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Abstract

This thesis is directed toward the characterization of the problem of new, out-of-
vocabulary words for continuous-speech recognition and understanding. It is motivated
by the belief that this problem is critical to the eventual deployment of the technology,
and that a thorough understanding of the problem is necessary before solutions can be
proposed. The first goal of this thesis is to demonstrate the magnitude of the problem.
By examining a wide variety of speech and text corpora for multiple languages, we
show that new words will always occur, even given very large system vocabularies, and
that their frequency depends on the type of recognition task. We classify potential new
words in terms of their phonological and syntactic characteristics. The second goal of
this thesis is to characterize recognizer behavior when new words occur. We demonstrate
that not only are new words themselves misrecognized, but their occurrence can cause
misrecognition of in-vocabulary words in other parts of an utterance due to contextual
effects. To perform our recognition study of new words, we developed an algorithm for
efficiently computing word graphs. We show that word graph computation is relatively
insensitive to the position of new words within an utterance. Further, we find that word
graphs are an effective tool for speech recognition in general, irrespective of the new-
word problem. The third and final goal of this thesis is to examine the issues related to
learning new words. We examine the ability of the (context-independent) acoustic mod-
els, the pronunciation models, and the class n-gram language models of the SUMMIT
system to incorporate, or learn, new words; we find the system's learning effective even
without additional training. Overall, this thesis offers a broad characterization of the
new-word problem, describing in detail the magnitude and dimensions of the problem
that must be solved.

Thesis Supervisor: Victor W. Zue
Title: Senior Research Scientist
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Chapter 1

Introduction

Although current spoken language systems show great promise toward providing useful

human-machine interfaces, they must improve substantially in terms of both accuracy

and robustness. Lack of robustness is perhaps the biggest problem of current systems.

To be robust, a system must be able to deal with, among other things, spontaneously

produced speech from different speakers. Such spontaneous speech typically contains

hesitations, filled pauses, restarts, and corrections, as well as well-formed words that

are outside of the system's vocabulary. It is understanding the problem of these out-of-

vocabulary words, or new words, that is the focus of this thesis research. This problem

is one that must be thoroughly addressed before speech recognition systems can fully

handle natural speech input in a wide variety of domains.

We believe that the new-word problem is much more important than is apparent

from the relatively limited amount of research on the topic thus far. As we will see, it

is virtually impossible to build a system vocabulary capable of covering all the words

in input utterances. For any task other than one with a very small vocabulary, it is

impractical to present users with a list of allowed words. Users will, in all likelihood,

not be willing or able to memorize such a list and will invariably deviate from that list

unknowingly. If a speech recognition system is not designed to cope with new words,

it may simply attempt to match the acoustics of a new word using combinations of in-

vocabulary words; the recognized string of words will contain errors and may not make

sense (e.g., substituting "youth in Asia" for "euthanasia"). In an interactive problem-
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solving environment, the system will either perform some unintended action or reject

the utterance because it is unable to understand the sentence. In both situations, the

user will likely not know which word is at fault and may continue to use the word,

causing further system confusion and user frustration.

Detecting and localizing new words in the input utterance could greatly improve

system responses by allowing valuable feedback to the user (e.g., "I heard you ask for

the address of a restaurant that I don't know. Can you spell it for me?"). If the system

can maneuver the user back into the allowable vocabulary quickly, the interactive session

could be more productive and enjoyable.

After detecting new words, adding them to the system would allow them to be

treated as normal in-vocabulary words. Without such learning, the vocabulary must

be tailored to minimize new words during system use and testing. A system capable of

learning new words would make initial vocabulary determination less critical since its

vocabulary would be adaptive. Such a system may be able to use a smaller vocabulary

since it could rely on detection and learning to handle the increased number of new

words. This is the goal in solving the new-word problem.

1.1 Background

Automatic speech recognition is the task of decoding a sequence of words from an

input speech signal. In some systems, not only is the speech transcribed, such as in

a dictation system, but it is understood by the system using some domain-specific

knowledge. Automatic speech recognition and understanding can be extremely useful,

since speech is a very efficient and natural mode of communication. Ideally, a person

could walk up to a system and, in natural language, request information or instruct the

computer to perform a desired task. Not only could speech be a convenient computer

user interface, but in the case of telephone communication or times when the hands are

not free, it is almost a necessity.
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1.1.1 Speech Recognition Basics

Speech recognition is typically formulated as a maximum a posteriori (MAP) search for

the most likely sequence of words, given appropriate acoustic measurements, where the

words are drawn from the system's vocabulary. The sequence of words that has the

highest a posteriori probability based on available acoustic measurements and linguistic

constraints is chosen as the recognizer's top-choice hypothesis. Pruning during the

search is critical since the search space of possible word sequences is so large: O(f"),

where v is the vocabulary size and e is the sequence length.

Figure 1-1 shows a block diagram of a generic speech recognition/understanding

system. A signal processing component computes a set of acoustic measurements for

each segment of speech. In the case of frame-based systems (e.g., hidden Markov models

or HMMs [61]), the segments are simply fixed-rate frames. In the case of a segmental

system, these segments are typically of variable duration and may overlap one another.

The acoustic models generally model sub-word units such as phones and may be context-

independent or context-dependent. The lexical models model the pronunciation of words

in the vocabulary and constrain the sequence of sub-word units. The language model,

often a statistical n-gram [33], constrains the word order. The search component makes

use of acoustic, lexical, and language models to score word sequences. Typically, the

best N complete-sentence hypotheses are determined. These best hypotheses are often

fed into a natural language system, where they may be filtered for syntactic/semantic

worthiness and/or a meaning representation may be generated. In some systems, the

entence
output

neaning
resentation

Figure 1-1: Block diagram of generic speech recognition/understanding system.
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Figure 1-2: Example of continuous speech. The utterance is "beef fried rice" and shows that
word boundaries are not readily apparent in continuous speech. The word "beef" spans 0.09-
0.28s, "fried" spans 0.28-0.60s, and "rice" spans 0.60-1.05 s. The words "beef fried" are joined
by a geminate /f/, which is longer than a normal /f/. The range 0.55-0.58s, which appears to
be a pause, is the closure for the /d/ in "fried."

natural language system is closely integrated into the search [26], providing linguistically

sensible word extensions to restrict the search space.

The ideal speech recognition system is speaker-independent, has a large vocabulary,

and can operate on spontaneous, continuous speech. Historically, systems have been

simplified along several of these dimensions in order to achieve acceptable performance,

in terms of both accuracy and speed. Speaker-dependent systems must be trained on

speech from the speaker(s) who will be the eventual users of the system. The result may

be increased accuracy on those speakers at the expense of a required speaker enrollment

period and a less flexible system. A smaller vocabulary reduces the amount of compu-

tation, since there are fewer word sequences to be considered, and hopefully increases

accuracy on the in-vocabulary words due to there being fewer confusable words. The

primary cost of a smaller vocabulary is an increased number of new, out-of-vocabulary

words. This is an issue we will examine in this thesis. Recognizing isolated-word speech

I
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is significantly easier than recognizing continuous speech. In isolated-word speech the

speaker pauses briefly between words. In continuous speech there are not generally

pauses between words, making even the task of finding word boundaries difficult, as

can be seen in Figure 1-2. Finally, spontaneous speech is filled with effects that are not

present in read speech, in which someone is reading from a script. There are hesitations,

filled pauses (e.g., "um," "uh," etc.), and false starts (e.g., "I want to fly to Chi- yeah,

to Chicago").

1.1.2 State of the Art

Current state-of-the-art systems are speaker-independent, large-vocabulary, continuous-

speech systems. For example, in December of 1993, fourteen sites, four of them outside

the U. S., took part in Advanced Research Project Agency's (ARPA) evaluation of

speech recognition and understanding systems. The Air Travel Information Service

(ATIS) task [17,59] was used for recognition and understanding and consisted of spon-

taneous utterances regarding airline flight information. The Wall Street Journal (WSJ)

task [55] was used for recognition only and consisted of read speech drawn from news-

paper articles from the Wall Street Journal. The vocabulary size used for ATIS was on

the order of 2,500 words, and the size used for WSJ ranged from 5,000 to 40,000 words.

The best speech recognition performance on the ATIS task is 3.3% word-error ratel

on "answerable" utterances. 2 This means that, on the average, these systems are making

fewer than one error every twenty-five words. The error rate for complete sentences is

now about 18% on answerable utterances, meaning that only about one in five sentences

will contain a recognition error. Three years ago, the sentence error rate was nearly three

times larger on the same task but with a smaller vocabulary. On the WSJ task, the

lowest word-error rate for a 20,000-word system was 11.2%, and for a 5,000-word system

the lowest was 5.3% [23].

'The word-error rate takes into account, for each utterance, the number of word substitutions,
deletions, and insertions. The %word-error is defined as %substitutions + %deletions + %insertions.

2The "answerable" utterances included the class "A" (dialog-independent) and class "D" (dialog-
dependent) utterances. The class "X" utterances, which are essentially out-of-domain, were excluded.
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1.1.3 New-Word Problem Artificially Reduced

Although the ARPA program has greatly promoted speech recognition and understand-

ing research through the definition of "common tasks" and data collection for them,

it is our belief that most of these common tasks have downplayed the importance of

the new-word problem. The first ARPA common task for speech recognition was the

Resource Management (RM) task [58]. The speech data consisted of read speech from

a naval resource management domain, in which the scripts used during data collection

were generated by an artificial language model. This language model, a finite-state

grammar, generated sentences with a closed, or limited, vocabulary. Thus the RM task

completely side-stepped the new-word problem. This is understandable, since this was

an early attempt at a common task to further speech recognition technology. However,

enforcing a closed vocabulary hides a problem we expect a real system to face.

The recent ARPA WSJ evaluation was divided into two conditions: 5,000- and

20,000-word vocabulary sizes. In both cases, the frequency of new words was artificially

reduced. For the 5,000-word small-vocabulary condition, the vocabulary was completely

closed, meaning that there were zero new words. For the 20,000-word large-vocabulary

condition, all training and testing data were artificially filtered to contain only words

from the set of 64,000 most-frequent words. Since the task vocabulary was larger than

the system vocabulary in this condition, the systems did face some new words. How-

ever, the vocabulary filtering artificially reduced their frequency. For example, with

the 20,000-word vocabulary 2.27% of the words in the development set were out-of-

vocabulary [71]. If the vocabulary was increased to contain the 40,000 most-frequent

words, the percentage of new words fell to only 0.17%. As we shall see in Chapter 2

of this thesis, these new-word rates, particularly that corresponding to the 40,000-word

vocabulary, were artificially low due to the 64,000-word filtering. 3 Of course, the vo-

cabulary filtering was possible because WSJ utterances are read speech collected with

prescribed scripts. With more realistic spontaneous speech such filtering would be im-

3In Chapter 2, we estimate the new-word rates to be 2.4% and 1.1% for 20,000- and 40,000-word
vocabularies, respectively.
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possible and the new-word rate would certainly be higher.4

ATIS is more realistic in that it was collected spontaneously and the utterances were

not filtered based on vocabulary. However, the limited scope of the task, in terms of

both the number of cities included (46) and the manner in which the data were collected

may keep the frequency of new words low. Most of the ATIS data were collected with

users trying to solve prescribed travel-planning problems or scenarios. Many of the

scenarios mentioned specific cities, effectively steering users toward the allowed set of

cities. We would expect that the scenarios greatly reduce the number of new words from

users asking about cities and airports outside of the official ATIS domain. However, the

fact that ATIS is collected spontaneously from users, and that it is not filtered based

on vocabulary means that ATIS is a step in the right direction toward more realism.

1.2 Prior Research

When this thesis was initiated in 1992, very little research on the new-word problem had

been reported. Since that time, more has begun to surface, suggesting that researchers

are beginning to realize that the new-word problem is one that must be addressed. In

this section, we discuss reported research on the new-word problem and closely related

fields. We divide the new-word research into three areas: characterization of the prob-

lem, the detection problem, and the learning problem. The detection problem involves

recognizing that an utterance contains out-of-vocabulary word(s) and locating these

words. The learning problem involves incorporating new words into a system so they

become a part of the system's working vocabulary.

1.2.1 Characterization of the Problem

Characterizing the new-word problem in a general manner is a logical first step. Un-

fortunately, the literature is lacking in this subject. It seems that many researchers in

the field attempt to solve the problem without first demonstrating the magnitude of

4In fact, in a subset of WSJ containing spontaneously produced dictation, 1.4-1.9% of the words
were out-of-vocabulary for a 40,000-word vocabulary [46].
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the problem, characterizing new words and their usage, and quantifying their effects on

recognition (without detection).

However, the work of Suhm et al. [69] is an exception. 5 They chose to characterize

the problem before attempting to solve the detection problem. Based on orthographic

transcriptions in the Wall Street Journal (WSJ) domain they performed a study of the

new-word problem by examining vocabulary growth, vocabulary coverage (i.e., new-

word rate), characteristics of new words, and issues related to modeling new words

within a statistical n-gram language model. (See Section 1.2.2 for a discussion of their

work on the detection problem.)

In their study, Suhm et al. used a variable number of training sentences to auto-

matically determine various vocabularies that resulted in 100% coverage on the training

material. Over the range of training data sizes they examined, from 250 to 9000 sen-

tences, the vocabulary grew from 1,721 to 14,072 words while the new-word rate on an

unseen test set fell from 27.2% to 4.2%. This result demonstrates that even fairly large

vocabularies can still result in a significant new-word rate on unseen data.

Suhm et al. classified more than 1,000 new words that had not been covered by

their largest vocabulary and found that 27% were names, 45% were inflections of in-

vocabulary words, and 6% were concatenations of in-vocabulary words. This means

that about half of the new words could be built from in-vocabulary words. This sig-

nificant result implies that a system capable of automatically handling inflections and

concatenations may be able to handle a large fraction of new words. Perhaps system

vocabularies should be more than merely a list of distinct words.

In further characterizing new words, Suhm et al. examined their length as measured

by number of phonemes. They found that the length of new words was significantly

longer than the overall (frequency-weighted) length of all words. However, when com-

pared to the vocabulary in an unweighted fashion, the length distribution was very

similar.

Suhm et al. also studied the introduction of a new-word class into a statistical word

5The study of Suhm et al. [69] was reported concurrently with our initial study [28] at Eurospeech
'93. However, their study is less general in that it involved only one language (English) and one domain
(Wall Street Journal).
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trigram language model. In this study they mapped all out-of-vocabulary words to

the new-word class. In order to evaluate the language model's ability to constrain

the location of new words and to model the words that occur after new words, they

introduced a few perplexity-like measures. 6 These measures were an attempt to quantify

detection and false-alarm characteristics at the language model level (i.e., text only) in

terms of language model constraint as measured by perplexity. However, since the

resulting values are so unlike the overall WSJ trigram perplexity they report, and since

no one else has used them to our knowledge, they are difficult to interpret.

1.2.2 Detecting New Words

Asadi et al. reported some of the earliest research into the problem of detecting new

words [2,4]. They also examined the learning problem (see Section 1.2.3). Their research

was carried out on the Resource Management (RM) task [58], using the BBN BYBLOS

continuous speech recognition system [4,14,15]. The BYBLOS system used HMMs and

a statistical class bigram language model.

It is important to note that because the utterances in the RM task were generated

artificially from a finite-state grammar, there were no true new words. All new words

for their experiments were simulated by removing words from the open semantic classes,

namely ship names, port names, water names, land names, track names, and capabilities.

See Table 1-1 for the simulated new words and their classes. Of the 55 words removed

from the normal RM vocabulary, 90% were proper nouns and their possessives.7

For detection, they experimented with different acoustic models for new words.

These models were networks of all phone models with an enforced minimum number

of phonemes (2-4). Asadi et al. tried both context-independent and context-dependent

phonetic models. The statistical class bigram language model of the BYBLOS system

allowed them to enable new words precisely where they were appropriate for the task:

in open semantic classes. Since they simulated the new words by removing words from

specific classes, they knew exactly where to allow them in their semantic class bigram.

6 Perplexity L is related to entropy H by H = log L, where H = - F, P(x) log P(x), [33].
7As we will see in Chapter 2, this is not typical for true new words.
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class examples
ship name Chattahoochee, Dale, Dubuque, England, Firebush, Manhattan, Sacramento,

Schenectady, Vancouver, Vandergrift, Wabash, Wadsworth, Wasp
port name Aberdeen, Alaska, Alexandria, Astoria, Bombay, Homer, Oakland, Victoria
water name Atlantic, Bass, Bering, Coral, Indian, Korean, Mozambique, Pacific, Philippine
land name California, French, Korea, Philippines, Thailand
track name DDD992
capability harpoon, NTDS, SPS-40, SPS-48, SQQ-23, TFCC

Table 1-1: New words simulated by Asadi et al. in the RM task. In addition, the possessive
forms of the ship names were included as well.

It is likely that their language model provided more constraint on new words than would

otherwise be expected with real, non-simulated new words.

Overall, Asadi et al. found that an acoustic model requiring a sequence of at least

two context-independent phonemes yielded the best detection characteristics: between

60-70% detection rate with a 2-6% false-alarm rate. They found that the new-word

model consisting of context-dependent phoneme models, although considerably more

complex computationally, resulted in a higher false-alarm rate without a significant

increase in the detection rate. They attributed this to the fact that the system used

context-dependent phoneme models for in-vocabulary words, and thus the new-word

model tended to trigger inappropriately during in-vocabulary speech. In effect, they

found it advantageous to bias the system away from new words by using less-detailed

acoustic models for them.

At the time this research was conducted, the RM task was a natural choice. It was

a contemporary task, and there was a relatively large quantity of data available for

experimentation. However, the artificial nature of the utterance scripts casts doubt on

the realism of the new words studied. Nonetheless, this was pioneering research.

Kita et al. [38] experimented with new-word detection and transcription in contin-

uous Japanese speech using HMMs and generalized LR parsing. Basically, they use

two models running in parallel, one with a grammar describing their recognition task

and the other with a stochastic grammar describing syllables in Japanese. They used

context-independent phone models throughout. The output of the system was a string

of in-vocabulary words and strings of phones in which out-of-vocabulary words oc-

curred. Results were not very encouraging: when the new-word detection/transcription
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capability was enabled, overall word-error rate increased from 15.8% to 18.3%. The

benefit of having a new-word model was overshadowed by false alarms in regions where

in-vocabulary words occurred.

One potential problem with this work that prevents generalization from it was the

relatively small amount of data used in the investigation. The task was an international

conference secretarial service. Because all of their data was in-vocabulary, Kita et al. had

to remove words in order to simulate new words. To evaluate their new-word detection

and transcription technology, they removed only eight words, all proper nouns. In their

evaluation data, they had only fourteen phrases that contained new words. The number

of new-word occurrences was so small that it is difficult to draw any conclusions from

their results.

Itou et al. [31] also performed joint recognition and new-word transcription in con-

tinuous Japanese speech. They used HMMs with context-independent phone models

and a stochastic phone grammar. Overall, their system achieved a correct-detection

rate of 75% at a false-alarm rate of 11%.

The task was not described at all, except that it contained 113 unique words and

the system was speaker-independent and accepted continuous speech. They removed six

words from the lexicon, each from a different category of their grammar. This resulted

in 110 out of 220 test utterances containing new words. However, because neither the

task not the selection of simulated new words is described adequately, it is difficult to

interpret their reported level of detection performance.

Suhm et al. [69], in addition to providing one of the very few characterizations

of the new-word problem, experimented with detection in English. In the context of

a conference registration task, they examined detection and phonetic transcription of

new words. This was not the same task they used in their initial study. Since the set of

available training data was small, they used a word bigram with new-word capability

instead of a trigram as they had used in their WSJ text study. The test set consisted

of 59 utterances containing 42 names. All names were removed from the vocabulary

to simulate new words, thus leaving them with 42 occurrences of new words. 8 For

8Given that in their WSJ study they reported that only 27% of new words were names, it is curious
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detection, they achieved a 70-98% detection rate with a 2-7% false-alarm rate. For

phonetic transcription of new words, they achieved a phonetic string accuracy of 37.4%.

1.2.3 Learning New Words

Learning new words involves updating the various components of a system so that the

previously unknown words become a part of the system's working vocabulary. The

acoustic, lexical, and language models all may need to be updated when a new word is

to be added to a system. If adding words to a system were easy, perhaps even automatic,

then the system vocabularies could better adapt to the tasks at hand.

Jelinek et al. [34] studied the problem of incorporating a new word into a statistical

word n-gram language model. Such a model typically requires a very large amount of

training data to estimate all the word n-tuple frequencies. The problem researchers

encounter is that there is generally very little data available that includes the new word

with which to update the n-gram frequencies effectively.

Jelinek et al.'s approach to solving the problem was to assign a new word to word

classes based on its context. By comparing the context of the new word to the contexts of

more frequent words, they were able to identify "statistical synonyms" of the new word.

The probabilities for the synonyms were combined to compute the trigram probability

model of the new word. They found that this synonym-based approach was vastly

superior to a more straightforward approach based on a single new-word class in the

language model. The synonym approach reduced perplexity measured on the new words

by an order of magnitude while not increasing significantly the perplexity measured on

the in-vocabulary words. This is a powerful technique for incorporating a new word into

a statistical language model. This work represented an extension of the thesis work of

Khazatsky at MIT [37].

Asadi et al. [3-5] studied the problem of building lexical (pronunciation) models

for new words. They experimented with automatic phonetic transcription and a text-

to-speech system (DECtalk) that generated pronunciations given new-word spellings.

that they chose to make all of their new words be names for their detection study. It would have been
more realistic to study non-name new words too.
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They found that with phonetic transcription, even using context-dependent triphone

models and a phone-class bigram "language model," their results were inferior to those

generated from a transcription using DECtalk's rule-based letter-to-sound system. As

an interesting extension, they combined the two methods in order to further improve the

pronunciation models. They generated a transcription using DECtalk, and then, using a

probabilistic phone confusion matrix, expanded the transcription into a relatively large

pronunciation network. This network was used to constrain the automatic phonetic

transcription given a single utterance of the new word. They found this hybrid method

produced transcriptions of comparable quality to those produced manually.

Once they generated an acoustic model of the new word, they added the new word

to the statistical class grammar. This was easy for them because the task was defined

in terms of a semantic class grammar. Thus, they simply added the new word to

the appropriate class. The fact that they had little trouble adding new words to the

language model is probably due to the fact that the RM task was generated using an

artificial semantic finite-state grammar that was well-modeled by their statistical class

bigram language model. In general, the problem of adding new words to a language

model is probably more difficult, as evidenced by the work of Jelinek et al. However, it

is evident that a language model defined in terms of word classes may be advantageous

for learning.

Brill [11] studied the problem of assigning part-of-speech to new words. This work

was a component of a part-of-speech tagger used to tag large bodies of text automat-

ically. The system needed to assign tags to new words that were not seen in training

material. Brill's part-of-speech tagger was based on automatically learned transforma-

tional rules and achieved a tagging accuracy, for twenty-two different tags, of 94% on

all words and 77% on new words. Thus, there is hope for automatically deducing some

syntactic properties of new words after detection. Clearly, the context of a new word

can help in classifying its part-of-speech and perhaps other features.

Sound-to-letter and letter-to-sound systems are closely related to the issue of new-

word learning. Automatic phonetic transcription followed by sound-to-letter conversion

could be used to generate spellings of new words automatically. Conversely, if the user
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types in the spelling of a new word when adding it to a system, letter-to-sound rules

could be used to generate a pronunciation model of it as Asadi et al. [3-5] did.

Meng et al. [30,42,43] developed a reversible letter-to-sound/sound-to-letter gener-

ation system using an approach that combined a multi-level rule-based formalism with

data-driven techniques. Such a reversible system could be particularly useful in the

context of learning new words, because both directions could be put to use. We should

point out that by "sound," they meant phonemes plus stress markers.

Alleva and Lee [1] developed an HMM-based system in which they modeled the

acoustics of letters directly. Associated with each context-dependent letter, a letter

trigram, was an HMM model. Sound-to-letter was achieved by decoding the most likely

sequence of letters directly, eliminating the need to go through the intermediate step

of phonetic recognition. However, the phonetic transcription of a new word could be

useful in building a pronunciation model.

A potential complication in the attempt to deduce the spelling of a detected new

word is that the endpoints of the new word may be difficult to determine. Additionally,

between words, pronunciation can be affected by the identity of the phones at the

boundary. For example, "did you" is often pronounced as [dija] as opposed to the

more canonical [didyuw]. Here, the realization of both words has been affected. Such

phonological effects at the boundaries of new words will also complicate the precise

location of them during detection.

1.2.4 Comments

There was virtually no work on the problem of new words before Asadi et al. [2] first

investigated the detection problem. Since then, the amount of research on the detection

and learning problems has increased. While this is encouraging, we feel that the new-

word problem is still not getting the attention it deserves.

The work by Suhm et al. [69] includes a characterization of the new-word problem

that is lacking in some of the other prior research. This work included a study of the

frequency and length characteristics of new words for a subset of the WSJ corpus. While

this research is a step in the right direction, Suhm et al. only examined a single corpus.

I II



1.3. THESIS GOALS

If we hope to characterize the general problem of new words, we need to examine

multiple corpora from wide-ranging tasks. Furthermore, it is important to conduct

carefully controlled experiments so as to separate the effects of new words from other

recognition and understanding errors. We must thoroughly understand the new-word

problem before we can hope to solve it in general.

1.3 Thesis Goals

The primary goal of this thesis is to examine the new-word problem to understand its

magnitude and dimensions. This thesis is intended to fill some of the gaps in the prior

research. We feel that a thorough understanding of the problem is required before trying

to solve the detection and learning subproblems. The goals of this thesis are as follows:

1. Demonstrate the magnitude of the new-word word problem. As we have pointed

out, we feel that the problem has not received the attention it deserves. We intend

to demonstrate the seriousness of the new-word problem in a wide variety of tasks.

2. Characterize new words in terms of their lexical, phonological, syntactic, and se-

mantic characteristics. We feel that it is important to understand the character-

istics of new words so that they may ultimately be modeled effectively.

3. Characterize recognizer behavior when faced with new words. To understand the

magnitude of the new-word problem, not only do we have to understand how

prevalent they are, but we also have to understand their effects on a continuous-

speech recognizer (that does not already have the capability to detect them). 9

4. Examine the issues involved in the new-word learning problem. Since there are

several components of a recognition system that may need updating when incor-

porating a new word into the working vocabulary, we wish to understand which

require the most attention. The ultimate goal is to build systems that make

learning new words easy, perhaps even automatic.

9We are interested in the occurrence of new words in continuous speech, where word boundaries
are not readily apparent. We feel that the new-word problem is qualitatively different in isolated-word
speech, except in terms of language modeling.
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1.4 Thesis Overview

This thesis is divided into six chapters. In Chapter 1 we introduce the problem of

new, out-of-vocabulary words, describe the speech recognition/understanding problem

in general, discuss prior and related research, and outline the goals of this thesis.

In Chapter 2 we study the general problem of new words by examining a wide variety

of corpora ranging from spontaneous speech collected during human-machine interaction

to large-vocabulary newspaper texts containing literally millions of sentences. We study

corpora from three different languages in an attempt to see if the general characteristics

are language-independent. We examine issues such as vocabulary growth and frequency

of new words, and we try to characterize new words in terms of their syntactic and

phonological properties. This study is at the word level and is recognizer-independent.

In Chapter 3 we describe the recognizer we will use throughout the rest of the thesis.

This recognizer is the SUMMIT system, which is different from most current systems

in that it is segmental instead of frame-based (e.g., HMMs). We also discuss how it can

generate N-best lists of utterance hypotheses, and the problems associated with them.

