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Abstract

Ray tracing is an image synthesis algorithm that projects light rays from a viewer location
to the closest object in a user defined environment. At the intersection point between a
light ray and the closest object, reflection and refraction rays are generated. The reflection
and refraction rays are also projected into the environment, thus modeling the physics
behind light interactions with the real world. This physical model of light interactions pro-
duces some of the most realistic computer generated images.

The realistic images created by ray tracing has made it very popular in computer graphics.
However, the mathematical complexity involved in ray tracing and thus the time required
for the generation of a single image (frame) has limited its use in animation. This may
change as specialized processors (DSPs) become prevalent in computer graphics. The
architecture of DSPs is designed for intensive mathematical computation. Parallel net-
works of such processors yield computational power comparable to supercomputers.

An algorithm developed for use on a parallel network of TMS320C40 DSPs is proposed
as a solution for real time processing of ray traced images. The approach uses temporal
coherence to eliminate unnecessary computation of pixels. Thus pixels remaining the
same color in the following frame are not recomputed.

Tests were performed with 20 moving objects whose temporal coherence ranged from 4%
to 10%. The processing time ranged from 1/20 to 1/15 of the time required assuming com-
plete recalculation of the images on the parallel network. Since the algorithm does not
require knowledge of the next frames' color, its possible applications include interactive
games and military simulations.

Faculty Supervisor: Stephen Ward
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Daniel Chen
Title: Applications Engineer, Texas Instruments, Incorporated



Parallel Ray Tracing for Real Time Animation
by

Remigio Perales

Submitted to the Department of Electrical Engineering and Computer Science on
Jan 21, 1995, in partial fulfillment of the requirements for the degrees of Bachelor

of Science and Master of Science.

Abstract

Ray tracing is an image synthesis algorithm that projects light rays from a viewer location
to the closest object in a user defined environment. At the intersection point between a
light ray and the closest object, reflection and refraction rays are generated. The reflection
and refraction rays are also projected into the environment, thus modeling the physics
behind light interactions with the real world. This physical model of light interactions pro-
duces some of the most realistic computer generated images.

The realistic images created by ray tracing has made it very popular in computer graphics.
However, the mathematical complexity involved in ray tracing and thus the time required
for the generation of a single image (frame) has limited its use in animation. This may
change as specialized processors (DSPs) become prevalent in computer graphics. The
architecture of DSPs is designed for intensive mathematical computation. Parallel net-
works of such processors yield computational power comparable to supercomputers.

An algorithm developed for use on a parallel network of TMS320C40 DSPs is proposed
as a solution for real time processing of ray traced images. The approach uses temporal
coherence to eliminate unnecessary computation of pixels. Thus pixels remaining the
same color in the following frame are not recomputed.

Tests were performed with 20 moving objects whose temporal coherence ranged from 4%
to 10%. The processing time ranged from 1/20 to 1/15 of the time required assuming com-
plete recalculation of the images on the parallel network. Since the algorithm does not
require knowledge of the next frames' color, its possible applications include interactive
games and military simulations.

Faculty Supervisor: Stephen Ward
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Daniel Chen
Title: Applications Engineer, Texas Instruments, Incorporated



Table of Contents

Chapter 1: Introduction ...............

1.1 Motivation .. .......................
1.2 Purpose... ........................
1.3 Motion Picture Coherence ...............
1.4 Organization of Report..................

Chapter 2: The TI DSP and Hardware Platform

2.1 The TMS320C40 DSP ..................
2.1.1 Central Processing Unit ..........
2.1.2 Memory Interfaces ..............
2.1.3 Communication Ports............

2.2 Hardware Platform .....................
2.2.1 The Personal Computer ..........
2.2.2 PPDS ........................
2.2.3 Communication with PC/Complete Sy

Chapter 3: Image Synthesis Techniques

3.1 Alternative Algorithms..............
3.1.1 Scan-line Approaches.......
3.1.2 Radiosity.................

3.2 Description of Ray Tracing Algorithm..
3.3 History of Ray Tracing .............

3.3.1 Early Models..............
3.3.2 Advanced Methods.........

3.4 Ray Tracer Selection ..............
3.5 Sequential Ray Tracer .............

Chapter 4: The Parallelization of Ray Tracing

4.1 Terms Common to Parallel Processing ....
4.2 Parallelization Issues ..................
4.3 Previous Work.... ...............

4.3.1 Autonomous Node Systems ......
4.3.2 Ray Passing Systems...........
4.3.3 Object Passing Systems.........
4.3.4 Combined Approaches ..........

4.4 Parallel Implementation .............
4.4.1 System Configuration ...........
4.4.2 Object Partitioning..............
4.4.3 Task Allocation ................

........................10

............ .. .........12

.... ........ .. .........12

........................15

. . . . . . . . . . . . . . . . . . . . . . .17

..... .. ... .. ... .. .. ..... 17

....................... 17

................... .... 19

....................... 20

....................... 22
....................... 22

........................22
ystem . . . . . . . . . . . . . . . . . .23

............................25

..... .... ...... ..... .. .. ....25

............................ 25

..... .. .. ........... ..... .. .2 7

............................ 28

.............................30

................. ....... .... 30

..... .. ... .......... .. ... .. .31

.............................32

........................ .... 34

... . . . . . . 35

. . . . . . . . . . . . . . . . . . . . . . . .35

........................ 36

.........................37
.........................37
.........................37
.........................38

.........................39

.........................40

.........................41

.........................41

........................43

a..



4.4.4 Root Processor Responsibilities ....
4.5 Animation .......................

4.5.1 Object Partitioning During Animation
4.5.2 Task Allocation During Animation...

4.6 Collection and Display of Images ..........

Chapter 5: Motion Picture Coherence ...

5.1 Previous Work in Temporal Coherence
5.1.1 Image Space Algorithms.....
5.1.2 Object Space Algorithms.....

5.2 Temporal Coherence Implementation..
5.2.1 Uniqueness of Algorithm.....
5.2.2 Implementation ..........
5.2.3 Summary.................

Chapter 6: Results and Conclusions ...

6.1 Performance

....................... 44

.. ..................... 44

....................... 46

....................... 46

....................... 47

............................ 49

............................ 49

............................ 49

.......................... 50

.............................52

.............................52
............................ 52
............................ 54

.55

..... s...........................................55
6.1.1 Performance of Algorithm vs. Complete Ray Tracing of Scene .. .55
6.1.2 Scalability ........................... .................57
6.1.3 Performance vs. Frame-to-Frame Temporal Coherence ........ 60
6.1.4 Performance vs. Number of Moving Objects .

6.2 Conclusions .................................
6.2.1 Real Time ...........................
6.2.2 Recommendations ...................
6.2.3 Extensions.......................
6.2.4 Theoretical Accuracy................
6.2.5 Conclusion ...........................

................ 61

................62

................62

................63

................ 63
................ 64
................ 64

Glossary of Terms .................

Appendix A (Shading) ..............

Appendix B (Code) ................

.65

.71

.73

---- --------------------------

a aa 50 aa am aa aa aa 0a a8 w0 aa 0a 0a

a 2a ma a0 aff a 0 0 a a a m a w



List of Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1:
2:

3:
4:

5:
6:

7:

8:
9:
10
11

12

13
14

15
16
17

18

19
20

21

22

Picture Coherence vs. Standard Ray Tracing (Speed 1). ..........56

Picture Coherence vs. Standard Ray Tracing (Speed 5) ......... 57

Algorithmic Performance vs. Network Size .................... 58

Theoretical Scalability .... ............................... 60

Algorithmic Performance vs. Temporal Coherence . . . .
Performance as Number of Animated Objects Increases
Indirect Illumination Problem ......................

... 61
. . 62

... .... 64

Ray Traced Image................
Processor Performance............
Ray Tracing .....................
Illumination and Shadow Network ....
Modified Ilium/Shadow Nets ......
Voxel Approach ..................
Format of 40 bit Floating Point Value .

C40 Memory Map ................
DMA Registers...................
:3-D Parallel Grid ................

:PPDS Configuration..............
:Complete System ...............

: Recursive Ray Tracing ...........

: Hierarchies for Ray Tracing........
:Heap Approach.................
:Hierarchical Bounding Boxes.......
:Transputer Network..............
: PPDS Connectivity ..............

:Distribution of Objects ............
:Static Allocation of Pixels..........
:Dynamic Allocation of Pixels .......
:Translation of Objects............
: Allocation of Pixels during Animation.
:Color Transfer Format .........
:Projection onto Image Plane .......

...... .. .. ... .. ......... 10

... ....... ............. .1 1

...... .. .. ...... ..... .. .12

.......... ........... ... 13

... .. .......... ... .. ....14

......... .... ... .. .. .... 15

.......... ... ..... ...... 18

...... .... ..... ......... 19

........................ 20

........ .. ..............2 1

........................ 22

........... ........ .... 23

........................29

........................ 3 1

... .. ............. .. ....3 1

........................ 33

........................ 39

... .. ... ... ..... .. .. .... 4 1

........................ 42

... .. .... .. ....... ...... 4 3

........................ 44

........................45

........................ 47

........................ 48

.........................53

Figure 23
Figure 24

Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure
Figure
Figure



List of Equations

Equation 1: Shading Function ...................................... 26
Equation 2: Phong Shading .......................................... 27
Equation 3: Ray Tracing ...................................... 29
Equation 4: Parallel Performance ................................... 58

Equation 5: Theoretical Performance ............................. 59



Acknowledgements

This thesis would not have been possible without the generosity Texas Instruments

exhibited in funding the project. It also would have been impossible without the

tremendous support of the TI employees. First, I would Ilike to thank my supervisor,

Rose Marie Piedra, for always showing patience, and for teaching me how to

properly use the TI tools. Next, I would like to thank Keith Larson for developing a

communications kernel for the parallel network, and for answering numerous

technical questions. I would also like to thank Daniel Chen, my company advisor,

for supporting and advising me throughout my stay. In addition, I would like to thank

Gene Frantz for displaying confidence in my abilities. Finally, Louise Mitchell and

Mervin Galloway have always been there for me. Thanks to TI.

At MIT, I would like to thank Professor Stephen Ward for helping me decide the

direction of my thesis. Also, thanks to the MIT 6-A graduate program.

Next, I would like to thank those who have influenced my life, thus my thesis.

Where to begin?

With my parents, who taught me more than college ever could, and through whose

eyes I've seen the important things in life. To my brother Ramon. For growing up

with me, and understanding. To my sister Rossanna, for cookies and letters. To

my sister Lauriza, with dreams of pets and flowers. To all my grandparents. I'm

happy I'm coming home. Where to begin? With my friends. To Baker, for philosphy

and basketball. To Matt, for entertainment. To Mark, for competition. To Tina, for

conversation. To Kathy, for sweetness, and framemaker!. To Steve, for dreams. To

Paul, for reality checks. To Jake, for politics. To Hung Chou, for principles. To Chris

Chang, for enthusiasm. To Joe, for advice. To Juan, for humor. To Chris Reed, for

hope. To the many other friends from MIT and Texas. Where to begin? With all my

high school teachers...I did learn something.



Introduction

Chapter 1

Introduction

Despite the realism of images produced by ray tracing (Figure 1)1, its use in

animation has been limited due to its time consuming nature. It is not uncommon

for scenes to require hours to ray trace. If processing time for ray traced images

(images produced by ray tracing) could be reduced, animators would have a

powerful tool for realistic animation. The goal of this project is the production of ray

traced images in real time (32 frames a second) on a parallel network.

1. Produced by M. Miller on the public domain ray tracer POVRay. Found on the World Wide Web

at location http://acacia.ens.fr:8080/home/massimin/ray.ang.html.
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Figure 1: Ray
Traced Image

1.1 Motivation

Computer processing speed has been increasing for a decade (Figure 2).

However, physics rather than technology will be the ultimate barrier to continued

increases in processor speed. The need for more processing power has been a

catalyst for much of the current research involved in the field of parallel processing.

Parallel processing is the division of a large task into smaller units, and the

assignment of these smaller tasks to individual processors. The individual

processors can then work concurrently on the smaller tasks. As interprocessor

communication becomes less complex, the size of feasible multiprocessor

networks will increase. These massive machines will form the basis for desktop

supercomputers [18].
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DSP Performance
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Figure 2: Processor Performance

One of the effects these supercomputers will have is to improve the speed

of computer generated images. Different regions of an image may be calculated

simultaneously. As a result, many computer graphics algorithms are ideally suited

for parallel computation. One of the computer graphics algorithms whose speed

improves through parallelization (Chapter 4) is ray tracing. Figure 3 depicts a

pictorial explanation of ray tracing (refer to Section 3.2 on page 28 for details).

-----------
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Liaht Source

Ray

3efraction Ray. k

Image P

4Viewer
Viewer

Image plane (dark line) is shown with rays from
the viewer location intersecting. The points at
which these rays intersect the image plane are

Figure 3: Ray Tracing pixels. This schematic illustrates a one ray per
pixel model.

Ray tracing is a 3-D image synthesis routine which produces some of the

most realistic computer graphics images. Therefore, it would be appropriate to

use ray tracing for a project that required the creation of realistic images for

animation.

1.2 Purpose
The goal of the project was to produce ray traced images in real time on a parallel

network. To accomplish this, an algorithm exploiting temporal coherence was

developed, specific to ray traced scenes to be used in animation.

1.3 Motion Picture Coherence
Temporal coherence is the degree to which two successive frames in an animation

are similar. Temporal (image space) coherence routines are used to eliminate

unnecessary calculations of pixels, by attempting to identify which pixels in

adjacent frames remain unchanged. Pixels which remain the same should not be

ray traced again. The time savings which the developed algorithm provides are

scene-dependent, but can be generalized by examining a 'typical' animation

_c7f
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sequence. Previous research [7] of such typical scenes shows an average of 88%

frame-to-frame coherence (88% of pixels remained the same color in two

sequential frames). Pixel processing times for ray tracing are not constant. The

primary light ray (Figure 3) generated for some pixels may not intersect anything.

In these cases, the reflection and refraction rays of Figure 3 are note generated,

and pixel color is therefore quickly determined. As a result of this variable pixel

processing time, the 88% reduction in pixel calculations does not transfer directly

to an 88% savings in time.

Motion picture coherence (temporal image space coherence) should

therefore attempt to eliminate the processing of 88% of the pixels in a typical

scene. The algorithm implemented in this project links all objects in the scene

together, via an illumination and shadow network of lists (see Figure 4 and Figure

5). Thus each object contains a list of objects that it either shadows or illuminates.

Object 1 is shadowed by object 2,
thus object 2 contains object 1 on
its shadow list.
Object 4 is illuminating object 2.
Thus object 4 contains object 2 on
its illumination list.

Figure 4: Illumination and Shadow Network

4

------------
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'I.

Object 2 is no longer shadowing object 1.
Thus object 2 removes object 1 from its

L_.J shadow list. All pixels which contain a por-
tion of object 1 are flagged for calculation.
Object 2 has moved behind object 4, and is
thus shadowed. Object 2 is added to the
shadow net of object 4.
Object 2 has moved to a new location, thus
all pixels which cross the path of object 2 are

Figure 5: Modified Illum/Shadow marked for recalculation.
Nets

For each frame, the network of lists (nets) must be updated. After the nets

have been updated for the new frame, the pixels required for recalculation are

determined as follows. First, a projection of moved objects onto the image plane

(monitor) occurs. Every pixel which is within this projection is marked for

recalculation (see Section 5.2 on page 52 for a further explanation).

The uniqueness of this technique stems from the ability to use temporal

coherence before the next frame in an image is known. Most other methods require

either some frame in the future to be calculated and used for comparison, or they

require an automatic recalculation of portions of the next frame to determine which

pixels have changed color. However, there is one method [13] which attempts a

similar strategy as the illumination and shadow nets described above. It achieves

a 4-fold increase in processor performance over a standard ray tracing algorithm

on a chosen data set. The motion picture coherence routines implemented in this

project achieved up to 20-fold speed improvements 2.

2. The animation sequences tested on the two methods were not the same. In addition,
Jevans ran his algoirhtm on a sequential processor, while the analysis here is on a parallel
system. The parallel speedup (see Glossary) of the algorithm on 3 nodes was approxi-
mately 2.75.
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The main difference between the two methods stems from the chosen

network links. The previous work attempted a uniform subdivision of the world

space. Each subdivision (voxel) contained a list of rays (pixels) which passed

through it during ray tracing. In addition, the voxel contained a list of objects that

was within its space. If an object within the voxel moved, then all rays (pixels) which

passed through that voxel were marked for recalculation (see Figure 6) [13].

ri
r2

r3'

rl

r3

12'

(a) Frame 1 (b) Frame 2
The sphere is currently contained in voxel The sphere has moved out of the space
2 and ray rl is passing through this voxel. occupied by voxel 2, and into the defined
The first frame will require calculation of bounds of voxel 3. The voxels update
each primary ray: rl, r2, and r3. which objects they contain. Rays rl and r2

are ray traced in Frame 2.
Figure 6: Voxel Approach

1.4 Organization of Report
This thesis contains six chapters. The first chapter is simply a brief introduction to
the material that will be covered through the rest of the report, and a goal

statement. Chapter 2 briefly presents The TI DSP and Hardware Platform used to
complete the project. Chapters 3, 4, and 5 describe the steps required for
completion of the research: 1) working sequential ray tracer, 2) parallelization of
ray tracer, 3) creation of motion picture coherence routines. Each chapter also
includes background discussion. Chapter 3 covers Image Synthesis Techniques,

and includes a discussion of the sequential ray tracing algorithm implemented.

-----------

I
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Chapter 4 is The Parallelization of Ray Tracing. The last stage of this project was

the creation of Motion Picture Coherence routines, Chapter 5. The final chapter of

this thesis presents the Results and Conclusions.
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Chapter 2

The TI DSP and Hardware Platform

DSPs (Digital Signal Processors) are a broad category of processors whose uses

range from control to communication systems. The TMS320C40 DSP (C40) was

designed by TI to function in a parallel network. Characteristics such as a glueless

communications interface to other C40s, and multiple communication and DMA

channels make it ideal for development of algorithms in a parallel network [21].

2.1 The TMS320C40 DSP

2.1.1 Central Processing Unit

The register-based CPU contains a 40-ns instruction cycle. Other features of the

CPU are its floating point/integer multiplier, internal busses, the CPU register file,
and the CPU Expansion Register File.
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Any processor working on ray tracing should perform efficient and precise

arithmetic floating point operations3. The C40's floating point/integer multiplier is

capable of single-cycle multiplications on 40-bit floating point (32-bit integer)

values. The precision and format of these 40-bit floating point numbers is shown in

Figure 7.

Figure 7: Format of 40 bit Floating Point Value

The two 40-bit internal CPU busses and two 40-bit register file busses allow

parallel operations in a single cycle, making programming more efficient. Two

operands from memory and two from the register file are carried to the multiplier/

ALU thus performing parallel multiplies and adds/subtracts on the four integer/

floating point operands.

Another feature important to the programming of C40s is the CPU register

file. The CPU register file holds the Interrupt Enable Register (IIE). The lIE

enables/disables interrupts from internal timers, communication ports, and DMAs.

In addition, the CPU register file holds other important registers such as the Status

Register, Data-Page Pointer, System Stack Pointer, and Repeat Counter.

3. This preciseness is required for the intersection routines which must accurately deter-
mine which object is first intersected by a traversing ray.

