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Abstract

A methodology for the optimal design and operation of microfabricated fuel cell sys-

tems is proposed and algorithms for relevant optimization problems are developed.

The methodology relies on modeling, simulation and optimization at three levels of

modeling detail. The first class of optimization problems considered are parametric

mixed-integer linear programs and the second class are bilevel programs with non-

convex inner and outer programs; no algorithms exist currently in the open literature

for the global solution of either problem in the form considered here.

Microfabricated fuel cell systems are a promising alternative to batteries for man-

portable power generation. These devices are potential consumer products that com-

prise a more or less complex chemical process, and can therefore be considered chem-

ical products. With current computational possibilities and available algorithms it is

impossible to solve for the optimal design and operation in one step since the devices

considered involve complex geometries, multiple scales, time-dependence and para-

metric uncertainty. Therefore, a methodology is presented based on decomposition

into three levels of modeling detail, namely system-level models for process synthesis,

intermediate fidelity models for optimization of sizes and operation, and detailed,

computational fluid dynamics models for geometry improvement. Process synthesis,

heat integration and layout considerations are addressed through the use of lumped

algebraic models, general enough to be independent of detailed design choices, such
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as reactor configuration and catalyst choice. Through the use of simulation and para-

metric mixed-integer optimization the most promising process structures along with

idealized layouts are selected among thousands of alternatives. At the intermedi-

ate fidelity level space-distributed models are used, which allow optimization of unit

sizes and operation for a given process structure without the need to specify a de-

tailed geometry. The resulting models involve partial differential-algebraic equations

and dynamic optimization is employed as the solution technique. Finally, the use of

detailed two- and three-dimensional computational fluid dynamics facilitates geomet-

rical improvements as well as the derivation and validation of modeling assumptions

that are employed in the system-level and intermediate fidelity models. Steady-state

case studies are presented assuming a constant power demand; the methodology can

be also applied to transient considerations and the case of variable power demand.

Parametric programming provides the solution of an optimization problem, the

data of which depend on one or many unknown real-valued parameters, for each pos-

sible value of the parameter(s). In this thesis mixed-integer linear programs are con-

sidered, i.e., optimization programs with affine functions involving real- and integer-

valued variables. In the first part the multiparametric cost-vector case is considered,

i.e., an arbitrary finite number of parameters is allowed, that influence only the co-

efficients of the objective function. The extension of a well-known algorithm for

the single-parameter case is presented, and the algorithm behavior is illustrated on

simple examples with two parameters. The optimality region of a given basis is a

polyhedron in the parameter space, and the algorithm relies on progressively con-

structing these polyhedra and solving mixed-integer linear programs at their vertices.

Subsequently, two algorithmic alternatives are developed, one based on the identifi-

cation of optimality regions, and one on branch-and-bound. In the second part the

single-parameter general case is considered, i.e., a single parameter is allowed that

can simultaneously influence the coefficients of the objective function, the right-hand

side of the constraints, and also the coefficients of the matrix. Two algorithms for

mixed-integer linear programs are proposed. The first is based on branch-and-bound

on the integer variables, solving a parametric linear program at each node, and the
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second is based on decomposition of the parametric optimization problem into a series

of mixed-integer linear and mixed-integer nonlinear optimization problems. For the

parametric linear programs an improvement of a literature algorithm for the solution

of linear programs based on rational operations is presented and an alternative based

on predictor-continuation is proposed. A set of test problems is introduced and nu-

merical results for these test problems are discussed. The algorithms are then applied

to case studies from the man-portable power generation. Finally extensions to the

nonlinear case are discussed and an example from chemical equilibrium is analyzed.

Bilevel programs are hierarchical programs where an outer program is constrained

by an embedded inner program. Here the co-operative formulation of inequality con-

strained bilevel programs involving real-valued variables and nonconvex functions in

both the inner and outer programs is considered. It is shown that previous literature

proposals for the global solution of such programs are not generally valid for noncon-

vex inner programs and several consequences of nonconvexity in the inner program

are identified. Subsequently, a bounding algorithm for the global solution is pre-

sented. The algorithm is rigorous and terminates finitely to a solution that satisfies

ε−optimality in the inner and outer programs. For the lower bounding problem, a

relaxed program, containing the constraints of the inner and outer programs aug-

mented by a parametric upper bound on the optimal solution function of the inner

program, is solved to global optimality. For the case that the inner program satisfies

a constraint qualification, a heuristic for tighter lower bounds is presented based on

the KKT necessary conditions of the inner program. The upper bounding problem is

based on probing the solution obtained in the lower bounding procedure. Branching

and probing are not required for convergence but both have potential advantages.

Three branching heuristics are described and analyzed. A set of test problems is

introduced and numerical results for these test problems and for literature examples

are presented.

Thesis Supervisor: Paul I. Barton
Title: Professor of Chemical Engineering
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Benôıt and learned a great deal of things. The work on bilevel programs in the final year

of my thesis work benefited a lot from the interactions with Panayiotis Lemonidis and in

particular I would like to thank him for his encouragement in pursuing this project. Also,

I have greatly enjoyed our collaboration on relaxation based bounds for semi-infinite pro-

grams. Finally, I would like to thank Mehmet Yunt for his efforts to design portable power

generation devices under variable power demand.

During my third and fourth year as a doctoral student, I supervised two undergraduate

students in research projects during their sophomore year; both Michael M. Hencke and

Ruth Misener combine great skills with hard work and enthusiasm. It was a pleasure

to work with them and I want to thank them for their work and congratulate them for

their achievements. The main focus of Michael’s project was on extensions of systems-level

modeling, but he also performed modeling at the computational fluid dynamic level; part

of his work is directly incorporated in this thesis. Ruth performed numerical experiments

for a class of Partial-Differential Algebraic Equations; her work is outside the scope of this

thesis, but very important for transient considerations.

My many and good friends at the PSEL, the department of chemical engineering, MIT,

Cambridge and the world are extremely important to me, but I find it impossible to give

justice to their friendship in a few sentences. I therefore thank them collectively and express

the hope that they know what they mean to me. It would be even harder to express my

feelings and gratitude for my family, so I will not attempt this either.

10



Contents

1 Introduction and Overview 23

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Product Design Methodology . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Parametric Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Bilevel Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Product Design Methodology for Micropower Generation 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Scope of Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Product Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 System-Level Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.1 Alternatives Considered . . . . . . . . . . . . . . . . . . . . . 42

2.6.2 Integrated Layout and Thermal Management . . . . . . . . . 48

2.6.3 Chemical Equilibrium Considerations . . . . . . . . . . . . . . 53

2.6.4 Simulation-Based Case Studies . . . . . . . . . . . . . . . . . 54

2.6.5 Parametric Optimization-Based Case Study . . . . . . . . . . 76

2.7 Detailed Modeling for Justification of Modeling Assumptions . . . . . 80

2.7.1 Uniform Temperature at Steady-State . . . . . . . . . . . . . 81

2.7.2 Uniform Temperature in the Transient Case . . . . . . . . . . 84

2.7.3 One-Dimensional Species Balance . . . . . . . . . . . . . . . . 89

2.8 Computational Fluid Dynamics for Geometry Improvement . . . . . . 97

11



2.8.1 CFD Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.8.2 Reduced Model . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.9 Intermediate Fidelity Modeling . . . . . . . . . . . . . . . . . . . . . 103

2.9.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.9.2 Optimal Operation and Design . . . . . . . . . . . . . . . . . 109

2.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2.11 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3 Parametric Optimization 121

3.1 Introduction and Literature Review . . . . . . . . . . . . . . . . . . . 121

3.1.1 Complexity of Parametric Optimization . . . . . . . . . . . . . 124

3.2 Parametric Optimization for Resource Allocation in R&D . . . . . . . 126

3.3 MILP Optimality Range . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.3.1 Range of Infeasibility . . . . . . . . . . . . . . . . . . . . . . . 129

3.3.2 Classification of Optimality Region Formulations . . . . . . . 130

3.4 Multiparametric Cost Vector Case . . . . . . . . . . . . . . . . . . . . 134

3.4.1 Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . 135

3.4.2 Intersection-Based Algorithm for a Single Parameter . . . . . 140

3.4.3 Multiparametric Intersection-Based Algorithm . . . . . . . . . 145

3.4.4 Multiparametric Optimality-Region Algorithm . . . . . . . . . 154

3.4.5 Multiparametric Branch-and-Bound Algorithm . . . . . . . . . 159

3.5 General Case with a Single Parameter . . . . . . . . . . . . . . . . . 165

3.5.1 Assumptions and Theoretical Properties . . . . . . . . . . . . 165

3.5.2 Parametric Linear Program . . . . . . . . . . . . . . . . . . . 167

3.5.3 Parametric Mixed-Integer Linear Program . . . . . . . . . . . 180

3.5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 187

3.5.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 189

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

3.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

3.7.1 Algorithmic Improvement . . . . . . . . . . . . . . . . . . . . 191

12



3.7.2 Extension to Nonlinear Cost Vector Case . . . . . . . . . . . . 193

3.7.3 Extension to General Nonlinear Case . . . . . . . . . . . . . . 196

3.7.4 Extension to General Multiparametric MILP . . . . . . . . . . 198

4 Bilevel Programming 203

4.1 Introduction and Literature Review . . . . . . . . . . . . . . . . . . . 203

4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

4.3 Reformulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

4.4 Optimality Requirement . . . . . . . . . . . . . . . . . . . . . . . . . 209

4.5 Consequences of Nonconvexity in the Inner Program . . . . . . . . . 212

4.5.1 Branching on the y Variables . . . . . . . . . . . . . . . . . . 212

4.5.2 Upper Bounding Procedure . . . . . . . . . . . . . . . . . . . 215

4.5.3 Lower Bounding Procedure . . . . . . . . . . . . . . . . . . . 218

4.5.4 Complication in KKT Approaches: Multiplier Bounds . . . . . 224

4.6 Algorithmic Development . . . . . . . . . . . . . . . . . . . . . . . . 225

4.6.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

4.6.2 Lower Bounding Procedure . . . . . . . . . . . . . . . . . . . 229

4.6.3 Upper Bounding Procedure . . . . . . . . . . . . . . . . . . . 235

4.6.4 Algorithm Statement . . . . . . . . . . . . . . . . . . . . . . . 237

4.6.5 Convergence Proof . . . . . . . . . . . . . . . . . . . . . . . . 240

4.6.6 Implementation and Numerical Results . . . . . . . . . . . . . 250

4.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 261

5 Conclusions and Future Work 265

A Modeling Details 267

A.1 Appendix: Symbols Used . . . . . . . . . . . . . . . . . . . . . . . . . 267

A.2 Appendix: Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . 267

A.3 Appendix: Physical Properties . . . . . . . . . . . . . . . . . . . . . . 269

A.4 Calculation of Energy Densities . . . . . . . . . . . . . . . . . . . . . 271

A.5 Component Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

13



A.5.1 Splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

A.5.2 Reactor and Burners . . . . . . . . . . . . . . . . . . . . . . . 273

A.5.3 Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

A.5.4 Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

A.5.5 Compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

A.5.6 Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

A.5.7 Flash for Separation of Fuel Cell Effluents . . . . . . . . . . . 285

A.5.8 Oxygen Generators . . . . . . . . . . . . . . . . . . . . . . . . 286

A.5.9 Water Breathing Systems . . . . . . . . . . . . . . . . . . . . 287

A.5.10 Hydrogen Generators . . . . . . . . . . . . . . . . . . . . . . . 287

A.5.11 Implementation and Convergence Scheme . . . . . . . . . . . . 289

A.6 Reduced Model for Heat Exchanger . . . . . . . . . . . . . . . . . . . 290

A.6.1 Tube Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

A.6.2 Slab Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

A.6.3 Defining Unit Interactions . . . . . . . . . . . . . . . . . . . . 292

B Parametric Optimization Test Set 295

C Bilevel Optimization Test Set 315

C.1 Original Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
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Chapter 1

Introduction and Overview

1.1 Overview

There are essentially three parts to this thesis, namely (i) an integrated design

methodology for portable power generation based on fuel cell systems, (ii) algorithms

for parametric mixed-integer programming, and (iii) an algorithm for the co-operative

formulation of inequality constrained bilevel programs with nonconvex functions in

both the inner and outer programs. There are sufficient reasons to warrant research

in each of these topics on isolation and therefore thorough introductions, including

motivation and literature review in the respective fields, are given in the following

three chapters. The main purpose of this chapter is an overview of the connections

between the three parts of this thesis.

1.2 Product Design Methodology

The widespread use of portable electric and electronic devices increases the need for

efficient autonomous man-portable power supplies (up to about 50 W). Currently,

batteries are the predominant technology in most applications. However, batteries

have a large environmental impact, high cost and relatively low gravimetric (Wh/kg)
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and volumetric (Wh/l) energy density. State-of-the-art primary batteries reach up to

1300 Wh/l and 700 Wh/kg and rechargeable up to 400 Wh/l and 300 Wh/kg, and the

upper limit on performance is now being reached [183]. A promising alternative is to

use common fuels/chemicals such as hydrocarbons or alcohols and there is great mil-

itary [74] and civilian [116] interest in developing battery alternatives based on these

fuels and portable fuel cell systems. In recent years microchemical systems have re-

ceived special attention [146] and significant advances have been made. Chemical

units such as reactors, separators and fuel cells with feature sizes in the submilimeter

range have been considered for a variety of applications. Microchemical systems have

several advantages compared to macroscale processes: the increased heat and mass

transfer rates at the microscale allow higher yields [166]; and the small hold-up along

with the controlled conditions allow reaction pathways deemed too dangerous for con-

ventional processes; the small quantities required and the possibility of parallelization

have sparked interest in micro-total-analysis-systems (lab-on-a-chip) [165]. Currently,

most of the microreactors are not standalone devices, but rather are used within a

conventional laboratory. The replacement of batteries for electronic devices requires

truly man-portable systems and therefore the use of microfabrication technologies is

plausible since a minimal device size is desired. Most of the research in micropower

and microreaction technology has focused on fabrication techniques or detailed mod-

eling, whereas there are still few contributions regarding design methodologies for

such systems and this gives the broad motivation for the development of the design

methodology.

The methodology proposed is based on decomposition into three levels of modeling

detail, namely system-level models for process synthesis, intermediate fidelity models

for optimization of component sizes and operation, and detailed computational fluid

dynamics models for geometric design and justification of modeling assumptions. In

Chapter 2 an overview of this methodology is given, followed by detailed descriptions

of the various parts.
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1.3 Parametric Optimization

Many microdevices and components of the process alternatives considered are not yet

fully developed and characterized and therefore at all three levels of modeling there are

several degrees of freedom as well as uncertain parameters. These parameters charac-

terize the state of the technology considered or the performance of some components.

For instance, at the intermediate fidelity modeling level, an uncertain parameter is

the upper limit of the operating temperature, imposed by material properties which

are not sufficiently-well understood to be included in the modeling. At the system-

level examples of uncertain parameters include the thermodynamic efficiencies of the

fuel cells and achievable selectivities in purification membranes.

For simulation-based approaches, both in static and dynamic problems, the effect

of uncertain parameters is often captured with sensitivity analysis and parameter

variation studies. For optimization-based methods post-optimality sensitivity analysis

gives local information about the influence of the parameters, i.e., only the effect of

an infinitesimally small parameter variation is captured. Parametric programming

provides the solution of an optimization problem, the data of which depend on one or

many unknown real-valued parameters, for each possible value of the parameter(s) and

therefore can give global information, i.e., the influence of the uncertain parameters

over a whole range of values is furnished.

Suppose in general that a model of a system under development with many com-

ponents is given and the uncertain parameters describe the performance of the various

components. The values of the parameters not only influence the performance of the

system, but also the optimal design. Parametric optimization quantifies the influ-

ence of these parameters on the system performance and optimal design. This can

help determine whether it is worthwhile to pursue improving the performance of a

given component. Such questions of technology significance and resource allocation

at the system-level motivates the development of the parametric optimization algo-

rithms, described in Chapter 3. In particular the interest in mixed-integer programs

arises from the fact that different technologies are considered and the choice between
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alternative technologies is represented with integer variables.

1.4 Bilevel Programming

Bilevel programs are hierarchical programs where an outer program is constrained

by an embedded inner program. Bilevel programming is used in macroscale process

systems engineering for design under phase equilibrium [68] as well as for flexibility

and feasibility problems, see, e.g., [47]. These formulations are of potential interest

for man-portable power devices, but an application of these techniques is outside the

scope of this thesis.

The main motivation to develop an algorithm for bilevel programs within this

thesis is the inherent and well-known relation of bilevel programming and parametric

optimization. In principle bilevel programs could be solved via parametric program-

ming, by solving the inner program for all possible values of the outer variables.

Recently this has been proposed for special convex cases [232], but in general it is

not an advisable procedure, since obtaining the parametric global optimum would be

very computationally expensive and in a sense provide more information than what

is actually needed for solution of the bilevel program. The algorithm described in

Chapter 4 only considers parametric upper bounds in a neighborhood of candidate

optimal solutions of the bilevel program.
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Chapter 2

Product Design Methodology for

Micropower Generation

2.1 Introduction

The widespread use of portable electric and electronic devices increases the need for

efficient autonomous man-portable power supplies [160, 97]. Portability limits the

mass of the power generation system to a few kg and the volume to a few liters,

at most, and consequently to power supplies of up to 50 W. Currently, batteries

are the predominant technology in most applications. However, batteries have a

large environmental impact, high cost and relatively low gravimetric (Wh/kg) and

volumetric (Wh/l) energy densities. State-of-the-art primary batteries reach up to

1300 Wh/l and 700 Wh/kg and rechargeable up to 400 Wh/l and 300 Wh/kg [183, 55]

and the upper limit on performance is now being reached as most of the materials that

are practical for use as active materials in batteries have already been investigated

and the list of unexplored materials is being depleted [97, 183].

There is both military [58, 160, 74, 222] and civilian [116] interest in alternative

power generation. Many alternatives are in theory possible, such as electrochemical

conversion of fuels in fuel cells, thermophotovoltaic cells [77, 283, 212], a microturbine

driving a generator [103] or even exploiting nuclear power, e.g, with thermoelectrical

elements [184]. Also, there are several approaches for producing energy by harvesting
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human-based mechanical work, e.g., [80, 243, 175, 8].

Microfabricated fuel cell-based systems have attracted much interest in recent

years because common fuels and chemicals, such as hydrocarbons or alcohols have

very high energy contents (Figure 2-1) and fuel cell systems have the capability of

achieving high efficiency, have few or no moving parts, and run silently. In order to

achieve portability the use of microfabricated devices, as opposed to conventional de-

vices, is plausible. In recent years it has become possible to fabricate many new unit

operations at the microscale, and this number rises rapidly. However, only careful

integration of these components can lead to a design that is competitive with exist-

ing technologies. Direct miniaturization of conventional systems is either impossible

with current technology or leads to low energy densities, large parasitic losses and

large start-up times. While systematic process synthesis and design is a mature field

at the macroscale, microsystems exhibit a unique set of new challenges for process

systems engineering. For example, at the microscale heat losses to the environment

are a critical design consideration. The portability requirement, as well as the fact

that the devices need to work fully automatically without the intervention of opera-

tors, also gives rise to many design constraints and safety issues. New design tools

and evaluation methodologies are needed to address the challenges of microchemical

systems.

There are two main approaches for fuel cell systems, namely direct fuel cells run-

ning on stored hydrogen, methanol, formic acid, or medium sized hydrocarbons, as

well as fuel processing for hydrogen or syngas generation and subsequent oxidation

of these intermediates in a fuel cell. Micropower generation devices based on either

approach are products that comprise a more or less complex chemical process. There

is a plethora of possible processes and process combinations, as well as a wide variety

of applications and consumers, ranging from cellular phones and laptops for home use

to the power needs of the dismounted soldier, thus it is plausible that the optimal de-

vice configuration will depend on the product specifications characterizing particular

applications. This necessitates a flexible methodology for the comparison of different

technology alternatives that can facilitate product engineering of these devices.
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Figure 2-1: Comparison of state-of-the-art batteries with theoretical energy density of
fuels in a perfect fuel cell at ambient temperature, in which all the Gibbs free energy
of reaction is used to produce power.

The devices considered need to operate independently of external heat sources, de-

spite, for example, the use of endothermic fuel processing reactions or high operating

temperatures which lead to high heat loss fluxes. The simplest approach to provide

the necessary heat is to use part of the fuel in a combustion or catalytic oxidation

reaction, but a more promising approach is to use a fuel combination. The motiva-

tion is that one fuel can be used for reforming (hydrogen production) and another

for combustion/heat generation. Using multiple fuels is of particular interest in the

case that a low energy-density fuel (e.g., ammonia or methanol) is used for hydrogen

production, especially when an endothermic reaction is used (e.g., cracking).

In larger scale power production, including the electric car, emphasis is placed on

efficient utilization of the fuel. This is because the fuel cost is of the same or higher or-

der of magnitude as the fabrication cost of the power production system. In portable

power production the economical and ecological operating costs are insignificant com-
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pared to the fabrication costs of the systems. Typically different man-portable power

generation systems are compared using the energy density of the system as a met-

ric. The gravimetric energy density, or specific energy [Wh/kg], is expressed as the

electrical energy produced per unit mass of system [183] and the (volumetric) energy

density [Wh/l] is defined as the electrical energy produced per unit volume of the sys-

tem. Depending on the application, either of the densities is of greater importance.

It is essential to define the system appropriately including the power generation de-

vices as well as the fuel containers. The objective of maximal energy density is in

general not equivalent to the objective of maximal efficiency. The simplest example

illustrating this, is the comparison between different fuels; choosing a fuel with high

energy density can lead to a higher system energy density despite a lower efficiency.

For instance a 35% efficient butane system has a higher energy density than a 70%

efficient ammonia system (see Figure 2-1). A similar behavior is seen for systems with

a combination of different fuels/chemicals, such as the ammonia-butane example in

Section 2.9, where energy density and energy efficiency bear different weights on each

species. The extreme case of species combination is the addition of water in steam

reforming reactions, which does not affect the energy efficiency but greatly reduces

the energy density. For systems involving only one stored species, the argument is a

little more elaborate. The fuel energy density and efficiency are proportional, but the

system energy density is not; if heat losses are not limiting, it is conceivable that a

complex device with high residence time will lead to higher efficiency than a simple

device with low residence time, but at the cost of additional weight and volume. Also,

system efficiency is not necessarily equivalent to component efficiency. For instance,

operating a fuel cell near its open-circuit voltage minimizes the irreversibilities and

therefore some metrics of efficiency, but also results in very low power density and a

small system efficiency.

In addition to high energy densities an adequate portable power production pro-

cess must be insensitive to transportation, and ideally work under changing orienta-

tion (upside-down) as well as in a variety of ambient conditions, including low and

high temperatures. Especially for military and space applications extreme ambient
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conditions are possible, such as immersed in water or vacuum. Since most power

consuming devices are not operated constantly and have rapidly changing power de-

mands, the dynamics and automated operation of portable power production are

very important. The processes must operate fully autonomously, automatically and

without any safety concern, such as the use or generation of toxic or dangerous ma-

terials. It is paramount in computing energy density to have a process that operates

independently of external heat sources, despite, for example, the use of endother-

mic fuel processing reactions. For most applications the life cycle price is a serious

consideration, especially for devices with relatively high power consumption, such

as portable computers. The life cycle price includes manufacturing and refueling or

recharging and eventual disposal/recycling of devices. Because of the widespread use

of portable power production its environmental impact is substantial. In contrast to

the macroscale, the impact is not associated with the power production per se, but

rather with the materials used in devices and the fabrication and recycle/disposal

processes. From a consumer point of view, the process must have a relatively simple

way of recharging, refueling or replacing.

2.2 Scope of Methodology

There are several, often conflicting uses of the prefix micro. Traditionally, microreac-

tor referred to laboratory-scale tubular reactors for catalyst testing [165]. With the

advent of microfabrication technology a plausible use of the prefix micro is to refer to

systems fabricated by these methods [165, 100]. Another strict definition is to only

use the term micro for systems with a largest dimension of less than one millime-

ter. A more loose use of the term micro is to characterize microstructured systems,

i.e., systems with some characteristic length in the micrometer range. The devices

considered in this thesis have characteristic dimensions ranging from the submicron

level for membrane thickness up to a few millimeters for the fuel cell length (inner

dimension), while the overall system size including packaging is restricted by the size

of the existing technologies, i.e., to centimeters at the most. Similarly, there is some
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ambiguity in the terms micropower and portable power, which are sometimes used

for residential distributed power generation and the electric car respectively. In this

thesis we consider systems that are suitable for man-portable applications with power

outputs in the order of 0.1-50W. The term optimization is used with various mean-

ings in the literature. In this thesis it is used for methods based on mathematical

programming, i.e., systems of equations with some degrees of freedom and one or

more objectives, solved using computer implemented algorithms.

In this chapter an integrated design methodology for portable power generation

based on fuel cell systems is proposed. The necessity for such product design is war-

ranted due to the plethora of possible processes and process combinations, as well

as the wide variety of applications and consumers, ranging from cellular phones and

laptops for home use to the power needs of the dismounted soldier. The strong inter-

connection of design and operation (steady-state and dynamic) and the complexity of

the systems lead to various counter-intuitive effects and therefore make a systematic

design methodology employing mathematical models, simulation and optimization,

as opposed to empirical design based on trial-and-error, necessary. Micropower gen-

eration devices can be considered chemical products, because they affect chemical

change [202]. Unlike traditional chemical products, their characteristics do not de-

pend on the molecular structure or microstructure but rather on the performance of

the underlying chemical and electrochemical unit operations. Most of the methodolo-

gies proposed for product design, e.g., [202, 280, 79, 279], include a step identifying

the customer’s needs before inventing and analyzing alternative products that can

fulfill these needs, and we briefly cover this in Section 2.5. The focus of this thesis is

on the development of a methodology for generation of ideas and selection and opti-

mization of the most promising alternatives. The final step in product design [202]

is to analyze the manufacturing alternatives to make the desired product, which, in

the case of micropower generation devices, calls upon MEMS fabrication technology.

Manufacturing of the devices is outside of the scope of this thesis but the alternatives

considered are limited based on manufacturing considerations. Material and struc-

tural considerations [259, 265] are also out of the scope of this thesis, and are only
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included implicitly, e.g., in the bounds for operating temperatures.

Under the assumption that rapid start-up operation is possible, the average perfor-

mance mainly depends on the steady-state performance of the processes; nevertheless,

the transient behavior is extremely important and needs to be addressed in the future.

It is likely that certain processes exhibiting poor transient behavior must be excluded.

Similarly, most electronic devices have a power demand varying over time. The case

studies presented in this thesis consider only the steady-state case with a constant

power demand. Moreover, although the models are tailored to microfabricated fuel

cell systems the aforementioned methodology can be applied to generic products that

involve physico-chemical processes.

2.3 Literature Review

While systematic process synthesis and design is a mature field at the macroscale,

e.g., [92, 47, 226], there is a wide scope for research at the microscale. Prior to this

thesis, efforts for methodological microreactor process design, only amounted to sim-

ple principles, such as Just In Time (JIT), Zero Hold-up, inherent safety, modularity,

and Keep It Simple Stupid (KISS) [242, 245, 148]. The scalability of micropower

processes is an issue for the optimal design, since scale-up based on replication is not

necessarily optimal [43, 155].

There is a significant number of publications on detailed modeling of specific mi-

crochemical components. The research groups of Professors Klavs F. Jensen and Mar-

tin A. Schmidt at MIT have developed models for a variety of microchemical systems,

e.g., [233, 155, 187, 18, 27, 120]. The research group of Professor Dionisios G. Vla-

chos at Delaware focuses on detailed modeling of mostly combustion-based reactors,

e.g., [214, 215, 88, 213], flow patterns, e.g., [90, 89] and development of kinetic mod-

els, e.g., [87, 194]. The research group of Professor Mayuresh V. Kothare at Lehigh

University considers mostly control issues in microchemical systems [21, 20, 50, 49].

The research group of Professor Steinar Hauan at CMU is studying design issues in

mostly electrophoretic separation systems, e.g., [227]. In [126] there is an attempt
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to approximate the concentration profile in a class of parallel wall microreactors,

while in [186] control and understanding by online monitoring is proposed. Regard-

ing the layout of microdevices in mesoscale plants, there are several contributions

[242, 245, 140, 185, 173, 146, 147, 148]. Few authors implement mathematical pro-

gramming, as in [276, 275, 72, 73], where reactor optimization is performed or in

[268], where the optimal temperature trajectory for a PFR with a given reaction is

found.

The area of man-portable power generation is extremely active and in [196] we

provide a collection of well over hundred contributions, mainly in journal articles.

Holladay et al. recently performed a literature review on hydrogen production [151];

another review article is by Maynard and Meyers [191]. There are several academic

programs exploring microfabricated fuel cell systems, including MIT [1, 176, 31, 145],

UIUC [2, 240, 237, 285], IMTEK in Germany [142], Batelle [219, 150], Bell laboratories

[193], Lawrence Livermore Laboratories [205], ETHZ Zürich [236] and Caltech [252].

Also several companies such as Motorola, Toshiba, Casio, Fujitzu, NEC and Sanyo

have research projects with the aim of developing miniature fuel cells [3, 189, 264, 248,

168], focusing mostly on the direct methanol fuel cell (DMFC). The vast majority of

the publications deals with fabrication issues. There are a few contributions on basic

scaling considerations [57, 97, 30, 60], and some contributions on detailed modeling

[141, 59].

2.4 Methodology Overview

While there are recent advances in multi-scale methods that aim to couple automat-

ically modeling at different scales, e.g., [52], with current computational possibilities

and available algorithms it is impossible to solve for the optimal design and operation

in one step because the devices considered involve complex geometries, multiple scales,

time-dependence and parametric uncertainty. Therefore, our methodology is based

on decomposition into three levels of modeling detail, namely system-level models

for process synthesis, intermediate fidelity models for optimization of sizes and op-
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eration, and detailed computational fluid dynamics models for geometric design (see

also Figure 2-2).

Figure 2-2: Overall methodology.

Process synthesis and layout considerations are performed with the use of alge-

braic models that are general enough to be independent of technological details, such

as the catalysts used or the reactor configuration. Since the models are general and

relatively simple, devices and reaction pathways at an early stage of development can

be modeled. Through the use of simulation and parametric mixed-integer optimiza-

tion the most promising process structures along with idealized layouts are selected

among thousands of alternatives [201, 200]. We consider a variety of fuels including

hydrogen, ammonia, various hydrocarbons and alcohols, and fuel cells including solid

oxide fuel cell (SOFC), polymer electrolyte membrane (PEM), single chamber solid

oxide fuel cell, direct methanol fuel cell (DMFC) and proton conducting fuel cell based

on ceramic technology (PCFC). The optimal process structure depends on technolog-

ical advances and product specifications. The system-level analysis provides limits of

performance and can be used to determine at an early stage if a proposed device is

worth pursuing; as an example the use of methane, which has been proposed in the

literature, is shown to be marginally competitive with existing battery technologies,

because of the storage requirements.

35



At the intermediate fidelity level we use distributed models, which allow optimiza-

tion of unit sizes and operation (steady-state and transient) for a given process struc-

ture without the need to specify a detailed geometry. The resulting models involve

partial differential-algebraic equations and the mathematical programming formula-

tions employed include global and local dynamic optimization as well as stochastic

programming [63, 64, 38, 62, 284]. The models used are rigorous and based on vali-

dated kinetic models. This level of modeling detail is particularly useful for technolo-

gies with demonstrated proof-of-principle.

Finally, the use of detailed two- and three-dimensional computational fluid dy-

namics allows geometrical improvements as well as the derivation and validation of

modeling assumptions that are employed in the system-level and intermediate fidelity

models. The development of these models requires specification of the geometry and

therefore benefits from collaboration with fabrication efforts. Since the convergence

of such models is time consuming and not robust, it is only possible to consider small

variations in the geometry and this is done based on simulations as opposed to em-

bedded in mathematical programming formulations. One of the major findings from

CFD models is that for a class of devices the temperature in the active regions (re-

actor, etc.) is essentially spatially uniform; this is also supported by scaling analysis

and preliminary experimental results.