In Chapter 4 we present a novel algorithm for computing word graphs. These word

graphs are more efficient than N-best lists in terms of computation time and repre-

sentation space, yet they contain the very same N hypotheses. In order to study the

interaction of the recognizer with new words, we find that word graphs are convenient

because they can represent a very deep recognition search. Further, we will introduce

some exploratory data analysis tools that are based on information contained in the

graphs.

In Chapter 5 we study the new-word problem in the context of recognition. We try

to characterize what happens when a recognizer encounters a new word for which it

has no new-word modeling or detection capability. It is important to know how badly

new words affect performance and to understand what kinds of errors they introduce.

We also investigate some of the issues related to learning new words by studying the

importance of learning within the different recognizer components.

Finally, we summarize the findings of this thesis in Chapter 6 and discuss the im-

plications for solving the new-word problem.



Chapter 2

A Lexical, Phonological, and

Linguistic Study

In this chapter we present an empirical study of the magnitude and nature of the new-

word problem. The study is general in that we examine new words in several different

corpora, spanning different types of tasks and languages. We examine issues such as

vocabulary size and rate of new-word occurrence versus training set size. We find that

the rate of new words falls with increasing vocabulary size, but that it does not reach

zero even for very large training sets and vocabulary sizes. Therefore, speech systems

will encounter new words despite the use of massive vocabularies. Having demonstrated

that new words occur at all vocabulary sizes, we proceed to characterize new words and

their uses. This study is at the text or orthographic level, and therefore is independent

of any speech recognition/understanding system. We also examine multiple languages

in an attempt to generalize across languages.

2.1 Methodology

Because the very definition of a new word depends on a system vocabulary, we must

address the issue of vocabulary determination before we can even study the new-word

problem. Vocabularies can be built by hand, automatically, or by some combination of

the two. In any case, the notion of training data is important for determining system
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vocabularies.

Training data can include sample utterances/sentences or a database relevant to the

task. Often, the development of a speech recognition/understanding system involves

training on a large set of utterances. Not only are these utterances used to train acoustic

models, but they are also used to determine a vocabulary by observing word frequencies.

There may also be additional training material available for the task at hand. For

example, to build a telephone directory assistance system, we would make use of phone

books for the geographical area of interest. While such databases may not help with

acoustic or language modeling, they can be invaluable in setting up a system vocabulary.

Of course, the most general training source for vocabulary determination is a

machine-readable dictionary. However, there are two problems with most dictionaries:

they are too large, and they do not contain word frequencies. Most speech recognition

systems today do not have vocabularies as large as 40,000 words, and even if they can,

recognition with such large vocabularies requires a great deal of computation. Gener-

ally, we would like to select a subset of the dictionary words that are relevant to the task

at hand. Since most dictionaries do not have word-frequency information, we cannot

select the most likely words. Even if they do, the frequencies may not be appropriate

for the desired recognition task. Therefore, we generally need task-specific data.

In addition to training sets, we also use independent testing sets to evaluate vocab-

ulary coverage. After all, there is no guarantee that vocabularies built from training

data will fully cover all the words in a test set. There are three primary reasons why

words may be missing from a vocabulary:

1. There may be a mismatch between training and testing data. The training data

may be from a different task or may be too general.

2. There may not be enough training data. We can think of the process of collecting

training data as random selection with a hidden, underlying distribution over all

possible words. If we do not have enough training data we will miss words simply

due to chance; we are most likely to miss low-frequency words.

3. Words can be invented, particularly words in open classes such as names. We
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cannot expect a training set to do more than capture the most prevalent names

and recently invented words. With the invention of words, a task's vocabulary

may be time-dependent.

We examine these issues in our experiments of Section 2.3.

Because we want this study to be as general as possible, we examine multiple corpora,

including different tasks and languages. The tasks range from human-computer problem

solving with relatively small vocabularies to newspaper dictation with extremely large

vocabularies. The languages are English, Italian, and French, but most of the corpora

are English. Given the large variety of tasks, we feel that we are able to reach some

general conclusions regarding aspects of the new-word problem.

Some of our corpora contain speech utterances with orthographic (text) transcrip-

tions, and some contain only text. For the speech corpora, we ignore the speech signals

and examine only the orthographic transcriptions. With speech input, particularly with

spontaneous speech, there is the complication of spontaneous speech events including

filled pauses (e.g., "um" and "uh") and partial words. For this study we chose to discard

spontaneous speech events altogether and examine only fully formed words.

One question we ask is, how do vocabularies grow as the size of the training set

increases? If a vocabulary continues to grow, then new words are likely. After all, the

vocabulary increases because we continue to find new unique words during training.

Had we been using a smaller training set, these words would have been new, out-of-

vocabulary words. On the other hand, if the size of a vocabulary levels off, we do not

expect many new words, provided that the testing conditions are similar to the training

conditions. We examine this issue in Section 2.4.

While vocabulary growth characteristics give us some indirect evidence of the like-

lihood of new words, they do not measure the likelihood explicitly. In Section 2.5 we

measure vocabulary coverages, and thus the new-word rates, for varying training set

and vocabulary sizes.

It is important to understand the effects that task, language, and training set size

have on vocabulary growth and new-word rates when the training and testing tasks are

the same. However, there may be times when we are interested in porting a vocabulary
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to a slightly different task. For example, having built a telephone directory assistance

system for the Boston area, we may want to use the system in New York City. How well

will the original vocabulary work in the new task? In other words, how portable is the

vocabulary to another (related) task. If vocabularies are very portable, we should be

able to change tasks without a dramatic increase in the rate of new words. We examine

this issue in Section 2.6.

Finally, we examine some important properties of new words so as eventually to

be able to model them within a speech recognition/understanding system. Since the

set of names is essentially infinite, we would expect a large fraction of new words to

be names. Are new words mostly names? If they are not just names, what are they?

In Section 2.7 we examine the usage of new words in terms of parts-of-speech, where

one of the parts-of-speech is the proper noun (i.e., name). Further, we might expect

new words to be longer than more frequent and in-vocabulary words. We examine the

phonological properties of number of syllables and number of phonemes for new words

in Section 2.8.

2.2 Corpora

We examined the orthographic transcriptions of nine corpora in our experiments. These

corpora differ in several respects including task, speech versus text, open versus closed

vocabulary, intended for human audience versus a spoken language system, language,

sentence complexity, and size. Some of these differences are summarized in Table 2-1.

The following corpora were used for our experiments: ATIS, BREF, CITRON, F-ATIS, I-

VOYAGER, NYT, SWITCHBOARD, VOYAGER, and wsJ. Examples of utterances from each

of the corpora are listed in Table 2-2.

The ATIS and F-ATIS corpora consist of spontaneous speech utterances collected in-

teractively for ARPA's Air Travel Information Service (ATIS) common task and are

in English and French, respectively. The ATIS corpus contains utterances from both

the so-called ATIS-2 and ATIS-3 sets [17,29, 53]. ATIS-3 represents an increase in the
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Total Words/
Corpus Language Type Words Sentence

ATIS English spontaneous human/computer 258,137 9.8
interactive problem solving

BREF French read newspaper text 61,850 16.5
CITRON English spontaneous human/human 92,774 5.3

directory assistance request
F-ATIS French spontaneous human/computer 9,951 9.8

interactive problem solving
I-VOYAGER Italian spontaneous human/computer 9,380 10.1

interactive problem solving
NYT English newspaper text 1,659,374 -
SWITCHBOARD English spontaneous human/human 2,927,340 8.1

conversation
VOYAGER English spontaneous human/computer 35,073 8.1

interactive problem solving
WSJ English newspaper text 37,243,295 22.8

Table 2-1: Corpora used in experiments. For the speech corpora, the orthographic transcrip-
tions were processed to remove disfluencies due to spontaneous speech. For the text corpora,
punctuation was removed, hyphenated words were separated, and numerals (e.g., "1,234") were
collapsed to "0". (The words/sentence value for NYT is missing because the raw newswire data
was not parsed into sentences.)

Corpus Example Utterance/Sentence

ATIS I would like a morning flight from Philadelphia to Dallas with a
layover in Atlanta.

BREF Il 6tait debout, marchant de long en large, la camera tentant de le
suivre comme un ballon de football changeant sans cesse d'aile.

CITRON West Coast Videos in Revere on Broadway please.
F-ATIS Je veux arriver en fin de matinde Dallas.
I-VOYAGER Come faccio ad arrivare a la Groceria da Central Square?
NYT Just before my driveway is a sweeping blind curve, so following

drivers cannot anticipate the reason for my turn signal.
SWITCHBOARD Uh, carrying guns are going to be be [sic] the people who are going

to kill you anyway.
VOYAGER Could you tell me how to get to Central Square from five fifty

Memorial Drive, please?
wsJ An index arbitrage trade is never executed unless there is sufficient

difference between the markets in New York and Chicago to cover
all transaction costs.

Table 2-2: Example utterances/sentences from the corpora.
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vocabulary size, primarily due to a larger number of cities and airports.1 In contrast,

F-ATIS [10] includes only those cities and airports that are a part of ATIS-2. Utterances

were collected from users trying to solve travel planning problems through interaction

with a spoken language system. For some of the utterances an actual speech recog-

nition system was employed; for others, a human "wizard" was used to perform the

actual speech recognition. We used orthographic transcriptions of the utterances with

spontaneous speech disfluencies removed.

The VOYAGER corpus consists of spontaneous speech utterances in English collected

interactively for the MIT VOYAGER urban navigation and exploration system [76]. The

I-VOYAGER corpus is similar, except that the utterances are in Italian [22]. Utterances

were again collected using a human "wizard." Again, we removed spontaneous speech

disfluencies from the orthographic transcriptions.

The CITRON corpus consists of utterances collected by NYNEX from actual directory

assistance telephone calls [12, 68]. The users interacted with human operators.

The SWITCHBOARD corpus consists of spontaneous human/human dialogs collected

by Texas Instruments [25]. The dialogs are based on a large set of predefined topics.

The topics were selected to be of general interest and to encourage active discussion. We

include both sides of dialogs in our study. We removed spontaneous speech disfluencies

from the orthographic transcriptions.

The wsJ [55] and NYT corpora consist of English text from the Wall Street Journal

and the New York Times newspapers, respectively. The text for WSJ was made available

by the ACL Data Collection Initiative [6] and represents three years (1987-1989) of

newspaper text. The text for NYT was collected over a period of three months in early

1994 via a newswire service.

The BREF corpus consists of read utterances collected by LIMSI-CNRS [24,39]. The

sentences, in French, were selected from three months of the newspaper Le Monde. The

selection of sentences explicitly maximized the number of phonemic contexts and the

number of distinct words. This selection process was not random and therefore could

bias the vocabulary growth and new-word rate characteristics of this corpus.

1We describe the distinction between ATIS-2 and ATIS-3 in more detail later in Section 5.2.1.
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2.3 Data Preparation and Vocabulary Determination

Even though some of these corpora were collected as speech, we used only their ortho-

graphic transcriptions for the experiments in this chapter. Because the speech utterances

were spontaneous they contained disfluencies, some of them resulting in partial words.

To keep the effort required for this thesis manageable, we deleted all partial words from

the transcriptions. The subject of partial words is certainly related to the new-word

problem, but we feel that it is beyond the scope of this study.

The text and orthographic transcriptions required further preparation, regarding

capitalization, numerals, and punctuation. We converted all text to lowercase because

in speech recognition, case distinctions are meaningless. Because the set of numerals is

infinite, we collapsed all numerals that were not spelled out (i.e., strings of digits) down

to "0". This is reasonable since, when such digit strings are actually spoken, only a

relatively small vocabulary is required.

As far as punctuation is concerned, we removed all of it except for the apostrophe.

In English, we left possessives and contractions alone. For example, "wouldn't" and

"Alexander's" were left as is. However, in French and Italian, the elision that occurs

when words are joined by apostrophe would account for a large growth in the number

of distinct words. We felt that this type of word combination was much more of a

problem than contractions and possessives in English. Therefore, for French and Italian

sentences we decided to break words apart at apostrophes. For example, "l'6poque"

became "1' Tpoque" (two words). For all languages, we broke hyphenated words apart,

again because we felt that they caused an artificially large number of words. This meant

that "new-word rate" became "new word rate". In terms of speech input, the two would

be indistinguishable.

Of course, with such large corpora there are bound to be spelling errors, but we did

not attempt to correct them. We deemed it to require too much effort to locate and

correct them. Random sampling of the singleton words in our corpora indicated that

spelling errors did occur, but were not a significant problem.

We performed several experiments to try to understand the phenomena of new
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words. Because a new word is defined as an out-of-vocabulary word, it is important to

understand what we considered to be a word, as well as how we determined vocabularies.

We defined a word to be a string of characters delimited by spaces after performing the

aforementioned preprocessing. We determined vocabularies automatically by observing

a set of text, the training set, and placed all words that occur at least n times in the

vocabulary. That is, we defined the vocabulary to be the set of words V such that

V = {w : c(w) > n}, where c(w) is the observed count of word w in the training set. For

our experiments, typically n = 1, meaning that our vocabulary consisted of all unique

words in the training set.

We admit that this is a simplistic definition of words2 and a simplistic method of

building vocabularies. One obvious flaw with our vocabulary-building paradigm is that

it does not guarantee completion of closed sets of words (e.g., days of the week). How-

ever, in the interest of expediting experiments involving millions of words, we decided

to adopt this simple but slightly flawed approach because we think it is an adequate

model of empirical vocabulary determination.

2.4 Vocabulary Growth

Since our definition of a new word is so closely tied to a system vocabulary, we first

examined the characteristics of vocabulary growth for each of our corpora. If the vo-

cabulary size tends to level off after enough training data has been processed, then new

words should not occur very frequently. If the size does not level off, we are likely to

see new words.

We automatically built vocabularies by varying the quantity of training data. For a

given amount of training data, we set the vocabulary V to be the set of all words that

occur at least once. Specifically, the vocabulary size is the size of V, J1IVII, for n = 1.

To generate the vocabulary growth curve for each corpus, we made several passes

through all of the corpus' data. For each pass, we randomized the sentence order and

2Clearly this definition is lacking for a language such as German in which compound words can be
created arbitrarily and do not contain spaces. A better definition would be based on the morphology
of the language.
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Figure 2-1: Vocabulary size versus quantity of training.

then went through the corpus, keeping track of the vocabulary size and the number of

training words examined. Finally, we averaged our resulting vocabulary sizes over ten

such passes to arrive at the curves displayed in Figure 2-1.

Examining the general shape of the vocabulary growth curves, we find that the

corpora cluster into two or three groups, depending on how they are interpreted. The

three potential groups are:

1. ATIS, F-ATIS, VOYAGER, and I-VOYAGER;

2. CITRON and SWITCHBOARD; and

3. WSJ, NYT, and BREF.

The first group contains spontaneous utterances from interactive problem solving ses-

sions with a speech understanding system; this group has the smallest vocabularies and

the lowest rates of vocabulary growth. The second group consists of spontaneously

uttered human/human communication from less limited domains. The third group

consists of orthographic transcriptions of newspaper articles and has the largest vocab-
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ularies and highest growth rates. It is debatable whether groups 2 and 3 should be

considered separately, and we will discuss this issue further.

The first group of ATIS, F-ATIS, VOYAGER, and I-VOYAGER form a cohesive group

that is separate from the other group(s). This group contains the speech of users com-

municating with a spoken language system that attempts to understand their utterances

and interacts with them, providing them with answers to their queries and asking for

clarification. In the case of all four of these corpora there was an actual natural language

system processing their input. (The speech was either recognized by the system, or it

was transcribed by a human "wizard.") The natural language systems involved all had

limited, finite vocabularies. It is reasonable to hypothesize that the limited vocabulary

nature of the systems may have influenced the vocabulary used by the speakers. If a

speaker used a word not in the vocabulary of a system, the system would fail to rec-

ognize and understand the utterance. In cases when a human wizard performed the

speech recognition, the natural language system could explicitly notify the user of an

out-of-vocabulary word by responding with something like "I don't understand the word

'Zimbabwe,' please try again." When the system was performing its own speech recog-

nition, the user might notice the recognition errors associated with an out-of-vocabulary

word. By learning of the limitations of a system's vocabulary, a user could adapt his

or her own vocabulary to that of the system in an attempt to solve their travel or nav-

igation problem. Since a user wants to solve a problem with the system's assistance,

there is motivation to adapt queries to the limits of that system. Therefore, it is not

surprising that the corpora consisting of human/computer interaction would show the

smallest vocabularies and lowest growth rates. The systems' limited vocabularies may

have affected the vocabularies used by the speakers during data collection. We would

expect that data collected within a larger domain with a less restrictive system to dis-

play a larger vocabulary (e.g., an automated directory assistance task would likely have

vocabulary size more like CITRON than ATIS).

The group of wsJ, NYT, and BREF show the highest rate of vocabulary growth. One

explanation is due to the domain of the corpora. The newspaper texts cover wide-

ranging topics; the possible topics are virtually limitless as opposed to the topics that
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the ATIS and VOYAGER systems are capable of handling, which are quite specific. An-

other explanation is that these corpora were derived from newspaper text that was not

originally intended to be understood by a computer. The original intent of the text was

for human/human communication. Because most people have relatively large vocab-

ularies (and are even able to deduce the meaning of some words beyond their regular

vocabulary based on context) the vocabulary of the newspaper text was not nearly as

limited as in the case of the human/computer interactive utterances. Therefore, one

explanation for the increased vocabulary is the intended audience of the text.

The third potential group consists of CITRON and SWITCHBOARD. This group con-

sists of human/human speech communication with essentially unlimited vocabularies.

It is open to debate whether or not this group is distinct from the group consisting

of WSJ, NYT, and BREF. We can distinguish CITRON and SWITCHBOARD from these

other corpora in that CITRON and SWITCHBOARD consist verbal communication. Per-

haps people tend to use a larger vocabulary when they write compared to when they

speak. Alternatively, we can consider these two clusters of corpora to be one. If the

written versus spoken distinction is not important, this one cluster would consist of hu-

man/human communication from very broad domains. The vocabularies could be large

because the corpora consist of utterances or sentences intended for human ears or eyes,

without the constraint of communicating with a limited-vocabulary computer. Most

of these corpora have essentially unlimited domains, except perhaps CITRON, which is

broadly constrained to consist of directory assistance queries. Thus, an alternative ex-

planation for the division into two clusters is based on limited versus unlimited task

domain. We do not have a corpus consisting of human/human communication within

a very limited domain, so we cannot readily distinguish these two alternative explana-

tions. Although CITRON's domain is somewhat limited, the types of queries possible in

directory assistance telephone calls are wide-ranging. A spoken language system oper-

ating on directory assistance-type queries might require a large vocabulary similar to

that of CITRON to handle the vast number of distinct names in a typical telephone book.

If this were the case, it would lend evidence to the explanation that the fundamental

difference between the corpus clusters is due to domain size.
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It is important to note that the clustering of the corpora appears to be language-

independent. We find that the vocabulary growth characteristics of F-ATIS and I-

VOYAGER are consistent with those of ATIS and VOYAGER despite being different lan-

guages. Further, the French newspaper text contained in BREF shows similar character-

istics with that in wsJ and NYT. Although BREF has the largest vocabulary of all our

corpora, higher even than wsJ and NYT, this could be due to the way utterances were

selected from Le Monde for inclusion within BREF. As previously mentioned, the selec-

tion process explicitly maximized the number of distinct words. Nevertheless, general

vocabulary size and growth rate of BREF appears to be comparable to that of wsJ and

NYT. Therefore, our vocabulary growth findings appear to be language-independent.

In summary, the vocabulary growth curves support two interpretations:

* there are three groups, divided into human/computer speech interaction, hu-

man/human spoken language, and human/human written language; and

* there are two groups, divided into human/computer interaction within a limited

domain and human/human interaction within an unlimited, broad domain.

The data do not allow us to readily distinguish between these two possible explanations.

It is clear that there are at least two distinct groups: with human/computer interac-

tive speech within a limited domain having significantly smaller vocabularies and lower

growth rates than human/human speech and text within a more unlimited domain.

2.5 Vocabulary Coverage: New-Word Rate

Figure 2-1 shows us how fast a vocabulary can grow as the quantity of training data

used to determine it increases, but it does not reveal how well such a vocabulary would

cover unseen data. In other words, it does not give us a clear indication of the likelihood

of encountering new words, or the new-word rate, for a particular type of task.

In another experiment, we attempted to estimate the rate of new words for the

various corpora. Again, we made ten passes over each corpus. For each corpus in each

pass, we randomly selected 15% of the corpus as a test set and set it aside. Then, we
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Figure 2-2: New-word rate versus quantity of training.

went through the remaining 85% of the corpus, measuring the vocabulary coverage over

the test set as we built up a vocabulary incrementally. Figure 2-2 shows the probability

of encountering a new word for a particular task and training set size. We estimated

this probability by measuring the fraction of words in a test set that were not covered by

the empirically determined vocabularies, averaged over several passes. Each curve is the

new-word rate versus the amount of training data used to determine the corresponding

vocabulary.

The clustering of the corpora is completely consistent with the clustering we observed

in the previous section with respect to vocabulary growth. The corpora could cluster

into two or three groups based on the size of a task's domain and/or communication a

human or a machine. Again the clustering appears to be language-independent.

Figure 2-3 shows the new-word rate versus vocabulary size instead of amount of

training data (as in Figure 2-2). In this figure, we have implicitly varied the vocabulary

size by explicitly varying the training set size used to determine it (i.e., we combined

the data in Figure 2-1 and Figure 2-2). This figure shows the same clustering of corpora
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Figure 2-3: New-word rate versus vocabulary size. The vocabulary size, v = IVJI, represents
the size of the vocabulary as we increased the size of the training set. This is not the same as
building a vocabulary of a particular size by choosing the most-frequent v words after observing
all available training data.

and the same new-word rate trends.

These figures clearly show that new words will always be present with any reasonable

training set size. The number of new words we can expect depends on the type of task

and the amount of training data we use to determine a vocabulary. The dependence

on the type of task is quite clear. For example, to achieve a 1% new-word rate on ATIS

requires about 25,000 words of training material to determine a vocabulary of about

650 words. In contrast, to achieve the same 1% new-word rate on wsJ requires about

4,000,000 words of training material to build a vocabulary of about 65,000 words. This

is roughly a two order of magnitude difference for both the amount of training data and

the resulting vocabulary size.

Although a 1% new-word rate may seem low enough to be acceptable, if we measure

the rate of sentences that contain new words, we find a much higher rate. For both the

ATIS and wsJ tasks, a 1% new-word rate translates to 17% of the sentences containing at

least one new word. Further, for wsJ 3.6% of the sentences contain more than one new
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word. For ATIS, the fraction of utterances containing at least two new words is 2.5%.

Clearly a 1% new-word rate can imply a very large fraction of sentences containing

one or more new words. A rate of nearly one in five sentences containing a new word

certainly is a problem that cannot be ignored.

For some types of tasks it may be impractical to reduce the new-word rate to the

point where it can be ignored. Newspaper text is particularly difficult in that the names

and topics in the news tend to change with time, so even achieving an (unacceptably

high) 1% new-word rate on a static set of data does not guarantee that the rate will

even remain at that level.

Actually, we could have estimated the new-word rate directly from the vocabulary

growth curves of Figure 2-1. The slope of each curve represents the derivative of the

number of distinct words with respect to the number of total words. This is the same

as the probability that the next observed word will be distinct, which is exactly what

the new-word rate represents. In Figure 2-4 we plot the slope of the ATIS vocabulary

growth curve as points, where the slope was estimated by a simple ratio of differences.

The superimposed solid line is the explicitly computed new-word rate for ATIS from

Figure 2-2. Clearly both methods of estimating the new-word rate are consistent, but

the method involving estimating the slope of the vocabulary growth curve yielded a

much noisier estimate, even though we were taking the slope of a smoothed (averaged)

curve.

There is an alternative way to plot new-word rate versus vocabulary size based on

another vocabulary determination technique. If we have a large set of training data and

we want to build a vocabulary of a particular size v = j lvi, we would likely compute

word frequencies over all of the training data and put the v most-frequent words in

the vocabulary. This is different from the way we have been determining vocabularies

up to this point. It assumes that we have all the training data ahead of time with

which to build our v-word vocabulary. We would expect this technique to yield a lower

new-word rate since we have access to more word-frequency information for vocabulary

determination. Figure 2-5 compares the new-word rate computed using both methods

for the wsJ corpus. We do indeed see lower new-word rates when building a vocabulary
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Figure 2-4: New-word rate as slope of vocabulary growth. The points represent the slope along
the vocabulary growth curve of Figure 2-1 for ATIS. The line is the explicitly computed new-word
rate from Figure 2-2.

of a particular size v using all of the training data, with the biggest reduction of new-

word rate coming when v is relatively small. As v approaches its maximum size, the

two methods of vocabulary determination converge. 3

Therefore the new-word rate curves of Figure 2-3, unlike those of Figure 2-2, are

implicitly dependent on the amount of training data available for each corpus. For this

reason we chose not to fit a function to them.

2.6 Vocabulary Portability

As we have seen, determining large vocabularies can require very large amounts of

training data for some types of tasks. Do we always need such large quantities of

training material to determine vocabularies, or can we use a vocabulary from one task

3 Actually, the two methods should yield the same vocabulary, and hence the same new-word rate,
when all of the words in the training set are used (at the rightmost points on the curves). However,
because of our random sampling of testing sets we see a small difference between the curves at maximum
vocabulary size.
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Figure 2-5: New-word rate for different methods of vocabulary determination. This plot demon-
strates the difference between two vocabulary-determination methods using the wsJ corpus. For
(a) we varied the training set size and set the vocabulary to include all unique words, implicitly
changing the vocabulary size. For (b) we used the entire training set to compute word frequen-
cies and explicitly varied the vocabulary size v = I(VII by setting the vocabulary to include only
the v most-frequent words.
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Figure 2-6: Coverage across wsJ and NYT. New-word rate for training and testing on all
combinations of wsJ and NYT. Vocabularies are built by observing the entire training set and
adding words in decreasing order of frequency.

for another (related) task? We would hope that a large fraction of one vocabulary could

be useful for another task.

In an attempt to gauge vocabulary portability for similar tasks, we experimented

with the wsJ and NYT corpora since both contain edited newspaper text, and both can

produce large vocabularies. Figure 2-6 shows the within-task and across-task new-word

rate curves for these two corpora. Because we assumed we had all training material for a

particular task before evaluating vocabulary coverage on another task, we chose to build

the vocabularies in decreasing order of word frequency as we discussed in Section 2.5.

We divided each corpus into a fixed test set (15%) and a fixed training set (85%).

The two curves with the lowest new-word rates are, not surprisingly, the curves for

task-dependent vocabularies. To examine the portability of the wsJ vocabulary to the

NYT task, compare the two dashed lines. The difference between the curves indicates

the increase in new-word rate when task-dependent data is not available. Likewise, to

examine the portability of the NYT vocabulary to the wsJ task, compare the two solid

I
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Training Testing r
wsJ wsJ 1.08%
NYT WSJ 3.04%
NYT NYT 2.52%
WSJ NYT 6.95%

Table 2-3: Cross-task new-word rates for wsj and NYT. Vocabularies are set to contain the
40,000 most-frequent words in the training corpus. The new-word rate r is measured over the
entire testing corpus.

lines. Table 2-3 summarizes these portability curves at the 40,000-word vocabulary size.

On the WSJ test set, we see an increase in the new-word rate by a factor of 2.8

at the 40,000-word vocabulary size when we do not use a task-dependent vocabulary.

Similarly, on the NYT test set, the new-word rate also increases by a factor of 2.8.

However, the flattening out of the WSJ/NYT curve suggests a problem of diminishing

returns with non-task-dependent vocabularies. Apparently, very low-frequency words in

one task are not very useful in reducing the new-word rate in another task. Presumably,

these low-frequency words are more task-dependent than higher-frequency words.

