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Abstract

Integrated optical isolators will become necessary as optical networks continue to grow
and the need for monolithic integration and greater functionality increases. This thesis
presents a design for a polarization independent isolator which can be monolithically
integrated with semiconductor lasers. Theory and measurements are used to select a
material for the isolator. A polarization independent design for the isolator is chosen
with all components suitable for monolithic integration. Simulations of the isolator show
it to be capable of 24 dB of isolation. Waveguide Faraday rotators, which are a
component of the isolator, are fabricated and demonstrated.
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Chapter 1

Introduction

Optical isolators are important components in lasers. Their main function is to

eliminate noise caused by back-reflections into these lasers. The need for integrated

isolators comes from the continuing growth of telecommunication networks. Monolithic

integration of isolators with other optical components such as lasers would reduce costs

and increase functionality.

This thesis presents the design and test of a monolithically integrated optical

isolator for telecommunication networks. This chapter will begin with an explanation of

how isolators actually eliminate noise in lasers and then it will then show how

commercial bulk isolators function. Next, greater detail will be provided on the need for

monolithically integrated isolators. Because isolators are non-reciprocal devices, they

must use a non-reciprocal effect in order to function. A brief description of this

phenomenon, known as Faraday rotation, will be given in this chapter. Then previous

work on integrated isolators will be presented. Finally, an overview of this thesis will be

given.

1.1 Motivation

1.1.1 Laser Noise Due to Back-Reflections

An optical isolator is a non-reciprocal device which allows light propagation in

only one direction. It is used to prevent optical feedback in lasers and optical amplifiers.

This is important because feedback can cause noise and instabilities in lasers. In

semiconductor lasers used for telecommunications, the feedback is caused by back-
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reflections from optical fiber at the laser output. The effect of the reflecting fiber facet is

to create a double cavity state in the laser if phase coherence is maintained, or to act as an

external light source if coherence is lost.

There will be fluctuations in laser intensity and frequency for both the double

cavity state and external light source state. For the double cavity state, the fluctuations

are due to mechanical vibrations of the fiber which change the length from the reflection

point to the cavity and create phase variations. For the external light source, the

fluctuations come from the random generation of locking and unlocking states due to the

frequency changes caused by temperature variations of the laser diode. In either case, the

intensity and frequency noise are both directly proportional to the effective reflectivity of

the fiber [1]. Here effective reflectivity refers to the amount of reflected power from the

fiber that actually returns to the laser cavity.

To reduce the effective reflectivity, an isolator is placed in front of the laser. The

isolator will block the back-reflected light, thus reducing the intensity and frequency

fluctuations. The name isolator comes from the fact that if it is placed in front of a port,

then it will isolate this port from any optical power propagating towards it. Isolators are

essential for any sort of laser where low noise is desired.

1.1.2 Commerical Bulk Isolators

Because isolators only allow light propagation in one direction, they are non-

reciprocal devices, and therefore must utilize a non-reciprocal phenomenon in order to

function. The phenomenon used in commercial bulk isolators is Faraday rotation. This is

a non-reciprocal rotation of the polarization of light. It is non-reciprocal in the sense that

the rotation is independent of the direction of light propagation. If light propagates

through a Faraday rotating medium, after a single pass its polarization is rotated by an

angle 0, and after a round-trip it is rotated by 20.

To use this effect in an isolator, a Faraday rotator is placed in between two

polarizers, as shown in Figure 1-1. The polarizers are oriented at 450 with respect to each

other. In the forward direction, light will pass through the first polarizer, be rotated 45*

by the Faraday rotator, and pass through the second polarizer unattenuated. In the reverse
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direction, the light will pass through the second polarizer, be rotated 450 in the same

direction, and be blocked by the first polarizer. In this way isolation can be achieved.

However, this design is not polarization independent. If the input light is oriented

orthogonal to the first polarizer, there will be no transmission.

Polarizer Polarizer

45*
arFaraday

Rotator

Figure 1-1: Polarization dependent bulk isolator consisting of polarizers and a Faraday
rotator

Polarization independent isolators can be achieved by using birefringent walk-off

plates (BWP). The basic configuration is shown in Figure 1-2. The walk-off plate

separates the transverse magnetic (TM) and transverse electric (TE) polarizations. TM

polarization is vertical, and TE is horizontal. The TM light is transmitted straight

through, and the TE light is transmitted away from the normal of the beam splitter. In the

forward direction, the light passes through the first beam-splitter, then through a Faraday

rotator and half-wave plate, and finally a second beam splitter. The Faraday rotator

provides a non-reciprocal 450 rotation and the half-wave plate provides a reciprocal 450

rotation. The combined effect of the non-reciprocal and reciprocal rotation transforms

the TM light into TE and the TE light into TM. At the second walk-off plate, the TE is

bent away from the normal and the TM passes straight through, and both beams combine

at a common output. The input light thus reaches the output without attenuation. In the

reverse direction, the sequence of half-wave plate and Faraday rotator leave the TE and

TM light unaltered. At the first walk-off plate, the two polarizations exit at separate

ports, and the input port is isolated.
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BWP BWP

4 ........... .........

Figure 1-2: Polarization independent isolator consisting of a half-wave plate, Faraday
rotator, and birefringent walk-off plates (BWP)

1.1.3 Need for Integrated Isolators

For optical communications, semiconductor lasers are used with an external

isolator. Figure 1-3 shows a distributed feedback laser in a butterfly package. This

isolator consists of two polarizers, a Faraday rotator, and an external magnet to bias the

Faraday rotator. These components are not in integrated form with the isolator, which is

the largest element in the laser package.



Fibe; Pigtail

Lens

Modulator

Butterfly
Package

Coax
Input

Isolator

Leads

Z I
TEC Thermistor

Photo Diode

Laser Diode

Figure 1-3: Laser package with isolator

The motivation for integrated isolators comes from the growth in optical

networks. As networks become larger and more complex, greater integration of optical

functions is needed in order to increase capacity while also reducing costs. An integrated

isolator would have several benefits. First, it would reduce the size of the laser package

and allow for several lasers to be integrated with isolators on a single chip. This would

be especially useful for wavelength division multiplexed (WDM) optical networks where

several different wavelengths are used to transmit information. Second, an integrated

isolator would eliminate the costs associated with alignment of a separate optical

component. Third, it would increase mechanical stability because it would be integrated

on the same semiconductor chip as the laser.

Another technology which would require integrated optical isolators is all-optical

networks. The motivation for this type of network is the need for higher network speeds.

O A

17
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Current communication networks use electronics to process information contained in

optical data packets in order to determine their destination. Optical-networks aim to do

this in the optical domain using optical switches. Research is currently being done on

using semiconductor optical amplifiers (SOA) for these switches [2].

A possible optical circuit that performs a logical function in these all-optical

networks is shown in Figure 1-4. This circuit consists of two stages of optical SOA

switches. In order to function properly, each switch stage must be buffered so that an

individual stage's function is not corrupted by noise from other stages. The main noise

sources would be amplified spontaneous emission from the SOA's and any sort of back-

reflection between stages. If a circuit consisted of several stages, then an isolator would

be required for each switch in each stage. The circuit would become very expensive,

large, and difficult to fabricate if each isolator was a separate bulk component. For this

type of circuit to be practical for all-optical networks, it is essential that the isolators are

in integrated form.

Electronics Electronics

A Isolat

CLK SOA ~

lSOA_

CIK

C

Band Pass Filter

or f(A,B) Ele ctronics

Band Pass Filter
-or Absorber

SOA

SOA Isolator Absorber

ctoncs

0tical Time Delays

Figure 1-4: Circuit consisting of all optical SOA switches. Isolators are needed to buffer
different stages of the circuit [2]
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1.2 Introduction to Faraday rotation

1.2.1 Faraday Rotation from an Asymmetric Dielectric Tensor

When a magnetic field is applied in the z direction, the dielectric tensor for a

material has the form

n2 j j .0
.6 = CO -C n, n2 0(.)

0 0 n 2

where n is the index of refraction and xy is purely real. The next section discusses the

physical origin of this dielectric tensor. By inserting the above expression for e into

Maxwell's equations for a source free region, one obtains

V *e E= 0 (1.2)

VUpH= 0 (1.3)

V x E =-jCoPH (1.4)

V x H = jcoeE (1.5)

A time harmonic dependence e" has been assumed in the above equations. By using the

well known vector identity

V X V x A = V(V 0 A)- V2A (1.6)

Maxwell's equations can be rewritten as

V 2 E+ W 2 p.E = 0 (1.7)

Assuming that E has the form Eed"(~tz), equation 3-1 becomes an eigenvalue problem:

2 n2 JEX, 0 EX EXCO 2
2 -X, n 0 E, '82 E] (1.8)

C 0 0 n 2 Ez_ Ez_
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Here c is the speed of light in vaccum and is equal to 1/(pos 0) . The eigenvectors and

eigenvalues of Equation 1.8 fall into two categories. First, the z-component of the

electric field is considered. Because it has been assumed that propagation is also in the z

direction and that the material is source free, the solution is trivial:

0

E= 0 ,6 =0 (1.9)

However, for the other two solutions, the eigenvectors correspond to right- and left-

circularly polarized light written as E+ and E, with propagation constants P, and P.:

E, =p j , p, =6(n2 ,) (1.10)
c

0

For isotropic, reciprocal materials, right and left circular polarizations are degenerate and

have the same propagation constant. Because the phase velocity is given by (o/p, these

two polarizations propagate at the same speed in isotropic, reciprocal materials.

However, in a non-reciprocal material which exhibits Faraday rotation, these two

polarizations are no longer degenerate and propagate at different speeds. Consider x

polarized light incident on a Faraday rotating material. The light will couple to the two

circular polarizations:

EO EO
E [= ] = "L ->] + ] (1.11)

-0 0 -0)

After propagating a distance 1, the field becomes

E(l) = k{j e-' + -j e +' (1.12)
2-_O 0

At this point a simplifying assumption is made: because Exy is much smaller than n2, P is
rewritten as a first order Taylor expansion:

, = {n p eJ (1.13)
C 2n)
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Equation 1.12 can then be rewritten as

E(l) = E"e . j eJs + -j e5I (1.14)
2 0- 0

where

+ + 1= n (1.15)
2 c

- - C 6xY (1.16)
2 c 2n

By dropping common phase factors, Equation 1.14 becomes

E(I) = EO 0 cos(8)+ [ sin(S) (1.17)

As can be seen, the polarization now has an x component of magnitude cos(6) and a y

component of magnitude sin(8). This is just the input polarization rotated by an angle 6,

which corresponds to the Faraday rotation. The Verdet coefficient V, which is the

specific rotation per length, can be written as

_=__ - E exy (1.18)
2 c 2n

1.2.2 Classical Theory of Faraday Rotation

To understand the origins of the asymmetric dielectric tensor, it is easiest to

consider a single electron bound to a nucleus. The displacement r of the electron from its

equilibrium position is assumed to be small, so the nuclear potential is approximated by a

harmonic oscillator with oscillation frequency (o. If an electromagnetic field is incident

on the atom, then the equation of motion for the electron is

d 2r 2- dr
r =-m _ vy -+qE (1.19)me- dt Mco ,dt

where q is the electron charge, y is the damping constant, and me is the electron mass. In

the above equation, the force due to the photon's magnetic field is assumed to me much
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smaller than that of the electric field, and is therefore neglected. If an external magnetic

field B is applied to the atom, the equation of motion for the electron will become:

dr 2 dr -d dr - (.0
Me =-_m_ 2r-y-+q E +x (1.20)

d-rdt q dt

If r is assumed to have the same e time harmonic form as E, then Equation 1.20 can be

rewritten as:

me2= -m2r -ior + qr+ ir x B) (1.21)

The polarization of a material is defined as

P = qNer=cE (1.22)

where Ne is the electron volume density in the material, and C is the dielectric tensor of

the material. The dielectric tensor is defined here as

. = CO 1YX n 2 (1.23)

If this is inserted into Equation 1.21 the result is

(m(CO0 -w2)+jrYE= q2Ne E+ q E B) (1.24)

For simplicity it is now assumed that B is in the z direction. Then all off diagonal terms

in s become 0 except for Exy and sy. The expressions for the remaining terms in s are

then

n2 Neq 2  m *a2 -C)+ jo (1.25)
SO (m* ( )002 + jcy -(_xBz )2

E = E = jcoNq 3B) (1.26)

The off-diagonal elements are complex as defined here, but to match the convention used

in Section 1.2.1, they are redefined such that

jEX 1 = j6yx = (( coNeq 3Bz (1.27)
LCI M o -O2 _C2)+ jWYf - (OnBz)2

The important feature to note for the dielectric tensor is that the off-diagonal terms have

opposite sign. This causes s to be a non-symmetric tensor, which breaks reciprocity in
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the material. The off-diagonal terms are proportional to the magnetic field, and are

responsible for the Faraday rotation. If the magnetic field changes sign, ,,xy will change

sign, which will cause the Faraday rotation to be in the opposite direction.

For a more physical picture of the Faraday rotation, the effects of the forces on the

electron are considered. The nuclear potential binding the electron to the nucleus can be

modeled as a spring. The incident electromagnetic field Ej will cause the electron to

oscillate with velocity v, and the magnetic field B will apply a transverse force on the

electron, causing it to rotate. The radiated light will have its polarization aligned with the

electronic oscillation. As the electron's oscillation direction is rotated, so is the

polarization of the light it radiates. Because the force only depends on the direction of E

and B, the magnetic force will be the same irrespective of the propagation direction. If

light propagating in the forward direction has its polarization rotated by an angle 0, then

after one round-trip, it will be rotated by 20 and will not be in its initial polarization state.

Thus, it can be seen how the magnetic field breaks reciprocity.

1.3 Previous Work on Integrated Isolators

1.3.1 Introduction

There have been two main approaches to achieving integrated optical isolators. The

first approach utilizes a magnetic field applied transverse to the direction of propagation,

and the second approach utilizes a magnetic field applied parallel to the direction of

propagation. Two phenomena fall into former approach: non-reciprocal phase shift

(NRPS) and non-reciprocal loss (NRL). The phenomenon used for the latter approach is

Faraday rotation. Each approach has its own advantages and disadvantages, which are

discussed in the following sections.
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1.3.2 Non-Reciprocal Phase Shift (NRPS)

For NRPS, the magnetic field is applied transverse to the direction of propagation, as

shown in Figure 1-5.

x

y 

P. z

Propag 
tion

Figure 1-5: Configuration for NRPS. The magnetic field B is applied transverse to the
direction of propagation

A magnetic field applied in the y direction will give a dielectric tensor of the

form [3]

n 2 0 j,

. = .6 0 n2  0 (1.28)

-- j Exz 0 n2

while a magnetic field applied in the x direction will give:

n 2 0 0

8= 0 0 n 2 j ,,y (1.29)

0 - j E y n 2

The NRPS is a waveguide effect, occurring because of the coupling of transverse

and longitudinal field components. Waveguide modes can be divided into two types:

transverse electric (TE) and transverse magnetic (TM). TE modes are dominated by an

electric field in the y direction and have a negligible x component. The dominant electric

field component for TM modes is in the x direction, with the y component being

negligible.
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The effect of the off-diagonal elements is to create different propagation constants

for the forward and reverse directions. Perturbation theory can be used to calculate the

difference between the forward and reverse propagation constants [4]:

S6r = j2eo).fJ E*Ezdxdy (TM) (1.30)

shTE =20oeyz fE*Edxdy (TE) (1.31)

where all field components are normalized to the power flow along the propagation

direction. This non-reciprocal propagation constant can be used to provide a different

phase for the forward and reverse direction.

To make an isolator using NRPS, a Mach-Zender configuration is used. The

NRPS waveguide is placed in one arm of the isolator, and a reciprocal waveguide in the

other. In the forward direction, light propagating through the two arms will be in phase at

the output and interfere constructively, traveling through the output port. In the reverse

direction, the two arms will be 1800 out of phase due to the NRPS. Reverse propagating

light will interfere destructively and not be transmitted through the input port, thus

achieving isolation.

Destructive Constructive
interferene injjerence

Input

Return
light

Figure 1-6: NRPS isolator in magnetic garnets. By applying opposite magnetic fields in
each arm, only a 90' NRPS is required [5]

NRPS isolators with 18 dB isolation have been achieved in magnetic garnets [5].

