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Abstract

In [10], [11], Mallat, Hwang and Zhong describe a novel wavelet-based noise removal
algorithm. The algorithm uses extrema of the continuous wavelet transform (CWT)
to estimate the Lipschitz exponent at each singular point of a noisy signal. By look-
ing at the Lipschitz exponents, it is determined which CWT extrema correspond
to the useful signal and which ones correspond to noise. The latter extrema are
discarded, and an approximation of the signal is constructed from the remaining ex-
trema. The nature of the algorithm leads to the conjecture that it is fundamentally
robust to the detailed statistical structure of the noise and that it is well-suited to
the task of spline approximation, but a number of interesting and important ques-
tions remain. In order to compute the Lipschitz exponent at a singular point of
a noisy signal, it is necessary to determine which extremum is due to that point
at every scale of the CWT. Since calculating the CWT for a dense set of scales is
computationally inefficient, the authors of [10], [11] use the CWT only at the scales
which are integer powers of 2 (so-called "dyadic scales"). In this case, the extrema
matching problem becomes highly nontrivial. The authors of [10], [11] use a simple
algorithm based on the comparison of the values and positions of extrema at a pair
of consecutive scales. This algorithm cannot work equally well for all input signals,
because the trajectories of CWT extrema depend on the type of the corresponding
singularity as well as on the wavelet. In this thesis, we restrict the approximation
class of signals and consider only those input signals which are noisy splines. In this
case, a more sophisticated and reliable extrema matching algorithm is possible. We
arrive at such an algorithm by treating the extrema matching problem as a multi-
target tracking problem. The final result is a robust spline approximation algorithm
which we test using Cauchy-contaminated Gaussian noise.
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Chapter 1

STATEMENT OF THE

PROBLEM, BACKGROUND

AND MOTIVATION

1.1 Introduction

This thesis is devoted to the description of a new algorithm for robust spline

approximation. This algorithm emerged on the basis of the results presented in [10],

[11] by Mallat, Hwang, and Zhong who used the extrema of the continuous wavelet

transform (CWT) of a noisy signal to reconstruct the signal. Their method does not

constrain the probabilistic structure of the noise; the sole condition which must hold

in order for it to work successfully is distinguishability of the Lipschitz exponents

of the useful signal from those of the noise realizations. This circumstance allows

one to hope that the method is robust to the detailed statistical nature of the noise,

although no statistical analysis of the method has been performed. We shall see later

that several other features of this method also contribute to its potential effectiveness

in spline approximation. We shall also see that major changes must be made in

order to turn this method into a good spline estimation algorithm. Particularly,



the method of [10], [11] involves estimation of the extrema trajectories of CWT

across scale, which is done in [10] by comparing the locations and magnitudes of

the extrema at consecutive scales. Since we are only interested in reconstructing

splines, we are able to develop a better extrema-matching algorithm by casting this

matching as a multi-target tracking problem. We then demonstrate the robustness

of the resulting algorithm using several noise processes with "heavy tails".

This introductory chapter contains a brief discussion of spline approximation

in general, as well as of those applications that motivated this thesis. At the end of

this chapter, we formulate the particular problem addressed in this thesis.

1.2 Background on Spline Functions and Appli-

cations of Splines

We start this section with the formal definition of spline functions and then

discuss the importance of spline approximation.

Definition 1.2.1 Given a strictly increasing sequence of real numbers t1 , t2, ... , t,

a spline function f(t) oforder min with the knots t1 , t 2, ... , tn is a function defined

on the entire real line having the following two properties:

(1) For every interval (ti, ti++), i = 0,1, ..., a (where to = -o and tn+1 = 00),
f(t) = Pt,i (t), Vt C (ti, ti+1 ), where Pm,i (t) is a polynomial of degree m or less.

(2) If in > 1, f(t) is continuous everywhere; if in > 2, the derivatives of f(t) of

orders 1, ... , mi - 1 are everywhere continuous as well.

Thus, a spline function is a piecewise polynomial function satisfying certain

conditions regarding continuity of the function and its derivatives. The knots are

defined as the places where the smooth polynomial pieces are joined together. When

min = 0, condition (2) is not operative, and a spline function of order zero with n

knots is a staircase function consisting of a steps. For m > 0, a spline function of

order mn could equally well be defined as an (in - 1)-times continuously differentiable

function whose m-th derivative is a staircase function. Even more concisely, a spline



function of order m is any m-th order indefinite integral of a staircase function.

We shall neither discuss nor need any spline theory beyond this. The books

by de Boor [4], Greville [5], and Schumaker [18] are all excellent references.

Splines are very useful for solving approximation problems, because they

possess a number of attractive properties. It is easily seen from their definition that

splines are easy to store and manipulate on a digital computer; they are relatively

smooth; their derivatives and anti-derivatives are splines; every continuous function

on the interval [a, b] can be approximated arbitrarily well by polynomial splines with

the order m fixed.

Spline approximation is both a nice theoretical problem and has many ap-

plications. Some examples are initial value problems [5], nonlinear boundary value

problems [5], eigenvalue problems [5], and detection and estimation of abrupt changes

in signals [14], [1]. The latter problem is the one in which we are interested. Namely,

we would like to approximate a given function by a spline, placing the knots at the

points of abrupt changes of the function and approximating the pieces between these

points by polynomials.

As the name "detection of abrupt changes" suggests, the estimation of the

knot locations is a critical part of the problem. Many practical applications can be

used to illustrate this. For example, in analyzing electrocardiograms [14], it is very

important to know the times when a heartbeat starts and ends. In tomographic

reconstruction of a polygonal object from its projections [2], it is crucial to know

the locations of the knots in the projections, because the knots correspond to the

vertices of the polygon. In seismic signal processing [15], an important problem is to

estimate the time of arrival of a seismic wave or the change of the type of a seismic

wave.

1.3 Background of the Problem

There are various least-squares-based methods for spline approximation.

When the knot locations are known, the problem becomes that of solving a linear



system of equations. In the case of variable knots, we are led to nonlinear problems

(such as nonlinear least squares) which arise in estimating the knot locations. For

example, Mier Muth and Willsky [14] proposed an algorithm which is based on the

generalized likelihood ratio (GLR) method for detection and estimation of abrupt

changes in dynamic systems described by Willsky and Jones in [21].

It is easy to prove that least-squares methods are optimal for estimation in

noise if the noise is Gaussian [20]. However, it is also easy to show that they are not

robust to heavy-tailed noise [7]. From our point of view, it is unrealistic to always

assume Gaussianity of noise or even count on the absence of outliers in observed

signals. Therefore, a robust estimation method is needed.

As a starting point for the development of such a method, we choose the

wavelet-based noise removal algorithm developed by Mallat, Hwang, and Zhong

[10], [11]. The intuition behind this choice is based on two observations. First,

Mallat's algorithm does not require the noise to be Gaussian. In fact, incredibly few

assumptions about the noise are made. This circumstance allows one to anticipate

robustness of the algorithm. Its second attractive feature is that it is based on finding

singularities of functions. A particular case of this is precisely what we would like

to solve, because the locations of the singularities of a spline are its knots.

We are now ready to summarize everything said above and formulate the

objectives of this thesis.

1.4 Problem Statement and Organization.

In this thesis, we would like to adapt Mallat's noise removal algorithm to

robust spline approximation. We would like to achieve an algorithm which is robust

to outliers and test it on various kinds of heavy-tailed noise. For simplicity, we limit

ourselves to linear splines.

We proceed as follows. In Chapter 2, Mallat's algorithm and the theory

behind it are described, and the explanation as to why the algorithm in its original

form is poorly suited to our problem is given. The end of Chapter 2 and Chapter 3



are devoted to the discussion of the changes that one needs to make in the algorithm

in order to adapt it to robust spline approximation. The performance of the modified

algorithm for the case of a linear spline with one knot is described in Chapter 4,

in comparison with the performance of a least-squares estimator. The last section

of that chapter is devoted to estimating the order of a spline. Chapter 5 contains

concluding remarks and the discussion of the possibilities for future work.



Chapter 2

A WAVELET-BASED NOISE

REMOVAL ALGORITHM

Most of this chapter is a review of the connections between the local regular-

ity of a function and its wavelet transform. These connections lead to a remarkable

noise removal algorithm discovered by Mallat and his students [10], [11]. The algo-

rithm is described in the last section of the chapter. Most of the theoretical results

described here are due to Holschneider and Tchamitchian [6], and Mallat [10], [11].

The core of what is presented in this chapter can also be found in the excellent

book on wavelets by Daubechies [3]. However, in order to find everything presented

here, one has to go through a considerable amount of literature. This circumstance

motivated the decision to write this tutorial chapter. Therefore, in spite of the

abundance of sources, this chapter is self-contained; it should not be necessary to

consult any of the references in order to understand it.

The structure of this chapter is as follows. In Section 2.1, which is the basis

of all the following sections, we define the wavelet transform and prove its invert-

ibility. In Section 2.2, we define a certain quantity called "the Lipschitz exponent

of a function f(t) at a point to" which characterizes local smoothness of f(t). We

need to do that, because the computation of Lipschitz exponents is the critical part

of Mallat's algorithm. We then describe how to compute the Lipschitz exponents of

a function from the modulus maxima of its continuous wavelet transform. Unfortu-



nately, the continuous wavelet transform is computationally expensive. Therefore,

in applications we are forced to use the dyadic wavelet transform, which can be

computed much faster. Section 2.3 defines the dyadic wavelet transform, gives a

sufficient condition for its invertibility, and explains how to implement it efficiently.

