h-Pp _ l 1-n
2P, 41+7n

Isolation = (3.38)

Figure 3-6 shows the isolation versus imbalance. In order to have 20 dB isolation, the

imbalance must be below 0.33 dB.
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Figure 3-6: Isolation vs. MMI imbalance
3.2.3 MMI Design

The MMI was designed to accommodate the 1.4um wide waveguide Faraday
rotators, while simultaneously minimizing its length. The MMI possesses the same
epitaxial layers as the Faraday rotator and the width was chosen to be 3.4 um. There
were four guided modes for both TE and TM polarizations. Figure 3-7 shows the guided

TE mode profiles. The TM modes are very similar to the TE modes, and so are not
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shown here. Because the MMI was birefringent, the TE and TM modes had different
lengths for optimal power splitting.

e
o, .

Figure 3-7: MMI TE mode profiles

The power imbalance versus MMI length at 1.55 pm was calculated using an
eigenmode propagation code (see Appendix B), and the results are shown in Figure 3-8.
The length for minimum imbalance for both polarizations is 52 um. At this length, the

minimum imbalances of both TE and TM polarizations are 0.06 dB, which limits the

maximum isolation to 27.6 dB.

1.5

Power Imbalance (dB)

45 50 55
MMI length (um)

Figure 3-8: MMI imbalance vs. length for TE and TM polarizations at a wavelength of
1.55um



71

3.3 Half-Wave Plate

3.3.1 Half-wave Plate Limits on Isolation

To analyze the effect of any error in the half-wave plate axes, the Jones’ matrix
formalism is used. For this analysis, it is assumed that the slow-axes of the half-wave
plates in each arm of the isolator are at 6 and -0. As shown in Appendix A, the Jones’

matrix for an arbitrary half-wave plate with slow-axis angle 0 is

p_ Cf)S(20) sin(26) (3.39)
sin(20) —cos(20)
In the forward direction, the overall Jones matrix for each arm is
4, = HWRE)* FR= 1 cosR0) + sir‘1(20) —cos(20) + s?n(2(9) (3.40)
J2 | —cosRO) +sinRf) —cosRE) —sinRE)
4, = FR* HWR-0) = 1 cosé) + s%n(20) cos(20) — sir.1(29) (341)
J2 | cosQ8) —sinRl) —cosRE) —sinRH)
In the reverse direction, the Jones’ matrices of the two arms are
4, = FR* HWRE) = 1 cos26) - s%n(2¢9) cos(20) + si1.1(20) (3.42)
J2 | cos) +sinh) —cosR6) +sin(26)
4, = HWR0)* FR= 1 cos6) — sir.1(2<9) —cos26) - s%n(29) (3.43)
2| —cos@6) —sinR6) —cosR6) +sin6)

When the reverse Jones’ matrices are added together, the result is

4= ﬁ[cos(ZQ) —sin(26) 0 . } (3.44)
0 —co0s(28) +sin(260)
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Following the same method as Equation 3.19, the maximum isolation with perfect 3 dB

couplers will be
Isolation = 2|cos(20) - sin(26’)]2 = 2(1 -sin(44)) (3.45)
Figure 3-9 shows the isolation versus 6. The slow axis angle is 22.5° for the ideal case,

but to have an isolation of at least 20 dB, deviations of +1.4° can be tolerated.
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Figure 3-9: Isolation vs. HWP slow-axis angle

3.3.2 Half-Wave Plate Design

The isolator requires two different half wave plates with slow axes at 22.5°and
-22.5° with respect to the TE axis in order to provide a reciprocal 45° rotation. To
achieve intergrated half-wave plates, a birefringent waveguide is needed which has its
principal axes not aligned to the TE and TM axes.

If a notch is etched on top of the Faraday rotator structure’s upper cladding, as
shown in Figure 3-10, the symmetry which decouples TE and TM modes will be broken.
The effect of this notch is to couple these modes, creating new eigenmode polarizations.
These polarizations will define the slow- and fast-axes of the waveguide half-wave plate.
The slow-axis corresponds to the polarization of the eigenmode with the larger effective

index. By controlling the width of the notch, the slow-axis angle can be controlled. In
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order to change the sign of the slow-axis angle for the second half-wave plate in the

isolator, the notch simply needs to be etched on the opposite side of the waveguide.

Figure 3-10: Waveguide HWP cross-section. The notch on top of the core couples TE
and TM polarizations, creating new eigenmode polarizations which are no longer TE or
™

To function as a half-wave plate, the waveguide must also provide a © phase shift

between the two eigenmodes. The length of the half-wave plate is defined as

T A

= = 3.46
tawr ﬁs"ﬁf z(ns—"f) ( )

where B is the propagation constant of the fast- and slow-axis modes, n is the effective
indices of the modes, and A is the wavelength. The graph in Figure 3-11 shows the slow
axis angle as a function of notch width, and also the corresponding waveguide length to
achieve the m phase shift. At 1.55 pm, a notch width of 0.85 pm and waveguide length of
158 um will give the required half-wave plate functionality. Because there is only 1.4°

tolerance in the slow axis angle, the corresponding tolerance on notch width is 0.05 pum.
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Figure 3-11: Slow axis angle and length of HWP vs. notch width at a wavelength of 1.55
pm

3.4 Isolator Simulation

Figure 3-12 shows a top and cross-sectional view of the isolator, with the arrows
indicating where light enters and leaves. The length of the isolator, which is given by the
sum of the lengths of each individual component, is 712 pm. The longest component is
the Faraday rotator, but this length can be changed if the Verdet coefficient is further

increased.
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Figure 3-12: Top and cross-sectional view of isolator

With all components now designed in integrated form, the next step is to evaluate
the performance of he isolator. Conventional photonic design software could not be used
to simulate the isolator because of the non-reciprocal Faraday rotator. In order to
simulate the circulator, an eigenmode propagation code was written which could support

non-reciprocal structures. Further details on this code can be found in Appendix B.

3.4.1 Reflections at Junctions

Before simulating the entire isolator, there was one concern, which was the effect
of reflections at the junctions of the different components. The reflections at the
junctions can be estimated using the Fresnel reflection. The Fresnel power reflection

coefficient at the junction of waveguide 1 and waveguide 2 is defined as:

2
n2 —n]

R= (3.47)

ny + mn
where n is the effective index of each waveguide. With this formula, the reflections at

the junctions of the different structures were calculated.
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It was expected that the reflections would be minimal because the mode indices
are very similar in value, so reflections due to index discontinuities will be negligible. It
was found that the all the power reflections were below 60 dB. This is negligible because
the isolation is theoretically limited to 27.6 dB just by the MMI imbalance.

Simulations done using a commercial photonic design software package
[Fimmwave and Fimmprop from Photon Designg] also showed that the power reflections
at the junctions were negligible. At the Faraday rotator/half-wave plate junction and at
the Faraday rotator/MMI junction the power reflections were below 60 dB. This agrees

with the Fresnel reflection calculated by using the effective mode indices.

3.4.2 Isolator Bandwidth

The isolator bandwidth was simulated using the eigenmode propagation code in
Appendix A, and the results are shown in Fig. 3-14. For this simulation, the insertion
loss is defined as the power in the top left port when the input is from the top right port,
and the isolation is defined as the power in the top right port when the input is from the
top left port, as illustrated in Figure 3-12. This will be known as the isolator
configuration.

When the isolator is used in this manner, its isolation will be maximized. This is
because in the forward direction, the outputs of the two arms are in phase and are less
sensitive to any deviations from the ideal specifications for the half-wave plate and
Faraday rotator. However, in the reverse direction, because a precise m phase shift
between the two arms is needed, the isolator will be much more sensitive to these
deviations. These deviations will then manifest not as a reduction in isolation, which is
the important specification for the isolator, but rather as insertion loss. If the isolator is to
be used as a circulator, then all four ports are active and the isolation will not be as
robust, but if it is used only as an isolator, then only two ports are active and it will
achieve much better performance.

To quantify how much more robust the device is in the isolator configuration, the

Jones’ matrix formalism is used. The Faraday rotator limit on isolation is found by
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taking the difference Jones’ matrices for the forward direction found in Equations 3.14
and 3.15:

Isolation =

(4 —Az)%BT mﬁ:ﬂr ~ 2(Refa}-b) (3.48)

The half-wave plates’ limit on isolation can be found in the same manner using Equations
3.40 and 3.41:

2 2

Isolation = =2(1-sin(40)y (3.49)

o]

This expression is identical to the isolation limit set by the half-wave plate in the

(sin(20) - cos(ZB){i]

opposite configuration.