The isolator only functioned for TM polarizations because the applied magnetic field was
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applied in the horizontal direction. A diagram of the isolator is shown in Figure 1-6. It

had a NRPS waveguide in each arm with opposite magnetization. Two electromagnets

provided the external magnetic fields. This required the magnitude of 8P to only be 900

instead of 1800 in each arm. This isolator is 8 mm long, with NRPS waveguides which

are 3.3 mm long. The NRPS waveguides are made from a bismuth-, lutetium-, and

neodymium-iron garnet film (Bi,Lu,Nd)3(Fe,Al) 50 12.

NRPS can also be achieved for both TM and TE polarizations by applying an

external magnetic field at 450 to achieve in-plane and out-of-plane magnetizations [4].

This technique could be used to make polarization independent NRPS isolators.

NRPS attracted attention because unlike Faraday rotation, it did not have the strict

phase matching requirements for the TE and TM modes, which will be discussed in a

later section. The main disadvantage of NRPS when compared to Faraday rotation is that

it is an inherently weaker effect. Using Equation 1.18, the Verdet coefficient for a

Faraday rotator can be expressed as

V = - (1.32)
c 2n

The ratio of the NRPS to the Verdet coefficient is then

V = j4ceon ffExEzdxdy (1.33)

This ratio is proportional to the normalized overlap integral of the transverse and

longitudinal electric field components. This integral is much less than 1 because most of

the mode power is contained in the transverse field component. To see the difference in

isolator length using Faraday rotation and NRPS, numerical values for V and 6P are used

for a magnetic garnet waveguide in reference 4. Because an isolator needs either a 450

Faraday rotation or a 900 NRPS in the balanced configuration, the ratio of the length of a

NRPS isolator to a Faraday rotator isolator for the material in reference 4 is

90
LNRPS -( 1.85
LFR 45 0.05

V

As can be seen, using Faraday rotation can reduce the isolator length by an order of

magnitude.
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1.3.3 Non-Reciprocal Loss (NRL)

In the derivation of the NRPS, it was assumed that the off diagonal elements (Sij)

in the permittivity tensor were purely real, leading to only a change in the real part of the

propagation constant, which corresponded to a phase shift. However, if this term were to

have an imaginary component, then the imaginary part of the propagation constant would

be changed. This would lead to different loss in the forward and reverse directions. By

incorporating this effect with an optical gain medium, such as a semiconductor optical

amplifier (SOA), an isolator can be made. If the gain is adjusted appropriately, the loss

in the forward direction can be compensated, while the loss in the reverse direction will

still be large enough to attenuate any reverse propagating light.

NRL isolators have been made by placing an absorbing magnetic layer on top of

an SOA, as shown in Figure 1-7 [6]. This isolator showed a theoretical isolation of 119

dB/cm for the TM mode. The best experimentally demonstrated NRL isolators to date

can provide isolations of 32 dB/cm [7]. The advantage of NRL isolators is that they do

not need to be placed in Mach-Zehnder configurations in order to function. A second

advantage is that the maximum possible isolation is only limited by the device length.

This allows for incredibly high isolations to be achieved.

Magnetic field Ily(~) Current: Injection

Electrode
Contact layer p' InGaAs

p - cladding layer. p InAiAs

Magnetic layer InALAs:MnAs
±d Guiding layer InGaAsP(4 = 125pm)
a: Active layerInGaAsP(4 1.55pjm)

TM mode
n - cladding layern InP

substrate, n* lnP

Ekx~oy
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Figure 1-7: NRL isolator made using SOA and a magnetic absorbing layer [6]

While the prospect of a simple makes NRL isolators seem very attractive, there is

one important disadvantage. Because the optical mode penetrates into the absorbing

magneto-optic layer, the insertion loss is large. The NRL is proportional to the overlap of

the mode with the magneto-optic layer, but so is the loss. An SOA must be used just to

compensate for this reciprocal loss. For example, a one-dimensional simulation of an

SOA covered with a ferromagnetic layer has shown that a material gain of 1560 cm' is

needed to provide unity gain in the forward direction for a NRL isolator [8]. Any

practical NRL isolator must therefore be an active device. A passive isolator would be

preferable because it would not have any power consumption. Also, when using SOA's,

spontaneous emission will be present, which may not all be absorbed by the NRL

isolator, further degrading its performance.

1.3.4 Faraday Rotation

As already discussed, Faraday rotation is used to make bulk optical isolators.

However, for waveguide structures, Faraday rotation is more difficult to utilize because

of the strict phase-matching conditions. However, if this phase-matching condition can

be achieved, the Faraday rotation could be used to make isolators which are an order of

magnitude smaller than NRPS and NRL isolators.

Waveguide Faraday rotation has been demonstrated in magnetic garnets [9].

Figure 1-8 shows the Faraday rotation for a magnetic garnet, a high birefringence

waveguide, and a low birefringence waveguide. As the length of the Faraday rotator is

increased, the high birefringence waveguide's Faraday rotation oscillates, while the bulk

sample and low birefringence waveguides show a monotonic increase in their Faraday

rotation. Thus, by reducing the birefringence of the waveguide, the Faraday rotation

approached its maximum value.
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Low Birefringence
Wave gui de

High Birefringence Waveguide

Distance (mm

Figure 1-8: Faraday rotation vs. length for three different magnetic garnet samples: a bulk
sample, a high birefringence waveguide, and a low birefringence waveguide [9]

Isolators have been achieved with waveguide Faraday rotators and external bulk

polarizers [10]. However, a fully integrated isolator has not been demonstrated using

Faraday rotation because polarizers and polarizing beam splitters are difficult to achieve

in waveguide form.

1.4 Integrated Optical Isolator Design

Conventional isolators use Faraday rotators and bulk polarizers to achieve

isolation. Polarizers set at arbitrary angles are difficult to achieve in waveguide form, so

a practical integrated isolator design must not contain polarizers. Such a design was

created by Sugimoto et. al [11], which also functioned as an optical circulator. The

isolator, which is shown in Figure 1-9, is a four port device and consisted of waveguide

Faraday rotators, waveguide 3 dB couplers, and thin film polymer half-wave plates in a

Mach-Zehnder configuration. The Faraday rotators in the isolator provide a 45* Faraday

rotation. The two half-wave plates in the isolator have their slow axis oriented at 22.50

and -22.5* with respect the horizontal, thus providing a reciprocal 45* rotation.
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Figure 1-9: Optical isolator
rotators [11]

2

Half-wave plate
(polyimide film)

Way ide Faraday rotator
((La,Ga :YIG waveguide array)

(silica-bae panar ghave cuit)

consisting of 3 dB couplers, half-wave plates,

The advantage of this design is that it achieves isolation with a Faraday rotator

without using any polarizers. The entire device was 47 mm in length. Most of this

length was dominated by the 3 dB couplers, each of which had a length of 22 mm. The

waveguide Faraday rotators, which were made of a lanthamum- and gallium-substituted

yttrium iron garnet [(La,Ga):YIG], were 3 mm long. The Faraday rotators were biased

by a thin-plate type Sm-Co permanent magnet which was 6 mm long. The applied

magnetic field was 18 mT. The half-wave plates were made of 20 ptm polyimide films

which were inserted into grooves formed on the 3 dB couplers.

Figure 1-10 shows how TE and TM polarizations change as they propagate through

the isolator. HWP1 and HWP2 refer to the half-wave plates with slow-axes oriented at

22.5* and -22.5*, respectively. The arrows represent the polarization state, with the black

arrows representing TM inputs and the white arrows representing TE inputs. As can be

seen, for forward propagation, the polarizations are in phase at the output, but for reverse

propagation they are out of phase.

and Faraday
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HWP FR

FR HWP

Forward Propagation

HWP FR

FR X HWP

everse Propagation

Figure 1-10: Polarization state of TE and TM inputs as they propagate through isolator

To understand how this design works, the Jones matrix formalism is used. A basic

tutorial on Jones matrices can be found in Appendix A. For light traveling in the forward

direction, the Jones matrices for the two arms can be expressed as:

A = HWR *FR=- I 1 1=[l0 (1.35)211 -1 I 1 _0 -1

A2 =FR* HWP2 = 1 1  1 2] (1.36)
211 1 -1 -1_ _0 -1_

Forward propagating light in the two arms will be in phase and interfere constructively.

In the reverse direction, the Jones matrices for the two arms become:

1 1i -i 1 ~0 1
A1 =FR*HWP4- 1  -j- (1.37)

A2 = HWP2* FR=- - 1] 0 ol (1.38)
2 _-1 -1 1t I -1

Reverse propagating light in the two arms will be out of phase and interfere destructively.

It is important to note here that the isolator functions for either TE or TM inputs. It is
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polarization independent because any input can be represented as a linear combination of

TE and TM polarizations.

The 3 dB couplers will switch the light depending on the phase: light from port 1

will exit at port 2, port 2 to port 3, port 3 to port 4, and port 4 to port 1. By only utilizing

two ports, the device will act as an isolator. If all four ports are used, then it will act as a

circulator.

Because the circulator used mirco-optic components on a silicon optical bench, it

was not monolithically integrated. However, if all of the individual components (3 dB

coupler, Faraday rotator, and half-wave plate) are in waveguide form, then this design

will be ideal for an integrated optical isolator. Therefore, this design will be used in this

thesis for the integrated isolator.

1.5 Thesis Overview

This thesis deals with the design and fabrication of an integrated optical isolator.

The first step to making an integrated isolator is to select a design, which has been

accomplished in this chapter. Also, in this chapter, it has been argued why it is best to

use Faraday rotation as the non-reciprocal effect for the isolator.

Chapter 2 will study Faraday rotation in semiconductors. In this chapter a

different approach will be introduced to explain Faraday rotation. This approach will be

extended to understand the contributions to Faraday rotation from magnetic dopants and

interband transitions in semiconductors. Data will be presented on Faraday rotation in

several different materials. Finally, based on this theory and data, a material will be

selected for the integrated isolator.

Chapter 3 will go into the details of the design of the integrated isolator. Analysis

will be done to determine the limits on isolation and also fabrication tolerances for the

device. Finally, simulation results on the isolator performance will be presented.

Measurement and characterization of the waveguide Faraday rotator will be the

topic of Chapter 4. The experimental setup for characterization of the Faraday rotator

will be described in detail. Data on the optical loss, birefringence, and Faraday rotation

of the waveguides will be presented.
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Chapter 5 will summarize the results of this thesis and evaluates the progress

made towards the realization of an integrated optical isolator thus far. The chapter

concludes with a discussion of future work to be done in the design and fabrication of an

integrated optical isolator.
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Chapter 2

Faraday Rotation in

Semiconductors

To make an integrated isolator, a material is needed which can be monolithically

integrated with semiconductor lasers. Commercial isolators are made from magnetic

garnets such as YIG (yttrium iron garnet). These garnets are ideal for isolators because

they have a high Verdet coefficient and low absorption. However, the problem with

magnetic garnets is that they cannot be grown on common semiconductor substrates such

as InP. Integration of an isolator with a semiconductor laser would be possible if a

semiconductor could be used for the isolator material.

In order for a material to be used for an isolator, it must meet one important

criterion: it must be able to provide a large Faraday rotation while also having minimal

optical loss. Specifically, for the isolator design in this thesis, the material must be able

to provide 450 of rotation while also having a loss below 1 dB. The length of the Faraday

rotator is then set by two equations:

Vl = 45 (2.1)

10 log (e-al)= -1 (2.2)

-1 -1where V is the Verdet coefficient in 0*-mm- and a is the absorption coefficient in mm-.

By solving these two equations for 1, the figure of merit for an isolator material becomes

= 195 (2.3)
a

This chapter aims to better understand Faraday rotation in semiconductors in

order to see if they can be used for isolators. It will analyze three different contributors to
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the Faraday rotation: free carriers, interband transitions, and magnetic dopants.

Experimental results on the Faraday rotation in different semiconductors will be

presented. The chapter will conclude by selecting a material for the isolator.

2.1 Free Carrier Faraday Rotation

For free carriers in a uniform medium the restoring force of the nucleus

approaches zero. The permittivity can then be found by using Equation 1.4 and setting

(o, to zero. The off-diagonal term becomes

,= Neq 3 B ( (2.4)
to(m*)2c3 . 2,v (qB)2 +2

The mass is written as m* in order to indicate that it represents the effective carrier mass.

The damping term can be expressed in terms of the effective mass and a scattering time 'r:

Y = (2.5)

For semiconductors, T is usually on the order of picoseconds. The applied magnetic field

is on the order of a Tesla. The wavelength of importance is 1.55 pIm, which corresponds

to o on the order of 1015 sec~1. Using these values, the terms in the denominator become

r = =10 31(2.6)

q =B 0-4 (2.7)

These terms are both much less than one and can be neglected in the denominator.

By inserting Equation 2.4 into Equation 1.18, the free carrier Faraday rotation

becomes

S _ co Ex_ Neq 3B (2.8)
c 2n 2con(m*Y'co2

Rewriting this expression in terms of optical wavelength, one has:
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= - q3 BA (2.9)
8;2c3 n(M j

A key feature of Equation 2.9 is that the Faraday rotation is inversely proportional

to the square of the effective mass of the free carriers and proportional to the carrier

concentration. This allows the Faraday rotation to be used for measuring these quantities

in semiconductors [12],[13],[14]. Another feature of Equation 2.9 is that the Faraday

rotation is proportional to q3. This means that electrons and holes have Faraday rotations

of opposite sign. A final feature of Equation 2.9 is that the Faraday rotation is directly

proportional to the wavelength squared. For long wavelengths, the free carriers will be

the dominant contributors to the Faraday rotation in a semiconductor, whereas with

shorter wavelengths closer to the bandgap, interband transitions will be more important.

An important question to ask now is if the free carrier Faraday rotation is strong

enough for an optical isolator. To answer this, the loss due to free carriers must be

known. This can be done by using the imaginary part of the index of refraction. The

expression for the imaginary part of the refractive index can be found by using Equation

1.25:

n2 =(n,.+ An = Neo2 M*(C 02)+ jWy (2.10)
_Ct )Z- 2 + jyY -(CoqBz?

For semiconductors, m* o>>y and m*o>>qBz, as shown in Equations 2.6 and 2.7. Using

these results and Equation 2.5 for y, the expression for ni becomes

n= Ne 2  (2.11)
i 2on, m 

r is the effective scattering time of the free carrier, which can be expressed in terms of the

mobility:

m i (2.12)

This only gives an upper limit on x because the mobility does not take into account

electron-electron scattering, which also contributes to the damping term y.
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The imaginary portion of the propagation constant corresponds to a power

attenuation of the form e 1 , where a is the absorption coefficient. By using Equation

2.12, the expression for a becomes

a = 2-n = (2.13)
C 4r72cIEon,(m*)p)

The factor of two is included because the power loss is being considered here. With this

result and Equation 2.9, the figure of merit for free carriers becomes:

V- Bp (2.14)
a 2

Using a value of 1 T for B and typical values for p (1,000 to 10,000 cm 2/V/s), one obtains

a figure of merit between 0.05 and 0.5. For an isolator, this figure of merit should be at

least 195, so free carriers will not be desirable for providing Faraday rotation.

2.2 Interband Faraday Rotation

To understand how interband transitions and magnetic dopants in semiconductors

contribute to Faraday rotation, a different approach to analyzing Faraday rotation is

taken. In Section 1.2 it was shown that in a magneto-optical material right- and left-

circular polarizations have different propagation constants, and it is the difference in

these propagation constants that cause Faraday rotation. This can be written as:

Of V==+- co(n+-n) (2.15)
1 2 c 2

p has been rewritten here as on/c, with n+ and n. corresponding to the indices of

refraction for right and left circularly polarized light.

The index of refraction is a function of the electronic transition energy E 12 (the

transition from electronic level 1 to level 2). For small perturbations in the transition

energy, denoted as AE 12 , the difference in index of refraction can be Taylor expanded

about the unperturbed transition energy to give:

n- = an (AE - (2.16)+ 12 12 12
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where the superscripts indicate the perturbations for right- and left-circularly polarized

light. Thus, with knowledge of the functional form of the index of refraction and the

value of the perturbations to the transition energy, the Faraday rotation can be calculated

for any material.

2.2.1 Index of Refraction as a Function of Transition Energy

The first step to calculating the Faraday rotation from interband transitions is to

find the partial derivative of the index of refraction with respect to the transition energy.

For semiconductors, the transition energy E12 of interest is the bandgap energy Eg. A

simple model for the refractive index is given by

n 2 -l=n + F (2.17)

F is the oscillator strength of the transition, and n, is the contribution from all other

sources excluding the interband transition to the refractive index. Inserting the partial

derivative of this function with respect to Eg into the expression for the Faraday rotation,

one obtains:

S= F 1 2E22 (AEg - AEg-) (2.18)
2TIc n (Eg - E2Y

It can be seen that the Faraday rotation will increase rapidly as the photon energy

approaches the bandgap energy. By engineering the bandgap of a semiconductor, it is

possible to increase its Faraday rotation for a desired wavelength.

