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by Christ D. Richmond

Submitted to the Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology in partial fulfillment of the

requirements for the degree of Electrical Engineer (E.E.)

Abstract

A classical problem in many radar and sonar applications is the adaptive detection/esti-
mation of a given signal in the presence of zero mean Gaussian noise. Reed, Mallett,
and Brennan (RMB) derived and analyzed an adaptive detection scheme where the noise
adaptation and non-trivial nature of their analysis resulted from the use of a noise sample
covariance matrix (SCM). The case now considered is that of adaptive signal estimation.
Specifically, the exact probability density function (pdf) for the ML signal estimator,
also referred to as the Minimum Variance Distortionless Response (MVDR) and as the
Linearly Constrained Minimum Variance (LCMV) Beamformer, is derived when the esti-
mator relies on a SCM for evaluation. The observation from which the signal ML estimate
is made is assumed linear in the signal and corrupted by additive complex Gaussian noise.
The SCM assumes a Complex Wishart (CW) distribution when each of the noise samples
is i.i.d. Thus, by using the CW probabilistic model for the distribution of the estimated
noise covariance it is shown that the pdf of the Adaptive ML (AML) signal estimator, i.e.
the ML signal estimator which employs a SCM for evaluation, is in general the conflu-
ent hypergeometric function known as Kummer's Function. The AML signal estimator
remains unbiased, but asymptotically efficient; moreover, the AML signal estimator con-
verges in distribution to the Gaussian non-adaptive beamformer output (known noise
covariance). When the sample size of the estimated noise covariance matrix is fixed, there
exist a dynamic tradeoff between Signal-to-Noise Ratio (SNR) and noise adaptivity as the
dimensionality of array data is varied suggesting the existence of an optimal array data
dimension which will yield the best performance.

Thesis Supervisor: Arthur B. Baggeroer
Title: Ford Professor of Electrical Engineering and Ocean Engineering
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WOPT
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Pr(A)
Px ()
CND(., .)
CWD(., )
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Var(-)

C(.)
pFq(.)
1 F, (.)

Re(.)
Im(.)
SCM
AML
MVDR
LCMV
SNR

Table 0.1: Symbols/Notation

Symbols and Notation

Meaning
B x B true noise covariance matrix
B x B noise sample covariance matrix
Sample size of noise sample covariance matrix
B x 1 received array data vector
B x 1 steering vector or look direction vector
B x 1 additive complex Gaussian noise
True optimum weight vector R-lg/(gHR-lg)
Estimate of optimum weight vector R-lg(gH l-1g)
Dimension of array data vector
True complex signal value SR + jSI (non-random)
Maximum-Likelihood signal estimator wHPTX
Adaptive Maximum-Likelihood signal estimator *HPTx
Normalized SNR statistic from [4]
Probability of event A
Probability density function for x
D-variate Complex Gaussian distributed
D x D-variate complex Wishart distributed
Vector norm
Matrix determinant or absolute value of complex scalar
Matrix trace
Matrix transpose
Conjugate transposition
Expectation
Variance
Variance of x
Moment generating function
Generalized hypergeometric function
Kummer's Function
Zeroth order Bessel function
Real part
Imaginary part
"Sample Covariance Matrix"
"Adaptive Maximum-Likelihood" signal estimator
"Minimum Variance Distortionless Response"
"Linearly Constrained Minimum Variance" beamformer
"Signal-to-Noise Ratio" gHR-lg



Chapter 1

Introduction

1.1 Motivation

A classical problem in many radar and sonar applications is the adaptive detection/esti-

mation of a given signal in the presence of zero mean Gaussian noise. A search radar,

for example, scans a broad surveillance area seeking to detect the possible presence of

a target. After target presence is determined, it may be desired to estimate the signal

parameters. In pulsed Doppler and narrowband active radar systems, for example, it

is desired to estimate the complex signal amplitude parameters 1 of the echo returns of

each pulse burst [2]. These signal parameters carry target range, and Doppler (velocity)

information.

The success or performance of any signal detector or estimator is highly dependent

1Amplitude of signal is complex due to demodulated in-phase and quadrature components.



upon one's knowledge of the probabilistic character of the noise interference; namely, the

noise covariance matrix, denote by R. Indeed, estimating R lies at the core of every

adaptive detection/estimation procedure. When R is known exactly then much can be

said about how well the signal detectors/estimators which rely on R perform. In practice

the true noise covariance is typically unknown, and must be approximated from noise

only observations (data samples). The introduction of an estimate of R, say a sample

covariance matrix (SCM) denoted by R, complicates the performance analysis of the

signal detectors/estimators which employ R instead of R. The performance analysis

becomes complex because R is a random matrix whose probability distribution must be

incorporated in the analysis. Although tedious and difficult to obtain, such performance

analyses are indispensable for the design of truly optimal array processors.

1.2 Objectives

Reed, Mallett, and Brennan (RMB) derived and analyzed an adaptive detection scheme

where the noise adaptation and non-trivial nature of their analysis resulted from the use

of a noise SCM [4]. The case considered in this thesis is that of adaptive signal esti-

mation; namely, it is desired to statistically characterize the behavior/performance of the

Adaptive Maximum-Likelihood (AML) signal estimator, alias the sample covariance based

Minimum Variance Distortionless Response (MVDR) [2, 3] or the Linearly Constrained

Minimum Variance (LCMV) Beamformer (see Ch. 4 of [2]). When the noise covariance is

known then the non-adaptive (fixed/unchanging covariance) ML signal estimator is Gaus-



sian distributed. When the noise covariance is unknown the distribution of the adaptive

signal estimator relying on R is not Gaussian. Primary attention is devoted to finding a

statistical description that accounts for the random variations experienced in both (1) the

additive noise corrupting the data observation from which the signal is estimated, and (2)

the estimated noise covariance matrix. An SCM will adaptively provide an estimate of

the true noise covariance matrix. For this reason when the ML signal estimator employs

a sample covariance matrix in place of the true noise covariance it is referred to as the

Adaptive ML signal estimator. The noise will be assumed complex normally distributed

[2, 10, 11, 15] and consequently allow for an analytically tractable development. Although

the most natural application of the results obtained in this thesis is to radar and to active

sonar where coherent processing can be done due to the known form of the signals, the

mathematical model, however, is applicable to many diverse systems involving the pro-

cessing of data obtained from an array of sensors. The reader is referred to [2, 10, 11] for

such applications.