Our methodology is formulated with the goal of harvesting and adapting the

knowledge basis from macroscale process synthesis, design and operation. A one-to-

one transfer is not possible because of different objectives, relevant physical phenom-

ena, and limitations in fabrication. For instance process-synthesis at the macroscale

is usually performed in stages, e.g., [47, 92], by first specifying the input-output struc-

ture of the process, then the recycle structure, then the separation system, and finally

the heat recovery network. The physical layout is performed in the late stages of pro-

cess design and is primarily driven by safety considerations. This hierarchical decom-

position is possible because different units can operate essentially independently from

each other, a fact that has led to the unit-operations paradigm. At the microscale

a different design paradigm is necessary, that of closely interconnected components
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of an integrated process. It is therefore necessary to consider heat integration and

layout in the early stages of the process design simultaneously with the input-output

structure.

The decomposition into three levels of modeling detail is done with respect to

the different considerations at each scale and the coupling between the three levels is

made by engineering judgment. The chosen decomposition allows interactions with

experimental efforts from collaborations or literature, see Figure 2-3 for examples.

At the system-level the set of alternatives considered is based on fabrication limits,

and system-level considerations can be used to determine on which processes the

fabrication effort should focus, as described in Section 2.6.5. Catalysis and reaction

engineering efforts can provide lumped reactions to be used in the system-level mod-

els, while sensitivity considerations at the system-level can suggest the reactions on

which catalysis effort should focus. For detailed modeling an initial geometry can

be provided by reactor engineering efforts, and computational fluid dynamic analysis

can suggest improvements on this geometry. At the intermediate fidelity level, ki-

netic models and limits of operating conditions are required and provided by reaction

engineering and material characterization efforts. On the other hand, intermediate

fidelity models provide optimal sizing of components and operating conditions.

2.5 Product Specifications

There are several metrics for the assessment of portable power generation devices,

and depending on the application they can be formulated as design objectives or con-

straints. For most applications, design objectives include minimizing weight and/or

volume of the power generation device plus fuel. An interesting differentiation is

between rigid and flexible volume; for certain applications a flexible shape is desir-

able; for other applications a collapsible fuel container could be useful, so that the

volume is reduced with time. The life time (measured in hours) of operation before

the device needs replacement, recharging or refueling can be either a design objective

or constraint. Economical and environmental cost are important criteria which are
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Figure 2-3: Examples of interactions with experimental efforts.

dominated by the materials used in devices and the fabrication and recycle/disposal

of processes, rather than the fuel utilized, and therefore are not the topic of this the-

sis. Design constraints include reliability, safety and flexibility to ambient conditions.

Reliability should in general be at least as high as that of the devices one wants to

power. From a consumer’s point of view, the power generation device must have a

relatively simple way of recharging, refueling or replacing. Power generation is asso-

ciated with heat generation, inversely proportional to the overall system efficiency,

e.g., [193]; inefficient processes might be considered uncomfortable for portable ap-

plications because of the high heat generation, e.g., a cellular phone getting hot, or

yield an undesired heat signature in the battle field. For rechargeable and refuelable

devices an important metric is the maximal number of operating cycles, as well as

the performance degradation with increasing number of cycles.

There are a large number of devices, with different characteristics, that cur-

rently require man-portable power production. Cellular phones currently use Li-ion

rechargeable batteries with a mass of about 100g, a cost of around $20, standby op-
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eration of many hours and runtime of at most a few hours. Digital camcorders have a

power demand of a few Watts and typically use rechargeable batteries with a cost of

$20-$50. Laptop computer batteries are rechargeable, typically Li-Ion, have a mass

of at most a few kg and typically have a capacity of under 100Wh/kg, resulting in a

few hours of power supply at around 5− 10W; they cost around $100-$200 and have

a lifetime of approximately 300 charge/discharge cycles. Flashlights and toys operate

with different types of batteries, either rechargeable or primary, with a power supply

of 1-10W; the battery weight and operating time vary significantly with an operating

cost on the order of $5/h. On the limit of portability are electrical vehicles for the

elderly and handicapped, which typically use lead-acid rechargeable batteries with a

mass of several kg and a mission duration of many hours. It is to be expected that

in the near future new power consuming devices, with possibly drastically different

specifications on the power demand, will come to the market. An example is so called

exoskeletons (also dubbed power pants, power elbows, etc.): robotic suits with the

promise of multiplying the force of soldiers or rescue workers or even allowing mo-

tion to disabled people [156, 157, 112]. These devices will probably be characterized

by a very low power demand during stand-by operation, for monitoring purposes,

and a spike in the power demand, reaching tens or hundreds of Watts during actual

operation. Other power consuming devices that are likely to become interesting ap-

plications for man-portable power generation include portable medical devices and

robots.

Not only the power consuming device, but also the customer, influence the spec-

ifications on the power generation device, and since potential customers range from

children to a dismounted soldier there is a great variety of needs. Power generation

devices for children need to be inherently at least as safe as current batteries and

non-toxic, even when operated differently than specified; the price is very important,

while the performance and reliability are not crucial. Businessmen, who want to

travel with their electronic devices, need power generation devices that can be car-

ried and operated on airplanes, and refueling in different countries must be possible;

performance and reliability are more important than price for this potential customer.
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Mountaineers need power generation devices that can operate under extreme condi-

tions for long mission durations; reliability is extremely important and performance

largely outweighs price considerations. The dismounted soldier can be trained for

safety and is already exposed to dangerous materials, and therefore safety require-

ments are less important than in civilian applications; performance and reliability are

the main criteria and cost considerations are almost negligible. Design constraints for

the dismounted soldier may include operation without noise generation or a thermal

signature, while operation under extreme conditions is possible.

There is the perception that high-temperature devices are not acceptable for a

consumer-product, because of the alleged heat dissipation and the risk associated

with catastrophic failures. While high-temperature devices have a challenging ther-

mal management [27] and start-up considerations are very important [65], the real

consideration from the consumer’s point of view is the overall heat dissipation, which

is associated with the thermal efficiency and not the operating temperature. Simi-

larly the real concern is not the possibility of a catastrophic failure of the device, but

rather the energy content of the stored fuels in case of failure of the storage cartridge,

which is essentially independent of the operating temperature. Depending on the fuel

used, a catastrophic failure of the cartridge may lead to a release of toxic components

or an explosion.

2.6 System-Level Analysis

Acknowledgments. The modeling effort was built upon the work by Dr. Ignasi

Palou-Rivera in the period from summer 2001 to spring 2002, who considered methanol

cracking, ammonia cracking and propane partial oxidation in PEM and SOFC, with

complete conversions and without the consideration of heat losses.

Furthermore, Michael M. Hencke significantly participated in the modeling effort.

Under the author’s guidance he implemented layout options, PCFC, DMFC, single

chamber fuel cell as well as some heat integration options.

Finally, Professor Klavs F. Jensen, Dr. Aleksander Franz and the MIT MURI team
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in general were instrumental in the development of the alternatives considered.

Most power consuming devices are not operated constantly and have rapidly

changing power demands, and therefore the dynamics and operation of power gen-

eration devices are very important. Similar to the electric vehicle application [278],

a fast start-up procedure, at most on the order of minutes, is required. Assuming

that the devices will be able to respond to power demands rapidly, the average per-

formance will most likely be dominated by the steady-state behavior of the devices.

The comparison of alternatives at the system-level is therefore performed consider-

ing steady-state processes; the calculation of system energy densities is described in

Appendix A.

The choice between alternatives at the system-level is based on the notion of a

superstructure from macroscale process design. Superstructure is a construct that

contains all the alternatives to be considered in the selection of an optimal process

structure [47]. An actual process design is a subset of the units and connections in

the superstructure. While in the macroscale there are few limitations for process

synthesis, in the microscale only relatively simple processes are possible [242, 245].

The set of alternatives considered here was formulated with the constraint that the

realization of the processes is either currently possible, has been proposed in the lit-

erature or is foreseeable in the short term future (next years). As a consequence of

the inherent requirement for process simplicity and the limitations in fabrication we

chose to manually synthesize the set of alternatives considered, as opposed to us-

ing an automatic method such as in [177]. Unlike macroscale process synthesis, the

complexity of man-portable power generation arises from the large choices of fuels,

fuel reforming reactions and fuel cells and the early stage of component develop-

ment, rather than from an elaborate combination of mixing, reaction and separation

steps. In the past alternative and/or complementary approaches to the process su-

perstructure have been proposed for macroscale process synthesis based on attainable

regions [152, 122, 107], phenomena-based process synthesis [220] and the state-space

approach [32]. Application of these ideas is outside the scope of this thesis and the

superstructure approach is used here as the most natural choice.
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2.6.1 Alternatives Considered

In order to describe the alternatives, we use a conceptual flowsheet superstructure

(Figure 2-4), with the symbols explained in Figure A-1 of the appendix. We want

to emphasize that the superstructure is only conceptual, and several of the “unit

operations” can actually be physically combined. Our models account for thermal

integration of the processes, as described in detail in Section 2.6.2. While kinetic data

are available for special catalysts, e.g., [87, 159], that allow for detailed modeling, our

intention is to have a general modeling framework that can cover various geometries

and reactor types (PFR, CSTR, packed bed, etc.) and be independent of the specific

catalysts used. Our models are therefore based on user specified efficiency parameters

in the various units such as conversion, electrochemical efficiency, separation efficiency,

etc. Once these parameters, as well as the operating conditions have been specified,

the performance of the system is calculated. The physical properties and the equations

used to model the “unit operations” are detailed in the Appendix A.

A basic requirement for a fuel is that it is compressible at relatively low pressures,

so that it occupies a small volume. Ideally the fuels used should be nontoxic and

inherently safe, but this requirement can be relaxed by allowing fuels that pose health

and safety concerns similar to chemicals used in common consumer applications. From

the vast choice of fuels and chemicals hydrides, ammonia, methanol, ethanol, heptane,

and propane/butane mixtures are considered in this study. For comparison purposes

hydrogen and methane stored as compressed gases are also included.

Ammonia can be thermally cracked at high temperatures producing hydrogen and

nitrogen

2 NH3 → N2 + 3 H2.

Ammonia is extremely toxic and corrosive and therefore could only be used in special

applications, such as remote sensors, but it has the advantage that it does not con-

tain any carbon and its thermal cracking does not produce carbon monoxide, which

has deleterious effects on proton exchange membrane (PEM) fuel cell performance.

Therefore, it is often regarded as a fuel alternative, e.g., [192], and cracking has been

demonstrated successfully at the microscale [26, 118].
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Methanol is liquid at ambient conditions, but has a high vapor pressure, so that

it can be easily vaporized. Methanol is flammable and over-exposure can have detri-

mental effects on health, but the risk associated with it is comparable to chemicals in

common use, such as isopropyl-alcohol which is used as rubbing alcohol. There are

three idealized ways of processing methanol for syngas generation:

Cracking: CH3OH → CO + 2 H2

Reforming: CH3OH + H2O → CO2 + 3 H2

Oxidation: 2 CH3OH + O2
H2O→ 2 CO2 + 4 H2.

Methanol can be either stored as a pure component or in solution with water. Methanol

can also be used directly in the direct methanol fuel cell (DMFC).

Ethanol has been proposed as a fuel for hydrogen production [83]. Ethanol has

a more complicated chemistry than methanol, but has the advantage that it is less

toxic. We consider two idealized reactions

Reforming: C2H5OH + H2O → 2 CO + 4 H2

Oxidation: 2 C2H5OH + O2
H2O→ 4 CO + 6 H2.

Several representative hydrocarbons are included. Methane is included because

it has been proposed in the literature; at ambient temperature it is supercritical

and thus cannot be compressed adequately. Propane/butane are gaseous at ambient

conditions, but can be liquefied at moderate pressures (< 10 bar) and are used as

representatives of the hydrocarbon class. Propane/butane are flammable and present

a health hazard by displacing the oxygen in the atmosphere, but are commonly used

in applications such as lighters and as a heat source for outdoor activities. Heptane is

liquid and was included as a representative of heavier hydrocarbons, in particular as

a model fuel for JP-8. Hydrocarbons can either be steam reformed (REF) or partially

oxidized (POX):

POX : 2 CxH2x+2 + xO2 → 2 x CO + (2 x + 2) H2

REF : CxH2x+2 + x H2O → x CO + (2x + 1) H2.
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Recently advances towards partial oxidation in microstructured reactors have been

made [174]. Also for some hydrocarbons reaction kinetics have been proposed [67]

Compressed hydrogen as well as a relatively broad class of hydrogen generators,

described in detail in Appendix A, are included. Hydrogen does not need to be

processed and can be readily oxidized in all fuel cell types considered here.

Flow pressure losses are not considered and all processes are assumed to operate

at atmospheric pressure. As a consequence liquid and gaseous water and methanol

have to be considered, but all other components are gaseous. Butane/propane and

ammonia would most likely be stored as compressed liquids under a moderate pressure

(≤ 10bar), in order to minimize the storage volume and to provide the necessary

pressure gradient for the flow. In a detailed model the vaporization unit needs to be

included, but because the heat of vaporization could be provided by heat transfer from

the environment, the overall energy balance is not affected significantly by neglecting

this unit.

Regarding the oxygen supply there are four possibilities, which for simplicity are

not included in Figure 2-4. One possibility is to use atmospheric air, in which case

a pressure rise has to be achieved by some mechanism, such as a microblower, which

will be associated with an electric power loss. Another possibility is to use compressed

air, which has the advantage that sufficient pressure will be available, but also means

that the nitrogen and oxygen mass must be accounted for in the energy density

calculations. Compressed oxygen could also be used, but in addition to the fact

that the oxygen mass must be accounted for in the energy density calculations, there

are some safety considerations associated with the use of compressed oxygen. The

advantage of pure oxygen is the reduction of flowrates as well as the fact that no

heating of the nitrogen is necessary. Finally, we also consider oxygen generators,

which can offer a significant increase in volumetric energy density as compared to

compressed gases. The modeling of these options is described in Appendix A.

For most applications, water needs to be either recycled or provided by a cartridge.

For underwater applications an interesting alternative is to extract water from the

ambient. In that case a water extraction device is needed and some energetic penalty
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will be incurred. The details of these calculations are found in Appendix A.

The first design choice is to choose the fuel that will be used for power production

and whether to perform fuel processing in a reactor, or to directly feed the fuel to

a fuel cell. Based on the process design heuristic for simplicity [245] the postulated

superstructure contains only one reactor. The next design choice is whether this fuel

or another fuel will be fed into a burner for heat generation. The heat produced

from burners serves to compensate for stream preheating, heat losses, endothermic

reactions or even heating of the system at startup.

Depending on the fuel processing reaction a secondary feed of water or oxygen

to the reactor is necessary. If desired, part of the reactor products can be split and

burned to supply heat, in which case a stream split is necessary. A recycle of the

reactor effluents is not included because recycling could only achieve backmixing.

Any potential benefit of backmixing is unlikely to compensate for the power loss

required to recycle. Recycling also seems unnecessary, since high conversions and

many reactor flowpatterns have been demonstrated experimentally in the microscale

for most of the considered reactions.

Certain components, such as carbon monoxide have deleterious effects on some fuel

cells, e.g., PEM, and it may therefore be necessary to perform a gas purification. We

assume that the purification will lead to two streams, one of essentially pure hydrogen

along with a waste stream. We consider a partial loss of the hydrogen in the waste

stream, but we neglect any energetic penalty for the purification and the effect of

a sweep stream, which may be necessary for the operation [114]. The purification

could either be sequential to the reactor, or the reactor and the membrane could

be combined into one unit, allowing for higher selectivity of the reactions towards

hydrogen [254, 114]. The separation waste can be either discarded or burned. If

desired, the purification product (H2) can be split, and a part can be fed into a

burner.

We consider a variety of fuel cells, namely either a Solid Oxide Fuel Cell (SOFC)

with the option of internal reforming, a Proton Ceramic Fuel Cell (PCFC), a hydrogen

operated Polymer Electrolyte Membrane Fuel Cell (PEM), a Single Chamber fuel cell
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operating with hydrogen and carbon monoxide, or finally a Direct Methanol Fuel

Cell (DMFC). A SOFC has the benefit of fuel flexibility, but it is operated at high

temperature which leads to large heat losses and problematic start-up. PEMs are

run at low temperatures but cannot tolerate impurities, and water management is an

issue. Single Chamber fuel cells are potentially easier to fabricate [96], but have the

drawback that they are operated with premixed gases which potentially can lead to

explosions and require catalysts with high selectivity. A PCFC is a relatively new

concept [75], which has the potential of fuel flexibility while operating at slightly

lower temperatures than SOFCs. A DMFC is a PEM based fuel cell in which a

dilute methanol solution in water is reformed at a relatively low temperature, around

350K; major technical challenges include methanol crossover and water management.

The reader is referred to the literature for extensive discussions about the technology

differences in the fuel cells, e.g., [9, 258, 136]; details concerning the fuel cell modeling

are found in Appendix A.

The conversion in the fuel cells (also denoted “fuel utilization”) is not complete,

and the unreacted part of the fuel can either be burned or recycled. The basic

recycling option is to split the fuel cell effluent into a recycle and a purge stream.

The recycle stream can be mixed with the reactor inlet, the membrane inlet or the

fuel cell inlet. A more promising recycling option would be recycling after separation,

e.g., separate the hydrogen of the fuel cell effluent and recycle it to the fuel cell, or

separate the steam/water and use it for reforming reactions and to prevent coking.

These options are very appealing from the point of view of minimizing the mass,

but separation might be very difficult to implement in the general case. We allow

for the option of separating the liquid and gaseous components of the anode and

cathode effluents in a flash at a given temperature, most likely near-ambient, and

recycling a fraction of the liquids (mainly water and methanol) to the reactor or the

fuel cell anode. Depending on the implementation of the recycle stream, a pressure

increase mechanism may be necessary, e.g., a microfabricated pump, and we consider

an energetic penalty in terms of a compression power. The feasibility of recycling is

controversial, because of the lack of efficient units for pressure increase; nevertheless
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the option of recycling has been included in this study for the sake of generality. The

remaining liquid components constitute a purge stream. The gaseous components

can be recycled to the reactor, membrane, or fuel cell as in [201].

The cathode effluent stream of the fuel cell can be reused to provide oxygen for

a burner because it is plausible that the fuel cells will be operated at a relatively

large oxygen excess. Reusing excess oxygen is most advantageous in volume-critical

applications where the oxygen cartridge may occupy a large fraction of the total

system volume. In addition, the temperature of the cathode effluent stream is higher

than the ambient, so this reduces the energetic requirement of preheating the oxygen

feed to the burner. However, in circumstances where the fuel cell discard temperature

is substantially lower than the operating temperature of the burner (i.e., for a PEM

or DMFC), preheating is still necessary. The cathode effluent also contains nitrogen,

and in some cases, e.g., a PEM, also steam, and heating of these components to

the burner operating temperature may outweigh the advantage of using preheated

oxygen.

2.6.2 Integrated Layout and Thermal Management

The graphical representation of the superstructure (Figure 2-4) does not contain in-

formation about the physical layout. A very promising approach for thermal manage-

ment is to couple two or more units thermally in a near-isothermal stack [25]. In this

manner direct heat transfer between heat sinks and heat sources is possible, as well

as heat recovery of the effluent streams; thermally coupling two units also reduces

the surface area and as a consequence the heat losses. Combining units is thus a

layout consideration that influences the process performance. As a consequence, the

problems of flowsheet design, physical layout and heat integration need to be solved

simultaneously.

Heat losses are considered with a lumped model. Based on the calculated volu-

metric flow V̇ and a specified residence time τ the necessary volume is calculated as

V = V̇ τ , as well as an equivalent surface A = 6V 2/3 (assuming a fixed aspect ratio

of the devices). The heat losses are then calculated using an overall heat transfer
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coefficient Uloss (dependent on the insulation) and an overall emissivity (including

the view factor and accounting for the presence of radiation shields) ǫ, as

Qloss = A
(

Uloss (Top − Tamb) + ǫ σSB

(

T 4
op − T 4

amb

))

.

Heat recovery is difficult to be realized at this scale, but there are efforts towards this

end [28, 212], by allowing for a heat exchange between the inlet and outlet gases. In

our models this approach is reflected by the use of a discard temperature Tout from

the main units (reactor, burners and fuel cell), which can be lower than the operating

temperature Top.

In the following description, we will refer to individual process components (i.e.,

fuel cell, reactor, burner, etc.) as “units”, although they are not independent in the

sense of the unit operations design paradigm. Specification of the process layout

requires an indication of the relative location and connectivity of every unit present

in the selected flowsheet of the superstructure, e.g., is the fuel cell in thermal contact

with the reactor? We propose an idealization of the layout considerations, allowing

only for two extremes, implemented using logical decisions for the connectivity of

each pair of units; this simplification is done for the same reasons that we used

generic models for the reactor and the fuel cells. One extreme is that the units

are thermally connected, so that they share the surface that results in heat losses,

and one energy balance is sufficient. Within these “stacks”, flow streams proceed

directly between units, so that heat losses between units are neglected. Due to the

small length scales associated with these microdevices, convection and conduction are

rapid in these stacks, thus necessitating that all units within a given stack operate

with small temperature differences between them. Although our models allow for unit

operating temperatures to be defined separately, this temperature constraint must be

considered when deciding to combine two units. It is unlikely to find a way to use

the heat excess of units operating at low temperatures, e.g., PEM or DMFC, and we

therefore do not allow the possibility of stacking these units with any other units.

The combination of units may also be limited by fabrication possibilities that are not

49



the subject of this thesis.

The other extreme that we consider is that the units are separated, so that each

one has separate heat losses to the ambient and significant heat losses occur when

mass or heat are transported between the units. In the case of a stream flowing from

unit i to unit j, the temperature inlet to unit j is calculated as

Tj = Ti − χtemp (Ti − Tamb),

where the energetic penalty (“temperature loss factor”) χtemp ∈ [0, 1] is a given pa-

rameter. In addition, heat exchange is inefficient, if not impossible, if the units are

not integrated into stacks. We do allow for the option of heat exchange from burners

that are not thermally coupled to the heat sink, but we impose an energetic penalty.

The heat input to unit j is taken as a fraction of the heat output from unit i

Qj,in = (1 − χheat) Qi,out,

and the difference between Qi,out and Qj,in is assumed to be lost to the ambient. We

do not account for details of the heat exchange; possible realizations of heat exchange

are radiation or conduction through a rod between the units, or preheating of inlet

gases to one unit by the heat excess of the other.

In Figure 2-5 the two extreme cases of layout are illustrated for a process, in which

butane is partially oxidized and the syngas produced is fed into a SOFC, while the

cathode effluents are used to oxidize the unburned syngas from the anode for heat

generation. In one extreme case the SOFC, reactor and burner are assumed to be

thermally coupled, while in the other extreme case, all three process components are

separate, with remote heat exchange between the burner and the SOFC. It should be

noted that Figure 2-5 is conceptual and not an actual design.

While layout options including many stacks are conceivable, we allow a maximum

of two theoretical stacks, each of which can have up to five individual units. This

restriction is motivated by the fact that the superstructure has up to two main units,

namely the reactor and a fuel cell and by this restriction an explosion in the number
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Figure 2-5: Conceptual difference between coupled (left) and non-coupled (right)
process components.

of logical choices is avoided. The five units potentially available for each stack are the

fuel cell effluent burner, the membrane waste burner, the reactor, the fuel cell, and

either a fuel burner, a reactor products burner, or a membrane products burner. We

assume only one instance of the former four units and therefore they can be present in

only one stack; we do allow for the possibility of splitting the fuel, reactor products,

and membrane products streams, however, so that the latter units may be present in

both stacks.

In the case that multiple burners are present in a stack, it is possible to combine

them into a single unit, by mixing the inlet streams and producing a single waste

stream. This may be easier from a fabrication stand point, or may result in a higher

average conversion. According to the constraints on the number of units and stacks,

there can be at most three burners in a single stack. In this case there are three

possible ways to premix the burner streams: combine all three streams (one burner),

combine two streams and leave the third stream separate (two burners), or leave all

three streams separate (three burners). Our models allow for all three possibilities.

Each stack has to be autothermal (heat load on each stack negative or zero).
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Since we assume perfect heat exchange within the stack and heat exchange from non-

coupled units subject to an energetic penalty, χheat ∈ [0, 1], the energy balance around

a single stack with components i, inlet streams j, and outlet streams k is given by

∑

i

∑

k

Ni,k Hi,k(Tk) =
∑

i

∑

j

Ni,j Hi,j(Tj) + Qp − Qloss + PWFC .

We require that the sum of the heat duty Qp of the stack and the effective heat

exchange (1 − χheat) Qdistant from distant units, is less than or equal to zero.

Qp + (1 − χheat) Qdistant ≤ 0.

In general heat removal can be problematic [193, 191], but we assume that for the

high-temperature processes considered it will be possible by reducing the insulation,

introducing a heat sink element, or increasing the oxygen excess. We currently do

not directly account for the, presumably small, decrease in the system performance

by implementing these options.

For low-temperature fuel cells, such as hydrogen operated PEM and DMFC, cool-

ing needs to be accounted for. Passive cooling is included in the heat losses to the

ambient, by the heat loss coefficient Uloss, but this may not be sufficient. We therefore

allow two possibilities for cooling, namely air-based cooling and water-based cooling.

Air cooling corresponds to an increase of air excess, or a fan and cooling is achieved

by heating up air from ambient temperature to a temperature close to the fuel cell

temperature. The air requirement is added to the air needed for the reactions. Water-

cooling models the effect of controlling the humidity in the fuel cells; in the case of

heat excess the temperature increases and water is evaporated at a higher rate; control

of the humidity requires the addition of water.

In a similar vein to the combination of units, we also consider the option of com-

bining fuel cartridges. This may be more difficult to fabricate, but has the advantage

of minimizing the cartridge volume. We allow for the option of combining all fuel

cartridges, combining the cartridges that go to burners, or keeping all the cartridges
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separate. In the case that compressed oxygen or an oxygen generator is used, we only

consider the option of a single oxygen cartridge.

2.6.3 Chemical Equilibrium Considerations

In macroscale systems the notion of equilibrium reactors is often employed for re-

actions that are equilibrium-limited. In this section we examine whether or not the

reactions considered are equilibrium limited using two approaches. One approach is

the restricted equilibrium approach, where only one reaction is considered, based on

the assumption that a catalyst exists which speeds up this one reaction to such an

extent that components not participating in this reaction can be treated as inert.

The other approach is to assume that all components equilibrate with each other. In

both cases the chemical equilibrium is formulated as a convex-nonlinear minimization

problem with linear constraints [257]

min
ni

16
∑

i=1

ni

(

G◦
i (T ) + R T ln

(

P

Pref

)

+ R T ln

(

ni
∑16

j=1 nj

))

,

where G◦
i (T ) is the Gibbs free energy of the pure component i at the reference pressure

Pref . Atom balances are enforced as constraints:

16
∑

i=1

ni βi,X =
16
∑

i=1

ni0 βi,X X = N, O, H, C,

where βi,X is the number of atoms of element X in component i and ni0 is the initial

number of moles of component i. In addition, all mole numbers must be nonnegative

(ni ≥ 0). We consider a total of 16 components: NH3, N2, N2O, NO, NO2, O2,

H2, H2O, CO, CO2, CH3OH, CH4, C2H6, C2H4, C3H8 and C4H10. We used GAMS

[56] and confirmed the results with three available solvers SNOPT, CONOPT and

BARON.

Table 2.1 contains the summary of the equilibrium yields for the reactions con-

sidered. For the initial mole numbers stoichiometric mixtures with atmospheric air is

used for all cases. In addition for the methanol oxidation the effect of water presence
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is also studied, with a mixture of 2 moles methanol, 1 mole oxygen and 4 moles water.

The yield is defined as the amount of hydrogen at equilibrium divided by the amount

achieved with the idealized reaction.

Table 2.1: Summary of the results for the chemical equilibria

Restricted Equilibrium Unrestricted Equilibrium
Reaction T in K Yield T in K Yield

C3H8/C4H10 partial oxidation 1100 > 0.99 1100 0.7
1600 > 0.99

C3H8/C4H10 reforming 1100 > 0.99 1100 0.6
1500 > 0.99

CH3OH cracking 600 > 0.99 600 0.01
1600 0.98

CH3OH reforming 500 0.93 1300 0.73

CH3OH oxidation 500 0.95 1200 0.65

CH3OH oxidation with H2O 400 > 0.99 1000 0.8

NH3 cracking 900 > 0.99 900 > 0.99

The study of chemical equilibria shows that the reactions considered are not sig-

nificantly equilibrium limited, provided catalysts that suppress the formation of un-

desired components can be developed. As a consequence the inclusion of equilibrium

based calculations in the reactor and fuel cell modeling would not significantly improve

the quality of the models and was therefore not pursued. The chemical equilibria also

show that at temperatures ≤ 1100K and at moderate air excess ≤ 20% the formation

of nitrogen oxides is insignificant from the perspective of mass and energy balances.

As a consequence it is legitimate not to include those components in our calculations.

2.6.4 Simulation-Based Case Studies

The described superstructure is represented as a steady-state simulation model using

our in-house software packages ABACUSS II [273, 272] and DAEPACK [269, 271].

The mass and energy balances are formulated within the process simulator ABA-

CUSS II, while the physical property calculations are performed in Fortran external

procedures, which are called by the simulator, using automatic differentiation as de-

scribed in [273]. The implementation is available in the form of a web-interface [198],
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which allows for facile use by remote users, who are unfamiliar with the modeling

language and the details of the models. Upon request and subject to approval this

web-interface can be made available for academic purposes.

The process simulation requires a fully determined system of equations and there-

fore all design choices have to be made prior to the simulation. There are also a

number of parameters that need to be specified, including the operating conditions

(operating Top and discard temperatures Tout, residence times τ , air excess Φ, power

output PW , ratio of reactants, recycle ratio α) as well as the modeling parameters

(conversions ζ , overall heat loss coefficients Uloss and emissivities ǫ in the reactor, the

fuel cell and the burners, membrane efficiency ηM , fuel cell efficiency ηFC, power load

for the compressor KP ).

Many microdevices and components of the proposed processes are not yet fully

developed. Therefore some parameters, such as the range of feasible operating tem-

peratures in the different units, are not accurately known. Sensitivity analysis and

parameter variation show the effect of changing those parameters on the best process

structure and energy density. For the steady state the sensitivities correspond to

partial derivatives of the model variables with respect to these parameters.

The number of processes considered is so large that an exhaustive comparison

and study of the parameter dependence is not possible within the scope of this thesis.

Instead, we choose to compare a small set of alternatives in terms of different metrics

as well as to study the influence of key parameters (different for each alternative).

These studies show the capabilities of the methodology developed and present insights

into the product design of portable power generation devices. It should be noted that

the numerical results depend on the values of the operating and modeling parameter

values used. The strength of our methodology is that the formulated models retain

their validity for the whole range of parameters and can be used as a tool for the

evaluation and comparison of the different technologies.
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Maximal Densities

Since in the considered processes the fuels are chemically converted to hydrogen or

syngas the maximal achievable energy density can be estimated assuming atmospheric

air and calculating the production of hydrogen and carbon monoxide per kg of the fuel

or fuel/water. In Table 2.2 a power production of 64 Wh/(mol H2) and 71 Wh/(mol

CO) is assumed and the heat of reaction ∆rH is reported for T = 298. The maximal

densities differ from the theoretical values for direct fuel cells (Figure 2-1), since in the

processes considered the chemical potential of the fuel processing does not contribute

to the power production.

