
A Theory of Clock Synchronization

by

Boaz Patt

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

October 1994 *! yl&J··
@ Massachusetts Institute of Technology 1994. All rights reserved.

A u th o r t..
Department of E`lectrical Engineering and Computer Science

October 17, 1994

Certified by :. ".........
I Nancy A. Lynch

Cecil H. Green Professor Of Computer Science and Engineering
Thesis Supervisor

C ertified by
Baruch Awerbuch

Associate Professor of Computer Science, Johns Hopkins University
Thesis Supervisor

A IIA MA A

A ccepted by r..r.t .-. : r
Frederic R. Morgenthaler

Chiman, Departmental Committee qn Graduate Students

Eng.
MASSACHUSETTS !NSTITUTE

APR 13 1995

A Theory of Clock Synchronization

by

Boaz Patt

Submitted to the Department of Electrical Engineering and Computer Science

on October 17, 1994, in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Abstract

We consider the problem of clock synchronization in a system with uncertain message delays
and clocks with bounded drift. To analyze this classical problem, we introduce the con-
cept of synchronization graphs, and show that the tightest achievable synchronization at
any given execution is characterized by the distances in the synchronization graph for that
execution. Synchronization graphs are derived from information which is locally available
for computation at the processors (local time of events and system specification), and can
therefore be used by distributed algorithms. Using synchronization graphs, we obtain the
first optimal on-line distributed algorithms for external clock synchronization, where the
task of all processors is to estimate the reading of the local clock of a distinguished proces-
sor. The algorithms are optimal for all executions, rather than only for worst cases. The
algorithm for systems with arbitrarily drifting clocks has high overhead; we prove that this
phenomenon is unavoidable, namely any optimal general algorithm for external synchro-
nization has unbounded space complexity. For systems with drift-free clocks (i.e., clocks
that run at the rate of real time), we present a particularly simple and efficient algorithm.
We also present results for internal synchronization, where the task of the processors in the
system is to generate a synchronized "tick." Our approach is robust in the sense it encom-
passes various system models, such as point-to-point or broadcast channels, communication
links that may lose, duplicate and re-order messages, and crashing processors. In addition,
synchronization graphs can be used to detect corrupted information.

Thesis Supervisor: Nancy A. Lynch

Title: Cecil H. Green Professor Of Computer Science and Engineering

Thesis Supervisor: Baruch Awerbuch

Title: Associate Professor of Computer Science, Johns Hopkins University

Acknowledgments

I would like to thank all the people who helped me be where I am today. Professionally,

my first mentor was David Peleg from the Weizmann Institute of Science. His knowledge,

intellectual integrity, and work methods gave me the first ideas what a computer scientist

should be. I will never forget his kind nature and sharp understanding.

In MIT, I was blessed with two other extremely gifted advisors. The thoroughness

of Nancy Lynch is second to none. From her I learned the basic methods of rigorous

mathematical reasoning about distributed systems. Her pointed observations had clarified

much of my confusions.

My second advisor, Baruch Awerbuch, is an explosive source of ideas, endless encourage-

ment and support, always accompanied with an unpredictable sense of humor. His "killer

instinct" for distributed algorithms, and his fearlessness of "impossible" tasks will always

serve me as an ideal.

Sergio Rajsbaum is responsible for the choice of clock synchronization as my research

target. His earlier work inspired the contents of this thesis. His natural curiousity and deep

insights (which are the source of many of the ideas in this thesis) typify, in my mind, the

classical scientist.

I enjoyed many illuminating discussions with Robert Gallager. His views about dis-

tributed systems, scientific research and mathematics are a constant guide for my thinking.

I thank him for sharing his wisdom with me.

Lastly, I would like to thank my family. My parents, Avraham and Elisheva Patt, have

provided me with all the possible support in some of the hardest times I had. I am deeply

grateful for their unconditional love.

Above all, I thank my wife Galia, for her true love and support, which were with me at

all times, and my daughter Alma, who gave a new reason to life. I love you!

Contents

1 Introduction

1.1 Background

1.2 Previous Work

1.3 Contents of This Thesis .

1.3.1 The Setting . .

1.3.2 A General Theory

1.3.3 Applications

1.4 Significance of the Results

1.5 Critique of the Results

1.6 Structure of this Thesis

2 The Mixed Automaton Model

2.1 Definition of Mixed Automata

2.1.1 Projections, Equivalent Automata

2.1.2 Clock Types

2.1.3 Real Time Blindness

2.1.4 Quiescent States

2.2 Executions and Timed Traces

2.3 Composition of Mixed Automata

3 Clock Synchronization Systems

3.1 Specifications of System Components

3.1.1 Send Automaton

3.1.2 N etwork .

3.1.3 Clock Synchronization Algorithm (CSA)

19

. 20

. 24

. 25

. 25

.. 27

. 28

. 29

.

.

. .

............................

3.1.4 Clock Synchronization Systems 46

3.1.5 Example: the Simplified Network Time Protocol (SNTP) 47

3.2 Environments and Bounds Mapping 49

3.2.1 Environments, Patterns, Views 52

3.2.2 Local Views 55

3.2.3 Representation of Real-Time Specification 57

3.3 The Completeness of the Standard Bounds Mapping 59

4 Problem Statements and Quality Evaluation

4.1 Synchronization Tasks

4.1.1 Definition of External Synchronization

4.1.2 Definition of Internal Synchronization

4.2 Local Competitiveness

4.3 Discussion

5 The Basic Result

5.1 Synchronization Graphs

5.2 Interpretation in Clock Synchronization Systems

6 External Synchronization

6.1 Problem Statement and Preliminary Observations

6.2 Bounds on the Tightness of External Synchronization

6.3 An Efficient Algorithm for Drift-Free Clocks

6.3.1 The Algorithm

6.3.2 Correctness and Optimality

6.4 The Round-Trip Technique ..

7 Internal Synchronization

7.1 Definition of Internal Synchronization

7.1.1 Discussion

7.2 A Lower Bound on Internal Tightness

8 The Space Complexity of Optimal Synchronization

8.1 The Computational Model ..

78

79

90

95

96

97

101

101

102

107

114

114

115

116

120

121

8.2 The Space Lower Bound .. 125

9 Extensions 131

9.1 Additional Timing Constraints 131

9.1.1 Absolute Time Constraints 132

9.1.2 Relative Time Constraints 133

9.2 Fault Detection 134

9.3 Structured Environments 135

10 Conclusion 138

A Time-Space Diagrams 141

Chapter 1

Introduction

1.1 Background

Clock synchronization is one of the most fundamental problems of distributed computing.

Roughly speaking, the goal of clock synchronization is to ensure that physically dispersed

processors will acquire a common notion of time, using local physical clocks (whose rates

may vary), and message exchange over a communication network (with uncertain trans-

mission times). The discrepancy between clock readings is called the tightness of synchro-

nization. There are numerous applications for synchronized clocks in computer networks.

For example, in database systems, version management and concurrency control usually

depend on the ability to consistently assign timestamps to objects. Many distributed ap-

plications use timeouts (e.g., communication protocols, resource allocation protocols), and

their performance depends to a large extent on the quality of synchronization between re-

mote processors. From the theoretical perspective, having synchronized clocks enables one

to use distributed algorithms that proceed in rounds, thus considerably simplifying their

design and analysis. For an excellent discussion of the importance of clock synchronization,

see Liskov's keynote address at the 9th PODC [18].

The basic difficulty in clock synchronization is that timing information tends to deteri-

orate over the temporal and spatial axes. More specifically, when the rate of local clocks

is not known precisely in advance, the tightness of synchronization loosens as time passes;

and when a processor is communicating timing information to remote processors, there is

some inherent cumulative timing uncertainty, unless message transmission times are known

precisely. Practically, ideal clocks and communication links do not exist. However, there

distinguished '
event

m

m

local time = T

local time = T'

s v

Figure 1-1: Processor v send a message m to processor s, s sends a message m' back to v.
A distinguished event, marked by a cross, occurs at s after m is received and before m' is
sent.

are always some a priori guarantees about the timed behavior of the system: usually it is

assumed that local clocks have known lower and upper bounds on their rate of progress with

respect to real time. We call these bounds drift bounds. In addition, it is assumed that there

are known lower and upper bounds on the time required to transmit a message. We call

these bounds message latency bounds. The essence of all clock synchronization problems is

how to use these bounds to obtain tight synchronization.

In this thesis we present a theoretical study of clock synchronization problems. Our

starting point is an elementary variant of the problem, described informally as follows.

Obtain bounds on the reading of the local clock when some distinguished remote

event occurs in the execution.

Example. Consider a system that consists of two processors s and v, connected by a

bidirectional communication link. Suppose that processor v sends a message m to s when

the local clock at v shows T; processor s then responds by sending a message m' to v,

which is received at v when its local clock shows T'. See the time-space diagram in Figure

1-1. (A brief explanation of time-space diagrams is given in Appendix A.) Suppose further

that some distinguished event occurs at processor s after m is received and before m' is

sent. Clearly, when m' is received, processor v can deduce that the distinguished event

occurs within its local time interval [T,T']. The difference (T' - T) is the tightness of

synchronization. I

To study synchronization problems, we define a system model, and analyze it at an

abstract graph-theoretic level. Using the results we obtain for graphs, we analyze clock

synchronization problems that are more practical than the elementary variant above. Specif-

ically, we give results for two kinds of clock synchronization tasks, motivated by the following

settings.

External Synchronization: There exists a distinguished processor called source in the

system. The task for each other processor is to obtain, at each time, the smallest

interval [a, b] such that the current reading of the source clock is in [a, b].1

Internal Synchronization: Keep all clocks in the system as close to each other as possi-

ble, running at the rate of their physical hardware clocks, except for isolated points

where clock values are reset.

Before we describe our results, we first describe what was known prior to this work. We

remark that much previous work was done for fault-tolerant clock synchronization, which

is beyond the scope of this thesis.

1.2 Previous Work

Different variants of the clock synchronization problem have been the target of a vast

amount of research from both practical viewpoint (e.g., [26, 6, 24, 28, 1, 15]) and theoretical

viewpoint (e.g., [16, 19, 7, 13, 33, 3], surveys [31, 30] and references therein); the exact

definition of the problem depends both on the intended use of the clocks and on the specific

underlying system. The large number of variants is justified by the wide spectrum of

applications.

One of the popular variants studied theoretically is internal synchronization in the case

where all clocks in the system are assumed to run exactly at the rate of real time (we call

such clocks drift-free hereafter). Lundelius and Lynch [19] consider the case in which there

is a communication link between each pair of processors, and message latency bounds are

identical for all links in the system. For this case, they present a synchronization algorithm

'In this thesis, numbers range over R U {oo, -oo} unless explicitly indicated otherwise. Square brackets
are used to denote intervals, including the case of infinite intervals.

that gives optimal tightness in the worst possible scenario allowable by the system speci-

fications. Halpern et al. [13] generalized the results of [19] to networks whose underlying

topology is arbitrary, and whose message latency bounds may be different for each link.

The main idea in the analysis of [13] is to formulate the problem as a linear program; solv-

ing this program, they find the worst case scenario, and an algorithm is presented so that

optimal tightness is guaranteed in this case. In [3], Attiya et al. observe that the algorithm

of [13] always gives the best worst-case tightness, even if the actual execution happens to

be more favorable for synchronization than the worst possible. This observation motivates

them to generalize the results of [13]; specifically, in [3] they present an algorithm which

gives optimal tightness for each specific execution of their system.

The focus in all the above papers [19, 13, 3] is on obtaining bounds in a centralized

off-line fashion. Typically, the algorithms can be viewed as consisting of two stages. In the

first stage, timing information is gathered at the processors by sending messages over the

links. Then a second stage begins, where all the information is sent to one processor; that

processor makes the necessary computation, and distributes the results back to the other

processors. Only then can each processor adjust its clock.

Practical work is typically more focused on on-line distributed algorithms. Usually,

loosely coupled systems use external synchronization algorithms, and tightly coupled sys-

tems use internal synchronization. One important protocol for external synchronization is

NTP [25, 26], used over the Internet. Another prominent technique in practice is "proba-

bilistic clock synchronization" proposed by Cristian [6]. In this approach, the transmission

time of messages is assumed to adhere to some probability distribution, and the transmis-

sion times of different messages are assumed to be independent. Under these assumptions,

some stochastic guarantees can be made by the synchronization protocol.

1.3 Contents of This Thesis

Our chief objective in this thesis is to acquire better theoretical understanding of clock

synchronization. Our first step towards this goal is to define a mathematical model, in

which we state our system assumptions precisely, and define the performance criterion by

which we measure the quality of the synchronization algorithm. We then abstract executions

of systems using a graph theoretic formulation. Using graphs, we state and prove our main

characterization of tightness of clock synchronization. From these results, we derive new

optimal external synchronization algorithms and a new lower bound on the tightness of

internal synchronization. Moreover, we give evidence that indicates that there is no efficient

optimal synchronization algorithm that works for arbitrary clock drift bounds and message

latency bounds.

In the remainder of this section, we give a more detailed overview of the thesis.

1.3.1 The Setting

Based on the model of timed input/output automata of Lynch and Vaandrager [20], we

define in Chapter 2 a new formal model, called mixed automata. This model enables us

to describe systems with local clocks. Using the formalism of mixed automata, we define

in Chapter 3 the environment we consider. Intuitively, the main assumptions expressed by

our definitions are the following. First, each message, when received (if at all), has a known

latency lower bound which is a finite non-negative real number, and a known latency upper

bound which is at least the lower latency bound, but it may be infinite. Secondly, each

local clock has known finite non-negative lower and upper drift bounds. And thirdly, each

execution that satisfies these bounds is possible. We remark that our assumptions include

many cases, such as communication links that may lose, re-order, or duplicate messages

arbitrarily; systems with broadcast channels; and the case of processor and link crashes.

To facilitate these properties, we assign to the clock synchronization modules a somewhat

"passive" part in the system. Our formulation is such that clock synchronization algorithms

do not initiate nor delay message transmission and delivery; rather, in our model, message

sending is initiated solely by abstract send modules, and the clock synchronization algorithm

is allowed to pass information only by "piggybacking" on existing message traffic, where

we assume that piggybacking is done instantaneously. Thus, the role of a synchronization

algorithm can be viewed as limited to the interpretation of executions of the environment

as they unfold. (Technically, since our definition of executions contains also the real time

of occurrence of events, only a local view of the execution, which contains just local times

of occurrence, is available for computation.) We remark that our model can be viewed as a

distributed version of the model considered in [3].

To evaluate the quality of a synchronization algorithm, we define in Chapter 4 a new

measure, which may be of independent interest in its own right. Intuitively, our approach is

a combination of the execution-specific approach of [3], the competitive analysis approach

[32, 23], and the causality partial order of Lamport [16]. Loosely speaking, we call a

clock synchronization algorithm locally K-competitive if the tightness of its output at any

point at any execution is at most K times the best possible tightness among all correct

algorithms, given the local view at that point. An algorithm is called optimal if it is locally

1-competitive.

1.3.2 A General Theory

The heart of this thesis is a new analysis of clock synchronization problems. Intuitively, we

show that even though clock synchronization problems can be formulated as linear programs

[13], fortunately they have a much simpler structure, namely distances in a certain graph.

More specifically, in Chapter 5 we introduce a new concept, which we call synchroniza-

tion graphs. Synchronization graphs are weighted, directed graphs derived from system

specifications and local views of executions. Since these quantities are locally available for

processing, synchronization graphs can be computed by distributed algorithms. The main

result of the theory is a characterization of the achievable tightness of synchronization at

any execution in terms of distances in the corresponding synchronization graph. An impor-

tant property of this result is that these distances can be computed on-line in a distributed

fashion, thereby giving rise to new algorithmic techniques for optimal synchronization.

Synchronization graphs provide us with a simple and robust concept that deals in a

uniform manner with both the uncertainty of transmission times and the uncertainty due

to clock drifts. In Chapter 9 we show how to incorporate additional timing information of

certain simple types in synchronization graphs. Moreover, we show a simple property of

synchronization graphs which is equivalent to the consistency of views with system specifi-

cations. This idea can be used to detect faults.

1.3.3 Applications

After proving the general results in Chapter 5, we turn to derive results for specific synchro-

nization tasks. In Chapter 6 we define and analyze the external synchronization problem.

In external synchronization, there is a distinguished source processor whose clock is drift-

free; each other processor in the system is required to provide, at all times, bounds on the

current reading of the source processor. The difference between the bounds is called the

external tightness of the synchronization at that point. In Chapter 6, we prove a lower

bound on the tightness of synchronization at any point, and present a distributed on-line

algorithm that meets this bound at all points. This characterization is done for the general

setting, where clock drift bounds and message latency bounds are arbitrary. The algorithm

for the general case is inefficient. By contrast, we present an efficient algorithm for optimal

external synchronization, under the assumption that all clocks in the system are drift-free.

We compare our approach with the popular technique of round-trip probes, and explain

why our approach is superior.

In Chapter 7, we consider the internal clock synchronization problem, where each pro-

cessor is required to generate a single "tick," and the internal tightness of synchronization

in an execution is a bound on the length of real time interval that contains all ticks. Us-

ing synchronization graphs, we obtain a lower bound on the achievable internal tightness

of synchronization. Our lower bound generalizes known lower bounds for drift-free clocks

[19, 13, 3] to the case of drifting clocks. Moreover, our derivation is relatively simple and

intuitive.

In Chapter 8, we show a somewhat surprising result regarding the space complexity of

optimal synchronization algorithms. We define a certain computational model, in which

output values are restricted to be expressed as linear combination of the inputs with integer

coefficients (all known algorithms can be expressed this way). In that model, we show that

for any external synchronization algorithm there are scenarios that require unbounded space

complexity in order to produce optimal output.

'The latter result provides strong evidence to the effect that no single algorithm can be

efficient, general and optimal at the same time. Practical algorithms must be efficient; the

new algorithms we suggest are optimal.

1.4 Significance of the Results

We believe that this thesis contributes to the understanding of clock synchronization in a

number of ways.

First, it suggests a new way of looking at the problem, and presents a constructive

characterization of achievable tightness. Even though our results indicate that there is no

"ultimate solution" for clock synchronization, i.e., an algorithm that is general, efficient

and optimal, we believe that using the techniques presented in this thesis, better practical

algorithms can be developed, by compromising generality or optimality.

We also believe that the discovery of synchronization graphs is an important contribution

to the research of timing-based systems. In some sense, synchronization graphs can be

viewed as the extension of Lamport's graphs [16], used to describe executions of completely

asynchronous systems, to the case where processors have clocks.

In addition, we think that our approach of local competitiveness can be used for problems

in different settings, as it captures an intuitive notion of flexible algorithms that guarantee

output close to the best possible for each possible scenario.

1.5 Critique of the Results

Informally, the usefulness of synchronization graphs relies on a few strong assumptions.

(1) The system specification is such that if an event may occur at either of two points,

then this event may occur at any point between them.

(2) Processors and communication links follow the system specification.

(3) All executions that satisfy the system specifications are possible.

These assumptions are restrictive. Assumption (1), for example, rules out the case that

local clocks run at a fixed but unknown rate. It also rules out systems where message

transmission time can be a point in either of two disjoint intervals (this may be the case, for

example, when using links that divide the communication into discrete frames). Assump-

tion (2) seems even more problematic: even if the specification allows for some limited kind

of faults, it is hardly ever the case that one can guarantee operation of distributed systems

without unpredictable faults. Clocks are particularly volatile, as the many papers about

fault-tolerant clock synchronization can testify. Assumption (3) seems unrealistic as well:

intuitively, it means that all possible timing information is given in the system specifica-

tion. In many cases, however, additional information can be obtained, e.g., from a human

operator.

Let us defend our thesis. The first assumption is absolutely essential for our analysis;

the whole theory breaks down if the timing specification is such that there are events that

may not occur between points in which they are allowed to occur. We claim, however,

that our formulation is appropriate in many cases. For example, when the uncertainty of

message transmission times is relatively high, the effect of discrete communication frames

is negligible. Also, while conventional quartz clocks (such as the ones used in most CPUs)

usually maintain a fixed rate, this rate may change abruptly, thus making the rate look as

if it takes values from a continuous range. Hence we argue that assumption (1) seems to be

a reasonable abstraction.

Consider assumption (2). For systems with faults, our analysis provides a partial solution

in the form of fault detection. Even though we do not know how to use synchronization

graphs directly to correct errors, we know how to use synchronization graphs to detect

them. Moreover, when computing distances over synchronization graphs (as our techniques

suggest), the detection comes "for free." It is also conceivable that synchronization graphs

can be used in conjunction with some fault tolerance scheme that uses redundancy to

eliminate erroneous information.

Assumption (3) is required only for the optimality claims, that is, we use it to obtain

lower bounds on the achievable tightness of synchronization. Our algorithms work just as

fine if this assumption is removed: it might be the case, however, that additional information

can be used to improve performance. Some cases of additional timing information can be

modeled by clock synchronization graphs: we give a few simple examples in Chapter 9.

Finally, let us address the validity of our assumption that clock synchronization algo-

rithms are "passive," i.e., that they do not initiate message sending by themselves. We

argue that this assumption is not really restrictive; it is used as a convenient theoretical

abstraction that enables us to compare different algorithms. Using this model, we view

clock synchronization algorithms as if their role is merely to interpret the execution; if an

algorithm is optimal in our sense, then it gives the tightest results for any execution, and

can be used under any pattern of message traffic.

1.6 Structure of this Thesis

The organization of this thesis is as follows. Each chapter begins with a short description of

its contents, and ends with an intuitive summary of the main ideas. In Chapter 2 we define

the mixed automaton model, which provides us with the formalism we use in describing

the systems considered in this thesis. In Chapter 3 we describe the architecture of the

clock synchronization systems studied in this thesis, and define the basic notions of views

and patterns. In Chapter 4 we define the synchronization tasks we consider, and the way

we evaluate their quality, namely the concepts local competitiveness and optimality for

synchronization algorithms. In Chapter 5 we define the concept of synchronization graphs,

and present our main results. In Chapter 6 we consider the external clock synchronization

problem. We give matching bounds on the tightness for general systems, and an efficient

optimal algorithm for systems with drift-free clocks. In Chapter 7 we give a lower bound on

the achievable tightness for internal synchronization. In Chapter 8 we prove a space lower

bound for optimal external synchronization algorithms for general systems. In Chapter 9 we

present a few extensions to the concept of synchronization graphs. We conclude in Chapter

10 with a few critical remarks about the results, subsequent work, and open problems.

In Appendix A, we describe the standard method of time-space diagrams. An index is

given at the end of the thesis, to aid the reader in tracing definitions of concepts.

Chapter 2

The Mixed Automaton Model

]In this chapter we define the mixed automaton model, which is the underlying computational

model we consider in this work. Our goal is to formalize the notion of a distributed system

with clocks. The development in this chapter is elementary: some readers may wish to skip

directly to the more specific definitions of clock synchronization systems in Chapter 3, and

refer to the general definitions of this chapter when appropriate.

The mixed automaton model is based on the timed I/O automata model of Lynch and

Vaandrager [22, 20], abbreviated TIOA henceforth. An important feature of the model is

that simple modules, under certain compatibility conditions, can be combined to obtain a

more complex module.' The main idea in our model, as described in this chapter, is that

states of the system contain a component called now, which describes the (formal) real time

in which the state exists, and components called local_time, which describe the readings of

the local clocks in that state. (In TIOA, there are no special components for local times.)

Time passage is formalized using a special action denoted v. The now and the localtime

components are changed only by the time-passage action, which means that the local times

represent local clocks that cannot be reset.

We open this chapter in Section 2.1 with the definition of mixed automata, and also

define a few particular properties of mixed automata that we shall use later. In Section

2.2 we define the notions used to describe how an automaton "runs," namely executions

and timed traces. We conclude this chapter by describing composition of mixed automata,

which tells us how distinct submodules communicate within a larger module.

1 We shall use the terms "automaton" and "module" interchangeably throughout this thesis.

t1 < t2 R
I

Figure 2-1: Illustration of Definition 2.1. The N function maps elements of S to real
numbers. The trajectory w is an inverse of N, and maps the "<" relation to a "- " relation.

2.1 Definition of Mixed Automata

Our first step is to give a definition of trajectories (adapted from [20]), which have turned

out to be a key concept in the formal analysis of real-time systems (see, e.g., [10, 21]).

Intuitively, a trajectory for a given interval will be used to describe an "evolution" of a non-

deterministic system when only time passes through that interval of time. The definition

below is stated in general terms; the specialization for our purposes is done later. Figure

2-1 gives an illustration of the following definition.

Definition 2.1 Let S be a set, let N be a function N : S ý R, and let "--" be a binary

relation over S.2 Given a (possibly infinite) interval I of R, a trajectory for I, S, N and -

is a function w : I H S, such that N(w(t)) = t for all t C I, and such that for all t, t2 E I

with tl < t2 , we have w(tl) 2 w(t 2).

The interpretation of the abstract notion of trajectory becomes clearer when we define

automata. Intuitively, a mixed automaton is a formal representation of a non-deterministic

system in a framework of real time, which is represented by non-negative real numbers. In

this context, S in Def. 2.1 is used to represent the set of system states; each state s contains

the single time point of its existence, which given by a now(s) mapping (corresponding to N

in Def. 2.1); a trajectory of an interval is the way the states change while time values range

over that interval. Assuming that -- is a relation (rather than a function) corresponds to

the non-deterministic nature of the system.

2 Throughout this thesis we denote the set of real numbers by R, and the non-negative reals by R + .

I
I • "

We now proceed with the definition of mixed automata. In addition to the now at-

tribute of states which represents real time (as in the TIOA model [20]), a state of a mixed

automaton may also have local times attributes, for each local clock. The locations of clocks

are represented by special objects called sites. Formally, we have the following definition.

Definition 2.2 (Mixed I/O Automata) A mixed I/O automaton A is defined by the fol-

lowing components.

* A finite, possibly empty set of sites sites(A).

* A set of states states(A) with the following mappings:

now : states(A) - R+

T : sites(A) x states(A) i Rl
i

t
es

(A) l

The value now(s) is called the real time of s. For a site v E sites(A), we use the

notation local_time,(s) = T(v, s). T(s) is used as a function from sites to R.

* A nonempty set of start states start(A) C states(A).

* A set acts(A) of actions. One of the actions is a special time-passage action, denoted

v; the other actions are called discrete. The actions are partitioned into external and

internal actions, where time passage is considered to be external. The visible actions

are the discrete external actions. Visible actions are partitioned into input and output

actions.

* A transition relation trans(A) C states(A) x acts(A) x states(A). We also use the

shorthand sAAS' for (s, 7r,s') E trans(A); when the context is clear, we sometimes

write s--s'. For an action 7r and a state s, if there exists a state s' such that s--s',

then we say that 7r is enabled in s.

We require that A satisfy the following axioms.

C1 For all s E start(A), now(s) = 0.

C2 For all s--s' with 7 : v, now (s) = now(s') and T(s) = T(s').

C3 For all s -- s', now(s') > now(s).

C4 If s s' and s' A s", then s -- s".

C5 For all s - s', there exists a trajectory w for [now(s),now(s')], the state set,

the now mapping and the time passage subrelation {(s, v, s') E trans(A)}, such that

w(now(s)) = s and w(now(s')) = s'.

When we talk about more than a single automaton, we use subscripts to denote the context.

For example, local_timeA,v denotes the local time function of automaton A at site v.

We remark that timed I/O automata, as defined in [20], are a special case of mixed

automata, where the site set is empty.3

Example: the SENDER automaton. Let us illustrate the concept of a mixed automaton

with a toy example, which we shall return to later. We define an automaton, called SENDER,

that has a single input action called Receive_Message, and a single output action called

SendMessage. The SENDER automaton is equipped with a local clock that runs at the rate

of real time; the behavior of SENDER is very simple: it may output Send_Message only if

there was at least one Receive _Message input since the previous Send_Message output. The

following is a formal description of SENDER.

* There is a single site, which we choose to call v (any other name can do as well).

* The state set is (t, T, pend) : t E R , T E R, pend C {TRUE, FALSE} }. For a state

s = (t,T, pend), we have now(s) = t, T(s) = (T), and local_time,(s) = T. In words,

the real time of (t, T, pend) is t, and the local time of (t, T, pend) at site v is T. The

Boolean flag pend will be used to indicate whether there is a "pending output" (see

below).

* The set of start states is {(0, T, TRUE) : T E R}, i.e., all states with real time 0 and

pend = TRUE. This definition means that the initial local time at v is arbitrary, and

that Send_Message may be the first action of SENDER.

* The set of actions is {v, ReceiveMessage, SendMessage}, where v is the time passage

action, Receive_Message is a discrete input action, and Send_Message is a discrete

output action. Hence both ReceiveMessage and Send_Message are external and

visible.