The following section then describes an algorithm for reconstructing an approxima-

tion of a signal from its dyadic wavelet transform modulus maxima. Finally, Section

2.5 ties Sections 2.2 and 2.4 together, describing a noise removal algorithm which

utilizes our ability to estimate the Lipschitz exponents of a signal from its dyadic

wavelet transform.

2.1 Continuous Wavelet Transform (CWT)

Definition 2.1.1 The Fourier transform of a function f(t) e L 2 (R) is given by

.F[f(t)] = (w) = f00 (t)e-iJtdt/OO

Definition 2.1.2 A function ' (t) E L 2 (R) is called a wavelet if its Fourier trans-

form 'b(w) satisfies the following condition:

C, 100 [(w)12 dw < 00 (2.1)
0 W

If '(w) is continuous, (2.1) can only be satisfied if 0(0) = 0, which means that

J (t)dt =0./OO.
Definition 2.1.3 The continuous wavelet transform (CWT) of a function

f(t) with respect to a wavelet V'(t) is given by

0 1 t - T
WV.f(t,s) = f(T)-V( )dr, s > 0 (2.2)

5 5
• -- o-S

The variable s is called the scale. Sometimes we shall use the notation 0,(t) =

'1(D). Using this notation, Wvf(t, s) = f * 4s(t), for s > 0.

The following theorem shows that the CWT is invertible, i.e., any function

f(t) can be recovered from its wavelet transform.



For any two functions f, g E L2(R),

1 00  1
W I W.f(t, s) W g (t, s)- dt ds =<f, g>,CO 00 -8o

where Cp is as defined by (2.1).

Proof. Using Parseval's relation, we get:

(2.3)

/ 0 1 t-TI t T )dT
,-c 5

= f() [ ( )]*dT
_ 1 ooI e *(w)[et-J (sw)]*dw

= 2J[F(w)]
*,

where F(w) = f*(w)(sw) and the star denotes complex conjugation. Similarlyw)wtdw

where F(w) = f* (w)ý(sw) and the star denotes complex conjugation. Similarly,

WV7,g(t, s) g(T)-0( )dr

00 - T

S0 g* (T) - )dT

le
2w) -oo

= T[G(w)],

where G(w) (w)(sw). Therefore,

/o f W: f (t, 1
s)Wvg(t, s) - dt ds

S

00 00f 1dt. [ F[F(w)]*F[G(w)]- dt ds
10 _-00 8

2 j0 r [7 F*(w)G(w) dw]

o/_ r: dsSf(wo 2*(sw)*(w (s )dw -
Jo - 2' s

((sw)|2 ds]s I dw

f(w) *(w) dw

= CO <f,g>,

where we have used Parseval's theorem two more times. Interchanging the order of

integration was allowed by Fubini's theorem. D

Theorem 2.1.1

W f (t, s)

CO 21

= 27( ) g*(G O) [o 1



So, if {e}i=_ is an orthonormal basis of the space L 2 (R), (2.3) can be used

to compute {<f, ei>}-1= 0 , which are the coefficients of f with respect to this basis.

This means that the coefficients of f with respect to an orthonormal basis can be

recovered from its wavelet transform. Therefore, f itself can be recovered from its

wavelet transform.

Since (2.3) is actually

I o 0 _ 1)" I t - T_•+Wj Wpf(t, s)- g(T)-( ) dT dt ds = g(T)f(7) dT,CIP 00 00 oo a s o

it is very tempting to identify the parts of the left-hand side and right-hand side

that operate on g(Tr) and to interpret this equation as:

1 00o 0 1 t - T
f(T) = W f (t, s) t(-- ) dt ds (2.4)

SofO 
82-oo

Unfortunately, the double integral in (2.4) is not guaranteed to converge. It turns

out, however, that if 4(t) is compactly supported and differentiable, (2.4) does hold

for bounded continuous *f(T). (The proof of a generalization of this result can be

found in Chapter 2 of [3].)

2.2 Using the CWT of a Signal to Characterize

Its Lipschitz Regularity

Holschneider and Tchamitchian showed in [6] that the wavelet transform is

a very useful tool for studying regularity properties of functions. In order to discuss

these results, we are going to need the definition of the Lipschitz regularity of a

function.

Definition 2.2.1 Let n E Z + U {0}, and n < a < n + 1. A function f(t) is said to

be Lipschitz (or H6lder) a at a point to if there exist an n-th degree polynomial

Pto,n(h) and two positive constants C and ho such that for any h E [-h 0 , h0], the

following inequality holds:

f(to + h) - Pto,n(h)| _ C hI' (2.5)



The quantity sup{a : f(t) is Lipschitz a at to} is called the Lipschitz regularity

of f(t) at to.

We can also define uniform Lipschitz regularity, i.e., Lipschitz regularity on

an interval:

Definition 2.2.2 A Junction f(t) is uniformly Lipschitz C on an interval (a, b)

for a C (0, 1] if

Sf (t1 ) - f (t2) < Ct 1 - t 2 , Vtl, t 2 E (a, b) (2.6)

f(t) is uniformly Lipschitz a on (a, b) for as E (n, n + 1] if f(t) is n times

continuously differentiable on (a, b), and f(") (t) is uniformly Lipschitz a - n on

(a, b). The uniform Lipschitz regularity of f(t) on (a, b) is sup {a : f(t) is

uniformly Lipschitz a on (a, b)}.

The Lipschitz regularity of a function f(t) at a point is a measure of the

smoothness of f(t) at that point. For example, it follows immediately from the

definition that the unit step function, the unit ramp function, and fl(t) - t 5

are Lipschitz 0, 1, and 1 at t - 0, respectively. The unit step is discontinuous; the3

derivative of the unit ramp is the unit step; and fi (t) is in between: even though it is

continuous, it has a peak at the origin which is sharper than any peak of any linear

spline. It also follows that f 2(t) t2 , which is smooth everywhere, is Lipschitz C at

t = 0 for any real a. In this thesis, we are interested mostly in linear splines. The

Lipschitz regularity of a linear spline at a knot is 1. (It follows then that, for an

m-th order spline, the Lipschitz regularity at a knot is mn.)

The following several theorems link the Lipschitz exponents of a function

with its wavelet transform.

Theorem 2.2.1 Suppose that ip(t) is a wavelet and J )(t) (1 + t|) dt < oc. If

a bounded function f(t) is uniformly Lipschitz a on R with 0 < a < 1, its wavelet

transform satisfies

WV ,f(t, s) < As (2.7)
for some constant A.



Proof. Let us define p and I by: p = I-• and I = f(t)(t -T ) dT. Observe

that I f(t)Jf 0(p) dpi - 0, and therefore/OO
/00-O1 t-

WV f (t,s) - W1,/ ,f(t, s) - I = (f(r)- f(t))- ( ) dr <-00S S
T T/m1 t-T 1 -

_< 7 If(T) - f (t) 1- V) dT < C|. - s a- )(t ds T

Cs" /,(/) • dp, - As'
/* O--oo

Theorem 2.2.2 Suppose that 7(t) is a compactly supported, continuously differen-

tiable wavelet, and f e L 2(R) is bounded and continuous. If, for some a e (0, 1),

Wf (t, s) < Asa, (2.8)

then f is uniformly Lipschitz o on R.

Proof: see Theorem 2.2.2a below. D

The two preceding theorems show that the Lipschitz exponents of a function

that are between zero and one can be characterized by the decay in s of the absolute

value of the CWT of the function. The generalizations of these theorems to the case

of CV C (n, n + 1) are easily obtained by induction. For that case, however, we need

an n times continuously differentiable f(t) and a wavelet /(t) with n vanishing

moments.

The integral tPg(t) dt is called the p-th moment of the function g(t)./OO

We say that a wavelet u(t) has n vanishing moments if J tP0 (t) dt = 0 for p =

0, 1, ..., n - 1.

Inductive Lemma. Suppose that u(t) is a compactly supported wavelet with n

vanishing moments. Also suppose that f(t) is n times continuously differentiable.

Then C"(-)(t) is a compactly supported wavelet and

Wo,f (t, s) = s'1 W(-" )f( (t, s), (2.9)

where superscript (n) means "the n-th derivative", and superscript (-n) means "the

n-th anti-derivative defined by f '-)(t) - V/ (-( -))(p) dp".