Unlike with the half-wave plate, the isolation limit set by the Faraday rotator in
the isolator configuration is different from the opposite configuration. The isolation limit
of the Faraday rotator is shown in Figure 3-13. Now to have 15 dB of isolation, A/V
must now be less than 0.8. This requires the waveguide width must be accurate to within

0.04 um, which is four times the tolerance as the opposite configuration.

Isolation (dB)

-100 L L s L
0 0.2 04 0.6 08 1

MV

Figure 3-13: Isolation vs A/V for isolator configuration

The maximum isolation is 24 dB at 1.55 um, which is the wavelength for which

the isolator was optimized. It maintains 12 dB of isolation over a 100 nm bandwidth, for
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both TE and TM polarizations, thus showing that it is truly polarization independent. The
insertion loss is 1.4 dB at 1.55 um, and stays below 5 dB over a 100 nm bandwidth. The
factors that limit the bandwidth are the imbalance of the MMI, the birefringence of the
Faraday rotator, and deviations of the half-wave plate slow axis angle. To understand

which element is the limiting factor, each individual component’s bandwidth was

analyzed.
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Figure 3-14: Theoretical isolation and insertion loss of isolator

For the MMI, the isolation due to the imbalance versus wavelength is shown in
Figure 3-15. The isolation increase at 1.60 um can be explained by the fact that at this
wavelength the imbalance is lower, but the loss is higher. Therefore, the isolation will
increase because the MMI splits the power evenly in the two arms, but there is also
power which never enters either arm, which will increase the loss. The isolation does not
vary by more than 3 dB over the entire bandwidth and remains below 24 dB. This is
because the MMI is not extremely wavelength dependent and maintains a low imbalance
over the entire simulation bandwidth. Therefore, it is not the element which limits the

bandwidth, but it does limit the maximum isolation.
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Figure 3-15: Isolation due to MMI imbalance vs. wavelength

The maximum isolation due to the slow-axis angle of the half-wave plate versus
wavelength is shown in Figure 3-16. The minimum isolation occurs at 1.56 pm instead
of 1.55um. This is because the slow-axis angle is actually closer to 22.5° at this
wavelength. When designing the half-wave plate, the step size used for the notch width
was too large to exactly achieve the ideal angle. However, by tuning the wavelength, the
index of refraction changes were small enough to come very close to 22.5°. It can also be

seen that the isolation shows a strong wavelength dependence, which is due to the slow-

axis angle being very sensitive to wavelength.
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Figure 3-16: Isolation due to slow-axis angle deviations vs. wavelength
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The maximum isolation due to the Faraday rotator birefringence is plotted in
Figure 3-17. The maximum isolation is at 1.55 um, but as can be seen, the isolation
shows a strong wavelength dependence. This is because the birefringence is very

sensitive to wavelength. However, by increasing the Verdet coefficient, a larger

birefringence can be tolerated.
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Figure 3-17: Isolation due to Faraday rotator birefringence vs. wavelength

3.5 Summary

The isolator design presented in this chapter showed a maximum isolation of 24
dB. This limit was set mainly by the imbalance of the MMI’s. The isolator is fully
integrated and is less than 1 mm in length. The design is very general and not limited to
InP/InGaAsP systems. The concepts used to design each component are very simple and
applicable to any material platform. Thus, what has been shown in this chapter is a very
general design for a polarization independent, integrated optical isolator which can also
function as an optical circulator.

The dimension where fabrication tolerances are strictest is the width. For the

HWP’s, the tolerances are determined by the operational wavelength and the refractive
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indices of the materials. However, the Faraday rotator’s width tolerance can be reduced
if the Verdet coefficient can be increased. As discussed in Chapter 2, the Verdet
coefficient of Fe:InGaAsP can be increased by increasing the magnetic doping or
reducing the bandgap. Other advantages of increasing the Verdet coefficient include
reducing the isolator length and increasing the performance bandwidth. The important
thing to note is that if the isolator is used in the configuration shown in Figure 3-12, then
the tolerances are relaxed on the Faraday rotator. However, if it is used as a circulator,
the strict tolerances will be necessary for proper function.

With the design now complete, the next step is the fabrication of the isolator.
Chapter 4 deals with the fabrication and characterization of the waveguide Faraday

rotator.
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Chapter 4

Waveguide Measurements

There were three measurements which were made on the waveguide Faraday
rotator: optical loss, birefringence, and Faraday rotation. This chapter will begin with a
description of the fabrication of the waveguides. Then the theory for each measurement
will be discussed. The experimental setup and technique for each measurement will then

be described. Finally, results will be presented for these measurements.
4.1 Fabrication

The waveguide was fabricated with low pressure methane based reactive ion
etching with a 300 nm thick Ti mask. CH4/H,/O, with ratios 25:30:0.5, 100W RF power,
and a chamber pressure 8.5 mTorr were used for the etching. A 2.5um deep etch required
50 minutes etching in our system. Figure 4-1 shows a picture of the fabricated high-mesa
waveguide with a width of 1.4um and an etching depth of 2.5um. The InGaAsP core is
0.5 pm thick and the top and bottom InP claddings are 1.0 um thick. The etching surface
is fairly smooth. The waveguides were cleaved in order to make the end-facets. All

waveguide fabrication was done by Xiaoyun Guo.
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300nm Ti mask

Figure 4-1: Etched waveguide with 300nm Ti mask. The enlarged picture of the etched
surface shows that it is smooth. The line shown in the mesa surface is due to the oxygen
ashing in the middle of the processing.

4.2 Theory

4.2.1 Loss Measurement

The reflective end facets of a waveguide will create an optical cavity. The
expression for the transmission through an optical cavity which was derived in Chapter 2
is

; ; : E,t*e P
= (2P 2,-72p 2,-28 =0
E,=E,te (l+r e +(r e )Z+...)— 2, A (4.1)

where / is the cavity length, ¢ and r are the field transmission and reflection coefficients,
and P is the propagation constant. For a waveguide with loss, the propagation constant is
a complex number with the imaginary part corresponding to the loss. Equation 4.1 can

be rewritten as

a
oy ——I
P ; y Etze_“’ﬁle 2
2 _-jpl 2 _-j2 2 _-j2 0
E,=E0te"'6e 2(1+re’ﬁ’+(re"ﬁl)z+...)=]—_m (42)

where the propagation constant has been written as
.a
B=h.-i5 3)

The absorption coefficient is o because it corresponds to the power absorption which is

proportional to [Eq.
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The ratio of the square-root of the transmitted power on-resonance to the

transmitted power off-resonance is then

P. 1+Re™
F= P = TRe@ 4.4)

where »* has been rewritten as the power reflection coefficient, R. Solving this

expression for o gives

F-1
ln(R)—ln[F_'_l)

a= 1 4.5)

To calculate R, the Fresnel equations can be used:

2
n, —n

R= (4.6)

n, +n
Here n; is the index of refraction of the external medium, which is air for the waveguide
measurements, and n; is the effective index of the waveguide mode. The effective index
of the mode can be calculated using the separation of the resonant peaks for the mode. If
two adjacent peaks for the mode occur at wavelengths A; and A,, then the resonance
condition for each peak becomes

2nl = mA, 4.7)

2nl = (m+1)4, 4.8)
where m is the order of the resonance. The second equation comes from the fact that the

order of adjacent peaks differs by one. Solving these equations for n gives

_1 Ah
n=o; ) 4.9)

With this result, along with Equations 4.5 and 4.6, the waveguide loss can be calculated.
4.2.2 Birefringence Measurement

To calculate the birefringence in the Faraday rotator, the effects of the cavity are
used. Resonances will occur whenever the roundtrip phase through the cavity is 2x. If

the propagation constant is written as
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B= %’En (4.10)
then the transmitted field can becomes
2
B —— 4.11)
1- r2e_j7n1

If there is birefringence in a waveguide, then the index of refraction will be
different for the TE and TM modes. This will cause the resonance peaks to occur at
different wavelengths for the two polarizations. The TM effective index can be written
as

Ry = Rgp +An (4.12)
where An is the birefringence. The condition for the resonance of each mode is

2nppl = mAg (4.13)

2ngg + An)l = mApy, (4.14)
where Arg and Aty are the wavelengths for the two modes where the resonance occurs.
In order to solve for the birefringence, the resonance order must be known. If it is
assumed that it is the same for two adjacent resonant peaks, then the birefringence is

given by

P [‘ﬂ_l] (4.15)
;{'TE

By using this equation along with Equation 4.9 for nrg, the birefringence of the

waveguide can be calculated.

