
A Design for a Multimedia Server using

QuickTime

by

Conan Brian Dailey

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1995

@ Conan Brian Dailey, MCMXCV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part, and to grant others the right to do so.

A uthor
Department of Electrical Engineering and Computer Science

January 13, 1995

Certified by........... -

.fl 4--
William J. Qualls

Associate Professor
thesis Supervisor

A ccepted by,.
y F. R. Morgenthaler

Chairman, Departmental Committee n Undergraduate Theses
MASSACHUSETTS INSiITUTE

OF TECHNOLOGY

AUG 10 1995
arkfer Eng

(4 V

A Design for a Multimedia Server using QuickTime

by

Conan Brian Dailey

Submitted to the Department of Electrical Engineering and Computer Science
on January 13, 1995, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

A multimedia server was developed using the facilities of the MacOS and QuickTime
libraries. It allows multiple clients to simultaneously access QuickTime movies and
improves significantly on the service provided by the built-in AppleShare file server
in the context of multimedia. The parameters that guided the development of the
server are presented as are the specific ways in which they limit the performance of
the server. Results to performance tests run on both server models are compared
indicating the superiority of the new multimedia server in relation to the AppleShare
server.

Thesis Supervisor: William J. Qualls
Title: Associate Professor

Acknowledgments

I would first like to thank my Mom and Dad for their unwavering support and the

prodding when necessary. I would also like to express my gratitude for my wife

Mireille (a.k.a. B.C.) without whom this would not have been possible. Finally, I

would like to thank Bill Qualls, Glen Urban, and Jon Bohlmann for their faith in my

ideas.

Contents

1 Introduction

2 Past approaches

3 Problems using AppleShare

4 Parameters affecting the design of the server 12

4.1 Disk seek time(ST) an disk transfer rate(XR). 13

4.2 Movie data rates(DR) and the compressor 13

4.3 Video decompression rate 13

4.4 Network bandwidth/realized bandwidth(B) 13

4.5 Performance relations affecting server design 13

5 Software overview 16

5.1 QuickTime overview 16

5.1.1 Structure of a movie16

5.1.2 M ovie toolbox . 17

5.1.3 Image Compression Manager 17

5.2 M acTCP 17

5.3 Thread Manager 18

5.4 Sound M anager 19

5.5 Time M anager 19

6 Testing

7 Server implementation 22

7.1 Main thread 22

7.2 Scheduling thread 22

7.3 Movie thread 23

7.4 Protocol........................ 23

8 Results 24

8.1 Better results than with AppleShare 24

8.2 Explanation of lower than expected performance 25

9 Suggested improvements 26

10 Conclusion 27

A Server Source Code 28

List of Tables

8.1 Performance with different servers 24

Chapter 1

Introduction

Most of the literature which discusses multimedia servers refers to the problem of

providing this service as some sort of "continuous" process perhaps because the analog

counterparts to the types of services provided-typically video and audio signals-

require a continuous signal in that domain. However, by their very nature, digital

processes are not continuous and referring to them as such creates an important

problem: by referring to the process as continuous it biases the way the systems

are implemented in that designers try to provide a continuous service where no need

exists. In fact, a continuous service is of no real use to humans anyway-hearing

and vision both depend on a time-averaged sample of the data they sense. The

granularity of hearing is about one-fiftieth of a millisecond and the granularity of

vision is about one-thirtieth of a second. On a human timescale these may certainly

seem continuous, but in the arena of electronic transmission, where transfer speeds

approach the speed of light, these intervals represent eons. Therefore, it is instructive

to treat the multimedia server problem just as one would treat any other data transfer

problem which has certain bandwidth and time requirements for its data.

More interesting tr,han a treatise on what a multimedia server should be called

though is why it should be built in the first place-there are two main reasons. First,

it is economical: if you have a network in place that will support the bandwidth

requirements or if the cost of installing a network is cheaper than the cost of a

multigigabyte drive at each client, installing a server only makes sense. In fact, the

cost per byte of network bandwidth is dropping by a factor of ten every eighteen

months, around three times as fast as the cost per byte of disk is dropping, so even if

it is not economical now, it will be soon. Second, maintenance is much easier at one

or a few locations than at every client.

So a multimedia server is a good idea, but why is it the subject of a thesis project?

The impetus for designing and implementing one sprang from failed attempts to use

Macintosh computers as multimedia servers relying solely on the services provided by

AppleShare, the file server built into the MacOS. Therefore the primary research ques-

tion for this thesis is how can a better multimedia server be built using QuickTime,

bypassing the AppleShare server which performs poorly in the context of multimedia.