1.3 Organization of Thesis

In Chapter 2 the assumed system model for the observed array data is given, and a sub-

sequent derivation of the ML signal estimator (array data processor) to be investigated

follows. The probabilistic model for the estimated noise covariance is then discussed in

preparation for the AML signal estimator pdf derivation given in Chapter 3. In Chapter

4 a detailed statistical analysis of the AML estimator is provided, shedding light on the



statistical asymptotic behavior of the AML estimator, its moments, and its confidence

regions; moreover, a somewhat recondite phenomena is observed in the estimator's per-

formance as we consider the dimensionality of the array data as a parameter over which

to optimize performance. Specifically, when the sample size of the estimated noise covari-

ance matrix is fixed, there exist a dynamic tradeoff between Signal-to-Noise Ratio (SNR)

and noise adaptivity as the dimensionality of array data is varied suggesting the existence

of an optimal array data dimension which will yield the best performance. This optimal

array dimension is computed explicitly for the very common scenario of a uniform linear

array in a spatially white noise environment, and validated via numerical simulation. In

Chapter 5 a summary of the results is given along with suggestions for further research

in this area of array processing.

Because the resulting pdf for the AML estimator is a special function and unfamiliar

to most readers, extensive appendices are provided which give detailed information on

Kummer's Function, and derivations of the main results.



Chapter 2

Theoretical Background

2.1 System Model and Signal Estimator

2.1.1 Model of Array Data Output

The array output is modeled as the following complex vector observation

X(Bxl) = g(Bxl)S(Ixl) + n(Bxl) (2.1)

where the dimensions of the corresponding matrices in the general linear system model

are indicated in subscript 1. x is the measured or received data 2 containing the desired

signal scalar S corrupted by the additive noise n. The vector g models the system transfer

'The notational convention will be boldfaced capitals indicating matrices and boldface lowercase in-
dicating vectors.

2Data is complex in general due to in-phase/quadrature components of demodulated data.



function, also known as the steering vector or look direction, and is assumed to be known

exactly. In pulsed Doppler radar, for example, the look direction one can assume to

be known, since a known fixed direction is being illuminated during each pulse burst

[2]. In underwater acoustic applications good estimates of the transfer functions (Green's

Functions) can be made which allow them to be assumed known for all practical purposes

[17, 18].3

2.1.2 Maximum-Likelihood Signal Estimator

If one assumes the complex Gaussian distribution CNB(0, R) for the noise n, i.e. with

zero mean and B x B covariance matrix R, then the ML estimate for the signal S can be

shown to be given by

gHR-dx
SML - HR-1X (2.2)

gHR-lg

[7, 10] where superscript H denotes conjugate transposition.

This estimator can be derived in numerous ways, and hence appears under many

aliases. A method of derivation with intuitive geometric appeal generates the signal

estimate by choosing the "optimal" linear combination of the array outputs; namely,

optimally choosing the weight vector or filter w such that wHx = S. The optimality

3When the steering vector g is not known exactly the resulting ML signal estimate introduces a
multiplicative bias. The AML estimator is likewise biased by an unknown g, but the multiplicative
biasing is stochastic in this case. The statistical analysis of such a situation remains an open problem.
Empirical studies indicate, however, that accurate knowledge of g is crucial to the success of the signal
estimators [17].



criterion is conveyed by the following minimization problem:

min Var(S) = min wHRw
WOPT = W (2.3)

Subject to the Constraint wHg = 1.

Note that the solution will yield a minimum variance estimate. The given constraint

forces the estimate to be unbiased since wHx = wHg -S+ wHn = S+ zero mean noise. If

a solution exists then it must correspond to the ML solution [16]. To solve we first whiten

4 the data yielding the new variables

xo R-12x = R-1/ 2gS + R-1/2n
(2.4)

= goS + no.

This data whitening can be thought of as a change of variables, or a defining weighting

metric to the complex euclidean B-space CB. The optimization problem then becomes

minVar(S) = min wo wo = min [[wo02

WOOPT = O wo (2.5)
Subject to the Constraint w0Hog0 = 1

which says to find the vector wo with minimum norm that satisfies the constraint wHg0 go

4Although R - 1/ 2 is not unique the choice of R - 1/ 2 made to perform the data whitening does not
influence the resulting solution in terms of the original variables since the matrix square roots will
recombine to produce R - 1 .



jIwoIl (goIIcosO(wo, go) = 1, or

1
Ilwoll = 1 (2.6)I= go Icos9(wo, go) (2.6)

To minimize the norm I wo I subject to the given constraint we must choose wo such that

IcosO(wo, go)1, which is always < 1, is as large as possible; namely, we must choose wo to

be in exactly the same direction as go so that cosO(wo, go) = 1. Hence, WOOPT = -go.

The constant of proportionality 0 can be found from the constraint to be 0 = 1/1 go 12.

The optimal choice for the weight vector is therefore WOOPT = go/I1IgoI2 or in terms of

the original variables WOPT = R-lg/(gHR-lg) yielding the ML signal estimate given

by eq(2.2). Note that the optimal weight vector can be thought of as a matched filter.

Indeed, a filter matched to the signal direction g.

2.1.3 Remarks

It is of interest to characterize the statistical behavior of the ML signal estimator when

one has to rely on an estimate 1R of the true noise covariance R in order to compute SML-

The chosen noise covariance estimator and its associated probabilistic model is discussed

in the next section.