39 32131130 0

e S f

SIman I

x = 01.fx 2e  if S= 0 MostPositiveValue = 3.4x 1038

LeastPositiveValue = 5.9 x 10- 39

x = O1.fx 2e  if S= 1
LeastNegativeValue = -5.9 x 10-39

x = 0 if e = -128 and S= 0 and f= 0 MostNegativeValue = -3.4 x 1038
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The CPU Expansion Register File contains the Interrupt-Vector Table

Pointer (IVTP), and the Trap-Vector Table Pointer (TVTP). The IVTP points to the

start of the Interrupt Vector Table (IVT). The IVT contains pointers to the code that

handles each communication port interrupt.

2.1.2 Memory Interfaces

The C40 contains an addressable memory range of 4 Gwords. This range includes

the program memory (on chip ROM and RAM, and external memory). In addition,

the control registers for the communication ports, DMA channels, and timers are

also within this memory space. The memory map of Figure 8 shows the usual

configuration with the upper 2 Gwords accessible by the local bus, and the lower 2

Gwords by the global bus [21].

The C40's memory map is shown
with the size of each region in words 1I
displayed on the left. The lower 2
Gwords are accessible through the
global bus. The address range is
listed on the right.

1M

2G-3M

2G

Figure 8: C40 Memory Map I

00 0 0000h

OFFFF FFFFh

External Local Bus

Peripherals (Internal)

Reserved

Reserved

1K Internal RAM BLKO
1K Internal RAM BLK1

External Local Bus

Global Bus (External)
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A self-programmable direct memory access (DMA) coprocessor is capable
of memory transfers to and from any portion of the C40's memory map without
halting execution of the CPU. The DMA coprocessor controls six DMA channels
which perform the data transfers. These DMA channels are initialized via nine

registers (Figure 9) which determine when to begin the data transfer. In addition,
these registers contain the source and destination address, and block size of the

memory transfer. With the DMA handling much of the I/O, the CPU is free to

compute thus increasing performance of the C40 to 275 million operations per

second.

Figure 9: DMA Registers

Control Registers x
Source Address x
Source Address Index x
Transfer Counter x
Destination Address x
Destination Address Index x
Link Pointer x
Auxiliary Transfer Counter x
Auxiliary Link Pointer x

2.1.3 Communication Ports

A large number of communication ports is required for a processor in a parallel

network. These ports serve as communication links, through which the transfer of

data between processors occurs. For a 3-D mesh as pictured in Figure 10, a

minimum number of six communication ports is needed (the middle processor has

six communication links).

DMA
CH.
X

I
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This figure depicts a parallel network
of processors arranged in a 3 dimen-
sional grid. The processor in the
middle of the structure is connected
to 6 other processors.

Figure 10: 3-D Parallel Grid

The C40 has six bi-directional communication channels. These make the

C40 an ideal processing node in the 3-D grid of Figure 10. The C40 transfers data

through each of its six communication ports at 20 megabytes per second. Each

channel contains eight data lines (8 bits) and four control lines. The direction of

transfer is handled by token passing. The processor with the token (control of the

line) may transfer data. Through manipulation of the control lines, ownership of the

token is determined.

The four control signals involved in interprocessor communication are the

token request (CREQ), token acknowledge (CACK), data strobe (CSTRB), and

data ready (CRDY). The basic protocol for data transfer is as follows: Assume

Processor A has the token initially. Processor B wishes to transfer data to A. Thus

Processor B asserts CREQ. Processor A will relinquish control of the line by

asserting CACK. Processor B, obtaining ownership, may now place data on the

lines and activate CSTRB. All that remains is for Processor A to signal reception

of the data by assertion of CRDY.

The CPU may write directly to the FIFOs of the communication ports.

However, it may be beneficial to setup the DMAs to transfer to the communication

ports' FIFOs. Through proper setting of the control registers of Figure 9, the DMAs

----------- --
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can be configured to transfer to/from a communication port's FIFO upon a

communication port interrupt. Thus data transfers may occur between processors

without interrupting the CPUs. This leads to a data throughput of 320 Mbytes / sec.

2.2 Hardware Platform

2.2.1 The Personal Computer

Initial research undertaken was performed on a 486DX with 16 Meg RAM and

Super VGA. OS/2 was the required operating system since the TI parallel software

development tools were only functional under this environment.

Further research was performed on a PC with a Pentium processor. The

PC's duties were limited, thus avoiding the critical floating point error of the

Pentium processor. The major duties of the PC involved communication with the

Parallel Processing Development System (PPDS) via a printer port, and display of

the pixel color information returned from the PPDS.

2.2.2 PPDS

The PPDS was the parallel network used during research. It consists of four C40s,

all of which are directly connected to each other via one or two of the six

communication channels (see Figure 11). In addition, eight external

communication connectors allow communication to external devices, i.e. the PC.

- - - - - > Communication Channels

S The PPDS provides direct connections to
every processor. However, since a grid was
the desired architecture, the diagonal links
were not used during programming.
The nodes are labeled A, B, C, and D. Each

S is shown with its 64K local memory.

Figure 11: PPDS Configuration

F-'-'RAm
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Another feature of the PPDS is its distributed memory capability (see

Glossary). 64K x 32-bit words of zero wait-state SRAM are available to each

processor's local bus. Shared memory capability also exists as 128K x 32-bit

words of one wait-state SRAM is accessible through a shared global bus.

Loading of a program onto a C40 can take place through the communication

channels or from a specified memory location. Thus each processor's local bus

also has access to an 8K byte local EPROM which contains the code to be loaded

on the processors upon reset4.

2.2.3 Communication with PC/Complete System

The C40 was capable of communicating with a PC's bi-directional printer port

through an interface card which emulated the printer port's protocol. A

communication port of the root processor was connected to this interface card. The

maximum rate of transfer through this interface was 166 Kbyte/second, thus

limiting the minimum processing time of a standard image to 6 seconds5 . The

complete hardware system used for this project is pictured below in Figure 12.

Communications
Interface

- III IIBIB

PC PPDS

Figure 12: Complete System

4. The PPDS is configured by TI to automatically load each processor from EPROM. These
hard-wired control signals were modified to allow processors to load from communication
ports.
5. A standard image is 640*480 pixels in size. Each pixel has a red, green, and blue com-
ponent, which translates to 3 bytes per pixel. Thus the size of a complete image transfer is
640*480*3, or approximately 1 megabyte. Temporal coherence reduces the number of pix-
els which must be transferred. Those pixels that are not recalculated, are not sent to the
PC again.

O
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Image Synthesis Techniques

Chapter 3

Image Synthesis Techniques

Ray tracing is not the only image synthesis technique in existence today. In fact, it

is not even the most widely used approach. This chapter discusses other

approaches, justifying the use of ray tracing for a realistic real time parallel

animation system. Ray tracing is then explained, followed by a synopsis of its

history. The final portion of this chapter presents the ray tracing algorithm chosen,

and the platform used for creation of the sequential ray tracer.

3.1 Alternative Algorithms

3.1.1 Scan-line Approaches
An important issue in generating realistic synthetic images is the removal of

surfaces which are not visible. This is known as Hidden Surface Removal (HSR).

For example, the painter's algorithm begins by rendering objects furthest from the
viewer (monitor). This algorithm accomplishes HSR by "painting" objects which are

closest to the viewer last, thus occluding any objects which were previously painted

[10].
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Scan-Line approaches to rendering images are probably the most

prominent form of image synthesis today. These techniques transform the vertices

of all polygons in the geometrically described world to the coordinate system of the

monitor. It is then possible to determine the ordering of the polygons along the

horizontal and vertical axis of the monitors coordinate system. This ordering, along

with a sorting of objects according to depth, leads to a systematic manner of

rendering the image one scan-line at a time [8].

Rendering begins by searching the first scan-line for the first object's edge.

When this is found, a shading algorithm is applied at this point on the object. The

next point to be shaded is determined through an incremental change along the

object corresponding to an increment of one pixel along the monitor's horizontal

axis. For these scan-line algorithms, HSR can be accomplished through

application of the painter's algorithm on each scan-line, or through z-buffering

techniques (see Glossary of Terms).

The quality of images resulting from the above techniques varies depending

on the exact implementation, and the shading algorithm chosen. For example, a

basic shading algorithm used a Lambertian diffuse term (cosine dependence) to

determine the illumination of an objects surface. This used the fact that a light

source normal to the object exhibits a higher intensity than light at an angle.

Surfaces which are at a 90 degree angle with the incoming light have no

contribution from this diffuse term, and will appear black. As a result, an ambient

lighting term is often included in the shading equation (see Equation 1) [10].

Equation 1: Shading Function
I = Iaka +/pkd (N I L)

(See Appendix A for description of parameters)
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Phong [19] presented the computer graphics world with its most popular

shading equation. He added a specular component which is related to the angle

between the viewing direction (V) and the light source's reflection direction (R).

Smaller angles produce greater contributions from the specular component [22].

Equation 2: Phong Shading
I = Iaka +Ipkd (Kd - (N - L) +K, - (R. ) n)

(See Appendix A for description of parameters)

These shading techniques are incapable of convincingly modelling

reflection and refractions. Ray tracing improves on the above methods by

realistically modelling reflections and refractions. In addition, the HSR problem is

solved indirectly.

Before further exploration of ray tracing, another method of generating

realistic images is briefly examined -- radiosity.

3.1.2 Radiosity

Radiosity subdivides the 3-D scene into surface patches of constant energy flow.

Each patch generates a constant radiation of energy, which is a function of

reflected and emitted energies. As the viewer moves around in the scene, the

energy flux from each patch remains constant. Recalculation of a patches flux is

not required. The only processing required as a viewer moves is the determination

of which patch is visible. Patches visible to the viewer determine the color of pixels

[10].

Some animation scenes are only changes in view. For example, a camera

moving in for a close-up on a character does not require the character to move.

The result is therefore only a change in view. If the motion is a change in an

object's location, and not a change in view, the radiosity illumination algorithm

must be applied to every frame in its entirety.
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The research presented in this paper pertains to temporal (image space)

coherence between frames. Temporal (image space) coherence can be used to

eliminate large portions of the required pixel processing, when only a few objects

have moved. Radiosity requires complete recalculation of the entire image when

objects move. Therefore, radiosity could not benefit from the proposed image

space temporal coherence algorithm.

Ray tracing, however, can benefit from temporal (image space) coherence.

In addition, radiosity generally is an order of magnitude slower than ray tracing in

image generation [22], and therefore is less feasible for any real time animation

implementation. An explanation of ray tracing follows.

3.2 Description of Ray Tracing Algorithm

As shown in Figure 3, primary rays originate from a viewer location. These rays

pass through an image plane (monitor) which is a specified distance from the

viewer. The rays continue beyond the image plane until an intersection between

some object in the environment occurs.

At the point of intersection, the primary ray is reflected and refracted. In

addition, shadow rays are generated. Shadow rays are rays which have been sent

out from the point of intersection, in the direction of every light source within the

environment. Shadow rays, as their name implies, determine what light sources

are illuminating the current point of intersection, and what light sources are

occluded (obstructed) by objects. As the reflection and refraction rays (child rays)

intersect other objects in the world, they also spawn child rays. The process of child

rays generating child rays is known as recursive ray tracing. Child rays are

generated until the level of the family tree has surpassed a program defined depth,

which is three in the case of Figure 13.
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Refraction Rays

Reflection Rays

Figure 13: Recursive Raj Trac
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When this depth is reached, the color of the original point of intersection is

determined in an inverse manner. A shading algorithm (see Equation 1), which

determines the color of a point using object characteristics such as ambient (Ka)

and diffuse (Kd) coefficients, is applied at each point in Figure 13, [23].

This shading equation is first applied to every point in level 3. The shading

algorithm is then applied to every point in level 2. The color of every child ray is

multiplied by a reflection (Kr) or refraction (Kt) coefficient, and then added to the

color of its parent in level 2. Thus, the color of point 3 (p3) in Figure 13 is:

Equation 3: Ray Tracing
ColorOfp3 = I (p3) + (ColorOfp6) -Kt + (ColorOfp7) -Kr

The last point shaded is the intersection of the primary ray and the closest object,

i.e. level one. For simple implementations, the color at the intersection point of a

primary ray with an object corresponds to the color of the pixel located at the point

where the primary ray crosses the image plane (monitor). Refer to Figure 3.
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Due to the independence of each primary ray's color, simultaneous
calculation of primary rays can occur. Thus parallelization would improve the
speed of a ray traced image (Ideally, the speed would improve linearly with the
number of processors in the network). The images produced by ray tracing are
generally agreed to be some of the most realistic computer generated images.

Since the goal of this project is to create realistic 3-D animated sequences on a

parallel network (in real time), ray tracing is ideal.

3.3 History of Ray Tracing

3.3.1 Early Models

The idea of casting a ray into space in order to simulate light interactions with the

world was first presented in a paper by Appel [1]. However, it was not popularized

until Whitted [23] introduced recursive ray tracing and produced impressive

images. Some complex images require hours or even days to ray trace, thus

researches have attempted to improve the efficiency of the ray tracing algorithm.

For non-trivial scenes, approximately 95% of processing time is spent

computing ray-object intersections [23]. Thus early research focused on reducing

the ray-object intersection cost. Techniques proposed by researchers included

object bounding volumes [23] and hierarchical descriptions [20].

Bounding volumes simplified the cost of intersecting rays with objects by

tightly surrounding complex objects with a simpler object (see Figure 14a). A

bounding volume is the smallest volume which completely contains an object. Tight

bounding volumes reduced the probability that a ray would intersect the bounding

volume, and fail to hit the complex object within. Intersection with the complex

object only occurred if the ray pierced the simple bounding volume.

Hierarchical approaches eliminated the number of objects that had to be

intersected with each ray (see Figure 14b). When a ray failed to pierce the

bounding volume (spheres in the case of Figure 14) of a node, all children of the
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node were eliminated from further processing, since they encompassed a
subregion of the parent node. This reduced computation time from order(N) to
order(logN), where N was the number of objects in the scene.

rl
a) Ray r3 will be tested for intersection with
S2. Since it does not intersect S2, the costly
intersection with the complex object within
S2 is avoided.
b) Ray rl fails to pierce the bounding vol-
ume, S1. Thus no intersection with the child
nodes, S2 and S3, is required.

gS2 S3

r3

Figure 14: Hierarchies for Ray Tracin!

3.3.2 Advanced Methods

In 1986, Kay [15] improved on the hierarchical approach by including a heap to

store the closest ray-object intersection point. Rays travel through space

penetrating bounding volumes that are closer before bounding volumes which are

further (Figure 15). However, the space occupied by bounding volumes is not

mutually exclusive, and it is therefore required that the next bounding volume

within the same level of the hierarchy must also be checked for intersection. The

purpose of the heap, as mentioned previously, was to store the closest ray-object
intersection point. If the ray-object intersection point stored on the heap comes

before the ray-bounding volume intersection, the intersection of the ray with each

object within the bounding volume may be eliminated.

rl

r 
-

.r3

r3

Figure 15: Heap Approach

Ray r2 intersects the outer bounding volume,
S1. As a result, the children must be inter-
sected with the ray. Ray r2 first encounters
child S2, which it also pierces. It hits the
object within S2 and places the time until this
intersection on the heap. The ray then inter-
sects S3. Since the intersection time with S3
is greater than the time stored on the heap,
no further processing is required.
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Another approach developed to reduce the number of intersections each

ray must undergo is the octree method. It was first published in 1983 by Matsumoto

[16]. The idea here is to divide space with a resolution dependent upon object

density. Subdivision occurs where object density is above a prescribed level, and

continues until the size of the subdivision (cell) reaches a defined minimum. Unlike

the hierarchical approach, cells do not overlap, and thus when an intersection is

found, no further processing is required.

The above techniques benefit from object coherence -- an object occupying

a region of space is also likely to occupy space local to that region [14]. A uniform

division of space into a 3-D grid -- spatial subdivision -- also exploits object

coherence. An approach proposed by Kaplan [14], "adaptively subdivide(s) all of

three-dimensional space based on objects in the scene." Rays are only intersected

with objects lying in their path as they travel through this spatial division.

These are just a few of the algorithms which attempt to decrease the

processing time of ray tracing. In fact, the algorithms mentioned have only touched

upon one aspect of increasing the speed of ray tracing -- object (spatial)

coherence. Algorithms seeking to exploit coherence in other forms exist. Ray and

temporal coherence are examples.

Further exploration of object and ray coherence (see Glossary) is not

required. Time saving techniques exploiting both these methods may be used in

conjunction with the algorithm developed here, which as mentioned previously is

based on temporal coherence.

3.4 Ray Tracer Selection
The project began with the selection of a ray tracing algorithm that supported

options necessary for the eventual animation of scenes. For example, one required

option was a method of storing and organizing objects as they were initially loaded.

In addition, animation demands the availability of such an object organizer. As
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objects leave and enter a processor's space during animation, new objects must

be arranged, and objects no longer within the current processor's memory deleted

(refer to Section 4.5 on page 44).

Hierarchical bounding boxes is the method of organization included on the

chosen ray tracer (Figure 16). This approach creates a hierarchy of objects. The
highest level of the hierarchy corresponds to the complete object space. Next, a
subdivision of the complete object space is performed. New regions containing

sub-objects are created (as seen in Figure 16). These regions are now children of
the original upper level of the hierarchy. The process of dividing each of these
children into smaller physical spaces continues until all objects in the scene are
contained within an independent bounding box.

A hierarchical heap as described in Section 3.3.2 on page 31 also exists for
improved performance.

Hierarchical Division of Space:
Division of object space continues until
only a single object exists within each
subdivision.
The tree created for this simple image is
shown below.

Figure 16: Hierarchical Bounding Boxes
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3.5 Sequential Ray Tracer
After the ray tracer was chosen, porting of the chosen algorithm to a single

processor platform was performed. This single processor implementation is known

as a sequential ray tracer. The platform chosen for the sequential algorithm was a

PC plug in board with a TI C40 and 64K local SRAM. The support for this system

included a library of graphics functions which allowed for easy display of images.
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Chapter 4

The Parallelization of Ray Tracing

Due to the independence of primary rays, ray tracing has been attractive to

researchers of parallel processing. Issues explored include static and dynamic

load balancing, distribution of the object space, types of message passing, and

parallel architectures. Chapter 4 reviews current literature related to parallelization

of the ray tracing algorithm. This is followed by the strategies implemented during

the author's research.

4.1 Terms Common to Parallel Processing
A few terms common to papers related to parallel processing are briefly explained

here to facilitate the understanding of this section.

Each vertex in the network of Figure 10 is a node. Each node is an

independent processor. These processors together form a parallel network. The

term root, as used in parallel processing, refers to the node in the network which is

controlling the flow of the algorithm. Nodes are assigned addresses in the network.

This address is known as the node ID.
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4.2 Parallelization Issues
When Whitted [23] presented his paper, he suggested that the massive amount of

computation involved in the intersection routines be performed by parallel

processors, and that the shading be handled by a dedicated host. Due to the

independence of primary rays, it was a natural extension to compute both the

shading and intersections on nodes of a parallel network.

Primary rays (pixels) are the unit of computation distributed between nodes

of a parallel network. Some primary rays may intersect reflective and refractive

surfaces while others may intersect nothing. Thus the processing time for each

primary ray varies widely. As a result, balancing the computational loading of a

parallel network performing ray tracing is problematic.

Parallelization of both object space and primary rays (pixels) can occur.

Parallel systems have been developed using object partitioning and ray partitioning

(see Glossary). These systems attempt to balance interprocessor communication

and load balancing.

Static and dynamic load balancing methods are usually employed to

increase system performance. Intelligent initial distribution of pixels (or objects) to

the nodes in the network for processing is known as static load balancing.

Dynamic load balancing redistributes pixels (or objects), when some processors

are more heavily loaded than others. Together, these methods attempt to

eliminate processor idle time in a parallel network.