Although the wsJ and NYT corpora are similar in that they are both edited news-

paper texts, there are some important differences. First, the topics covered in NYT text

tend to be more general in nature, whereas the topics in WSJ are largely business and

financial in nature. This is evident in Table 2-3, in which the new-word rates measured

on NYT test material are higher than those measured on wsJ. Second, the two cor-

pora were collected over different time periods. Names and topics in the news tend to

evolve with time so we can expect some time-dependency in the vocabularies. Because

our wsJ and NYT data were collected years apart, 1987-1989 and 1994 respectively, we

attempted to estimate how time-dependency affected our WSJ/NYT cross-task coverages.

We decided to use wsJ to examine time-dependency of vocabularies because we have

a large amount of WSJ data spanning three years. For this study, we divided wsJ into

four pieces: wsJ-87 from 1987, wsJ-88 from 1988, wsJ-89 from late 1989, and wsJ-test,

the test set, from early 1989. This division gives us data before and after the test set.

In addition, wsJ-all contains all wsJ data not in the test set.

Table 2-4 summarizes our results for vocabularies containing the 40,000 most-
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Subset Time Span Size (words) r

wsJ-87 all 1987 17,283,667 1.38%
wsJ-88 all 1988 14,495,972 1.34%
wsJ-89 late 1989 4,649,493 1.38%
wsJ-all 1987, 1988, late 1989 36,429,132 1.19%
wsJ-test early 1989 814,163 -

Table 2-4: Time-dependency of vocabularies in wsJ. The new-word rate r for each training
set is measured over the same testing set, wsJ-test, for a vocabulary containing the 40,000
most-frequent words from each training set.

frequent words. Surprisingly, we found no significant difference in vocabulary coverage

as a function of time. Additionally, we found no real differences even as we used vocab-

ularies larger than 100,000 words. The lowest new-word rate was achieved by building

a vocabulary using wsJ-all. Presumably, using more data allows more accurate mea-

surement of word frequency, especially for the low-frequency words, resulting in better

vocabulary selection. Even though wsJ-89 was the smallest training set, it achieved a

new-word rate comparable to the much larger wsJ-87 and wsJ-88 probably because it

was collected after wsJ-test. This fact might indicate some time-dependence. Perhaps

we would see more time-dependence in vocabulary coverage if we could examine WSJ

data spanning a larger timer period than three years. The surprising result of very

little time-dependence of wsJ vocabularies leads us to believe that the most significant

difference between the wsJ and NYT data is the difference of topics and not the time at

which the data were collected.

In summary, this limited study of vocabulary portability tells us a couple of impor-

tant things:

* porting a vocabulary from one task to another, similar task can result in a signif-

icant elevation of the new-word rate; and

* low-frequency words appear to be particularly task-dependent.

We found that porting a fairly large (40,000-word) vocabulary from the wsJ to the NYT

task, and vice versa, results in nearly a three-fold increase in new-word rate. Even

though the wsJ and NYT corpora are similar in that they both consist of English news-

paper text, large vocabularies determined on one of them suffer from increased numbers
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of new words on the other. We hypothesized that part of the explanation was due to

the time-dependent nature of topics in the news. However, we examined vocabularies

and their coverages within the three years of the wsJ data and did not find significant

time-dependence. However, the four years separating the collection of the wsJ and NYT

data may contribute to some time-dependence of news topics. A more likely explana-

tion is that the topics of NYT are more general in nature compared to the primarily

business and financial topics of wsJ. This explanation is supported by the fact that

within-task and across-task new-word rates measured on NYT test data were more than

twice as high as the rates measured on wsJ (see Table 2-3). If we were to examine more

dissimilar tasks, we would expect even worse across-task vocabulary coverage.

We found that relatively low-frequency words were more task-dependent. Figure 2-6

shows that the slopes of the across-task curves for new-word rate are flatter than the

slopes of the within-task curves at larger vocabulary sizes, indicating that the lower-

frequency words from one task are less helpful in reducing the new-word rate on another

task than they are on their own task. This implies that these words are relatively task-

dependent. What does this mean for porting vocabularies from one task to another?

It means that the relatively high-frequency words will be most useful. Unfortunately,

those same high-frequency words are the words most easily determined when empirically

building a vocabulary with task-dependent data. It is the low-frequency words that

reduce the new-word rate to much below 5-10%, and it is these words that are most

difficult to determine empirically. After all, because they are relatively infrequent, large

amounts of task-dependent training text is required just to identify them.

We have performed a very limited study of vocabulary portability. To really verify

our hypotheses that across-task new-word rates are significantly higher than within-task

new-word rates and that low-frequency words are the words most task-dependent, we

should examine the problem of porting vocabularies on more tasks. However, we feel

that such a study is beyond the scope of this thesis. The limited vocabulary portabil-

ity experiments we carried out in this section give us a general idea of the problems

associated with porting vocabularies to other, similar tasks.
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2.7 New-Word Part-of-Speech

Given that encountering new words is inevitable, we wanted to characterize their usage

so as ultimately to develop better language models to accommodate them. Because we

chose a straightforward word-frequency approach to building vocabularies, it is natural

to consider low-frequency words to be potential new words. Words that occur only

once in a corpus are the words most likely to be missed when building a vocabulary

empirically.

For our analysis of new-word usage we chose to examine syntactic part-of-speech

tags. We collapsed a large set of forty-eight tags [16] down to eleven: proper nouns,

nouns, adjectives, adverbs, verbs, conjunctions, pronouns, numbers, determiners, prepo-

sitions, and "other." One aspect of the new-word problem that we were particularly

interested in examining was the fraction of new words that are names (i.e., proper

nouns). Because the set of names is essentially infinite, it is commonly hypothesized

that most new words are names. Our choice of part-of-speech tags included a proper

noun tag, so we were able to evaluate this hypothesis.

We chose to examine parts-of-speech of potential new words using the wsJ and

ATIS corpora. For wsJ, we used the 57,712 hand-tagged sentences that came with the

corpus. For ATIS, we automatically tagged the entire corpus of 26,583 utterances. We

performed the tagging using Brill's part-of-speech tagger [11] trained using nearly 1,800

hand-tagged utterances. For ATIS, we corrected by hand the tags of the words that

occurred only once. For the purposes of part-of-speech analysis, we set the vocabulary

for each task to include all the words that occurred at least twice (i.e., n = 2). The

remaining words that occurred only once, the singletons, were used as simulated new

words. For wsJ this procedure yielded a vocabulary size of 36,582 words and 24,348

new words (that occurred only once each). For ATIS, it resulted in a vocabulary size of

1,152 words and 457 new words.

Table 2-5 displays the part-of-speech distributions for wsJ and ATIS. Two distribu-

tions are given for each corpus: one for the in-vocabulary words and a second for the

simulated new words. The distributions for the in-vocabulary words are unweighted by

I
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WSJ ATIS
part-of-speech V N V N

proper noun 31.5 32.9 18.2 10.5
noun 31.0 28.3 37.4 48.6
verb 17.9 10.7 20.3 24.9
adjective 16.1 25.4 10.1 9.6
adverb 2.6 1.9 4.2 3.7
number 0.2 0.1 2.5 0.0
conjunction <0.1 <0.1 0.3 0.0
determiner <0.1 <0.1 1.5 0.0
preposition 0.2 <0.1 2.5 0.0
pronoun 0.1 <0.1 1.2 0.2
other 0.4 0.6 1.6 2.4

Table 2-5: Part-of-speech distributions for wsJ and ATIS. All values are percentages. V indicates
over all in-vocabulary words, unweighted by word frequency. N indicates over all simulated new
words.

word frequencies. For these two corpora, potential new words are largely nouns, proper

nouns, verbs, and adjectives. Further, we see that proper nouns, or names, do not

make up the vast majority of potential new words, but instead are roughly comparable

to nouns and verbs in terms of percentages. Thus, new words are not dominated by

names.4

Further, function words are almost completely unrepresented in the set of simulated

new words. From the standpoint of new-word detection, it is fortunate that new function

words are very unlikely. It is well-known that function words tend to be short and poorly

articulated. Detecting such words as new words would likely be very difficult based on

the relatively poor acoustic evidence they would provide.

Not only are function words relatively high-frequency words, there are not very

many of them. We examined a large machine-readable dictionary (Moby Part-of-Speech

1.3) annotated with part-of-speech tags. We found that out of well over 200,000 words

listed, only 320 were tagged as possible function words (conjunctions, prepositions,

pronouns, definite articles, and indefinite articles in the list of available tags). 5 This list

4 Cursory examination of CITRON'S potential new words reveals that more than 60% are names. Thus,
the fraction of new words that are names is task-dependent. We were not able to perform a full part-of-
speech analysis of CITRON because we did not have hand-tagged CITRON text with which to train Brill's
part-of-speech tagger.

5Examining the hand-tagged wsi data, we found that about 200 function words occurred.
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of function words is short enough that we could include all of them if we were building

a task-independent vocabulary. Further, the list of function words appears to be task-

independent in nature, meaning that one (large) list of function words is likely to cover

the function words in a wide range of tasks. Thus, we do not really have to worry about

new function words.

As we mentioned in Section 1.2.1, Suhm et al. [69] similarly examined new words in

the wsJ corpus. They found that 27% were names, which is comparable to our 33%.

The difference may be due to the fact that our analysis was performed on more data,

with more (simulated) new-word occurrences.

2.8 New-Word Phonological Properties

Because we are ultimately interested in detecting new words, we wanted to examine

some of their phonological properties. The two properties that we examined were the

number of syllables and the number of phonemes per word.

We examined WSJ and ATIS in detail, using all of both corpora. In order to ascertain

the number of syllables and phonemes in each word, we looked them up in a large

on-line dictionary (Moby Pronunciator 1.3) containing over 167,000 entries. For our

comparison between in-vocabulary and out-of-vocabulary words, we divided each of the

WSJ and ATIS vocabularies into two subsets, with the in-vocabulary words being all the

words that occurred at least twice. For wsJ, the vocabulary size was 107,101 words,

leaving 55,246 new words. For ATIS, the vocabulary contained 1,127 words, leaving 489

new words.

Figure 2-7 shows distributions for number of syllables per word. Again, two dis-

tributions are given for each corpus: one for the in-vocabulary unweighted by word

frequency and the second for the set of simulated new words. Table 2-7 shows the mean

for each condition. The distributions show that on average (unweighted) new words

are slightly longer than in-vocabulary words by about 0.2-0.3 syllables. (In general,

words in ATIS tend to be shorter than words in wsJ. Perhaps people tend to use longer

words when they write.) Table 2-6 summarizes our findings for number of phonemes per

I :
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Figure 2-7: Distributions for number of syllables per word for wsJ and ATIS. V indicates over all
in-vocabulary words, unweighted by word frequency. N indicates over all simulated new words.

WSJ ATIS
V N V N

mean number of syllables 2.52 2.84 1.95 2.15
mean number of phonemes 6.58 7.23 5.01 5.62

Table 2-6: Mean number of syllables and phonemes per word for wsJ and ATIS. V indicates
over all in-vocabulary words, unweighted by word frequency. N indicates over all simulated new
words.

word. Because the same trends visible in the number of syllables distributions appear

in the number of phonemes distributions, we have displayed only the mean number of

phonemes per word.

In general, new words are slightly longer than in-vocabulary words, even when the

in-vocabulary words are not weighted by word-frequency. On average, they are about

0.3 syllables (13%) and 0.6 phonemes (10%) longer. Suhm et al. [69] found almost no

difference between the distributions of number of phonemes in a similar study on the

wsJ corpus. This discrepancy may be due to the fact that we examined a much greater

quantity of data and used much larger vocabularies than Suhm et al. did in their study.

However, we find only relatively small length differences between new words and in-

vocabulary words, in terms of both number of syllables and number of phonemes. The

fact that new words tend to have more syllables and phonemes suggests that they may

be slightly easier to detect than shorter words, but the difference is very small and may
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not have much impact on new-word modeling.

2.9 Summary

In this chapter we have examined important aspects of the new-word problem at the

lexical, linguistic, and phonological levels. We performed our study using a wide range

of corpora spanning different types of tasks and languages in an attempt to study the

new-word problem in a general manner.

We first demonstrated the vocabulary growth characteristics for several corpora.

Naturally, the less restrained tasks show the largest vocabularies and highest vocabu-

lary growth rates. However, the real measure of the new-word problem is the rate of

new words. We demonstrated that although the new-word rate drops with increasing

training set and vocabulary size, it does not reach zero. In fact, it can take very large

vocabularies, on the order of 100,000 words or more, even to get the new-word rate down

to 1% for some types of tasks. We showed that although a new-word rate of 1% may

seem low enough, it can correspond to 17% of sentences containing one or more new

words. Having nearly one in five utterances containing a new word is almost certainly

an unacceptably high rate. Because of the misrecognition and misunderstanding that a

new word could cause, a sentence rate as high as one in five would likely interfere with

a user's interaction with a spoken language system. When new words do occur, they

cannot simply be ignored without compromising the usefulness of a system.

We found that the vocabulary growth and coverage characteristics of our corpora

allowed them to be clustered into at least two distinct groups. Further, the clustering of

the corpora was completely independent of their languages. There were three possible

factors affecting the clustering:

1. limited versus unlimited task domain;

2. mode of communication (i.e., spoken versus written); and

3. intended audience (i.e., another human or a machine).

The four corpora having the smallest vocabularies and lowest new-word rates (ATIS,

I
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F-ATIS, VOYAGER, and I-VOYAGER) are all limited domain, spoken, and intended for a

spoken language system. The three corpora having the largest vocabularies and the

highest new-word rates (WSJ, NYT, and BREF) are all unlimited domain, written, and

intended for human eyes. The two corpora with intermediate vocabulary sizes and new-

word rates (CITRON and SWITCHBOARD) are both relatively unlimited domain, spoken,

and directed at another human.

Given that new words do occur to some extent no matter the vocabulary size, we

examined some of their characteristics. We studied the usage of new words by examining

syntactic parts-of-speech. We found that new words are largely nouns, proper nouns

(i.e., names), adjectives, and verbs; the majority of them are not necessarily names.

Further, we examined the length of new words, as measured by the numbers of syllables

and phonemes per word, and found that they tend to be only slightly longer than in-

vocabulary words, both weighted and unweighted by word-frequency. Hopefully the

knowledge gained in terms of new-word part-of-speech and length distributions will be

helpful in modeling new words phonologically and linguistically.

One of the primary goals of this thesis is to demonstrate that new words are a

real problem for a wide range of speech recognition/understanding tasks. We hope this

chapter has done just that. We also hope that this work encourages others to address

the new-word problem.





Chapter 3

SUMMIT System

In our work on word graphs in Chapter 4 and our new-word recognition experiments

in Chapter 5 we make extensive use of a continuous-speech recognition system. In

this chapter we briefly describe SUMMIT, the continuous-speech recognition system

developed by the Spoken Language Systems Group of the MIT Laboratory of Computer

Science.

The SUMMIT speech recognition system [56,66, 72, 74-77] is different from most

other systems in that it is segment-based instead of frame-based. Most systems today

utilize hidden Markov models (HMMs) to model acoustic features measured over a se-

quence of fixed-rate frames.1 These frames are usually very short in duration, typically

10ms. Since this duration is much shorter than most individual phonetic units, HMMs

model the phonetic units as sequences of frames. In contrast, the SUMMIT system

initially proposes a set of variable-length segments that are generally intended to corre-

spond to individual phonetic units. The rationale is that modeling entire phonetic units

is superior to modeling small, fixed-length frames. One reason is that many acoustic

measurements for phonetic discrimination are at the segmental level. Another reason is

that the HMM framework makes the assumption that measurements from the individual

frames are statistically independent, which is clearly invalid for relatively steady-state

phonetic units (e.g., long vowels). SUMMIT makes a similar assumption that its seg-

1However, the use of HMMs does not necessarily imply fixed-rate frames.
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mental measurements are statistically independent, but because entire phonetic units

are modeled, this assumption seems less severe.

The SUMMIT system is not the only segmental system. Other segmental systems

include the Stochastic Explicit-Segment Model of Leung et al. [40, 41], the Stochastic

Segment Model of Ostendorf et al. [50, 52], and the Dynamical System Segment Model

of Digalakis et al. [18-21]. All of these, like SUMMIT, model entire phonetic units.

They differ in the way segments are proposed and modeled.

Figure 3-1 shows a block diagram of the SUMMIT speech recognizer coupled to

TINA, a natural language (NL) processing system [65]. We will briefly describe each

of the components in the next few sections. In this thesis, we did not use any of the

components below the dashed line.

Briefly, the speech waveform is digitized and fed into the signal processing com-

ponent, where frame-based measurements are computed. These frame-based measure-

ments are examined to form an initial segmentation of the utterance. This initial seg-

mentation consists of a network of interconnected segments. Paths through this segment

network represent different ways of dividing, or segmenting, the utterance into phonetic

units. Segment-based acoustic measurements are computed for each segment in the net-

work. The lexical access search determines the optimal transcription of the utterance by

jointly optimizing over all segmentations and classifications of the associated segments.

This process involves acoustic modeling, lexical (or phonological or pronunciation) mod-

eling, and crude language modeling. The output of the lexical access search is either the

first-choice transcription, a list of the N-best transcriptions, or a word graph containing

the N-best transcriptions in a more compact representation. The output of the lexical

access search can be re-ordered using higher-order n-gram language models. We discuss

each of these components briefly in the next few sections, with the exception of word

graphs which are presented in detail in Chapter 4.

The remaining components, which were not used in this thesis, operate as follows.

The N-best hypotheses resulting from the n-gram language modeling component can

be further re-sorted based on more accurate context-dependent acoustic modeling. Fi-

nally, any of the N-best lists can be input into the TINA system for natural language

I
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Figure 3-1: Block diagram of the SUMMIT/TINA spoken language system.
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processing [65]. TINA can be used to understand utterances, or it can be used to filter

N-best lists with its powerful language modeling capabilities.

3.1 Signal Processing

The signal processing used by the SUMMIT system involves transforming a 16kHz, 16-

bit sampled waveform to 14 mel-frequency cepstral coefficients (MFCCs). These MFCCs

are computed for fixed-rate frames every 5 ms. The segmental nature of SUMMIT

surfaces after the initial signal processing and is discussed in Section 3.2.

To derive the MFCCs, a 256-point discrete Fourier transform (DFT) is first com-

puted for every frame from the pre-emphasized waveform using a 25.6 ms Hamming win-

dow. These spectral coefficients are passed through a set of 40 triangular filters along the

mel-frequency scale, resulting in mel-frequency spectral coefficients (MFSCs) [49,60]. 2

Finally, the MFSCs are transformed from the spectral domain to the cepstral domain

by taking logarithms and applying the inverse discrete Fourier transform (IDFT).

MFCCs are a popular signal representation for several reasons. They are quickly

and easily computed compared to more elaborate (and realistic) auditory models, while

approximating the non-linear frequency scale of the human auditory system. Compared

to spectral coefficients (e.g., MFSCs), cepstral coefficients tend to be more statistically

independent with respect to one another. This means that simpler probabilistic mod-

els (e.g., diagonal as opposed to full-covariance Gaussian models) can be employed in

modeling them.

3.2 Initial Segmentation

SUMMIT is segmental in that it creates a segment network within which acoustic mod-

eling is performed. This network of segments is created by first locating possible acoustic

landmarks. In SUMMIT, the locations of these possible acoustic landmarks, or acous-

tic boundaries, are hypothesized in a bottom-up fashion starting from the frame-based

2The mel-frequency scale is linear below 1 kHz and logarithmic above 1kHz. It is an approximation
of the frequency scale of the human auditory system.
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MFCCs. Where there are abrupt changes along the time axis, acoustic boundaries are

proposed. Associated with each boundary is a score representing the confidence that

the boundary is actually the boundary between two sub-word (phonetic) units. This

boundary scoring is local, based on the MFCCs of the adjoining frames. The result is a

set of scored acoustic boundaries.

Acoustic segments (arcs) are formed by connecting acoustic boundaries (nodes) to

form a segment network or graph. These connections are formed by proposing possible

segments that can span several boundaries. As a result, segments generally overlap each

other. The goal of this process is to propose acoustic segments that include exactly one

phonetic unit. Ideally, the segment network contains exactly one segment for every

phonetic unit in an utterance. However, since this bottom-up process of proposing

segments has no higher-level information about the identity of phonetic units, it must

over-generate segments to help insure that actual segments are not missed. Part of

the difficulty is due to the fact that phonetic boundaries vary in distinctiveness due

to co-articulation. Eventually, during the lexical access search, the segment network is

traversed to identify the relevant choice of segments.

3.3 Segmental Acoustic Measurements

Once the segment network has been constructed, SUMMIT computes acoustic mea-

surements for each segment. The real power of a segmental system is that it can

make acoustic measurements that are relevant to entire phonetic units. In the case

of SUMMIT, these measurements include duration, MFCC averages, and a set of auto-

matically learned acoustic measurements [57]. The set of learned measurements includes

time averages of parameters over different parts of a segment, average spectral peak fre-

quencies, and average change of spectral peaks. These last two types are related to

formant frequencies and their slopes. Many of these measurements can be made at or

beyond the boundaries of a particular segment. These segment-external measurements

are useful in capturing co-articulation effects in adjoining segments. For example, for-

mant transitions in neighboring vowels can be a powerful clue when determining the
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identity of consonants. Altogether, 36 acoustic measurements are made plus duration.

3.4 Acoustic Models

Once the acoustic measurements have been computed for all of the segments in the

segment network, the segments are classified phonetically. SUMMIT does not make hard

decisions for each segment at this point, but instead scores each segment probabilistically

against each phonetic sub-word unit. These scores are stored for future reference in the

lexical-access search described in Section 3.7.

The probabilistic score for each segment is essentially the- conditional probability

P(d I p), where a' is the vector of acoustic measurements for segment s, and p is a

particular phonetic unit. Principal component analysis is used to reduce the correlation

of the acoustic measurements, transforming d, to d.

SUMMIT approximates the conditional probability P(a8 Ip) using mixture Gaussian

models:

i=1

Here, Mp is the number of mixtures for phonetic unit p; wp,i is the mixture weight for

mixture i; and flp,i and 2.,i are the mean and variance parameters, respectively, for the

multi-dimensional diagonal Gaussian density.

In SUMMIT, the modeling for segment duration is separated from the modeling

for the other acoustic measurements. The actual number of mixtures utilized by each

phonetic unit is dependent on the amount of available training data, but the maximum

we allowed for each phonetic unit in our experiments were 16 mixtures for duration and

64 mixtures for the other acoustic measurements.

3.5 Lexical Models

The lexical models represent the pronunciation of words in the vocabulary. In SUMMIT,

these lexical models are more sophisticated than strings of sub-word phonetic units:

they are phonetic networks, or graphs [75]. SUMMIT uses phonetic networks in order

I :I
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r dJ* d I - d0  d y uw

Figure 3-2: Example of pronunciation network connections. Connected pronunciation networks
for the two words "did you." Solid arcs represent base-form pronunciations, dashed arcs are the
result of applying the phonological rules, and dotted arcs indicate inter-word connections. Solid
nodes indicate word begin/end nodes where inter-word connections are possible, and hollow
nodes are word-internal nodes. In this example, the [r] alternative at the top in "did" cannot
attach to "you," but may attach to other words (starting with a vowel).

to model alternative pronunciations compactly.

The alternative pronunciations are not all designed by hand. The majority of them

are the result of applying phonological rules to base-form phonemic pronunciations found

in an on-line dictionary. The phonological rules were designed by hand, and are capable

of deleting and/or adding phone arcs to pronunciation networks. These rules are not

only applied within words but also between words.

The application of rules between words makes inter-word connections relatively com-

plicated as can be seen in Figure 3-2. In this example, we show pronunciation networks

for the words "did you" with their corresponding connections. The figure shows the

expansion due to the phonological rules, including those that cross word boundaries. In

this example, [dIdodyuw] is the base-form pronunciation, and [dfdcja] is ap alternative

pronunciation resulting from the application of intra-word and inter-word rules. As

the figure indicates, not all begin/end nodes can connect to all others. The inter-word

phonological rules dictate which connections are sensible.

The arcs in the lexical models, the lexical arcs, have scores or weights associated

with them. These weights are trained using a corrective training algorithm [75] and

are designed to favor pronunciations that help recognition performance. The weights

are needed because the phonological rules tend to over-generate arcs, and this over-

generation can increase word confusions.
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3.6 Class n-Gram Language Models

SUMMIT makes use of n-gram language models in the lexical access search and in

N-best re-sorting. In the lexical access search (Section 3.7) a class bigram is used to

constrain word sequences. The reason for a bigram language model is for computational

efficiency. Because the first stage of the search is a dynamic programming search sim-

ilar to Viterbi decoding [70], using more complex models is difficult because of longer

language context. In a later recognition stage, a class n-gram model is used to re-sort

N-best lists of complete-utterance hypotheses. In this re-sorting, SUMMIT typically

uses a class 4-gram language model.

By class, we mean word class (e.g., names of cities and airports or days of the week).

Classes are used because the quantity of training data is insufficient to properly estimate

all the parameters of the n-gram models, particularly for n > 3. The classes allow words

to be collapsed when estimating conditional probabilities.

The class n-gram probability Pn(.) for word wj is computed as

Pn(wj) = P(wj I c(wj)) . P(c(w3 ) I c(w~-1),..., c(w-_n+,)),

where c(wj) is the word class for word wj. This equation shows the n-gram approxima-

tion, where only the preceding n - 1 are included in the condition, and the collapsing

of words into classes. Not only are the conditioning words collapsed into classes, but

prediction is also performed using a class and a class-dependent unigram. Compared to

class-conditional modeling, P(wj I c(wjl),..., c(wj-n+l)), and straight word modeling,

P(wj wj-1,... , -,-n+1), this class-prediction modeling is more robust when training

data is sparse. Note that not all words belong to classes, so many of the probabilities

still depend on particular words.

However, some smoothing of the n-gram probabilities Pn(.) is necessary because

some words were too rare in the training data to yield reliable estimates for them.

One form of smoothing involves interpolating with lower-order n-gram models. The
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interpolated probability P,'(.) is computed as follows:

Pn(wA) = AnPn(wA) + + A1Pi(wA).

The A's are a function of word-condition counts observed in training data and favor the

higher-order models if the training data are sufficient. This interpolated n-gram model

is not unique to SUMMIT. Jelinek [33] presents a good tutorial of the issues related to

n-gram models.

Another type of smoothing affects P1 (wj). A "floor" constant y is added to all

unigram counts. Thus,

PI (w3 ) -n(w 3)+-Y= [n(w) + f'

where n(w) is the unigram count for w. Typically, y = 20.

Finally, one additional type of smoothing is employed to deal with words that were

not well represented in training yet occur in testing. Because training conditions do not

always match testing conditions, the interpolated n-gram models are smoothed with a

uniform unigram model as follows:

P(w j w-1,.. ---, wo) - /1llVII + (1 - 6) .Pi(wj),

where IlvIl is the size of the vocabulary V. The effect of this 6 smoothing is to create

a "floor" on the probabilities of words: the probability of any word is never less than

/11 vII no matter its context. Empirically, 6 was set to 0.02 to optimize recognition

performance within the ATIS domain.

3.7 Lexical Access Search

In SUMMIT, the lexical access search is where the speech signal is decoded. Here

the acoustic model scores, the lexical constraints, and the language model scores are

combined to find the most likely word sequence(s). In general, the number of possible

word sequences is extremely large, of order O(ev), where v is the vocabulary size and e is
the sequence length. However, through the use of pruning and clever search algorithms,
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this entire search space can be effectively traversed in reasonable time. SUMMIT uses

a two-pass approach to lexical access. The first pass, forward in time, is a dynamic

programming Viterbi search that finds the single-best scoring word sequence. If the N-

best word sequences are desired, a second pass, backward in time, is used. This second

pass is an A* search, or possibly an A* word graph search as presented in Chapter 4.