For specific semiconductors, explicit expressions exist for the index of refraction

based on curve fitting to experimental data. For the quarternary material In1 .xGaxAsyP1.y

lattice matched to InP, the expression for the index of refraction is [15]

E EdE 2  EdE 4

n 2 -I= I+Ed d EdE(.9
E E3 2EM E2 - E2 (0 0 0 0 9

where E is the photon energy and
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E0 = 0.595x 2(1- y)+1.626xy -1.891y + 0.524x + 3.391 (2.20)

Ed = (12.36x - 12.7l)y + 7.54x + 28.91 (2.21)

For Ini.-xGaxAsyPi.y lattice matched to InP, the bandgap Eg is given by

Eg = 1.35 - 0.72y +0.12y 2  (2.22)

Figure 2-1 shows anlEg as a function of wavelength for both InP and In1.

xGaxAsyPi.y (x=.290 and y=.628). The bandgap of InP is 0.89 pm, and that of InGaAsP

is 1.30 pm. At a wavelength of 1.55pm, anfllEgl for InGaAsP is larger than InP by a

factor of 10, so it is expected that the Faraday rotation for InGaAsP should be 10 times as

large as for InP just due to the bandgap. Also, it can be seen that cn/fiEgI increases as the

wavelength approaches the bandgap for both materials. Thus, it can be seen how

bandgap engineering can be used to increase Faraday rotation.
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2.2.2 Perturbations to Transition Energy Due to Magnetic Field

The Hamiltonian of an electron in an external magnetic field B can be written as

Hi = -MOeB = - -$+ gS)OB (2.23)
2m
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where M is the magnetic moment of the electron, q is the electron charge, m * is the

effective electron mass, L and S are the angular momentum and spin operators, and g is

the electron g factor. This can be rewritten in the basis of total angular momentum J,

which is defined as L+S:

H = + ( g) J JJB = -q L+gS)eL+S zB (2.24)
2m j 2m j

Using the identity

- 2 _ 2 _ 2

S 2 - 2 (2.25)
2

The Hamiltonian can be rewritten as

H = -q (g+1)J2 + (g - 1)(S 2 - L2 JB (2.26)
2m* 2J 2  J (

Now that the Hamiltonian is in the total angular momentum basis, the energy splitting for

any state can be written as

AEjm = gLmBz (2.27)
2m*

where mj is the total angular momentum component along the z axis, j is the total angular

momentum, h is Planck's constant divided by 2n, and gL is the Land6 g factor, which is

defined as

g ++ (g -1)(s(s +1) - l(l+1))
gL (2.28)

2 2j(j+1)

where j, 1, and s correspond to the magnitude of the total angular momentum, orbital

angular momentum, and spin. The above expression results from the fact that the

eigenvalue of an angular momentum operator A2 is h2a(a+1).

For a semiconductor, the transitions of importance are between the conduction

and valence band. The conduction band is mainly s-orbitals, so 1=0, and the free carriers

are electrons, so q is negative. The valence band has p-orbitals, so 1=1, and the free

carriers are holes, so q is positive. The energy levels will split as shown in Figure 2-2,

with each level designated by its total angular momentum quantum numbers ( [j,mj)).

The electronic transitions of interest involve an electron losing or gaining one quantum of

angular momentum and are indicated by the arrows in Figure 2-2. Because angular
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momentum must be conserved in the transition, a photon with a right- or left-circular

polarization, represented as a+ or Y-, is emitted.

Conduction
band

E9

Valence
band -

Ec1
11/2,1/2)

2C

E1 1/2,-1/2 )

Ehhl
13/2,-3/2 )

| 2V 2 2V1
EIh2

13/2,1/2 )
Ehh2 323)

Figure 2-2: Energy
magnetic field

where

(2.33)

(2.34)

(2.35)

pR is the Bohr magneton which is defined as lqlh/(2m0 ) and has a value 6.078 x 10-5 eV/T,

and m0 is the free electron mass. The subscript on the g factors indicate valence and

splitting of valence and conduction bands due to application of

(2.29)

(2.30)

(2.31)

(2.32)

The energies for the transitions in Figure 2-2 are

AE+ = Ec2 -Ehhl Eg - (C + Vi)

AE+ = Ed - EIh E +(C-V 2 )

AE- = Ec2 -Eh 2  Eg -(C-V 2 )

AE- = ECI - Ehh2 E9 +(C + V)

lmC

2 mhh
V2 =JBB (gv + 2)

2moh
V2 =flBBZ- (g+2)

6 mlh

r
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conduction band, while the subscript on the effective masses indicate conduction, heavy

hole, and light hole bands. The Faraday rotation is proportional to the energy difference

for transitions for left- and right-circular polarized photons. The largest energy

difference is for the conduction to light-hole transition:

AE+ - AE- = (Ec2 - Elhl ) (Ec, - Eh2 ) BBZ MO (g _ +n2) (2.36)
mc mhh 3

The g factor for free electrons is 2, but in a semiconductor it differs from this value. It

can be calculated using simple k-p theory. For the conduction and valence band, the g

factor is given by [16]:

2EA
g =2- E EA (2.37)

S3E9 (Eg+A)

3Eg Eg(2.38)

A is the spin-orbit splitting energy and Ep is the energy equivalent matrix momentum

element, expressed as 21P| 2/mO, and P is the momentum matrix element. These

parameters are well known for most semiconductors.

Using these results, the expression for the Verdet coefficient becomes:

c 1 u BmO m0 (g, +2)~
V = pBan Bz .n -c .O v+2 (2.39)

2c &E mB mg h 3 (2.39)

Thus, an explicit expression for the interband Faraday rotation in semiconductors is

obtained in terms of well known parameters.

2.2.3 Perturbations to Transition Energy Due to Magnetic Dopants

If magnetic dopants are introduced into a semiconductor, the energy splitting can

be enhanced further. This is due to an sp-d exchange interaction between the magnetic

dopant electrons and the band electrons. This interaction can be described by a

Heisenberg-type Hamiltonian [17]:

Hint =I Jr - R a (2.40)
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where J(r-Ri) is the exchange integral, Ri is the site of each magnetic dopant atom, Si is

the spin operator for the magnetic dopant electrons, and ai is the spin operator for the free

carriers in the semiconductor. The new energy levels due to this Hamiltonian can be

found using k-p theory. The resulting levels split just as the levels found for intrinsic

semiconductors, but the magnitude of the splitting is different. Figure 2-3 shows the

energy levels and electronic transitions for right- and left- handed circular polarizations.

Conduction
band -T

Eg

Valence
band - .

Ec1
|11/2,1/2)

6A

E1 11/2,-1/2 )

S Ehh1
|/2,-3/2 )

E13/2,-1/2 )

2B 6B
Elh2

13/2,1/2)
E

Figure 2-3: Energy splitting of valence and conduction bands
interaction with magnetic dopants

The transition energies are

AE- = Ed -

AE* = Ec2

AE- = Ed

AE = Ec2

where the splitting terms are given by [18]

Elhl= E9 +(3A+ B)

Ehhl E9 + 3(B -A)

Ehh2 =E - 3(B -A)

Elhl Eg - (3A + B)

due to sp-d exchange

(2.41)

(2.42)

(2.43)

(2.44)

1 M
A = -a

6 gMpB

1 M
6 gM pB

(2.45)

(2.46)
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cx and P are the exchange integrals for the conduction and valence band electrons, gm is

the Land6 g factor of the magnetic dopant spins, and M is the magnetization of the dopant

per unit volume.

The largest difference in right- and left-circular polarized transition energies is

AE* -AE =(E 2 - Ehhl)- (E, - Ehh2 )= 6(B -A)- M (2.47)
gM PB

The magnetization of the dopants for low concentrations can be expressed as [19]

M = xNo (gM PB )2S(S+1) B (2.48)
3kBT

where x is the dopant concentration, N0 is the number of unit cells per volume, kB is

Boltzman's constant, T is the temperature, B is the applied magnetic field, and S is the

electronic spin of the magnetic dopant atom.

With this result the Verdet coefficient due to magnetic dopants becomes

V = co - a)xN,(9 pB ) S B (2.49)
2c Eg 3kBT

The important thing to note from this expression is that the Verdet coefficient is

proportional to the magnetic dopant concentration. This is similar to free carrier Faraday

rotation, but the difference here is that there is minimal loss caused by the magnetic

dopants. It has been shown that in semiconductors such as InP, the introduction of

magnetic dopants will have negligible contribution to the optical loss for wavelengths

below the bandgap [20]. Therefore, magnetic dopants are an effective way to enhance

the Verdet coefficient without increasing the loss.

The unknown terms in Equation 2-49 are the exchange integrals a and P. These

terms are difficult to calculate and must be determined experimentally. The difference of

these exchange integrals will determine the sign of the Faraday rotation. Previous results

have shown that the Faraday rotation in semiconductors caused by magnetic dopants such

as Fe is negative [21]. Therefore, by increasing the dopant concentration in a

semiconductor, the Faraday rotation can become zero or even negative.
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2.3 Faraday Rotation Measurement

2.3.1 Experimental Setup

The experimental setup for measuring the Faraday rotation in bulk samples is

shown if Figure 2-4. The samples are placed in an electromagnet capable of providing

magnetic fields as strong as 2 Tesla. A 50 dB extinction ratio polarizer at the input

provides linearly polarized light oriented at 450 from the horizontal axis. After the light

is rotated by the sample, a polarizing beam-splitter with 50 dB of extinction separates the

horizontal and vertical polarizations. Two photodetectors measure the powers of the

polarizations.

B

Polarizer

Collimator

Polarizing
Beam Splitter

I Photodetector

F)

Photodetector

Magnet

Figure 2-4: Experimental setup for measuring Faraday rotation in bulk samples

The Jones' matrix formalism is used to analyze the setup. The sample which

provides a Faraday rotation OF can be modeled as a Jones' matrix of the form

cos( OF)

sin( OF)

-sin( OF

COS( OF)
(2.50)
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Ideally the input polarization should be at 450, but the input may not be exactly at this

angle. If the input light is at an angle 450+, then the output from the sample can then be

modeled as

E =E0 [cos(OF) -sin(OF)][cos(45+b)1 E cos(45+ )cos(OF)-sin(45+b)sin(OF
"" " sin(OF) cos(OF) sin(45+)] V Lsin(45+5)cos(OF)+cos(45+8)sin(F

(2.51)

The normalized difference in the powers for the two polarizations is then:

IEx 12 jEY 1
dP = - = -cos(2 8 )sin(2 0 F) -sin(28 )cos(20F) (2.52)

E + E,

The error in input angle 6 will cause an error in the calculated angle. By switching the

sign of the magnetic field, the sign of OF will also switch. By subtracting dP for the

positive and negative magnetic field the error due to the imbalance can be reduced:

dP+ - dP- = -2 cos(23)sin(20F) (2.53)

For 6 as large as 100, cos(26) is 0.94. Thus a 10* error in the input will only result in a

6 % error in the measured value of OF. In practice, 6 is kept below 10 for bulk

measurements, resulting in 0.1 % error in the Faraday rotation measurement.

2.3.2 Cavity Enhanced Rotation:

Because some samples had very clean, reflective surfaces, an optical cavity was

created. When a Faraday rotating material is placed in an optical cavity, the rotation is

enhanced on resonance. In order to extract the single pass rotation, a closer analysis of

cavity enhanced rotation is provided here.
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Figure 2-5: Transmission through an optical cavity of length 1, propagation constant P,
and field transmission and reflection coefficients t and r

To understand this phenomenon, it is helpful to first understand the transmission

characteristics of an optical cavity. Figure 2-5 shows a picture of a simple optical cavity

of length 1. p is the propagation constant of the cavity material, and t and r are the field

transmission and reflection coefficients of the surfaces at the ends of the cavity. The

transmission is given by

E,= Eo2-j'01 (I+ r 2 -j2,61 + (r2e ,61t +...e- (2.54)

For a Faraday rotating material, the allowed polarization states are circular polarizations,

each with a different P. The Faraday rotation through the cavity will be given by the

phase difference between the two circular polarizations:

SZE - ZE-
OF t'2 (2.55)

The phase of the transmitted light is

__ (2

ZE, = - tan -1 2 tanImp)) (2.56)
ReE,} 1- r

For a Faraday rotating material, the propagation constant is given by

p = n± 2 j = p ±V (2.57)
C( 2n

where /o is the propagation constant under no applied magnetic field and V is the Verdet

coefficient. On resonance, the round-trip phase through the cavity is 27c, and tan(po1)=0.
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Therefore, tan(30 l+VO)~ ±Vl. Under this approximation, the Faraday rotation on

resonance becomes

F Vi (2.58)
l-r2

Because V is the Faraday rotation with no cavity present, it can be seen that the effect of

the cavity is to enhance the rotation by a factor of (1+r 2)/(1 -r2 ). This factor can be

calculated from the power transmission spectrum of the cavity. The transmitted power is

P = JEJ2 -_ E, 12 t4 (2.59)
1 + r4 - 2r 2 cos(2pJl)

The ratio of the maximum transmission to minimum transmission is then

Pmax 2)+r2
2  (2.60)

min (1- r2)

Thus, by measuring the Faraday rotation on resonance and the power transmission

spectrum, the single pass Faraday rotation Osp can be expressed as

min

0sp -max =.(2.61)

where Omax is the Faraday rotation on resonance. This method allows for the extraction of

the Verdet coefficient of a material from its cavity enhanced rotation. The analysis of

cavity enhanced rotation presented in this section differs from previous work [22],

however, the same result (Equation 2.61) is obtained.

2.3.3 Experimental Results

The samples measured included iron doped InP (Fe:InP), sulfur doped InP

(S:InP), and InGaAsP, both undoped and iron doped. The sulfur is a donor and provides

free electrons to the InP. There are no free carriers in iron doped InP because the iron

creates a state in the bandgap which traps the free carriers. This is why Fe:InP is known

as semi-insulating InP.
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The Verdet coefficient of S:InP is shown in Figure 2-6. As can be seen, at longer

wavelengths, the Faraday rotation increases. In this region the free carrier rotation is

dominant.
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Figure 2-6: Verdet coefficient of S:InP vs wavelength. The free carrier
3.6 x 10 cm-'

concentration is

By fitting a second order polynomial to the curve at longer wavelengths, as shown

in Figure 2-6, the carrier concentration was calculated. For this sample, the actual carrier

concentration is 3.6 x 1018 cm-3, and the calculated carrier concentration is 3.7 x 1018

cm3 , thus showing close agreement with Equation 2.9.

The total rotation is found by adding the free carrier rotation and interband

rotation. Figure 2-7 shows the theoretical Verdet coefficient for S:InP, along with the

measured Verdet coefficient. Also plotted in Figure 2-7 is the theoretical interband

Verdet coefficient calculated using Equation 2.39 and the theoretical free carrier rotation

calculated using Equation 2.9. The value of the experimental Verdet coefficient is larger

than the theoretical value by a factor of 2. This is because the theoretical interband

rotation is too small by a factor of 8.
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Figure 2-7: Theoretical and experimental Verdet coefficient of S:InP

Figure 2-8 shows the measured Verdet coefficient and optical loss versus

wavelength for the Fe:InP. The Fe concentration is 2.9 x 1016 cm-3 and the Verdet

coefficient of Fe:InP is half as large as for undoped InP. This indicates that the

contribution of Fe atoms to the Faraday rotation is actually opposite that of the intrinsic

contribution.

The loss measurements were made using ellipsometry. The error of the loss

measurement below the bandgap is 0.04 mm~1, which is larger than the largest measured

loss. The loss minimum in Figure 2-8 may not be a true minimum, but instead may be

due to measurement error.

The figure of merit V/a for this material at a magnetic field of 1 Tesla is shown in

Figure 2-9. With the uncertainty in the loss measurement, the maximum figure of merit

ranges between 51 to 157, which is not large enough for an optical isolator.
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Fe: InP 1 pm

Fe- InGaAsP 0.5 pm

Fe: InP 1 pm

Fe: InP 350 pm

Figure 2-10: Fe:In.xGaxAsyP..y (x=.290 and y=.628) structure used for Faraday rotation
measurements

Fe:In.xGaxAsyPI.y (x=.290 and y=.628) lattice matched to InP was epitaxially

grown on an Fe:InP substrate as shown in Figure 2-10. This sample had very clean

surfaces, so it acted as an optical cavity. No cavity effect was observed in the Fe:InP and

S:InP samples because their surfaces were scratched and did not act like smooth mirrors.