3 The converse is also true: given a mixed automaton, one can model it as a particular kind of TIOA.

Sites: a single site v

State:

now: a non-negative real number, initially 0
localtime: a real number, initially arbitrary
pend: a Boolean flag, initially TRUE

Actions:

Receive Message (input)
Pre: none
Eff: pend -- TRUE

Send _Message (output)
Pre: pend = TRUE
Eff: pend +- FALSE

v/ : (time passage)
Pre: b > 0
Eff: now *- now + b

local-time -- local_time + b

Figure 2-2: SENDER: an example of a mixed automaton.

* The transition relation is as follows.

First, for all t > 0, T E R, pend E {TRUE, FALSE} and b > 0, we have (t,T, pend) A-

(t + b, T + b, pend). This means that time passage is always enabled, and that the

local time is increased exactly by the amount of real time that passes.

Secondly, for pend E {TRUE, FALSE}, ((t, T, pend), ReceiveMessage, (t, T, TRUE)) is a

transition. This means that the Receive _Message action is always enabled, and its

effect is to set pend to TRUE.

Finally, we have that ((t, T, TRUE), SendMessage, (t, T, FALSE)) is a transition, which

means that the Send Message action is enabled exactly at all states where pend =

TRUE, and its effect is to set pend = FALSE.

Formal description of automata will usually be done in this thesis using the "precondition-

effect" notation given in Figure 2-2. This more structured representation will be sufficient

to describe the algorithms we study. When the "Pre" clause is omitted from the description

of a transition, the interpretation is that the action is always enabled. I

2.1.1 Projections, Equivalent Automata

In this section we define the technical notions of projection and equivalent automata.

Intuitively, a projection of an automaton on one of its sites is the restriction of the

automaton to describe only the clock of that site.

Definition 2.3 The projection of a mixed automaton A on a site v E sites(A), or the clock

of A at v, denoted by AI,, is the mixed automaton defined as follows.

* sites(A,) = {v}.

* acts(Av) = {v}.

* For a state s E states(A), let sl, be the pair (nowA(S),TA(v,S)). With this notation,

we have

- states(A|,)= {s, :s E states(A)}, and we set

nowAI,,(S ,) = nowA(8)

TA ,,(V, S ,) = TA (V, S)

- start(Al,) = {s,: s E start(A)}.

- trans(A1,) = {(s|1, v, s') : (s, v, s') E trans(A)}.

We have the following lemma.

Lemma 2.1 For any mixed automaton A, for all v E sites(A),Al, is a mixed automaton.

Proof: By inspection of the axioms. I

We conclude this section with a definition of equivalent automata. Intuitively, two

automata are equivalent if they are the same, up to renaming and multiplicity of equivalent

states. Formally, we have the following definition.

Definition 2.4 A mixed automaton B is said to extend a mixed automaton A if sites(A) C

sites(B), acts(A) C acts(B), and there exists a mapping f : states(B) H states(A) such

that the following conditions hold for all s E states(B).

* nowA(f(s)) = nOWB(S).

* For all v E sites(A), local_timeA,(f (s)) = local-timeB,v(s).

* f(s) e start(A) iff s E start(B).

* For all 7r E acts(A), we have (f(s), r, f(s')) E trans(A) iff (s, 7r, s') E trans(B).

A and B are said to be equivalent, denoted A = B, if A extends B and B extends A.

2.1.2 Clock Types

In this work, we shall study automata where local clocks have bounded drifts, as defined

below.

Definition 2.5 Let v be a site of a given mixed automaton A. If there exist 0 < <p - < 00

such that for all all s __ s',

p(now(s') - now(s)) < localtime,(s') - localtime,(s) 5 -(now(s') - now(s)),

then Al, is called a (p,)-clock. A clock Al, is called a bounded-drift clock if it is a (_,-)-

clock for some 0 < oe • < oo. A (1, 1)-clock is also said to be drift-free.

Alternatively, one can think of a clock as a collection of real-valued "clock functions"

{T(t)}, where t denotes real time. In this representation, a (Q, P)-clock consists of functions

T(t) such that o(t - t') < T(t) - T(t') < -(t - t') for all t > t' > 0 (which also means that all

clock functions of a bounded drift clock are continuous), and a drift-free clock is a function

of the type T(t) = t + a for some constant a. We formalize this interpretation in Definition

2.12, after we define executions.

2.1.3 Real Time Blindness

In our model, real time is a part of the state of the system. In many systems, access to real

time is restricted to occur only via special physical devices, such as clocks. To model this

property, we introduce the notion of real-time blindness in the following definition. The

definition is specialized for bounded-drift clocks.

Definition 2.6 Let A be a mixed automaton such that each v E sites(A) is a (kv,-,)-clock.

A is said to be real-time blind for (o , ,,) if there exists an equivalent automaton A' = A, with

a set B(A') and a mapping basic : states(A') H B(A') such that the following conditions

are satisfied.

* For all b E B(A'), all mappings T : sites(A') * R and

states(A') such that basic(s) = b, now(s) = t and T(v, s)
all t E R +, there exists s E

= T(v) for all v E sites(A').

* For all s, - s2, basic(s) = basic(s2).

* For all si, S2 , Si, S' C states(A'): if (sl,, S2) C trans(A') for ir v, and

T(si) = T(s')

basic(s') = basic(sl)

basic(s') = basic(s 2)

then (s',Cr, s2) E trans(A').

* For all s1, 82, S1, S' C states(A'): suppose

now(s). If for all v E sites(A') we have

basic(s')

T(s')

T(s2)

T(v, s') - T(v, s')

(s81, , S 2) E trans(A'), and let A now (s')-

= basic(s1)

= T(sl)

= T(s2)

S [A , a - A

then (s',G,s2) E trans(A').

Intuitively, an automaton is real-time blind if each of its states can be decomposed into

three components, called the real time, the local times, and the basic component. We

require that this decomposition is such that time passage action has no effect on the basic

component, and that the enabledness of actions is independent of the real time component.

The time passage action is special, since the clock drift bounds imply that the local times

component and the real time component are related. In this case we therefore require that

all amounts of real time passage allowed by the drift bounds are possible by a real-time

blind automaton.

Example. It is easy to verify that SENDER is real time blind for (1, 1): the decomposition

of its states is readily given. Specifically, a state (t, T, pend) has real time component t,

local time component T, and basic component pend. Let us verify the properties of this

decomposition:

* The state set is R+ x R x {TRUE, FALSE).

* The value of pend is never changed by time passage.

* Changes in the value of pend depend only its value and the type of action taken.

* Time passage does not depend on the value of the now component neither in being

enabled nor in the amount of time that passes, except for that the real time may be

increased exactly by the amount local time is increased by.

I

2.1.4 Quiescent States

The following definition formalizes the notion of "idle state," in which nothing happens,

and nothing will happen, unless some input occurs.

Definition 2.7 A state s E states(A) for some mixed automaton A is called quiet if the

only actions enabled in s are input actions and time-passage actions. A quiet state so is

said to be quiescent if the following conditions hold.

(1) For all t > 0 there exists a transition so Z- s such that now (s') = now(s) + t.

(2) For all states s such that so _ s, s is quiet.

Intuitively, a state is quiet if the automaton is not poised at doing something at present,

and a state is quiescent if the automaton is not intending to do something at the future.

An important consequence of quiescence will be proved in Lemma 3.1, in the next chapter.

Example. Examining SENDER once again, we see that all the states of the form (t, T, FALSE)

are quiescent: only input and time-passage actions are enabled in them, and only other

states of the same form are reachable from them by time passage. I

2.2 Executions and Timed Traces

In this section we formalize the concept of system execution and its derivative notions. We

remark that the definition of executions of mixed automata we give here is a straightforward

extension of the definition of timed executions in [20]. We shall use the following notations

(cf. Definition 2.1 and Figure 2-1).

Notation 2.8 Let I be a (possibly infinite) interval of R + , and let A be a mixed automaton.

A trajectory on I of A is a trajectory for I, states(A), the now mapping, and the time-

passage relation {(s, v, s') E trans(A)}. Let w be a trajectory on I of A. Denote fnow(w) =

inf(I), and l_now (w) = sup(I). If I is left-closed, let fstate(w) denote w(fnow(w)), and if

I is right-closed, let l_state(w) denote w(l_now(w)).

We start with the definition of execution fragments.

Definition 2.9 Let A be a mixed automaton. An execution fragment of A is an alternating

(finite or infinite) sequence (woTr1W17r2 2 . ..) such that

(1) Each wj is a trajectory, and each 7rj is a discrete action.

(2) If the sequence is finite, then it ends with a trajectory.

(3) If wj is not the last trajectory in the sequence, then its domain is a closed interval.

If there is a last trajectory, then its domain is left-closed.

(4) If wj is not the last trajectory, then l_state(wj) T f_state(wj+l).

The duration of a finite execution fragment (woI07W 1 7W2 2... WN) is the (possibly infinite) in-

terval [f_now(wo), l_now(WN)]. The duration of an infinite execution fragment (wor 1w1 r2w2 .. .)

is the interval [f_now(wo), sup, l_now(wi)].

Definition 2.10 An execution of a mixed automaton A is an execution fragment (wo W1 Tr2w2 ...)

of A such that f_state(wo) E start(A).

Call an execution admissible if its duration is infinite. In this work we consider only

feasible automata, defined by the condition that each finite execution of a feasible automaton

can be extended to an admissible execution.

Given an execution fragment (woi7r1 1 . . .), we define for each event vri its times of occur-

rence, T(7ri) = T(l_state(w_l1)) (thus T(7ri) is a mapping that assigns to each site a local

time). Sometimes actions will be associated with a single site. If a step r is associated with

a site v, we refer to the local time of occurrence of 7r, defined by localtime(ir) = T(7)(v).

The real time of occurrence is defined to be now(7r) = now(lIstate(wi_1)).

Next, we define the notion of timed traces.

Definition 2.11 Given a finite execution fragment e = (wo7rlw 1 ... WN), the timed trace

of e is a triple ((t,,T,), a, (tf,Tf)), where the start time is T8 = T(fstate(wo)) and t, =

now(fstate(wo)); the finish time is Tf = T(lstate(wN)) and tf = now(lstate(WN));4 and

a is a sequence of triples (ri,ti,Ti), where 71r, 7r2 ... is the sequence of all visible events

in the execution, and for each i, ti is the real time of occurrence of 7ri, and Ti is the

times of occurrence of 7ri. For an infinite execution fragment, finish time is given by tf =

sup,,t(now(wi(t))), and Tf (v) = sup,,,t(local_timev(w (t))) for each site v.

We close this section with a definition of the natural concept of clock function.

Definition 2.12 (Clock Functions) Let e = (wori ...) be an execution of an automaton

A, and let v E sites(A). The clock function of v in e is a mapping localtimev : R + ý- R

such that for all t > 0, if t E [f_now(wi), I_now(wi)], then local_time,(t) = T(wi(t), v).

Recall that the notation local_time is also defined as a function from states to the reals; the

interpretation being used should be clear from the context.

Finally, given an automaton A and a site v E sites(A), we define the set of clock functions

of v to consists of all clock functions of the projected automaton A l.

2.3 Composition of Mixed Automata

We now proceed to define the composition of mixed automata. First, we define composition

of states.

Definition 2.13 Let A and B be mixed automata. Two states sA E states(A) and sB B

states(B) are compatible if now(sA) = now(sB) and local_time (sA,) = local_time,(sB) for

all v E sites(A) n sites(B). The composition of two compatible states sA and SB, is the pair

(SA, SB), which has the following attributes.

4Again, note that T, and Tf are mappings that assign a local time to each site.

* nOW(SA, SB) = noW(SA).

* For each site v E sites(A) U sites(B),

, (,)) loatime(local_time,(sA), if v E sites(A)

local_time,(sB), if v E sites(B)

For a composed state (SA, SB), we denote (SA, SB)A = SA, and (SA, SB)IB = S

Note that by the compatibility condition, localtime,(SA X SB) is well defined for v E

sites(A) n sites(B).

We now define a necessary condition for composing mixed automata. We use the notion

of projection here (cf. Definition 2.3).

Definition 2.14 Let A, B be two mixed I/O automata. A and B are said to be compatible

if their output actions are disjoint, the set of internal actions of A is disjoint from the set

of all actions of B, and the set of internal actions of B is disjoint from the set of all actions

of A. In addition, we require that for all v E sites(A) n sites(B), we have that Al, - BI,.

We are now ready to define composition of automata.

Definition 2.15 (Mixed Automata Composition) Let A and B be two compatible mixed

I/O automata. The composition A x B of A and B is a mixed I/O automaton defined as

follows.

* The sites of A x B are sites(A x B) = sites(A) U sites(B).

* The states of A x B is the set of all compatible pairs of states from states(A) and

states (B).

* The start set of A x B is the set obtained by composing all compatible pairs of states

from start(A) and start(B).

* The set of actions of A x B is the union of acts(A) and acts(B). A discrete action is

external in A x B exactly if it is external at either A or B, and likewise for internal

actions of A x B. A visible action of A x B is an output action if it is an output action

of exactly one of either A or B, and it is input otherwise.

* For any action 7r E acts(A x B) and states s,s' E states(A x B), we have (s, 7,rs') E

trans(A x B) iff both the following hold.

(1) If 7r E acts(A) then (sIA, 7, S'IA) E trans(A), otherwise slA = S'IA

(2) If ir E acts(B) then (SIB,w,s'IB) E trans(B), otherwise sIB = s'l|.

Composition defines the way two automata interact: this is done by shared actions. The

compatibility condition prohibits shared output actions, or interfering with internal actions

of each other, and requires that shared portions of the state have the same underlying

structure.

Below we state the basic property of composition.

Lemma 2.2 If A and B are compatible mixed I/O automata, then A x B is a mixed I/O

automaton.

Proof: Straightforward. I

Notice that we can compose any finite number of compatible automata, by applying the

binary composition operator defined above iteratively. The set of executions of the resulting

automaton is essentially the same (up to a natural isomorphism), regardless of the order of

composition.

We now turn to look at executions of composed automata. The following two lemmas

establish connections between executions of a composed automaton and the execution of

its constituent automata. First, for an execution e of a composed automaton A x B, let

elA denote the sequence obtained from e by mapping each state s of e into sIA, omitting all

actions of B from e, and for each action ir of B in e, we merge the resulting trajectories wi

and wi+l. Analogously we define eIB. The sequences eIA and eIB are called the projection

of e to A and B, respectively. We have the following simple property for projection of

execution of a composed automaton.

Lemma 2.3 Let e be an execution of a composed automaton A x B. Then eJA and eIB are

executions of A and B, respectively.

Proof: Immediate from the definitions. I

We now prove a converse for Lemma 2.3. To be able to state it, we have to make

a few technical definitions. Fix a mixed automaton A. A times form for a set of sites

V C sites(A) is a mapping F : V H R. A timed sequence for A is a sequence - =

((7 1 , now(r71), F,), (7 2, now (7 2), F,,), where each w7r is a visible action of A, now (w7) is a

non-negative number, and F,, is a times form. We require that the sequence (now(w~))i>1 is

non-decreasing. A form for A is a triple ((ts, Fs), a, (tf, Ff)), where a is a timed sequence of

A; t, and tf are non-negative real numbers called the start and finish real time, respectively;

and F, and Ff are times forms, called the start and finish times forms, respectively. Notice

that for a given automaton, every timed trace is a form; the converse, however, is not true

in general, since a form for A need not be obtained from an execution of A.

Let F be a times form for a site set V. The projection F v, of F for V' C V is obtained

by restricting the domain of F to sites in V' only. Given a timed sequence for a composed

automaton A x B, its projection oJA is defined as the subsequence of actions of A, where

the times form for each action is projected on sites(A). Finally, the projection of a form for

a composed automaton is obtained by projecting the start times form, the timed sequence,

and the finish times form, i.e, ((ts, FS), a, (tfFf))|A = ((ts, Fs Iites(A)), OA, (tf, Ff sites(A)))

In the following lemma we prove that a converse to Lemma 2.3 is also true, i.e., if we

have executions of A and of B that are compatible in a certain sense, then there exists an

execution of A x B that, after projections, looks like either of the given executions (of A

and of B).

Lemma 2.4 Let A x B be the composition of compatible mixed automata A and B, and

let ((ts,T,),a, (tf, Tf)) be a form for A x B. Suppose that there exist execution fragments

of A and B whose timed traces are the projection of ((ts,F,), a,(tf,Ff)) on A and on

B, respectively, and such that for all v E sites(A)n sites(B) we have local_timeA,(t)

local_timeB,,(t) for all t E [ts: tf]. Then there exists an execution fragment of A x B whose

timed trace is ((tW, F), a, (tf, Ff)).

Proof: Suppose a = (i-7T, 2 ,...), U-A 0 - (71A 1,ri2,..), and aB1 = (-j,, j 2 ,...). By the

assumption, we can "fill in" trajectories w•, and wj,,, such that the following properties hold

(see Figure 2-3 for an example).

(1) The alternating sequence eA = i(wo•i,1 Wi, i 2r, ...) is an execution fragment of A, and

the alternating sequence eB = (wjo'irlj, ir 2) is an execution fragment of B.

(2) The timed trace of eA is ((ts, Fs), a, (tf, Ff))IA, and the timed trace of eB is ((ts, F,), a, (tf, Ff))IB

(3) For all sites v E sites(A)n sites(B) and t E [t8, tf],t) = l_timeA,(t) = local_timeB,(t).

Si
eA=

eB =

'Ss tz
7C1

0oJlo

t2

7C2

t 3 t4
* 0

I13 7C4

.1

t 5

7E5

'Oh

J1 J2

10 11 12! 14 * 14

ni. Ci2 i3i2 13 71i4

Figure 2-3: An example for the scenario considered in the proof of Theorem 2.4. While
a is a form for A x B, eA and eB are executions of A and B whose timed traces are

((ts, F,), a, (tf, Ff)) A and ((ts, F,), a, (tf, Ff)) B, respectively.

Using these trajectories, we construct an execution of A x B in a piecewise fashion. For

ease of notation, let us define rk = now(Trk), and ro = t,. We now show how to construct a

trajectory wk for the time interval [rk, rk+1], where k > 0. Let i1,jm be the greatest indices

such that 7ri, and 7rj,,. occur before 7rk+ 1 in a, or 0 if no such events exist. Define ri, to be

the now value of ri,, or t, if il = 0; define rj,,o analogously. (Notice that rk is the maximum

of ri, and r.,,,.) For example, in Figure 2-3 and with k = 3, we have il = i2 and jm = jl.

'We define wk using wi, and wj,, using state composition, namely wk(t) = Wi (t) X Wj,,, (t).

We claim that wk is a trajectory on [rk, rk+1] for Ax B. We prove this as follows. First, for all

t E [k,rk+l], nOWA(Wi(t)) = nOwB(wj,,,(t)) = t, and for all v c sites(A) n sites(B) we have

by assumption that localtimeA,,(t) = localtimeB,,(t). It follows that wi,(t) x wj,,,(t)) e

states(A x B) for all t in the interval. Secondly, let rk • tl < t2 • rk+l. By the

properties of A and B, respectively, we have that (wi,(t 1),v,wL,(t 2)) E trans(A), and

(w,,, (tl), , wj,, (t2)) E trans(B). Also, for all v E sites(A) n sites(B) we have by assump-

tion that localtimeA,,(tl) = localtimeB, (tl) and local_timeA,(t 2) = localtimeB,v(t 2). It

therefore follows that (wi,(tl) x wj,,,(tl) ,, , i,(t 2) x Wj,,(t 2)) E trans(A x B), showing that

wLA is a trajectory for A x B.

To complete the construction, we need to combine the trajectories by the visible ac-

tions of a. But this immediately follows since for k > 0, (lstate(wkrk,fe(w kf_state(wk))

trans (A x B) by definitions. We conclude by noting that the execution fragment constructed

above agrees with the time forms (t., F,) and (tf, F). I

Corollary 2.4.1 Let A1 x A 2 x ... A be the composition of compatible mixed automata

A 1,...,An, and let ((ts,T,),a,(tf,TJ)) be a form for A1 x A 2 x ... An. Suppose that for

i = 1,... , n there exist execution fragments of Ai whose timed traces are the projection of

((ts,F,),a, (tf,Ff)) on Ai. Suppose further that if v E sites(Ai) nsites(Aj) for some i,j,

then we have local_timeA,,v(t) = localtimeAj,v(t) for all t E [t ,tf]. Then there exists an

execution fragment of Ai x A 2 x ... A, whose timed trace is ((t, F,), a, (tf, F)).

Proof: By applying Theorem 2.4 to A1 and A 2, and then to A1 x A 2 and A 3 etc. I

Summary

In this chapter we defined the mixed automaton model, which is the underlying computa-

tional model we shall consider in the remainder of this work. The mixed automaton model

is based on the timed I/O automata model of Lynch and Vaandrager [22, 20]. Our model

formalizes the notion of a system with local clocks. We defined the basic notions of execu-

tions and their timed traces, which roughly are the sequences of input and output events in

executions. We made a few notational conventions, described intuitively as follows.

* Clock locations are called sites.

* The real time of occurrence of an event 7r is denoted by now(7).

* For a site v and an event 7r, localtime,(7r), is the local time of occurrence of 7, defined

by the value of the clock of v when r occurs.

* A bounded-drift clock is a clock whose rate of progress with respect to real time is

bounded by a drift lower bound and a drift upper bound. A (,, -)-clock is a bounded

drift clock with drift bounds 0 < Q < -. A (1, 1)-clock is called a drift-free clock.

* An automaton is real-time blind if it cannot access the real time component of the

state. (It may access the local time component.)

* A state is quiescent if no locally-controlled action is enabled in it, and no such action

will become enabled by time passage alone.

An important feature of the model is that simple modules, under certain compatibility

conditions, can be combined to obtain a more complex module.

Chapter 3

Clock Synchronization Systems

In this chapter we use the formalism developed in Chapter 2 to describe the clock syn-

chronization systems we shall be studying. The main idea in the system definition in this

chapter (first introduced by Attiya et al. [3]) is to partition the system into two: an active

part (called environment) that generates messages and delivers them, and a passive part,

played by the clock synchronization algorithm, whose role is to interpret the resulting com-

munication patterns. This is in contrast to conventional viewpoints, where synchronization

algorithms may initiate the sending of a message. Intuitively, in our framework algorithms

have to work with any possible message traffic generated by the environment.

This chapter in organized as follows. In Section 3.1 we carefully define the system, by

describing each of its basic components and the way they interact. This modeling is intended

to be reasonably close to the way systems are constructed, e.g., it includes definitions of

processors and communication links.

In Section 3.2 we shift our standpoint to a more conceptual one: we isolate the role of

the synchronization algorithm versus an adversarial environment, which controls the local

clocks, and message send and receive events. We define the key notions of the view and the

pattern of an execution of a clock synchronization system, which describe the information

in the execution which is relevant for clock synchronization tasks. These notions are defined

with respect to an execution of the system. To capture the properties of distributed on-line

system (discussed in Chapter 4), we also define the notion of local view of an execution,

which is the part of the view which can be known at a processor at a time point.

We conclude the system model chapter in Section 3.3, where we prove the basic property

Figure 3-1: The automata and interfaces at one node of a clock synchronization system.
Each processor has a local clock; only the send modules initiate message sending. The clock
synchronization modules must work using piggybacking on existing traffic.

used in lower-bound arguments in this thesis. Intuitively, this property is that (1) all

executions that satisfy the timing specification of the system are possible, and (2) the

output of a synchronization algorithm depends only on the view of the execution, which

cointains local times of events, but no real times.

3.1 Specifications of System Components

The system has an underlying graph, which is a directed graph whose nodes represent

processors and whose edges represent unidirectional communication links. We call the

nodes of the underlying graph processors, to avoid confusion with nodes of other kinds of

graphs defined later.

Roughly speaking, the system we describe is as follows (see Figure 3-1). Each processor

has a bounded-drift clock (cf. Definition 2.5). Processors communicate by sending messages

over the links. Message sends are initiated only by the send modules, in an arbitrary

fashion (i.e., a send action can be taken at any time). The clock synchronization algorithm

(abbreviated CSA henceforth) can only piggyback messages on the existing traffic in order

to carry out the specific synchronization task at hand.

In our notation, send modules output Send Message(m) actions. For each SendMessage(m)

action at a processor v, the CSA at v must immediately output a Send _Aug_-Message(m, m')

action, where m' is a message added by the CSA for communication with other CSAs. The

network may duplicate, lose, and reorder messages arbitrarily (but not corrupt their con-

tents). A message is received in a Receive _Aug _Message(m, m') action, which is taken by

the network. For each ReceiveAugMessage(m, m') action, the CSA at the receiving pro-

cessor "strips" m' off, and outputs ReceiveMessage(m) to the send module. The contents

of the m' field of messages is the sole way communication between different CSA is realized.

We assume that when a message is received, lower and upper bounds on its time of

transit (which may be 0 and oo, respectively) are available to the CSA, as functions of the

message contents (e.g., its length) and the system specification. The system is defined so

that all events are local, i.e., each event is an action of exactly one processor.

In the remainder of this section we define formally specific automata for links and send

modules, and give certain conditions that any clock synchronization algorithm must meet.

3.1.1 Send Automaton

Intuitively, the role of a send automaton A, at processor v is to determine when to send

messages and to which neighbor. In general, these decisions may be based (perhaps non-

deterministically) on the local history and/or the local time (e.g., timeouts). In this thesis,

we concentrate on the highly unstructured automaton, in which messages may be sent at

any time to any neighbor.

We assume that send modules have bounded-drift clocks (cf. Def. 2.5). In Figure 3-2

we give a formal specification of a send module. The definition uses the following notation.

For each processor v, AF(v) denotes the set of neighbors of v in the underlying graph; E

denotes a (possibly infinite) message alphabet. In Figure 3-2, as we do in the rest of this

thesis, we follow the convention that the actions are subscripted by processor names. As

we shall see, this is possible since every action in the system is associated with exactly one

processor. We usually omit subscripts when the context is clear.

Remark. The basic action of a send module is a point-to-point send. Our definition of

send modules includes all possible behaviors of message sends. In particular, a broadcast

or a multicast of a message to many processors can be modeled by many send actions taken

Sites: a single site v

State:

now: a non-negative real number, initially 0
localtime: a real number, initially arbitrary

Actions:

Receive_Message (m), for m E
Pre: none
Eff: none

Send _Message (m), for m E
Pre: none
Eff: none

E and u E K(v)

and u E ./(v)

(input)

(output)

(time passage)
Pre: b > 0

Eff: now +-- now + b
local_time <- local_time + r -b

Figure 3-2: Specification of a send module Av at site v with a (p,-) -clock

__

Sites: none

State

now: non-negative real number, initially 0
Q: a multiset of triples (ml,m 2 ,t) E E x E' x R + , initially 0

Transitions

Send-Aug _Message (mi, m 2), where mi E E, m 2 E E' (input)
Eff: choose an arbitrary integer i > 0

do i times
put (ml, m2 , t) in Q, where t is an arbitrary number in [L(mi), H(mi)]

Receive Aug Message,(m 1, m 2), where m1 E E, m 2 E E' (output)
Pre: (ml, m 2 , 0) E Q
Eff: remove a triple (ml, m 2 ,0) from Q

V : (time passage)
Pre: 0 < b < t for all (mi, m2 , t) E Q
Eff: Q - {(ml, m 2 , t - b) I (ml, m 2 , t) E Q}

now +- now + b

Figure 3-3: Specification of a link automaton L, .

at the same real time. Notice also that a send automaton may stop sending messages at

some point, thus behaving like a process that crashed.

Example. Consider once again the SENDER automaton defined in Figure 2-2. It has the

same action signature as the general send module of Figure 3-2, but it is slightly more

structured: the SendMessage action is not always enabled in SENDER. It is therefore clear

that the set of timed traces of SENDER is a strict subset of the set of timed traces of the

general send automaton of Figure 3-2. I

3.1.2 Network

The network is modeled as a collection of links which facilitate communication among

the processors. Each link from a processor v to a processor u has SendAugMessageu input

action (generated by processor v), and Receive _Aug _Messagev output action, (generated at

processor u). 1 We assume very little about the faithfulness of the links: messages may be

'The interface between links and processors is sketched in Figure 3-1; a formal description is given in
Section 3.1.4, after we define the CSA modules in Section 3.1.3.

lost, duplicated, or re-ordered. We only require that any message received was indeed sent

(i.e., no corruption of message contents). We also require that the transmission time of each

message received is within some (possibly infinite) interval which is known at the receive

point.