3.7.1 Viterbi Forward Search

SUMMIT uses a modified Viterbi search [70], forward in time, to compute the single-

best word sequence that covers an entire utterance. This dynamic programming search

computes the best (partial) word sequence and its score from the beginning of the

utterance to every lexical node-boundary pair. Because only the best path to every

node-boundary pair is extended, the search is considerably more efficient than a direct,

exhaustive search.

In the absence of any pruning, this first stage search is admissible, meaning that it

will find the best word sequence and its score. However, in SUMMIT, and in many other

systems, pruning in the form of a beam search is used. It is called a beam search because

at every acoustic boundary, the number of active nodes (nodes that are allowed to be

extended) is limited. In SUMMIT, this beam is so wide that this pruning introduces

negligible search errors.

3.7.2 A* Backward Search

SUMMIT does not compute the N-best word sequences in the first-stage Viterbi search,

even though it is possible [13,62,64,73], because an A* search is more efficient in terms

of both time and memory. SUMMIT's A* search is performed backwards in time from

the end of the utterance and uses information computed during the forward Viterbi

search [73].

Briefly, the A* search is a best-first search that uses a heuristic evaluation func-

tion [47]. This evaluation function takes into account the actual score for a (partial)

sequence and a heuristic estimate for the best completion of the sequence. If this heuris-
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tic estimate is an upper bound3 then the search is admissible. The search proceeds by

enqueueing word sequences, or paths, in a priority queue, dequeueing the best, and

enqueueing its extensions. This process continues until a complete path is dequeued, at

which point the best complete path has been found. This process can be continued to

find the N best complete word sequences.

The heuristic used by the SUMMIT system makes use of the intermediate results

from the forward Viterbi search. Because the two searches are in opposite directions,

when the A* search needs an estimate for the best completion of a path (to the beginning

of the utterance), it can simply look up the Viterbi score. This means that if the forward

and backward passes use the same models and constraints, the Viterbi-based heuristic

function that SUMMIT uses is exact. In general, the A* algorithm is sensitive to the

tightness of the upper bound estimate. Since SUMMIT's heuristic is exact, the A*

search is as efficient as possible. SUMMIT's use of the forward Viterbi scores is similar

to the tree-trellis search of Soong and Huang [67].

In Chapter 4 we describe the A* search in more detail while introducing the A* word

graph search (that is now a part of the SUMMIT system). This latter search produces

a graph of words that represents very long N-best lists compactly.

When performing the backward A* search, SUMMIT could use more powerful con-

straints such as higher-order n-gram language models. However, we have found it to

be more efficient to compute a word graph and then search through it using another

A* search. This search through the word graph utilizes higher-order n-gram language

models, and is discussed further in Section 4.4.1.

3.8 Recognizer Output

As we have alluded to, SUMMIT can produce three forms of output for each utterance:

the first choice (1-best), an N-best list, and a word graph. If all that is required is the

first-choice utterance with bigram language constraints, then the A* search is not needed

at all; the first-stage Viterbi search yields the desired answer. However, depending on

3 The heuristic must be an upper bound when maximizing scores or a lower bound when minimizing
scores.
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how the recognizer output is to be used, the first choice word sequence may not be

enough.

In the past several years, researchers have found N-best lists useful when integrating

a speech recognizer to a natural language processing system. In the case of SUMMIT,

N-best lists have been, and continue to be, used to link the recognizer with the TINA

natural language system. The reason N-best lists are useful in this application is that

the natural language system may not be able to understand the single-best recognizer

hypothesis. For example, the recognizer's best hypothesis may contain an error that

renders it unparseable. If the second best hypothesis did not contain the error, the.

natural language system could skip over the first choice to the second choice and proceed.

In general, N-best lists are useful whenever the recognizer's output is to undergo

further processing. For example, as shown in Figure 3-1, the SUMMIT system applies

more computationally expensive context-dependent acoustic models after an N-best

list is generated. Such a list represents a drastically reduced search space in which to

evaluate these more expensive models. The general practice of re-scoring and re-sorting

hypotheses is called N-best re-sorting and is used by many systems [13,51,62-64]. In

summary, N-best lists are useful for two purposes: to provide alternative recognizer

hypotheses for natural language processing, and to provide a multi-stage mechanism for

applying more computationally expensive modeling (e.g., context-dependent acoustic

modeling) and constraints.

The problem with an N-best list is that variability in even a few parts of an utterance

can swamp the lists due to the need to enumerate all combinations of word hypotheses in

the regions of high variability. The list representation does not capture this variability

in an efficient manner. A graph representation can represent variability in various parts

of an utterance much more compactly. In Chapter 4, we discuss this problem in more

detail and present an algorithm for efficiently computing such word graphs. In our study

of new words in the context of the SUMMIT recognizer, we make extensive use of word

graphs to capture the recognizer's uncertainty in the vicinity of a new word.



Chapter 4

Word Graphs

In this chapter we present both a word graph representation for speech recognizer output

and an efficient algorithm for computing word graphs. At first glance, the topic of word

graphs may not seem to be related to the new-word problem. However, the ability of

the word graph representation to handle variability efficiently throughout an utterance,

in terms of computation time and representation size, makes word graphs valuable in

studying the new-word problem. As a bonus, we find that word graphs are convenient

for recognition in general even in the absence of new words. In addition, we introduce

exploratory data analysis tools based on word graphs that are helpful in examining

recognizer behavior in the vicinity of new words.

4.1 Motivation

Until recently, most speech recognition systems have only been faced with the task of

producing the single-best word string for a given input utterance. As a result, researchers

have employed efficient algorithms, such as the Viterbi dynamic-programming search

algorithm [70], to find the top-scoring word string. However, the Viterbi search has

two problems: it is not easy to generate "near misses" to the top-scoring answer (e.g.,

N-best lists) and it depends on local constraints for its computational efficiency (i.e.,

it is not possible to use long-distance constraints such as those possible with natural

language modeling). With recent research effort in developing speech understanding
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systems [78] it has become desirable either to integrate more complex language models

into the search, or to have the speech recognition component provide multiple sentence

hypotheses, which can then be filtered by the natural language component.

Initial work in combining speech recognition and natural language technology used

a modification of the Viterbi search to provide the N-best sentence hypotheses, as

proposed by Chow and Schwartz at BBN [13], and showed that at least for some tasks,

the correct answer was very often in the top N sentence hypotheses for fairly small

N, and therefore an N-best list would provide a useful interface between a speech

recognition system and a natural language parser. Based on this success, other more

efficient N-best search strategies were developed, including other modifications of the

Viterbi search at BBN [62] and MIT [73] as well as algorithms based on the A* search,

such as the work of Kenny et al. [35], Soong and Huang [67], and Zue et al. [73].

N-best algorithms have found widespread use in systems that combine speech recog-

nition and natural language understanding, such as the systems at BBN [62] and

MIT [73]. Although there have been efforts toward integrating the natural language con-

straints into the search itself, such as at MIT [26] and SRI [45], N-best strategies have

remained popular not only because of their ease of implementation, but also because

they greatly improve the efficiency of the development effort, since one can precompute

N-best lists for a large corpus to use as input for natural language experiments.

In addition, an unanticipated but important application of N-best searches has been

in speeding up the development and improvement of recognition algorithms. One can use

N-best re-sorting experiments as a mechanism for applying computationally expensive

constraints in order to improve recognition systems. For example, one can test a new

acoustic model by using it to re-sort N-best lists rather than integrating this new model

into the search directly [51,56,63]. Re-sorting N-best lists can require many orders of

magnitude less computation than performing the complete search and may even allow

the use of constraints that would not be possible in the complete search (e.g., acoustic

models that depend on long-distance contextual factors). In the SUMMIT system, N-

best re-sorting is used for class 4-gram language modeling and for context-dependent

acoustic modeling that includes inter-word context dependency (see Figure 3-1).
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While N-best search strategies have been very useful, they are beginning to en-

counter problems as we move towards more difficult speech understanding tasks. As

both the utterance length and vocabulary size grow, increasingly larger lists of sentence

hypotheses are required to capture the necessary amount of ambiguity. This is due to

the fact that sentence hypotheses on N-best lists often differ minimally in highly local-

ized regions where the acoustic signal is not very robust. A graph representation, on

the other hand, can capture the same information in a much more compact form, thus

solving the problem.

Figure 4-1(a) shows an actual N-best list computed by SUMMIT with bigram lan-

guage model constraints in the ATIS domain. Examination of the N-best list reveals

that the variation is somewhat localized, presumably due to a non-robust speech signal

or inadequate acoustic modeling within the recognizer. Enumeration of all combina-

tions of possible hypotheses from each localized region of variability quickly fills up the

N-best list even though within-region variability may be relatively limited. These local-

ized differences can be captured efficiently with a word graph as schematically shown in

Figure 4-1(b). This figure shows that parts of the utterance, such as "me" and "Westch-

ester County," were unchanged for N < 15 and can be shared within the word graph

representation.

The difficulties with N-best lists are not restricted to the representation itself. The

same problems manifest themselves in the computation of the lists. Typically, in com-

puting an N-best list using an A* search, hypotheses are generated in a tree structure

as shown in Figure 4-2. As a first-order approximation, the amount of computation is

proportional to the number of branches or edges. While a tree has fewer edges than a

corresponding N-best list, it has many more than a graph. Variability in the hypotheses

near the beginning of the search (root of the tree) results in duplicate word hypotheses

later in the search.

The problems with N-best lists are exacerbated by new, out-of-vocabulary words. If

new words are present in an utterance (and there are no means for modeling the acous-

tics of new words), the recognizer's acoustic modeling is guaranteed to be inadequate.

Typically, the recognizer hypothesizes combinations of a large number of in-vocabulary
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Figure 4-2: Search tree expansion. This figure schematically shows part of the search tree
corresponding to the N-best list of Figure 4-1(a). It shows that variability early in the search
(i.e., near the root of the tree) results in duplicate expansions that are not shared.
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Figure 4-3: N-best list in the presence of new words. The correct string is at the top of the
table and contains two out-of-vocabulary words: "Kansas" and "Chicago." In this example, all
variability for N < 15 is associated with the new words.
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words for regions containing a new word in an attempt to account for its acoustics.

Such a localized explosion in word hypotheses is very problematic for N-best lists as

demonstrated in Figure 4-3. This example, also from the ATIS domain, contains two

words not in the system vocabulary: "Kansas" and "Chicago." In this example, the

only variability for N < 15 is in the regions of the new words; the hypothesized words for

the rest of the utterance remain unchanged (and correct). A graph representation could

capture this localized variability more efficiently. In terms of computation, the graph

representation allows divergent paths due to ambiguity to be merged. This merging

results in considerable computational time savings.

4.2 A* Word Graph Search Algorithm

Our A* word graph search algorithm' is based on the A* N-best algorithm used by

the SUMMIT system. We first describe the general A* algorithm, then the N-best

algorithm, and finally the word graph algorithm.

4.2.1 A* Search

An A* search [8,47] is a best-first search with a particular evaluation function f*(p) for

a (partial) path, or hypothesis, p in the search space:

f*(p) = g(p) + h*(p).

Here, f*(p) is the estimated score of the best complete path containing p, g(p) is the

actual score for p from the beginning of the search, and h* (p) is a heuristic estimate of

the best-scoring completion of p. The search makes use of a priority queue2 which ranks

entries using the scoring function f*. In general, the A* search falls somewhere between

a best-first and a breadth-first search, depending on the quality of the heuristic and the

actual (data-dependent) search space.

'Previously, in [27] we called this algorithm the A* word network search algorithm.
2The priority queue is often called a sorted stack in speech recognition literature after its use in the

stack-decoding algorithm [32], which is closely related to the A* algorithm.
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The A* search begins with one entry in the queue, an empty path. The search is

iterative and proceeds as follows at each iteration: the top-scoring entry in the queue

is dequeued (removed from the queue), it is extended by one unit (e.g., a single word,

syllable, or phone) in all possible ways, and each of these extensions are enqueued

(inserted in the queue). The search terminates when the first complete path (e.g., that

spans an entire utterance) is dequeued. The search itself is admissible, meaning it is

guaranteed to find the best-scoring complete path if the scoring function h* has the

following two properties:3

* admissibility: h*(p) >_ h(p) meaning that the estimated best-completion score

h*(p) is an upper bound on the actual best-completion score h(p); and

* monotonicity: h*(p') + s < h*(p), where p' is an extension of path p, and s is the

actual score for the extension between p and p'.

When a path p is complete, its score f*(p) = f(p) is no longer an estimate since

h*(p) = h(p) = 0. Because all other partial paths in the queue have upper bounds on

their scores that are less than f(p), the completed path p must be the highest-scoring

path. The search will find the best-scoring path and is therefore admissible.

4.2.2 A* N-Best Search in SUMMIT

To efficiently apply the A* search in spoken language systems, it is important to have

as tight a bound as possible for h*(p), since the number of path extensions needed to

find the best-scoring path decreases as this estimate approaches the actual score h for

the completion of the partial path. We can use a Viterbi search to compute this upper

bound by searching for the best completion score. In SUMMIT, a two-stage search

strategy is used. The first stage is a Viterbi search that computes the best score from

the beginning of an utterance to every lexical node-time pair (e, t). 4 The second stage is

an A* search, but it is backward in time. Therefore, g is the actual score computed so far

by the A* search from the end of the utterance to (t, t). Because the first-stage search

3The conditions are formulated for maximizing additive scores.
4Lexical nodes are nodes in the word pronunciation networks (see Figure 4-7).
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was in the opposite direction, we can use the Viterbi scores for h*, the upper-bound

estimate for the best completion of p to the beginning of the utterance. In SUMMIT,

the A* search operates at the word level, extending partial paths a word at a time. The

same techniques can be applied at other levels (e.g., syllables or phones).

Of course, if all that is desired is the single-best word string hypothesis, there is

no need for the second-stage A* search; the first-stage Viterbi search yields the answer.

However, if an N-best list is desired, we can run the A* search until N complete hy-

potheses are found. If the modeling and constraints are identical in the Viterbi and A*

searches then the estimate h* is exact: h* = h. This is the case with the SUMMIT

system. This exact heuristic score h* results in a very efficient A* search. In find-

ing the best-scoring path, the search only expands partial paths that are part of the

best-scoring path (or on rare occasions, paths that have exactly the same best score).

Another consequence of the first-stage Viterbi search is that it computes the best score

for the whole utterance. During the A* search, this score can be used to set a relative

score threshold 0, which can be used to prune path extensions.

Figure 4-4 shows the A* algorithm used by SUMMIT to compute N-best lists. It

begins by putting an empty path into the queue. Next, the stringreached[ ] lookup table

(e.g., hash table) is initialized to false for all times and word strings that are possible.

This lookup table is used to implement the pruning based on word strings. Within each

iteration, the best path, called the current path, is dequeued and checked to see if it

is complete (i.e., spans the entire utterance). If it is complete, the word string for the

current path is added to the growing N-best list. Otherwise, all possible single-word

extensions of the current path whose score f* is above the relative score threshold 0

are determined. Each new path formed by connecting each word extension (edge) to

the current path is checked to see if it is subject to word-string pruning. Its time span

and word string are checked in the string-reached[] lookup table. If there is already an

entry there, there is no need to put the new path in the queue; a better path with an

identical word string and time span has already been found and placed in the queue.

This word-string pruning eliminates paths that differ only in internal alignment, keeping

only the best-scoring one. This results in the N-best distinct word strings instead of

I I
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Initialization
n4O
queue +- 0
enqueue-path(queue, EMPTY.PATH)
for all time, wordstring do

string-reached [time, word-string] +- FALSE
end for

Search
while n < N and not empty(queue) do

current-path +- dequeue.best-path(queue)
if complete(current-path) then

output (word.string(current-path))
n - n+

else
for each word-edge E word-extensions(current-path) do

new-path -- current-path + word-edge
if f*(nefw-path) > 8 then

if not stringreached[end-time(new..path), word.string(new.path)] then
enqueue.path(queue, new.path)
stringreached[end time(new-path), word-string(new-path)] -- TRUE

end if
end if

end for
end if

end while

Figure 4-4: SUMMIT's A* algorithm with word string pruning.

the N-best alignments.

4.2.3 Algorithm for Word Graphs

If the A* algorithm utilizes local constraints (e.g., word bigram language model), then

all partial paths that end at a particular lexical node-time pair (£, t) will share the same

path extensions. With local constraints, the different histories of these partial paths do

not matter: the partial paths are indistinguishable except on the basis of score g because

they end at the same time and position within the same word. If we keep track of the

endpoints (1, t) of partial paths then we can merge paths that share endpoints. This

merging creates a graph instead of the tree typical of A* searches.

Our A* word graph search consists of the basic A* search described above with the

addition of a path merging and pruning step. Our algorithm for computing word graphs
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differs from SUMMIT's N-best algorithm in four ways:

1. an edge is added to the word graph for every partial path;

2. the word-string pruning based on stringreached[] table is removed;

3. a partial path extension is enqueued if and only if it is the best-scoring partial

path to reach a particular lexical node-time point (f, t) so far; and

4. the search runs until the entire queue is empty instead of N complete paths being

found.

The filtering of paths to be enqueued (3) is responsible for the considerable computa-

tional savings. This pruning means that paths sharing a particular endpoint (f, t) are

later extended simultaneously.

Figure 4-5 shows the A* word graph algorithm in detail. It begins with the queue

containing a single empty path. Then, the bestso_far [] lookup table is cleared. This

lookup table is used to keep the best path so far to all (f, t) points to check for possible

path pruning. The algorithm iterates until the priority queue is completely empty,

since only those paths whose f* score was above the relative score threshold 0 were

originally placed in the queue. The significant difference between the N-best and word

graph algorithms is what happens to newly extended paths. The besLsofar[] table is

consulted to see if another path, previousbest, has reached the (f, t) point of the new

path. If one has, its score is compared to the score for the new path. If the new path

has the lesser score, it is not placed in the queue. In this case, the new path is pruned

in the sense that it is not placed in the queue (and wil not affect subsequent search

iterations), but it forms a word edge. If the new path has a better score, it replaces the

previous best path in the queue and in the lookup table. The net result is that there is

at most one path in the queue that ends at a particular (f, t) point: the one with the

best score. All paths that reach (f, t) are merged together in building the graph and

extended simultaneously.

Figure 4-6 illustrates a subtle issue that involves merging paths and the order of

path extension in the A* search. In our A* search, paths are dequeued and extended in
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Initialization
queue - 0
enqueue-path(queue, EMPTY-PATH)
for all time, lexicaLnode do

bestso-far[time, lexicaLnode] +- 0
end for

Search
while not empty(queue) do

current-path +- dequeue-best-path(queue)
if not complete(current-path) then

for each word-edge E word.extensions(current-path) do
new..path +- current-path + word-edge
if f*(new-path) > 0 then

previous-best-path +- best-so-far[end.time(new..path), end-lexical-node(new-path)]
if previous.best-path = 0 then

enqueue-path(queue, new.path)
best-so-far[end-time(new..path), endiJexical-node(new-path)] +- newpath

else if f* (new-path) > f* (previous.best-path) then
dequeue-path(queue, previous-best-path)
enqueue-path(queue, new..path)
best-so-far[end.time(new.path), end-lexicalnode(new.path)] *- new..path

end if
output(word-edge)

end if
end for

end if
end while

Figure 4-5: A* word graph algorithm.

P1 (e, t) p3 P1 (t t) P2

P... P2 ... P3

(a) (b)

Figure 4-6: Order of path extension in word graph algorithm. In both (a) and (b), the partial
paths are generated in the order pi, p2, p3. In (a), path P2 reaches the point (L, t) before pi is
extended. The better scoring of the two, according to f*, will later be extended to form p3
and its extensions. Thus, paths pi and P2 will be extended simultaneously. In (b), path pi is
extended to form P2 before P3 reaches (1, t). However, it must be the case that f*(pl) > f*(P3),
otherwise P3 would have reached (1, t) before p, was extended. This is important because it
means that in (b), the score for the extensions of p1, including p2, will have the correct (best)
scores, and that later a path such as p3 cannot change their scores when it later merges with
one of their ancestors.
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decreasing order of score f*, but they are enqueued in no particular order. Therefore, it

is possible that a relatively poor-scoring path could reach a particular point (f, t) first

and be placed in the queue. However, the nature of the A* search guarantees that such

a path will not be extended unless it is the best to reach (f, t). If another path later

reaches (t, t) with a better score, the original path will not have already been extended.

The result of this order of path extension is that all paths reaching the point (f, t)

are extended simultaneously exactly once. Never does a path extension need to be re-

scored because the best score of one of its ancestors changed due to path merging. This

complete elimination of duplicate path extensions is how the A* word graph algorithm

gains its computational efficiency over the N-best A* algorithm.

4.2.4 Word Graph Output

The A* word graph search algorithm produces a directed acyclic graph (DAG). The

nodes, or vertices, of the graph represent word-initial lexical node-time pairs (f, t), and

the edges, or branches, represent individual word hypotheses. Each edge e has associated

with it:

* a word label,

* a score s(e) consisting of acoustic and lexical scores (but not bigram scores),

* a forward score g(e) containing bigram scores, and

* a backward score h(e) containing bigram scores.

The forward and backward scores g(e) and h(e) are the scores for the best-scoring

paths terminating at edge e (inclusive of e) to the beginning and end of the utterance,

respectively. These scores contain bigram language model scores and can be combined

with the edge score s(e) to yield the score f(e) = g(e) + h(e) - s(e) of the best-scoring

complete-utterance path that contains the edge e. Finally, the word graph contains the

set of word edges . = {e : f(e) > 0}. Thus, the word graph contains all word edges in

an N-best list containing all alignments, where N is a function of the threshold 8.
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Figure 4-7: Example of pronunciation network connections. Connected pronunciation networks
for the two words "did you." Solid arcs represent base-form pronunciations, dashed arcs are the
result of applying the phonological rules, and dotted arcs indicate inter-word connections. Solid
nodes indicate word begin/end nodes where inter-word connections are possible, and hollow
nodes are word-internal nodes. Partial paths (coming from the right in the backward pass) that
end at different word-initial nodes of "you" cannot be merged during construction of the word
graph because they have different connectivity to other words (to the left), as is the case with
the word "did" (the dotted lines).

Our word graphs tend to have a large number of edges in them, because they contain

all alignments of all N-best strings above the relative score threshold. The number of

edges is further increased by the fact that pronunciation networks for words in SUMMIT

typically have multiple word-initial nodes at which merging takes place. Because the

connections between words are constrained by the inter-word rules, we have found it

convenient to perform partial path merging at word-initial nodes (searching backward

in time). Figure 4-7 (same as Figure 3-2) shows an example of the connections between

the words "did" and "you." In it, the word "you" has two word-initial nodes associated

with [y] and [J]. We cannot merge partial paths (coming from the right) that end at

these two distinct word-initial nodes because doing so would not allow proper connection

to other words to the left, such as "did." The word-final nodes must be kept distinct

in the word graph so that the inter-word connectivity due to the phonological rules is

respected. This results in additional word edges due to less partial path merging than

if the two word-initial nodes for "you" were combined. However, we have no choice

because of the way the inter-word rules interact with the pronunciation networks in the

SUMMIT system.
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4.3 Efficiency

The advantages of the A* word graph search include more compact representation and

faster computation as compared to the A* N-best search for the same relative search

depth, especially for very large N. Since the actual representation size and compu-

tational demands of word graphs and N-best lists are dependent on speech data, we

performed some experiments comparing the two algorithms. Theoretically, the A* N-

best search is exponential in time and space requirements in the worst case. However, in

practice the search is tractable. To evaluate real-world performance we have to examine

the operation of the algorithm running on real speech data. Therefore, we chose an

empirical approach to measuring performance.

We compared various measures of computational requirements and representation

size as a function of search depth and utterance length. We defined the search depth to

be the score threshold relative to the best-scoring complete-utterance hypothesis. Both

the N-best and word graph searches can produce all word strings within a specified

score threshold simply by running the searches until the queues become empty (since

no hypotheses that fall below the threshold are ever enqueued). One difference between

the effective output of the N-best list and word graph algorithms is that the word graphs

contain all alignments of all word strings above the threshold whereas the N-best lists

contain just the best alignment of each of the distinct word strings. Therefore, the word

graphs contain more information that might prove useful for subsequent processing.

Even so, we have found significant efficiency improvements with the word graph search.

4.3.1 Experimental Conditions

The corpus used for this evaluation was a subset of the DARPA November 1992 ATIS

evaluation test set [53]. To reduce the amount of computation needed, only the utter-

ances from the first session for each speaker were used. We also discarded a few of the

longest utterances, because we were not able to compute the N-best search to the search

depth used in the experiments. The reason for this was that the A* N-best searches

for these utterances were too computationally expensive to perform our experiments.
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In contrast, we had no difficulty with the word graph searches on these same utter-

ance. Nevertheless, we discarded the utterances from our evaluation. This left us with

196 utterances from 29 speakers, which we believe were adequate to demonstrate the

computational and representational efficiency improvements of the word graph search

algorithm.

The recognition system we used was the SUMMIT system, described in Chapter 3.

For these experiments, we used context-independent acoustic models and a bigram

language model. This stripped-down version of the system had a first choice word

accuracy of 76.4% on these 196 utterances.

For these experiments we compared various measures of efficiency versus search

depth, but the relevant range of search depths depends on the requirements of sub-

sequent processing stages. If the word graphs are to be used for the initial stage of

a multi-stage search, then the depth needed in the first stage depends on the relative

strengths of the constraints used in the later stages of the search. If later stages of

the search are capable of large scoring changes, we need a relatively loose threshold in

the initial search so as to limit search errors that result from correct answers not being

included in the word graphs.

To gauge the range of search depths of interest for our experiments, Figure 4-8 shows

the percentage of correct sentences contained within a given relative score threshold 0.

Note that this is a spontaneous speech task and does contain new, out-of-vocabulary

words. Therefore, the sentence accuracy will not reach 100% no matter how deeply

we search, since we made no attempt to address the problem of new words. For this

experiment, only 76.6% of the sentences were fully in-vocabulary. This ceiling on sen-

tence accuracy is displayed in the figure as a horizontal line. The vertical line shows the

maximum score threshold 0 = 800 used in the following experiments.

4.3.2 Computational Time Efficiency

It is difficult to compare in complete detail the computational needs of these two algo-

rithms, since the overall computational efficiency depends on the details of the various

parts of the computation (e.g., the implementation of the priority queue). Instead, we
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Figure 4-8: Sentence accuracy versus relative score threshold 0. These utterances contained out-
of-vocabulary words; the horizontal line shows the best the system can do regardless of search
depth.

have focused our attention on the computation that the two algorithms have in common:

extending partial paths, or hypotheses. We used the number of partial path extensions

as our measure of computation. Since extending paths is where the majority of time is

spent in both algorithms, this is a reasonable measure of computation time.

Figure 4-9 displays the geometric mean across utterances of the number of path

extensions needed to search to a given search depth. We chose the geometric mean

because the distribution of number of path extensions is roughly log-normal. The arith-

metic mean is dominated by worst-case utterances, and there is a very large variation

between different utterances. This figure shows that for a given search depth, the word

graph search requires fewer partial path extensions, and thus runs faster. Further, as

the search depth increases, the difference between the A* search and the word graph

search increases. This difference is due to the significant amount of path merging in the

word graph. 5 At the score threshold 0 = 800, which we commonly use in recognition

5Recall that our N-best search also performs some limited path merging/pruning based on word

I I I I
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Figure 4-9: Number of partial path extensions versus relative score threshold. This figure
compares the computational efficiency of the A* N-best and word graph searches for various
search depths as measured by the number of partial path extensions.

experiments, the word graph computation is a full order of magnitude faster.

