
Replication Control in Distributed B-Trees

by

Paul Richard Cosway

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science

and

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1995

© Paul R. Cosway, 1994. All rights reserved

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author... ........... .. ....... :.",............. ..................
Department of Electrical Engineering and Computer Science

September 3, 1994

C ertified by ............. .-. .. . .. ........ ..... ..............................
William E. Weihl

Associate Professor of Computer Science
•' \ 1Thesis Supervisor
I I \ l

Accepted by ................. ...•-.. . .. .... - . ...................
Frederic R. Morgenthaler

hair, Departmeit Committee on Graduate Students
MASSACHIISETTS INSTITUTF

APR 13 1995 Eng.

"





Replication Control in Distributed B-Trees

by

Paul R. Cosway

Abstract

B-trees are a common data structure used to associate symbols with related information, as
in a symbol table or file index. The behavior and performance of B-tree algorithms are well
understood for sequential processing and even concurrent processing on small-scale shared-
memory multiprocessors. Few algorithms, however, have been proposed or carefully studied for
the implementation of concurrent B-trees on networks of message-passing multicomputers. The
distribution of memory across the several processors of such networks creates a challenge for
building an efficient B-tree that does not exist when all memory is centralized - distributing the
pieces of the B-tree data structure. In this work we explore the use and control of replication
of parts of a distributed data structure to create efficient distributed B-trees.

Prior work has shown that replicating parts of the B-tree structure on more than one
processor does increase throughput. But while the one original copy of each tree node may be
too few, copying the entire B-tree wastes space and requires work to keep the copies consistent.
In this work we develop answers to questions not faced by the centralized shared-memory model:
which B-tree nodes should be copied, and how many copies of each node should be made. The
answer for a particular tree can change over time. We explore the characteristics of optimal
replication for a tree given a static pattern of accesses and techniques for dynamically creating
near-optimal replication from observed access patterns.

Our work makes three significant extensions to prior knowledge:

* It introduces an analytic model of distributed B-tree performance to describe the tradeoff
between replication and performance.

* It develops, through analysis and simulation, rules for the use of replication that maximize
performance for a fixed amount of space, updating the intuitive rules of prior work.

* It presents a description and analysis of an algorithm for dynamic control of replication
in response to changing access patterns.

Thesis Supervisor: William E. Weihl
Title: Associate Professor of Computer Science

This work was supported indirectly by the Advanced Research Projects Agency under Contract
N00014-91-J-1698, by grants from IBM and AT&T, and by an equipment grant from DEC.
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Chapter 1

Introduction

B-trees are a common data structure used to associate symbols with related information, as

in a symbol table or file index. The behavior and performance of B-tree algorithms are well

understood for sequential processing and even concurrent processing on small-scale shared-

memory multiprocessors. Few algorithms, however, have been proposed or carefully studied for

the implementation of concurrent B-trees on networks of message-passing multicomputers. The

distribution of memory across the several processors of such networks creates a challenge for

building an efficient B-tree that does not exist when all memory is centralized - distributing the

pieces of the B-tree data structure. In this thesis we explore the use and control of replication

of parts of a distributed data structure to create efficient distributed B-trees.

The reader unfamiliar with the basics of B-trees is referred to Comer's excellent summary

[Com79]. In brief, the B-tree formalizes in a data structure and algorithm the technique one

might use in looking up a telephone number in a telephone directory, shown graphically in figure

1-1. Begin at a page somewhere near the middle of the directory; if the sought after name is

alphabetically earlier than the names on that page, look somewhere between the beginning of

the directory and the current page. If the name is now alphabetically later than the names on

the new page, look somewhere between this page and the page just previously examined. If

this process is continued, it will quickly reach the page that should hold the desired name and

number - if the name is not found on that page, it is not in the directory.

The problems encountered when using the conventional B-tree structure on a message-

passing multicomputer are similar to those of a large city with only one copy of its telephone
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Figure 1-1: Telephone Directory Lookup

directory -- only one person can use the directory at a time and to use it each person must

travel to the location of the directory. If the single copy of the directory is divided up with

pieces placed in a number of locations, more people may be able to use the directory at a time,

but the number of people able to use the directory at any one time would still be limited and

each person might have to visit several locations to find the piece of the directory holding his

or her sought after entry. The telephone company solves these problems by giving a copy of the

directory to every household, but this solution has weaknesses that we do not wish to introduce

to the B-tree data structure. First, printing all those copies uses up a great deal of paper, or

memory in the B-tree version. Second, the directory is wrong almost as soon as it is printed

- telephone numbers are added, removed and changed every day. Fortunately for the Postal



Service, the telephone company does not send out daily updates to all its customers. While

users of the telephone directory can tolerate the directory growing out of date, the users of a

B-tree demand that it always accurately reflect all prior additions and deletions. Wouldn't it

be nice if we could all look up telephone numbers nearly as quickly as we can each using our

own directory, but using only a fraction of the paper and always guaranteed to be accurate!

That is analogous to our objective in controlling replication in distributed B-trees.

The B-tree algorithm was developed and is used extensively on traditional, single processor

computers and is also used on multiprocessors with a shared central memory. Recent trends in

computer architecture suggest the B-tree should be studied on a different architectural model.

A number of new multiprocessor architectures are moving away from the model of a small

number of processors sharing a centralized memory to that of a large number of independent

processors, each with its own local memory, and linked by passing messages between them

[Dal90, ACJ+91]. The aggregate computing power of the tens, hundreds, or even thousands of

processors hooked together is substantial - if they can be made to work together. However,

the physical and logical limitations of sharing information across such a network of processors

create difficulties in making the processors work together. For example, while each processor

can indirectly read or write memory on another processor, it is much faster to directly access

local memory than to exchange messages to access memory on a remote processor. And if every

processor needs to read or write from the same remote processor, the read and write request

messages must each wait their turn to be handled, one at a time, at that remote processor.

To most effectively take advantage of the potential computing power offered by these new

architectures, the computation and data for a problem must be distributed so that each of the

many processors can productively participate in the computation while the number of messages

between processors is minimized.

If the nodes of a B-tree are distributed across the n processors of a message-passing mul-

ticomputer instead of residing on only one processor, we would like to see an n times increase

in B-tree operation throughput (or an n times reduction in single operation latency). Unfortu-

nately, there cannot be an immediate n times increase in throughput, for the B-tree structure

itself limits the throughput that can be achieved. Since all operations must pass through the

single root node of the B-tree, the processor that holds the root must be involved in every B-tree



operation. The throughput of that single processor presents a bottleneck that limits the overall

throughput. As for single operation latency, it will increase, not decrease. Once past the root,

a B-tree search will almost always have to visit more than one processor to find all the nodes on

the path to the destination leaf. Since each inter-processor message increases operation latency,

simply distributing the B-tree nodes across many processors guarantees that latency of a single

operation will increase.

The obvious solution is to create replicas or copies of selected B-tree nodes on other pro-

cessors to reduce or eliminate the root bottleneck and reduce the volume of inter-processor

messages. Wang [Wan91] has shown that replicating parts of the B-tree structure on more than

one processor does increase throughput. But while the one original copy of each tree node may

be too few, copying the entire B-tree wastes space and requires work to keep the copies con-

sistent. Thus, in building a B-tree on a distributed-memory message-passing architecture we

must address problems not faced by the centralized shared-memory model: we must determine

which B-tree nodes should be copied, and how many copies of each node should be made. The

answer for a particular tree can change over time. If the B-tree and the pattern of access to

the tree remain static, the replication decision should also remain static. But if the pattern of

accesses to the B-tree changes over time in such a way that an initial decision on replication

is no longer suited to the current access pattern, we would also like to dynamically control the

replication to optimize B-tree performance.

To date little work has been done on the static or dynamic problem. Lehman and Yao [LY81]

developed a B-tree structure that allows concurrent access, but has been historically applied

to single processors and shared-memory multiprocessors. Of the work done with distributed

B-trees, Wang [Wan91] showed that increased throughput can be obtained through replicating

parts of the B-tree structure, but did not directly address how much replication is necessary

or how it can be controlled. Johnson and Colbrook [JC92] have suggested an approach to

controlling replication that we label "path-to-root", but it has not yet been tested. This work

is being extended by Johnson and Krishna [JK93]. Both pieces of prior work suggest using

replication in patterns that make intuitive sense, but both produce replication patterns that

are independent of actual access pattern and do not allow changes in the tradeoff between

replication and performance.



We start from this prior work and use a combination of simulation and analytic modeling

to study in detail the relationship between replication and performance on distributed B-trees.

In this work we do not study the related decision of where to place the nodes and copies. We

place nodes and copies randomly because it is simple and produces relatively good balancing

without requiring any knowledge of other placement decisions. Our work makes three significant

extensions to prior knowledge:

* It introduces an analytic model of distributed B-tree performance to describe the tradeoff

between replication and performance.

* It develops, through analysis and simulation, rules for the use of replication that maximize

performance for a fixed amount of space, updating the intuitive rules of prior work.

* It presents a description and analysis of an algorithm for dynamic control of replication

in response to changing access patterns.

In the body of this thesis we expand on the challenges of creating replicated, distributed B-

trees, our approach to addressing the challenges, and the results of our simulation and modeling.

The key results are developed in chapters 5, 6, and 7.

* Chapter 2 presents relevant prior work on concurrent and distributed B-tree algorithms;

* Chapter 3 describes key characteristics of the system we used for simulation experiments;

* Chapter 4 presents a queueing network model for the performance of replicated B-trees;

* Chapter 5 presents a validation of the queueing network model against simulation exper-

iments;

* Chapter 6 uses the results of simulation and modeling of static replication patterns to

develop replication rules to optimize performance;

* Chapter 7 describes an approach to the dynamic control of replication and analyzes the

results of simulations;

* Chapter 8 summarizes the conclusions of our work and indicates avenues for further

investigation.



Chapter 2

Related Work

The original B-tree algorithm introduced by Bayer and McCreight [BM72] was designed for

execution on a single processor by a single process. Our current problem is the extension of

the algorithm to run on multiple processors, each with its own local memory, and each with

one or more processes using and modifying the data structure. The goal of such an extension

is to produce a speedup in the processing of B-tree operations. In this work we seek a speedup

through the concurrent execution of many requests, not through parallel execution of a single

request. Kruskal [Kru83] showed that the reduction in latency from parallel execution of a

single search is at best logarithmic with the number of processors. In contrast, Wang's study

of concurrent, distributed B-trees with partial node replication [Wan91], showed near linear

increases in lookup throughput with increasing processors.

To efficiently utilize many processors concurrently participating in B-tree operations, we

must extend the B-tree algorithm to control concurrent access and modification of the B-

tree, and to efficiently distribute the B-tree data structure and processing across the several

processors. In this section we look at prior work that has addressed these two extensions.

2.1 Concurrent B-tree Algorithms

The basic B-tree algorithm assumes a single process will be creating and using the B-tree

structure. As a result, each operation that is started will be completed before a subsequent

operation is started. When more than one process can read and modify the B-tree data structure

simultaneously (or apparently simultaneously via multi-processing on a single processor) the



data structure and algorithm must be updated to support concurrent operations.

A change to the basic algorithm is required because modifications to a B-tree have the

potential to interfere with other concurrent operations. Modifications to a B-tree result from

an insert or delete operation, where a key and associated value are added to or deleted from the

tree. In most cases, it is sufficient to obtain a write lock on the leaf node to be changed, make

the change, and release the lock without any interference with other operations. However, the

insert or delete can cause a ripple of modifications up the tree if the insert causes the leaf node

to split or the delete initiates a merge. As a split or merge ripples up the tree, restructuring the

tree, it may cross paths with another operation descending the tree. This descending operation

is encountering the B-tree in an inconsistent state and, as a result, may finish incorrectly. For

example, just after a node is split but before a pointer to the new sibling is added in the parent

node, any other B-tree operation has no method of finding the newly created node and its

descendants. Two methods have been proposed to avoid this situation, lock coupling and B-link

trees.

Bayer and Schkolnick [BS77] proposed lock coupling for controlling concurrent access. To

prevent a reader from "overtaking" an update by reading a to-be-modified node before the

tree has been made fully consistent, they require that a reader obtain a lock on a child node

before releasing the lock it holds on the current node. A writer, for its part, must obtain an

exclusive lock on every node it intends to change prior to making any changes. Thus, a reading

process at a B-tree node is guaranteed to see only children that are consistent with that current

node. Lock coupling prevents a B-tree operation from ever seeing an inconsistent tree, but at

the expense of temporarily locking out all access to the part of the tree being modified. The

costs of lock coupling increase when the B-tree is distributed across several processors and some

nodes are replicated - locks must then be held across several processors at the same time.

Lehman and Yao [LY81] suggested the alternative of B-link trees, a variant of the B-tree

in which every node is augmented with a link pointer directed to its sibling on the right. The

B-link tree also requires that a split always copy into the new node the higher values found in

the node being split, thus placing the new node always logically to the right of the original node.

This invariant removes the need for lock coupling by allowing operations to correct themselves

when they encounter an inconsistency. An operation incorrectly reaching a node that cannot



possibly contain the key it is seeking (due to one or more "concurrent" splits moving its target to

the right) can follow the link pointer to the right until it finds the new correct node. Of course,

writers must still obtain exclusive locks on individual nodes to prevent them from interfering

with each other and to prevent readers from seeing an inconsistent single node, but only one

lock must be held at a time.

The right-link structure only supports concurrent splits of B-tree nodes. The original pro-

posal did not support the merging of nodes. Lanin and Shasha [LS86] proposed a variant with

"backlinks" or left-links to support merging. Wang [Wan91] added a slight correction to this

algorithm.

Other algorithms have been proposed, as well as variants of these [KW82, MR85, Sag85], but

lock coupling and B-link remain the dominant options. All proposals introduce some temporary

limit on throughput when performing a restructuring modification, either by locking out access

to a sub-tree or lengthening the chain of pointers that must be followed to reach the correct

leaf. Analysis of the various approaches has shown that the B-link algorithm can provide the

greatest increases in throughput [LS86, JS90, Wan91, SC91].

We use the B-link algorithm and perform only splits in our simulations. The B-link al-

gorithm is particularly well suited for use with replicated B-tree nodes because it allows tree

operations to continue around inconsistencies, and inconsistencies may last longer than with a

shared memory architecture. B-tree nodes will be temporarily inconsistent both while changes

ripple up the tree and while the changes further ripple out to all copies of the changed nodes.

When one copy of a node is modified, the others are all incorrect. The updates to copies of

nodes cannot be distributed instantaneously and during the delay we would like other opera-

tions to be allowed to use the temporarily out-of-date copies. As Wang [WW90] noted in his

work on multi-version memory, the B-link structure allows operations to correct themselves by

following the right link from an up-to-date copy if they happen to use out-of-date information

and reach an incorrect tree node. Of course, when an operation starts a right-ward traversal,

it must follow up-to-date pointers to be sure of finding the correct node.



2.2 Distributed B-tree Algorithms

The B-link algorithm provides control for concurrent access to a B-tree that may be distributed

and replicated, but does not provide a solution to two additional problems a distributed and

replicated B-tree presents: distributing the B-tree nodes and copies, and keeping copies up to

date.

Before examining those problems, it should be noted that there have been proposals for

concurrent, distributed B-trees that do not replicate nodes. Carey and Thompson [CT84] sug-

gested a pipeline of processors to support a B-tree. This work has been extended by Colbrook,

et al. [CS90, CBDW91]. In these models, each processor is responsible for one level of the

B-tree. This limits the amount of parallelism that can be achieved to the depth of the tree.

While trees can be made deeper by reducing the branch factor at each level, more levels means

more messages between processors, possibly increasing the latency of a search. But the most

significant problem with the pipeline model is data balancing. A processor must hold every

node of its assigned tree level. Thus, the first processor holds only the root node, while the last

processor in the pipeline holds all of the leaves.

Our focus in this work is on more general networks of processors and on algorithms that

can more evenly distribute and balance the data storage load while also trying to distribute

and balance the processing load.

2.2.1 B-tree Node Replication

Whenever a B-tree node is split, a new node must be created on a processor. When the tree is

partially replicated, the decision may be larger than selecting a single processor. If the new node

is to be replicated, we must decide how many copies of the node should be created, where each

copy should be located, and which processors that hold a copy of the parent node should route

descending B-tree operations to each copy of the new node. These decisions have a dramatic

impact on the balance of both the data storage load and the operation processing load, and thus

on the performance of the system. If there are not enough copies of a node, that node will be

a bottleneck to overall throughput. If the total set of accesses to nodes or copies is not evenly

distributed across the processors, one or more of the processors will become a bottleneck. And

if too many copies are created, not only is space wasted, processing time may also be wasted



in keeping the copies consistent.

Since the size and shape of a B-tree and the volume and pattern of B-tree operations are

dynamic, replication and placement decisions should also be dynamic. When the root is split,

for example, the old root now has a sibling. Copies of the new root and new node must be

created, and some copies of the old root might be eliminated. Thus, even under a static B-

tree operation load, dynamic replication control is required because the tree itself is changing.

When the operation load and access patterns are also changing, it is even more desirable to

dynamically manage replication to try to increase throughput and reduce the use of memory.

To date there has been little or no work studying dynamic replication for B-trees or even

the relationship between replication and performance under static load patterns. However, we

take as starting points the replication models used in previous work on distributed B-trees.

Wang's [Wan91] work on concurrent B-trees was instrumental in showing the possibilities

of replication to improve distributed B-tree performance. This work did not explicitly address

the issue of node and copy placement because of constraints of the tools being used. In essence,

the underlying system placed nodes and copies randomly. Wang's algorithm for determining

the number of copies of a node is based on its height above the leaf level nodes. Leaf nodes

themselves are defined to have only one copy. The number of copies of a node is the replication

factor (RF), a constant, times the number of copies of a node at the next lower level, but never

more than the number of participating processors. For a replication factor of 7, for example,

leaves would have one copy, nodes one level above the leaves would have 7 copies, and nodes

two levels above the leaves would have 49 copies. The determination of the key parameter, the

replication factor, was suggested to be the average branch factor of the B-tree nodes.

Using this rule and assuming that the B-tree has a uniform branch factor, BF, and a uniform

access pattern, the replicated tree will have the same total number of nodes and copies at each

level. The exception is when a tree layer can be fully replicated using fewer copies. The

number of copies per node, therefore, is proportional to the relative frequency of access. This

distribution of copies makes intuitive sense, since more copies are made of the more frequently

accessed B-tree nodes. Figure 2-1 shows the calculation of relative access frequency and copies

per level, where the root is defined to have relative access frequency of 1.0.

Johnson and Colbrook [JC92] suggested a method for determining where to place the copies



Level Relative Frequency Copies
h 1 min(P, RFh)

3 1/BF(h- 3) min(P, RF3 )
2 1/BF(h- 2) min(P, RF 2)
1 1/BF(h-1l) min(P, RF)
0 1/BF (h) 1

Figure 2-1: Copies per level - Wang's Rule

of a node that also determines the number of copies that must be created. Their copy placement

scheme is "path-to-root", i.e., for every leaf node on a processor, the processor has a copy of

every node on the path from the leaf to the root, including a copy of the root node itself. Thus,

once a search gets to the right processor, it does not have to leave. Without the path-to-root

requirement, a search may reach its eventual destination processor, but not know that until it

has visited a node on another processor. The path-to-root method requires no explicit decision

on how many copies of a node to create. Instead, the number is determined by the locations of

descendant leaf nodes. The placement of leaf nodes becomes the critical decision that shapes

the amount of replication in this method.