2.2 Noise Covariance Estimator and Distribution

2.2.1 Sample Covariance Matrix

From eq(2.2) note that exact knowledge of the noise covariance R is required to compute

the signal estimate. In practice, however, R must be approximated. When there is fore-

knowledge about the structure of the noise covariance matrix (e.g. a Toeplitz configura-

tion), a true maximum likelihood estimate of this matrix can be made which incorporates

the constraints implied by this known structure [13]. If this knowledge is not available,

i.e. no constraints are made on the family of feasible noise covariances, then the following

sample covariance matrix (SCM) is the unbiased ML estimate of the zero mean complex

Gaussian noise covariance R

R = -Lnini. (2.7)Qi=1
Therefore, this sample covariance matrix will serve as an adaptive estimate of R in the

absence of its exact knowledge. If statistical variations in the noise field arise then the

sample covariance matrix adapts to these changes via the inclusion of the appropriate

noise samples. Q is the total number of independent identically distributed (i.i.d) sample

noise vectors ni included in the average 5 and is often termed the degrees of freedom

because of R's inherent probabilistic relationship to the x2-distribution [12]. Note that if

the complex vector quantity ni were a one dimensional complex scalar (i.e. B = 1), then

R is the sum of the squares of i.i.d real normal random variables. This sum is known to

5 Note that the signal data vector x is not used to estimate Ri.



produce a random variable proportional to a X2; hence the perception of their kindredness.

Indeed, R is the multivariate extension of the X2 random variable. Note that Q must at

least equal or exceed B in order for R to be nonsingular (with probability 1, see [2]), and

hence of use here. 6 7

2.2.2 Complex Wishart Model

The joint distribution of the distinct elements of the hermitian positive definite matrix

A = Q x R is known to have the following Complex Wishart (CW) distribution

pcw(A) = [IAIQ-BIR-Q/fs(Q)] exp [-tr(R-1A)] (2.8)

where the differential volume element is given by (dA) = dA11dA 22 .. dABB - dRe(Al 2) .

dlm(Al 2) . dRe(A 13)dlm(A 13) ... dRe(AB•1,B)dlm(AB_1,B), and where Re(.) and Im(.)

denote the real and imaginary parts respectively. This distribution is sometimes denoted

as CWB(Q,R). The complex multivariate gamma function is given by the following

'Augmenting AR by diagonal loading for situations in which Q < B or Q Z B is sometimes done in
practice due to the scarce availability of noise samples. A rigorous mathematical probabilistic/stochastic
treatment of the performance analysis of such methods still remains an open problem. Empirical inves-
tigations have shown, however, that such techniques lead to improved sidelobe levels (noise rejection),
but reduces the beamformer's nulling capability against weak interferences [8, 9]. Which makes intuitive
sense, since such loading tells the beamformer that there are no weak signals (small eigenvalues) present
in the data. In addition such techniques require an estimate of the small eigenvalues of II to set the load
level correctly. Excessive loading could result in unacceptable performance.

7In this presentation we simply replaced the true noise covariance with a sample noise covariance in
order to produce an estimate of the signal parameters from quantities we can measure. If, however, one
assumed (1) the totality of the unknown parameters includes both S and R, (2) totality of the observation
from which we can estimate the unknowns is given by the data matrix X = [xlni n2J ... InQ] and (3)
one proceeds to estimate S and R from X via the ML procedure, then the resulting estimate is in fact
given by simply replacing the true noise covariance with a sample noise covariance in order to produce
an estimate of the signal parameters, see [2], and [6, 7].



product of univariate gamma functions

fB(Q) = rB(B-1)/ 2 -I F(Q - i + 1). (2.9)
i=1

The symbol " I denotes determinant (and sometimes the absolute value of a complex

scalar), and tr(-) denotes the matrix trace. Note that the CW pdf does not exist when

Q < B because the rank of A is < B, hence (Aj = 0. Its cumulative distribution,

nevertheless, will exist [12]. We avoid such issues by requiring Q > B.

2.2.3 Summary

When no a priori information about the structure of the true noise covariance is assumed

then the SCM is the unbiased ML estimator of R, and hence the noise covariance estimator

of choice. The CW distribution model will be assumed for the SCM R and thus allows

an associated pdf to be obtained for the AML signal estimator which relies on R for

evaluation. The derivation of the AML pdf is given in the next chapter.



Chapter 3

Derivation of PDF

3.1 A Posteriori Distribution of AML Estimator

The distribution of the signal ML estimator SML is known to be Gaussian when the noise

covariance R is known exactly, i.e. because R is a deterministic quantity, and therefore

computation can be made via eq(2.2); namely, it is distributed according to

SML CN 1 S, gHI-g) PSML (3.1)

Gaussian random variables are known to regenerate under linear transformations by def-

inition. Note from the above pdf that SML is an unbiased and efficient estimator of S

(see [10] pp. 524-530). It will be shown that these desirable estimator properties are

in fact preserved (the latter asymptotically) when the SCM R1 replaces R in the signal

estimation procedure.



The distribution of the AML signal estimator given by

gHl•-1X
SAML gH (3.2)

gHR-1g

is not on the other hand such a trivial matter since the estimated noise covariance R

is in general a matrix variate with an associated distribution. A distribution can be

found, nevertheless, for the signal AML estimator rather directly by making two important

observations:

1. SAML is conditionally complex Gaussian distributed given R.

2. The variance of SAML as a function of ft has a distribution proportional to that of a
beta distributed random variable when Q x R assumes the distribution CWB(Q, R).

These two observations constitute sufficient information to determine uniquely the pdf of

SAML because Gaussian distributions are completely characterized by the first and second

moments. Consider the derivation in the following section.

3.2 Derivation of AML Marginal Distribution

Simplifying the expression given in eq(3.2) for the AML estimator via eq(2.1) yields the

following form for the AML estimator

SAML = S + = S + NS . (3.3)
gHg-lg



The estimator is the sum of the non-random true value of the source S and a noise term.

The noise term .f is a complex random variable whose distribution is jointly dependent

upon the normality of n and the associated distribution of the SCM.

Recall that the weight vector which produces the AML signal estimate •oPT

1-l1g/(gH R-lg) is in fact a matched filter. Matched filters pervade the front ends of

most detection algorithms. In 1974 Reed, Mallett, and Brennan [4] derived an adaptive

detection scheme with a matched filter as the front end processor. The adaptive matched

filter of [4] is in fact proportional to wOPT; however, the proportionality constant is a

random variable which arises from the constraint imposed by eq(2.3). A mathematical

linkage between the work of [4] and the AML estimator studied here can be made which

aids in the AML estimator pdf derivation. The authors of [4] were the first to proved that

the following random variable

1 [ (gHfg) 2  (3.4)19 =(3.4)
gHR-lg [gHf-RR1g-1lg

is beta distributed according to the pdf

Q - (1 - o)B-20Q+1- B  0 < 0 < 1
Pi(0) = - 2)!(Q + 1 - B)! (3.5)

0 , otherwise.