We have noticed a very large utterance-to-utterance variation in the search time

for a given search depth. For example, the number of path extensions ranges from

562 to well over 8,000,000 for the maximum depth 0 = 800 in Figure 4-9. While

some of this variation is certainly due to the strength of the acoustic evidence, there

is also a strong dependence on utterance length. Figure 4-10 shows a scatter plot

of the number of partial path extensions versus utterance duration with the search

depth fixed 0 = 600. For both searches, we have overlayed lines produced by a scatter

plot smoothing function. 6 As utterance duration increases, the required search effort

increases for both algorithms, but the increase is much more substantial for the N-

best search. The word graph search is better behaved, requiring about two orders of

strings.
6The smoother is lowess procedure in S [9], which produces smooth, robust, locally linear fits of

the scatter plot points. The line for N-best stops at 10 seconds because some of the longer utterances
required too much computation to reach the search depth and were not included in the plot. However,
we had no difficulty computing the corresponding word graphs. It did not make sense to plot the N-best
curve beyond the point at which its data were missing. The systematic nature of the missing data would
bias the N-best curve downward.



CHAPTER 4.

1 0A7

10A6

0(0

co

a- 10A50
CD 10OA4

10OA3

10'A2

WORD GRAPHS

0 5 10 15

Duration (seconds)

Figure 4-10: Number of partial path extensions versus utterance duration.

I I



4.3. EFFICIENCY

50000

40000
o
0
CL

30000

c 20000

10000

0

0 5 10 15 20

Duration (seconds)

Figure 4-11: Linearity of word graph computation versus utterance duration.

magnitude fewer expansions in the worst cases.

Because of the merging that takes place during the A* word graph search, intuitively

we would estimate that the amount of computation (i.e., number of path extensions)

is roughly proportional to utterance duration. If the average branching factor in the

graph is relatively constant we would expect the merging to yield computation pro-

portional to duration. Figure 4-11 shows a plot of word-graph path extensions versus

utterance duration with linear axes. The superimposed line is the linear fit with slope

1177edges/sec. It appears that the growth rate could be linear, but the variance is so

high it is difficult to determine with certainty. The growth rate of the computation is

certainly less than exponential, which we would expect for the N-best search.

4.3.3 Output Representation Size

We have examined the sizes of the N-best and word graph representations versus search

depth. For N-best lists, a reasonable measure for size of representation is the number

of paths, or hypotheses, removed from the queue, since every partial path dequeued
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Figure 4-12: Representation size versus relative score threshold. The curve at the bottom shows
the N corresponding to the N-best lists.

corresponds to a word in the N-best list (subject to word-string pruning). For word

graphs, the number of edges in the graph is the number of partial path extensions

and is the obvious choice for size of representation. Figure 4-12 displays the relative

sizes of the two representations as the search depth increases. We have also plotted N,

the number of distinct word strings. Again, we have plotted geometric means because

the sizes approximately follow a log-normal distribution. At first glance it may appear

that the word graph representation is not as efficient as the N-best list for very small

N. However, we must not forget that the word graphs contain more information; they

contain all possible alignments of the N-best word strings whereas the N-best lists

contain only the best alignment of each of the distinct word strings. Depending on

the intended use of the word graphs, it might be desirable to apply graph reduction

algorithms. This would be especially useful were we concerned only with word strings

(as contained in the N-best output) rather than all possible alignments of these strings.

Even without such pruning, the word graphs have considerably smaller representations

for all but the smallest search depths. Furthermore, the growth rate is lower, so word

I I
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graphs are even more advantageous as the search depth increases.

4.3.4 Summary

In summary, we introduced the A* word graph algorithm for computing word graphs.

This algorithm represents a relatively small change to the existing A* N-best algorithm

used by the SUMMIT system that allows partial utterance hypotheses to merge during

the search. The result of this merging is a graph instead of the tree associated with the

N-best search. We showed that by avoiding opening up the search space into a tree,

the word graph search algorithm can compute utterance hypotheses at least an order

of magnitude faster than the N-best search for deep searches. Further, we showed that

in terms of output representation size, word graphs are more compact than N-best lists

despite containing significantly more information (more alignments). This additional

information could be useful when post-processing word graphs, as we will see in the

next section.

4.4 Post-Processing Word Graphs

Word graphs can be used in several ways. Their most obvious use is as an intermediate

representation for recognition hypotheses. Like N-best lists, they can be used to in-

terface various speech recognition and understanding components. In Section 4.4.1 we

describe how our word graphs can be used in multi-stage searches. In Section 4.4.2 we

demonstrate how word graphs can be useful in exploratory data analysis because they

contain all individual word hypotheses, including their endpoints and scores, considered

in the search process.

4.4.1 Searching Through Word Graphs

In general, a word graph is an intermediate representation useful in a multi-stage recog-

nition/understanding search strategy. Ultimately, a single-best hypothesis needs to be

selected for recognition. To do this, we can search through word graphs.

As describe in Section 4.2.4, each edge in a word graph contains a word label, an
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acoustic/lexical score for the edge itself, and forward and backward scores g and h. The

forward and backward scores contain bigram language model scores. The presence of

these scores allows easy computation of N-best lists in either the forward or backward

directions. To generate an N-best list with bigram language model constraints, we

can first compute a word graph to a suitable depth, and then perform an A* search

through the word graph. In this A* search, no additional acoustic or lexical modeling

is required; the scores in the graph are sufficient. The forward score g or the backward

score h, depending on search direction, can be used as an exact heuristic for the A*

search.

In fact, in performing the experiments in Section 4.3, we computed the N-best lists

by searching through word graphs. We found that the direct A* N-best search was far

too computationally demanding for large N, since all of the duplicate path extensions

require duplicate acoustic and lexical modeling. With the word graph approach, the

acoustic and lexical modeling is efficiently captured in the word graph. The A* search

(with bigram language model constraints) through the word graph is very efficient since

all modeling has been completed. For each word edge, the word graph contains its

acoustic, lexical, and bigram language model scores. Therefore, the search only has

to enumerate the words to produce the N-best word strings in order. This process is

extremely fast because no additional acoustic or language modeling is required.

We can similarly produce N-best lists using different models if we wish. For example,

in the SUMMIT system, higher-order class n-gram language models are often used when

searching through word graphs. However, when we search through word graphs using

different models we encounter the problem that the A* search is no longer guaranteed to

be admissible. If the forward or backward scores contained in the word graph are used

for the heuristic score h*, a language model change could render h* inadmissible (i.e.,

no longer an upper bound on h). The forward and backward scores were computed with

a bigram language model. With a different model, say a higher-order n-gram language

model, the function h can change, perhaps increasing for some partial paths. Thus, the

A* search through the word graph is generally inadmissible when the models used are

different from the models used in the computation of the word graph.
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However, we have found that the problem of inadmissibility can be ameliorated by

searching deeper than we otherwise would with an admissible search. When computing

an N-best list with different models, we compute an N'-best list where N' > N and

re-order the list, keeping the top N hypotheses. Typically, when using class 4-gram

language models, we search for N' on the order of 150 to find the 10-best list. Since

searching through the word graphs is so fast, the extra N' is not a problem. This

method has worked well and is used for the recognition experiments in Chapter 5.

4.4.2 Exploratory Data Analysis using Word Graphs

We have discussed how word graphs are useful for representing a recognizer's output for

use in multi-stage searches. However, word graphs and the statistics derived from them

can be helpful in studying recognizer behavior. Because of the way the A* word graph

search algorithm builds word graphs, they contain all individual word hypotheses that

would be explored in an A* N-best search down to the prescribed score threshold. In

effect, the word graph represents a detailed history of the recognizer's search (N-best or

word graph). For each edge, a word graph contains its word label, its acoustic/lexical

score, and its forward/backward best-completion scores.

Word Lattices

One method we have found useful for displaying the contents of word graphs is what we

call a word lattice. In a word lattice, we display words and their time spans for within an

utterance. For each edge in the word graph, we display a line between its time endpoints

at height s, where s is its acoustic/lexical score (the combination of the acoustic model

scores and the lexical arc weights). The score s is language model-independent because

it does not contain the bigram score. (However, the bigram language model score does

affect the pruning that goes into the computation of the word graph.) These word

lattices allow us to see the competing words across an utterance. We call them lattices

to distinguish them from graphs because the word edges are not connected together in

the display.

Our word graphs tend to contain a very large number of edges because they contain
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all alignments of all N-best strings above the relative score threshold. The fact that

merging during the word graph search occurs at word-initial nodes further increases the

number of word edges in the graphs. In order to simplify the display of word lattices, we

have limited the number of word edges we display in two ways: by adjusting the relative

score threshold and by filtering word edges with identical labels and endpoints. For all

edges with identical word labels and time endpoints, we draw only the best-scoring one.

Figure 4-13 shows an example word lattice. At the top is the wide-band spectrogram,

the waveform, and the time-aligned orthographic transcription. At the bottom is the

word lattice, with acoustic/lexical score on the vertical axis and time on the horizontal

axis. For each word hypothesis, the word lattice shows its time extent (tl, t2) and score

s. This word lattice was plotted for relative score threshold 0 = 300, meaning only edges

that are part of complete hypotheses that score within 300 of the best-scoring complete

hypothesis are included. This represents considerable pruning compared to the typical

value of 0 = 800 we use to compute the word graphs. This pruning was necessary to

reduce the number of word hypotheses displayed. In this example, "What airlines serve

Denver?" there are relatively few edges. Most of the competition between word edges

is due to slight time-alignment differences. For "serve," the distinct competitors are

"serving" and "serve from." For "Denver," the competitor is "dinner."

Figure 4-14 shows another word lattice. In this one, "Hi, I'm in Chicago," the word

"Chicago" is out-of-vocabulary. This word lattice has considerably more edges than

that of Figure 4-13 even though it is computed to the same 0 = 300. The reason for

this is that none of the in-vocabulary words accounts for the acoustics of "Chicago"

very well, and the recognizer hypothesizes many combinations of words in an attempt

to account for the acoustic signal. The recognizer hypothesizes over 30 words in the

place of "Chicago." However, of even more importance is that the occurrence of the

new word "Chicago" causes recognizer confusion in the preceding words "I'm in," where

"interested" is the highest-scoring candidate. We come back to this example later in

Section 5.4.
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Active-Word Counts

While word lattices can be helpful in displaying the individual competitor words and

their scores, they can easily become too unwieldy to be useful, especially as the relative

score threshold 9 is increased. If we are more interested in the number of word com-

petitors than we are in their identity, we can compute summary statistics. One type

of statistic we have examined we call a time-slice statistic. The general idea behind a

time-slice statistic is to count the number of word graph edges that cross every possible

time slice.

We examined several different ways of counting edges and chose to count the number

of distinct word labels that cross a particular time slice. If we only count the total

number of edges across a given time slice, "jitter" in the endpoints of edges tends to

increase the count dramatically. However, if we count the number of distinct words,

edges that share the same word label are counted only once. We call the time-slice

count of distinct words the active-word count. The active-word count has an intuitive

interpretation: it is the number of words in the vocabulary "active" above the relative

score threshold 0 during recognition.

Figure 4-15 shows the active-word count for the same utterance as in the word lattice

of Figure 4-13. Two active-word counts are plotted simultaneously for two different

relative score thresholds 0 (300 and 800) where the smaller threshold is the same one

used in the word lattice. The vertical lines are the locations of the acoustic boundaries

(see Section 3.2) and represent the maximum resolution along the time axis at which the

counts can be made. In this example, in which there are no out-of-vocabulary words,

we see relatively low counts, indicating that there are few distinct word competitors.

Even at the much larger 0 = 800, the number of active words remains below 20.

In contrast, Figure 4-16 shows the active-word count for the same utterance as in

the word lattice of Figure 4-14, which contains the out-of-vocabulary word "Chicago."

In this example, we see a very large number of active words, nearly 320 or 25% of

the vocabulary, in the region of the new word at the relative score threshold 0 = 800.

Compared to Figure 4-15 the number of active words is significantly larger. Again, this

difference is largely due to the presence of the new word "Chicago," where the recognizer



CHAPTER 4. WORD GRAPHS

8

7

6

5

4 kHz

3

2

1

0

350

300

250

200

150

100

50

S0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

Figure 4-15: Active-word counts. In this example, all words are in-vocabulary. The active-word
count is plotted for two different relative score thresholds 9 (300 and 800).

8

7

6

5

kHz 4

3

2

1

0

-pau- what airlines serve denver - au2-

-__- -~II~--f~H~-C-C-C----t--U--1'0-

350- Active Words -

-

-

-

-

-

-

I I

I



4.4. POST-PROCESSING WORD GRAPHS
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Figure 4-16: Active-word counts with an out-of-vocabulary word. In this example, the word
"Chicago" is a new word and is responsible for a large number of word competitors. The active-
word count is plotted for two different relative score thresholds 0 (300 and 800). Note that the
vertical scale is different in Figure 4-15.
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has been forced to hypothesize a large number of words in an attempt to explain the

acoustics of the new word. The active-word counts indicate recognizer "confusion" in

the vicinity of the new word.

Later, in Section 5.4 we examine the contents of word graphs in order to study

the effect that new words have on computation during the recognition search. We

show empirically that new words significantly increase the number of edges contained

in word graphs which implies that both the A* N-best and word graph searches explore

a greater number of word hypotheses. We examine the impact that position of new

words in different regions of an utterance (e.g., near the beginning or near the end) has

on the computational demands of the search as measured by word graph complexity.

Finally, we examine the active-word count in the vicinity of new words and show that

it is indeed correlated with the location of new words, and hypothesize that it might be

a useful measure during new-word detection. Not only do we post-process word graphs

for all the recognition performance experiments of Chapter 5, we also used them to

analyze computational demands due to new words.

4.5 Related Research

Ours is not the only system capable of generating word graphs or related representa-

tions. Researchers at Philips, SRI, and INRS-Tel1communications have all published

algorithms for computing word graphs. Evidently, word graphs/networks/lattices are

becoming an increasingly popular alternative to N-best lists. Judging by the dates of

publication, all of this research, including our own, was performed in the same time

period of 1992-1994. The development of our A* word graph algorithm, first reported

in [27], was conducted independently of the other word graph research presented in this

section.

Oerder and Ney [48] and Aubert et al. [7] at Philips present word graphs, similar to

those we present in this chapter, which interface speech recognition and natural language

components. Their algorithm also makes use of two passes in opposite directions. In the

first pass forward in time, the "word hypotheses generator" produces word hypotheses



4.5. RELATED RESEARCH

that become edges in the graph. This pass is a minor extension of their normal Viterbi-

style search where word hypotheses are incrementally added to a graph representation.

In the second pass backward in time, the "word graph optimizer" prunes the graph

created in the first pass by eliminating parts of the graph that contribute only to different

alignments of the same word strings. This is accomplished by pruning word edges that

do not belong to complete-utterance hypotheses that score above a specified threshold,

and by merging subgraphs with identical labels and begin/end times.

The Philips word graphs appear to have fewer word edges as compared to our word

graphs due to the pruning of different alignments. However, it is difficult to compare the

two precisely since the Philips word graphs were analyzed on a different task. Further-

more, the score thresholds used in their system are undoubtedly different from ours,

and they did not relate their word graph size to N-best list size. Overall, the word

graph algorithm developed at Philips [7,48] sounds promising. The fact that it can

begin generating word edges in the first pass may mean that the first and second passes

could run in parallel, whereas our second pass cannot begin until the first Viterbi pass

is complete.

Murveit et al. at SRI [44] use a multi-stage search technique that produces word lat-

tices as an intermediate representation. Their "forward-backward word-life" algorithm

generates word lattices in forward and backward passes. The algorithm is similar to that

used in the Philips system [7,48] in that word edges are accumulated during the first

Viterbi-style pass and then pruned in the second pass in the opposite direction. How-

ever, a critical difference between the SRI lattices and the word graphs of the Philips

and SUMMIT system is that they do not store acoustic/lexical and language model

scores in the lattice. Rather, they use their lattices as a word-transition "grammar" for

subsequent search stages utilizing more detailed models. The word edges in the SRI

word lattices contain only word labels and begin/end times.

Kenny et al. at INRS-T6l6communications [36] present a multi-pass approach to the

speech recognition search problem that produces word graphs after three passes. In

the first pass, backward in time, a phonetic graph is produced by using one- or two-

phone look-ahead. In the second pass, forward in time, a word graph is produced by
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imposing lexical constraints and a coarse language model while searching through the

phonetic graph. In the third pass, backward in time, the word graph of the second pass

is pruned by performing an exhaustive traversal of the word graph and deleting edges

whose complete-utterance score (i.e., f) is above a prescribed threshold. Finally, in

an optional fourth pass, forward in time, detailed acoustic models and a fine language

model are used to re-score hypotheses. The search in the last pass is exhaustive if the

word graph is small enough. Otherwise, an A* search is used with an (inadmissible)

heuristic stored in the graph.

Broadly speaking, Kenny et al.'s word graphs are very similar to ours. At the end of

the second pass, their word graph contains all word edges whose A* score f* is above a

specified threshold. At the end of the third pass, their word graph has been pruned such

that it contains all word edges whose score f (i.e., no longer a heuristic estimate f*)

is above the threshold. This is exactly the set of word edges our word graphs contain.

Their fourth pass corresponds to the re-sorting the SUMMIT system performs when

more detailed language and acoustic models are applied.

4.6 Summary

In this chapter we have presented a novel algorithm for computing word graphs using a

two-stage search. This algorithm represents a minor change to the A* N-best algorithm

used in the SUMMIT system. While we initially developed the word graph approach

in order to study recognizer behavior (Section 4.4.2) we have found the approach to be

useful in general. As a result, the word graph algorithm is now a part of the SUMMIT

system and is used to interface the acoustic-lexical search component to a more detailed

language modeling component. In this chapter we have demonstrated that the A* word

graph search algorithm can be significantly more efficient, both in computation time

and in representation size, than the more traditional A* N-best algorithm. Further, we

have presented two display tools, based on word graphs, that can be used to examine

recognizer behavior in the vicinity of new, out-of-vocabulary words.

I .1



Chapter 5

A Recognizer-based Study

In Chapter 2 we presented a recognition system-independent study of the new-word

problem. While such an examination of the problem based on orthographic transcrip-

tions reveals some important characteristics of new words, such as their lexical, syn-

tactic, and phonological properties, it does not reveal how new words interact with a

continuous-speech recognition system. In this chapter, we present a characterization of

the new-word problem in the context of the SUMMIT speech recognition system. We

examine two parts of the new-word problem:

1. the effect new words have on recognition performance and computation when there

is no new-word detection capability, and

2. the relative importance of updating or retraining system components when adding

new words to the system vocabulary.

The goal is to derive an empirical understanding of the problem of new words within

a recognition system to complement the more abstract analyses of Chapter 2. We

want to quantify the effects that new words have on recognition accuracy, search, as

well as on acoustic, phonological, and language modeling. If we are to build useful

spoken language systems, they must not only detect the presence of new words, but be

able to incorporate them into a system vocabulary dynamically. In order to add new

words to a system vocabulary, various recognition components must be updated. In

our study, we will examine the relative importance of updating the acoustic models,
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lexical (pronunciation) models, and class n-gram language models. We will also discuss

features of these components that enable them to be easily and effectively updated.

5.1 Methodology

First and foremost, we wanted our empirical recognizer-based study of the new word

problem to be carefully controlled. We wanted to be able to separate the errors caused

by the occurrences of new words from the errors that the recognition system would

otherwise make. To be able make this distinction between new-word errors and system

errors we needed to use a baseline, or control, system in our experiments. In order to

control for system errors not related to new words, we needed evaluation utterances

that were strictly in-vocabulary for the baseline system; the baseline system would not

encounter new words. To evaluate the effect of new words, we needed a test system that

did encounter new words. The way to accomplish this was to simulate new words for

the test system by using a reduced vocabulary. The system performance comparisons

were most controlled if the reduced vocabulary was a subset of the baseline vocabulary.

Further, we tested both systems, the reduced-vocabulary system and the baseline system

on the same utterances. The difference in performance of the two systems represented

the effect of new words since system errors not due to new words were factored out by

the baseline system.

We also wanted to evaluate the capabilities of our system to learn new words. The

baseline system was helpful for this purpose too. We viewed the baseline system, which

was fully trained on the set of simulated new words, as an upper bound on how well

our system could "learn" new words. Thus, in our experiments to determine how well

the reduced-vocabulary system's acoustic, lexical, and language models could incor-

porate new words (without training on them) we could use the baseline system as a

yardstick. Thus, the shortfall between the performance of an updated version of the

reduced-vocabulary system and the performance between the baseline system on the

same utterances represented the difference between updating the various models with-

out training and fully training those models on occurrences of the new words.
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Given that we chose to simulate new words for our recognition study, we needed

to choose a task and two vocabularies from which to build the baseline and reduced-

vocabulary systems. The basic model we used in simulating new words was as follows:

1. there was an original system with limited vocabulary (the reduced-vocabulary

system),

2. users generally stayed within the domain of the original system but did not know

the exact limits of its vocabulary, and

3. an updated system with a larger vocabulary (baseline system) was built to handle

the new words.

The ATIS domain is appropriate for this scenario. The original, reduced vocabulary

could be represented by a vocabulary based on ATIS-2 utterances. When ATIS-3 was

introduced, it represented an expansion of the task vocabulary, but the domain remained

essentially unchanged. We treated the ATIS-3 utterances as input from users who did

not know the exact limits (e.g., allowed cities, airports, and airlines) of the system.

Thus, we could think of ATIS-3 utterances as being within the reduced-vocabulary

system's domain but containing out-of-vocabulary words. Finally, we could build the

baseline system with a larger vocabulary that covered the ATIS-3 vocabulary.

In examining the effects of new words on recognizer performance, we chose to use

word-error rate as our performance measure [54]. To compute word-error rate, we

aligned, word-for-word, recognizer output with reference orthographies. Once aligned,

the number of word substitutions, deletions, and insertions can be measured. The total

of these is the number of word errors; when converted to a fraction of total reference

words, we arrive at the new-word rate. Figure 5-1 shows an example of string alignment

with substitutions, deletions, and insertions indicated.

Figure 5-2 shows the three primary components of the SUMMIT system that we

examined in our study of the issues related to learning new words: the acoustic models,

the lexical (pronunciation) models, and the n-gram language models. For all of these

models, we built small- and large-vocabulary versions by using different training sets

with small and large vocabularies. To examine the relative importance of updating the
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airline with code f f
airline code f to Denver

Figure 5-1: Example string alignment. The reference (correct) string is at the top, and the
recognizer's top hypothesis is at the bottom. Errors are marked with s, d, and i for substitution,
deletion, and insertion, respectively. This example has a total of three errors out of five reference
words, yielding a word-error rate of 3/5.

Figure 5-2: Primary recognizer components.

various components on new words, we systematically exchanged components trained on

the small and large vocabularies. Since we could consider the baseline system as having

fully "learned" the new words, it could serve as the control condition. By measuring

the performance shortfall when different small-vocabulary components were installed

we could deduce how important it was to train them when learning new words.

Overall, in the recognizer-based study of the new-word problem in this chapter we

tried to conduct carefully controlled experiments in which the effects of new words were

isolated from other system-dependent effects. We used two systems in our experiments,

a baseline system for which all words were in-vocabulary and a reduced-vocabulary

system that encountered new words. Further, experiments were conducted by comparing

systems on the same set of utterances.
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5.2 Recognizer Configuration and Training

In this section we describe how we determined the baseline and reduced vocabularies,

how we prepared the training and testing data, how we trained the systems, and the

performance of the baseline system.

5.2.1 Vocabulary Determination

To create the reduced-vocabulary system, we removed words from the larger vocabulary

of the baseline system. In general, the large vocabulary was based on ATIS-3 utterances,

and the small vocabulary was based on ATIS-2 utterances. This division is reasonable

because ATIS-3 represented a natural extension of ATIS-2 to new cities, airports, and

airlines. It allowed us to test a system with the smaller ATIS-2 vocabulary on ATIS-

3 vocabulary and encounter new words due to the expansion of the task vocabulary.

To a first-order approximation, these simulated new words model the new words that

we might expect when users know about the ATIS domain, but not about the precise

vocabulary (e.g., allowable set of cities, airports, and airlines). Therefore, when we

tested the reduced-vocabulary system on a subset of the ATIS-3 data, it encountered

a large number of simulated new words. (See Section 5.2.2 for a description of the

test set.) Altogether, there were 18,191 ATIS-2 utterances and 8,392 ATIS-3 utterances

available for our study.

The baseline system's large vocabulary was the vocabulary used by the SUMMIT

system for the ARPA December 1993 ATIS-3 evaluation [77]. This vocabulary contained

2,461 words and was based on a vocabulary supplied by Carnegie Mellon University.

The reduced vocabulary was to be built from ATIS-2 utterances, and the words for

it were extracted from the baseline ATIS-3 vocabulary using the following procedure.

We counted the number of times each of the baseline-vocabulary words occurred in the

ATIS-2 utterances. These word counts enabled us to determine which words were jus-

tifiable based on ATIS-2 utterances. Words that did not occur in ATIS-2 were removed

unless they could be easily derived from a word that did occur (e.g., the word "faster"

would have been retained if "fast" occurred). Additionally, cities, airports, and airlines
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Atlanta Dallas Fort Worth Pittsburgh
Baltimore Denver Oakland San Francisco
Boston Detroit Philadelphia Washington

(a) Cities in reduced vocabulary (ATIS-2)

Burbank Las Vegas New York St. Louis
Charlotte Long Beach Newark St. Paul
Chicago Los Angeles Ontario St. Petersburg
Cincinnati Memphis Orlando Tacoma
Cleveland Miami Phoenix Tampa
Columbus Milwaukee Salt Lake City Toronto
Houston Minneapolis San Diego Westchester County
Indianapolis Montreal San Jose
Kansas City Nashville Seattle

(b) Additional cities in baseline vocabulary (ATIS-3)

Table 5-1: Cities in ATIS-2 and ATIS-3.

that were explicitly added during the ATIS-2 to ATIS-3 expansion were removed. Al-

together, 1,135 words were removed from the baseline vocabulary to yield the reduced

vocabulary of 1,326 words.

The fundamental difference between the reduced and baseline vocabularies lies in

the number of cities represented. Table 5-1 lists the cities contained in the reduced

vocabulary and the additional cities contained in the larger baseline vocabulary. The

reduced vocabulary contains 11 cities and 9 airports, versus the baseline vocabulary's

46 cities and 52 airports.

Because we modeled the simulated new words on the difference between the un-

derlying ATIS-3 and ATIS-2 vocabularies, most of the simulated new words were the

names of cities, airports, states, and airlines associated with the explicit task expansion.

Table 5-2 lists a random sampling of the other new words that were not associated with

the expansion of ATIS but were still excluded from the reduced vocabulary because

they did not occur in ATIS-2.

I [
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adjectives acceptable, alternative, comfortable, red-eye, surface, worse
nouns bagel, fact, friend, home
verbs assuming, clarify, fitting, suggest

Table 5-2: Sample new words not associated with explicit ATIS expansion.

5.2.2 Testing Sets

In order to have an adequate number of new-word occurrences for our studies, our test

utterances came from ATIS-3. Specifically, we combined the ATIS-3 development and

test sets, 1,737 utterances total, to form our testing sets. Of these utterances, 261

contained spontaneous speech events other than pauses. We discarded these utterances

because the problem of partial words in spontaneous speech was beyond the scope of

this thesis. Of the remaining 1,476 utterances, 27 contained out-of-vocabulary words

for the baseline system. We discarded these 27 utterances because we wanted the entire

test set to be in-vocabulary for the baseline system so that it could be used as a control

in our experiments. Altogether, this left 1,449 utterances (12,707 words) in the testing

set S that were strictly in-vocabulary for the baseline system.

The new-word rate measured over S was 12.7%. According to the results of Chap-

ter 2, we would expect a new-word rate of about 1% for a 1,300-word vocabulary in the

ATIS domain. The reason our new-word rate was so much higher was due the artificial

expansion of the ATIS task between ATIS-2 and ATIS-3. The high new-word rate is

advantageous for our purposes because we need a large number of new words to study

the effects of new words.