First a summary of work that has been done which relates to multimedia servers is

presented. Then the aforementioned problems with the AppleShare multimedia server

are explained. Next, the parameters which govern the performance of a multimedia

server will be explored and an equation relating them developed. Thereafter, the

setup of the server's software will be documented to be followed by a discussion of

the testing that was done to arrive at values for the performance parameters. Next,

the actual design of the server will be explored followed by a look at its performance

using the same benchmarks the AppleShare server was tested against. Finally, some

suggestions will be made for future improvements.

Chapter 2

Past approaches

First of all, what is a multimedia server? By taking a look at the literature on

the subject we can find two main interpretations to this question. To some[l, 2, 6],

a multimedia server encompasses both input and output of audio and video data

consisting of both dynamic data (say from a telephony application) and static data

(a digital movie stored on a disk.) Whereas others[5] have perceived the problem as

solely the retrieval of audio and video data from storage. The latter is the model

followed in this paper.

More varied and interesting than the definitions of a multimedia server are the

issues that have been researched regarding them. Because multimedia data has strict

time and bandwidth requirements some[l] have attacked the problem of scheduling

resources to guarantee that these requirements will be met. Others[4] contend that

for some applications it is more acceptable to degrade performance gradually in the

light of bandwidth limitations instead of denying access. Another important issue

is synchronization-ensuring that multiple data sources, possibly stored on differ-

ent media, will be viewed properly in their temporal relationship to one another at

the client. Anderson et al.[2] develop a method which utilizes a logical time system

concept to support synchronization. Another popular standard for multimedia ap-

plications on the Macintosh platform, QuickTime, uses a similar method based on a

time coordinate system to provide synchronization.

In addition to the above problems researchers have looked at OS mechanisms for

supporting multimedia[5], storage formats for different multimedia types[3], and the

support of clients who wish to share the same source of multimedia data[6].

Despite the similarity of issues faced in this research as compared to these past

approaches, this research differs in a way which makes comparisons to the previous

work difficult-in the above research the designers first had ideas about servers they

wanted to implement and then they chose appropriate hardware and software plat-

forms, whereas the following research already had a hardware and software platform

to which the server had to conform.

Chapter 3

Problems using AppleShare

In testing the performance of QuickTime over AppleShare two main configurations

of the server were used with either one or two clients. In the first trial a single

QuickTime movie was played from the server at one of the clients which resulted in

poor performance-two clients produced even worse performance. Problems with just

one client included a frame rate decrease of fifty percent, losses in audio information,

and audio/video synchronization problems. With two clients it exhibited more severe

symptoms of the same problem-each client would alternate freezing up for a number

of seconds and then bursting through the information for the same period of time

rendering the movie incomprehensible.

However, in the second trial some of the server's main memory was used as a

RAM disk. With one client this scheme produced results rivaling the performance

of a client playing a movie stored at the client which is the performance benchmark.

Once again though surprisingly, performance with two clients was just as poor as the

first trial with two clients. These qualitative results have hinted au two problems with

the server: first, that it does not naturally buffer the data it is sending to the client;

and second, it does n••t respond efficiently to multiple requests.

Chapter 4

Parameters affecting the design of

the server

What actions must be performed in order to get a movie from the server to be

displayed at the client? In order to retrieve the movie the computer must first access

the disk. It must then send that particular block of data over the network. After

the data arrives at the client it might have to be processed, typically decompressed,

before it can finally be output. These actions define the parameters that must be

investigated in order to develop the server.

The setup uses three stock Power Macintosh 8100/80 AV's which come with an

80MHz PowerPC processor, 500 megabyte hard drive, built-in ethernet port, and

16 megabytes of main memory. They run the MacOS 7.5 operating system which

consumes about half of the available memory.

These machines also have 256 kilobyte level 2 processor cache and a sophisticated

subsystem for handling direct memory access(DMA) and other I/O on the mother-

board. Each component plays some role in the performance of the computer; how-

ever, some of these items affect the server or client to a greater extent and are briefly

explained below followed by equations which describe the performance limitations

implied by the variables.

4.1 Disk seek time(ST) an disk transfer rate(XR)

Associated with disk access are both the seek time necessary to find the data on the

disk and the transfer time necessary to move the data into RAM. The disk used in

the setup is a Quantum drive mechanism whose specifications indicate an average

seek time of 11.7 milliseconds and a transfer rate of 1.9 megabytes per second.

4.2 Movie data rates(DR) and the compressor

The movies are compressed with the Apple Video Compressor that Apple provides

in its QuickTime extension. Using this compressor compression ratios of around 5:1

are achieved and the data rates for our movies range between 2.0 and 2.8 megabits a

second in compressed form. Movie duration is hereafter represented by D.

4.3 Video decompression rate

The video decompression rate for movies is at least twice the movie rate. This was

confirmed by testing to be described below and supports the belief that any bottleneck

that may exist resides either at the server or the network.