The measured Faraday rotation and power spectrum versus wavelength for the

Fe:InGaAsP is shown in Figure 2-11. On resonance, the rotation is a maximum, as

predicted by the theory. Samples of Fe:InGaAsP with various Fe concentrations were

measured and the single pass rotation was extracted using Equations 2.61.
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Figure 2-11: Cavity enhanced Faraday rotation and power spectrum versus wavelength
for Fe:InGaAsP sample at a magnetic field of 1.3 T

Because the substrate was over 700 times thicker than the InGaAsP, the measured

rotation was dominated by the substrate. To obtain the rotation of the InGaAsP from the

measured rotation of the entire structure, the substrate rotation was subtracted off from

each samples total rotation. The results on Fe:InP were used to calculate the substrate

rotation.

The Verdet coefficient of InGaAsP can be calculated using the following

expression:

VInGaAsP -O (2.62)
BlInGaAsP

where 0 is the measured rotation in the sample, O is the calculated rotation of the

substrate, lInGaAsP is the thickness of the InGaAsP, and B is the applied magnetic field.

The substrate rotation is calculated using the measured rotation for the Fe:InP sample:

s = VsBls = OFe:InP s2.63)

'Fe:JnP

where lFe:InP and is are the lengths of the Fe:InP sample and the substrate of the InGaAsP

samples, respectively. OFe:InP is the measured rotation for the Fe:InP sample and B

cancels out because it is the same for each measurement. Inserting this into Equation

2.62 gives
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0 0 Fe:InP s

VYInGaAsP I Fe: InP (2.64)
B1 InGaAsP

The error in VInGaAsP is given by

2 2

VAVInlGasP) = InGaAsP 2 + aInGs (A OFe:InP 
2  (2.65)

Fe:InP

Because the uncertainty in each rotation measurement is 0.010, the error in VInGaAsP

becomes

(AVInGasP AO 1 (2.62)
BlInGaAsP Fe:InP

By inserting numerical values for all of the constants, the error becomes

AVn 4 + 10.35mm 8.7 (2.66)
(1.315T 5x10 mm O.487mm) mm-T

Figure 2-12 shows the Verdet coefficient versus Fe concentration in the InGaAsP

at a wavelength of 1.55ptm. As can be seen in the plot, as the Fe concentration is

increased, the Verdet coefficient becomes more and more negative, which agrees with the

results for Fe:InP. Also, the rotation is linearly proportional to the iron concentration, as

expected for low iron concentrations. The linear fit to the data in Figure 2-12 predicts a

value of 96.7 ± 18.7 */mm/T for the Verdet coefficient for undoped InGaAsP at a

wavelength of 1.55tm, while Equation 2.39 predicts a value of 48.2 */mm/T.
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Table 2-1: Verdet coefficient,
materials at 1.55pm

at a wavelength

absorption coefficient, and figure of merit for different

Table 2-1 shows the Verdet coefficient, optical loss, and figure of merit for

various materials at 1.55ptm. For the figure or merit, it is assumed that the external

magnetic field is 1 T. As can be seen from the table, undoped InGaAsP has a Verdet

coefficient comparable to YIG. This indicates that this material is a viable candidate for

an integrated optical isolator. The main reason for the enhanced strength of the Faraday

0 Experiment
-- Linear fit

-S

Material V [/mm/T] V [*/mm/T] c [mm-1] Experimental

(experiment) (theory) V/ a at 1 T

(Target=195)

YIG 130 0.11 1182

InP 7.8 1.0 0.02 390

Fe:InP: 2.6 0.02 130

2.9 x 1016 cm-3

InGaAsP 96.7 48.2

Fe:InGaAsP: -181.4

8.0 x 1016 cm-3

ibu -

|
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rotation is the decreased bandgap of the InGaAsP. By adjusting its composition to reduce

the bandgap, the Verdet coefficient of InGaAsP could be increased even more. The

optical loss for InGaAsP is not listed in the table because the sample was too thin for loss

measurements. However, in Chapter 4 optical loss measurements for InGaAsP

waveguides will be shown.

2.4 Summary

The aim of this chapter was to present a theoretical model for semiconductor

Faraday rotation in order to determine what sort of material would be ideal for an optical

isolator. The first key result is that by tuning the bandgap closer to the operational

wavelength, the Faraday rotation can be increased. The second key result is that the

addition of magnetic dopants will contribute to the Faraday rotation via an sp-d exchange

interaction. Thus there are two parameters, bandgap and magnetic dopant concentration,

which can be used to control the Faraday rotation.

It was found that InGaAsP is a suitable material for an optical isolator. It is lattice

matched to InP, which is the substrate for semiconductor lasers used for

telecommunications. These are the lasers for which the isolator is being designed, so the

use of InGaAsP allows for monolithic integration. The bandgap of InGaAsP can be

tuned by controlling its composition, thus allowing for tuning of the Faraday rotation.

Magnetic dopants provide a Faraday rotation of the opposite sign of undoped InGaAsP.

They can be used to increase the Faraday rotation with heavier doping concentrations.

The next step is to design an integrated isolator using this material. This is discussed in

Chapter 3.



58



59

Chapter 3

Integrated Isolator Design

The design used for the isolator was discussed in Chapter 1. The design is shown

again here in Figure 3-1. It is a four port device which acts as a circulator. When only

two ports are used, the device functions as an isolator. It consists of two Faraday rotators

which provide 45* of non-reciprocal rotation, two half-wave plates which provide 450 of

reciprocal rotation, and two 3 dB couplers. The half-wave plates provide their rotation by

having their slow-axis, defined by the vector s in Figure 3-1, oriented at 22.50 and -22.5*

to the horizontal. This chapter will go through the design of each of these components in

waveguide form. It will then discuss the effect of fabrication errors on isolator

performance. Finally, simulation results for the isolator bandwidth will be presented. An

eigenmode propagation code was written to simulate the isolator bandwidth using 2-D

optical mode profiles of the waveguide structures calculated using a fully-vectorial mode

solver written by Mike Watts.

Half-Wave
Plate 1 Faraday Rotator

+45*
Rotation

Faraday Rotator Half-Wave
Plate 2

Figure 3-1: Integrated isolator block diagram
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3.1 Faraday Rotator

3.1.1 Theory

To understand the effects of birefringence

the problem not as a polarization rotation, but

and transverse magnetic (TM) polarizations.

Faraday rotation are [23]

on Faraday rotation, it is easiest to view

as a coupling of transverse electric (TE)

The coupled mode equations modeling

aATE - -j/TE ATE + VAmaz
S=: -VATE- 

Tm ATmaz

(3.1)

(3.2)

V is the Verdet coefficient, A represents the field amplitude, and p is the propagation

constant for the TE and TM modes. By assuming that the fields have an e-jP dependence,

the eigenvectors v and eigenvalues k of this system of equations are found to be

V =. = -j(p8, + V) (3.3)
V

V2 = A- 2 -A8 -__) (3.4)

where

A = (8TE -,TM
2

0 = TE 8M)

2

-A =A2 + V2

(3.5)

(3.6)

(3.7)
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The eigenvectors represent the polarization states of the system, and the eigenvalues

represent their propagation constants. Using the results of Appendix A, the Jones' matrix

for a birefringent Faraday rotator of length L is given by

S=ADA-1 =

cos(yL)+ jAsin (L) - sin(V4L)

A (3.8)
sin(/L) cos(VL)-j-sin(VL)

where the matrix A has the eigenvectors v, and V2 in its columns, and D is a diagonal

matrix with the eigenvalues eXIL and e X2 along its diagonal. The common phase factors

have been dropped in the above expression. In the limit of no Faraday rotation (V=0),

this matrix reduces to

~ i _OE~~$8TML

S = [eiT 0 jL (3.9)
0 ed 2

This is just the Jones' matrix of a reciprocal birefringent element. In the opposite limit

where there is no birefringence (A=O), the Jones's matrix becomes

= cos(VL) -sin(VL)
sin(VL) cos(VL)_

This is the Jones matrix for a Faraday rotation through an angle VL. If birefringence is

present, the rotation will be less than VL. If A>>V, then the effect of the birefringence

will dominate and the Faraday rotator will act like a reciprocal birefringent element. In

the opposite limit, the Faraday rotator will function properly. Thus, it can be

mathematically seen how the birefringence suppresses the Faraday rotation.

For a more intuitive explanation for waveguide Faraday rotation, it helps to think

in terms of power exchange. The Verdet coefficient can be viewed as the rate of power

exchange between the TE and TM modes. In a birefringent free waveguide, both modes

have the same propagation constant, which means they have the same phase velocity. If

the two modes are traveling at the same velocity, then it is easy for them to exchange

power. In fact, in this limit, all the power from one mode can be transferred to the other.

This would correspond to a 90* Faraday rotation. If birefringence is present, the modes
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will not travel at the same velocity. In this case, full power transfer will never be

achieved. Thus, no matter how long the Faraday rotator is, a 900 will never be possible.

This is the source of the Faraday rotation suppression.

3.1.2 Faraday Rotator Limits on Isolation

To see how much birefringence can be tolerated, a Jones' matrix analysis of the

isolator is used. For the Faraday rotator (FR), VL=7c/4. If no birefringence is present,

this will give a 450 rotation, but if there is birefringence, the Jones matrix will become

FR(45*)= a ] (3.11)
lb a*

where

( 2 

2-

a=cos i+( + 21sin l+ (3.12)

b= ] in@1+ ](3.13)

In the forward direction, the Jones' matrices of the two arms of the circulator are

A, = HWI22.5 * FR = I b a*-b (3.14)
V2a - b - (a + b)_

iF a~b -(a-b)]
2 = FR * HWF(-22.5 0) =,b ,(a+b] (3.15)

V=-(a -b) -(a* +b)_

where HWP stands for half-wave plate and the angle represents the orientation of the

slow axis.

In the reverse direction, the Jones' matrices of the two arms are

A1=FR* HWK22.5)= 1 [a-b a+b (3.16)
.,F2 a* +b -a* +b
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A2 = HWJ(-22.50) * FR=- a-b -(a* +b) (3.17)
,F _-a+b a* +b_

When the reverse Jones' matrices are added together, the result is

A1 + A 2 =V2 a-' b jIm{aj (3.18)
1- j~mja+ b b 1

where Im { a} refers to the imaginary part of a. With perfect 3 dB couplers, the maximum

possible isolation will be given by any light in one arm which is not exactly out of phase

with the light in the opposite arm. To calculate this, assume that 'the input light with

power normalized to one has equal TE and TM components. Then the isolation can be

defined as the power of the Jones' vector obtained after multiplying the input with

Equation 3.18:

Isolation = (A, + A2 1
[1i -} (3.19)

V- I 2b-j~mja)

The isolation as a function of A/V is plotted in Figure 3-2. For the isolator to achieve at

least 15 dB of isolation, A/V must be less than 0.13.
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Figure 3-2: Isolation vs. A/V

The length of the Faraday rotator is determined by its Verdet coefficient. Based

on the results of Chapter 2, the Verdet coefficient is assumed to be 100*/mm for

simulations in this chapter, which corresponds to a length of 450 ptm for the Faraday
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rotator. Using this value for V, A must be less than 13 */mm in order for the isolation to

remain below 15 dB. At a wavelength of 1.55 pm, this corresponds to a waveguide

birefringence of 1.1 x 10-4, where the waveguide birefringence is defined as the

difference in TE and TM mode effective indices (nTE-nTM)-

3.1.3 Faraday Rotator Design

Rotationally invariant mode profiles would eliminate the birefringence because

then the TE and TM modes would be indistinguishable under a 90* coordinate rotation.

By etch-tuning a high-mesa waveguide, the mode profiles can be made rotationally

invariant [24]. The high-mesa waveguide consists of a 0.5 pm Fe:In..xGaxAsyPI.y

(x=0.28, y=0.63) core with a 1.0 pm Fe:InP cladding on top and bottom.

Fe:InP

Fe:InGaAsP

Fe:InP

Figure 3-3: High-mesa etched waveguide cross-section and optical mode profile. The
waveguide width is 1.4ptm, the core thickness is 0.5 pm, and the wavelength is 1.55pm

Figure 3-3 shows the high-mesa waveguide structure and the optical mode profile

for a waveguide with a width of 1.4 pm at a wavelength of 1.55 jpm. The high-mesa

structure has low mode confinement in the vertical direction because of a low index

contrast, and high confinement in the horizontal direction because of the high index

contrast.
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Figure 3-4: Birefringence of Faraday rotator vs. waveguide width at a wavelength of
1.55pm

Tuning the width will tune the mode shape until a rotationally invariant profile is

achieved. Figure 3-4 shows the theoretical birefringence as a function of waveguide

width at a wavelength of 1.55 tm. To maintain at least 15 dB of isolation, the waveguide

width must be accurate to within 0.01 pm.

3.2 Multimode Interferometer

3.2.1 Theory

To achieve the power splitting a multimode interferometer (MMI) is used. This

device is a multimode waveguide which utilizes the interference between different modes

to achieve the power splitting. The interference between the modes can be used to

produce multiple images of the input field along periodic lengths of the waveguide [25].

A general diagram of an MMI is shown in Figure 3-5. In consists of two input and output

ports. To function as a 3 dB coupler, light incident on one input port must have its power

evenly divided into the two output ports.
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Figure 3-5: General diagram of MMI. Light at the input port on the left has its power
evenly divided between the two output ports

For tightly confined modes, the propagation constant for each mode is

approximately parabolic with respect to the mode order. The lateral wavenumber kmt and

propagation constant Pm are related by the expression

k 2,+ 2 = n (3.20)

where n is the refractive index of the waveguide core and m is the mode order. For

tightly confined modes, the lateral wavenumber can be approximated as

ktm = (m+1);r (3.21)
W

where W is the waveguide width. By using Equation 3.21, along with the fact that

kmt2<<(o)n/c) 2, the propagation constant is approximately given by

Co (m +1)2,r 2c
p n - 2  (3.22)

This can be rewritten as

Pm ~- 6 - am(m +2) (3.23)

where Pm is the propagation constant of the higher order modes, Po is the propagation

constant of the zero order mode, and a is given by

a = r C (3.24)
CoW

2

This parabolic relation of the propagation constant to mode order is the key for an MMI

to function properly.

An input mode on one side of the MMI can be expanded in terms of the guided

modes of the MMI
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y(x, y,0) = I C,,,,,(X, Y) (3.25)

where y(x,y,O) is the input field, cm are the mode excitation coefficients, and 4 m(x,y) are

the modes of the MMI. Because the MMI modes are orthogonal, the mode excitation

coefficients are given by

Cm = f* (x, y,0)0, (x, y)dA (3.26)
# (x, Y, 0)m (x, y)dA

The field at a distance L will be given by

y(x,y,L)= C,mm(x,y)e-jf'L (3.27)

which after common phase factors are dropped becomes

ig(x, y, L)= I ,cmm(x, y)eam(m+2 )L (3.28)

To split the power of the input mode, two images of the input mode must be created. To

see how this image creation occurs, the following properties are used:

Feven m = even
m(m +2) = (3.29)

Lodd m =odd

and

M m (x,y) m = even

-) m (xy) m=odd

which comes from the symmetry properties of the MMI modes.

If L is chosen so that

L = K(3.31)
2a

the propagated field becomes

7r jm (m+ 2 )-
Vr (x, y, ) = c, #,q (x, y)e 2 (3.32)

2a

Utilizing the symmetry properties of the modes, this expression can be rewritten as



(x'y, '7 )=2
2a I Cmm(X,Y)- j m C. 0,.(X, Y)

m=even m=odd

= V (x,y,O) + 1+] j(-x,y,0)
2 2

This equation represents a pair of images with half of the incident power located at a

distance of 7/2a from the input. This two-fold imaging can be used to make 3 dB

couplers.

If the field from Equation 3.33 propagates another nT/2a, the output field will be

yI(x,y, )= XCm#,m(X,Y)- ZCm,,(XY)= V(-x,y,O)
m=even m=odd

(3.34)

which represents the input field at the opposite output port. However, if there is an

additional nT phase shift introduced between the two field images, then Equation 3.33 can

be rewritten as

7r
y (x1y, )=2 a ,I cmm (X, Y) - , CmOm (X, Y)

m =odd m=even

(3.35)

After propagating another iT/2a distance, the output field will not switch ports:

y(x,/y, = -j ZC,,, (x, y) - j C#, (x, y) = V/(x,y,O)
a m=even m=odd

(3.36)

Thus, the addition of a n phase shift to one of the images can be used to control the exit

port of the input light.