In order to distinguish the effects of zero, one, and multiple new words per utterance,

we further subdivided the test set S. Table 5-3 summarizes the sizes and number of new

words in the subsets So, S1, and 82+. So contains zero new words, S1 contains exactly

one new word per utterance, and S2+ contains two or more new words per utterance,

with S = So U S1 U 82+. As the number of new words per utterance increases, so does

the average number of words per utterance.

All test sets were independent of the training sets. Further, all test-set speakers were

different from the train-set speakers to ensure speaker-independent recognition results.
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words/ new new words/
utterances words utterance words utterance

S 1,449 12,707 8.8 1,618 1.1
So 684 4,819 7.1 0 0.0
S, 198 1,656 8.4 198 1.0
82+ 567 6,232 11.0 1,420 2.5

Table 5-3: Testing sets.

utterances words

baseline (full) 20,397 172,555
reduced-vocabulary 16,953 139,513
baseline (control) 16,891 143,068

Table 5-4: Training sets.

5.2.3 Training Sets

We made use of three overlapping training sets: the largest training set for the baseline

system, a smaller training set for the reduced-vocabulary system, and another small

training set for a baseline-vocabulary system to be used as a control for training set size.

All training sets were based on the combination of all (train, development, and test)

ATIS-2 utterances plus the ATIS-3 train set. Altogether, this yielded 22,427 utterances

containing 218,615 words. However, a number of these utterances contained words not

in the baseline vocabulary, many of them due to partial words from spontaneous speech.

These utterances which contained new words for the baseline system were discarded.

SUMMIT's training process discards all utterances containing out-of-vocabulary

words. Therefore, the total number of utterances used to train the baseline system

was reduced from 22,427 utterances to 20,397 utterances. When training the reduced-

vocabulary system, additional utterances were discarded due to the increased number

of out-of-vocabulary words. Finally, as a control to ensure that performance differences

were not due to amount of training data used, we created a baseline-vocabulary training

set roughly the same size as the reduced-vocabulary training set by randomly sampling

the utterances in the baseline training set. The sizes of the three training sets are

summarized in Table 5-4.
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5.2.4 Training Acoustic and Lexical Models

The SUMMIT system uses an iterative process to train the acoustic-phonetic and lexical

(pronunciation) models. The reason for the iteration is twofold:

1. the training utterances were not phonetically transcribed, so the system iteratively

improves its own transcription (i.e., forced alignment) of the utterances; and

2. the training of the weights in the pronunciation graphs, the lexical weights, re-

quires a number of iterations in order to converge.

Training the acoustic models requires forced alignment1 paths that essentially contain

time-aligned phonetic transcriptions produced by the system itself. The acoustic fea-

tures for each of the training tokens were collected and input into the mixture-model

training algorithm; a maximum of 64 mixtures per phonetic unit were computed. Train-

ing the lexical weights requires both a forced and a best alignment2 of each training

utterance, which are compared, and lexical arcs that contribute to recognition errors

are penalized. Penalizing lexical arcs in SUMMIT is necessary because application of

the phonological rules can over-generate arcs, contributing to recognition errors.

The baseline system was the context-independent part of the SUMMIT system used

in the ARPA December 1993 evaluation. This system underwent many training itera-

tions. The iterative training of the lexical weights in the pronunciation models is the

most computationally expensive part of training SUMMIT due to the computation of

all the forced and best recognition paths. The baseline system was trained on the full

training set of 20,397 utterances.

Some of our experiments required acoustic models that were not trained on utter-

ances containing any of our simulated new words. We accomplished this by computing

forced-alignment paths using the baseline system for all 16,953 of the utterances in the

reduced-vocabulary training set. New acoustic models, containing no statistics from the

the baseline models, were trained using these forced forced alignments. Therefore, the

'Forced alignment involves finding the optimal alignment of a reference string versus the waveform.
2The best alignment involves finding the alignment of the best-scoring hypothesis. This hypothesis

is not necessarily the same as the reference string due to recognition errors.
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reduced-vocabulary acoustic models were trained in the absence of the simulated new

words.

Because we felt that the reduction of the number of training utterances could affect

the results of our experiments using the reduced-vocabulary acoustic models, we trained

another set of acoustic models using a comparably sized subset of the large-vocabulary

training data. These models were similarly trained using a single iteration on the smaller

baseline-vocabulary training set of 16,891 utterances. Thus, these models could be used

as a control for training-set size.

5.2.5 Training n-Gram Language Models

The first step in training the class n-gram language models was to determine the word

classes. Because our baseline system was the SUMMIT system used in the ARPA

December 1993 evaluation, we used the classes developed for that version of the system.

Altogether there were 53 classes, including day names, month names, state names, city

names (including airport names), airline names, airline codes, and numbers. Not all

words in the vocabulary belonged to classes. In the baseline vocabulary, only 781 words

out of 2,461 belonged to one of the pre-determined classes. The remaining 1,680 words,

in effect, belonged to their own class for the purposes of language modeling.

When adapting the SUMMIT system from the ATIS-2 vocabulary to the ATIS-3

vocabulary for the ARPA evaluation, SUMMIT developers determined empirically that

optimal performance on ATIS-3 test material was achieved when ATIS-2 and ATIS-3

training texts were combined in a 1:3 ratio. For our experiments, we used this same

ratio by duplicating ATIS-3 material three times.

Training of the n-gram language models entailed accumulating counts for all word

sequences up to length n. These counts were turned into class-conditional probabilities

with various types of smoothing as described in Section 3.6 on page 66.

5.2.6 Word Graphs

We utilized word graphs in our recognition experiments to interface the lexical access

search (using bigram constraints) to the class n-gram re-sorting component. The word
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graphs were computed using the A* word graph search algorithm developed for this

thesis and described in Chapter 4. The word graphs proved to be an effective tool for

interfacing the higher-order class n-grams. These word graphs allowed us to quickly

rerun recognition experiments with different n-gram language models without having

to redo the acoustic and lexical modeling.

We chose to use a relative score threshold 0 = 800 for our experiments, meaning that

our word graphs contained all N-best hypotheses, and all their alignments, that scored

within 800 of the best-scoring hypothesis. By itself, 0 = 800 is not very meaningful.

What is important is the fraction of correct hypotheses contained in the word graphs.

Correct hypotheses that were not included in the word graphs were errors that could

not be corrected with improved language modeling during re-sorting.

We computed maximum achievable sentence and word accuracies by searching

through the word graphs using the correct reference word strings as constraints (i.e., a

kind of forced alignment). We found that for 9 = 800, fully 97.2% of the test-set utter-

ances contained the correct word string for the full utterance in the word graph. Further,

we found that the minimum achievable word-error rate was only 0.5%. We deemed this

error rate to be acceptable. It could not be significantly reduced for 0 > 800.

5.2.7 Baseline Performance

Figure 5-5 shows the performance of the baseline system on the full test set $ for various

class n-gram language models in the range 2 < n < 5. The most notable increase in

performance resulted from using a class 3-gram (trigram) instead of a class 2-gram

(bigram) language model. The performance increase was due to the better constraining

power of the 3-gram as evidenced by the decrease in perplexity L. The performance

and perplexity differences between the 3-gram and 4-gram models were negligible, and

for the 5-gram both were slightly worse,3 presumably because of sparse data problems.

Particular word/class sequences of length 5 were too sparse in the training text to yield

reliable probability estimates. Even though the 3-gram and 4-gram performed almost

3The difference between the total number of word errors for the 4-gram and 5-gram models is not
significant at the 0.05 level.
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sub

2-gram 3-gram 4-gram 5-gram

(c)

language sub ins del total
model L n % n % n % n %

2-gram 28.64 795 6.3 274 2.2 161 1.3 1,230 9.7
3-gram 18.88 648 5.1 234 1.8 142 1.1 1,024 8.1
4-gram 18.55 640 5.0 247 1.9 136 1.1 1,023 8.1
5-gram 18.60 661 5.2 262 2.1 144 1.1 1,067 8.4

(d)

Figure 5-5: Baseline performance with different language models. Perplexity L and performance
measured over entire test set S of 12,707 words (1,449 utterances). For each class of error (i.e.,
substitution, deletion, insertion, and total) the number and percentage of errors is given. Total
represents the total word-error rate.

identically, we chose to use the class 4-gram for our experiments because the SUMMIT

system typically uses the class 4-gram for N-best re-sorting.

Figure 5-6 shows the performance of the baseline system (with class 4-gram language

model) on the testing subsets S, S1, and S2+.4 It is interesting to note that accuracy

on S2+ was better than on S1, which was better than on So. We divided the string-

aligned system output into two sets: those words aligned with reference words that are

simulated new words (that are in-vocabulary for the baseline system) and those that

4Recall that the subsets were defined for new words not in the reduced vocabulary. The baseline
system faced no new words in any of the testing subsets.
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10

8

del
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sub
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ins

sub

SO Si S2+

(a)

sub ins del total
set ntotia n % n % n % n %
S 12,707 640 5.0 247 1.9 136 1.1 1,023 8.1
So 4,819 318 6.6 109 2.3 56 1.2 483 10.0
S1 1,656 83 5.0 35 2.1 18 1.1 136 8.2
32+ 6,232 239 3.8 103 1.7 62 1.0 404 6.5

(b)

Figure 5-6: Baseline performance on testing subsets. These baseline results were obtained with
the class 4-gram language model.

are non-new words. We found that the overall non-new-word error rate was 8.5% versus

5.3% for the set of simulated new words. One possible explanation for the reason that

baseline performance on Si and S2+ is better than on So is that those sets contain a

greater number of simulated new words, which the baseline system is better able to

recognize (compared to non-simulated new words).

5.3 Recognizer Performance in the Face of New Words

In the study of new words presented in Chapter 2 we demonstrated that new words

occur in a wide-variety of tasks no matter how large a system vocabulary is used.

However, we did not relate the occurrence of new words to recognition errors within

I II I a I I
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a continuous-speech recognition system. In this section we examine what happens to

recognition performance when a system encounters new words. Certainly, a typical

system is guaranteed to misrecognize a new word since it has no way of modeling it or

knowing its orthography. However, it is likely that the occurrence of a new word could

have a ripple effect and cause other words in an utterance, that are in-vocabulary, to

be misrecognized due to contextual effects.

One thing we examined was what a recognizer proposes in the place of a new word

(i.e., what it substitutes from its vocabulary). We were curious to see if the substitutions

were acoustically and/or linguistically plausible. We called recognition errors due to

substitutions for new words direct new-word errors. Perhaps of more importance, we

examined the errors caused by new words on other, in-vocabulary parts of utterances.

We called these errors indirect new-word errors. If recognition errors are limited to

the new words themselves, then most of an utterance containing a new word will be

correctly recognized. In examining indirect new-word errors, we divided them up into

errors before new words, after new words, and between new words to see if relative

position of a new word affected the rate of indirect new-words. In terms of both direct

and indirect new-word errors, we examined performance on utterances that contained

two or more new words to see if multiple new words present special problems.

In our performance analyses, we always compared the output of the reduced-

vocabulary system with that of the baseline system in order to factor out recognition

errors the system would otherwise make. Further, we always ran the reduced-vocabulary

and baseline systems on the same set of utterances.

5.3.1 Error Analysis Methodology

As previously mentioned, we evaluated recognizer performance using word-error rates

(by measuring the number of substitutions, deletions, and insertions). To measure these

errors, recognizer outputs were aligned word-for-word with correct reference strings.

The general method of aligning hypothesized and reference word strings involves

finding the alignment with the lowest cost. Typically, substitutions, deletions, and

insertions are all of equal cost (e.g., one per error). There may be more than one
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alignment between two strings that have the same total cost, and the alignment process

arbitrarily chooses one. The net result is an alignment with minimal total cost (i.e.,

sum of substitutions, deletions, and insertions).

However, in our analysis of the effects new words have on recognizer performance we

were interested not only in total errors, but in errors aligned directly with new words

and errors within in-vocabulary regions of utterances. Thus, we were concerned not

only with alignments of minimal total cost but also with alignments that spread the

cost appropriately between new words and non-new words. In other words, we were

also concerned with the quality of alignment and not just total alignment score.

To improve alignment quality when new words were present, we modified the align-

ment costs. For our special new-word alignment, we set the cost of substitutions, dele-

tions, and insertions to zero when the reference word was a new word and set the costs

to one otherwise. The effect of this change was to align as many of the recognition errors

as possible with new words, thus maximizing the alignment score over the in-vocabulary

regions. Since a recognizer can propose a number of in-vocabulary words in the place of

a new word, we would like those recognition errors to be associated with the new word

and not with the rest of the utterance. Our special provisions for alignment near new

words tended to associate insertions adjacent to new words with the new words.

Figure 5-7 shows an example of our special treatment of new words during alignment.

In Figure 5-7(a), the alignment is the normal alignment. In Figure 5-7(b), the alignment

is the special alignment for new words. In the latter case, all errors in the example

are aligned with the new word "Chicago." This special alignment is appropriate in

that the hypothesized words "do you have no" were substituted for "Chicago" and not

for words earlier in the utterance. The special alignment algorithm only affects the

allocation of errors between new and non-new words. We found that it does make a

significant difference, especially when several words are substituted for a single new

word. In such cases, the normal alignment procedure allocates several insertions to the

non-new words as evident in Figure 5-7(a), when they should be allocated to the new

word. Intuitively, the right thing to do is to maximize non-new-word performance by

allocating as many errors as possible to the new words (i.e., minimizing the number of
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I want to arrive in Chicago around seven p m
I want to arrive in do you have no around seven p m

i 2 i s

(a) Normal alignment

I want to arrive in Chicago around seven p m
I want to arrive in do you have no around seven p m

s i i i

(b) Special new-word alignment

Figure 5-7: Example of special new-word string alignment. The word Chicago is a new word. The
vertical lines delimit the errors that are associated with the new word. In (a), there three errors
associated with in-vocabulary (other) words, and one error associated with out-of-vocabulary
(new) words. In (b), there are no errors associated with other words, and four errors associated
with new words. We consider the alignment in (b) to be more accurate in terms of its allocation
of errors.

indirect new-word errors at the expense of direct new-word errors). In the recognition

performance experiments in this chapter, we only used the special alignment when the

recognizer actually faced new words. Specifically, we never used the special alignment

with the baseline system since it never encountered out-of-vocabulary words.

In our performance analysis, we divided utterances into intervals based on the posi-

tion of new words. Table 5-5 defines the utterance divisions we used. For example, in

the utterance of Figure 5-7(b), errors aligned with the words "I want to arrive in" would

have been classified as non-new and before, errors aligned with the word "Chicago" were

classified as new, and errors aligned with the words "around seven p m" would have

been classified as non-new and after. Additionally, in an utterance with multiple new

words, there could be words classified as non-new and between. (In this context, "new

word" means a word not in the reduced vocabulary.) Therefore, we could compute the

performance on the set of "new words" for the large-vocabulary baseline system even

though all words were in vocabulary. The baseline performance over the set of the small

system's new words could thus be used as a control.
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overall all words
new all out-of-vocabulary words
non-new all in-vocabulary words
before in-vocabulary words occurring before new words
between in-vocabulary words occurring between new words
after in-vocabulary words occurring after new words
adjacent in-vocabulary words immediately adjacent to new words

Table 5-5: Regions of utterances for error analysis. In general, we performed recognition on
entire utterances and divided the utterances after they were aligned.

5.3.2 Direct New-Word Errors

We first examined errors that were directly associated, or aligned, with new words.

The goal was to characterize what the recognizer hypothesized in place of new words.

It is important to understand the nature of the substitutions for new words because

they could have a significant effect on understanding. In general, a recognizer will

hypothesize a sequence of in-vocabulary words in the place of a new word. If the

sequence of substituted words makes no sense syntactically and/or semantically, then

the natural language component may have trouble interpreting the utterance hypothesis.

If, on the other hand, the recognizer simply hypothesizes another word from the same

word class as the new word, the natural language component may be able to interpret

the recognizer's hypothesis, but will interpret it incorrectly. The latter case may cause

more system and user confusion because neither may be immediately aware of the new

word and the substitution made for it.

To examine the errors directly attributable to new words, we compared the output of

the baseline system to a reduced-vocabulary system on S1, using a class 4-gram language

model. We chose S1 because it contained only a single new word per utterance, thus sim-

plifying our analysis. Further, to make as controlled a comparison as possible, the only

difference between the baseline and reduced-vocabulary system was the vocabulary (i.e.,

the set of words that could be hypothesized). Both systems shared the same acoustic,

lexical, and language models. When aligning recognizer hypotheses to reference strings,

we used the normal alignment process for the baseline system and the special new-word

alignment process described in Section 5.3.1 for the reduced-vocabulary system.
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sub ins del total
ntotal n % n % n % n %

baseline 198 16 8.1 2 1.0 0 0.0 18 9.1
reduced 182 91.9 14 7.1 64 32.3 260 131.3

A +166 +83.9 +12 +6.1 +64 +32.3 +242 +122.2

Table 5-6: Direct new-word errors. The errors are measured for words aligned directly with
the new words in 81, the set of utterances containing exactly one word each. Special new-word
alignment was used for the reduced-vocabulary system's output. The total number of reference
words over which word errors were measured is indicated by ntotal. On average, there were 1.22
(242/198) direct errors per new word.

Table 5-6 shows the errors the baseline system made on the new words in S1 and

the increase in errors made by the reduced-vocabulary system. Not surprisingly, most

of the errors were word substitutions in which the system was forced to substitute an

in-vocabulary word for a new word. Next in frequency were insertions, which resulted

when the system substituted multiple words for a particular new word. Relatively few

new words were deleted.

Table 5-7 shows a random sample of the reduced-vocabulary system's hypotheses

for a few of the new words. Because the recognizer attempted to satisfy both acous-

tic and language model constraints, the recognition errors sometimes appeared to be

acoustically reasonable and and other times reasonable from the point of view of the

class n-gram language model, but rarely both. In many cases a word from the same

(semantic) word class as the new word was substituted. In our experiments, fully 45%

of new words experienced such within-class substitutions. These cases would be more

difficult to detect because the natural language component would not notice an error

and thus would interpret the incorrect utterance hypothesis. In the cases where the sub-

stituted words do not make sense syntactically and/or semantically the natural language

component would likely have difficulty interpreting the recognizer's hypothesis.

The bottom line is that a recognizer is forced to propose in-vocabulary words in

place of new words if it has no capability for detecting new words. The errors directly

aligned with new words, direct errors as we call them, often include substitutions of

multiple in-vocabulary words per new word. In some cases, the acoustics appear to

dominate the selection of substitutes, while in others the language model appears to

dominate, sometimes substituting a word in the same (semantic) class as the new word.

I i
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new word - substitution
Indianapolis -+ give me the list
Miami - Y N mean
Charlotte -4 show it
Seattle --+ several
Alaska - ask
Houston - interested
Cincinnati -+ the night
Burbank -4 very
Cleveland -* Oakland
Kansas - Dallas
Alaska -÷ US Air
Milwaukee -+ Oakland
O'Hare - Denver
Charlotte -4 Atlanta

Table 5-7: Sample hypotheses for new words. This table shows a randomly selected set of new-
word substitutions made by the reduced-vocabulary system, with the new word at the left and
the hypothesized word(s) at the right. We divided the hypotheses roughly into two categories:
those that appear to be acoustically related and those that appear to be semantically related.

Overall, in testing set S1, which contains utterances with exactly one new word each,

the reduced-vocabulary recognizer suffered 1.22 word errors per new word.

5.3.3 Indirect New-Word Errors

Of course, new words cause not only the errors associated with their own misrecognition,

but also errors to in-vocabulary words in an utterance due to contextual effects. These

indirect new-word errors, as we call them, are an important part of the new-word

problem.

There are three primary reasons why in-vocabulary words can be misrecognized in

the presence of new words:

1. lack of obvious word boundaries in continuous speech;

2. acoustic context due to co-articulation; and

3. language context due to language model constraints.

In the first case, the best way the recognizer might be able to explain the acoustics

of a new word may be with part of an in-vocabulary word. If the recognizer hypoth-
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esizes a word longer than the new word, the recognition of neighboring words could

be affected. In the second case, the boundaries of the new word may be respected by

the recognizer, but phonemes near the word boundaries could affect context-dependent

acoustic modeling. However, in our experiments with the SUMMIT system, we used

context-independent acoustic models, and thus would not expect to see this effect. Fi-

nally, in the third case, words that the recognizer proposes in place of the new word

can affect the language model scores for other words in the utterance. In the case of

n-gram language models, we would expect this effect to be limited to words within a

distance of n - 1 words. However, because a recognition error could cause an adjacent

in-vocabulary word to be misrecognized, words further than n - 1 could be affected in

a ripple effect due to the context dependence of language model scores. In the case

of more sophisticated language models capable of enforcing long-distance constraints,

words far from new words could be affected. Thus, due to contextual effects, the new

word itself may not be the only word misrecognized in an utterance.

We analyzed the effect of new words on in-vocabulary regions of utterances, again

by comparing the performances of a baseline system and a reduced-vocabulary system

on test set S1. In fact, this analysis used the same utterances and aligned hypotheses

as the direct new-word error analysis of the previous section. The only difference was

in the regions of the utterances we examined. We divided the indirect new-word errors

into different categories: all non-new words (non-new), in-vocabulary words preceding

new words (before), in-vocabulary words following new words (after), and in-vocabulary

words immediately before and after new words (adjacent). As in the previous section,

recognition was performed using the class 4-gram language model.

Figure 5-8 summarizes the indirect new-word errors we obtained over different parts

of Si utterances.Over all non-new words, the word-error rate increased by 3.8% (a factor

of 1.5). The increase in word-error rate due to indirect errors was comparable for the

words before and after new words. The most notable feature of Figure 5-8 is that the

set of words most affected by indirect new-word errors was the adjacent set, in which

the word-error rate increased by 16.8% (a factor of 2.6). The vast majority of the errors
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20

15

10

baseline reduced baseline reduced baseline reduced baseline reduced
non-new before after adjacent

sub ins total
ntotal n / O n Yo n 70 n Yo

non-new
baseline 1,458 67 4.6 33 2.3 18 1.2 118 8.1
reduced 116 8.0 47 3.2 11 0.8 174 11.9

A +49 +3.4 +14 +1.0 -7 -0.5 +56 +3.8
before
baseline 1,006 45 4.5 23 2.3 12 1.2 80 8.0
reduced 74 7.4 40 4.0 7 0.7 121 12.0

A +29 +2.9 +17 +1.7 +5 +0.5 +41 +4.1
after
baseline 452 22 4.9 10 2.2 6 1.3 38 8.4
reduced 42 9.3 7 1.6 4 0.9 53 11.7

A +20 +4.4 -3 -0.7 -2 -0.4 +15 +3.3
adjacent
baseline 322 9 2.8 10 3.1 2 0.6 21 6.5
reduced 54 16.8 21 6.5 0 0.0 75 23.3

A +45 +14.0 +11 +3.4 -2 -0.6 +54 +16.8

Figure 5-8: Indirect new-word errors. Non-new is measured over all in-vocabulary words in
S1, before over all words before new words, after over all words after new words, and adjacent
over all words immediately adjacent to new words. By far, the adjacent words experience the
most significant performance degradation. The total number of reference words over which word
errors were measured is indicated by ntotal. Altogether there were 198 new words in Sx, yielding
an average of 0.28 (56/198) indirect errors per new word.
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due to adjacent new words were substitutions. 5

Both acoustic and language model contextual effects are responsible for the indirect

new-word errors we observed. Acoustic contextual effects are generally fairly local (e.g.,

within a couple of phonemes). In contrast, language model constraints extend for several

words. Therefore, we were curious to see if the length of language model constraints

had a significant effect on the number of indirect errors due to new words. We ran the

same experiment using two different n-gram language models: a class 2-gram and the

class 4-gram used in the previous experiment.

Figure 5-9 summarizes our findings for the different language models. Even though

we expected that the class 4-gram, with its longer distance constraints, might show a

larger increase in errors due to new words, our experiment did not confirm this hy-

pothesis. The class 4-gram shows better absolute word accuracy due to more powerful

language constraints. These superior constraints help the in-vocabulary parts of the

utterances more than they hurt due to contextual effects near new words. Even when

we examine the error rates on the words adjacent to new words, we see virtually no

difference on the number of indirect new-word errors between the 2-gram and 4-gram

language models (not statistically significant at the 0.05 level). Part of the reason for

this is that, as we explained in Section 5.3.2, in many cases the recognizer substitutes a

word from the same word class as a new word. Because we are using class-conditional

language models, within-class substitutions have no effect on the language model scores

for the rest of the utterance.

5.3.4 Multiple New Words per Utterance

In the previous section we examined direct and indirect errors for utterances that con-

tained only one new word per utterance. Do multiple new words per utterance cause

more severe errors? New words could form sequences, or they could be disjoint. We

address these two cases separately when examining the problems specific to multiple

5Due to the special new-word alignment used for the reduced-vocabulary system, insertions adjacent
to new words were aligned with the new words and not the neighboring in-vocabulary words. Thus,
there were zero insertions for adjacent words.
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sub ins del total
ntotal n 70 n 70 n 70 nl OO

2-gram
baseline 322 20 6.3 8 2.5 4 1.3 32 10.0
reduced 70 21.7 17 5.3 0 0.0 87 27.0

A +50 +15.5 +9 +2.8 -4 -1.3 +55 +17.1
4-gram
baseline 322 9 2.8 10 3.1 2 0.6 21 6.5
reduced 54 16.8 21 6.5 0 0.0 75 23.3

A +45 +14.0 +11 +3.4 -2 -0.6 +54 +16.8

Figure 5-9: Errors adjacent to new words versus language model. Errors measured on words
adjacent to new words in S1. Although the absolute performance is better with the class 4-gram,
there is very little difference in the degradation A between the class 2-gram and class 4-gram.
The total number of reference words over which word errors were measured is indicated by ntotal.

new words per utterance. We performed multiple-new-word experiments on test set

S2+, which contains more than one new word per utterance.

Sequences of New Words

Sequences of new words are similar to single new words in that there is a contiguous

region of an utterance containing out-of-vocabulary words. To the system, a sequence

of new words is indistinguishable from a single new word, except possibly for duration

differences. We might expect that a sequence of new words could cause additional

indirect new-word errors. If a new-word sequence spans a longer region than a single

new word, the recognizer may propose additional in-vocabulary words in its place. The

greater number of words substituted in place of new words might cause additional

language modeling problems in the vicinity of the new words since the language model

context contains a greater number of direct new-word errors. Thus, we might expect

increased indirect new-word errors due to sequences of new words.

We performed recognition experiments on the subset of S2+ in which all new words

formed sequences (i.e., new words were not disjoint within an utterance). This subset,

S2+/,, contained 101 utterances with a total of 202 new words. 6 Table 5-8 summarizes

the direct new words associated with sequences of new words. Table 5-9 shows a sample

of some of the reduced-vocabulary recognizer's hypotheses for sequences of new words.

6There were no sequences of three or more new words in our test set S.
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sub ins del total
ntotal n % n % n % n %

baseline 202 9 4.5 2 1.0 0 0.0 11 5.4
reduced 159 78.7 43 21.3 36 17.8 238 117.8

A +150 +74.3 +41 +20.3 +36 +17.8 +227 +112.4

Table 5-8: Direct new-word errors associated with sequences of new words. The errors are
measured for words aligned directly with the new words in S2+/s. Special new-word alignment
was used for the reduced-vocabulary system's output. The total number of reference words over
which word errors were measured is indicated by ntotal. On average, there were 1.12 (227/202)
direct errors per new word.

new words - substitution

Saint Petersburg -* Pittsburgh
Saint Louis - Philly
Saint Louis -+ serve lunch
Los Angeles -4 Dallas
Los Angeles -4 Logan
Los Angeles -+ Boston
Las Vegas -- what food is
Salt Lake -4 select
Westchester County - less first returning
Love Field -+ leaving
super saver - so December
Nevada Arizona -4 that goes on the

Table 5-9: Sample hypotheses for double new words. This table shows a randomly selected set
of substitutions made by the reduced-vocabulary system for double new words, with the new
words at the left and the hypothesized word(s) at the right.

