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Abstract

The traditional model of speech production models voiced speech signals as the out-
put of a minimum phase linear filter excited by a periodic impulse train. There ex-
ists a body of evidence which suggests that there are actually additional, secondary
pulses in the excitation. This thesis investigates a frequency domain technique for
estimating the locations and amplitudes of these secondary pulses. The estimator
operates directly on the measured phase of the speech signal spectrum. While the
estimator is shown to perform reliably on synthetic waveforms produced by excit-
ing a minimum phase filter with a periodic excitation consisting of primary and
secondary pulses, it fails when used on actual speech or even synthetic speech with
non-impulsive excitation. The reasons for this failure are found to lie in extreme
sensitivity of the signal spectrum to inaccuracies of the linear model. The results of
exploratory experiments involving frequency domain speech coding using secondary
pulse phase modelling are also presented.

Thesis Supervisor: Dr. Robert J. McAulay
Title: Senior Staff Member, MIT Lincoln Laboratory
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Chapter 1

Background

1.1 Motivation for Secondary Pulse Estimation

An accurate model of speech production provides a useful basis for applications

such as speech coding and speaker identification. The prevalent, traditional model

of speech characterizes the physiological mechanisms which produce speech. Physio-

logically, speech is produced by the passage of an excitation through the vocal tract.

The traditional model of speech views the vocal tract as a linear, time-varying min-

imum phase filter and segregates the glottal excitation into two narrowly defined

categories [9]. For voiced speech, the excitation is modeled as a simple periodic

pulse train. The frequency of this waveform is sometimes referred to as the pitch

or fundamental frequency. Voiced speech occurs when the glottal excitation results

from the vibration of the vocal cords. Vowel sounds are, in general, voiced. The

other case, unvoiced speech, results from the passage of forced air through the vocal

tract. As a result, unvoiced speech lacks the essential periodicity of voiced speech

and the excitation is modeled very simply as white noise. This model is depicted

in Figure 1-1.

The physical model of speech production has been used with considerable success

in speech coding applications [10]. The speech parameters of this model also provide

features which can be exploited for other applications such as speaker identification

[8]. Despite this success, the model has significant shortcomings. In particular,
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Figure 1-1: Traditional model of speech production

there are many utterances for which a strict voiced/unvoiced classification is in-

appropriate. In these situations, the speech synthesized by this model may sound

harsh, buzzy, or unnatural.

1.1.1 Single secondary pulse estimation

There exists a body of empirical evidence which suggests the existence of additional

pulses in the excitation for certain segments of voiced speech [2]. The prevalence

of these pulses in speech is still a matter of dispute. While there are certain rare

physiological phenomena which produce speech with obvious secondary pulses (i.e.

diplophonia and vocal fry), in general, the existence of secondary pulses in common

speech is the subject of ongoing debate among researchers. A sample of speech

which contains obvious secondary pulses is shown in Figure 1-2. This segment of

speech contains prominent secondary pulses occurring approximately two-thirds into

each primary pitch period and their effects are visually apparent. One technique

which does find prevalent secondary pulses relies on the high resolution Teager

energy operator [8]. The source of most of these estimated secondary pulses is

unknown; they may have a physiological basis or they may be an artifact of the

signal processing. Finding an alternative technique for locating secondary pulses

may prove useful for corroborating or refuting the physiological hypothesis.

PERIODIC
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Figure 1-2: Speech with obvious secondary excitation pulses

Regardless of the physiological origins of the estimated secondary pulses, they

remain useful as a tool for speaker identification (SID). Experiments have been

performed which show that performance of a SID system on twenty females and

twenty males drawn from the NTIMIT database [3] improved when the feature set

was augmented with secondary pulse locations estimated by the Teager operator.

Specifically, performance rose from 65% to 68% for the males and 62% to 65% for

the females. Additional methods of estimating secondary pulse locations are thus

well worth evaluating.

1.1.2 General case

Several speech coders have sought to improve on the binary excitation model in

an attempt to produce more natural sounding speech. In multipulse coders [1], the

glottal excitation is modeled not as a simple pulse train or white noise, but rather as

a generic series of pulses with unconstrained positions and amplitudes. This model,

which does not classify the speech as voiced or unvoiced, produces high quality

output and specifically remedies the shortcomings of many previous systems when

confronted with speech which is neither clearly voiced nor clearly unvoiced.

The primary focus of this thesis is the estimation of the location and amplitude

of a single secondary pulse and their potential use as features for speaker identi-



fication; additional preliminary experiments in speech coding are also presented.