For leaf node placement, Johnson and Colbrook suggest keeping neighboring leaf nodes on

the same processor as much as possible. This minimizes the number of copies of upper-level

nodes that must exist and may reduce the number of inter-processor messages required. They

are developing a placement algorithm to do this. To do so they introduce the concept of extents,

defined as a sequence of neighboring leaves stored on the same processor. They also introduce

the dE-Tree (distributed extent tree) to keep track of the size and location of extents. When a

leaf node must be created, they first find the extent it should belong to, and then try to add

the node on the associated processor. If adding to an extent will make a processor more loaded

than is acceptable, they suggest shuffling part of an extent to a processor with a neighboring

extent, or if that fails, creating a new extent on a lightly loaded processor. This proposal has

not been fully analyzed and tested, so it is not known whether the overhead of balancing is

overcome by the potential benefits for storage space and B-tree operation time.

In our work we identify the path-to-root approach when using random placement of leaf

nodes as "random, path-to-root" and when using the copy minimizing placement as "ideal path-



Level Relative Frequency Copies
h 1 place(BFh, P)

3 1/BF( h-3 ) place(BF3, P)
2 1/BF(h- 2) place(BF2, P)
1 1/BF(h-1) place(BF, P)
0 1/BF (h) 1

Figure 2-2: Copies per level - Random Path-To-Root Rule

to-root". The random path-to-root method uses a similar amount of space to Wang's method.

It might be expected to use exactly the same amount, for each intermediate level node must

be on enough processors to cover all of its leaf children, of which there are BFn for a node

n levels above the leaves. The actual number of copies is slightly less because the number of

copies is not based solely on the branch factor and height above the leaves, but on the actual

number of processors that the leaf children of a node are found on, typically less than BF".

When a single object is placed randomly on one of P processors, the odds of it being placed on

any one processor are 1/P, the odds of it not being on a specific processor (1 - 1/P). When m

objects are independently randomly placed, the odds that none of them are placed on a specific

processor are (1 - 1/P)m , thus the odds that a processor holds one or more of the m objects

is 1 - (1 - 1/P)m . Probabilistically then, the number of processors covered when placing m

objects on P processors is:

place(m,P) = P* (1 - (1- )m)

Figure 2-2 shows the calculations for the number of copies under random path-to-root.

When using ideal path-to-root, the minimum number of copies required at a level n above

the leaves is the number of leaves below each node of the level, BFn, divided by the number of

leaves per processor, BFh/P, or P * BFn - h. This minimum is obtainable, however, only when

the number of leaves below each node is an even multiple of the number of leaves per processor.

In general, the average number of copies required is P * BF - h + 1 - P , but never more than

P copies. (We explain the development of this equation in appendix A.) This rule also results

in the number of copies per level being roughly proportional to the relative frequency of access.

Figure 2-3 shows the calculations for the number of copies under ideal path-to-root.

Figure 2-4 shows, for these three rules, the calculation of space usage for an example with



Level Relative Frequency Copies
h 1 P

3 1/BF(h-3 ) min(P, P * BF 3 - h +1 - PB)

2 1/BF(h- 2 ) min(P, P BF 2- h + B )
1 1/BF(h - 1) min(P, P * BF - h + 1 - F

0 1/BF (h) 1

Figure 2-3: Copies per level - Ideal Path-To-Root Rule

Wang
Total Nodes

100
343
343
343

Random P-T-R
Copies Total Nodes

97 97
39 273

7 343
1 343

Ideal P-T-R
Copies Total Nodes

100 100
15 105

2.75 135
1 343

Total Nodes: 1129 1056
Copies: 729 656

Figure 2-4: Comparison of Copying Rules
Branch Factor = Replication Factor = 7,Processors = 100, Levels = 4

683
283

tree height above leaves, h = 3, branch factor and replication factor, BF = RF = 7, and

number of processors, P = 100. In addition to the 400 nodes that form the unreplicated B-tree,

the ideal path-to-root rule creates 283 more total copies, random path-to-root 656 more, and

Wang's rule 729 more.

Neither the algorithm implemented by Wang nor that proposed by Johnson and Colbrook

links placement and replication decisions to a detailed understanding of the relationship between

replication and performance or to the actual operation load experienced by a B-tree. Both

algorithms can produce balanced data storage and processing loads under a uniform distribution

of search keys, but neither body of work is instructive about how replication decisions can be

changed to improve or reduce performance, use more or less space, or respond to a non-uniform

access pattern.

The work in this thesis is closest to an extension of Wang's work. The copy placement and

routing decisions are similar to those of his work, but we eliminate the constant replication

factor and explore in detail the relationship between the number of copies of B-tree nodes

and performance, including the possibility of dynamically changing the number of copies. In

Level
3
2
1
0

Nodes
1
7

49
343

Rel. Freq.
1

1/7
1/49
1/343

Copies
100
49

7
1



chapter 6 we discuss experiments that compare our approach to replication with the possibilities

presented by Johnson and Colbrook's path-to-root algorithm.

2.2.2 Copy Update Strategy

If there are a number of copies of a B-tree node, there must be a method for updating all of

the copies when a change is made to any one of them. However, they do not all have to be

updated instantaneously to achieve good B-tree performance. Wang's work [Wan91] showed

that B-link algorithms do not require strict coherence of the copies of a node. Instead of an

atomic update of all copies, he used a weaker version of coherence called multi-version memory

[WW90]. Wang demonstrated this approach to coherence dramatically improves concurrent

B-tree performance.

Multi-version memory still leaves a choice for how updates are distributed and old versions

brought up to date. Two methods have been proposed. Wang required that all modifications

are made to a "master" copy of a node, and then sent out the complete new version of the

node to update copies. (The original copy of the node is usually identified as the "master".)

Johnson and Colbrook [JC92] have proposed sending out just the update transactions to all

copies of a node and are exploring an approach to allow modifications to originate at any copy

of a node. Of course, if updates are restricted to originate from one "master" copy of a node

and ordered delivery of the update transactions is guaranteed, transaction update will produce

the same results as sending complete copies.

A major motivation for distributing updates by sending a small update transactions and not

the full node contents was to drop the requirement that modifications originate at the "master"

copy. To coordinate updates from different processors Johnson and Colbrook introduced the

distinction between lazy and synchronizing updates. Most updates to a B-tree node (leaf or

non-leaf) do not propagate restructuring up the tree and, unless they affect the same entry, are

commutative. Non-restructuring updates are termed lazy and can be done in any order, as long

as they are completed before the node must split or merge. Johnson and Colbrook guarantee

that concurrent lazy updates will not affect the same entry by limiting replication to non-leaf

nodes and requiring all splits and merges to be synchronized by the "master" copy of a node.

Thus, the leaf level presents no possibility for a simultaneous insert or delete of the same key



because a definite sequence is determined on a single processor. And for all non-leaf nodes,

since the insert or delete can come from only the one "master" copy of a child node, all updates

to an entry will be made on the one processor holding the "master" of the child, also assuring

a definite sequence of updates.

Any tree restructuring operation is called synchronizing, and these do not commute. John-

son and Colbrook suggest an algorithm that allows lazy updates to be initiated on any processor,

but still requires synchronizing actions to be started on the processor holding the "master" copy.

This algorithm has not yet been implemented and requires minor extensions to handle "simulta-

neous" independent splits correctly, so it will not be fully described here. Johnson and Krishna

[JK93] are extending this work.

While the copy update issue is critical to an actual implementation, it is not critical to our

study. Therefore we use the simplest method of updating copies and restrict all updates to

originate on the processor where the original, or "master", copy of a node was created. Other

copies are updated by sending the complete new version of the node after every change.



Chapter 3

System Setup

We implemented a distributed B-tree using Proteus, a high-performance MIMD multiprocessor

simulator [BDCW91, Del91]. Proteus provided us with a basic multiprocessor architecture -

independent processors, each with local memory, that communicate with messages. It also

provided exceptionally valuable tools for monitoring and measuring program behavior. On top

of Proteus we created a simple structure for distributed, replicated objects, and on top of that,

a distributed B-tree. In this chapter we briefly describe those three elements of our simulation

system.

3.1 Proteus

The Proteus simulation tool provides high-performance MIMD multiprocessor simulation on

a single processor workstation. It provides users with a basic operating system kernel for

thread scheduling, memory management, and inter-processor messaging. It was designed with

a modular structure so that elements of a multiprocessor, the interconnection network for

example, can easily be changed to allow simulation of a different architecture. User programs

to run on Proteus are written in a superset of C. The resulting executable program provides a

deterministic and repeatable simulation that, through selection of a random number seed, also

simulates the non-determinism of simultaneous events on a physical multiprocessor.

In addition to its simulation capabilities, Proteus also provides a rich set of measurement

and visualization tools that facilitate debugging and monitoring. Most of the graphs included

in this thesis were produced directly by Proteus.



Proteus has been shown to accurately model a variety of multiprocessors [Bre92], but the

purpose of our simulations was not to model a specific multiprocessor architecture. Rather,

it was to adjust key parameters of multiprocessors such as messaging overhead and network

transmission delay to allow us to develop an analytic model that could be applied to many

architectures.

3.2 Distributed, Replicated Objects

The construction of an application using a distributed and replicated data structure required

a facility for processing inter-processor messages and an object identification and referencing

structure on top of Proteus. The model for both elements was the runtime system of Prelude, a

programming language being developed on top of Proteus for writing portable, MIMD parallel

programs [WBC+91]. Prelude provided a model for message dispatching and a mechanism for

referencing objects across processors (HBDW91]. To the Prelude mechanism for distributed

object references we added a simple structure for creating and managing copies of objects.

3.2.1 Interprocessor Messages

In our simulations each processor is executing one thread (one of the processors actually has a

second thread, usually inactive, to control the simulation). Each processor has a work queue

to hold messages to be processed. The single thread executes a loop, pulling a message off

the head of the work queue, dispatching it appropriately to a processing routine, and, when

finished processing the message, returning to look for the next message. The finishing of a

received message typically involves sending a message to another processor, either as a forwarded

operation or a returned result.

Messages are added to the work queue by an interrupt handler that takes messages off of

the network.

3.2.2 Distributed Objects and References

Every object created in our system has an address on a processor. This address, unique for each

object on a specific processor, is used only for local references to the object. For interprocessor

references, an object is referred to by an object identifier (OID), that can be translated through



typedef struct {
short status; /* Object type flags */

ObjectLock lock;

Oid oid; /* System-wide unique identifier */

struct locmap *locmap /* Map of object copy locations */

} ObjectHeader;

Figure 3-1: Object Header Data Structure

Status bit Name Values
0 exported 0 on creation, 1 when exported
1 surrogate 0 if the original or copy, 1 if surrogate
2 master 1 if original, 0 otherwise

Figure 3-2: Object Status Bits

an OID table to a local address on a processor (if the object exists on that processor). The use

of OIDs for interprocessor references allows processors to remap objects in local memory (e.g.,

for garbage collection) and allows copies of objects to be referenced on different processors.

Every object has an object header, shown in figure 3-1. When a new object is created the

object status in the header is initialized to indicate the object has not been exported, is not a

surrogate, and is the master, using status bits described in figure 3-2. As long as all references

to the object are local, the object header remains as initialized. When a reference to the object

is exported to another processor, an object identifier (OID) is created to uniquely identify the

object for inter-processor reference. In our implementation the OID is a concatenation of the

processor ID and an object serial number. The OID is added to the object's header and the

OID/address pair is added to the local OID table. A processor receiving a reference to a remote

object will create a surrogate for the object, if one does not already exist, and add an entry to

its local OID table. The location map will be described in the next section.

When accessing an object, a remote reference on a processor is initially identical to a local

reference -- both are addresses of objects. If the object is local the address will be the address of

the object itself. If the address is remote, the address is that of a special type of object called

a surrogate, shown in figure 3-3. The surrogate contains the OID in its header. If an object

existed always and only on the processor where it was created, the OID would be enough to

find the object. To support replication we use additional fields that are described in the next



typedef struct {
ObjectHeader obj;
Node locationhint;
ObjectHeader *localcopy;

} Surrogate;

Figure 3-3: Surrogate Data Structure

section.

3.2.3 Copies of Objects

The addition of copies of objects requires extension of the object header and surrogate struc-

tures. To the object header we expand the status field to include identification of a copy of

an object - status neither a surrogate or the master; and we add a location map. A location

map will be created only with the master of an object and contains a record of all processors

that hold a copy of the object. Only the master copy of an object knows the location of all

copies. The copies know only of themselves and, via the OID, the master. We implemented

the location map as a bitmap.

Two changes are made to the surrogate structure. First, we add a location hint to indicate

where the processor holding a particular surrogate should forward messages for the object, i.e.,

which copy it should use. Second, we add a pointer to a local copy of the object, if one exists.

Since copies are created and deleted over time, a local reference to a copy always passes through

a surrogate to assure dangling references will not be left behind. Likewise, as copies are created

and deleted, a surrogate may be left on a processor that no longer holds any references to the

object. Although it would be possible to garbage collect surrogates, we did not do so in our

implementation.

3.2.4 Mapping Surrogates to Copies

The purpose of creating copies of an object is to spread the accesses to an object across more

than one processor in order to eliminate object and processor bottlenecks. To accomplish this

spread, remote accesses to an object must be distributed via its surrogates across its copies,

not only to the master copy of the object. As indicated in the previous section, we give each



surrogate a single location hint of where a copy might be found (might, because the copy may

have been deleted since the hint was given).

We do not give each surrogate the same hint, however. To distribute location hints, we

first identify all processors that need location hints and all processors that have copies. The

set of processors needing hints is divided evenly across the set of processors holding copies,

each processor needing a hint being given the location of one copy. In this description we have

consciously used the phrase "processor needing a hint" instead of "processor holding a surro-

gate". In our implementation we did not map all surrogates to the copies, but rather only the

surrogates on processors holding copies of the parent B-tree node. It is the downward references

from those nodes that we are trying to distribute and balance in the B-tree implementation. Of

course, as copies are added or deleted, the mapping of surrogates to copies must be updated.

For our implementation, we placed the initiation of remapping under the control of the B-tree

algorithm rather than the object management layer.

There are other options for the mapping of surrogates to copies. Each surrogate, for example,

could be kept informed of more than one copy location, from two up to all the locations, and

be given an algorithm for selecting which location to use on an individual access. In section 7.4

in the chapter on dynamic control of replication, we explore a modification to our approach to

mapping that gives each surrogate knowledge of the location of all of its copies.

3.3 Additional Extensions to the B-tree Algorithm

On top of these layers we implemented a B-link tree which, because it is distributed, has two

features that deserve explanation. First, we defined a B-tree operation to always return its

result to the processor that originated the operation, to model the return to the requesting

thread. There is relatively little state that must be forwarded with an operation to perform the

operation itself; we assume that an application that initiates a B-tree operation has significantly

more state and should not be migrated with the operation.

Second, the split of a tree node must be done in stages because the new sibling (and possibly

a new parent) will likely be on another processor. We start a split by sending the entries to be

moved to the new node along with the request to create the new node. We do not remove those

entries from the node being split until a pointer to the sibling has been received back. During



the intervening time, lookups may continue to use the node being split, but any modifications

must be deferred. We created a deferred task list to hold such requests separately from the

work queue.

After a new node is created, the children it inherited are notified of their new parent and

the insertion of the new node into its parent is started. A modification to the node that has

been deferred may then be restarted.



Chapter 4

Queueing Network Model

In this chapter we present a queueing network model to describe and predict the performance of

distributed B-trees with replicated tree nodes. A queueing network model will not be as flexible

or provide as much detail as the actual execution of B-tree code on our Proteus simulator, but

it has two distinct advantages over simulation. First, it provides an understanding of the

observed system performance based on the established techniques of queueing network theory.

This strengthens our faith in the accuracy and consistency of our simulations1 and provides us

with an analytic tool for understanding the key factors affecting system performance. Second,

our analytic model requires significantly less memory and processing time than execution of a

simulation. As a result, we can study more systems and larger systems than would be practical

using only the parallel processor simulator. We can also study the affects of more efficient

implementations without actually building the system.

The queueing network technique we use is Mean Value Analysis (MVA), developed by Reiser

and Lavenberg [Rei79b, RL80]. We use variations of this technique to construct two different

models for distributed B-tree performance. When there is little or no replication of B-tree

nodes, a small number of B-tree nodes (and therefore processors) will be a bottleneck for

system throughput. The bottleneck processors must be treated differently than non-bottleneck

processors. When there is a large amount of replication, no individual B-tree node or processor

will be a bottleneck, and all processors can be treated equivalently. We label the models for

these two situations "bottleneck" and "high replication", respectively.

'Use of the model actually pointed out a small error in the measurements of some simulations.



In this chapter, we will:

* Introduce the terminology of queueing network theory;

* Review our assumptions about the behavior of B-trees and replication;

* Describe the Mean Value Analysis algorithm and relevant variations; and

* Define our two models of B-tree behavior and operation costs.

In the next chapter we will validate the model by comparing the predictions of the queueing

network model with the results of simulation.

4.1 Queueing Network Terminology

A queueing network is, not surprisingly, a network of queues. At the heart of a single queue is

a server or service center that can perform a task, for example a bank teller who can complete

customer transactions, or more relevant to us, a processor that can execute a program. In a

bank and in most computer systems many customers are requesting service from a server. They

request service at a frequency called the arrival rate. It is not uncommon for there to be more

than one customer requesting service from a single server at the same time. When this situation

occurs, some of the customers must wait in line, queue, until the server can turn his, her, or its

attention to the customer's request. A server with no customers is called idle. The percentage

of time that a server is serving customers is its utilization (U). When working, a server will

always work at the same rate, but the demands of customer requests are not always constant, so

the service time (S) required to perform the tasks requested by the customers will vary. Much

of queueing theory studies the behavior of a single queue given probability distributions for the

arrival rates and service times of customers and their tasks.

Queueing network theory studies the behavior of collections of queues linked together such

that the output of one service center may be directed to the input of one or more other service

centers. Customers enter the system, are routed from service center to service center (the path

described by routing probabilities) and later leave the system. At each center, the customers

receive service, possibly after waiting in a queue for other customers to be served ahead of them.



In our case, the service centers are the processors and the communication network connecting

them. The communication network that physically connects processors is itself a service center

in the model's logical network of service centers. Our customers are B-tree operations. At

each step of the descent from B-tree root to leaf, a B-tree operation may need to be forwarded,

via the communication network, to the processor holding the next B-tree node. The operation

physically moves from service center to service center, requiring service time at each service

center it visits. The average number of visits to an individual service center in the course of

a single operation is the visit count (V) and the product of the average service time per visit

and the visit count is the service demand (D) for the center. The sum of the service demands

that a single B-tree operation presents to each service center is the total service demand for the

operation.

In our model the two types of service center, processors and communication network, have

different behaviors. The processors are modeled as queueing service centers, in which customers

are served one at a time on a first-come-first-served basis. A customer arriving at a processor

must wait in a queue for the processor to complete servicing any customer that has arrived

before it, then spend time being serviced itself. The network is modeled as a delay service

center: a customer does not queue, but is delayed only for its own service time before reaching

its destination. The total time (queued and being served) that a customer waits at a server each

visit is the residence time (R). The total of the residence times for a single B-tree operation is

the response time. The rate at which operations complete is the throughput (X).

In our queueing network model and in our simulations we use a closed system model: our

system always contains a fixed number of customers and there is no external arrival rate. As

soon as one B-tree operation completes, another is started. The alternative model is an open

system, where the number of customers in the system depends on an external arrival rate of

customers.