More precisely, we associate with each directed link (v, u) a link automaton L,, which

is responsible for the delivery of messages from v to u. The messages have the form

(ml,m 2), where mi E E and m 2 E E', for some message alphabeta E and E'. L,, has

no sites (i.e., no local clocks), but it satisfies the following timing specification. For any

Receive_AugMessage(ml,m2) step of the system we assume the existence of two num-

bers 0 < L(ml) _ H(mi) < oo, such that if the receive event occurs at real time t,

then the (unique) send event of this message must have occurred within the time interval

It - H(ml),t - L(mi)]. The number L(ml) is called the latency lower bound of mi, and

H(7ni) is called the latency upper bound of mi. Note that the latency bounds for a message

(mTi, m2) may depend only on mi .

A complete description of a L,,-automaton is is given in Figure 3-3.

Remarks.

1. In the formal description of Figure 3-3, latency bounds are determined when a message

is input into the link. This is done for convenience only. In an equivalent formalization,

the latency bounds are determined only when a message is output. (The latter formulation

may seem more realistic in the sense that transmission time can be better estimated upon

delivery than upon sending.) The fact that we shall use in the sequel is that when a

message is received, one can determine, from the system specifications and the contents of

the message, what are the latency time bounds for that message.

2. Note that the specification of the link is very general. In particular, a link may stop

delivering messages starting from some point, thus behaving like a crashed link. However,

the link specification guarantees that if a message is received, then it was sent, i.e., there is

no corruption of messages.

Example. Let us define a particular kind of links we call perfect asynchronous links. For

these links, the sequence of messages received is exactly the sequence of messages sent,

i.e., message are never lost, created, duplicated, nor re-ordered. The timing specification

of these links, however, is the loosest possible: the latency bounds are 0 (lower bound)

Sites: none

State

now: non-negative real number, initially 0
Q: a queue of triples (ml, m2) E E x E', initially empty

Transitions

Send_AugMessagev(ml,m 2), where mi E E, m2 E E' (input)
Eff: enqueue (ml, m 2) in Q

ReceiveAugMessage'(ml,m 2), where mi E E, m 2 E E' (output)
Pre: (ml, m 2) is in the head of Q
Eff: remove head of Q

v : (time passage)
Pre: b > 0
Eff: now + now + b

Figure 3-4: Specification of a perfect asynchronous link from v to u.

and oo (upper bound) for all messages (see formal description in Figure 3-4). A perfect

asynchronous link is just a special case of the general link of Figure 3-3, in the sense that

the set of timed traces of a perfect asynchronous link is a subset of the set of timed traces

of general links.

3.1.3 Clock Synchronization Algorithm (CSA)

The CSA uses the readings of the local clock, and the messages sent and received, in order

to carry out some synchronization task (the definition of particular tasks is deferred to later

chapters). In this subsection we specify requirements that must be met by any CSA, and

point out what remains unspecified.

Interface

CSA modules use two message alphabets for communication, E and E', where E is used by

the send automaton, and E x E' is used by the links. The CSA module at processor v has

the action signature described in Figure 3-5.

For output, CSA modules may have additional variables or actions. The definitions de-

pend on the specific synchronization task considered, which in turn depend the on definition

Input actions

Send Message (m), for m E E and u E A/(v).
Receive _Aug _Message(mi, m 2) for (ml, m 2) E E x E' and u E Af(v).

Output actions

Send _Aug _Message(ml, m 2) for (ml, m 2) E E x E' and u E NA(v).
Receive.Message u(m), for m E E and u E M(v).

Figure 3-5: Interface of a CSA at processor v

of the full clock synchronization systems. We therefore defer them to Section 4.1.

Non-Interfering Filtering

The CSA modules use piggybacking on the messages generated by the send modules in

order to communicate among themselves. A CSA is not allowed to interfere with message

traffic by delaying messages or by deleting parts of their contents. Informally, we think of

the CSA as a filter that relays incoming and outgoing messages instantaneously between

the send and the link modules (see Figure 3-1), while "sticking" a few extra bytes on each

outgoing message, and "stripping" the corresponding bytes from incoming messages. We

call this property non-interfering filtering.

To capture this property formally, we define an auxiliary notion of a generic CSA in

Figure 3-6. There, time passage is blocked when there is some message to be processed by

the CSA. Using the specification of the generic CSA, we define non-interfering filtering.

Definition 3.1 A CSA is said to have the non-interfering filtering property if its set of timed

traces is a subset of the set of timed traces of the generic CSA of Figure 3-6.

Remark. Notice that in an execution of an automaton with the non-interfering fil-

tering property, there is a natural correspondence between the ReceiveMessage and the

Receive_AugMessage events, and between the SendMessage and the SendAug Message

events.

Sites: a single site v

State

now: non-negative real number, initially 0
local_timev: real number, initially arbitrary
Qi: queue for symbols of E, initially 0
Qo: queue for symbols of E x E', initially 0
active: Boolean flag, initially FALSE

Actions

Send Message (m) (input)
Eff: enqueue m in Qo

active <-- TRUE

Send_AugMessage (mi, m2) (output)
Pre: mi is at the head of Qo
Eff: remove head of Qo

if Qo = Qi = 0 then active - FALSE

Receive_A ug _Message (m 1, m2) (input)

Eff: enqueue mi in Qi
active +- TRUE

Receive Message (mi) (output)
Pre: m, is at the head of Qi
Eff: remove head of Qj

if Qo = Qi = 0 then active - FALSE

v: (time passage)
Pre: active = FALSE

b>0

Eff: now - now + b
localtime - localtime + r • b

Figure 3-6: Code for a generic CSA with (p,-) -clock.

Admissible CSAs

'We now define formally the requirements of clock synchronization algorithms. In addition

to formalizing our requirement that CSAs are allowed to use only piggybacking for commu-

nications, we impose a couple of additional technical requirements; these rule out algorithms

which are possible in our formal model, but are usually infeasible in practice.

First, we rule out the possibility that a CSA senses time passage directly: time passage

is confined to affect directly only the local clocks, and the CSAs are affected only by changes

in the local clocks. This requirement is formalized by the concept of real-time blindness (cf.

Definition 2.6). Recall that the state of a real-time blind automaton can be decomposed to

real time, local times, and basic components. We remark that unless a CSA is trivial, its

output is defined in terms of its basic state.

Secondly, notice that in our model, the initial state provides an artificial synchronization

point for all processors in the system. Specifically, it is possible that upon initialization,

all CSA modules will record the initial value of their local time, thereby getting an accu-

rate snapshot of the local clocks in a perfectly synchronized manner. We rule out such

algorithms since the synchronous initialization point is only a convenient abstraction, and

cannot usually be implemented in practice. Formally, we require all start states of a CSA

automaton to be quiescent (see Definition 2.7 for details). Intuitively, the implication of

having a quiescent initial state is that the automaton cannot "tell" how much time has

elapsed since the (abstract) initialization until the first local input action. Technically, no

locally-controlled actions are enabled at a quiescent state: only time passage and input

actions are enabled. Formally, we have the following lemma.

Lemma 3.1 Let e = (wor 1wll ...) be an execution fragment of an automaton A. If for some

i and t we have that the state wi(t) is quiescent, then the action 7i+l (if it exists) is an input

action.

Proof: If ri+l does not exist, there is nothing to prove. Otherwise, we have that either

wi(t) = l_state(wi) or else wi(t) -- l_state(wi). In both cases, by Definition 2.7, it must be

the case that l_state(wi) is quiet, i.e., only time passage and input actions are enabled in

Lstate(wi). Since e is an execution fragment, 7rr+l is enabled in Lstate(wi) and ri i 4 v, and

the lemma follows. I

We summarize formally all the requirements a CSA has to satisfy in the following defi-

nition.

Definition 3.2 A mixed automaton is called an admissible CSA if it has the external in-

terface specified in Figure 3-5, it has the non-interfering filtering property as specified by

Definition 3.1, it is real-time blind as specified in Definition 2.6, and all its initial states

are quiescent as in Definition 2.7.

Henceforth, we restrict our attention to admissible CSAs only.

Latitude in CSA Specification

Definition 3.2 imposes a few severe limitations on CSAs. Let us explain roughly what

remains to be defined in a particular implementation of a CSA. First, the definition of

an admissible CSA does not specify how to compute the output. Secondly, by the non-

interfering filtering property, whenever a Send Message(m1) occurs, a CSA must output a

Send _AugMessage(mi, m2) action, but m 2 is not specified.

The intuition is that CSA modules have to produce some output (which may be either

some values, or some special action). To this end, CSA modules may have additional basic

state components, and they can communicate among themselves by using the "m2" field of

the messages.

3.1.4 Clock Synchronization Systems

Having defined the individual components, we are now in a position to define the concept of

clock synchronization system. A clock synchronization system is defined by the composition

of a collection of send automata, link automata, and CSA automata. Formally, we first

compose pairs of send automata and CSAs that share a site. As mentioned before, we call

the resulting single-site mixed automaton a processor. We require that for each site there is

exactly one send module and one CSA (see Figure 3-1). To create the system automaton,

we compose the processors with the link automata.

In our definition of systems, each non time-passage action has a naturally associated site

of occurrence (there are no internal actions of the link automata). We use this association to

define the local time of occurrence for each step in an execution. E.g., the local time of occur-

rence of a Send_Message (m) step in a given execution is local_time,(SendMessage (m)).

A clock synchronization system (excluding the CSAs) is thus specified up to clock drift

bounds and message latency bounds. We shall refer to these as the real-time specification

of the system (a formal definition is given later). We assume that the real-time specification

of the system can be used by the CSA modules. In other words, the code for a CSA can

refer to clock drift bounds and message latency bounds. We argue that this assumption

is reasonable. For clocks, one usually has some bounds provided by the manufacturer.

For messages, some universal latency bounds are always valid: in all physical systems, the

transmission time of any message is at least 0 and at most oo. In many cases sharper

bounds are known. As we shall see, even using the universal bounds some non-trivial

synchronization can be attained by the CSAs. Sharpening the bounds may only result in

tighter synchronization.

3.1.5 Example: the Simplified Network Time Protocol (SNTP)

In this section we give a concrete example of a clock synchronization system. Our example

is based on NTP (Network Time Protocol), the clock synchronization algorithm used over

the Internet [26]). We present a simplified version of an NTP system, which we call below

SNTP.

In SNTP, we have only two processors, s and v, connected by a bidirectional communi-

cation link. Both processors have drift-free clocks. The particular synchronization task we

consider is that v needs to bound, at all times, the current reading of the clock of s. (This

is a special case of the "external synchronization" task, studied in Chapter 6.) Formally,

we require that the CSA module at v maintains two output variables, denoted extL and

extU, such that at any state x, local_time,(x) E [extL, extU].

The send and the link automata of SNTP are more structured than the general modules

defined in Section 3.1. Specifically, the system architecture is as follows.

The send modules in SNTP are such that periodically, v sends a message to s, which

in turn responds by sending a message back to v. 2 The link automata in an SNTP system

(L,, and L,,) are perfect asynchronous links (cf. Figure 3-4), i.e., all messages are delivered

in order, exactly once with latency bounds 0 (lower bound) and oc (upper bound).

Before we describe the way the CSAs work in SNTP, notice that since the clocks of v and

2The SENDER automaton of Figure 2-2 can serve as a specification for the send module of v; the send
module of s can be specified as a slight variant of SENDER, where the pend flag is initially FALSE.

p
local time = LT2

q
local time = LT3

q

local time = LT,

P

p q
local time = LT4

S V S V S V

Figure 3-7: The total transit time of m and m', TT, is the length of the shaded interval on
v's axis in (a). In (b), m is in transit TT time units, and in (c) m' is in transit TT time
units.

s are drift-free, the difference between them is the same at all states of a given execution.

Therefore, in order to obtain bounds on the local time of s, it is sufficient to have the local

time at v, and bounds on the difference between the local time of v and of s at any state.

We now describe the CSA modules of SNTP with the aid of a concrete example (a formal

description is given in Figures 3-8 and 3-9). Consider the scenario depicted in Figure 3-7(a),

where v sends a message m to s, and s responds by sending m' to v. The CSA modules

work as follows. When m is sent by v (point q), the CSA at v records the local time of the

send event in the variable LT 1, i.e., it sets LT1 = local_time(q). When m is received by the

source processor (point p), it records the local time of that event in the variable LT2, i.e.,

LT 2 = localtime(p). When the source sends m' (point q'), m' contains the values of LT2

and of the local time of the send event, denoted LT3 = local_time(q').

When m' is received at v (point p'), v calculates TT, the total transit time of both

messages: denoting LT 4 = local_time(p'), this can easily seen to be TT = (LT4 - LT1) -

(LT3 - LT 2) (see Figure 3-7 (a)).

Finally, bounds on the difference between v's clock and s's clock are obtained by bound-

ing the local time at the source, at the point at which m' is received at v. The idea is as

follows. Let x denote the state of the system immediately after m' is received. Since m' is

in transit at least 0 time units (Figure 3-7 (b)), it must be the case that the local time at

the source when m' is received at v is at least LT3, i.e., localtimes(x) > LT3. On the other

hand, since m' was in transit at most TT time units (Figure 3-7 (c)), it must also be the

(b) (c)

",,,.q P

P p

q
p ' I

case that the local time at the source when m' is received at v is at most LT3 + TT, i.e.,

localtime,(x) < LT3 + TT. Since the local time of v at x is LT4, and since the difference

in local times between v and s is fixed throughout the execution, we have, for any state y

in the execution

local time,(y) - local_time,(y) = local_time,(x) - localtimev(x)

E [LT3 - LT4 , LT3 + TT - LT4,

and hence,

localtime,(y) E [local_time,(y) + LT 3 - LT4 , local time,(y) + LT 3 + TT - LT 4]

When m' is received the local time at v is LT4, and hence, at that time v sets ext_L = LT3

and ext_U = LT3 + TT. Whenever the local time increases at v, the variables ext_L and

ext_U are increased by the same amount.

It is easy to verify that the CSAs in SNTP are admissible in the sense of Def. 3.2. First,

the CSA modules have the interface of Figure 3-5. Secondly, the CSA modules satisfy the

non-interfering filtering property: in fact, their code is based on the code of the generic

CSA in Figure 3-6. Thirdly, the CSA modules are easily seen to be real-time blind: their

state readily has now and localtime components, and the rest is the basic component.

(Notice that the output variables are part of the basic component.) It is simple to verify

that the transitions depend only on the basic and the local time components of the clock

specification. Finally, the initial state of the CSA modules are quiescent, as the only actions

enabled at any state reachable from the initial states by time passage are inputs and time

passage.

3.2 Environments and Bounds Mapping

In this section we take the final step in modeling clock synchronization systems. We divide

the system into two parts, one consists of the CSA modules, and the remainder is called the

environment. Intuitively, the idea is to view the aggregate of all send and link automata as

a single environment automaton (see Figure 3-10), where the goal of the CSA modules is to

try to get the tightest possible logical time for each observable behavior of the environment.

Sites: a single site v

State

now: non-negative real number, initially 0
localtime: real number, initially arbitrary
ext_L: real number, initially -oo
extU: real number, initially oc
Qi: queue for symbols of E, initially 0
Qo: queue for symbols of E x R 2 , initially 0
active: Boolean flag, initially FALSE
LTI: a real number, initially undefined

Actions

Send _Message, (m) (input)
Eff: enqueue m in Qo

active <- TRUE
LT1 +- localtime

Send _Aug Message,(mi, 0, 0) (output)
Pre: m, is at the head of Qo
Eff: remove head of Qo

if Qo = Qi = 0 then active 4- FALSE

Receive _Aug _Message, (mi, (LT2 , LT3)) (input)
Eff: enqueue mi in Qi

active +- TRUE

LT 4 - localtime
TT - (LT4 - LT1) - (LT 3 - LT 2)

extL < LT 3
ext_U - LT 3 + TT

Receive _Message (mi) (output)

Pre: mi is at the head of Qi
Eff: remove head of Qi

if Qo = Qi = 0 then active 4 FALSE

v: (time passage)
Pre: active = FALSE

b>0
Eff: now-- now + b

localtime <- localtime + b
ext L - ext_L + b
extU - extU + b

Figure 3-8: Code of the CSA module in SNTP for processor v (single round-trip).

Sites: the source site s

State

now: non-negative real number, initially 0
local_time: real number, initially arbitrary
Qi: queue for symbols of E, initially 0
Qo: queue for symbols of E x R2 , initially 0
active: Boolean flag, initially FALSE

LT2 : a real number, initially undefined

Actions

Receive Aug Messages (ml, 0, 0) (input)
Eff: enqueue m, in Qi

active +- TRUE

LT2 +- localtime

Receive _Messages (mi) (output)
Pre: mi is at the head of Qi
Eff: remove head of Qi

if QoO = i = 0 then active <- FALSE

Send_Messages (m) (input)
Eff: enqueue m in Q0

active +- TRUE

Send_Aug_Message 8 (ml, LT2 , LT3) (output)
Pre: mn is at the head of Q0

LT3 = localtime
Eff: remove head of Qo

if Qo = Qi = 0 then active <- FALSE

Iv : (time passage)
Pre: active = FALSE

b>0
Eff: now - now + b

local_time ý- local time + b

Figure 3-9: Code of the CSA module in SNTP for processor s.

Clock Synchronization Clock Synchronization G e Clock Synchronization
Algorithm Algorithm Algorithm

ENVIRONMENT

Figure 3-10: The conceptual arrangement of the automata at a clock synchronization system
for the local competitiveness model.

In Section 3.2.1 we isolate the relevant information in executions of environments in the

notions of pattern and views. A pattern contains all the events with their real and local time

of occurrence, while a view does not contain the real time of occurrence. In Section 3.2.2 we

define the concept of local view at a point in the execution, which is the portion of the view

that can be known at that point. In Section 3.2.3 we formalize the real-time specification

of a system in the definition of bounds mapping. This definition allows us to treat message

latency bounds and clock drift bounds in a uniform way. The bounds mapping derived from

the real-time specification of the system is called the standard bounds mapping.

3.2.1 Environments, Patterns, Views

We start with a formal definition of the notion of environment. Recall that the definition of a

send automaton includes the definition of the clock at its site. The environment automaton

defined below, therefore, controls the local clocks, message generation, and message delivery

in a clock synchronization system.

Definition 3.3 (Environments) Given a clock synchronization system, the environment

is the mixed automaton defined by the composition of all send and link automata.

Our main interest is in executions of environments. The notion of execution contains

a great deal of information: for example, at any given time, the state of a link describes

precisely, how many copies of each message are in transit and when will they be delivered.

For synchronization purposes, however, it seems sufficient to match receive events with

send events, ignoring the interim. The concepts of patterns and views defined below get

rid of information in executions which is irrelevant for synchronization. Intuitively, a view

contains a set of points (which may be actions or just "placeholders" called null points),

with a graph structure which describes their order of occurrence, and a local time attribute

for each point; a pattern contains also a real-time attribute for each point. The graph

structure is essentially the one described by Lamport [16]. Let us recall the following

standard graph-theoretic definitions.

Definition 3.4 Let G = (V, E) be a directed graph. A sequence Po, pi ... , Pk is a path from

po to pk in G if pi E V for i = O, 1,... ,k, and (pi-l,P) E E for i = 1, 2,..., k. A path from

po to po is a cycle. A point p is said to be reachable from a point q if there is a path from q

to p.

Before we make the definition, recall that in an execution, each event has its real time

of occurrence; since in clock synchronization systems each event has a unique processor in

which it occurs, we also have a unique local time of occurrence for each event.

Definition 3.5 (Patterns and Views) Given an environment automaton A, a view is a

pair (G, local_time), where:

* G = (V, E) is a directed graph. Each point p E V is either an action of a send

automaton in A, or a null point that is said to occur at some processor. The arc set

E is such that for each processor v, the subgraph induced by the set of all points that

occur at v is a directed path; in addition, for each Receive Message'(m) point in V

there is an arc (Send •Message (m), Receive-Messageu(m)) E.

* local_time is a mapping from the point set V to R. For a point p E V, local_time(p)

is called the local time of p.

A pattern is a triple (G, local-time, now), where (G = (V, E), local_time) is a view, and now

maps the points of V to R + . For a point p E V, now(p) is called the real time of p.

Note that views and patterns contain only actions of the send automata. This information

is sufficient, since by the non-interfering filtering property, CSAs must relay messages in-

stantaneously between the send automata and the links. In addition, recall that actions

of the links contain the messages "piggybacked" by the CSA modules, and therefore the

message contents depend on the specific CSAs in the system. In our definition, the view or

the pattern of an execution of an environment automaton is independent of the CSAs.

distinguished)
event

m

'ssage(m)
local_time=- 1
now=O

local time=8
now=9

I

s v send_message(m') receive_message(m')

Figure 3-11: An example of a scenario (a) with its pattern (b). Without the now attributes
of the points, the pattern is a view.

Example. Let us exemplify the concepts of views and patterns using a scenario that was

mentioned in the Introduction. We have a system that consists of two processors s and v,

connected by a bidirectional communication link. In Figure 3-11 (a) we give a time-space

diagram of the following scenario. At real time 0, processor v, whose local clock shows -1,

sends a message m to s; processor s receives m at real time 2, when its local clock shows 1.

Some distinguished event occurs at s at real time 2.5, when its local clock shows 2. (This

event may be an internal event such as flipping a bit, or just the fact that the local clock

shows 2.) At real time 3.5, when the local clock of s shows 3, s sends a message m' to v;

m' is received at v at real time 9, when its local clock reads 8.

In Figure 3-11 (b) we give an illustration of the pattern based on this scenario, with a

null point for the distinguished event. If we remove the now attributes of the points in the

pattern, the result is a view. I

Remarks.

1. Null points in views have only two attributes, namely site of occurrence and local

time of occurrence. (In patterns, they also have real time of occurrence.) Null points will

be used to enable us to refer to points in which there is no action of the environment.

2. Notice that given an execution of the environment automaton (or a clock synchro-

nization system), its pattern and its view (without null points) are naturally defined, where

for each event there is a point, and for each point there is an outgoing arc connecting it

to the point that corresponds to the next event that occurs at the same processor (if such

a point exists), and each receive point has an incoming arc from the the send point of the

corresponding message. Similarly, we can speak about the view of a pattern.

3. The reachability relation in views and patterns of executions is essentially the "hap-

pened before" relation described by Lamport [16]: a point p is reachable from a point q in

the graph of a view of an executions if and only if q "happened before" p.

Introducing null points into views and patterns. We shall introduce null points into

views (and patterns) by stating their processor of occurrence and local time (for patterns,

we shall also state their real time). We use the following convention: when introducing into

a view V a null point p, that occurs at a processor v at local time T,, the resulting view

contains a new point only if there is no other point in V that occurs at v at local time T,.

In case V is extended, the modification of the arc set is naturally given: let po be the point

that occurs at v with highest local time such that localtime(po) < T,, and let pl be the

point that occurs at v with smallest local time such that local_time(po) > T,. In the view

that contains the null point p,, we have the additional edges (po, p,) if p0o exists, and (p,, pl)

if p, exists, and we delete the arc (po, pi) if both po and pl exist.

We follow the same procedure when introducing null points into patterns.

3.2.2 Local Views

The motivation for the definition of a view is algorithmic: CSA modules have access only

to the information contained in views, as opposed to patterns. (A precise statement of

this intuition is formalized in Theorem 3.4.) However, views are defined with respect to a

complete execution, while we shall usually require CSA modules to produce output before

an (infinite) execution is over... To capture this idea, we define the concept of local view at

a point.

Definition 3.6 (Local View) Given a view V = (G, local_time) and a point Po E V, the

local view of V at po, denoted prune(V,po), is the restriction of V to the points p' such that

Po is reachable from p' in G. The local view of V at processor v at time T is defined to be

prune(V,p,), where p, is a null point that occurs at v at local time T.

For clock synchronization systems, as defined in this chapter, we have the important

property that any local view of an execution may actually be the view of the full execution.

We prove this formally in Theorem 3.2 below.

First, we define a notion of pruned execution. Informally, the pruned execution of an

automaton A in a clock synchronization system with respect to some point p is the portion

of the execution of A that "happened before" p. An additional complication in the definition

is due to the fact that in a view, only actions of the send automata are present; the actions

of the link and CSA modules are inferred by the the non-interfering filtering property of

the CSAs, which matches Receive_Message and Send_Message events (of send modules and

CSAs) with Receive Aug Message and Send _Aug _Message events (of links and CSAs).

Definition 3.7 Let e be an execution of a clock synchronization system S, and let p be any

point in e. The pruned execution of an automaton A with respect to p, denoted prune(elA,p),

is defined as follows.

* If A is a send automaton, then prune(elA,p) is the prefix of elA up to the last event

q such that p is reachable from q in V.

* If A is a CSA automaton at a processor v, then prune(elA,p) is the prefix of elA up to

the event which corresponds to the last event in prune(elB,,,p), where B, is the send

module at v.

* If A is a link automaton connecting processors u and v, then prune(elA,p) is the prefix

of elA up to the last event in either prune(ejc,, p) or prune(elc,,,p), where C, and C,

are the CSA modules at v and u, respectively.

Note that if p is an event of A, then the last action in prune(elA,p) is p.

We can now state and prove the property of local views.

Theorem 3.2 Let V be a view of an execution e of a clock synchronization system, and let

p be any point (possibly a null point) in V. Then there exists an execution e' of the system

whose complete view is prune(V,p), and such that for each CSA module C,, prune(elc, ,p) =

prune(e'I c,, ,).

Proof: We start by defining executions for each component of the system separately.

Consider an arbitrary send module A,. By the specification of send modules, it is clear

that prune(e c,,, p) can be extended to a full execution e'a, of A, with no events other than

the ones in prune(elc, p). Furthermore, this can be done in a way such that elA,, and e'A,

have the same clock functions (cf. Def. 2.12).

Next, consider a link automaton LV,,. Since link automata can drop messages arbitrarily,

we have that for any execution eL,,,, of L,, and for any point q,, there exists an execution

eL,,,,, such that e',,,, and eL,, have the same view up to point q,, and such that in e',L, there

are no ReceiveAug_Message events after q,. We thus get executions of e' for all links

L,, whose views agree with V for all points up to the last point in prune(elL,, , ,p).

Using Corollary 2.4.1, we can obtain from the executions e',, of all send modules A,,

and from the executions e' of all links L,,, an execution e' of the environment, that has

view prune(V, p), and such that e' and e have the same clock functions.

Consider now a CSA module C, at a processor v. We can extend prune(elc,,,p) to a full

execution e'c, of C, that has the same clock function as in elc,,, and in which no further input

actions are taken. Since all the output actions C, may take, by the non-interfering filtering

property, are in elc,, it must be the case that e'c, has the same view as prune(elc,,,p).

By construction, the execution e' of the environment and the executions e',, of the CSA

modules C, agree on the actions and the clock functions of the sites they share. Hence,

using Corollary 2.4.1 once again, we can obtain an execution e' of the system, whose view

is prune(V, p). I

3.2.3 Representation of Real-Time Specification

Our next step is to give a more convenient representation for the real-time specification of an

environment automaton. Recall that we have modeled real-time specifications using clock

drift bounds (denoted o and y) and message latency bounds (denoted L(m) and H(m)). In

this section we state these specifications as bounds on the difference between the real time

of occurrence of pairs of points.

We shall make frequent use of the following concepts.

Definition 3.8 (Actual and Virtual Delays) Let p and q be two points of a given pat-

tern P. The actual delay of p relative to q in P, and the virtual delay of p relative to q in

7, are defined by3

act delp (p, q) = nowp (p) - now p(q),

virtdel-p(p, q) = localtimep-(p) - localtimep (q)

3Throughout this work, we use the following rule when defining a difference of two quantities: F(x, y) =
f(x) - f(y), i.e., subtract the second quantity from the first.

The definition of virtual delays extends naturally when we are given only a view.

We also use the following notion.

Definition 3.9 (Adjacent Points) Two points p, q in a given view V = (G, local_time)

are called adjacent points if there is a directed arc between them in G.

More intuitively, the above definition (in conjunction with Def. 3.5) says that two points

are called adjacent if they occur one after the other in the same processor, or if one is a

send event and the other is the corresponding receive event.

Using the above definitions, we define the key concept of bounds mapping.

Definition 3.10 (Bounds Mapping) A bounds mapping for a view V is a function B

that maps every pair p, q of adjacent points in V to a number such that -oo < B(p, q) 5 oo.

A pattern with view V is said to satisfy B if for all pairs of adjacent points p, q we have

actdel(p,q) • B(p, q).

The general notion of bounds mapping as defined above is not necessarily related to

the real-time specification of the environment. The connection is made in the notion of

standard bounds mapping, defined as follows.

Definition 3.11 Let B be a bounds mapping for a view V of an execution of a clock syn-

chronization system. B is said to be the standard bounds mapping for V if the following

holds.