In both cases, the sinusoidal transform system (STS) was used as a basic speech

analysis/synthesis framework. The secondary pulse estimation technique proposed

in this thesis relies explicitly on the fundamental model of speech as the output

of a linear system. It seeks to estimate the location and amplitude of a secondary

pulse by their effect on the measured phase of the short time spectrum of the speech

itself, assuming accurate modeling of the vocal tract filter. This approach has been

justified empirically since experiments have shown that measured phases provide

information which enables virtually transparent speech coding [5]. Therefore, it

would be highly desirable to develop a coder which accurately models these mea-

sured phases. Unfortunately, this has proven very difficult to do directly. A brief

discussion of the sinusoidal transform system and the importance of phase in its

representation of speech are presented in the next section.

1.2 Sinusoidal Transform System

1.2.1 Overview

Since the secondary pulse estimator was developed in the framework of STS, it is

worthwhile discussing some of the salient characteristics of that system. STS models

speech explicitly as a sum of sine waves with varying amplitudes, frequencies, and

phases. This frequency domain representation of speech is attractive because it

explicitly deals with the component parameters that make up the speech waveform.

By imposing a linear speech production model on STS, the input to the linear

system becomes a sum of sine waves. It is clear that in the case of voiced speech,

the periodic pulse train used in the binary voiced-unvoiced excitation model can be

represented by its Fourier series decomposition into a sum of harmonically related

sine waves [6]. If the speech differs somewhat from the voiced model, the sine

waves will, in general, be aharmonic. The validity of using the sum of sine waves

approximation for unvoiced excitation is more difficult to establish since the sine



waves then seek to model a stochastic waveform as opposed to a deterministic one.

A mathematical justification for this decomposition relies on the principles of the

Karhunen-Lobve expansion for arbitrary stochastic signals [7].

Since the input to the linear filter is a sum of sine waves, the output must also

be a sum of sine waves with the same underlying frequencies but with different

amplitudes and phases. This is the fundamental property of linear systems. The

STS algorithm operates by extracting spectral information in order to construct a

parametric representation of the original waveform. STS determines the spectral

information through the application of the short time Fourier transform (STFT)

( Figure 1-3 [5]). In the case of unvoiced speech, this pitch does not possess the

Figure 1-3: STS analysis system [5]

traditional physiological meaning. The spectrum produced by the STFT is analyzed

and the most likely frequencies, amplitudes, and phases of the underlying sine waves

are determined. The speech signal in the model can be written as

L
s(n) = EAle- j (nw' +ol) (1.1)

1=1

where {wt} is the set of underlying frequencies and {Az} and {01} the corresponding

sets of measured amplitudes and phases, respectively. It is appropriate to note that

while a linear model for the vocal tract and the excitation waveform was used to



justify the sinusoidal decomposition of the waveform, this model does not enter

explicitly into the Equation 1.1. In its most general form, STS needs make no

assumptions about the excitation or vocal tract. In a real system, however, several

assumptions are made in order to produce a practical coder.

1.2.2 Phase in STS

STS directly calculates the sets of frequencies, amplitudes, and phases and uses these

to approximate the original speech waveform. By constraining these parameters in

several ways, their calculation is greatly simplified. For instance, the frequencies

wl are frequently taken to be strictly harmonic so that wl = lwo. Therefore, the

entire set of frequencies can be completely specified by a single parameter wo, the

pitch or fundamental frequency. As noted above, this harmonic model is a good

representation of entirely voiced speech. It has also been empirically determined

that the harmonic model leads to high quality synthesized speech provided mea-

sured phases are used [5]. Since direct coding of the measured phases requires a

prohibitively large number of bits, strategies for representing the phase information

more economically must be employed. One such approach relies on the linear model

of speech production and views the speech as the output of a minimum-phase filter

excited by a glottal waveform. The phases may then be decomposed into a sum

of two components, one the phase of the excitation waveform at a particular fre-

quency and the other the phase of the minimum-phase system function at the same

frequency. This can be written

01 = ~s(w,) + 0e(Wi) (1.2)

where 1, is the minimum phase system phase and 0e is the phase of the excitation.