Within a closed queueing system, there can be a number of classes2 of customers. Each

customer class can have its own fixed number of customers and its own service time and visit

count requirement for each service center. If each service center has the same service demand

requirement for all customers, the customers can placed in a single class. If, however, the service

2The term chain is also used in some of the literature.



Service centers K, the number of service centers.
For each center, k, the type, queueing or delay

Customers C, the number of classes
No, the number of customers in each class

Service demands For each class c and center k, service demand given by Dc,k =- Vc,kSc,k,
the average number of visits per operation * the average service
time per visit.

Figure 4-1: Queueing Network Model Inputs

demand requirement for an individual service center varies by customer, multiple customer

classes must be used. We will use both single-class and multiple-class models; single-class to

model systems with low replication, and multiple-class to model systems with high replication.

The necessity for using both types of models is described in the next section.

Queueing network theory focuses primarily on networks that have a product-form solu-

tion; such networks have a tractable analytic solution. In short, a closed, multi-class queue-

ing network with first-come-first-served queues has a product-form solution if the routing

between service centers is Markovian (i.e., depends only on transition probabilities, not any

past history) and all classes have the same exponential service time distribution. Most real-

world systems to be modeled, including ours, do not meet product-form requirements ex-

actly. However, the techniques for solving product-form networks, with appropriate extensions,

have been shown to give accurate results even when product-form requirements are not met

[LZGS84, Bar79, HL84, dSeSM89]. Our results indicate the extensions are sufficiently accurate

to be useful in understanding our problem.

To use a queueing network model, we must provide the model with a description of the

service centers, customer classes, and class service demand requirements. The inputs for the

multi-class MVA algorithm are shown in figure 4-1. When solved, the queueing network model

produces results for the system and each service center, for the aggregate of all customers

and for each class. MVA outputs are shown in figure 4-2. We use these results, particularly

throughput and response time, to characterize the performance of a particular configuration

and compare performance changes as we change parameters of our model or simulation.

It is important to note that throughput and response time can change significantly when the

system workload changes. With a closed system, the workload is determined by the number of
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tesidence time R for system average,
Rc for class average,
Rk for center residence time,
Rc,k for class c residence time at center k.

t X for system average,
Xc for class average,
Xk for center average,
Xc,k for class c at center k.

th Q for system,
Q, for class,
Qk for center,
Qc,k for class c at center k.

Uk for centers,
Uc,k for class c at center k.

Figure 4-2: Queueing Network Model Outputs

customers in the system, specified by the number of classes, C, and the number of customers per

class, No. High throughput can often be bought at the cost of high response time by increasing

No. For some systems, as N, rises, throughput initially increases with only minor increases in

response time. As additional customers are added, the utilization of service centers increases,

and the time a customer spends waiting in a queue increases. Eventually throughput levels off

while latency increases almost linearly with NV,. Figure 4-3 shows this relationship graphically.

Thus, while we will primarily study different configurations using their respective throughputs,

as we compare across different configurations and as workload changes, we will also compare

latencies to make the performance characterization complete.

4.2 Modeling B-Trees and Replication

In our use of queueing network theory we make one important assumption: that B-tree nodes

and copies are distributed randomly across processors. This means the probability of finding

a node on a given processor is #"p ' s". Of course, a tree node will actually be on #copies

processors with probability 1.0, and on (#processors - #copies) processors with probability

0.0. But the selection of which processors to give copies is random, without any tie to the tree

structure as, for example, Johnson and Colbrook [JC92] use in their path-to-root scheme. In

our modeling, we assume that all nodes at the same tree level have the same number of copies,
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and the nodes at a level in a tree are copied to all processors before any copies are made at

a lower level. In the simulations described in Chapter 6 we will remove this level-at-a-time

copying rule and develop rules that, given a fixed, known access pattern, can determine the

optimum number of copies to be made for each B-tree node. We will also compare our random

placement method with the path-to-root scheme.

In our simulations and in our model, we also assume:

* The distribution of search keys for B-tree operations is uniform and random,

* Processors serve B-tree operations on a first-come-first-served basis,

* The result of an operation is sent back to the originating processor. Even if an operation

completes on the originating processor, the result message is still added to the end of the

local work queue.

As mentioned in the previous section, we use two different queueing models, one multi-class

and one single class. When replication is extensive and there are no bottlenecks, all routing

decisions during tree descent are modeled as giving each processor equal probability. The return

of a result, however, is always to the processor that originated the operation. Because of this

return, each operation has service demands on its "home" processor for operation startup and

Throughput Latency
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result handling that it does not have on other processors. If, in the extreme, a B-tree is fully

replicated on all processors, a B-tree lookup never has to leave its "home" processor. Because

processor service time requirements for an operation depend on which processor originates the

operation, we must use a multiple-class model. All operations that originate on a specific

processor are in the same class.

When there is little or no replication and one or more processors presents a bottleneck, we

will use a single class queueing network model. All operations will be in the same class, but

we have three types of service centers, bottleneck processors, non-bottleneck processors and

the network. The routing of operations from processor to processor is still modeled as giving

each processor equal probability, except that every operation is routed to one of the bottleneck

processors for processing of the bottleneck level. We do not explicitly model the return of

an operation to its home processor, but this has little impact on the results because overall

performance is dominated by the throughput limits of the bottleneck level.

For a given input to the model, we always apply the "high replication" model and only if we

see that a level of the tree does not have enough copies to assure participation of all processors

do we apply the "bottleneck" model. The lower throughput result of the two models is used as

the composite result.

4.3 Mean Value Analysis

Reiser and Lavenberg [Rei79b, RL80] have shown that it is possible to compute mean values

for queueing network statistics such as queue sizes, waiting times, utilizations, throughputs

and latencies for closed, multi-class queueing networks with product-form solution, given the

inputs introduced in the previous section. Reiser and Lavenberg originally presented the Mean

Value Analysis (MVA) algorithm for computing the exact solutions for product-form networks.

("Exact" refers to the mathematical solution of the equations, not the model's fit to the "real

world".) However, because of the time and space required when solving for large networks, they

and others [Bar79, CN82] have presented algorithms to approximate the solutions. Of critical

importance to our use, the MVA technique has also been extended and shown to provide

adequate solutions for some non-product-form networks, using both the exact and approximate

algorithms.



In this section we will:

* Describe the single class MVA algorithm;

* Describe MVA extensions required for multi-class systems with non-exponential service

times;

* Introduce a simplification of the exact algorithm that is computationally feasible for a

class of large, multi-class systems; and

* Describe the approximate MVA algorithm.

The notation used in this section is described as introduced and summarized in appendix

B.

4.3.1 Single-class Mean Value Analysis

MVA, in its simplest form (single class), relies on three equations, in which N is the number of

customers and K is the number of service centers:

1. Little's Law applied to the network to calculate system throughput, X(N), from the mean

residence time at each server, Rk(N).

X(N) =
k=1 Rk(N)

2. Little's Law applied to each service center to calculate the mean queue length at each

server, Qk(N), from system throughput and mean residence times.

Qk(N) = X(N)Rk(N)

3. Service center residence equations to calculate the mean residence time from the mean

service demand, Dk = VkSk (where Vk is the visit count and SK is the mean visit service

time), and mean queue length at customer arrival, Ak(N).

Rk(N) Dk delay center
Dk * (1 + Ak(N)) queueing center



The innovation of the MVA algorithm was the method for computing Ak(N), the mean

queue length at customer arrival. Reiser and Lavenberg [RL80] and Sevcik and Mitrani [SM81]

independently proved the arrival theorem that states Ak(N) = Qk(N - 1); that is, the average

number of customers seen at a service center on arrival is equal to the steady state queue

length with one customer removed from the system. Using this theorem, the exact solution to

the queueing network equations starts with a network with no customers (queue lengths are

zero) and iteratively applies the three MVA equations, calculating residence times, throughput,

and queue lengths, for the system with one task, then two tasks, up to N tasks.

Approximate solutions to the equations use a heuristic to estimate Ak(N) from Qk(N),

rather than compute it exactly from Qk(N - 1). They start with a estimate for Qk(N) and

repeatedly apply the MVA equations until the change in Qk(N) between iterations is small.

The approximate algorithm is described in more detail in section 4.3.4.

4.3.2 Extensions to Basic MVA

We must modify the three basic MVA equations to account for three differences between our

B-tree model and the basic MVA model (only the third difference applies to our use of the

single-class model):

1. Multi-class - Since the result of each B-tree operation will be returned to the originating

processor, we define each processor to have its own class. C represents the number of

classes; the customer population, N, becomes a vector N = (N 1 , N 2 ,..., Nc); and the

visit count, Vk, becomes Vc,k. We use the notation N - l, to indicate the population N

with one customer of class c removed.

2. Different mean service times per class --- Since B-tree operations have a higher service

demand on the processor where they originate than on other processors, the mean service

time per visit may be different. Mean service time, Sk, becomes Sc,k.

3. Non-exponential distribution of service times - The service demand for each step of

a B-tree operation (e.g., checking a B-tree node, preparing the message to forward the

operation to another processor, receiving a message from another processor) is modeled

as a constant, not exponentially distributed, function. The service time per visit is the



combination of these constant steps. While this will result in a non-constant distribution

for the service time per visit, the distribution will not be exponential. This change affects

the amount of service time remaining for a customer being served at arrival. We describe

the required equation change below.

In response to these three differences, the MVA equations become [Rei79a, LZGS84]:

1. Little's Law applied to the network to calculate system throughput per class from the

mean residence time per class at each server.

NcXc(N) = 1 c
k= Rck(N)

2. Little's Law applied to each service center to calculate the mean queue length per class

at each server from system throughput per class and mean residence times per class.

Qc,k(N) = Xc(N)Rc,k(N)

And, summed over all classes, the mean queue length per server:

C C

Qk(-) = E Qc,k(N) = Z Xc(N)Rc,k(N)
c=1 c=1

3. Service center residence equations to calculate the mean residence time per class from the

mean service requirement and mean queue length at arrival.

For delay centers, becomes:

Rc,k(N) = Vc,kSc,k if Nc > 0
1 0 if NC = 0

and for queueing centers, becomes:

Sc,k + i=l1 Si,k* (Qi,k(N -1)UkN -i ) +
Vc,k * ) if Nc > 0

Rc,k(N) Z =1 r),kUj,k(N - 1c)

0 if Nc = 0

where rj,k is the residual service time of the task being served at time of arrival, given by:

j, k = S,- +
2 2 Sj,k



and j2,k is the variance in the service times per visit of class j tasks at processor k. Again,

N - l, is the population N with one customer from class c removed, and Ui,k(N) is the

utilization of processor k by tasks of class i, given by Ui,k(N) = Xi(N) * Di,k-

For the single-class model with non-exponential distribution of service times, the first two

equations remain unchanged from the basic MVA equations, while the service center residence

equation for queueing centers becomes:

Rk(N) Dk * (1 + Qk(N - 1) - Uk(N - 1)) + VkrkUk(N - 1)

where
Sk Uk2rk =T +
2 2Sk

2 is the variance in the service times per visit at processor k, and processor utilization Uk(N) =

X(N) * Dk-

The major change in the appearance of the third equation results from the change to non-

exponential service time distributions. In general, residence time has three components: 1) the

service time of the arriving customer, 2) the sum of the mean service times of all customers

waiting ahead in the queue, and 3) the mean residual service time of the customer being served

at arrival. When service times are exponentially distributed, the mean residual service time

is the same as the mean service time, Si,k. The residence time is then given by Rc,k(N) =

Vc,k * (Sc,k + -•i=l Si,kQi,k(N - 1c)), the number of visits to the center times the sum of the

mean service time for the arriving customer and the mean service time for each customer in

the queue.

For non-exponential service time we must adjust the MVA treatment of residual service

time. We first remove the customer being served from the queue by subtracting the probability

that center k is serving a customer of class i, Ui,k(N - ic), from the arrival queue length. We

must then add another term for the time spent waiting on the customer in service, given by the

probability that a customer of class j is being served, Uj,k(N - 1,), times the mean residual

service time. The formula for the mean residual service time, rj,k, comes from renewal theory

(see [Cox62, Kle75]). Note that when the service time distribution is exponential, a 2,k = Sj,k,

so r3 ,k = S3,k, as expected. We delay further discussion of our use of service time variance until

section 4.4.4.



One additional comment on residual service time is required. When an operation ends up

on a leaf node on its "home" processor, it is "returned" by being added to the local work queue.

Since this arrival is not the least bit independent of the current state of the server, it is not a

random arrival that will see the average residual service time, and therefore the residual service

time must be adjusted accordingly. In this case the residual service time of the task that is just

beginning to be served at time of arrival is the same as its mean service time. We calculate a

"blended" residual service time based on the probability that an addition to the work queue is

the local return of a result.

4.3.3 Exact MVA Algorithm and Simplifications

The exact multi-class MVA algorithm, from Lazowska [LZGS84], is shown in Figure 4-4. This

algorithm is not generally useful for large systems, as the time and space requirements are

proportional to KCI-L 1 (Nc + 1). In our work, we use the exact algorithm only when there is

one customer per class. Even though this reduces the space requirements of the algorithm to

KC , it is still not computationally feasible for large systems. When the number of

processors in the system is 100 (C = 100), for example, the space requirement is still very large,

about 1033. Fortunately, our use of the MVA algorithm does not require its full flexibility and

we can simplify the computation, with no change in results, to require a constant amount of

space and time proportional to C, the number of processors.

Our simplification stems from the recognition that all our customer classes are identical,

except for the service center they consider "home". The general MVA algorithm allows visit

counts and service times to be specified separately for each class/center pair and, as a result,

must calculate and store values for residence time and queue length for ea~ch class/center pair,

for every possible distribution of n customers. By specifying that all classes (except the "home"

class) present the same load to a given processor, we need only calculate residence time and

queue length for the "home" class and a representative "other" class. Further, when we restrict

ourselves to one customer per class (Nc = 1, for all c), then from the perspective of each

processor there are only two possible distributions of n customers: either all n must be of an

"other" class, or one of the "home" class and n - 1 "other". All possible arrangements of the

"other" customers across processors are identical, so we need calculate only one representative



for k = 1 to K do Qk(0) = 0
for n = 1 to cc=1 Nc do

for each feasible population _- (nl, ... , nc) with n total customers do
begin

for c = 1 to C do
for k = 1 to K do

calculate Rc,k( )
for c = 1 to C do

calculate Xc( )
for k = 1 to K do

calculate Qc,k(7) and Qk(n)
end

Figure 4-4: Exact MVA Algorithm

Replaced by
Symbol format c = k (Home) c $ k (Other)
Gc,k Ghome Gother

Gc,k(N - c) Nk = 1 Ghome Gother,yes
Nk = 0 Not Applicable Gother,no

Figure 4-5: Replacement Rules for MVA Simplification (k # net)

arrangement. The computation can now be done in time proportional to C, using constant

space.

The general structure of the algorithm will remain the same, but the simplification changes

the intermediate values that must be computed and the equations used to compute them.

Because all vectors N of N customers are equivalent, we simplify by replacing N with N. We

use Nk to indicate whether or not the customer associated with processor k has been added

to the system. Symbols of the form Gck and Gc,k(N - lc) are simplified by explicitly stating

the possible relationships between c, k, and Nk. Figure 4-5 shows the replacements used when

the server, k, is a processor. Gother,yes indicates that the customer is at an "other" processor

that has had its own customer added to the system. Gother,no indicates that the local "home"

customer has not yet been added. Since the communication network (k = net) is modeled as a

single delay server, service time and visit count are always the same for all classes.

Specifically, we can replace throughput, Xc(N), with X(N),



replace mean service time, Sc,k, with:

Shome

Sc,k = Sother

Snet

replace mean visit count, Vc,k, with:

SVhome
Vc,k = Vother

Vnet

replace service time variance, a,k, with

2 2home
Oc,k e'other

NA

replace mean queue length, Qc,k(N), w

Qhome(N)

Qother,yes(N)

Qc,k(N) = Qother,no(N)

Qnet(N)
0

replace mean residence time, Rc,k(N),

Rhome(N)

Rother,yes(N)

Rc,k(N) = Rother,no(N)

Rnet(N)

0

and replace mean utilization, Uc,k(N),

Uhome(N)

other (N)
NA

0

if c = k

if c Z k and k # net

if k = net

if c = k

if c 5 k and k 5 net

if k = net

if c = k

if c $ k and k 5 net

if k = net

ith:

if c = k and Nc = 1

if c k, N = 1, Nk = 1 and k $net

if c $ k, Nc = 1, Nk = 0 and k $ net

if k = net and N, = 1

if Nc = 0

with:

if c = k and Nc = 1

if c $ k, Nc = 1, Nk = 1 and k $ net

if c $ k, Nc = 1, Nk = 0 and k 5 net

if No = 1 and k = net

if NC = 0

with:

if c = k and Nc = 1

if c 5 k and N, = 1 and k $ net

if k = net and Nc = 1

if Nc = 0



Uc,k(N) does not expand into Uother,yes and Uother,no because it is defined as Uc,k(N)

Xc(N) * Dc,k and none of the factors on the right side of this equation depend on whether the

operation from processor k has been added to the system.

Now, instead of providing Sc,k, Vc,k and a ,k for every class/center pair, we need provide

only eight values:

Service times Shome, Sother, and Snet

Visit counts Vhome,Vother,and Vnet

Service time variances o2ome and a 2her

The MVA equations can then be rewritten by substituting these symbols and replacing the

summation forms with explicit multiplications and additions.

Updating Throughput

The throughput of a given class c with Nc = 1 and N total operations in the system, is given

by:
1X(N)=

Rhome + (N - 1) * Rother,yes + (C - N) * Rother,no + Rnet

Total system throughput with N total operations in the system is:

N
sym(N) = Rhome + (N - 1) * Rother,yes + (C - N) * Rother,no + Rnet

Updating Mean Queue Lengths

The mean queue lengths, Qc,k(N), must be specified for four cases, Qhome, Qother,yes, Qother,no

and Qt. Since the communication network is a single delay server, Qnet does not have quite

the same interpretation as the queue length for a processor. Qnet will give the mean number of

tasks in the entire communication network at an instance.

Qhome = X(N)Rhome(N)

Qother,yes X(N)Rother,yes(N)

Qother,no = X(N)Rother,no(N)

Qnet = X(N)Rnet(N)



Updating Residence Time

With our simplification, Rc,k(N) must be specified for three cases, Rhome, Rother,yes, and

Rother,no -

For an operation arriving at its home processor, there are N - 1 operations from other

processors in the system, so Rhome is:

Rhome(N) = -V'ome*
( Shome+

Sother * (Qother,yes(N - 1)- Uother(N - 1)) * (N - 1)+
rother * Uother(N - 1) * (N - 1))

Own service time

Service of waiting customers

Residual service time

When an operation arrives at an "other" processor that has a customer in the system

(Nk = 1), the N total operations in the system are the one just arriving, the one whose home

is the current processor and N - 2 that are from other processors. Thus:

Rother,yes(N)= Vother*

( Sother+

Shome * (Qhome(N - 1) - Uhome(N - 1))+

rhome * Uhome(N - 1)+

Sother * (Qother,yes(N - 1)- Uother(N - 1)) * (N - 2)+

rother * Uother(N - 1) * (N - 2))

Own service time

Service of "home" class

Residual time of "home" class

Service for other classes

Residual time of other classes

Finally, when an operation arrives at an "other" processor that does not have a customer

in the system (NA / 1), the N - 1 other operations in the system are all from other processors:

Rother,no(N)= Vother*

( Sother+ Own service time

Sother * (Qother,no(N - 1) - Uother(N - 1)) * (N - 1)+ Service of other classes

rother * Uother(N - 1) * (N - 1)) Residual time of other classes

4.3.4 Approximate MVA Algorithm

When we allow more than one customer per class (N, > 1), the simplification described in the

previous section no longer holds. During the iteration up from zero customers, the possible dis-

tribution of n customers across the classes becomes more complicated than "n have 1 customer



for k = 1 to K do
for c = 1 to C do

Qc,k(N) = Nc/K
while (TRUE)

Approximate Qc,k(N) and Uc,k(N)
Apply MVA equations using approximations
Compare calculated Qc,k(N) with previous value, break if within 0.1%

Figure 4-6: Approximate MVA Algorithm

each in the system, the rest have no customers." Thus, not all feasible populations -i of n total

customers are equivalent.