Table 2.2: Ideal energy densities

Reaction Power from H2 Power from CO Total Power ∆rH
[Wh/kg] [Wh/kg] [Wh/kg] [Wh/kg]

C3H8 + 1.5 O2 → 3 CO + 4 H2 5630 4770 10400 -1400
C4H10 + 2O2 → 4 CO + 5 H2 5460 4930 10400 -1500
C3H8 + 3 H2O → 3 CO + 7 H2 4480 2170 6640 1180
C4H10 + 4H2O → 4 CO + 9 H2 4380 2200 6580 1390

CH3OH → CO + 2 H2 3960 2230 6190 790
CH3OH + H2O → CO2 + 3 H2 3800 0 3800 275
2 CH3OH + O2 → 2 CO2 + 4 H2 3960 0 3960 -1670

2 NH3 → 3 H2 + N2 5590 0 5590 745

Comparison of Processes

In this base case a small subset of the possible process configurations is considered

with conservative estimates for the operating parameters. For the partial oxida-

tion (HC-POX) and reformation (HC-REF) of hydrocarbons an equimolar mixture of

propane/butane is used with no excess of air or water in the reactor. Pure methanol

is used as a fuel for all methanol processes, while the reactor inlet is pure methanol

for cracking (CH3OH-CR), equimolar mixture of water and methanol for reformation

(CH3OH-REF) and oxidation (CH3OH-OX), with no oxygen excess. Pure ammonia is

used for the ammonia cracking (NH3-CR). The feasibility of recycling is controversial

and therefore is not included in the base case. For the PEM-based processes purifi-

cation of the fuel cell inlet stream is performed, with the exception of the ammonia
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cracking. No membrane is used for the SOFC-based processes. The values used for

the operating conditions and the model parameters are summarized in Table 2.3. For

each process different reactor (R) and burner (B) temperatures were used. Different

heat integration options were studied and only the best energy density is reported.

The reported heat losses Qloss include the heat produced in the PEM, while the heat

excess Qex includes only the heat available at high temperatures. The heat excess is

nonzero for processes where the reaction exothermicity is greater than the heat losses

and no burners are needed, or for processes where the burning of waste produces

more heat than needed. For simplicity the cooling load is ignored and an overall heat

balance is calculated, assuming arrangement in a single stack.

Table 2.3: Process parameters for the comparison of processes

Ambient temperature Tamb = 298K

Power output PW = 1W

Conversion in reactor ζ = 0.9

SOFC temperature Top = 950K

Residence time in reactor τ = 1ms

Discard temperature from SOFC Tout = 750K

Conversion in burners ζ = 0.95

PEM temperature Top = 410K

Residence time in burners τ = 1ms

Discard temperature from PEM Tout = 410K

Air excess in burners Φ = 1.2

Conversion in fuel cell ζ = 0.8

Overall heat loss coefficient U = 3W/m2/K

Residence time in fuel cell τ = 20ms

Emissivity (incl. view factor) ǫ = 0.2

Efficiency of fuel cell ηFC = 0.7

Air excess in fuel cell Φ = 1.2

Membrane efficiency ηM = 0.8

The results for atmospheric air with an energetic penalty for the air flow of

KP = 10J/mol/K are summarized in Table 2.4. While these results depend on the

numerical values of the parameters chosen, and only relatively rough estimates are

available, it becomes obvious that the processes considered can lead to much higher

energy densities than state-of-the-art batteries. The most promising option is par-
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tial oxidation of propane/butane in combination with an SOFC. This is due to the

higher maximal achievable density of this process as well as to the fact that this is

an exothermic reaction, and the heat excess of the reaction can partially compensate

for the heat load. The heat losses are of the same order of magnitude as the power

generation.

Table 2.4: Process comparison for atmospheric air

Fuel FC TR,op TR,out TB,op TB,out [Wh/kg] [Wh/l] Qloss Qex

HC-POX PEM 1100 800 1200 900 1890 1010 1.0 0.1
HC-POX SOFC 1100 1100 1200 900 3070 1621 1.7 0
HC-REF PEM 1100 800 1200 900 1490 1070 1.2 0.2
HC-REF SOFC 1100 1100 1200 900 1740 1140 1.7 0

CH3OH-CR PEM 600 500 700 700 1330 1070 0.6 1.2
CH3OH-CR SOFC 600 600 1000 700 1820 1460 1.1 0
CH3OH-REF PEM 500 500 700 600 1350 1160 0.5 0.0
CH3OH-REF SOFC 500 500 1000 700 1160 980 1.2 0
CH3OH-OX PEM 400 400 — — 890 770 0.5 0.5
CH3OH-OX SOFC 400 400 1000 700 930 800 1.5 0

NH3-CR PEM 900 700 1200 900 1620 990 1.0 0

The calculations are repeated for the case of compressed oxygen, available at 100

bar, instead of atmospheric air, and the resulting energy densities are much lower

(Table 2.5), because the oxygen mass and volume must also be accounted for. In

particular the volumetric energy density is an order of magnitude lower, because of

the significant volume that the oxygen needs. It should be noted that the gravimetric

energy density is overestimated because the mass of the empty cartridges would be

significant for this case. As expected processes requiring great amounts of oxygen,

such as partial oxidation of hydrocarbons are most influenced, and the differences

between the processes are smaller than in the case of atmospheric air.

Heat Losses and Scaling

In order to study the influence of scale and heat losses, the power output as well as the

overall heat transfer coefficient and the emissivity were varied for the case of partial

oxidation of propane/butane with the SOFC assuming arrangement in a single stack..
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Table 2.5: Process comparison for compressed oxygen

Fuel FC TR,op TR,out TB,op TB,out [Wh/kg] [Wh/l] Qloss Qex

HC-POX PEM 1100 800 — — 730 130 0.8 0.2
HC-POX SOFC 1100 1100 — — 990 150 0.5 0.35
HC-REF PEM 1100 800 1200 900 640 120 0.9 0.4
HC-REF SOFC 1100 1100 1200 900 840 145 0.7 0

CH3OH − CR PEM 600 500 700 700 590 115 0.6 1.2
CH3OH − CR SOFC 600 600 1000 700 910 170 0.5 0.0
CH3OH − REF PEM 500 500 700 600 745 170 .6 0.0
CH3OH − REF SOFC 500 500 1000 700 740 150 0.6 0.0
CH3OH − OX PEM 400 400 — — 565 144 0.5 0.4
CH3OH − OX SOFC 400 400 — — 580 130 0.7 0.1

NH3 − CR PEM 900 700 1200 900 865 170 0.8 0.0

Varying the residence time would have a similar effect with a different dependence

function.

The results are shown in Figure 2-6. If no heat losses are taken into account

the process is invariant to scale for the considered level of model detail. Small scale

(<1W) processes are influenced by heat losses much more than larger scale, since

for higher power production the available heat excess partially compensates for the

heat losses. For relative low heat losses (ǫ = 0, U = 25W/m2/K and ǫ = 0.3,

U = 5W/m2/K) there is a power output (6W and 9W respectively), above which

the heat excess overcomes the heat losses and the energy density for the case of zero

heat losses is matched. Because of the high operating temperature the influence of

radiation is more important than conduction/convection. For endothermic processes

(not shown) the influence of heat losses is even more dramatic.

Basic Recycling

The effect of recycling and the dependence of the compressor parameter KP are shown

in Figure 2-7 for the case of partial oxidation of propane/butane with the PEM, ig-

noring the cooling load. Low values of the compressor parameter correspond to a

low pressure ratio, or to high compression efficiency. For low values of the com-

pressor parameter (KP < 300J/mol/K) recycling of the unburned hydrogen slightly

improves the process efficiency, while for high values of the compressor the energy
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Figure 2-6: Influence of heat losses and scale on the energy density

needed for compression overcomes the benefit of recycling. Above a recycle ratio of

approximately 0.35, burning the fuel cell effluents does not produce enough heat to

compensate for the heat losses, and part of the fuel products needs to be burned,

which leads to a jump in the energy density.

Conversion and Efficiency

The effect of the SOFC efficiency ηSOFC and the conversion ζFC are studied for the

case of partial oxidation of propane/butane with the SOFC assuming arrangement in

a single stack. In Figure 2-8 the energy density as well as the flowsheet corresponding

to the best heat integration option are shown. For total conversion ζSOFC = 1 there

is a kink at ηSOFC = 0.52, because at this efficiency the heat excess in the fuel cell

is not enough to compensate for the heat losses, and part of the fuel needs to be

burned. For the intermediate conversions (ζSOFC = 0.6 and ζSOFC = 0.8), there are

three kinks corresponding to the point where the heat excess of the fuel cell is not

enough (η = 0.33 and η = 0.43), to the point where burning the fuel cell effluents

leads to higher energy density than burning part of the fuel (η = 0.40 and η = 0.45)

and the point where burning the fuel cell effluents does not provide enough heat
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Figure 2-7: Effect of recycling on the energy density for different values of the com-
pression parameter KP

(η = 0.53 and η = 0.64 respectively) and two burners are needed. For the low

conversion ζSOFC = 0.3 there is a kink at ηSOFC = 0.48 corresponding to the point

where burning the fuel cell effluents leads to higher energy density than burning part

of the fuel.

Influence of Product Specifications on Hydrides and Hydrocarbons

In Figure 2-9 we compare one SOFC-based and two PEM-based processes as a func-

tion of relevant technological parameters using two different metrics, namely volu-

metric and gravimetric energy density. For simplicity, we base the densities only on

the amount of fuel needed, which dominates over the device size for long mission
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Figure 2-8: Effect of SOFC efficiency on the energy density for different conversion
values

durations; these are referred to as gravimetric and volumetric fuel energy density, re-

spectively. In the first process, denoted “Hydride”, hydrogen is released by a hydride

and fed directly into a PEM. For the gravimetric energy density we use a hydride

density of 0.2g H2/cm3 and vary the weight percentage of hydrogen, while for the

volumetric energy density we use a value of 8 weight % and vary the hydride density.

In the second process, denoted “POX-PEM”, propane/butane are partially oxidized,

and the hydrogen is separated with a varying recovery ηM and then fed into a PEM.

Finally, in the SOFC based process, denoted “POX-SOFC”, propane/butane are par-

tially oxidized and fed into a SOFC and the fuel cell effluents are used in a combustion

chamber to provide sufficient heat for the high temperatures; the reactor, burner, and

SOFC are assumed to be in thermal contact; carbon monoxide and hydrocarbons are

assumed to be consumed in reforming reactions in the SOFC. For the PEM based pro-

cesses there is always heat excess and the decision of oxidizing the fuel-rich streams
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depends on the product requirements; they should be oxidized in an environment

with strict requirements on toxic or dangerous emissions, and should not be oxidized

when heat removal or heat signature are of concern.

Table 2.6 summarizes the parameter values used. The main observation is that the

optimal design depends on the relative importance of objectives, i.e., maximal volu-

metric or gravimetric energy density, as well as advances in technology, i.e., membrane

efficiency and hydride density. It is therefore plausible that different applications will

require a different power generation device and that the optimal design can change

with technological improvements. Regarding the actual comparison of hydrides and

hydrocarbons, the general behavior is that highly concentrated hydrides can compete

with hydrocarbon based processes in terms of volumetric energy density, whereas in

terms of the gravimetric energy density they cannot. We want to again point out

that the exact numbers depend on the parameter values used. Hydrogen recovery is

very important, but even with complete recovery, the loss of the chemical potential

of carbon monoxide makes PEM based processes less attractive than those utilizing

a SOFC.

While the exact device size depends on fabrication and packaging technologies, it

is to be expected that the processes which use hydrocarbon processing will result in a

larger device than hydride based fuel cells due to the presence of a reactor. Therefore

for small mission durations and/or power requirements the hydride based processes

might be the optimal choice. On the other hand for large mission durations and power

requirements, the fuel size dominates over the device size and one would expect that

hydrocarbons will be the fuel of choice.

Effect of Oxygen Generators

In the basic comparison of processes we analyzed the effect of using compressed

oxygen for cases where atmospheric air is not available, e.g., for underwater operations

such as recreational diving. The volume of the compressed oxygen is very large and

consequently the volumetric energy density is low. Here we compare the process of

the previous design based on partial oxidation of propane/butane in combination with
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Figure 2-9: Comparison of hydride based and hydrocarbon based processes in terms
of volumetric and gravimetric fuel energy density.

a SOFC for a mission duration τmission = 30 h using either an oxygen generator or

compressed oxygen as the source of oxygen. For the case of compressed oxygen we

assume a plastic fuel storage material with a maximal allowable tensile stress of 100

MPa and a density of 1.5 kg/l and no minimum thickness requirement and we vary

the storage pressure in the range 10-1000 bar. For the case of hydrogen peroxide

we use again a cartridge density of 1.5 kg/l and vary the hydrogen peroxide weight

fraction for two cartridge thicknesses, namely 1mm and 10mm. The properties for

the storage materials were based on the range given in [223] for epoxic and polyesteric

materials. As metrics for the comparison of the processes we use the volumetric and

gravimetric system energy densities, where the system includes the power generation

device and the stored fuel, as described in Appendix A. Either metric can be more

important depending on the application; e.g., for a mountaineer minimizing weight

is more important than minimizing volume, while for a diver minimizing the mass

is not as crucial, because of buoyancy effects. The startup time was assumed to be

τstartup = 60s with an auxiliary battery with a gravimetric energy density of 200Wh/kg

and a volumetric energy density of 200Wh/l; the volume factor for the device is

assumed to be 10 and the device density 1kg/l; the influence of these parameters on

the system volume and mass is insignificant, since the volume and mass are dominated
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Table 2.6: Process parameters for the comparison in Figure 2-9.

Ambient temperature Tamb = 298K

Power output PW = 1W

Reactor temperature Top = 1000K

Reactor outlet temperature Tout = 500

Conversion in reactor ζ = 0.9

SOFC temperature Top = 1000K

Residence time in reactor τ = 1ms

Discard temperature from SOFC Tout = 500K

Conversion in burners ζ = 0.95

PEM temperature Top = 350K

Residence time in burners τ = 1ms

Discard temperature from PEM Tout = 350K

Air excess in burners Φ = 1.2

Conversion in fuel cell ζ = 0.8

Overall heat loss coefficient U = 3W/m2/K

Residence time in fuel cell τ = 20ms

Emissivity (incl. view factor) ǫ = 0.2

Efficiency of fuel cell ηFC = 0.7

Air excess in fuel cell Φ = 1.2

Compression parameter for the air feed KC = 10J/mol/K

Burner temperature Top = 1000K

Discard temperature from burner Tout = 500K

Water factor in fuel cell Ψ = 1

Propane molfraction in feed 0.5

No air excess in reactor Φ = 1.0

by the oxygen storage device.

In terms of the volumetric system energy density (Figure 2-10 left), relatively di-

lute oxygen generators can reach the performance of highly compressed oxygen. In

terms of the gravimetric system energy density (Figure 2-10 right), only very con-

centrated hydrogen peroxide can out-perform the compressed gas. The gravimetric

system energy density in the case of compressed oxygen is decreasing with pressure,

because the required cartridge wall thickness increases superlinearly with the storage

pressure, while the cartridge volume decreases linearly. The volumetric system energy

density increases with storage pressure because of compression, but when the pres-

sure approaches the allowable tensile stress, the wall cartridge thickness increases so
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much that the cartridge volume becomes significant. In terms of the optimal product

there is a tradeoff between the safety requirement and the objective of minimizing

weight and/or volume; safe operation requires thick cartridges and a dilute oxygen

generator or moderate storage pressures, while energy density maximization requires

a highly concentrated oxygen generator or high storage pressures using thin-walled

cartridges. Depending on the relative importance of the objectives, either the oxygen

generators, or compressed oxygen may be the optimal choice. It can also be seen

that the comparison with state-of-the-art batteries regarding the energy density is

not very favorable and only highly efficient processes will be able to compete with

batteries regarding this metric.
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Figure 2-10: Comparison of hydrogen peroxide and compressed oxygen in terms of
the volumetric (left) and gravimetric (right) system energy density.

Effect of Scale on Process Performance

The scalability of micropower generation devices is particularly interesting since there

are two major scales. One is the nominal power output, which is mainly associated

with the device size, and the other is the time between refueling (mission duration),

which is associated with the fuel cartridge size. In this case study we present the in-

fluence of these two scales on achievable system performance using the volumetric and

gravimetric energy densities as metrics. We use the same parameters as in Table 2.6,

a volume factor of 10 and a device density of 1kg/l. The fuel cartridge thickness

was taken to be 1mm and the density 1.5kg/l. The startup time was assumed to
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be τstartup = 60s with an auxiliary battery with energy densities of 200Wh/kg and

200Wh/l. As metrics for the scalability we use the volumetric and gravimetric sys-

tem energy densities, where the system includes the power generation device and the

stored fuel, as described in Appendix A. Figure 2-11 shows the achievable energy

density in Wh/(l system) and Wh/(kg system).

For low power outputs the heat losses dominate over the exothermicity of the

fuel processing and burning of the fuel cell effluents as well as part of the fuel is

needed (Design I). Since the heat generation scales linearly with power output while

heat losses scale sublinearly (with a power of 2/3) the achievable energy density in-

creases significantly with the power output. At a power output of about 0.6W a kink

is observed, because for higher power output the heat generation from burning the

fuel cell effluents is sufficient (Design II). Above approximately 1.6W the process is

exothermic enough, so that the fuel cell effluents need not be oxidized (Design III).

The system energy density increases with mission duration and approaches the energy

density with respect to the fuel volume/mass because the device size becomes negligi-

ble. This case study demonstrates that the influence of scale on process performance

is significant; since different processes scale in general differently, the optimal design

is also likely to be influenced by the scale.
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Figure 2-11: Volumetric and gravimetric system energy density of hydrocarbon partial
oxidation in combination with a SOFC as a function of mission duration and power
output.
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Effect of Fuel Combinations and Layout

In this case study we investigate the effect of using a second fuel for heat generation

as well as how different layouts can yield significantly different system performances.

A process that has been proposed, e.g., [192], is ammonia decomposition to nitrogen

and hydrogen and subsequent oxidation of the hydrogen in a PEM fuel cell. A major

drawback of this process is that ammonia is corrosive and extremely toxic. From

a technological point of view this process has the benefit that the ammonia does

not contain carbon, and thus poisoning of the PEM can be avoided without the

need for a separation following the fuel processing. However, the process has many

drawbacks, including high operating temperatures for the fuel processing reactor and

an endothermic fuel processing reaction, so that burning the fuel cell effluents may

not provide sufficient heat [201]. Performance improvements can be achieved by the

use of a second high energy fuel, e.g., hydrocarbons, for heat generation. We consider

two extreme cases of layout, namely that either the two burners are separate and we

have remote heat exchange or that the two streams to be burned are combined in a

burner which is in thermal contact with the reactor. In [87] it was demonstrated that

conversion for the ammonia cracking reaction is essentially complete for residence

times in the order of ms and a fuel processing temperature of 650◦C. Here we assume

complete conversion of ammonia in the reactor and vary the residence time in the

reactor in the range 0-100ms. Table 2.7 summarizes the parameter values used and

Figure 2-12 shows the results in terms of the fuel energy density.

Even for low residence times combining units into a stack has a significant impact,

and thermal integration seems necessary. This case study illustrates that flowsheet

design and thermal management, including combination of heat sources and heat

sinks, need to be considered simultaneously. The use of ammonia oxidation for heat

generation in separate units becomes essentially impossible for high residence times

because of the resulting increase in heat losses. The choice of a single fuel or a fuel

combination is not obvious; from a perspective of maximizing the energy density fuel

combination is very advantageous, but it bears the logistic difficulties of carrying two
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fuels. This tradeoff implies that for different applications a different design will be

used.
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Figure 2-12: Effect of fuel combinations and layout options on gravimetric fuel energy
density of an ammonia-cracking based process.

Water Management in DMFC

It is well known that water management is a key consideration in direct methanol

fuel cells, e.g., [136]. Here we investigate the effect of internal (through diffusion

from the cathode to the anode) and external (through flash separation of the fuel

cell effluents) recycling of water. We use an operating temperature of T = 350K, a

conversion of methanol equal to ζ = 0.6, a diffusion factor for hydrogen ktrns
H2

= 1, a

methanol transport coefficient ktrns
CH3OH = 1 and a water factor Ψ = 2, as defined in
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Table 2.7: Process parameters for the ammonia cracking case study, Figure 2-12.

Ambient temperature Tamb = 298K

Power output PW = 1W

Reactor temperature Top = 923K

Discard temperature from reactor Tout = 623K

Conversion in burners ζ = 0.95

PEM temperature Top = 350K

Residence time in burners τ = 1ms

Discard temperature from PEM Tout = 350K

Air excess in burners Φ = 1.2

Conversion in fuel cell ζ = 0.8

Overall heat loss coefficient U = 3W/m2/K

Residence time in fuel cell τ = 20ms

Emissivity (incl. view factor) ǫ = 0.2

Efficiency of fuel cell ηFC = 0.7

Air excess in fuel cell Φ = 1.2

Compression parameter for the air feed KC = 10J/mol/K

Burner temperature Top = 1000K

Discard temperature from burner Tout = 500K

Temperature loss factor χtemp = 0.6

Heat loss factor χheat = 0.6

the description of the DMFC in Appendix A. The flash for the fuel cell effluents is

assumed to operate at the ambient temperature Tamb = 298 K. As a figure of merit

we use gravimetric fuel energy density, because we currently do not have accurate

estimates for the sizing of mechanisms for external recycling, e.g., flash and pumps;

the energy density is plotted as a function of the overall transport coefficient for

water ktrns
H2O = −0.7− 3. For simplicity we ignore the cooling load, which we consider

separately in the next case study.

We consider four possible product designs. In the simplest case (Design I) no sep-

aration or recycling is performed, but rather the fuel cell effluents are directly wasted;

in this case the energy density decreases strongly with increasing water transport coef-

ficient, and the DMFC can operate efficiently only in the presence of internal recycling

ktrns
H2O < 0. Design II assumes that half of the liquid part of the fuel cell effluents can

be recycled to the anode with a negligible energy penalty; again the energy density

greatly depends on the water transport coefficient, but there is a wider range where
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the fuel cell can operate efficiently; for ktrns
H2O

< 0, the internal recycling provides suffi-

cient water to the anode. Finally, for Designs III, IV we assume that effective external

recycling can be achieved (90% of the liquid fuel cell effluents); in Design III without

an energetic penalty and in Design IV with the extremely large energetic penalty of

KP = 1 × 105J/l; in both cases the fuel cell performance is efficient for a wide range

of values for the water transport coefficient; the effect of the energetic penalty is rela-

tively small, due to the small volume of the liquid streams. For different values of the

water excess factor Ψ, corresponding to a different composition of the fuel cell feed,

the same qualitative behavior is observed with a shift in the achievable energy density

and the range of values for the water transport coefficient. It should also be noted

that while external recycling, if at all possible, can improve the process performance,

there is a tradeoff of increase in the device size and complexity. Whether recycling

should be pursued depends on the product specifications and objectives, e.g., the

power output and mission duration and the requirements on process performance, as

well as on advances in the technology, e.g., the water transport coefficient.

Cooling load in DMFC

Since direct methanol fuel cells operate at a low temperature, removal of the excess

heat can be problematic. The same basic parameters as in the water management

case study are used here. A zero value for the water transport coefficient is assumed

ktrns
H2O = 0 and no recycling is considered. A residence time of 200ms is assumed. In

Figure 2-14 the achievable energy density is plotted as a function of the overall heat

transfer coefficient. Significant performance losses are observed unless the passive

heat loss coefficient is sufficiently large. As expected, cooling by supplying fresh

water is not advisable.

Water Management in Water Reforming Reactions

Steam reforming is widely used in stationary applications, e.g., [106]; this is an in-

teresting alternative because water/steam are relatively inexpensive, and in the case

of fuel cells operating at high temperature the heat excess from the fuel cell can be
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Figure 2-13: Effect of water recycling in a DMFC.

used for the fuel processing reaction. In portable applications, on the other hand,

carrying the water strongly decreases the energy density, and therefore steam reform-

ing reactions are not necessarily the optimal fuel processing path. Water separation

and recycling is a task that may be impossible to implement at the microscale, but it

has the promise of significant improvements in performance because it can minimize

the size of the water cartridge. On the other hand, reforming reactions are operated

at relatively high temperatures, and therefore recycling of water is associated with a

large energetic penalty for vaporization and heating; also recycling an excess of water

dilutes the fuel and increases the required device volume, resulting in increased heat

losses. The tradeoff between these considerations leads to an optimum recycling ratio

for a given requirement for water in the reactor feed.

Here we consider a process based on the combination of a hydrocarbon reforming
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Figure 2-14: Effect of cooling load in a DMFC.

reaction with a SOFC. The water requirement in the reactor feed is specified according

to an excess factor Ψ, relative to the complete reforming reaction:

NH2O,in ≥ Ψ (3 NC3H8,in + 4 NC4H10,in) .

The gaseous components after the flash separation are combusted, and the energy

balance is closed by burning hydrocarbons. The reactor, fuel cell and burner are as-

sumed to be in thermal contact, and carbon monoxide and hydrocarbons are assumed

to be consumed in reforming reactions in the SOFC. The option of a water cartridge

or water breathing system (assuming ambient water) is given. Table 2.8 summarizes

the parameter values used.

Figure 2-15 shows the effect of recycling for different stoichiometric compositions

of the reactor inlet as a function of the recycling ratio. Depending on value of the

water factor Ψ, the optimum is observed at a recycling ratio of about 0.5− 0.8. In a

similar vein to the case of recycling in a DMFC there is a tradeoff between an increase
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in the device size and complexity and the improvement of product performance. A

water breathing system, even for the large value of the penalty used, can lead to a

significant improvement in process performance, again at the expense of additional

complexity.
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Figure 2-15: Effect of water recycling in the reforming reaction of hydrocarbons.

Methane as a Portable Fuel?

At the macroscale steam reforming of natural gas is the predominant technology for

hydrogen production. Methane as a feedstock for hydrogen production has the ad-

vantage that no carbon bonds need to be broken and the ratio of hydrogen-to-carbon

atoms is maximal among the hydrocarbons. Moreover, compared with methanol and

74



Table 2.8: Process parameters for water reforming study in Figure 2-15.

Ambient temperature Tamb = 298K

Power output PW = 1W

Reactor temperature Top = 1000K

Reactor outlet temperature Tout = 1000K

Conversion in reactor ζ = 0.9

SOFC temperature Top = 1000K

Residence time in reactor τ = 10ms

Discard temperature from SOFC Tout = 500K

Conversion in burners ζ = 0.95

Residence time in burners τ = 1ms

Air excess in burners Φ = 1.2

Conversion in fuel cell ζ = 0.8

Overall heat loss coefficient U = 3W/m2/K

Residence time in fuel cell τ = 20ms

Emissivity (incl. view factor) ǫ = 0.2

Efficiency of fuel cell ηFC = 0.7

Air excess in fuel cell Φ = 1.2

Compression parameter for air feed KC = 10J/mol/K

Burner temperature Top = 1000K

Discard temperature from burner Top = 500K

Water factor in fuel cell Ψ = 1

Pump parameter KP = 100J/l

Propane molfraction in feed 0.5

Energetic penalty for water breathing system 1

formic acid, it has the advantage that it is not oxidized. Based on its simple chem-

istry it is used in reactor development, e.g., [167]. As a feedstock for man-portable

applications it has the major drawback that it is supercritical at ambient tempera-

tures and the most likely storage is as a compressed gas, which leads to low energy

densities. In this case study we examine power generation of PW = 10W in a direct

SOFC operating at T = 1000K under two conditions. In the ideal case we consider

complete conversion, no irreversibilities (ηSOFC = 1) and external heat supply; this

gives an optimistic upper bound. As a more realistic performance, a conversion of

70% at an efficiency ηSOFC = 70% is assumed, closing the energy balance by com-

bustion. In either case we assume storage in plastic container with a maximal stress

σmax = 100MPa and a density of ρ = 1.5kg/m3. In Figure 2-15 we plot the achievable
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volumetric and gravimetric energy density as a function of the storage pressure. The

gravimetric energy density is monotonically decreasing with the storage pressure, due

to increased cartridge thickness. For low pressures the volumetric energy density in-

creases with increasing storage pressure, due to compression of the gas. For pressures

approaching the maximal tensile stress the required cartridge thickness increases dis-

proportionally to the gas compression and the volumetric energy density decreases

with increasing pressure. For realistic fuel cell performances very high storage pres-

sures are needed to meet the performance of state-of-the-art rechargeable batteries.

Even in the ideal case, battery performance can only be overcome at very high storage

pressures.
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Figure 2-16: Methane as a portable fuel?

2.6.5 Parametric Optimization-Based Case Study

The case studies presented in the previous section were done for fixed process alter-

natives, i.e., for fixed choices of fuel and fuel reforming and fuel cell type and only

in some cases, such as the effect of fuel cell efficiency, the optimal heat integration

option was obtained by manually considering the alternatives. The effect of param-

eter variation on process performance was obtained approximately by simulating for
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a finite number of parameter values; the corresponding parameter grid was chosen

either a priori or manually by inspection of the sensitivity of the key results to the

unknown parameter. Automatic methods to cover the entire parameter space rigor-

ously are in general desirable. More importantly, in many cases it is more interesting

to also observe how the parameter value affects the optimal process configuration.

As described in Section 3.2, the most appropriate tool for such a parameter study is

parametric optimization. Due to the presence of discrete design choices, such as the

choice of fuel, and continuous decision variables, such as the fuel flowrates, a mixed-

integer formulation is necessary. Moreover there are several sources of nonlinearity

resulting in a mixed-integer nonlinear parametric program. With a few simplifica-

tions a mixed-integer linear formulation is possible and the algorithms developed in

Section 3.5 can be used.

Since the operating pressures and temperatures are considered as parameters a

common source of nonlinearity is eliminated [47]. The full set of process alternatives

contains mixers and stream splitters of unknown molfraction and no method is known

to represent the mass and species balances with only linear constraints. Species and

component balances for a set of alternatives not considering these options can be

written linearly if the molar flowrates are chosen as the variables. Note that the

hydrogen separation has outlets of known composition and can be written linearly,

compare also [17]. The surface area for heat losses is nonlinear in the volume, which

is assumed proportional to the molar flowrates. The calculation of the heat losses can

be approximated by linearizing around an approximate volume. Finally elaborate

calculations relevant to the system energy density, such as the calculation of cartridge

volume introduce nonlinearity, so here only the fuel energy density will be considered,

assuming an infinite mission duration.

Figure 2-17 shows the set of alternatives considered. To use the parametric op-

timization algorithms, the models are implemented in C, which is tedious and er-

ror prone; therefore a relatively small set of alternatives is considered. Ammonia,

methanol and propane/butane are taken as the fuel choices, with the reforming op-

tions described in [201] and the options of PEM and SOFC. The option of hydrogen
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purification is allowed for the SOFC and is mandated for the PEM (except for the case

of ammonia fuel). Autothermal operation is ensured by burning the fuel cell effluents

and/or a fuel, allowing for fuel combinations. For simplicity the cooling requirement

for the PEM is not considered and the simple energy balances presented in [201] are

used. Due to these simplifications, the results should be considered qualitative rather

than quantitative. For the reformulation of the bilinear terms between integers and

continuous variables the big-M method is used [123].
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Figure 2-17: Set of alternatives considered for the parametric optimization case study.

From the plethora of possible case studies, here the effect of SOFC efficiency on

optimal design and gravimetric energy density is shown. Figure 2-18 shows the gravi-

metric fuel energy density as a function of the achievable SOFC efficiency for the

parameter values indicated in Table 2.9. Note that the same operating conditions

(temperature, residence time, conversion) are used for all reactions, which is oversim-

plifying. Example B.11 in the Appendix B contains the equations corresponding to

the case study.

For low SOFC efficiencies, below approximately 35%, or half the PEM efficiency,

the optimal process configuration is to use ammonia decomposition, followed by a

hydrogen separation and electrochemical conversion of the hydrogen in a PEM. The

energy balance is closed by burning the fuel cell effluents and the membrane waste;
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Table 2.9: Process parameters for parametric optimization case study in Figure 2-18.