The interprocessor communication of a distributed memory system is

related to the degree of object partitioning in the scene. Object partitioning

distributes objects of a scene throughout a parallel network. This increases the

complexity of images which can be processed by the network, but also increases

the system message traffic.
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The messages communicated between processors in distributed parallel

ray traced systems varies. When a ray exceeds the spatial bounds of the local

node's memory, two things can happen. Either the ray is passed to the node

containing the portion of memory the ray has entered -- ray passing. Or the

memory is requested from the remote node containing that physical space -- object

passing.

Parallel ray tracing systems can be divided into 4 categories depending on

the type of messages generated:
* Autonomous Systems
* Ray Passing Systems
* Object Passing Systems
* Combined Approaches

4.3 Previous Work

4.3.1 Autonomous Node Systems
* Nishimura, Ohno, Kawata, Shirakawa, & Omura [17]

These systems are the simplest of all parallel ray tracers and require the

duplication of the entire data scene on each node, thus the transfer of rays or

objects is unnecessary. A 64 processor system known as LINKS-1 was used to

create a ray tracer of this type. The local node memory size limited the complexity

of the scenes rendered. With all 64 nodes ray tracing an image, the parallel
efficiency (see Glossary) of the system was 50%.

4.3.2 Ray Passing Systems
* Dippe & Swensen [9]

Dippe and Swensen, 1984, proposed a method of distributing objects through a
uniform 3-D spatial subdivision scheme. Initially, each node of a 3-D grid was
assigned a region of the divided space. Connected processors contained adjacent
regions of space. They suggested that through dynamically adjusting the
boundaries of the space stored within each node, load balancing could be
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achieved. There are several weaknesses to this approach. First, a finer subdivision

of the space is required to further reduce the number of ray-object intersections.

Another problem is the overhead of dynamically adjusting the spatial boundaries.

* Priol & Bouatouch [5]

Priol and Bouatouch, 1989, implemented a completely static load balancing

technique which utilized both ray and object partitioning on an Intel iPSC

Hypercube. First, the image was sub-sampled to determine which regions required

heavier processing. Then, both object space and pixels were divided between

processors in order to evenly distribute the load.

The rays which were sent to remote nodes for processing were not returned

to the originating node. Instead, the contribution of that ray to the primary ray's pixel

color was sent to the host processor which held the frame buffer. The received

contribution was accumulated in the appropriate pixel location of the frame buffer.

On a network of 64 processors, the observed parallel speedup was 19, thus the

observed parallel efficiency of the network was 30%.

4.3.3 Object Passing Systems
* Priol & Badouel [2]

The work of Priol and Badouel, 1992, centered around creating a Shared Virtual

Memory (SVM) system from a distributed memory system. A virtual memory

system was implemented through a static allocation of contiguous portions of the

object space to adjacent processors of an Intel Hypercube iPSC/2. This initial static

allocation of memory is permanent. When a ray has travelled beyond the bounds

of the local memory's space, the next region of memory required is requested from

the appropriate remote node, and loaded into the local node's cache, thus creating

the virtual memory system.



The Parallelization of Ray Tracing

Static and dynamic ray partitioning is performed. Static partitioning is used

to reduce remote accesses of memory by exploiting ray coherence. If a node is

assigned primary rays which intersect objects within its local database, fewer

requests for remote memories are required. In addition, if adjacent primary rays are

computed sequentially, the efficiency of the cache is improved, further reducing
remote requests.

Dynamic allocation of pixels improves load balancing. If the size of the work

load is too small, excessive requests for work will be generated in the network, and
the cost in communication may exceed the benefits of load balancing. Through

experimentation, Priol and Badouel [2] found a 3x3 array of pixels to be the ideal
task size for their system.

One of the benefits of this virtual memory system is the ability to ray trace
images which exceed the memory capacity of a single processing node. Testing
was undertaken on scenes which exceeded this single node capacity. As a result,
the efficiency of the algorithm was difficult to measure against the performance on
a single processor. However, analysis was performed to determine the overhead
involved in the parallel communications. With a network of 64 processors, parallel
efficiency was found to be better than 78%.

4.3.4 Combined Approaches
* Green, Paddon, & Lewis [11]

Green, Paddon, and Lewis, 1988, implemented an object partitioning strategy on

a 10 transputer network (see Glossary). Eight processors as shown in the tree
structure of Figure 17 were actually used for ray tracing. One processor served as

the root, and another processor was dedicated to display.

R is the root nrocsonr which nAnerates the initial
work for the system -- primary rays. In addition, the
root serves as an interface to the host computer.

Figure 17: Transputer Network
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The algorithm subdivided the scene via an octree. Each node contained the

entire octree description. In addition, a portion of the complete database resided

within each node's memory. Since the entire database was not present within

each node, requests for objects from remote nodes were performed when a ray

encountered an object not stored within local memory. Objects were stored in a

cache which was updated by the Least Recently Used (LRU) approach.

Load balancing is performed as children request work from their parent.

The work load of a parent is stored on a stack. Primary rays are initially on the work

stack. Reflection and refraction rays (secondary rays) are placed on the stack as

they are generated. Due to the illumination function, a primary ray's color cannot

be determined until its secondary rays have been computed. A primary ray whose

secondary rays are being computed by remote processors is placed on a delayed

work list, where it stays until the secondary rays have been returned.

The size of the cache was varied during testing to study its usefulness. For

the 8 transputer configuration of Figure 17 and with a cache size 0.5% of the

complete database, parallel speedup of 4.04 was obtained.

4.4 Parallel Implementation

After the sequential ray tracer of Chapter 3 was completed, parallelization of the

algorithm could begin. This section outlines the object passing parallel algorithm

developed for this project. It is a combination of the previous algorithms described

above with a virtual memory system similar to Priol and Badouel [2]. In addition,

static and dynamic load balancing techniques are implemented.
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4.4.1 System Configuration

The PPDS described in Chapter 2 was completely connected as depicted in Figure

18. The shared memory of the system was ignored in favor of the distributed

memory. Bob Boothe [4] states that ray tracing on a shared memory system is "a

nearly solved problem".

I -!UI ~1m U . I •• FEWU v m_ 0 V

The root (R) is responsible for I/O to the PC, initial distribution of the scene,

and dynamic load balancing. The three node processors perform ray tracing.

The node ID of each processor in the network is hard-coded.

Communication is handled through inclusion of a header at the beginning of each

message. The header contains the destination node ID, the source node ID, the

length of the message, and type of message (see Appendix B, function cpuintO for

a listing of message types). The source and destination node ID are unnecessary

due to the direct connectivity of every processor, but allow for easier porting to a

larger network6.

4.4.2 Object Partitioning
* Initial Distribution to Permanent Memory

A simple algorithm is implemented which assigns objects to nodes based on the

objects location in the scene. This is shown in Figure 19. Objects are assigned to

nodes depending on the bounds of the object, and the bounds of the space

6. Although the network was completely connected, the algorithm was programmed
assuming a 3-D grid. Direct connections eliminated the necessity of forwarding messages.
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designated as belonging to a node. Thus in Figure 19, Node A has been assigned
the upper right hand region of physical space. Object 1 is located in this region, and
therefore is given to Node A, to store as part of its permanent local memory.

This method leads to an unbalanced distribution of objects. During
animation objects pass between the physical space assigned to each node, and
thus must be added or deleted from a node's permanent memory. Therefore,
attempting to balance the distribution of objects initially is useless. A dynamic

attempt to equally distribute the objects would lead to massive communications

overhead. The unequal distribution is then acceptable.

Each node in the network is
assigned a portion of the object
space to hold in local memory.
If an object is contained within 2
regions, then it is assigned to
both nodes. For example, object
3 is located in the region
assigned to Node A as well as
the region assigned to Node B. It
is therefore sent to both nodes A
and B.

Figure 19: Distribution of Objects

* Virtual Memory System

A virtual memory system was implemented to increase the effective memory of the

system. When a ray encountered space that was not present locally, the node

which contained that space was determined and a request for memory issued to

that node. The algorithm then falls into the object passing category of parallel ray

tracers. In this implementation, the entire permanent memory of the remote node

was transferred upon a request. Thus the virtual memory page size varied with the

permanent storage of nodes.

Node B I Node A
Space I Space

Node C Node D
Space Space
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For larger systems without direct connections between each node, the size

of these memory transfers could deadlock the system. Ideally, object coherence

would minimize the amount of memory transfers, reducing deadlock possibilities.

4.4.3 Task Allocation
* Static Load Balancing (First Frame)

The initial allocation of pixels to processors attempts to reduce the number of

remote requests for memory. When possible, a pixel is assigned to the node which

contains the object visible at that pixel. Ray coherence is exploited by allocating

blocks of pixels, thus further reducing the remote requests necessary. The code

was designed for a 3-D grid, but given the 2-D grid of the PPDS, the static

allocation of pixels is shown in Figure 20.

a Image Bane - (Monitor)

The pixels contained within the upper right
corner are initially allocated to Node A.

Figure 20: Static Allocation of Pixels

* Dynamic Load balancing (First Frame)

Dynamic allocation is performed when a node has completed the processing of

the pixels that were statically allocated to it. For example, Node A in Figure 21 has
finished its block of pixels. Node A requests work from the root. The root realizes
that Node A has finished processing its statically assigned pixels, and determines
if a neighbor of Node A has not finished processing of the pixels statically assigned
to it. Node B has not completed processing of its pixels. Thus, the root sends Node
A a portion of the pixels previously assigned to Node B.

rii~i:ii:iiiiii~i iiF• iii,ii ii-i~ --.: :i:- ii •i i ·~i~i'ii ! ·:i i :!i;!!iii• 5rii'•i!ii:  :;! ii!i iii .... iiii-iili i~i~i i ii1i~i·i:
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--- Pixels Calculated --P Pixels Uncalculated

The region of pixels assigned to
Node A's Node A initially has been completed.
Pixels Node B is only 1/2 finished with its

preassigned block of pixels. The next
line of pixels which Node B was to
calculate is given to Node A for cal-
culation. Thus Dynamic Load Balanc-
ing is performed.
The pixels for nodes C and D have
not been shaded for easier reading of
the diagram.

Figure 21: Dynamic Allocation of Pixels

4.4.4 Root Processor Responsibilities

The examples in 4.4.2 and 4.4.3 (and in following sections) assume that 4

processors are available for handling of the algorithm. However, as mentioned in

Section 4.4.1 on page 41, the root processor does not actually handle any of the

ray tracing. Therefore only 3 processors are available for implementation of the

algorithm. Explanations throughout this paper proceed assuming 4 child

processors. This approach leads to a better understanding of the underlying

algorithms.

The responsibilities of the root are distributed between the remaining 3

processors. Thus objects which would have been assigned to the root are sent to

the nearest child, and pixels allocated for processing by the root will be dynamically

allocated to the child nodes.

4.5 Animation

The next step of parallelization was to animate the scene.
* Movement of Objects

Node B's
Pixels

Node C's Node D's
Pixels Pixels
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The emphasis of this project was not aimed at the realistic animation of real world

phenomena, such as bouncing balls or walking figures. All that was required was

the creation of animated sequences for testing of the motion picture coherence

routines. Thus, a simple method of random movement of objects was created. The

code shown in Figure 22 moves objects stored in the object buffer.

Figure 22: Translation of Objects

The preceding code belongs on the root. It is executed by the root at the
beginning of each frame. The object buffer, frame[], contains the identification
number of the object moved, and the new x, y, and z locations of the center of the
object. The new x, y, and z locations are determined by random movement, as
displayed in the above code.

After updating the physical locations of objects, the root determines which
nodes should receive these objects. The root maintains information about which
nodes contain which objects. It uses this data to pass updated objects to the
appropriate nodes.

* Updating Network

When the nodes have received this new object data, they undergo an intricate
method of updating each other using semaphores (flags). The use of flags to stall
execution of the processor results in a way to synchronize events. Proper

update_frame(void) ( float data; int i, local, value;
local = 0;
value = (int) frame[local++];

while(value != 'E') { for(i=l;i<4;i++)
{random = (float) rand()/((float) RAND_MAX) + random/

((float) RAND_MAX);
random = (float) M_PI*(2.0)*random;

data = sin(random);
data = frame[local] + (SPEED*data); /* modifying frame */
frame[local++] = data;)

value = (int) frame[local++];
) return;)
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synchronization eliminates the possibility for corruption of data. For example, if a

node were to start the ray tracing of a scene before it received the new position of

an object within its memory, it would produce the wrong image.

4.5.1 Object Partitioning During Animation

As mentioned in Section 4.4.2 on page 41, objects move between nodes as they

traverse space. Objects may also move outside the bounds of the current scene,

thus expanding the physical space occupied by the objects. It is necessary to

expand the physical space allocated to the nodes as a result. In addition, the entire

scene may have motion in a certain direction. Therefore the location of the physical

space assigned to a node may expand or move.

The algorithm implemented allows the physical space occupied by objects

to expand. In addition, the entire database may move in any direction. The

algorithm simply extends the bounds of the physical space controlled by a node if

one of its objects moves into a region which is uncharted. This method is simple,

but leads to uneven distribution of the database. A proposed solution was to

reassign regions of physical spaces to nodes after a specified number of frames.

A better solution is to reassign the database when the distribution of objects

becomes detrimental to performance of the system7 .

4.5.2 Task Allocation During Animation

Section 4.4.3 on page 43 described the allocation of pixels for the initial frame. As

explained in Chapter 5, the following frames will require only a subset of the image

pixels to be calculated. Therefore, allocation of pixels to nodes after the initial

frame is a modified version of the algorithm in Section 4.4.3.

7. Neither approach was implemented in this project due to time constraints.



The Parallelization of Ray Tracing

Blocks of pixels are tagged for recalculation as explained in Section 5.2.2

on page 52. These blocks are placed in a job list for the nodes which were initially

assigned to process them as shown in Figure 23. Thus a node may have an empty

job list if no pixels in its statically assigned region are tagged for recalculation, i.e.
node C.

Statically Assigned _ _ Pixels Marked for
Regions Recalculation

The blocks of pixels tagged for recalcula-
tion are shown with the region of pixels
statically assigned to each node. The
blocks within this region are placed on a
job list for that node. Thus Node A's job list
contains blocks 3, 4, 5, and 6. While Node
C's job list is empty.

Figure 23: Allocation of Pixels during Animation

Nodes begin processing of the scene by requesting pixels to ray trace from
the root. The root sends each requesting node a block of pixels to calculate. If the
job list for a requesting node is empty, the root will allocate pixels belonging to a
neighbor.

4.6 Collection and Display of Images
The display of images is accomplished through the use of distinct code on the
nodes, the root, and the PC. First, the nodes ray trace a block of pixels and store
the color information. When the block is completed, it is sent to the root which
passes it to the PC. The root never stores the complete image, frame buffer, within
its memory. Its only purpose is to communicate the color information to the PC. The
format of the block transfer is shown in Figure 24.
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xminl ymin xmax ymax - -
I~- Color Information - "I

Figure 24: Color The length of the color info is (xmax-xmin) x (Ymax-Ymin)
Transfer Format

The PC receives this block of information from the root and uses the x-y

minimum and maximum pixel values to display the color information appropriately.
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Chapter 5

Motion Picture Coherence

Motion Picture Coherence exploits image space temporal coherence. Temporal
coherence exists in image space and object space. Methods have been developed
utilizing both object and image space temporal coherence. In this chapter, previous
methods in both image and object space are discussed. This is followed by the
presentation of a new image/object space temporal coherence algorithm for ray
tracing whose goal is to eliminate excessive pixel processing during animation.

5.1 Previous Work in Temporal Coherence
Image space temporal coherence as explained in Chapter 1 selects a subset of the
complete image to recompute every frame. Object space temporal coherence uses
the frame to frame relationships between objects in the environment to reduce
computation of the rendering algorithm, although each pixel in the image may
require some calculation.

5.1.1 Image Space Algorithms
* Sub-Sampling Algorithm -- Badt, 1988 [3]
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Badt presented a method which uses a conventional ray tracer to compute the

"base frame", first frame. Following frames are rendered by first randomly selecting

an evenly spaced subset of the pixels. These pixels are then ray traced and if the

color found for that pixel differs from the previous frame, a 3-D flooding algorithm

floods that region in x-y image space and time with rays, thus determining the

proper color for that pixel and surrounding pixels. Since this method requires

flooding in time, every frame of the animation sequence must be present in

memory. An alternative method proposed by Badt does not flood in time therefore

does not require that the entire animation sequence be stored in memory.

However, a larger subset of pixels must be recalculated. Badt did not actually

implement these algorithms.

* Binary Frame Search -- Chapman & Calvert, 1992 [7]

Chapman and Calvert proposed a method similar to that of Badt [3] in that it

compares a previous frame's pixel values to those of the current frame to

determine which pixels require recalculation. This is accomplished through

complete rendering of every Kth frame. A pixel whose value is identical in frames

n and n+K will remain unchanged for all frames between n and n+K. If a pixel

changes in value between frames n and n+K, the pixel is ray traced at frame n+(K/

2). If it differs in color at frame n+(K/2), then it must be ray traced in frames n+(K/

4) and n+ (3/4)K. In effect, a binary search for the frame in which each pixel

changed color is performed. Once again, this method requires the entire animation

sequence be present in memory. Since it requires information about future scenes,

it is inappropriate for interactive animation.

For an animation with 95% frame-to-frame coherence and a value of K=5,

a speedup over traditional ray tracing of about 4 was obtained.

5.1.2 Object Space Algorithms
* I-Net Method -- Fussell & Buckalew, 1990 [6]
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This method does not use ray tracing. In fact, it is a modified radiosity approach

which utilizes temporal coherence. A complete illumination network is built initially.

Objects which interact through energy transfers are placed on this illumination

network. Objects previously illuminating each other will with high probability

illuminate each other during following frames. Thus the illumination network built

initially will basically remain unmodified, exhibiting object space temporal

coherence. New temporary connections may be made as objects move. These

connections are also built into the illumination network initially, and given a

temporal parameter. Only the network links which have a temporal parameter

corresponding to the current frame are active.

The actual illumination of the scene must be determined each frame. The

Illumination net simply allows a quick determination of which objects interact for the

illumination algorithm. A few problems exist with this method. First, it requires

redundant storage of objects since a moving object appears unique in each frame,

due to its temporal parameter. The algorithm requires complete knowledge of the

animation sequence. As a result, it is not suited for interactive environments, and

it consumes enormous amounts of memory.

With the illumination nets in use, a speedup of almost 4 was achieved for
each frame of a 4 second animation. The illumination network itself required 6M of
memory.

* Voxel Approach -- Jevans, 1992 [13]

This is the alternative algorithm discussed in Chapter 1. A network of voxels is
produced, and only primary rays passing through voxels containing moved objects
are ray traced again. Unlike the previous methods mentioned above, future frames
are not required for rendering of the current frame. A speedup of 4 over a traditional
ray tracing algorithm was achieved for an animation sequence consisting of 361
frames and 6000 polygons.
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5.2 Temporal Coherence Implementation

5.2.1 Uniqueness of Algorithm

As mentioned in Chapter 1, the proposed algorithm may be used for interactive

animation purposes. No previous knowledge of future frames is required for

calculation of the current frame. The algorithm is a hybrid model of the object space

temporal coherence algorithms discussed above. For example, it exploits object

space temporal coherence through the creation of an illumination net similar to that

of Fussell and Buckalew [6]. However, it uses these nets to recompute only a

portion of the image, similar to Jevans [13].