4.4 Network bandwidth/realized bandwidth(B)

The standard bandwidth ascribed to an Ethernet network is ten megabits per sec-

ond. In testing also to be described below a data rate of eight megabits per second

emanating from the server was realized and upwards of three megabits per second

was received at the client without straining the computer.

4.5 Performance relations affecting server design

When data is read from the disk it is not retrieved continuously, it comes in frames

of various sizes. Therefore for a movie stored on disk the movie data rate may be

equivalently separated into the product of the size of the frame retrieved(FS) and

the frame rate(FR)

DR = FS -FR.

In this way one can determine how much time the disk will take to transfer the frame

FS
time = ST +

XR

However, if this quantity is greater than the duration the frame represents, the server

will have to buffer an amount equal to

DR - (ST +
FS 1

S FRS -1 (D -FR)
XR FR

otherwise no buffering will be necessary. For servers with N clients the buffering

needs increase to

DR (ST +
FS 1
XR FR.- N

FR)

1
time >=

N FR

For the configuration outlined above a server running on one of the computers could

serve at most three clients.

(0.0117 +
35kB

1900 JBsec

1
3

10
sec

<0< 0 < 0.0117
35kB

1900 JkB
sec

1 10
4 sec

Another important and more obvious relation is that the number of clients that

can use the server simultaneously is

B
N <=

DR*

This parameter also limits the server to three clients

8.1 Mb
3< sec <4

2.6 Mbsec

on the above configuration.

Chapter 5

Software overview

The Macintosh provides a complete set of system software and extensions for handling

audio, video, and other forms of data. In addition to these facilities for handling data,

the MacOS also administers timing services, network services, and process control

services ideal for a multimedia server.

5.1 QuickTime overview

The QuickTime software libraries provide a mechanism for dealing with time-based

data. This includes sound, video, animation, as well as, charts of quarterly earnings.

QuickTime provides tools for capturing, storing, accessing, viewing and editing this

information.

5.1.1 Structure of a movie

Regardless of the type of data QuickTime is working with that data is abstractly

referred to as a movie. Each movie is composed of a number of tracks which may

be based on different time scales. For instance, it probably does not make too much

sense for sound which is sampled at 22kHz to use the same base time unit as quarterly

sales data even though these two types of data may be stored in the same movie for

presentation at a later time. In turn, each of these tracks contains a media which

contains the actual samples of the data, a description of the data, and hints for how

the data should be accessed.

5.1.2 Movie toolbox

The Movie Toolbox provides the main functionality for accessing movies as well as a

timing service. Specifically, the toolbox permits access to all levels of the movie data

structure from the movie down to the sample. It also allows you to either specify the

number of samples you would like to retrieve at a certain time or it will provide a

suitable amount based on the type of media being accessed.

The timing service allows a callback procedure to be invoked at a time specified

by the application. I he time is calculated from a time base which specifies the time

as some number of units with respect to a certain time scale, typically the time scale

associated with the media the application is interested in displaying.

5.1.3 Image Compression Manager

QuickTime also provides routines for compressing and decompressing sequences of

images although they work independently of the time scale with which the data is

associated (if it is associated with a time scale at all.) Despite its independence from

time, though Image Compression Manager still provides mechanisms which enable

the data to be displayed at a precise time: when decompressing, the application can

inform the routine to decompress into an offscreen image buffer to be later displayed at

a precise moment. In this way the latency and unpredictability of the decompression

process can be effectively masked.

5.2 MacTCP

MacTCP supplies protocols for implementing connection-based reliable packet com-

munication in the form of TCP connections as well as unreliable packet communica-

tion in the form of UDP datagrams. It has a robust interface providing asynchronous

notification of incoming packets and allowing the asynchronous or synchronous, trans-

mission or reception, of datagrams. The means of signaling when an asynchronous

routine has completed is through the use of a callback procedure as well as by set-

ting a state variable. The maximum packet size allowed by MacTCP is 8192 bytes.

MacTCP also buffers a number of incoming packets even if there are not outstanding

read operations pending. This prevents data loss in situations where the incoming

data is bursty.

5.3 Thread Manager

The Thread Manager is a software extension to the MacOS which provides the ability

to execute and schedule light weight processes within the context of a single applica-

tion. On the PowerMac the Thread Manager which runs native PowerPC assembly

code (as opposed to emulated 68K instructions) executes in a model where the cur-

rent thread must explicitly yield in order to effect a context switch. In contrast with

preemptive threads from which most scheduling details are abstracted, it is impor-

tant that threads executing in this model are mindful of the processing needs of other

threads and yield as often as possible.

In addition to the low overhead imposed on context switches, the thread mech-

anism is useful for memory management. Because most asynchronous operations

terminate by invoking a callback procedure which occurs at interrupt time, many

memory management calls are not available. However, threads which are suspended

before entering the callback procedure can be asynchronously resumed at this time

through an interrupt safe procedure call. Consequently, when memory is allocated a

thread can be created in the suspended state which will deallocate the memory when

resumed. A pointer to the thread is then passed to the callback procedure and when

the callback executes it can resume the thread to deallocate the memory.