Proof. Let us prove by induction that V/(-m)(t) is a compactly supported wavelet

with n - m vanishing moments for 0 < m < n, i.e., that

tP'O(-m) (t) dt = 0/OO,
for 0 < m < n and 0 < p < n- m. When m = 0, the statement is true because <(t)

is a wavelet. Suppose that it is true for m = k. Then, since V+(-k)(t) is compactly

supported and its integral from -oo to oc is zero, it follows from the definition of

!(-(k+ I)(t) that it, too, is compactly supported. We have:

/ tPý(-(k+1))(t) (-t - 0- ( (k+1))(t) (--
S p + 1 - p + I

The first term is equal to zero because ý,(-(k+1)) is compactly supported. The second

term is a constant times the (p + 1)-st moment of ,(-k) and therefore, by the

induction assumption, that term is also zero as long as 0 < p + 1 < n - k. So, we

proved that

f tPl!V(-(k+1)) (t) dt = 0,[000/O--OO

for p = 0, 1, ..., n - (k + 2). The induction is done.
d [•! l(t) ]  d [ I V)(-,) (t d [ýb(-1)(_ sI- s~ )

Now observe that s[ )(t)] = s[ 1)( - ( ) = () = 74(t), and

similarly, s" In [74 -)(t)] - s,(t). Therefore, W f (t, s) = f(t) • ¢b(t) = f () (t) *

s<-")(t) = s11W,-~ ,f (7)(t, s). The lemma is proved. D

An immediate consequence of the Lemma is that

WV f(t, s) < A4s" W(_ -> f(n)(t, s) < As' - n (2.10)

This allows us to generalize Theorems 2.2.1 and 2.2.2. Combining their general

cases, we obtain the following:

Theorem 2.2.3 Given a number a0 G (n, n + 1) and a compactly supported wavelet

7(t) with at least n vanishing moments, the following two statements are equivalent:

1) f(t) is n times continuously differentiable, with all the f(m), mn = 0, 1, ... , an

bounded and square-integrable, and f(t) is uniformly Lipschitz a on R.

2) WOf(t,s)I < Asc. D



If we use a wavelet with compact support, there is going to be a region in

(t, s)-plane where the CWT of f(T) is going to be influenced only by the values of

f(-) in the interval [a, b]. Specifically, suppose that the support of 4(t) is [-r, r],

and we want Wpf (t, so) to be equal to f (T)'Oso(t-7-) dT for c < t < d. In order for

that to hold, the support of 4 (157r) must be inside of [a, b], for any t between c and d.

In other words, [t - rso, t + rso] C [a, b], Vt c [c, d] =' c = a +rso, d = b - rso. Since

c d we also have the condition so < b-a. So, the piece of f(t) from t = a to t = b

determines WVf(t, s) in the triangle with vertices (t = a, s = 0), (t = b, s = 0),

and (t = +a, ba) (see Fig. 2.1). We shall call this triangle the triangle of

sovereignty of the interval [a, b]. Theorem 2.2.1 suggests that perhaps if b were

compactly supported, we could use Lipschitz exponents of f(t) for a < t < b to

characterize the decay in s of W.,f(t, s) in this triangle.

Theorem 2.2.4 (A more local version of Theorem 2.2.1.) Let 4(t) be a com-

pactly supported wavelet, with supp[V'(t)] = [-r, r]. If a bounded function f(t) is

uniformly Lipschitz a' on (a, b) with 0 < a' < 1, its wavelet transform satisfies

WOf (t, s) < As ,

for all interior points of the triangle of sovereignty of [a, b]. E

The proof is the same as the proof of Theorem 2.2.1, with integration limits changed

from (-oo, 0o) to [a, b] when appropriate.

Similarly, if we use a wavelet with compact support, there will be a region

in the (t, s)-plane where the CWT of f(T) will not be influenced by the values

of f(-r) on the interval [a, b]. Let us suppose that the support of 0(t) is [-r, r].

Then, for any so, we can determine the interval c < t < d on which f(-), a <

- < b contributes to W, .f(t, so). To find d, we consider the extreme case when the

leftmost point of supp 4 is b: d - rso = b => d = b + rso. To find c, we

consider the other extreme case when the rightmost point of supp [4 (r)] is a:

c + rso = a = c = a - rso. So, the infinite trapezoid in (t, s)-plane defined by the

lines ti(s) = a-rs, t2 (s) = b+ rs is the region where f(T) for a < T < b influences
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X

Triangle of sovereignty
of the interval [a, b]

- s Trapezoid of influence of
the interval [a, b] (infinitely
large). Its upper portion is
the x-trapezoid of influence
of [a, b].

Figure 2.1: The triangle of sovereignty and the trapezoid of influence of [a, b]

W• ,f (t. s). We shall call this region the trapezoid of influence of [a, b]. We shall

call the portion of this trapezoid defined by s < so the so-trapezoid of influence

of [a, b]. (See Fig. 2.1).

So, we should be able to characterize the uniform Lipschitz regularity on

finite intervals using compactly supported wavelets. We have the following, slightly

stronger, version of the Theorem 2.2.2:

Theorem 2.2.5 Suppose that supp[V(t)] = [-r, r], and that '(t) is a continuously

differentiable wavelet. Suppose further that f E L 2 (R) is bounded and continuous.

If, for some (•G (0,1) and so > 0, the CWT of f(t) satisfies

WV, f (t, s) I < As' ,  (2.11)

inside the so-trapezoid of influence of [a, b], then f is uniformly Lipschitz a on (a, b).

Proof. Throughout this proof, we are going to be interested in f(T) for a < T < b.

Therefore, whenever we talk about f(T), it is assumed that a < T < b.

a



In order to prove that some function h(r) is uniformly Lipschitz a on (a, b),

we could prove that for all c e (0, co], h(r + E) - h(r) < Aca.Then, if b - a is

finite, the result immediately follows, because we can partition any subinterval of

(a, b) into [ba] intervals of length c or less. However, if a or b is infinite, we also

need h(T) to be bounded, i.e., h(T) < A1. Then,

6a 2Aa
h(T+,-E)- h(T) < 2A 1 < 2AI-E = 6 , Ž > o

0o 0
h(T + )- h(l) AE, _< o,

which means that h(T + E) - h(r) < max A, 2AZ E Consequently, we need to

bound both h(r + E) - h(r) (by Aca) and h(T) (by A1).

Our plan for proving that f(r) is uniformly Lipschitz cG on (a, b) is as follows.

We represent f(T) as f(r) - Ii (r) + I2 (r), and prove, according to the procedure

outlined in the previous paragraph, that both Il(r) and I2(T) are Lipschitz ca.

Without loss of generality, we can assume that Vb(t) is normalized in such a

way that C, = 1. Since (,(t) is compactly supported, the inversion formula (2.4)

holds:
00 0oo 1 t - T

f(T) = W f (t, s) 2 s ) dt ds
, , -so

Moreover, since supp[K,(t)] = [-r,r], we can replace the limits of integration with

respect to t by r + rs and r - rs:

/o°t
• +±rs 1 t-T

f (T) - W,1f (t, s)- 2  ( ) dt ds0 "rT-rs S 2

Let us break this integral into two: f(r) - II(r) + I2(T), where the first integral is

over small scales, and the second one is over large scales:

I ( 1) = fr S + f(t, s) 2b( ) dt ds
,0 , "T r -- 2 8

12(T) - W47,f(t, s)-2( )-dt-ds
. 0 T- S S

Our task now is to come up with some bounds for I () 1, I12() , Il(r ±) - I (r)

and 12( + E) - 12(T) given (2.11). Notice that since Ii(r) is an integral over some

subset of the so-trapezoid of influence of [a, b], we can use (2.11) during the process

of bounding it.



For I2(T), we have:

O< 17+rs
- so 0 T-rs

S oo 
. + rs

0 o . - s

1
Wof(t, s) 1-8

1 7
f L~1)L

- f L2  L2 L J
o sI

t dtds
S

t- T)(t ) dt ds
2

ds
2 const < O0,

where the first transition was made because f f < f f ; the second transition was

true because W•.f (t,s) = <f, 's> < f L2's L2L f L2 (ffm 2 < ) dt) -

S L2 ?•" ) L2 .

A bound for Ii(r) can be found as follows:

< JSo T +iS

* f T- -rs< so T+r7 ,

* 0f fr7-s

1 t -
|W f (t, s)| ( )

WS2 S

1 t - 7
As 2 ( dt ds

S S

dt ds

|- | L1 jfS As' - ' ds = C < 00oo,

where the second transition was obtained by using (2.11). So, both I (r) and I 2(T)

are bounded.

Now we must estimate AI 2 and AII.

12(r + E ) - 12(T) <

< JOo J
T +IS+E

0 T-s-?'

0< "--7

St+r

[tTrs

Sf(p) 7

f(P) IC 2S
TSt+I

t -I'S

di]t
cl

C07 dt ds

•< 0<o .J7--s.

< C 4 , / . r r s.5-

0fso IT -rs S

cI I 4]
f L,) ift,, ,7. Sd

C5 . 2rs dt dsA

Do 2rs(2rs + E)E
- C6 4 ds

soS

= C7 + C- 2

< C9 (E,

for all T + c, T Ce (a, b) ' 12(r) is uniformly Lipschitz 1 4 I 2 (r) is uniformly Lips-

chitz o, because ca < 1. (The second transition in the last chain of inequalities was

ob)tained using the differentiability of i(r), i.e, the fact that ,(t-T-E) - (t-7) <

03-.)

1122(T)I

11 (T7)

t - 7 -

s

t- T I 1t ) dtds
S 8

S]

t-~



Finally,

I• T + E - I d <
+ so] j+?'S+e s+T d ds

W-J d f C (t, s)/ ( ) ds C/ ' 2 V
Sso r+rs+E

+s 2 C9- dt ds
F r-rs S S

_ C10l 1ILl s - 1 ds + C9E So-3 8 (2rs + e) ds < Cl,,c0O ./ý
We are finished, because f(7 + Ec) -f(T) = II(T + e)+ 12(T +E)- Ii(T)- 1 2 (T)I <

Ii(T + E) - 11(T)I + 12(T + E) - I2(T) < AcE => f(T) is uniformly Lipschitz a on

(a, b). The proof of the Theorem 2.2.5 is completed. El

At the beginning of this section, we had Theorems 2.2.1 and 2.2.2 linking the

global uniform Lipschitz exponents and the decay in s of Wpf(t, s) everywhere.