3.2.2 MMI Limits on Isolation

For a Mach-Zehnder isolator, imbalances in the MMI will ultimately limit the

maximum isolation. The imbalance is defined as

P

P2

P 0 ( PPO-(P - P2 )2

2 +(PI - P2 )2

(3.37)
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(3.33)
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Pi and P2 are the powers in the two output ports of the MMI and PO is the total input

power. In order to calculate the maximum possible isolation, it is assumed that the

second MMI in the isolator has no imbalance. Then the balanced power would all be sent

to the port where no isolation is required and the unbalanced power would be divided

evenly between both ports. Thus, in the port where isolation is desired, there would be

half of the imbalanced power. The maximum isolation, which is the normalized power in

the port where isolation is desired, can be expressed as

P -P ll1-iriIsolation = 1 2 = 1- 7 (3.38)
2PO 4 1+q

Figure 3-6 shows the isolation versus imbalance.

imbalance must be below 0.33 dB.
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Figure 3-6: Isolation vs. MMI imbalance

3.2.3 MMI Design

The MMI was designed to accommodate the 1.4pm wide waveguide Faraday

rotators, while simultaneously minimizing its length. The MMI possesses the same

epitaxial layers as the Faraday rotator and the width was chosen to be 3.4 pm. There

were four guided modes for both TE and TM polarizations. Figure 3-7 shows the guided

TE mode profiles. The TM modes are very similar to the TE modes, and so are not
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shown here. Because the MMI was birefringent, the TE and TM modes had different

lengths for optimal power splitting.

Figure 3-7: MMI TE mode profiles

The power imbalance versus MMI length at 1.55 ptm was calculated using an

eigenmode propagation code (see Appendix B), and the results are shown in Figure 3-8.

The length for minimum imbalance for both polarizations is 52 pim. At this length, the

minimum imbalances of both TE and TM polarizations are 0.06 dB, which limits the

maximum isolation to 27.6 dB.
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Figure 3-8: MMI imbalance vs. length for TE and TM polarizations at
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3.3 Half-Wave Plate

3.3.1 Half-wave Plate Limits on Isolation

To analyze the effect of any error in the half-wave plate axes, the Jones' matrix

formalism is used. For this analysis, it is assumed that the slow-axes of the half-wave

plates in each arm of the isolator are at 0 and -0. As shown in Appendix A, the Jones'

matrix for an arbitrary half-wave plate with slow-axis angle 0 is

HWP = [cos(20)
sin(20)

sin(29) 1
- cos(20)_

(3.39)

In the forward direction, the overall Jones matrix for each arm is

A,=HWIF(9) * FR cos(20) + sin(20)

Vi- cos(2)+sin(29)

A2-FR * ITWI9) = 1 [cos(20) + sin(20)

F [cos(26) - sin(20)

- cos(2) + sin(20)

- cos(20) - sin(20)_

cos(26) - sin(20) 1
- cos(20) - sin(20)j

(3.40)

(3.41)

In the reverse direction, the Jones' matrices of the two arms are

A,= FR * IWO) = 1 cos(2) - sin(20) cos(2) + sin(20) 1
V cos(20) + sin(29) - cos(2) + sin(26)_

1 cos(20) -sin(20) - cos(20) -sin(20)
A2 = H' V-) VFR=-,F2 - cos(20) - sin(26) - cos(20) + sin(20)_

(3.42)

(3.43)

When the reverse Jones' matrices are added together, the result is

A +A 2 = 12[ cos(20) - sin(20) 0

- cos(20) + sin(26)j
(3.44)
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Following the same method as Equation 3.19, the maximum isolation with perfect 3 dB

couplers will be

Isolation = 21cos(20) - sin(29) 2 = 2(1 - sin(40)) (3.45)

Figure 3-9 shows the isolation versus 0.

but to have an isolation of at least 20 dB,

The slow axis angle is 22.50 for the ideal case,

deviations of +1.4* can be tolerated.
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3.3.2 Half-Wave Plate Design

The isolator requires two different half wave plates with slow axes at 22.5'and

-22.5' with respect to the TE axis in order to provide a reciprocal 450 rotation. To

achieve intergrated half-wave plates, a birefringent waveguide is needed which has its

principal axes not aligned to the TE and TM axes.

If a notch is etched on top of the Faraday rotator structure's upper cladding, as

shown in Figure 3-10, the symmetry which decouples TE and TM modes will be broken.

The effect of this notch is to couple these modes, creating new eigenmode polarizations.

These polarizations will define the slow- and fast-axes of the waveguide half-wave plate.

The slow-axis corresponds to the polarization of the eigenmode with the larger effective

index. By controlling the width of the notch, the slow-axis angle can be controlled. In
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order to change the sign of the slow-axis angle for the second half-wave plate in the

isolator, the notch simply needs to be etched on the opposite side of the waveguide.

Figure 3-10: Waveguide HWP cross-section. The notch on top of the core couples TE
and TM polarizations, creating new eigenmode polarizations which are no longer TE or
TM

To function as a half-wave plate, the waveguide must also provide a n phase shift

between the two eigenmodes. The length of the half-wave plate is defined as

LHWP A .46)
10s -,of 2(n, -n.4)

where P is the propagation constant of the fast- and slow-axis modes, n is the effective

indices of the modes, and X is the wavelength. The graph in Figure 3-11 shows the slow

axis angle as a function of notch width, and also the corresponding waveguide length to

achieve the n phase shift. At 1.55 pim, a notch width of 0.85 ptm and waveguide length of

158 ptm will give the required half-wave plate functionality. Because there is only 1.4*

tolerance in the slow axis angle, the corresponding tolerance on notch width is 0.05 pim.
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3.4 Isolator Simulation

Figure 3-12 shows a top and cross-sectional view of the isolator, with the arrows

indicating where light enters and leaves. The length of the isolator, which is given by the

sum of the lengths of each individual component, is 712 pm. The longest component is

the Faraday rotator, but this length can be changed if the Verdet coefficient is further

increased.

.su. . . . .
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Figure 3-12: Top and cross-sectional view of isolator

With all components now designed in integrated form, the next step is to evaluate

the performance of he isolator. Conventional photonic design software could not be used

to simulate the isolator because of the non-reciprocal Faraday rotator. In order to

simulate the circulator, an eigenmode propagation code was written which could support

non-reciprocal structures. Further details on this code can be found in Appendix B.

3.4.1 Reflections at Junctions

Before simulating the entire isolator, there was one concern, which was the effect

of reflections at the junctions of the different components. The reflections at the

junctions can be estimated using the Fresnel reflection. The Fresnel power reflection

coefficient at the junction of waveguide 1 and waveguide 2 is defined as:
2

R n2 -n 1

n2 + nl
(3.47)

where n is the effective index of each waveguide. With this formula, the reflections at

the junctions of the different structures were calculated.



76

It was expected that the reflections would be minimal because the mode indices

are very similar in value, so reflections due to index discontinuities will be negligible. It

was found that the all the power reflections were below 60 dB. This is negligible because

the isolation is theoretically limited to 27.6 dB just by the MMI imbalance.

Simulations done using a commercial photonic design software package

[Fimmwave and Fimmprop from Photon Design®] also showed that the power reflections

at the junctions were negligible. At the Faraday rotator/half-wave plate junction and at

the Faraday rotator/MMI junction the power reflections were below 60 dB. This agrees

with the Fresnel reflection calculated by using the effective mode indices.

3.4.2 Isolator Bandwidth

The isolator bandwidth was simulated using the eigenmode propagation code in

Appendix A, and the results are shown in Fig. 3-14. For this simulation, the insertion

loss is defined as the power in the top left port when the input is from the top right port,

and the isolation is defined as the power in the top right port when the input is from the

top left port, as illustrated in Figure 3-12. This will be known as the isolator

configuration.

When the isolator is used in this manner, its isolation will be maximized. This is

because in the forward direction, the outputs of the two arms are in phase and are less

sensitive to any deviations from the ideal specifications for the half-wave plate and

Faraday rotator. However, in the reverse direction, because a precise it phase shift

between the two arms is needed, the isolator will be much more sensitive to these

deviations. These deviations will then manifest not as a reduction in isolation, which is

the important specification for the isolator, but rather as insertion loss. If the isolator is to

be used as a circulator, then all four ports are active and the isolation will not be as

robust, but if it is used only as an isolator, then only two ports are active and it will

achieve much better performance.

To quantify how much more robust the device is in the isolator configuration, the

Jones' matrix formalism is used. The Faraday rotator limit on isolation is found by
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taking the difference Jones' matrices for the forward direction found in Equations 3.14

and 3.15:

Isolation = (A, - A2 ) [ = Rea - b = 2(Re{a}- b)2  (3.48)
,.2-_ Refal- b

The half-wave plates' limit on isolation can be found in the same manner using Equations

3.40 and 3.41:

2 F1

Isolation = (A - A2 ) 2 = (sin(20) - cos(20){'j = 2(1 - sin(40))2  (3.49)

This expression is identical to the isolation limit set by the half-wave plate in the

opposite configuration.

Unlike with the half-wave plate, the isolation limit set by the Faraday rotator in

the isolator configuration is different from the opposite configuration. The isolation limit

of the Faraday rotator is shown in Figure 3-13. Now to have 15 dB of isolation, A/V

must now be less than 0.8. This requires the waveguide width must be accurate to within

0.04 pm, which is four times the tolerance as the opposite configuration.
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Figure 3-13: Isolation vs A/V for isolator configuration

The maximum isolation is 24 dB at 1.55 ptm, which is the wavelength for which

the isolator was optimized. It maintains 12 dB of isolation over a 100 nm bandwidth, for
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both TE and TM polarizations, thus showing that it is truly polarization independent. The

insertion loss is 1.4 dB at 1.55 pm, and stays below 5 dB over a 100 nm bandwidth. The

factors that limit the bandwidth are the imbalance of the MMI, the birefringence of the

Faraday rotator, and deviations of the half-wave plate slow axis angle. To understand

which element is the limiting factor, each individual component's bandwidth was

analyzed.
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Figure 3-14: Theoretical isolation and insertion loss of isolator

For the MMI, the isolation due to the imbalance versus wavelength is shown in

Figure 3-15. The isolation increase at 1.60 pm can be explained by the fact that at this

wavelength the imbalance is lower, but the loss is higher. Therefore, the isolation will

increase because the MMI splits the power evenly in the two arms, but there is also

power which never enters either arm, which will increase the loss. The isolation does not

vary by more than 3 dB over the entire bandwidth and remains below 24 dB. This is

because the MMI is not extremely wavelength dependent and maintains a low imbalance

over the entire simulation bandwidth. Therefore, it is not the element which limits the

bandwidth, but it does limit the maximum isolation.
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The maximum isolation due to the slow-axis angle of the half-wave plate versus

wavelength is shown in Figure 3-16. The minimum isolation occurs at 1.56 pm instead

of 1.55pm. This is because the slow-axis angle is actually closer to 22.50 at this

wavelength. When designing the half-wave plate, the step size used for the notch width

was too large to exactly achieve the ideal angle. However, by tuning the wavelength, the

index of refraction changes were small enough to come very close to 22.5'. It can also be

seen that the isolation shows a strong wavelength dependence, which is due to the slow-

axis angle being very sensitive to wavelength.
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The maximum isolation due to the Faraday rotator birefringence is plotted in

Figure 3-17. The maximum isolation is at 1.55 pim, but as can be seen, the isolation

shows a strong wavelength dependence. This is because the birefringence is very

sensitive to wavelength. However, by increasing the Verdet coefficient, a larger

birefringence can be tolerated.
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Figure 3-17: Isolation due to Faraday rotator birefringence
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3.5 Summary

The isolator design presented in this chapter showed a maximum isolation of 24

dB. This limit was set mainly by the imbalance of the MMI's. The isolator is fully

integrated and is less than 1 mm in length. The design is very general and not limited to

InP/InGaAsP systems. The concepts used to design each component are very simple and

applicable to any material platform. Thus, what has been shown in this chapter is a very

general design for a polarization independent, integrated optical isolator which can also

function as an optical circulator.

The dimension where fabrication tolerances are strictest is the width. For the

HWP's, the tolerances are determined by the operational wavelength and the refractive
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indices of the materials. However, the Faraday rotator's width tolerance can be reduced

if the Verdet coefficient can be increased. As discussed in Chapter 2, the Verdet

coefficient of Fe:InGaAsP can be increased by increasing the magnetic doping or

reducing the bandgap. Other advantages of increasing the Verdet coefficient include

reducing the isolator length and increasing the performance bandwidth. The important

thing to note is that if the isolator is used in the configuration shown in Figure 3-12, then

the tolerances are relaxed on the Faraday rotator. However, if it is used as a circulator,

the strict tolerances will be necessary for proper function.

With the design now complete, the next step is the fabrication of the isolator.

Chapter 4 deals with the fabrication and characterization of the waveguide Faraday

rotator.
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Chapter 4

Waveguide Measurements

There were three measurements which were made on the waveguide Faraday

rotator: optical loss, birefringence, and Faraday rotation. This chapter will begin with a

description of the fabrication of the waveguides. Then the theory for each measurement

will be discussed. The experimental setup and technique for each measurement will then

be described. Finally, results will be presented for these measurements.

4.1 Fabrication

The waveguide was fabricated with low pressure methane based reactive ion

etching with a 300 nm thick Ti mask. CH 4/H2/0 2 with ratios 25:30:0.5, 100W RF power,

and a chamber pressure 8.5 mTorr were used for the etching. A 2.5ptm deep etch required

50 minutes etching in our system. Figure 4-1 shows a picture of the fabricated high-mesa

waveguide with a width of 1.4pm and an etching depth of 2.5pLm. The InGaAsP core is

0.5 pm thick and the top and bottom InP claddings are 1.0 pm thick. The etching surface

is fairly smooth. The waveguides were cleaved in order to make the end-facets. All

waveguide fabrication was done by Xiaoyun Guo.
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300nm Ti mask

Figure 4-1: Etched waveguide with 300nm Ti mask. The enlarged picture of the etched
surface shows that it is smooth. The line shown in the mesa surface is due to the oxygen
ashing in the middle of the processing.

4.2 Theory

4.2.1 Loss Measurement

The reflective end facets of a waveguide will create an optical cavity. The

expression for the transmission through an optical cavity which was derived in Chapter 2

is

t2 -j)(1+r 2 -j2 6 +(r 2e-2 ) E+.. (4.1)
Et = EO e -1-r 2 -j2,0

where 1 is the cavity length, t and r are the field transmission and reflection coefficients,

and P is the propagation constant. For a waveguide with loss, the propagation constant is

a complex number with the imaginary part corresponding to the loss. Equation 4.1 can

be rewritten as

E =Et 2 e-j,1  21 1+ r2e-j21 +(r2 e ) +... = r-ifl- 2 (4.2)

where the propagation constant has been written as

p =(4.3)
2

The absorption coefficient is a because it corresponds to the power absorption which is

proportional to jEt12.
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The ratio of the square-root of the transmitted power on-resonance to the

transmitted power off-resonance is then

FI R e -a' 1+(Re ~
F = r 

44P 1-Re-"

where r2 has been rewritten as the power reflection coefficient, R. Solving this

expression for ca gives

ln(R) - In F-1)
(F+1a = -(4.5)

To calculate R, the Fresnel equations can be used:

2

R = n2 - n, (4.6)
n2+ n,

Here n, is the index of refraction of the external medium, which is air for the waveguide

measurements, and n2 is the effective index of the waveguide mode. The effective index

of the mode can be calculated using the separation of the resonant peaks for the mode. If

two adjacent peaks for the mode occur at wavelengths ki and 12 , then the resonance

condition for each peak becomes

2n1 = ml 1  (4.7)

2n1 = (m + 1)A2 (4.8)

where m is the order of the resonance. The second equation comes from the fact that the

order of adjacent peaks differs by one. Solving these equations for n gives

n = I (4.9)
21 2 -A,

With this result, along with Equations 4.5 and 4.6, the waveguide loss can be calculated.