The main problem with this measurement technique is that if the birefringence is
too large, the adjacent TE and TM peaks will not be of the same order. To see how large
the birefringence must be for this to occur, it is assumed that the peaks occur at the same
wavelength, but differ in order by one, which can be written as

2nppl = mA (4.16)
2nyy +An)l = (m+ DA 4.17)

Solving this for An gives

An= (4.18)

\l};
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To see the numerical value for the birefringence limit, typical values of the parameters
for the Faraday rotator waveguides used in the measurement are used (1=500um,
A=1.55um). With these values, the maximum limit on An becomes 3.1 x 102, For
measurements done between 1.50 pm and 1.60 um, An does not go beyond 107 for the
1.4 um wide Faraday rotator. Also, An is below 3 x 107 at 1.55 pm if the Faraday rotator
width remains between 1.3 pm and 1.6 um. As long as the width of the waveguide is

within this range, the birefringence can be accurately measured with the technique

described in this section.

4.2.3 Faraday Rotation Measurement

The Faraday rotation in waveguides is measured in the same way as in bulk
samples. The input light is linearly polarized at 45°, and the output light is separated into
TE and TM components. The difference with waveguides is that there is birefringence

present. Using Equation 3.8, the output light will be

cos(wL)+ j Asin(t//L) - Ksin(t//L) 1
7 - % % L[ }z
Ksin(y/L) cos(yL)- j Asin(t//L) V2l
4 v (4.19)
cos(y/L)~—(V _]A]sin(l//L)
1 4
V2 costyr)+ (Kﬂ)sinw)
7
where V is the Verdet coefficient and the other variables are defined as
A= % (4.20)
w=VvA +V? (4.21)

The difference in TE and TM power is then

dp = —gsin(Zy/I) (4.22)



88

In order to minimize the effect of any errors in the input polarization, the measurement is
done for both positive and negative magnetic field. The resulting difference in these two

powers is then

dPt —dP™ = —4Ksin(2y/1)= ——2———sin[2Vl 1+(AJ2 ] (4.23)
v AN v
1+ (;j
From Equation 4.22 it can be seen that if A>>V, then the measured signal will approach
Zero.

To see what the Faraday rotation spectrum will look like for a waveguide,
simulation plots are shown if Figure 4-2. The plots show the expected Faraday rotation
versus wavelength for different width waveguides. The Verdet coefficient is assumed to
be 10 °/mm for the waveguides and the length is assumed to be 500 um. The Verdet
coefficient is lower than the value used for the simulations in Chapter 3 because the
maximum magnetic field for the waveguide measurements is 0.1 T. The effective indices
used for the simulation were calculated with the 2-D mode solver used for the simulations
in Chapter 3. As can be seen from the plots, the rotation is a maximum when the
birefringence is zero, and it drops off as the wavelength deviates from the zero-
birefringence wavelength. In order to be able to see rotation within the wavelength range
available for the measurements, the width of the waveguide must be between 1.35 um
and 1.50 pm. The maximum measured rotation can be used as the cavity-enhanced

rotation and Equation 2.61 can be used to extract the single-pass rotation.
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Figure 4-2: Simulation of expected Faraday rotation vs wavelength for different

waveguide widths. The Verdet coefficient is 10°/mm and the cavity length is 500 pm for
the simulation

4.3 Experimental Setup

To measure the waveguide properties, there are three problems which must be
solved. First is coupling light into the waveguide, second is controlling the input

polarization, and third is detecting the output power. Each problem will be discussed in

detail in the following sections.
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4.3.1 Coupling to Waveguide

To couple light into the waveguide, a polarization maintaining (PM) lensed fiber
is used. The difficulty in coupling to the waveguide is that because it is so small, precise
alignment and incredible stability of the fiber and waveguide is needed. The size of the
optical mode is approximately 1 pm? so the position of the fiber must be able to be
controlled with sub-micron accuracy. This was accomplished mounting the fiber on a
piezo-electric translation stage which had an accuracy of 10 nm.

To determine if the fiber had coupled to the waveguide mode, a 100x microscope
objective and an infrared camera were used to image the end facet of the waveguide. The
first step was to raise the fiber above the waveguide and align it with the end facet. Then
the lens was adjusted until the spot from the fiber came into focus on the camera. The
fiber was then pulled back and the waveguide was raised up until it aligned with the fiber.
The light usually coupled to the substrate modes of the waveguide, which indicated that
the waveguide is too high. It was lowered until the substrate modes disappeared, but not
lowered so much that the light passed over the top of the waveguide. It is in this dark
region between air and substrate the guided mode existed. Next the fiber was moved
closer to the waveguide and moved vertically and horizontally with the piezo-electric
stage until the mode appeared on the infrared camera. A picture of the substrate mode

and optical mode from one of the Faraday rotator waveguides is shown in Figure 4-3.

Figure 4-3: Substrate mode (left) and optical mode (right) of waveguide Faraday rotator
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In order to easily find the mode, it is important to make sure that the end facet of the
waveguide is properly imaged on the camera. When the mode is difficult to find, it is
because the focus is incorrect. Once the light couples to the mode, measurements can be
made on the waveguide.

The beam from the lensed fiber has a nominal radius of 1.25 pm. By
approximating the beam as a Gaussian, the mode overlap of the beam with the mode can
be expressed as

X"+

B [le > st axay (4.24)

x2+y2
[l o

where ¢ is the waveguide mode profile normalized to have unity power and s is the beam

radius. The power coupling efficiency of the beam with the waveguide mode, which is
defined as ¢?, is 26 %. The actual coupling efficiency for the waveguides is 2 %. This
may be due to the actual beam radius being deviating from the nominal value. Damage

to the fiber lens may be the cause of this deviation.

4.3.2 Controlling Input Polarization

For the Faraday rotation measurements, the input light must be linearly polarized
at 45°. For bulk measurements this could be easily achieved with a polarizer. The
difficulty in waveguide measurements is that the light comes from a fiber. Ordinary
fibers are birefringent due to stress caused by bending. This birefringence will alter the
state of the light and make it difficult to have any sort of polarization control. In order to
solve the issue of stress induced birefringence, a polarization maintaining (PM) fiber is
used. PM fiber is fiber that is already stressed so that the birefringence is fixed and will
not be changed by any bending. The principle axes of PM fiber are also fixed. In order
to have linearly polarized light at the output of the fiber, linearly polarized light must be

launched into the fiber with its polarization aligned with one of the principle axes.
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Lensed PM fiber

Figure 4-4: Setup for controlling polarization of light from PM fiber

The setup for coupling into the PM fiber is shown in Figure 4-4. The light is sent
out of a fiber collimator and then passed through a polarizer with 50 dB of extinction.
The polarizer can be rotated until it aligns with one of the principle axes of the fiber.
Another lens is then used to couple the polarized light into the PM fiber. To control the
angle of the polarization at the output of the fiber, a rotational mount is used to hold the

fiber. It can then be rotated to any desired angle.

4.3.3 Detecting Output Power

There are two main difficulties associated with detecting the optical power from
the waveguide. First, because of low coupling efficiency between the waveguide and
fiber, the power is generally no larger than 1 uW. Second, any small drifting of the fiber
will change the amount of power coupling into the mode, and creating an unstable power
signal.