We combined those theorems together, and obtained an "if and only if" statement

in Theorem 2.2.3. Now we would like to combine Theorems 2.2.4 and 2.2.5 and get

an "if and only if" theorem for the uniform Lipschitz exponents on intervals. We

are faced with a problem here, because Theorems 2.2.4 and 2.2.5 are not converses

of each other: Theorem 2.2.5 requires apparently stricter conditions on the decay of

CWT than Theorem 2.2.4 is willing to give. In order to repair this inconsistency,

we consider an interval (a + e,b - c), for 0 < c < 2. Since E is strictly positive,

there exists a q-trapezoid of influence of (a + e, b- c) which lies inside the triangle of

sovereignty of (a, b). Moreover, for any 'y which is between zero and c, there exists a

p-trapezoid of influence of (a + c, b - c) which lies inside the triangle of sovereignty

of (a + 7, b -'y) (see Fig. 2.2)

Therefore, we can combine Theorems 2.2.4 and 2.2.5 in the following way:

Theorem 2.2.6 Given a compactly supported wavelet 0(t) with n vanishing mo-

ments and a number a c (n, n + 1), the following two statements are equivalent:

1) f(t) is n times continuously differentiable on (a, b), with all the f(m) m =

0, 1, ..., n bounded and square-integrable on (a, b), and f(t) is uniformly Lipschitz a

on (a + e, b - e), Ve such that 0 < E < '+b

24
24



a a+ y a+ b

P1

S

Figure 2.2: Why Theorem 2.2.6 follows from Theorems 2.2.4 and 2.2.5. (The trape-

zoid shaded in black is the p-trapezoid of influence of the interval (a + E, b - E); its

union with the trapezoid shaded in gray is the q-trapezoid of influence of the same

interval.)

b-y



2) |Wpf(t,s)| < As 0s' at every interior point of the triangle of sovereignty of

(a + E, b - E), VE such that 0 < < a+b . (Here A, is a constant depending only on
E.) 0]

(Again, here we have taken advantage of the fact that the case of a E (0, 1)

can be extended to a C (n, n + 1) with the help of the Inductive Lemma.)

So far, we have used CWT to compute Lipschitz regularity on an interval.

CWT can also be used to characterize the regularity of a function at a point.

Theorem 2.2.7 Suppose that O(t) is a compactly supported wavelet. If a bounded

function f (t) is Lipschitz a at to, with z c (0, 1], then there exists a scale so such

that

I Wv,f(t, s) < A(s + t - tola), (2.12)

for all t in some neighborhood of to and for all s < so.

Proof. See Appendix B. (The proofs of all theorems in this section consist of coming

up with clever bounds for various integrals, which was illustrated by the proofs of

Theorems 2.2.1 and 2.2.5. The proofs of all other theorems discussed in this section

are in the references [3] and [10].) D

There is a converse theorem:

Theorem 2.2.8 Suppose that '<(t) is a compactly supported wavelet. Suppose also

that f C L2 (R) is bounded and continuous. Then f(t) is Lipschitz o at to if, for

some 7y > 0 and ca (0, 1), the following two conditions hold for all t in some

neighborhood of to and for all s < so:

I Wyf (t, s) I < As' (2.13)( t-t° - to1
Wf(t, s) < B s + lot - t 0  (2.14)Ilogt 1- toll

Proof. See [3], page 49. L

From the Inductive Lemma, similar theorems for higher order local regularity im-

mediately follow.



It turns out that we do not need the whole CWT in order to compute the

Lipschitz regularity of a function. The next three theorems show that we can esti-

mate the Lipschitz exponents of a function using only its CWT modulus maxima

(which we shall abbreviate by CWTMM).

Definition 2.2.3 A modulus maximum of a wavelet transform W f(t,s) is any

point (to, so) such that
& T, f (t, s) (2.15)= 0 (2.15)

at
t tO,s=So

The following theorems can be proved using the results discussed earlier in this

section:

Theorem 2.2.9 Suppose that <(t) is a compactly supported wavelet with n vanish-

ing moments. Let f(t) E L'([a, b]). If there exists such a scale so that for s < so

and t E (a, b), Wjf(t, s) has no modulus maxima, then for any c > 0 and a < n,

f(t) is uniformly Lipschitz a on (a + 6, b - E) (provided, of course, that E < +)"

Proof: see [10], pages 639-641. FO

If we define "a singularity" as a place where the Lipschitz regularity of a func-

tion is less than n, then this theorem says that it is useless to look for singularities

at the places where there are no CWTMM. This is nice, but now we would like to

know where exactly to look for singularities and how to compute the corresponding

Lipschitz exponents.

Theorem 2.2.10 Suppose that ýi(t) is a compactly supported wavelet with n van-

ishing moments. Suppose also that all CWTMM that are inside of the rectangle

defined by

s < so

a< t < b

are actually inside of the triangle defined by

s < so (2.16)

to - Cs < t < to+Cs (2.17)



for some to C (a, b) and some constant C > 0. Then each point of the interval (a, b),

except to, has a neighborhood where f(t) is uniformly Lipschitz n. Let a < n be a

non-integer. The function f(t) is Lipschitz a at to if and only if, at each modulus

maximum (t, s) in the triangle defined by (2.16) and (2.17),

SW,f(t, s) < As ,  (2.18)

for some constant A > 0.

Proof: see [10], page 641. 0

This is almost what we want. This theorem says that, in order to compute

the Lipschitz regularity of f(t) at a point to, we need to trace all maximum lines

of the modulus of CWT of f(t) which go to to. The next theorem will allow us to

trace just one line of maxima.

Theorem 2.2.11 Suppose that O(t) is a wavelet with n vanishing moments. Sup-

pose that supp[qb(t)] = [-r,r]. Let a, to, and b be three constants, a < to < b. Let

t=X(s) be a curve in the scale space (t, s) lying entirely inside the trapezoid of in-

fluence of the point to G (a, b). Suppose also that for all points (t, s) of the rectangle

defined by

8 < so

a < t < b,

Wpf (t, s) has a constant sign and

W•,,f(t, s) < As", (2.19)

for some v > 0. If

14V, f(X(s), s) < As7, (2.20)

with 0 < 7 < n, then, f (t) is Lipschitz o at to, for any a < y7.

Proof: see [10], pages 641-642. r

It has already been mentioned that Mallat's noise removal algorithm utilizes

the computation of Lipschitz exponents of a function. Theorems 2.2.9, 2.2.10, and



2.2.11 tell us that we can compute the Lipschitz regularity at a point to from the

decay in s of the CWTMM along the curve of maxima converging to to. Now, in

order to be able to estimate Lipschitz regularity of a function from its samples, all we

need is to implement the wavelet transform on a digital computer. The discussion

of this implementation is the content of the next section.

2.3 Dyadic Wavelet Transform (DWT)

Computation of the CWT for a dense set of scales and times is extremely inefficient.

In order to be able to perform fast computations, we restrict our attention to the

scales which are integer powers of two. The wavelet transform taken along those

scales is called the dyadic wavelet transform:

Definition 2.3.1 The dyadic wavelet transform (DWT) of a function f(t),

Wf , is defined as the following sequence of functions:

W fef f { Wvf (t, 2J)}jez

Note that We is a linear operator from L 2 to the space of all countable sequences

of L 2 functions.

The following theorem gives a sufficient condition for invertibility of the op-

erator WO.

Theorem 2.3.1 Suppose that the wavelet 4(t) is an even function (i.e., that b(w)

is real.) If there exist two positive constants A1 and B1 such that, for any w c R,

oo

A, < E | (2) 12  B1, (2.21)

then any f e L2 (R) can be recovered from its dyadic wavelet transform.

Proof. From (2.21), we have:

E (2jw) ý(2j<) 1, Vw E R (2.22)
j=-00 B1

00 (2•*) > 1, Vw E R (2.23)A,



oo

Define a subspace D of L 2(R) by D = {Et L 2(R) O < p2(2Jw) < oo}. Define
OO

00-0

a functional K on D by Kp = E (2jw)p(23w). Note that K is continuous.
j=--00

Now, (2.22) and (2.23) say that K < 1, and K (2w) > 1. Since KBi - Al
is continuous, the Intermediate Value Theorem [17] says that there exists a (not

necessarily unique) function i)such that K = 1. I.e.,
00

Z ý'(2'w))(2 3 w) = 1 (2.24)
-- 00

Let us now use the fact that W., f (t, 2J) = f * 2j(t), where 0 2i (t) = 2(). Since

the Fourier transform converts convolution to multiplication, and since F[2j (t)] =

(2Jw), we can write the Fourier transform of the wavelet transform of f(t) as:

Wi, f(w, 2) = f(w) (21w) (2.25)

Now notice that

00 00 0

Z W~1 ,f P1 23)iý(21w ~)( 3 ~~w)  ) (w) E 4'(2jw)ý(2jw) f f(W),
j=-00 j=-00 j=-00

where we used (2.25) to make the first transition and (2.24) to make the last one.