* For a message m with send point p, receive point q, and latency bounds L(m) and

H(m), we have B(q,p) = H(m) and B(p,q) = -L(m).

* Let p be the immediate predecessor of q at a processor with (p_,)-clock. Then B(q,p) =

virtdel(q,p)/p, and B(p, q) = virt_del(p, q)/-.

The following lemma can be thought of as the "soundness" of the standard bounds

mapping.

Lemma 3.3 All patterns of executions of an environment satisfy their standard bounds

mapping.

:Proof: By definitions. I

Remarks.

1. It is clear from Definition 3.10 that the notion of bounds mapping is in fact more

general than the notion of real time specification used so far: using bounds mapping, we

can model clocks with drift bounds that are not fixed.

2. The standard bounds mapping has the property of being stated in terms of quantities

that are available to the CSA, either as system specification (i.e., L(m), H(m), -, p), or as

the local times. Consequently, we may assume without loss of generality that given an

environment, the standard bounds mapping can be used in specifying CSA modules.

3.3 The Completeness of the Standard Bounds Mapping

In this section we state and prove the main property of the system we shall use for proving

lower bound results. First, we show that if a given pattern has a view of some execution

of the system, and if it satisfies the timing specification of the system, then in fact there

exists an execution with that pattern. This can thought of as a richness property of the

set of executions of the system. In addition, the theorem below says that regardless of

the underlying execution, the basic state of CSA modules (which determines the output)

depends only on the view of the execution. To this end, we introduce the following definition.

Definition 3.12 Two executions e = wo0 7rlw ... and e' = w'rw... of a CSA are said to

be equivalent if the following conditions hold.

(1) For all i, we have i7r = i7r and local_time(7ri) = localtime(7r').

(2) For all i, for any state s in the range of wi and any state s' in the range of w$, we

have basic(s) = basic(s').

Condition (1) says that for all i, the ranges of local times in the corresponding trajectories

wi and w' are the same. Also, recall that by the real time blindness of CSAs, the basic

component of the state is constant over a trajectory, and hence Condition (2) above says

that for all i, the basic components of the state in the corresponding trajectories wi and w,

are the same.

The following theorem can also be viewed as a converse to Lemma 3.3. In a sense, we

show that the standard bounds mapping is complete with respect to a view.

Theorem 3.4 Let V be a view of an execution e of a clock synchronization system S, and

let B be the standard bounds mapping for V. Let P be any pattern of the environment

automaton with view V. If P satisfies B, then there exists an execution e' of S with pattern

P. Moreover, for each CSA module C,, the executions of C, in e and e' are equivalent.

Proof: The proof is straightforward, but somewhat tedious. Our strategy to construct e' is

as follows. We first construct individual executions for the send modules, the link automata

and the CSA modules of S, based on P' and on e. Then we apply Corollary 2.4.1 and get

an execution e' of S with the required properties. The idea is that pairs of real and local

times given in P can be used - by interpolation - to define complete clock functions for the

desired execution e'. With these clock functions, we get executions of the send automata

and the CSA module quite easily, since they are real-time blind. For the link automata,

some extra work is needed, because their state is affected directly by time passage.

Defining clock functions. We define a function localtime', : R + H R for each site v E

sites(S). These functions describe the local times at the sites as a function of real time.

(Whereas a clock function is usually defined in terms of an execution, here we first define

the clock function and then proceed to construct the execution.) Some values of the clock

function are already specified by the pattern; intuitively, our construction simply connects

these values by linear interpolation, with (possibly) some special treatment of the first and

last segments. Formally, for each site v, we define a local clock function localtime'(t) for

all t > 0 using the given pattern P and the following rule.

1. If there exists in P some point pi that occurs at v with now(pi) = t, we set localtime,'(t)

to be local_timep(pi).

2. Otherwise, let Po be the point in P with maximal real time such that po occurs at v

and now(po) < t. Let to = now(po) and To = localtime(po). If there is no such point,

to and To are undefined. Similarly, let pi be the pont in P with minimal real time

such that pi occurs at v and now(pi) > t. Let tl = now(pi) and T = localtime(p1).

If there is no such point, tl and T1 are undefined. We distinguish among the following

cases.

(a) If both po and pi are undefined (i.e., no point occurs at v), we define for all t > 0,

local-time'•(t) = c t,

where c is any constant in the range [-v, e,]

(b) If only po is undefined (i.e., t is smaller than the real time of the first point that

occurs at v), we define

local_time' (t) = T, - c' - (tl - t) ,

where c' is any constant in the range [_v, ~,].

(c) If only pi is undefined (i.e., t is larger than the real time of the last point that

occurs at v), we define

localtime'(t) = To + c" -(t - to) ,

where c" is any constant in the range [_, eJ].

(d) If both po and p, are defined (i.e., there are points that occur at v with real time

strictly less and strictly more than t), we define

T1- To
local_time' (t) = To + (t - to) - 0

tl - to

Notice that local_time' is well defined in case (2d) since to < t < t1 . It is straightforward

to verify that the local clock functions thus defined are continuous. Also, since p > 0 and

since P satisfies the standard bounds mapping, we get that the local clock functions are and

monotonically increasing. Therefore, local_time', is invertible (at least) on [Tx, oo], where

T;, is the local time of the first point in P that occurs at v (if it exists). We denote the

inverse function by by local_time,.

This concludes the definition of the local clock functions. Using these functions, we next

define executions of the individual components of the system. The idea is to use the original

execution e, keep the local times of the points, but "shift" and "stretch" the real times so

that they agree with P.

Send modules. We now construct an execution e' of a send module A, that agrees with

'P. Most of the work was already done in the definition of the local clocks, since the state of

a send module consists merely of local and real times. More specifically, let the subsequence

of actions of AV in 'P be PA,, = (rT s , 7Fm ...). Since A, has no internal actions, all its steps are

specified by PA,,. To get a complete description of the desired execution e', - /(WS7 1 U ..)

of Av,, we need only to specify the trajectories ws . Recall that the state of a send module is

a pair (now, local_time) of real and local time. Let i > 0, and let now(wry) < t < now(ryi+l),

where we define now (ros) = 0, and if there is no 7ri+l, we define now(wri+1) = oc. Then we

define the trajectory ws by ws(t) = (t, local time',(t)).

It is straightforward to see that e' thus constructed is an execution of A,: we first

need to check that ws is a trajectory for all i > 0. This is easy, since the only restriction

on time passage steps is that they observe the drift bounds, and this is guaranteed by the

construction. Since the discrete actions have no effect on the state, all that remains to be

verified is that w0S(0) is a start state, which is true because now(wS(0)) = 0 by construction.

CSA modules. Consider a CSA module at site v, and let e|CSA wO7 W rCw...) be the

projection of e on that module. By Lemma 2.3, eIcsA is an execution of the CSA. We now

construct another execution e'CSA = (0CW...) of the CSA, which agrees with P on the

visible actions. The first step in the construction is to fix the sequence of actions in e'CSA
to be the same as in e|csA. To complete the specification of e'CSA, we need to define the

trajectories.

It is convenient to first define local and real times for the steps. For the visible steps in

e'CSA, we have local and real times already specified by P. For internal steps, the idea is

to keep the local times as in e, and to set the real time to be in accordance with the local

clock functions defined above. Specifically, let 7r be an internal step of the CSA. We abuse

notation slightly and denote by localtimeelCSA local clock function in e at site v. We define

localtimee'S (7 c) = localtimeelCSA(7§C)

To set the now component, we use the inverse of the local clock function as follows:

now SA () = local _ time 1 (localtime |CSA (T)) , (3.1)

i.e.. the real time of occurrence of an action 7rC is given by the unique t such that local_time'(t)

is the local time of occurrence of r'c in eICSA (we shall see later that this number is well

defined).

We now define the trajectories we in e'CSA for all i > 0. Again, we use elCSA. More

specifically, to define a trajectory wi in e'SA, we use the parallel trajectory wi in elCSA as

follows. Let t E [now(rzc), now(7r+ 1)] for any i 2 0 (where we define now(Troc) = 0 and if

, does not exist, we define now(r+l1) = oo). The trajectory we is defined by

now, C(W (t)) = t

localtimes A (wf(t)) = localtime'(t)

basic(,cs A (w (t)) = basicelsA (wi(t')) , (3.2)

where t' is any number in the domain of wi.

Let us show that our construction is well defined. First, note that since elCSA is an execu-

tion of a CSA, its initial state must be quiescent, and hence, by Lemma 3.1, 7rC is not an in-

ternal action of the CSA. Therefore, there is a step of the send module in P whose local time

is localtime(trc), which implies that local_time is defined over [localtimeelCSA (), o].

This, in turn, implies that Eq. (3.1) is well defined. Finally, note that by real-time blindness,

the basic component of the state of a CSA is fixed throughout a trajectory, and therefore

Eq. (3.2) is not ambiguous.

Next, notice that conditions (1) and (2) in the statement of the theorem are satisfied by

the construction. This is true since for all i > 0, all the states in the range of wc have the

same basic component, which is the same as the basic component of all states in the range

of wi; in addition, for i > 1, the intervals of local times in wi and vwi are the same.

We now show that eCSA is an execution of the given CSA. To show that we use heavily

the real-time blindness property. First, we prove that wC is a trajectory of the CSA for

all i > 0. Let si = w(t) and be s2 = wC(t') be two states, where t < t'. Let s* and s*

be the states in the corresponding trajectory wi that satisfy local_time(s*) = localtime(sl)

and localtime(s*) = localtime(s2). This is possible since by construction, wi and w' agree

on the local time in their endpoints, and since the local clock function is continuous. Also

by construction, basic(sl) = basic(s*) and basic(s2) = basic(s*); moreover, it is easy to see

that localtime(s2) - localtime(sl) E [g(t' - t),- (t' - t)] by the assumption that P satisfies

the standard bounds mapping. Since s 1 - s*, we get from the real-time blindness of the

CSA and that si -- s2, as required in this case.

Consider now a discrete action 7 C . Let s= lstate(wi-1), S2 s I

lstate(wil), and s* = fstate(w?). By construction we have that sl and s* may differ

only in their now component, and similarly s2 and s*. From the construction we also have

that now(s 1) = now(S 2) and local_time(s1)= local_time(s2). Since we know that s I -4 s,

we get from real-time blindness that Sl -+ S2, as required for this case. This completes the

proof that eCSA is an execution of the CSA.

Link automata. Consider now a link automaton L,,. By the non-interfering filtering prop-

erty, in e there exist natural bijections between the Send Aug_Message' actions of L,, and

the Send Message' actions of Au, and between the Receive _Aug Message' actions of L,,

and the Receive Message' actions of A,. Since all the actions of Au and A, appear also in

P, using these bijections we can define a sequence PL,,,, = (rL , rL) which contains all

the actions of L,, that correspond to actions of Av in P. Notice also that using these bijec-

tions, each event in PL,,,, inherits a now component, and that the causality mapping 'y can

be extended so that for each Receive_Aug Message event p there is a Send _Aug_Message

event q satisfying q = y(p). We use these extended notions in the construction below.

Our goal is to construct an execution e' ,, (w fFL 1W
L ...) of LUV that agrees with PL,,,

Similarly to the case of send modules, L,, has no internal steps, and hence all the steps 7rf

are already specified by PL,,. It remains to specify the trajectories of e'L,. We shall use

the following notation.

Notation 3.13 The contents of the multiset Q,, at state s is denoted Q(s).

We define Q((wL(0)) = 0, and now(wL(o)) = 0. The rest of the construction is done

inductively. Suppose that f_state(wL) is defined. For t in the domain of wL , we define

now(w1 (t)) = t, and Q(wf(t)) is defined by a bijection from Q(fstate(wL)) using the

following rule:

Q(f state(wLf)) E (ml, m 2 , t') *- (mi, 2,t' - t + fRnow(wfL)) E Q(fr (t)) . (3.3)

In other words, the third component t' in each triple (mI, m 2 , t') stored in Q,, at the start

of ow is reduced by the amount of time that has elapsed since the start of wfL . To define

the start state of trajectories w' with i > 0, we define Q(fstate(wL)) as a modification of

Q(Lstate(wi-_)), with the help of the (extended) causality function y. Specifically, suppose

first that 7r, = Send Aug _Message(ml,m 2). Then we define

Q(f_state(wL)) = Q(lstate(wi-1)) U {(m(, m, act-del(r L,)) . r,(L) = iL }[.(3.4)

In words, Q,, is augmented by one triple for each copy of (ml, m2) that will be received in

the future, as specified by y.

If rL = ReceiveAug_Message(ml, m 2), we define

Q(WL(t)) = Q(lstate(wi_l)) \ {(m,m2,O0)} . (3.5)

In words, one copy of (ml, m 2, 0) is removed from Q,,. We show below that (ml, m 2, 0) E

Q(lstate(w 1,)) in this case. This concludes the con of e',

We now have to show that e' is an execution of L,,, The key to the proof is a certain

invariant; to state it, we introduce another piece of notation.

Notation 3.14 For a state s in e' R(s) is the set of all ReceiveAugMessage events

that occur after state s and such that for all p E R(s), y(p) occurs before s.

With this notation, we state the following invariant, parameterized by a state s of e'

Invariant Z(s): There exists a bijection R(s) *-+ Q(s) that maps each (ml, m2, t) E

Q(s) to a step wL E R(s) such that 7rL = ReceiveAug Message(m11,m 2) and

now (rL) - now(s) = t.

As a preliminary observation, notice that Z(s) implies that for all (ml, m 2 , t) E Q(s) we

have t > 0, which implies that s E states(LV,).

Our first step is to prove that if Z(f_state(wL)) holds for some i > 0, then wL is a

trajectory for L,,. Consider two states s = wL(t) and s' = wf(t') where t < t', and suppose

Z(s) holds. We argue that for all (ml,m 2 ,t) E Q(s), we have that t > now(s') - now(s):

for suppose not, i.e., there exists a triple M = (m 1, m2 , t) with t < now(s') - now(s). Then

by I(s), the corresponding ReceiveAugMessage(m1 ,m 2) event 7L occurs after s, and for

that event we have now(Ir"L) = now (s) + t < now (s'). It follows that now (s) <• now(rL) <

now(s'), contradicting the assumption that s and s' are states on the same trajectory, i.e.,

that there is no discrete action that occurs between them. Using this fact, it is easy to

verify that (s, v, s') E trans(L,,) according to the construction above.

Next, we show that if Z(s) holds, and s -- s', then Z(s') holds. Let h be the bijection

between R(s) and Q(s) that satisfies the requirement of I(s). Let g be the bijection induced

by the construction between the elements of Q(s) and Q(s'). More specifically, g is the

bijection defined in Eq. (3.3). We thus define h' to be the composition of h and g. It is

straightforward to verify that h' satisfies the requirements of Z(s').

We have proven that if I(f_state(wf)) holds, then Z(wL(t)) holds for all t for which

wf(t) is defined, and in particular, I(l-state(w)) holds, if it exists. We now show, by

induction on i, that Z(f_state(wf)) holds for all i > 0. Trivially, I(f_state(wL)) holds

because Q(wfL(0)) = 0. For the inductive step, let i > 0. By the previous claim and the

induction hypothesis, Z(s) holds for s = Lstate(wfi_). Let h denote the bijection that

satisfies I (s). Let s' = fstate(wf). To show that I(s') holds, we define a bijection h' for s'.

Suppose first that 7fr = Send Aug_Message'(m 1 , m 2). Then by construction Q(s') D

Q(s). Furthermore, by Eq. (3.4), there exists a bijection f between Q(s') \ Q(s) and

R(s') \ R(s). We can therefore define h' to be the extension of h by f, and Z(s') in this

case.

Suppose now that f~~ = Receive_Aug_Message(m 1 , m 2). Notice that by the definition

of R(s), we have rrf R(s). Also, by Z(s), we have M = (m1 , m 2, 0) E Q(s). Moreover,

it must be the case that h(M) = r•-. By Eq. (3.5), we have that Q(s') = Q(s) \ {M},

and by definition, we have that R(s')= R(s) \ {rrfr}. We can therefore define h' to be the

restriction of h on Q(s') and R(s'), and h' satisfies the requirements of Z(s'). This completes

the inductive step.

Finally, note that the fact that Z(l_state(wif)) holds for all i > 0 implies that by con-

struction,

(l_state(wf), i7 1 , fstate (L 1)) E trans(L,) .

We conclude the argument that e' is an execution of L,, by observing the trivial fact

that w0(0) is a start state of LV.

Concluding argument. To conclude the proof of the theorem, we argue that there exists an

execution c' of S such that its projections on the send automata, link automata, and CSA

automata are the executions constructed above. To do that, we first extend P to be a form

:For S. This is straightforward: we insert into P all visible actions of the sub-executions we

constructed, and for each point, we extend the local time to be a times form using the local

clock functions. Also, we define a form for S with start real time t, = 0 and finish real time

S= 00oo; for all v E sites(S) we define local start times T,(v) = local_time'(0), and local

finish times Tf(v) = oo. Now, to apply Corollary 2.4.1 all that remains is to verify that

the local times in the sub-executions constructed above agree on shared sites; but this is

immediate, since for each site we used the same local clock function. Therefore, there exists

the desired execution e'. I

Summary

In this chapter we defined clock synchronization systems, using the mixed I/O automata

formalism. Our model is geared towards the local competitiveness analysis presented in

Chapter 4. Intuitively, the basic assumptions of the model are as follows.

* The system has an underlying communication graph over which messages are com-

municated.

* Each processor has a local clock with known bounds on the rate of progress, called

clock drift bounds.

* When a message is received, there are known bounds on its time of transit, called

message latency bounds. However, messages may be lost, duplicated, and delivered

arbitrarily out of order.

* Send events are generated arbitrarily by a send module at each processor.

* The clock synchronization algorithm at each processor, abbreviated CSA, may only

append information to outgoing messages, and strip the corresponding information

that arrives on incoming messages. CSAs may not interfere with message traffic

otherwise, and their only access to time is via the local clocks.

We also defined the following concepts.

* An environment is the composition of all send modules and communication links.

Thus an environment controls send and receive events.

* A pattern of an execution of an environment is a directed graph that describes the

execution, where each event is a point, and for each point we have local and real time

of occurrence.

* A view is a pattern without the real time attribute for points. Views of executions of

environments contain information that can be used by CSAs for computation, while

the real time information in patterns is available only for analysis.

* a local view at a point p is the restriction of the view to all the points that "happened

before" p (as defined by Lamport [16]). We proved that any local view of an execution

may be the view of a full execution of the system.

* The virtual delay of a pair of points, denoted virt_del, is the local time of occurrence

of the first point minus the local time of occurrence of the second point.

* The actual delay of a pair of points, denoted act_del, is the real time of occurrence of

the first point minus the real time of occurrence of the second point.

* Two points are called adjacent if either they occur at the same processor one after the

other, or they correspond to the send and receive event of the same message.

* A bounds mapping for a view specifies time upper bounds for the actual delays of

adjacent points. Bounds mapping describes lower bounds as well, by reversing the

order of the points.

* The standard bounds mapping is the "official" bounds mapping, derived from message

latency bounds, clock drift bounds, and local times.

We also proved the fundamental theorem of our model, which says that all the patterns

with a given view which satisfy the standard bounds mapping, are possible patterns of

executions of the system. The theorem also implies that the output of CSAs depends only

on the view of the execution.

Chapter 4

Problem Statements and Quality

Evaluation

In this chapter we define the synchronization tasks considered in this thesis, and the way

we evaluate the performance of synchronization algorithms. As we shall see, there is a

natural concept of tightness of synchronization for the clock synchronization problems we

define; the tightness is measured in non-negative real numbers, and an output will be

considered "good" if its tightness is small. However, it is not clear a priori what is the

input for synchronization algorithms. One classical answer for this question is that the

input is the system specification. A typical example for this approach is the paper by

Halpern et al. [13], where designing a synchronization algorithm is viewed as a "game

against nature:" an algorithm is called optimal if it produces the best output under the

worst-case scenario allowable by the system specification. This approach has the appealing

property of robustness, but it may give rise to algorithms that produce the best worst-case

result always, even if the actual execution does not happen to be the worst possible (the

algorithm given in [13] has this property). This is a disadvantage if the environment is not

necessarily adversarial, as may be the case for clock synchronization systems.

Another approach, developed by Attiya et al. [3], is that the input for a synchroniza-

tion algorithm is not only the system specification, but also the actual execution, or more

precisely, the view of the execution.' In this approach, an algorithm is called optimal if it

1Recall that views consist of the events and their local times of occurrence, while executions contain also

the real times of occurrence, which is not available for computation (see Def. 3.5). We remark that Attiya

et al. used the term execution to denote the concept we call view.

produces the best possible output for each given input, i.e., for each possible view of an ex-

ecution (and the system specification for that view). The latter approach is more attractive

since an optimal algorithm in this sense has a stronger guarantee of output quality than

the guarantee made by an optimal algorithm in the former sense.

Both approaches of [3] and [13], however, suffer from an important disadvantage, which

is that the algorithms they consider are centralized and off-line. More specifically, the

algorithms are based on the implicit assumption that all input has been gathered and it is

available at a single processor for computation. This is clearly a drawback, since the output

of clock synchronization algorithms typically needs to be available all the time, i.e., on-line.

For example, in the approach of [3], the input is a view of the execution, which contain

certain messages. Notice that this view can be made available at a single processor only

if more messages are sent, in which case the view is necessarily extended. Thus an output

considered optimal for a view may not be optimal when that view is extended to enable

computation.

The approach we present in this chapter can be viewed as a combination of the optimality

notion of [3] with the well-known concept of competitive analysis of on-line algorithms

[32, 23], using Lamport's causality relation [16]. More specifically, in competitive analysis

the quality of the output produced by an on-line algorithm is evaluated at each point with

respect to the input known at that point. In the centralized on-line setting, all past input

is known, and the future input is unknown. In the distributed setting, even past input is

unknown if it is remote and has not been communicated. We therefore define the input

at a point to consist of what can be known locally (called local view in Def. 3.6). We

measure the quality of the output of an algorithm A with respect to the quality of the best

possible output for the given local view. We call the ratio between these quantities the local

competitiveness of algorithm A.

The remainder of this chapter is organized as follows. In Section 4.1 we give formal

definitions for the synchronization tasks considered in this thesis. The definition of locally

competitive algorithms is given in Section 4.2. In Section 4.3 we discuss the concept of local

competitiveness in a more general setting.

4.1 Synchronization Tasks

In this section we define the specific synchronization tasks we consider in this thesis, namely

external and internal synchronization. For each problem we give a refined specification of

the system architecture, a correctness requirement, and a definition of tightness.

4.1.1 Definition of External Synchronization

The motivation for external clock synchronization is systems where one of the clocks is

assumed to show the standard time, and the goal is that all clocks in the system will show

this standard time as accurately as possible. The name "external synchronization" stems

from the assumption that the designated clock serves as a source of the external standard

time into the system. Formally, we shall use the following definition.

An external synchronization system is a clock synchronization system with the following

properties. There exists a distinguished processor s, called the source processor, whose local

clock is drift-free. A CSA module at each processor v has two output variables, denoted

ext_L, and ext U,.

For any given state x, let source_time(x) denote the local time at the source in x. The

correctness requirement of an external CSA at any processor v is that at every reachable

state x, the output variables at v satisfy source_time(x) E [ext_Lv, extU,].

The external tightness of synchronization at processor v at some state is the difference

(ext_U, - ezt_L,) at that state.

Remark. An alternative formulation of the problem would be to require the CSAs to

produce one number T as an estimate of the current source time, and another number E

that bounds the current difference between the estimate and the source time. While the two

specifications are equivalent if exzt_L and exztU are both finite or both infinite, we prefer

the (ext_L, extU) formulation, since it is slightly more refined: in the case where exactly

one of the numbers ext L or exztU is finite, the output according to the (T, E) formulation

is the same as for the case where both extL and ext_U are infinite.

4.1.2 Definition of Internal Synchronization

We use a variant of the elegant definition of Dolev et al. [7] and Halpern et al. [13], which

we formulate as follows. (A discussion of the definition is given in Chapter 7.)

An internal synchronization system is a clock synchronization system, such that each

CSA module has a special internal action called fire,, where v is the site of the module.

The correctness requirement of the internal synchronization task is that first, each pro-

cessor v takes a fire, action exactly once during an execution of the system. And secondly,

the CSA at each processor maintains output variables called int_L, and int_U,, such that

at all states, the real time interval [now(fire,) + int_L,, now(firej) + int_U,] contains all

the fire events in the execution. Intuitively, the output variables provide local guarantees

for the tightness in which all fire actions are produced in the system. Initially, we will have

int_L = -oo and intU = oo, and during the execution, int_L may get larger and int_U

may get smaller.

The internal tightness at processor v in some state is the difference (intU, - intL,)

at that state. The internal tightness of an execution at a processor v is the infimum of the

internal tightness at v, over all states of the execution. The internal tightness of v in an

execution e is denoted tightness,(e).

4.2 Local Competitiveness

Local competitiveness is our measure of quality of synchronization algorithms. Intuitively,

an algorithm is said to be locally K-competitive if its output at any point is at most K times

worse than the best possible for the local view at that point. We formalize this intuition

for CSAs as follows.

Fix a synchronization problem. As described in Section 4.1, each problem has a predicate

that classifies CSAs as "correct" and "incorrect." More specifically, the correctness predicate

classifies executions as correct and incorrect; a CSA is correct if all its executions are correct.

In Section 4.1 we also defined, for each synchronization problem, a function called tight-

ness, that maps states of CSAs to R + U {oo}. By real-time blindness, the tightness is a

function only of the basic component of the state. Recall that by Theorem 3.4, the ba-

sic component of a state of a CSA module in an execution depends only on the view of

the execution. Hence, given a CSA module (in either an internal or an external synchro-

nization system), the tightness of the view at a given point is well defined. (If the CSA

is not deterministic, then the tightness is a non-deterministic function of the local view.)

Using the notions of correct CSAs and tightness of views, we define the key concept of local

competitiveness as follows.

Definition 4.1 Let A be the set of all correct CSAs for a given environment. Let EA,v(V, T)

be the tightness of synchronization in executions with local view V of a processor v at local

time T, for a system with a CSA module A E A. An algorithm A is said to be locally

K-competitive if for all views V, processors v and local times T,

9A,v(V, T) < K - inf {8Ao,,(V, T) : Ao E A}

The least number K such that A is K-competitive is the local competitive factor of A. A

locally 1-competitive algorithm is also called optimal.

Remarks.

1. Recall that our model definitions allow for nondeterministic CSAs, i.e., CSAs whose

output is not a deterministic function of the view. In this case, the correctness requirement

is that all possible executions are correct. On the other hand, we can define the tightness of

a view to be the least tightness over all executions with the given view, which means that

we consider the best possible choices made at the non-deterministic choice points, so long

as they produce correct results.

2. It is important to notice that in principle, there always exists a full information

protocol which is optimal: in this algorithm, the processors send their complete view in

every message; how to determine the output depends on the specific problem being solved,

but clearly optimal output can be computed since all the relevant information is available

locally at each processor, simply because all possible information is there! It is also clear,

however, that the full information protocol is usually not practical. From the communication

perspective, the message size blows up rapidly to fantastic lengths; and from the processing

perspective, it may well be the case that extracting the output from the "full information"

is computationally infeasible. The goal of the designer of a locally competitive algorithm,

therefore, is to find what is the relevant information that must be communicated, and how

to process it efficiently to obtain the desired output.

4.3 Discussion

The local competitiveness setting described above is specialized for the two clock syn-

chronization problems given. It is straightforward to generalize it for other optimization

problems along the following lines. The analog for local clock would be some source that

generates inputs; local time at a point would be replaced by the cumulative input up to

that point. The non-interfering filtering property remains unchanged, which means on one

hand that a locally competitive algorithm works for any given view, and on the other hand

that it does not generate messages on its own. The local competitiveness definition can

be generalized using any positive valued target function that measures the quality of the

output.

Approaches similar to local competitiveness were used in the past. For example, see the

"best effort" algorithm of Fischer and Michael [9] for database management. (It may be

interesting to note that the algorithm in [9] uses synchronized clocks.) Some other work was

done by Ajtai et al. [2], after our preliminary paper was published [29]. Loosely speaking,

in [2] they consider a shared memory system, where an execution is a sequence of processor

accesses to the shared memory. The order by which processors take steps is given by an

arbitrary schedule. A task is defined as a predicate over the output values, and a task is said

to be completed when this predicate is satisfied. In the formulation of [2], the competitive

factor of an algorithm is the maximum, over all schedules, of the total number of steps

taken by the algorithm until the task is completed, divided by the minimal number of steps

required by any correct algorithm to complete the task, under the same schedule. Our

approach differs in a few technical aspects. First, our model is message passing and not

shared memory; hence the analog of their "schedule" is our "view." Secondly, we consider

an optimization problem, where output must be produced at all times. Hence the quantity

of interest for us is a target function defined over the output values, whereas in [2], the

output values are of no interest (provided they are correct), and the implicit target function

is the number of steps required to produce the output.