In order to measure the powers in the TE and TM modes, two photodetectors
were built. The circuit diagram for the detectors is shown in Figure 4-5. They consist of
an FDGO5 Ge photodiode from Thorlabs, an LT1028 ultralow noise precision high speed

op-amp from Linear Technology, and a feedback resistor.
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Figure 4-5: Circuit diagram for photodetector

The amplifiers were not ideal and had two important factors which affected the
measurement: input offset voltage and input offset current. These can be modeled as a
voltage source Vs and current source I, across the inputs of the amplifier, as shown in
Figure 4-5. The photodiode in Figure 4-5 has a signal current I and the value of the
feedback resistor across the amplifier is R¢. The output voltage Vo of the amplifier will
be given by
Vour =—I;Rp + Vo — IR, (4.25)

The voltage signal due to the power from the TE and TM modes of the Faraday rotator

can be written as a Jones’ matrix:

(4.26)

1 |:Vo (1-sin(20))+ 6, }

“ =2\ v (1-sin(26))+5,

where 8, and &, are the offset output voltages in the two amplifiers and V, is the voltage
due to the total optical power. The normalized difference in the two voltages is then

—sin (26)+ 51 -0,
qv = 2V,
- ] 51 + 52 (427)
+ . S

2V

o
By subtracting the voltage differences for positive and negative magnetic fields, the

resulting signal is

« - _ —2sin(20)
av* —dv = 55, (4.28)

2V,

0
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In the limit where 8; and 8, are much smaller than the signal voltage V,, this expression
will reduce to the ideal case. However, if they are comparable to V,, then the measured
dV will be erroneous. Thus, it is desirable if the signal term [R¢ is much larger than the
other offset terms.

Typical values of Ios and Vs for the LT1028 op-amp are 20 uV and 18 nA. If a
100 k€ resistor is used for Ry, then a 1 uW signal will result in a 100 mV signal, while
the offset voltages will be less than 2 mV. Therefore, by using the LT1028 op-amp with
a 100 kQ feedback resistor, the optical signal can be accurately measured.

In order to eliminate the problems associated with coupling instabilities, the
power measured in each mode was normalized by the total power from both modes. A
data acquisition board (DAQ) was used to sample the voltages from the two detectors at a
rate of 1 kHz for 3 seconds per sample. For each sample, the two signals’ difference was
divided by their sum in order to obtain a set of normalized dV samples. These samples
were then averaged to obtain a mean value for dV for each sampling period. In this
manner, changes to the total power will have no affect on dV because the Faraday
rotation measurement is only dependent on the normalized power difference of the TE
and TM modes and not the total power.

Polarization rotation measurements were made using a 50 dB extinction ratio
polarizer in order to determine the minimum power for which the detector could measure
and accurate rotation. The polarizer was aligned with the input polarization, which was
at 45° with respect to the horizontal. For each measurement, the polarizer was rotated
1.10° in the positive and negative directions. The input power was attenuated and the
rotation was measured at each attenuation level using the technique discussed in Chapter
2. Figure 4-6 shows the error in the measured rotation, defined as the absolute value of
the difference between the measured rotation and actual rotation, versus the total output
power (TE+TM). As can be seen, the detector can measure Faraday rotations for power

levels as low as 100 nW with 0.02 ° error.
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Figure 4-6: Error in measured polarization rotation vs total input power using balanced
detector. The rotation angle is 1.10°

4.4 Experimental Results

4.4.1 Loss Measurement

The loss measurements were made for a Faraday rotator waveguide with length
1.1 mm and width 1.6 um. Every 10 nm, a 1 nm wavelength scan was made to obtain the
cavity spectrum. Figure 4-7 shows the cavity spectrum for the Faraday rotator waveguide

at 1.55 pm.
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Figure 4-7: Cavity spectrum of Faraday rotator waveguide

The power on resonance and off resonance along with Equations 4.5, 4.6, and
4.16 were then used to calculate the loss. The error in the measured absorption

coefficient o due to errors in the measured power can be expressed as

2 2
0 Ja
(Aa)’ = 8Py, )[wf“j + (0P )Z[BP, J (4.29)
where

Pmin

oa -1 Poax
0Py | Pop —Poy (4.30)

Pmax

da -1 Pmin
P 1 P -P. 4.31)

The error in the measured powers is 1 mV, and typical values for Pyax and Py, are 20 and

10 mV, respectively. Using these values, the error in the absorption coefficient is 1.55

em’,
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Figure 4-8: Absorption coefficient vs wavelength for 1.6 um wide Faraday rotator
waveguide

Figure 4-8 shows the measured loss for the waveguide. The increased losses at
longer wavelengths may be due to scattering caused by sidewall roughness. If the walls
are not smooth, then the light will be scattered and radiate out of the waveguide. Because
the amplitude of the sidewall roughness is much smaller than the wavelength the
scattering loss is expected to exhibit a A* dependence [26]. The solid line in Figure 4-8 is
A fit to the measured loss. As can be seen, the measured loss is close to the expected
wavelength dependence, indicating that the dominant source for loss is sidewall
roughness. Also, this sample had an accumulation of particles on its surface and
sidewalls, which may have further increased the loss.

A previous measurement done on a 1.4 um waveguide with cleaner surfaces using

different photodetectors is shown in Figure 4-9.
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Figure 4-9: Absorption coefficient vs wavelength for 1.4 um wide Faraday rotator
waveguide with clean surfaces.

The loss is as low as 0.91 cm™ and is larger at shorter and longer wavelengths because
the input power is too low. This detector could not accurately measure the power
minimum in the cavity spectrum at these wavelengths, making the measured loss too

large.

4.4.2 Birefringence Measurement

The same waveguides used for the loss measurements were also used for the
birefringence measurements. Once again, 1 nm wavelength scans were made at
increments of 10 nm, but now the TE and TM light was separated with a polarizing beam
splitter. The cavity spectrum for different center wavelengths is shown in Figure 4-10.
As can be seen, the TE and TM peaks shift as the center wavelength changes and actually

overlap at 1.54 pm, indicating that zero-birefringence has been achieved.
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Figure 4-10: TE and TM cavity spectra for 1.4 pm waveguide centered at 1.53, 1.54, and
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Figure 4-11: Experimental and theoretical birefringence vs wavelength for 1.4 pm wide

Faraday rotator waveguide

Using Equation 4.13 and Equation 4.16, the birefringence was calculated for the

center wavelength of each scan. The results are shown in Figure 4-11, along with the

theoretical birefringence for a 1.4 um waveguide. The measurements agree closely with
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the theory. From the experimental data, it can be seen that the waveguide has zero-
birefringence at 1.54 pm, which agrees with the theoretical zero-birefringence
wavelength. The theoretical birefringence in Figure 4-10 was calculated using
FIMMWave instead of the 2-D mode solver from Chapter 3. The 2-D mode solver
predicts 1.55 pm for the zero-birefringence wavelength, while FIMMWave predicts 1.54
um. This is the reason for the discrepancy between the zero-birefringence wavelength of

Chapter 3 and this chapter.

4.4.3 Faraday Rotation Measurement

For Faraday rotation measurements, the setup for the birefringence measurements
was used. In addition, a permanent magnet capable of providing fields of 0.2 T was
mounted above the waveguides. The wavelength was scanned across the entire available
spectrum (1.52 pm to 1.60 pm) in 1 nm steps and the TE and TM powers were measured.
The measurement was done for both positive and negative magnetic fields.

The 1.4 um waveguide facets were damaged after the birefringence measurements
and could not be used for the Faraday rotation measurement. The next waveguide widths
available were 1.6 um and 1.8 pm. The waveguides are 1.1 mm long, the applied
magnetic field is 0.18 T, and the Fe concentration in the InGaAsP cores is 8.0 x 10'¢
cm™.

To remove the rapid cavity oscillations, the measured Faraday rotation spectra for
these waveguides were low pass filtered, as shown in Figure 4-12. Also shown in Figure
4-9 is the theoretical unfiltered and low-pass filtered Faraday rotation for the waveguides
using the Verdet coefficient of -181.4 °/mm/T found in Table 2-1. The rotations show no
large peak because the zero-birefringence wavelength is not within the measurement

range.
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Figure 4-12: Measured and theoretical Faraday rotation of waveguides with width 1.6 pm
(top) and 1.8 pm (bottom). The low-pass filtering removes the high frequency
oscillations. The Fe concentration in the InGaAsP core is 8.0 x 10'® cm™, the waveguide
length is 1.1 mm, and the applied magnetic field is 0.18 T. For the theoretical curve, the
Verdet coefficient is assumed to be -181.4 °/mm/T.