Rather than develop a more complicated "simplification" for the equations, we use a simpli-

fied algorithm, the approximate MVA algorithm (from Lazowska [LZGS84]) shown in Figure 4-6,

and use Schweitzer's method for our approximations.

The algorithm, proposed by Schweitzer and described by Bard [Bar79, Bar80], uses the

extended MVA equations described in section 4.3.2, but proceeds by refining an estimate of

Qc,k(N) until successive values are within a specified tolerance. The critical step in this algo-

rithm is the approximation of Qi,k(N - 1c) from Qi,k(N).

The Schweitzer approximation assumes the removal of one customer from the full population

affects only the queue lengths of that customer's class, and that it reduces those queue lengths

in proportion to the original size:

Qi,k(N - 1c) = Qck(N) if =
Qi,k(N) if i c

When the service time distribution is non-exponential, we also need an approximation for

Ui,k(N - 1c), the mean utilization of a server, k, by a customer class, c. It is more difficult to

develop a good intuitive approximation for the utilization. When there is only one task per

class, the removal of the task will drop utilization to zero. When there are so many tasks per

class that a single class has 100% utilization of a processor, the removal of a single task has

no effect on utilization. Fortunately, the approximation of utilization has a minor affect on our

results. Following Schweitzer's lead, we assume that the removal of a customer from a class

affects only the utilization of that customer's class and that it reduces the class utilization in



proportion to the original utilization.

{ (N-1) Uc,k(N) if i = cUk,k(N - c) = Nc

Ui,k(N) if i $ c

We have also used a more complicated approximation algorithm due to Chandy and Neuse

[CN82] and found its results on our application not significantly different from Schweitzer's

algorithm.

4.4 B-Tree Cost Model - High Replication

To use the MVA algorithms just described to model a distributed B-tree with replicated nodes

we must provide the eight parameters mentioned in section 4.3.3: three service times, Shome,

Sother, and Snet; three visit counts, Vhome,Vother, and Vet; and two service time variances,

home and other. We calculate these values using knowledge of the configuration of the parallel

processor, the shape of the B-tree, and the costs of individual steps of the B-tree algorithm.

From the configuration of the parallel processor we take two values: the number of processors

used by the B-tree (C) and the average network delay for messages sent between processors

(netdelay).

We also need to know the shape and size of the B-tree data structure to model its dis-

tribution. We use the number of levels in the B-tree (num_levels) and the number of B-tree

nodes per level (nodes[l], where 0 < 1 < numlevels and the leaves are level 0). We model the

replication of B-tree nodes by specifying a value, stay_level, that indicates the number of levels

a B-tree operation can proceed before it may need to move to another processor. The value

0 indicates that no B-tree nodes are replicated, the value 1.75 indicates that the root level is

fully replicated and each node on the next level has, in addition to its original, copies on 75%

of the remaining processors. If staylevel = num_levels, the B-tree is fully replicated on all

processors. Figure 4-7 depicts these measures.

The basic steps of the B-tree algorithm and their respective cost measures are shown in

Figure 4-8. The general behavior of a B-tree is very simple: look at the current B-tree node to

find the correct entry and act, forwarding the B-tree operation to a child if at an upper level

node, or completing the B-tree operation if at a leaf node. Before any B-tree operation can
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Figure 4-7: B-tree Shape and Replication Parameters

start, however, the "application" thread that will generate the operation must be scheduled and

remove a prior result from the work queue. We model this with cost start_ovhd. The requesting

thread requires time start_cost to process the prior result and initiate a new B-tree operation.

After starting, the work required at a single upper level node is node_cost and the cost of

sending a message to a node on another processor is mesgovhd (this includes all overhead

costs, sending and receiving the message, work queue addition and removal, and scheduling

overhead). At a leaf node, an operation has cost leafcost, and, if necessary, sends its result

to another processor at cost result_ovhd. In section 4.4.3 we will discuss the costs of splitting

B-tree nodes and propagating node changes to other copies.

Whenever a message must be sent between processors it is delayed net_delay by the com-

munication network. If all work for an operation were done on a single processor, the service

demand on that processor would be:

Service demand = startovhd + start cost+

nodecost * (num-levels - 1)+

leaf _cost

eplicated) l

plicated 7
litional copies

eplication 46

335

Leaves 2300
-. 10-



B-Tree Step
1. Source thread executes, initiating B-tree operation
2. If B-tree root is not local, forward operation to root
While not at leaf:

3. Find child possibly containing search key
4. If child is not local, forward operation to child

When at leaf (lookup operation):
5. Find entry matching key (if any)
6. If requesting thread is not local, send result to source processor

When at leaf (insert operation):
5. Find correct entry and insert key, splitting node if necessary
6. If requesting thread is not local, send result to source processor

When at leaf (delete operation):
5. Find entry matching key (if any) and remove entry
6. If requesting thread is not local, send result to source processor

7. Restart source thread to read and process result
For any message sent between processors

Cost Measure
startcost
mesg ovhd

node-cost
mesgovhd

leafcost
result_ovhd

see section 4.4.3
result ovhd

see section 4.4.3
result-ovhd
start_ovhd
net delay

Figure 4-8: B-Tree Steps and Cost Measures

For all other processors, the service demand would be zero.

In general, however, B-tree operations will require messages between processors and en-

counter queueing delays. The service demands (Dc,k) and visit counts (Vc,k) an operation

presents to each processor can be calculated using the probability of finding a copy of the next

desired B-tree node on a specific processor. We then use the formula Sc,k = Dc,k/Vc,k to yield

mean service times. In the following sections we describe the computation of visit counts and

service demands for B-trees with only lookup operations, then discuss the implications of adding

insert and delete operations, and, finally, the computation of service time variances.

4.4.1 Calculating Visit Counts

We define a B-tree operation to have visited a processor whenever it is added to the work queue

of the processor. This includes the arrival of an operation forwarded from another processor

while descending the B-tree, and the addition of a result to the work queue of the processor

that originated the operation, regardless of whether the operation reached a leaf on the "home"

processor or another processor. An operation visits the network when the operation must be

sent to another processor while descending or returning. The visit counts are calculated from



the probabilities of these events.

Processor Visit Count

In this section, we use C to denote the number of processors and a to denote the fractional

part of stay_level, the percentage of copies made on the partially replicated level.

An operation always visits its home processor at least once, at the return of a result/start

of the next operation. For every level of the tree the probability of visiting a processor is:

Pvisit = Paway * Pmove * Phere

When there is no replication of B-tree nodes, Pawy, the probability of having been on any

other processor before this B-tree level, is:

1 C-1
Paay = 1-

C C

and Pmove, the probability that the operation must leave the processor where it is currently

located, is:
1 C-I

Pmove = 1- C C
C C

and Phere, the probability of moving to a particular processor given the operation will leave

its current processor, is:

Pher =
C-1

As the B-tree is partially replicated these probabilities change. To calculate the new prob-

abilities, we divide the B-tree levels into four sections: the fully replicated levels, the partially

replicated level, the first level below partial replication, and the remaining levels below the

partial replication. Figures 4-9 and 4-10 show the calculations of the probability of visiting

"home" and "other" processors in each sections. These calculations also make use of:

* When an operation reaches the partially replicated level, it will stay on the current pro-

cessor with probability Pstay = #ofcope, where #of copies = 1 + (C - 1) * a. It will move

to a non-home processor with probability:

1+(C- 1)*a
Pmovr = l- Pstay 1- C

C
C- 1-(C1 - a)a

C
c



Paway * Pmove * Phere = Pvisit

Start/Fully Replicated 1 1 1 = 1

Partially Replicated 0 (C-1)(1-a) =

First Non-replicated (c-C1)(1-) 1 (1)(1-)
C C C-1 C2

Remainder c C C C-1 C2

Figure 4-9: Probability of Visit (Pisit) - Home Processor

Paway * Pmove * Phere = Pvisit
Start/Fully Replicated 1 * 0 * 0 = 0

Partially Replicated 1 * C- 1( * 1 - 1-a

First Non-replicated 1 - C1 * 1 C
C C C-1 C2

Remainder c-1 c-1 1 -1
C C C-1 C

2

Figure 4-10: Probability of Visit (Pvisit) - Other Processors

* This same value, (c-1)(1--) is also the probability that the operation will be away fromC

the home processor (Paway) when it reaches the first tree level after partial replication.

* The probability Paway that the operation will not be on a specific "other" processor when

the operation encounters the first level of no replication is derived from the probability

that the operation visited the processor for the prior level:

1-a
Paway = 1 - Pvisit = 1 - C

To combine these pieces, we note that for a B-tree with numlevels and staylevel, there will

be numlevels -2- Lstaylevel] levels below the first non-replicated level and that staylevel

LstaylevelJ + a.

For the home processor, the result is:

(C-1)(1-a) C-1Vhome = 1+ (C 2 1 a) + C (num-levels - 2 - [stay_levelJ)

= 1 + CC2 (1 - a + numlevels - 2 - LstaylevelJ)
C-1

= 1 + C * (numlevels - 1 - stay-level)

When numlevels - stay_level < 1, an operation starts on the home processor and does not



visit again until the next start, so the visit count is:

Vhome = 1

For the "other" processors, the result is:

1-a C-1+a C-I
Vother = + C2 + C * (numlevels - 2 - [staylevel])

1 a C-1+a C-1
= a +  C2 + C (numlevels - 2 - [staylevel])C C C2 C2
1 C-1+a-C a C-1
= + 2 + 2 (numlevels - 2 - [staylevelJ)
1 (C- 1)(1-a) C-

= -+ C+ C * (numlevels - 2 - [staylevelJ)
1 C-12 C2

S + C2  * (1 - a + numlevels - 2 - [staylevel])
1 C-1

= + 02 * (numlevels - 1 - staylevel)C C2
Similarly, when numlevels - stay_level < 1, the visit ratio for an "other" processor is:

1
Vother = - * (numlevels - stay-level)

Note that for all values of numlevels - staylevel, Vhome + (C - 1)Vother does equal the

expected number of visits, 1 + c1' * (numlevels - staylevel).

Network Visit Count

When numlevels - staylevel > 1, the operation may possibly visit the network num-levels -

stay-level times while descending the tree and once when being sent back to the requesting

processor. For each possible visit, the probability of visiting the network is Paay = c-. Thus,

the total network visit count is:

C-1
Vnet = C * (numlevels - stay_level + 1)

When numlevels - staylevel < 1, an operation can be sent to another processor for at

most one step and then is immediately sent back to the "home" processor, so the total network

visit count is:
C-1

Vnet = 2 * - * (numlevels - stay-level)C



Note that when numlevels - stay_level = 1, both equations show the total network visit

count is:
C-1

Vnet = 2 *
C

4.4.2 Calculating Service Demand

The service demand on a processor has three components: time spent directly on the B-tree

operations (productive work); time spent forwarding and receiving B-tree operations, main-

taining the work queues, and scheduling threads (overhead); and time spent propagating B-tree

modifications to copies of B-tree nodes (update overhead).

In this section we will calculate the service demand from productive work and message

overhead. In section 4.4.3 we will calculate the service demand due to updates.

Productive Work on Home Processor

The calculation of productive work itself has three components:

* Operation startup, only on "home" processor,

* Intermediate node processing (all non-leaf nodes),

* Leaf node processing.

If numlevels - staylevel > 1, work done on "home" processor is:

Dwork,home -

startcost+

nodecost * [stay_levelJ +

nodecost* 1+*-1) +

node cost * (numlevels - [stay_levell - 1) ~ +

leaf cost/C

Start of B-tree operation

Intermediate nodes above staylevel

Intermediate nodes at stay_level

Intermediate nodes below stay_level

Leaf node

If numlevels - staylevel < 1 Work done on "home" processor is:

Dwork,home = start_cost+

nodecost * (numlevels - 1)+

leafcost * a •* c +

leaf cost * I

Start of B-tree operation

Intermediate nodes

Leaf node (copies on "home")

Leaf node (original on "home")



Note that if numlevels - staylevel = 1, both equations evaluate to:

Dwork,home = start_cost+

(numlevels - 1) * nodecost+

leaf cost/C

Productive Work on Other Processors

If numlevels - staylevel > 1, work done on an "other"

Start of B-tree operation

Intermediate nodes

Leaf node

processor is:

Dwork,other = node-cost * (numlevels - stay-level - 1) * !+ Intermediate nodes

leaf_cost * Leaf node

If numlevels - staylevel < 1, work done on an "other" processor can only be at a leaf

node:

Dwork,other = leaf-cost * (numlevels - stay-level)* -

Note that if numlevels - staylevel = 1, both equations evaluate to:

In addition, note that

Dwork =

Dwork,other = lea f-cost/C

for all values of staylevel,

Dwork,home + (C - 1) * Dwork,other

startcost -+ nodecost * (numlevels - 1) + leafcost

Message Overhead on Home Processors

The calculation of message overhead also has three components:

1. Start up overhead from adding a return result to the queue and re-scheduling the request-

ing thread.

2. Forwarding a B-tree operation to a different processor

3. Returning a B-tree operation result to a different processor



If num_levels - stay_level > 1, overhead on the "home" processor is:

Doverhead,home =

start_ovhd+

mesgovhd * (c1 )+

mesg_ovhd* 1+o -) * Paway+

mesgovhd * Paway * (numlevels - [staylevell - 1)*

Start up

Forwarding at staylevel

Below staylevel

Rest of tree

If numlevels -- staylevel < 1, overhead on the "home" processor is:

Doverhead,home = start_ovhd+

mesgovhd * (c-1)(1-0)
C

Start up

Forwarding

When num_levels - staylevel = 1, overhead on the "home" processor is:

Doverhead,home = startovhd+

mesgovhd *

Start up

Forwarding

Message Overhead on Other Processors

If num_levels - staylevel > 1, overhead on an "other" processor is:

Doverhead,other ` mesgovhd * Paway * (numlevels - stay-level - 1) * +

resultovhd -1

If numJlevels - stay_level < 1, overhead on an "other" processor can only

with returning a result, and is:

be associated

Doerhead,other = result-ovhd * (num-levels - stay_level) * I

When num-levels - staylevel = 1, overhead on an "other" processor is:

Doverhead,other = resultovhd * 1

4.4.3 Calculating Insert and Delete Costs

The model we have presented so far considers only the costs of B-tree lookup operations. In

this section we consider the additional costs due to inserts and deletes. These operations begin

just like a lookup, descending the B-tree from the anchor on the "home" processor to find the

Forwarding

Return



leaf node that may contain the key. An insert operation adds an entry into a leaf node (if the

key is not already there) and may cause a leaf node to split. When a node splits, a new entry

is inserted in the parent node, which itself may have to split. For an unreplicated B-tree node,

we must model the cost of a node insertion and a node split. When a B-tree node is replicated,

we must also model the cost of updating each of the copies of the node. If a delete operation

finds the key in the tree, it removes the entry. Since our implementation does not eliminate

empty leaf nodes, a delete has no effect on any node but the leaves. Thus, we need only model

the cost of the delete itself and the cost of updating other copies of the node.

We assign the direct modification of a leaf node the same cost, whether the modification

is an insertion or a deletion, indicated by modify_cost. For splits and updates we introduce

two new cost measures each, one for leaf nodes and one for intermediate nodes. These costs

are indicated by, leaf split cost,int_split _cost, leaf _updatecost and int_update _cost. The split

cost measures represent the splitting of the original node, creation of a new node, and the

message send and receive overhead to accomplish the creation. The update cost measures

represent the update of a single copy, including the message costs.

When a node splits, there is only work on the birth processors of the node being split and

the new node. When a copy is updated, there is work on all processors that hold copies. Despite

the fact that split and update costs are spread across many processors, we allocate the full cost

of updates to the "home" processor of an operation. The split and update costs of a single

operation are not solely borne by its "home" processor, but since all processors are "home"

for some operations, this method does distribute costs evenly. We do not change visit counts

to reflect any messages that are sent to accomplish the update as these are all done in the

background. As a result, we cannot compute the latency of the background update, only the

effect it has on system throughput and response time of the lookup operations.

In our queueing theory model and in our simulations, we control the mix of operations

with two variables: mod-pct, the percentage of operations that are modifications, and del pct,

the percentage of modify operations that are deletes. Thus, the probability of each type of

operation is:

* Plookup = 1 - modpct

* Pinsert = mod_pct * (1 - delpct)



* Pdelete = mod pct * del-pct

We use the work of Johnson and Shasha [JS89] to convert the operation mix into the

expected number of node modifications and node splits per operation. Johnson and Shasha

suggest that the probability of splitting a leaf node on an insert, given only inserts and deletes,

is:

Peplit,leaf = (1 - 2 * del pct)/((1 - delpct) * branch * spaceutil)

where branch is the branch factor of the B-tree and space_util is the average utilization of

the B-tree nodes. This equation has intuitive justification. When del.pct = .5, Psplit,teai = 0,

suggesting that when we insert and delete at the same rate, no leaf should ever split. When

delpct = 0, PspIt,t~,,f = 1/(branch * space-util), which suggests that a node must split every

branch * spaceutil inserts to keep the space utilization constant. Johnson and Shasha, as well

as others, have shown that space utilization will be roughly constant at approximately 70%,

dropping to approximately 40% when inserts and deletes are equally likely.

Since we do not merge empty nodes, the probability of a deletion in an upper level node is

zero, and thus the probability of a split on an insertion in an upper level node is:

Psplit,upper = 1/(branch * spaceutil)

We define Pmod(i) to be the probability of an operation modifying a node at level i (leaves

are level 0) and plipt(i) to be the probability of an operation causing a split at level i. Since

all insert and deletes modify a leaf node, we know that Pmod(O) = mod-pct. Above the leaf, the

rate of inserts is the rate of splits at the next lower level, Pmod(i) = Psplit(i - 1). So,

mod(i) = mod.pct for i = 0

modpct * (1 - delpct) * Psplit,leaf * P tupper for i > 0

Psptit(i) = mod _pct * (1 - delpct) * Psplit,leaf * Psplit,upper

The cost of updating a node is proportional to the number of copies of the node (given by

Copies(i)), so the average cost per operation due to updates is:

levels-1

Dmod = 1 Updatecost(i) * Pmod(i)Copies(i)
i=0



where

C- 1 if i > [(numlevels - staylevel)]

Copies(i) = 0 if i < [(numlevels - stay_level)]
(C - 1) frac(staylevel) otherwise

Update-cost(i) = { leaf_update_cost if i = 0

intupdate_cost if i > 0

and where frac(x) is the fractional part of x, e.g., frac(1.75) = .75.