While some of the substitutions contained more than one (in-vocabulary) word, many of

them contained only a single word. As was the case with single new words (Table 5-7),

some of the substitutions appeared to be motivated more by acoustics and others more

by language constraints. In general, most of the double new words were not treated

differently than single new words, at least in terms of direct new-word errors.

We also examined the indirect errors associated with the sequences of new words

in S2+/s, summarized in Figure 5-10. As with single new words (Figure 5-8), the error

rate of all non-new words did not increase very much, up only 1.9% (factor of 1.2), with

a smaller increase than we saw with single new words. Words after sequences of new

words were adversely affected more than words before, but not by a wide margin. Again,

with sequences of new words, the most affected in-vocabulary words were those adjacent
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20 -

15

10 -

5 .

baseline reduced baseline reduced baseline reduced baseline reduced
non-new before after adjacent

sub ins del total
ntotal n % n % n % n %

non-new
baseline 803 31 3.9 17 2.1 17 2.1 65 8.1
reduced 45 5.6 29 3.6 6 0.7 80 10.0

A +14 +1.7 +12 +1.5 -11 -1.4 +15 +1.9
before
baseline 607 23 3.8 7 1.2 15 2.5 45 7.4
reduced 24 4.0 22 3.6 5 0.8 51 8.4

A +1 +0.2 +15 +2.5 -10 -1.6 +6 +1.0
after
baseline 196 8 4.1 10 5.1 2 1.0 20 10.2
reduced 21 10.7 7 3.6 1 0.5 29 14.8

A +13 +6.6 -3 -1.5 -1 -0.5 +9 +4.6
adjacent
baseline 153 9 5.9 1 0.7 2 1.3 12 7.9
reduced 25 16.3 11 7.2 0 0.0 36 23.5

A +16 10.5 +10 +6.5 -2 -1.3 +24 +15.7

(b)

Figure 5-10: Indirect errors due to sequences of new words. The indirect errors are given for the
test set 82+/,. Similar to the case of single new words, the largest degradation in performance
is on the words adjacent to the new word sequences. Altogether, there were 202 new words in
S2+/s, yielding an average of 0.07 (15/202) indirect errors per new word.
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sub ins del total
ntotal n % n % n % n %

baseline 1,218 36 3.0 7 0.6 13 1.1 56 4.6
reduced 1,052 86.4 162 13.3 309 25.4 1,523 125.0

A +1,016 +83.4 +155 +12.7 +296 +24.3 +1,467 +120.4

Table 5-10: Direct new-word errors associated with disjoint new words. The errors are measured
for words aligned directly with the new words in S2+/d. Special new-word alignment was used
for the reduced-vocabulary system's output. The total number of reference words over which
word errors were measured is indicated by ntotal. On average, there were 1.20 (1,467/1,218)
direct errors per new word.

to new words. The error rate on adjacent new words increased by 15.7% (factor of 3).

Thus, sequences of new words have approximately the same effect on performance as

single new words. The added length of out-of-vocabulary regions due to sequences of

new words does not appear to cause a significant increase in indirect new word errors

compared to single new words.

Disjoint New Words

While sequences of new words had an effect on recognizer performance similar to that

of single new words, we might expect disjoint new words to have a more pronounced

effect. Disjoint new words are out-of-vocabulary words that have in-vocabulary words

between them. With more than one region of an utterance containing out-of-vocabulary

words, the potential for misrecognition is increased.

We performed recognition experiments on the subset of S2+ in which there were at

least two disjoint new words. This subset, S2+/d, contained 466 utterances with a total

of 1,218 new words (2.6 new words per utterance on average).7 Table 5-10 summarizes

the direct errors associated with disjoint new words. Overall, the increase in word-error

rate is similar to that of single new words. Similarly, the number of word errors per new

word, 1.20, is similar as well. We conclude that as far as direct errors are concerned,

disjoint new words are no worse than single new words.

Figure 5-11 summarizes our findings on indirect errors caused by disjoint new words.

7We consider the utterance "Find me all the flights from Milwaukee to St. Louis," with three new
words set off with italics, to belong to S2+/d even though it does contain two new words in sequence.
The defining characteristic of the disjoint set of utterances is that it contains at least on in-vocabulary
word surrounded by new words.
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Overall, we found that the error rate on all in-vocabulary words increased by 8.5% (factor

of 2.3). This increase was significantly larger than that for either single or sequences of

new words. We found that recognition of words adjacent to new words was again severely

affected, with an increase in word-error rate of 24.4% (factor of 6.6). This performance

degradation was again more severe than for single or consecutive new words. Examining

the words between new words revealed where the additional errors due to disjoint new

words occurred. Words between new words were misrecognized more than any other

class of words; their error rate increased by 32.7% (factor of 6.4).

We suspected that the general form of utterances containing at least two disjoint

new words may have been strongly influenced by the ATIS task and by our selection of

simulated new words. Since over one third of ATIS utterances contain a phrase of the

form "city-name to city-name" and most of our new words were city names, we would

expect that many of our utterances containing disjoint new words would follow this

form. In S2+/d, we found that fully 71% of the utterances were of the form "new-word

to new-word". Thus, our set of disjoint new words may not be representative of what we

might see in other tasks. In our experiment, 54% of between words were the word "to."

Since this is a short function word, we might hypothesize that part of the reason between

words perform so poorly is that they are dominated by the word "to," which may be

poorly recognized by the system regardless of the presence of new words. However,

we examined the baseline system's performance on the word "to" and found that the

word-error rate on "to" was only 3.2% over all S, compared to the overall word-error

rate of 8.1%. In other words, "to" is recognized much better than the average word

by the baseline system. Therefore, we concluded that recognition of "to" is severely

affected when it is surrounded by new words. Because it is a short word, it seems that

the system often "absorbs" the word into its hypotheses for the nearby new words.

5.3.5 Summary of Recognition Errors Caused by New Words

In summary, we performed carefully controlled experiments in which we used a baseline

system that encountered no new words and a reduced-vocabulary system that did so

that we could compare system performance on the same set of utterances. This allowed
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baselinEreduced baselinereduced baselinereduced baselinereduced baselinereduced
non-new before between after adjacent

(a)

sub OY ins del total- w - u - O
ntotal70 % n 70' n n 70

non-new
baseline 4,009 163 4.1 77 1.9 32 0.8 272 6.8
reduced 454 11.3 142 3.5 17 0.4 613 15.3

A +291 +7.3 +65 +1.6 -15 -0.4 +341 +8.5
before
baseline 2,429 87 3.6 26 1.1 17 0.7 130 5.4
reduced 131 5.4 70 2.9 12 0.5 213 8.8

A +44 +1.8 +44 +1.8 -5 -0.2 +83 +3.4
between
baseline 740 21 2.8 17 2.3 7 0.9 45 6.1
reduced 243 32.8 43 5.8 1 0.1 287 38.8

A +222 +30.0 +26 +3.5 -6 -0.8 +242 +32.7
after
baseline 840 55 6.5 34 4.0 8 1.0 97 11.5
reduced 80 9.5 29 3.5 4 0.5 113 13.5

A +25 +3.0 -5 -0.6 -4 -0.5 +16 +1.9
adjacent
baseline 1,303 34 2.6 20 1.5 3 0.2 57 4.4
reduced 297 22.8 78 6.0 0 0.0 375 28.8

A +263 +20.2 +58 +4.5 -3 -0.2 +318 +24.4

(b)

Figure 5-11: Indirect errors due to disjoint new words. The indirect errors are given for the
test set S2+/d. The largest performance degradations were for in-vocabulary words between new
words, followed by in-vocabulary words adjacent to new words. Altogether there were 1,218 new
words in S2+/d, yielding an average of 0.20 (242/1,218) indirect errors per new word.
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A%
S non-new +3.8

before +0.3
between +8.7
after -0.2
adjacent +22.2

S1 non-new +3.8
before +4.1
after +3.3
adjacent +16.8

S2+/s non-new +1.9
(sequence) before +1.0

after +4.6
adjacent +15.7

S2+/d non-new +8.5
(disjoint) before +3.4

between +32.7
after +1.9
adjacent +24.4

Table 5-11: Summary of indirect new-word errors. A% indicates the difference between the
reduced-vocabulary and baseline systems' total word-error rates.

us to analyze the errors that were due solely to the introduction of simulated new

words by the reduction of the baseline vocabulary. Over all evaluation utterances in

the full evaluation set S, we found that there were 1,618 new words. Comparing the

performance of the reduced-vocabulary and baseline systems, we found a total of 2,368

errors (out of 12,707 reference words) attributable solely to the reduction in vocabulary.

The overall word-error rate on the S utterances was 26.7% versus 8.1% for the baseline

system, a significant increase. On average, the reduced vocabulary system experienced

an increase of 1.46 errors per new word. Breaking this down into direct and indirect

errors, we found 1.20 (1,936/1,618) direct and 0.27 (432/1,618) indirect errors per new

word.

Table 5-11 summarizes the increase in word-error rate on the in-vocabulary words

(i.e., indirect errors). We found that even one new word could have a significant negative

effect on recognition, with performance on in-vocabulary words adjacent to it being the

most affected. Overall, we found no significant difference in performance degradation

for words before and after new words.
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We found that sequences of new words caused indirect errors at similar levels to iso-

lated new words. Therefore, new word sequences can be thought of essentially as single

new words, perhaps with longer durations. When we examined utterances containing

disjoint new words, utterances in which there were in-vocabulary words surrounded by

new words, we found that the number of indirect new word errors increased substan-

tially. Although words adjacent to new words were once again adversely affected, words

between new words suffered the greatest increase in performance degradation.

5.4 Search Complexity and New Words

In Section 5.3.1 we examined recognition errors caused by the occurrence of new, out-

of-vocabulary words. However, not only do new words increase the number of system

errors (e.g., word-error rate), they also increase the computation complexity of the

recognition search. The primary reason for both increases is that the system (without

explicit new-word modeling/detection capabilities) is forced to model the acoustics of

new words with arbitrary combinations of in-vocabulary words. Typically, there are a

large number of in-vocabulary words "competing" to fill the region where a new word

occurs, none of them being a clear winner.

In Section 4.4.2 we introduced diagnostic tools based on our word graph representa-

tion. We explained that the word graphs we compute represent a recognition "history,"

in that they contain all word hypotheses (word labels, scores, and time alignments) that

are explored during our A* N-best search or our A* word graph search. Because they

show the history of the recognition search, we can examine the computational demands

of the search empirically by examining word graphs.

One of the tools we introduced in Chapter 4 was the word lattice display. Figure 5-12

shows a word lattice for an utterance containing a new word, and Figure 5-13 shows an

utterance that is entirely in-vocabulary. (See Section 4.4.2 for details on the computation

of word lattice displays.) The word lattices show word hypotheses, their time spans, and

the combination of their acoustic and lexical scores. The vertical axis is acoustic/lexical

score, and the horizontal axis is time. By comparing Figure 5-12 and Figure 5-13, it is
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Figure 5-12: Word lattice for utterance containing an out-of-vocabulary word. In this example,
the word "Chicago" is a new word and is responsible for a large number of word competitors. In
the word lattice, the vertical axis represents the acoustic/lexical score, and the horizontal axis
represents time.
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Figure 5-13: Word lattice for an utterance containing only in-vocabulary words. In the word
lattice, the vertical axis represents acoustic/lexical score, and the horizontal axis represents time.
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total edges edges/second

So 1,248 390
S 1  5,969 1,441

-2+ 12,671 2,374

Table 5-12: Word graph complexity by test set. The second column displays the geometric mean
for the number of total word graph edges. The third column displays the geometric mean for
the normalized number of word graph edges (edges/second).

clear that new words can greatly increase the number of word hypotheses, particularly in

regions near them. For the new word "Chicago," there are over 30 in-vocabulary words

competing with one another at the specified relative score threshold 0 = 300. (The

recognizer's first-choice hypothesis for the words "in Chicago" was "interested four.")

5.4.1 Overall Increase in Computation Due to New Words

In order to gauge the overall increase in computation due to the occurrence of new

words, we measured statistics on the word graphs of all utterances in our full evaluation

set S. Because the time required to compute word graphs is approximately proportional

to the number of word edges contained in them, we used this number as a measure for

computation time.

Table 5-12 displays the geometric means number of edges per utterance and number

of edges per second for the evaluation sets So, S1, and 82+. Because the average utter-

ance length increased over So to S1 to 82+, we felt that the edge counts normalized by

utterance length (i.e., edges per second) were more meaningful for comparison purposes.

Clearly, utterances that contain new words result in larger, more computationally ex-

pensive word graphs. This indicates that computation time increases substantially when

new words are present. In our experiment, utterances in S1 required more than three

times the computational effort per second as utterances in So. This increase is due to

the increased number of word hypotheses competing with one another in the recognition

search, which in turn is due to the recognizer's difficulty in modeling the acoustics of

new words using in-vocabulary words.

8We chose the geometric mean since the number of word edges has a distribution that is nearly
log-normal.
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Figure 5-14: Distribution of number of word graph edges per second by test set.

Because there is a large utterance-to-utterance variation in the computational re-

quirements, we also examined the distribution of number of edges per second. Fig-

ure 5-14 shows the estimated probability densities' for number of edges per second for

the sets So, S1, and S2. Utterances in So, which contain no new words, are computa-

tionally far less demanding the those in S1 and S2. Not only is the edge rate low for

So, the variance on the edge rate is also relatively low, as compared to the means and

variances for S, and S2+ utterances. In general, the more new words per utterance, the

greater the mean and variance on the amount of computation.

5.4.2 Dependence on Position of New Words

We demonstrated that new words are responsible for increased computational com-

plexity during the recognition search. The more new words there are in an utterance,

particularly when they are disjoint, the more word hypotheses that the search has to

consider. We were curious to see if the amount of computation was dependent on the

9The densities were estimated non-parametrically using a Gaussian smoothing window.
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Figure 5-15: Dependence of computational complexity on new-word position. This plot shows
the scatter plot of word graph edges per second versus new-word position for utterances in S1.
The position of a new word is represented by a single normalized time value t' = (tl + t2)/2d,
where tj and t2 are the endpoints of the word and d is the duration of the utterance. This value
t' represents the normalized time of the midpoint of the new word. The four horizontal lines
indicate the geometric mean number of edges per second for each of the four quartiles based on

position of new words within utterances. Do new words near the beginning of utter-

ances cause more or less computational complexity compared to new words near the

end of utterances? Depending on the direction and organization of the search, we might

hypothesize that the position of new words has an effect on computation time.

We performed an experiment to study the dependence of computation on new-word

position. Again, we used number of word graph edges per second as our measure of

computation time. Figure 5-15 shows, as a scatter plot, the number of edges per second

versus new-word position for the set of utterances containing exactly one new word

per utterance, S1. New-word position is represented by the time midpoint, normalized

by utterance duration. We have overlayed the geometric mean number of edges per

second for four separate regions of the utterances. The four regions were determined

by the quartiles of normalized new-word position. Overall, there appears to be very
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little, if any, dependence of computation time on new-word position. New words at the

beginning of utterances require approximately the same amount of computation as new

words at the middle or end of utterances.

This lack of dependence on new-word position should not be surprising. The fact

that we are using word graphs means that variability of recognizer hypotheses (e.g.,

due to a new word) at all points of the search can be represented efficiently. Since the

recognition search space is not unfolded into a tree in the word graph computation,

variability near the beginning of the search is no worse than variability near the end

of the search. In contrast, if the search space were unfolded into a tree (e.g., with the

A* N-best search, see Section 4.2) then variability near the root of (the search tree

would result in duplicate path extensions throughout the rest of the search. In the

case of a search tree, variability near the root is worse than variability near the leaves.

Theoretically and empirically, the position of new words within an utterance has little

effect on the computational complexity of generating a word graph.

5.4.3 Active-Word Counts and their Correlation with New Words

In Section 4.4.2 we presented a novel measure of word hypothesis competition during

search called the active-word count. This count can be computed for each time slice

within a word graph and represents the number of distinct words from the system's

vocabulary that are active at that particular time. By active, we mean that the words

are competitive during the search because their score is above a specified relative score

threshold 0.

Figure 5-16 shows the active-word counts for an utterance containing an out-of-

vocabulary word. As described in Section 4.4.2, the active word count is computed for

each time slice by counting the number of distinct words associated with word graph

edges that cross it. The figure shows that the number of distinct words active in the

search tends to be higher in the vicinity of new words. Examining many such plots,

we observed that the active-word counts tended to be higher in utterances containing

new words. In addition, peaks or rapid increases in the number of active words tend to

occur near new words. Based on these observations, we hypothesized that the active-
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Figure 5-16: Active-word counts for an utterance containing a new word. In this example, the
word "Chicago" is a new word and is responsible for a large number of word competitors. The
active-word count is plotted for two different relative score thresholds 0 (300 and 800).

Iii I . . . . . . . . . . . . . . . . .-' ' -'-' '



I .1

140 CHAPTER 5. A RECOGNIZER-BASED STUDY
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Figure 5-17: Distribution of active-word counts versus new-word distance. The density of the
active-word count is given for three sets of words in S1: new words (Do), words adjacent to new
words (D• ), and words with at least one word between them and the nearest new word (D 2+).

word count might be a useful feature for new-word detection.

We performed a simple experiment to examine the correlation between high active-

word counts and the occurrence of new words without actually detecting new words.

For each reference word in Si, we computed the time-average active-word count and

the distance, measured in number of reference words, from the nearest new word. We

then divided the words into three groups: Do, those with new-word distance zero (i.e.,

new words); D1, those with distance one; and D2+, those with distance greater than

or equal to two. We examined the distribution of the active-word count for each group

to see if it was dependent on proximity to new words. Figure 5-17 shows the active-

word distributions for each of the three word groups. It shows that the active-word

counts associated with new words (Do) tend to be the highest, followed by the counts

associated with adjacent words (D• ). Words a distance of at least two words from new

words (D2+) show the lowest active-word counts. The means are 113, 55, and 15 for Do ,

D1, and D2+, respectively. The variances on these counts are relatively large as evident
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in the distributions shown in Figure 5-17.

Although new-word detection per se is beyond the scope of this thesis, we have

demonstrated that the active-word count may be a useful feature for detection because

it is correlated with the location of new words. We have observed that recognizer

"confusion," as measured by the number of word edges or number of active words,

increases in the vicinity of out-of-vocabulary words. Measuring this confusion could aid

in detecting new words. We leave this for future work.

5.5 Learning New Words: Training Issues

In Sections 5.3 and 5.4 we examined the effect of new words on recognition in terms

of performance degradation and computational complexity. Combined with the lexi-

cal, phonological, and linguistic study of Chapter 2 we hope these results will lead to

improved methods for detecting new words.

Even after new words are detected, either automatically or through user interven-

tion, we are still faced with the problem of incorporating new words into a system's

vocabulary, or learning them. After all, a user may want to continue to use a new word

and have the system treat it as if it were a part of its regular vocabulary. Adding a

word to a system's vocabulary may involve the updating of several major recognition

and understanding components because the system's knowledge of a word (e.g., how it

is pronounced, how it can be used within the language, and what it means) is spread

throughout a system's models. Many or all of the various system models may need

updating in order to incorporate new words.

In this section we examine issues related to learning or incorporating new words

within the SUMMIT continuous-speech recognition system. The major system compo-

nents that are most likely to require updating when learning new words are:

1. the acoustic models,

2. the lexical (pronunciation) models,

3. the language models, and

141



I I

142 CHAPTER 5. A RECOGNIZER-BASED STUDY

4. the language models (e.g., grammar and meaning representations) associated with

the natural language component.

In Section 5.5.1, we examine the importance (or lack thereof) of updating context-

independent acoustic models. In Section 5.5.2, we examine the creation of lexical models

for new words within the SUMMIT system without the need for training data containing

the new words. Finally, in Section 5.5.3 we examine the process of adding new words

to the language models used for recognition. We do not examine issues related to

adding new words to a natural language component in this thesis. Overall, the primary

goal is to determine characteristics of the above models that are helpful for new-word

incorporation and to quantify how updating these models affects performance, both on

words in the original system vocabulary and on newly learned words.

Our research was conducted within the context of a single system, the SUMMIT

system, so that we could make controlled comparisons. Because we already had a

system, the baseline system, that was fully trained on our simulated new words, we could

use its performance on the new words as an upper bound on how well our particular

new words could be learned. In our experiments, we examined the three sets of models,

the acoustic models, the lexical models, and the n-gram language models, separately.

The goals were to determine for which components retraining was most important and

to determine features of the various components that aid in the incorporation of new

words.

5.5.1 Acoustic Models

One reason for using sub-word units in acoustic modeling is that the units are shared

among words. If the set of units is complete (e.g., all phonemes are represented) we

should, in principle, be able to model any new word using them. The most common

sub-word units used in current speech recognition systems are context-independent and

context-dependent phonetic units.

In our experiments, we used only the context-independent phonetic models of the

SUMMIT system. We would expect that context-independent phonetic models enable

easy new-word learning. Because the models are context-independent, they are shared
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by a large number of words in the system vocabulary. Because of this sharing, we would

expect that such models would not be greatly affected (improved) by the addition of

a relatively small amount of training data for new words to be learned. Therefore,

we expected that training on examples of new words would not improve performance

significantly.

To test this hypothesis, we conducted a controlled experiment using three systems: a

baseline system, a test system, and a control system. The three systems differed only in

their acoustic models. The baseline system's acoustic models were trained fully on the

new words and was used as a yardstick by which to measure the shortfall in performance

of the test system. The test system's acoustic models were trained on utterances that

did not contain any of the new words. This selection of utterances based on vocabulary

reduced the training set by about 17%. The control system's acoustic models were

trained on utterances that contained the new words, but the size of the training set was

comparable to that of the test system. (See Table 5-4 for the sizes of the three training

sets.) All systems shared the same large vocabulary, lexical models, and language model

(class 4-gram).

Figure 5-18 summarizes the recognition performance of the three systems over the

full test set S. The performances were measured three ways: over all words, over all new

words (i.e., the words being learned), and over all non-new words. Overall, the word-

error rates for the three systems were comparable, averaging 8.3%. However, when we

examined the performance on only the new words being learned, we found that the

error rate for the test system was 4% worse (factor of 1.8 times higher) than for the

baseline system. Training the context-independent acoustic models with examples of

the new words (in the baseline system) reduce the error rate. Thinking that the better

performance of the baseline system could have been due to the larger training set size,

we compared the performance of the test system to that of the control system, which was

trained on approximately the same number of utterances as the test system. However,

the performance of the control system was virtually identical to that of the baseline

system, both overall and on new words only.

We were disturbed by the result that lack of new word training data could have such
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A +64 +0.5 +14 +0.1 +36 +0.3 +102 +0.8
control 603 4.8 265 2.1 134 1.1 1,002 7.9
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new
baseline 1,618 61 3.8 11 0.7 13 0.8 85 5.3
reduced 114 7.1 22 1.4 13 0.8 149 9.2

A +53 +3.3 +11 +0.7 +0 +0.0 +64 +4.0
control 60 3.7 16 1.0 9 0.6 85 5.3

A -1 -0.1 +5 +0.3 -4 -0.2 +0 +0.0
non-new
baseline 11,089 579 5.2 236 2.1 123 1.1 938 8.5
reduced 590 5.3 239 2.2 147 1.3 976 8.8

A +11 +0.1 +3 +0.0 +24 +0.2 +38 +0.3
control 543 4.9 249 2.3 125 1.1 917 8.3

A -36 -0.3 +13 +0.1 +2 +0.0 -21 -0.2

(b)

Figure 5-18: Importance of updating acoustic models. The increase in errors due to the reduced-
vocabulary acoustic models as compared to the fully trained baseline acoustic models. The
reduced-vocabulary models were not updated in any way.
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a large effect on context-independent acoustic models. We thought that such models

would be relatively insensitive to the vocabulary in use. Therefore, we examined the

training of the baseline and reduced-vocabulary models in detail and discovered the

reason for the large performance difference: a few of the models were very poorly trained

due to sparse data in the reduced-vocabulary system, and these models were required in

order to model some of the new words. Specifically, for the female model of [oY], there

were zero examples in the reduced-vocabulary training set. For the male models of [oy]

and [ý], the reduced-vocabulary training set contained 80% fewer examples compared to

the baseline-vocabulary training set.10 These differences in number of training tokens

are very large and unexpected for context-independent acoustic modeling.

In order to eliminate the effects of these particularly poorly trained models, we re-

evaluated the baseline, reduced-vocabulary, and baseline-vocabulary control systems on

the subset of the S utterances that did not contain new words requiring these models.

All together we discarded a total of 588 utterances from S that required [oy] or the male

[i], yielding 861 utterances for evaluation. Figure 5-19 summarizes the performances of

the three systems evaluated on the reduced test set. Clearly, the performance difference

between the baseline acoustic models and the reduced-vocabulary acoustic models is

significantly reduced, leading us to believe that the [oy] and [p] models had a significant

effect on the degradation that was evident in Figure 5-18.

This failure of the reduced-vocabulary models brings up an interesting point. While

we might expect a set of context-independent models to be relatively vocabulary-

independent, this expectation depends on having a set of adequately trained models

to begin with. In our case, the reduced-vocabulary acoustic models were trained on ut-

terances with a vocabulary of at most 1,326 words. Even with a vocabulary of this size

and nearly 17,000 training utterances, it is possible for some of the rare phonetic units

to be inadequately trained. Clearly, if we intend to build a system that is capable of

incorporating new words we must ensure that all relevant context-independent acoustic

models are properly trained. One way we could accomplish this would be to supplement

o1[oY] is the vowel in "boy," and [p] is a syllabic [n] that might occur at the end of "cotton" (i.e.,
[haepDpq] instead of [hpaepan]).
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(b)

Figure 5-19: Updating acoustic models (revised). Utterances in S requiring [oY] or male [q]
context-independent acoustic models were discarded.
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the task-specific training data with some general, non-task-specific data such as from

the TIMIT utterances. In our case, we could have added training tokens of [oy] and

[i] to train these models when the task-specific training data was insufficient for these

models. Therefore, taking some minor precautions when training a system's acoustic

models could improve its ability to incorporate new words.

Because we did not perform any experiments with context-dependent acoustic mod-

els, we can only speculate about how important retraining them is during new-word

learning. Context-dependent modeling is known to be prone to sparse data problems.

Often there is not enough training data available to adequately model all distinct (pho-

netic) contexts. Furthermore, the set of context-dependent models of a system may not

include all those needed for previously unseen new words. If there are missing context-

dependent models, or the models are not adequately trained, training on new-word

examples could improve performance. Without actually performing experiments with

context-dependent models, we cannot quantify the importance of updating context-

dependent acoustic models when learning new words.

5.5.2 Lexical Models

When adding new words, lexical or pronunciation models for them must be added to

the system. Depending on how the recognition system models word pronunciation,

adding the pronunciation for a new word could be as simple as entering a base-form

pronunciation (e.g., phonemic string) or as complex as constructing a pronunciation

graph with transition probabilities or weights. The SUMMIT system falls into the

latter category, but the complicated pronunciation models for new words can be added

without any training on examples of the new words.

In general, a base-form pronunciation for a new word usually is needed to construct

pronunciation models and can be generated in several ways including:

9 by hand;

' by dictionary lookup;

147



I I

148 CHAPTER 5. A RECOGNIZER-BASED STUDY

* by performing phonetic recognition on utterances of the new word;"n

* by using a text-to-speech system; or

* by some combination of the above (e.g., the work of Asadi et al. [3-5]).