Since then many other authors have derived this same result in a variety of ways [2, 5, 7].

This random variable is referred to as a normalized SNR statistic and represents the SNR



of the random output of the matched filter used to detect signal presence against the zero

mean Gaussian noise background.

A sagacious observation which affords us the exact pdf of the AML estimator rather

directly relates this random variable V9 to an a posteriori distribution of the AML estima-

tor. Note that the AML signal estimator is conditionally complex Gaussian distributed

given R such that its conditional variance is given by

a_2 = E 2{I 1JN R = gH lRf- lg () H 1 (3.6)
SAMLi i (gHl-lg)2 - gHl-lg'

and hence

SAML CN 1 S, /gR- = PSAMLI1. (3.7)

Elementary probability theory suggests therefore that the distribution of the AML signal

estimator is given by the following integral

PSAML (So) = p(O)psAML•L (So 1)dO (3.8)

which, as one can easily verify (see Gradshteyn and Ryzhik [19], p. 318 no. 3.383), yields

PAML (SO) gHR-lg Q + 1 IF (Q - B + 3;Q + 2; -IS0- S2g 1g) . (3.9)

1F1(a, b; z) is the confluent hypergeometric function also known as Kummer's Function [20,



21]. More is said about this special function, its properties, and its corresponding power

series in Appendix A. The attraction of eq(3.9) is the statistical summary it provides.

It provides an exact/complete probabilistic characterization of the AML signal estimator

that accounts for the uncertainty present in both (1) the noisy data observation from

which the signal is estimated, and (2) the estimated noise covariance. Note that this pdf

is explicitly parameterized by the dimensionality of the array data B, the sample size Q

of the SCM, the steering vector g, and the true but unknown noise covariance matrix

R, allowing investigation of variations in all these parameters. In the next chapter we

use the AML pdf eq(3.9) to infer aspects of the processor's performance; in particular to

determine the effects of estimated noise covariances on the AML processor's performance

and to discover how all the parameters of the pdf play a role. Before moving to the next

chapter, more is said about the random variable V from reference [4].

3.3 Normalized SNR Statistic

If qj E [0, 1] represents the average normalized SNR one wishes to maintain in the detec-

tion process, a trivial algebraic exercise will show that the associated lower bound on Q

necessary to accomplish this is

(3.10)

For example, reference [4] suggested the "rule-of-thumb" Q >_ QTH = 2B - 3, obtained



by choosing 7 = 1/2. Clearly, the closer 77 is to unity the greater the lower bound on Q.

The mean of the beta distributed variable i0 is

Q + 2-B
E{+9} = (3.11)Q+1

and its variance is given by

S= (Q + 2 - B)(B - 1)
(Q + 1)2 (Q + 2)

The mean of 6 approaches one and its variance approaches zero in the limit of large Q;

hence, 6 converges "with probability one" to unity as Q becomes arbitrarily large. Noting

that 9 will be unity if and only if R = R, reference [4] argued that the sample covariance

matrix R must also converge in probability to the true noise covariance matrix R in

the limit of large Q. It is therefore useful in practice to think of r as a representative

measure of the reliability or confidence level of the resulting estimated noise covariance

which dictates a corresponding lower bound QTH(rl) on the degrees of freedom via eq(3.10)

necessary to accomplish this level of confidence.

Note that because 0 converges in probability to unity as Q becomes arbitrarily large,

its pdf converges to p,e(9) -+ 6(9 - 1). Hence, by the integral equation given by eq(3.8)

and the sifting property of the Dirac delta function we should expect the pdf of the AML

estimator to converge to the Gaussian pdf of the ML estimator. We prove this convergence

in the next chapter.



Chapter 4

Statistical Analysis of AML Signal
Estimator

4.1 Properties of AML Signal Estimator

The pdf of the AML given by eq(3.9) will allows us to develop some qualitative insights

and intuitions about the effects of SCM's on the performance of the AML signal estimation

procedure.

Note that PSAML (So) is a function of ISo -SI. It is therefore circularly symmetric about

the true value of the signal S; hence, E{SAML} = S and therefore SAML is an unbiased

estimate of S. This unbiased property could have likewise been deduced from eq(3.3) by

first conditioning on R and noting that the conditional expectation E{SAML I•) = S,

which is independent of fR. Hence, removing the conditioning by integrating with respect

to R via the CW density eq(2.8) yields unity times S.

Consider the following useful property of the confluent hypergeometric function known



as Kummer's Transformation (see Appendix A)

1Fi(a; b; -z) = e-Z 1F(b - a; b; z). (4.1)

This transformation allows a clear illustration to be given of the asymptotic behavior of

the pdf psAML (So) as the sample size of the SCM increases, i.e. as Q -4 oc. As the sample

size of Ai becomes arbitrarily large the SCM converges in probability to R [4, 12]. We

should therefore expect that pSAML(SO) + PSML(So) as Q -- 00, i.e. SAML converges in

distribution to SML. Using eq(3.9) and eq(4.1) observe that

lim PSAML (So) - g e-g I - s l2gHR - 1g X (4.2)
Q-4oo 7r

lim Q- B+2] (B - 1, Q + 2; IS S2gH R-1g)
Q-+I Q + 1 I Q-4o00

Making liberal use of the linearity, product, and quotient limit theorems of mathematical

analysis, it can be shown indeed that for arguments of finite magnitude the following

asymptotic behavior holds

lim PSAM o - gHR-lg -l-SJ2gHR-lg ý CN S, gH lg (4.3)Q l • P S A M ( S O 7 r ) H R -1

Proof. Clearly the first limit of eq(4.2) approaches unity, i.e. limQ, 0o(Q-B+2)/(Q+1) =

1. Let z = IS0 -o-S2gHR-lg. Recall from Appendix A that the second limit can be written



(B- 1)z (B-1)(B) z2
lim FI(B - 1, Q + 2; z) = lim ) ) + +- . (4.4)

Q-oo Q-00 (Q + 2) (Q + 2)(Q + 3) 2

If z is finite then it is clear that this limit approaches unity as well; hence, the validity of

eq(4.3). If the argument of the pdf has an infinite magnitude then PSAML (So) is zero by

virtue of eq(3.7) and eq(3.8). The integral of zero is zero. Q.E.D.