5.4 Sound Manager

The Sound Manager controls the processing of all sound within the computer and

also provides a rich interface with which applications can tap its abilities. One of

the main options available for sound output is through the use of sound channels.

Sound channels allow the application to install buffers of sound to be played, to

pause processing of the channel, and to perform a variety of other tasks related to

sound management. One of the most useful features of the Sound manager is that

a callback procedure can be associated with a sound channel so when a callback

command is processed by the channel the procedure is called. Therefore if a callback

command is issued after every play buffer command the application knows when the

data is no longer needed.

5.5 Time Manager

The Time Manager provides timing services related to those provided by the Movie

Toolbox but in a more flexible fashion. Instead of a procedure being called when

a timebase reaches some time value as in the Movie Toolbox, the Time Manager

allows a procedure to be called after an application-specified delay has elapsed. Freed

from the timebase samples can be synchronized from media which have different

timescales with ease; whereas using the movie toolbox, the timebase controlling one

set of callbacks must slave off the other timebase which is less intuitive and more

difficult to implement.

Chapter 6

Testing

In order to establish values for some of the important parameters needed to build the

server, several test programs were written. First, a new client program was developed

to see if the problems surrounding the AppleShare server were insurmountable. Be-

cause the assumption was that AppleShare was not buffering properly it was believed

that if the client could prefetch (ask for data it didn't need right away but would

need in the near future) and buffer the data at the client end a server might not have

to be developed after all. Initial tests with one client were promising as data rates

were high and frames synchronized; however, the AppleShare server was plagued by

the same problems realized with other clients when two prefetching clients were used,

which made it clear that a server had to be built.

Next, even though the theoretical bandwidth of the Ethernet is known to be ten

megabits per second, confirmation was desired that the computer indeed could get

data out to the network that quickly and that it could be processed fast enough at

the client as well. To help acquire this information a server was developed which sent

static data across the network to two clients as fast as it could using synchronous

MacTCP write calls. The clients used synchronous MacTCP read calls to collect the

data. The tests showed that the server could send in excess of eight megabits per

second of data and the clients could receive in excess of three megabits per second.

These tests clearly show that the network performance is adequate to support a

multimedia server of the movies whose data rates were described above. This is

especially evident because asynchronous operations yield higher performance than

synchronous operations as a general rule.

A final test program was developed where a client and server were logically on

the same machine (although no data was transmitted via the network) to verify that

an application could retrieve and display the samples of a movie as fast as the high

level QuickTime functions did transparently. In these tests the program was able to

retrieve samples, decompress them, and display them at twice the movie rate-clearly

showing that a server should be able to support at least two clients without buffering,

and possibly more if the bottleneck is not disk access time.

Chapter 7

Server implementation

Due to the results generated by the last test above and plans to service only two

clients initially, it was decided that buffering was not necessary, therefore the server

program is relatively straightforward. It was also decided that UDP datagrams would

be used because their interface is simpler and the risks of data corruption on a passive

hub were sufficiently low.

7.1 Main thread

The main thread first opens MacTCP port number one for sending movies and receiv-

ing requests. Next it initializes the scheduling thread and the two movie threads and

yields to the scheduling thread, yielding continuously until the program is terminated

at which time it deallocates memory given to MacTCP and terminates.

7.2 Scheduling thread

The scheduling thread essentially waits for requests asynchronously and passes a

request to an unscheduled movie thread if one exists.

7.3 Movie thread

The movie thread performs the bulk of the work associated with the movie. It first

gains access to the movie requested by the client and initializes data structures with

the various tracks, media, and sample description headers for the movie. Next, it

sends the sample description information to the client so it can prepare to display the

movie. Finally, the thread grabs samples and send them to the client using the time

manager to synchronize when samples are sent so the client is neither being choked

by too much data nor being starved by a lack thereof.

7.4 Protocol

There is a very simple interface between the client and the server. For a client to

receive a movie it need only send the server an index (which has a predetermined

meaning at the server) indicating what movie it wants and the locations of its sound

and video ports. In turn the server responds by sending sample description informa-

tion to the client for the purpose of initializing data structures at the client. Finally,

after a suitable delay has elapsed, during which time the client has initialized itself,

the server sends sound data to the sound port and video data to the data port until

the movie has played in entirety.

Chapter 8

Results

After the server was built it was tested with a number of clients conforming to the

protocol specified above with achieving uniform results with the different clients. Al-

though results were still good with one client, serving two clients still posed problems.