In order to determine the Verdet coefficient of the waveguide, the low-pass
filtered data was compared to simulations for different Verdet coefficients. This is shown

in Figure 4-13. The maximum oscillation amplitude of the Faraday rotation is plotted
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versus the waveguide width. Each line on the graph corresponds to a different Verdet

coefficient, and the circles correspond to the measured oscillation amplitude.
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Figure 4-13: Maximum amplitude of Faraday rotation in wavelength range 1.52 pm to
1.60 um vs. waveguide width for different Verdet coefficients. The waveguides are
assumed to be 1.1 mm in length and the applied magnetic field is 0.18 T for the
theoretical curves. The filled circles correspond to experimental data.

Based on the results shown in Figure 4-13, the absolute value of the Verdet
coefficient for the waveguide is 40 °/mm/T, but the sign cannot be accurately determined.

The Verdet coefficient for the bulk Fe:InGaAsP measured in Chapter 2 is -181.4 °/mm/T.

The discrepancy may be due to errors in the Faraday rotation of the Fe:InP.

4.5 Summary

In this chapter, the experimental techniques for waveguide measurements were
presented. Limitations of these techniques were also discussed. The experimental setup
for the waveguide measurements was shown in detail. The important measurements
made were waveguide loss, birefringence, and Faraday rotation.

The minimum measured waveguide loss was 0.91 cm™'. The main source of the

loss was sidewall roughness. By using the minimum measured loss, the waveguide
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Verdet coefficient, and assuming a magnetic field of 1 T, the isolator figure of merit for
this waveguide structure is

V.o (4.32)
a 0.091

which is larger than the minimum required figure of merit of 195.

The birefringence was measured for the waveguide and was shown to agree
closely with the theoretical birefringence. Therefore, the zero-birefringence waveguide
needed for waveguide Faraday rotation has been achieved.

The zero-birefringence waveguides were damaged before Faraday rotation
measurements could be made. Measurements made on waveguides with higher
birefringence showed a suppressed rotation, with the suppression increasing for

waveguides with higher birefringence.
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Chapter 5

Conclusion

5.1 Summary

The goal of this thesis is to design and fabricate an optical isolator which can be
monolithically integrated with semiconductor lasers used for telecommunications.

Chapter 2 studies the different contributions to Faraday rotation in
semiconductors. Also in this chapter, the figure of merit for isolator materials, which is
the ratio of the Verdet coefficient to optical loss, is established. It is found that free
carrier Faraday rotation will not be suitable for an isolator because the free carrier loss is
too high. For interband Faraday rotation, the strength of the rotation increases as the
wavelength approaches the bandgap. By introducing magnetic dopants into a
semiconductor, the Faraday rotation can be increased via an sp-d exchange interaction.
Measurements show InGaAsP to have a Verdet coefficient of 98.7 °/mm/T and
Fe:InGaAsP a Verdet coefficient as large as -181.4°/mm/T. The Verdet coefficient of
Fe:InGaAsP can be made stronger by reducing the bandgap or increasing the Fe
concentration. Based on these results, Fe:InGaAsP is selected as the material for the
isolator because of its strong Faraday rotation and suitability for monolithic integration.

The design for the integrated isolator is presented in Chapter 3. The design
consists of integrated Faraday rotators, half-wave plates, and multimode interferometers
(MMI). The Faraday rotators were high-mesa etched structures whose widths were tuned
to achieve zero birefringence. The half-wave plates had a notch placed on top of the
waveguide core which coupled the TE and TM modes, creating new principal axes. By
tuning the width of the notch, the angle of the principal axes could be controlled.

The maximum isolation is limited to 27 dB by the imbalance in the MMI.

Simulations done on the isolator show it to have a maximum isolation of 24 dB at 1.55
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um. As the wavelength moves away from 1.55 um, the isolation decreases. The factors
which limit the bandwidth of the isolator are the birefringence in the Faraday rotators and
the slow-axis angle of the half-wave plates. For Faraday rotators with a Verdet
coefficient of 100°/mm, the isolator maintains a minimum isolation of 12 dB over 100
nm.

The waveguide Faraday rotator was fabricated using a reactive ion etch.
Measurements were made on its loss, birefringence, and Faraday rotation. The loss had a
minimum value of 0.91 ¢cm™), and the birefringence was found to be zero at 1.54 um.
Because of damage to the waveguide facets, Faraday rotation measurements could not be
made on the zero-birefringence waveguides. Measurements of high-birefringence

waveguides showed suppressed Faraday rotation within the available wavelength range.

5.2 Future Work

5.2.1 Faraday Rotation Theory and Measurement

The interband Faraday rotation theory helped give intuition for how the bandgap
affects the rotation strength. However, the theory was not very rigorous and did not agree
with experimental results. First-order perturbation theory and k-p theory were used to
calculate the energy splitting for the conduction and valence bands. To accurately
calculate this splitting, a more complete theory is needed which finds the band structure
under the influence of a magnetic field. The Faraday rotation is proportional to the
difference in index of refraction for the right- and left-circular polarizations. In this
thesis the index difference was calculated by Taylor expanding the index of refraction
about the bandgap energy, and then using the difference in transition energy as the
perturbation. Quantum mechanical expressions for the indices of refraction would give
more accurate values for the Faraday rotation.

The theory presented for the magnetic dopant contribution to the Faraday rotation
had two unknown parameters: the exchange integrals o and B for the conduction and
valence bands. By knowing the exchange integrals for different semiconductor/magnetic

dopant combinations, the Faraday rotation could be predicted more accurately. The
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exchange integrals could be calculated if the Faraday rotation was measured in
semiconductors with varying magnetic dopant concentrations.

It would be useful to measure Faraday rotation in different semiconductors. This
would allow for further tests of the interband Faraday rotation theory. Faraday rotation
measurements in InGaAsP samples of different compositions could be used determine

what composition is ideal for a Faraday rotator.

5.2.2 Fabrication of Waveguide Components

The technique for fabricating the waveguide Faraday rotator has been
demonstrated, however, the width has not been accurately controlled. The next steps are
to fabricate the Faraday rotators with proper width, the MMI’s, and the half-wave plates.

The masks used for the etching of the Faraday rotators can have smaller variations
in width. For example, mask widths varying from 1.3 um to 1.6 um in 0.05 pm steps
could be used. This way, it is more likely that the zero-birefringence width for the
desired wavelength will be achieved.

The MMTI’s can be made using the same etch technique used to make the Faraday
rotators. However, the half-wave plates are difficult because of the notch on top of the
core. The notch requires a second etch aligned with the etch that defines the width of the
half-wave plate. This can be accomplished using a dual mask etch process. Two masks
are deposited on top of each other, the first is a nickel mask defining the width of the
half-wave plate, and a second is a titanium mask defining the width of the notch. The
etch is done for the first mask all the way to the substrate, and then the mask is removed.
The etch done for the second mask only goes down to the waveguide core in order to

define the notch on top of the half-wave plate.

5.2.3 Integration of Isolator with Laser

The isolator is designed to be monolithically integrated with a semiconductor
laser. However, lasers are doped with free carriers to create gain, while the isolator was
designed to be a passive structure. The challenge then, is to integrate a passive structure
with an active structure. One way to do this is to use a design where the active structures

are grown on top of passive structures, known as TWIN waveguides [27]. In these
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structures, a lateral taper is used to squeeze the optical up from the passive layer to the
active layer, or vice versa. This method can be used for the monolithic integration of the

isolator with a semiconductor laser.
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Appendix A

Jones’ Matrices

This appendix aims to provide a better understanding for the Jones’ matrix
formalism used throughout this thesis. It begins with the derivation of a general Jones’

matrix, and then goes on to calculate several common Jones’ matrices.

A.l Theory

The Jones’ matrix formalism provides a systematic approach for analyzing
complex optical systems where light propagates through polarizers, waveplates, and other
optical elements. The first assumption for the Jones’ matrix formalism is that the light
propagates in the z direction, with the polarization being transverse to the propagation

direction.