The algorithm transforms the object space locations which have been

modified into image space coordinates. Thus the algorithm exploits image space

temporal coherence by avoiding recalculation of pixels that remain the same. And

it relies on object space temporal coherence for utility of the illumination and

shadow networks.

In addition, this researcher believes that this is the first project to attempt a

temporal coherence ray tracing algorithm on a multiprocessing system.

5.2.2 Implementation

After animation of objects was properly working on the PPDS, it was possible to

implement and test the proposed motion picture coherence algorithms. This

section outlines the tasks these routines perform.

* Determination of Pixels to Recalculate

The pixels to be ray traced for the current frame must be calculated. The bounding

box of every object which has been moved during the current frame is projected

onto the image plane (Figure 25). In addition, the object in its previous location is

projected onto the image plane. These projection areas correspond to the blocks

of pixels which must be recalculated.
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Image Plane
The projection of the objects is shown
as dotted lines. The projection of the
bounding box of that object is the
solid line surrounding that object.
The vertices of these boxes are trans-
lated into pixel coordinates and thus a
block of pixels which must be calcu-
lated is obtained.
The previous location of the objects
are not shown for a more readable
diagram.

Figure 25: Projection onto Image Plane

Each node goes through the list of objects in its memory which have moved

during the current frame, and applies this projection routine to them. As shown in

Figure 25, projections may overlap. This may cause the same pixel to be tagged

for recalculation multiple times. A system of tests was implemented which

eliminated this possibility. For example, in Figure 25, if the following relationships

hold, then the bounding boxes are known to overlap:

v4.X 2 p2.X v4.Ytp2.Y v4.X5 <p4.X v4. Y5 p4.Y

The vertices are defined in an x-y coord. system, thus v4.X implies the x location of the vertex.

In addition to the pixels directly related to moving objects, it may be

necessary to recalculate other pixels. For example, an object may be shadowed in

one frame and illuminated in the next (refer to Figure 4 and Figure 5). It is required

that the portion of the image plane displaying this object be recalculated, otherwise

the object will continue to appear shadowed. Thus all objects, which the algorithm

determines may have changed in intensity or color, are applied to the projection
routine, and the pixels corresponding to the projection are tagged for recalculation.

* Updating of Shadow and Illumination Networks (Nets)
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Each object in the scene maintains a list of objects that it either shadows or

illuminates. If a moved object is no longer shadowing or illuminating another

object, the shadow and illumination lists must be updated. Figures 4 and 5

illustrate this method.

* Updating Nets in Remote Nodes

If an object resident in permanent memory of a remote node has illuminated or

shadowed an object in local permanent memory, the local node must signal to the

remote node this connection. This process occurs during the shading algorithm.

For example, if a ray reflected from an object in remote permanent memory

illuminates an object in local permanent memory above a threshold value, a

connection exists. The local node must notify the remote node of this relationship.

The remote node will then update the object's illumination list.

In Section 5.2.2 under Determination of Pixels to Recalculate, it was

mentioned that each node uses the objects within its permanent memory, and their

corresponding net lists, to determine which pixels to recalculate. As a result,

objects which are present in local memory, but are resident in permanent memory

on a remote node, need not have updated nets. In fact, no net is associated with

these duplicated objects.

5.2.3 Summary

A parallel ray traced algorithm exploiting temporal coherence in both object and

image space has been created. The previous chapters have outlined the histories

of topics covered in this research, and presented the algorithms used for

realization of the previously stated goal: production of ray traced images in real

time on a parallel network. The degree to which this goal was met is explained in

the final chapter, Results and Conclusions.
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Chapter 6

Results and Conclusions

6.1 Performance
Unless otherwise specified, the results presented in Sections 6.1.1, 6.1.2, and

6.1.3 were obtained with a scene composed of 20 objects8. The image size was

640 by 480 pixels, with 8 bits per pixel9. The number of frames was limited to 10.

Thus the animation described in Section 4.5 on page 44 is applied 9 times,

creating ten frames. The frame-to-frame coherence is easily found by dividing the

number of pixels which are not tagged for recomputation by the total number of

pixels in the image.

6.1.1 Performance of Algorithm vs. Complete Ray Tracing of Scene

These graphs show the times required for the complete ray tracing of individual

frames in a ten-frame animation sequence. The times achieved using motion

picture coherence are superimposed on the same graphs. Figure 26 depicts the

times for movement of objects limited to 1 unit per (speed 1) frame. Figure 27

8. All times on graphs are given in seconds.
9. The 8 bit RGB components were translated to a grey scale 8 bit value. A full 32 bit word
was still transferred to the PC, with 24 of the bits zeros. Packing the bytes of color informa-
tion should be performed for more efficiency.
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illustrates the results of increasing the speed of moving objects to 5 units per frame

(speed 5). The random motion generator described in Section 4.5 is in fact pseudo

random. It generates the same sequence of random motions (for as long as the

code runs). Since the directions of motion each time the algorithm runs are

identical, it is possible to simply vary the speed of the movement in these directions

to measure performance vs. speed.

Slower moving objects tend to improve the performance for the motion

picture coherence method, since the number of new pixels required for

recalculation is not as greatlo.For example, a stationary sphere does not require

any pixels to be recalculated, while a sphere of diameter 2 moving at 2 units per

frame requires complete recalculation of its previous location, plus complete

recalculation of its current location.

5'

44

3

0

0

0

1 2 3 4 5 6 7 8 9 10
Frame #

Figure 26: Picture Coherence vs. Standard Ray Tracing
(Speed 1)

10. This can be seen by projecting the object at both its current and previous
locations onto the image plane as explained in Section 5.2.2 on page 52

I,

I I I I I I I

- Dark Line -> Complete Ray Tracing

i -.-. Line -> Picture Coherence

\ - - - - - - - - - - - - - -- - - - - - - - - - - - - -
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E
P,

1 2 3 4 5 6 7 8 9 10
Frame #

Figure 27: Picture Coherence vs. Standard Ray Tracing
(Speed 5)

6.1.2 Scalability

Ideally, increasing the number of processors should linearly decrease the time for

processing an algorithm. P processors should finish a task that took one processor

Q seconds to complete in time Q/P. However, as the number of processors in a

network is increased, interprocessor communication increases as well. Thus the

computation time approaches an asymptotic value where it is no longer beneficial

to increase the number of processors in the network11 . The graph presented

11. The number of processors available was not enough to fully demonstrate this phenom-
enon.
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below, Figure 28, was obtained from the same 10 frame sequence run at an

animation speed of 1 unit per frame on one, two, and three processors12. With
three processors, the parallel efficiency was 92%.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Number of Processors

Figure 28: Algorithmic Performance vs. Network Size

The performance of a parallel network depends on the communications

overhead as well as the parallelized algorithm running on the nodes. The time a

parallel network will spend processing can be generalized by Equation 4,

Equation 4: Parallel Performance

Q = T/P+C

12. The time for calculation of the first frame was not included in the average times shown
in Figure 28.
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where Q is the total time to run the algorithm on the parallel network, T is the time

the process would have taken if run on a single processor, P is the number of

processors in the parallel network, and C is the time spent in communication. From

the data collected, Q, T, and P are known. A model for variable C must be built to

examine the scalability of the algorithm.

The communication overhead of this system is related to the transfer of

memory, illumination and shadow network information, pixel color data, requests

for work, and commands from the root to nodes. As the network size and the

storage required for the scene becomes large, the transfer of memory will

dominate communications. A model for communications is presented in Equation

5.

The following assumptions were made:
* Spatial coherence is exploited such that each node requests memory from a remote node at

most once per frame.
* The cache hit rate is 0% for each node upon every initial request for remote memory.
* The cache hit rate is 100% for each node after a remote memory has been received during

the current frame.

An estimation on the maximum number of memory transfers occurring each frame

is obtainable from these three assumptions. If each node requests memory from

every remote node, the number of requests per frame is P(P-1). The average size
of each of these transfers is assumed to be the number of objects in the scene, Z,
divided by P. The time required for these transfers is proportional to the average

size of the transfer, thus the (Z/P)xP(P-1) term in Equation 5. The frame-to-frame
coherence portion of the equation models the fact that a higher frame-to-frame
coherence implies less communication. Finally, a scaling variable, S, is applied to
model other factors left unattended.

Equation 5: Theoretical Performance

Q = T/P + Sx Z x (P - 1) x (1 - FrameToFrameCoherence)
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The variable S was empirically found 13. This was possible due to the
availability of all other variables in Equation 5. The expected value of S was 0.1209
with a scene size of 20 objects. The frame-to-frame coherence was set at 95%, and
the value of T was 8.5 seconds. This resulted in the plot of Figure 29.

3 4 5 6 7 8
Number of Processors

Figure 29: Theoretical Scalability

9 10 11 12

6.1.3 Performance vs. Frame-to-Frame Temporal Coherence

Frame-to-frame coherence is plotted against processing time in Figure 30. The

processing time does not linearly improve with coherence. Since the ray tracing of

individual pixels requires variable time, the computation of blocks of pixels of equal
size must also require varying times. This implies that it is possible for smaller

blocks of pixels to require more computation than larger blocks14, as shown in

13. Through application of this equation 9 times with the data presented in this chapter, 9
values for S were found. The expected value of this variable was then taken, and used for
the plot of Figure 29.
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Figure 30. Frame-to-frame coherence for the 10 frame (speed 1) animation

sequence used for the previous graphs is plotted here, along with the processing

times for these frames.

I./.

I \

I \ -.- > Temporal Coherence

/"

/ --- > Processing Time
I""

I""

, 

N
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2 3 4 5 6
Frame #

Figure 30: Algorithmic Performance vs.
Temporal Coherence

7 8 9

6.1.4 Performance vs. Number of Moving Objects

The processing time of the algorithm increases as the number of objects in the

scene increases (Figure 31). The increase in processing time with objects is not

linear due to overlapping of objects as they move in the world. Overlapping of

objects reduces the number of pixels marked for recalculation by the motion picture

coherence routines.

14. Higher frame-to-frame coherence implies fewer pixels are tagged for recalculation.
Temporal coherence as plotted on the vertical axis here is the opposite of frame-to-frame
coherence, i.e. 6% temporal coherence implies 94% frame-to-frame coherence.

2
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E
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E
C1-

Number Objects per Frame

Figure 31: Performance as Number of Animated Objects Increases

6.2 Conclusions

6.2.1 Real Time

The data gathered on small scenes has proven that the proposed algorithm can

reduce processing time. The scenes tested were composed of 20 objects. Each

object was moving in a random direction at 1 unit per frame. For these scenes, the

processing time averaged 3 seconds. Real time implies that a frame must be

generated every 1/32 of a second. Thus, 3 second processing per frame is 92
times slower than real time.
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6.2.2 Recommendations

To further enhance the performance of the algorithm, the code should be

optimized. In general, optimization leads to a 50% reduction in processing time.

This leaves a factor of 46 between real time and the observed processing time of

these simple images.

Increasing the number of processors in the network would also decrease

this time. A network of 27 C40 processors is available at TI. With minor

modifications, the temporal coherence code would run on this network. Ideally, this

would decrease the processing time observed on the PPDS by the ratio of

processors available in the respective networks15 , 3/26. However, as the plot in

Figure 29 demonstrates, the algorithm may not perform as desired for a larger

network. Indeed, the theoretical analysis implies that no further improvements are

achieved after 8 processors. The accuracy of this theoretical model should be

tested and refined on larger networks.

Assuming no benefits are achieved by adding more than 7 processors, the

algorithm would fall short of real time by a factor of 30 for the given animation 16. It

is possible that the remaining improvement in speed could be achieved through

further advances in processor speed. These simple animation sequences could

then be displayed in real time through ray tracing.

6.2.3 Extensions

As the number of moving objects increases, processing time increases. At some

large number of moving objects, the results point to the algorithm exceeding the

time required for ray tracing without picture coherence. Enough data was not

collected to extrapolate the number of moving objects which would cause this to

occur. Regardless of the number, the algorithm is beneficial at least for simple

animations.

15. One processor for each network is dedicated for the root process.
16. This comes from 46*(2/3). The 2/3 ratio is the minimum theoretical time of Figure 29
divided by the avg. time found empirically.
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6.2.4 Theoretical Accuracy

One of the limits to this approach is that the illumination net may grow very large

for images with many reflective objects. Another concern is that the illumination net

currently only stores objects which are directly illuminating each other. Indirect

illumination may also change the color of objects and thus require recalculation of

those indirectly illuminated areas also, see Figure 32. For theoretical accuracy,

objects indirectly illuminating each other should also be added to the illumination

networks. However, at some point, the overhead involved in updating these

extended networks will eliminate any benefit of the proposed algorithm.

The algorithm therefore will perform satisfactory for images without

conspicuous indirect illumination. For the images tested, no adverse visual effects

were noticeable due to this problem.

- - -+ Indirect Illumination. Obiect 3
indirectly illuminates object 1.

O -- Direct Illumination. Object 2
directly illuminates object 1.

Problem: If object 3 moves, it could effect
the shading of object 1. Currently, indi-
rectly illuminating objects are not part of
the illumination nets. Thus object 1

Figure 32: Indirect Illumination remains unchanged
Problem

6.2.5 Conclusion

Although real time was not achieved, the algorithm reduced the computation

required in animations tested in the parallel network by a factor of 20. If

implemented in a larger system, processing times for images would further

decrease and make this a powerful tool for animators.



Glossary of Terms

Bounding
Volume

Deadlock

Distributed
Memory

Hypercube

Image Space

Load Balancing

LRU

Motion Picture
Coherence

Object Space

Object
Partitioning

Parallel
Efficiency

A simple object which tightly surrounds a more complex
object. The overall cost of intersecting rays with the complex
object is reduced. If the ray fails to intersect the simple
bounding volume, it will not intersect the contained object.

A situation, described below, in which each node of a network
is unable to continue computation of the algorithm. Nodes of
a parallel network may begin a process which requires
completion before each processor may proceed. However,
each node is unable to complete the process due to the
unavailability of some resource. As a result, every processor
in the network becomes stalled, as it waits for the resource to
become free.

A parallel network with nodes featuring independent banks of
memory is known as a distributed memory system.

A binary hypercube with 2' nodes has dimension D. Each
node is assigned a binary address with network links existing
between those nodes which differ by only one digit in their
binary address.

The coordinate system of the image plane.

The attempt to balance the computational load of processors
in a parallel network with the goal to minimize idle time of
processors.

A method of updating a cache which replaces the least
recently used object in the cache when a new entry is
required.

The image space temporal coherence
successive frames of an animation.

exhibited by

The world coordinate system of the scene.

The distribution of objects to nodes in a network in an attempt
to balance the computation of each node in the network, and
to increase the overall scene size capability of the network.

The ratio of parallel speedup to number of processors in the
network.



Parallel
Speedup

Ray Coherence

Ray
Partitioning

Rendering

Shared Memory

Semaphores

Speedup

Temporal
Coherence

Transputer

Virtual Memory

The ratio of sequential run time to parallel run time of an
algorithm.

Rays similar in direction and point of origin are likely to follow
similar paths, thus most likely intersecting common objects. A
bundle of rays can be traced concurrently, exploiting ray
coherence.

The allocation of primary rays to nodes of a parallel network
performing ray tracing to balance the load.

The creation of computer images through physical models of
the environment to be displayed.

A parallel network with a single bank of memory accessible by
every node of the network is known as a shared memory
system.

A method of synchronizing processes which relies on two
operations, wait and signal. These operations allow
processes to begin at specific times

The ratio of the time in which an algorithm previously took for
completion to the time in which the improved algorithm took
for completion.

Similarities between successive frames of an animation
sequence, either in image space or object space, which can
be used to reduce computation of rendering algorithms.

This INMOS microprocessor introduced in 1985 was a
revolution in microchips in that it supported hardware
multitasking as well as hardware communications between
these processes and other processors. Thus it was suitable
for parallel networks.

Virtual memory as used in a parallel system implies the
assignment of portions of the database to the memory of each
node. Each node contains this initial assignment of the
database, along with memory it reserves for a cache. This
cache is used to store portions of memory resident on remote
nodes, when that memory is desired. In this way, the
combined memories of the nodes mimics a single memory
unit of a size potentially much larger than that resident on
individual nodes.



Voxel Spatial partitioning method which subdivides space into a
regular grid of cells, each occupying equal volumes of space.
These cells are known as volume elements, or voxels.

Z-Buffer A technique which stores the distance to the closest object
displayed at each pixel. This allows objects which are further
than the distance stored by the z-buffer to have no
contribution to the pixels color, while objects closer will update
the pixel's color, and the distance stored in the z-buffer for that
pixel. This is a visible surface determination algorithm.
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Appendix A (Shading)
Parameters from section 3.1.1 defined

1) I
This is the total Illuminosity of the point. This is usually included with a subscript % which
signifies a function dependence on wavelength of the incident light.

2) Ia
This is the ambient light component. Ambient light is produced by the cumulative effects of
other objects in the world that are dispersing light in various directions.

3) Ip
If light sources are modeled as points, then this parameter is the intensity of point lights
in the environment. The shading equation must be applied for every light source in the
environment.

4) kd
This is the material's diffuse reflection coefficient. Thus this models how much light is
reflected by the object and how much is absorbed.

5) -L
N is the normal at the point of intersection and L is the direction of the light source. NdotL
gives the cosine of the angle between the two vectors. If NdotL is less than zero, then the
light source is at an angle greater than 90 degrees from the normal, and thus no incident
light can fall on the object.

6) (Rn.)

R is the direction the light source is reflected. V is the viewing direction. RdotV gives the
cosine of the angle between the two vectors, which implies that smaller angles result in
greater specular components. The exponent n varies the effect of the RdotV specular
component.



Basic Ray Tracing Math

(Intersection of a light ray with a sphere)

The easiest object to intersect a ray with mathematically is the sphere. A ray is defined as
a parameterized vector:

x = x0 + t (X - ) Y = 1 +t (Y - Y0) z = ZO + t ( 1 - z0)

where (xO, yO, zO) represent the origin of the ray and (xl, yl,zl) determine the direction.
The equation of a sphere centered at (a, b,c) and with radius r is:

(x-a) 2+ (y-b) 2+ (z-c)2 = r2

The intersection of the ray with the sphere is found by substituting the x, y, and z values
of the parameterized vector into the equation for the sphere. The resulting equation is a
quadratic in t, and thus the time, t, when the ray will hit the sphere is known. This time, t,
can then be plugged into the parametric description of the ray to determine at what loca-
tion this occurred.



Appendix B (Code)
Asmall portion of the code for this project is included here. The entire code

listing would have taken over 200 pages. Thus only a few of the sections that were

discussed in this paper are included. The following is a list of the functions inlcuded

for the root and node code'. None of the PC side code was inlcuded. In addition,

most of the ray tracing code was not included here 2.