Explicit transmission of the excitation phase is avoided in a coding system by

using a model of the excitation waveform. The simplest model postulates the exis-

tence of a single primary pulse train as the excitation. This is the standard model

for voiced speech. It can be easily shown that the spectrum of a periodic pulse train



has a strictly linear phase and that; this phase is caused by the offset of the pulse

train with respect to the origin of the analysis window. This model describes the

excitation phase as

e(wj) = -now, (1.3)

where no is the location of the primary pitch pulse within each frame. Use of this

model does, however, lead to a noticeable degradation of the speech signal, hence

the motivation for more sophisticated phase models.

If secondary pulses actually exist in the excitation, they will contribute in a

predictable way to the failure of a linear phase model. The difference between the

measured phase and the modeled phase can be viewed as a phase error or phase

residual. This serves as a basis for estimating the positions and amplitudes of

the secondary pulses. One can find which secondary pulse best models the phase

residual in such a way as to provide a closer match to the waveform itself. This is

the underlying idea of the secondary pulse estimator used in this thesis.

1.3 Derivation of Secondary Pulse Estimator

In this section, the analytic expressions used by the secondary pulse estimator are

derived. Much of the development parallels that found in [5] for the estimation of

no, the onset time of the primary pulse.

1.3.1 Derivation of signal error in terms of phase residual

If 8(n) is an estimate of a signal s(n), then the mean square error of the signal

estimate over N + 1 time samples centered at n = 0 is

1 N/2
=-- + 1 Is(n) - 3(n)I2 (1.4)

n=-N/2



This expression can be manipulated into the following form:

1 N/2
6 = N + 1 [Is(n)I2 - 2j {s(n)^*(n)} ±+ (n)2]  (1.5)

n= -N/2

Let the signal s(n) being analyzed be written as

L

s(n)= AleJ-,(nw,+Or) (1.6)
l=1

and the signal estimate A(n) be written as

N/2
^(n)= 1 Ale -3(n ýj+jj)  (1.7)

I=-N/2

where {J^ }, {A 1}, and 0{0} are estimates of frequency, amplitude, and phase, re-

spectively. If the amplitude and frequency estimates are exact, Equation 1.5 can be

written
L

C = 2P, - 2Z A2 cos (Ol-Ol) (1.8)
1=1

where
1 L

P=N + 1 A (1.9)

Now assume that s(n) is the output of a linear system H(eJw) excited by an

infinite impulse train elp(n) with period To = 2r/lw, and onset time no. Then

S(e'3), the Fourier transform of s(n), will be samples of H(e3") at w = lwo for

integer 1, multiplied by a complex exponential e -.o"o corresponding to the onset

time with respect to n = 0:

S(e3W) = e-a1noH(e3lwo) (1.10)

= eJ-aolwv H(ealwo) (1.11)

= H(e 3 )Elp(e w) (1.12)

where El, is the Fourier transform of the excitation pulse train.



If M - 1 secondary periodic pulse trains are added to the excitation, each with

the same period as the primary pulse train but different amplitude and offset, the

Fourier transform of the entire excitation will become

EMp(e '") = Elp(e3w)
M

1 +•: ake
k=-2

-- nk w (1.13)

where nk is the spacing between the kth pulse train and the primary and ak is the

relative amplitude. The Fourier transform of the output sMp(n) is

Smp(e'w) = EMp(ew)fI(e)w)

-= e- 3wno [1
M

+ k ak-3nkw

k=2

27r/wo

E=S(w
i=O

- iwo)H(e l")

(1.14)

(1.15)

The phase of this expression is simply

+ LH(e 3") +
/ M

L 1 +
Sk=2

The phase contribution of the secondary pulses is

M
+ Z ake- 3nk

k=1

Ž[1 + E•M=2 ake -3nkw]
- arctan •[1 - Z M- 2 a k sn nk

-- a E M=2 ak s111(nk)S arctan t
1+ E ,kC=2 Sa k

The estimate for the measured phase of the signal then becomes

Ototat(wj) = LH(eW3) - wino, + arctan - C;"= ak sin(nkw)

1 + Ek=2 aOk cos(nkw)

Plugging Equation 1.19 into Equation 1.8 results in the following expression:

L
e({nk}, ak}) = 2P, -2 A2 os OMP (w) +

l=1

(1.20)

LSMp - -wno akenk )]

27r/wo

i=0
(1.16)

L 1 (1.17)

(1.18)

(1.19)

k=2



where

- Mk2 ck sin(1nkwl)OMp (wL) = - arctan 1 2 ak CS(nkWl) (1.21)
1 + 1k=2 ckM 2 COS(nkL1)

ýj = 01 + nol -LH (e L" )  (1.22)

where ýj is the phase residual, or error, between the estimate of the total phase

provided by the linear model and the actual measured phase 01, and OMp(wI) is the

phase contribution due to secondary pulses.