Ambient temperature Tamb = 298K

Power output PW = 1W

Reactor temperature Top = 900K

Reactor outlet temperature Tout = 700K

Conversion in reactor ζ = 0.9

SOFC temperature Top = 900K

PEM temperature Top = 410K

Residence time in reactor τ = 1ms

Discard temperature from SOFC Tout = 700K

Conversion in burners ζ = 0.95

Residence time in burners τ = 1ms

Air excess Φ = 1.2

Conversion in fuel cells ζ = 0.8

Overall heat loss coefficient U = 3W/m2/K

Residence time in fuel cell τ = 20ms

Emissivity (incl. view factor) ǫ = 0.2

Efficiency of PEM ηFC = 0.7

Air excess in fuel cell Φ = 1.2

Compression parameter for air feed KC = 10J/mol/K

Burner temperature Top = 900K

Discard temperature from burner Top = 700K

Water factor in fuel cell Ψ = 1

Water excess in reactor Ψ = 1

Pump parameter KP = 100J/l

Membrane efficiency ηPd = 0.8

Propane molfraction in feed 0.5

note that this configuration is better than directly feeding the reactor products into

the PEM, because the gas separation is possible at a high temperature and heat

recovery is better. Between an SOFC efficiency of 35% and 67%, the optimal process is

partial oxidation of propane/butane and electrochemical conversion of the generated

syngas in an SOFC. The reactor and fuel cell exotherm is sufficient to cover for

the heat losses. For SOFC efficiencies above 67% the fuel cell effluents need to be

combusted to close the energy balance; recall that higher efficiency is associated with

less heat generation.

For the low efficiency window, the change in SOFC efficiency is not reflected in

the achievable energy density. On the other hand, for the mid efficiency window, the
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process performance is highly sensitive to improvements in the SOFC performance,

while for the high efficiency window, the sensitivity is lower. Technological improve-

ments of components below a threshold component performance do not affect system

performance because other technologies are better. Perfection of component perfor-

mance is not warranted either, because the effect on process performance is minimal,

showing an effect of diminishing returns. Parametric optimization is a valuable tool

in identifying these regions and therefore in allocating (research) resources.
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Figure 2-18: Optimal gravimetric fuel energy density as a function of achievable fuel
cell efficiency.

2.7 Detailed Modeling for Justification of Model-

ing Assumptions

The intermediate fidelity modeling case studies [63, 64, 38, 62] use four main modeling

simplifications, namely (i) the temperature is spatially uniform in the steady-state

case and the transient case, (ii) radial effects can be neglected for the mass- and

species-balance and one-dimensional spatial models can be written, (iii) diffusion in

axial direction can be neglected for the mass- and species-balance, and (iv) in the

transient case pseudo-steady-state species balances can be used. In this section we
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provide a justification for these modeling assumptions. We largely follow the notation

by Deen [82], as well as some of the scaling techniques presented there. We assume

that we can look sequentially at the assumptions; we first consider the assumption

regarding the uniform temperature for a transient problem without gas flow and

steady-state problems with gas flow; we then discuss the mass and species balances

used, assuming a uniform temperature. Compare also Ajmera et al. [18] who show

CSTR performance of their reactor and Deshmukh et al. [87] and later Ni et al. [210]

who identify CSTR or PFR for some microreactors.

2.7.1 Uniform Temperature at Steady-State

Most of our models assume a stack with a uniform temperature, e.g., reactor and

fuel cell share the same temperature. The motivation for this assumption were our

simulations of the reactors of Arana et al. [24, 27] and photographs by Arana et

al. suggesting an approximately uniform temperature for reactors with catalyst sup-

port under proper operation. A simple justification for the uniform temperature

assumption is that heat transfer at the microscale is fast and the microfabricated de-

vices of interest are based on silicon, which is a relatively good heat conductor. Note

that uniform temperature cannot be assumed for all microreactors; for drastically

different approaches, e.g., homogeneous combustion [214, 215, 213], this assumption

may not be appropriate, or only valid in subregions. Note also that in the system-level

and intermediate fidelity models a lumped model is used for the fluidic connections

which do not have uniform temperature.

Because thermal conductivity in silicon is much higher than in the gas phase,

catalyst support structures such as posts or slabs result in significantly increased heat

transfer; for instance for an equal volume ratio of gas to solid the volume-averaged

heat conductivity is approximately half of silicon. Explicitly modeling the support

structures is very expensive and as an approximation we often use volume-averaged

values. Note that the small length between catalyst support in the radial direction

causes approximate thermal equilibrium between the gas and solid (locally).
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Convection versus Conduction

The ratio of convection and conduction is given by

kth
av

cp,g ρg u L
≈ 10W/m/K

103J/kg/K × 0.5kg/m3 × 1m/s × 10−3m
≈ 20,

where we have used conservative estimates; conduction (in the silicon-structures) is

dominant over convection (through the gas phase).

Estimation of Maximal Temperature Difference

The maximal temperature within a reactor is essentially determined by the ratio

of heat transfer within the reactor and heat losses to the ambient. Because of the

high temperatures, heat losses to the ambient are dominated by radiation and the

heat transfer per unit area can be approximated as ǫ σSB T 4
if , where ǫ is the product

of emissivity and view factor, σSB = 5.67 × 10−8W/m2/K4 the Stefan-Boltzmann

constant and Tif the temperature at the interface. Heat transfer inside the reactor

is characterized by the (average) heat conductivity kth
av divided by the characteristic

length L. Therefore the maximal temperature difference can be estimated as

∆T =
ǫ σSB T 4

ifL

kth
av

≈ 0.1 × 5.67 × 10−8W/m2/K4 × 13004K4 × 5 × 10−3m

10W/m/K
≈ 10K,

where we have used conservative estimates. This justifies the assumption of uniform

temperature.

Three-dimensional Duct-Reactor Simulation

Here we examine the effect of averaging the heat conductivity and the assumption

of uniform temperature using a duct-reactor, of width and height 500µm and length

2.5mm, pictured in Figure 2-19. Exploring the symmetry we only model a quarter of

the geometry. Our model also includes a 1mm long inlet and outlet to the reactor;

we assume that the reactor contains 4 silicon slabs as catalyst support which cover 2
5

of the width. We assume an inlet velocity of 1m/s. For the simulations we used the
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finite element package FEMLAB version 3 [4], and the Navier-Stokes equations with

variable density and conduction-convection equations for the energy balance. The

chemistry was not modeled, but rather a heat generation term was used. When the

slabs are modeled explicitly the heat generation term is introduced as a surface term;

for the volume averaged model a volume heat generation is used. Heat losses to the

ambient were considered as boundary conditions.

Figure 2-19 shows that using volume-averaged heat conductivity qualitatively and

quantitatively captures the effect of increased heat transfer of the catalyst support

structure and an explicit model of the slabs is not required. Modeling the slabs

explicitly increases the modeling and computational requirements significantly and

makes convergence much more demanding. Also the temperature within the reactor

portion is essentially uniform. Note that for the temperature profiles, a stretching of

the axis is performed.

For the volume-averaged model we explore three cases for the heat generation,

namely constant, linear and exponential dependence on the axial coordinate, always

with the same overall heat generation. In Figure 2-20 the temperature is plotted along

the axial coordinate for these three cases as well as the case with explicit modeling of

the slabs. The temperature in the reactor portion is essentially uniform, while in the

inlet and outlet (where no silicon structure is present) there is a temperature gradient;

also the differences between the different heat generation terms are relatively small.

Two-dimensional CFD Reactor Simulation with Volume-Averaged Heat

Conductivity

Here we briefly discuss the results of computational fluid dynamic analysis of a reactor

by Arana et al. The reactor geometry along with the obtained temperature profiles

are shown in Figure 2-21. Note that the reactor is similar to the ones described in

[24, 27] but has a different gas flow pattern; here the two portions of the reactor

(for endothermic and exothermic reaction respectively) are concentric, as opposed to

parallel as in the design described in the references. For the simulations we used

the finite element package FEMLAB, and the Navier-Stokes equations with variable

83



Figure 2-19: Geometry and temperature profiles for explicit modeling of catalyst
support (left) and lumped model (right).

density and conduction-convection for the energy balance. The chemistry was not

modeled, but rather a heat generation and heat consumption term was introduced,

based on complete conversion. Also the catalyst support was not explicitly modeled,

but rather a volume-averaged heat conductivity was used. One sees in Figure 2-21

that without catalyst support (kth = kth
g ) there is a significant temperature gradient,

while with catalyst support (kth = kth
av) the temperature difference within the reactor

is relatively small. Note that the temperature profiles are plotted in a stretched

geometry.

2.7.2 Uniform Temperature in the Transient Case

In this subsection we examine the assumption of uniform temperature in the transient

case. We consider two geometries:
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Figure 2-20: Temperature profiles for explicit and average modeling of slabs.

1. A cubic stack of length L with a heat load Q̇ applied on one side/face with all

other sides/faces adiabatic, see Figure 2-22.

2. A cubic stack of length L, in which a small heating element is placed in the

middle, Figure 2-23.

For the former geometry we develop a two-dimensional and a three-dimensional model

in FEMLAB and for the latter a three-dimensional model in FEMLAB. Note that

the geometries considered are extreme and give a conservative estimate. In realistic

reactor designs the heat generation (and consumption) should be distributed in space,

resulting in characteristic lengths for heat conduction significantly smaller than the

reactor dimensions. The magnitude of the heat load is chosen to heat the stack

within a time τ from Ti to Tf ; its numerical value is approximately 1W. We ignore

flow through the system and take average physical properties. For both geometries

we perform an analysis based on [82].

Scaling Analysis

Neglecting the convective flow and assuming constant physical properties the energy

balance reads

ρcp
∂T

∂t
= k∇2T (2.1)
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Figure 2-21: Reactor geometry and temperature profiles obtained by CFD simulation
corresponding to reactor with and without catalyst support.

We make equation (2.1) nondimensional by using the following scaling:

• The temperature is scaled, so that the initial temperature corresponds to a value

of 0 and the final temperature to a value of 1: T̃ = T−Ti

Tf−Ti
.

• The time is scaled, so that the initial time corresponds to a value of 0 and the

final time to a value of 1 t̃ = t
τ
.

• The space vector is scaled by dividing through the characteristic length L:

x̃ = x

L
.
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Figure 2-23: Stack with a heating element in the middle

We therefore obtain

ρcp
Tf − Ti

τ

∂T̃

∂t̃
= k

Tf − Ti

L2
∇̃2T̃

⇒ ∂T̃

∂t̃
=

k

ρcp

τ

L2
∇̃2T̃

=
α τ

L2
∇̃2T̃ . (2.2)

When the ratio α τ
L2 is high, corresponding to a fast heat transport relative to the time

scale of change, the temperature in the stack can be considered uniform in space (the

term ∇̃2T̃ needs to be very small, since it is multiplied by a very large number). A

conservative scenario gives (physical properties for Silicon)

• ρ ≈ 2300kg/m3,

• cp ≈ 20J/mol/K
0.028kg/mol

≈ 700J/kg/K,

• k ≈ 145 − 32W/m/K in the considered temperature range T = 300 − 1000K,

• τ ≈ 100s,

• L ≈ 1mm − 5mm,
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so that the ratio α τ
L2 takes values in the order of 10− 1000. For characteristic lengths

in the order of cm the ratio can be in the order of 1 and the assumptions would not

be justified.

FEMLAB Simulation

The transient two- and three-dimensional simulations in FEMLAB validate the pre-

vious analysis; the geometries appear of nearly uniform temperature. The parameter

values used were:

• L = 5mm,

• k = 70W/m/K, corresponding to an average between air and Silicon,

• ρ = 1100kg/m3, corresponding to an average between air and Silicon,

• cp = 700J/kg/K.

As boundary conditions we include heat losses to the ambient and a uniform temper-

ature of 300K is taken as the initial condition.

Figure 2-24 shows the temperature profile for two points in time for the case that

a heating element is on the top. The plotted temperature interval is approximately

1K.

Figure 2-24: Two-dimensional model with heating element on top.

Similar results are seen for the second geometry. Only around the small box there

is a small region with temperature gradient; depending on the physical properties
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used (Si at 1000K, Si at 300K, volumetric average of Si and air) there is a 15-50K

difference in this small region. The bulk of the stack has uniform temperature (less

than 5K difference). In Figure 2-25 we plot the temperature for two regions at a

simulation time of 70s. Note that the two regions have a different scale; for the region

around the heating box we use a temperature range of 15K, whereas for the outside

region an interval of 0.1K.

Figure 2-25: Three-dimensional model with heating element in the middle.

2.7.3 One-Dimensional Species Balance

Assuming a uniform temperature we now focus on the following simplifications:

1. Neglecting radial effects (one-dimensional mass and species balances with an

average velocity given from mass balance).

2. Neglecting axial diffusion.

3. Pseudo-steady-state species balances.

The first two assumptions essentially give a PFR. The motivation for these assump-

tions is that preliminary two- and three-dimensional steady-state simulations with

FEMLAB (performed in May 2003) had shown a PFR type behavior. A simple justi-

fication is that although the flow is laminar, the species diffusion is sufficiently fast to

assure a constant profile in radial direction, but slow enough, so that axial diffusion
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can be neglected. The pseudo-steady state balance are motivated from the fact that

due to the residence time one can neglect the hold-up in the reactor.

For simplicity we will assume first order kinetics and uniform temperature with

the model reaction

A → 2 B,

with molecular masses MA = 10 g/mol and MB = MA/2. Motivated by the dimen-

sions of the reactor designs by Arana et al. [24, 27] a duct of height 0.2mm and length

5mm is assumed. Based on an inlet speed of 1m/s this results in a nominal residence

time of 5ms. We assume first order kinetics in the component A with a reaction rate,

following the Arrhenius law with k0 = 3 × 104/s and EA = 2 × 104J/mol.

Pseudo-Steady-State Mass Balance

The continuity equation is:
∂ρ

∂t
+ ∇ · (ρv) = 0. (2.3)

We make equation (2.3) nondimensional by using the following scaling:

• The time is scaled as t̃ = t
τ

so that the initial time corresponds to a value of 0

and the final time to a value of 1.

• The density is scaled, so that for ambient temperature (T0 = 300K) and pure

component B, i.e., a composition y0 = (0, 1), the density corresponds to 1:

ρ̃(T,y) = ρ(T,y)
ρ(T0,y0)

. The scaled density can vary from 2 (ambient temperature,

pure A), to 1/3 (elevated temperature, pure B).

• The space vector is scaled by dividing through the characteristic length L:

x̃ = x

L
.

• The velocity is scaled by dividing through the nominal uin (at ambient temper-

ature): ṽ = v

uin
.

and we obtain
L

uin τ

∂ρ̃

∂t
+ ∇̃ · (ρ̃ ṽ) = 0. (2.4)
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Since we have L ≈ 5 × 10−3m (taking in x direction), τ ≈ 100s, uin ≈ 1m/s, we

obtain L
uin τ

≪ 1 and we can assume pseudo-steady state, or neglect the hold-up in

the reactor. This can be also explained by the fact that the residence time is much

smaller than the time scale of change. Note also that the reference value for the

density does not appear in equation (2.4). Note that if there is a drastic change in

the modeling assumptions, e.g., heating time very fast, or some other fast transient,

this analysis needs to be revisited. Also note that for material considerations the

short transient period might be important, e.g., by the introduction of shockwaves if

the inlet flow is increased as a sharp step function.

Pseudo-Steady-State Species Balance

Omitting the diffusion term ∇J, which is studied separately, and assuming first order

Arrhenius kinetics the species balance equation reads:

∂C

∂t
+ C ∇ · v + v · ∇C = C k0 exp

(

− EA

R T

)

. (2.5)

Equation (2.5) is linear in the concentration, so no reference point is needed for C

and the scaling gives:

L

τuin

∂C̃

∂t̃
+ C̃ ∇̃ · ṽ + ṽ · ∇̃C̃ =

C̃ k0

τ uin
exp

(

− EA

R T

)

. (2.6)

For different order kinetics the reaction term C̃ k0

τ uin
would contain a reference concen-

tration.

For the numerical values considered, we obtain L
uin τ

≪ 1 and we can assume

pseudo-steady state. In general we cannot neglect the term C̃ ∇̃ · ṽ; also since gas

expands with the production of species B, the velocity in the term ṽ ·∇̃C̃ is a function

of the reactor coordinate. As a result the residence time is lower than the nominal

residence time, calculated based on inlet density.
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One-Dimensional Convective Flow

In the intermediate fidelity models convective flow is assumed and axial diffusion is

neglected. Furthermore a one-dimensional spatial distribution is used, assuming a

uniform profile in the radial direction, due to fast radial diffusion. The validity of

these assumptions depends on three dimensionless groups:

1. The ratio of height to length, here in the order of 1/100. The influence of this

ratio is not trivial, but a small ratio suggests validity of the assumptions.

2. The ratio of convection to diffusion in the axial direction:

Pe =
u L

D
≈ 1m/s 5 × 10−3m

2 × 10−5m2/s
≈ 250.

Since this is very large axial diffusion can be neglected.

3. The Damkoehler number, expressed as the ratio of reaction to diffusion:

Da =
k d2

D
=

d2

1/k D
≈ (50 × 10−6m)2

1 × 10−3s × 2 × 10−5m2/s
≈ 0.1.

So the Damkoehler number is quite small and concentration gradients in radial

direction are small. Note that we used d = 50µm, as opposed to the tube height,

because we assume the presence of catalyst support and the diffusion needs to

occur between those supports.

An equivalent analysis can be performed based on the influence of four characteristic

times:

1. Reaction time 1
k
≈ 1ms.

2. Diffusion time in radial direction d2

D
≈ (50×10−6m)2

2×10−5m2/s
≈ 0.1ms.

3. Diffusion time in axial direction L2

D
≈ (5×10−3m)2

2×10−5m2/s
≈ 1s.

4. Residence time in reactor L
v
≈ 5ms.
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Simulations

For the following simulations it should be noted that we did not model surface reac-

tions. In order to do so, one would need to specify the catalyst support structure.

FEMLAB two-dimensional transient simulation

We formulate a two-dimensional transient problem with a given temperature profile

in time T = 300 + 10 t for a time period t = 0 − 70s and two modes. Note that

formulating a one-dimensional problem in FEMLAB version 3 is not possible for the

transient problem with the standard tools.

1. Navier-Stokes equation with varying density in the continuity equation (denoted

“Non-isothermal Navier Stokes” in FEMLAB)

• The density is calculated as a function of temperature and concentration

ρ = Pamb

R T
(y MA + (1 − y) MB).

• A constant viscosity of η = 2.2 × 10−5Pa s is assumed. Since the pressure

drops are not of interest, the viscosity is of little importance. The flow de-

velopment is quite fast, and for developed flow the profile does not depend

on the viscosity.

• The molar fraction is calculated as a function of the temperature and

concentration C R T
Pamb

.

• Boundary condition at inlet: specified velocity u = uin
T

Tamb
.

• Boundary condition at outlet: convective flow.

• Boundary condition at wall: no slip condition.

• Initial condition P = Pamb, u = 0, v = 0.

2. Conservative binary convection/diffusion

• A constant diffusion coefficient of D = 2 × 10−5m2/s.

• Boundary condition at inlet: specified concentration c = Pamb/(R T ), cor-

responding to pure A.
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• Boundary condition at outlet: convective flow.

• Boundary condition at wall: zero flux.

• Initial condition C = Pamb/(R T ), corresponding to pure A. This is not nec-

essarily the most plausible assumption, but other initial conditions caused

convergence problems. Moreover the initial conditions only affect the first

ms.

• First order Arrhenius kinetics C k0 exp
(

− EA

R T

)

.

There are some convergence problems at the first integration step, especially when

the non-conservative equation is used instead. This might suggest a high index prob-

lem and which raises some doubts about the results. For the comparison of the results

the conversion at the outlet is calculated as

ζ = 1 −

R d
y=0

u(x=L,y) c(x=L,y) dy
R d

y=0
u(x=L,y) dy

R d
y=0

u(x=0,y) c(x=0,y) dy
R d

y=0
u(x=0,y) dy

.
(2.7)

FEMLAB two-dimensional steady-state simulation

In order to isolate the effect of neglecting the transient term we formulate a two-

dimensional quasi-steady-state model, where we use the Navier-Stokes equation with

varying density and the conservative convection/diffusion equation, similarly to the

transient model. The two-dimensional model also allows to check the effect of using

a one-dimensional model, by examining the profile in the radial direction. Figure

2-26 shows the molfraction profile across the radial direction at various temperatures

for an axial position close to the reactor inlet. The profile is not constant in the

cross-section, so the PFR assumption is only approximately valid.

FEMLAB one-dimensional steady state-simulation

By assuming that diffusion in the radial direction is sufficiently fast, one can average

over the radial direction. We neglect the transient term (quasi-steady-state assump-

tion), assume Fick diffusion and formulate a one-dimensional model in FEMLAB
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Figure 2-26: Concentration profile from FEMLAB at axial position 0.1

using the diffusion-convection equation

C
∂u

∂x
+ u

∂C

∂x
= C k0 exp

(

− EA

R T (t)

)

− D
∂C2

∂x2
, (2.8)

where the velocity u can be written as a function of the concentration C. FEMLAB

provides two options for the diffusion equation; in the so called non-conservative

formulation the term C ∂u
∂x

is omitted; in the conservative formulation the complete

equation (2.8) is used. Neglecting the term C ∂u
∂x

leads to significant error because

of the gas dilatation with reaction. We therefore used the conservative mode with a

varying density.

ABACUSS 1d transient simulation

We formulate a one-dimensional spatially-discretized transient model in the process

simulator ABACUSS [273, 272]. The mass and species balances are formulated as

∂u

∂x
=

1

T

∂T

∂t
+

r

ρ̃
∂yA

∂t
= −u

∂yA

∂x
+

r

ρ̃
(−1 − yA)

∂yB

∂t
= −u

∂yB

∂x
+

r

ρ̃
(2 − yB)

ρ̃ =
P

R T
, (2.9)
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where ρ̃ is the molar density and r the reaction rate. The temperature profile is

given as an input variable T = Tamb + 10 t, and its time derivative ∂T
∂t

needs to be

inserted directly, otherwise a high index problem is created. We use backward finite

differences, e.g., ∂z
∂x

= zi−zi−1

δx
, with a fixed stepsize δx in the axial direction. As initial

conditions for the molfractions we assume yA(x 6= 0, t = 0) = 0, yB(x, t = 0) = 1;

this initial condition corresponds to complete conversion before the startup and also

allows to observe the effect of the short transient. As boundary conditions we assume

yA(x = 0, t) = 1 and a velocity u = uin T/Tamb.

To analyze the effects of discretization the reaction rate is set to zero and increas-

ingly finer meshes are tested. Figure 2-27 shows the molar fraction at half the reactor

length as a function of time for the first milliseconds using 100, 1,000 and 10,000 dis-

cretization points. Since diffusion is neglected, the correct profile is a step function

from 0 to 1 at time 2.5ms. As expected, coarse discretization introduces significant

numerical diffusion. As a conservative measure we therefore use 10,000 grid points for

the results presented in the comparison. All changes occur within ms, corresponding

to the residence time, and then the influence of the initial conditions is eliminated.
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Figure 2-27: Transient profile of molfraction at early time at the reactor middle for
different grid sizes (without reaction).

Comparison of the results

In Figure 2-28 we compare the conversion at the outlet as a function of temperature
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calculated by the various models, ordered with decreasing number of ignored terms.

Based on our numerical experiments we observe the following

• The effect of neglecting the transient terms is indeed very small. The comparison

of transient and steady-state two-dimensional models shows a very small differ-

ence while the results from transient and steady-state one dimensional models

are so close to each other that one can hardly distinguish between them.

• The effect of axial diffusion is also small, as can be seen by the comparison of

the one-dimensional ABACUSS and the one-dimensional FEMLAB model as

well as by varying the diffusion coefficient in the FEMLAB model (not shown

here).

• The comparison of two- and one-dimensional models shows that the effect of

averaging the concentration (2d → 1d) is in the order of a few % (comparison

of 2d and 1d models), which is acceptable. Note that even with the existence of

a precise kinetic mechanism we can not be sure about the reaction rate, since

the catalyst load may not be accurately known.

2.8 Computational Fluid Dynamics for Geometry

Improvement

Acknowledgments. Michael M. Hencke performed, under the author’s guidance, the

CFD simulations presented in this subsection and implemented and tested the reduced

model in ABACUSS.

Modeling and simulation benefited significantly from interactions with Ole M. Nielsen.

To overcome some limitations of the suspended tube reactor concept by Arana

et al. [27], Nielsen et al. [212, 211] designed a suspended micro reactor (SµREIII)

with a three-dimensional heat exchange portion. This heat exchanger consists of sev-

eral Silicon slabs connected by parallel SiN tubes with counter-current flow. Here a

three-dimensional model of four slabs in the heat exchanger portion is developed and
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Figure 2-28: Comparison of conversion at the outlet as a function of the reactor
temperature for the different models.

simulated in FEMLAB version 3 [4]. The temperature profile allows the development

of a reduced model, implemented using our in-house software packages ABACUSS

II [273, 272] and DAEPACK [269, 271]. This equation-oriented model includes heat

exchange via radiation, conduction along the tubes, and conduction along connecting

wires which could not be included in the FEMLAB model. The reduced model is

flexible and computational robust and acts as a design tool. Here we focus on the

development of the models and how they can be used for design. Other results in-

cluding the calculation of pressure loss, different boundary conditions and parametric

studies of the reduced model are described in Hencke et al. [144, 143].

The geometry of two heat exchanger slabs is shown in Figure 2-29. The vertical

sections of the tubes are cylindrical and the tubes then expand slightly into a square

duct within the slabs. An exact representation would lead to an explosion of required

finite elements, and therefore in the model the tube is assumed rectangular of width

300µm. The slabs are taken as 1500µm in width, 625µm in height, separated from

each other by a vertical distance of 625µm. In the three-dimensional models, the

overhang of the slabs on all sides is taken as 150µm, and the center-to-center distance

98



between parallel tubes is taken as 450µm. For the equation-oriented simulation, the

reacting zone is assumed to be 5mm x 5mm x 1.875 mm.

Silicon Slab

SiN Tube
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Figure 2-29: Geometry of the heat exchanger (not to scale)

2.8.1 CFD Model

In order to keep the computational requirements to a minimum, two counter-current

streams and four slabs are modeled. One flow is from the inlet of the heat exchanger

to the reactor, and the other is from the reactor effluent to the outlet of the heat

exchanger. The following boundary conditions are used:

• No-slip at all solid walls.

• Inlet velocity = 1 m/s.

• Inlet temperature = 300 K.

• Reactor outlet temperature = 1000 K.

• Reactor outlet velocity = inlet velocity × outlet temperature/ inlet temperature

(from continuity and ideal gas equation).

• Outlet pressures = 105 Pa.

• Convective flux for outlets.
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• Conductive and radiative heat losses to the ambient of the top faces of the top

slabs and the bottom faces of the bottom slabs

q = −Uloss (T − Tamb) − ǫ σSB (T 4 − T 4
amb),

with Uloss = 3W/m2/K and ǫ = 0.2 [201].

• Since FEMLAB version 3 cannot account for heat transfer between boundaries,

all other boundaries are approximated as adiabatic.

The wall thickness is very small (few micrometers) and an explicit model is not

possible computationally in the three-dimensional case. Hsing et al. [155] have pro-

posed to model thin walls as a two-dimensional domain, but the coupling of two- and

three-dimensional regions leads to convergence instabilities and was not pursued. To

account for the the tube walls, a volume-averaged thermal conductivity for the flow

domain is used

kth
av = kth

air + 4 · 2µm

300µm
· kth

SiN ,

where the factor 4 · 2µm
300µm

arises from the geometry of four 2µm SiN walls surrounding

air flow through a duct of width 300µm. This approximation is valid under the

assumption that the cross-section of the tubes is approximately isothermal.

The default nonlinear solver (UMFPACK) is used and the default mesh generation

algorithm. The resulting model has 69,113 unknowns, is nonlinear and the solver at

default values fails to converge without good initial guesses. As a convergence scheme

we solve the system in three steps. In the first step we only solve for the flow profile

at constant density. Using this result as an initial guess, we solve for both the flow

and temperature flow profiles at constant density. At the final step we also include

the variable density. Each of these three steps takes approximately 30-60 minutes

on a AMD 1.2GHz, for a total of approximately 2-2.5 hours for the entire problem.

Figure 2-30 shows the velocity profile; note that the effect of increasing density with

decreasing temperature is correctly captured. The most interesting result of this

model is the fact that the slabs as well as the outlet streams of the slabs appear to
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be isothermal as shown in Figure 2-31.

Figure 2-30: Velocity profile for an inlet velocity of 1 m/s.

Figure 2-31: Temperature profile for an inlet velocity of 1 m/s.

Simulations under various values of the inlet velocity and reactor effluent tempera-

ture are performed to check the validity of these assumptions. For small perturbations

of the inlet velocity and reactor outlet temperature the default solver converges in

one step using the previous solution as an initial guess; the computation requirement

in this case is around 30-60 minutes, depending on the degree of perturbation. For a

wide range of values for the inlet velocity and reactor outlet temperature the outlets

of the slabs are close to isothermal. As Figure 2-32 shows, for low velocities a signif-

icant temperature profile in the tubes is observed, whereas for higher velocities the

tubes are nearly isothermal.
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Figure 2-32: Temperature profile for an inlet velocity of 0.01 m/s.

2.8.2 Reduced Model

As the previous results indicate, solving a complete three-dimensional model of the

entire heat exchanger geometry is very computationally expensive and possibly in-

tractable with current technology. In addition, within FEMLAB version 3 radiation

between individual tubes and slabs is cumbersome to implement. Note also that in-

cluding this effect would break the symmetry pattern of the model and reduce the

sparsity, further increasing the computational requirements and causing convergence

problems.

This motivates the development of a reduced, algebraic model, which is more

flexible to system geometry and parameters, and also quicker and more robust in its

solution. Using equation-oriented modeling languages, it is straightforward to include

inner radiation and the presence of wires.

The main assumption for the algebraic model is that the outlet temperatures of

the Silicon slabs are close to isothermal. The model consists of three parts, namely

a unit model for a single Silicon slab, a unit model for a single SiN tube, and an

overall model which defines the connections and energetic interactions between all

tubes and slabs. The physical properties are calculated as in the system-level models.

The details of this model are given in Appendix A.6. Note that the developed model

requires the specification of view factors between slabs and tubes as well as between

the tubes and the reactor and the ambient. In [144] we used simplifying rules and
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automated the calculation with a Perl script. Note also that for simplicity we neglect

the conductive heat transfer from slab to the tube but this can be approximately

accounted for.

The reduced model is a valuable tool for improvements of the reactor geometry

such as determining a number of slabs that is sufficient for good heat exchanger

performance but at the same time is relatively easy to fabricate [211]. Moreover it

can easily be implemented and extended in different modeling frameworks [211].

2.9 Intermediate Fidelity Modeling

Acknowledgments. The work described in this section is mostly due to Dr. Benôıt

Chachuat. The author’s main contributions are in the initial formulation, justification

of modeling assumptions and the interpretation of the results.

Because man-portable power generation processes must operate fully autonomously

and automatically without the intervention of operators, steady-state and dynamic

operations must be considered carefully. These operational considerations are in-

deed so important that they are likely to influence the optimal design, following the

paradigm of interaction of design and operation. As just an example, increasing the

operating temperature significantly increases the heat losses per unit surface area,

but also drastically enhances the kinetic rates, therefore decreasing the required re-

actor and/or fuel cell volume. Accordingly, the design and sizing of the units must

be determined simultaneously with the operating policy. Since most power consum-

ing devices are not operated constantly and have rapidly changing power demands,

the dynamics and automated operation of portable power production are very im-

portant and must be considered thoroughly. For example, it might be necessary to

oversize certain units relative to the optimal steady-state design, or exclude processes

that exhibit poor transient behavior. Nevertheless, the study of optimal operation at

steady-state is a first prerequisite step towards the development of transient models.