Node Functions
* main(), pg 96

* dnext pix(), pg 104

* nextscene(), pg 107

* message_init(), pg 98

* update_all(), pg 109

* update_netlist(), pg 110

* new_frame(), pg 125

* update_sphere(), pg 109

* remove_obj(), pg 110

* receiving_moved_net(), pg 111

* create_movednet(), pg 112

* addtolist(), pg 113

* send_to_remote_net(), pg 114

* add_to_localnet(), pg 114

* add_to_shill(), pg 115

* delete_from_shill(), pg 116

* update_netlist(), pg 110

* nearest_neighbors(), pg 121

* still_contained(), pg 123

* common(), pg 124

* cpuint(), pg 118

* c_int08()->cint28(), pg 118

* Raytrace(), pg 99

* Trace a_ray(), pg 102

Root Functions
* main(), pg 90

* search_oid(), pg 75

* appends(), pg 75

* start_motion(), pg 77

* create(), pg 76

* box_send(), pg 77

* pixel(), pg 78

* pixalloc2(), pg 78

* add_to_no, pg 80de_list()

* motion(), pg 74

* pixalloc(), pg 93

* dpixalloc(), pg 94

* pixhandler(), pg 94

* update_frame, pg 76

* dpixalloc2(), pg 79

* cpuint(), pg 89

* c_int08()->c int28()

1. The root node is commonly referred to as the HostC40 throughout the code.
2. The ray tracing code was ported from MTV's ray tracer.
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Root Code

/***

Move.c 7/17/94

***/

/*This file contains the code which passes the object id's
along with the new 'coordinate' information. In the future it
is possible that other parameters could be sent fairly easily
by simply expanding the TYPES of messages....but not now.
Simply need a method of transferring new scene information
right now */

/*'frame num'==global frame count. Used for debugging
purposes only. Actually, right now, only good for spheres and
other objects with a definite center While nodes are
calculating pixel colors, root is determining which node will
get what objects next frame...The important thing here is not
how we bring in data, but how the object id is used to
determine what node to send this data to*/

extern float frame(l;
extern float pbuff[];

void motion (void)
{
intx, n, flag;
int data;
for(n = 0; n < P; n++)
{
if(n == my_node)
continue;
x = 0;
count = 0;
data = (int) frame[count];

while(data != 'E')
/*->limited to 'E' nodes with this simple */

{/* code */
flag = search_oid(n, data);
/* pass in object id to see in in node n*/

if(flag != NULL)
{

appends(x, data)
/* More than one word of data per obj */

x++;

count = count +4;
data = (int) framelcount];
continue;}

else
{
count = count + 4;/* store data 4 words at a time */

data = (int) frame[count];
}



store_size = x;
/* Need to process across functions... */

create(n, x); /* put data in mail box */
)

updateframe(); /* Calc next frame ... */
)
/* Then new Frame time -- sends out array to remote nodes.
Reason must check every object against every node space is
cause very possible that object belongs in more than one node
space.
*/

int searchoid(int node, int object_id)
{
HEAD h, temp, prev;
int max, min, hit;

if(nodes[node]->oid->hd->next == NULL)
{
return(0); /* not a hit */

m
max = nodes[node]->oid->tail->offset;

if(object_id < min)
{
hit = 0;
return (hit);

if(object_id > max)
{
hit = 0;
return (hit);

temp = nodes[node]->oid->hd;
while(temp->offset < object_id)
{
temp = temp->next;
I
if(temp->offset == object_id)
{
hit = 1;
return (hit);

else
return(0);

/* could provide with previous link So that would accomplish
a quicker search cause could start from the end at times.
However, this would require chains in the reverse direction
which adds to the memory and is not worth it. At least at
this time it doesn't seem worth the extra work,memory
*/

appends(int array_off, int id)
{
int local = count+1; /* offset into current place in frame
buffer */
float data;
int i;
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if((storage[array_off]=
float*) calloc(4, sizeof(float)))==NULL)

while(l);

store_count++;/* number of mallocs to store */
storage[array_off][0) = (float) id;
data = frame[local++];
for(i=l;i<4;i++)

storage[array_off][i] = data;
data = frame[local++];

update_frame (void)
{
float data;
int i, local, value;
local = 0;

value = (int) frame[local++];
while(value != 'E')
{
for(i=l;i<4;i++)
{
random = (float) rand()/((float) RAND_MAX) + random/

((float) RAND_MAX);
random = (float) M_PI*(2.0)*random;
data = sin(random);
data=frame[local] + (SPEED*data);/*modifying frame*/

frame[local++] = data;
}
value = (int) frame[local++];

}
return;

create(int node_id, int size)

int i;
if((mail_box[node_id]->mail=(float
sizeof(float *)))== NULL)

while(l);

**) calloc(size+l,

mailbox_count++; /* # of calls to mail_box count */

for(i=0;i<size;i++)

mail box[node_id]->mail[i] = (float *) storage[i];

if((mail box[node_id]->mail[size] = (float*) calloc(l,
sizeof(float))) == NULL)

while(l);
oneword++; /* # of calls to mail_box count */

mail_box(node_id]->mail[size] [0] = NULL;
/* last word in box */
I



start_ motion(void)
/* Sends out the new frame to nodes */

{
int i;
int x;

for(i=0;i<P;i++)
{
if(i != my_node)
{
box_send(i);

/* send the mail box info of that node */
}

/* Now deallocate all storage */
i = 0;
while(i < store size)

{
free((float *) storageli]); /* Deallocating 'storage' */

for(i=0;i<P;i++)
{
if(i != my_node)

x=0;
if(i P-1)(
while(mailbox[i]->mail[x][0] != NULL)

free((float *) mail_box[i]->mail[x]);

free((float *) mail_box[i]->mail[x]);/*freeing last one*/

else{ free((float *) mail_box[i]->mail[store_size]); }
free((float **) mailbox[i]->mail);

}

/* box_send(); */

/* With this, have to limit the size of new frame information
to the size of the input buffer, else reserve specified memory
just for this info on the nodes...*/

box_send(int i)
{
float *data = pbuff;
int size, q, z, x;
int dat;

size = 4;
x = 0;
q = 0;
dat =(int) mail_box[i]->mail[q][0];
while(dat != NULL)
{
z=0;
while(z < size)
{



data[x] = mail_box[i]->mail[q][z++];

}
q++;
dat =(int) mail_box[i]->mail[q][0];

/* NULL Signifies last info*/

data[x++] = NULL;/* last object in list */
send(i, data, x, MOVEDATA);

/*** Pict.c 08/03/94 ***/
/*
This file contains the code which collects the pixels to be
calculated from the children and then puts them into a
dynamically created array which can be read from during
dynamic allocation of the next frames pixels...
*/

extern float pbuff[];

void pixel(int port, int len, int snode)

float *data = pbuff;
int i = 0;
VECTOR pmax, pmin;
in_msgk float(port, data, 1, len);
while(i < len)

{
pmin.x = *data++;
pmin.y = *data++;
pmax.x = *data++;
pmax.y = *data++;
i = i+4;
addto_node_list(pmin, pmax, 0, snode, 0);

len = pixarray[snodel;

if(len == 0)
( nodes[snode]->pixels = 0; }

else
{
nodes[snode]->pixels = 1;

if((pix_list[snode]->pixels[len] = (float*) calloc(l,
sizeof(float)))==NULL)
while(l);
oneword++;/* number of one word mallocs */

pix_list[snode]->pixels[len][0] = view.x_res; /* Flag that
last pix */

void pixalloc2 (void)

int i, x, offset;
int diffy, diffx;



int minx, miny, maxx, maxy;
float msg[5];

for(i=0;i<P;i++)
{

pixarray[i] = 0;/* reset offset for allocation routines*/

for(i=0;i<P;i++)

if(i != my_node)

if(nodes[i]->pixels != 0)

{
msg[0] = (float)i;/*BOUNDS PASSED TO PROC*/
offset = pixarray[i];
minx = pix_list[i]->pixels[offset][0];
miny = pix_list[i]->pixels[offset][l];
maxx = pix_list[i]->pixels[offset][2];
diffx = (maxx - minx) + 1;
diffy = MAXPIXS/diffx;
/* Assuming rounds down here*/
maxy = diffy + miny - 1;
if(maxy >= pix_list[i]->pixels[offset][3])

{
maxy = pix_list[i]->pixels[offset] [3];
offset++;
pixarray[i] = offset; /* next block */

else{
pix_list[i]->pixels[offset][1] = maxy+l;
pixarray[i] = offset; /* stays the same */

}
msg[l] = minx;
msg[2] = miny;
msg[3] = maxx;
msg[4] = maxy;

send(i , msg, 5, PACK);

if(pix_list[i]->pixels[offset] [0]== view.xres)

nodes[i]->pixels=0;
/*Dealloacte this array*/
x = 0;
while(x <= 1)
{
free((float *) pix_list[i]->pixels[x]);
x++;

pixarray[i] = 0; /* reset offset to 0 */

else

pixhandler(i);

void dpixalloc2(int snode, int rnode)
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{
int nymin;
float msg[5];
int maxy, maxx, miny, minx, i;
int diffy, diffx, offset;

pixarray[snode];

)S PASSED TOPROC 'snode' */
(float) snode;
pix_list[snode]->pixels[offset] [0];
pixlist[snode]->pixels[offset][1];
pixlist[snode]->pixels[offset][2];

(maxx - minx) + 1;
MAX_PIXS/diffx; /* Assuming round
diffy + miny - 1;

s down here*/

if(maxy >= pix_list[snode]->pixels[offset][3])
{

maxy = pix_list[snode]->pixels[offset][3];
pixarray[snode] = offset+1;
offset++;
}

else

pix_list[snode]->pixels[offset] [] = maxy+l;
}
msg[l] = minx;
msg[2] = miny;
msg[3] = maxx;
msg[4] = maxy;
send(rnode,msg, 5, PACK);
if(pixlist[snode]->pixels[offset][0] == view.x res)

{
nodes[snode]->pixels = 0;
/* Dealloacte this array */
i = 0;
while(i <= offset)

{
free((float *) pixlist[snode]->pixels[i]);

}
pixarray[snode] = 0;
return;

/* reset offset to 0 */

/* Addto nodelist() checks to make sure overlapping blocks
of pixels aren't tagged for recalculation */

void add to node list(VECTOR pmin, VECTOR
pmax, int q, int sanode, int tnode)

{
VECTOR tmax, tmin, tempmin, tempmax;
int len, x, pixlength, flag;

int tminx, tminy, tmaxx, tmaxy;
int pmaxx, pmaxy, pminx, pminy;
len = pixarray[snode];

offset =
i = 0;
/* BOUND
msg[0]
minx
miny
maxx
diffx =
diffy =
maxy =



pmaxx = (int) pmax.x;
pmaxy = (int) pmax.y;
pminy = (int) pmin.y;
pminx = (int) pmin.x;
flag = 0;

for(x=tnode;x<P;x++)

{
if((x != my_node)&&(x != snode)&&(nodes[x]->pixels != 0))
{
pixlength = pixarray[x];
while(q < pixlength)
{
tminx = (int) pixlist[x]->pixels[q] [0;
tminy = (int) pixlist[x]->pixels[q] [];
tmaxx = (int) pix_list[x]->pixels[q]+[2] ;
tmaxy = (int) pixjlist[x]->pixels[q++] [3];
/* Case 1
if((pmaxx >= tminx)&&(pmaxx <= tmaxx)&&(pminy<=tmaxy)

&&(pminy>=tminy)&&(pminx <= tminx)&&(pmaxy >=tmaxy))
{

/* First make sure actually different size */
if(pminx < tminx)

tempmin.x = (float) pminx; /* First new block */
tempmin.y = (float) pminy;
tempmax.x = (float) tminx - 1.0;/*fixing boundaries */
tempmax.y = (float) pmaxy;
addtonodelist(tempmin, tempmax, q, snode, x);
flag = 1;
}
if((pmaxy > tmaxy)&&(pmaxx > tminx))

tempmin.x = (float) tminx; /* Second new block */
tempmin.y = (float) tmaxy+l.0; /* fixing bounds */
tempmax.x = (float) pmaxx;
tempmax.y = (float) pmaxy;
addtonodelist(tempmin, tempmax, q, snode, x);
flag = 1;

if(flag == 1)
{ return; }
}

/* Case 2 */
if((pmaxx <= tmaxx)&&(pminx >= tminx)&&(pminy>=tminy)

&&(pminy<=tmaxy)&&(pmaxy >= tmaxy))

if(pmaxy > tmaxy)

tempmin.x = (float) pminx; /* First new block */
tempmin.y = (float) tmaxy+l.0;/* Fixing bouns */
tempmax.x = (float) pmaxx;
tempmax.y = (float) pmaxy;
add_to_nodelist(tempmin, tempmax, q, snode, x);
return;
}

/* Case 3 */
if((pmaxx >= tmaxx)&&(pmaxy >= tmaxy)&&(pminy>=tminy)

&&(pminy<=tmaxy)&&(pminx >= tminx)&&(pminx <=tmaxx))
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if(pmaxy > tmaxy)

tempmin.x = (float) pminx; /* First new block */
tempmin.y = (float) tmaxy+l.0;
tempmax.x = (float) pmaxx;
tempmax.y = (float) pmaxy;
addtonodelist(tempmin, tempmax, q, snode, x);
flag = 1;

if((pmaxx > tmaxx)&&(pminy < tmaxy))
{
tempmin.x = (float) tmaxx+l.0;/* Second new block */
tempmin.y = (float) pminy;
tempmax.x = (float) pmaxx;
tempmax.y = (float) tmaxy;
addtonode_list(tempmin, tempmax, q, snode, x);
flag = 1;

if(flag == 1)
{ return; }
}

/* Case 4 */
if((pmaxx >= tmaxx)&&(pminx >= tminx)&&(pminx<=tmaxx)

&&(pminy>=tminy)&&(pmaxy <= tmaxy))

if(pmaxx > tmaxx)
{
tempmin.x = (float) tmaxx+1.0; /* First new block */
tempmin.y = (float) pminy;
tempmax.x = (float) pmaxx;
tempmax.y = (float) pmaxy;
add_to_node_list(tempmin, tempmax, q, snode, x);
return;

/* Case 5 */
if((pmaxx >= tmaxx)&&(pminy <= tminy)&&(pminx>=tminx)

&&(pminx<=tmaxx)&&(pmaxy >= tminy)&&(pmaxy <=tmaxy))

if((pmaxx > tmaxx)&&(pminx < tmaxx))
{
tempmin.x = (float) tmaxx+l.0; /* First new block */
tempmin.y = (float) tminy;
tempmax.x = (float) pmaxx;
tempmax.y = (float) pmaxy;
addtonodelist(tempmin, tempmax, q, snode, x);

flag = 1;
}
if(pminy < tminy)
{
tempmin.x = (float) pminx; /* Second new block */
tempmin.y = (float) pminy;
tempmax.x = (float) pmaxx;
tempmax.y = (float) tminy-l.0;
add_to_node_list(tempmin, tempmax, q, snode, x);

flag = 1;

if(flag == 1)



( return; )
)

/* Case 6 */
if((pmaxy >= tminy)&&(pmaxy <= tmaxy)&&

(pminy<=tminy)&&(pminx >= tminx)&&(pmaxx <=tmaxx))

if(pminy < tminy)

tempmin.x = (float) pminx; /* First new block */
tempmin.y = (float) pminy;
tempmax.x = (float) pmaxx;
tempmax.y = (float) tminy-l.0;
addtonodelist(tempmin, tempmax, q, snode, x);

return;
}

/* Case 7 */
if((pminy <= tminy)&&(pminx <= tminx)&&(pmaxx>=tminx)

&&(pmaxx<=tmaxx)&&(pmaxy >= tminy)&&(pmaxy <=tmaxy))

if((pminx < tminx)&&(pmaxy > tminy))

{
tempmin.x = (float) pminx; /* First new block */
tempmin.y = (float) tminy;
tempmax.x = (float) tminx-l.0;
tempmax.y = (float) pmaxy;
addtonode list(tempmin, tempmax, q, snode, x);

flag = 1;

if(pminy < tminy)
{
tempmin.x =
tempmin.y =
tempmax.x =
tempmax.y =
addtonode_
flag = 1;

(float) pminx; /* Second new block */
(float) pminy;
(float) pmaxx;
(float) tminy-l.0;
list(tempmin, tempmax, q, snode, x);

}
if(flag == 1)
{ return; )

/* Case 8 */
if((pmaxx >= tminx)&&(pmaxx <=

&&(pminy>=tminy)&&(pminx <=
tmaxx)&&(pmaxy<=tmaxy)
tminx))

if(pminx < tminx)

tempmin.x = (float) pminx; /* First new block */
tempmin.y = (float) pminy;
tempmax.x = (float) tminx-l.0;
tempmax.y = (float) pmaxy;
addtonode list(tempmin, tempmax, q, snode, x);
return;

/* Case 9 */
if((pmaxx <= tmaxx)&&(pmaxy <= tmaxy)&&(pminx>=tminx)

&&(pminy>=tminy))
{
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return;

/*Case 10 */
if((pmaxx >= tmaxx)&&(pmaxy >= tmaxy)&&(pminx<=tminx)

&&(pminy<=tminy))

/* replace previous values with encompassig bbox */
if(pminx < tminx)

tempmin.x = (float)pminx; /* First new block */
tempmin.y = (float)pminy;
tempmax.x = (float)tminx-l.0;
tempmax.y = (float)pmaxy;
addtonodelist(tempmin, tempmax, q, snode, x);
flag = 1;

if(pmaxy > tmaxy)

tempmin.x =
tempmin.y =
tempmax.x =
tempmax.y =
addtonode_
flag = 1;

(float) tminx; /* Se
(float) tmaxy-l.0;
(float) tmaxx;
(float) pmaxy;
list(tempmin, tempmax,

cond new block */

q, snode, x);

if(pmaxx > tmaxx)

tempmin.x = (float) tmaxx+1.0; /* Third new block */
tempmin.y = (float) pminy;
tempmax.x = (float) pmaxx;
tempmax.y = (float) pmaxy;
add_to_node_list(tempmin, tempmax, q, snode, x);

flag = 1;

if(pminy < tminy)

tempmin.x =
tempmin.y =
tempmax.x =
tempmax.y =
add to node_
flag = 1;

(float) tminx; /* Fourt

(float) pminy;
(float) tmaxx;
(float) tminy-l.0;
list(tempmin, tempmax, q,

h new block */

snode, x);

if(flag == 1)
{ return; }

}
/* Case 11 */
if((pmaxx >= tminx)&&(pminx <= tminx)&&(pmaxy>=tmaxy)

&&(pminy<=tminy)&&(pmaxx <= tmaxx))

if ( (pmaxy > tmaxy) && ( (pmaxx > tminx) (pminx < tminx)))

tempmin.x = (float) pminx; /* First new block */
tempmin.y = (float) tmaxy+l.0;
tempmax.x = (float) pmaxx;
tempmax.y = (float) pmaxy;
add_to_node_list(tempmin, tempmax, q, snode, x);

flag = 1;



if(pminx < tminx)

tempmin.x = (float) pminx; /* Second new block */
tempmin.y = (float) tminy;
tempmax.x = (float) tminx-l.0;
tempmax.y = (float) tmaxy;
add_to_nodelist(tempmin, tempmax, q, snode, x);

flag = 1;

if((pminy < tminy)&&((pmaxx > tminx) II (pminx < tminx)))

tempmin.x = (float) pminx; /* Second new block */
tempmin.y = (float) pminy;
tempmax.x = (float) pmaxx;
tempmax.y = (float) tminy-l.0;
add_to_node list(tempmin, tempmax, q, snode, x);

flag = 1;

if(flag == 1)
{ return; }

Case 12 */
((pmaxx <= tmaxx)&&(pminx >= tminx)&&(pmaxy>=tmaxy)

&&(pminy<=tminy))

if(pmaxy > tmaxy )

tempmin.x = (float) pminx; /* First

tempmin.y = (float) tmaxy+l.0;
tempmax.x = (float) pmaxx;

tempmax.y = (float) pmaxy;
add_to_nodelist(tempmin, tempmax, q,

flag = 1;

if(pminy < tminy)
{
tempmin.x = (float) pminx; /* Second
tempmin.y = (float) pminy;
tempmax.x = (float) pmaxx;
tempmax.y = (float) tminy-l.0;
add_to_nodelist(tempmin, tempmax, q,
flag = 1;

new block */

snode, x);

new block */

snode, x);

if(flag == 1)
{ return; }
}

/* Case 13 */
if((pmaxx >= tmaxx)&&(pminx >= tminx)&&(pmaxy>=tmaxy)