Since the secondary pulse parameters do not affect the first term of Equation

1.20, any optimization of them need only concern itself with the second term. Min-

imizing the error is then the same as maximizing the likelihood expression

L

p({nk},{ak}) = C A2cos {M, (w) +I} (1.23)
1=1

Using the trigonometric identity

cos(p + 7) = cos f cos - - sin / sin -y (1.24)

Equation 1.23 becomes

L

p({nk} , {•k}) = -Z CA [cOSMp(wI) cos - sin OM(wl) sin ý] (1.25)
l=1

For a single secondary pulse train, this equation may be further simplified by

constructing a right triangle in order to solve for the sine and cosine of 02p (w) using

the Pythagorean Theorem. This yields

a 2 sin(nl2w 1)
sin 02p ) = (1.26)

a + 1 + 2a 2 cos(n 2w1)

1 ± 02 COS(n 2w 1)cos 02(wL) = 2 (1.27)
a + 1 + 2a2cos(n 2 1)



Since this paper primarily concerns itself with this simple case, a 2 will be writ-

ten as a and n2 will be written as nd. Substituting the equations above into the

likelihood expression in Equation 1.23 yields

p(nda) A[(a cos ndw + 1)Cos ý1- (a sin n•d•) sin (1.28)]
p(nd, ,) = (1.28)

l=1 Oa2 + 1 + 2a cos(ndwl)

L A [cos ý + a cos (ndW + (1.29)
1=1 Va2 + 1 + 2a cos(ndwl)

The secondary pulse estimator investigated in this paper operates by explicitly

maximizing this equation over both relative amplitude and relative location. Note

that the frequencies, while in general arbitrary, will for the purposes of this thesis

be taken to be harmonic, meaning wl = lw0 . This will create an artifact in the

likelihood surface of Equation 1.29. This phenomenon is discussed in Section 3.1.



Chapter 2

Procedure

2.1 Synthetic vowels

In order to conduct controlled experiments, the estimator was first developed and

tested on synthetic vowels. These vowels were formed by sending a pulse train

through a simple allpole linear filter, corresponding directly to the linear model of

voiced speech production. Many different variations on this simple scheme were

tested, including a vowel with no primary pulse offset and no secondary pulses, a

vowel with a primary pulse offset and no secondary pulses, and many with exci-

tations augmented by secondary pulses in a variety of positions and amplitudes.

The performance of the estimator on these test cases would determine its best pos-

sible performance since these cases fit exactly into its theoretical model, with no

unknown or uncontrolled factors potentially found in actual speech. In addition to

these idealized cases, the performance of the estimator was evaluated for a vowel

constructed by exciting the same alipole linear filter with a more generalized glottal

function. This glottal excitation was formed by generating an excitation waveform

with an open quotient of .5, a reasonable value for male speakers [4]. The waveform

is produced by smearing the excitation waveform by a small amount in order to

model the phenomenon of glottal opening more realistically than does the simple

impulse train. The estimator was implemented by maximizing Equation 1.29 ex-

plicitly using a simple grid search. The likelihood function p(nd, a) was calculated



at every point on a two-dimensional grid, where one dimension was relative am-

plitude and one was relative location. The relative amplitude levels were evenly

spaced over the interval from zero to the primary pulse amplitude and the relative

location values were evenly spaced over a single primary pitch period. The grid

had 100 divisions in relative amplitude and 800 divisions in relative location. The

coordinates corresponding to the maximum value of the likelihood function were

chosen as the maximum likelihood estimate of the secondary pulse parameters.

2.2 Secondary pulse estimation for speech

The secondary pulse estimator was then tested on an actual speaker. The speaker

chosen exhibited strong secondary pulses, remarkable even upon visual examination

of the speech waveform. The waveform is that shown in Figure 1-2. This speaker

formed a, good test case for the estimator since its performance could be readily

determined from visual inspection. The results were examined at specific frames of

the input speech to see what insights could be garnered from the system's behavior.

The system used was essentially the same as that used on the synthetic vowels.

2.3 Speech coding and phase modeling

Finally, a series of exploratory experiments was performed using a sinusoidal trans-

form coder which synthesized speech by combining the phase contributions of the

system phase, onset time, and estimated secondary pulse. The synthesized speech

was evaluated to determine whether this system improved the performance of a

coder which used the simple phase model of Equation 1.3. The secondary pulse

estimation technique was also extended so as to allow calculation of a phase resid-

ual assuming an arbitrary number of secondary pulses. The technique employed

suboptimal estimation using an iterative analysis-synthesis loop (see Figure 2-1).