Nevertheless, the local competitiveness approach is not widely accepted. One possible

reason to reject it is that a locally competitive algorithm does not give an absolute guaran-

tee but only a relative one. For example, in our formulation a locally competitive algorithm

never initiates transmission of a message by itself. If no message is sent by the send module,

then the optimal algorithm may be trivial since the best possible output is trivial. This

example points to a deeper problem in system design (shared also by the classical competi-

tiveness model of [32, 23]): the question is to determine what is the input for the algorithm,

and what is under the control of the algorithm.

The reader should note, however, that a locally competitive algorithm must do well

on all cases. In addition, the local competitiveness approach enables us to compare the

performance of algorithms on equal grounds. For example, consider a system which is a

ring of processors, and one algorithm that sends messages only clockwise, and another that

sends messages only counterclockwise. It seems that the two algorithms are incomparable on

a per-view basis, since effectively they run on different systems. However, if the algorithms

are locally competitive, they must give good results on both cases.

Another possible objection to the concept of local competitiveness is the validity of the

"non-interfering filtering" assumption. This assumption says, among other things, that

the transmission time of a message is independent of the message added by the CSA, and

that CSAs relay messages between the send module and the network links instantaneously.

Strictly speaking, this assumption is false in any physical system. Nevertheless, we argue

that the non-interfering filtering assumption can serve as a reasonable approximation of

reality so long as the blowup in message size, and the computation resources required by

the CSA are negligible.

We believe that the philosophy behind the concept of local competitiveness best suits

network-maintenance protocols, e.g., topology update, or other routing protocols, where

there is always something to be done. It is interesting to observe that in real networks, the

message delivery system appends "headers" to messages to facilitate delivery. Ideal locally

competitive algorithms would use such headers, extending them only slightly.

Summary

In this chapter we defined the synchronization tasks we consider in this thesis and the way

we evaluate the performance of algorithms that solve them.

We defined the problem of external synchronization, in which all processors are trying to

acquire tight bounds on the reading of one designated processor whose clock is drift-free. In

the problem of internal synchronization, all processors need to make a distinguished action

in the smallest possible interval of real time. For each problem we defined the system

architecture, correctness requirement, and the measure of tightness.

The quality of a synchronization algorithm is measured by its local competitiveness.

The local competitiveness of an algorithm is the maximal ratio between the tightness it

produces at any point, and the best possible tightness for the given local view at that point.

The concept of local competitiveness can be viewed as a combination of the per-execution

evaluation approach of [3], competitive analysis [32, 23], and the causality partial order [16].

We argued that this approach can be of independent interest as a method for evaluating

distributed optimization tasks. We compared the concept of local competitiveness with the

approach of [2], and we discussed some of its advantages and disadvantages.

Chapter 5

The Basic Result

The starting point for this chapter is the following problem: given two points in an execution

of a clock synchronization system, find the tightest bounds on the real time that elapses

between their occurrence. The means by which this task is to be accomplished is the CSA

modules. The "input" available to the CSA modules consists of the events that occurred

in the system with their local time of occurrence (i.e., the view of the execution), and the

standard bounds mapping that represents the system timing specification for that view.

Hence the task can be solved if we can find the set of executions with the given view.

Our strategy to solve this problem is to reformulate the setting in graph-theoretic lan-

guage, and solve a more general abstract problem. We first abstract views as labeled

directed graphs, which we call v-graphs; the only attribute a point has in a v-graph is its

local time. We also abstract patterns as labeled directed graphs, which we call p-graphs;

in p-graphs, a point has both local and real time. Bounds mapping is now an abstract

function that maps pairs of adjacent points in v-graphs to numbers. Using bounds mapping

and v-graphs, we obtain weighted directed graphs we call synchronization graphs. Then,

in Theorems 5.4 and 5.5, we prove a characterization of the set of p-graphs that have a

given v-graph and satisfy a given bounds mapping, in terms of distances in the derived

synchronization graph. These results are independent of the particular interpretation, but

to aid intuition, our development is accompanied with an an example of an execution of a

clock synchronization system.

Then, in the main results of this chapter, we specialize to the case of views and patterns

of clock synchronization systems. In Theorems 5.6 and 5.7, we use Theorems 5.4 and 5.5

in conjunction with Theorem 3.4, and prove that the relation proven for p-graphs and

synchronization graphs holds for patterns of executions of synchronization systems and the

synchronization graphs derived from the views and bounds mapping. Using Theorem 3.2,

we also derive a corollary for local views (Theorem 5.8).

Philosophically, synchronization graphs can be viewed as an extension of the graphs used

by Lamport to describe executions of completely asynchronous systems [16]. Lamport's

graphs are unweighted, and the main property of interest regarding a pair of points is

whether one is reachable from the other. Reachability expresses the fact that in all possible

executions which have that graph, one point occurs before the other. By contrast, we

consider systems with clocks, and define graphs which are weighted. The main property of

interest regarding two points is the distance between them: this distance expresses bounds

on the real time that elapsed between their occurrence which is satisfied by all executions

with that synchronization graph.

This chapter is organized as follows. In Section 5.1 we present the notions of v-graphs,

p-graphs, synchronization graphs and prove a relation between these abstract concepts. In

Section 5.2 we derive the results for clock synchronization systems.

5.1 Synchronization Graphs

In this section, we define the notions of v-graphs, p-graphs, and synchronization graphs.

V-graphs and p-graphs are abstractions of views and patterns, respectively. We give a

natural correspondence between the abstract graphs concepts and their counterparts in

clock synchronization systems.

We define the key concept of synchronization graphs, which are weighted directed graphs,

derived from v-graphs and bounds mappings for these graphs; synchronization graphs will

be our main tool in analyzing executions of clock synchronization systems. The main results

in this section relate p-graphs to the synchronization graph. The development in this section

is self-contained; to help the reader in understanding the motivation for the concepts, we

give a running example from our intended application domain, namely clock synchronization

systems.

We start by defining the notion of v-graphs.

Definition 5.1 A v-graph is a pair (G, local_time), where G = (V, E) is a directed graph

local_time=1

local_time=3

ocaltime=-1

ocaltime=8

"2 - 2

Figure 5-1: An example of a v-graph.

with (p, q) E E if and only if (q, p) E E, and local_time is a function that associates a finite

real number with each point p E V. For any two points p, q E V, we define virt_del(p, q) =

local_time(p) - localtime(q). A bounds mapping for a v-graph is a function that assigns a

number B(p,q) E RU {oo} to each arc (p,q) E E.

The natural correspondence: views and v-graphs. Before we proceed to analyze

view graphs, we describe the way v-graphs can be obtained from views of clock synchro-

nization systems. Recall that a view V, as defined in Def. 3.5, is a graph, where each point

is labeled by an action name and local time of occurrence. Notice that by adding for each

arc (p, q) in a view another arc (q,p), we obtain a v-graph. In the resulting v-graph there

is some additional information attached to each point (i.e., the name of the associated ac-

tion or null point), but this is irrelevant for our treatment of v-graphs. We call the above

mapping from views to v-graphs the natural correspondence. In the sequel, points will be

used to denote both points in view graphs and in views, where the interpretation is clear

by the context.

The natural correspondence enables us to use bounds mappings for views as bounds

mapping for v-graphs (recall that a bounds mapping for a view is a function that assigns

an upper bound to the difference in real time between the occurrence of any two adjacent

points in V, see Def. 3.10). Under the natural correspondence, a bounds mapping for a view

V applies also to pairs of adjacent points in the v-graph of V.

Example. Consider a system with two processors u and v, and suppose that u has a

drift-free clock, and v has a (0.5, 1.5)-clock. Consider the following scenario.

(1) u sends a message mi to v at local time -1, such that mi is guaranteed to be delivered

within no less than 2 time units, and no more than 3 time units.

(2) ml is received at v at local time 1.

(3) v sends a message m2 to u at local time 3, such that m 2 is guaranteed to be delivered

within no less than 5 time units, and there is no upper bound on its transmission

time.

(4) m 2 is received at u at local time 8.

The short description above provides sufficient detail to define a view, a v-graph, and

a bounds mapping. Let sl, 82 denote the send points of ml and m2, respectively, and let

rl, r2 be their respective receive points. The corresponding v-graph is depicted in Figure

5-1. Also, we have that

virtdel(si,ri) = -2 virtdel(rl,sl) = 2

virtdel(s2, r 2) = -5 virt_del(r2 , s 2) = 5

virtdel(si,r2) = -9 virt_del(r2 ,81) = 9

virtdel(s2,r1) = 2 virt_del(ri,s 2) = -2

]Let B' denote the standard bounds mapping for the given view. Using Def. 3.11 we calculate

the values of B'. We get

B'(sl,r1) = -2 B'(r, s) = 3
B'(s2 ,r 2) = -5 B'(r2 ,s 2) = 0O

B'(si,r 2) = -9 B'(r2 ,s) = 9

B'(S2,r1) = 4 B'(rl,s 2) = -4/3

We shall return to this example as we develop the analysis. I

For the remainder of this section, we fix a v-graph 3 = (G, localtime) where G = (V, E),

and a bounds mapping B for 0.

Our next step is to define the concept of a p-graph as an extension of a v-graph, analogous

to the way a pattern is an extension of a view.

Definition 5.2 A p-graph with view 0 is a triple a = (G, local time, now,), where (G, local time) =

4., and nown is a function that associates a non-negative finite real number with each

point p E V. 1 A p-graph a with view 0 is said to satisfy B if for all (p, q) E E we have
def

actdel,(p,q) now,(p) - now,(q) _ B(p, q).

For a given p-graph, we define the key concepts of offsets.

Definition 5.3 (Offset) Let p be a point in a p-graph a = (G, local_time, now,). The

absolute offset of p is

6,(p) = now,(p) - local time(p)

For any other point q in a, the relative offset of p from q is

6,(p,q) = 6,(p) - 5,(q)

We omit subscripts when no confusion arises.

The natural correspondence: patterns and p-graphs. The natural correspondence

defined above for views applies also for patterns. This way, given a pattern P as defined

in Def. 3.5, its p-graph a is naturally defined. Moreover, using the natural correspondence,

the notions of absolute and relative offsets, defined over the points of a, are also defined

over the points of P, and we have that 6p(p) = 6,(p) and 6p(p, q) = 6 ,(p, q) for all points

p, q. As an aside, notice that if we know local time of two points in an execution, then

bounding the real time that elapses between their occurrences is equivalent to bounding

their relative offset.

Before we proceed, we state two properties of relative offsets.

Lemma 5.1 Let p, q, r be any three points of a given p-graph. Then

1. 6(p, q) = -6(q, p) (antisymmetry).

2. 6(p, q) = 6(p, r) + 6(r, q) (chain rule).

Proof: Immediate from definitions. I

1The v-graph P and the bounds mapping B are fixed in this section; since we shall be dealing with many

possible patterns, the now function is subscripted by the pattern's name.

local_time=l
now=2

local_time=3
now=3.5

ocal_time=-I
Iow=O

ocal_time=8
iow=9

Figure 5-2: An p-graph with view as in Figure 5-1.

Example (continued). Figure 5-2 shows a p-graph whose view is given in Figure 5-1.

It is easy to verify that this p-graph satisfies the bounds mapping B'. Let us compute the

offsets for this p-graph. First, we compute the absolute offsets of the points. We get that

6(sl) = 1

6(S2) = 0.5

Now we compute

negates the sign):

6(ri) = 1

6(r2) = 1

the relative offsets of pairs of points (reversing the order of the points

b(s1, r I) = 0

6(s, 82) = 0.5

6(rl, r 2) = 0

6(s1, r2) = 0

6(rl,s 2) = 0.5

6(s2 ,r2) = -0.5

Next, based on the v-graph P = (G, localtime) and the bounds mapping B, we introduce

weights for the arcs of G. The resulting weighted graph, called the synchronization graph,

is our primary tool for analyzing executions of clock synchronization systems.

Definition 5.4 (Synchronization Graph) The synchronization graph generated by the

v-graph P and its bounds mapping B is a weighted directed graph F = (V, E, w), where

(V, E) = G, and w(p, q) = B(p, q) - virt_del(p, q) for all (p, q) E E.

Example (continued). The synchronization graph generated by the v-graph in Figure

5-1 and B' is depicted in Figure 5-3. I

Figure 5-3: The synchronization graph generated by the v-graph in Figure 5-1 and B'.

We now arrive at the main theme of this section, which is to study the connection

between p-graphs and the synchronization graph. The following lemma states the basic

property of arc weights of the synchronization graph. (Notice that since we have fixed 3

and B, we also have now F fixed for the remainder of the section.)

Lemma 5.2 If a given p-graph with v-graph 3 satisfies B, then 6(p, q) E [-w(q, p), w(p, q)].

Proof: Since the p-graph satisfies B, we have that act_del(p, q) < B(p, q) and

actdel(q,p) < B(q,p), and hence act_del(p,q) C [-B(q,p),B(p,q)]. Therefore,

(now(p) - local time(p)) - (now(q) - local_time(q))

act del(p, q) - virtdel(p, q)

[-B(q,p) - virt_del(p,q) , B(p,q) - virt_del(p,q)]

[-B(q, p) + virtdel(q, p) , B(p, q) - virt_del(p, q)]

[-w(q,p) , w(p,q)] .

by definition

rearranging

by assumption

by antisymmetry

by definition

Our next

chronization

step is to look at the natural concept of distance between points in the syn-

graph. Formally, we have the following (standard) definition.

Definition 5.5 The weight of a path 0 = po,P... ,Pk in a weighted graph F = (V,E,w)

is w(0) = Ek 1 w(pi-1,pi). A path from p to q is a shortest path if its weight is minimum

among all paths from p to q. The distance from p to q, denoted d(p, q), is the weight of a

shortest path from p to q, or oo if there is no path from p to q.

6(p,q)

1

Notice that the distances are not well defined if F has cycles with negative weights. The

next lemma gives a sufficient condition for F to have no negative-weight cycles.

Lemma 5.3 If there exists a p-graph a with v-graph 3 such that a satisfies B, then F has

no negative weight cycles.

Proof: Let 0 = (Po,Pi,... ,Pk-1,Pk = Po) be any directed cycle in F. Then

w(0) = =1 w(pi_-,pi)

> - =1
6 ,(pi•-,Pi) by Lemma 5.2

= 6 a(Po,Po) by Lemma 5.1

= 0 . by definition

I
We now arrive at the first result for the problem of determining the set of p-graphs that

satisfy B and have v-graph P. The following theorem characterizes these p-graphs in terms

of all distances in the synchronization graph.

Theorem 5.4 A p-graph a with v-graph 0 satisfies B if and only if for any two points

p, q E V in the synchronization graph, 6,(p, q) < d(p, q).

Proof: Let a be a p-graph with v-graph P. Assume first that a satisfies B, i.e., for any

(p, q) E E we have act _del(p, q) • B(p, q). We show that 6,(p, q) • d(p, q) for any

p, q E V. In case that there is no path connecting p and q, we have d(p, q) = oo and we are

done trivially. Otherwise, consider any shortest path p = po,... ,Pk = q from p to q. Then

we have that

,(p, q) = E=o ,(Pi,pi+l) by Lemma 5.1
Ek--1W iji)

< Zto w(pi,Pi+1) by Lemma 5.2

= d(p, q) by definition

proving the "only if" part of the theorem.

Conversely, assume that for any two points p, q E V, we have that 6,(p, q) 5 d(p, q). We

prove that a satisfies B. Let (p, q) E E. By definitions of arc weights and distances, we have

that B(p, q) - virt_del(p, q) = w(p, q) > d(p, q). Hence, by assumption, we get B(p, q) -

virtdel(p, q) Ž d(p, q) > 6,(p, q) = act_del,(p, q) - virt_del(p, q). Adding virt_del(p, q) to

both sides, we get B(p, q) > act del (p, q), as desired. I

Example (continued). The distances in the synchronization graph of Figure 5-3 are

given by

d(s1,1r) = 0 d(rl,sl) = 2/3

d(si,s 2) = 2/3 d(s 2 ,sl) = 0

d(sl,r 2) = 0 d(r 2 ,sl) = 0

d(S2,rl) = 0 d(r1, 2) = 2/3

d(s 2,r 2) = 0 d(r 2 ,s 2) = 2/3

d(r2,7r) = 0 d(ri, r2) = 2/3

As the reader may verify, for the pattern of Figure 5-2 we have that 6(p, q) E [-d(q, p), d(p, q)]

for all points p, q in the view. I

Before we state the next theorem (which is the major result of this section), we define the

following technical terms. The complicated-looking definition is due to the fact distances

may be infinite.

Definition 5.6 Suppose F has no negative weight cycles. Let a be a p-graph with v-graph

3, let po E V, and let N > 0.

(1) a is an N-p-graph from po if for all q E V: if d(po, q) < oo then 6,(po, q) = d(po, q),

and otherwise 6,(po, q) > N.

(2) a is an N-p-graph to Po if for all q E V: if d(q,po) < oo then 6,(q,po) = d(q,po),

and otherwise 8,(q,po) > N.

The offsets in an N-p-graph from po are the distances from Po, with infinite distances

replaced by offsets larger than N, and analogously for an N-p-graph to po. Using these

notions, we state the following theorem.

Theorem 5.5 Suppose F has no negative-weight cycles. Then for any point Po E V, and

for any finite number N > 0, there exist p-graphs ao and al, such that both have view 3,

both satisfy B, and such that ao is an N-p-graph to Po, and al is an N-p-graph from Po.

Proof: To prove the theorem, we first construct a related graph F* in which all distances

are finite. Based on F*, we define p-graphs ao and al, and then show that ao and al have

the required properties.

To construct F*, we first choose a number M that is sufficiently large so as to satisfy

M > N + w(p,q) - 1w(p,q).
(p,q)EE (p,q)EE

O<w(p,q)<oo -oo<w(p,q)<O

Using M, we augment F with extra arcs as follows. For each pair of points p, q such that

d(p: q) = oc, we add an artificial arc (p, q) with weight M. Call the resulting augmented

graph F*, and denote its distance function by d*. The following claim shows the connection

between the distances in F*, the distances in F, and N.

Claim A. For all p, q E V, if d(p, q) < oo, then d*(p, q) = d(p, q), and if d(p, q) = co, then

N < d*(p, q) < oo.

Proof of Claim A: We start (for future reference) with an inequality that follows directly

from the choice of M. Let X and Y denote arbitrary subsets of the arcs of F with finite

weights. Then

M+ w(p,q) > max N , -w(p,q) (5.1)
(p,q)EX (p,q)EY

Next, we argue that the augmented graph F* has no negative weight cycles. Suppose,

for contradiction, that there exists some negative weight cycle in I'*. Then one of arcs of

the cycle, say (p, q), must be an artificial arc, and there must be a simple directed path

Z in r* from q to p with total weight wz such that M + wz < 0. Let wz be the sum of

negative weight arcs of Z. Clearly, wz • Wz. Also, by Eq. (5.1). we have that the sum

of lM and the weights of any subset of arcs of F is at least N. Since all artificial arcs have

positive weight, we know that w z is the sum of weights of arcs from F. Therefore we have

that M + wz 2 M + wz > N > 0, a contradiction.

To show that the finite distances in F remain invariant in F*, we first note that since

F is a subgraph of '*, it must be the case for all p, q E V that d*(p, q) < d(p, q). Suppose

for contradiction that for some p, q E V with d(p, q) < o00 we have d*(p, q) < d(p, q). Since,

as we showed above, F* has no negative-weight cycles, we may assume that there exists a

simple path in F* with length d* (p, q). Clearly, one of its arcs is artificial. However, by Eq.

(5.1), this means that the total weight of that path is larger than the total weight of any

finite-weight simple path in F, a contradiction.

Finally, let p, q E V be such that d(p, q) = oc. Clearly d* (p, q) < oo by virtue of the

artificial arc (p, q). To see that d*(p, q) > N, consider any simple path from p to q. As

before, this path contains at least one artificial arc, and therefore its total weight is at least

M plus all negative weights of F. Using Eq. (5.1), we get that the total weight of the path

is greater than N. I

We now define the p-graphs ao and a 1 explicitly. Since their view is given, the events

and their local times are already fixed; we complete the construction by specifying the now

mappings of the p-graphs. Let L be a number such that

L > min {localtime(q) + d*(q,po), localtime(q) - d*(po, q)}
qEV

For all q E V, we set

now,,(q) = L+locaLtime(q) + d*(q,po)

now,,(q) = L + localtime(q) - d*(po,q)

(The additional term L guarantees that all now values are positive.) By the construction,

for all q E V we have

o,, (q) = now., (q) - localtime(q)

= L + (d*(q, Po) + localtime(q)) - localtime(q)

= L + d*(q, po) . (5.2)

Since d*(po,Po) = 0, we have that 6§,,(po) = L, and therefore 6,,,(q,o) = 6,o(q)- 6,"o(Po) =

d*(q,po). Similarly, we obtain that 6, 1 (Po, q) = -d*(po, q). Therefore, by Claim A, •o is an

N-p-graph to po and ac is an N-p-graph from po. The following claim completes the proof

of the theorem.

Claim B. The p-graphs ao and a• defined above satisfy the bounds mapping B.

Proof of Claim B: By Theorem 5.4, it is sufficient to prove that for all p, q E V, ,(, (p, q) <

d(p, q). So let p and q be arbitrary points in the synchronization graph. In what follows, we

consider F*, the graph defined above. Since d*(p, q) < d(p, q), it is sufficient to prove that

6S,(p, q) < d*(p, q).

Let R be any shortest path from p to q. Consider the path obtained by following the

R R

P q P

Figure 5-4: Scenarios considered in the proof of Claim B. R is a shortest path from p to q,
P is a shortest path from po to p, and Q is a shortest path from q to po.

arcs of R from p to q, and then the arcs of a shortest path from q to po (see Figure 5-4(a)).

This path leads from p to po, and hence d*(p,q) + d*(q,po) > d*(p,po). It follows from

Eq. (5.2) and the definition of relative offsets that

d*(p,q) 2 d*(p, po) - d*(q,po)

= 5,,,(P) - 5,,a(q)

= a,(p,q)

I.e., for all p, q E V, 6,,(p,q) < d*(p,q), and therefore, by Theorem 5.4, we conclude

that ao satisfies the given bounds mapping B, as desired.

The proof for ac is analogous. We consider a shortest path R connecting two arbitrary

points p and q. To show that its weight d*(p, q) is at least 6(p, q), we look at the path

depicted in Figure 5-4(b), consisting of a shortest path P from po to p, followed by R. As

before, we have that d*(po, p) + d(p, q) Ž d*(po, q), and hence we get

d* (p, q) > d* (po, q) - d* (po, p)

- 5, 1 (q) + 6, 1 (p)

= , 1(p,q)

Therefore, 6,1 (p, q) 5 d*(p, q) for all points p, q E V, and applying Theorem 5.4 shows that

oz:- satisfies B, as desired. I

'This completes the proof of Theorem 5.5. I

q

local_time= I
now=2

local time=3
now=8/3

ocal time=-l local time=1
ow=O now=l

)cal time=8 local time=3
ow=9 now=3.5

,cal time=- 1
ow=0

,cal time=8
ow=9

Figure 5-5: Assuming now(r 2) = 9, (a) is a pattern from r 2 , and (b) is a pattern to r 2.

Example (conclusion). Using the distances calculated above for the synchronization

graph of Figure 5-3, we can compute patterns from and to the point r 2. Since the definition

of these patterns only specifies relative offsets, we fix now(r 2) = 9 (agreeing with the pattern

of Figure 5-2 at this point). The resulting pattern from r 2 is given in Figure 5-5 (a), and

the resulting pattern to r 2 is given in Figure 5-5 (b). It is a simple matter to verify that

both patterns have the view depicted in Figure 5-1, and they satisfy the bounds mapping

B'. One conclusion from these patterns is that an observer located at r 2 , with access only

to the view and the bounds mapping, cannot determine the time of occurrence of sl with

tightness greater than 7/2 - 8/3 = 5/6 real time units, since both patterns depicted in (a)

and (b) describe a possible scenario. I

5.2 Interpretation in Clock Synchronization Systems

Theorems 5.4 and 5.5 describe a relation between p-graphs and synchronization graphs.

In this section we apply these results to executions of clock synchronization systems. In

other words, in this section we deal with views and patterns of executions of clock synchro-

nization systems (as defined in Section 3.2.1), instead of abstract v-graphs and p-graphs,

respectively. We apply, in a straightforward fashion, the theorems of Section 5.1, in con-

junction with Theorem 3.4, using the natural correspondence (defined in Section 5.1), which

maps views and patterns to v-graphs and p-graphs, respectively. Before we state and prove

the (somewhat technical, albeit straightforward) theorems, we make two comments about

the results.

1. By our definitions of clock synchronization systems, synchronization graphs can

I
•

"2 "2

be used under a wide variety of assumptions. In particular, they can be used to model

executions where messages may be lost, delivered out of order, or duplicated by the com-

munication links; they can be used to model broadcast channels; they can be used for the

case of processor and link crashes; and by our definition of bounds mapping, they can also

be used to model clock drift bounds that may change over time.

2. The essential assumptions in our analysis are the following. First, if an offset can

be a value a and a value b, then it can also be any value in between. This rules out

scenarios in which the offset might be either a or b (as might be the case for messages

over framed communication links, or clocks with fixed but unknown rate). Removing this

assumption will result in a constraint system which is not even a linear program, and cannot

be represented as distance computation techniques. The second important assumption in

our analysis is that "patterns satisfy the bounds mapping," that is to say, the system behaves

according to its specification. As indicated by Lemma 5.3 (and explained in Chapter 9),

synchronization graphs are still useful in some limited sense in the case that executions do

not satisfy the bounds mapping.

We now proceed with applying the analysis of Section 5.1 to clock synchronization

systems. We recall that under the natural correspondence, each arc (p, q) in a view is

replaced by a pair of arcs (p, q) and (q, p) in the corresponding v-graph, and that local time

attributes, bounds mapping values (and real times in p-graphs) remain unchanged. Under

the natural correspondence, the notion of offsets that was defined for p-graphs (Def. 5.3)

applies to executions and patterns of clock synchronization systems. The offset between

two points p, q in a pattern P is

6Sp(p, q) = 6p (p) - 6p (q)

= (nowp(p) - local_timep(p)) - (nowp(q) - localtimep(q))

= act_delp(p, q) - virtdelp(p, q)

It follows that if we know the local times of occurrence of p and q, then bounding the real

time that elapses between their occurrences is equivalent to bounding 6 (p, q). This seems

to capture a useful quantity in any synchronization problem. The theorems in this section

provide us with a characterization of the bounds on the offset in a pattern with a given view

and bounds mapping, and hence they are useful in analyzing synchronization problems.

First, we state the theorem that is the key in proving correctness of clock synchronization

algorithms.

Theorem 5.6 Let V be a view of an execution of a clock synchronization system S, and

let B be the standard bounds mapping for V. Let F be the synchronization graph generated

by the v-graph of V and B, and let dr be its distance function. Let P be any pattern with

view V. Then there exists an execution e' of S whose pattern is P if and only if for any two

points p, q in 7, we have (•p(p, q) < dr(p, q).

Proof: Suppose first that there exists an execution e' of S with pattern P, and consider its

p-graph a. Since by assumption e' is an execution of S, P satisfies B, and hence a satisfies

B. Therefore, by Theorem 5.4, for any two points p, q in a, 6,(p, q) < dr(p, q), and since

6, (p, q) = 6p (p, q), we are done in this case.

Suppose now that for a pattern P with view V, we have '§p(p, q) < dr(p, q) for every pair

of points p, q in P. It follows that in the p-graph a of 7, 56,(p, q) < dr (p, q) for every pair

of points p, q. Hence, by Theorem 5.4, a satisfies B, and therefore P satisfies B. Finally,

since P satisfies the standard bounds B, we may apply Theorem 3.4, and conclude that

there exists an execution e' of S whose pattern is P. I

Next, we present the theorem we shall use for proving lower bounds on the tightness

achievable by synchronization algorithms. We first define the notions of N-patterns to and

from a point. The definition is the equivalent of Def. 5.6 under the natural correspondence.

Definition 5.7 Let F be a synchronization graph for a view V, and let P be a pattern with

view V. Let a be the p-graph for P under the natural correspondence, and let po be a point

in a. For any N > 0, P is an N-pattern from po if a is an N-p-graph from po, and it is an

N-pattern to Po if a is an N-p-graph to po.

The following theorem is the application of Theorem 5.5 to clock synchronization systems.