Since the distribution of SAML converges to eq(3.1) it is true that the error variance, i.e.

the variance of SAML, also converges to that of SML. Hence, SAML is asymptotically

efficient. In summary it has been demonstrated that

1. SAML has a circularly symmetric distribution about S, i.e. its pdf depends only on
the magnitude of ISo - SI and is therefore an unbiased estimator.

2. SAML converges in distribution to SML.

3. SAML is asymptotically efficient.

4.1.1 Convergence in Distribution

The usefulness of the AML pdf eq(3.9) includes the questions it allows one to probe

quantitatively, and the intuition it gives qualitatively. For example, if the array size is

fixed at some value B = Bo, then how does the pdf, i.e. the statistics of the estimator,

behave as the sample size Q of the employed estimated noise covariance varies? This

question has already been addressed somewhat. Specifically, it has been shown that as

Q became much larger than the array size B the pdf of SAML converges to the Gaussian

29



pdf of SML. This convergence can in fact be illustrated graphically. Before illustrating

this convergence property first note that the pdf is in fact a circularly symmetric molehill

in the complex So plane centered symmetrically on the mean S, the shape of which is

illustrated in fig(4.1).

Molehill Shape of AML Signal Estimator PDF (E = 1)

I

Imag( S_{O} - S) Real( S_{O} - S )

Figure 4.1: Molehill Shape of AML Signal Estimator PDF

To show the convergence, we slice this mound down the middle and observe the asymp-

totic behavior of a slice of the pdf in fig(4.2). In fig(4.2) a B = 64 element array

is chosen, jIS - S1 is in units of the standard deviation of the ML signal estimator

7sML = (gHR-lg)-1/ 2 , and the pdf constant of proportionality is gHR-lg/wr; hence,

the area under each curve in fig(4.2) is 7r/gHR-lg to guarantee unity. Note that when



Q > 3B the pdf of the AML estimator does not deviate too badly from the Gaussian.

The larger the array the more samples 1A needs to learn from before it is confident that

it has a good estimate of R. It is clear from fig(4.2) that for values of Q closer to B

there is a significant increase in the spread of the pdf. This spread is undoubtedly the

manifestation of the uncertainty present in the noise covariance estimator R. An under-

standing, therefore, of how these parameters affect the spread of the distribution should

prove insightful. A moment analysis is therefore given in the next section.

Slice of AML Estimator Probability Density Function
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S194 Array Size:. 1. . .. . A ........\ ...... . .. . . . .. . . .. . . . . . .. .: ·. . . . .. . . . . . . ..:. . . . . .. . . ... . .: . .. . . . . . .. . . . .. . . .. . . . . .. .
: B=64

1-5--. ........ :.. '... . .. .... . .

Q= 130

97 =7......2 ... i . .

Q=72 .""
I --

0 0.5 1 1.5 2 2.5 3
IS_{0} - S I (in standard deviations)

Figure 4.2: PDF of SAML as Q varies; IS0 - S I is in units of (gHR-'g)-1/ 2
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4.2 Moments of the AML Signal Estimator

4.2.1 Second Moment of AML Estimator

It can be shown that the associated moment generating function of the AML estimator is

SAML (X, Y) = E {exp [X Re(SAML) + Y * Im(SAML)]} = (4.5)

eX 'SR+Y
'SI X 2F2 1 -Q; 1, B - Q - x 2 +Y

2

sX I'S , , x 224gHR-lg

where the region of integral convergence is X 2 + Y 2 < 4gHR-lg and where the true signal

value is S = SR + jSi (see Appendix B). From this moment generating function one can

find the variance of the AML estimator AML = E{ISAML 2 } - IE{SAML} (2 Finding the

second moment and all other moments and mixed moments of the AML estimator can be

done by noting the following differentiation formula from [20, 21]

d 2F2(al, a2; bi, b2; z)
dzn

(al)(a2)n 2F2(al + n, a2 + n; b + n, b2 + n; z),
(b)n (b2)n

and recalling from Appendix A that 2F 2 (al, a2 ; bl, b2 ; 0) = 1. The AML variance, however,

can be more easily obtained from the work of [4] via the chain rule of expectations E{x} =

E{E{xly}}; namely,

2 _E{1} 1 Q 1
SAML 9 gHR-lg Q-B + gHR-lg

Note that by definition E {1/}9 = fo(1/O)po(O)dO, which

the aid of eq(3.5), yields the above. Clearly the spread of

of Q to B and the SNR gHR-lg.

( Loss ) 1
Factor SNR

the reader can easily verify

the pdf is a function of the

(4.6)

(4.7)

with

ratio



4.2.2 SNR and Noise Adaptivity Tradeoff

It is interesting at this point to observe from eq(4.7) that a2  - a 2ML 1/gHR-l1

as Q -4 oo (B fixed), but this is also true when B -+ 1 (Q fixed). The rather peculiar

asymptotic behavior of the latter begs the following question: If the total number of noise

snapshots ni available is constrained or limited (Q fixed), can the dimensionality of the

array data B be varied in order to improve the statistics (increase confidence level for

fixed region of confidence) of the AML estimator? The answer certainly appears to be

yes in view of the variance eq(4.7). This predicted improvement is illustrated in fig(4.3).

Slice of AML Estimator Probability Density Function
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In this figure Q is arbitrarily fixed at 97 and the array data dimension B is varied. As B

is reduced the covariance estimator R reduces in dimension. Consequently, it has less to

correlate and requires less information (fewer samples) to adapt. As a result R converges

faster in probability to R and yields the potentially better statistics shown in fig(4.3).

Of course this sounds all too good to be true without any strings attached, and indeed

it is. B = 1 would appear to be statistically the optimal choice; however, the array data

dimension should not be reduced below a certain level or one will suffer a significant loss

in SNR (or array gain). There's an apparent trade off between noise adaptivity and SNR

as the dimensionality of the data B varies.

The first factor of eq(4.7), which is given by the ratio Q/(Q - B + 1), is referred to as

the loss factor [6, 2] because it is always > 1 (because Q > B to insure invertibility of R).