Initially, the estimator determines the location and amplitude of a single secondary

pulse. Its phase contribution is then removed from the total phase and the pulse
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Figure 2-1: Iterative multiple pulse estimation loop

estimation process is repeated. The phase contribution from this new pulse is in-

corporated into an updated phase residual and the process begins again until the

desired number of pulses have been estimated. One anticipated problem with the

analysis- synthesis loop is the lack of spectral amplitude modeling. When the sys-

tem removes the phase contribution of a particular pulse train, it does not likewise

remove the spectral magnitude contribution of that pulse train. While the spectral

magnitude occurs only as a weighting of the terms in Equation 1.29, this effect may

be significant, especially when trying to estimate a large number of additional pulse

trains.

i



Chapter 3

Synthetic Vowel Experiments

3.1 Impulsive Excitation

The secondary pulse estimator was first evaluated on an artificial vowel produced

with no secondary pulse excitation and no primary pulse offset. This vowel had a

fundamental frequency of 200 Hz (5 ms pitch period) and the synthesized speech

was sampled at 8 kHz. The time waveform of this vowel is shown in Figure 3-1. The

E

25
Time (in seconds)

Figure 3-1: Time waveform of a synthetic vowel formed with an impulsive excitation
and no secondary pulses

waveform was windowed around the location of one of its primary pulses and an

STFT was computed. This STFT performed a 512 point discrete Fourier transform



of a 15 ms Hamming windowed segment of the waveform. The magnitude of this

transform is shown in Figure 3-2 and the phase in 3-3. The phase of the minimum

0O1

1

Figure 3-2: Magnitude of the STFT of synthetic waveform

.

00
Frequency (in Hertz)

Figure 3-3: Phase of the STFT of the synthetic waveform

phase system function (Figure 3-4) was then subtracted from the measured phase to

give a phase residual (Figure 3-5) corresponding to Equation 1.22. As can be readily

seen, the phase residual is very nearly zero for all frequencies. Any deviation from

zero can be attributed to computer round-off errors and computational limitations.

This phase residual was then used by the estimator to locate a single secondary pulse

using Equation 1.29. Several cross-sections of the likelihood function computed by

the estimator are shown in Figures 3-6, 3-7, 3-8, and 3-9.
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Figure 3-4: Phase of the system function
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Figure 3-5: Phase residual

These figures show cross-sections of the three dimensional surface described by

1.29. The estimated location and relative amplitude are the coordinates of the global

maximum of this entire surface. Since the figures present two dimensional slices of

the surface, they do not characterize it fully and must be interpreted carefully. The

peaks of the functions in the figures show that the estimator is correctly determining

that there are no secondary pulses for this case. In Figures 3-6 and 3-7, the peaks

occur at the beginning, middle, and end of the pitch period (5 ms). The peaks

at the beginning and end both correspond to a secondary pulse train coincident

with the primary one. In other words, the estimator does not identify a distinct

Frequency (in Hertz)

Figure 3-4: Phase of the system function
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Figure 3-6: Likelihood function for speech vs. offset with no secondary pulses (slice
at a = .98)

secondary pulse train. The peak in the middle is an artifact of the processing and is

discussed in some depth below. The cross-sections in Figures 3-8 and 3-9 have peaks

at zero relative amplitude thus also demonstrating the success of the estimator at

recognizing that no secondary pulses are present.

There is, however, a spurious peak occurring approximately halfway into the

pitch period. This peak is an artifact of the use of phase at harmonic frequencies

as the basis for locating a secondary pulse. A secondary pulse occurring exactly in

the middle of the pitch period actually has no effect on the phase of the resulting

signal and therefore produces no phase residual. This can be shown by examining

Equation 1.18 for the single secondary pulse case with harmonic amplitudes. Under

these conditions, the equation becomes

-a sin(ndlwo)
02p = arctan (3.1)

1 +a cos(ndlwo)

where 02p, is the phase contribution due to the single secondary pulse train. If nd is

taken to be at half the pitch period, nd = = = - . Substituting these expressions

into Equation 3.1 yields

-a sin 'l
0 2p = arctan -a cosnrl (3.2)1 + a cos 71
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Figure 3-7: Likelihood function for speech vs. offset with no secondary pulses (slice
at a = .5)

= arctan 0 (3.3)

= 0 (3.4)

for all 1. Hence, for a signal with no phase residual, this estimator will be as likely

to identify a pulse of arbitrary amplitude in the center of the pitch period as one of

zero amplitude elsewhere, even though there was actually no such secondary pulse

in the excitation. Similarly, in a signal with an actual secondary pulse at half the

pitch period, this estimator would be as likely to conclude there were no secondary

pulses whatsoever (Figure 3-10). As can be seen from the figure, the estimator

would be as likely to find no secondary pulse as the correct one at one half the pitch

period.