Intuitively, it says that there exist indistinguishable executions of clock synchronization

systems, where the offsets between a a given point and any other point are exactly the

distances in the synchronization graph, and hence any synchronization algorithm must take

these extreme cases into account.

Theorem 5.7 Let V be a view of an execution e of a clock synchronization system S (pos-

sibly including null points), and let B be the standard bounds mapping for V. Let F be the

synchronization graph generated by the v-graph of V and by B, and let dr be its distance

function. Let Po be any point in V. Then for any finite number N > 0, there exist executions

e,o and el of S, such that both have view V, and such that the pattern of eo is an N-pattern

to Po, and the pattern of el is an N-pattern from po. Moreover, for each CSA module C,,

the executions of C, in eo and in el are equivalent.

Proof: First, note that since F is obtained from an execution of 8, its pattern P satisfies the

standard bounds mapping B. From Theorem 5.6 we get that for any two points p, q in P,

5,p(p, q) 5 dr(p, q); in particular, since 6p(p,p) = 0 for all points p, we conclude that there

are no negative-weight cycles in F. Hence we can apply Theorem 5.5, and get p-graphs ao

and al which are N-patterns to and from po, respectively, such that both satisfy B. Using

the natural correspondence between V and its v-graph, we obtain from ao and ac patterns

'P0 and P1 . Since ao and al satisfy B, P0 and Pl satisfy B too. We can therefore apply

Theorem 3.4, and the result follows. I

We also state a variant of Theorem 5.7 used for locality-oriented bounds.

Theorem 5.8 Let V be a view of an execution e of a clock synchronization system S (pos-

sibly including null points), and let Po be any point in V. Let B be the standard bounds

rmapping for the local view prune(V,po), and let F be the synchronization graph generated

by prune(V,po) and B, and let dr be its distance function. Then for any finite number

N > 0, there exist executions eo and el of S, such that both have view prune(V,po), and

such that the pattern of eo is an N-pattern to Po, and the pattern of el is an N-pattern from

po. Moreover, for each CSA module C,, the executions of C, in eo and in el are equivalent.

Proof: By Theorem 3.2, there exists an execution e' whose view is prune(V,po) and such

that for each CSA module C,, prune(elc,,,p) = prune(e'lc,,,p). The theorem therefore

follows by applying Theorem 5.7 to e'. I

Summary

In this chapter we abstracted the notions of views and patterns using the notions of v-graphs

and p-graphs. We defined the concept of offsets of points in patterns, which captures an

elementary synchronization problem. Using the bounds mapping, we define the basic tool

of our analysis, namely the synchronization graphs. Using the offsets, we proved a simple

characterization of the patterns which have a given view and bounds mapping, in terms

of distances in the synchronization graph derived from the view and the bounds mapping.

In particular, our main results in this chapter show that the bounds on synchronization

obtained by the distances in the synchronization graphs are the best bounds possible, in

the sense that there exist patterns that have the given view, satisfy the given bounds

mapping, and meet the distance bounds.

The concept of synchronization graphs, specialized appropriately, serves as the basis for

analyzing specific synchronization problems in Chapters 6, 7 and 8. A few simple variants

of synchronization graphs are described in Chapter 9.

Chapter 6

External Synchronization

In this chapter we study a particular variant of the synchronization problem, called external

synchronization. Informally, in the external synchronization problem there is a distinguished

processor called the source processor, which is equipped with a drift-free clock. The task of

all other processors is to produce, at all states, an estimate (i.e., an interval) that contains

the current reading of the source clock. The name is motivated by an implicit assumption

that the source clock serves as a source of real time in the system. The length of the estimate

interval is called the tightness of synchronization at that point.

In this chapter, we obtain a few results for the external synchronization task, using Theo-

rems 5.6 and 5.8. First, we characterize the achievable tightness of external synchronization

for any processor at any given time, in terms of distances in the appropriate synchronization

graph. The general algorithm we present, which achieves optimal tightness always, is a full

information protocol, and hence inefficient. By contrast, for the special case of drift-free

clocks, we present an optimal algorithm which is extremely efficient (and simple). The

latter algorithm compares favorably to the so-called round-trip technique, used by many

practical algorithms. In the last section of this chapter, we present the main ideas in the

round-trip technique, based on NTP (Network Time Protocol, the external synchronization

protocol used over the Internet [26]).' We also explain why our technique is superior to the

one used in NTP.

This chapter is organized as follows. In Section 6.1 we recall the definition of external

synchronization, and make a few preliminary observations. In Section 6.2 we give lower

1 We use a simplified version introduced in Section 3.1.5 under the name SNTP.

and upper bounds on the tightness of external synchronization in a general system, where

the non-source clocks have arbitrary drift bounds and arbitrary message latency bounds.

In Section 6.3 we give an efficient optimal algorithm for systems with drift-free clocks. We

conclude in Section 6.4 with a description of the round-trip technique, and compare it with

our algorithm.

6.1 Problem Statement and Preliminary Observations

We recall the definition of the external clock synchronization problem. There exists in the

system a distinguished processor s, called the source processor, whose local clock is drift-

free. Each CSA module has two output variables, denoted ext_L, and ext_U,. For any given

state x in an execution of an external synchronization system, let source time(x) denote

the local time at the source in x. The correctness requirement for a processor v is that

in every reachable state x, the output variables satisfy sourcetime(x) E [ext_L,, ext_U,].

The tightness of synchronization at processor v in some state is the difference between the

output variables in that state:

80 = ext_U, - ext_L,

As a preliminary step in our analysis, we state a general property of drift-free clocks.

Lemma 6.1 Suppose that processor v has a drift-free clock, and let F = (V,E,w) be a

synchronization graph obtained from a view of some execution of the system and the standard

bounds mapping. Then the distance in F between any two points that occur at v is 0.

Proof: We first claim that for any two adjacent points q, q' that occur in v, we have

w(q, q') = 0. This follows immediately from definitions: by Def. 2.5, Qv = e, = 1; by

Def. 3.11, we have B(q, q') = virt_del(q,q')/l, = virt_del(q, q'); and hence, by Def. 5.4, we

have w(q, q') = B(q, q') - virtdel(q, q') = 0.

This claim implies that there exists a 0-weight path between any two points occurring at

v, and hence, for any two points q1 , q2 that occur at v, we have that d(ql, q2) <_ 0. Suppose

now, for the sake of contradiction, that there exists a path P from ql to q2 with negative

weight. Since there exists a a path Q from q2 to ql of weight 0, we conclude that the cycle

obtained by "gluing" P and Q together has negative weight, contradicting Lemma 5.3. I

The meaning of Lemma 6.1 is as follows. Suppose that a processor v has a drift-free

clock, and let po be any point in the synchronization graph. Then the distance to po from

any point q that occurs at v, and the distance from po to any point q that occurs at v

is independent of the particular choice of q, so long as q occurs at v. In other words, all

points that occur at a processor whose local clock is drift-free are equivalent for the distance

function in the synchronization graph. It is convenient to refer in this case to a superpoint

associated with a drift-free processor v, defined formally to be an arbitrary representative of

the points that occur at v. From the perspective of patterns, we notice that for a processor

v whose clock is drift-free, the absolute offsets of all the points that occur at v are the same,

and hence the notion of relative offset between any point and the superpoint of v is well

,defined.

The source clock, by definition, is drift-free. Given a synchronization graph of an ex-

ternal synchronization system, we call the superpoint associated with the source the source

point, an denote it by sp throughout this chapter.

6.2 Bounds on the Tightness of External Synchronization

In this section we prove matching upper and lower bounds on the tightness of algorithms

for external synchronization. The lower bound is derived from Theorem 5.8, and the upper

bound follows from Theorem 5.6.

We start by fixing the scenario and the notation. Throughout this section we are dealing

with an execution of an external synchronization system; let v be a processor in the system,

and let x be a state in the execution. We denote T,,, = localtime,,(x), and denote by p",v

the point that occurs at v at local time T,,,. (If there is more than one such point, we take

the last one; if there is no such point, p.,, is a null point we introduce.) Further, we denote

"rE, = prune(V,p.,,,) , i.e., V,,, is the local view of the execution at v at local time T.,,.

Let Bx,, denote the standard bounds mapping for Vx,,. We use the synchronization graph

rx,,v = (V, E, w) generated by the view graph of V,,, and B,:,, and denote the distance

function of r,, by d.,,. Finally, recall that sp denotes the source point of r,,.,

We start with a simple lemma that bounds the local time at the source in state x, in

terms of the local time at v, and the distances between p,; and the source point in the

corresponding synchronization graph.

Lemma 6.2 For all states x and processors v,

source time(x) E [T,,V - dX,,(sp, p~,), TV,, + d~, (pX~, sp)] .

Proof: Consider the synchronization graph F obtained from the full view and the standard

bounds mapping of the execution, and let d be the distance function in F. Since F,~ is a

subgraph of F, we have that for every pair of points p, q in Fx,,

dx,, (p, q) > d(p, q) (6.1)

Now, let 6 be the offset function of the execution, and let Tx,, = source time(x). Then we

have that

TX,, = (Tx,, - now(x)) - (T,,v - now(x)) + Ts,~
6= (sp, p,IV) + T,, V by definition of 6

E [Tx,, - d(p.,,, sp),TX,, + d(sp, p~,)] by Theorem 5.6

C [TX,, - d,V(pX,,, sp),Tx,, + dz,,(sp, pX,")] by Eq. (6.1)

We now state the lower bound on the tightness of external synchronization.

Theorem 6.3 Let x be any state in an execution of an external clock synchronization

system, and let v be any non-source processor. Then in x,

[ext_L,, ext_ U] D [Tx,, - dx,,(sp, pX,,) , Tx,~ + d,' (pX,w, sp)]

Proof: Consider first the case where x occurs before the first action in v. Then clearly in

x we have [ext_L,, ext_U,] = [-oo, c0], and since rx,P does not contain the source point, we

also have dx,v(sp,px,v) = dX,v(px,V, sp) = oc, and we are done. Assume for the rest of the

proof that x occurs after the first action of v.

Suppose that dx,v(sp, px,v) < c0 and dX,V(pX,,, sp) < oc. By Theorem 5.8 (applied with

Po substituted by px,,), there exist executions eo and el such that both have view Vx,,,

and such that for eo we have 6 o(px,, sp) = -dX,,(sp, px,v) and for el we have 61(px,V, sp) =

dx,v(p.,., sp). Let STo and STI denote the source time when the local time at v is Tz,.

in eo and el, respectively. By definition, we have that STo = T,,, + 60(pX,0 , sp) = TX,0 -

d,v (sp, px,v), and similarly, ST1 = TI, +d,v(p•,,, sp). Moreover, Theorem 5.8 says that the

basic state of the CSA module at v at local time Tx,, is the same in the original execution,

in eo and in el. Since the output variables of a CSA are part of its basic state component,

it follows from the correctness requirement for external synchronization that in x,

[extL,, ext_U] 2 [T~, - d(sp, px,) , Tx,, + d(px,, sp)] ,

and the lemma is proven in this case.

To complete the proof, consider the case that either d.,v(sp, q) = oc or dx,v(px,,, sp) = oo.

Suppose, for example, that dX,,(sp, p,,) = oo (the other case is analogous). In this case we

apply Theorem 5.8 and get that for any N > 0 there exists an execution eN with view V in

which 6(p~,x, sp) > N. Therefore, in eN, when the local time at v is Tx,,, the source time

is greater than Tx,, + N. Since Theorem 5.7 also says that the output of the CSA at v is

identical for all eN, the correctness requirement implies that in x, ext_L, = -oo. I

The following theorem shows that the lower bound on tightness of Theorem 6.3 is an

upper bound too.

Theorem 6.4 There exists an external CSA such that for any state x in an execution of

the clock synchronization system, at any processor v, the output values are

extLv = TX,, - d~,V(sp, p~,)

ext_U, = Ts,, + d~,V(p,, sp)

Proof Sketch: The proof consists of the specification of the algorithm. Below, we outline

a simple algorithm, based on the full information protocol. More specifically, the state of

the CSA at a processor v describes the complete local view of v at that state. Using the

standard bounds mapping (assumed to be built into the algorithm), the synchronization

graph can be computed, and the output values are given by

ext_L, = local_time - dx,~(sp, pX,V) (6.2)

ext-U, = local_time, + d~,V(p~,, sp) . (6.3)

The implementation of the algorithm is straightforward: a description of the complete

current local view (where each point has a unique name) is sent in every message; whenever

a message arrives, the view it carries is merged in the natural way with the current local

view by performing union over the two graphs. A synchronization graph is then constructed

from the new view and its standard bounds mapping, and the distances from the current

point to the source point and from the source point to the current point are computed, using

any single-source shortest paths algorithm for general graphs (see, e.g., [5]). Using these

distances, the output variables are updated according to Eqs. (6.2, 6.3). To have updated

output values at all states, the output variables are also modified whenever a time-passage

action occurs: if the local time is incremented by b units, we set

ext_L, ~ extL, + b(&, - 1)/1, (6.4)

ext U, -- ext_L, + b(1 -)/e__ . (6.5)

This completes the description of the algorithm. Let us now explain why is it correct.

First, we argue that the algorithm describes admissible CSA modules: it has the required

interface, it has the non-interfering filtering property, it is real-time blind, and its initial

states are quiescent. To show correctness, we apply an easy induction on the steps of the

execution that shows that the algorithms maintains, at each point, a description of the local

view from that point, and therefore the output is correct after each receive event. Consider

now the synchronization graph at the null point p.,, that occurs at v at local time Tx,,. Let

p' be the last receive point that occurs at v before px,,. If p' does not exist, we are done

trivially, since both the synchronization distances and the output values are infinite in this

case. Otherwise, by the definitions we get that there is a single path from p,,, to p'~ with

weight virt_del(p.,,,p',)(1 - ~)/_ . Similarly, there exists a single path from p' to pX,v,

with weight virt_del(p', p~,,)(,v - 1)/v,. Hence, from Eqs. (6.2-6.5) and Lemma 6.2, we

have that the algorithm is correct. Finally, note that the output values satisfy the theorem

statement, by the specification of the algorithm and by the fact that its state at any point

represents the local view at that point. I

Remarks.

1. The algorithm above is optimal, as defined in Definition 4.1, i.e., it provides the best

possible output values at each point.

2. It is easy to make the algorithm described above more efficient without affecting the

output. For example, instead of sending the complete view in each message, it suffices to

100

send only incremental changes. Notice that this modification would reduce the communica-

tion overhead significantly, but would not help to save space for storing state (in fact, more

space will be needed at the processors). The property of high space requirement is inherent

to optimal algorithms for general systems, as we show in Chapter 8.

6.3 An Efficient Algorithm for Drift-Free Clocks

In this section we restrict our attention to the case where all clocks are drift-free. Making

this simplifying assumption enables us to derive an extremely efficient algorithm for external

synchronization that gives optimal tightness. The algorithm is presented in Subsection 6.3.1,

and analyzed in Subsection 6.3.2.

6.3.1 The Algorithm

The complete specification of the algorithm given in Figure 6-1 (non-source processors)

and Figure 6-2 (source processors). The code lines that are not part of the generic code

for CSAs are numbered. The idea is as follows. As proved in Lemma 6.1, all the points

that occur at a processor with a drift-free clock can be thought of as a single superpoint

for distance computations. Intuitively, our algorithm computes distances in the graph of

superpoints. Since arc weights in the graph of superpoints may only decrease, we use (two

independent versions of) the distributed Bellman-Ford algorithm for single-source shortest

paths computation [4].

More specifically, for each link L,,, the CSA at node v maintains estimates for the weight

of the lightest arcs from the superpoint of u to v in the state variable i(u, v), and of weight

of the lightest arcs from v to u in state variable f,(v, u). To this end, whenever a message

arrives, the weight of the corresponding arcs in the synchronization graph are computed,

using a temporary variable v which holds the virtual delay, and the message latency bounds;

only the minimum estimate is kept (lines 4-6 and 5s-7s). Using these weights, the distances

to and from the source are computed in the variables d(v, s) and d(s, v), respectively. Lines

7-8 in are the Bellman-Ford relaxations. In lines 9-10, the output variables are updated.

In addition, whenever a message is sent to a neighbor, the CSA augments it with the

current local time, the best known weights for the arcs between them, and the distances to

and from the source (lines 3 and 4s).

101

The problem specification also requires that the output variables be updated when time

passes (lines 11-12).

6.3.2 Correctness and Optimality

We now prove that the algorithm above is an optimal external CSA. First we state the

following easy fact.

Lemma 6.5 The algorithm in Figures 6-1 and 6-2 is an admissible CSA.

Proof: We verify the following according to Definition 3.2.

* Clearly, the algorithm has the interface as in Figure 3-5.

* It is straightforward to see that the algorithm has the non-interfering filtering prop-

erty: the code is based on the generic CSA of Figure 3-6.

* It is also easy to see that the algorithm is real-time blind, since the transitions never

refer to the now component of the state (lines 11-12 are based on the difference in

local times).

* Finally, the initial states of the algorithm above are quiescent: no internal or output

actions are enabled an in initial state, nor in any state reachable by time passage from

them. I

We now turn to the less obvious part, namely proving that the algorithm above is an

optimal external CSA. Before we start, we introduce the following notion.

Definition 6.1 Let u, v be two neighbor processors in a clock synchronization system.

Given a synchronization graph F = (V, E, w), the set W" (F) is defined to be the set of

all numbers w(p, q), where p occurs at u, q occurs at v, and (p, q) E E.

The key for the optimality of the algorithm is the following lemma.

Lemma 6.6 Let p be a point in an execution of the system above, and suppose that p occurs

at processor v. Let F = (V, E, w) be the synchronization graph generated by the local view

of the execution at p and its standard bounds mapping. Let i and d denote the value of the

local variables of v at in the state following p. Then the following invariant holds.

(1) For all neighbors u of v, i(v, u) = min(WVU (F)) and a(u, v) = min(W""(1)).

102

Sites: a single non-source site v

State

now: non-negative real number, initially 0
local_time: real number, initially arbitrary
ext_.L: real number, initially -oo
ext_.U: real number, initially oo
Qi: queue for symbols of E, initially 0
Qo: queue for symbols of E x R5 , initially 0
active: Boolean flag, initially FALSE

,(v, s), sd,(s, v): real numbers, initially 00 1
i(v, u) and i,(u, v) for each u E ./(v): real numbers, initially 00 2

Actions

Send _Message (m) (input)
Eff: enqueue m in Qo

active +- TRUE

Send_Aug_Message (mi , m2) (output)
Pre: m, is at the head of Qo

m2 = (localtime, (v, u), s(u, v), d(v, s), da(s, v)) 3
Eff: remove head of Qo

if Qo = Qi = 0 then active +- FALSE

Receive -AugMessageu(ml, (local-timey, f,(v, u), f(u, v), da(s, u), da(u, s))) (input)
Eff: enqueue mi in Qi

active - TRUE
Z - local_time - localtimeu 4

i(v,u) min{H(mi) - , fi,(v,u), i(v,u)} 5
(u,v) - min {-L(mi) + r, ~,(u, v) , (u, v) } 6

a(v,s) - min (v,)) + 1,s(u), d(v, s) 7
d(s,v) -- min •(d(s, u) + i(u,v), d(s,v) 8
ext-L -- localtime - d(s, v) 9
extU -- localtime + d(v, s) 10

Receive Message (mi) (output)
Pre: mi is at the head of Qi
Eff: remove head of Qj

if Qo = Qi = 0 then active - FALSE

S: (time passage)
Pre: active = FALSE

b>0
Eff: now - now + b

local-time + local_time + b 11
ext_L 4- extL + b 12
ext_U < ext.U + b

Figure 6-1: Code of optimal CSA protocol for external synchronization with drift-free clocks:
a, non-source processor. The non-generic code lines are numbered.

103

Sites: the source site s

State

now: non-negative real number, initially 0
local_time: real number, initially arbitrary
ext_L, ext_U: real number, always equal to local_time is
Qj: queue for symbols of E, initially 0
Qo: queue for symbols of E x R5 , initially 0
active: Boolean flag, initially FALSE
d,(s, s), dv(s, s): always 0 2s
fi(s, u) and i(u, s) for each u E KY(s): real numbers, initially oo 3s

Actions

Send Message" (m) (input)
Eff: enqueue m in Qo

active -- TRUE

SendAug_Message (mi , m2) (output)
Pre: mi is at the head of Qo

m2 = (local_time, i(s, u), ,(u, s), 0, 0) 4s
Eff: remove head of Qo

if Qo = Qi = 0 then active +- FALSE

ReceiveAugMessage (mil, (local_timeu, t,(s, u), ii(u, s), d•,(s, u), d•(u, s))) (input)
Eff: enqueue mi in Qi

active - TRUE
-- localtime - local_time, 5s

i(s,u) -- min{H(mi) -v , ~,(s,u), i(s,u)} 6s
i(u, s) +-- min{-L(mi) + ý, w (u, s), T(u, s)} 7s

Receive _Message (mi) (output)
Pre: m, is at the head of Qi
Eff: remove head of Qi

if Qo = Qi = 0 then active +- FALSE

U: (time passage)
Pre: active = FALSE

b>0
Eff: now <-- now + b

local'time -- local_time + b

104

Figure 6-2: Code of optimal CSA protocol for external synchronization with drift-free clocks:

a source processor. The non-generic code lines are numbered.

(2) Let sp be the source point of F. Then dr(sp, p) = d(s,v), and dr(p, sp) = l(v,s).

Proof: The lemma is proven by induction on the steps of e, with the initial state as a base

case. For the base case, we observe that the invariant holds for all processors in the initial

states of the system by lines 1-2 and 2s-3s of the code, since F is empty then.

For the inductive step, let p' be the last event at v before p, or the initial state if no such

event exists. If p' is a point, let F' = (V', E', w') be the synchronization graph generated

by the local view of the execution at p' and its standard bounds mapping, and otherwise

define F' to be the empty graph. To prove the inductive step, we consider two cases.

Case 1: p is a send event. In this case, by Def. 5.4, V = V'U {p}, and if F' is not empty,

then E = E' U {(p,p'), (p',p)}, w(e') = w'(e') for all e' E E', and by Def. 3.11, w(p,p') =

w(p',p) = 0. By the inductive hypothesis, the invariant holds at p'. Hence, W"V(r) =

WV"(F') and Wu"(F) = W"u(F'). Since by the code, the i variables are unchanged by

a send event, we have that part (1) of the invariant holds in p. For part (2), note that

there is only one arc incoming into p, and one arc outgoing from p. Since both arcs have

weight 0, and since they connect p to p', it follows that dr(p,po) = dr,(p,po), and that

(id (Po, p) = dr, (Po, p). Again, since the algorithm does not change the value of the & variables

when a send event occurs, part (2) of the invariant holds in this case.

Case 2: p is a receive event. Specifically, assume that p is the following event:

Receive_Aug _Message" (ml, (localtime, (v, u), 9(u, v), &(v, s), ;,(s, v)))

Denote the corresponding send event at u by p", and let F" = (V", E", w") be the synchro-

nization graph generated by the local view at p" and the standard bounds mapping. By

definitions, V = V' U V" U {p}, and either E = E' U E" U {(p, p"), (p", p)} if F' is empty, or

E = E' U E" U {(p, p"), (p", p), (p, p'), (p', p)} if F' is not empty. The weights are defined by

w'(e), if e E E'

w"(e), if e E E"

w(e) = H(mi) - virt-del(p,p"), if e = (p,p")

-L(mi) - virtdel(p",p), if e = (p", p)

0, if e E {(p, p'), (p', p)}

105

R

----------------------------- -~
sp q p

Figure 6-3: Scenario considered in the proof of Lemma 6.6. R is a shortest path from sp to
p with last arc (q,p).

Part (1) of the invariant in this case is proven as follows. By definitions, Wul(F) = Wu""(')U

Wu(F/") U {w(p,p")}, and W'v(r) = Wv(F') U Wvu(F") U {w(p",p)}. Hence

min(Wvu(F)) = min (Wvu(F ') U W'v(F1') U {H(mi) - virtdel(p,p")})

and

min(WUv(F)) = min(Wuv(Ff') U Wu(F") U {-L(mi) - virtdel(p",p)} ,

which, according to the inductive hypothesis applied to p' and p", is exactly the calculation

in lines 4-6 and 5s-7s. This proves part (1) of the invariant.

For the second part of the invariant, let us prove that d(s, v) = dr(sp, p). The claim is

trivial for v = s, according to line 2s. So suppose v 0 s. Consider a shortest path from sp

to p that contains no cycles. This is possible since by Lemma 5.3, all cycles in F have non-

negative weight. Focus on the last arc of the path in question, i.e., the arc that leads to p

(see Figure 6-3). Denote this arc (q, p), where q E {p', p"}, and let r* be the synchronization

graph at q. By the choice of q, dr(sp, p) = dr(sp, q) + w(q, p). By the induction hypothesis,

we have that at q, the d variables are equal to the corresponding distances in I*. Also,

we have that after line 7, f(v, u) = min(WVu ()) and T(u, v) = min(WuV(F)). Therefore,

by Line 9 of the code, it suffices to prove that dr(sp, q) = dr. (sp, q). We do this in two

steps. First, notice that dr(sp, q) < dr.(sp, q) since F* is a subgraph of F. Next we argue

that dr(sp,q) > dr.(sp,q) by contradiction: suppose that dr(sp,q) < dr.(sp,q). Then

all shortest paths from sp to q in F are shorter than the shortest path from sp to q in F*.

Consider such a shortest path which is simple (this is possible since F has no negative-weight

cycles). This path must end with the arc (p, q), or otherwise it is completely contained in P*.

It follows that the shortest path from sp to p goes through p, q, and back to p (see Figure

6-3), a contradiction to the choice of the path as simple. Therefore, dr(sp, q) > dr. (sp, q),

and we conclude that dr(sp, q) = dr.(sp, q).

106

To show that &(v, s) = dr(p, sp), we repeat the symmetrical argument for the first arc

of a, simple shortest path from p to sp, and use line 8 of the code instead of line 9. I

We can now prove the optimality of the algorithm.

Theorem 6.7 The CSA algorithm in Figure 6-1 and Figure 6-2 is an optimal algorithm

(in the sense of Def. 4.1) for all external synchronization environments, where all clocks

are drift-free.

Proof: Clearly, the algorithm may be composed with any environment of external

synchronization, where all clocks are drift-free. Consider any state x of an execution of the

algorithm, let v be any processor, and let T,,, = local_time,(x). Let F be the

synchronization graph generated by the local view of v at time T,1, and the standard

bounds mapping. Denote the null point in r that occurs at v at local time T,,v by p,v,.

Let p' be the last point that occurs at v before p.,,, and let F' be the synchronization

graph generated by the local view at p' and the standard bounds mapping. By Lemma

6.1, dr(px,,, sp) = dr, (p', sp), and dr(sp, px,~) = dr,(sp, p'). Hence

source time(x) E [T,,, - dr(sp, p,), Tx,v + dr(px,v,sp)] by Lemma 6.2

= [ext_L, ext_U] by lines 9-12 and Lemma

6.6

This means that the algorithm is correct. The optimality of the algorithm follows imme-

diately from the lower bound of Theorem 6.3.

6.4 The Round-Trip Technique

It may be interesting at this point to compare our analysis and algorithms with the com-

mon clock synchronization technique known as "round-trip probes." For concreteness, we

take the external synchronization system NTP (Network Time Protocol, the clock synchro-

nization algorithm used over the Internet [26]) as our prime source for this technique. We

consider here a simplified variant of NTP, called SNTP, that was introduced in Section

3.1.5. In the SNTP system, we have only two processors with drift-free clocks, connected

by perfect asynchronous links. We denote the source processor by s, and the non-source

processor by v. SNTP is rigorously defined in Section 3.1.5, with a technique for a single

107

Plocal time = LT2

local time = LT 2

q'i
local time = LT3

(a)

m

local time = LT1

p' q

local time = LT4

(b)

q P'
p,

q

p'

S V s v s v

Figure 6-4: Reproduction of Fig. 3-7. (a) A typical round trip technique. (b) m is in transit
TT time units. (c) m' is in transit TT time units.

round trip. In this section, we extend the presentation to multiple round-trips, and focus

on the way their results are combined. Let us recall briefly the main ideas.