&&(pminx<=tmaxx)&&(pminy <= tminy))

if((pmaxy > tmaxy)&&((pmaxx > tmaxx) l(pminx < tmaxx)))
{
tempmin.x = (float) pminx; /* First new block */
tempmin.y = (float) tmaxy+l.0;
tempmax.x = (float) pmaxx;
tempmax.y = (float) pmaxy;
addto_nodelist(tempmin, tempmax, q, snode, x);
flag = 1;
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i
if(pmaxx > tmaxx)

tempmin.x = (float) tmaxx+l.0; /* Second new block

tempmin.y = (float) tminy;
tempmax.x = (float) pmaxx;
tempmax.y = (float) tmaxy;
addtonodelist(tempmin, tempmax, q, snode, x);
flag = 1;

if((pminy < tminy)&&((pmaxx >tmaxx) (pminx < tmaxx)))
{
tempmin.x = (float) pminx; /* Second new block */
tempmin.y = (float) pminy;
tempmax.x = (float) pmaxx;
tempmax.y = (float) tminy-l.0;
addtonodelist(tempmin, tempmax, q, snode, x);
flag = 1;

if(flag == 1)
{ return; }

/* Case 14 */
if((pmaxx >= tmaxx)&&(pminx <= tminx)&&(pmaxy<=tmaxy)

&&(pmaxy>=tminy)&&(pminy <= tminy))

{
if((pminx < tminx)&&(pmaxy > tminy))

tempmin.x = (float) pminx; /* First new block */
tempmin.y = (float) tminy;
tempmax.x = (float) tminx+1.0;
tempmax.y = (float) pmaxy;
addtonodelist(tempmin, tempmax, q, snode, x);
flag = 1;

if(pminy < tminy)

tempmin.x =
tempmin.y =
tempmax.x =
tempmax.y =
addtonode
flag = 1;

(float) pminx; /* Second new block */
(float) pminy;
(float) pmaxx;
(float) tminy-l.0;
list(tempmin, tempmax, q, snode, x);

if((pmaxx > tmaxx)&&(pmaxy > tminy))

tempmin.x = (float) tmaxx+l.0; /* Second new block

tempmin.y = (float) tminy;
tempmax.x = (float) pmaxx;
tempmax.y = (float) pmaxy;
addtonodelist(tempmin, tempmax, q, snode, x);
flag = 1;

if(flag == 1)
( return; }
I



Case 15 */
if((pmaxx >= tmaxx)&&(pminx <= tminx)&&(pminy>=tminy)

&&(pmaxy<=tmaxy))

if(pminx < tminx)

temDmin.x = (float) pminx; /* First new block */

tempmin.y = (float) pminy;

tempmax.x = (float) tminx-l.0;

tempmax.y = (float) pmaxy;

addtonodelist(tempmin, tempmax, q,

flag = 1;

snode, x);

if(pmaxx > tmaxx)

tempmin.x = (float) tmaxx+1.0; /* Second new block

tempmin.y = (float) pminy;
tempmax.x = (float) pmaxx;
tempmax.y = (float) pmaxy;
add_to_nodelist(tempmin, tempmax, q, snode, x);

flag = 1;

if(flag == 1)
{ return; }

/* Case 16 */
if((pmaxx >= tmaxx)&&(pminx <= tminx)&&(pmaxy>=tmaxy)

&&(pminy>=tminy)&&(pminy <= tmaxy))

{
if((pminx < tminx)&&(pminy < tmaxy))

tempmin.x = (float) pminx; /* First new block */

tempmin.y = (float) pminy;

tempmax.x = (float) tminx-l.0;
tempmax.y = (float) tmaxy;
add_to_node list(tempmin, tempmax, q, snode, x);

flag = 1;

if(pmaxy > tmaxy)
{
tempmin.x = (float) pminx; /* Second new block */
tempmin.y = (float) tmaxy+l.0;
tempmax.x = (float) pmaxx;
tempmax.y = (float) pmaxy;
add_to_nodelist(tempmin, tempmax, q, snode, x);
flag = 1;

if((pmaxx > tmaxx)&&(pminy < tminy))
{
tempmin.x = (float) tmaxx+l.0; /* Second new block

tempmin.y = (float) pminy;
tempmax.x = (float) pmaxx;
tempmax.y = (float) tmaxy;
add_to_node list(tempmin, tempmax, q, snode, x);
flag = 1;

if(flag == 1)

if(pminx 

< tminx)



{ return; }

/* Do same check for any previous pix in array */

q = 0;/* --> checking next list in array */

/*If make it to the end -> no intersections, then add the box*/
if(len == 0) /* if first time, -- > now have pixels */

{
nodes[snode]->pixels = 1;
}

pix_frame = pixframe + (pmaxx+l-pminx)*(pmaxy+l-pminy);
if((pix_list[snode]->pixels[len] = (float *) calloc(4,
sizeof(float)))==NULL)
while(l);

pixlist_count++; /* # of mallocs for pixel_list */
pix_list[snode]->pixels[len][0] = (float) pminx;
pix_list[snode]->pixels[len][1] = (float) pminy;
pix_list[snode]->pixels[len][2] = (float) pmaxx;
pix_list[snode]->pixels[len++][3] = (float) pmaxy;
pixarray[snode] = len;
}

/*
* File Hinstall.c

* Functions c_int08, c_intl2, ...and cpuint(int port)
* The c_intnn functions are the interrupt sevice routines
* which call function cpuint(). Function cpuint() is passed
* the port of the incoming data which it then uses to obtain
* the incoming data. The incoming message is handled by
* branching to a subroutine dependent on the message received

* 1/19/94 RP
*/
/*
*Hinstall.c --- ISR install for the host processor
*/

/*********************************************

SETTING UP INTERRUPT SEVICE ROUTINES FOR EACH COMMMPORT
**********************************************/

void c_int08() cpuint(0) ;}/*int OE*/

void c_intl2() ( cpuint(1); )

void c_intl6() ( cpuint(2); )
/*SHOULD SET THIS UP SO CALLS COMMAND KERNEL*/

void c_int20() ( cpuint(3); ) /* 1A */

void cint24() ( cpuint(4); ) /* 1E */



void c_int28() ( cpuint(5); ) /* 22 */

void cpuint(int port)
{
int type, dnode, snode, len;

/* here follows all the routing stuff necessary to do this
correctly */

dnode = in_word(port);
if(dnode != my node)
{
forward(dnode, port);/* if not yours, forward message */
}

else

{
type = in_word(port); /* Get incoming info */
snode = in_word(port);
len = in_word(port);

switch (type)

case GO

case IMAGE

case

case

RQ

MOVEDATA

case UPDATE

case

case

case

case

case

case

case

case

case

case

case

PIXLIST

PARAM

BBOXS

START

'F'

'A'

'U'

'G'

'r'

'L'

IBI

: ready++; /*Just incrementing number of */
break; /* Processors ready */
: store_image(len, snode, port);
/* storing image*/
break;
: pixhandler(snode);
break;
: update(snode, port, len, MOVEDATA);
/* moved objects */
break;
: update(snode, port, len, UPDATE);
break;

pixel(port, len, snode);
break;

tempor(port, len);
break;

minmax(port, len);
break;

starter = 1; /* command from PC to begin */
break;

cparse(len, port, 'F');
break;

c parse(len, port, 'A');
break;

c parse(len, port, 'U');
break;

cparse(len, port, 'G');
break;

c_parse(len, port, 'r');
break;

cparse(len, port, 'L');
break;

cparse(len, port, 'B');
break;
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case 's' : cparse(len, port, 's');
break;

case 'C' : c_parse(len, port, 'C');
break;

case 'P : c parse(len, port, 'P');
break;

case 'S : c parse(len, port, 'S');
break;

case 'H : cparse(len, port, 'H');
break;

case 'R' : c parse(len, port, 'R');
break;

case 'Q : cparse(len, port, 'Q');
break;

default : while(l); /* -->error in communications */
}

/* The following main() is for the root */

void main(void)

{

void
int
int
int
int
x = 0;

random = rand();

/* global debug variables
oneword = 0;
head_count = 0;
mailbox_count = 0;
store_count = 0;
pixlist_count = 0;

while(x < P){

if(x != my node)
{
start(x); /*
X++;

else{
x++;

*isr;

x;
index;
shift;
i, xres, yres, oport;

*/

/* For PPDS case */

tell nodes to wait for data to trace */

for(x=0;x<P;x++)
{



pix_list[x] = (PIXSTR *) malloc(sizeof(PIXSTR));
pix_list[x]->pixels = (float **) calloc(MAX_BLOCKS,

sizeof(float *));
pixarray(x] = 0; /* initializing count */

/*Dynamically creating Nodes' array which holds pixel
information*/

for(x=0;x < P; x++)

nodes[x] = (BOUNDS *) calloc(l, sizeof(BOUNDS));

/* This is the info that is used to handle moving objects */
hb = (HEADER *) malloc(sizeof(HEADER));

for(x=0;x < P; x++)

{
nodes[x]->oid = (LIST *) malloc(sizeof(LIST));
nodes[x]->oid->hd = (HEAD) malloc(sizeof(HD));
nodes[x]->oid->tail = (HEAD) malloc(sizeof(HD));
nodes[x]->oid->tail->offset = MAX_PRIMS;
nodes[x]->oid->tail->next = NULL;
nodes[x]->oid->hd->next = NULL;

storage = (float **)calloc(MAXBLOCKS, sizeof(float *));
for(x=0;x<P;x++)

{
mailbox[x] = (MAIL *) malloc(sizeof(MAIL));

/* Now installing interactive portion of the algorithm*/
setivtp(DEFAULT);

isr = (void *) c_int08;
install_int_vector(isr, OXOE);

isr = (void *) c_intl2;
install_int_vector(isr, OX12);

isr = (void *) cintl6;
install_int_vector(isr, OX16);

isr = (void *) cint20;
install_int_vector(isr, OXlA);

isr = (void *) cint24;
install_int_vector(isr, OX1E);

isr = (void *) cint28;
install_int_vector(isr, OX22);

asm(" LDI @_iieval, iie"); /* enabling all ICRDY inter */
asm(" LDI 2000h, ST"); /* GIE == 1 */

while(starter == 0); /* wait until all the info */
/* has been received from the PC */

i = 0;
while(i < P)
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if(i != mynode)
{
oport = routing(i);
out_word(i, oport); /* Destination ID */
out_word(NFRAME, oport); /* Type of message */
out_word(mynode, oport); /* Source ID */
out_word(i,oport); /* Trash sent to finish comm */

}
i++;

while(ready != P-l) /*Won't receive an increment from itself*/
{
NULL;

}

pixalloc(bk_side);

pix_calc = 0;
xres = view.x_res;
yres = view.y_res;

pix_frame = xres*yres;/* for first frame */
animation = 1; /* animation on */

while(animation == 1)

NF = 0;
motion();/* Begin determining what to send

while(NF != 1)
/* Waiting until all pixels for prev frame

{
i = 0;
for(x=0;x<P;x++)

{
if(nodes[x]->pixels == 1)

{

for next frame*/

done*/

} /* Don't hard code this part */
if((i == 0)&&(pix_calc >=pixframe))
{ NF = 1; ) /* no more pixels */

}

pix_calc = 0; /* reset flag */
pix_frame=0;/*reset number of pixels to redo for next frame*/

start_motion();/*Start sending objects to appropriate nodes*/

ready = 0;
while(ready < P-1);
/*Waiting until nodes prepared for next frame*/

frame_cnt++;
pixalloc2();

/* increment frame counter */
/* Start allocation of pixels */



void pixalloc(int bk_side)
{

int nid;
int x, tcols, c, r;
int trows, ymax, x_pix, y_pix;
int nymin;
float msg[5];
void *isr;

int d2_p = netsize*netsize2;/* number of processors in the 2D-
mesh*/
int planes = P/d2_p; /* number of planes in network */

tcols = planes*netsize2;
trows = netsize;

y_pix = view.yres/trows; /* vertical pixels per node */
x_pix = view.x_res/tcols;/* horiz. pixels per node */

if(bk_side > y_pix)

{
exit(0);
)
c = 0;
r = 0;

while(c < trows) /* offset into rows */
{
while(r < tcols) /* offset into columns */
{
planes = (r/d2_p); /* The plane node resides in */
nid =(planes*d2_p) + (netsize*c + (r+netsize2)%netsize2);

msg[0] = (float) nid;
msg[l] = (float) c*xpix;
msg[2] = (float) r*ypix;
msg[3] = (float) c*xpix + x_pix-1;
msg[4] = (float) r*ypix + bkside-1;

/* The following handles the case when assinging to */
/* processor P pixels */

if(nid == (P-l))

{
nodes(nidj->p_max.x = view.x_res-l;
nodes[nid]->pjmax.y = view.y res;

else

nodes[nid]->p_max.x = msg[3]; /* max x for node space */
ymax = r*y_pix + y_pix;
nodes[nid]->pJmax.y = ymax ;/* max y for node space */
}
nodes[nid]->p_min.x = msg[l];/* min x for node space */
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if(nid != mynode)
{
nymin = r*y_pix + bkside;/* new miny for space */
nodes[nid]->pmin.y = nymin;
}
else
{
nodes[nid]->p_min.y = r*y_pix; /* don't increment here */
}
nodes[nid]->pixels = 1; /* Flag that more pixels to do */

if(nid != mynode) /* don't let hostc40 trace anything*/
{
send(nid, msg, 5, PACK);
/*sending the packet*/
}
++r;

r = 0;
++c;
}

void dpixalloc(int snode, int rnode)

int nymin;
floatmsg[5];
int maxy;
int dif fy;

msg[0] =
/* Bounds
msg[l] =
msg[2) =
msg[3] =
maxy

(float) snode;
passed to Porcessor */
(float) nodes[snode]->p_min.x;
(float) nodes[snode]->p_min.y;
(float) nodes[snode]->p_max.x

= nodes[snode]->pmax.y;

diffy = maxy - msg[2];

if(diffy <= bk_side)
{

nodes[snode]->pixels = 0;
msg[4] = (float) maxy - 1.0;

}
else
{
msg[41 = (float) (msg[2] + bk_side-l);
nodes[snode]->p_min.y = msg[4]+1;
}

send(rnode, msg, 5, PACK); /* sending the packet*/

void pixhandler(int snode)
{

int d2_p; /* number of processors in the 2D-mesh */



int myplane; /* plane where node id belongs to */
int dnodep,my_nodep, col, mycol, row, rows, nid, planes;
float trash[l];

if(nodes[snode]->pixels != 0)

{
if(frame_cnt == 0)

{
dpixalloc(snode, snode);

}
else{
dpixalloc2(snode, snode);

}
}

else

{

d2 p = netsize*netsize2; /* Proc.
planes = (P/d2_p)- 1; /* Watch
myplane = snode/d2_p ;
mynodep = snode%d2_p ;
rows = mynodep/netsize2; /* d
mycol = mynodep%netsize2;
mycol = myplane*netsize2 + mycol;
row = rows;

per plane */
this carefully*/

one */

col = mycol + 1;

nid = (planes*d2_p) + (netsize2*col) +
((row+netsize2)%netsize2);

if((col < netsize2) && (nodes[nid]->pixels != 0))
{
if(frame_cnt == 0)
{
dpixalloc(nid , snode);
}
else{
dpixalloc2(nid, snode);

}

else{
col = mycol - 1;
nid = (planes*d2_p) + (netsize2*col) +

((row+netsize2)%netsize2);

if((col >= 0) && (nodes[nid]->pixels != 0))
{
if(frame_cnt == 0)
{
dpixalloc(nid , snode);
}
else{
dpixalloc2(nid, snode);

else(
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col = mycol;
row = rows + 1;
nid = (planes*d2_p) + (netsize2*col) +

((row+netsize2)%netsize2);

if((row < netsize) && (nodes[nid]->pixels != 0))
{
if(framecnt == 0)
{
dpixalloc(nid , snode);
}
else{
dpixalloc2(nid, snode);

}

else{
row = rows - 1;
nid = (planes*d2_p) + (netsize2*col)

((row+netsize2)%netsize2);

if((row >= 0) && (nodes[nid]->pixels
/* Order in which check */

{
if(frame_cnt == 0)
{
dpixalloc(nid , snode);

else{
dpixalloc2(nid, snode);

}

!= 0))

Comparisons is important. If do the*/

nodes[nid] check first and the nid is*/

invalid, then you are gonna have a*/
problem */

else{
trash[0] = WAIT;

send(snode, trash, 0, WAIT); */ /* Telling node to 4/
Wait for the next scene */

Not necessary, node will wait anyway */

Node Code

main ()

long
int i;
int *data;

timest, timeend;



double temp;

temp = MINT;
convf64f32(&mint, temp);

hb = (HEADER *) malloc(sizeof(HEADER)); /* Header for send
routie*/

new-pixlist = (float **) calloc(MAXBLOCKS, sizeof(float *));

for(i=0;i<P;i++)
{
pows[i] = (TEMPLIST *) malloc(sizeof(TEMPLIST));
pows[i]->hd = (HEAD) malloc(sizeof(HD));
pows(i]->tail = (HEAD) malloc(sizeof(HD));

)

/* initialization of global list for data to be retraced */

global_list = (TEMPLIST *) malloc(sizeof(TEMPLIST));
global_list->hd = (HEAD) malloc(sizeof(HD));
global_list->tail = (HEAD) malloc(sizeof(HD));
global_list->tail->id = 0;
global_list->tail->next = NULL;
global_list->hd->id = 0;
global_list->hd->next = NULL;

for(i=0; i < P; i++)

{
box[i] = (BX *) calloc(l, sizeof(BX));

/* Don't wanna have too many objs. else this calloc fails */
)
box[my_node]->mem = 1;/*--> Local Memory always present */

/* actually set to 1 when receive NFRAME */
memory[0] = my_node;
memory[l] = 'E';

for(i =0;i < P;i++)/* Should not be necessary, but this */
( /* array is not initializing to zero */
primobj[i] = 0; /* properly, thus do this for now. */
)

for(i=0;i<4;i++)

illumcache[i] = 0;
/*Should also be taken care of statically*/

for(i=0;i<4;i++)

shadcache[i] = 0;
)

for(i=0;i< P; i++)

hitlist[i] = (HIT *) calloc(l, sizeof(HIT));
/* Initializing here */

color_table(); /* Sets up the color table */
message_init(); /* This routine will set up the commport

--- --- --- -- -- -- -- - --------



interreupts */
NF = 0;
goes = 0;

asm(" LDI @_iieval, iie");/* Enabling All ICRDY Interrupts */
asm(" LDI 2000h, ST"); /* GIE = 1*/

while(NF == 0); /* wait for last initial object from root*/

for (i = 0; i < nlights; i++)
{
lights[i]->intensity = sqrt ((double) nlights)/ (double)

nlights;

/* Preparing for ray tracing */
VecSub(view.look_at, view.from, view.lookat);
VecNormalize(&view.lookat);
VecNormalize(&view.up);
new_frame();

animation = 1;
NF = 0;

while(animation == 1)
{
raytrace = 0;
while(NF == 0) /* NF == 0 -> same frame */

{
if(raytrace == 1) /* stays here */

Raytrace(); /* Set raytrace == 0 in Raytrace() */
} /* and do other things here */

}

for(i=0;i<4;i++)
{
illumcache[i] = 0;/* reset caches after each frame*/

for(i=0;i<4;i++)
{
shadcache(i] = 0;