Similarly, the cost of splitting a node is:

Dp= evels-1 Splitcost(i) Pspuit(i)+ Split

zlevels-1 Updatecost * P,,p;t(i)Copies(i) Make new copies

where

Split.cost(i) = leaf split_cost if i = 0

intsplitcost if i > 0

The total cost associated with insert and delete operations is:

Dupdate = Dmod + Dsplit

4.4.4 Calculating Service Time Variances

We do not actually calculate variance, but run the model assuming both fixed and exponential

distributions of service time. When service time is fixed, the variance is zero. When service

time is exponentially distributed, the variance is the square of the mean service time, S2.

4.5 B-Tree Cost Model - Bottleneck

When replication is relatively low, we use a single class model to study the behavior of the

bottleneck. For the single class model we need only calculate the total service demands for

each of the three types of service centers, Dbottleneck, Dother and Dnet. Earlier, we described the

MVA formula for residence time as:

Rk(N) - Dk * (1 + Qk(N - 1) - Uk(N -. 1)) + VkrkUk(N - 1)



where
Sk ak2rk = + --
2 2Sk

a0 is the variance in the service times per visit at processor k, and processor utilization Uk(N) =

X(N) * Dk. This suggests that we need visit counts, service times, and variances for the three

service centers. However, since we restrict ourselves to fixed and exponential service time

distributions, we need only Dk for the term VkrkUk(N - 1) reduces to:

Vk -Uk(N - 1)= -= Uk(N - 1) Fixed Distribution
VkrkUk(N - 1) - 2

Vk * (-S + S * Uk(N - 1) = DkUk(N - 1) Exponential Distribution

The first step to calculating the performance of a distributed B-tree experiencing a bottle-

neck is identification of the position and size of the bottleneck. When increasing replication

from the top down, completely replicating one level of the B-tree before creating any copies at

any lower level, a bottleneck will occur either at the level being replicated or at the level just

below it. For example, when no nodes are replicated, the root node is a bottleneck. But once

the number of copies of the root exceeds the number of copies of nodes at the next level, that

next level becomes the bottleneck. The bottleneck level is the tree level that has the smallest

total number of original nodes and copies. If the size of the level with the smallest total number

of nodes and copies is greater than the number of processors, the system is assumed not to have

a bottleneck.

For simplicity, we assume that all tree nodes and copies of tree nodes at the bottleneck level

have been placed on different processors and that each is experiencing an equal load. Thus, if

the bottleneck level has 7 B-tree nodes and has 3 additional copies of each node, 28 processors

form the bottleneck. Of course, using random placement of copies there is nothing to guarantee

that the 28 total copies will all be on different processors. If they are not, the bottleneck

will be formed on fewer processors and the load might not be evenly distributed across the

processors. As a result, our bottleneck estimates will generally appear slightly higher than

simulation results.

When the location and size of the bottleneck has been determined, the service demands

can be calculated. As is shown in Figure 4-11, the total operation service demand on the

processors can be broken into three components: service demand before the bottleneck level,

service time at the bottleneck level, and service time below the bottleneck level. The first
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Figure 4-11: Partially Replicated B-tree with Bottleneck

and third components are divided equally across all processors, but the second component is

allocated only to the bottleneck processors. With total number of processors C and the size of

the bottleneck B:

Dbottleneck = (startup + prior-cost + lower_cost)/C + bottlecost/B

Dother = (startup + priorcost + lower_cost)/C

Dnet = net_cost

Two elements of cost have multiple components:

net_cost = net_cost, + net_cost 2 + netcost 3 + net-cost4

prior_cos

The service demands prior to the

startup

t = prior_costl + priorcost2

bottleneck level are:

= start_cost + start_ovhd

66



(C - 1)(1 - a)
priorcostl = proctime * (priorlevels) + ovhd_time *

C

netcost1 = nettime a (C 1 a)

If the bottleneck is below the level being replicated, there is an additional prior cost for the

possible forward to the bottleneck level:

C-1
priorcost2 = ovhdtime *

C

C-1
netcost2 = nettime *

C

At the bottleneck level itself, there are two possibilities:

bottlecost = procltime + ovhdtime * (C - 1)/C

last_time + returnovhd * (C-1)(1-a)

Bottleneck at intermediate level

Bottleneck at leaves

The network cost that is associated with leaving the bottleneck level is:

net-time * (C - 1)/C
net cost3 =

net-time* ( (

The service demand below the bottleneck is:

lowercost

Bottleneck at intermediate level

Bottleneck at leaves

C-1
= (proctime + ovhdtime * ) • (levels_below - 1)

C-1

+lasttime + return_ovhd *
C

C-1
netcost4 = netetime * --C (levelsbelow)

4.6 Summary

In this chapter we have presented:

* An explanation of the queueing network theory technique, mean value analysis, we use in

this thesis,

* A modification of the MVA algorithms to apply them efficiently to our problem,



* Two models of B-tree behavior and operation cost to predict B-tree performance using

MVA techniques.

In the next chapter we compare the results of our queueing network model with the results of

simulation and begin to discuss the implications for using replication with distributed B-trees.



Chapter 5

Queueing Model Validation

We validate our queueing network model by comparing the results of B-tree simulations with

the predictions of the queueing theory model. The Proteus simulator and B-tree code were

modified to measure and record the time spent in the phases of a B-tree operation that were

described in Chapter 4. Every simulation produces the average and standard deviation for each

phase, as well as the latency of individual B-tree operations and the total system throughput.

The measured costs of operation phases can be fed into our queueing theory model to produce

estimates of latency and throughput for comparison.

In this section we will demonstrate the accuracy of the queueing network model by com-

paring simulation and queueing model results for a variety of system configurations. We first

present a "base case", then variations on the base by changing seven characteristics of the

system:

1. The tree size, given by the number of entries and the branching factor,

2. The number of processors,

3. Message sending/receiving overhead,

4. Network transmission delay,

5. Application turn-around time between operations,

6. The number of operations active in the system,



7. The operation mix (lookups/inserts/deletes).

The simulations in this section are run in two parts. First, a B-tree is constructed with no

replication. Then replication is gradually increased, fully replicating a level of the tree before

doing any partial replication of a lower level. Each time replication is increased, the processors

are instructed to initiate a series of B-tree operations, measuring system performance (average

system throughput and average operation latency) and the cost of the elements of processing

along the way. Each experiment is repeated 5 times, with a different seed for the random

number generator, to produce variations in tree layout and access pattern. (For example, in

most of our simulations the level below the root consists of seven nodes, but in some simulations

this level consists of six or eight nodes.)

After simulations are completed, the observed costs for the elements of B-tree processing

are fed into the queueing theory model to produce predictions for performance. We run the

model assuming both fixed service time per visit and an exponential distribution. For each

test case we provide a graph of throughput vs. replication for the experimental mean of the

simulations and the results of the fixed and exponential distribution models. Because the trees

created by the 5 test runs vary slightly in size and shape, we plot the mean of the experimental

throughputs versus the mean of the replications for the series of operations performed using

the same number of copies per node. For example, we group together the 5 results made with

100 copies of the root, 6 copies of each node one level below the root, and 1 copy (the original)

of all other nodes. For the test cases where comparison with the base case is relevant, we also

include on the graph the results of the queueing network model for the base case using a fixed

service time distribution.

5.1 Base Case Simulation

In the base case we use a Proteus model of a 128 processor N-ary K-cube. We use 100 of the

processors for the simulation. The B-tree structure is defined to have a branch factor of 10,

and we perform 2400 insert operations. This produces a tree of depth 4, with each B-tree node

approximately 70% full. During simulation, the replication at each tree level increases the total

copies of a node (original plus copies) in the following progression: 1, 2, 3, 5, 10, 25, 50, 75, 90,

95, 100. The measured costs of each phase of B-tree lookups are shown in figure 5-1.



Phase Cost
startcost 273
startovhd 47
nodecost 89
leaf_ cost 89
result._ovhd 506
mesgovhd 508
net delay 17
modify cost 0
leafsplit cost 0
intsplit _cost 0
leafupdate_cost 0
int update cost 0

Figure 5-1: Baseline Costs

Figure 5-2 shows the throughput predicted by the queueing model results and observed in

the simulations. The queueing model results closely match the simulated results. The shape of

the graphs for the base case is common to other test cases. The sharp transitions that occur

at about 1,000 and 6,000 copies mark the full replication of one level and start of replication

of the next lower level. At such transitions the slope of the curve decreases, indicating that

the marginal increase in throughput per copy added is decreasing. As replication is increased

within each of the lowest two levels of the tree, figure 5-2 shows that the marginal value of an

additional copy is increasing, a phenomenon that will be discussed in the next chapter.

Figure 5-3 shows the base case results, expanding the area of low replication. The left side

clearly shows the existence of a bottleneck as the root is replicated. Throughput increases

only marginally as replication increases from less than 10 to just below 100 additional nodes.

When replication is started at the second level of the B-tree, over 100 copies, throughput

increases rapidly. Figure 5-3 also shows that throughput from the simulations remains close

to the throughput predicted by the model. The greatest discrepancy arises at low replication,

between 10 and 100 additional nodes. Our model assumes that the bottleneck B-tree nodes are

each on a separate processor. In the simulations that differ from the model, two or more nodes

end up being placed on the same processor. The size of the bottleneck then decreases (and the

demand on each bottleneck processor increases), yielding the lower throughput shown by the

simulation results.
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Figure 5-4 shows the messages of both previous graphs on one graph by using a log scale

on the x-axis. The transitions between tree levels are clearly visible at around 100, 800, and

6,000 copies. We will use a log scale to present most of the results in this chapter.

Figure 5-5 shows the size of the 95% confidence interval for the mean (given by 1.96 * ),

as a percentage of the experimental mean. This is almost 18% when only 4 copies of the

root have been made. At this low level of replication, the results are dependent on the exact

layout of nodes that form the bottleneck. If two or more nodes from the level below the root

happen to be on the same processor, throughput will be much lower than if they are all on

different processors. As replication is increased, the confidence interval becomes much smaller

as a percent of the experimental mean - around 6% during replication of the level below the

root (where we are still somewhat dependent on the exact tree layout), and less than 1% for

the lower two levels of the tree. This pattern is characteristic of all simulations in this chapter.

5.2 Changing Tree Size

We next compare simulation and queueing model results for:
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* Branch factor of 10, B-tree with 10,000 entries,

* Branch factor of 30, B-tree with 10,000 entries

Figure 5-6 shows the results for the tree with a branch factor of 10 and 10,000 entries. This

configuration creates a tree of 5 levels with sizes averaging (from the root down) 1, 4, 28, 186

and 1,345 nodes. The model closely matches the results of the simulations.

Figure 5-7 shows the results for the tree with a branch factor of 30. This configuration

creates a tree of 3 levels with sizes averaging (from the root down) 1, 19, and 453 nodes. The

sudden increase in predicted throughput at just over 400 copies is not a transition between tree

levels, but is a result of a shift from use of the bottleneck model to the high replication model.

The x-axes of figure 5-6 and figure 5-7 are not directly comparable because the B-tree nodes

are of different size, but we can do a rough comparison between a given replication when the

branch factor is 30 with three times that replication when the branch factor is 10. At 200 copies,

BF=30 yields a throughput of around 2.5 * 10- 2 , while at 600 copies, BF=10 yields 2.0 * 10- 2 .

At 1000 copies, BF=30 yields a throughput of around 3.0 * 10- 2, while at 3000 copies, BF=10
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yields 2.5 * 10-2. The shallower broader tree provides a higher throughput because it requires

fewer remote messages.

5.3 Changing Number of Processors

We compare simulation results and our queueing model for:

* 10 processors,

* 200 processors

With 10 processors, the total number of copies for each node is increased in the following

progression: 1, 2, 3, 5, 8, 10. Figure 5-8 shows the results. Observed simulation throughput

is very closely matched by the prediction of the model using fixed service times. With 10

processors there is no obvious flattening of the throughput curve. The "bottleneck" presented

by the 7 tree nodes below the root does not significantly restrict the growth in throughput as

the root is fully replicated.
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In comparison with the base case, the system throughput with 10 processors is significantly

lower because there are fewer operations active in the system at a time.

Figure 5-9 shows the results for a network of 200 processors. The increase in performance

that occurs when the leaves are first replicated (around 10,000 copies) indicates that the unrepli-

cated leaf level is a bottleneck. In chapter 2 we introduced the formula, place(m, P), indicating

the expected number of processors that m objects will cover when randomly placed across P

total processors. Applying this formula to this situation, place(343, 200) = 164.16 processors,

which verifies that we do expect the unreplicated leaf level to be a bottleneck.

5.4 Changing Message Overhead

The base case value for message overhead, approximately 508, was drawn from the actual

observed cost of our implementation. To vary the cost of this element we use Proteus' ability

to directly manipulate cycle counts.

We compare simulation results and our queueing model for:
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* Base mesgovhd + 500

* Base mesgovhd+ 2000

Figure 5-10 shows the throughput from simulations and the queueing model for the case

where message overhead is the base + 500. Again, the model closely matches the results of

simulation. In comparison to the base case, throughput is substantially lower for low replication,

but becomes equal when the tree is fully replicated. This is expected, for at full replication no

remote messages need be sent.

Figure 5-11 shows the throughput from simulations and the queueing model for the case

where message overhead is the base + 2000. Note that as message overhead cost increases, the

throughput for full replication remains roughly the same, but that the throughput for less than

full replication is significantly lower than the base case, as expected.
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5.5 Changing Network Delay

Our base value for network delay came from Proteus' model of the J-Machine network. This

model assumes a wire delay of 1 unit per hop and a switch delay of 1 unit. We alter that model

and compare simulation and our queueing model for wire delay of 15 and switch delay = 15.

The results are shown in figure 5-12. The overall costs of network transmission rises from 17 in

the base case to 216, but remains relatively small in comparison to other costs. The implication

for multi-processor design is that the ability to send and receive messages with low processor

overhead is relatively more important than low network transmission delay. Network delays

and message send/receive overhead both contribute to longer latency, but message overhead

also uses a significant amount of a resource in high demand - processing time.

5.6 Changing Start/End Costs

In our simulations a small amount of time is spent between the completion of one operation and

the initiation of a new one to update and record performance statistics. This period of time

_1
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Figure 5-12: Throughput vs. Replication - Wire delay = 15, Switch delay = 15

represents the "think" time of an application program between B-tree operations. We again

use Proteus' ability to manipulate cycle counts to increase this "think" time. We compare

simulation and queueing model for:

* Base start_cost + 500

* Base startcost + 2000

Figures 5-13 and 5-14 show that the results of the queueing model closely match simulated

results in both cases. Throughput stays lower than the base case even with full replication

because we have increased the minimum amount of work required for every operation.

5.7 Changing Operations per Processor

All prior examples allowed each processor to have one active operation in the system at a

time. By increasing the number of active operations per processor (in queueing network theory

terminology: increasing the number of tasks per class) we would expect system throughput to

increase at points where it is not restricted by a fully utilized bottleneck.
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Figure 5-15: Throughput vs. Replication - 2 Operations Per Processor

We compare simulation and queueing model for:

* 2 operations per processor

* 4 operations per processor

Figures 5-15 and 5-16 show the results for 2 and 4 operations, respectively. Note that at

very low replication, the system throughput is very similar to the base case - the capacity

of the bottleneck processors places a hard upper bound on throughput. As the bottleneck

is distributed across more processors, the addition of extra tasks to the system does increase

system throughput. When the tree is fully replicated there is no net throughput gain - every

processor will be fully utilized, forming a "bottleneck" of sorts.

Although throughput can be increased by adding operations to the system, in these cases

it comes at the cost of latency. Figure 5-17 compares latency for the system with 1 task per

processor and with 4 tasks per processor, showing that latency increases, roughly 3 to 4 times

when 4 operations per processor are allowed. Figure 5-18 shows that as replication increases,

the ratio approaches 4, as one would expect.
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5.8 Changing Operation Mix

When the mix of B-tree operations is changed from exclusively lookups to include insertions

and deletions, we expect to see system throughput decrease. Modifications to the tree will incur

costs to change the contents of tree nodes, create new tree nodes, and update copies of changed

nodes.

We compare simulation and queueing model for three scenarios:

* 95% lookups, 4% inserts, 1% deletes -(95/4/1)

* 70% lookups, 20% inserts, 10% deletes - (70/20/10)

* 50% lookups, 25% inserts, 25% deletes - (50/25/25)

We use the format x/y/z to refer to an operation mix with x% lookups, y% insertions, and z%

deletions.

When the operation mix is changed to allow insertions and deletions, the size of the B-tree

can change during the simulation. While our queueing network model accounts for the costs of



o
0
I..
o

CLa)
O
CL

a)
0.

1600.I-

1 10 100 1000 10000
Replication (Nodes)

- Fixed
"" Exponential
..."." Base Case
""o Experimental Mean

Figure 5-19: Throughput vs. Replication - Operation Mix 95/4/1

B-tree node splits and updates, it does not change the tree size. To compare the queueing model

with the simulation, we use the size of the tree after the simulation has completed. Figure 5-19

shows the results for the 95/4/1 case. Throughput is very close to that of the base case while

the top two levels of the tree are replicated. It is clear that throughput starts to decrease below

that of the base case when replication starts at the third level.

Figure 5-20 shows the results for the 70/20/10 case. In this case performance is lower than

that of the base case as the second level of the tree is replicated. It is very noticeable that, even

though throughput is generally dropping after replication starts at the second level, the removal

of the bottleneck as replication starts at the third level produces an increase in throughput.

For the 50/25/25 case, we first note that Johnson and Shasha [JS89] showed that the

expected leaf utilization will drop to approximately 40%, not the 70% that generally holds

when inserts are more prevalent than deletes. Even if we are making no net additions to the

tree, a significant number of nodes will be added as the tree adjusts from 70% leaf utilization

from tree construction to the new steady state 40% leaf utilization. We are interested in the

steady state behavior, not the transition, so to reshape the tree appropriately we have run
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40,000 modifications at the equal mix before starting the measured simulation. Figure 5-21

shows a noticeable discrepancy between the results of simulation and the model in the range

between 2,000 and 7,000 copies. This discrepancy is caused by a slight mismatch between the

model and our simulation. If the balance of inserts and deletes is truly 50/50, the model says

there should be no net growth in the leaves and therefore no insertions above the leaf level. This

was not the the case in the simulation, there continued to be some insertions in the level above

the leaves. In figure 5-22 we use the model results when the insert/delete balance is changed

from 50/50 to 51/49. This models a small amount of change in the level above the leaves and

produces a close match with the observed results of simulation.

5.9 Summary

In this chapter we have used a variety of simulations on relatively small trees (100 processors,

< 10,000 entries) to validate our queueing network model. This model has been shown to

accurately model the behavior of distributed B-trees built with random placement of tree nodes

and copies, when the B-tree operations use a uniform distribution of search keys.

i
· I : ii Ii

i

: : r

fl

:. 'i I :

i;;
. :ii

· · 4

"j~i]:: ii



20

Replication (Nodes)
-Fixed

", Exponential
."""'" Base Case
"" Experimental Mean

Figure 5-21: Throughput vs. Replication - Operation Mix 50/25/25

100 1000
Replication (Nodes)

10000

- Fixed
"" Exponential

'"."'". Base Case
"" Experimental Mean

Figure 5-22: Throughput vs. Replication - Operation Mix 50/25/25 (Modified)



The use of the queueing network model and simulations has also clearly indicated three key

results from our study of replication:

* Replication of B-tree nodes can increase throughput and there is a tradeoff between space

used for replication and throughput.