Hence, there will always be an increase in the variance (a loss in performance) of the AML

estimator SAML over that of SML as a result of employing an estimated noise covariance.

The second factor in eq(4.7) is inversely proportional to the SNR. It represents what is

gained by using multiple sensors as opposed to a single sensor.

To reinforce these central ideas and illustrate the existing tradeoff consider the simplest

case in which R = a2I and I IgI 12 = B, i.e. the same level of spatially uncorrelated (white)

noise is experienced on each sensor, and each sensor has the same amplification of signal.

This scenario is often encounter in beamforming applications (see [2] Ch. 4), and it yields

SML = - and a = I x -- (4.8)
s"B' sA L(B



where f(B) = -B [B - (Q + 1)]. This function f(B) is plotted in fig(4.4) and is clearly

parabolic in B (Q is assumed fixed).

Trade-Off Between SNR and Noise Adaptivity
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Figure 4.4: SNR and Noise Adaptivity Trade-off as B varies

Note that as B increases a,2 decreases monotonically. Hence, when R is known exactly

and SML can therefore be used to estimate S then we will always do better by adding

more sensors to the array (increasing B). In contrast note (with Q fixed at 64) from

fig(4.4) that as the number of sensors B increases from 1 to 32 the AML variance 2AML

decreases, and hence the AML performance improves. This performance improvement is

a result of an increase in SNR and is in fact the benefit of employing an array of sensors
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as opposed to a single sensor. When B exceeds 32, however, the AML variance begins

to increase, and hence the performance degrades. This is a consequence of the AML

estimator's dependence upon R. When both (1) the sample size Q of the estimated noise

covariance R remains fixed, and (2) more sensors are added to the array (B increases and

hence the dimensions of R increase), then the confidence level of R begins to fall. The

declining confidence of the estimated noise covariance is manifested in the AML by an

increase in variance. The reader can verify that the optimal choice of the parameter B

which minimizes the AML variance is

BoPT = (Q + 1)/2 (4.9)

for the scenario R = a2I and I| g1 2 = B, i.e. by setting df(B)/dB = 0 and solving for B.

This optimal choice of parameter BOPT yields a minimum variance of

(4.10)

62
Note that the for this choice of B the AML variances decreases approximately as 4-.

Q
In the next section numerical simulations will support the theoretical results found in

this section.

'This is not the most useful scenario in adaptive array processing. Indeed, there usually exist spatial
correlation among sensors.



4.3 Empirical Data Analysis

The following presentation of statistical measures is made in order to develop an aware-

ness and feel for the level of increase one can anticipate in the spread of the distribution

of the AML estimator over that of the ML estimator. This presentation will in some

sense develop a motivation and desire to improve upon the statistical performance of the

AML signal estimator and validate empirically some of the theoretic results derived in

the previous sections.

Consider the following scatter plot in fig(4.5) of many repeated ML signal estimations

made from data consisting of spatially white noise, i.e. R oc I:

Scatter Plot of ML Estimator Uncorrelated Noise
9020

._1

180

E

0

270

Real( ML)

Figure 4.5: Scatter Plot of 300 samples of SML - S



This plot has been centered such that the true value of the signal S is the origin of the plot.

The array size is B = 64. This scatter plot was generated by repeatedly (300 samples)

simulating the received data and subsequently estimating the signal S via the estimator

SML. This plot will in effect serve as a reference to which to compare the performance of

the AML estimator.

Now consider the analogous scatter plot of the AML estimator based on the same received

data:

Scatter Plot of AML Estimator Uncorrelated Noise
9020

180

4 and B = 64)

0

270

Real( AML)

Figure 4.6: Scatter Plot of 300 samples of SAML - S

Note that both appear to be circularly symmetric about S as required. The pdf of the



phase of SAML - S is in fact uniform between [0, 27r]. There is, however, an apparent

increase in the spread about S for the AML estimator. Indeed, there are several outliers

apparent in the AML scatter plot. These outliers become more evident in the following

boxplots of the magnitudes ISAML - SI and ISML - SI in fig(4.7); namely, the third column

of each plot corresponds to the same data in the scatter plots:
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Figure 4.7: Boxplots of 300 samples of
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Note especially from fig(4.7) that as B increases, the spread of the ML estimates decreases

while on the other hand that of the AML increases! Clearly the SCM is the source of this

performance degradation. The actual cause for this phenomena was given in the previous

section on moments section 4.2. We saw that for a spatially white noise environment
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that the variance of the AML estimator was inversely parabolic in B. Fig(4.7) appears

to support this theoretic result empirically.

Consider the following experiment in which many repeated (300) AML and ML signal

estimations were made from simulated array data consisting of spatially white noise. In

this experiment, however, the array size B was allowed to vary and the resulting sample

variance was computed from the 300 sample estimates as a function of parameter B. The

results appear in fig(4.8).
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Figure 4.8: Sample Variance of Repeated Signal Estimations

To compare these empirical results to the predicted theoretic results a plot of eq(4.8)

appears in fig(4.8) as the predicted variances. The match is extremely good! The variance

40



of the ML estimator a L2 decreases monotonically as 1/B and that of the AML estimator

is inversely parabolic in B with an optimal array data dimension of BOPT = (Q + 1)/2 ,

32. This recondite behavior of the AML estimator suggests that lower dimensional data

could potentially yield better performance than that obtained when blindly applying the

AML estimator directly to the given data (sometimes referred to as the fully adaptive

scenario).

Lastly, consider the q-q plot of the quantiles of ISML - S I versus ISAML - SI:

q-q Plot of Magnitudes of ML versus AML Estimator

elated Noise
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Figure 4.9: q-q plot of ISML - SI versus ISAML - SI

What's nice about q-q plots is that they allow one to see the difference in two distributions

via samples taken from those distributions. Even if the exact distributions of the samples
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are unknown these plots convey their differences. If the samples come from the same

distribution then the quantiles will form a linear pattern when plotted versus one another.