8.1 Better results than with AppleShare

In head to head comparisons between the AppleShare server and the custom built

server using QuickTime the custom built server always fared better. Frame rates

were higher, audio quality was better, and synchronization was much closer. These

improvements in quality are due to better management of the resources the servers

control.

Table 8.1: Performance with different servers

of clients
Frame Rate
Audio
Synchronization

AppleShare
1 J2

half poor
choppy poor

ok poor

Custom
1

Server
2

full poor
good good
good poor

8.2 Explanation of lower than expected perfor-

mance

Still disappointing though were video and synchronization problems exhibited in the

two client test. Video seemed to be stalled from the server; however, the audio was

still perfect. This type of problem calls into question the code used to synchronize

the sending of the data. Essentially, if the next frame of data is not ready to be sent

the Time Manager synchronization procedure executes almost continually, hogging

the processor bandwidth and causing the video to stall. This should be remediable

simply by altering the behavior of the synchronization procedure when the server is

not quite ready to send.

Chapter 9

Suggested improvements

Several improvements could be made to the server design presented above. First,

the protocol between the client and server does not allow for an arbitrary movie to

be requested-only an index is passed from the client to the server which has movie

references "hardcoded" into it. A more robust interface for choosing which movie the

server delivers is definitely necessary for improving the server.

Secondly, the movie data rates are much too high. Therefore, a better compressor

should be used which gets at least a 10:1 compression ratio. This would not only

decrease the bandwidth consumed by a movie but allow more clients to interface with

the server at any one time.

Finally, the options supplied by the server could be expanded. Right now the

server can only send a movie-it cannot even be stopped! It would be nice to have

a server which could pause, resume, rewind, and abort the movie. These are typical

functionalities provided by QuickTime and they should be extended to this server.

Chapter 10

Conclusion

In the course of the above research a multimedia server was built utilizing the Quick-

Time multimedia library. Its performance, although not optimal, improved greatly

on the status quo and the research undertaken in its development has made clear the

path to further improvements. By continuing to demand a higher level of performance

from computers and software the latent abilities in these systems will be realized.

Appendix A

Server Source Code

#include <Movies.h>

#include <Memory.h>

#include <QuickTimeComponents.h>

#include <ImageCompression.h>

#include <Sound.h>

#include <Timer.h>

#include <LSimpleThread.h>

#include <UDPPB.h>

pascal void SyncProc(TMTaskPtr task); 10

pascal void SyncProc2(TMTaskPtr task);

void MovieProc(LThread &thread,void *arg);

void ScheduleProc(LThread &thread,void *arg);

void schedule_complete(struct UDPiopb *iopb);

void schedule_complete(struct UDPiopb *iopb)

{
LThread::ThreadAsynchronousResume((LThread*)iopb- >csParam.receive.userDataPtr);

}
20

typedef struct {

short me;

short movie;

ip_addr addr;

unsigned short vPort;

unsigned short sPort;

StreamPtr udpStream;

short myRefNum;

} MovieData;

30

typedef struct {

short movie;

unsigned short vPort;

unsigned short sPort;

} RequestData;

typedef struct {

unsigned short length;

Ptr ptr;

} WDS; 40

typedef struct {

TMTask task;

long A5world;

} MyTask;

long duration,duration2,delay,delay2,overtime,overtime2,dtime,dtime2;

Boolean vready = false,sready = false;

const short numberOfMovies = 3;

Boolean ready[numberOfMovies]; 50

LSimpleThread *movieThread[numberOfMovies];

pascal void SyncProc(TMTaskPtr task)

{
MyTask *mytask = (MyTask*)task;

long oldA5 = SetA5(mytask->A5world);

if (!vready) {

delay += 2000;

PrimeTime((QElemPtr)task,-2000);

else {

if (duration) {

overtime = duration + delay + overtime;

if (overtime <= 0) {

PrimeTime((QElemPtr)task,overtime);

overtime = 0;

}
else {

PrimeTime((QElemPtr)task,0);

} 70

delay = 0;

}
vready = false;

}
SetA5(oldA5);

}

pascal void SyncProc2(TMTaskPtr task)

{
MyTask *mytask = (MyTask*)task; so

long oldA5 = SetA5(mytask->A5world);

if (!sready) {

delay2 += 2000;

PrimeTime((QElemPtr)task,-2000);

}
else {

if (duration2) {

overtime2 = duration2 + delay2 + overtime2;

if (overtime2 <= 0) {

PrimeTime((QElemPtr)task,overtime2); 90

overtime2 = 0;

}
else {

PrimeTime((QElemPtr)task,0);

}

delay2 = 0;

sready = false;

SetA5(oldA5); 100

void main(void)

MaxApplZone();

InitGraf(&qd.thePort);

InitWindows();

short myRefNum;

OSErr e = OpenDriver("\p. IPP",&myRefNum); 110

UDPiopb moviePort;

const short MoviePortBufLen = 200000;

moviePort.ioCRefNum = myRefNum;

moviePort.csCode = UDPCreate;