Taking the inverse Fourier transform of the last equation, we get:

00

f(t) = WV Wf (t, 2j ) * 72i (t) (2.26)
= -00

This completes the proof. R

We denote by W- 1 the operator from the space of all countable sequences of

L 2 functions to L2 defined by
00

W- ({g]I = j9 * 21(t) (2.27)

It is important to realize that W-1 is not the inverse of W0, because a sequence

{gj(t)}jez is not necessarily the DWT of an L 2 function. Rather, W- 1 is a pseudo-

inverse, because W- 1 o We = Identity on L2.

We are not ready yet for the numerical implementation of the wavelet trans-

form, because the computer cannot deal with infinite range of scales. We are go-

ing to avoid this problem by fixing the finest scale at 1 and computing the set



{Wf e f(t, 2j)}<_j< j, for an arbitrary J. We will show that all coarse-scale informa-

tion can be accumulated in one function.
(OO

Assume that (w)i(w) is real, even, and positive. Let E(w) d (2iw)i(2JW).
j=1

Then we have:

J J

S V Wef (W) 21)iý(23*w) = f(w))(23*w)iý(2jw =f~Q() - q5(2jw)))
j=-1 j=1

Now define Sof (t, 2J) = f*02 (t) and notice that Spf(w, 1)-Sof (w, 2J) = f(w)((w)-

0(2jw)). Therefore,

JS/f(w, 1) = Sepf(w, 2 J) + 5-l f (w, 2J) (2 w) =-

j=1

J

So f(t, 1) = Se f(t, 2 J) + E W.f(t, 2
j ) * 2(t)

j=1

That is, Sp f(t, 1) can be recovered from {Wpf (t, 2J)}J 1 and Sof (t, 2 J). It turns

out [12] that any finite-energy discrete signal d[n] can be represented as d[n] =

Se f(n, 1) for some f(t). There are many wavelets for which the discrete sequences

Wef(n, 2
j +l) and Spf (n, 23+1) can be quickly computed from Se f(n, 23) and vice

versa. This means that we can compute {Wof(n, 2j)}=1 and Sof(n, 2 J) given any

discrete sequence d[n] = Sp f(n, 1). Conversely, we can also reconstruct d[n] from

{IW/ef (n, 2J)}UJ= and Se.f (n, 2 J). One class of such wavelets is described in [11].

The wavelet that was used in this thesis is described in Chapter 4. We finish this

section by defining the discrete dyadic wavelet transform of a signal up to the scale

2d , which is the portion of the CWT that we use in computer simulations.

Definition 2.3.2 The discrete dyadic wavelet transform (DDWT) up to the

scale 2J' of a discrete signal d[n] = Se f(n, 1) (or continuous signal f(t)) is the

following collection of J1 + 1 discrete sequences:

({We f(n + w, 2 J)}jl, Sc f(n + w, 2a)), (2.28)

where w is a sampling shift that depends only on the wavelet ýb(t).



2.4 An Algorithm for Reconstructing a Close

Approximation of a Signal from Its Dyadic

Wavelet Transform Modulus Maxima

The three preceding sections dealt with implementing the wavelet transform on a

digital computer and using it to estimate the Lipschitz regularity of a function. The

only building block of Mallat's noise removal algorithm that we have not discussed

is an algorithm for approximating a signal given its Dyadic Wavelet Transform

Modulus Maxima (DWTMM). This algorithm was developed by Mallat and Zhong.

In this section, which is almost entirely borrowed from [11], principal features of the

algorithm are described.

In general, it is impossible to reconstruct a signal from its DWTMM, because

several (in fact, uncountably many) signals can have the same DWTMM [13]. How-

ever, it seems that the L' norm of the difference of any two functions having the

same DWTMM is small compared to the norms of the functions themselves. (To the

best of our knowledge, this conjecture has been neither proven nor even quantified.)

We assume that it is true. In that case, it makes sense to try to reconstruct some

function from a given set of DWTMM, because this reconstruction then should be

a good approximation to any other function possessing the same DWTMM.

We shall now examine the problem of reconstructing a function from its

DWTMM. We start by characterizing the set of all functions h(t) such that the

DWTMM of h(t) is the same as the DWTMM of some fixed function f(t). We

suppose that the wavelet 4)(t) is continuously differentiable. Since WPf(t, 23) is the

convolution of f(t) with '2J (t), WV ,f(t, 2J) is also continuously differentiable and

has, at most, a countable number of modulus maxima.

Let {t3}ez be the set of all locations where Wf(t, 2j) is locally maximum.

Then the constraints on hli(t) can be decomposed into two conditions:

(1) W,4h(ti, 2i) = Wý f(t],, 2'), Vi, j Z, and

(2) DWTMM of h(t) are located at the points {tt",},yjz.



Let us examine these two conditions. Condition (1) can be rewritten in the

following way:00 00
f(t)>2,j(ti - t) dt = h(t)b 2 (tj - t)dt, Vn, j e Z

-, < f(0, V,2i W11 -t) >=< h(t), ¢2 (tj -t) >, VnO Z,

which is equivalent to h(t) and f(t) having the same orthogonal projections on

the space U = Cl(Sp{ 2 (t{ - t)}n,jEz). (Here Cl means "closure" and Sp means

"span".) In other words, condition (1) is equivalent to: h = f + g with g C U',

which holds if and only if h E f + U'.

Condition (2) is more difficult to analyze, because it is non-convex. We

approximate it with another constraint. Namely, we impose that Woh(t, 2i) 2 be

as small as possible on average, at every scale. This, together with condition (1),

generally creates modulus maxima at or near the positions {tI}n,jEz. To have as

few additional modulus maxima as possible, we also minimize the energy of the

derivative of Woh(t, 2i) - again, at every scale. Notice that dWph(t,2i) - h(t)
dt

(())= h(t)* (tt)-- i.e., the integral of the absolute value of the function

with which we convolve h(t) decreases by a factor of 2 every dyadic scale. Since

we would like the terms at different scales to carry the same weight in the quantity

that we are going to minimize, we must weigh dWoh(t,2i) by a factor of 2i. This11 dt b atro .Ti

means that we minimize the following quantity:

1|h1 2 ef (|W1h(t,2)| 2 +22j dWh( t, 2i) 2(2.29)
=-o dt-

over all h e f + U', where 22j is a normalizing factor expressing the fact that

Wvh(t, 2i) is smoother at larger scales. Using (2.21) for both O(t) and ?'(t) = ddt

we get:

A • 1 |(23w)12 + | /(2iw)2 < B
j=-cc j=-oo

Multiplying this inequality by |h(w) 2, integrating the result from w = -oo to

w = c00, and using Parseval's relation, we get:
cc

A|h| 2 [(h (t) * '0 2 (t)) 2 + (h(t) * 0 j (t))2 ] < B2 h 2

=- cc



4 h 2< h 2 <B 1 2 (2.30)

Hence, is a norm over L2 (R), which is equivalent to . So, we replaced

condition (2) with a minimization of a norm. We showed previously that condition

(1) restricts h to the set f + U'. This is a convex set, since U' is a linear space.

This means that we have converted our problem into minimization of a norm over

a convex set. The new problem has a unique solution which, we hope, is a good

approximation to any solution of the original problem.

Now we shall outline the algorithm that computes the solution of our mini-

mization problem. Instead of computing the solution directly, we first compute its

wavelet transform with an algorithm based on alternating projections.

Let K be the space of all sequences of functions {gj(t)}JEz such that

_0 2

{g(t)}ez 2 + 22j d ) < 00 (2.31)

Let V be the space of all DWT's of L2 (R) functions. Equations (2.29) and (2.30)

then say that V C K. Now let F be the set of all sequences of functions gj(t)JCz E K

such that for all maxima positions tI,

93 (V ) = W1,f (V( 21)

We must therefore find the element of A = V n F whose norm defined by (2.31)

is minimum. In other words, we need to find the orthogonal projection of the zero

element of K onto A. This is done by alternating projections on V and F. We

already know the projection operator onto V: it is W, o W-1 (see Definition 2.3.1

and (2.27)). It turns out [11] that this operator is orthogonal if the wavelet is

antisymmetric (as in [10] and [11]) or symmetric (as in this thesis - see Chapter 4.)

The orthogonal projector Pr on F is described in [11]. Now it follows from [22] that

repeated application of W,, o W,-1 o Pr to any element x of K converges to PAX,

where PA is the orthogonal projector on A.



2.5 A Robust Noise Removal Algorithm of Mal-

lat

We saw in Section 2.2 that we could compute the Lipschitz regularity of a function at

any point to from the wavelet transform modulus maxima. Section 2.4 provided us

with an algorithm to estimate a signal from its wavelet transform modulus maxima.

Combining the two results, we have the following noise removal algorithm.

Problem. Suppose that we observe samples of the following signal:

y(t) = f M+ '(t),

where v(t) is a noise process whose realizations have Lipschitz regularity less than

k, and f(t) is the useful signal which is Lipschitz at least k at every point.

Procedure. Compute the wavelet transform of y(t) and compute its modulus

maxima. From their evolution across scales, determine local Lipschitz regularities.

Remove all those maxima corresponding to the Lipschitz regularities which are less

than k. From the rest of the maxima, reconstruct a signal according to the procedure

described in Section 2.4. (We translate everything into discrete domain using the

procedure described in Section 2.3.)

For example, the realization of a white Gaussian noise is a distribution whose

uniform Lipschitz regularity is -0.5. Suppose that the worst singularity of the signal

that we want to recover is Lipschitz 1. Then we would set the threshold k to be

anywhere between -0.5 and 1. Notice, however, that the algorithm does not require

the noise to be Gaussian. The only requirement is that the Lipschitz regularities of

the noise and the signal be able to be differentiated.