(TE)

y z
(TM)

Figure A-1: Coordinate system for Jones’ matrices in reference basis

The coordinate system defining the transverse electric (TE), transverse magnetic

(TM), and propagation directions is shown in Figure A-1. This coordinate system will be
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referred to as the reference basis. The polarization can be expressed as a two-component

_ X
E=[} (A.1)
y

where x and y represent the TE and TM components of the polarization.

vector in this basis:

Optical media all possess eigenmode polarizations which have indices of
refraction associated with them. These eigenmode polarizations are orthogonal and
define the basis of the optical medium. The effect of the optical medium is to contribute
a phase to each eigenmode polarization of the form

¢ ==nl (A2)
C

Here o is the angular frequency of the light, / is the propagation length through the
medium, ¢ is the speed of light, and #; is the index of refraction associated with
eigenmode polarization i. This phase accumulation can be expressed with a diagonal
matrix in the eigenmode polarization basis:

= e /* 0

By using a similarity transformation, this matrix can be expressed in the reference basis:

N

S=VDV (A.4)

S is the Jones’ matrix of the optical medium in the reference basis and V is the matrix
whose columns are the eigenmode polarization vectors vy and vz. By knowing the
eigenmode polarizations and corresponding phases, the Jones’ matrix for any optical

medium can be found.
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A2 Examples
A.2.1 Polarizer

A polarizer can be described with a Jones matrix where one eigenmode
polarization is not transmitted at all (extinction axis), and one is transmitted without
attenuation (transmission axis). The Jones matrix for a polarizer with transmission axis
oriented at an angle 6 with respect to the TE axis is
cos() - sin(e)}[l O}[cos(@) - sin(é’)}_1 _
sin(d) cos(@) [0 O sin(@) cos(f)

{ cos’(8)  cos(0) sin(H)}

Pol(8) = |:
(A.5)

cos(@)sin(@)  sin*(9)

A.2.2 Half-Wave Plate

A half-wave plate is a birefringent optical element with linear eigenmode
polarizations. The polarizations are labeled as slow and fast axes: the slow axis
corresponds to the polarization with the larger index of refraction, and therefore slower
phase velocity. The key feature of a half-wave plate is that the phase difference between
the slow and fast axes is 1. By neglecting common phase factors, the Jones’ matrix for a
half-wave plate with its slow-axis oriented at an angle 0 with respect to the TE axis is

cos(d) - sin(&)}[l 0 ][cos(e) —sin(@)
sin(@) cos(@) |0 e™" || sin(@) cos(@)

cos(20)  sin(26)
sin(26) —cos(20)

HWP(O) = { } =
(A.6)

A.2.3 Faraday Rotator

The eigenmode polarizations for a Faraday rotator of length I are right- and left-
handed circular polarizations whose phase difference is 2V1. Here V is the Verdet

coefficient of the Faraday rotator. The Jones’ vectors v; for the circular polarizations are

— 11
= A7
Ve = L j} (A7)
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By neglecting common phase factors, the Jones’ matrix for the Faraday rotator then

-1
_ 1 1 11 0 1 1 1 N cos(Vl) —sin(Vl)
FR"JE [— J j][o e'ﬂ”’}(ﬁ [- j JD _[sin(Vl) cos(Vl)} (A-8)

As can be seen, the effect of a Faraday rotator is to rotate a polarization vector by an

becomes

angle V1.
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Appendix B
Eigenmode Propagation

Code

This appendix aims to describe in detail the eigenmode propagation code used for
the isolator simulation in Chapter 3. The MATLAB code for this eigenmode propagator
is found at the end of this appendix.

B.1 General Description of Eigenmode Propagation

Code

The code begins with an input mode incident on a waveguide structure, and then
calculates the mode excitation coefficients using the two dimensional mode profiles of

each structure;:

fv"(0)-4,d4
|8, 8nda

¢m is the electric field amplitude of the two-dimensional mode profile of the waveguide,

¢, (0)= (B.1)

y(0) is the input mode profile, ¢y, is the mode excitation coefficient, m is the mode index,
and the integral is done over the two-dimensional cross-section of the waveguide.
Because each mode order consisted of two orthogonal polarizations, Jones’

matrices could be used to propagate these modes. The mode excitation coefficients are
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defined as cmi(O), where the subscript corresponds to the mode order, and the superscript
corresponds to the polarization. After propagating a distance L, the excitation

coefficients become

(L] =ex(0)
[cz (L)} - S(L)L:, ((»} (B2

where S(L) is the Jones’ matrix for the corresponding waveguide structure. The resulting

mode after propagating distance L is then:

E'(L)=) ch(L)E,, (B.3)

where E' represents the i polarization component of the mode. With this technique it is
simple to incorporate non-reciprocal elements such as the Faraday rotator by using the
Jones matrix formalism described in Appendix A.

To verify that the code worked properly, it was compared to commercial
eigenmode propagation software (Fimmprop). The test structure was an MMI. Both
Fimmprop and the eigenmode propagator were used to calculate the output power in one
arm of an MMI as a function of the MMI length. The results are shown in Figure B-1.
As can be seen, the eigenmode propagator code agrees closely with the commercial

software.

:@0.8 -
c
3
g6t
&0
S
(e}
04}
3
=3
3
©0.24
o Eigenmode Propagation Code
~—— FIMMPROP
O n I I
90 95 100 105 110

Length MMI (um)

Figure B-1: Simulation of MMI done using Fimmprop and eigenmode propagation code
written for this thesis
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The 2-D mode profiles for each waveguide structure were calculated with a fully
vectorial mode solver. These mode profiles were then loaded into MATLAB variables
using the code fileopen.m. To simulate the isolator, five junctions were defined, as
shown in Figure B-2. A script was written to calculate the propagate field at each
junction. The functions jones and rot were used by these scripts to calculate the Jones’

matrices for the different waveguide components.

12 3 45

Figure B-2: Definition of junctions used in isolator simulation

B.2 MATLAB Code

bandwidth_sim.m

$Bandwidth simulation of iseclator

w=[]; swavelength array [um]

verdet=[.1]*ones (1,11); sverdet ceoefficient array [deg/um]
1 _hwp=157.5; %length of half-wave plate [um]

1 fr=45/.1; %length of Faraday rotator [um)]
lmmi=52; 2lenght of MMI [um]

input_pol=45*pi/180; #input polarization in rad

p_lp=[1]: %positive verdet output power in left guide
p_rp=[1]; tpositive verdet output power in right guide
p_ln=[]; ve verdet output power in left guide
p_rn=[]; ive verdet output power in right guide
for j=1:11
lambda=1.500+.01* (j-1); fwavelength [um]
w(j)=lambda; tupdate wavelength array
V=verdet (j); %Verdet coefficient [deg/um]
v1=0; tverdet for MMI and HWP

wavelength=lambda*1le3

cd (num2str(eval ('wavelength'))); =xchange directory for each wavelength



fileopen
isolator_sim
p_lp(j)=power_ 1;
p_rp(j)=power_r;
V=-verdet (j):
isolator_sim
p_1n(j)=power_1;
p_rn(j)=power_r;

end

isolation=10*1logl0(p_lp);

insertion loss=10*1loglO(p_ln);

fileopen.m

tfileopen

“loads all 2-D meode profiles and

ffor isolator simulation

irst Faraday rotator
cd fr 1

fid=fopen('Neff');
a=fscanf (fid, '#qg', [1 inf}):
fclose (fid);

fr 1 n=a';

fid=fopen ('ex0O.dat’);
a=fscanf (fid, "%¥g', [1 infl);
fclose (fid);

fr 1 0_x=abs(a)';

fid=fopen('eyd.dat');
a=fscanf (fid, "%g"', [1 inf]);
fclose(fid);

fr 1 0 y=abs(a)':

fid=fopen('exl.dat');
a=fscanf (fid, '%g', [1 infl):
fclose(fid);

fr 1 1 x=abs(a)':

fid=fopen(feyl.dat'):
a=fscanf (fid, "%g', [1 inf]);

fclose(fid);

node effective indices into MATLAR varibal

o]
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2load 2-D mode profiles into MATLAR variables

sinulation with positive Verdet ceefficient

rupdate left power array

EARISTe right power array
inegative Verdet coefficient
Srun simulation with negative Verdet coefficient