Furthermore, for those processes exhibiting a rapid transient behavior, the average

performance will be most likely dominated by the steady-state performance.

103



Recall that at the intermediate fidelity we consider fixed process configurations

and the models include spatial dependence whenever necessary, but do not require

a fully defined geometry. The geometry is captured in a minimal number of design

parameters, such as the volume or the surface-area-to-volume ratio of the units. In

the following a summary of the methodology and findings from the case studies are

presented. For further details the reader is referred to Chachuat et al. [64].

2.9.1 Modeling

We focus on an example process, that consists of a fuel processing reactor, a solid-

oxide fuel cell (SOFC) and two burners, fabricated in a single silicon stack fed with

ammonia and butane fuels. Ammonia is first catalytically decomposed into nitrogen

and hydrogen; the produced gases are fed into the anode of the SOFC and a first air

stream is fed to the cathode, and electrical power is produced from the electrochemical

reaction. The anode and cathode effluents are finally mixed and fed into burner I,

along with a second air stream, for catalytic oxidation. In parallel, a mixture of

butane (C4H10) and air is fed into burner II for catalytic oxidation to produce heat,

thus maintaining the stack at a desired, sufficiently high temperature, despite the

heat losses and the fact that ammonia decomposition is an endothermic reaction.

This simple process is used as an illustrative example and the proposed methodol-

ogy can be readily applied to other micropower generation process concepts, provided

kinetic mechanisms are available for the reactions considered. Note that although

hydrocarbons such as propane or butane have significantly higher theoretical energy

densities than ammonia [201], propane/butane partial oxidation for hydrogen produc-

tion has only been demonstrated partially [174] in microfabricated reactors, whereas

ammonia decomposition has been successfully performed with conversions exceeding

90% [26, 118] and kinetic mechanisms for ammonia decomposition [87] and oxidation

[228] have been proposed. These considerations therefore justify the choice of ammo-

nia fuel in our initial study, while hydrogen generation from the partial oxidation of

hydrocarbon fuels will be the topic of future work.

An alternative to the SOFC would be to use a PEM; since this operates at low
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temperatures it would have to be thermally isolated from the ammonia decomposi-

tion reactor and the cooling requirement would need to be considered. We consider

ammonia decomposition prior to the SOFC, rather than direct oxidation of ammonia

inside the SOFC, e.g., [255, 282], to avoid the generation of nitric oxide (NO).

Stack

power output

reactor SOFC burner I

burner II

C4H10

NH3

air

airair

q

q

qq

waste

waste

Figure 2-33: Conceptual process flowsheet.

Based on the justifications in Section 2.7, the ammonia decomposition reactor,

the solid-oxide fuel cell, and the fuel cell residual burner are modeled as isothermal

and isobaric plug-flow reactors with variable density. The pressure inside the stack

is assumed uniform, equal to atmospheric pressure and the four units operate at a

common temperature. The gas phase is assumed ideal, which is plausible because of

the low pressure and high temperature.

Ammonia Decomposition Reactor

For the kinetics of the ammonia decomposition reactor the reduced one-step expres-

sion developed by Deshmukh et al. [87] is used. The predictions provided by the

reduced rate expression were shown to be in very good agreement with the experi-

mental data obtained by Ganley et al. [118] for an alumina-based microreactor with

posts as catalyst support. Note that this expression does not predict chemical equilib-

ria; since at the temperatures considered the chemical equilibrium favors the products

and optimal operation is in general sufficiently far away from equilibrium, this is not

a significant limitation. Note that it may be limiting if strict discharge constraints
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are used for the ammonia. We were also able to reproduce approximately the experi-

mental data reported by Arana et al. [26], although they were obtained for a different

catalyst (Ir/Al2O3) and a smaller reactor. These considerations justify the choice of

the reduced expression rather than the full elementary reaction mechanism.

Fuel Cell

The solid oxide fuel cell (SOFC) consists of two porous electrodes, namely the cathode

and the anode, separated by a solid electrolyte. Here, Yttria stabilized Zirconia (YSZ)

is assumed for the electrolyte, Nickel (Ni) + YSZ cermet for the anode, and Strontium

doped Lanthanum Manganite (LSM) + YSZ cermet for the cathode [158]. In SOFCs,

the oxygen ions formed at the cathode migrate through the ion-conducting electrolyte

to the anode where they react with the hydrogen (or other syngas) contained in the

reformed fuel, producing water (and CO2) while liberating electrons that flow back

to the cathode via an external circuit. Ammonia is considered as an inert in the

fuel cell as its residual concentration from the reactor is generally low, because of the

discharge constraints.

The open-circuit potential, denoted as U◦, is a local quantity as it depends on the

actual gas composition at both the anode and the cathode, temperature and pressure.

For SOFCs, the open circuit potential is usually very close to the Nernst potential [76],

i.e., the difference between the thermodynamic potentials of the electrode reactions:

U◦ = −∆G◦ (T )

zF
− R T

zF
ln

(

yan
H2O

yan
H2

)

+
RT

2zF
ln
(

yca
O2

)

(2.10)

where F = 96487 C/mol stands for Faraday’s constant; z = 2, the number of electrons

transfered in the reaction; ∆G◦ the standard Gibbs free energy associated with the

electrochemical conversion of hydrogen to water. The thermodynamic calculations

are the same as in the system-level modeling and are described in Appendix A.

When an electrical current is passed through the cell, irreversibilities arise and the

voltage U is reduced due to internal resistances. Such irreversibilities include Ohmic

losses, activation polarizations and concentration overpotentials. Ohmic losses arise
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due to the resistances encountered by electrical charges in their paths internal to the

cell; they are due to (i) in-plane conduction in the electrodes and (ii) cross-plane

conduction through the electrolyte [178]. The former contribution is generally low

since the electrodes are very good electronic conductors. The high conductivity also

makes the cell voltage U approximately uniform throughout the electrodes. On the

other hand, resistance to the flow of oxygen ions in the electrolyte is typically among

the major contributions to voltage decrease within the cell [178]. Activation polariza-

tions are induced by charge transfer between the electronic and ionic conductors at the

anode-electrolyte and cathode-electrolyte interfaces, respectively. They are normally

expressed, in implicit form, by the Butler-Volmer equation [217]. Concentration over-

potentials are developed due to mass transfer limitations from the gas phase through

the electrodes. It is worth mentioning that since the electrodes in the micro SOFC

are very thin, of the order of micrometers, mass transfer in the electrodes does not

become significantly limiting unless the mole fraction of residual hydrogen (at the

anode side) and/or oxygen (at the cathode side) is very low, close to zero [64]. High

conversions in the fuel cell are unlikely and therefore concentration overpotentials are

not accounted for in the electrochemical model of the micro SOFC. Overall, the losses

associated with the irreversibilities of the electrochemical reaction are given by the

sum of the overpotential polarizations at the electrode/electrolyte interfaces and the

resistance to conduction of ions through the electrolyte:

U◦ − U = ηohm + Uan
act + U ca

act . (2.11)

The overall system of DAEs for the fuel cell unit contains 12 differential equations

as well as 3 algebraic equations. The gas flow in the air channel is considered to

be co-current to the one in the fuel channel. In the case of counter-current flow a

two-point boundary value problem (TPBVP) would be needed.
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Fuel Cell Effluent Burner

The anode and cathode fuel cell outlet streams are mixed together with an air stream,

and then fed into burner I for catalytic oxidation of the residual hydrogen and ammo-

nia (Figure 2-33). For the oxidation, the kinetic mechanism proposed by Pignet and

Schmidt [228] is used. Nitrous oxide (N2O) production is not accounted for and the

unimolecular decomposition of NO is neglected. The reactions rates for the global

reactions are expressed in terms of Langmuir-Hinshelwood kinetics based on Pignet

and Schmidt [229]. Note that Hsing et al. [155] use the same model and showed good

agreement between simulated and observed results. An excess of oxygen is always

assumed.

Butane Burner

Since the ammonia decomposition reaction for hydrogen production is endothermic,

and the high operating temperature of cracking and SOFC leads to significant heat

losses, the process is complemented with a second burner that produces heat from

the combustion of an air-butane mixture (Figure 2-33). A lumped model, based on

global mass and species balances is formulated to describe butane catalytic com-

bustion in burner II. The choice of this simplified model is motivated by the fact

that butane catalytic oxidation is generally fast. Note also that sustained autother-

mal propane/butane combustion over platinum in a microreactor has recently been

demonstrated experimentally by Arana et al. [27], with high conversions. It is as-

sumed that the combustion reaction takes place to a fixed conversion ζburnII , and

an excess of oxygen ΦburnII is always considered, i.e., ΦburnII > 1 (Table 2.10). The

steady-state model for burner II contains 10 algebraic equations. Unlike the dis-

tributed model formulated previously for the three units of the ammonia line, the

present model does not require specification of burner II’s volume for simulation pur-

poses, since the conversion ζburnII is fixed. However, a value V burnII will be assumed

for the energy balance calculation.
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2.9.2 Optimal Operation and Design

Optimization Problem Statement

The formulated model has three degrees of freedom related to the design, namely the

volumes of the reactor, fuel cell and burner I. In addition, there are seven operational

decision variables, namely the stack temperature, the operating voltage and the fuel

rates of ammonia, butane and air (into fuel cell and burner I). The resulting math-

ematical program is classified as a constrained nonlinear optimization problem with

hybrid discrete/continuous DAEs embedded. Currently no algorithm exists guar-

anteeing the global solution of such problems and local optimization methods are

applied here. Therefore we have no rigorous guarantee that the solutions obtained

are globally optimal for the formulated optimization problem; nevertheless through

the use of multistart methods and numerical experience we are confident that they

indeed are.

For the case study, as an objective we chose the maximization of fuel energy

density, assuming long mission durations. Neglecting the energetic penalty for the

air, this objective is equivalent to minimization of the total fuel mass flow

MNH3
F reac

in + MC4H10
F burnII

C4H10
.

For the heat losses the lumped model described in Section 2.6 is used, including

heat recovery T out = 1
2

(

T − T amb
)

. For the burner II a volume of V burnII = 9.6 ×
10−10 m3 is used, which is small compared to the other volumes, and therefore does

not significantly affect the heat losses.

For safety reasons, two constraints are defined to limit the emissions of ammonia

and nitric oxide (NO) to 25ppm. These threshold limit values are very conservative

since they correspond to exposure levels in a typical work environment. Moreover,

they are over-restrictive for the transient case [62] or the case that variable power

demand is considered [284].
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Optimal Operation and Design Results

The model is implemented in Fortran and is solved using the SQP solver NPSOL

[121] in connection with DAEPACK [269, 271]. We first discuss results from the

base-case and then some parametric case studies, showing the effect of operating

temperature and technological improvements. Finally we show that maximizing the

energy efficiency leads to a different design than maximizing the energy density.

Base case

The base case of our study corresponds to production of a nominal electrical power

PW = 1 W. Unless stated otherwise, all the results presented subsequently are ob-

tained for the parameters values given in Table 2.10. The optimization decision vari-

Table 2.10: Parameter values for the steady-state model

Parameter Value

Surface area in the reactor Areac
spec = 2.20 × 104 m2/m3

Catalyst sites in the reactor Csites = 1019 m−2

Surface area in the fuel cell Afc
spec = 2.08 × 103 m2/m3

Electrolyte thickness δio = 10−6 m

Surface area in the fuel cell effluent AburnI
spec = 2.08 × 103 m2/m3

Volume butane burner V burnII = 9.6 × 10−10 m3

Conversion butane burner ζburnII = 0.95

Air excess butane burner ΦburnII = 1.2

Overall heat loss coefficient U loss = 3 W/m2/K

Overall emissivity ǫloss = 0.2

ables and some performance parameters for the base case are reported in Table 2.11.

The temperature that maximizes the fuel energy density is very high, around 1445 K

and the achievable energy density is 1180Wh/kg. Operating the system at such a

high temperature is however unrealistic, mainly because of material constraints [259].

Therefore, the operating temperature is removed from the list of decision variables

and is considered a parameter in the following. However, the development of mate-

rials that can operate at higher temperatures is motivated. The performance factors

shown in Table 2.11 also warrant some comments. The conversion of ammonia in

the reactor (ζreac) and burner I (ζburn) are very high, close to 100% due to the tight
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constraints defined with regard to emissions of NH3 and NO. The conversions of hy-

drogen in the fuel cell (ζan) is also large, greater than 80%. Note that the optimal fuel

cell efficiency is significantly lower than 1 and close to the values used in the system-

level studies, see Section 2.6. One also notes that the oxygen excess in the cathode

compartment (Φca) is large enough to provide the required oxygen in burner I for the

catalytic oxidation reaction. Here, neither concentrations of hydrogen in the anode

compartment nor oxygen in the cathode compartment are limiting, which validates

our assumption. Finally, most of the residual hydrogen from the fuel cell is oxidized

in burner I.

Table 2.11: Optimal operation and design results for PW = 1 W.

Design decision variables
Reactor volume V reac = 0.71 mm3

Fuel cell volume V fc = 35.6 mm3

Fuel cell effluent burner V burnI = 1.67 mm3

Operation decision variables
Temperature T = 1445 K
Voltage U = 0.478 V
Ammonia flowrate F reac

in = 11.76 sccm
Air flowrate to fuel cell F ca

in = 47.51 sccm
Air flowrate to fuel cell effluent burner F burnI

in = 0 sccm
Butane flowrate F burnII

C4H10
= 2.08 sccm

Performance factors
Conversion in reactor ζreac = 0.999
Conversion in fuel cell ζan = 0.839
Air excess in fuel cell Φca = 1.350
Fuel cell efficiency ηfc = 0.567
Hydrogen conversion in fuel cell effluent burner ζburnI

H2
= 0.921

Effect of Operating Temperature

A parametric study is carried out by varying the operating temperature in the range

T ∈ [1000 K, 1300 K]. This parameter study indicates that the maximum achievable

energy density is very sensitive to the operating temperature as it monotonically

increases from 840 Wh/kg at 1000 K, to 1150 Wh/kg at 1300 K.

The effect of temperature on the performance of the system results from a trade-
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off between the heat losses and the chemical/electrochemical kinetics. On one hand,

the heat losses per unit area are substantially increased when the system operates at a

higher temperature and there is a significant loss in the outlet stream, because not all

the internal energy of the outlet gases can be recovered. On the other hand, as tem-

perature increases, so do the chemical/electrochemical reaction rates; in other words,

increasing the operating temperature allows one to obtain the same conversions while

significantly reducing the size of the units. An illustration of these considerations

can be found in Figure 2-34. Note that the optimal volume of the system is reduced

by a factor of 10 when the temperature passes from 1000 K to 1300 K (as antici-

pated, one sees that more than 90% of that volume is relative to the fuel cell unit, as

the electrochemical kinetics are much slower than the ammonia decomposition and

hydrogen/ammonia oxidation reactions). Furthermore, as the size of the system is

reduced, the heat losses are reduced from 7 W to 4 W (left plot), thus supporting the

counterintuitive result that increasing the operating temperature decreases the heat

losses at the same time. For higher temperatures, the significance of the enthalpic

loss in the outlet gases overcomes the gains of smaller radiative heat losses. Overall,

the large values reported for the heat-losses-to-electrical-power ratio clearly indicate

that a large part of the fuel mass is used by the system to maintain the stack at

the prescribed temperature. Note that at a higher temperature, the device is more

efficient and therefore dissipates less heat, in contrast to the perception that high

temperature leads to increased heat dissipation.

Effect of Electrochemistry

In Figure 2-35 we compare the base-case parameter values by Achenbach [13] with

recently proposed electrochemical data by Aguiar et al. [16]. These results confirm

the very large effect of electrode material and microstructure on the system perfor-

mance. With the parameter values proposed by [16], a fuel energy density as high

as 2000 Wh/kg is obtained, therefore improving the performance by more than 70%.

Incidentally, the corresponding fuel cell efficiency increases by approximately 15%,

Figure 2-35 (right plot). With these new electrodes, it would then become possible to

operate the system at a lower temperature, thus improving the mechanical stability
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Figure 2-34: Ratio between heat losses and electrical power (left plot) and optimal
design parameters (right plot) as a function of the operating temperature, for PW =
1W.

of the micromachined SOFC, while still achieving high energy densities.
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Figure 2-35: Fuel energy density (left plot) and fuel cell efficiency (right plot) as a
function of the operating temperature, for literature exchange current density values.

Effect of Electrolyte Thickness

In Figure 2-36 we study the effect of electrolyte thickness. The influence of the

electrolyte thickness on system performance is rather small. The variation of the fuel

energy density for 200 nm to 10 µm-thick electrolytes is limited to a few percent, even

at an operating temperature of 1100 K. Surprisingly enough, the fuel cell efficiency

increases as the electrolyte gets thicker. This counterintuitive observation also results

from the interaction between design and operation of the system, and warrants further

explanations. From the design point of view, the volume of the micro fuel cell increases

correlatively to the electrolyte thickness, thus maintaining about the same hydrogen
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conversion (around 86% at any temperature); in other words, the current intensity

flowing out of the fuel cell remains nearly constant. But as the fuel cell volume

increases, so does the active electrochemical surface (since the specific area is fixed,

see Table 2.10), and the average current density flowing through the electrolyte is

therefore decreased. Accordingly, the activation overpotentials are reduced, which in

turn results in a more efficient operation of the fuel cell.

Mechanical stability of the electrodes/electrolyte membrane is among the key

issues in the fabrication of micromachined SOFCs. In particular, it has been shown by

[259] that the maximum permissible temperature change that prevents the membrane

from fracturing or buckling is highly related to the membrane thickness. In this

context, the results presented in Figure 2-36 are of the utmost interest, as they would

allow one to fabricate slightly thicker membranes, therefore increasing mechanical

stability without significantly affecting the process performance.
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Figure 2-36: Fuel energy density (left plot) and fuel cell efficiency (right plot) as a
function of electrolyte thickness.

Maximizing Energy Efficiency vs. Maximizing Energy Density

We have argued that for man-portable power generation devices, the system energy

efficiency is not equivalent to the energy density. In this case study we study the

difference of the two conceivable objective functions for the ammonia-butane system.

For simplicity we will define the energy efficiency as the power output divided by

the product of heating value and molar flowrates; maximizing this metric for a given

power output is equivalent to minimizing NNH3
+ 8.4NC4H10

. Maximizing the energy
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density on the other hand is equivalent to minimizing NNH3
+ 3.4NC4H10

. It is clear

that the two objectives bear a different weight on each fuel flowrate and running the

optimization problems shows that the respectively optimal designs and operations are

drastically different, which also motivates the need for consumer oriented engineering.

Table 2.12 summarizes the key findings for an operating temperature of 1000K

and a power output of 10W. Note that the energy densities are significantly higher

than in the base case where production of 1W was considered. When maximizing

efficiency the achievable efficiency is approximately 25% higher compared to the case

of maximizing energy density at the expense of a 10% reduction of the energy density.

As expected by the weighing of the two fuel flowrates, maximizing the energy efficiency

leads to a smaller butane flowrate at the expense of the ammonia flowrate.

A very interesting result is that the optimal device size is significantly smaller in

the case of optimal efficiency, mostly due to a decrease in the fuel cell volume. Note

that in the case of maximal energy density butane is not as “expensive” and therefore

the optimal design allows for a bigger device with a better hydrogen conversion in

the fuel cell but higher heat losses, resulting in higher butane flowrates. On the other

hand in the case of maximal energy efficiency, the optimal design is such that the

ammonia line is nearly autothermal and a small butane flowrate is required to close

the energy balance.

The fuel cell voltage in the case of maximal efficiency is significantly lower than

in the case of maximal energy density. The most likely explanation is that in the

case of optimal efficiency more heat generation is required from the fuel cell, which

results in a lower efficiency and therefore lower voltage. This results also emphasizes

the point that maximization of the efficiency of one component does not necessarily

lead to maximization of the system efficiency.

2.10 Conclusions

Micropower generation devices based on fuel cells are products with the potential

of outperforming batteries for man-portable power generation by an order of mag-
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Table 2.12: Maximizing energy efficiency vs. maximizing energy density

Property Maximal energy density Maximal energy efficiency

Energy density 1247 Wh/kg 1107 Wh/kg
Energy efficiency 17% 21%
Fuel cell conversion 92% 74%
Fuel cell voltage 0.43 V 0.33 V
Device inner volume 10.5 cm3 6.9 cm3

Ammonia flowrate 89 µmol/s 145 µmol/s
Butane flowrate 12 µmol/s 0.8 µmol/s

nitude in terms of energy density. There is a plethora of conceivable applications

and processes and this results in the need for product engineering. We have pre-

sented a methodology for the optimal design and operation consisting of three levels

of modeling detail.

At the system-level we consider comparison of alternatives, identification of the

most promising technologies and investigation of the influence of technological param-

eters. Since process components are highly integrated and the heat losses strongly

influence the optimal design, the problems of flowsheet design, physical layout, and

integration of heat sinks and sources need to be solved simultaneously. The optimal

process design depends on product specifications and technological advances.

The performance of water consuming reactions depends strongly on the ability

to separate and recycle the waste water. Heat losses are a key issue, especially at

small power (<1W) production, and therefore concepts for thermal insulation and

optimal heat integration are necessary. Moreover for high-temperature processes ef-

ficient operation is only expected for higher power outputs in the order of 10W. As a

consequence of the importance of heat management, we can conclude that exothermic

fuel processing reactions and fuels with high heat value are more promising and more

likely to be efficient. For applications where atmospheric air is not available and com-

pressed oxygen or air has to be used the achievable energy densities are lower and the

gas storage required is volume determining. In this case exceeding the energy density

achieved by state-of-the-art batteries is only possible for processes operating under
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very favorable conditions. For some processes recycling can lead to a relatively small

improvement in the performance, provided that efficient mechanisms for the neces-

sary compression are available. The efficiency of power production in the fuel cell

influences the energy balance substantially and a threshold value may be observed,

above which improvement of the fuel cell efficiency will not lead to improvement of

the overall process performance.

The case studies at the intermediate fidelity modeling level identified a strong

interaction between device sizing and operation and several counterintuitive influences

of the operating conditions on process performance. In particular for a class of devices,

increasing the operating temperature reduces the heat losses, due to smaller residence

time requirement. The influence of technological improvements, such as a reduction

of the electrode overpotentials can be quantified based on our methodology and the

most critical goals for development can be identified.

Detailed modeling, in particular using Computational Fluid Dynamics, is a very

valuable tool for identifying geometrical improvements. Moreover because of the

material properties and dimensions it is possible to derive and justify simplifying

models. In particular for a class of devices, the temperature can be assumed uniform

in space, which is very helpful as a modeling assumption.

2.11 Future Work

Our modeling framework at the system-level is flexible and could be expanded to

include more fuels, e.g., formic acid [241] or different fuel processing mechanisms,

e.g., autothermal reforming [258]. An other interesting example is the combination

of an exothermic reaction for syngas generation, such as the partial oxidation of

hydrocarbons, with a thermophotovoltaic cell that would transform part of the heat

excess into power. Also, the consideration of hybrid system with a fuel cell and a

battery or capacitator is of interest.

At the system-level we considered separately simulation of the full set of alterna-

tives including several sources of nonlinearity and parametric optimization of a sim-
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plified set of alternatives via newly developed algorithms, see Section 3.5. Currently

models implemented in the process simulator ABACUSS are manually rewritten to

be used in the parametric optimization algorithms. This procedure is tedious and

error prone and the full potential of the two tools can only effectively be used if the

same modeling framework is used. One possibility is to automatically transform the

model from one modeling language to the other and the other is to use advanced

interfaces. Moreover, the application of (parametric) mixed-integer nonlinear pro-

gramming considering the full system of alternatives could lead to useful insights.

At the intermediate fidelity, the parametric studies were run by a series of dynamic

optimization problems for different parameter values; a parametric optimization al-

gorithm may be significantly more efficient and also provide some guarantees for the

entire parameter range.

An important aspect which was not included in this thesis are pressure consider-

ations, including pressure drops and dependence of the process performance on the

operating pressure (e.g., at high elevations). Similarly the influence of peripheral

components, such as valves and pumps was neglected; in contrast to the macroscale,

the energy consumption and influence of these components may be substantial and

should be considered. Structural stability considerations are of extreme importance

and it would be interesting to include these considerations. Also degradation and

durability issues could be considered. Since microfabricated fuel cell systems are at

an early stage of development, very limited experimental results are available to val-

idate the models presented. As further experimental results become available, the

model predictions need to be compared with the experimental results for validation

of the models. This procedure would possibly also suggest refinements to the models.

A very interesting question is the flexibility and robustness of the designs obtained.

We believe that the most appropriate tool to study this is the intermediate fidelity

models, since these include kinetic models. Flexibility problems are formulated as

max-min problems, e.g., [131, 138], and due to the embedded DAEs cannot be ad-

dressed rigorously with state-of-the-art algorithms. It would be of interest to either

develop algorithms that can address these types of problems, or at least consider these

problems heuristically.
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Under the assumption that rapid start-up operation is possible, the average per-

formance mainly depends on the steady-state performance of the processes; neverthe-

less, the transient behavior is extremely important [65, 62]. It is likely that certain

processes exhibiting poor transient behavior must be excluded. It might also be

necessary to oversize certain units relative to optimal steady-state design, or even

include additional units for the sole purpose of start-up, e.g., a catalytic oxidation

reactor to generate heat for start-up. In addition to start-up other important tran-

sients include switch-overs between power outputs and shut-down. Furthermore, all

the case studies consider a fixed power-demand whereas in reality portable electric

devices operate over a range of power demands. For instance cell-phones have two

main modes, namely talk-mode consuming a few W and standby-mode consuming

a few dW. The influence of variable power demand on the optimal design is very

interesting [284]. The next step is to also include control considerations and possibly

identify interactions between design, operation and control.

The methodology presented is flexible regarding the design objective; neverthe-

less mostly energy densities were considered in the case studies presented. It would

be interesting to consider further design objectives, such as flexibility with respect

to the ambient conditions or undesired heat generation. Furthermore economic and

environmental calculations were not included in the methodology, but are worth in-

vestigating. Also the influence of multiple objectives is interesting.

Finally, it should be noted that the methodology proposed is not the only con-

ceivable and it would be interesting to consider alternatives. For instance automatic

connection of the different levels of modeling detail following the paradigm of multi-

scale modeling, e.g., [52], is conceivable in the future. At the system-level it would be

interesting to study whether and how alternative ideas to the process superstructure

can be applied to man-portable power generation; possibilities include attainable re-

gions [152, 122, 107], phenomena-based process synthesis [220] and the state-space

approach [32]. Reduced models based on linearization methods or input-output mod-

els are also conceivable. At the CFD-level it would be interesting to consider the

application of structural optimization techniques.
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Chapter 3

Parametric Optimization

3.1 Introduction and Literature Review

Mathematical programs often involve unknown parameters and the task of parametric

optimization is, in principle, to solve the mathematical program for each possible

values of these unknown parameters p ∈ P . Discretization of the parameter range,

is not rigorous in general, since there is no guarantee for optimality between the

mesh points. Moreover discretization on a fine mesh is a very expensive procedure,

especially for highly dimensional parameter spaces.

Algorithms for parametric optimization typically divide the parameter range P ⊂
R

np into regions of optimality, also called areas [139], or critical regions [117]; for each

region either the problem is infeasible or a qualitatively invariant solution, typically a

smooth function of the parameters, is optimal. The notion of qualitatively invariant

solution depends on the specific case. In mixed-integer linear programs for instance, it

means an optimal integer realization along with an optimal basis for this realization.

In general, the number of optimality regions cannot be bounded above by a polynomial

in the instance size even for a single parameter [207].

Parametric optimization has several applications [117] including waste manage-

ment [162] and fleet planning [163]. Recently, Eppstein [102] introduced the notion

of inverse parametric optimization where the values of parameters that result in a

given solution are searched for. Wallace [277] has argued that parametric optimiza-
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tion is valuable for decision making when the value of the parameters is not known

during the optimization phase but known during the decision making phase. Within

chemical engineering parametric optimization has been mainly used for applications

of model-predictive control, e.g., [230, 231, 40] and for process synthesis under uncer-

tainty, e.g., [224, 225, 10, 34]. Our interest for parametric optimization is as a tool

for resource allocation decisions, as described in Section 3.2.

The focus of this thesis is on parametric mixed-integer linear programs (MILP)

f ∗(p) = min
x,y

(cx(p))T x + (cy(p))T y

s.t. A1 x(p)x + A1 y(p)y = b1(p)

A2 x(p)x + A2 y(p)y ≤ b2(p) (3.1)

0 ≤ x ≤ xUP

x ∈ R
nx, y ∈ {0, 1}ny

where xUP ∈ R
nx , cx(p) ∈ R

nx, cy(p) ∈ R
ny , A1x(p) ∈ R

m1×nx , A1 y(p) ∈ R
m1×ny ,

A2 x(p) ∈ R
m2×nx , A2 y(p) ∈ R

m2×ny , b1(p) ∈ R
m1 , b2(p) ∈ R

m2 . Note that in

deviation from the standard form we allow inequality constraints and upper bounds

on the variables, to show how these can be treated efficiently. Including nonzero

lower bounds would make some of the discussions more cumbersome, but would not

alter anything essential. In some cases we restrict the discussion to finite upper

bounds xUP ∈ R
nx , while in other cases no bounds are required. As is done in most

algorithmic contributions, the host set of the parameters is assumed to be a unit

hypercube P = [0, 1]np. This is essentially equivalent to assuming that the host set

is compact, and excludes unbounded parameter ranges, e.g., p ∈ (−∞, +∞).

When the integer variables are fixed, or relaxed to an interval, a parametric linear

program is obtained, which is an important problem in its own right, and can also be

used as a subproblem in an algorithm for the solution of (3.1).

Two interesting special cases of the general case are the cost vector case and the

right hand side case. In both of these cases the matrices A1 x,A2x,A1 y,A2 y do not

depend on the parameters p; in the former case also the right hand side vectors
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b1,b2 are parameter independent, while in the latter case the cost vectors cx, cy

are parameter independent. The cost vector case has the benign property that the

feasibility region does not depend on the parameter. As a consequence the optimality

regions of a given basis are (convex) polyhedra and the optimal solution function is

piecewise-affine and concave, see Section 3.4.1. In the right hand side case convexity

of the optimal solution function is easily established [119]; moreover the optimality

region of a given basis can be calculated relatively easily [224, 78].

Parametric optimization is a mature field with many contributions. Most of the

theoretical properties were established by the 1980’s but in recent years there has

been a significant activity in algorithmic contributions. There are several textbooks

and review articles; Gal [117] and Dinkelbach [91] consider linear programs; Bank et

al. [35] and Fiacco [110] consider the nonlinear case; Geoffrion and Nauss [119] and

Greenberg [128] consider mixed-integer programs.

The right hand side case has been addressed assuming an affine dependence on the

parameter for mixed-integer linear programs for one or many parameters [119, 162,

216, 224, 225, 12] and also for parametric nonlinear programs [93, 95, 94]. For the cost

vector case several theoretical results are available [119]. Gusfield [135], Fernández-

Baca [108] and Fernández-Baca and Srinivisan [109] consider purely integer programs

with two parameters affecting the objective function. Haneveld et al. [139] consider an

LP with two coefficients in the objective function. Gal [117] discusses parametric LP

with a single and many parameters. Hale and Qin [137] consider nonlinear programs.

For mixed-integer linear programs a well-known algorithm for a single parameter

affecting the cost vector is based on intersections of the objective functions of feasible

points [101, 162, 164]. In Section 3.4.3 we describe an extension of this algorithm for

the case of multiple parameters; the reason that such an extension is not available in

the literature is most likely in the large number of MILP calls required. We give a

bound on this number in terms of the number of vertices of the optimality polyhedra.