Unfortunately, we cannot apply this algorithm directly to the problem posed

in this thesis. The problem is that the algorithm does not allow us to use any addi-

tional information that is known about the signal (besides its Lipschitz exponents.)

The reconstruction depicted in the Figure 2.3 is extremely good if we have no infor-

mation about. the original signal. However, if we know that it is a linear spline with

one knot, we would like a better estimate! Besides, in an application such as the
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Figure 2.4: The extrema at the first 8 dyadic scales of the wavelet transform of the

signal depicted in the top portion of Figure 2.3
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detection of abrupt changes, the location of the knot and the corresponding slope

change is precisely the information we want. Our goal is to modify this procedure

so as to be able to incorporate our knowledge of the fact that the original signal is a

spline. What we need to do is to replace the part that reconstructs the signal from

the wavelet transform modulus maxima by some parameter estimation algorithm.

For example, if we have a linear spline with one knot, we would like to know three

parameters: the location of the knot and the slopes of the linear pieces. We know

that the wavelet transform of such a signal has just one maxima line (which corre-

sponds to the knot.) So, our task is to choose, among many possible maxima lines

of the wavelet transform of noisy observations, the one which matches most closely

a singularity with Lipschitz regularity equal to 1. Figure 2.4 shows the wavelet

transform modulus maxima of the signal depicted in Figure 2.3, at the first 8 dyadic

scales. We can see that the extrema corresponding to noise are absent from the

coarse (bottom) scales, and start to appear at finer scales. Their amplitudes are

generally less at lower scales. On the other hand, the extrema corresponding to the

knot are strongest at the coarser scales, with geometrically decreasing magnitude

at finer scales (i.e., towards the top). These observations suggest that perhaps we

could formulate the problem of estimating the movement of the extrema across scale

as a target tracking problem, with extrema corresponding to noise modeled as false

targets whose density and amplitude decrease at coarser scales. This is the motiva-

tion for the brief discussion of a general multi-target tracking problem presented in

the next chapter.



Chapter 3

A MULTI-TARGET TRACKING

ALGORITHM

3.1 Introduction

This chapter is a brief review of the multi-target tracking problem. Most

of the results described here are taken from [16], [9] and [19]. It is not our goal to

present the subject in great depth or generality; for broader and deeper treatment,

the reader can consult [16] and [9], as well as many excellent references cited in

those two papers.

3.2 Exact Algorithm

We assume that at each time t, we have NTT(t) targets each of which is

described by a vector x2(t) of n parameters. The number of targets NTT(t) may

change with time. We model the evolution in time of every state vector xi(t) by the

equation

x(t + 1) = Ax(t) + Gw(t), (3.1)

where A and G are known matrices and w(t) is a discrete white Gaussian noise

process with zero mean and covariance Q. We also assume that we make M(t)



measurements {y,(t)}•" at time t, where M(t) may vary with time. Some of the

measurements are due to targets and the others are false alarms. (Note that the

number of measurements that are due to targets is not necessarily NTT(t), because

some targets may not be detected. The model for the probability of a missed

detection PD and the probability of a false alarm PF depends on the particular

application.) We assume that the following relation holds between the state vector

x(t) of a target and the measurement vector y(t) which came from this target:

y(t) = Cx(t) + v(t), (3.2)

where C is a known measurement matrix and v(t) is a zero-mean white Gaussian

noise with covariance R.

If every measurement could be associated with a particular, unique target,

then the optimal estimate of every x,(t) is given by the Kalman filter [8]. After a

measurement y(t) is received, the best estimate of the corresponding x(t) based on

y(T) up to time t is

x(t t) = i(t t - 1) + P(t t)CTR -(y(t) - Ck(tlt- 1)), (3.3)

where the corresponding error covariance P(t t) = E[(x(t) - i(t t))(x(t) - :k(tlt))T]

is given by

P(t t) = P(t t - 1) - P(tlt - 1)CT[CP(tlt - 1)CT + R]- CP(tlt - 1) (3.4)

Now we can predict x(t + 1) based on y(T) up to time t:

x(t + 1it) = Ax(tjt) (3.5)

P(t + 1it) = AP(tlt)A' + GQGT (3.6)

However, before we can use the Kalman filter, we must solve the data associ-

ation problem. Namely, when we receive a set of measurements, we must know how

to associate each measurement with a target.
def

Let Y(t) {y(t), i = 1, 2, ... , M(t)} be the set of all measurement vectors

at time t. Let Yo,,,,,(t) tf {Y(7-), 7T = 1,2, ..., t} be the set of all measurements for



times 1, 2, ..., t. A global hypothesis •1(t) at time t is a rule which associates

each measurement vector in Yhu(t) with either a particular target or a false alarm.

Usually, one measurement vector y,(t) is not allowed to be associated with more

than one target under one hypothesis. Conversely, two measurement vectors are not

allowed to be associated with the same target. Let Q(t) { 1(t), I = 1, 2, ... , Lt}

be the set of all possible global hypotheses at time t. An association hypothesis

n,(t) for a data set Y(t) at any time t is a rule which associates each measurement

vector in Y(t) with either a particular target or a false alarm. Thus, we may view

Q•(t) as the joint hypothesis formed from the prior hypothesis QH (t - 1) and the

current association hypothesis K,(t), and therefore

Pr(Qz(t) Yum(t)) = Pr(Ql,, (t - 1), K9(t)| YCum(t))=

p)(Y(t) Q,, (t- 1), 1K(t), Yu,,(t - 1)) -Pir(i(t) Q11 (t - 1), YCum(t - 1))
1

Pr(Qll(t - 1) •|Y ,(t- 1)) , (3.7)

where c is a normalization constant found by summing the rest of the right-hand side

over all possible values of 11 and g. The symbol "Pr" is used to denote probabilities

and "p" is used for probability densities.

Let us now show how to evaluate the right-hand side of (3.7). Since in

all practical applications the range of a sensor is limited, all measurements come

from some bounded set. Let V be the volume of that set. We assume that the

measurement from clutter or any target whose existence is not implied by the prior

global hypothesis Q1, (t - 1) is uniformly distributed - i.e., it is equally likely to come

from anywhere in the region covered by the sensor. Equation (3.2) implies that, for

a target whose existence is implied by the prior global hypothesis, a measurement at

time t conditioned on the measurements up to time t - 1 is a normally distributed

random vector with mean Ck(t t - 1) and covariance CP(tt - 1)CT + R. Then

M(t)

p(Y(t) Q11 (t- 1), K9 (t- 1), Y)um(t - 1))= I fm, (3.8)
m= 1

where:

fa, = if the m-th measurement is from clutter or a target whose existence is not



implied by the prior global hypothesis, and

fm = Af(ym(t) - Cim(tIt - 1); 0, CP(tIt - 1)CT + R) if the measurement is from

a target whose existence is implied by the prior global hypothesis Q1 (t - 1). Here,

A(z; z,, P) denotes the normal probability density function 1 exp[- (z -
V(27r)j~ 21

Zm)TP-l(Z - Zm)]

The second term on the right-hand side of (3.7) is the probability of a cur-

rent association hypothesis K.(t) given the prior global hypothesis Q1 (t - 1). Each

association hypothesis Ig(t) includes the following information:

Number: The number of measurements associated with the prior targets NDT,g(t),

the number of measurements associated with false targets NFT,g(t) and the number

of measurements associated with newly detected targets NNT,g(t).

Configuration: Those measurements which are from previously known targets,

those measurements which are from false targets, and those measurements which

are from new targets.

Assignment: The specific source of each measurement which came from a previ-

ously known target.

The prior global hypothesis R1 (t - 1) includes information as to the total

number of the previously known targets NTT,1, (t - 1).

In order to compute the second term on the right-hand side of (3.7), we must

have a probabilistic model for NDT,g(t),NFT,g(t) and NNT,g(t) which depends on the

particular application under study. (Section 4.2 describes this model for the appli-

cation considered in this thesis.) Once we know how to calculate Pr(Qm(t) IYcm(t))

from Pr(Q11 (t - 1) Ycm(t - 1)), we proceed as follows. When a new set of measure-

ments Y(t) comes in, we calculate Pr(Q (t)IYum(t)) = Pr(Ql(t - 1), rg(t)|Y m(t))

for all possible Q1, (t - 1) and r,(t). We then update the Kalman filters for ev-

ery possible hypothesis Q1(t). At the end, we choose the estimates of the targets

resulting from the Kalman filter corresponding to the likeliest hypothesis.



3.3 Reducing the Number of the Hypotheses

The optimal filter discussed in the previous section requires large and ex-

ponentially growing memory and computational resources even if the number of

measurements is relatively small. This is due to the fact that the number of hy-

potheses is large and exponentially increasing. This means that, for a practical

implementation, we need to limit the number of hypotheses. The most natural

thing to do is to avoid hypothesizing an association between a measurement and

a target whose estimated tracks are far from the measurement. In other words, a

target whose state vector is x,(t) is associated with a measurement ym(t) only if

(ym (t)-Cki(t t-l))T. (CP(t t_1)CT +R) - 1 (ym(t)-C (t t-1)) < a2 , (3.9)

where a is generally chosen between 1 and 3.