Periodically, v sends a message to s, which in turn responds by sending a message back

to v (hence the name "round trip"). Consider the round trip depicted in Figure 6-4(a),

where v sends a message m to s, and s responds by sending m' to v. Let TT denote the

total transit time of m and m'. The bounds on the source time are obtained by considering

two extreme scenarios, in which on message is in transit TT time units and the other is

delivered instantaneously (Figure 6-4 (b,c)). Skipping the details (they can be found in

Section 3.1.5), we remark that the bounds generated by the CSA module at v at point q'

are

[ezt_L , etU] = [LT 3 , LT 3 + TT]

Clearly, the tightness of the synchronization thus computed is exactly the total transit

time. In other words, the faster the messages are delivered, the better synchronization is

achieved. This fact leads the designers of NTP to the following conclusion: when there

are many round trips, the one with the least total transit time is chosen as best, and its

corresponding bounds are output. Specifically, whenever a round trip is completed, its total

transit time is compared against the current tightness; if the current tightness is better (i.e.,

smaller), that round trip is discarded, and otherwise, the bounds obtained by that round-

trip replace the current values of the output variables. The formal specification of the CSA

at v for multiple round-trips is given in Figure 6-5 (note the "if then" clause in the effect

108

(c)

-...,

p'

of the ReceiveAug Message action). The code for the source processor is identical to the

case of a single round-trip (see Figure 3-9).

Let us now consider the behavior of the algorithm described in Section 6.3 for this toy

environment. Note that the patterns generated by the environment of SNTP are a subset of

the patterns generated by the general environment described in Section 3.1, and therefore

it makes sense to consider the CSAs of Section 6.3 in the context of the environment of

SNTP.

Our first remark regards the single round-trip scenario depicted in Figure 6-4 (a). Us-

ing Definitions 3.11 and 5.4, we get that the synchronization graph corresponding to this

scenario is the one depicted in Figure 6-6. It is straightforward to verify that the extreme

scenarios depicted in Figure 3-7 (b,c) are, in fact, the executions whose existence is guaran-

teed by Theorem 5.8 for this view and bounds mapping. As a consequence, the output of

the algorithm of Section 6.3, and the bounds computed by SNTP are identical in this case.

However, in a scenario that consists of more than a single round-trip, the algorithm of

Section 6.3 may do much better. By computing the distances in the synchronization graph,

our algorithm in effect finds the fastest message delivered over the link in each direction

independently, while SNTP finds the best round-trip using a pre-specified matching of the

messages into pairs.

Let us consider a concrete example. In Figure 6-7 (a) we have a diagram of a two-

round-trip scenario. Suppose that the total transit time of the first round-trip is smaller

than the one in the second, i.e., let TT 1 = (LT4 - LTI) - (LT3 - LT2), let TT 2 = (LT8 -

LT5) - (LT7 - LT(,), and assume TT 1 < TT2. In this case, the tightness of synchronization

produced by SNTP after the scenario is TT2. By contrast, the algorithm of Section 6.3

finds the best possible round trip in the execution: in our example, the picture suggests

that TT* = (LT 8 - LT1) - (LT7 - LT 2) is the best choice, and in particular, TT* < TT 1.

Notice that TT* may be arbitrarily smaller than TT1, and hence the local competitive factor

of SNTP cannot be bounded even in this simple case.

Intuitively, the round-trip technique used by NTP is handicapped since it potentially

pairs a "good" message in one direction with a "bad" message in the other direction. We

remark that in the case of a system of more than one link, the pairing of good and bad

messages may be even more severe: consider the set of messages used to establish the bounds

of the output variables. These messages correspond to paths (in the synchronization graph)

109

Sites: a single site v

State

now: non-negative real number, initially 0
localtime: real number, initially arbitrary
extL: real number, initially -oc
ext_ U: real number, initially oo
Qi: queue for symbols of E, initially 0
Qo: queue for symbols of E x R2 , initially 0
active: Boolean flag, initially FALSE
LTI: a real number, initially undefined

Actions

Send_ Message, (m) (input)
Eff: enqueue m in Qo

active - TRUE

LT1 ý- local_time

Send _Aug_Message, (mi, 0, 0) (output)
Pre: m, is at the head of Qo
Eff: remove head of Qo

if Qo = Qi = 0 then active - FALSE

Receive _Aug _Message, (m1 , (LT 2 , LT3)) (input)
Eff: enqueue mi in Qi

active +- TRUE

LT4 - localtime
TT * (LT 4 - LT1) - (LT 3 - LT2)
if TT < (extU - extL) then

extL + LT 3

ext_U - LT 3 + TT

Receive Message (mi) (output)
Pre: mi is at the head of Qj
Eff: remove head of Qj

if Q0 = Qi = 0 then active <- FALSE

v : (time passage)
Pre: active = FALSE

b>0
Eff: now <- now + b

localtime - localtime + b
ext_L - ext_L + b
ext U < ext_U + b

Figure 6-5: Code of the CSA module in SNTP for processor v (the best round-trip is chosen).

110

Figure 6-6: The synchronization graph corresponding to the scenario in Fig. 6-4 (a), as-
suming that the clocks are drift-free and that transmission time of the messages are can be
any value between 0 and oo.

s (a) v s (b)

Figure 6-7: A time space diagram of two round trips is given in (a), with local times of the
points. SNTP chooses the round trip with the smallest total transit time (enclosed in the
dashed frame in (a)). For the same scenario, the algorithm of Section 6.3 implicitly chooses
the best message in each direction independently, and in effect finds the best possible round
trip (dashed arrows in (b)). The corresponding synchronization graph is given in (c), where
the lightest arcs connecting points of s and v are boldfaced.

111

to and from the source. The round trip technique forces both paths to be over the same

physical links, i.e., the messages used in one direction must be transmitted over the same

links over which the messages used in the other direction were transmitted. Our algorithm,

by contrast, chooses messages independently for each direction, and it may well be the case

that the set of messages used to establish a lower bound are transmitted over different links

over which the messages used for the upper bound were transmitted.

112

Summary

In this chapter we defined and analyzed the external clock synchronization problem. In

this problem, a distinguished source processor is assumed to have a drift-free clock, and the

task of all processors is to keep updated bounds on the current value of the source clock.

Using synchronization graphs, we derived matching lower and upper bounds on external

synchronization in general systems, where the clocks of non-source processors may have

arbitrary drift bounds and messages may have arbitrary latency bounds.

The algorithm used for the upper bound is a full information protocol, and therefore

it is inefficient. By contrast, we presented an extremely efficient algorithm for the case of

drift-free clocks. The latter algorithm is based on the observation that all points associated

with a drift free clock in the synchronization graph can be collapsed into a single superpoint,

and thus it is sufficient to compute distances between superpoints.

We have also examined the popular technique of round trips. Using a toy system based

on NTP, we showed that for a single round trip this technique yields the same result as our

algorithm. In a multiple round-trip scenario, however, the output of our algorithm will be

usually better.

113

Chapter 7

Internal Synchronization

In this chapter we prove a lower bound on the tightness of another variant of clock synchro-

nization, called internal clock synchronization [6]. The goal of internal synchronization is

that all processors generate a "tick," called fire below, such that all fire steps occur in the

smallest possible interval of real time. An algorithm for internal synchronization is required

to provide bounds on the length of this real time interval, and the smallest difference in an

execution is the internal tightness of that execution.

The task of internal synchronization has been the target of considerable research (see,

e.g., [19, 7, 13, 3] and the survey [31]). However, to the best of our knowledge, the only

known non-trivial lower bounds for internal tightness were for the case of drift-free clocks.

In this chapter, based on synchronization graphs, we give a lower bound for the internal

tightness in a synchronization system with bounded-drift clocks. We remark that the lower

bound presented in this chapter is based on views, rather than local views: lower bounds

that hold for a given view hold a fortiori for its local views.

This chapter is organized as follows. In Section 7.1 we define internal clock synchroniza-

tion formally, and in Section 7.2 we present the lower bound.

7.1 Definition of Internal Synchronization

In this section we recall our definition of internal synchronization (see Section 4.1). An

internal clock synchronization system is a clock synchronization system, where each CSA

module has a special internal action called fire.' The correctness requirement of the internal

1The fire action is internal so as to keep the interface of CSAs standard (see Figure 3-5).

114

synchronization task is that

(1) each processor v takes a fire, action exactly once during an execution of the system,

and

(2) the CSA at each processor v maintains output variables called int_L, and intU,,

such that at all states, the real time interval [now (firej) + intL,, now (firej) + int_U,]

contains all the fire events in the execution.

The internal tightness of an execution of an internal synchronization system at a processor

v, denoted tightness,(e), is the infimum over the difference (int_U, - int_L,) in all states

of the execution.

Intuitively, the fire actions represent the event of resetting some logical clock maintained

by the CSAs; the output variables express the synchronization guarantee made by the CSA.

By the properties of CSAs (specifically, their real-time blindness and their quiescent initial

states), one can show that their initial values must be int_L = -oo and int_U = oo; as the

execution progresses, the CSA modules gather information about the occurrence of remote

fire actions that may enable them to reduce the difference between their output values.

7.1.1 Discussion

Intuitively, the motivation for internal synchronization is to maintain some clock variables

in each processor, such that their values are as close as possible. This requirement alone

is not sufficient, since it allows for the trivial solution where all clock variables always

have the same fixed value (say, 0). Dolev et al. discuss this issue in depth [7]. In [19], this

difficulty is avoided as follows. Each processor v is assumed to have a special output variable

denoted CORR,; the tightness is measured as the maximal difference between the values

of local_time, + CORR,, over all processors v. To rule out the trivial solution of setting

CORR, = -localtime,, in [19] the executions of synchronization algorithms are required

to be finite, i.e., at some point the algorithm enters a terminating state, after which the

CORR variable is fixed. The tightness is defined to be the maximal difference between the

local_time, + CORR, values, measured only when the algorithm is in a final state.

In [13], the difficulty of problem definition is solved differently: each processor is required

to flip a special internal bit during the execution of the algorithm; the tightness is defined

to be the maximal difference in real time between two remote bit flips. We adopted this

definition (the bit flip is equivalent to our fire action), and added the output variables for

115

ease of exposition.

7.2 A Lower Bound on Internal Tightness

In this section we derive a lower bound on the tightness of internal synchronization in

general systems with bounded-drift clocks. To state the result, we define the following

graph-theoretic concept. Recall that for a path 0 in a weighted graph, w(0) denotes the

sum of the weights of arcs in 0, and let 191 denote the number of arcs in 0.

Definition 7.1 Let G = (V, E, w) be a weighted directed graph. The maximum cycle mean

of G, denoted mcm(G), is the maximum average weight of an edge in a directed cycle of G.

That is, mcm(G) = max {w()/181 : 0 is a directed cycle of G}.

We remark that the maximum cycle mean can be computed in polynomial time [14].

To analyze internal synchronization systems, the definition of patterns and views is

extended so that the fire steps are points with the usual attributes (i.e., processor of oc-

currence, local time of occurrence, and for patters, real time of occurrence). We extend

the standard bounds mapping too, using Def. 3.11. Synchronization graphs for internal

synchronization systems are thus also naturally defined. It turns out that the following

derivative of synchronization graphs is useful for the analysis of internal synchronization.

Definition 7.2 Given a synchronization graph F = (V, E, w) of an internal clock syn-

chronization system, the internal synchronization graph is a directed, weighted graph F =

(V,E,w), where the set of points V consists of all the fire points in V; there is an arc

in E between every pair of points of V; and w(firev,fire,) = dr(fireu,fire.) for each

(firev, fire.) e E.

We can now state and prove the lower bound.

Theorem 7.1 Let e be an execution of an internal clock synchronization system, and let

r be the internal synchronization graph generated by the view of e and the standard bounds

mapping. Then tightness,(e) Ž> mcm(F) for all processors v.

Proof: Suppose first that mcm(F) = oo. Then, by the definition of I, there are some

processors u,v with dr(fire,,fireu) = oo. Hence, by Theorem 5.7, for any N > 0 there

116

exists an execution eN, in which 6(fire,,fire.) > N. Moreover, since the output variables

are part of the basic component of the state of CSAs, we have from Theorem 5.7 that the

set of output values of the CSA at v are identical in all the eN. Let act delN denote the

actual delay function in eN. Since for any two points in any execution we have 6(p, q) =

act_del(p, q) - virtdel(p, q), and since virt_del(fire, fire.) is fixed (it is a part of the view of

e), it follows that the set of numbers {actdeleN(firev,fireU) : N > 0} cannot be bounded.

'Therefore, by the correctness requirement for internal CSAs, we must have tightness,(e) =

o :For all processors v, and the theorem holds in this case.

Consider now the case where mcm(F) < oo. Let 0 = (po0, pi,..., plo = po) be an arbitrary

directed cycle in T. Fix an arbitrary processor v. By Theorem 5.7, for each 1 < i < l1o,

there exists an execution ej with offset function bi, such that

i(pilPi) -= w(pi--i,pi) . (7.1)

Theorem 5.7 also says that the set of output values at v (being part of the basic state of

the CSA at v), is the same in e and all the ei. We therefore have that for each i,

tightness,(e) = tightness,(ej)

> now,,(pi_1) - now2,(pi) correctness requirement

= bi(pi_l,pi) + virt-del(pi• 1,pi) by definition of offset

= w(pi-•,pi) + virt_del(pi_~,p,) by Eq. (7.1)

Summing the above over all i, we get

1 - tightness(e) > Zw(pi-_,pi) ±+ viritdel(pi1,pi)
i=1 i=1

101 0le1

SZiii(pi-1,) + Z(localtime(pi-i) - localtime(pi))
i=1 i=1

because the second sum is cyclic. In other words, for any processor v, tightness,(e) >

w(0)/I0|. Since 0 was an arbitrary cycle in F, we conclude that tightness,(e) _ mcm(F), as

desired. I

117

Theorem 7.1 coincides with known results for the special case of systems with drift-free

clocks. For example, Lundelius and Lynch [19] considered a system of n processors, where

the underlying communication graph is complete, and the latency bounds of all messages

are finite and identical (say upper bound H and lower bound L). The corresponding syn-

chronization graph consists of n points (one per processor), and between each pair of points

p, q there are arcs (p, q) and (q, p) with weights satisfying w(p, q) + w(q, p) = H - L. It can

be shown that for these graphs, the maximum cycle mean is (H - L)(n - 1)/n, which is the

lower bound proved in [19].

Halpern, Megiddo and Munshi [13] extended the result of [19] to the case where the

underlying graph of the system is not complete, and the latency bounds for each link may

be different (i.e., there are different H and L for each link). Again, their lower bound can be

viewed as showing that the worst possible scenario under the given constraints is bounded

by the maximal cycle mean in the corresponding synchronization graph.

Attiya, Herzberg and Rajsbaum [3] refined the results of [13] to hold for each execution

of the system, rather than for the worst possible executions. Theorem 7.1 generalizes the

result of [3] to the case of bounded-drift clocks. Our result generalizes the previous bounds

also to the case where the latency bounds may be different for each individual message.

118

Summary

In this chapter we discussed the internal clock synchronization problem. Formally, based

on the definition of [13]. Using synchronization graphs, we presented a new lower bound

for internal synchronization for system over systems with drifting clocks. This lower bound

generalizes known lower bounds for systems with drift-free clocks to the general case of

bounded-drift clocks.

119

Chapter 8

The Space Complexity of Optimal

Synchronization

Call a synchronization algorithm general if it works for all possible environments as defined

in Section 3.1, i.e., for all possible views, all possible message latency bounds, and all possible

clock drift bounds. (For example, the full information protocol used in the proof of Theorem

6.4 is a general algorithm for external synchronization, whereas the algorithm described in

Section 6.3 is not general, since it works only for drift-free clocks.) In this chapter we

provide strong evidence that suggest that a general CSA for external synchronization which

is optimal must be inefficient, or more specifically, such an algorithm cannot have bounded

space complexity.

Recall that in external clock synchronization systems, the CSAs are required to compute

bounds on the current reading of some designated drift-free clock called the source clock

(see Section 4.1 for the full definition). In this chapter, we prove that for a certain reason-

able computational model, there exist scenarios in which the space complexity required to

compute optimal output cannot be bounded. The result is obtained in a small system (four

processors, two of which have drift-free clocks).

The first problem in formalizing a space lower bound is that our model allows for real

numbers: a real number can be used to encode an unbounded amount of information. Our

strategy to get around this difficulty is to bound from below the number of "control bits"

required to run the program, where we disallow fiddling with the input values.

The moral of the result presented in this chapter is that one cannot have a synchro-

120

nization algorithm which is simultaneously optimal, general, and efficient. An algorithm

designer must decide which of the three is to be sacrificed. We remark that as a by-product,

this chapter indicates that the inefficiency of the algorithm used in the proof of Theorem

6.4 was, in a certain sense, unavoidable, since that algorithm is both general and optimal.

The remainder of the chapter is organized as follows. In Section 8.1 we describe the

computational model in the context of CSAs, and in Section 8.2 we give the space lower

bound proof.

8.1 The Computational Model

The model we use for computations of CSAs is a particular kind of the computation tree

model. First, we define the following algebraic concept.

Definition 8.1 A special linear form for a set X = {x 1,... ,XN} is a sequence of N in-

tegers f = (c,..., CN). The value of f under the assignment x, = al,...,XN = aN is

f(al,...,ag) = aE1g ciai, where ai E RU {-oo,oo}. 1 If b = f(a,,..., a) for some special

linear form f, then b is said to be a special linear combination of al,... ,aN.

We have the following simple lemma.

Lemma 8.1 If b is a special linear combination of al,..., aN, and for each i = 1,..., N

we have that ai is a special linear combination of ail,... , aiKi, then b is a special linear

combination of a11,..., alKi,..., aNl, , aNKN.

Proof: Since b = ,N=l ciai for some integers ci, and since for each i we have a, = • cijaij,

for some integers cij, we can write b as the special linear combination

b = ccliall .+-+ ClClKlalKl '+ . CNCNlaN1 + *' CNCNKNNK N • I

We now define the computational model. For simplicity of presentation, we present

below a model for deterministic CSAs; the extension to non-deterministic CSAs is straight-

forward. A program for a CSA module is specified by a directed labeled tree, where the

root of the tree is called the start node, and the edges are directed away from the start

1We use the conventions that for any finte number r, r + oo = oo, r - 0o = -oo, 0 - co = 0 - (-oo) = 0,
and c• - oo is undefined.

121

node. Intuitively, nodes represent control configurations of the program, and executions of

the program proceed by following a directed path in the tree, starting at the start node.

Formally, let us call the nodes at even distance from the start node even nodes, and nodes

at odd distance from the start node odd nodes. The subtree of depth two rooted at each odd

node corresponds to an input action followed by an output action of the CSA, as dictated

by the non-interfering filtering condition. Specifically, we define the node labels as follows

(see Figure 8-1 for an example the first three layers of a program tree).

* Each odd node is labeled by an input action name and input variables, where the

input variables contain the local time and bounds mapping values (specified later);

we call these variables local variables. If the action is Receive_Aug_Message(m, m'),

there are also message variables, which correspond to values in m'. We require that

for each even node, there is exactly one child node for any possible input action.

* Each even node, except for the start node, is labeled by an output action name, a

computation predicate, and some output forms according to the following rules.

- The output action of an odd node corresponds to the input action of its par-

ent in the tree according to the non-interfering filtering property, i.e., if the

action of the parent is SendMessage(m), then all its children nodes have an

action of the type Send _Aug_Message(m, m'), and if the action of the parent is

Receive_Aug _Message(m, m'), then the action of all its children is ReceiveMessage(m).

- For an even node p in the tree, let X(p) denote the set of input variables in

labels on the path from the start node to p. The computation predicate of p is

an arbitrary predicate over X(p), and the output forms associated with p are

special linear forms for X(p).

For each even node q, for any possible assignment of values to X(q), we require that

there is exactly one computation predicate among its children that evaluates to TRUE.

An execution of the CSA in this model proceeds by moving a "token" (which represents

the current control configuration) along the tree according the labels in the following way.

Initially, the token is placed at the start node. Whenever an input action occurs, the token

is moved down the tree to the odd node whose label matches the input action name. In

addition, the input variables associated with the odd node are instantiated. Next, an even

122

start node

action name: action name:
Send_Message(m) ReceiveAug_Message(m.<a,b,c>)

input variables: input variables:
{Iocaltime) (local time, B(p,q), B(q,p), a, b, c}

action name:
Send_Aug_Message(m.<x,y>)

computation predicate:
TRUE

output forms: action name: action name:
extU := local time Receive_Message(m) Receive Message(m)
ext L := 0 computation predicate: computation predicate:
x := localtime a-b < local time a-b >= localtimey:= 0 output forms: output forms:

ext U:= c ext U:= a
ext_L := local_time-c extL := local_time-a

:Figure 8-1: The first three layers of a program: an example. The odd nodes are labeled by
input action names and input variables, and the nodes at depth 2 are labeled by an output
action name, a computation predicate and output forms.

node down the tree is selected by choosing the node whose computation predicate evaluates

to TRUE under the current assignment of the input values. The outcome of the predicates

is well defined, as all their variables are instantiated at this stage. The output values are

defined by instantiating the output forms associated with the chosen even node.

Let us now be more specific about the input variables and the output values of a program

for a CSA. The input variables associated with an odd node, which in turn corresponds to an

input step p, always include local_time(p), and the values of the standard bounds mapping

of all the pairs (p, q) and (q,p), for all points q which are adjacent to p in the local view

from p (if there are any). In addition, if p is a receive point, then the input also contains

all the values that arrive in the incoming message. We restrict the message alphabet used

by CSAs to be strings of R U {-oo, oo}. The output forms associated with an even node

which corresponds to a point p always contain forms for the mandatory output variables

(i.e., ext_L and ext_U); if p happens to be a send point, then there is an output form

corresponding to each value to be sent in the outgoing message. The output values of the

CSA, at any state of the execution, are generated by instantiating the last output forms by

the input values.

When time passage occurs, the local time and bounds mapping values are updated.

Since these values may appear in the output forms for ext_L and ext_U, the output values

are potentially updated as well. This completes the description of the way CSAs work in

123

our model.

For lower bound purposes, we define the space complexity of a program in our model to

be the logarithm to base 2 of the maximal degree of a node in the tree. We argue that this

measure is certainly a lower bound on the number of bits required to distinguish among

the different possible branches the program may take. We remark that in our proof, the

lower bound is derived for the odd nodes, i.e., the number of possible output responses for

an input.

Before we go into the lower bound proof, we state an important property of our model.

First, we define the following concept.

Definition 8.2 Let p be a point in a view V of an execution of a clock synchronization

system. The values in the local view of p is the set of all local times of points in the local

view prune(V, p), and all the bound mapping values for arcs prune(V,p).

The important property of values in a local view of a point is that they "span" all

possible outputs at that point, as stated in the following lemma.

Lemma 8.2 Any output value of a CSA at a point p in an execution of the system is a

special linear combination of the values in the local view of p.

Proof: By induction on the points in the view, sorted by their order of occurrence in the

execution. The lemma is clearly true in the first step of the execution in the system: the

only input value at that point is the local time of occurrence, and by definitions, the output

value is just a special linear combination of its input values.

Assume now that the lemma holds at all points pi,... , p, of the execution, and consider

the point p,+l. By Lemma 8.1, it is sufficient to show that the input values are special

linear combination of values in the local view of Pn+1. If p,+1 is not the first action at the

processor, let pj be the previous action at the processor, and let pj be undefined otherwise.

We distinguish between two cases.

Case 1: pn+i is a send point. In this case, by our model definitions, the input values

at pn+ are local_time(p+l 1), and if pj is defined, the input also contain the values of the

standard bounds mapping for (pn+, pj) and (pj, Pn+I). Trivially, all these values are special

linear combinations of values in the local view of pn+.

Case 2: pnl is a receive point. Let pi denote the corresponding send point in the

execution. The input values in this case are the local time of occurrence of pn+1, the

124

appropriate bounds mapping values, and the values that arrive in the incoming message.

Since a send point always occurs before the corresponding receive point, we have that

i < n + 1, and by definition, we also have that the local view of pi is contained in the local

view of pn+. By the inductive hypothesis, the values that arrive in a message are special

linear combinations of values in the local view of pi, and hence they are also special linear

combinations of values in the local view of p,+,. This completes the inductive step. I

8.2 The Space Lower Bound

In this section we prove a lower bound on external synchronization in the model defined in

previous sections. We shall use the following simple lemma.

Definition 8.3 A function F : D - R is said to be covered by a collection of functions F

if for all x E D there exists a function f e F such that F(x) = f(x).

Lemma 8.3 Let Xl,..., M E RN be such that for any -i = (Xil,... ,XN) and j =

(xjl,...,XjN) we have that if xik :A Xjk then Xik - Xjk is an integer. Let F be a function

such that F(-2) - F(-Y) is an integer only if i = j. If F is a collection of special linear

forms covering F, then ITI > M.

Proof: By contradiction. If I." < M and F covers F, then for some f E Y and i : j, we

have that f(Ti) = F(-i) and f(MY) = F(TY). Denote f = (cl,... , CN), i = (xil,... ,XiN)

and Yi = (xjl,..., Xjy). Suppose, w.l.o.g, that xi - xj,..., XiK - XjK are all integers, and

that xi, = xj, for n = K + 1,... ,N. Then

F(j) - F(mY) = f (Ti) - f (-j)
N N

S Cinin - CjnXjn

n=1 n=1

N

E Cin(Xin - Xjn)
n=1

K

- C, (xo - xn) ,
n=1

which is an integer, contradicting the assumption that F(Tj) - F(Tj) is not an integer for

i ij. I

125

We now turn to prove a lower bound on the space complexity of optimal CSAs in our

computational model. To simplify presentation, we focus below on the output variable

ext_L.

Consider an execution of an external synchronization system, and let F be the syn-

chronization graph generated by the local view of the execution at some point p and the

standard bounds mapping. From Theorem 6.4, we know that the optimal value for ext_L

at point p is precisely local_time(p) - d(sp,p), where sp is the source point of F, and d is

the distance function of F. The lower bound is proven by showing that unbounded space is

required to compute d(sp, p) for a point p in a certain scenario.

Specifically, we consider a system whose underlying graph is a line of four processors

denoted s, u, v, w (see Figure 8-2 (a)). Processor s is the source processor; processors u

and v have drifting clocks, and the clock at w is drift-free. We concentrate on the CSA

at w. As mentioned above, the optimal value of ext_L at a point p of the execution is

local_time(p) - d(sp, p). Since localtime(p) is an input variable at p, the task we consider

reduces, at each point p, to the computation of d(sp, p).

The following key lemma describes a scenario in which a single local view may have

many different extensions, depending on the message that arrives next. The output for

each possible extension must be different; the special properties of the input variables at

the receive point are used later to prove the space lower bound.

Lemma 8.4 For any integer M > 0 there exist M executions el,... , eM with views V1,. . , VM

and synchronization graphs r 1,..., F, respectively, and a receive point p that occurs at w,

such that

(1) p is common to all views.

(2) The local views of V1,... , VM at w are identical before p occurs.

(3) All values in the message that arrive at p are integers.

(4) For each i = 1,... , M, the distance between sp and p in F, is 1/(i + 1).

Proof: We construct the views, and specify the weights of the arcs in corresponding syn-

chronization graphs as we go. In our construction, all arc weights are non-negative, and

hence there are no negative-weight cycles in all the synchronization graphs we define. There-

fore, the proof is completed by observing that by Theorem 5.7, for each i there exists an

126

S U V W

(a)

v W S U V w

sp

Figure 8-2: (a) System structure for the proof of Lemma 8.4. Processor s is the source,
and processor w also has a drift-free clock. (b,c) An example for graphs constructed in the

proof of Lemma 8.4 with M = 3. In (b), the local view at w before p (shared by all Vj) is
illustrated (the messages from v are known to be sent). In (c), the local view at w after p
is illustrated: in Vi, the selector message is received at point uj.

execution ei with view Vi, such that ei satisfies the bounds mapping derived from Fr and

Vi.
It remains to define the views and the bounds mapping. We do it as follows (see

Figure 8-2 (c)). In all views Vi for i = 1,...,M, there are M messages from processor

v to processor u, with distinct send points denoted vl,..., vM, and distinct receive points

denoted ul,... , AM, respectively. The bounds mapping is such that in all the Fj we have

w(vk, Uk) = 0, W(Uk, Vk) = 1 for k = 1,... M, and W(Vk,Vk+1) = W(Vk+1,Vk) = W(Uk,Uk+1) =

W(Uk+1,Uk) = 1 for k = 1,... ,M - 1. Also, in all views Vi there are M messages sent

from v to u with send points denoted vl,... , VM, and receive points denoted wl,... , WM,

respectively. In all the ri we have w(wk, Vk) = 1 for all k. The weight of the arc (vk, Wk) is

defined to be 1/(k + 1).

In addition, all views Vi have a message m sent from u to v after the last uk point, and

a message nz' sent from v to w after m is received at v. The receive point of m' is the point

p, promised in the statement of the lemma. The weight the four arcs corresponding to m

and m' is 1 in all Fi.

127

source point

selector message (zero

zero-weight arcs

positive weight arcs

zero-weight paths

M

WM

Figure 8-3: A schematic summary of the distance situation for a typical view Vi. The arcs
that are not drawn have weight 1. The distance from the source point to p is w(vi, wi) =

1/(i + 1).