4.2.2 Birefringence Measurement

To calculate the birefringence in the Faraday rotator, the effects of the cavity are

used. Resonances will occur whenever the roundtrip phase through the cavity is 27C. If

the propagation constant is written as
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p = n (4.10)

then the transmitted field can becomes

E Et 2  (4.11)
-j nl

1-r eA

If there is birefringence in a waveguide, then the index of refraction will be

different for the TE and TM modes. This will cause the resonance peaks to occur at

different wavelengths for the two polarizations. The TM effective index can be written

as

nTM = nTE + An (4.12)

where An is the birefringence. The condition for the resonance of each mode is

2nTEmAE (4.13)

2(nTE + An)/ = mATM (4.14)

where XTE and XTM are the wavelengths for the two modes where the resonance occurs.

In order to solve for the birefringence, the resonance order must be known. If it is

assumed that it is the same for two adjacent resonant peaks, then the birefringence is

given by

An=nTE ATM i1 (4.15)
(ATE

By using this equation along with Equation 4.9 for nTE, the birefringence of the

waveguide can be calculated.

The main problem with this measurement technique is that if the birefringence is

too large, the adjacent TE and TM peaks will not be of the same order. To see how large

the birefringence must be for this to occur, it is assumed that the peaks occur at the same

wavelength, but differ in order by one, which can be written as

2nTE mA (4.16)

2 (nTE + An)l = (m + 1)A (4.17)

Solving this for An gives

An (4.18)
1
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To see the numerical value for the birefringence limit, typical values of the parameters

for the Faraday rotator waveguides used in the measurement are used (l=500ptm,

X=1.55ptm). With these values, the maximum limit on An becomes 3.1 x 10-3. For

measurements done between 1.50 im and 1.60 ptm, An does not go beyond 10-3 for the

1.4 ptm wide Faraday rotator. Also, An is below 3 x 10~3 at 1.55 jpm if the Faraday rotator

width remains between 1.3 jm and 1.6 jim. As long as the width of the waveguide is

within this range, the birefringence can be accurately measured with the technique

described in this section.

4.2.3 Faraday Rotation Measurement

The Faraday rotation in waveguides is measured in the same way as in bulk

samples. The input light is linearly polarized at 450, and the output light is separated into

TE and TM components. The difference with waveguides is that there is birefringence

present. Using Equation 3.8, the output light will be

Cos(yL)+ jAsin(Y/L) - sin(y/L) - -

sin(YfL) cos(Y/L)- j-sin(yL) - -
Y/ Y/(4.19)

1  LS(nL)-( A (sin(yL)

-2cos(YIL)+ )s in (YL)

where V is the Verdet coefficient and the other variables are defined as

A = PTE ~ AM (4.20)
2

S= A 2 +V 2  (4.21)

The difference in TE and TM power is then

dP = sin(2 ) (4.22)
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In order to minimize the effect of any errors in the input polarization, the measurement is

done for both positive and negative magnetic field. The resulting difference in these two

powers is then

dP+ - dP~ = -4 V sin(2y/d)= - 2 sin 2Vl 1+((4.23)

From Equation 4.22 it can be seen that if A>>V, then the measured signal will approach

zero.

To see what the Faraday rotation spectrum will look like for a waveguide,

simulation plots are shown if Figure 4-2. The plots show the expected Faraday rotation

versus wavelength for different width waveguides. The Verdet coefficient is assumed to

be 10 */mm for the waveguides and the length is assumed to be 500 pim. The Verdet

coefficient is lower than the value used for the simulations in Chapter 3 because the

maximum magnetic field for the waveguide measurements is 0.1 T. The effective indices

used for the simulation were calculated with the 2-D mode solver used for the simulations

in Chapter 3. As can be seen from the plots, the rotation is a maximum when the

birefringence is zero, and it drops off as the wavelength deviates from the zero-

birefringence wavelength. In order to be able to see rotation within the wavelength range

available for the measurements, the width of the waveguide must be between 1.35 ptm

and 1.50 pim. The maximum measured rotation can be used as the cavity-enhanced

rotation and Equation 2.61 can be used to extract the single-pass rotation.
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Figure 4-2: Simulation of expected Faraday rotation vs wavelength for different
waveguide widths. The Verdet coefficient is 1 00/mm and the cavity length is 500 pm for
the simulation

4.3 Experimental Setup

To measure the waveguide properties, there are three problems which must be

solved. First is coupling light into the waveguide, second is controlling the input

polarization, and third is detecting the output power. Each problem will be discussed in

detail in the following sections.
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4.3.1 Coupling to Waveguide

To couple light into the waveguide, a polarization maintaining (PM) lensed fiber

is used. The difficulty in coupling to the waveguide is that because it is so small, precise

alignment and incredible stability of the fiber and waveguide is needed. The size of the

optical mode is approximately 1 pm 2, so the position of the fiber must be able to be

controlled with sub-micron accuracy. This was accomplished mounting the fiber on a

piezo-electric translation stage which had an accuracy of 10 nm.

To determine if the fiber had coupled to the waveguide mode, a 1 00x microscope

objective and an infrared camera were used to image the end facet of the waveguide. The

first step was to raise the fiber above the waveguide and align it with the end facet. Then

the lens was adjusted until the spot from the fiber came into focus on the camera. The

fiber was then pulled back and the waveguide was raised up until it aligned with the fiber.

The light usually coupled to the substrate modes of the waveguide, which indicated that

the waveguide is too high. It was lowered until the substrate modes disappeared, but not

lowered so much that the light passed over the top of the waveguide. It is in this dark

region between air and substrate the guided mode existed. Next the fiber was moved

closer to the waveguide and moved vertically and horizontally with the piezo-electric

stage until the mode appeared on the infrared camera. A picture of the substrate mode

and optical mode from one of the Faraday rotator waveguides is shown in Figure 4-3.

Figure 4-3: Substrate mode (left) and optical mode (right) of waveguide Faraday rotator
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In order to easily find the mode, it is important to make sure that the end facet of the

waveguide is properly imaged on the camera. When the mode is difficult to find, it is

because the focus is incorrect. Once the light couples to the mode, measurements can be

made on the waveguide.

The beam from the lensed fiber has a nominal radius of 1.25 pm. By

approximating the beam as a Gaussian, the mode overlap of the beam with the mode can

be expressed as

e 2 y dxd

C= J 2 q i(x, y (4.24)

fe- 2 dx dy

where 4 is the waveguide mode profile normalized to have unity power and s is the beam

radius. The power coupling efficiency of the beam with the waveguide mode, which is

defined as c2, is 26 %. The actual coupling efficiency for the waveguides is 2 %. This

may be due to the actual beam radius being deviating from the nominal value. Damage

to the fiber lens may be the cause of this deviation.

4.3.2 Controlling Input Polarization

For the Faraday rotation measurements, the input light must be linearly polarized

at 45. For bulk measurements this could be easily achieved with a polarizer. The

difficulty in waveguide measurements is that the light comes from a fiber. Ordinary

fibers are birefringent due to stress caused by bending. This birefringence will alter the

state of the light and make it difficult to have any sort of polarization control. In order to

solve the issue of stress induced birefringence, a polarization maintaining (PM) fiber is

used. PM fiber is fiber that is already stressed so that the birefringence is fixed and will

not be changed by any bending. The principle axes of PM fiber are also fixed. In order

to have linearly polarized light at the output of the fiber, linearly polarized light must be

launched into the fiber with its polarization aligned with one of the principle axes.
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Figure 4-4: Setup for controlling polarization of light from PM fiber

The setup for coupling into the PM fiber is shown in Figure 4-4. The light is sent

out of a fiber collimator and then passed through a polarizer with 50 dB of extinction.

The polarizer can be rotated until it aligns with one of the principle axes of the fiber.

Another lens is then used to couple the polarized light into the PM fiber. To control the

angle of the polarization at the output of the fiber, a rotational mount is used to hold the

fiber. It can then be rotated to any desired angle.

4.3.3 Detecting Output Power

There are two main difficulties associated with detecting the optical power from

the waveguide. First, because of low coupling efficiency between the waveguide and

fiber, the power is generally no larger than 1 ptW. Second, any small drifting of the fiber

will change the amount of power coupling into the mode, and creating an unstable power

signal.

In order to measure the powers in the TE and TM modes, two photodetectors

were built. The circuit diagram for the detectors is shown in Figure 4-5. They consist of

an FDG05 Ge photodiode from Thorlabs, an LT1028 ultralow noise precision high speed

op-amp from Linear Technology, and a feedback resistor.
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Figure 4-5: Circuit diagram for photodetector

The amplifiers were not ideal and had two important factors which affected the

measurement: input offset voltage and input offset current. These can be modeled as a

voltage source VOS and current source Is across the inputs of the amplifier, as shown in

Figure 4-5. The photodiode in Figure 4-5 has a signal current Is and the value of the

feedback resistor across the amplifier is Rf. The output voltage VO.1 of the amplifier will

be given by

Vout,= -ISRf +Vos - IORf (4.25)

The voltage signal due to the power from the TE and TM modes of the Faraday rotator

can be written as a Jones' matrix:

= VO(1- sin(29))+ i] (4.26)
""' 2 _VO (1-sin(20))+ 2

where 8i and 62 are the offset output voltages in the two amplifiers and V0 is the voltage

due to the total optical power. The normalized difference in the two voltages is then

- sin (20)+ 8
dV = 21 + 2V" (4.27)

2 V0

By subtracting the voltage differences for positive and negative magnetic fields, the

resulting signal is

dV -dV- = 2sin(20) (4.28)
1+ 81 + g2

2VO
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In the limit where 61 and 62 are much smaller than the signal voltage V0 , this expression

will reduce to the ideal case. However, if they are comparable to V0, then the measured

dV will be erroneous. Thus, it is desirable if the signal term IsRf is much larger than the

other offset terms.

Typical values of Is and Vos for the LT1028 op-amp are 20 pV and 18 nA. If a

100 kM resistor is used for Rf, then a 1 p.W signal will result in a 100 mV signal, while

the offset voltages will be less than 2 mV. Therefore, by using the LT1028 op-amp with

a 100 kQ feedback resistor, the optical signal can be accurately measured.

In order to eliminate the problems associated with coupling instabilities, the

power measured in each mode was normalized by the total power from both modes. A

data acquisition board (DAQ) was used to sample the voltages from the two detectors at a

rate of 1 kHz for 3 seconds per sample. For each sample, the two signals' difference was

divided by their sum in order to obtain a set of normalized dV samples. These samples

were then averaged to obtain a mean value for dV for each sampling period. In this

manner, changes to the total power will have no affect on dV because the Faraday

rotation measurement is only dependent on the normalized power difference of the TE

and TM modes and not the total power.

Polarization rotation measurements were made using a 50 dB extinction ratio

polarizer in order to determine the minimum power for which the detector could measure

and accurate rotation. The polarizer was aligned with the input polarization, which was

at 450 with respect to the horizontal. For each measurement, the polarizer was rotated

1.100 in the positive and negative directions. The input power was attenuated and the

rotation was measured at each attenuation level using the technique discussed in Chapter

2. Figure 4-6 shows the error in the measured rotation, defined as the absolute value of

the difference between the measured rotation and actual rotation, versus the total output

power (TE+TM). As can be seen, the detector can measure Faraday rotations for power

levels as low as 100 nW with 0.02 * error.
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4.4 Experimental Results

4.4.1 Loss Measurement

The loss measurements were made for a Faraday rotator waveguide with length

1.1 mm and width 1.6 ptm. Every 10 nm, a 1 nm wavelength scan was made to obtain the

cavity spectrum. Figure 4-7 shows the cavity spectrum for the Faraday rotator waveguide

at 1.55 tm.
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Figure 4-7: Cavity spectrum of Faraday rotator waveguide

The power on resonance and off resonance along with Equations 4.5, 4.6, and

4.16 were then used to calculate the loss. The error in the measured absorption

coefficient Gx due to errors in the measured power can be expressed as

(a)2 = (Ap+max )2 a 22mA a Icax )2 mi. )2~ a (4.29)
apmax apmin

where

min

act -1 Pma-- = - I "max (4.30)
apmax 1 Pmax - Pmin

max

aa I min (4.31)
apmin max ~ Pmin

The error in the measured powers is 1 mV, and typical values for Pmax and Pmin are 20 and

10 mV, respectively. Using these values, the error in the absorption coefficient is 1.55

cm 4 .
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Figure 4-8: Absorption coefficient vs wavelength for 1.6 [tm wide Faraday rotator
waveguide

Figure 4-8 shows the measured loss for the waveguide. The increased losses at

longer wavelengths may be due to scattering caused by sidewall roughness. If the walls

are not smooth, then the light will be scattered and radiate out of the waveguide. Because

the amplitude of the sidewall roughness is much smaller than the wavelength the

scattering loss is expected to exhibit a X-4 dependence [26]. The solid line in Figure 4-8 is

A-4 fit to the measured loss. As can be seen, the measured loss is close to the expected

wavelength dependence, indicating that the dominant source for loss is sidewall

roughness. Also, this sample had an accumulation of particles on its surface and

sidewalls, which may have further increased the loss.

A previous measurement done on a 1.4 [tm waveguide with cleaner surfaces using

different photodetectors is shown in Figure 4-9.
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Figure 4-9: Absorption coefficient vs wavelength for 1.4 pm wide Faraday rotator
waveguide with clean surfaces.

The loss is as low as 0.91 cm-I and is larger at shorter and longer wavelengths because

the input power is too low. This detector could not accurately measure the power

minimum in the cavity spectrum at these wavelengths, making the measured loss too

large.

4.4.2 Birefringence Measurement

The same waveguides used for the loss measurements were also used for the

birefringence measurements. Once again, 1 nm wavelength scans were made at

increments of 10 nm, but now the TE and TM light was separated with a polarizing beam

splitter. The cavity spectrum for different center wavelengths is shown in Figure 4-10.

As can be seen, the TE and TM peaks shift as the center wavelength changes and actually

overlap at 1.54 pm, indicating that zero-birefringence has been achieved.
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Figure 4-10: TE and TM cavity spectra for 1.4 p~m waveguide centered at 1.53, 1.54, and
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Figure 4-11: Experimental and theoretical birefringence vs wavelength for 1.4 1.m wide
Faraday rotator waveguide

Using Equation 4.13 and Equation 4.16, the birefringence was calculated for the

center wavelength of each scan. The results are shown in Figure 4-11, along with the

theoretical birefringence for a 1.4 p~m waveguide. The measurements agree closely with
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the theory. From the experimental data, it can be seen that the waveguide has zero-

birefringence at 1.54 tm, which agrees with the theoretical zero-birefringence

wavelength. The theoretical birefringence in Figure 4-10 was calculated using

FIMMWave instead of the 2-D mode solver from Chapter 3. The 2-D mode solver

predicts 1.55 pm for the zero-birefringence wavelength, while FIMMWave predicts 1.54

pm. This is the reason for the discrepancy between the zero-birefringence wavelength of

Chapter 3 and this chapter.

4.4.3 Faraday Rotation Measurement

For Faraday rotation measurements, the setup for the birefringence measurements

was used. In addition, a permanent magnet capable of providing fields of 0.2 T was

mounted above the waveguides. The wavelength was scanned across the entire available

spectrum (1.52 tm to 1.60 pm) in 1 nm steps and the TE and TM powers were measured.

The measurement was done for both positive and negative magnetic fields.

The 1.4 pm waveguide facets were damaged after the birefringence measurements

and could not be used for the Faraday rotation measurement. The next waveguide widths

available were 1.6 ptm and 1.8 ptm. The waveguides are 1.1 mm long, the applied

magnetic field is 0.18 T, and the Fe concentration in the InGaAsP cores is 8.0 x 1016

cm-.

To remove the rapid cavity oscillations, the measured Faraday rotation spectra for

these waveguides were low pass filtered, as shown in Figure 4-12. Also shown in Figure

4-9 is the theoretical unfiltered and low-pass filtered Faraday rotation for the waveguides

using the Verdet coefficient of -181.4 */mm/T found in Table 2-1. The rotations show no

large peak because the zero-birefringence wavelength is not within the measurement

range.
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Figure 4-12: Measured and theoretical Faraday rotation of waveguides with width 1.6 pim
(top) and 1.8 tm (bottom). The low-pass filtering removes the high frequency
oscillations. The Fe concentration in the InGaAsP core is 8.0 x 1016 cm~3, the waveguide
length is 1.1 mm, and the applied magnetic field is 0.18 T. For the theoretical curve, the
Verdet coefficient is assumed to be -181.4 */mm/T.