The secondary pulse estimator was also evaluated for synthetic vowels with a

variety of secondary pulse locations and amplitudes and produced accurate results

(ignoring the artifact mentioned above). A few illustrative examples of the likeli-

hood functions are shown in Figures 3-11, 3-12, 3-13, and 3-14. In all these cases,

the estimator correctly locates the relative offset of the true secondary pulse train,

at 4 ms for Figure 3-12 and at 2 ins for Figure 3-14. It also provided good esti-

mates for the relative amplitude, a, at .8 for Figure 3-11 and at .42 in Figure 3-13,

although the correct relative amplitude in the second case was .5. Note that the
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Figure 3-8: Likelihood function for speech vs. rel. amplitude with no secondary
pulses (slice at nd = 2.5ms)

likelihood functions tend to be quite smooth as the estimated amplitude is varied

with nd fixed, as shown in Figures 3-11 and 3-13. However, they can be extremely

ragged when a is fixed and nd is varied as in Figures 3-12 and 3-14. This sug-

gests that much finer grid resolution be used for the location than for the relative

amplitude.

3.2 Non-impulsive glottal excitation

The secondary pulse estimator was also used on synthetic speech created with a non-

impulsive excitation. This non-impulsive excitation significantly affected the phase

of the output speech. For the purposes of comparison, the measured phases for a

waveform produced with a secondary pulse of relative amplitude .5 and location 2

ms, both with impulsive and non-impulsive excitation, are shown in Figures 3-15

and 3-16 respectively.

There is little resemblance between the two phase functions. When the estimator

attempted to locate the secondary pulse in this system, it produced an incorrect

result, estimating the secondary pulse to have a relative amplitude of 1 and an offset
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Figure 3-9: Likelihood function vs. rel. amplitude for speech with no secondary
pulses (slice at nd = 4ms)

of 4.2 ms. Cross-sections of the likelihood surface, at the true location and relative

amplitude of the secondary pulse, are shown in Figures 3-17 and 3-18. Note that

while Figure 3-18 does show a peak around the correct value of 2 ms, this was not

a global peak for the entire surface.

In general, when the estimator was evaluated on synthetic speech created with

a non-impulsive excitation, its performance was consistently poor. The phase per-

turbation caused by this more realistic glottal opening model effectively prevents

the estimator from making a correct estimate. The smearing of impulsive excitation

can be modeled as the addition of zeros into the previously allpole system function

and the effect of these zeros on the total system phase may not be distinguishable

from that of a true secondary pulse. Since the non-impulsive excitation model more

closely represents true speech than the impulsive excitation model, the poor per-

formance of the estimator on the non-impulsive synthetic speech anticipates poor

performance for real speech, despite the estimator's success for impulsive synthetic

speech.

___



Figure 3-10: Likelihood function vs. offset for a secondary pulse occurring at half
the pitch period a = .3
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Figure 3-11: Likelihood function vs. relative amplitude, secondary pulse at a =
.8, n = 4ms (slice at nd = 4ms)
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Figure 3-12: Likelihood
(slice at a = .8)
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Figure 3-14: Likelihood function vs. offset, secondary pulse at a = .5, nd = 2ms
(slice at a = .5)
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Figure 3-15: Measured phase for impulsive excitation and secondary pulse at a =
.5, nd = 2ms
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Figure 3-16: Measured phase for non-impulsive excitation and secondary pulse at
a = .5, n d = 2ms
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Figure 3-17: Likelihood function vs. relative amplitude, non-impulsive excitation,
secondary pulse at a = .5, nd = 2ms (slice at nd = 2ms)
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Chapter 4

Speech Experiments

4.1 Single secondary pulse estimation

In the next series of experiments, the performance of the estimator was evaluated

on actual human speech. A segment of the utterance used to test the system

is shown in Figure 4-1. Also in this figure are the pitch estimates produced by

a sinusoidal transform coder. This coder was also used to provide estimates of

the system phase and linear phase components. The secondary pulses are obvious

from visual inspection of the speech waveform. For the purposes of analysis, the

speech waveform was broken up into a number of analysis frames. The size of

these analysis frames varied depending on the pitch estimate. Each frame was

windowed for subsequent spectral analysis. This analysis used a 512-pt discrete

Fourier transform. A more detailed examination of one of the frames provides

additional insight.