Hupds Lo power array

array

tisolation [dB]

sinsertion loss [dB]




fr 1 1 y=abs(a)';

second FR
cd

cd fr v

fid=fopen('Neff');
a=fscanf (fid, 'sg', {1 inf]);
fclose(fid):

fr r n=abs(a)';

fid=fopen('ex0.dat");
a=fscanf (fid, '2g', {1 inf]);
fclose(fid);

fr_r 0_x=abs(a)';

fid=fopen('ey0.dat'):
a=fscanf (fid, "¥g', {1 inf]);
fclose(fid) s

fr_r 0_y=abs(a)';

fid=fopen('exli.dat’);
a=fscanf (fid, '%g', [1 inf]l);
fclose(£id);

fr r 1_x=abs(a)';

fid=fopen('eyli.dat');
a=fscanf(fid, '%¢"', (1 infl):
fclose (fid);

fr_r_ 1 _y=abs(a)';

tfirst half-wave
cd
cd hwp p

fid=fopen ('Neff');
,[1 inf]);

a=fscanf (fid, "%y
fclose(£fid):
hwp_p n=a';

fid=fopen('ex0.dat');
a=fscanf (fid, '%¥g', [1 inf]);
fclose(£fid):;
hwp_p_0_x=abs(a)';

fid=fopen('eyO.datv");
a=fscanf (fid, *%g', [1 infl);

fclose(fid);

plate

(HWP)
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hwp_p 0_y=abs(a)';

fid=fopen('exl.dat');
a=fscanf (fid, "%g', [1 infl):
fclose(fid);

hwp p 1 x=-abs{(a)':

l.dat');
a=fscanf (fid, '%qg', [1 infl):

fclose (£id);

hwp_p_1_y=abs(a)';

econd HWP
cd
cd hwp_n

fid=fopen('Neff');
a=fscanf (fid, '%g', [1 infl);
fclose(fid);

hwp n_n=a';

fid=fopen('ex0.dat");
a=fscanf (fid, "$¢', [1 infl):
fclose (fid);

hwp_n_0_x=abs(a)';

fid=fopen('eyl.dat"');
a=fscanf (fid, "%qg', [1 infl):
fclose(fid);
hwp_n_0_y=-abs(a)';

fid=fopen('exl.dat');
a=fscanf (fid, "%g', [1 inf]};
fclose (fid);

hwp n 1 x=abs(a)';

fid=fopen('eyl.dat');
a=fscanf (fid, '%g', [1 inf}):
fclose(fid);

hwp n 1 y=abs(a)';

t

uttimode interfercmeter (MMI)

cd mmi

fid=fopen ('Neff');

a=fscanf (fid, '%g*, [1 infl):
fclose(fid);



mmi_n=a';

fid=fopen('ex0.dat');
a=fscanf (fid, '2g"', [1 inf]);
fclose (fid);

mmi_O_x=a';

fid=fopen(‘eyl.dat');
a=fscanf (£fid, '%g', [1 inf});
fclose (fid);

mmi_0_y=a';

fid=fopen('exi.dat’);

([1 infl);

a=fscanf (fid,
fclose(fid);
mmi_1 x=a';

fid=fopen('eyi.dat'};
a=fscanf (fid, *2g*', {1 inf});

fclose (fid);

mmi_1_y=a’';

fid=fopen('ex2.dat');
a=fscanf (fid, '¢g', [1 inf]);
fclose(fid);

mmi_2 x=a';

fid=fopen('eyl.dat’);
a=fscanf (fid, "%g',[1 inf]);
fclose(fid);

mmi_2_y=a';

fid=fopen('ex3.dat');
a=fscanf (fid, '¢g',[1 inf));

fclose(fid);

jte

mmi_3_x=a';

fid=fopen('ey3.dat');
a=fscanf (fid,
fclose (fid);

mmi_3 y=a';

fid=fopen{ ' exd.dat');
a=fscanf (fid, '%g’', [1 infl);
fclose (fid):

mmi_4_x=a';

fid=fopen('eyd.dat');

119
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a=fscanf (fid, 'sg',[1 inf]):
fclose(fid):;

mmi_4_y=a';

fid=fopen('ex5.dat');
a=fscanf (fid, '%g', [1 inf]);
fclose(fid);

mmi_5_x=a';

fid=fopen('eyb.dat');
a=fscanf (fid, '%#qg', [1 inf]):
fclose(fid):;

mmi_ 5 _y=a';

fid=fopen('exé.dat');
a=fscanf (fid, '%g', [1 inf]);
fclose (fid);

mmi_6_x=a';

fid=fopen('eybt.dat');
a=fscanf (fid, '%g', [1 inf]):
fclose(fid);

mmi 6 y=a';
fid=fopen('ex7.dat');
a=fscanf (fid, 'zg', [1 inf]);
fclose(fid):

mmi_ 7 x=a';
fid=fopen('ey7.dat');
a=fscanf (fid, "%g', [1 infl);
fclose(fid);

mmi_7_y=a';

cd

isolator 1 2.m

%Isolator simulation

i=input of first MMI

=output of first MMI

k=2*pi/lambda;*wavavectonr

x_xpol=[-2.5:5/502:2.5]"'; %define x coordinates for x polarization

y_xpol=[-2.5:5/501:2.5]"; %define y coordinates for x polarization
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for %

~
o
o
a3
s
=
&
o
[

[X_xpol,Y xpoll=meshgrid(y xpol,x_xpol): ucreate

X_ypol=(~2.5:5/501:2.51"'; #define x coordinates for y polarization
y_ypol=[-2.5:5/502:2.5]"'; udefine vy cocrdinates for v polarization

[X_ypol, Y ypoll=meshgrid(y_ypocl,x_ypol);%create coordinate mesh for y polarization

neffx=[mmi_ n(2);mmi_n(4);mmi_n(6);mmi_n(7)];%effective index of x modes in MMI
neffy={mmi_n(1);mmi_n(3);mmi n(5);mmi _n(8)]);setfective index of y modes in MMI
ax=cos (input_pol);%pexrcent of input power in x direction

ay=sin(input_pol);¢percent of input powexr in y direction

scoupling coefficients of x modes

cxO=(sum(fr_1 O_x.*mmi_1 x)+sum(fr_1 1 x.*mmi 1 x));
cxl=(sum(fr_1 0 _x.*mmi_ 3 x)+sum(fr 1 1 x.*mmi_ 3_x));
cx2=(sum(fr 1 0 x.*mmi_5 x)+sum(fr 1 1 x.*mmi 5 _x));

cx3=(sum(fr_1 0 _x.*mmi 6 x)+sum(fr 1 1 x.*mmi_6 x)):

upiing coeefficients of v nodes
cyO=(sum(fr_1 O y.*mmi O_y)+sum(fr_1 1 y.*mmi 0 _y));
cyl=(sum(fr_1 0 _y.*mmi 2 y)+sum(fr_ 1 1 y.*mmi_2 y)),
cy2=(sum(fr 1 O y.*mmi 4 y)+sum(fr 1 1 y.*mmi 4 y));

cy3=(sum(fr_1 O y.*mmi 7 _y)+sum(fr 1 1 y.*mmi 7_y));

fipaged x field at stage 1

cx=[cx0; cx1l; cx2; cx3];
cx=ax*cx/sqgrt(sum{cx.”2));
ex=[mmi_1 x mmi_ 3 _x mmi_5_x mmi_6_x];

fieldlx=ex*cx;

Simaged y fleld at stage 1
cy=[cy0; cyl; cy2; cy3):
cy=ay*cy/sqrt(sum{cy.”2));

ey=[mmi_ O y mmi 2 y mmi 4 y mmi_7_yl;

fieldly=ey*cy;

of each mode in

beta x mmi=neffx*2*pi/lambda;

beta_y mmi=neffy*2*pi/lambda;

Tones matrix of each mode palr in MMI

phasemmiO=jones (beta_x mmi(1),beta_y mmi(1),V1,0,lmmi);
phasemmil=jones (beta_x mmi(2),beta_y mmi(2),V1,0,lmmi);
phasemmi2=jones (beta_x_mmi (3),beta_y mmi(3),V1,0,lmmi);

phasemmi3=jones (beta_x mmi (4),beta_y_mmi(4),V1,0,lmmi);

fPhase and coupling coefficient for each mode pair
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clO=phasemmiO* [cx(1);cy(1)]:
cll=phasemmil*[cx(2);cy(2)];
cl2=phasemmi2*[cx (3);cy(3)];
cl3=phasemmi3*[cx(4);cy(4)]:

sx field at stage 2

clx=[cl0(1l); cll(1l); cl2(1); cl13(1)];
field2x=ex*clx;