Once the probabilities of all feasible (in the sense of (3.9)) global hypotheses

are computed, we retain a fixed number of most likely hypotheses. A slightly more

sophisticated method (called an N-scan filter) is to prune the set of hypotheses

Q(t - N) at time t. That is, at any time t > N, all remaining global hypotheses

Q1, (t) have some hypothesis Q l, ( t - N) in common.



Chapter 4

ESTIMATION OF A LINEAR

SPLINE WITH ONE KNOT

In this chapter, we show how to combine the algorithms presented in Chap-

ters 2 and 3 to produce an algorithm for estimating the knot location and the slope

change of a linear spline with one knot. Namely, we take the dyadic wavelet trans-

form of an input signal and compute the local maxima of its absolute value. Then

we use the target tracker described in the preceding chapter in order to estimate

the knot location and the magnitude of the slope change.

4.1 An Appropriate Class of Wavelets

We start by describing a class of wavelets well suited to our application.

Since we are looking to find a singularity whose Lipschitz exponent is 1, Theorem

2.2.11 tells us that we need a wavelet with at least 2 vanishing moments. An easy

way to obtain such a wavelet is by differentiating a smoothing function 2 or more

times. In general, if 4(t) = dt) then
dtP

/±OtO¢()l = " tk dPO(t) dt



~kd k(-F[ dpO 1)(t )

k d_ kt jGWO ) (0)d k- ik-k ((iw)"(w)) (0)= 0, k = 0,...p-1,

provided that all derivatives that were used in this calculation exist, and that the
Fourier transforms are continuous at zero. That is, if V(t) is the p-th derivative of a

function 0(t) which is sufficiently smooth and whose Fourier transform is sufficiently

smooth, then 4'(t) has p vanishing moments. A standard procedure for obtaining

such a function 0(t) is convolving several box functions. It is easy to check that

the convolution of 2k + 3 identical box functions is a bell-shaped, non-negative,

compactly supported spline of order 2k+2 (see Figure 4.1). We take this convolution

as our 0(t) and set ý#(t) to be equal to its second derivative. Therefore, V(t) is the

2k-th order, compactly supported spline which looks like an upside-down Mexican

hat (see Figure 4.2).

The wavelet transform of any function f(t) at a fixed scale 23 is then the

second derivative of f(t) smoothed by 0(t). Particularly, if f(t) is a linear spline

with one knot, W•f(t, 23) is a smoothed impulse whose maximum is at the knot

location (see Figure 4.3). Thus, for a noiseless linear spline with one knot, there

is just one extrema chain consisting of extrema whose location is constant across

scale, which makes the corresponding state equation of our target very simple (see

the next section.) If we were to make V)(t) a higher-order derivative of 0(t), multiple

extrema tracks of different shapes would result (see Figure 4.4). This would make

the model more complicated, without enhancing the performance of the tracker.

(Indeed, the energy of the CWT would be spread over these several tracks, rather

than being concentrated along one extrema track, thereby making noise removal

more difficult.)

A fast recursive algorithm for computing the wavelet transform at dyadic

scales (taken from [11]) is described in Appendix A. The particular wavelet used in

computations resulted from setting k = 1. In other words, our smoothing function

0(t) is the convolution of five box functions. The corresponding quadratic spline
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Figure 4.1: The shape of the smoothing function whose second derivative is 4(t)

wavelet is 0(t) = r(t - 1), where

r·(t)

(2t + 5)2

-16t 2 - 20t - 5

24t 2 _ 52

-16t 2 + 20t - 5

(-2t + )2

0

if t ; _E]ft [ 4' 4]
13. 1]

if t [

if t [e ; ]

ifot[e;r ]

otherwise

4.2 The Tracker of Maxima

Once we have computed the wavelet transform of the input sequence d[n],

we use the target tracker described in Chapter 3 to track the maxima of its absolute

value across scale. For every maximum, we are interested in two parameters: its

location and amplitude, which we therefore choose as our state variables x, and x 2.

We showed at the end of the preceding section that, for a linear spline with one
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Figure 4.2: The wavelet V(t) defined by (4.6), with k = 1

knot, the location of the maximum corresponding to the knot is fixed across scale

and is the same as the location of the knot. Therefore, the state equation for this

state variable is

xI(j -1) = X (j) (4.1)

This equation slightly differs from (3.1). First of all, since we are tracking the ex-

trema across a sequence of dyadic scales rather than time, our independent variable

is j. Second, we would like to start the tracker at the coarsest scales where the

signals are smooth and therefore have few local maxima, which leads to a small

number of initial hypotheses. We therefore move from coarse to fine scales, which

corresponds to moving in the direction of decreasing j.

We obtain the second state equation by using the results presented in Section

2.2. The Lipschitz regularity of a linear spline at a knot is 1, and therefore the
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Figure 4.3: A linear spline (top) and its wavelet transform for scales 21,22,23, and

24, computed with the wavelet of Fig. 4.2
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maximum at the scale 2i has to be twice as large as the maximum at the scale 2j-1:

1
x 2(j- 1) = -x 2(j) (4.2)

2

The slope difference at the knot is then given by x2 (1). Combining (4.1) and (4.2)

together, we get: 10
x(j - 1) = x(j) (4.3)

01
2)

Since we "measure" our state variables directly, our measurement matrix C

is an identity matrix, and so the measurement equation is

y(j) = x(j) + n(j) (4.4)

We model the noise as a zero-mean Gaussian random vector with uncorrelated

components. The standard deviation of the second component at the finest scale,

9 2 (1), is estimated to be the standard deviation of the CWT maxima at that scale.

Using the fact that both the number and the amplitudes of the CWT extrema

decrease by a factor of two from every dyadic scale to the next coarser scale, we

put u2 (j - 1) = 49 2(j). The standard deviation of the first noise component,

a,, was, by trial and error, determined to be 10 at the coarsest scale. We also

put al(j - 1) = 4al(j). No significant changes in the results of the Monte-Carlo

simulations discussed below occur if a, is initialized at 1 or 100 instead of 10.

Handling association hypotheses is particularly simple in this case. The num-

ber of targets NTT(j) = 1 is known and constant, and the target is always detected:

NTT = NDT = 1. This means that there are no new targets, and the number of

false alarms is always one less than the number of measurements. So, all association

hypotheses are equiprobable given Qg(j + 1), and we can rewrite (3.7) using (3.8):

Pr(Qjl(j)jYcum(j)) = r 1 (y (j) -J(jJJ+I1); 0, P (J Ij +1) +R) Pr (Q11(J +1) 1Ycu (J +I1))1Pr(Qj(j) Yum(j)) = -Nf(y~j)-k~(jij+1); 0, P(j j±1)±R)Pr(Qi1 (j+1)I cum(J+1))

(4.5)

We are now ready to run the filter and present the results.



4.3 Experimental Results.

First, we present the results of Monte-Carlo simulations conducted for a linear spline

with additive Cauchy-contaminated Gaussian noise process. In other words, the

probability density of every noise sample x is:

p(x) = (1 - -)A(0, v) + FC(0, b),

where Ar(0, v) is the Gaussian probability density with mean 0 and variance v, and

C(0, b) is the Cauchy probability density with parameters 0 and b:

1 b
C(0, b) b

7 b2 + 2

In order to get the kind of spiky noise that we claim our algorithm is robust to, we

make the parameter - small and b large, thus getting a Gaussian noise with very rare

but large spikes. In particular, we took v = 25 and b = 500 in our simulations. A

typical sample path (i.e., a linear spline with the knot at 128 + a noise realization)

is shown in the Figure 4.5, for C- = 0.02.

If F is close to zero, the noise is essentially Gaussian, and therefore a GLR-type

Gaussian [14] estimator should perform better than or the same as our algorithm.

However, as F increases, the decline in the performance of the Gaussian estimator is

more dramatic than that of the estimator described in this thesis. This is confirmed

by the Figure 4.6 which depicts the mean-squared errors in estimating the knot

location of a linear spline with one knot, for different values of c. The error bars

ccrrespond to 95% confidence regions (i.e., two standard deviations.)

Next, we demonstrate the robustness of our algorithm to the detailed struc-

ture of the discontinuity by applying it to a signal which is not a purely linear spline.

Particularly, we use functions

(t + a )2 _ ,2

128

where u(t) is the unit step. In other words, the function is a constant zero to the

left of the knot and a parabola to the right (but the derivative of the parabola at

the knot, is nonzero.) One such function, for a = 80, is shown in the Figure 4.7.
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Figure 4.5: A typical sample path of the noise whose density is p(x) = 0.98A(0, 25)+

0.02C(0, 500), added to a linear spline.
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Figure 4.6: The MS error for the estimates of the knot location of a linear spline,
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Figure 4.7: f (t - 128), where f(t) = ((t + 80)2 - 802)u(t)/128.

We again compare the performance of our algorithm with that of a GLR

estimator tuned to linear splines, for different values of a. This time the noise is

purely Gaussian. Again, our algorithm clearly outperforms the Gaussian estimator

(Figure 4.8). As the curvature of the parabola decreases (and thus the parabola

looks more and more like a straight line) .- which corresponds to increasing a - the

performance of the estimators becomes more and more similar. It is to be expected

that, as the function approaches the linear spline, the performance of GLR becomes

close to that of our estimator.

Thus, the algorithm described in this chapter is more robust than GLR when

applied to linear splines with one knot.

4 A^
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Figure 4.8: The MS error for the estimates of the knot location, versus a. The

dotted line corresponds to our algorithm; the solid line is GLR.