* Replicating as we have done so far (from the top down) creates bottlenecks to throughput.

* The inclusion of tree modifying operations can reduce throughput.

We explore these results in more detail in the next chapter.



Chapter 6

Static Replication

The results presented in the previous chapter to validate our queueing network model demon-

strate that replication of B-tree nodes can improve system throughput. They also clearly

indicate there is a tradeoff between the use of space for replication and throughput. Thus, it

is not adequate to suggest a single pattern for replication based only on the tree size and the

number of processors. Instead we must be able to suggest how best to replicate tree nodes given

an amount of space available to use and be able to describe the potential value or cost of using

more or less space for replication.

This problem is challenging because our results also indicate that the value of an additional

copy of a B-tree node is not always the same for all nodes. In particular, three characteristics

of replication and throughput are observable:

1. A bottleneck created by one level of the tree can severely restrict throughput, limiting

the value of additional replication of other levels,

2. The marginal value of additional replication tends to decrease as nodes lower in the tree

are replicated (although within a level the marginal value can increase as more copies are

made),

3. When inserts and deletes are included in the operation mix, replication of lower levels of

the tree can actually reduce throughput.

In this chapter we explore these characteristics to develop rules for the use of replication to

maximize throughput. We first describe the rules for replication assuming lookup operations



only. We next augment these rules to include insert and delete operations. We then remove the

assumption that the distribution of search keys is uniform across the key space and demonstrate

the potential need for dynamic control of replication. We conclude the chapter by comparing the

performance of distributed B-trees using these rules for replication with an alternate placement

method, Johnson and Colbrook's path-to-root.

6.1 Rules for Replication - Lookup Only

Every B-tree lookup requires (on average) the same amount of time for what we earlier termed

"productive work" - each operation must visit one node at each level of the tree. If the latencies

of two lookups are different, there are two possible sources for the difference: remote message

costs and queueing delays. Remote message costs increase latency as overhead service time is

incurred for sending and receiving messages and for the actual transmission of the messages over

the communication network. Queueing delays increase latency as an operation waits its turn for

service at a processor. Replication of B-tree nodes serves to reduce latency from both sources.

However, minimizing queueing delays does not minimize the number of remote messages and

vice versa. In this section we develop the rules for the use of replication; first we propose and

describe two basic rules for replicating B-tree nodes, aimed at reducing remote messages and

queueing delays, respectively:

* Fully replicate the most frequently used node before making additional copies of any other

node.

* Add copies to balance the capacity of each tree level and eliminate bottlenecks,

We develop each of these rules in turn and then propose a hybrid of the two rules and show

that it produces results that closely match the best results of of these approaches.

6.1.1 Rule One - Replicate Most Frequently Accessed Nodes

The first rule is the rule applied in all simulations shown so far. This rule seeks to reduce

latency (and increase throughput) by reducing the number of remote messages required to

complete a B-tree operation. The number of remote messages will be reduced most by making

an additional copy of the most frequently used tree node that is not fully replicated. We first



explain why that is true and then introduce a graph of suggested replication versus relative

frequency of access that characterizes the rule.

Given a uniform distribution of keys for lookup operations, the relative frequency of access

to a B-tree node over a large number of operations is the same for all nodes at the same level. If

we define the root node to have relative frequency of access 1 (it is accessed for every operation),

the relative frequency of access for nodes at other levels is bra 1 nchctordepth where depth is the

distance from the root node. As we expect, a node higher in the tree is used more often than

a node lower in the tree.

For a B-tree node with r total copies placed randomly on a system with C processors, the

probability of having to forward a message remotely to reach a copy is 1 - 1. The relative

rate of remote access is then the product, branchfactordepth * (1 - (). The addition of another

copy of a B-tree node reduces the total rate of remote access by an amount proportional to

branchactordepth Thus, when the access pattern is uniform, the number of messages is

always reduced more by adding a copy higher in the tree than it is by adding a copy lower in

the tree.

Figure 6-1 shows how the number of remote messages (and thus their frequency) decreases

with increasing replication for our base case simulation. It graphically demonstrates that repli-

cation from the top down is the most efficient way to reduce remote messages. With no repli-

cation, the total number of remote messages required for the 5, 000 lookups was nearly 25, 000

(visible in figure 6-2 using a log scale for the x-axis). With full replication of the root, the num-

ber drops to about 20, 000; replication of the level below the root further reduces the number

to about 15, 000. For each of the top three levels of this four level tree, full replication removes

approximately 20% of the remote messages (60% total for the three levels), with replication of

the leaves removing the remaining 40%. When all higher levels are fully replicated, replication

of the leaves eliminates twice as many messages as replication of each of the other levels does

because it eliminates both a forwarding message and the return to the home processor. The

slope of the curve in figure 6-1 represents the reduction of remote message frequency per ad-

ditional copy. As predicted, this is constant within each level and decreases as the level being

replicated is farther below the root.

This rule for replication yields a graph of suggested replication versus relative frequency of
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Figure 6-3: Suggested Copies versus Relative Access Frequency - Rule One

access of the form shown in figure 6-3. The graph shows the number of copies (including the

original) that the rule suggests be made for a specified relative frequency of access, where the

root node has a relative frequency of access of 1.0. All nodes with relative access frequency

above a threshold are fully replicated. Nodes with relative access frequency below the threshold

are not replicated at all. Nodes with relative frequency of access equal to the threshold may be

partially replicated. Changing the threshold frequency will change the amount of space used -

a lower threshold uses more space, while a higher threshold will use less space.

6.1.2 Rule Two - Balance Capacity of B-Tree Levels

The existence of bottleneck levels in our simulations indicates that our first rule is insufficient.

The second rule seeks to reduce latency by eliminating severe queueing delays that result from

capacity bottlenecks in the tree. This rule makes intuitive sense if the B-tree is thought of as a

pipeline with each tree level a stage of the pipe. Every tree operation must pass through each

level of the tree, so processing capacity would intuitively be best allocated if given equally to

all tree levels. Any level with less processing capacity than the others will be a bottleneck and

· __



limit throughput.

The processing capacity of a tree level can be roughly thought of as the number of processors

that hold an original or copy of a node belonging to the level. In an unreplicated tree, for

example, the leaves will likely be spread across all processors while the root is on only one

processor - the leaf level has more processing capacity than the root. As we replicate the root,

we eliminate the root bottleneck by increasing the processing capacity for the root, and thereby

increase throughput.

The replication rule we have used so far explicitly ignores this capacity balance rule. In

our queueing network model and simulations presented so far we have been adding copies from

the top down; we make no copies at a tree level until all higher levels are fully replicated.

The results show graphic evidence of bottlenecks. Graphs of throughput versus replication

frequently have flat spots where the throughput does not increase (or the rate of increase drops

significantly) as replication increases. As replication continues to increase, throughput suddenly

jumps dramatically and then continues with a gradual increase until, perhaps, it hits another

flat spot. Figure 6-4 shows again the results for our base case simulation, expanding on the

low end of replication up to initial replication of the third level of the tree. Between the point

of 7 or 8 copies of the root and the first additional copies of the nodes below the root (at

approximately 100 copies), throughput increases very little. In that range system throughput

is limited by the processing capacity of the second level in the tree. The phenomenon occurs

again, to a less dramatic degree, between roughly 150 copies and 800 copies. During that range

the third level of the tree is forming a bottleneck.

By balancing capacity, these flat spots can be avoided. Figure 6-5 shows the results of

allowing replication of the second level before fully replicating the root. In these experiments,

we partially replicated the root, then repeatedly added an additional copy of each node below

the root and ran a simulation, stopping at 10 copies of each node. The four new curves show

the results for 10, 30, 50 and 70 total copies of the root. They illustrate the need to add copies

to balance capacity across levels. First, they demonstrate clearly that the level below the root

was limiting throughput, for adding a copy of every node at that level yields a large increase in

throughput. Second, they show that as the level below the root is replicated, the capacity of

the root level can once again become a bottleneck. When there are only 10 copies of the root,
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for example, throughput increases as the first copy is made of each node directly below the root,

but then stays roughly flat as additional copies are made. The 10 processors holding the root

have once again become the bottleneck. When more copies of the root are made, throughput

once again increases. Thus, replication should be used to balance the capacity of the tree levels

for as long as the potential for bottlenecks exists.

We have said that processing capacity can be roughly thought of as the number of processors

that hold an original or copy of a B-tree node. If r copies of each of n nodes are made they

will not, however, cover r * n processors. Since placement for each node is independent of

the other nodes, actual processor coverage is significantly less. When r total copies of a node

are distributed across C processors, each processor has probability 1 of holding a copy and

probability 1 - 1 of not holding a copy. If we make r total copies of each of n B-tree nodes,

each processor has probability (1 - T)n of not holding a copy of any of the nodes. Thus, when

r total copies are made of each of n nodes, the expected number of processors holding one or

more copies, the processing capacity for the level, is:

h
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Capacity = C * (1 -(1 - )

The graph of capacity versus copies per node for n = 7 and C = 100 is shown in figure

6-6. Note that when 15 copies have been made of each node, 105 total, they will cover, on

average, only 66 processors. When 30 copies have been made of each node, making 210 total,

88 processors will hold one or more nodes. More than 60 copies of each node are required to

result in one or more copies on 99 processors.

If we call y the fraction of the processors C that we wish to hold one or more copies, then:

r

and, solving for r, the number of copies needed to cover y * C processors when there are n

objects:

r = C * (1 -(1- 7))

The second rule is characterized by this equation for r and the resulting graphs, shown in

figure 6-7, of the suggested replication, r, versus relative frequency of access for several values
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of -y. Relative frequency of access is equivalent to 1/n for every node on a level with n nodes.

To use this "capacity balancing" rule, we would pick a value for 7 that would use the amount of

space available for replication, then use the equation for r to determine how many total copies

should be made of each node. Increasing 7 will make more copies and use more space, reducing

7 will use less space. Of course, each node has a minimum of 1 copy, the original.

This rule, add copies to balance the capacity of B-tree levels, is also found in other ap-

proaches to distributed B-trees. The pipelined approach to B-trees presented by Colbrook et

al. in [CBDW91] assures equal processing capacity per tree level, by dedicating a single pro-

cessor to each level. Of course, this method cannot utilize more processors than there are tree

levels. Wang's method creates the same number of nodes per level, which creates roughly the

same capacity per level. Johnson and Colbrook's Path-to-root scheme enforces the balanced

capacity rule as well. For every leaf node on a processor, the processor also holds every inter-

mediate node on the path up to the root. Thus every processor that holds any leaf node also

holds at least one node from each level, assuring, in our rough sense, equal processing capacity

per level. In fact, the formula for the number of copies for random path-to-root given in section
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Figure 6-7: Suggested Copies versus Relative Access Frequency - Rule Two

2.2.1 is very similar to the formula for this rule. When we equate the two and solve for -y we

find they use the same amount of space per level when 7 = 1 - (1 - _)#leaves, that is, when

the target capacity per level is equal to the capacity presented by the randomly placed leaves.

#leaves 1
place( , C) = C *(1- (1 - 7)n)

n

(1- )#leaves = 1

i ))#leaves

7= 1 - 1 - 1 )#eaves

6.1.3 Hybrid Rule

Figure 6-8 shows throughput versus replication for the capacity balancing and top down repli-

cation rules. Neither rule is consistently better. The capacity balancing rule produces better

results at low replication because it eliminates the bottleneck flat spots, but it yields poorer

results as the amount of space used for replication increases because it makes more copies of
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Figure 6-8: Throughput versus Replication - Rules One and Two

lower level nodes than are needed. The results of experimentation suggest that performance is

improved by creating a hybrid of the two rules - adding some copies to lower levels in the tree

to reduce bottlenecks, but providing more processing capacity for higher levels to also reduce

remote messages.

To demonstrate the value of a hybrid rule we create a rule that meets this description - the

rule is illustrative, it is not intended to be the theoretically optimal rule. This hybrid rule is

based on the capacity balancing rule. We first calculate the replication recommended by that

rule. If it is above a threshold (60%), we fully replicate the node. If the recommendation is

below a second threshold (30%) we cut the replication half. When reducing the replication,

however, we try to avoid reintroducing bottlenecks by never replicating less than the amount

required to provide 90% of the capacity requested in the initial application of the capacity

balancing rule. Mathematically, we first calculate r' using the equation for r given by the



capacity balancing rule for a given y, then calculate r as follows:

C if r' > .6 C

r = r~ if .3C < r' < .6 * C

ma( r") if r' < .3 C

where r" = C * (1 - (1 - .9* 7) ), the number of copies necessary to provide 90% of the desired

capacity. Figure 6-9 shows, for this hybrid rule and our two previous rules, a representative

graph of the number of copies per node, r, versus relative frequency of access. The graph for

the hybrid rule has the desired shape - compared to the capacity balancing rule it provides

more copies for frequently used nodes high in the tree, and fewer copies for less frequently used

nodes lower in the tree.

Figure 6-10 shows the results of applying the hybrid rule, compared to the results of our

two previous rules. With a few exceptions, the hybrid results generally track the maximum of

the two other models - the hybrid results are similar to the capacity balancing results for low

replication, and similar to the top down results for higher replication.

Using this (or similar) hybrid rule we can, for a given tree, determine how to use replication

to either produce a desired level of throughput, or maximize throughput for a given amount of

available space.

6.1.4 Additional Comments on Throughput and Utilization

Another characteristic of note on the graphs of throughput versus replication is the slight

upward curve in the graph while increasing replication within each level. This is most noticeable

as the leaves are replicated. Since remote messages are dropping approximately linearly with

increasing replication, we might expect throughput to be increasing linearly as each level is

replicated. The slight upward curve occurs because message sending and receiving overheads

are not the only barrier to higher throughput - queueing delays are also dropping.

As tasks are independently routed between processors, queues will temporarily form at some

processors while other processors may be temporarily idle. Figure 6-11 shows that average pro-

cessor utilization increases as replication within the lower levels is increased. (The results from

simulation differ from the queueing model predictions because our measurement of utilization in

the simulation is rather crude.) As replication increases, operations stay on their home proces-
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sor longer, spreading work across the full set of processors, creating less queueing interference,

and increasing average utilization. The upward curve in utilization, combined with the linear

reduction in message overhead, produces the resulting upward curve in throughput.

Average utilization can also be increased by adding more tasks to the system. Figure 6-12

shows throughput versus replication for a system with 4 operations per processor (the same as

figure 5-16 in the previous chapter, but using a linear scale). The greater operation load raises

the overall utilization of the processors closer to 100%, so there is less possibility for utilization

increase as replication increases. The result is as we might expect, the throughput increase

during the replication of the leaf level is more nearly linear.

Figure 6-13, a graph of average processor utilization vs. replication using a log scale shows

one of the more unexpected results of this work: as replication of the root increases in the

presence of a bottleneck at the next level, overall system utilization drops. Although subtle

changes are occurring in the system, the phenomenon has a simple explanation. Utilization is

given by the product of throughput and service demand, U = x * D. In our simulations the

bottleneck level is holding throughput essentially constant while the overall service demand is
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Figure 6-12: Throughput vs. Replication - 4 Operations Per Processor

decreasing, so utilization will also decrease.

6.1.5 Additional Comments on Random Placement of Nodes

A corollary to the fact that the number of processors covered by the random placement of r

copies of each of n nodes is less than r * n is that the processors holding nodes will not all

hold the same number of nodes. This uneven distribution can reduce throughput as it will

lead to uneven utilization of the processors - some will be busier than average and may create

additional queueing delays, while others will have unused processing capacity. The probability

distribution of the number of nodes, x, on a processor, given random distribution of r copies of

n nodes is:

p(X=(r )x * C-r (n-r) · (I n

P(x) = 
• 

x

Figures 6-14 and 6-15 show the probability distribution of nodes per processor for a four

level B-tree produced by our hybrid model, with 100 copies of the root, 57 copies of level 2,

6 copies of level 1, and only the original of the leaves. The first figure shows the probability
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distribution for each level and the second for the combination of levels. They indicate that

while, probabilistically, each processor will hold several nodes, some processors may not hold

any node from a particular level and the overall distribution of nodes will be uneven. Given

random placement, however, this uneven distribution cannot be avoided.

With the exception of Johnson and Colbrook's path-to-root placement, we have not explored

alternative placement mechanisms that might create a more even distribution. In section 6.4,

the comparison of random placement with path-to-root placement, we will provide additional

evidence that suggests that an unequal distribution of nodes does reduce throughput.

6.2 Rules for Replication - Inserts and Deletes

When B-tree operations are limited to lookups only, our hybrid replication rule yields improved

throughput with every added copy. When we allow insert and delete operations that modify

the B-tree, replication starts to have a processing cost associated with it, namely when a node

is modified all the copies of the node must be updated. Additional replication will then stop

providing incremental benefit when the benefits of having copies of a node are exceeded by the
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overhead cost of updating the copies.

Conveniently, the benefits of replication tend to drop as we replicate nodes lower in the

tree, while the costs of updating node copies increase. To approximate the point of tradeoff,

we make simplifying assumptions for the benefits and costs of replication. For the benefit, we

consider only the benefit of reduced messages, since the tradeoff point is usually low in the tree,

where capacity is not a problem. We specifically ignore the increase in utilization that comes

with replication.

As mentioned earlier, the probability that a remote message is required to reach a node with

r copies is 1 - -; each additional copy of a node reduces the probability of that an operation

using that node will need a remote message to reach it by -. If the costs of a single remote

message is given by the processing overheads of sending and receiving messages, mesg_ovhd as

defined in Chapter 4, the service demand benefit per operation referencing a node associated

with adding a single additional copy is given by:

mesg_ovhdbenefit -=
C

For the cost, we ignore the cost associated with splitting a node and use only the cost

of updating. Using the equations from Johnson and Shasha we introduced in chapter 4, the

increased service demand per operation that references a node associated with adding a single

additional copy of the node is approximated by:

cost = modpct * updatecost for level = 0

mod_pct * (1 - 2 * delpct) * update_cost branchfactorlevel for level > 0

where level is the height of the node above the leaves.

Thus, replication at levels above the leaves continues to be a net benefit as long as:

mesg_ovhd modpct * (1 - 2 * delpct) * updatecost

C - branch factorlevel

or

branch-factorlevel > C * mod pct * (1 - 2 * delpct) * update_cost
mesg_ovhd

or

level 2 9ogbranch factor (C * modpct * (1 - 2 * delpct) * update _cost
level> lObranchactor mesg-ovhd
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Given the costs from our simulation with operation mix 95% lookups, 4% inserts, 1% deletes,

this works out to

(100 + .05 * (1 - 2 * .2) * 1600
level > log7 500 ) = 10g7(9.6) = 1.16

As figure 6-16 confirms, in our simulations throughput is similar to the base case with

lookups only for all but the lowest two levels of the tree.

This approximation suggests that, for a given operation mix, replication at lower levels in

the tree can be made productive by either reducing the cost of update or increasing the branch

factor. If we use the observed parameters of our simulations but change the average branch

factor to 50 (producing a tree with 503 = 125, 000 leaves), the point of tradeoff changes to:

level > log5o 100* .05 = log5o(9.6) = 0.578

Figure 6-17 shows the queueing model results for a tree with branch factor 50. As expected,

throughput continues to rise until replication of the leaves is started.