The frame starting at .8 seconds is strongly voiced and clearly contains secondary

pulses. For this frame, the pitch was correctly estimated to be approximately 50 Hz

and the frame length was chosen to be around 5 milliseconds. The measured phase

of the windowed waveform for this frame is shown in Figure 4-2. The system phase

and linear phase of the system are shown in Figures 4-3 and 4-4 respectively.

The corresponding phase residual is shown in Figure 4-5. The time waveform in

this frame and the estimated secondary pulse locations a.re presented in Figure 4-6.
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Figure 4-1: Time Waveform and pitch estimate for a portion of speech

(The secondary pulse amplitudes are not meaningful on this graph since the time

waveform shown is the speech itself whereas the secondary pulses reflect the excita-

tion.) Some representative slices of the likelihood function are shown in Figures 4-7

and 4-8. Note that the offset is shown normalized by the estimated pitch period.

The slices for a fixed a (variable nd) are more similar to the likelihood functions

of the synthetic vowels formed with a non-impulsive glottal shape (Figures 3-6 and

3-7) than those formed by an impulsive glottal shape (Figure 3-18). The deviations

from the ideal case have again caused the estimator to fail, even with a waveform
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Figure 4-2: Measured phase of waveform at .8 seconds

with definite, distinguishable secondary pulses. The basic shape of the likelihood

function is similar for most of the frames in this waveform.

There are several explanations for the failure of the estimator to identify the true

location of the secondary pulse. First, the speech coder may have incorrectly chosen

the onset time for the primary pulse. This would potentially introduce a strong

linear phase component into the phase residual, leading to spurious secondary pulse

estimates. Second, the combination of a true secondary pulse and zeros introduced

by the glottal excitation may lead to a phase residual which the estimator cannot

directly model with a single secondary pulse. The optimal location, in terms of

waveform matching, need not be anywhere near the actual secondary pulse. The

estimator is therefore unreliable at finding the true locations of secondary pulses.

A final source of error for this system is faulty pitch estimation. In the vicinity of

.85 seconds, the pitch estimator begins to identify the secondary pulses as primary

pulses and doubles its estimate of the fundamental frequency. In these cases, the

secondary pulse estimator necessarily fails.

The essential shortcoming of this secondary pulse estimator apparently lies in

the difficulty in separating the effects of secondary pulses and zeros in the system
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Figure 4-3: System phase component of waveform at .8 seconds

function or excitation on the phase. The total phase cannot be easily decomposed

into components resulting from the two different sources. The phase function is

a complicated non-linear function, so it is difficult to extract its components reli-

ably. This estimator makes no attempt to model any effect other than that from a

single impulsive secondary pulse and appears to be unable to handle even a small

perturbation from its model.

4.2 Speech Coding and Phase Modeling

A limited set of experiments was conducted to determine the usefulness of the sec-

ondary pulse estimator in speech coding. The goal of a speech coder is to develop a

compact representation of speech which produces output which is perceptually close

to the original. For sinusoidal transform coders it would be desirable to formulate

an accurate, compact model for the component sine wave phases since they have

proven very difficult to code directly [5]. The phase of the minimum phase system

function is generally easy to transmit, so it is natural to use the phase decompo-

sition of Equation 1.2. The problem then becomes the familiar one of modeling

_^___nU.V.7VzF
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Figure 4-4: Linear phase component of waveform at .8 seconds

the excitation phase. The linear model of Equation 1.3 has been used effectively

to represent the excitation phase, but it causes perceptually significant degrada-

tion of the synthesized speech. Unfortunately, listeners are very sensitive to small

variations in the parameter no. Thus implementation of Equation 1.3 requires not

only a good onset estimator but also very fine quantization of the onset time and

a correspondingly large number of bits. By postulating the presence of secondary

pulses, it is possible to augment the linear phase model with the phase contribu-

tions of several additional pulse trains. These phase contributions could then be

represented compactly by the analyzer as a set of locations and relative amplitudes.