%y field at stage 2

cly=[cl0(2); cl1(2):; cl2(2); cl13(2)]:
field2y=ey*cly;

isolator 2 3.m

*Isolator simulation
#Propagate field from stage 2 to stage 3

tstage I=output of first MMI

rstage 3I=output of first half-wave plate (HWP) and Faraday rotator (FR)

siparameters for first FPRébwwY

stants for FR

tpropagation ooy
beta_0_frl=2*pi/lambda*fr 1 n(1l);
beta 1 frl=2*pi/lambda*fr 1 n(jj);

wooupling coefficients for first FR
c_frl O=sum(field2x.*fr 1 0_x)+sum(field2y.*fr 1 0_y):
c_frl l1=sum(field2x.*fr 1 1 x)+sum(field2y.*fr 1 1 y):

c frl=(c_frl O;c_frl 1); ¥x-y-z basis

#Jones matrix for first FR

phasefrl=jones (beta 0_frl,beta_ 1 frl,v,0,1 fr):

c_frll=phasefrl*c_frl;3%x-y-z Dbas

spropagated field in first FR
field frl x=c_frlL(1l)*fr 1 0 x+c friL(2)*fr 1_1_x;
field frl y=c_ frlL(1)*fr 1 0 y+c friL(2)*fr_1 1 y:
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arameters

ts For fivst HWP

tpropagation consta
beta_s_hwpn=2*pi/lambda*hwp_n_n(l);
beta f hwpn=2*pi/lambda*hwp_n n(2);

tcoupling coefficients for flrst HWP
c_hwpn_s=sum(field2x.*hwp_n_ 0_x)+sum(field2y.*hwp n 0_y); tslow axis mode

c_hwpn_ f=sum(field2x.*hwp n_1 x)+sum(field2y.*hwp n 1 y); “fast axis mode

c_hwpn=[c_hwpn_s;c_hwpn_f};%sicw-fast-z basis

» matrix for first HWP

phasehwpn=jones (beta_s_hwpn,beta f hwpn,V1,0,1 hwp);

c_hwpnL=phasehwpn*c_hwpn; #slow-fast-z basis

tpropagat

field hwpn_y=c_hwpnL{l)*hwp _n_0_ y+c_hwpnL(2)*hwp n_1 y:

ix field at ge 3
field3x=field_frl x+field hwpn_ x;
fy field at stage 3

field3y=field frl y+field_hwpn_y:

isolator 3 4.m

fFlsolator simuiation

gate field from stage 3 to stage 4

and

3=output of fixst half-wave ple aday rotator {(FR)

tage 4=output of second hali-wave plate (HWP) and Faraday rotator (FR}

$iparameters for second

sooupling coefficients for second FR -
¢ _frr O=sum(field3x.*fr r 0 x)+sum(field3y.*fr r 0_y):

c_frr l=sum(field3x.*fr r 1 x)+sum(field3y.*fr r 1 y);

c_frr=[c_frr_ 0O;c_frr 1]: ix-y-z basis

for second

rJones matrix
phasefrr=phasefrl;
c_frrL=phasefrr*c_ frr;%x-y-z basis

rpropag field in second FR
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field frr x=c_frrL(l)*fr r O _x+c_frrL{(2)*fr r 1 x;

field frr y=c_frrL(l)*fr_r O_y+c_frrL(2)*fr r 1_y;

parameters for second HW?
propagation constants for second HWP
beta_f hwpp=beta_ f hwpn;
beta_s_hwpp=beta_s_hwpn;

tcoupling coefficients for second HWP
c_hwpp_s=sum(field3x.*hwp_p O x)+sum{field3y.*hwp p O0_y);
c_hwpp_f=sum(field3x.*hwp p 1 x)+sum(field3y.*hwp p 1 y);

c_hwpp=[c_hwpp si;c_hwpp fl;islow-fast-z basis
sJones matrix for second HWP
phasehwpp=jones (beta_s_hwpn,beta_f hwpn,Vv1,0,1 hwp):;

c¢_hwppL=phasehwpp*c_hwpp; %slow-fast-z basis

tpropagated fileld in second HWP
field_hwpp x=c_hwppL(l)*hwp_p_0_x+c_hwppL(2)*hwp_p 1 x:
field hwpp y=c_hwppL(l)*hwp p_0_y+c_hwppL(2)*hwp_ p 1 y:

tx field at stage 4
fieldd4x=field frr x+field hwpp x:
sy fileld at stage 4
fielddy=field frr y+field hwpp_ y:

isolator 4 5.m

#lsolator simulation

wPropagate field fFrom stage 4 to stage 5

tstage 4=output of {HWP)} and Faraday rotatoxr (FR)

tage 5= output of second MMI

Booupling coefficients for x modes
cxlo=(sum(fielddx.*mmi_1 x));
cx2o=(sum(fielddx.*mmi_3 x));
cx3o=(sum(fielddx.*mmi 5 x));

cxdo=(sum(field4x.*mmi_6 x));

cxo=[cxlo; cx20; cx30; cxdo0;];

ex=[mmi 1 x mmi_3 x mmi_5 x mmi_6_x];

fcoupling coefficients for y modes



cylo=sum(sum(field4y.*mmi 0 _y));
cy2o=sum(sum(fielddy.*mmi 2 y)):
cy3o=sum(sum(field4y.*mmi_4 y)):;

cydo=sum(sum(fielddy.*mmi_7_vy));

Fimaged y 1d at stage 4

cyo=[cylo; cy2o0; cy3o; cydo;];

ey=[mmi 0 y mmi 2 y mmi 4 y mmi_7_y];

Phase and coupling ccefficient for each mode
cllo=phasemniO* [cxlo;cylo];

cl2o=phasemmil* [cxZ20:cy2o];

cl3o=phasemmi2* [cx30;cy30];

cl4o=phasemmi3* [cx40c;cydo];

%x field at stage %

clxo={cllo(1l); cl2o{l); cl3o0(l); cldo(l})];
fieldSx=ex*clxo;

ty field at stage &

clyo=[cllo(2); cl20(2); cl30(2); cldo(2)1:
fieldSy=ey*clyo;

treshape fields for power calculations
fS5y=reshape(fieldS5y,503,502)"';
f5x=reshape (field5x,502,503)"';

ield in left guide
£5x1=£5x (yl_xpol,x1l _xpol);

sfield in ht guide

£5xr=£5x (yr_xpol,xr_xpol);

ix power in right guide
powerfSxr=sum{sum{abs (£5xr)."2));
#x power in left gulde

powerfSxl=sum(sum{abs (£5x1)."2));

vy field in right guide

fS5yr=£f5y(yr_ypol,xr_ ypol):

ty fiold in left gu

£5y1=£5y(yl_ypol,x1l_ypol);

By power in olght guide

powerfSyr=sum(sum(abs (£5yr)."2)):

$y power in left guide

powerf5Syl=sum(sum(abs (f5yl)."2));

pair
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spower Ain left quide
power_l=powerf5xl+powerfSyl

rogulde

spower in rig

power_ r=powerfSxr+powerf5yr

jones.m

sfunction J=jones (beta_1,beta_I,V,theta, 1}

tcalculates Jones matrix for waveguide str

sV=verdet coefficient in deygrees/length
sheta 1 and heta 2 are propagation constants of 2 medes in rad/length
ttheta=angle of principle axes in degrees

tl=device length in length

sI=Jones matrix of birefringent, magnetically active material

function J=jones(beta_1l,beta_2,V,theta,l)

Vr=V*pi/180;wconvert verdet into rad/length

delta=(beta 2-beta 1)/2; “delta={ in radians/length

alpha=sqrt ((Vr)~2+delta”2);

R=rot (theta):;

a=cos{alpha*l)-i*delta/alpha*sin(alpha*l):
b=-Vr/alpha*sin(alpha*l);:
c=-b;

d=cos (alpha*l)+i*delta/alpha*sin{alpha*l);

D=[a b;c dl:
J=R*D*inv(R) *exp (i* (beta_l+beta 2)*1/2);

rot.m

Sa=function rot{theta)

fcalculates rotation matrix for angle theta

ttheta in degrees

function a=rot(theta)

thetal=theta*pi/180;

a={cos (thetal) -sin(thetal):sin(thetal) cos(thetal)];
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