The algorithmic approaches for parametric MILP can be divided into two broad

classes. In the first class, algorithms for the solution of a MILP are altered to solve

the parametric MILP. For instance Ohtake and Nishida [216] solve the right hand
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side case of parametric MILP by a branch-and-bound (B&B) on the integer variables

with a parametric linear program at each node. Methods based on this principle have

the promise of being relatively computationally efficient if the formulated parametric

subproblems are only slightly more expensive than their fixed-parameter counterparts.

The other broad class is to use MILP calls for fixed parameter values and process

the result postoptimaly. This is for instance employed in the well-known intersection-

based algorithm for the cost vector case, see Section 3.4.2. Methods based on this

principle can take advantage of sophisticated commercial MILP solvers and are also

relatively easy to implement.

To our best knowledge no algorithm exists for the solution of the general case

of parametric MILPs. Extension of the available algorithms for the right hand side

and cost vector case is nontrivial because the general case does not have the benign

properties of the special cases. Dinkelbach [91] proposed an algorithm for parametric

LPs based on an extension of the simplex method from real valued coefficients to

rational functions of the parameters. Post-optimal sensitivity analysis of the matrix

coefficients of nonbasic columns is covered in linear programming textbooks, e.g.,

[42]. Gal [117] reviews the case that a single column or a single row of the matrix

depends on the parameter; in this case an analytical inversion of the parametric matrix

is possible based on a formula by Bodewig [51]. Freund [115] proposed to obtain

post-optimal sensitivity information for parametric linear programs through Taylor

series expansions and Greenberg [129] considers post-optimal sensitivity analysis from

interior solutions via duality. In Section 3.5 we first propose two algorithms for

parametric LP, based on the algorithm by Dinkelbach [91] and then two algorithms for

parametric MILP. We then discuss extensions to the nonlinear and multiparametric

case.

3.1.1 Complexity of Parametric Optimization

Murty [207] has shown that the complexity of parametric optimization cannot be

bounded by a polynomial even in parametric linear programs with a single parameter.

Murty constructs a right hand-side parametric linear program with 2n variables and
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n constraints:

min
w,z

cT z

s.t. Iw −Mz = −b0 + λb1 (3.2)

w ≥ 0, z ≥ 0, w, z ∈ R
n,

where I is the identity matrix of size n (Iij = 1 for i = j and Iij = 0 for i 6= j) and M

is a lower triangular matrix of size n with all elements on the diagonal equal to 1 and

all below the diagonal equal to 2 (Mij = 1 for i = j, Mij = 0 for i < j and Mij = 2

for i > j). The constant part of the right hand side is the unity vector (b0
i = 1

for i = 1, . . . , n) and the parameter dependent part contains decreasing powers of

2 (b1
i = 2n−i for i = 1, . . . , n). The cost vector c contains decreasing powers of 4

(ci = 4n−i−1). The parameter λ is allowed to take all real values λ ∈ (−∞,∞).

Murty proves that for λ ∈ [0, 2n+1] there are 2n intervals in each of which a different

solution is optimal. We can therefore scale the parameter using λ = 2n+1p and obtain

the standard form where p ∈ [0, 1]. The computational requirement of storing and

returning the answer to the parametric program is nonpolynomial and therefore no

polynomial-time algorithm is possible.

A subtle point is that in (3.2) the data (b0,b1, c) contain numbers that are ex-

ponential in n but nevertheless the size of the instance is a polynomial of n. The

size of a problem instance according to Nemhauser and Wolsey [208, chapter I.5] is

the number of bits required to store the data. The amount of data to store is 3n

for the cost vector and right hand side, n for the identity matrix and n(n+1)
2

for the

matrix M. The largest integer to store is 4n−1 and this requires 2n bits. Therefore

the size of the instance is in the order of n3. Thus the claim that the complexity can

not be bounded by a polynomial is true. Note also that polynomial-time algorithms

exist for the solution of (3.2) for a fixed parameter value despite large values for the

data. Moreover the exponential size does not affect the performance of these algo-

rithms. Compare Section 1.6 in Wolsey and Nemhauser [208] where it is stated that

the dependence on max |bi| and max |ci| can be eliminated.
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Note also that, since a polyhedron in standard form has a factorial number of

vertices, it is conceivable to construct an example with a factorial number of optimal

bases without resorting to coefficients of exponential size, nor to real coefficients.

An extension of the results of Murty [207] to the cost vector case seems straight-

forward by duality. Moreover the general case and the mixed-integer case are gener-

alizations of the right hand side parametric LP. As a consequence any algorithm for

the problems considered in this thesis cannot show polynomial complexity. Rather

than basing the computational complexity on the size of the instance, it is probably

more appropriate to compare the computational requirement with the computational

requirement of solving as many optimization problems at fixed parameter values as

there are optimality regions. For instance, in the cost vector case of MILP with a

single parameter the intersection-based algorithm [101, 162, 164] requires a number

of MILP calls that is approximately twice the number of optimality regions of the

particular instance.

3.2 Parametric Optimization for Resource Alloca-

tion in R&D

In research and development (R&D) resources are limited and their optimal alloca-

tion is desired. In particular the choice between which alternative products/processes

to develop is of interest. In the example of micropower generation questions of in-

terest include “should solid-oxide fuel cells be developed?”, “is it better to focus on

separation membranes or on catalysis development?”, “should heat insulation or heat

recovery be improved?”. Suppose in general that a model of a system under develop-

ment with many potential components is given and the uncertain parameters describe

the performance of the various components. Parametric optimization quantifies the

influence of these parameters on the system performance and optimal design including

configuration of the components. Identifying the most important parameters enables

determination of whether it is worthwhile to pursue improvement of a given compo-
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nent. Post-optimality sensitivity analysis provides the correct parameter dependence

for infinitesimally small changes to the parameter values, i.e., only local information.

In contrast, parametric optimization provides a correct estimate of the influence of

parameters over a whole range, i.e., global sensitivity information.

The resource allocation problem described here is qualitative rather than quan-

titative such as the formulations in [161, 190, 263]. In these references the authors

consider chemical products such as pharmaceuticals with quantifiable resource needs

for development and testing. The focus of this thesis is on identifying the components

of a microfabricated electrochemical process that should be developed. Attempts to

estimate the resources needed to advance a given technology are conceivable, but a

proper quantification is not always possible. We instead propose that the answer pro-

vided by the parametric optimization algorithm has to be evaluated by the decision

maker, e.g., the program manager, who can balance the tradeoff between expendi-

ture of resources and potential of improving the systems performance. If the effect

of resource allocation can be quantified, the unknown parameters can be replaced

with their function of the resources, and the resources can be added to the variable

list. In that case, the resulting program would directly furnish the optimal resource

allocation.

3.3 MILP Optimality Range

Recall that parametric optimization algorithms identify a set of qualitatively invariant

solutions and their respective optimality regions. In parametric mixed-integer linear

programs a qualitatively invariant solution is an integer realization along with a basis

for this integer realization. Suppose that such a solution is given by (x̄(p), ȳ) and

its feasibility has been established for a subset of the parameter range p ∈ P ′ ⊂ P .

Unlike linear programs, no explicit optimality conditions are available and therefore

an interesting question is whether or not a given pair (x̄(p), ȳ) is optimal over p ∈
P ′ ⊂ P .

Note that in general, obtaining P ′ and the function x̄ : P ′ → R
nx is a nontrivial
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task, see also Section 3.5.2. Assuming though that the data are given as rational

functions of the parameter (quotients of multivariate polynomials), it can be shown

that as long as the basis matrix considered remains nonsingular, the qualitatively

invariant solution x̄ is a smooth rational function of p. In the cost vector case, the

feasible set does not depend on the parameter and x̄ is constant. In the right hand side

case assuming an affine dependence of the right hand side vector on the parameters,

it can be shown that x̄ is an affine function of the parameters p.

Pertsinidis et al. [224, 225] proposed formulating the determination of the opti-

mality range as a new optimization problem for which the parameters are added to

the variable list and called this “sensitivity analysis”. To avoid confusion with the

parametric dependence of the optimal solution we will refer to this problem as finding

the optimality region. Pertsinidis et al. considered the right hand side case with one

parameter and a uniqueness assumption. We consider and discuss generalizations of

this formulation.

Starting from (3.1) the parameters are added to the list of variables

min
x,y,p

(cx(p))T x + (cy(p))T y − f̄(p)

s.t. A1x(p)x + A1 y(p)y = b1(p)

A2x(p)x + A2 y(p)y ≤ b2(p) (3.3)

0 ≤ x ≤ xUP

x ∈ R
nx , y ∈ {0, 1}ny

p ∈ P ′,

where f̄(p) ≡ (cx(p))T x̄(p) + (cy(p))T ȳ. If the optimal value of (3.3) is less than

zero then (x̄(p), ȳ) is not optimal for the parameter value p∗ furnished by (3.1). The

solution point (x∗,y∗) is optimal for p∗. If the optimal value of (3.3) is greater or

equal to zero, (x̄(p), ȳ) is an optimal solution to the MILP (3.1) for all p ∈ P ′. Note

that by feasibility of (x̄(p), ȳ), the optimal value of (3.3) cannot be greater than zero,

unless some integer cuts are added.

An alternative formulation is to also include a metric for the parameter g(p), e.g.,
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the distance from a given parameter value and solve

min
x,y,p

g(p)

s.t. (cx(p))T x + (cy(p))T y − f̄(p) ≤ −ε

A1 x(p)x + A1 y(p)y = b1(p)

A2 x(p)x + A2 y(p)y ≤ b2(p) (3.4)

0 ≤ x ≤ xUP

x ∈ R
nx , y ∈ {0, 1}ny ,

p ∈ P ′,

where ε is a prespecified optimality tolerance. If (3.4) is infeasible, (x̄(p), ȳ) is an

optimal solution for the MILP (3.1) for all p ∈ P ′. Otherwise (x̄(p), ȳ) is not optimal

in (3.1) for p = p∗ (the parameter value furnished by (3.4)). Note that the tolerance

ε introduces an overestimation of the optimality range. Note also that the solution

point (x∗,y∗) furnished by (3.4) need not be optimal in (3.1) for p∗.

If the LP-optimality range for a fixed integer realization has been established for

p ∈ P ′, then an integer cut y 6= y∗ can be added to either (3.3) or (3.4), likely

accelerating the convergence. Such a cut can be formulated as in Balas and Jeroslow

[33]
∑

i∈O

yi −
∑

i∈Z

yi ≤ |O| − 1,

where O, Z are index sets for the elements of y∗ with values of one and zero, respec-

tively.

3.3.1 Range of Infeasibility

A similar question to the optimality range considered in the previous subsection is

the “range of infeasibility”. In linear programs, the introduction of surplus variables

allows the infeasibility to be treated similarly to a feasible basis, see Section 3.5.2.

This is not possible for MILPs, because parameter variation may render some integer
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realization feasible. One possibility to obtain the infeasibility range is to consider a

variant of (3.4) where the bound on the optimal solution is dropped

min
x,y,p

g(p)

s.t. A1 x(p)x + A1 y(p)y = b1(p)

A2 x(p)x + A2 y(p)y ≤ b2(p) (3.5)

0 ≤ x ≤ xUP

x ∈ R
nx y ∈ {0, 1}ny ,

p ∈ P ′.

If (3.5) is feasible for some parameter value p∗ then so is (3.1). Alternatively, to check

that a program is infeasible over a parameter range a variant of (3.3) can be used

min
x,y,p

(cx(p))T x + (cy(p))T y

s.t. A1 x(p)x + A1 y(p)y = b1(p)

A2 x(p)x + A2 y(p)y ≤ b2(p) (3.6)

0 ≤ x ≤ xUP

x ∈ R
nx , y ∈ {0, 1}ny

p ∈ P ′.

If (3.6) is infeasible, so is (3.1) for all p ∈ P ′.

3.3.2 Classification of Optimality Region Formulations

In general, both formulations (3.3) and (3.4) contain nonconvex nonlinear func-

tions and are characterized as separable nonconvex mixed-integer nonlinear programs

(MINLP). The global solution of nonconvex MINLPs is very computationally expen-

sive but there exist algorithms [14, 169, 267] and at least one commercial program

[247] that can do this with optimality guarantees. The specific structure of the MINLP

considered could be exploited by specialized algorithms. The nonlinearity originates
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from f̄(p) as well as from the products between the parameter dependent data and

the parameters. In that sense, the parameters p can be considered as complicating

variables and typically there is a small number of parameters (np ≪ nx and np ≪ ny).

Optimality Region as MILP

Pertsinidis et al. [224, 225] considered the right hand side case with one parameter

and assumed an affine dependence of the right hand side vector b1 : P ′ → R
m on the

parameter. In that case f̄ : P ′ → R is affine and both (3.3) and (3.4) are mixed-integer

linear programs. This result can be generalized to the case that also the cost vector

and matrix corresponding to the integer variables cy : P ′ → R
np, Ay : P ′ → R

m×ny

are affine functions of the parameters. For simplicity here we use standard form

min
x,y

(cx)T x + (cy,0 +

np
∑

i=1

cy,i pi)
T y

s.t. Ax x + (Ay,0 +

np
∑

i=1

Ay,ipi)y = b0 +

np
∑

i=1

bipi (3.7)

x ∈ R
nx , x ≥ 0

y ∈ {0, 1}ny ,

where cx ∈ R
nx , Ax ∈ R

m×nx , and for i = 0, . . . , np, cy,i ∈ R
ny , bi ∈ R

m, Ay,i ∈
R

m×ny . Formulation (3.3) becomes

min
x,y,p

(cx)T x + (cy,0 +

np
∑

i=1

cy,i pi)
T y − f̄(p)

s.t. Ax x + (Ay,0 +

np
∑

i=1

Ay,ipi)y = b0 +

np
∑

i=1

bipi (3.8)

x ∈ R
nx , x ≥ 0

y ∈ {0, 1}ny , p ∈ P ′.

It can be shown that f̄ : P ′ → R is affine, and the only nonlinearities in (3.3) are

the bilinear products between the parameters p and the binary variables y. These

products can be reformulated by the exact linearizations of Glover and Woolsey [124,
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125, 123] to obtain a MILP of increased size. Assuming that P ′ ⊂ [0, 1]np1 each

bilinear term pi yj is replaced by a new real valued variable wj
i ∈ [0, 1] and three

new linear inequality constraints are introduced, that enforce wi = pi for yj = 1 and

wi = 0 for yj = 0. For simplicity we assume that all the possible products exist

(worse-case scenario) and obtain

min
x,y,p,wi

(cx)T x + cy,0 y +

np
∑

i=1

ny
∑

j=1

cy,i
j wi

j − f̄(p)

s.t. Ax x + Ay,0 y +

np
∑

i=1

ny
∑

j=1

Ay,i
j wi

j = b0 +

np
∑

i=1

bipi (3.9)

wi
j ≤ yj, ∀i = 1, . . . , np ∀j = 1, . . . , ny

wi
j ≤ pi, ∀i = 1, . . . , np ∀j = 1, . . . , ny

pi + yj − 1 ≤ wi
j, ∀i = 1, . . . , np ∀j = 1, . . . , ny

wi ∈ [0, 1]ny , ∀i = 1, . . . , np

x ∈ R
nx , x ≥ 0

y ∈ {0, 1}ny , p ∈ P ′,

where Ay,i
j denotes the jth column of Ay,i. An alternative is to use the transforma-

tion on the original program (3.7) and convert this to a right hand-side parametric

program.

min
x,y,wi

(cx)T x + cy,0 y +

np
∑

i=1

ny
∑

j=1

cy,i
j wi

j

s.t. Ax x + Ay,0 y +

np
∑

i=1

ny
∑

j=1

Ay,i
j wi

j = b0 +

np
∑

i=1

bipi (3.10)

wi
j − yj ≤ 0, ∀i = 1, . . . , np ∀j = 1, . . . , ny

wi
j ≤ pi, ∀i = 1, . . . , np ∀j = 1, . . . , ny

yj − wi
j ≤ pi + 1, ∀i = 1, . . . , np ∀j = 1, . . . , ny

wi ∈ [0, 1]ny , ∀i = 1, . . . , np

x ∈ R
nx , x ≥ 0

y ∈ {0, 1}ny .

1Otherwise, a similar reformulation is performed.
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Applicability of MINLP Algorithms

We briefly discuss the applicability of MINLP algorithms to the optimality region

formulations (3.3) and (3.4) assuming an affine dependence on the parameters p.

Branch and Reduce (Tawarmalani and Sahinidis [267])

The only limitation mentioned in [267] is that the functions are “factorable, i.e.,

functions that are recursive sums and products of univariate functions”. As the for-

mulated MINLP contains only bilinear terms and a univariate polynomial or rational

function the algorithms are indeed applicable.

Outer Approximation (Kesavan et al. [169])

The proposed MINLP formulation falls under problem P in [169] if one reformulates

the bilinear terms between the parameter p and the integer variables (for the nonzero

entries of A1 y, A2 y, cy). Note though that his reformulation is not necessary [170].

The constraints g2 are linear and the constraints g1 contain bilinear terms x p.

The functions f and g2 are linear and g1 has bilinear terms and they are all twice

continuously differentiable. The functions L1 and L2 can be formulated as twice con-

tinuously differentiable. For the construction of the lower bounding MINLP P1 the

convex relaxations of bilinear terms can be formulated as a set of four linear inequal-

ities for each bilinear term. The rational function f̄(p) can either be reformulated

with a set of linear inequalities or as a strictly convex function ḡ(p). In the former

case a constraint qualification holds because all constraints are linear. In the latter

case, the KKT conditions may not be necessary for a local minimum. The following

is a counterexample

min
x,p

p

s.t. − x + p2 ≤ 0

x ≤ 0

−x ≤ 0.

The only feasible point is x∗ = p∗ = 0 and therefore it is the unique local and
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global minimum. The gradient of the constraints evaluated at this point are given by

(0, 1)T and the gradient of the objective function is given by (1, 0)T and therefore the

optimal point does not satisfy the KKT conditions, or the KKT conditions are not

necessary. Essentially the constraint qualifications is violated when at the minimum

the constraint on the objective function is active and its gradient is linearly dependent

on the other active constraints. Otherwise all active constraints are linear and the

constraint qualification holds.

SMIN-αBB (Adjiman et al. [14])

The algorithm described in [14] is applicable. In particular for the objective function

we have f(x) = p, Af = 0, cT
f = 0. The equality constraints have only bilinear terms

and therefore hi(x) = 0, i = 1, . . . , p. The same holds for the inequality constraints

except for the one involving the constraint on the objective function (gi(x) = 0,

i = 1, . . . , m − 1) and gm(x) = f̄(p) which is a univariate rational or polynomial

function defined over the whole range of the variable p and as such twice continuously

differentiable.

3.4 Multiparametric Cost Vector Case

In this section we consider the cost vector case with affine dependence of the coeffi-

cients on the parameters. For simplicity we describe the algorithms for a MILP in

standard form:

min
x,y

(cx + Cx p)T x + (cy + Cy p)T y

s.t. Ax x + Ay y = b (3.11)

x ∈ R
nx , x ≥ 0

y ∈ {0, 1}ny ,

where p ∈ [0, 1]np, cx ∈ R
nx, cy ∈ R

ny , Cx ∈ R
nx×np, Cy ∈ R

ny×np, Ax ∈ R
m×nx ,

Ay ∈ R
m×ny , b ∈ R

m.

The cost vector case is much simpler than the general case both from a theoretical
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and algorithmic point of view, because the feasible set is not affected by changes in the

parameter value [119]. Together with the assumption of affine parameter dependence,

the parameter range can be divided in a finite collection of polyhedra, for each of

which a point is optimal. The notion of a qualitatively invariant solution is thus not

needed. Throughout this section we assume that every instance considered satisfies

two properties:

Assumption 3.1 (Feasible set nonempty). The feasible set is non-empty.

Assumption 3.2 (Optimal solution bounded). For all p ∈ [0, 1]np the optimal solution

is finite.

Feasibility is assumed for the sake of simplicity. Since the feasible set does not

depend on the parameter, infeasibility can be detected by solving the MILP at any

fixed parameter value. On the other hand allowing unbounded solutions would require

some changes for the algorithms presented. Furthermore, we make a restriction on

the MILP solvers used to ensure that we obtain a finite number of solutions.

Assumption 3.3 (MILP solvers). There exists a MILP solver which for any fixed value

of the parameters furnishes an optimal solution at a vertex of the feasibility region.

3.4.1 Theoretical Properties

Most properties described here are well-known, see e.g., [119, 139], but are neverthe-

less included because of their relevance to the algorithms presented and because in

the literature proofs are mostly provided for a single parameter.

Note that as the interior of a set P k we denote the set of interior points, i.e.,

int(P k) = {p ∈ P k : Nδ(p) ⊂ P k},

for some open neighborhood Nδ(p).

We first proove the following lemma

Lemma 3.1. Let P l ⊂ [0, 1]np be a closed set with an empty interior and K be the

index set of a finite collection of closed sets P k ⊂ [0, 1]np and denote P K =
⋃

k∈K P k.
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Then [0, 1]np ⊂ P l ∪ P K implies [0, 1]np ⊂ P K.

Proof. Proof by contraposition

Let [0, 1]np 6⊂ P K . Therefore there exists p̄ ∈ [0, 1]np, such that p̄ 6∈ P k for any

k ∈ K. Since P k are closed, p̄ is not a limit point of any P k. Therefore for each

k ∈ K, there exists δk > 0 such that the neighborhood Nδk(p̄) gives

Nδk(p̄) ∩ P k = ∅.

Take δ = mink∈K δk and since K is finite δ > 0. Consider the corresponding neighbor-

hood Nδ(p̄). It is therefore possible to find a set N ′ ⊂ Nδ(p̄)∩[0, 1]np with a nonempty

interior. Since N ′ has a nonempty interior it cannot be a subset of P l. Therefore

there exists p ∈ N ′ such that p 6∈ P l. Since N ′ ⊂ [0, 1]np we have p ∈ [0, 1]np and

since N ′ ⊂ Nδ(p̄) we have p 6∈ P K . Therefore we obtain [0, 1]np 6⊂ P K ∪ P l.

Lemma 3.2. The parameter range can be divided into a finite collection with index

set K of bounded polyhedra P k and associated points
(

xk,yk
)

, such that

1. [0, 1]np =
⋃

k∈K P k and for any k ∈ K, the point
(

xk,yk
)

is an optimal solution2

of (3.11) for all p ∈ P k.

2. For any k ∈ K, the polyhedron P k has a nonempty interior

3. For any k1 ∈ K, k2 ∈ K, the interiors do not overlap int(P k1) ∩ int(P k2) = ∅

Proof. A direct consequence of Assumption 3.2 is that an optimal solution exists for

all p. Moreover for each parameter value, there exists an optimal integer realization

along with an optimal basis of the linear program that results by fixing the binary

variables. Therefore, it suffices to consider the vertices as candidate optimal solutions

and there is a finite number of vertices xi,yi, i = 1, . . . , kver with kver ≤ 2ny nx!
m!(nx−m)!

.

1. Consider any feasible point x̄, ȳ, irrespectively of whether it is a vertex or not.

The optimality region of this point is defined by the following set of linear

2Not necessarily the unique optimal solution though.
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inequality constraints

(cx + Cx p)
T

x̄ + (cy + Cy p)
T

ȳ ≤ (cx + Cx p)
T

xi + (cy + Cy p)
T

yi, i = 1, . . . , kver

0 ≤ p ≤ 1

which implies that the optimal region is a bounded polyhedron. Note that for

some feasible points x̄, ȳ the above inequalities define an empty set, for other

points a polyhedron in the parameter space whose interior is empty (single

point, line, polygon, etc.) and for other points a polyhedron in the parameter

space with a nonempty interior.

Recall now that it suffices to consider vertices of the feasible set as candidate

optimal solutions. Since there is a finite number of vertices, the parameter range

[0, 1]np can be divided into a finite collection of closed bounded polyhedra (with

index set K) such that [0, 1]np =
⋃

k∈K P k.

2. Consider now that a polyhedron with index k̄ ∈ K has an empty interior.

Since the polyhedra are closed and
⋃

k∈K P k = [0, 1]np, by Lemma 3.1 we have
⋃

k∈K,k 6=k̄ P k = [0, 1]np or P k̄ can be excluded from the collection.

3. Finally consider two polyhedra k1 ∈ K, k2 ∈ K with overlapping interiors

int(P k1) ∩ int(P k2) 6= ∅. Let

fk1(p) = (cx + Cx p)T xk1 + (cy + Cy p)T yk1

and

fk2(p) = (cx + Cx p)T xk2 + (cy + Cy p)T yk2.

Take any point p̄ ∈ int(P k1) ∩ int(P k2). There exists δ > 0, such that

p ∈ P k1 ∩ P k2, ∀||p− p̄|| < δ.

For all p ∈ P k1 ∩ P k2 both
(

xk1 ,yk1
)

and
(

xk2,yk2
)

are optimal solutions of

(3.11) and therefore fk1(p) = fk2(p). Since fk1 , fk2 are linear, it follows that
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fk1(p) = fk2(p) for all p ∈ [0, 1]np. This can be easily verified, e.g., by taking

points along the unit directions p̂ = p̄ + δ/2ej, from which it follows that

∂(fk1−fk2 )
∂pj

= 0. Therefore the two polyhedra are identical and one of the two

can be eliminated from the collection.

Lemma 3.3. The optimal cost function is piecewise-affine, continuous, and concave

over the parameter space.

Proof. From the perspective of the optimal cost function it suffices to consider the

vertices as candidate optimal solutions and recall that there is a finite number of

vertices xi,yi, i = 1, . . . , kver with kver ≤ 2ny n!
m!(n−m)!

. The optimal cost function is

therefore given by

min
i=1,...,kver

(cx + Cx p)T xi + (cy + Cy p)T yi,

and therefore is piecewise-affine, continuous and concave [42, p. 217]. Note also that

for each of the optimality regions the optimal cost function is affine.

Often large-scale MILPs are not solved to optimality, but rather to ε−optimality,

i.e., the solver furnishes a feasible point x̄, ȳ along with an ε−optimality guarantee

(cx)T x̄ + (cy)T ȳ ≤ (cx)T x + (cy)T y + ε, ∀(x,y) feasible.

Therefore the following lemma is of importance.

Lemma 3.4. Suppose that the parameter set has been divided into a finite collection of

polyhedra P k and associated points
(

xk, yk
)

. Suppose further that for each polyhedron

k the given point
(

xk, yk
)

is ε−optimal at each vertex of the polyhedron k. Then
(

xk, yk
)

is ε−optimal on the polyhedron k.

Proof. Note first that since
(

xk, yk
)

is ε−optimal at some parameter value it is
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feasible for all parameter values. Let

fk(p) = (cx + Cx p)T xk + (cy + Cy p)T yk.

Let pj , j = 1, . . . , Nk be the vertices of polyhedron k. Let p̄ be an arbitrary point

in polyhedron k, and as such a convex combination of the vertices

p̄ =

Nk
∑

j=1

λjp
j ,

Nk
∑

j=1

λj = 1, λj ≥ 0, j = 1, . . . , Nk.

Let x̄, ȳ be any feasible solution and f̄ (p) = (cx + Cx p)T x̄+(cy + Cy p)T ȳ the cor-

responding objective value function. The assumption of ε−optimality at the vertices

implies

fk
(

pj
)

≤ f̄
(

pj
)

+ ε, j = 1, . . . , Nk.

Since fk and f̄ are affine in the parameters p and
∑Nk

j=1 λj = 1 we obtain

fk (p̄) = fk

(

Nk
∑

j=1

λjp
j

)

=

Nk
∑

j=1

λjf
k
(

pj
)

f̄ (p̄) = f̄

(

Nk
∑

j=1

λjp
j

)

=

Nk
∑

j=1

λj f̄
(

pj
)

,

and therefore

fk (p̄) − f̄ (p̄) =

Nk
∑

j=1

λjf
k
(

pj
)

−
Nk
∑

j=1

λj f̄
(

pj
)

=

Nk
∑

j=1

λj

(

fk
(

pj
)

− f̄
(

pj
))

≤
Nk
∑

j=1

λjε

= ε

Nk
∑

j=1

λj

= ε.
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Since the above inequality holds for any p̄ in the polyhedron and any feasible x̄, ȳ

ε−optimality is established.

3.4.2 Intersection-Based Algorithm for a Single Parameter

In this subsection, we briefly repeat a well-known algorithm [101, 162, 164] for the

case of one parameter (p ∈ [0, 1]). This will facilitate the presentation of the multi-

parametric algorithm.

The intersection-based algorithm utilizes the concavity and continuity of the op-

timal objective function value and the convexity of the optimality regions. It succes-

sively identifies optimal solutions and their optimality regions (intervals) by solving

MILPs at fixed parameter values. The parameter values are chosen based on assumed

optimality intervals; if the optimal solution value of the MILP at a given parameter

value is equal to the assumed optimal solution, the optimality region is confirmed,

otherwise a new optimal solution is obtained and added to the list of existing solu-

tions. At any iteration, the candidate optimal solutions provide both a lower and an

upper bound to the optimal objective value for all p ∈ [0, 1], see below.

The algorithm uses a set R of optimal solutions along with their optimality region.

Each element Rk of the set R is a triplet
(

pRk ,
(

xRk ,yRk
)

,
(

fRk

0 , fRk

1

))

composed of

a parameter value pRk , a solution of the MILP (3.11)
(

xRk ,yRk
)

, and the coefficients

fRk

0 , fRk

1 of the objective value function fRk(p) = fRk

0 + fRk

1 p. The elements of R are

ordered by the parameter values pRk . The number of different optimal solutions in

the parameter range is denoted by ns, while pt is a temporary parameter value and j

is used as an iteration counter. |R| denotes the cardinality of R. The solution of the

MILP (3.11) at a parameter value pt is denoted by (x∗,y∗) and the corresponding

optimal cost with f ∗(p), calculated as f ∗(p) = (cx + Cx p)T x∗ + (cy + Cy p)T y∗.

Algorithm 3.1. Intersection Algorithm for Cost Vector Parametric MILP, np = 1

1. (Initialization)

Set ns = 0, j = 1 and R = ∅.
Solve MILP (3.11) at p = 0.
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Create a new triplet with p = 0, x = x∗, y = y∗ and f0 = (cx)T x∗ + (cy)T y∗,

f1 = (Cx)T x∗ + (Cy)T y∗

Insert the triplet in R.

2. REPEAT

(a) (Get next parameter value)

IF j = 1 THEN

• Set pt = 1.

ELSE

• Set pt = −f
Rns+1
0 −f

Rns+2
0

f
Rns+1
1 −f

Rns+2
1

.

(b) (Solution at new parameter value)

Solve MILP (3.11) at p = pt.

IF f ∗ < f
Rns+1

0 + f
Rns+1

1 pt

• Create a new triplet with p = pt, x = x∗, y = y∗,

and f0 = (cx)T x∗ + (cy)T y∗, f1 = (Cx)T x∗ + (Cy)T y∗.

Insert the triplet in R (ordered according to the parameter value).

ELSE IF ns < |R|

• Set ns = ns + 1.

• Set pRns+1 = pt.

• IF ns = |R| − 1 THEN set ns = |R|.

(c) Set j = j + 1.

UNTIL ns = |R|.

At termination, the set R contains the optimal solutions along with their optimal-

ity regions, i.e., for k = 1, . . . , ns the point
(

xRk ,yRk
)

is optimal for p ∈ [pRk , pRk+1],

with pR|R|+1 = 1. If there is one optimality region, two MILP calls are needed. For

ns > 1 the last optimality interval requires the solution of one MILP and all others

two MILP calls, i.e., one to identify the solution point and one to verify its optimality
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interval. Therefore for ns > 1 the algorithm requires 2 ns − 1 calls to a MILP solver

[162].

During the iterations, for all k = 1, . . . , ns the k-th element of set R contains

the optimal solution for p ∈ [pRk , pRk+1]. For k = ns + 1, . . . , |R|, the k-th element

contains the optimal solution for p = pRk . After the second iteration, by concavity,

an upper bound of the objective function at any parameter value p̄ can be calculated

as the minimum of the two adjacent optimal solutions

f ∗(p̄) ≤ min(fRk(p̄), fRk+1(p̄)) for k : pRk ≤ p̄ ≤ pRk+1.