The results shown in figure 6-17 demonstrate why a detailed knowledge of the relationship

between replication and performance is valuable. A 4 level tree with an actual branch factor of
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50 per node consists of 127,551 nodes (1+50+2,500+125,000). Unreplicated on 100 processors,

throughput would be around 3 * 10- 3 operations/cycle. If we were to use Wang's guidelines,

setting the replication factor equal to the branch factor, we would make 127,549 additional

copies (99 of the top two levels and 49 of the level above the leaves). Figure 6-17 indicates

this doubling of space used would increase throughput to about 3.2 * 10-2 operations/cycle.

Alternatively, with only 200 copies added to the unreplicated tree, throughput can be raised

to almost 2.3 * 10-2 operations/cycle, about 69% of the throughput increase requiring less

than 0.2% of the additional space. The extra throughput may be necessary, but it comes at a

significant cost.

6.3 Performance Under Non-Uniform Access

Thus far our models and simulations have included the assumption that the distribution of the

search keys selected for B-tree operations is uniform. In this section we remove that assumption

and examine B-tree performance using the replication rules developed earlier in this chapter.

We replace the uniform search key distribution with a distribution limiting search keys to a
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range containing only 10% of the search key space. Within this limited range the distribution

remains uniform. We do not suggest that this is representative of any real access pattern. Our

objective is to introduce some form of non-uniformity and study the results.

Figures 6-18 shows the throughput versus replication for our three replication rules under

only lookup operations. These are shown with the queueing network model prediction for our

base case simulation.

As might be expected, when using the top down rule we continue to encounter noticeable

capacity bottlenecks until we do much more replication than with the uniform key distribution

of the base case. Since we are limiting access to roughly 10% of the nodes at each level, we

must make more copies of lower level nodes to create adequate throughput capacity from nodes

actually used. The capacity balancing and hybrid replication rules once again do a better job

of utilizing space to avoid severely limiting bottlenecks.

All three replication rules exhibit performance significantly poorer than the base case. Only

when the upper levels of the tree are fully replicated and the leaves are partially replicated does

the throughput for space used match that of the base case.
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Performance is reduced because these replication rules waste space on copies of nodes that

are never used. With our non-uniform access pattern, roughly 90% of the copies (not including

copies of the root) are never used. If we were to make copies only of nodes that are actually used,

we might expect to achieve the same throughput levels using roughly one-tenth the replication.

Since the root is always used, we actually expect to achieve the same throughput using one-tenth

the replication of nodes below the root level.

Figure 6-19 shows the results when copies are restricted to the nodes that hold keys in the

10% range. Maximum throughput of 0.09 operations per cycle is reached with roughly 4000

copies, not the nearly 40,000 copies required in the previous case. This is consistent with our

one-tenth expectation. The one-tenth expectation appears to hold at lower replications as well.

For example, when copying is limited to nodes used, throughput reaches .02 at about 220 copies.

This same throughput is reached at about 1100 copies when all nodes are copied. Removing

the 100 copies of the root, gives 120 and 1000 copies below the root, near the one-tenth we

might expect.

Limiting copying to nodes actually used also translates to greater throughput for a given
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amount of space. In general, this limiting leads to throughput 1.5 to 2 times higher than

replication of all nodes, for the same amount of space.

These experiments suggest that throughput can be significantly enhanced if the replication

pattern can be adapted to the actual usage pattern. In the next chapter we examine mechanisms

to dynamically reconfigure the replication of a B-tree in response to observed changes in access

pattern.

6.4 Comparison with Path-to-Root

Johnson and Colbrook have proposed a different scheme for static replication of B-tree nodes

that we refer to as "path-to-root". Their rule for placement of copies is: for every leaf node

on a processor, all the ancestors of that leaf should also be copied on that processor. Their

rule for placement of original nodes is not as fully developed. They propose the ideal of having

sequences of leaf nodes on the same processor. This would minimize the number of copies of

upper level nodes (many, if not all, descendants might be on the same processor), but require

a mechanism to keep sequences of leaves together and balance the number of leaves across

processors as the tree grows dynamically. Johnson and Colbrook are developing the dE-tree

(distributed extent tree) for this purpose.

We have not implemented their scheme to build and maintain B-trees using the dE-tree,

but we can synthetically create a B-tree that looks like their tree and test performance under

lookups only. We first build an unreplicated B-tree in one of two ways:

* Ideal placement model - Entries are added to the tree in increasing order, so that the

right-most leaf node always splits. To create 70% utilization of the leaves, the split point

in a node is adjusted from 50/50 to 70/30. The number of leaves per processor, 1, is

calculated in advance so that the first I can be placed on processor 1, the second I on

processor 2, and so on. When a new parent must be created it is placed on the processor

of the node that is being split. For simulations of this model we perform 2,800 inserts to

create a B-tree with 400 leaves of 7 entries each, 4 leaves per processor.

* Random placement model - New leaf nodes are placed randomly, but when a new parent

is created it is placed on the processor of the node that is being split.
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Replication Throughput
Ideal P-T-R 282 0.0260
Random P-T-R 708 0.0234
Hybrid Random 711 0.0244

Figure 6-20: Path-to-Root Comparison - Throughput for Uniform Access

After the unreplicated tree is built, we make additional copies of each node to satisfy the

"path-to-root" criteria. Because the ideal placement model places logically adjacent leaf nodes

on the same physical processor, it uses significantly less space for replication than the random

placement model. For example, given a node just above the leaves with 7 children, if all 7 leaf

children are on the same processor, there will be only one copy of the parent. If the 7 children

were randomly placed on 7 different processors, there will be 7 copies of the parent.

The results of simulation are shown in figure 6-20, along with results for our random place-

ment method using the hybrid rule to use approximately the same space as the path-to-root

random placement model. (The number of copies per level was 100, 57, 6, and 1, moving from

root to leaves.) As before, the results shown are the means of five simulations. The ideal path-

to-root model produces the best throughput result and requires significantly less space than

the other two models. The throughput for the hybrid model is about 6% lower than the ideal

path-to-root model produces.

The throughput of the random path-to-root model is reduced from what it might be because

not all processors hold tree nodes. As indicated in chapter 2, the B-tree created with 2,400

inserts is expected to place leaves on only 97 processors. We can estimate the throughput that

might be obtained if all 100 processors were used by assuming the simulation produced 97%

of the potential throughput. This increases the throughput for random path-to-root to 0.0241

operations/cycle, within 1% of the throughput for the random hybrid.

It is no coincidence that the throughput in all three cases is similar. The characteristics that

affect throughput, the capacity of each level and the number of remote messages per operation,

are similar. In all three cases there are sufficient copies of nodes at each level to eliminate any

capacity bottlenecks. We can calculate the expected number of remote messages per operation

to compare the different rules. We define the number of copies (including the original) of the

parent node and a child as rparent and rchild respectively. For the two versions of the path-to-
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P-T-R Ideal P-T-R Random Hybrid Random

Root 0 1-(97/100)= .03 0
1 1-(13/100) = .87 1-(39/97)= .6 1-(57/100)=.43
2 1-(2.5/13)= .81 1-(7/39) = .80 1-(6/100) = .94
Leaf 1-(1/2.5) = .6 1-(1/7) = .86 1-(1/100) = .99
Return 1-(1/100)= .99 1-(1/100) = .99 1-(1/100)= .99
Remote messages 3.27 3.28 3.35

Figure 6-21: Path-to-Root Comparison - Average Number of Remote Messages

root algorithm, the likelihood of not changing processors when moving between two levels is

so the probability of a remote message is 1 - . When copies are placed randomly,
Tparent' rparent

the likelihood of there being a child located on the same processor as a parent, requiring no

remote message is .The probability of a remote message is therefore 1- _c . For all three

approaches, the probability of needing a remote message to return the final result is 1 - Tea.e

Figure 6-21 uses these probabilities to show the expected number of remote messages per

operation for each of the three replication rules, given a uniform key distribution. The two

path-to-root models use remote messages at different levels in the tree, but use roughly the

same number of remote messages. Our random placement model uses approximately 3% more

remote messages.

The calculations of the expected number of messages suggests that the two path-to-root

models should produce nearly identical results. That they do not is attributed to the fact

that random path-to-root does not distribute leaves evenly across the processors. Using only

97 processors limits reduces throughput, and so does having an uneven distribution on those

processors. When we place leaf nodes sequentially (i.e., the first to be created on processor

0, the second on processor 1, ...) we can create a more even, but still random, distribution of

leaf nodes. Five simulations of this placement rule produces an average throughput of 0.0263

operations/cycle, about 1% greater than our results for ideal path-to-root. This is a 12%

improvement over the "fully random" path-to-root, and a 9% improvement over the results

adjusted to utilize all processors. This suggests that the uneven distribution of nodes can

significantly reduce performance and that methods for balancing the data and processing load

should be explored.

For the particular case just examined the path-to-root placement scheme is competitive
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Replication Throughput
Ideal P-T-R 282 0.0068
Random P-T-R 685 0.0125
Hybrid Random 750 0.0179

Figure 6-22: Path-to-Root Comparison - Throughput for Access Limited to 10% of Range

with, or preferable to, our random placement method. This is not, however, always the case.

For example, the ideal path-to-root algorithm requires maintenance of leaf placement that we

have not estimated. Both the ideal path-to-root and the random path-to-root algorithms will

frequently require multiple copies of nodes just above the leaves, which we have shown can be

detrimental to performance when the operation mix includes inserts and deletes. Perhaps the

greatest weakness, however, is that the copy distribution pattern is fixed and is based on the

tree structure, not the access pattern. No adjustments can be made to use more or less space to

make a tradeoff between the cost of replication and the benefit of increased performance, or to

dynamically change the use of space. Figure 6-22 shows the results of performance under a non-

uniform access pattern, again limiting access to only 10% of the key space. The performance

of the ideal path-to-root placement model suffers dramatically. The placement of sequences of

leaf nodes on the same processor now has a cost - only 10% of the processors are actually used

for levels below the root. The performance of the random path-to-root placement model suffers

from a similar fate - only the processors that hold the 10% of the leaf nodes being accessed can

participate in processing operations below the root level. For this simulation this is about 34

leaves, so at most 34 (of 100) processors are used. Our hybrid random placement model offers

significantly better performance than either path-to-root method, but, compared to the results

shown in figure 6-19 provides only half the throughput for the amount of space used that it

could provide if only nodes actually used are replicated.

These comparisons show that replication control rules such as our hybrid model are more

generally useful than the path-to-root models. While the ideal path-to-root model can produce

higher throughput for lower space used under ideal conditions, our hybrid model yields much

higher throughput when conditions vary from the ideal. This is particularly true if our hybrid

model can be extended to create replication to match an observed access pattern.

These comparisons have also suggested that the results produced by our hybrid model would
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be improved if the random placement of nodes and copies could be replaced with a placement

method that can more evenly distribute load across the processors. We do not explore that

path in this work.

6.5 Summary

In this chapter we have analyzed the relationship between replication and throughput to develop

a new rule for the use of replication. We have gone past the intuition of prior work to produce

guidelines for near-optimal use of whatever amount of space is available for replication. The

result is based on the relative frequency of access to each node, as intuition and prior work

suggest, but also includes a slight bias to replicate nodes at higher levels of the B-tree where

the marginal additional copy can have the greatest contribution to reducing inter-processor

messages. We have also examined the impact of adding inserts and deletes to the B-tree

operation mix and indicated the transition point where the value of replication is overcome by

the costs of updating copies of tree nodes.

Through simulations using non-uniform access patterns we have shown that our hybrid

random placement rule is preferable to the alternative path-to-root rules. We have also shown

that performance is improved if the use of replication can be made to match the actual pattern

of accesses.

In the next chapter we will apply the results of this chapter to replicating B-tree nodes

based on observed frequency of access, not assumptions of uniform branch factor and uniform

access pattern.
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Chapter 7

Dynamic Replication

In the previous chapter we showed that distributed B-tree performance can be improved when

the number of copies of a particular B-tree node is made to depend on the relative frequency

of access to the node. In that chapter we modeled the frequency of access to a node as a static

function of its level in the tree. In this chapter we explore dynamic control of replication based

on observed frequency of access to nodes. We introduce a simple approach to dynamic control

and explore its ability to produce performance similar to that from our capacity balancing and

hybrid algorithms under a static access pattern, and its ability to change replication in response

to a change in access pattern. We cannot compare behavior across all access patterns or suggest

that one particular pattern is more valid for comparison than any other - our objective is to

introduce one approach and identify the challenges to efficient dynamic control of replication.

In this chapter we first describe a simple dynamic caching algorithm, then present the results

of simulations that demonstrate the algorithm's ability to perform as desired. We also introduce

the initial results from an update to this simple algorithm.

7.1 Dynamic Caching Algorithm

Replication control is a caching problem. Additional copies of a B-tree node are cached on one

or more processors to improve the overall performance of the system by eliminating tree node

and processor bottlenecks. Dynamic control of this caching must address three questions: how

many copies of a tree node to create, where to place the copies (including local management of

caches), and how to re-map copies of a parent node to copies of a child when the replication of
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one of them changes.

The simple approach to dynamic caching developed in this chapter uses a fixed size cache for

each processor to hold copies, and an access count associated with each copy of a B-tree node to

estimate frequency of access and determine which nodes should be copied. Replication decision

making in this algorithm is decentralized - each copy of a node determines independently

whether it should request the creation of additional copies, and the processor holding the

"master" copy of a tree node determines where it should place any new copies, independently

of placement decisions for all other nodes.

7.1.1 Copy Creation

The results of the previous chapter indicated that the replication for a B-tree node should be

determined as a function of relative frequency of access to the node. The results indicated that

the optimal replication is a slight variation from directly proportional to relative frequency of

access - slightly more copies of more frequently used nodes, and slightly fewer copies of less

frequently used nodes. The ultimate objective should be to create this replication pattern with

dynamic control. However, it is difficult to calculate the frequency of access to a B-tree node.

First, frequency cannot be directly measured at a point in time, but must be observed as an

average over time. Second, accesses are likely to be made to more than one copy, so no single

processor can directly observe the full set of accesses and overall frequency. As a result, with

this simple algorithm our goal is less ambitious than achieving the optimal replication pattern.

We want only to establish a nearly proportional relationship between relative access frequency

and replication and study its characteristics.

We model relative frequency of access by including an access count with every copy of a

node and defining two parameters to link the access count to changes in replication, an access

threshold and an access time lag. A copy's access count is incremented each time the copy is

used, if the time elapsed since the previous access is less than the time lag. If the time between

accesses is greater than the time lag, the access count is decremented, but never decremented

below zero. When the access count reaches the threshold, an additional copy of the node is

requested.

For the replication of a node to be increased, there must be a sufficient number of accesses
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to a single copy of the node within a limited period of time, i.e., the observed frequency of

access must, at least temporarily, be above a certain rate. The two parameters establish the

characteristics of access frequency necessary to create additional copies. They also help control

the overhead required to perform dynamic replication control. The time lag establishes a

frequency of access necessary for additional copies of a node to be created and eliminates the

slow accumulation of access count over a long period of time. The access threshold defines how

long a frequency of access must be observed to have an effect on replication; a larger threshold

can reduce the frequency of copy creation and the associated overhead.

7.1.2 Copy Placement and Cache Management

When the access count of a copy of a B-tree node reaches the access threshold, the access count

is reset and a request to create an additional copy is sent to the processor holding the "master"

copy of the tree node. As with our static placement model, the additional copy is placed by

selecting at random a processor that does not hold a, copy.

Each processor has a fixed size cache for holding copies of nodes. When a processor receives

a node to add to its cache, it must allocate an unused cache entry or discard a currently cached

node. (When a cache entry is discarded, the "master" copy of the node is notified.) For

the simulations in this chapter we manage the cache with a replacement algorithm developed

by the MULTICS project [Cor69], sometimes called second chance, [PS85], clock or marking

replacement. In this algorithm a cache entry is "marked" every time it is used. A pointer points

to the last cache location discarded. When an empty cache location is needed, the pointer is

advanced, wrapping back to the beginning like the hands of clock when it reaches the end of the

cache. If an unmarked entry is found, its contents (if any) are cleared and the entry returned

to the requester. If the entry is marked, the algorithm "unmarks" the entry, but does not

immediately discard it (the entry is given a "second chance") and instead advances the pointer

to check the next entry. If all entries are marked when the replacement algorithm starts, the

first entry to be unmarked will eventually be the entry discarded. We have also implemented

least recently used cache replacement, with similar results.
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7.1.3 Parent/Child Re-mapping

As copies of B-tree nodes are added and discarded, the mapping between copies of parents

and copies of children must be updated to retain a balanced distribution of work across the

processors. This is the most expensive part of dynamic replication control. When the replication

of a node is changed, it may be necessary to notify every processor that holds a copy of the

parent of a change in mapping. In addition, it may also be necessary to inform every processor

holding a copy of the node itself of a change in mapping to copies of its children. Further, if a

node does not know all the locations of its parent and children (as we assume it does not), it must

rely on the "master" copies of the parent and children to perform the re-mapping. This requires

calculation and many inter-processor messages. To minimize overhead, when replication of a

node changes we only update the mapping between the parent and the node being changed;

the mapping between the node and copies of its children does not change. Instead, when a new

copy is created it will be mapped to use the "master" copy of any children it might have. The

parent of the node, however, is informed of the updated set of locations and re-maps its own

copies to the copies of the changed node.

This approach to re-mapping was developed to minimize the amount of information about

copy location that is distributed around the system. While this is adequate for the small number

of replication changes that occur under static replication (replication changes only when nodes

are created), it has significant weaknesses when used dynamically. In section 7.4 we introduce

an improvement to this approach to re-mapping that allows the "master" copy of a node to

know the location of all copies of its parent. This eliminates the need to involve the "master"

copy of the parent node when the re-mapping must change.

7.1.4 Root Node Exception

The one exception to these rules is that the root node is distributed to all processors and is

forced to stay resident in every cache. This provides two major benefits. First, no processing

cost is incurred in replicating the root (except for distributing updates when the contents of the

root change). There is no need to maintain access counts, request additional copies or re-map

when a copy is added or removed. Second, the home processor of the root node does not have

to be involved in re-mapping copies of the root to copies of its children, since each child knows
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that the root is on all processors. The result is the elimination of a potentially severe bottleneck

on the home processor of the root tree node.

This exception also helps assure that, as our hybrid model recommended, nodes with a

high frequency of access (e.g., the root) are replicated more fully than in direct proportion to

observed relative frequency of access.

7.2 Dynamic Caching - Proof of Concept

For the simulations in this chapter we use the same system configuration and initial B-tree

as described in Chapter 5: 100 processors supporting a B-tree with a node branch factor

of 10, instantiated by 2400 randomly selected insert operations. In each simulation we test

performance under a uniform access pattern and then change to a pattern with access limited

to 10% of the search space. Each simulation consists of five phases:

1. The tree is constructed,

2. With dynamic caching enabled, a series of 100,000 lookup operations is executed using a

uniform lookup distribution,

3. With dynamic caching temporarily disabled, a series of 10,000 lookup operations is exe-

cuted using a uniform lookup distribution,

4. With dynamic caching enabled, a series of 100,000 lookup operations is executed with

access limited to 10% of the search space,

5. With dynamic caching disabled, a series of 10,000 lookup operations is executed with

access limited to 10% of the search space,

This structure allows us to test the performance of the algorithm during transitions and at

steady state. It also allows us to test the performance possible from the tree constructed by

the dynamic algorithm with the overhead of further changes temporarily turned off.