Ptr movptr = NewPtr(MoviePortBufLen);

moviePort.csParam.create.rcvBuff = (Ptr)movptr;

moviePort.csParam.create.rcvBuffLen = MoviePortBufLen;

moviePort.csParam.create.notifyProc = 0;

moviePort.csParam.create.localPort = 1; 120

e = PBControlSync((ParmBlkPtr)&moviePort);

MovieData movieData;

movieData.udpStream = moviePort.udpStream;

movieData.myRefNum = myRefNum;

UMainThread *mainthread = new UMainThread();

LSimpleThread *scheduleThread = new LSimpleThread(&ScheduleProc,&movieData);

for(int j=0;j<numberOfMovies;j++) movieThread[j] = 130

new LSimpleThread(&MovieProc,&movieData);

EnterMovies();

for(j=0;j<numberOfMovies;j++) ready[j]=true;

scheduleThread- >Resume();

RgnHandle rgn = NewRgn();

EventRecord theEvent;

KeyMap keymap; 140

while (!(Button() && (GetKeys(keymap),keymap[1] == Ox00000001))) (

LThread::Yield();

}
scheduleThread- >DeleteThread();

for(j=0;j<numberOfMovies;j++) movieThreadUj]->DeleteThread();

moviePort.csCode = UDPRelease;

PBControlSync((ParmBlkPtr)&moviePort);

DisposePtr(movptr);

}
150

void ScheduleProc(LThread &thread,void *arg)

{
MovieData *moviedata = (MovieData*)arg;

UDPIOCompletionUPP schedule_comp = NewUDPIOCompletionProc(schedule_complete);

UDPiopb request;

request.udpStream = moviedata->udpStream;

request.ioCRefNum = moviedata->myRefNum;

request.csParam.receive.timeOut = 0; 160

request.csParam.receive.secondTimeStamp = 0;

while(true) {

request.csCode = UDPRead;

request.csParam.receive.userDataPtr = (Ptr)&thread;

request.ioCompletion = (UDPIOCompletionProc)schedule_comp;

OSErr e = PBControlAsync((ParmBlkPtr)&request);

thread.Suspend();

Boolean done = false;

int j = 0; 170

while(!done && j < numberOfMovies) {

if (ready[j]) {

RequestData *req = (RequestData*)request.csParam.receive.rcvBuff;

moviedata->addr = request.csParam.receive.remoteHost;

moviedata->movie = req->movie;

moviedata->vPort = req->vPort;

moviedata->sPort = req->sPort;

moviedata->me = j;

ready[j] = false;

movieThread[j]- >Resume(); 180

done = true;

}
else j++;

}
request.csCode = UDPBfrReturn;

request.csParam.receive.userDataPtr = (Ptr)&thread;

request.ioCompletion = (UDPIOCompletionProc)schedule_comp;

PBControlAsync((ParmBlkPtr)&request);

thread.Suspend();

}190

void MovieProc(LThread &thread,void *arg)

{
MovieData *moviedata = (MovieData*)arg;

short me = moviedata->me;

FSSpec spec;

Movie schindler;

OSErr e;

short resRefNum; 200

UDPIOCompletionUPP schedule_comp = NewUDPIOCompletionProc(schedule_complete);

while(true) {

if (moviedata- >movie)

e = FSMakeFSSpec(0,0," \pMacintosh HD:physprice",&spec);

else

e = FSMakeFSSpec(0,0," \pMacintosh HD:sales_capabilit ies" ,&spec);

e = OpenMovieFile(&spec,&resRefNum,fsRdPerm);

e = NewMovieFromFile(&schindler,resRefNum,nil,nil,

newMovieDontAskUnresolvedDataRefs,nil);

210

Media soundMedia,videoMedia;

Track soundTrack,videoTrack;

TimeScale soundTimeScale,videoTimeScale;

SampleDescriptionHandle VsampDescH = (SampleDescriptionHandle)NewHandle(0);

SampleDescriptionHandle SsampDescH = (SampleDescriptionHandle)NewHandle(O);

OSType mediaType;

for(int j=0;j<2;j++) {

GetMediaHandlerDescription(GetTrackMedia

(GetMovieIndTrack(schindlerj+1)),&mediaType,nil,nil);

e = GetMoviesErroro; 220

if (mediaType == 'vide') (

videoTrack = GetMovieIndTrack(schindlerj+1);

videoMedia = GetTrackMedia(videoTrack);

videoTimeScale = GetMediaTimeScale(videoMedia);

GetMediaSampleDescription(videoMedia,l,VsampDescH);

}
else (

soundTrack = GetMovielndTrack(schindler j+1);

soundMedia = GetTrackMedia(soundTrack);

soundTimeScale = GetMediaTimeScale(soundMedia); 230

GetMediaSampleDescription(soundMedia,1 ,SsampDescH);