NF = 0; /* Need here as flag */

cap = 1;
/*could lead to race conditions,although rare*/

frame_cnt++;/* now can inrement the frame counter */

net_updater = 0;/* global control flag */
nextscene(); /* Start creation of next scene */
cap = 0; /* next_scene calls new_frame() */
changes = 0; /* changes == flag used by next_scene */

while(l); /* After finished with animation, loop*/

I

void messageinit (void)
{



void *isr;
/* Now installing interactive portion of thealgorithm*/

set_ivtp(DEFAULT);
isr = (void *)cint08;
install_int_vector(isr, OXOE);

isr = (void *)c_intl2;
install_int_vector(isr,

isr = (void *)cintl6;
install_int_vector(isr,

isr = (void *)c int20;
installint_vector(isr,

isr = (void *)cint24;
installint vector(isr,

isr = (void *)cint28;
installintvector(isr,

OX12);

OX16);

OXlA);

OXlE);

OX22);

Raytrace ()
( /* Converting to 64 bit precision */
RAY ray;
float64 xr, yr, xstep, y_step, xpw, y_pw, templ, temp2;
float64 x_rand, yrand, temp, xres, yres, view2angle;
int x, y, snode;
VECTOR2 hor, ver;
COLOR col, scol;
COLOR q;
VECTOR2 view2from, view2look, view2up;
int i,s, flag;
int ystart2, size;
INTERSECT inter;
static int pbuff[BKSIZE];
float *data = in_buff2;
i = 4;

raytrace = 0;
flag = 0;
snode = (int)
data++;
x_start = (int) *data;
pbuff[0] = xstart;
data++;
y_start = (int) *data;
pbuff[l] = y start;
data++;
x end = (int) *
pbuff[21 = x end;
data++;
y_end = (int) *
pbuff[3] = yend;
y_start2 = ystart;
if(snode == mynode)

* Global control variable */

data;

data;

data;

if(pobjects[snode] == 0)

I '



return;/* Don't Raytrace if have no objects in memory */

if(snode == HOSTC40)

{
snode = mynode;
/* Currently assuming Host has no memory of scene */
flag = 1;
)/* But local nodes will have all of the scene present*/

convf64f32(&view2up.x, view.up.x);
convf64f32(&view2up.y, view.up.y);
convf64f32(&view2up.z, view.up.z);

convf64f32(&view2look.x, view.lookat.x);
convf64f32(&view2look.y, view.lookat.y);
convf64f32(&view2look.z, view.lookat.z);

convf64f32(&view2from.x, view.from.x);
convf64f32(&view2from.y, view.from.y);
convf64f32(&view2from.z, view.from.z);

convf64f32(&view2angle, view.angle);

convf64i32(&xres, view.x_res);
convf64i32(&yres, view.y res);

/*calculate the viewing frustrum -- partly done in nframe.c*/
VECCROSS64(&hor, &view2up, &view2look);
VECNORM64(&hor, &temp); /* horizontal screen vector */
VECCROSS64(&ver, &view2look, &hor);
VECNORM64(&ver, &temp); /* vertical screen vector*/

/* The placing of this is suspicious */

divf32f64(&xstep, 2.0, &xres);
divf32f64(&y_step, 2.0, &yres);

VECCOPY64(&ray.pos, &view2from);
if(x_end == view.x_res)

x_end = view.x_res - 1;
if(y_end == view.y_res)

y_end = view.y_res - 1;

/* OK, start tracing */
convf64i32(&temp, y_start);
mpyf64(&yr, &y_step, &temp);
subf32f64(&yr, 1.0, &yr);
convf64i32(&temp, x_start);
while(y_start <= y_end)
{

mpyf64(&xr, &xstep, &temp);
subf32f64(&xr, 1.0, &xr);

for (x = x_start; x <= x_end; x++)
{
/*Setup the ray*/

100



if (sample_cnt == 1)

{
mpyf64(&templ, &xr, &view2angle);
mpyf64(&temp2, &yr, &view2angle);

VECCOMB64(&ray.dir, &templ , &hor, &temp2, &ver);

VECADD64(&ray.dir, &view21look, &ray.dir);
VECNORM64(&ray.dir, &templ);

/* Trace that Ray!!*/

col = Trace_a_ray(&ray, 0, snode, flag, inter);

)
else
{
/* Not bothering with this for now */

col.r = col.g = col.b = 0.0;
for (s = 1; s < sample_cnt; s++)

{
/*xrand = (xr * view.angle) + (xpw * RAND());

y_rand = (yr * view.angle) + (ypw * RAND());

VecComb(xrand, hor, yrand, ver, ray.dir);
VecAdd(ray.dir, view.look_at, ray.dir);
VecNormalize(&ray.dir); */

* printf("ray.dir = (%lg %lg
* %ig)\n", ray.dir.x, ray.dir.y,
* ray.dir.z);
*/

scol = Trace_a_ray(&ray, 0, snode, flag, inter);

col.r += scol.r;
col.g += scol.g;
col.b += scol.b;

}

col.r /= sample_cnt;

col.g /= samplecnt;
col.b /= samplecnt;

}

/*

* Write pixel to output buffer
*/

q = Write_pixel(&col);
/* find the value associated with */
/* the RGB color */

pbuff[i++] = grey_scale(q);
/* pbuff[i++] = color_sort(q); */

subf64(&xr, &xr, &xstep);
}
subf64(&yr, &yr, &ystep);
y_start = y_start+l;

s
size = (yend+l-ystart2)*(xend+l-x-start)+4;
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INT_DISABLE(); /* Don't wanna lose data here */
send(HOSTC40, pbuff, size, IMAGE);
INTENABLE(); /*Start accepting again*/

COLOR Trace_aray(ray, n, nid, flag, inter)
RAY *ray;
int n;
int nid;
int flag;
INTERSECT inter;

OBJECT *obj;
COLOR col;
VECTOR2 ip;
double mc;
int hits, retval, hold;
int flag2, nid2, x, temp, temp2;
float64 tl, t2;
++nrays;

/*
*Check to see if this ray will intersect anything.If not, then
* return a proper background color. Else, apply the proper
* illumination model to get the color of the object.
*/

/*
* If ray doesn't hit anything in the current node space which
* travelling through, check
* surrounding node space for intersections
*/

flag2 = 0;
_convf64f32(&tl, tmax);
_convf64f32(&t2, tmax);

inter.flag = 0;
temp = Intersect(ray, &inter, nid);

if(temp == 1)

{
_cpyf64(&tl, &inter.t);
obj = inter.obj;

}

if ((temp == 0) (flag == 1))

/*Use flag for case that doing HOSTC40 space due to improper
partitioning...*/
/* snode is gotten from &inter */
/* Probably don't need to pass box since global */

hits = check_bv(ray, nid);
temp2 = inter.flag;/* take the bv's and check for */

/* hit with ray */
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if(hits != 0)

{
if(hits > 1)
{/* Ordering routine if more than 1 hit */

close(nid, hits);

}

/* This routine is supposed to order them distance */
/* from the nid */
x = 0;

/* This implies that Intersect checks to see if in memory */
nid2 = hitlist[x]->nid;
while(x < hits)

{
retval = Intersect(ray,
if(retval == 1)

flag2 = 1;
if(_lssf64(&inter.t, &t2) &&

&inter, nid2);

(inter.obj != obj))

_cpyf64(&t2, &inter.t);
obj = inter.obj;
hold = nid2;

x++;
nid2 = hitlist[x]->nid;

nid2 = hold;

if((flag2 == 0)&&(temp2 == 0))/* If hit none of the by in
hit list */

return (Background_color(ray));
}

else
{
if(temp2 == 0)
return(Background_color(ray));

++n_intersects;

* calculate the point of intersection and pass it to the shade
* function
*/

if(temp == 1)

if(flag2 == 1)
{
if(_1ssf64(&t2, &tl))
{
nid = nid2;

_cpyf64(&tl, &t2);
I
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else

if(flag2 == 1)

nid = nid2;

_cpyf64(&tl, &t2);

VECADDS(&ip, &tl, &ray->dir, &ray->pos);

col = Illuminate(&inter, ray, &ip, n, nid, flag);
/*

* If colors have overflown, normalize it.
*/

return (col);

void dnext pix(int len, int snode)

RAY2 ray;
int i, x, p, objid, primitives, loops;
double xrmax, xrmin, yrmax, yrmin;
VECTOR min, max, prevmin, prevmax, point, start, end;
double diffx, diffy, diffz, pdiffx, pdiffy, pdiffz;
double xr, yr, scale, va, vlax, vlay, vlaz;
float *data = in_buff2;
double xstep, ystep, numdir, denom;
VECTOR hor, ver;
int nullist(l];
SHADOW illst, shlst;

/* the variables used by trace to do it's creation of rays
must be global else will have to redo all that math here, and
since have to end up doing it everytime trace is called, see
no reason why just don't make them global...*/

VecCross(view.up, view.lookat, hor);
VecNormalize(&hor);/* horizontal screen vector */
VecCross(view.lookat, hor, ver);
VecNormalize(&ver);/* vertical screen vector */
x_step = 2.0 / view.xres;
y_step = 2.0 / view.yres;
va = view.angle;
vlax = view.look at.x;
vlay = view.lookat.y;
vlaz = view.look_at.z;

primitives = primobj[mynode];
for(x=0;x<len;x++)
{
objid = (int) *(moved[snode]+x);
i = 0;
while(box[mynode]->obj[i]->id != objid)

i++;
if(i > primitives)
{ while(l); } /*error if this occurs */
}



/* setting flags in obj->lists to 1 for checks */
if(snode == my_node)
INT_DISABLE();

p = addtolist(globallist,objid);/*check if already in list*/

if(snode == mynode)
INT_ENABLE();
if(p == 1) /* if already in list, continue */
continue;

illst = box[my_node]->obj[i]->illum->hd;
shlst = box[my_node]->obj[i]->shads->hd;
while(illst->next != NULL)
{
illst->flag = 1;
illst = illst->next;

if(illst->id != 0)
illst->flag = 1;
while(shlst->next != NULL)

{
shlst->flag = 1;
shlst = shlst->next;

if(shlst->id !=0)
shlst->flag = 1;
min = box[my_node]->obj[i]->b_min;
max = box[my_node]->obj[i]->b_max;
prevmin = box[my_node]->obj[i]->pmin;
prevmax = box[my_node]->obj[i]->pmax;
diffx = max.x - min.x;
diffy = max.y - min.y;
diffz = max.z - min.z;
pdiffx = prevmax.x - prevmin.x;
pdiffy = prevmax.y - prevmin.y;
pdiffz = prevmax.z - prevmin.z;
p = 0;
point = max;
VecCopy(view.from, ray.pos);

while(p < 2)
{

loops = 1;
/* points 1->8 */
while(loops <= 8)

{
if(loops == 2)
point.x = point.x - diffx;

if(loops == 3)
point.z = point.z - diffz;

if(loops == 4)
point.x = point.x + diffx;

if(loops == 5)
point.y = point.y - diffy;

if(loops == 6)
point.z = point.z + diffz;

if(loops == 7)
point.x = point.x - diffx;

if(loops == 8)
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point.z = point.z - diffz;

VecSub(point, ray.pos, ray.dir);
scale = VecNormalize(&ray.dir);

numdir = -vlax*hor.z/(va*hor.x);
scale = (-vlay/va-ray.dir.x*hor.y/hor.x)/(ver.y-ver.x*hor.y/
hor.x);
scale = numdir - scale*ver.x*hor.z/hor.x;
numdir = ver.z*(-vlay/va-ray.dir.x*hor.y/hor.x)/(ver.y-
ver.x*hor.y/hor.x);
scale = (scale+numdir)*va;

denom=(ray.dir.z-ray.dir.x*hor.z/hor.x)-ray.dir.y*ver.z/
(ver.y-ver.x*hor.y/hor.x)+ray.dir.y*ver.x*hor.z/
(hor.x*(ver.y-ver.x*hor.y/hor.x));

scale = scale/denom + vlaz/denom;

yr = ( ((ray.dir.y*scale-view.look_at.y)/view.angle) -
((ray.dir.x*scale-view.look_at.x)*hor.y/view.angle*hor.x))/
(ver.y - ver.x*hor.y/hor.x);

xr = (ray.dir.x*scale-view.lookat.x)/(hor.x*view.angle) -
yr*ver.x/hor.x;

if((p == O)&&(loops == 1))

yrmin = yr;/* initialization of bounds */
yrmax = yr;/* on first pass through loop */
xrmin = xr;
xrmax = xr;
}
else{
if(yr > yrmax)
yrmax = yr;
if(yr < yrmin)
yrmin = yr;
if(xr > xrmax)
xrmax = xr;
if(xr < xrmin)
xrmin = xr;

loops++;

point = prevmax;
diffx = pdiffx;
diffy = pdiffy;
diffz = pdiffz;
p++;

/* Now we have the view angle bounds for this moved object */
if(xrmax>l)
xrmax = 1;

/* checking for objects that have gone off screen */
if(xrmin<-l)
xrmin = -1;
if(yrmax>l)
yrmax = 1;
if(yrmin<-l)

106



yrmin = -1;

end.x = -(xrmin/xstep) + view.x_res/2;
start.x = -(xrmax/x_step) + view.x_res/2;
end.y = -(yrmin/y_step) + view.yres/2;
start.y = -(yrmax/y_step) + view.yres/2;

if(snode == my_node)
INTDISABLE();
addtopixlist(start, end, 0);
/* Determines new pix to calc */
if(snode == mynode)
INT_ENABLE();

)

next_scene()

int x, value, i, type, id, flag, primitives;
float *data=in_buff2;
int list0[P+1], listl[P+1], list2[P+l];
int requests;
int oport;
HEAD release, prev;
/*'list' needs to be larger than required cause possibility
of*/
/*just as many connections as nodes, and then the 'E' flag..*/

x = 0;
value = (int) *data;
data++;
primitives = primobj[my_node];

/*deallocates space from previous by for all nodes*/
free_boundingbox();

nearest_neighbors(listl);
/* Don't wanna do this in loop*/
/* Determine which nodes to check for passage of objects */

while(value != NULL)
{
i = 0; /* assuming id in memory */
while(i < primitives)
{
id = box[my_node]->obj[i]->id;
if(id == value)

type = box[mynode]->obj[i]->type;
break;

i++;
/* move this block to encompass all --- */

flag = still_contained(i, listl, list2, 0);
/* create list of node hits */

x=0;
while(list2[x] != 'E') /* Storing list for comparison */

f1
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list0[x] = list2[x];

}
listO0x] = 'E';

updateall(i, data, type, mynode); /* updating object */
flag = still_contained(i, list0, list2, 1);

/* Check if object*/
/* has moved into a new node space, if so, send it to node*/

if(flag == 0) /* Implies has moved out of local space */
{
remove_obj(i, list2);
/* only remove if present elsewhere*/
}
data = data+3;
value = (int) *data;
data++;
}

send changes_to_remote();/* sends all the info */
/* to remote nodes containing local memory */

if(frame_cnt != 1)
{
INT_DISABLE(); /* don't wanna take a chance*/
update_netlist(); /* update shad/illum net */

INTENABLE();
}

requests = 0;
for(i=0;i<P;i++)
{
if(box[i]->mem == 1)
{requests++; }

}
for(i=0;i<P;i++)
{
if((i!=HOSTC40)&&(i != mynode))
{

send_dma(i, x, 0, GO);/* control loop */

}

while(changes < requests-1);
/* wait till have received */
/* all changes */
send(HOSTC40, newdata, append, UPDATE);
send(HOSTC40, remdata, remove, MOVEDATA);
new_frame();
release = global_list->hd;/* freeing up global list */
release = release->next;/* and initializing again */

while(release != NULL)
{
if(release == global_list->tail)
{
global_list->tail->next = NULL;
global_list->tail->id= 0;
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break;

)
prey = release;
release = release->next;
INT_DISABLE();/* not actually interruptible here */
free(prev);
INT_ENABLE();

global_list->hd->next = NULL;
global_list->hd->id = 0;

update all(int id, float *data, int type, int
asniode)

{
switch(type)

{

case T CONE : update cone(id, data, snode);
break;

case TQUADRIC : updatequad(id, data, snode);
break;

case T SPHERE : update_sphere(id, data, snode);
break;

case T_HSPHERE : update_hsphere(id,data, snode);
break;

case T RING : updatering(id, data, snode);
break;

default return; /* Error somewhere */
I

updatesphere(int id, float *data, int snode)
{
SPHERE *s;

s = boxtsnode]->obj[id]->obj;
s->center.x = *data;
data++;
s->center.y = *data;
data++;
s->center.z = *data;

/*
* Setup of bounding box, along with previous bbox.
*/

box[snode]->obj[id]->pmin = box[snode]->obj[id]->bmin;
box[snode]->obj[id]->pmax = box[snode->obj [id]->b_max;
box[snode]->obj[idj->bmin.x = s->center.x - s->radius;
box[snode)->obj[id]->bmin.y = s->center.y - s->radius;
box[snode]->obj[id]->b_min.z = s->center.z - s->radius;
box[snode]->obj[id]->b max.x = s->center.x + s->radius;
box[snode]->obj[id]->bmax.y = s->center.y + s->radius;
box[snode]->obj[id]->b_max.z = s->center.z + s->radius;
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remove_obj(int object_id, int list[])
{

int x, primitives, id;
OBJECT *obj;
primitives = primobj[my_node];
if((pix_flag == 1)1 ((list[O] != 'E')&&(primitives > 1)))
{/* present elsewhere? If so, remove... */
/* if so, delete from current memory */
/* as long as will have at least i object */

if(pixflag == 1)

obj = box[my_node]->obj[object_id];
free(obj->obj); /* free up primitive */
free(obj); /* free up object struct */
primitives = primobj[my_node] -1;
primobj[mynode] = primitives;

for(x = objectid; x < primitives; x++)

box[my_node]->obj[x] = box[my_node]->obj[x+1];
) /* rearrange the array */

}
else{
id = box[my_node]->obj[object_id]->id;
remdata[remove++] = (float) id;
/* Notify others of change */
}

update_netlist ()
{

LISTS *1st;
SHADOW first, prev;
int q, z, x, objid, prims;
int oldlength;

/* list created by */
prims = primobj[mynode];
for(q=0;q<P;q++)
{
if(q == HOSTC40)
continue;

oldlength = movesize[q];
if(oldlength==0) /*don't do anything if==O*/
continue;
x=0;
while(x < oldlength)
{
objid = (int) *(moved[ql+x);
x++;

z=0;
while(box[my_node]->obj[z]->id != objid)
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Z++;

if(z >= prims)
while(l); /* error if reaches here */
}
Z=0;
while(z < 2)
{
if(z == 0)
{
first = box[my_node]->obj[z]->illum->hd;
1st = box[my_node]->obj[z]->illum;

if(z == 1)
{
first = box[mynode]->obj[z]->shads->hd;
Ist = box[my_node]->obj[z]->shads;

}
while(first != NULL)
{
prev = first;
first = first->next;
if(prev->flag == 1)
{
INTDISABLE();
delete_from_shill(lst,prev->id,
prev->rnode);
INTENABLE();
}
if(prev == lst->tail)
break;
}
z++;

}
}
/* now can free old moved[snode] array */
free(moved[q]);

receiving_movednet(int port,int len,int
anode)