Before studying the behavior of the algorithm in detail, we first provide evidence that

the algorithm can dynamically produce results close to the throughput we seek. We perform

simulations using a per processor cache size of 3 and of 10. A cache of size 3 is relatively
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Search Key
Distribution Cache Size = 3 Cache Size = 10

Hybrid Cap. Bal. Hybrid Cap. Bal.
Uniform .021 .020 .027 .023
Limited to 10% .022 .022 .040 .036

Figure 7-1: Target Throughput (Operations/Cycle)

small, but large enough to hold two entries beyond the root. A cache of size 10 is relatively

large, allowing 1000 additional copies beyond the original tree of around 400 nodes. Figure 7-1

shows the throughputs we might hope to realize, based on the results of the hybrid and capacity

balancing algorithms developed in Chapter 6, and shown in figures 6-10 and 6-19. The numbers

in figure 7-1 represent the estimate for mean throughput when using 300 and 1,000 copies, as

distributed by the two algorithms. For the cases where access is limited to 10% of the search

space, we provide the results obtained when copies were made only of nodes actually used. We

should expect results similar to the capacity balancing algorithm since our dynamic algorithm,

like the capacity balancing algorithm, is attempting to create copies roughly in proportion to

relative frequency of access.

Figure 7-2 shows the results of a single experimental run with cache size 3, time lag 5,000,

and access threshold of 70. We use the number of operations completed for the x-axis rather

than time to aid comparison between different simulations. During the first series of 100,000

lookups, the measured average throughput was 0.0145 operations per cycle (not shown). After

the initial ramp up as the cache begins to fill and throughput has stabilized, the average

is between 0.016 and 0.017 operations per cycle. Inefficiencies or overhead of the algorithm

appear to hold throughput below our targets. When the caching algorithm is turned off the

measured average for the 10,000 lookups rises to 0.207, very close to our expected targets of

around 0.021.

When the access pattern is limited to 10% of the search space, the algorithm requires over

40,000 operations to adjust its use of replication for throughput to rise above the peak level

it had reached under uniform access. At steady state this simulation produces throughput of

around 0.023 operations per cycle. With dynamic caching turned off, throughput rises to over

0.026 operations per cycle. These are both actually greater than the targets set by our static

algorithms. There are two possible reasons for this better than expected performance. First,
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these dynamic results come from a single run, and results will vary for different runs. Second,

and more interesting, in chapter 6 we made an equal number of copies of each node at a level.

With this dynamic control, we can vary the number of copies by individual node, tailoring

capacity node by node, not just per level.

Figure 7-3 shows the results of a single experimental run with cache size 10, time lag 10,000,

and access threshold of 40. Under a uniform access pattern, throughput rises to just below 0.019

operations per cycle. Throughput goes up to around 0.023 operations per cycle when caching is

turned off, at the target set by the capacity balancing algorithm, but below that of the hybrid

algorithm. When access is limited to 10% of the search space, only around 20,000 operations

are required before throughput exceeds the peak throughput reached under uniform access.

Steady state throughput is around 0.027 operations per cycle, rising to 0.037 when caching is

turned off.

These results indicate that the dynamic control algorithm can produce replication patterns

that provide the performance of the target static algorithms. Although the results with dynamic

caching enabled are always below the target, it is helpful to put this in perspective. With access
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limited to 10% of the search space and replication of 1,000, our static hybrid algorithm achieved

throughput of around 0.040 operations per cycle if it replicated only nodes actually being used.

But when it had no specific usage knowledge and used replication optimized for uniform access it

produced a throughput of around 0.019 operations per cycle. This dynamic algorithm produces

steady state results for the limited access of around .027 operations per cycle, below the best

results of hybrid model, but significantly better than the most general static model assuming

uniform access. The challenge for the future is to reduce the overhead required to support

dynamic caching and raise performance closer to that of the best of the static algorithms.

7.3 Simulation Results and Analysis

For more detailed analysis of the behavior of this dynamic caching algorithm we restrict our

simulations to a system with a cache size of 10 and explore how the values of the parameters

affect performance and the use of the cache space. Our objective is to identify opportunities

to improve this algorithm or create better dynamic replication control algorithms. Clearly, one

important way to improve the algorithm is to reduce the overhead required to manage dynamic
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caching. In this section we explore the impact of adjusting the parameters that can affect

overhead. In the next section we introduce a modification to the re-mapping algorithm that

can improve this basic algorithm by reducing the potential for bottlenecks.

Figure 7-4 shows the throughput results for several different values of time lag and a rela-

tively low access threshold of 5. Figure 7-5 shows the total number of cache entries used for the

same simulations. For the lowest time lag, 1000, throughput is relatively high and remains fairly

constant, but as figure 7-5 shows, the cache never fills up. Thus, although this time lag provides

good performance when caching is active, when dynamic caching is turned off throughput is

much lower than that produced by larger values for time lag. At the other extreme, a long time

lag of 50,000 allows all cache space to be used, but appears to create so much cache control

overhead that the throughput is very low. The long time lag means that almost all accesses

increase the count; combined with the low threshold value the rate of requests for additional

copies must rise, with accompanying overhead.

Figures 7-6 and 7-7 show results for similar simulations with the access threshold set to 20.

Once again, when the time lag is 1,000 the performance is consistent, but the cache never comes
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close to filling up. With this very low time lag, throughput is consistent because there is not

much caching overhead - but there is not much use of the cache either. The higher threshold

has the effect we expect, the performance for the other three values of time lag has improved

in response to the reduced frequency of requests for new copies. This is particularly noticeable

for the part of the simulation with access limited to 10% of the search space.

In this set of simulations, dynamic performance is best for time lag = 5,000. Figure 7-7

shows that in the first 100,000 accesses the caches were not filled up and that net additions to

the caches were tapering off. During the second 100,000 accesses, with access limited to 10%,

the caches are becoming nearly full, with net additions to the caches again tapering off. This

tapering off of net changes before the caches fill up, combined with the comparatively small

jump in throughput when caching is turned off, indicate that there is significantly less caching

overhead than in the simulations where the cache can be filled up quickly. As might be expected,

performance is best when the cache space can be productively used without significant changes

in its contents.

Figures 7-8 and 7-9 show results for simulations with the access threshold set to 50. The
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messages from this set of simulations are consistent with prior simulations: a low time lag

limits throughput by not using enough of the cache and a high time lag allows the cache to

fill too rapidly, creating excessive caching overhead. For values in between, the cache is used

productively, but without excessive overhead.

Thus far we have been comparing performance for varying time lags, given a fixed access

threshold. In figure 7-10 we show the results for a series of simulations where the time lag is

10,000 and the access threshold is varied. (We use 10,000 because in the simulations presented

so far it has consistently filled, or come close to filling the available cache space.) In figure 7-10,

for the uniform access pattern there is no strongly noticeable difference between the different

thresholds, although the lowest threshold, 5, does produce somewhat lower throughput.

When access is limited to 10% of the search space, however, it is very noticeable that

performance increases with increasing access threshold. It is not surprising that this should be

the case. When the system reaches "steady state", a longer access count should lead to fewer

requests for additional copies and lower caching overhead. As we might expect from the results

of previous simulations, figure 7-11 shows that for the threshold values that produce the best
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throughput, the cache is filling more gradually than the lower throughput cases and perhaps

not completely.

Thus far we have compared observed throughput with expected throughput and looked at

total replication, but not looked in detail at how replication is actually being used. In figure

7-12 we show the use of cache space, by tree level, for time lag of 10,000 and access count

of 10. The base tree for this simulation has, from the root down to the leaves, 1, 7, 45, and

336 nodes per level. Counting original nodes and copies, at the end of the 100,000 uniformly

distributed accesses, there are 100, 384, 400, and 502 nodes per level (again, from the root

down the leaves). Leaving out the root, which is fully replicated, we see that the second and

third levels have roughly the same number of nodes, as we had hoped, but that the leaf level

has more than desired. Most of the 502 total nodes at the leaves, however, are originals. When

access is limited to 10% of the search space, we estimate we will be using a subset of the tree

consisting of, from root to leaves, 1, 1, 5 and 34 nodes. At the end of the 100,000 accesses,

there are 100, 102, 416, and 423 nodes per level. This time the nodes used in the top two levels

are fully replicated, and the lower two levels have very nearly the same number of nodes, as
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hoped.

Figure 7-12 shows an interesting phenomenon during the second set of 100,000 accesses -

the number of copies at level two of the tree drops well below 100 for most of the time, but

rises back up to 100 as the simulation completes. This is caused by a re-mapping bottleneck

on the processor holding the one node at that level that is to be replicated. One reason why

there is so much greater variation in performance when access is limited to 10% of the search

range is that there is only one B-tree node from the level below the root that is being used

(out of the total seven nodes we expect at that level). That single node must distribute all

re-mappings caused by changes in the level below it. The nodes used at the level below it will

be used much more frequently than under uniform access, so they will be generating a higher

rate of cache changes. When the access pattern is restricted like this, that second level node

becomes a "pseudo-root" and we would like to avoid having the processor holding the "master"

of that node involved in every re-mapping of its children, just as we avoided having the root

involved in every re-mapping of its children. In the next section we present initial results from

an update to our initial re-mapping algorithm that addresses this problem.
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7.4 Dynamic Algorithm - Improved Re-mapping

The re-mapping algorithm used in the previous section assumed that each B-tree node does not

know all the locations of its parent and children. As a result, the parent must be involved in

processing all re-mappings when the replication of a node changes. In this section we explore

the potential benefits from allowing the master copy of a node to know (within the limits of

this knowledge being kept up to date) the location of all copies of its parent.

In this modification, knowledge of parent locations is kept up to date by sending a copy of

the location map to the master copy of each child when the replication of a tree node changes.

If each node has this information about its parent, when the replication of a tree node changes

the master copy of the node can directly perform the re-mapping of parent copies to its own

copies, without involving the master copy of the parent. We also made one additional change

- rather than telling each copy of the parent about only one copy to which it can forward

descending tree operations, we send each copy the full location map of its children and allow a

random selection from the full set of copies each time an operation is forwarded.

The results for a time lag of 10,000 and several different values of the threshold are shown

in figure 7-13. Performance for the uniform access portion of the simulation is very similar to,

but slightly lower than that of our initial model. There is slightly more overhead in sending

location maps and making forwarding decisions, and this updated algorithm also must send a

message to the master copy of each child.

When access is limited to 10% of the search space, the updated algorithm exhibits better

performance for all values of the access threshold. For the cases with large values for the

access threshold, the throughput shows a similarly shaped curve, but with consistently higher

throughput. For the simulations with lower access threshold, throughput no longer tails off as

the simulation progresses. With the elimination of the re-mapping bottleneck at the "pseudo-

root", throughput is significantly higher and can continue to grow as the cache contents are

adjusted.
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7.5 Future Directions

In algorithms of the type presented in this chapter, when the cache reaches "steady state",

overhead does not drop to zero. Instead, nodes are added and removed from caches with no

significant net change in the use of replication, merely a shuffling of the cache contents. We

have begun to explore "centralized" control of replication to reduce this steady-state overhead

It is based on the distributed capture of access counts at each copy of a node, but replication

change decisions are made centrally by the master copy of a node.

For much of the time this new algorithm is active, the only overhead is the accumulation of

access counts. When it is time to review and possibly change replication (determined by a time

interval or a number of accesses to a tree node) rebalancing of the B-tree is started at the root

node. The root node polls each of its copies for their local access count, which is then reset

to zero. The sum of the counts indicates the number of operations that have passed through

the root node since the last rebalance and serves as the measure for 100% relative frequency of

access.

As in the algorithm tested earlier, the root would generally be kept fully replicated. When
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any necessary changes in the replication of the root are completed, the new location map of

the root and the count of the total number of operations is passed to each of its children. Each

child begins a similar process to that performed at the root. It first polls its copies for their

access counts and sums the results. The ratio of that sum to the total operations through the

system gives the relative frequency of access to the tree node. Relative frequency of access is

translated into the desired number of copies using curves such as those developed in chapter 6.

If more copies are desired than currently exist, additional copies are sent to randomly selected

processors not currently holding copies. If fewer copies are desired than currently exist, some

processors are instructed to remove their copies. When these replication adjustments have been

made, the node then remaps the copies of its parent to its own copies. Finally, it forwards its

new location map and the total operation count to its own children.

While this algorithm can introduce a potentially heavy burden while it rebalances, between

rebalancings it has virtually no overhead. Further, if there is little or no need for change during

a rebalancing, overhead remains quite low. This algorithm would be weakest when the pattern

of access changes quickly and dramatically.

7.6 Summary

In this chapter we have taken the results of prior chapters that indicated how replication could

be optimally used given a static access pattern, and successfully applied those results using a

dynamic replication control algorithm. We introduced a simple algorithm for dynamic control

of B-tree replication in response to observed access patterns. Through simulation we showed

that it does respond to observed access patterns and that it produces a replicated B-tree that,

with the overhead of dynamic cache management turned off, matches the throughput produced

by the best of our static replication algorithms. When dynamic cache management is active,

of course, the overhead of management does reduce the throughput. We also introduced an

update to this simple algorithm to eliminate potential bottlenecks and demonstrated that the

update had a noticeably beneficial effect.
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Chapter 8

Conclusions

Our objective in starting the work described in this thesis was to investigate two hypotheses:

1. Static Performance: Given a network, a B-Tree and a static distribution of search keys,

it is possible to predict the performance provided by a static replication strategy.

2. Dynamic Balancing: Under certain changing load patterns, it is possible to apply the

knowledge of static performance and change dynamically the replication of B-Tree nodes

to increase overall performance.

In this work we have shown both of these hypotheses to be true. In doing so we have expanded

on prior knowledge and assumptions on how replication can best be used with distributed

B-trees.

In investigating the first hypothesis, we demonstrated and described through modeling and

simulation, the trade off between replication and performance in a distributed B-tree. Earlier

work had used heuristics to select a single point for the appropriate amount of replication to

use. We developed insights into the optimal relationship between relative frequency of access to

a node and the number of copies to make of a node. While prior work assumed that replication

should be proportional to relative frequency of access, we showed that the optimal relationship

appears to be a slight variation of that - more copies should be made of frequently used nodes

and fewer copies made of less frequently accessed nodes. We also showed that B-trees built

using the prior heuristics, or any static placement algorithm, provided good performance (as

measured by throughput) only when the pattern of access is fairly uniform. Finally, we showed
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that, particularly for large B-trees, the prior heuristic approaches can use far more space than

appears appropriate for the additional increase in performance.

We used the results from our analysis of static algorithms to direct our investigation of

our second hypothesis on dynamic replication control. We introduced a simple algorithm for

dynamic control of processor caches and demonstrated that dynamic replication control for B-

trees is practical. This initial work presented the continuing challenge of lowering the overhead

necessary to support B-tree caching.

The main avenue for future work is in dynamic control of replication. There are two di-

rections future work can proceed. First, algorithms such as the one presented here can be fine

tuned and adjusted to reduce overhead. They can also be extended to dynamically adapt the

values of the controlling parameters in response to changing operation load. Second, radically

different approaches such as the "centralized" balancing algorithm described in section 7.5 can

be explored.. In both cases the objective is create an algorithm that can react quickly to changes

in the access pattern, but present low overhead when the access pattern is stable.

An additional direction for future work extends from our comments in chapter 6 that B-tree

performance can be improved by creating a more balanced distribution of nodes and copies than

random placement can provide. Future work on any dynamic replication control algorithm, and

particularly the "centralized" approach of section 7.5, would benefit from additional work on

low cost load balancing techniques.
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Appendix A

"Ideal" Path-to-Root Space Usage

In chapter 2 we indicated that the "ideal" path-to-root model will use space such that, on

average, the number of copies per node n levels above the leaves, for a tree of depth h and

branch factor BF, distributed across P processors, is:

average number of copies = P * BF n - h + 1 - P/BFh

To prove this result we first introduce the symbol m to stand for the number of descendant

leaf nodes below an intermediate node, and the symbol Ip to stand for the average number

of leaf nodes per processor. Given a node with m descendant leaf nodes, our objective is to

determine the number of processors that one or more of the m leaves will be found on, and thus

the total number of copies that must be made of the intermediate level node.

"Ideal" placement means that there are Ip leaf nodes on each processor and that the logically

first Ip nodes are on the first processor, the logically second Ip nodes are on the second processor,

and so on. An "ideal" placement of m leaves covers a minimum of [P] processors. Similarly,

it covers a maximum of d + 1 processors.

We call an alignment the pattern of distribution of m nodes across processors, defined by

the number of nodes placed on the first processor in sequence. For example, if 7 nodes are

placed on processors with 4 nodes per processor, there are 4 distinct patterns possible,

* 4 nodes on the first processor in sequence, 3 on the next processor;

* 3 on the first processor, 4 on the next processor;
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Figure A-1: Alignments Covering Maximum Processors

* 2 on the first processor, 4 on the next processor, 1 on the next after that;

* 1 on the first processor, 4 on the next processor, 2 on the next after that.

There are always ip possible alignments, then the cycle repeats. The maximum number of

processors is covered for (m - 1)1p of the alignments, where ni, means n modulo Ip. When an

alignment has only one leaf node on the right-most processor it is covering, it will be covering

the maximum number of processors. (The only exception is if (m - 1)lp = 0, in which case all

alignments cover the minimum number of processors.) As the alignment is shifted right, there

would be (m - 2)1p additional alignments covering the maximum number of processors. (See

figure A-1). The minimum number of processors is covered by the rest of the alignments, or

Ip - (m - 1)1' of the alignments.

Combining these pieces produces:

[] *(lp-(m - 1)p)+) (] + 1)* (m -l)p
average number of copies = 1

lp

or

1p + (nm - 1),paverage number of copies =
We evaluate this for two cases. First, when m1 = 0 (and m > 0), [L * ip = m and

(m - 1)lp = Ip- 1, the sum being m± + lp- 1. Second, when mlp i 0, lp = m + lp- m

and (m - 1)I, = (m - 1)1p, the sum again being m + Ip - 1.

This yields:
m + lp- 1

average number of copies =
lp
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For a tree of depth h, with branch factor BF, on P processors, the average number of leaf

nodes per processor is BFh /P. The number of descendant children for a node n levels above

the leaves is BFn , thus:

BF n + BFhI/P - 1
average number of copies = BFh/PBFh/P

or

average number of copies = P * BF n - h + 1 - P/BFh
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Appendix B

Queueing Theory Notation

The following notation is used in the queueing theory model of chapter 4:

K = Number of service centers in the system.
C =: Number of task classes in the system.
N = Number of tasks in the system.
NC =: Number of tasks of class c in the system.
N = Population vector = (N 1,..., Nc).
X(N) =: Throughput given N tasks.
X,(N) =: Throughput for class c given N tasks.
Sk(N) = Mean visit service requirement per task for service center k.
Sc,k(N) = Mean visit service requirement per task of class c for service center k.
Vk(N) = Mean visit count per task for server k.
Vc,k(N) = Mean visit count per task of class c at service center k.
Dk(N) = Service demand at service center k. Dk(N) - Vk(N)Sk(N)
Dc,k(N) = Service demand of class c at service center k. Dc,k(N) -Vc,k(N)Sc,k(N)

Qk(N) = Mean queue length at service center k.
Qc,k(N) = Mean queue length of tasks of class c at service center k.
Rk(N) = Total residence time for a task at server k when there are N tasks in the

system.
Rc,k(N) = Total residence time for a task of class c at server k when there are N

tasks in the system.
Uc,k(N) = Mean utilization of server k by tasks of class c.
S= C-dimensional vector whose c-th element is one and whose other

elements are zero.
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