Also by concavity the secant can be used as a lower bound

f ∗(p̄) ≥ fRk(pRk) +
(

fRk+1(pRk+1) − fRk(pRk)
) p̄ − pRk

pRk+1 − pRk
for k : pRk ≤ p̄ ≤ pRk+1.

These upper and lower bounds can be used for acceleration of the MILP solution.

Illustrative Example

To demonstrate how Algorithm 3.1 operates, consider a simple (IP)

min (c + C p)T y

s.t.

4
∑

i=1

yi = 1 (3.12)

y ∈ {0, 1}4,

where c = (0, 0.1, 0.5, 0.9) and C = (1, 0.6,−0.3,−0.9). The optimality regions of the

four integer realizations are

(1, 0, 0, 0) is optimal for p ∈ [0, 1/4]

(0, 1, 0, 0) is optimal for p ∈ [1/4,
4/9]

(0, 0, 1, 0) is optimal for p ∈ [4/9,
2/3]

(0, 0, 0, 1) is optimal for p ∈ [2/3, 1].
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The steps of Algorithm 3.1 are summarized below, and graphically illustrated in

Figure 3-1, where each optimal solution function is plotted with a different color. For

the numbering of the solutions, note the reordering as new solutions are obtained.

Initialization

Solve MILP (3.12) for p = 0 and obtain y∗ = (1, 0, 0, 0).

Set f ∗(p) = p.

Insert the triplet p = 0, y = y∗, f(p) = f ∗ into set R.

Main loop

Solve MILP (3.12) for p = 1 and obtain y∗ = (0, 0, 0, 1) and f ∗ = 0.

Since 0 = f ∗ < fR1(1) = 1

Set f ∗ = 0.9 − 0.9 p.

Insert the triplet p = 1, y = y∗, f(p) = f ∗ into set R.

p = fR1(p) = fR2(p) = 0.9 − 0.9 p gives pt ≈ 0.473

Solve MILP (3.12) for p = pt and obtain y∗ = (0, 0, 1, 0) and f ∗ ≈ 0.358.

Since 0.358 = f ∗ < fR1(0.473) = 0.474

Set f ∗ = 0.5 − 0.3 p.

Insert the triplet p = 0.5, y = y∗, f(p) = f ∗(p) into set R.

p = fR1(p) = fR2(p) = 0.5 − 0.3 p gives pt ≈ 0.384

Solve MILP (3.12) for p = pt and obtain y∗ = (0, 1, 0, 0) and f ∗ = 0.333.

Since 0.331 = f ∗ < fR1(0.384) = 0.385

Set f ∗ = 0.1 + 0.6 p.

Insert the triplet p = 0.384, y = y∗, f(p) = f ∗(p) into set R.

p = fR1(p) = fR2(p) = 0.1 + 0.6 p gives pt = 0.25

Solve MILP (3.12) for p = pt and obtain f ∗ = 0.25.

Since 0.25 = f ∗ = fR1(0.25) = 0.25

the optimality region of f 1 = p is confirmed.

Set pR2 = 0.25. Set ns = 1.

0.1 + 0.6 p = fR2(p) = fR3(p) = 0.5 − 0.3 p gives pt ≈ 0.444

Solve MILP (3.12) for p = pt and obtain f ∗ = 0.367.
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Since 0.367 = f ∗ = fR2(0.444) = 0.367

the optimality region of fR2 = 0.1 + 0.6 p is confirmed

Set p3 = 0.444. Set ns = 2.

0.5 − 0.3 p = fR3(p) = fR4(p) = 0.9 − 0.9 p gives pt ≈ 0.667

Solve MILP (3.12) for p = pt and obtain f ∗ = 0.3.

Since 0.3 = f ∗ = fR3(0.667) = 0.3

the optimality region of fR3 = 0.5 − 0.3 p is confirmed

Set p4 = 0.667 and ns = 3.

Since |R| − ns = 4 − 3 = 1 set ns = 4.

Since |R| = ns terminate.
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Figure 3-1: Graphical illustration of one-dimensional intersections-based algorithm for
the parametric optimization in the cost vector case of (3.12). Solution I (magenta)
corresponds to y = (1, 0, 0, 0), solution II (cyan) to y = (0, 0, 0, 1), solution III (green)
to y = (0, 0, 1, 0), and solution IV (blue) to y = (0, 1, 0, 0).
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Pathological Example

A subtle point is that the some of the optimality regions obtained by Algorithm 3.1

may be degenerate intervals (single points). As an example consider the simple IP

example:

min (c + Cp1)
T y

s.t.
5
∑

i=1

yi = 1

y ∈ {0, 1}5,

where c = (−0.4,−0.2, 0., 0.2, 0.6) and C = (1, 0.4, 0.,−0.4, 1) The optimality regions

of the five integer realizations are

(1, 0, 0, 0, 0) is optimal for p ∈ [0, 1/3]

(0, 1, 0, 0, 0) is optimal for p ∈ [1/3,
1/2]

(0, 0, 1, 0, 0) is optimal for p = 1/2

(0, 0, 0, 1, 0) is optimal for p ∈ [1/2,
2/3]

(0, 0, 0, 0, 1) is optimal for p ∈ [2/3, 1].

Algorithm 3.1 will call the IP solver for p = 0.5, which may return y3 as the optimal

solution. In this case a degenerate interval will be created. After termination of the

algorithm, these degenerate intervals can be excluded.

3.4.3 Multiparametric Intersection-Based Algorithm

The basic idea of our proposed extension to the multiparametric case is to obtain

the solutions that are optimal for some parameter value and construct the optimal-

ity polyhedra in the parameter space by identifying their vertices. The vertices are

stored in set V and the solutions in set S. The set V is initialized with the vertices of

P . At each iteration a vertex is picked and the MILP is called for the corresponding
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parameter value. If the obtained optimal objective value is better than the exist-

ing solutions, the solution point is added to the set S. In Subroutine 3.1, existing

vertices are checked to see if the new solution obtained is better than the assumed

optimal and if it is, the vertices are removed from the list since they are no longer

needed. In Subroutine 3.2 all points are constructed, that are possibly vertices of

the optimality region of this solution. After an exclusion test, based on the existing

solutions, the candidate vertices are added in Subroutine 3.3. Note that typically

the calls to the MILP solver are much more expensive than the additional computa-

tions, and therefore these computations do not significantly affect the computational

requirement.

Each element Sj ∈ S is a pair composed of the solution of MILP (3.11)
(

xSj ,ySj
)

,

and the coefficients f
Sj

0 , f
Sj

1 , . . . , f
Sj
np , of the objective value function

fSj(p) = f
Sj

0 +
∑np

k=1 f
Sj

k pk. The coefficients are stored to avoid recalculation ev-

ery time the function is needed. Each element Vk ∈ V is a quadruplet composed of

the vertex coordinates pVk , a boolean variable solVk , which denotes if the MILP has

been solved at this vertex, a value for the objective function fVk and finally a list of

indices LVk , that are possibly optimal at this vertex. The elements of each list LVk are

indices to elements of the set S. When the MILP at a given vertex has been solved

(solVk = true), the solutions are guaranteed optimal for the corresponding parameter

value, otherwise (solVk = false) they are only assumed optimal. As a termination

criterion the number of unsolved vertices is stored in the integer nV . Vertices at

which the MILP has been solved are kept, since they are needed for the output of

the algorithm. For simplicity we assume that the numbering of the vertices is not

changed when vertices are removed.

Algorithm 3.2. Multiparametric Intersection-Based Algorithm

1. Initialization

• Solve (3.11) for p = 0.

• Set f ∗(p) = (cx + Cx p)T x∗ + (cy + Cy p)T y∗
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• Create S with the pair ((x∗,y∗) , f ∗(p)).

• Initialize V with the 2np vertices of the parameter space, with solV1 = true

and solVk 6=1 = false, fVk(p) = f ∗(p) and LVk = {1} for k = 1, . . . , 2np.

• Set nV = 2np − 1.

2. REPEAT

• Pick a vertex Vk ∈ V with solVk = false and solve MILP (3.11) for p = pVk .

• Set f ∗(p) = (cx + Cx p)T x∗ + (cy + Cy p)T y∗

• IF f ∗(pVk) < fVk THEN

(a) CALL Check existing vertices(k) (Subroutine 3.1).

(b) CALL Obtain candidate points (Subroutine 3.2).

(c) Add ((x∗,y∗) , f ∗(p)) to S.

ELSE

(a) Set solVk = true.

(b) Set nV = nV − 1.

UNTIL nV = 0

On termination, V contains all vertices of the optimality regions, and the entire

parameter range has been characterized. At this point, the sets V and S can be

reordered, to explicitly define the polyhedra. If this is done, obtaining an optimal

solution at a given parameter point is a relatively simple procedure by successively

checking each polyhedron to see if the point belongs to it.

Finite termination is guaranteed since by assumption the MILP solver furnishes

vertices of the feasible set and therefore a finite number of solutions is considered.

Cycling is not possible because a new solution is only introduced if at a vertex it is

better than all existing ones.

The number of MILP calls needed is equal to the number of vertices of the divided

parameter host set, plus the number of solutions identified in the interior of P . To

minimize the number of required MILP calls the vertices of P should be visited first.
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Note that at least 2np MILP calls are needed for the vertices of P making Algorithm

3.2 at least exponential in the number of parameters. Moreover for a large number

of optimal solutions, the number of vertices in the interior of P can be quite high.

The following subroutine ensures that parameter points that are not vertices of

a polyhedron are eliminated. This is done by first comparing the newly obtained

objective value function with the assumed optimal objective value function for this

parameter point. If it is not better, the parameter point remains unchanged. If the

new objective value function is better than the presumed optimal, then the parameter

point can not be a vertex of the polyhedron corresponding to the old objective value

function. In that case, if the parameter point is a vertex of P , then it is assigned to

the new solution, otherwise it is eliminated from the set of vertices.

Subroutine 3.1. Check existing vertices(k)

FORALL Vl ∈ V with solVl = false

• IF f ∗(pVl) < fVl THEN

– IF pVl 6∈ {0, 1}np THEN

∗ Remove Vl from V .

∗ Set nV = nV − 1.

ELSE

∗ LVl = {|S| + 1} (assign this vertex to the new solution)

∗ IF l = k THEN set solVk = false, nV = nV − 1.

END

At a given iteration we have |S| previous solutions as well as the new solution.

For |S| = 0 the vertices in the parameter space are assigned to the new solution

and no new candidate points are needed. For |S| > 0 we need to construct all the

possible vertices that involve the new solution by solving a set of np equations. To

that extent for i = 1, . . . , max(np, |S|) we set up an np dimensional index set J i; the

first i elements are indices corresponding to elements of the solution set S, i.e., J i
j

corresponds to SJi
j ; the last np − i elements are indices corresponding to the elements
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of p. For every possible value of the index set J i, 2np−i systems of np linear equations

are solved to identify new candidate vertices. Note that this is a highly combinatorial

step, but the computational time will be insignificant compared to the solution of the

MILPs.

Subroutine 3.2. Obtain candidate points

. FOR i = 1, . . . , max(np, |S|)

• FORALL





|S|
i



×





np

np − i



 possible values of J i

– FORALL d ∈ {0, 1}np−i

1. (Set up matrix At and right hand side vector bt)

∗ FOR j = 1, . . . , i

· Set bt
j = −f ∗

0 + f
S

Ji
j

· FOR k = 1, . . . , np set At
jk = f ∗

k − f
S

Ji
j

k .

∗ FOR j = i + 1, . . . , np

· Set bt
j = dj−i.

· FOR k = 1, . . . , np set At
jk =











1 if k = J i
j

0 otherwise.

2. Solve Atpt = bt.

3. IF pt ∈ P and f ∗(pt) ≤ minSj∈S fSj(pt) THEN CALL Add point.

A word of caution is needed for Step 2 of Subroutine 3.2. The matrix At need

not be nonsingular and Atpt = bt may have no solution, or an infinite number of

solutions. Nevertheless, neither case is of concern. In the case of no solution no point

needs to be considered. The case of infinitely many solutions occurs when for the given

fixed parameter values (the last np − i elements of J i) some of the objective value

functions considered are linearly dependent. In that case a subspace of P satisfies

Atpt = bt. Out of this subspace, only the points that intersect with one of the

faces of P correspond to vertices of a polyhedron. These can be obtained by adding

constraints pj ∈ {0, 1}. Since in Subroutine 3.2 all possible J i are considered, when
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singularity of At is detected, this index set J i can be ignored for all d ∈ {0, 1}np−i. In

a previous iteration more parameters were fixed, and less functions were considered

and these furnished the vertices required.

Subroutine 3.3. Add point

1. Create LnewV = {|S| + 1}
FOR j = 1, . . . , |S|

• IF fSj (pt) = f ∗(pt) THEN LnewV = LnewV ∪ {j}.

2. Create a new quadruplet with pnewV = pt, solnewV = false, f(p)newV = f ∗(p),

and LnewV .

3. Insert the new quadruplet in set V .

Illustrative Example

To illustrate the behavior of Algorithm 3.2 consider a simple (IP)

min
y

(c + Cp)T y

s.t.

3
∑

i=1

yi = 1 (3.13)

y ∈ {0, 1}3,

where

c =











0

1.0

0.9











and C =











1 −0.8

0.1 −2

−0.9 −0.6











.

Solution (1, 0, 0) is optimal for values close to p = 0, while solution (0, 1, 0) is optimal

for large values of p2, and solution (0, 0, 1) is optimal for large values of p1.

The steps of Algorithm 3.2 are summarized below. Figure 3-2 contains a graphical

illustration. The optimality regions are drawn as polygons of different color in the
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two-dimensional parameter space. Vertices at which the MILP has been solved are

marked with a circle and the other vertices with a square.

Initialization

Solve (3.13) for p = 0 and obtain the solution y∗ = (1, 0, 0).

Create the solution set S with yS1 = y∗ and fS1(p) = 0 + 1 p1 − 0.8 p2.

Add the four vertices of P to the set of vertices V

pV1 = (0, 0), solV1 = true, fV1 = 0, LV1 = {1}
pV2 = (0, 1), solV2 = false, fV2 = −0.8, LV2 = {1}
pV3 = (1, 0), solV3 = false, fV3 = 1, LV3 = {1}
pV4 = (1, 1), solV4 = false, fV4 = 0.2, LV4 = {1}.

Set nV = 3.

Main loop

Select vertex V2 with p1 = 0, p2 = 1

Solve MILP (3.13) and obtain y∗ = (0, 1, 0) and f ∗ = −1.0.

Set f ∗(p) = 1.0 + 0.1 p1 − 2 p2.

Since −1.0 = f ∗(pV2) < fV2 = −0.8

Check existing vertices

Assign vertex V 2 to the new solution and mark as solved

solV2 = true, fV2 = −1.0, LVk = {2}, nV = 2.

Since 1.1 = f ∗(pV3) > fV3 = 1 do not reassign vertex V 3.

Since 0.2 = f ∗(pV4) < fV4 = −0.9 assign vertex V 4 to the new solution

fV4 = −0.9, LV4 = {2}.
Obtain candidate vertices

The intersection of f ∗(p) = fS1(p) with p2 = 0 gives p1 = 1.111,

which does not satisfy p ∈ [0, 1]2. No new vertex is created.

The intersection of f ∗(p) = fS1(p) with p2 = 1 gives p1 = −0.222,

which does not satisfy p ∈ [0, 1]2. No new vertex is created.

The intersection of f ∗(p) = fS1(p) with p1 = 0 gives p2 = 0.8333.

Set nV = 3 and create a new vertex.
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pV5 = (0, 0.833), solV5 = true, fV5 = −0.666, LV5 = {1, 2}.
The intersection of f ∗(p) = fS1(p) with p1 = 1 gives p2 = 0.08333.

Set nV = 4 and create a new vertex.

pV6 = (0, 0.833), solV6 = false, fV6 = −0.666, LV6 = {1, 2}.
Create S2 with yS2 = y∗ and fS2(p) = f ∗(p) and add it to S.

Select vertex V3 with p1 = 1, p2 = 0

Solve MILP (3.13) and obtain y∗ = (0, 0, 1) and f ∗ = 0.0.

Set f ∗(p) = 0.9 − 0.9 p1 − 0.6 p2.

Since 0.0 = f ∗(pV3) < fV3 = 1.0.

Check existing vertices

Assign vertex V 3 to the new solution and marked as solved

solV3 = true, fV3 = 0.0, LVk = {3}, nV = 3.

Since −0.6 = f ∗(pV4) > fV4 = −0.9 do not reassign vertex V 4.

Since 0.4 = f ∗(pV5) > fV5 = −0.6664 do not reassign vertex V 5.

Since 0.933 = f ∗(pV6) < fV6 = −0.04998 delete vertex V 6 and set nV = 2.

Obtain candidate vertices

The intersection of f ∗(p) = fS1(p) with p1 = 0 gives p2 = −4.5,

which does not satisfy p ∈ [0, 1]2. No new vertex is created.

The intersection of f ∗(p) = fS1(p) with p1 = 1 gives p2 = 5.0,

which does not satisfy p ∈ [0, 1]2. No new vertex is created.

The intersection of f ∗(p) = fS1(p) with p2 = 0 gives p1 = 0.474.

Since 0.474 = f ∗(0.474, 0) < fS2(0.474, 0) = 1.047

Set nV = 3 and create a new vertex

pV7 = (0.474, 0.), solV7 = false, fV7 = 0.474, LV7 = {1, 3}.
The intersection of f ∗(p) = fS1(p) with p2 = 1 gives p1 = 0.578.

Since −0.221 = f ∗(0.578, 1) > fS2(0.578, 1) = −0.942 no new vertex is created.

The intersection of f ∗(p) = fS2(p) with p1 = 0 gives p2 = 0.071.

Since 0.857 = f ∗(0, 0.071) > fS1(0, 0.071) = −0.057 no new vertex is created.

The intersection of f ∗(p) = fS2(p) with p1 = 1 gives p2 = 0.786.

Since −0.471 = f ∗(1, 0.786) < fS1(1, 0.786) = 0.371
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set nV = 4 and create a new vertex

pV8 = (1, 0.786), solV8 = false, fV8 = −0.471, LV8 = {2, 3}.
The intersection of f ∗(p) = fS2(p) with p2 = 0 gives p1 = −0.1,

which does not satisfy p ∈ [0, 1]2. No new vertex is created.

The intersection of f ∗(p) = fS2(p) with p2 = 1 gives p1 = 1.3,

which does not satisfy p ∈ [0, 1]2. No new vertex is created.

The intersection of f ∗(p) = fS1(p) with f ∗(p) = fS2(p)

gives p1 = 0.520 and p2 = 0.443.

Set nV = 5 and create a new vertex

pV9 = (0.52, 0.443), solV9 = false, fV9 = 0.166, LV9 = {1, 2, 3}
Create S3 with yS3 = y∗ and fS3(p) = f ∗(p) and add it to S.

Select vertex V4 with p1 = 1, p2 = 1

Solve MILP (3.13) and obtain f ∗ = −0.9.

Since f ∗(pV4) = fV4 set solV4 = true, nV = 4.

Select vertex V5 with p1 = 0, p2 = 0.833

Solve MILP (3.13) and obtain f ∗ = −0.6664.

Since f ∗(pV5) = fV5 set solV5 = true, nV = 3.

Select vertex V7 with p1 = 0.474, p2 = 0.

Solve MILP (3.13) and obtain f ∗ = 0.474.

Since f ∗(pV7) = fV7 set solV5 = true, nV = 2.

Select vertex V8 with p1 = 1, p2 = 0.786

Solve MILP (3.13) and obtain f ∗ = −0.471.

Since f ∗(pV8) = fV8 set solV8 = true, nV = 1.

Select vertex V9 with p1 = 0.52, p2 = 0.443

Solve MILP (3.13) and obtain f ∗ = −0.166.

Since f ∗(pV9) = fV9 set solV9 = true, nV = 0.

Since nV = 0 terminate.
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Figure 3-2: Graphical illustration of Algorithm 3.2 for example (3.13)). Blue corre-
sponds to y = (1, 0, 0), green to y = (0, 1, 0), and cyan to y = (0, 0, 1). The algorithm
requires 8 calls for 3 solutions and 8 vertices. Vertices in the parameter space are
marked with a square when the optimal solution is not verified, and with a circle
when it has.

3.4.4 Multiparametric Optimality-Region Algorithm

In Algorithm 3.2 the optimality region of a given solution is confirmed by solving

the MILP at the vertices of the optimality region. In the multiparametric case,

even a small number of optimal solutions can create a large number of vertices in

the parameter space and the intersection-based algorithm requires many MILP calls.

Here we propose an algorithm based on formulation (3.3) that verifies an assumed

optimality region. This algorithm requires a number of iterations that is equal to the

number of solutions, and therefore typically much less than the number of vertices.

Whether this algorithm can outperform the intersection-based algorithm depends

on the instance considered because (3.14) is typically more expensive to solve than

(3.11). A particularly interesting case, is that only the cost vector of binary variables is

affected, because in that case (3.14) can be reformulated as a MILP, see Section 3.3.2.

Since the feasible region does not depend on the parameters, given a set of solutions
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S with the feasible points xSj ,ySj and the corresponding (affine) objective functions

fSj(p) = (cx + Cx p)T xSj + (cy + Cy p)T ySj ,

the following formulation checks whether an additional solution needs to be considered

min
x,y,p,u

u

s.t. (cx + Cx p)T x + (cy + Cy p)T y − fSj(p) ≤ u, ∀Sj ∈ S

Ax x + Ay y = b (3.14)

x ∈ R
nx , x ≥ 0

p ∈ [0, 1]np, y ∈ {0, 1}ny

u ∈ R.

If the optimal solution value of (3.14) is less than zero, x∗,y∗ has to be added to the

set of solutions. We assume again that the solver used for (3.14) furnishes a vertex

of the feasible region of (3.11). If that is not the case (3.11) needs to be solved for

the parameter value furnished by (3.14).

The same sets as in Algorithm 3.2 are used, but here the integer solVk is not

needed for the vertices in set V .

Algorithm 3.3. Multiparametric Optimality Region Algorithm

1. Initialization

• Solve (3.11) for p = 0.

• Set f ∗(p) = (cx + Cx p)T x∗ + (cy + Cy p)T y∗

• Create S with the pair (x∗,y∗), f ∗(p).

• Initialize V with the 2np vertices of the parameter space, with fVk(p) =

f ∗(p) and LVk = {1} for k = 1, . . . , 2np.

2. LOOP
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• Solve (3.14)

IF u∗ < 0

(a) Set f ∗(p) = (cx + Cx p)T x∗ + (cy + Cy p)T y∗

(b) CALL Check existing vertices(0) (Subroutine 3.1 for a dummy k).

(c) CALL Obtain candidate points (Subroutine 3.2).

(d) Insert ((x∗,y∗) , f ∗(p)) in set S.

ELSE

(a) Terminate.

END

END

The number of calls to the optimality region formulation (3.14) needed is equal to

the number of optimal solutions. Additionally, a single call to the original MILP (3.11)

is needed. As in Algorithm 3.2, finite termination is guaranteed since by assumption

the MILP solver furnishes vertices of the feasible set and therefore a finite number

of solutions is considered. Cycling is not possible because a new solution is only

introduced if a parameter point exists for which the new solution is better than all

existing solutions.

Illustrative Example

The steps of Algorithm 3.3 for example (3.13) are summarized below. Figure 3-3

contains a graphical illustration. The optimality regions are drawn as polygons of

different color in the two-dimensional parameter space. Vertices at which we know

the optimal solution are marked with a circle and the other vertices with a square.

Note that since (3.13) is a purely integer program, MINLP (3.14) can be reformulated

to a MILP and solved with any MILP solver.

Initialization
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Solve (3.13) for p = (0, 0) and obtain the solution y∗ = (1, 0, 0).

Create the solution set S with yS1 = y∗ and fS1(p) = 0 + 1 p1 − 0.8 p2.

Add the four vertices of P to the set of vertices V

pV1 = (0, 0), fV1 = 0, LV1 = {1}
pV2 = (0, 1), fV2 = −0.8, LV2 = {1}
pV3 = (1, 0), fV3 = 1, LV3 = {1}
pV4 = (1, 1), fV4 = 0.2, LV4 = {1}.

Main loop

Solve (3.14) and obtain u∗ = −1.1, p∗ = (1, 1) and y∗ = (0, 1, 0).

Set f ∗(p) = 1.0 + 0.1 p1 − 2 p2.

Check existing vertices

Since −1.0 = f ∗(pV2) < fV2 = −0.8 assign vertex V 2 to the new solution.

fV2 = −1.0, LV2 = {2}.
Since 1.1 = f ∗(pV3) > fV3 = 1 do not reassign vertex V 3.

Since 0.2 = f ∗(pV4) < fV4 = −0.9 assign vertex V 4 to the new solution

fV4 = −0.9, LV4 = {2}.
Obtain candidate vertices

The intersection of f ∗(p) = fS1(p) with p2 = 0 gives p1 = 1.111,

which does not satisfy p ∈ [0, 1]2. No new vertex is created.

The intersection of f ∗(p) = fS1(p) with p2 = 1 gives p1 = −0.222,

which does not satisfy p ∈ [0, 1]2. No new vertex is created.

The intersection of f ∗(p) = fS1(p) with p1 = 0 gives p2 = 0.8333.

Create a new vertex. pV5 = (0, 0.833), fV5 = −0.666, LV5 = {1, 2}.
The intersection of f ∗(p) = fS1(p) with p1 = 1 gives p2 = 0.08333.

Create a new vertex pV6 = (0, 0.833), fV6 = −0.666, LV6 = {1, 2}.
Create S2 with yS2 = y∗ and fS2(p) = f ∗(p) and add it to S.

Solve (3.14) and obtain u∗ = −1.0, p∗1 = 1.0, p∗2 = 0.0 and y∗ = (0, 0, 1).

Set f ∗(p) = 0.9 − 0.9 p1 − 0.6 p2.

Check existing vertices

Since 0 = f ∗(pV3) > fV3 = 1 assign vertex V 3 to the new solution.
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fV3 = 0.0, LV3 = {3}.
Since −0.6 = f ∗(pV4) > fV4 = −0.9 do not reassign vertex V 4.

Since 0.4 = f ∗(pV5) > fV5 = −0.6664 do not reassign vertex V 5.

Since 0.933 = f ∗(pV6) < fV6 = −0.04998 delete vertex V 6.

Obtain candidate vertices

The intersection of f ∗(p) = fS1(p) with p1 = 0 gives p2 = −4.5,

which does not satisfy p ∈ [0, 1]2. No new vertex is created.

The intersection of f ∗(p) = fS1(p) with p1 = 1 gives p2 = 5.0,

which does not satisfy p ∈ [0, 1]2. No new vertex is created.

The intersection of f ∗(p) = fS1(p) with p2 = 0 gives p1 = 0.474.

Since 0.474 = f ∗(0.474, 0) < fS2(0.474, 0) = 1.047

Create a new vertex pV7 = (0.474, 0.), fV7 = 0.474, LV7 = {1, 3}.
The intersection of f ∗(p) = fS1(p) with p2 = 1 gives p1 = 0.578.

Since −0.221 = f ∗(0.578, 1) > fS2(0.578, 1) = −0.942 no new vertex is created.

The intersection of f ∗(p) = fS2(p) with p1 = 0 gives p2 = 0.071.

Since 0.857 = f ∗(0, 0.071) > fS1(0, 0.071) = −0.057 no new vertex is created.

The intersection of f ∗(p) = fS2(p) with p1 = 1 gives p2 = 0.786.

Since −0.471 = f ∗(1, 0.786) < fS1(1, 0.786) = 0.371

Create a new vertex pV8 = (1, 0.786), fV8 = −0.471, LV8 = {2, 3}.
The intersection of f ∗(p) = fS2(p) with p2 = 0 gives p1 = −0.1,

which does not satisfy p ∈ [0, 1]2. No new vertex is created.

The intersection of f ∗(p) = fS2(p) with p2 = 1 gives p1 = 1.3,

which does not satisfy p ∈ [0, 1]2. No new vertex is created.

The intersection of f ∗(p) = fS1(p) with f ∗(p) = fS2(p)

gives p1 = 0.520 and p2 = 0.443.

Create a new vertex pV9 = (0.52, 0.443), fV9 = 0.166, LV9 = {1, 2, 3}
Create S3 with yS3 = y∗ and fS3(p) = f ∗(p) and add it to S.

Solve (3.14) and obtain u∗ = 0

terminate.

158



p1

p2

p1

p2

p1

p2

p1

p2

Figure 3-3: Graphical illustration of the Algorithm 3.3 for example (3.13)). Blue
corresponds to y = (1, 0, 0), green to y = (0, 1, 0), and cyan to y = (0, 0, 1). The
algorithm requires 3 optimality region formulations for 3 solutions and 8 vertices.
Vertices in the parameter space are marked with a square when the optimal solution
is not verified, and with a circle when it has.

3.4.5 Multiparametric Branch-and-Bound Algorithm

An alternative to algorithms based on MILP calls, is to perform branch-and-bound

(B&B) on the binary variables and solve a parametric linear program at each node

as has been proposed for the right hand side case by Ohtake and Nishida [216]. The

promise of this method is that the cost vector case of parametric linear programs

is in principle slightly more expensive than a linear program [117]. A drawback is

that advanced features of MILP algorithms such as branch and cut strategies are not

available for the parametric case. Here we describe a basic B&B procedure where the

parametric linear programs are treated as a black box that return a set of optimal

solutions. We allow the possibility to also inherit a set of solutions from the parent

node, but do not explore the option of inheriting optimality regions. For better

computational performance it may be beneficial to do so, but this would make the

description much more cumbersome.

Let A denote an index set that contains the indices i of the active nodes. At each
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node i a parametric LP is solved for p ∈ [0, 1]np

f i(p) = min
x,y

(cx + Cx p)T x + (cy + Cy p)T y

s.t. Ax x + Ay y = b

x ∈ R
nx , x ≥ 0 (3.15)

yj = 0, ∀j ∈ Z i

yj = 1, ∀j ∈ Oi

yj ∈ [0, 1], ∀j 6∈ (Z i ∪ Oi),

where Z i and Oi are index sets corresponding to the binary variables fixed to integer

values at node i. The optimal objective value function f i(p) is a lower bound for

node i in the branch-and-bound procedure. The answer of the parametric LP is a

set of optimal solutions Si (empty if (3.15) is infeasible). Each element of Si is a

triplet composed of the solution of the relaxed LP (3.15)
(

xSi
j ,ySi

j

)

, the coefficients

f
Si

j

0 , f
Si

j

1 , . . . , f
Si

j
np , of the objective value function fSi

j (p) = f
Si

j

0 +
∑np

k=1 f
Si

j

k pk and a

boolean binSi
j which denotes if the solution is binary feasible

binSi
j =











true if ySi
j ∈ {0, 1}ny

false otherwise.

The set of solutions covers the whole parameter space, i.e.,

f i(p) = min
Si

j∈S
fSi

j(p), ∀p ∈ [0, 1]np.

For the upper bound a solution set SU is used. Each element SU
j of SU is a pair com-

posed of a solution
(

xSU
j ,ySU

j

)

and the coefficients f
SU

j

0 , f
SU

j

1 , . . . , f
SU

j
np , of the objective

value function fSU
j (p) = f

SU
j

0 +
∑np

k=1 f
SU

j

k pk.

For the comparison of the lower bound of a node i with the upper bound every

solution fSi
j(p) of Si has to be checked to see if for some parameter value it provides a

better solution than the minimum of the solutions of SU . This check can be performed
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with the following LP

max
p

u

s.t. u ≤ fSU
k (p) − fSi

j(p), ∀SU
k ∈ SU (3.16)

p ∈ [0, 1]np.

If the optimal solution u∗ is greater than zero, fSi
j(p) is better than the upper bound

for the optimal parameter value p∗. This means that if binSi
j = true then the upper

bound needs to be updated.