450



4.4 Estimating the Spline Order.

In this section, we present a simple extension of the results described in the previous

section. Given a function which is a spline of order less than or equal to M with one

knot, we can set up an M-ary hypothesis testing problem to find out the spline order.

In particular, the hypothesis Hi is that the spline order is i (i =1, ..., M). We can

compute the most likely fit under each hypothesis using the algorithm described

in the preceding sections of this chapter. After this, we choose the most likely

hypothesis. There are two easiest ways to handle every hypothesis. One can either

use a wavelet with i + 1 vanishing moments for Hi, or a wavelet with M +1 vanishing

moments for all hypotheses. In the simulations below, we adopt the latter way.

This scheme does not necessarily work better than GLR-type detectors, even

under the spiky-noise scenario. However, once the determination of the spline order

has been made, our scheme will provide generally more accurate estimates of the

knot than GLR.

We now illustrate the detection scheme with M = 2. Figures 4.9 and 4.10

show typical sample paths for first- and second-order splines with additive spiky

noise described by

p(x) = (1 - E)AF(0, 4) + -C(0, 50),

In both cases, the actual knot is at 128, and E = 0.01. Figure 4.11 shows the

probability of correct decision vs. E. (Two hundred runs were made for each value

of E: 100 with the actual function being a linear spline, and 100 with the actual

function being a quadratic spline.)
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Figure 4.9: Linear spline with a spiky noise (the knot is at 128.)
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Chapter 5

CONCLUSION AND FUTURE

WORK

In this thesis, a novel knot detection algorithm has been presented. The

algorithm uses the extrema of the continuous wavelet transform to zoom in on

the knots. It utilizes the theory on the relationship between the singularities of

functions and corresponding CWT extrema tracks [3], [10], [11]. By viewing the

scales of the CWT as successive "scans", or measurement sets, we cast the problem

of tracking extrema across scale as a multi-target tracking problem. Each extrema

track corresponds to a "target", i.e., a knot. By following these tracks from coarse

to fine scales, we arrive at an estimate of the location of the knot and the slope

change at the knot.

The resulting algorithm is robust both to the detailed statistical structure of

the noise and to the precise nature of the abrupt change at the knot. It has been

demonstrated that the algorithm is much more robust than the classical GLR-type

algorithm.

There are several possibilities for future research. The most immediate con-

cern is generalizing the algorithm to splines with several knots which are close to

each other. If two knots are close to each other (i.e., closer than the support of the

wavelet at some scale), then the CWT extrema tracks corresponding to these knots



are not going to be independent; they will interact. The next step in the research

is to incorporate the knowledge of this interaction into the algorithm.

Another research direction is building more sophisticated models of the dis-

tributions of the CWT extrema due to noise. Even if the noise is Gaussian and

white, finding the exact probability density of inter-arrival times of CWT extrema

is very difficult, because the operation leading from the original signal to the CWT

extrema is nonlinear.



Appendix A

A Fast Dyadic Wavelet Transform

Algorithm.

In this appendix, we show how to discretize the wavelet transform for the class of

wavelets described in Section 4.1. We use the notation of Chapter 2. Since we use

2i to index the dyadic scales of wavelet transforms, we shall use i to denote V---1.
k k \ k!We also use ( n ) as a shorthand for kLn }n!(k-n)!"

As in Section 2.3, we assume that the input is a discrete sequence d[n] =

Sbf (n, 1), and the goal is to be able to compute a sampling Sff (n + w, 2i) of

Sb f (t, 2 i) and a sampling W,.f(n+w, 2i) of W f (t, 2i) for any dyadic scale 2 , where

j > 1. We show that this computation can be done recursively, by convolving d[n]

with dilated versions of certain discrete filters H[n] and G[n] an appropriate number

of times. To do that, we just define H[n] and G[n] and describe the computations,

without providing any intuition as to why the procedure works. A more extensive

treatment of this algorithm can be found in [11].

To simplify notation, we define S[n,j] = Sof(n + w, 2i) and W[n,j] =

WV' f(n, + w, 2i) for j > 1, where, as in Definition 2.3.2, w is a sampling shift

which is determined by V(t). For any discrete sequence P[n] and any nonnegative

integer j, we also define Pj [m] by:

P [m{] P[n] if m = 2Jn
0 if Vn m : 2in



Let us define a sequence H[n] of length 2k + 2 as follows:

2k+1 )

H[n] = k + I + 7 -k - 1, k
22k+ 1+-

2k + 1
(2k + 1)- (k +1 +n )

2k + 1
(k+ 1)- (n+ 1i)

conclude that H[n] = H[-n? - 1], i.e., the sequence is symmetric with respect to

n = - . It is also worth noting that2=-•

2k + 1
k+ 1 +n = 2 2k+ 1

which means that

H[n] = 1,
7 = - 00

i.e., this filter is a (2k + 2)-point weighted averager.

Its discrete-time Fourier Transform (DTFT) is

2k)+ 1k+I+ )k-1

2 2k+1

which, by substituting -n = k + 1 - m can be written as

12k+1

= 2 2k+1

?__ 2k+1C 2
22k+1 (

"- 0

2k + 1) e(k+-m)irn

2ki + 1 ) (e)2k+l-m (e m?n 2) (e-2 m

= (e2 ±i#2±2

2k+ I2 • ( 2) :+= e 2 COS --
2

where the second to last transition was obtained by using Newton's binomial theo-

rem.

Define

(A.2)
) s s 2k+1

Since ( 2k + 1
k±+1±+n

H(w)

(A.1)

k
n=-k-1

U



It is easy to see that

0(2w) = !1!(w) (w) (A.3)

Now consider a second-difference sequence G[n] = 6[n + 1] - 26[n] + 6[n - 1],

where 6[m] is the Kronecker delta sequence which is one when m = 0 and zero

otherwise. The DTFT of G[n] is given by

G(w) = es" - 2 + e-iW = 2(cosw - 1) (A.4)

Let us define a wavelet V(t) such that

()= e2 G(-) -) (A.5)
2 2

Substituting for G(f) from A.4 and 4(-) from A.5 into A.5 and simplifying, we get:

2, (iw)2  s1n 4• 2k+3(w) = e-2 (- 4 , (A.6)
4 -4

We observe that the inverse Fourier transform of is an even box function withT

amplitude 2 and unit area. We also know that multiplying by iw in frequency

domain is equivalent to differentiating the corresponding time function. Therefore,

0(t) is the second derivative of the convolution of 2k + 3 identical box functions -

i.e., it is precisely the wavelet described in Section 4.1.

Using the definitions S.f (t, 2j) = f * 02j(t) and W f (t, 2J) = f * 0 2 (t) of

Sections 2.3 and 2.1, respectively, as well as the relations (A.3) and (A.5), we obtain

the following recursive relations:

WV.f (w, 2J +l) - e-2J-1 iwG(2 .w) S f (w, 2) (A.7)

Sf (w, 21+1) = e-2j-liwI(2iw) Sof (w, 23) (A.8)

These equations hold for any nonnegative integer j. We can convert these equations

to discrete-time domain by taking their inverse DTFTs. For any j > 1, we have:

S[n + 2-1',j + 1] = S[n, j] H [n]

W[n + 2 - 1,j + 1] = S[n,j] * G [n]



In other words, we can get S[n, , + 1] and W[n,j + 1] by convolving S[n,j] with an

appropriately dilated version of H[n] and G[n], respectively, and shifting the result

by 2j- 1 samples to the right. However, when j = 0, these simple relationships do

not hold, because 20- ' is non-integer. In order to keep our computations simple, we

shall disregard this half-integer shift and define

S[n, 1] = d [n] * H [In]

W[/tY , 1] - d [n] * [n]

Thus, S[n,j] and W[n,j] are the samplings of SO(t, 2J) and W4 (t, 23) at half-integer
points, for any j > 1. (I.e., the parameter w of the Definition 2.3.2 is 1 in this case.)

2

We arrive at the following algorithm (taken from Appendix B of [11]) to compute

{W[n,j]}j 1 and S[n,j] from d[n]:
W[n, 1] = ,od[n] * G[n]
S[n, 1] = d[[n] * H[i]
for (j= 1; < J - 1; j++) {

W[n, j + 1] Aj S[ In - 2 -,j] * Gj [n - 2Y- ]

S[n,j+1I AJS[,n, - 2j-',.] * H[ n- 2 -1]
},

where Aj's are chosen so as to cancel discretization effects upon the CWT extrema.

(In other words, the extremum of a continuous function which is sampled is not

guaranteed to be precisely at a discretization point. Therefore, the extrema of the

discretization of CWT slightly differ from the extrema of CWT. The numbers A.

are chosen so as to eliminate this discrepancy.)



Appendix B

Proof of Theorem 2.2.7

Without loss of generality, assume that to = 0. Let us define ft and I by:

St- and I

therefore

f (0)'b(- ) dr. Observe that I = f(0O) O(p) dp 0, and
-00 -00

WVpf (t, s) = WPf (t, s) - I <

< 0- f(T)(- f.(0)j1- 4 ) T
00 1 -sT

/O 1 t-T

<] CTI- -'( ) dr
oo S S

= C ((p) | - ps 0di
-- 00

_< c f (p)| - || dl + C f (I)| j/ ,|a| s df
--- OO 

--- O

= c It+a c2 S d J

< A(Isl + t •) I-
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