In the SUMMIT system, we start with a phonemic base-form, which could be entered by

hand or obtained from a dictionary. Then, a set of phonological rules is applied which

transforms the phonemic string into a phonetic graph. In the corrective training stage of

SUMMIT, the arc weights on the phonetic graph are updated, requiring samples of the

word in the training set. We evaluated how well the SUMMIT system could incorporate

lexical models of new words without any examples of them for training. The only parts

of SUMMIT's lexical models that require training data are the arc weights. If we set

the arc weights for new words to be zero (or any suitable constant), we do not require

any utterances of new words.

We used two systems for our experiment: a baseline system and a test system, that

differed only in their lexical models. The baseline system was the system fully trained

on the new words. The test system was the same as the baseline system except that

the lexical arc weights associated with the new words had been set to zero. Thus, the

lexical models of the test system could have been derived in the absence of new word

examples.

Figure 5-20 summarizes the performance results of the baseline and test systems on

the full test set S. Overall performance was virtually identical between the two systems.

Over the new words only, the word-error rate increased by only 0.4% (factor of 1.1).

Evidently, the lexical arc weights were unimportant for the new words. Training the

lexical models on examples of the new words, as in the baseline system, did not improve

performance significantly. These results suggest that we do not need to worry about

computationally expensive corrective training when adding new words.

The insignificance of the lexical arc weights during the incorporation of new words

surprised us. Overall, the addition of arc weights in general to the SUMMIT system has

"Using phonetic recognition to derive a pronunciation obviously requires spoken utterances of the
new word to be collected.
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Figure 5-20: Updating lexical models.
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resulted in significant improvement in performance [75]. However, there is a possible

explanation for why we found very little improvement with the arc weights for new

words. Words that were frequent (e.g., "to," "from," "flights," and "the," the most

frequent words in ATIS) were more likely to benefit from the corrective training of the

arc weights. These words occurred more often in the training set and thus were more

involved in the corrective training algorithm. Relatively infrequent words, such as our

simulated new words, did not enter into the corrective training process as often because

of their low frequency. Thus, the lexical arc weights of infrequently occurring words

may not deviate from zero as much as those in more common words.

5.5.3 Language Models

Language models are a critical part of speech recognition systems because they provide

strong constraints on word sequences. In order to add a new word to a system, the

language model must be updated in a way that allows the word to be a part of allowable

word sequences. Not only must the new word be enabled by a language model, but

the probabilities involving the new word must be high enough that the word is not

penalized too severely with respect to others in the vocabulary, because the language

model's probabilities can have a large impact on recognizer scores. If a language model

is not updated appropriately when a new word is added, that word may not ever be

included in the recognizer's top choice.

In general, n-gram language models contain a great number of probability estimates,

particularly for n > 2. If the language model is a word n-gram, where the probability

for a given word depends on the identity of the preceding n - 1 words, the number of

probabilities can be very large indeed, requiring an enormous set of training text to

estimate them. If we want to add a new word to such a model, we are faced with a

problem: how do we estimate the needed probabilities associated with the new word if

we have little or no text containing the new word. Jelinek et al. [34] presented a method

requiring a few pieces of text containing the new word. Their technique involved finding

"statistical synonyms" for the new word, and basing the probabilities for the new word

on the statistical synonyms.
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However, if a class n-gram model is employed, the task of adding a new word

is simplified whenever the word belongs to a pre-existing word class. In a class n-

gram model, words are collapsed into classes (which are generally syntactically and/or

semantically motivated). If we want to add a new word to a class n-gram, and the word

belongs to a class that is modeled in the language model, then our task is significantly

easier than were we adding the word to a word n-gram. In the SUMMIT system,

which uses class n-gram language models, adding a new word to an existing class is

straightforward:

* the word is added to the appropriate class and

* the unigram class-conditional probabilities (i.e., P(word I class)) for the appropri-

ate class are updated.

Adding a word to a class is trivial if we know its class; we simply add it to the list of

words for the class. Updating the class-conditional unigram word probabilities can be

more difficult. The optimal way to set these probabilities is by observing a (large) set

of training text and counting the number of times that a class is represented by the

particular new word.

However, in the absence of training text containing the new word, we can still update

the class-conditional unigram probabilities in an ad hoc fashion. For example, to add a

new city name, we could set the new city name's class-conditional unigram probability

to be the minimum or average probability for words in the class. The advantage of the

class n-gram language model for incorporating new words is that only one probability

needs to be estimated for each new word: its class-conditional unigram probability.

The myriad of n-gram probabilities (that depend on a large number of sequences of

words) do not need to be updated because the class mechanism shares the probabilities

for contexts. Of course, if a new word does not belong to an existing word class, the

problem of adding it to the language model is similar to the problem of adding it to a

word n-gram. Because the word cannot be added to an existing class, it cannot share

the contextual probabilities of an existing class.

We performed a series of experiments to evaluate how well new words could be added
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to SUMMIT's class n-gram language models. We used four systems: a baseline system,

the test-1 system, the test-2 system, and a control system. The systems differed only in

the particular class 4-gram language model used. The baseline system was the system

fully trained on the new words. The test-1 and test-2 systems were both trained on the

reduced-vocabulary training set. The test-1 system set the class-conditional unigram

probability for the new words to the minimum value for the appropriate classes. In

contrast, the test-2 system set the class-conditional unigram probability to the average

value. Finally, the control system was trained on the new words, but the training set

size was comparable to the size of the reduced-vocabulary training set used for the test-1

and test-2 systems. The control system served as a control for training set size.

New words that did not belong to the pre-existing word classes were modeled crudely

within the language model. The 6-smoothing mechanism (Section 3.6), which smoothes

the interpolated class n-gram probabilities with uniform unigram word probabilities,

was used to assign probabilities for the words that did not fit into classes. With the

value 6 = 0.02 used, the probability of all words was at least J6/•VII, where I•IVJ = 2,461

was the size of the vocabulary. New words that belonged to classes were modeled better

than those that did not, but probabilities could be assigned to all new words.

Figure 5-21 summarizes the performances of the baseline, test-1, test-2, and control

systems evaluated on the full test set S.Compared to the baseline system, the test-1 and

test-2 systems had worse overall word-error rates. The error rate for test-1 was 2.4%

(factor of 1.3) worse, and that of test-2 was 1.2% (factor of 1.1) worse. On the set of new

words, the test-1 and test-2 systems were significantly worse than the baseline system,

with error rates 11.1% (factor of 3.1) and 3.9% (factor of 1.7) higher than the baseline

system, respectively. This indicates that the new words are not modeled in the language

model nearly as well as the non-new words. The test-2 system, with its higher class-

conditional unigram probabilities for the new words, did perform much better than the

test-1 system on the new words. We felt that part of the explanation for the relatively

poor performance of the test-1 and test-2 systems was due to the reduced training set

size. However, examination of the performance of the control system revealed that only

a small part of the degradation was likely due to the reduction in training set size. The
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baseline test-1 test-2 control baseline test-1 test-2 control baseline test-1 test-2 control
all new non-new

sub ins- R del total
ntotal n f 70• n Y7o n O70

all
baseline 12,707 640 5.0 247 1.9 136 1.1 1,023 8.1
test-1 855 6.7 282 2.2 188 1.5 1,325 10.4

A +215 +1.7 +35 +0.3 +52 +0.4 +302 +2.4
test-2 729 5.7 259 2.0 184 1.4 1,172 9.2

A +89 +0.7 +12 +0.1 +48 +0.4 +149 +1.2
control 671 5.3 256 2.0 149 1.2 1,076 8.5

A +31 +0.2 +9 +0.1 +13 +0.1 +53 +0.4
new
baseline 1,618 61 3.8 11 0.7 13 0.8 85 5.3
test-1 214 13.2 33 2.0 17 1.1 264 16.3

A +153 +9.5 +22 +1.4 +4 +0.2 +179 +11.1
test-2 98 6.1 15 0.9 35 2.2 148 9.1

A +37 +2.3 +4 +0.2 +22 +1.4 +63 +3.9
control 73 4.5 13 0.8 14 0.9 100 6.2

A +12 +0.7 +2 +0.1 +1 +0.1 +15 +0.9
non-new
baseline 11,089 579 5.2 236 2.1 123 1.1 938 8.5
test-1 641 5.8 249 2.2 171 1.5 1,061 9.6

A +62 +0.6 +13 +0.1 +48 +0.4 +123 +1.1
test-2 631 5.7 244 2.2 149 1.3 1,024 9.2

A +52 +0.5 +8 +0.1 +26 +0.2 +86 +0.8
control 598 5.4 243 2.2 135 1.2 976 8.8

A +19 +0.2 +7 +0.1 +12 +0.1 +38 +0.3

(b)

Figure 5-21: Updating the language model. The test-1 language model had class-conditional
word unigram probabilities P(w I c(w)) set to the minimum value for the class c(w), whereas
for test-2 they were set to the average value.
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control system performed only slightly worse than the baseline system despite having a

17% smaller training set.

Even though the nature of the class 4-gram language model made adding most of the

words straightforward, the shortfall in performance of the test-1 and test-2 systems is

evidence of the importance of a well-trained language model. However, we were able to

incorporate new words into our class 4-gram model without any training text containing

them. Because the class nature of a class n-gram language model shares much of the

contextual information, we were able to add new words that fit into the predefined

classes simply by adding them to the class list and setting a single class-conditional

unigram probability. We saw that how this probability is set can have a large impact on

performance as evidenced by the performance difference of the test-1 and test-2 systems.

However, the problem of finding a suitable class-conditional unigram probability for a

classified word is considerably easier than estimating contextual probabilities for words

in a non-class n-gram language model. Words that did not fit into classes were assigned

the context-independent probability J5/1VI I. However, for the set of simulated new words

used in this study, 76% of them fit into the predefined word classes. Weighted by word

frequency, fully 97% fit into classes. Thus, we did no have to rely on the crude context-

independent uniform unigram probability very often. Therefore, we find that the class

n-gram language model enables new-word incorporation with reasonable performance

when new words fit into predefined word classes.

5.5.4 Summary of Learning Issues

In this section we examined how well our system could incorporate new words without

any training data containing them. Specifically, we examined the vocabulary inde-

pendence of context-independent acoustic models, how well untrained pronunciation

models for new words performed, and how well we could update the class 4-gram lan-

guage model. We found that each of these three sets of models could be used directly

or updated in order to recognize new words with reasonable levels of success without

retraining on any spoken utterances of the new words.

Table 5-13 shows the word-error rates for the different system configurations. Word-
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acoustic lexical language S S S' S'
models models models all new all new

B B B 8.1 5.3 9.1 7.5
R R R 26.7 125.0 19.8 132.8
R B B *8.9 *9.2 9.1 8.6
B R' B 8.1 5.6 9.1 7.5
B B R' 9.2 9.2 9.9 8.8
R R' R' *10.8 *16.3 10.0 12.0

Table 5-13: Summary of learning new words. Word-error rates (%) were evaluated for all
words and new words only over two test sets, S and S'. S is the full test set, and S' is the
reduced test set that does not require the poorly trained [oY] and male [p] acoustic models.
Error rates marked with (*) were affected by the poorly trained acoustic models. In the table,
B indicates baseline (fully trained) models, R indicates reduced-vocabulary models, and R'
indicates updated reduced-vocabulary models. Thus, BBB is the full baseline system, RRR is
the original reduced-vocabulary system, and RR'R' is the reduced-vocabulary system with new
words incorporated.

error rates are given over all words and over just new words, for two different test sets,

S and S'. S is the full test set, and S' is the reduced test set that does not require the

poorly trained [oy] and male [i] models.

In the table, B indicates baseline models, R indicates reduced-vocabulary models,

and R' indicates updated reduced-vocabulary models. The top row (BBB) is the base-

line system that is fully trained on the set of new words. The second row (RRR) is the

original, reduced-vocabulary system that experiences new words. The next three rows

(RBB, BR'B, and BBR') are the systems one original or updated set of models. Fi-

nally, the last row (RR'R') is the complete reduced-vocabulary system with new words

incorporated.

The lexical models were least in need of training data. The lexical models could be

constructed with base-form pronunciations, such as available in a dictionary, and the

application of phonological rules. The trainable component of our lexical models, the

lexical arc weights, did not benefit from training, and thus do not appear important for

learning new words.

The context-independent acoustic models could have benefited from some additional

training data, but that might not be the case if they were originally trained on enough

data. We found that when trained on our reduced-vocabulary training set some of the
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acoustic models were inadequately trained because they were too rare. Certainly this

is unacceptable if we wish to have a system that is capable of incorporating new words.

If not all acoustic models that could be used by new word lexical models have enough

task-specific training data, those data should be supplemented with task-independent

training data (e.g., TIMIT). With context-independent acoustic models this should be

feasible. With context-dependent acoustic models a very large number of models, well

above that required for the original vocabulary, would need to be trained for possible

inclusion in new words. Thus, context-independent models are more conducive to the

incorporation of new words.

With the use of a class n-gram language model we were able to incorporate new

words without any additional training text, although such text would have boosted per-

formance. We found that the nature of our class n-gram model was such that we could

add a new word to a class by specifying a single probability, the class-conditional uni-

gram probability, and allow the contextual sharing of the language model to capture the

contextual probabilities. Words that did not fit into the predefined classes were modeled

with a crude unigram probability. We feel that the use of a class language model was

important to achieving reasonable recognition performance with no additional training

data.

When we combine the new acoustic, lexical, and language models, we have a system

that was trained in the absence of new words. This system achieved a 12.0% word-error

rate compared to the baseline system's 7.5% (on the reduced evaluation set). That is a

factor of 1.6 times worse than the baseline system that was trained extensively on the

new words. The 12.0% error rate shows what is possible using very simple new-word

incorporation technique and no additional data. Furthermore, Table 5-13 shows that

we can greatly reduce the error rate of the original reduced-vocabulary system (RRR)

by incorporating new words (RR'R' system), dropping the word-error rate by nearly

10%. With more sophisticated techniques, possibly combined with a small amount of

data containing new words, the performance could only improve. The results of this

section show that new words can be readily learned to a degree by a system without

any training data in a supervised manner.
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5.6 Summary

In Chapter 2 we demonstrated that new, out-of-vocabulary words occur in a wide-

variety of tasks no matter how large a system vocabulary is used. The new-word rate

is a function of the characteristics of the task as well as the vocabulary size. However,

although this study showed us that new words occur, it did not tell us anything about

their effect on an actual continuous-speech recognition system. In this chapter we have

quantified the effects of new words using carefully controlled experiments. Through the

use of a baseline system and a reduced-vocabulary system we have been able to examine

the effects of (simulated) new words in terms of performance degradation and increase in

computational complexity. Additionally, in looking forward to a system that is capable

of new-word detection, we have examined some of the issues related to learning, or

incorporating, new words so that they become part of a system's working vocabulary.

In examining the effect new words have on recognition performance, we found that

the SUMMIT system experiences about 1.5 word errors per new word. This corresponds

to about 1.2 errors associated with the new word itself, which implies that the recognizer

often substitutes more than one in-vocabulary word per new word. More importantly,

about 0.3 in-vocabulary words are misrecognized per new word. In other words, the

occurrence of a single new word can cause a ripple effect to nearby in-vocabulary words.

In our analysis, we found that in-vocabulary words adjacent to new words were most

affected. We examined not only single, isolated new words but also multiple new words

per utterance including sequences of new words and disjoint new words. We found that

sequences of new words did not present any additional problems compared to isolated

new words; in effect they were relatively long single new words. However, we found

that with disjoint new words, in-vocabulary words between them were misrecognized at

a much higher rate than other words, although this result may not generalize to other

situations due to the relatively fixed structure of many ATIS utterances.

In examining the effect new words have on computational complexity of the recog-

nition search, we learned that a single new word per utterance increased the amount of

computation per second of speech by nearly a factor of four. We developed graphical

157



I I

158 CHAPTER 5. A RECOGNIZER-BASED STUDY

displays based on the word graphs presented in Chapter 4 that show the increase in

recognizer "uncertainty" in the vicinity of new words as it attempts to account for new

words with many combinations of in-vocabulary words. We developed a measure of this

uncertainty, called the active-word count, that appears to be strongly correlated with

the location of new words, and thus may be a useful tool in performing new-word recog-

nition. Finally, and most importantly, we showed that our word graph computation

and representation are insensitive to the position of new words within utterances. With

a search algorithm that opens the search space into a tree (e.g., A* N-best algorithm)

we would expect the position of a new word to affect the computational complexity.

However, because our A* word graph algorithm does not open the search space into a

tree during lexical access, computation is not dependent on the position of a new word

within an utterance.

In examining the issues related to learning new words, we showed that it was pos-

sible, with straightforward techniques, to add a large number of new words to a sys-

tem without additional training material. Specifically, we separately updated context-

independent acoustic models, lexical (pronunciation) models, and class n-gram models.

For each of these models, we measured the shortfall in performance compared to a

baseline system that was fully trained on the new words. We found that, with our

system, the lexical models benefited the least from training data containing new words,

followed by the acoustic and language models. We discovered that, even with vocabu-

laries on the order of 1,500 words with training sets containing nearly 20,000 words, it

is possible for some of the more rare context-independent models to suffer from sparse

data and be inadequately trained. In building a system capable of new-word learning,

this problem would certainly have to be rectified, probably with the use of supplemen-

tary vocabulary-independent training data to guarantee that all acoustic models are

adequately trained. With regard to updating language models, we found that a class

n-gram language model could be updated without any additional training data because

classes share the contextual modeling information. Finally, we were able to construct a

complete system capable of recognizing new word it had never been trained on, albeit

with a word-error rate on the new words that was 1.6 times as large as the word-error
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rate of a fully trained system.

Overall, this chapter represents a quantitative study of the new-word problem within

the context of a continuous-speech recognition system. Combined with Chapter 2 in

which we demonstrated the frequency of new words, we now understand the effects

of new words on a recognizer in terms of performance degradation and increase in

computational complexity. Together, these two chapters demonstrate that the new-

word problem is a serious problem that needs significantly more attention in order to

solve it through the use of new-word detection and new-word learning. We leave the

problem of new-word detection for future work, but have looked briefly at the issues of

learning new words. We showed that with straightforward techniques, new words can

be learned without requiring training data containing them, given that we are supplied

with a spelling, a phonemic base-form, and a word class.
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Chapter 6

Conclusion

This thesis represents an introduction and characterization of the problem of new, out-

of-vocabulary words in continuous-speech recognition and understanding. We feel that

the new-word problem is one that cannot be ignored if we are to produce spoken language

systems that can function successfully in the real world. New words can occur for several

reasons, including mismatch between system training and actual use, the imperfect

nature of vocabulary determination, the invention of new words, and the fact that users

do not know the exact limits of a system's vocabulary.

Much of the research in speech recognition and understanding has ignored the new-

word problem. This is partly because common recognition and understanding tasks

have limited the frequency of new words, either explicitly or implicitly, to the point

that they have only minimal effect on system performance. By examining the common

tasks used within the ARPA speech recognition and understanding community, the

artificial reduction or complete elimination of the new-word problem is apparent. The

Resource Management task used a completely closed vocabulary for the scripts used

to collect the read speech. More recently, the current large-vocabulary Wall Street

Journal task has been evaluated in a way that artificially reduces the frequency of new

words. Specifically, the evaluation utterances were selected so as to contain at most the

64,000 most frequent words within the corpus. Even though systems were tested with

smaller vocabularies (20,000 and 40,000 words), this vocabulary filtering significantly

affected the frequency of new words. Even within the Air Travel Information Service
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(ATIS) task we may see fewer new words than we would expect given real users solving

travel-planning problems. The way the ATIS data has been collected, with users solving

predetermined travel problems or scenarios, may implicitly limit users' vocabularies. In

general, we expect that new words are a bigger problem than such specific tasks might

indicate, and that new words could be a serious impediment to the eventual deployment

of useful spoken language systems without significant improvement in the area of new-

word detection and learning.

6.1 Summary

In the first part of this thesis (Chapter 2) we measured the frequency of new words in

a corpus-based study of new words. By examining several corpora from widely varying

tasks (including spontaneously spoken human/computer interaction, actual directory

assistance telephone calls, human/human telephone conversation, and newspaper texts),

for three different languages, we were able to characterize tasks in terms of vocabulary

size and new-word rate (frequency). We found that the vocabulary size and new-word

rate characteristics could be used to cluster the corpora, using factors such as domain

restrictiveness, speech versus writing, and communication with a human versus with a

computer. The clustering results appeared to be language independent, at least for the

languages we examined (English, French, and Italian).

We found that some tasks can require very large vocabularies--on the order of

100,000 words-to reduce the new-word rate to 1%. In contrast, some human/computer

interactive problem-solving tasks can achieve the same new-word rate with much smaller

vocabularies. However, the question remains as to the realism of the data collection

methods when prescribed scenarios are used. The use of scenarios may have a large

effect on the words people use when interacting with the (data collection) systems

because the scenarios restrict the problem-solving domain. While a new-word rate of

1% may seem low, especially if we are concerned only with recognition accuracy such as

measured by word-error rate, it is likely too high for understanding. We found that a 1%

new-word rate can correspond to 17% of utterances containing at least one new word.



6.1. SUMMARY

If understanding is the goal, having nearly one utterance in five containing a new word

likely to cause understanding errors could be a real problem. In general, by examining

vocabulary sizes and new-word rates for a diverse set of corpora, we concluded that new

words are frequent enough that they cannot be ignored.

The new-word study of Chapter 2 examined only the orthographic transcriptions

(i.e., text) of the corpora, and thus, was completely independent of any specific recogni-

tion or understanding system. In order to gauge the impact new words have on system

behavior, we examined the new-word problem within the context of a continuous-speech

recognition system. However, in performing this study it became apparent that infor-

mation contained in recognizer N-best lists was insufficient for our purposes.

In Chapter 4, we introduced an algorithm for computing word graphs based on

the A* N-best algorithm. We initially developed word graphs so that we could gain

a glimpse into the individual words, their acoustic scores, and their time alignments

during the recognition search. Using word graphs, we introduced two exploratory data

analysis tools, word lattice displays and the active word count, which we utilized in our

recognizer-based study of the new-word problem.

We found that word graphs were useful for continuous-speech recognition irrespec-

tive of the new-word problem. In general, word graphs are an alternative to the more

traditional N-best lists. Word graphs contain N-best recognizer hypotheses, and all

possible alignments thereof, down to a predetermined relative score threshold in a rela-

tively compact representation that can be computed efficiently.

Finally, in Chapter 5, we examined in detail the interaction of new words with the

SUMMIT continuous-speech recognition system within the ATIS domain. Through the

use of a baseline system and a reduced-vocabulary system we were able to examine the

effect of new words in terms of both word accuracy and computational complexity. By

comparing the output of the two systems on the same sets of utterances we were able

to separate the effects due to new words from the normal system behavior when there

were no new words.

In terms of word accuracy, we found that each new word was responsible for about

1.5 errors on average. Of these errors, about 0.3 errors were to in-vocabulary words
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that would otherwise have been correctly recognized had there not been a nearby new

word. The other 1.2 errors per new word were due to the in-vocabulary words the

recognizer substituted in place of a new word. Examining these substitutions for new

words, we found that within-class substitutions will likely be a significant problem for

speech understanding. If a recognizer substitutes in-vocabulary words that make no

sense, the natural language understanding component will likely have difficulty under-

standing the recognizer's output, hopefully alerting the user to the out-of-vocabulary

word. On the other hand, if there are no other recognition errors for an utterance, a

within-class substitution will be interpreted by the natural language component, albeit

incorrectly. Depending on the level of system feedback, such a misunderstanding may

cause subsequent user and system confusion in an interactive dialog. For the ATIS task

and the particular simulated new words in our study, we found that for 45% of new

words our recognizer produced such a within-class substitution.

Using tools developed in this thesis and based on our word graph representation, we

were able to quantify the effect of new words on the computational complexity of the

recognition search. We found that new words had a significant effect on the amount

of computation per second of speech as measured by the number of word edges in a

word graph. By examining word lattice displays, it was evident that this increase was

due to the relatively large number of in-vocabulary words that a recognizer proposes to

account for the acoustics of a new word. Further, we introduced the active word count

as a local measure of computational complexity. We found that high values of the count

were correlated with the location of new words. We hypothesize that the active word

count could be a useful measure for the new-word detection problem.

Finally, we examined the problem of incorporating new words into a recognition

system. Specifically, we added new words to our system in a supervised manner without

retraining any system components using utterances or text containing the new word.

We then measured the shortfall in recognition performance compared to the baseline

condition in which all the new words were part of the system's full training.

We found that context-independent phonetic models were helpful in modeling un-

foreseen new words provided that all phonetic models were adequately trained. We
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found that starting with a phonemic base-form pronunciation of a new word we were

able to incorporate pronunciation models for new words into our system even though

it uses relatively complex pronunciation networks with weighted alternative pronunci-

ations. We found that for new words it was not important to train the pronunciation

weights, meaning that we could create pronunciations of new words in a supervised

manner without any new word utterances. Finally, we found that we could add new

words to our word-class n-gram language models by explicitly adding words (by hand)

to the system's predefined word classes. For our ATIS system, this was a relatively

straightforward process, resulting in an updated language model that could be used to

recognize new words. However, words that did not fit neatly into the system's pre-

determined word classes were only crudely modeled within the language model. Such

unclassified words would likely benefit from some examples of the new words in con-

text. Nevertheless, using straightforward techniques we were able to add new words to

our continuous-speech recognition system with only a moderate increase in error rate

without retraining on any additional training utterances containing them.

In summary, the new-word problem is a very wide-ranging problem that touches

upon virtually all aspects of speech recognition and understanding. In this thesis we

have studied the magnitude and scope of the problem in terms of the frequency of new

words and their effects on an actual speech recognition system. We feel that the new-

word problem has not received the attention it deserves, and this thesis is an attempt

to motivate others to work on it.

6.2 Future Work

The size of the new-word problem is such that it could not be explored and solved within

the scope of this thesis. There is significant opportunity to extend the work of this thesis

and previous new-word research. To our knowledge, the impact of new words on speech

understanding has not been adequately addressed. We are interested in carrying out

controlled understanding experiments similar to the recognition experiments of this

thesis.
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While there has been some recent research on the new-word detection problem, we

believe that the problem is far from being solved. Most previous detection techniques

involve modeling the acoustics of new words using (loosely constrained) sequences of

phonetic models. Perhaps additional detection cues can be incorporated that would

improve detection performance. In particular, local computational complexity measures

such as our active word count may provide useful information that could be combined

with the more traditional acoustic modeling approach. Furthermore, it is possible that

the use of natural language constraints could aid in the new-word detection problem.

We have not examined the problem of adding new words to a system when there

are utterances containing new words available. Such utterances could be used to refine

the acoustic/pronunciation modeling of new words as evidenced by the work of Asadi

et al. [3-5]. Examples of new words in context could be used to refine the language

modeling of new words within n-gram models, particularly when the new words do

not fit neatly into the system's predefined word classes. A technique for identifying

similar words, or "statistical synonyms," such as that of Jelinek et al. [34] could help in

such cases. Finally, we did not address the problem of adding new words to a natural

language understanding system. Presumably, it might be possible for such a system to

automatically determine some semantics of new words. For example, in the utterance

"I want to fly to new-word on the 16th" the understanding component could reasonably

hypothesize that the new word was a destination for air travel. Adding new words to the

understanding component of spoken language systems remains an important problem.

Finally, the observation that a potentially large fraction of new words are derivations

(e.g., inflections or concatenations) of in-vocabulary words is an important one. If we

were to change the unit of speech recognition and understanding from the word level

to the morpheme level, it might be possible to reduce the number of new words. A

morpheme-based system may be able to recognize and understand novel words (e.g.,

"ungood") by combining word roots, prefixes, and suffixes.
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