Only the following feature differs in the different views v1: for each i E {1,... , M},

we have in view YV a message, called the selector message, sent from the source processor

at point sp and received at processor u at point ui. In Fi, we have w(sp, ui) = 0 and

w(u;, sp) = 1.

Finally, we choose the local times of all points in all views to be integers. Thus, the

bounds mapping values, which are determined by the local times and the arc weights,

are also all integers, except for the pairs (vk, Wk) for k = 1,...,M. This completes the

description of the views Vi.

We now observe that the views thus defined have the required properties. Parts (1) and

(2) are immediate from the construction: p is common to all views, and the local view at

w before p is identical for all V, (see Figure 8-2 (b)). Part (3) of the lemma follows from

Lemma 8.1 and the fact that by construction, all values in the local view at the point at

which m' is sent are integers. Finally, Part (4) of the lemma is clear from the construction

(see Figure 8-3). I

We can now prove the space lower bound.

Theorem 8.5 Let A be a general external CSA. If A is an optimal algorithm (as defined

in Def. 4.1), then its space complexity cannot be bounded by a function of the system size.

Proof: Suppose A is a general optimal synchronization algorithm for external synchro-

nization. Then by Theorems 6.3 and 6.4, at any point p that occurs at processor v in an

128

execution, it must be the case that ext_L, = local time(p) - d(sp, p), where d and sp are the

distance function and the source point, respectively, in the corresponding synchronization

graph. By Lemma 8.4, for any M > 0 there are M scenarios with a common point p such

that at p, the local input variables are the same at all scenarios, the other input values

,are all integers, and such that in scenario i the optimal output is local_time(p) - 1/(i + 1).

Letting Tx,... , ~ denote the input values of these scenarios, and letting F denote the

optimal value of ext_L, we can there apply Lemma 8.3, and deduce that there are at least

M distinct output forms associated with p. It follows that the degree of the odd node in

the program corresponding to p is arbitrarily large, and since the space complexity of a

branching program is the logarithm of the maximal degree of a node, we conclude that the

space required by the program cannot be bounded as a function of the network size. I

Remark. The crucial property of the model used in the lower-bound argument is the re-

striction that output is represented by special linear combinations. We argue that this

restriction is reasonable for two reasons. First, we know that optimal output can be com-

puted this way: synchronization distances can be expressed as special linear combinations

of local times and bounds. And secondly, as already mentioned above, if we do not impose

restrictions on the computational model, there is no hope for a space lower bound, since an

unbounded amount of state information can be encoded in a single real number.

129

Summary

In this chapter we looked at the space complexity required to store the state of optimal

CSAs for external synchronization. We defined a computational model, where output may

be represented only by linear combination of the input values with integer coefficient. The

program is represented by a tree, and the space complexity is the logarithm of the maximal

branching factor in the tree. We then proved that there are executions of very simple

systems (we used four processors), for which the space complexity of an optimal CSA

cannot be bounded. This means that any optimal algorithm for external synchronization

that works for all environments must have unbounded space complexity. The implication

of this result is that there is no synchronization algorithm which is simultaneously efficient,

optimal and general.

130

Chapter 9

Extensions

The analysis of synchronization graphs, presented in Chapter 5, was developed for the

model of clock synchronization systems, as defined in Chapter 3. This model, while being

arguably a reasonable abstraction of real systems, is restrictive. In this chapter we look at a

few simple variants of the basic model, and show how using our concept of synchronization

graph, one can analyze these variants quite easily.

Our discussion is presented in three parts. In Section 9.1 we consider the case of addi-

tional timing constraints. We show how a few kinds of additional timing constraints can

be incorporated into synchronization graphs. In Section 9.2 we discuss timing faults, i.e.,

cases where an execution violates the system specification. We define a natural notion of

detectable faults, and show that synchronization graphs can be used to detect the existence

of such faults. In Section 9.3 we consider structured send modules, i.e., systems in which

the message sending pattern has a more regular structure. Using a simple example, we

explain how knowledge of the structure of the send modules can help in generating timing

information without explicit communication.

9.1 Additional Timing Constraints

The definition of clock synchronization systems in Chapter 3 allows for two sources of timing

information: the message latency bounds and the clock drift bounds. It is often the case

that we have some additional sources of timing information. For example, the presence of

a. human operator at a site may suffice to insure that the absolute offset of the local clock

at that site is never too big. Another example is a broadcast of a message to a subset of

131

the processors, where it is known that the message is delivered at all processors within a

period of known length (even though the time to deliver any individual message may be

arbitrary). Having such additional information may improve the synchronization attained

by CSAs. Below, we describe ways to incorporate a few simple types of such knowledge

into synchronization graphs. By doing this, the distances in the synchronization graph

have the additional information built into them, and can therefore be used to get better

synchronization.

9.1.1 Absolute Time Constraints

Suppose we know somehow that "an event p occurs at real time at least a," or that "an

event p occurs at real time at most b." Formally, we may have absolute time constraints,

defined to be statements of the form

now(p) E [a, b] ,

where p is a point in the view, and [a, b] is a (possibly infinite) interval of real numbers.

Absolute time constraints can be incorporated in the synchronization graph as follows.

We introduce a new point into the graph, called the origin and denoted by so, where

for analysis purposes we assume that local_time(so) = now(so) = 0. (Intuitively, the

origin can be thought of as representing the initialization event of the execution.) For

each absolute time constraint now(p) c [a, b], we introduce two arcs (p, so) and (so, p) into

the synchronization graph, with weights

w(so0,p)= -a, and w(p, so)= b.

It is easy to see, using Lemma 5.2 and the attributes of the origin as defined above, that the

new arcs and weights express the given constraint. Bounds on relative offsets of the points

in the view can now be obtained as usual, by finding distances between the desired points

in the extended synchronization graph. In addition, bounds on the absolute offsets can be

obtained by computing the distances to and from the origin: with the real and local time

attributes we assigned to the source point, we have that for any point p, 6(p) = 6(p, so),

and hence 6(p) E [-d(so,p),d(p, so)].

By adding the origin node and its incident edges, the distances in the synchroniza-

132

tion graph may drop, resulting in tighter bounds on the offset between points, i.e., better

synchronization.

9.1.2 Relative Time Constraints

Suppose that we have information of the type "at least a time units elapse between the

occurrence of an event p until the occurrence of an event q," or "at most b time units elapse

between the occurrence of an event p until the occurrence of an event q." Formally, we may

have a pairwise time constraint, given as a statement of the form

now(q) - now(p) E [a, b]

Modeling pairwise time constraints is done using the tools we already have: the interpreta-

tion of such a statement is simply that the bounds mapping B of the pattern in question

should be extended to include B(q, p) = b and B(p, q) = -a. To translate this information

into the distance measure of synchronization graphs, we augment the graph with arcs (p, q)

and (q,p), and assign their weights as usual (see Def. 5.4). As before, the introduction of

additional arcs into the synchronization graph may reduce the distances between points,

thus resulting in tighter bounds on synchronization.

Another instance of relative time constraints is where a set of events is known to occur

within a time interval of known length. (Halpern and Suzuki [12] make this assumption for

the set of receive events of a broadcast message.) Formally, we have a set Q of events, such

that for any pair pi, pj E Q we know that

now(pi) - now(pj) < a,

and the reduction to pairwise time constraints is obvious.

Remark. It may be interesting to push further the idea underlying the simple technique

suggested above for pairwise time constraints. The way we developed our model in Chapter

3, we had the natural notion of adjacent points (cf. Def. 3.9), and bounds mapping was

defined only for pairs of adjacent points. This definition was motivated by the assumption

that the only source for timing information are the specifications of local clocks and network

links. The idea in the generalization suggested above is that the basic relation is pairwise

t'ime constraints, rather than adjacency. Put in other words, instead of defining bounds

133

mapping in terms of the classical adjacency relation, we should define the adjacency relation

in the synchronization graph in terms of the pairwise time constraints.

9.2 Fault Detection

Throughout the discussion of synchronization graphs we relied heavily on its "integrity,"

namely the fact that actdel(p, q) 5 B(p, q) for all adjacent points p, q. Since this assump-

tion may not always hold - e.g., if some component of the system fails, or if the specification

is simply wrong - it is interesting to understand what happens in that case. Fortunately,

Theorem 5.4 guarantees a strong fault-detection property. Let us first define the a notion

of detectable fault.

Definition 9.1 Let V be a view and let B be a bounds mapping for V. V is said to have a

detectable fault with respect to B if there is no pattern with view V that satisfies B.

Using Theorem 5.5, we derive the following result.

Lemma 9.1 Let V be a view of an execution of a clock synchronization system, and let B

be a bounds mapping for V. Then V has a detectable fault with respect to B if and only if

the synchronization graph F defined by V and B contains a negative weight cycle.

Proof: Suppose first that F contains a negative cycle. Then it follows from Theorem 5.6

that there is no pattern with view V that satisfies B, and hence V has a detectable fault

w.r.t. B. Conversely, suppose that F does not contain a negative-weight cycle. If F is empty,

then trivially V does not contain a detectable fault w.r.t. B, and we are done. Otherwise,

let po be any point in F. By Theorem 5.7, there exists at least one pattern P with view V

such that P satisfies B, and hence V has no detectable faults w.r.t. B. I

We remark that algorithms that use our techniques, probably compute distances over

the synchronization graph anyway. Since shortest paths algorithm for general edge weights

usually discover negative weight cycles, we get fault detection "for free." However, we

remark that we do not know of a general technique for fault correction using synchronization

graphs directly.

134

9.3 Structured Environments

The basic theory studies the case where send modules are completely unstructured (techni-

cally, the "send" action is always enabled), and where the link automata may lose messages

arbitrarily. Somewhat surprisingly, it turns out that one may gain timing knowledge also

from the absence of a message receive event, in the case of reliable communication.1

We now explain how can one add arcs to the synchronization graph for messages which

are guaranteed to arrive, but haven't arrived. Again, the extra arcs may result in shorter

distances and hence better synchronization.

In the following lemma, we assume that the drift upper bound of one of the clocks is at

least 1. This can be done without loss of generality since local time readings can be scaled

to satisfy this assumption.

Lemma 9.2 Suppose that the send module at processor u is such that a message m is

always sent at a point q with known local time, suppose that the link automaton Lu, is

such that m is guaranteed to be always received at processor v within H(mr) time units, and

suppose further that the drift upper bound of the clock at v satisfies -, > 1. Then for any

point p at v where m has not yet been received we have 6(p, q) • H(m) - virt_del(p, q).

Proof: Consider the point p' in which m is received at v. By assumption, ,v > 1. Since

p occurs at v before p', we have localtime(p') Ž local_time(p), and hence virtdel(p', q) Ž

virt_del(p, q) and virtdel(p',p) Ž 0. Therefore, using Def. 3.11 and Lemmas 5.1 and 5.2,

we get

6(p, q) = 6(p,p') + 6(p', q)

K (1 - 1/#) . virtdel(p',p) + H(m) - virtdel(p', q)

_ H(m) - virtdel(p, q)

The consequence of Lemma 9.2 is that if communication links do not lose messages and

have finite latency upper bounds, one can add points and arcs to the synchronization graph,

'The place where the fact that messages may be arbitrarily lost was used in the proof of Theorem 3.2,
where we proved that any local view at a point is also a complete view of some execution. This theorem
does not hold in the case where some messages are guaranteed to be delivered: a local view that contains
only the send point of such a message is not the complete view of any execution.

135

even if these points are not in the local view. Using the notation of Lemma 9.2, although q

is not a part of the local view at p, the synchronization graph at p might as well include q

and an arc (q,p) whose weight is w(q,p) = H(m) - virt_del(p, q) (since we have a pairwise

time constraint between p and q).

136

Summary

In this chapter we discussed a few simple extensions of the basic model. We showed how to

incorporate additional assumptions, such as absolute time constraints an relative time con-

straints into the synchronization graph. Such constraints may be known due to unmodeled

parts of the system.

We also proved a strong fault detection capability for synchronization graphs. Despite

the fact that we do not know how to exploit a synchronization graph directly for error

correction, we get fault detection essentially for free.

Finally, we showed that if the send module is structured in a certain simple sense,

and if communication links are reliable, then some timing information may be derived

even from absence of messages. We showed how to incorporate such information into the

synchronization graph.

These examples demonstrate the robustness of the basic concept of synchronization

graphs. Many more variants are possible (e.g., finite granularity clocks, and external syn-

chronization systems with multiple sources).

137

Chapter 10

Conclusion

Our hope is that the main contribution of this thesis is improved understanding of the clock

synchronization problem. We believe that the insight developed in this thesis may lead to

better synchronization protocols. We have suggested a new viewpoint for the problem, and

presented new analytical tools and algorithmic techniques to deal with clock synchroniza-

tion. Our results indicate that there is no "ultimate solution" for clock synchronization, but

they leave hope that optimal efficient algorithms can be found for particular systems, or that

better algorithms can be developed for general systems. For example, it seems reasonable

to assume that our techniques can be implemented over the Internet, thus improving on

the current version of NTP [26]. In addition, by implementing our methods with bounded

space, one can get algorithms which are optimal with respect to a part of the execution

(e.g., an algorithm that guarantees that its output is the best possible output for the last

day).

On the theoretical side, we believe that synchronization graphs may prove a useful tool in

the analysis of timing-based systems. In a sense, synchronization graphs can be viewed as a

weighted version of Lamport's graphs [16]: Lamport used his unweighted graphs to describe

executions of completely asynchronous systems; synchronization graphs are weighted, and

can be used to describe executions of systems where processors have clocks.

Let us review the main weaknesses of synchronization graphs. Informally, the usefulness

of synchronization graphs relies on a few strong assumptions.

(1) The system specification is such that if an event may occur at either of two points,

then this event may occur at any time between them.

138

(2) Processors follow the system specification.

(3) All executions that satisfy the system specifications are possible.

As we mentioned in this thesis, assumption (1) cannot be compromised by our analysis.

Without it, clock synchronization problems cannot even be expresses as linear programs.

Regarding assumption (2), we gave a partial answer for the problem of systems that do

not adhere to their specification by showing that synchronization graphs can be used for

fault detection. We hope the error correction can also be aided by synchronization graphs.

Assumption (3) leaves room for specializing the synchronization graphs according to the

particular system being considered. We demonstrated such adaptations with a few simple

examples.

Since clock synchronization is used throughout the spectrum of distributed systems -

starting from a single VLSI chip, and ranging up to a global network -- it is conceivable

that the effect of even a slight improvement in the tightness of synchronization may be

sweeping. For example, tighter synchronization of the transmitting and receiving endpoints

of communication links can lead to better utilization and hence larger throughput of the

communication network; better synchronization may imply shorter processing time for large

databases. We hope that despite its weaknesses, this thesis can be used to improve syn-

chronization in many cases. This may lead to a slightly more convenient world, and it

can perhaps be translated into financial profit (for example, Merrill Lynch is using NTP to

synchronize their worldwide network [11]).

It may be interesting to note that after our preliminary paper [29] was published, a few

papers which have considerable overlap with our results have appeared. Specifically, Dolev

et al. [8] have defined the notion of observable clock synchronization which is closely related

to our notion of optimal clock synchronization. Their analysis is for the special case where

the communication is done over a broadcast channel. Moses and Bloom [27] look at the

problem of clock synchronization from the knowledge theoretic perspective. They study

the case of drift-free clocks, and their main result can be viewed as a special case of one

of our characterization theorems. Ajtai et al. [2] present an approach for the analysis of

distributed algorithms which is closely related to our notion of local competitiveness.

Let us conclude with some interesting problems that this thesis leaves unsolved.

Fault Resilience: It would be interesting to develop a technique that uses synchronization

graphs in the presence of errors, such that erroneous data can be overcome, more than

139

merely detecting the existence of an error.

Internal synchronization: We do not know of a good technique for on-line distributed

internal synchronization other than the naive use of external synchronization algo-

rithms. Conceivably, synchronization graphs can be used to this end.

140

Appendix A

Time-Space Diagrams

In this appendix we present Time-Space Diagrams [17]. This representation method is

a convenient way to graphically draw and view executions of distributed systems. (See

Figure A-1 for an example.) The idea is that the x coordinate is used to denote location

in space (which is, in the context of distributed systems, simply a processor name), and

the y coordinate is used to denote real time. Since the physical location of processors is

immaterial, processors are represented by vertical lines labeled by their names. In our

diagrams we follow the convention that time grows downwards.

Given an execution of a system, its time-space diagram is drawn by the following two

rules. First, the events of the execution (such as message send and receive) are represented

by points, and hence the (x, y) coordinates of each event are determined by its location

and time of occurrence. And secondly, a message is represented by a directed arrow, that

time

processor u processor v processor w

Figure A-1: An example of a time-space diagram.

141

connects the point corresponding to its send event to a point corresponding to its receive

event. We can model in this way many types of communication assumptions, including

broadcast (for example, in Figure A-1 processor v sends messages simultaneously to u and

w), message duplication (in Figure A-1 there are two receive events at v that correspond

to a single send event at u), message re-ordering (the messages sent by w in Figure A-1 are

received in reversed order at v), and message loss (the first event at v in Figure A-1 might

be a send event of a message which is not received).

142

Bibliography

[1] J. E. Abate, E. W. Butterline, R. A. Carley, P. Greendyk, A. M. Montenegro, C. D.

Near, S. H. Richman, and G. P. Zampelli. AT&T's new approach to the synchronization

of telecommunication networks. IEEE Communication Magazine, pages 35-45, Apr.

1989.

[2] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. A theory of competitive analysis

for distributed algorithms. In 35th Annual Symposium on Foundations of Computer

Science, Santa Fe, New Mexico, Oct. 1994. To appear.

[3] H. Attiya, A. Herzberg, and S. Rajsbaum. Optimal clock synchronization under dif-

ferent delay assumptions. SIAM J. Comput., 1994. Accepted for publication. A pre-

liminary version appeared in Proceedings of the 12th Annual ACM Symposium on

Principles of Distributed Computing, 1993.

[4] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, Englewood Cliffs, New

Jersey, second edition, 1992.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press/McGraw-Hill, 1990.

[6] F. Cristian. Probabilistic clock synchronization. Distributed Computing, 3:146-158,

1989.

[7] D. Dolev, J. Y. Halpern, and R. Strong. On the possiblity and impossibility of achieving

clock synchronization. J. Comp. and Syst. Sci., 32(2):230-250, 1986.

[8] D. Dolev, R. Reischuk, and R. Strong. Observable clock synchronization. In Proceedings

of the 13th Annual ACM Symposium on Principles of Distributed Computing, 1994.

143

[9] M. J. Fischer and A. Michael. Sacrificing serializability to attain high availability

of data in an unreliable network. In Proc. ACM SIGACT-SIGMOD Symposium on

Principles of Database Systems, pages 70-75, 1982.

[10] R. Gawlick, R. Segala, J. Sogaard-Andersen, and N. Lynch. Liveness in timed and un-

timed systems. Technical Report MIT/LCS/TR-587, MIT Lab. for Computer Science,

Dec. 1993.

[11] J. D. Guyton and M. F. Schwartz. Experiences with a survey tool for dicovering Net-

work Time Protocol servers. Techical Report CU-CS-704-94, University of Colorado,

Boulder, Jan. 1994.

[12] J. Halpern and I. Suzuki. Clock synchronization and the power of broadcasting. In

Proc. of Allerton Conference, pages 588-597, 1990.

[13] J. Y. Halpern, N. Megiddo, and A. A. Munshi. Optimal precision in the presence of

uncertainty. Journal of Complexity, 1:170-196, 1985.

[14] R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete

Mathematics, 23:309-311, 1978.

[15] H. Kopetz and W. Ochsenreiter. Clock synchronization in distributed real-time sys-

tems. IEEE Trans. Comm., 36(8):933-939, Aug. 1987.

[16] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Comm.

ACM, 21(7):558-565, July 1978.

[17] L. Lamport. The mutual exclusion problem. Part I: A theory of interprocess commu-

nication. J. ACM, 33(2):313-326, 1986.

[18] B. Liskov. Practical uses of synchronized clocks in distributed systems. Distributed

Computing, 6:211-219, 1993. Invited talk at the 9th Annual ACM Symposium on

Principles of Distributed Computing, 1990.

[19] J. Lundelius and N. Lynch. An upper and lower bound for clock synchronization.

Information and Computation, 62(2-3):190-204, 1984.

144

[20] N. Lynch. Simulation techniques for proving properties of real-time systems. In Rex

Workshop '93, Lecture Notes in Computer Science, Mook, the Netherlands, 1994.

Springer-Verlag. To appear.

[21] N. Lynch and N. Shavit. Timing-based mutual exclusion. In Proceedings of the 13th

IEEE Real- Time Systems Symposium, Phoenix, Arizona, December 1992.

[22] N. Lynch and F. Vaandrager. Forward and backward simulations - Part I: Untimed

systems. Submitted for publication. Also, MIT/LCS/TM-486.

[23] M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms or on-line problems.

In Proceedings of the 20th Annual ACM Symposium on Theory of Computing. ACM

SIGACT, ACM, May 1988.

1[24] K. Marzullo and S. Owicki. Maintaining the time in a distributed system. In Proceedings

of the 2nd Annual A CM Symposium on Principles of Distributed Computing, pages 44-

54, 1983.

[25] D. L. Mills. Internet time synchronization: the Network Time Protocol. IEEE Trans.

Comm., 39(10):1482-1493, Oct. 1991.

[26] D. L. Mills. The Network Time Protocol (version 3): Specification, implementation

and analysis. RFC 1305 RFC 1305, Network Working Group, University of Delaware,

Mar. 1992.

[27] Y. Moses and B. Bloom. Knowledge, timed precedence and clocks. In Proceedings of

the 13th Annual ACM Symposium on Principles of Distributed Computing, 1994.

[28] Y. Ofek. Generating a fault tolerant global clock using high-speed control signals for

the MetaNet architecture. IEEE Trans. Comm., Dec. 1993.

[29] B. Patt-Shamir and S. Rajsbaum. A theory of clock synchronization. In Proceedings of

the 26th Annual ACM Symposium on Theory of Computing, Montreal, Canada, pages

810-819, May 1994.

[30] F. B. Schneider. Understanding protocols for Byzantine clock synchronization. Re-

search Report 87-859, Department of Computer Science, Cornell University, Aug. 1987.

145

[31] B. Simons, J. L. Welch, and N. Lynch. An overview of clock synchronization. Research

Report RC 6505 (63306), IBM, 1988.

[32] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.

Comm. ACM, 28(2):202-208, 1985.

[33] T. K. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive simple

fault-tolerant algorithms. Distributed Computing, 2:80-94, 1987.

146

Index

(o, ')-clock, 22, 32

(SA, SB) A27

S, 35

z', 39

'T(v, s), 18

v, 18

65(p), 79

5(p, q), 79

, '22

ýw(t), 17

' -AS, 18

A,, 21

A x B, 27

absolute offset, 79, 128

absolute time constraints, 128

action, 18

discrete, 18

external, 18

input, 18

output, 18

time passage, 18

visible, 18

action enabled in a state, 18

active, 41

acts(A), 18

actual delay, 54, 66

act_del, 54, 79

adjacent points, 55, 66, 129

admissible CSA, 97, 99

anti-symmetry, 79

arc, 50

axioms, 18

B(A), 23

basic, 70

best effort, 72

bounded drift clock, 22

bounded-drift clock, 32, 111

bounds mapping, 55, 66

pattern satisfying, 55

bounds mapping for a v-graph, 77

broadcast, 35, 138

centralized algorithm, 68

chain rule, 79

clock, 22

of an automaton at a site, 21

clock drift bounds, 43, 54, 65

clock function, 22, 26, 57

continuous, 22, 58

invertible, 58

clock synchronization systems, 43 44

communication, 65

compatible

147

automata, 27

state, 26

competitive analysis, 68

composition

of automata, 27, 43

of states, 26

computation predicate, 118

control bits, 116

CSA, 39-43, 65

admissible, 42

external, 69, 93

generic, 40, 41

cycle, 50

d(p, q), 81

detectable fault, 130

distance, 76, 81

drift-free clock, 22, 32, 93, 98, 111

duration, 25

e JA, 28

environment, 49, 65

equivalent automata, 21

equivalent executions of a CSA, 56

even nodes, 118

execution, 25

admissible, 25

fragment, 25

ext_L, 44, 69, 93

ext_U, 44, 69, 93

external action, see action, external, 18

external clock synchronization, 69

external synchronization system, 69

external tightness, 69

f_state(w), 25

f_now(w), 25

fault correction, 130

finish time, 26

fire, 111

form, 29

full information protocol, 71, 96

function covered by a collection of func-

tions, 121

game against nature, 67

general, 116

graph of superpoints, 98

happened before, 51

Z(s), 62

initial state, 42

input variables, 118

interface, 97

int_L,, 70, 112

int_U,, 70, 112

internal action, 18

internal clock synchronization, 69-70

internal synchronization graph, 113

internal synchronization system, 70

internal tightness, 70, 111, 112

interpolation, 57

LV, 38

l_state(w), 25

l_now(w), 25

latency bounds, 38, 43, 54, 65

148

latency lower bound, 38

latency upper bound, 38

link automaton, 38, 43

link crash, 38

localtime a, 58

localtime,,(7r), 32

localtime,(s), 18

local timeA,,, 19

local competitive factor, 71

local competitiveness, 74

local time, 18

local time of p, 50

local time of occurrence, 50

local variables, 1[18

local view, 52, 65

local view of V at processor v at time T,

52

locally K-competitive algorithm, 71

locations, 32

maximum cycle mean, 112

mrcm(G), 11.2

Merrill Lynch, 135

message alphabet, 35, 38, 39, 119

message corruption, 38

message duplication, 37, 38, 138

message loss, 37, 38

message re-ordering, 37, 38, 138

message variables, 118

mixed I/O automata, 18

equivalent, 27

module, 16

rmulticast, 35

AN(v), 35

N-p-graph from Po , 83

N-p-graph to Po, 83

N-pattern from po , 89

N-pattern to Po , 89

natural correspondence, 77

negative weight cycle, 82, 130

neighbor, 35, 99

neighbors, 35

network, 37-39

non-interfering filtering, 40, 40, 42, 43, 52,

97, 99

correspondence by, 40

now(s), 18

now(ir), 32

NTP, 44, 104, 134

null point, 50

occurrence

local time of, 26

real time of, 26

times of, 25

odd nodes, 118

off-line algorithm, 68

on-line algorithm, 68

optimal algorithm, 71

origin, 128

output forms, 118

output variables, 44, 69, 70, 93, 112

P, 117

p-graph, 78

pairwise time constraint, 129

149

path, 50

pattern, 50, 65

perfect asynchronous link, 38, 39, 44

point, 50

point-to-point, 35

processor, 34, 43

processor crash, 37

program, 117

projection

automaton on a site, 21

of a composed state, 27

of a form, 29

of a times form, 29

of an execution, 28

pruned execution, 53

Q(s), 61

Qi, 41

Q0o, 41

quiescent state, 32, 43, 99, 112

R, 17

R + , 17

R(s), 62
reachable, 50, 76

real time, 17, 18, 22

real time of p, 50

real time of occurrence, 32, 50

real-time blindness, 22, 32, 42, 43, 60, 97,

99, 112

real-time specification, 43, 54

Receive_Message'(m), 36

Receive Aug_ Message (ml, mi2), 37, 39

relative offset, 79

round trip, 104

round-trip, 12

schedule, 72

selector message, 123

Send _Aug_Message'(mil,m 2), 37, 39

Send Message (m), 36

send module, 35-37, 43

SENDER, 19-20, 37

set of clock functions, 26

shared memory system, 72

shortest path, 81

site, 18, 32

SNTP, 44-46, 104

source_time(p), 69

source_time(x), 69, 93

source clock, 116

source point, 94

source processor, 69, 92, 93

sp, 94

space complexity, 119

special linear combination, 117

special linear form, 117

standard bounds mapping, 55

start(A), 18

start node, 117

start state, 18

start time, 26

state, 18

basic, 23

idle, 24

quiescent, 24, 42, 60

150

quiet, 24

states(A), 18

subscripts, 35

superpoint, 94

synchronization graph, 80

target function, 72

tick, 111

tightness, 6, 67, 70, 93

tightness of a view, 70

Time-Space Diagrams, 137

timed I/O automata, 16

timed sequence, :29

timed trace, 26

timed traces, 40

times form, 28

timing specification, 38

trajectory, 17, 19, 25

trans(A), 18

transition relation, 18

underlying graph, 34, 35

v-graph, 76

values in the local view of p, 120

view, 50, 65, 67

virt_del, 54, 77

virtual delay, 54, 66

weight of a path, 81

worst-case scenario, 67