In order to determine the Verdet coefficient of the waveguide, the low-pass

filtered data was compared to simulations for different Verdet coefficients. This is shown

in Figure 4-13. The maximum oscillation amplitude of the Faraday rotation is plotted
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versus the waveguide width. Each line on the graph corresponds to a different Verdet

coefficient, and the circles correspond to the measured oscillation amplitude.
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Figure 4-13: Maximum amplitude of Faraday rotation in wavelength range 1.52 Im to
1.60 pm vs. waveguide width for different Verdet coefficients. The waveguides are
assumed to be 1.1 mm in length and the applied magnetic field is 0.18 T for the
theoretical curves. The filled circles correspond to experimental data.

Based on the results shown in Figure 4-13, the absolute value of the Verdet

coefficient for the waveguide is 40 */mm/T, but the sign cannot be accurately determined.

The Verdet coefficient for the bulk Fe:InGaAsP measured in Chapter 2 is -181.4 */mm/T.

The discrepancy may be due to errors in the Faraday rotation of the Fe:InP.

4.5 Summary

In this chapter, the experimental techniques for waveguide measurements were

presented. Limitations of these techniques were also discussed. The experimental setup

for the waveguide measurements was shown in detail. The important measurements

made were waveguide loss, birefringence, and Faraday rotation.

The minimum measured waveguide loss was 0.91 cm. The main source of the

loss was sidewall roughness. By using the minimum measured loss, the waveguide

.v=-60 */mm/r

V=-40 0 /mm/T

V=-20 /mm/T

I
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Verdet coefficient, and assuming a magnetic field of 1 T, the isolator figure of merit for

this waveguide structure is

V _ 40 = 444 (4.32)
a 0.091

which is larger than the minimum required figure of merit of 195.

The birefringence was measured for the waveguide and was shown to agree

closely with the theoretical birefringence. Therefore, the zero-birefringence waveguide

needed for waveguide Faraday rotation has been achieved.

The zero-birefringence waveguides were damaged before Faraday rotation

measurements could be made. Measurements made on waveguides with higher

birefringence showed a suppressed rotation, with the suppression increasing for

waveguides with higher birefringence.
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Chapter 5

Conclusion

5.1 Summary

The goal of this thesis is to design and fabricate an optical isolator which can be

monolithically integrated with semiconductor lasers used for telecommunications.

Chapter 2 studies the different contributions to Faraday rotation in

semiconductors. Also in this chapter, the figure of merit for isolator materials, which is

the ratio of the Verdet coefficient to optical loss, is established. It is found that free

carrier Faraday rotation will not be suitable for an isolator because the free carrier loss is

too high. For interband Faraday rotation, the strength of the rotation increases as the

wavelength approaches the bandgap. By introducing magnetic dopants into a

semiconductor, the Faraday rotation can be increased via an sp-d exchange interaction.

Measurements show InGaAsP to have a Verdet coefficient of 98.7 */mm/T and

Fe:InGaAsP a Verdet coefficient as large as -181.4*/mm/T. The Verdet coefficient of

Fe:InGaAsP can be made stronger by reducing the bandgap or increasing the Fe

concentration. Based on these results, Fe:InGaAsP is selected as the material for the

isolator because of its strong Faraday rotation and suitability for monolithic integration.

The design for the integrated isolator is presented in Chapter 3. The design

consists of integrated Faraday rotators, half-wave plates, and multimode interferometers

(MMI). The Faraday rotators were high-mesa etched structures whose widths were tuned

to achieve zero birefringence. The half-wave plates had a notch placed on top of the

waveguide core which coupled the TE and TM modes, creating new principal axes. By

tuning the width of the notch, the angle of the principal axes could be controlled.

The maximum isolation is limited to 27 dB by the imbalance in the MMI.

Simulations done on the isolator show it to have a maximum isolation of 24 dB at 1.55
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ptm. As the wavelength moves away from 1.55 pm, the isolation decreases. The factors

which limit the bandwidth of the isolator are the birefringence in the Faraday rotators and

the slow-axis angle of the half-wave plates. For Faraday rotators with a Verdet

coefficient of 100*/mm, the isolator maintains a minimum isolation of 12 dB over 100

nm.

The waveguide Faraday rotator was fabricated using a reactive ion etch.

Measurements were made on its loss, birefringence, and Faraday rotation. The loss had a

minimum value of 0.91 cm-, and the birefringence was found to be zero at 1.54 pm.

Because of damage to the waveguide facets, Faraday rotation measurements could not be

made on the zero-birefringence waveguides. Measurements of high-birefringence

waveguides showed suppressed Faraday rotation within the available wavelength range.

5.2 Future Work

5.2.1 Faraday Rotation Theory and Measurement

The interband Faraday rotation theory helped give intuition for how the bandgap

affects the rotation strength. However, the theory was not very rigorous and did not agree

with experimental results. First-order perturbation theory and k-p theory were used to

calculate the energy splitting for the conduction and valence bands. To accurately

calculate this splitting, a more complete theory is needed which finds the band structure

under the influence of a magnetic field. The Faraday rotation is proportional to the

difference in index of refraction for the right- and left-circular polarizations. In this

thesis the index difference was calculated by Taylor expanding the index of refraction

about the bandgap energy, and then using the difference in transition energy as the

perturbation. Quantum mechanical expressions for the indices of refraction would give

more accurate values for the Faraday rotation.

The theory presented for the magnetic dopant contribution to the Faraday rotation

had two unknown parameters: the exchange integrals cc and P for the conduction and

valence bands. By knowing the exchange integrals for different semiconductor/magnetic

dopant combinations, the Faraday rotation could be predicted more accurately. The
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exchange integrals could be calculated if the Faraday rotation was measured in

semiconductors with varying magnetic dopant concentrations.

It would be useful to measure Faraday rotation in different semiconductors. This

would allow for further tests of the interband Faraday rotation theory. Faraday rotation

measurements in InGaAsP samples of different compositions could be used determine

what composition is ideal for a Faraday rotator.

5.2.2 Fabrication of Waveguide Components

The technique for fabricating the waveguide Faraday rotator has been

demonstrated, however, the width has not been accurately controlled. The next steps are

to fabricate the Faraday rotators with proper width, the MMI's, and the half-wave plates.

The masks used for the etching of the Faraday rotators can have smaller variations

in width. For example, mask widths varying from 1.3 pm to 1.6 pm in 0.05 pm steps

could be used. This way, it is more likely that the zero-birefringence width for the

desired wavelength will be achieved.

The MMI's can be made using the same etch technique used to make the Faraday

rotators. However, the half-wave plates are difficult because of the notch on top of the

core. The notch requires a second etch aligned with the etch that defines the width of the

half-wave plate. This can be accomplished using a dual mask etch process. Two masks

are deposited on top of each other, the first is a nickel mask defining the width of the

half-wave plate, and a second is a titanium mask defining the width of the notch. The

etch is done for the first mask all the way to the substrate, and then the mask is removed.

The etch done for the second mask only goes down to the waveguide core in order to

define the notch on top of the half-wave plate.

5.2.3 Integration of Isolator with Laser

The isolator is designed to be monolithically integrated with a semiconductor

laser. However, lasers are doped with free carriers to create gain, while the isolator was

designed to be a passive structure. The challenge then, is to integrate a passive structure

with an active structure. One way to do this is to use a design where the active structures

are grown on top of passive structures, known as TWIN waveguides [27]. In these
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structures, a lateral taper is used to squeeze the optical up from the passive layer to the

active layer, or vice versa. This method can be used for the monolithic integration of the

isolator with a semiconductor laser.
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Appendix A

Jones' Matrices

This appendix aims to provide a better understanding for the Jones' matrix

formalism used throughout this thesis. It begins with the derivation of a general Jones'

matrix, and then goes on to calculate several common Jones' matrices.

A.1 Theory

The Jones' matrix formalism provides a systematic approach for analyzing

complex optical systems where light propagates through polarizers, waveplates, and other

optical elements. The first assumption for the Jones' matrix formalism is that the light

propagates in the z direction, with the polarization being transverse to the propagation

direction.

x
(TE)

y N z
(TM)

Figure A-1: Coordinate system for Jones' matrices in reference basis

The coordinate system defining the transverse electric (TE), transverse magnetic

(TM), and propagation directions is shown in Figure A-1. This coordinate system will be
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referred to as the reference basis. The polarization can be expressed as a two-component

vector in this basis:

E = (A.1)

where x and y represent the TE and TM components of the polarization.

Optical media all possess eigenmode polarizations which have indices of

refraction associated with them. These eigenmode polarizations are orthogonal and

define the basis of the optical medium. The effect of the optical medium is to contribute

a phase to each eigenmode polarization of the form

0)
$i =- n,I ( A.2)

C

Here o is the angular frequency of the light, 1 is the propagation length through the

medium, c is the speed of light, and ni is the index of refraction associated with

eigenmode polarization i. This phase accumulation can be expressed with a diagonal

matrix in the eigenmode polarization basis:

D = ej02 (A.3)

By using a similarity transformation, this matrix can be expressed in the reference basis:

S = VDV (A.4)

S is the Jones' matrix of the optical medium in the reference basis and V is the matrix

whose columns are the eigenmode polarization vectors vi and v2. By knowing the

eigenmode polarizations and corresponding phases, the Jones' matrix for any optical

medium can be found.
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A.2 Examples

A.2.1 Polarizer

A polarizer can be described with a Jones matrix where one eigenmode

polarization is not transmitted at all (extinction axis), and one is transmitted without

attenuation (transmission axis). The Jones matrix for a polarizer with transmission axis

oriented at an angle 0 with respect to the TE axis is

Pol(0) = [cos(9) - sin(O)] 1 0][cos(O) - sin(O) ~

sin(6) cos(6) [0 0 sin(O) cos() (A.5)

cos 2(9) cos(9)sin(9)

cos(9)sin(9) sin 2 ( 0)

A.2.2 Half-Wave Plate

A half-wave plate is a birefringent optical element with linear eigenmode

polarizations. The polarizations are labeled as slow and fast axes: the slow axis

corresponds to the polarization with the larger index of refraction, and therefore slower

phase velocity. The key feature of a half-wave plate is that the phase difference between

the slow and fast axes is 7c. By neglecting common phase factors, the Jones' matrix for a

half-wave plate with its slow-axis oriented at an angle 0 with respect to the TE axis is

I P(0) - [cos(9) - sin(0)F1 0 ][cos(9) - sin(9) =

sin(0) cos(6) _L0  e-J _ _sin(9) cos(0) - (A.6)
cos(20) sin(20)

sin(20) - cos(20)_

A.2.3 Faraday Rotator

The eigenmode polarizations for a Faraday rotator of length 1 are right- and left-

handed circular polarizations whose phase difference is 2V1. Here V is the Verdet

coefficient of the Faraday rotator. The Jones' vectors v± for the circular polarizations are

- ( 7
V± = . (A.7)
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By neglecting common phase factors, the Jones' matrix for the Faraday rotator then

becomes

FR = I_
-2 - j 0 -j2 (- '2_1]j[I e-] I2V[ ]'Ii 1]-LI

[cos(Vl)

_ sin(Vl)

- sin(Vl)]

cos(V)]
(A.8)

As can be seen, the effect of a Faraday rotator is to rotate a polarization vector by an

angle VI.
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Appendix B

Eigenmode Propagation

Code

This appendix aims to describe in detail the eigenmode propagation code used for

the isolator simulation in Chapter 3. The MATLAB code for this eigenmode propagator

is found at the end of this appendix.

B.1 General Description of Eigenmode Propagation

Code

The code begins with an input mode incident on a waveguide structure, and then

calculates the mode excitation coefficients using the two dimensional mode profiles of

each structure:

() (0) - ,,dA
C,,,(0)= r --_ (B. 1)

jpmn -AmdA

4m is the electric field amplitude of the two-dimensional mode profile of the waveguide,

y(O) is the input mode profile, cm is the mode excitation coefficient, m is the mode index,

and the integral is done over the two-dimensional cross-section of the waveguide.

Because each mode order consisted of two orthogonal polarizations, Jones'

matrices could be used to propagate these modes. The mode excitation coefficients are
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defined as cm'(0), where the subscript corresponds to the mode order, and the superscript

corresponds to the polarization. After propagating a distance L, the excitation

coefficients become

[ = S(L) ( (B.2)
cY (L)_ cY(0)_

where S(L) is the Jones' matrix for the corresponding waveguide structure. The resulting

mode after propagating distance L is then:

E'(L)= cm(L)E, (B.3)
m

where E' represents the jth polarization component of the mode. With this technique it is

simple to incorporate non-reciprocal elements such as the Faraday rotator by using the

Jones matrix formalism described in Appendix A.

To verify that the code worked properly, it was compared to commercial

eigenmode propagation software (Fimmprop). The test structure was an MMI. Both

Fimmprop and the eigenmode propagator were used to calculate the output power in one

arm of an MMI as a function of the MMI length. The results are shown in Figure B-1.

As can be seen, the eigenmode propagator code agrees closely with the commercial

software.

0000,oo
0000* TE 000000 TM 0000

0.8- 00 0* *P O

909 0 05 1

0.6 0* 0
0* *0

0* *0
a- 0.4 - 0o

0* 0

0 0.0

o Eigenmnode Propagation Code
-- FIMMPROP

0 w1
90 95 100 105 110

Length MMI (pim)

Figure B-1: Simulation of MMI done using Fimmprop and eigenmode propagation code
written for this thesis
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The 2-D mode profiles for each waveguide structure were calculated with a fully

vectorial mode solver. These mode profiles were then loaded into MATLAB variables

using the code fileopen.m. To simulate the isolator, five junctions were defined, as

shown in Figure B-2. A script was written to calculate the propagate field at each

junction. The functions jones and rot were used by these scripts to calculate the Jones'

matrices for the different waveguide components.

12 3 45

Figure B-2: Definition of junctions used in isolator simulation

B.2 MATLAB Code

bandwidthsim.m

Bandwi.dth simulation of isolator

w=[]; wavelength array [um]

verdet=[.1)*ones(1,11); tverdet coefficient array [deg/um]

lhwp=157.5; %length of half-wave plate [um]

1_fr=45/.1; %length of Faraday rotator [um]

lmmi=52; %lenght of MMI [um]

inputpol=45*pi/180; %input polarization in rad

p-lp=[]; -positive verdet output power in left guide

p_rp=[]; %posi.tive verdet output power in riqht guide

p ln=[]; enegative verdet output power in left guide

p rn=[]; vne ative verdet output power in right guide

for j=1:11

lambda=1. 500+.01*(j-1); %wavelength [um]

w(j)=lambda; iupdate wavelength array

V=verdet(j); %Verdet coefficient [deg/um]

V1=O; %verdet for MMI and HWP

wavelength=lambda*1e3

cd (num2str(eval ( 'wavelength'))); ,change directory for each wavelength



fileopen

isolatorsim

p_lp(j)=power_l;

p_rp(j)=powerr;

V=-verdet(j);

isolatorsim

pln(j)=power_l;

p_rn(j)=power_r;

end

isolation=10*logiO(p_lp);

insertion loss=10*logiO(p_ln);

%load 2-D mode profiles into MATLAB variables

trun sinul ati an with positive Verdet coefficient

eupdate left power array

.updae right -ower array

Ve .erdet coefficieM'ttnt

run simula.t...n. t nati.e Verdet coeffiient

'updiate ef power array

lupdate right powr array

tinsation ld B)

'insertio tar'ss [adB

fileopen.m

fileopen

;loads all 2-D mode profiles and mode effective indices into MATLAB varibaleS

f or is olator simu ati on

st Faradav rotator (FR)

cd frl

fid=fopen('Neff');

a=fscanf(fid,'ag', [i inf]);

fclose(fid);

fr_1_n=a';

fid=fopen('exb.dat');

a=fscanf(fid,'qg',[i inf]);

fclose(fid);

fr 1 0 x=abs(a)';

fid=fopen('eyd.dat');

a=fscanf(fid,'%g',[i inf]);

fclose(fid);

fr__0_y=abs(a)';

fid=fopen('exl.dat');

a=fscanf(fid,' ,,g',[1 inf]);

fclose(fid);

fr11 x=abs(a)';

fid=fopen('eyl.dat');

a=fscanf(fid,%',,[1 inf]);

fclose(fid);

116
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fr_1_1_y=abs(a)';

%% second FR

cd .

cd fr_r

fid=fopen('Neff');

a=fscanf(fid,'qg', [1 inf]);

fclose(fid);

ft_r_n=abs(a)';

fid=fopen('exO.dat');

a=fscanf(fid, 'f', [1 inf]);

fclose(fid);

ft_r_0_x=abs(a)';

fid=fopen('evO.dat');

a=fscanf(fid,'%g', [1 inf]);

fclose(fid);

fr_r_0_y=abs(a)';

fid=fopen('exl.dat');

a=fscanf(fid,'%g ',[1 inf]);

fclose(fid);

frr_1_x=abs(a)';

fid=fopen('ey L.dat');
a=fscanf(fid,'<g', [1 inf]);

fclose(fid);

fr_r_1_y=abs(a)';