In fig(4.9) a least squares best linear fit of the resulting pattern also appears. It is

interesting to note that the lower percentage quantiles appear to form a fairly linear

pattern, suggesting that a Gaussian distribution with an appropriately chosen variance

would serve as a decent approximation for the AML pdf in this region. Note, however,

that the higher percentage quantiles of ISAML - SI fall much further out than those of

ISML - SI. Also, the q-q pattern is very non-linear for these higher percentage quantiles,

suggesting that a Gaussian approximation to the AML pdf would be very poor in this

region. Overall there is room for improvement in the AML signal estimation considering

how drastically it can potentially differ statistically from the ML estimator in variation

alone. Indeed, as in fig(4.9) the peak loss can be on the order of Q in the worst case

scenario (B = Q, see eq(4.7)).

4.4 Confidence Intervals for the AML Signal Esti-
mator

When estimations are made in practice it is useful to attach to them a number between

zero and unity conveying the level of trust one should have in these estimations. This

normally consists of quantifying for the user a region (in R'-space generally) around the

estimate, that is certain to contain the true value of the parameter at least (1 - ao)% of

the time. This region is called the (1 - ao)% confidence region. Confidence regions for



the AML signal parameter estimator can be obtained from the pdf eq(3.9). Note that the

cumulative distribution function for the AML signal estimator can be shown to be (see

Appendix C for details)

Pr (ISAML - Sj • RCR) = 1 - IF 1 (Q - B + 2, Q + 1; -RR2gHR-lg) (4.11)

from which the confidence regions of fig(4.10) are obtained. Note that from such a plot it

is possible to determine the number of noise samples Q needed to ensure an (1-ao)% level

of confidence for a fixed radius RCR about an estimate SAML. Since the pdf of SAML is a

function of I SAML - SI, each confidence region consists of a circular region centered about

the resulting signal estimate. In fig(4.10) the radius of this circular region is measured in

units of the ML signal estimator's standard deviation aSML. As an example, to obtain a

70% confidence level for a circular region of radius 1.5 sML when a B = 64 sensor array

is employed fig(4.10) indicates that Q must be no less than approximately 150.



Confidence Regions for AML Signal Estimator
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Figure 4.10: Confidence Regions for AML Estimator; RCR is in units of (gHR-lg)-1/ 2



Chapter 5

Conclusions

5.1 Summary

We began by deriving the exact pdf for the sample covariance dependent AML signal

estimator SAML, discovering Kummer's function to be that distribution. With an exact

pdf in hand standard statistical measures were found and estimator properties were de-

duced; namely, confidence intervals were evaluated, and the AML estimator was shown

to remain unbiased, but only asymptotically efficient. SAML, moreover, was shown to

converge in distribution to the Gaussian non-adaptive beamformer output SML, which

is an even stronger statement statistically speaking. A detailed moment analysis of the

AML estimator revealed a not so obvious phenomena. Specifically, it was demonstrated

that when the sample size of the estimated noise covariance matrix is fixed, there exist a

dynamic tradeoff between Signal-to-Noise Ratio and noise adaptivity as the dimensional-



ity of array data was varied. Such intelligence allowed for the design of a "truly" optimal

processor for the scenario of a uniform linear array in a spatially white noise environment.

This optimal dimension was shown to be BOPT = (Q + 1)/2. One major implication of

these results concerns SCM's of "small" sample size. By small we mean approximately

Q < 2B; namely, to suggest more spatial samples, i.e. adding more sensors to the array

and consequently increasing B, as a means of compensating for the lack of noise snap-

shots ni could be imprudent. This is quite evident in view of eq(4.7). As an example, say

R = I, Q = 60, B = 40 and hence a loss factor of 2.8571 and a variance of 0.0714. Now

lets add 20 more sensors to the array. Although this increases the SNR significantly it

also increases the loss factor to 60 and hence the variance to 1!

Steinhardt [3] has derived marginal pdfs for the (filter) weights wi) of the AML signal

parameter estimator; namely, the filter given by

WOPT = [ 1 7, 2 •2... ]T  = B -lg/(gHf-lg), (5.1)

where T denotes matrix transposition and the filter output is SAML = WHpTX. In this

thesis, however, the derivation of the pdf for the resulting signal estimate (output of the

filter) is given.



5.2 Suggestions for Further Research

As for further research one can consider the following unresolved issues. One of the most

interesting outcomes of this research was proposing the dimensionality of the array data as

a parameter over which to optimize the AML processor's performance. Recall that when

the optimal array dimension was computed we had to assume a structure for the true noise

covariance R; however, if we knew more about the structure of R then a SCM estimate

may not be the optimal choice of covariance estimators [13]. For example, if we knew that

R was proportional to the identity matrix I then we'd use SML = gHx/Jlgll 2 as a signal

estimator since the ML estimator is invariant to that proportionality constant. So the

problem is that we rarely know much about R and hence can not optimize the processor

over B since it depends on the true noise covariance. I propose that a methodology be

sought which initially attempts to whiten the data and subsequently seeks to optimize

over B, i.e. try to reduce the problem to something we've already solved.



Appendix A

Kummer's Function

This appendix is not intended to be a detailed exposition of the origins and history of

Kummer's function and the related hypergeometric functions. For such theoretic excur-

sions the reader is referred to [20]. The following presentation provides essentially enough

information to embrace the ideas presented in this thesis. Most of the following facts

about the confluent hypergeometric function have been taken from [21].

Kummer's function is one of two linearly independent solutions of the following ordi-

nary linear differential equation

d2u du
z2 + (b - z)d - au = (A.1)dz2 dz

known as Kummer's Equation. The confluent hypergeometric function results when a

power series form of the solution is assumed and the coefficients of the power series are

evaluated as constrained by the differential equation. The power series representation of



Kummer's function that result is

)z az a(a + 1) z21Fi(a, b; z)= E (b) = 1 + + +( + 1) -
n=0 (b), n! b b(b + 1) 2

where the coefficients of the power series are defined to be

(a), a(a + 1)(a + 2)... (a + n- 1)

This power series for Kummer's function is a special

hypergeometric function:

n= 1,2,3,...

n = 0.

case of the following generalized

pFq (al, a2, ... , a,; bi, b2, , ..., b; z) = (a)(a2n a p) n

n=o (bi)n(b2)n .. (bq)n n!
(A.4)

This series is known to converge when certain conditions are satisfied. One such relevant

condition is that (i) p < q and (ii) the argument is finite in magnitude, i.e. Izl < oo00;

hence, for finite values of the argument of eq(3.9) these conditions for convergence are

satisfied. Its not difficult to verify these conditions via the ratio test for series convergence.