Given these parameters, the synthesizer could then use Equation 3.1 to reconstruct

the phase contribution from each pulse train to add to the linear phase model to

form a total phase estimate. Since the success of this coding scheme depends not on

the existence of actual secondary pulses in the excitation but rather the accuracy

of the secondary pulse model in representing phase, this estimator, even without

locating the position of an actual secondary pulse, may still produce a useful though

physiologically meaningless representation of the phase residual. Since the deriva-

tion of the likelihood function explicitly minimized signal error rather than phase

error, it should always produce an approximation to the original which is superior

in the mean-squared-error sense to that of the simple linear phase model.
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Figure 4-5: Phase residual of waveform at .8 seconds

A coder which added the phase contribution of a single secondary pulse to its

phase estimate was implemented and tested on a small number of sentences for both

male and female speakers. In all cases, the speech synthesized with this system was

perceptually indistinguishable from that synthesized with the simple phase model.

The system was then expanded to estimate eight secondary pulse trains iteratively

for each analysis frame. This system was evaluated using a single test sentence and

the resulting speech, while recognizable, was considerably degraded. The reasons for

this failure are unclear. It is known that the perceptual quality of synthesized speech

is very sensitive to small phase errors [5], so it is certainly possible that some level

of phase quantization introduced by the system degraded the speech. Additional

research is needed to support this assertion. In addition, by breaking up the search

for additional pulses into an iterative process, the results may no longer be globally

optimal. There is some justification for a suboptimal iterative procedure in that

it is a variant of the successful system used in time-domain multipulse coders [1].

In addition, the sensitivity of phase across the whole spectrum to each excitation

pulse would tend to increase the difficulty in segregating the effects of each pulse.

The iterative analysis synthesis loop also only subtracts off the phase effects of
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Figure 4-6: An analysis frame of speech with superimposed estimated secondary
pulse locations

each estimated pulse. Any effects of each additional pulse on the magnitude of the

frequency spectrum remain unmodeled.
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Chapter 5

Summary

5.1 Secondary pulse estimation

The experiments described in Chapters 3 and 4 highlight the deficiency of this

estimator as an estimator of physiological secondary pulses. While the estimator

performed correctly for the idealized case of a synthesized vowel, it was unable to

pick out very pronounced secondary pulses from segments of human speech reliably.

This failure may result from the fundamental nature of the phase function and its

components. Unmodeled components of the phase seem to have a serious effect

on the estimator's performance as shown in its failure for non-impulsive synthetic

speech. For human speech, the linear model, with or without secondary pulses, is a

reasonable perceptual approximation; however, it is far from exact. The reliance of

this estimator on phase appears to make it especially sensitive to these errors. The

failure of the estimator on synthetic vowels formed with a non-impulsive excitation

corroborates this conclusion.

It is important to note that the estimator was designed specifically to find the

location and amplitude of a secondary pulse such that its phase contribution would

perceptually approximate the phase residual of a speech segment. In the presence

of real speech, this does not necessarily have to correspond to an actual secondary

pulse in the glottal excitation. Essentially, the derivation of the likelihood function

relied on the estimator being part of a waveform and phase modeler, rather than



an estimator of physical excitation secondary pulses. For the idealized case of a

synthetic vowel with impulsive excitation, the two problems are equivalent since the

components of the speech signal are known exactly and forced to fit the linear model;

however, for real speech, the two problems are no longer necessarily equivalent as

additional unknown or uncharacterized effects are introduced.

5.2 Speech coding and phase modeling

The speech coding experiments described in Chapter 4 were part of an exploratory

investigation into the viability of the multiple pulse model in coding phase residuals

for a frequency domain sinusoidal coder. The success of multiple pulse models in the

time domain, especially the multipulse method [1], would suggest that a successful

equivalent system could be realized in the frequency domain. However, there are

many issues and complexities involved in designing such a system. Clearly, the

system used in this series of experiments is not sophisticated enough to produce

natural sounding speech. The experiments examining the use of the estimator to

pinpoint the loca.tions of actual secondary pulses show that phase is not a reliable

indicator of secondary pulses. No definite conclusions have been drawn to suggest

the viability of using secondary pulses to model phase residuals. The results of these

experiments show that the simplest multiple pulse model does not work. They

also highlight the difficulty of finding parametric models to represent the phase

function of speech signals. The relationship between the frequency domain phase

of a waveform and the waveform itself is a nonlinear one and therefore simple yet

precise models are difficult to identify.
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