{
float *data=in_buffl;
movesize[snode] = len;
if(len != 0)
{
moved[snode] = (float *) calloc(len,sizeof(float));
data = moved[snode];
in_msgk_float(port,data,1,len);
/*now should have data in buffer */
/* moves[snode]+len = NULL; */
/*setting last element in array to 0*/
dnext_pix(len,snode);
}
netupdater++; /*increment this global flag count */
if(net_updater == 0) /* debugging code */
while(l);
return;



int create_moved net(void)
{
float *data = inbuff2;
TEMPLIST *1st; /* make declaration global */
SHADOW lstl, lst2;
HEAD hst;
int locobj, value, prims, x;

locobj = 0;
for(x=0;x<P;x++)

if(x == HOSTC40)
continue;

pows[x]->hd->id = 0;
pows[x]->hd->next = NULL;
pows[x]->tail->id = 0;
pows[x]->tail->next = NULL;

value = (int) *data;
while(value != NULL)
{
data = data+4;
prims = primobj[my_node];
x=0;
while(box[mynode]->obj[x]->id != value)

{
if(x >= prims)
break;
x++;

/* break if exceeds max count */

value = (int) *data;
if(x == prims)
{ continue; } /* obj not present ! */

lstl = box[my_node]->obj[x]->shads->hd;
lst2 = box[my_node]->obj[x]->illum->hd;

while((lstl->next != NULL)&&(lstl->id != 0))

ist = pows[lstl->rnode];
INT_DISABLE();
x = addtolist(lst, istl->id);

INT_ENABLE();
istl = istl->next;
}
if(lstl->id != 0)
list */

ist = (TEMPLIST *)
INT_DISABLE();
x = addtolist(lst,
INT_ENABLE();

/* just in case only 1 obj in

pows[lstl->rnode];

istl->id);

/* might be doing extra test case */

while((lst2->next != NULL)&&(lst2->id != 0))
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{
ist = pows[lst2->rnode];
INT_DISABLE();
x = addtolist(lst, ist2->id);
INT_ENABLE();
lst2 = ist2->next;
)
if(lst2->id != 0)/* just in case only 1 obj in list */
{
Ist = (TEMPLIST *) pows[lst2->rnode];
INTDISABLE();
x = addtolist(lst, ist2->id);
INT_ENABLE();
)

hst = pows[my_node]->hd;
while(hst->next != NULL)
{
locobj++;
hst = hst->next;
)
if(hst->id != 0)/* for last obj, and first...if only 1 */
locobj++;
return(locobj);
/* Send these moved data in function nextpix() */
/* and deallocate entire list after read and send data */

int addtolist(TEMPLIST *LIST, int id)
{
int max, min;
HEAD h, temp, prev;
int flag;
flag = 0;

if(LIST->hd->next == NULL)
/* For First Time Through */
{
LIST->hd->id = id;
LIST->hd->next = LIST->tail;
return(flag);

/* need case for when second in list */
if((LIST->hd->next==LIST->tail)&&(LIST->tail->id== 0))
{
if(LIST->hd->id == id)
return(l); /* already in list */
LIST->tail->id = id;
LIST->tail->next = NULL;
return(flag);
I
if((h = (HEAD) malloc(sizeof(HD))) == NULL)
while(1);
h->id = id;

/* put it in order to save time for check if already in list*/
max = LIST->tail->id;
min = LIST->hd->id;

if(id < min)
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{
h->next = LIST->hd;
LIST->hd = h;
return(flag);

temp = LIST->hd;
while((temp != NULL)&&(temp->id <= id))

if(temp->id == id)

{
free(h); /* Already in list */
return(l);

prey = temp;
temp = temp->next;

prev->next = h; /* append to list */
if(temp == NULL) /* last in list */
{
h->next = NULL;
LIST->tail = h;

else{
h->next = temp;

return(flag);

send to remote net(int did, int dnode, int
rid, int type, int rnode)

float message[3];
sendcounter++;
message[0] = (float) did;
message[l] = (float) rid;
message[2] = (float) rnode;
send(dnode, message, 3, type);
return;

add to local net(int port, int len, int snode,
int type)

LISTS *ist;
intid, rid, mode, x, prims;
float *data = in buffl;

netcounter++;
in_msgk_float(port, data, 1, len);
id = (int) *data++;
rid = (int) *data++;
rnode = (int) *data;

x = 0;
prims = primobj[mynode];
while(box[my_node]->obj[x]->id != id)
{
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if(x >= prims)
while(1);
/* if greater than size of # primitives, error somewhere */
)
if(type == SHADOWS)

SIst = box[my_node]->obj[x]->shads; }
else

{( st = box[my_node]->obj[x]->illum; }
add_to_shill(lst, rid, rnode);

/*
* takes extra time this way, but saves 2 SHADOWs per obj which
* is quite a
* considerable chunk of memory, so must do it like this.
*/

void add to shill(LISTS *LIST, int id, int
rnode) -

{
int max, min;
SHADOW h, temp, prev;

if(LIST->hd->next == NULL) /* For First Time Through */
{
LIST->hd->id = id;
LIST->hd->next = LIST->tail;
LIST->hd->rnode = rnode;
LIST->hd->flag = 0;
return;

)
/* need case for when second in list */

if((LIST->hd->next==LIST->tail)&&(LIST->tail->id==0))

if((LIST->hd->id == id)&&(LIST->hd->rnode == rnode))
return; /* already in the list */
LIST->tail->id = id;
LIST->tail->rnode = rnode;
LIST->tail->next = NULL;
LIST->tail->flag = 0;
return;

max = LIST->tail->id;
min = LIST->hd->id;

if((h = (SHADOW) malloc(sizeof(SLIST))) == NULL)
while(l);

h->id = id;
h->rnode = rnode;
h->flag = 0;

if(id < min)
{
h->next = LIST->hd;
LIST->hd = h;
return;

I
temp = LIST->hd;

115



while((temp != NULL)&&(temp->id <= id))

if((temp->id == id)&&(temp->rnode == rnode))
{
temp->flag = 0;
/* resetting flag so knows that hit again */
free(h); /* Already in list */
return;

prevy = temp;
temp = temp->next;

prev->next = h; /* append to list */

if(temp == NULL) /* last in list */
{
h->next = NULL;
LIST->tail = h;

else{
h->next

return;

= temp;

void delete from shill(LISTS
int rno-e) -

*LIST, int

SHADOW temp, prev;
/* the following is for the delete case */
temp = LIST->hd;
prevy = LIST->hd->next;

if(temp->id == 0)/* all objects already deleted */
return;

/* Checking for special case of only 1 object in list */
if(prev->id == 0) /* only one object ! */

{
temp->next = NULL; /* Now uninitialized again */
temp->id = 0;
return;

/* checking for case that only 2 objs in list */
if(LIST->hd->next == LIST->tail)

{
if((temp->id == id)&&(temp->rnode == rnode))

LIST->hd = LIST->tail;
LIST->tail = temp;
LIST->tail->id = 0;
LIST->tail->next = NULL;
LIST->hd->next = LIST->tail;
return;

else

{
LIST->tail->id = 0;
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return;

}

/* Checking for case that id is at the head of the list */
if((temp->id == id)&&(temp->rnode == rnode))

{
LIST->hd = prev;/* points to next item in list */
free(temp);
return;

while((temp->id != id)jl(temp->rnode != rnode))
{
prevy = temp;
temp = temp->next;
if(temp == NULL)
{ return; }/* Object not present in this mem space */

}
prev->next = temp->next;
if(temp->next == NULL)

{
LIST->tail = prev; /* resetting tail */

)
free(temp); /* deallocate memory */

/* must update netlist before send out objs to redo for next
frame */

update_netlist()

LISTS *1st;
SHADOW first, prev;
int q, z, x, objid, prims;
int oldlength;

/* list created by */
prims = primobj[mynode];
for(q=0;q<P;q++)

{
if(q == HOSTC40)
continue;
oldlength = movesize[q];
if(oldlength == 0)
/* don't do anything if == 0 */
continue;
x=0;
while(x < oldlength)
{
objid = (int) *(moved[q]+x);
x++;

z=0;
while(box[my_node]->obj[z]->id != objid)
{
z++;
if(z >= prims)
while(l); /* error if reaches here */
}
z=0;
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while(z < 2)
{
if(z == 0)
{
first = box[my_node]->obj [z]->illum->hd;
ist = box[my_node]->obj [z]->illum;
}
if(z == 1)

{
first = box[my_node]->obj [z]->shads->hd;
ist = box[my_node]->obj [z]->shads;
}
while(first != NULL)

{
prev = first;
first = first->next;
if(prev->flag == 1)

{
INT_DISABLE() ;

delete_from_shill(lst, prev->id, prev->rnode);
INT_ENABLE() ;
}
if(prev == ist->tail)
break;

z++;

)
/* now can free old moved[snode] array */
free (moved[q] );

}

/*************************************************

SETTING UP INTERRUPT SEVICE ROUTINES FOR EACH COMMMPORT
******************* *********************** /

void c_int08() { cpuint(0); )

void cintl2() ( cpuint(1); )

void c_intl6() { cpuint(2); )

void c_int20() { cpuint(3); )

void c_int24() ( cpuint(4); )

void c_int28() { cpuint(5); )

void cpuint(int port)
{
int type, dnode, snode, len, k;
/* here follows all the routing stuff necessary to do this
correctly */
k = 0;
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dnode = in_word(port);
if(dnode != my_node)

forward(dnode, port); /* if not yours, forward message */
else

type = in_word(port);/*
snode = in_word(port);
len = in_word(port);

switch (type) {

Get incoming info */

case FROM : command(len, port, FROM);
break;

case AT : command(len, port, AT);
break;

case UP : command(len, port, UP);
break;

case ANGLE : command(len, port, ANGLE);
break;

case RES: command(len, port, RES);
break;

case LITE : command(len, port, LITE);
break;

case BKGND : command(len, port, BKGND);
break;

case SURF: solid(len, port, snode, SURF);
break;

case CON: if(cap == 1)
{ self = 1; snode = my_node; }
solid(len, port, snode, CON);

break;
case CONR: self = 0;

solid(len, port, snode, CON);
break;

case POLY: if(cap == 1)
{ self = 1; snode = my_node; }
solid(len, port, snode, POLY);
break;

case POLYR: self = 0;
solid(len, port, snode, POLY);
break;

case SPHRE: if(cap == 1)
{ self = 1; snode = my_node;}
solid(len, port,snode, SPHRE);
break;

case SPHRER: self = 0;
solid(len,port, snode, SPHRE);
break;

case HSPHRE: if(cap == 1)
{ self = 1; snode = my node;)

solid(len, port, snode, HSPHRE);
break;

case HSPHRER : self = 0;
solid(len, port, snode, HSPHRE);
break;

case RNG: if(cap == 1)
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( self = 1; snode = my_node;}
solid(len, port, snode, RNG);

break;
case RNGR : self = 0;

solid(len, port, snode, RNG);
break;

case QUAD: if(cap == 1)
{ self = 1; snode = my_node;}
solid(len, port, snode, QUAD);
break;

case QUADR: self = 0;
solid(len, port, snode, QUAD);
break;

case BV : b_volume(len, port, snode);
break;

case PACK: pack(len, port);
break;

case REQMEM : reqmem(snode);
break;

case LOBJ: last_obj(snode);
break;

case PARAM: params(port);
break;

case NFRAME: NF = 1; /* New Frame ! */
break;

case MOVEDATA:readin(port, len, snode);
break;

case DELETEOBJ:delete_obj (port, len, snode);
break;

case GO : goes++;
break;

case LUXES:
add_to_local_net(port, len, snode, type);

break;
case SHADOWS:
addtolocal_net(port, len, snode, type);

break;
case NETMAP:
receiving_moved_net(port, len, snode);

break;
case FLASH : flash++;

break;

/* 8/22/94 MP
*The function of nearestneighbors() is to determine the nodes
*in the network which are directly connected to the given node
*in an arbitrary 3-D grid archtitecture. It then stores them
*in a list which is used by other functions to determine if an
*object has moved into or out of another node.
*This nearest neighbor approach assumes that objects will not
*move further than 1 node away in a given frame. This will in
*general be true for any realistic motion detectable by the
*human eye across the screen. However, for very large networks
*this could break down if say the physical space assigned to
each node was quite small.
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*Function still_contained() basically determines if the
*bounds of the passed object id (therefore, object) are
*contained within the node space of those node ids contained
*within a passed list. If they are contained, then the nodes
*in which it is contained are stored in another list which is
*required as a check against a list of nodes in which it was
*contained before it was moved. The 2 lists are compared to
*determine if an object has moved into a new node. If it has
*moved into a new node, then the object in its entirety
*is send to the node. In addition a check is done to determine
*whether the object is still contained within the local node.
*If this is the case, a value of 1 is returned.
*Function common() just takes 1 list(array) and an integer
*value and checks for inclusion of the integer within the
*array. A value of 1 is returned if not included.
*/

/*The following code is cumbersome for smaller networks. But
*for a large number of nodes, it cuts down drastically on the
*amount of computation. It only checks the nearest neighbors
*for passing of objects. These are the only ones that would
*realistically be passed an object anyway.
*/

nearest_neighbors(int LIST[J)
{
int nid, x, myplane;
int d2_p = netsize*netsize2;
/*number of processors in the mesh -- d2_p*/
int planes = P/d2_p;/*number of planes in network*/
int my_nodep, col, row, rows;

x = 0;
LIST[x++] = mynode; /* Need for comparison */
planes = (P/d2_p)- 1; /* Watch this carefully*/
myplane = my_node/d2_p;
mynodep = my_node%d2_p;
rows = mynodep/netsize2; /* done */
col = my_nodep%netsize2;
col = myplane*netsize2 + col;

row = rows+1;
nid = (planes*d2_p) + (netsize*row)

+ ((col+netsize2)%netsize2);

if(row < netsize)
{
LIST[x] = nid;
x++;

col = col+l;
nid = (planes*d2_p) + (netsize*row)
+ ((col+netsize2)%netsize2);

if((col < netsize2)&&(row < netsize))
{
LIST[x] = nid;
x++;

row = row - 1;
nid = (planes*d2_p) + (netsize*row)

+ ((col+netsize2)%netsize2);
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if(col < netsize2)

LIST[x] = nid;
x++;

row = row - 1;
nid = (planes*d2_p) + (netsize*row)
+ ((col+netsize2)%netsize2);

if((row >= 0)&&(col < netsize2))

{
LIST[x] = nid;
x++;

col = col -1;
nid = (planes*d2_p) + (netsize*row)
+ ((col+netsize2)%netsize2);

if(row >= 0)
{
LIST[x] = nid;
x++;

col = col -1;
nid = (planes*d2_p) + (netsize*row)
+ ((col+netsize2)%netsize2);

if((row >= 0) &&(col >= 0))

LIST[x] = nid;
x++;

row = row+l;
nid = (planes*d2_p) + (netsize*row)
+ ((col+netsize2)%netsize2);

if(col >= 0)

LIST[x] = nid;
x++;

row++;

nid = (planes*d2_p) + (netsize*row)
+ ((col+netsize2)%netsize2);

if((col >= 0) && (row < netsize))

LIST[x] = nid;
x++;

LIST[x] = 'E'; /* end of list */



int still contained(int obj id, int list[t],
int Rist2[], int still)

double xmin, xmax,
double xtmin, xtmax,
int type, nid, i, x,
int *list;
OBJECT *obj;

x = 0;
flag =
xmin
ymin
xmax
ymax
x
i

0;

= 0;

= 0;

ymin, ymax;
ytmin, ytmax;
flag, t;

box[my_node]->obj[obj_id]->bmin.x;
box[my_node]->obj[obj_id]->b_min.y;
box[my_node]->obj[obj_id]->bmax.x;
box[mynode]->obj[obj_id]->bmax.y;

if(still == 1)
/* still == 1 -> if moved send object */
{
list = list2;

)
else
{ list = listl;
/* Put node 0 in initialization of listl */

while(list[i] != 'E')
{

nid = list[i];
i++;

xtmin = box[nid]->min.x;
xtmax = box[nid]->max.x;
ytmin = box[nid]->min.y;
ytmax = box[nid]->max.y;

/*Begin checking for containment within node object space*/
if((xmin >= xtmin) && (xmin <= xtmax)
&&(ymin >= ytmin) && (ymin <= ytmax))

list2[x++] = nid;

else{

if((xmax >= xtmin) && (xmax <= xtmax)
&&(ymax >= ytmin) && (ymax <= ytmax))

{

list2[x++]= nid;
)
else{
if((ymax >= ytmax) && (xmax <= xtmax)

&&( xmax >= xtmin) && (ymin <= ytmax))
{

list2[x++] = nid;
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else{
if((ymax >= ytmax) && (xmax >= xtmax)

&&(ymin <= ytmax) && (xmin <= xtmax))
{

list2[x++] = nid;

else(

if((ymax <= ytmax) && (xmax >= xtmax)
&&( ymax >= ytmin) && (xmin <= xtmax))

list2[x++] = nid;

)
)
list2[x] = 'E''E

/* FLAG INDICATING LAST OF THE PROCESSORS TO SEND IT

TO--> can't have more than 'E' processors!!*/

if(listill == 1) node)
{
/* Compare the 2 lists here */
t=0;

obj = box [myn/* Newode] ->obj[objid];
type = obj->type;

while = (list2[t] != 'E')
{
if (list2end dat] == my node)
{
flag = 1;/* still within local memory */

t++;continue;

x = common(list, list2[t])int value);
if(x == ) / New node */
{
i = list2[t];
locality = 1;
/*flag so that uses special_send*/
transfer(type, obj, i, 0);
/* Send data to new node */
locality = 0;

else{
flag = 0;

common(int list [], int value)
{
int x =0;
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while(list[x] != 'E')

{
if(list[x] == value)
{
return(0); /* same as previos scene */

}
X++;

}
return(l); /* implies new node contains object */

void new_frame()
{
int i, type, node;
float bv[6];/* Array for bounding volume */
VECTOR min, max;
int x;
OBJECT *obj;
SURFACE *surf;
x=0;
/*

* Build the bounding box structures.
*/

if(frame_cnt != 0)

{
while(append > 0)
{
surf = (SURFACE *) forwardbox[append*2-1];
obj = (OBJECT *) forward_box[append*2-2];
type = obj->type;

while(memory[x] != 'E')
{
node = memory[x];
/* Sending to those nodes which */
/* contain 'my' memory */
if(node != my_node)
{
send_surf(surf, node);
transfer(type, obj, node, 1);
/* to let know that belongs to */
/* my local memory space */

x++;

append = append-l;
}

for(x=0;x<P;x++)
{
if((x == my_node)II(x==HOSTC40))
continue;
send_dma(x, x, 0, FLASH);/* control loop */

while(flash < P-2); /* waiting for all new objs */
flash = 0;

x=0;
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INT_DISABLE();
while(x < P)
{
node = x;

if(box[node]->mem != 0)
{
pobjects[node] = primobj[node];

/* need pobjects[] for build_b...*/
Build_boundingslabs(node);
}
x++;

}
INT_ENABLE();

min = box[mynode]->root->b_min;
max = box[mynode]->root->b_max;

box[my_node]->min = box[mynode]->root->bmin;
box[my node]->max = box[mynode]->root->bmax;

bv[0] = min.x;
bv[l] = min.y;
bv[2] = min.z;
bv[3] = max.x;
bv[4] = max.y;
bv[5] = max.z;
i = 0;

if(NF == 0)
{
pixlength = 0; /* used for recalc of pixels*/

while(goes < P-2);/* Wait for other nodes...*/

}
goes = 0;
/* Determine pixels to recalculate */
if(frame_cnt != 0)

{
next_pix();
}

while(i < P)
{
if((i != my_node)&&(i != HOSTC40))
{
send_dma(i, by, 6, BV);
}
i++;
}

• Ll
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