To illustrate another useful fact note that since

pFq (a, a2, ... , ap; b, b2,..., bq; z) =

1 aa2+ .ap ala(al + 1)a2(a2 + 1) ... ap (ap + 1) z
2

bib2 ... bq b1 (bi + 1)b2(b2+ 1)''. bq(bq + 1) 2

(A.5)

(A.2)

(A.3)



then it is true that pFq (al, a2 ,... , ap; bl, b2 ,..., bq; 0) = 1. This will be useful for deriving

all mixed moments of the AML estimator (see section 4.2).

Integrating Kummer's Equation will yield the following integral representation for the

confluent hypergeometric function [21]:

iFi(a; b; z) = [f(a, b - a)]- 1 eXza(1 - x)b-a-ldx (A.6)

where 3(a, c) = F(a)F(c)/F(a + c). Note that eq(A.6) implies the following equivalence

iFi(a; b; -z) 1
= [(a, b - a)] - ' 10 e-xzxa-l(1 _- )b-a-ld

S[(a,b- a)]-1(-1) J e-zxa-l(1 - X)b-a dx.

Now make the change of variables y = 1 - x and -dx = dy. The integral becomes

IFi(a; b; -z)

1 Fi (a; b; -z)

= [l,(a, b - a)]- 1 ez(Y- 1)yb-a-(1 - Y) dy

= e-z[3(b - a, a)] 1 ezy (b-a)-1 )a-lay

= e-z1Fi(b - a; b; z).

This resulting equivalence is very useful in practice. Indeed, it allows one to relate Kum-

mer's function of negative arguments those of positive ones. It is known as Kummer's

Transformation.

(A.7)

(A.8)



Appendix B

Derivation of AML Moment
Generating Function

The following is a derivation of the moment generating function for the pdf of the

AML estimator SAML-

Defining the following variables for notational convenience

a = 1/gHR-lg,

S = SR + jSI,

a=Q-B+3,

So = SOR + jSoA,

b = Q + 2, (= (a - 1)/[7ra(b - 1)]

z = [Re(SAML), Im(SAML)] T,

the pdf in eq(3.9) is rewritten as the following real bivariate distribution

PSAMI, (ZO) = PSAML (SOR, So) = (C 1FI (a, b, -[(SOR - S) (So - SI)2]/a) (B.1)

Let d = [X, y]T. The moment generating function of the AML estimator is by definition

given by the following expectation

4SAML (X, Y) = E {ezT d} =E {exp [X -Re(SAML) + Y -Im(SAML)]} = (B.2)



ex -•OR+Y-• I 1Fi (a, b, -[(SOR

Let w = SoR - SR and v = SoI - SI. This yields

s•AML (X, Y) =. ] ] dw dv eX(w+SR)+Y(v+sI')1F(a, b, -(w 2 + v2 )/Co).
S-OO0 -OO0

Let w = rcosO and v = rsinO. Thus, dwdv = rdrdO and w2 + v2 = r 2 and the integral

becomes

DSAML (X, Y) =. ( eX-SR+Y'SI .
f ~ 7 r dr dO er(Xcos0+Ysin) lFi (a, b,

0 -r

Note the following integral identity ([19] p. 310)

SdO e(f-cos0+g -s in0) = 27r - i,( jf2±g2 = 2r oF1 [1; (f 2 + g2)/4]

Integrating with respect to 0, and using Kummer's Transformation

iFi(a; b; -x) = e-"lFl(b - a; b; x), (B.7)

the integral becomes

erdr oF 1; r2(X 2 + Y 2) ] e- r2/ Frro 1 1; 4 1 F" 00

(B.4)

(B.6)

- SI)2]I/) .- SR)2 + (ýo, (B.3)(" dio. dioj
(OO -OO

T2/a). (B.5)

- a; b; ) (B.8)ar)( B)SAML (X, Y) = 27r( -ex -s a + Y.S



Next we make the following change of variables x = r2 , dx = 2rdr. This yields

(SAML (X, Y) = ir( eXSR+Y 'SI fo dx e- x/l 0F1 [1;
x. (X 2 + Y 2)

1F, (b- a; b; )(B.9)

Making use of the following integral identity ([20] p. 54)

Sdx e-C xd-1 pFq (a, 2, a2  .. , p; b, b2 ,..., bq; kx) 1Fi(a'; b'; cx) =
010

-d
C

(B.10)

F (d)r(b') r (b' - a' - d)
F(b - a') F'(b' - d)

p+ 2Fq+l (a, a2,... ap, d, 1+ d - b'; bl, b2, . . ., bq, 1 + d + a' - b'; k/c)

where Re(d) > 0, Re(c) > 0, p _ q, and Icl > Iki the reader can verify that indeed the

moment generating function is given by

'sAML (X, Y) -= eX-sR+YsJ X 2F2 (1,-Q; 1, B-Q-

where the region of integral convergence is X 2 + Y 2 < 4gHR-lg. Q.E.D

S4gHR-lg)



Appendix C

Derivation of AML Estimator's
CDF

The following integral identity from [19] will aid in deriving the cdf of the AML signal

estimator:

Define the following variables

c= 1/gHR-lg,

S = SR + jS I,

a=Q-B+3,

So = SOR + j SoI.

b= Q+2, ( = (a- 1)/[7ra(b- 1)]

Let rcosO = SOR - SR and rsinO = Soi - S/. This gives the differential area dSoR dSor =

rdr -dO, and the equivalence (SoR - SR) 2 + (Soi - SI)2 = r 2 . Hence, the cdf is given by

I 27r RoCR
P0 0

j 1F (a, b, -t)dt =
b-1( a 1 F (a - 1, b - 1, x)] . (C.1)

rdr - IF, (a, b; -r2/a).Pr ( SAML - S| < RCR) = ( - (C.2)



Making the change of variables t = r2 /a, adt/2 = rdr, and noting that the integrand of

eq(C.2) is independent of 0 yields

Pr (ISAML - S1 < RCR) = 2( - ( •a/2) - dt - 1Fi(a, b; -t). (C.3)

Using the integral identity given in eq(C.1) the reader can verify that the cdf of the AML

is indeed given by eq(4.11). Q.E.D.
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