}
}

TimeValue endTime = GetMovieDuration(schindler);

HLock((Handle)VsampDescH);

HLock((Handle)SsampDescH);

WDS IDS[3]; 240

IDS[O].length = (unsigned short) (**VsampDescH).descSize;

IDS[0].ptr = (Ptr)*VsampDescH;

IDS[1].length = 0;

UDPiopb initpb;

initpb.ioCRefNum = moviedata->myRefNum;

initpb.udpStrearn = moviedata->udpStream;

initpb.csCode = UDPWrite;

initpb.csParam.send.reserved = 0;

initpb.csParam.send.remoteHost = moviedata->addr; 250

initpb.csParam.send.remotePort = moviedata->vPort;

initpb.csParam.send.wdsPtr = (Ptr)IDS;

initpb.csParam.send.checkSum = 0;

initpb.csParam.send.sendLength = 0;

initpb.csParam.send.userDataPtr = 0;

e = PBControlSync((ParmBlkPtr)&initpb);

IDS[O].length = (unsigned short) (**SsampDescH).descSize;

IDS[0].ptr = (Ptr)*SsampDescH;

IDS[1].length = 0; 260

e = PBControlSync((ParmBlkPtr)&initpb);

if ((Handle)SsampDescH) DisposeHandle((Handle)SsampDescH);

if ((Handle)VsampDescH) DisposeHandle((Handle)VsampDescH);

WDS VDS[3];

VDS[0].length = 0;

VDS[0].ptr = nil; 270

VDS[1].length = 0;

VDS[1].ptr = nil;

VDS[2].length = 0;

UDPiopb videopb;

videopb.ioCRefNum = moviedata->myRefNum;

videopb.udpStream = moviedata->udpStream;

videopb.csCode = UDPWrite;

videopb.csParam.send.reserved = 0;

videopb.csParam.send.remoteHost = moviedata->addr; 280

videopb.csParam.send.remotePort = moviedata->vPort;

videopb.csParam.send.wdsPtr = (Ptr)VDS;

videopb.csParam.send.checkSum = 0;

videopb.csParam.send.sendLength = 0;

videopb.csParam.send.userDataPtr = (Ptr)&thread;

videopb.ioCompletion = (UDPIOCompletionProc)schedule_comp;

UDPiopb video[5];

for(int i=0;i<5;i++){

video[i].ioCRefNum = moviedata->myRefNum; 290

video[i].udpStream = moviedata->udpStream;

video[i].csCode = UDPWrite;

video[i].csParam.send.reserved = 0;

video[i].csParam.send.remoteHost = moviedata->addr;

video[i].csParam.send.remotePort = moviedata->vPort;

video[i].csParam.send.wdsPtr = (Ptr)VDS;

video[i].csParam.send.checkSum = 0;

video[i].csParam.send.sendLength = 0;

video[i].csParam.send.userDataPtr = (Ptr)&thread;

video[i].ioCompletion = (UDPIOCompletionProc)schedulecomp; 300

}

WDS SDS[3];

SDS[0].length = 0;

SDS[0].ptr = nil;

SDS[1].length =- 0;

SDS[1].ptr = nil;

SDS[2].length = 0;

UDPiopb soundpb; 310

soundpb.ioCRefNum = moviedata- >myRefNum;

soundpb.udpStream = moviedata- >udpStream;

soundpb.csCode = UDPWrite;

soundpb.csParam.send.reserved = 0;

soundpb.csParam.send.remoteHost = moviedata->addr;

soundpb.csParam.send.remotePort = moviedata->sPort;

soundpb.csParam.send.wdsPtr = (Ptr)SDS;

soundpb.csParam.send.checkSum = 0;

soundpb.csParam.send.sendLength = 0;

soundpb.csParam.send.userDataPtr = (Ptr)&thread; 320

soundpb.ioCompletion = (UDPIOCompletionProc)schedule_comp;

UDPiopb sound[5];

for(i=0;i<5;i++){

sound[i].ioCRefNum = moviedata->myRefNum;

sound[i].udpStream = moviedata- >udpStream;

sound[i].csCode = UDPWrite;

sound[i].csParam.send.reserved = 0;

sound[i].csParam.send.remoteHost = moviedata->addr; 330

sound[i] .csParam.send.remotePort = moviedata- >vPort;

sound[i].csParam.send.wdsPtr = (Ptr)SDS;

sound[i].csParam.send.checkSum = 0;

sound[i].csParam.send.sendLength = 0;

sound[i] .csParam.send.userDataPtr = (Ptr)&thread;

sound[i].ioCompletion = (UDPIOCompletionProc)schedule comp;

}

TimeValue currentTime = 0,currentSTime = 0,nextDuration,actualTime;