%% frst Ialf-wave plate (HWP)

cd

cd hwpp

fid=fopen ('Neff');

a=fscanf(fid,'?g', [1 inf));

fclose(fid);

hwpp-n=a';

fid=fopen ( 'exO.dat');

a=fscanf(fid,'ag', [1 inf]);

fclose(fid);

hwpp_0_x=abs(a)';

fid=fopen('eyO.dat');

a=fscanf(fid,'-a', [1 inf]);

fclose(fid);
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hwp_p_Oy=abs(a)';

fid=fopen('ex'.dat');

a=fscanf(fid,.g', [1 inf]);

fclose(fid);

hwp_p_lx=-abs(a)';

fid=fopen('ev.dat:');

a=fscanf(fid,'%g',[1 inf]);

fclose(fid);

hwp_p_ly=abs(a)';

% % %secOid HWP

cd

cd hwp_n

fid=fopen('Neff');

a=fscanf(fid,'%g',[1 inf]);

fclose(fid);

hwp-n-n=a';

fid=fopen('exO.dat');

a=fscanf(fid,'%g', [1 inf]);

fclose(fid);

hwp_n_0_x=abs(a)';

fid=fopen('eyO.dat');

a=fscanf(fid,'tg', [1 inf]);

fclose(fid);

hwp_n_Oy=-abs(a)';

fid=fopen('exI.dat');

a=fscanf(fid,'tqg', [1 inf]);

fclose(fid);

hwp_n_1_x=abs(a)';

fid=fopen('eyl.dat');

a=fscanf(fid, '%g', [1 inf]);

fclose(fid);

hwp_n_ly=abs(a)';

M u11; irnode interferometer (MMI)

cd

cd mmi

fid=fopen('Neff');

a=fscanf(fid,'%g', [1 inf]);

fclose(fid);
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mmin=a';

fid=fopen('ezO.dat');

a=fscanf(fid,' 'ga',[1 inf]);

fclose(fid);

mmi_0_x=a';

fid=fopen('evO.dat');

a=fscanf(fid,'%g', [1 inf]);

fclose(fid);

mmi_0_y=a';

fid=fopen('exI .dat');

a=fscanf(fid,'%a',[1 inf]);

fclose(fid);

mmi1_x=a';

fid=fopen('eyI.dat');

a=fscanf(fid,' g' ,[1 inf]);

fclose (fid);

mmily=a';

fid=fopen('ex2.dat');

a=fscanf(fid,'% ,g', [1 inf]);

fclose(fid);

mmi_2_x=a';

fid=fopen('ey 2 .dat');

a=fscanf(fid,'tcg', [1 inf]);

fclose(fid);

mmi_2_y=a';

fid=fopen('ex3.dat');

a=fscanf(fid,'Vg',[1 inf]);

fclose(fid);

mmi_3_x=a';

fid=fopen('ey3.dat');

a=fscanf(fid,' ga', [1 inf]);

fclose (fid);

mmi_3_y=a';

fid=fopen('ex4.dat');

a=fscanf(fid,'ag', [1 inf]);

fclose (fid);

mmi_4_x=a';

fid=fopen('ev4.dat');
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a=fscanf(fid,''g',[1 inf]);

fclose(fid)

mmi_4_y=a';

fid=fopen('ex5.dat');

a=fscanf(fid,'%g', [1 infl);

fclose(fid);

mmi_5_x=a';

fid=fopen('ey5.dat');

a=fscanf(fid,'%g',[1 inf]);

fclose(fid);

mmi_5_y=a';

fid=fopen('ex6.dat');

a=fscanf(fid,'ig',[1 inf]);

fclose(fid);

mmi_6_x=a';

fid=fopen('ey6.dat');

a=fscanf(fid,''.',[1 inf]);

fclose(fid)

mmi_6_y=a';

fid=fopen ( ex7. dat'

a=fscanf(fid,'tg',[1 inf]);

fclose(fid);

mmi_7_x=a';

fid=fopen ( 'ey7.dat'

a=fscanf(fid,'%q',[1 inf]);

fclose(fid);

mmi_7_y=a';

cd ..

isolator 1_2.m

Isolator simulation

%Propagate field from stage 1 to stace 2

%stage .=input of first MMI

age 2=output of f.s t MMI

k=2*pi/lambda; %wavevector

x_xpol=[-2.5:5/502:2.5]'; idefine x coordinates for' x olarization

y_xpol=[-2.5:5/501:2.5]'; tdefi.ne y coordinates for x pol.a..rization
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[Xxpol,Yxpol]=Imeshgrid(yxpol,x-xpol); create coordinate mesh for x

polasri ztion

xypol= [-2. 5: 5/501:2.5' define x coordinates for y polarization

yypol=[-2.5:5/502:2.51 v,define v coordinates for y polariZation

[Xypol,Y_ypol]=meshgrid(yypol,x_ypol) create cnodn a te esh for y polarization

neffx=[mmi_n(2);mmi_n(4);mmi_n(6);mmi n(7)];effective i ndex cf x modes in MM

neffy=[mmi_n(1);mmi_n(3);mmi_n(5);mmi n(8)];effective index of y modes in MMI

ax=cos(input~pol);%ercent of input power in x direction

ay=sin(inputpol);%percent of input power in v direction

scoupling coefficients of x modes

cx0=(sum(fr_1_0_x.*mmi_1_x)+sum(fr_1_1_x.*mmi_1_x));

cxl=(sum(fr_1_0x.*mmi3_x)+sum(fr_1_1_x.*mmi3_x));

cx2=(sum(fr_1_0_x.*mmi_5_x)+sum(fr_1_1_x. *mmi_5_x));

cx3=(sum(fr_1_0_x.*mmi_6_x)+sum(fr_1_1_x.*mmi_6_x));

copo ng. no e f ic ints of v modes

cy0=(sum(fr_1_0_y.*mmi_0_y)+sum(fr_1_1_y.*mmi_y));

cyl=(sum(fr_1_0_y.*mmi_2_y)+sum(fr_1_1_y.*mmi_
2
_y));

cy2=(sum(fr_1_0_y.*mmi_4_y)+sum(fr_1_1_y.*mmi_4_y));

cy3=(sum(fr_1_0_y.*mmi_7_y)+sum(fr_1_1_y.*mmi_7_y));

rimaged x field at stage 1
cx=[cx0; cxl; cx2; cx3];

cx=ax*cx/sqrt (sum(cx.^ 2));

ex=[mmi_1_x mmi_3_x mmi_5_x mmi_6_x];

fieldlx=ex*cx;

imagqe y fi.el d at. stage I

cy=[cy0; cyl; cy2; cy3];

cy=ay*cy/sqrt(sum(cy.^2));

ey=[mmi_0_y mmi_2_y mmi_4_y mmi_7_y);

fieldly=ey*cy;

opropagation constan. of each mode in MIt

beta_x_mmi=neffx*2*pi/lambda;

beta_yimmi=neffy*2*pi/lambda;

rJones matrix Cf each aiode air in MMI

phasemmi0=jones(beta_x_mmi(1),beta_y-mmi(1) ,V1,0,lmmi);

phasemmil=jones (beta_x_mmi(2),betaymmi(2),V1,0,lmmi);

phasemmi2=jones (beta_x_mmi (3),beta_y_mmi(3) ,V1,0,lmmi);

phasemmi3=j ones (betaxmii (4),beta_y_mmi(4),V1,0,lmmi);

Phase and coupl ing coefficient for each mode pai.r



clO=phasemmiO*[cx(1)

cll=phasemmil*[cx(2)

c12=phasemmi2*[cx(3)

cl3=phasemmi3*[cx(4)

"x field at stage 2

clx=[clO(1); cli(1);

field2x=ex*clx;

%y field at stage 2

cly=[cl0(2); cll(2);

field2y=ey*cly;

;cy(1)];

;cy(2)

;cy(3)];

;cy(4)];

c12(1); cl3(1)];

c12(2); cl3(2)];

isolator_2_3.m

,Isolator simulation

Propagate field from stage 2 to stage. 3

=stage otput of first MMI

a1s7 3=o put of first ha1f-wave plate (HWP) and Faraday rotator (FR)

;KS%%%% %parameters for first FR%%%% %

rOpgtion cons tants for FR

beta_0_frl=2*pi/lambda*fr_1_n(1);

beta_1_frl=2*pi/lambda*frl-n(jj);

-coupling coefficients for first FR
c_frl_0=sum(field2x.*fr_1_0_x)+sum(field2y.*fr_1_0_y);

c frl_1=sum(field2x.*fr_1_1_x)+sum(field2y.*fr_1_1_y);

cfrl=[cfrl_0;cfrl_1]; %x-y-- basis

%Jones matrix for first FR

phasefrl=jones(beta_0_frl,beta_1_frl,V,0,1_fr);

c_frlL=phasefrl*cfrl; x-v-z basis

.;propagated field in first FR
fieldfrlx=cfrlL(1)*fr_1_0_x+cfrlL(2)*fr__1_x;

field frl_y=c_frlL(1)*frl0_y+c frlL(2)*fr_1_1_y;

122
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,-%aram ters it r rfirst HWPt% %

po n' cO nstant a or fii.rst HP
beta_s_hwpn=2*pi/lambda*hwp_n_n(1);

beta_f_hwpn=2*pi/lambda*hwp_n_n(2);

%coupi..n..rg coeffi cients for first HWP

c_hwpn-s=sum(field2x.*hwpn_0_x)+sum(field2y.*hwp_n_0_y); 'slow axis mode

c_hwpn-f=sum(field2x.*hwpn_1_x)+sum(field2y.*hwp_n_ly); 'fast axis mode

c_hwpn=[chwpns;chwpnf];%siow-fast-z basis

Jones matrix for first HWP

phasehwpn=jones (beta-s hwpn,beta_f_hwpn,V1, 0, 1_hwp);
c_hwpnL=phasehwpn*chwpn; ;slow-fast-z basis

poPagatEd x field in first HWP

fieldhwpnx=chwpnL(1)*hwp_n_0_x+c_hwpnL(2)*hwpnlx;

0 nropagated y ie Id in first IHP

fieldhwpny=chwpnL(1) *hwp_n_Oy+chwpnL(2) *hwp_n_ly;

Ex fi.el.d -at s tag,- ue

field3x=field frlx+field-hwpn-x;
0
y field at stage 3

field3y=field_frly+field_hwpny;

isolator_3_4.m

%Isoloro: simuslation

%Propagate field from s t age 3 to stage 4

-stage 3=output of firs t half-wavs piata (HWP) and Faraday rotator (FR)

.stage 4=output of second half-wave plate (HWP) and Faraday rotator (FR)

.%..%.%%%% 'pararatars for second FR%%% %%t%% %5 0

000uping 00~ coe cients for saco d FR
c_frr_0=sum(field3x.*fr_r_0_x)+sum(field3y.*fr_r_0_y);

c_frrl=sum(field3x.*fr_r_1_x)+sum(field3y.*frrly);

c_frr=[cfrr_0;cfrr_1]; ox-y-z basis

ons matrix for second FR

phasefrr=phasefrl;

c frrL=phasefrr*c frr;hx-y-z basis

propagated field in second FR
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fieldfrrx=cfrrL(1)*fr_r_0_x+cfrrL(2)*fr_r_1_x;

field frr y=cfrrL(1)*fr-r_0_y+c frrL(2)*fr-rly;

pi r t r parameters fos secono HW P

ipropagation constants for second WP

beta_f_hwpp=beta_f_hwpn;

beta_s_hwpp=beta_s_hwpn;

%coupling coefficients for second HWP

c_hwpps=sum(field3x.*hwp_p_0_x)+sum(field3y.*hwp_p_Oy);

c_hwppf=sum(field3x.*hwp_p_lx)+sum(field3y.*hwp_p_ly);

c_hwpp=[chwpps;chwpp_f]; ;slow-fast-z basis

oines atrix for second. HW)?

phasehwpp=jones(beta_s_hwpn,beta_f_hwpn,V1,0,1_hwp);

c_hwppL=phasehwpp*chwpp; islow-fast--z basis

tpropagated fi..eld in second HWP

field_hwppx=chwppL(1)*hwp_p_0_x+chwppL(2)*hwp_p_lx;

fieldhwppy=chwppL(1)*hwp_p_Oy+c_hwppL(2)*hwp_p_ly;

ix fieId at sage 4

field4x=fieldfrrx+fieldhwppx;

sy field at stage 4

field4y=fieldfrry+fieldhwppy;

isolator_4_5.m

Isolator simua t4 o

Propagate field. from. stage 4 to stage 5
sstage 4=ount.put of second half-wave plate (HWP) and Faraday rota tor (FR)

;stage 5= output of second MMI

coupliig coefficien.ts fo x modes

cxlo=(sum(field4x.*mmi_1_x));

cx2o=(sum(field4x.*mmi_3_x));

cx3o=(sum(field4x.*mmi_5_x));

cx4o=(sum(field4x.*mmi_6_x));

cxo=[cxlo; cx2o; cx3o; cx4o;];

ex=[mmi_1_x mmi_3_x mmi_5_x mmi_6_x];

%coupling cOefficients -for v modes
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cylo=sum(sum(field4y.*mmiO y));

cy2o=sum(sum(field4y.*mmi_2_y));

cy3o=sum(sum(field4y.*mmi_4_y));

cy4o=sum(sum(field4y.*mmi_7_y));

Limaged y field at stage 4

cyo=(cylo; cy2o; cy3o; cy4o;];

ey=[mmi_y mmi_2_y mmi_4_y mi_7_y];

iPhase and coupling coefficient for each mode pair

cllo=phasemmi0*[cxlo;cylo];

c12o=phasemmil*[cx2o;cy2o];

cl3o=phasemmi2*[cx3o;cy3o);

cl4o=phasemmi3*[cx4o;cy4o];

lx field at stage 5

clxo=[cllo(1); cl2o(1); cl3o(1); ci4o(l)];

field5x=ex*clxo;

y ield at stage 5
clyo=[cllo(2); cl2o(2); cl3o(2); cl4o(2)];

field5y=ey*clyo;

'I reshape fields for power calcUlat ions

f5y=reshape(fieid5y,503,502)';

f5x=reshape(field5x,502,503)';

Ifield in left auide

f5xl=f5x(ylxpol,xlxpol);

;field in right guide

f5xr=f5x(yrxpol,xrxpol);

x power in right guide

powerf5xr=sum(sum(abs(f5xr).^2));

%x power in left guide

powerf5xl=sum(sum(abs(f5xl).^2));

'y field in right guide

f5yr=f5y(yrypol,xrypol);

field in lefL guide

f5yl=f5y(yiypol,xlypol);

ly power in riunt guide

powerf5yr=sum(sum(abs(f5yr).^2));

-hy power in left guide

powerf5yl=sum(sum(abs(f5yl).^2));
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vpower in oft ,uide

power_l=powerf5xl+powerf5yl

inower in right guide

powerr=powerf5xr+powerf5yr

jones.m

£function J=jones(beta 1,beta _ I,V, t heta,1)

calculates Jones matrix for waveguide structure

SV=verdet coeffi.cient in decrees/length

ta 1 and beta are propagation constants of 2 modes in rad/length

%theta=angle of principle axes in degrees

%1=device length in length

J=Jones matri x of bi roefrtingent, magnet icaly active matoria.

function J=jones(beta_1,beta_2,V,theta,1)

Vr=V*pi/180; ;convrert verd.et into rad/length

delta=(beta 2-beta_ 1)/2; ideIt a= (betal.=2 -beta ) /2 in radians / length
alpha=sqrt((Vr)^2+delta^2);

R=rot(theta);

a=cos(alpha*1)-i*delta/alpha*sin(alpha*l);

b=-Vr/alpha*sin(alpha*l);

c=-b;

d=cos(alpha*l)+i*delta/alpha*sin(alpha*l);

D=[a b;c d];

J=R*D*inv(R)*exp(i*(beta_1+beta_2)*1/2);

rot.m

Sa=function rot (heta)

ca1culoates rotatioo matrix for ang.e thet a

theta in degrees

function a=rot(theta)

thetal=theta*pi/180;

a=[cos(thetal) -sin(thetal);sin(thetal) cos(thetal)];
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