TimerUPP mySyncProc = NewTimerProc(SyncProc); 340

MyTask task;

task.task.tmAddr = mySyncProc;

task.task.tmWakeUp = 0;

task.task.tmReserved = 0;

task.A5world = SetCurrentA5();

InsXTime((QElemPtr) &task);

TimerUPP mySyncProc2 = NewTimerProc(SyncProc2);

MyTask task2;

task2.task.tmAddr = mySyncProc2;

task2.task.tmWakeUp = 0; 350

task2.task.tmReserved = 0;

task2.A5world = SetCurrentA5();

InsXTime((QElemPtr)&task2);

long numSamples,SnumSamples,actualDPS;

Boolean firstcall = true;

Handle videoH = nil,soundH = nil;

long tempDuration,remainder=0,remainder2=0;

while (currentTime < endTime) (

long size,Ssize;

if (!vready) { 360

if (videoH) DisposeHandle(videoH);

GetMediaSample(videoMedia,videoH = NewHandle(0),0,&size,

currentTime,¤tTime,&actualDPS,

nil,nil,1,&numSamples,nil);

duration = -((actualDPS*1000000.0)+remainder)/videoTimeScale;

remainder = actualDPS*1000000.0+remainder+

videoTimeScale*duration;

int bufNum = size/8192;

int left = size-bufNum*8192;

int num; 370

if (!left) num = bufNum; else num = bufNum+l;

VDS[0].length = sizeof(long);

VDS[0].ptr = (Ptr)&duration;

VDS[1].length = sizeof(long);

VDS[1].ptr = (Ptr)#

VDS[2].length = 0;

e = PBControlAsync((ParmBlkPtr)&videopb);

thread.Suspend();

char *p = (char *)*videoH;

VDS[1].length = 0; 380

for(int i=0;i<num-1;i++) {

VDS[0].ptr = p;

VDS[0].length = 8192;

e = PBControlAsync((ParmBlkPtr)&videopb);

thread.Suspend();

p += 8192;

VDS[0].ptr = p;

VDS[O].length = left;

videopb.ioCompletion = (UDPIOCompletionProc)schedulecomp; 390

e = PBControlAsync((ParmBlkPtr)&videopb);

thread.Suspend();

vready = true;

currentTime += actualDPS*numSamples;

I
if (!sready) {

if (soundH) DisposeHandle(soundH);

e = GetMediaSample(soundMedia,soundH = NewHandle(O),0,

&Ssize, currentSTime,¤tSTime,

&actualDPS,nil,nil,4096,&SnumSamples,nil); 400

char *p = (char *)*soundH;

SDS[1].length = 0;

SDS[0].ptr = p;

SDS[O].length = Ssize;

soundpb.ioCompletion = (UDPIOCompletionProc)schedulecomp;

e = PBControlAsync((ParmBlkPtr)&soundpb):

thread.Suspend();

duration2 = - ((actualDPS*SnumSamples*1000000.0)+

remainder2)/soundTimeScale;

if (duration2 < -250000) duration2 += -250000; 410

sready = true;

if (firstcall) {

firstcall = false;PrimeTime((QElemPtr)&task,500);

PrimeTime((QElemPtr)&task2,0);

I
currentSTime += actualDPS*SnumSamples;

}

duration = 0;

VDS[O].length = sizeof(long); 420

VDS[O].ptr = (Ptr)&duration;

VDS[1].length = sizeof(long);

VDS[1].ptr = IPtr)&duration;

VDS[2].length = 0;

e -= PBControlSync((ParmBlkPtr)&videopb);

while (soundpb.ioResult II videopb.ioResult) LThread::Yield();

if (soundH) DisposeHandle(soundH);

if (videoH) DisposeHandle(videoH);

DisposeMovie(schindler);

CloseMovieFile(resRefNum); 430

ready[me] = true;

thread.Suspend();

}

Bibliography

[1] D. P. Anderson. Metascheduling for continuous media. ACM Transactions on

Computer Systems, 11(3), August 1993.

[2] D. P. Anderson and G. Homsy. A continuous media i/o server and its synchro-

nization mechanism. IEEE Computer, 24(10), October 1991.

[3] D. C. A. Butlerman et al. A structure for transportable dynamic multimedia

documents. In Proc. 1991 Summer Usenix Conf., 1991.

[4] J. G. Hanko et al. Workstation support for time-critical appliations. In Proceedings

of the Second International Workshop on Network and Operating Systems Support

for Digital Audio and Video, Heidelburg, November 1991.

[5] P. V. Rangan et al. A testbed for managing digital video and audio storage. In

Proc. 1991 Summer Usenix Conf., 1991.

[6] P. G. Milazzo. Shared video under unix. In Proc. 1991 Summer Usenix Conf.,

1991.