There are two fathoming criteria for a node and both extend ideas from regular

branch-and-bound for MILP. One criterion is that the lower bound to the node is

not better than the existing upper bound. The other criterion is that all solutions

are binary feasible which means that the upper and lower bound of the node have

converged, and therefore this node cannot provide a better upper bound.

Algorithm 3.4. Multiparametric Branch-and-Bound Algorithm

1. Initialization

• Set A = {0}

• Set Z0 = O0 = ∅

• Set k = 1.

• Set SU = ∅.

• Set S0 = ∅.

2. (Termination Test) If A = ∅ then terminate.

3. (Node Selection) Select and delete a node i from A.

4. (Check lower bound) For all Si
j ∈ Si

• Solve (3.16)

161



• IF u∗ ≤ 0 THEN Remove solution Si
j from Si.

IF Si = ∅ and k > 1 THEN GOTO 2.

5. (Relaxation) Solve the parametric LP (3.15) of node i and obtain the set of

solutions Si.

6. (Update upper bound) For all Si
j ∈ Si

• Solve (3.16)

• IF u∗ > 0 and binSi
j = true THEN Add solution Si

j to SU .

• IF u∗ ≤ 0 THEN Remove solution Si
j from Si.

7. (Branching)

IF Si 6= ∅ and binSi
j = false for some Si

j ∈ Si THEN

• Select a free binary variable j /∈ Z i ∪ Oi

• Create subproblems with Zk = Z i∪j, Ok = Oi and Zk+1 = Z i, Ok = Oi∪j.

Set Sk+1 = Sk = Si.

• Add nodes k and k + 1 to A.

• Set k = k + 2.

8. GOTO 2.

At termination SU contains all optimal solutions over the parameter range. A

partition of the parameter set P can be done by successively creating the vertices as

in Algorithms 3.2 and 3.3.
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Illustrative Example

To demonstrate the behavior of Algorithm 3.4 consider a simple (IP) with a single

parameter

min
y

(c + Cp)T y

s.t. 0.8x1 + x2 ≤ 1.5 (3.17)

y ∈ {0, 1}2,

where

c =





0

−1



 and C =





−3

2



 .

There are three feasible integer realizations

(1, 0) is optimal for p ∈ [0, 0.2]

(0, 1) is optimal for p ∈ [0.2, 1]

(0, 0).

The steps of Algorithm 3.4 after initialization are summarized below.

Select the root node y ∈ [0, 1]2.

The parametric relaxation gives four solutions

y1 = 0, y2 = 1, f = −1 + 2 p, bin = true

y1 = 2
3
, y2 = 1, f = −1, bin = false

y1 = 1, y2 = 0.75, f = −1.5p − 0.75, bin = false

y1 = 1, y2 = 0, f = −3p, bin = true.

Add the two binary feasible solutions to the upper bound

y1 = 0, y2 = 1, f = −1 + 2 p, bin = true

y1 = 1, y2 = 0, f = −3p, bin = true.
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Branch the node

Select variable y1 for branching

Termination criterion not met.

Select node 1: y1 = 0, y2 ∈ [0, 1].

The parametric relaxation gives two solutions

y1 = 0, y2 = 1, f = −1 + 2 p, bin = true

y1 = 0, y2 = 0, f = 0, bin = true.

Neither solution better than existing upper bound

Do not update the upper bound.

Do not branch the node.

Select node 2: y1 = 1, y2 ∈ [0, 1].

The parametric relaxation gives two solutions

y1 = 1, y2 = 0.75, f = −1.5p − 0.75, bin = false

y1 = 1, y2 = 0, f = −3p, bin = true.

Binary feasible solution not better than upper bound

do not update the upper bound.

Branch the node

Select variable y2 for branching

Termination criterion not met

Select node 3: y1 = 1, y2 = 0.

The parametric relaxation gives one solution

y1 = 1, y2 = 0, f = −3p, bin = true.

Solution not better than existing upper bound

Do not update the upper bound.

Do not branch the node.

Select node 4: y1 = 1, y2 = 1.

The parametric relaxation gives no solution (infeasible)

Termination criterion met.

Note that the optimal solutions were found at the root node, but 4 further nodes were

required to confirm these.
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3.5 General Case with a Single Parameter

In this section we consider (3.1) with a single parameter p ∈ [0, 1]. We first consider a

parametric linear program and then the mixed-integer linear case. Note that in either

case we allow violation of the primal constraints and marginal values by a tolerance

ε > 0. Finally we discuss extensions to the nonlinear case and to the multiparametric

case.

3.5.1 Assumptions and Theoretical Properties

Throughout this section we will exclude unbounded optimization problems:

Assumption 3.4 (Bounded Problems). For any parameter value p ∈ [0, 1] (3.1) is

bounded, i.e., it is either infeasible or has a finite optimal objective value. The same

holds for the LP-relaxation of (3.1).

Assumption 3.5 (Data are Rational Functions of the Parameter). The data (matrix,

cost vector, right hand side vector) are continuous rational functions of the parameter

p ∈ [0, 1], i.e., quotients of polynomial functions with nonzero denominator.

Note that an extension to other functional forms is possible.

Remark 3.1. The parameter space P can be divided into a finite number of intervals

or segments, such that for each interval the problem is either infeasible or the optimal

solution is also a rational function in the parameter p corresponding to a constant

basis. At the changes of optimal basis, discontinuity may be observed. This is a

consequence of the finite number of integer realization and bases and the assumption

that the data are continuous functions of the parameters. In case that one constraint is

a linear combination of other constraints ∀p ∈ [0, 1] this constraint can be eliminated

altogether. Otherwise for each parameter value there exists an optimal basis, since

constraints that are linearly dependent for some parameter values can be eliminated

for these values. Some optimality intervals are degenerate (singletons), but there are
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also others of finite length. The marginal costs c̄ in the LP case are also rational

functions.

Recall that in the general case no convexity or concavity properties exist for the

optimal objective value as a function of the parameter. For parametric linear pro-

grams Dinkelbach [91, p. 118] claims that if the LP is feasible for all parameter values,

the optimal objective value is a continuous function of the parameter. As Example 3.1

shows, additional assumptions are needed to ensure this.

Example 3.1 (Linear dependence for a single parameter value can lead to discontinu-

ity). The parametric LP

min
x

−x

s.t. (p − 0.5) x = 0 (3.18)

x ∈ [0, 1]

is not continuous at p = 1/2. Indeed, for p 6= 1/2 we obtain the unique, parameter-

independent optimal solution x = 0 and the optimal objective function 0. For p = 1/2

there are infinitely many feasible points x ∈ [0, 1] and the optimal solution is x = 1

with an objective value of −1.

The reason for the discontinuity in Example 3.1 is that an equation becomes

linearly dependent and redundant and the point-to-set mapping from the parameter

space to the feasible space is not closed. A discussion of point-to-set mappings is

outside of the scope of this thesis. The reader is referred to Bank et al. [35] for a

discussion and for the implications on parametric optimization. Note only that for

all parameter values for which (3.1) is feasible, the optimal objective value is lower

semi-continuous. To deal with linearly dependent equations we introduce surplus and

slack variables and then make an assumption on the augmented systems.
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3.5.2 Parametric Linear Program

Consider the following parametric linear program

min
x

c(p)x

s.t. A1(p)x = b1(p) (3.19)

A2(p)x ≤ b2(p)

x ∈ R
nx, 0 ≤ x ≤ xUP ,

where the data c(p) ∈ R
n, A1(p) ∈ R

m1×n, A2(p) ∈ R
m2×n, b1(p) ∈ R

m1 , and b2(p) ∈
R

m2 are assumed to be continuous rational functions of the parameter p ∈ [pl, pu].

Note that we deviate from LP in standard form, to show how inequalities should be

treated efficiently.

Algorithm 3.5 gives a high-level description of the algorithm. We then describe

the mathematical subproblems needed and present two alternatives for these subprob-

lems. The first is based on operations with rational functions and the second is based

on continuation methods. As discussed later on, there are significant problems with

error propagation of rational operations, particularly for increasing problem size.

Both our proposals are inspired by the algorithm by Dinkelbach [91], who essen-

tially extends the full tableau implementation of the simplex method to the parametric

case. As such it is cumbersome to implement, cannot take advantage of state-of-the-

art LP solvers and requires a large number of operations with rational functions. We

instead propose to solve the linear program (3.19) at the breakpoints (for fixed param-

eter values), and move from one breakpoint to the next by only considering the basis

matrix along with the feasibility and optimality conditions. As a consequence the

worst-case number of consecutive operations with rational functions is much smaller

and this makes our proposal less vulnerable to error propagation. Essentially our pro-

posal requires the inversion of a square matrix of size m1 + m2 and therefore at most

of the order of (m1 + m2)
3 operations. The simplex method on the other hand can

take an exponential number of iterations and operates on the entire matrices (A1(p)
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and A2(p)) and error propagates throughout the iterations. For large problems our

proposal is therefore expected to be significantly more robust than the algorithm by

Dinkelbach.

Algorithm 3.5 (Parametric Linear Program).

Input to the algorithm are the parameter range pl, pu, tolerances for violation of the

primal inequalities εinf and the marginal cost inequalities εopt, and a guess for the

minimal parameter step δp. The algorithm uses a set R to store the optimal solutions.

The elements Rl of R are quadruplets, composed of parameter values pRl, a boolean

gRl, describing whether the problem is feasible for this element (gRl = true) or not

(gRl = false), a point xRl(p), and the corresponding objective function fRl(p).

1. Initialize with ps = pl.

2. REPEAT

(a) Solve LP (3.19) for p = ps + δp and obtain an optimal basis.

(b) IF infeasible THEN solve (3.24) for p = p̄ = ps + δp

and obtain an optimal basis.

(c) Set up the parametric system of equations and inequalities.

(d) Obtain the parametric dependence of the solution for p ∈ [ps, pu].

(e) Get the feasibility range in p ∈ [ps, pu]

Set pt equal to the lowest parameter value for which a primal constraint is

violated.

IF pt ≤ ps + δp THEN Set δp = δp/2. GOTO Step 2a.

Set pt = min(pt, pu).

(f) Get the optimality range in p ∈ [ps, pt]

Set pt equal to the lowest parameter value for which a marginal value

constraint is violated.

IF pt ≤ ps + δp THEN Set δp = δp/2. GOTO Step 2a.

Set pt = min(pt, pu).
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(g) Store ps, x(p), f(p) in R.

(h) Set ps = min(pt, pu).

UNTIL ps ≥ pu

At termination R contains the solution to the parametric mixed-integer pro-

gram. For all elements Rl such that gRl = false the program is infeasible for p ∈
[pRl , pRl+1] while for gRl = true the point xRl(p) satisfies the primal constraints within

εinf−tolerance and the marginal cost constraints within εopt−tolerance. By conven-

tion pRl+1 = pu for l = |R|.
Solving at a higher parameter value p = ps + δp ensures a change of basis and

checking the feasibility and optimality in p ∈ [ps, pu] ensures that the whole parameter

range is covered. In the following we describe how to set up the parametric system

of equations and check for feasibility range and optimality range. The parameter

δp should be set initially to a sufficiently small value to avoid reseting it and in the

following discussion we assume for simplicity that this has been done. Note also

that between calls to the LP solver, it typically is advantageous to store the basis

information and provide an initial basis for the next call.

Qualitative Invariant Solution

When solving a mixed-integer linear program for a specific parameter value p̄, in

general the solution is valid only for this parameter value. On the other hand, for all

the parameter values for which an optimal solution exists for (3.19), a vertex of the

feasible region is optimal. As a consequence it is plausible to define a qualitatively

invariant solution as a fixed basis for the resulting linear program. This leads to a

square system of parameterized equations that give the functional dependence of the

basic variables on the parameter. The nonbasic variables remain fixed at their lower

or upper bound.

Obtaining this functional dependence is part of the postoptimal sensitivity anal-

ysis. It is a problem in its own right and an important subproblem in algorithms. In

the cost vector case it is a trivial task, since neither the matrix nor the right hand
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side vectors depend on the parameter. As a consequence the qualitatively invariant

solution is simply a parameter independent point. In the right hand side the matrix

elements are parameter independent and the basis matrix can be inverted and then

multiplied with the right hand side vector. Therefore, if the right hand side is affine

in the parameters, the qualitatively invariant solution is given by an affine function

of the parameter. In the general case a matrix has to be inverted as a function of the

parameter p. This inversion can be, at least in principle, performed by elementary

row operations on the matrix B, e.g., in an LU factorization, with symbolic opera-

tions for the matrix elements. If all data are rational functions of the parameter p, so

is the candidate optimal solution. Dinkelbach [91] used this idea to propose an algo-

rithm for the general case of linear programs. This approach does not scale to large

problems because of exploding numerical error. Note that the use of high or infinite

precision arithmetic is prohibitively expensive. The reader is referred to literature on

computer algebra for details, e.g., [71, 70, 81, 195]. We propose an alternative based

on continuation and numerical solution of a set of equations along with detection of

the violation of primal inequalities and marginal cost bounds. Recall that when only

one row or one column of the matrix depend on the parameter, an analytical solution

is possible based on a formula by Bodewig [51], see for example [117]. Recall also that

Freund [115] proposed to obtain post-optimal sensitivity information of parametric

linear programs through Taylor series expansions.

Often linear programs have linear independent equality constraints and this is one

of the reasons that state-of-the-art LP solvers such as CPLEX [7] introduce surplus

variables, similarly to the solution of Phase I problem in the simplex algorithm. At

termination, the solvers furnish a set of m1 + m2 basic variables, some of which

are original and some are surplus variables. The nonbasic variables are at either

their lower (xi
j = 0) or upper bound (xi

j = xUP
j ). If an equation is infeasible the

corresponding surplus variable is basic at a nonzero value. If on the other hand the

equation is redundant the corresponding surplus variable is basic but at zero level.

It is possible that without redundant constraints, the LP solver returns a surplus
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variable as basic at zero level. Note first that (3.19) is equivalent to

min
x,s

c(p)x

s.t. A1(p)x + I1s = b1(p)

A2(p)x + I2t = b2(p) (3.20)

x ∈ R
nx , 0 ≤ x ≤ xUP

s ∈ R
m1 , s = 0

t ∈ R
m2 , 0 ≤ t,

where I1 and I2 are identity matrices of size m1 and m2 respectively. Clearly an

optimal solution to (3.19) is optimal in (3.20) and vice-versa.

Suppose that at termination the LP solver returns two integer vectors dv ∈
{0, 1, 2}n and dr ∈ {0, 1}m1+m2 . The jth component of dv indicates if variable j

is at its lower bound (dv
j = 0), basic (dv

j = 1), or at its upper bound (dv
j = 2). The

jth component of dr indicates if artificial variable j is nonbasic (dr
j = 0), or basic

(dr
j = 1). Subroutine 3.4 describes how to set up the square system of equations

storing a parameter dependence matrix B(p) and a parameter dependent right hand

side vector b(p). Solving the system B(p)xB = b(p) as a function of the parameter

gives the desired functional dependence. For later use also the upper bounds of the

basic variables are stored in xB,UP and the cost coefficients of the basic variables are

stored in cB(p).

Subroutine 3.4 (Setting up Parametric System of Equations). The subroutine uses

counters i, j and stores the number of basic variables in nb.

1. Set bi(p) = b1
i (p) for i = 1, . . . , m1.

2. Set bi+m1
(p) = b2

i (p) for i = 1, . . . , m2.

3. Set nb = 0.

4. FOR i = 1, . . . , n DO

• IF dv
i = 1 THEN
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– nb = nb + 1.

– Set Bj,nb
(p) = A1

j,i(p) for j = 1, . . . , m1.

– Set Bj+m1,nb
(p) = A2

j,i(p) for j = 1, . . . , m2.

– Set cB
nb

(p) = ci(p).

– Set xB,UP
nb

= xUP
i .

• ELSE IF dv
i = 2 THEN

– Set bj(p) = bj(p) − A1
j,i(p)xUP

i for j = 1, . . . , m1.

– Set bj+m1
(p) = bj(p) − A2

j,i(p)xUP
i for j = 1, . . . , m2.

END

5. FOR i = 1, . . . , m1 + m2 DO

• IF dr
i = 1 THEN

– nb = nb + 1.

– Set Bi,nb
(p) = 1.

– Set Bj,nb
(p) = 0 for j 6= i.

– IF i ≤ m1 THEN Set xB,UP
nb

= 0 ELSE xB,UP
nb

= +∞.

– Set cB
nb

(p) = 0.

END

As demonstrated in Example 3.1 there are problems when B(p) becomes singular

at some parameter values, because it is no longer a basis and the primal and marginal

constraints do not guarantee optimality. To ensure that B(p) does not become sin-

gular during the iterations of Algorithm 3.5 we make an additional assumption.

Assumption 3.6. If an augmented basis B(p) is optimal for some p̄ and singular for

some other parameter value p̃ ∈ P then there exists ε̃ > 0, such that for

∀p ∈ P : |p̃ − p| ≤ ε̃
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the system B(p)xB = b(p) does not have any solutions satisfying the primal con-

straints xB ∈ [0,xB,UP ].

Solution with Rational Operations

The algorithm by Dinkelbach [91] solves the parametric linear program directly using

rational operations. As a consequence at each iteration (B(p))−1b(p) is available.

We propose instead to take the matrix and perform an LU factorization with rational

operations. We assume the existence of an LU-factorization algorithm of the rational

matrix B(p) obtaining PB(p) = L(p)U(p), where P is a permutation matrix, and

L, U are respectively lower- and upper-triangular matrix with rational entries; the

diagonal entries of L are all equal to 1.

An advantage of this method is that we can directly check if the matrix becomes

singular for some parameter point. This could be done by calculating the determinant

|B(p)| = Πm
i=1Ui,i(p)

and then solving for the first root of |B(p)|. So in principle Assumption 3.6 is not

needed if rationals operations are performed.

Once the range for which the basis is invertible has been identified, the system

B(p)xB = b(p) can be solved in two steps. First forward elimination

L(p)v = Pb(p),

is performed giving the temporary vector v as a function of the parameter. Then by

back substitution

U(p)xB = v(p)

the dependence of xB on the parameter is obtained.

Remark 3.2. Note that since the surplus and slack variables have only one nonzero

entry, it is more efficient to reorder the variables and rows, putting the artifical

variables in the upper left corner. For simplicity we did not describe this in Subroutine

3.4.
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Solution with Continuation

A problem with the matrix inversion with rational operations, is that either multi-

precision arithmetic has to be used, which is prohibitively expensive, or the numerical

error explodes with increasing system size. We therefore propose an alternative ap-

proach based on continuation. This method avoids operations with rational functions

and therefore scales to large systems. Note that even the calculation of the right hand

side in Subroutine 3.4 can be done within the continuation method.

We here give a brief introduction to continuation. The reader is referred to [251,

22] for a thorough discussion. The general idea of continuation [251] is to follow an

implicitly defined curve

f(z, λ) = 0,

where f : R
n+1 → R

n is typically assumed smooth. Predictor-corrector methods [22]

trace the curve by generating a sequence of points λi, zi that are on the curve within

a given tolerance (||f(z, λ)|| ≤ ε). At a given iteration a step is taken from λi−1 to

λi and a predictor z̄i is calculated, e.g., by a polynomial spline approximation. The

correction is typically performed by a Newton solver for the solution of f(zi, λi) with

z̄i as the initial guess. The step size λi−λi−1 depends on the quality of approximation

of the previous step(s).

Our proposal should not be confused with homotopy continuation, in which case

only the final point (for λ = 1) of the curve is needed. We are interested in actually

obtaining an estimate to the solution of

B(p)xB = b(p) (3.21)

for a range of parameter values. We will use the predictor polynomials as an approx-

imation to the solution. Therefore estimates are needed for the predictor quality at

the generated points, as well as for the points in-between. While it is possible to have

rigorous guarantees, see, e.g., Neubert [209], most methods rely on error estimates

[238, 239]. Note that similar error estimates are successfully applied to the solution

of differential-algebraic equation systems [29].
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For a fixed parameter value a linear system of equations has to be solved. There-

fore the corrector step can be performed by any linear solver (direct or iterative).

Assuming that the predictor is a good approximation, it may be beneficial to use an

iterative method, especially for large systems.

Because no direct inversion of the basis B(p) is performed, the algorithm does not

necessarily detect parameter values for which the matrix is singular. For Example 3.1

the discontinuity would not be detected but Assumption 3.6 ensures that a primal

constraint would be violated before the matrix becomes singular. It is possible to

write formulations that would check the singularity, but they are overly expensive.

Feasibility Range

The feasibility range of a given basis and the corresponding basic solution xB(p) is

implicitly defined by

B(p)xB = b(p)

0 ≤ xB ≤ xB,UP (p). (3.22)

In the general case this defines a disjoint set for the parameter. Recall that in the cost

vector case this step is not needed, since feasibility does not depend on the parameter.

In the right hand side case with affine dependence on the parameter xB is an affine

function of the parameter and a set of linear inequalities needs to be checked for. In

Algorithm 3.5 we have established feasibility for a parameter point ps and we want

to find the smallest parameter value pt for which (3.22) is violated by a prespecified

tolerance εinf .

Solution with Rational Operations

Recall that with the use of forward elimination and back substitution we have obtained

the functional dependence of xB on the parameter. Subroutine 3.5 determines the

smallest parameter value pt for which (3.22) is violated by a prespecified tolerance

εinf .

Subroutine 3.5 (Obtain Feasibility Range).
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1. Set pt = pu.

2. FOR i = 1, . . . , m1 + m2 DO

• Set pt equal to the smallest root of xB
i (p) = −εinf for p ∈ [ps, pt].

• IF xB,UP
i < +∞ THEN set pt equal to the smallest root of xB

i (p) =

xB,UP
i + εinf for p ∈ [ps, pt].

END

Solution with Continuation

In addition to tracking the solution of (3.21) we propose to identify εinf−violation of

the primal constraints 0 ≤ xB ≤ xB,UP (p) by an event detection algorithm such as

the one proposed by Park and Barton [221] for hybrid differential-algebraic equation

systems. This algorithm first identifies an event by solving the interpolating polyno-

mials within a continuation step and then accurately locates the event. Here once a

violation is identified the continuation code exits.

Optimality Range

In linear programs explicit optimality conditions are available [42] and can be used

to identify the range of optimality. Recall the meaning of the basis matrix B(p), cost

vector of the basic solutions cB and the integer vector dv from Subroutine 3.4. The

following system implicitly defines the range of optimality of a basis

(B(p))T z = cB(p)

c̄j(p) = cj(p) −
m1
∑

i=1

zi(p)A1
i,j(p) −

m2
∑

i=1

zi(p)A2
i+m1,j(p) ∀j : dv

j 6= 1

c̄j(p) ≥ 0 ∀j : dv
j = 0 (3.23)

c̄j(p) ≤ 0 ∀j : dv
j = 2

zj ≤ 0 ∀j ≤ m1 : dr
j = 0,
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where c̄ is the vector of marginal costs and z is a vector of auxiliary variables. Note

that the marginal cost for the nonbasic slack variables can easily be calculated since

they are equal to the auxiliary variables. Note also that the marginal cost of surplus

variables need not be calculated.

Remark 3.3. Since the cost of the surplus variables is set equal to zero and the

columns corresponding to the surplus variables are equal to the identity vector we

can eliminate the z-variables corresponding to the basic surplus variables from (3.23).

These steps are omitted for the sake of simplicity.

Similarly to the feasibility range, in general (3.23) defines a disjoint set for the

parameter. In the right-hand side case this step is not needed, since the marginal

costs do not depend on the parameter. In the cost vector case with affine dependence

on the parameter, a set of linear inequalities needs to be checked for. In Algorithm 3.5

we have established the optimality conditions for a parameter point ps and we want

to find the smallest parameter value pt for which (3.23) is violated by a prespecified

tolerance εopt.

Solution with Rational Operations

Recall that we have performed an LU factorization of the matrix B(p). We can use

this to first calculate the auxiliary variables z and then the marginal costs, as shown

in Subroutine 3.6.

Subroutine 3.6 (Obtain Optimality Range).

1. Solve UT (p)u(p) = cB(p) by forward elimination.

2. Solve LT (p)v(p) = u(p) by back-substitution.

3. Calculate z(p) = PT u(p).

4. FOR j = 1, . . . , m1

• IF dr
j = 0 THEN Set pt equal to the first root of zj(p) = −ǫopt in p ∈

[ps, pt].
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END

5. FOR j = 1, . . . , n, dv
j 6= 1

• Set: t(p) = cj(p) −∑m1

i=1 zi(p)A1
i,j(p) −∑m2

i=1 zi(p)A2
i+m1,j(p).

• IF dv
j = 0 THEN Set pt equal to the first root of t(p) = −ǫopt in p ∈ [ps, pt]

ELSE Set pt equal to the first root of t(p) = ǫopt in p ∈ [ps, pt].

END

Solution with Continuation

We propose to identify violation of the marginal cost inequalities in a similar way as

the violation of primal inequalities, i.e., solve

(B(p))T z = cB(p)

using a continuation method until one of the following inequalities is violated

cj(p) −
m1
∑

i=1

zi(p)A1
i,j(p) −

m2
∑

i=1

zi(p)A2
i+m1,j(p) ≥ 0, ∀j ∈ {1, . . . ,m1 + m2} : dv

j = 0

cj(p) −
m1
∑

i=1

zi(p)A1
i,j(p) −

m2
∑

i=1

zi(p)A2
i+m1,j(p) ≤ 0, ∀j ∈ {1, . . . ,m1 + m2} : dv

j = 2

zj ≤ 0, ∀j ∈ {1, . . . ,m1} : dr
j = 0.

by a value equal to εopt.

Dealing with Infeasibility

For parameter values for which (3.19) is infeasible, an auxiliary problem needs to be

solved where surplus variables are introduced. It corresponds to the Phase I of the
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simplex method [42].

min
x,s

m1+m2
∑

j=1

sj

s.t.

nx
∑

j=1

A1
i,j(p)xj + sign(bi(p̄))si = b1

i (p), i = 1, . . . , m1

nx
∑

j=1

A2
i,j(p)xj − si+m1

= b2
i (p), i = 1, . . . , m2 (3.24)

x ∈ R
nx , 0 ≤ x ≤ xUP

s ∈ R
m1+m2 , 0 ≤ s.

By construction (3.24) is feasible for p = p̄.

The solution of (3.24) gives an optimal basis, which can be treated as a basis for

the feasibility and LP-optimality range. To deal with the surplus variables that LP

solvers introduce we define a vector e such that ei = 1 if s∗i > 0 and ei = 0 otherwise.

Then we base the solution of optimality and feasibility range problem on the following

problem

min
x

eTs

s.t. A(p)x + I s ≤ b(p)

xL ≤ x ≤ xU (3.25)

0 ≤ si ≤ 0, ∀i ∈ {1, . . . , m1 + m2} : ei = 0

0 ≤ si, ∀i ∈ {1, . . . , m1 + m2} : ei = 1.

Termination of algorithms

Due to continuity of the data and the fact that we allow εinf−violation of the primal

inequalities and εopt−violation marginal costs at each iteration Algorithm 3.5 takes a

finite step in the parameter interval [pl, pu]. Suppose that we have solved for p = p0

and obtained a basis. Since the matrix elements are continuous and all entries are

bounded, the determinant of the basis is also continuous. By the definition of a basis,
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its determinant is nonzero for p = p0. We can thus determine a parameter range

P 1 = [p0, p1] with p0 < p1 for which the determinant remains at nonzero value and

therefore is invertible. The basic variables and marginal costs are also rational and

continuous within P 1. As a consequence we can find a parameter range P 2 = [p0, p2]

with p0 < p2 for which the basis does not violate the primal and marginal cost

inequalities by more than the specified tolerances. At termination the parameter

range pl, pu is divided into intervals in which a given basis satisfies the primal and

marginal cost inequalities within the prespecified tolerances.

If one does not allow the ε−violation of the primal and dual constraints, degen-

eracy or linear dependence of equality constraints can result in one solution being

optimal for a single parameter value. In that case the algorithms need to be slightly

modified and a more elaborate argument for finite termination is needed. The use of

finite precision arithmetic seems to make the use of the tolerances necessary. Also

violation of the constraints seems acceptable since LP solvers typically give a solution

within some tolerances. Obviously the tolerances used in our algorithms need to be

larger than the ones used by the LP solvers.

3.5.3 Parametric Mixed-Integer Linear Program

Optimality-Region Algorithm for Parametric MILP

In addition to the assumptions on the availability of an LP solver, we will assume

the existence of a MILP and a MINLP solver that either proves infeasibility or gives

an integer optimal solution point. The general structure of the algorithm is the same

as for the algorithms described for the parametric LP. Note that state-of-the-art

MINLP solvers require bounded variables [266, 247], and therefore Algorithm 3.6 is

only applicable to problems with finite xUP .

Input to the algorithm are the tolerances for violation of the primal inequalities

εinf and the marginal cost inequalities εopt and a guess for the minimal parameter

step δp. The algorithm uses a set R to store the optimal solutions. The elements Rl

of R are quadruplets, composed of parameter values pRl, a boolean gRl, describing
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whether the problem is feasible for this element (gRl = true) or not (gRl = false), a

point xRl(p), and the corresponding objective function fRl(p).

Algorithm 3.6 (Parametric Mixed Integer Linear Program via Optimality Region).

1. Initialize with ps = 0.

2. REPEAT

(a) Solve MILP (3.1) for p = ps + δp.

IF feasible THEN

i. Fix integer variables

ii. Solve LP (3.19) for p = ps + δp and obtain an optimal basis.

iii. Set up the parametric system of equations and inequalities.

iv. Obtain the parametric dependence of the solution x(p) for p ∈ [ps, pu].

v. Get the feasibility range in p ∈ [ps, pu]

Set pt equal to the lowest parameter value for which a primal constraint

is violated.

IF pt ≤ ps + δp THEN Set δp = δp/2. GOTO Step 2(a)ii.

Set pt = min(pt, pu).

vi. Optional LP Optimality Step

Get the optimality range in p ∈ [ps, pt]

Set pt equal to the lowest parameter value for which a marginal value

constraint is violated.

IF pt ≤ ps + δp THEN Set δp = δp/2. GOTO Step 2(a)ii.

Set pt = min(pt, pu).

vii. Solve MINLP (3.4) with g(p) = p for p ∈ [ps, pt] and obtain optimal

objective value p∗

IF feasible THEN pt = p∗.

viii. IF pt ≤ ps + δp THEN Set δp = δp/2. GOTO Step 2a.

ix. Store g = 1, ps, x(p), f(p) in R.
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ELSE

i. Solve MINLP (3.5) with g(p) = p for p ∈ [ps, pt] and obtain optimal

objective value p∗

IF feasible THEN pt = p∗.

ii. IF pt ≤ ps + δp THEN Set δp = δp/2. GOTO Step 2a.

iii. Store ps, g = 0, x(p) = 0, f(p) = +∞ in R.

END

(b) Set ps = min(pt, 1).

UNTIL ps ≥ 1

At termination R contains the solution to the parametric mixed-integer program.

For all elements Rl such that gRl = false the program is infeasible for p ∈ [pRl , pRl+1]

while for gRl = true, the point xRl(p) satisfies the primal constraints within εinf -

tolerance and the marginal cost constraints within εopt-tolerance. By convention

pRl+1 = pu for l = |R|.
Similarly to Algorithm 3.5, finite termination of the algorithm is guaranteed due

to the use of the tolerances ǫinf , ǫopt and ǫ, in the primal conditions, dual conditions

and optimality region formulation respectively, which essentially overestimate the

true bounds of the optimality range. As a consequence at each iteration there is a

finite increase in the parameter value pcur. Another consequence is that due to the

overestimation the next MILP call will result in a new solution.

Branch-and-Bound Algorithm for Parametric MILP

Branch-and-bound (B&B) algorithms for parametric mixed-integer problems mimic

the B&B algorithm for a regular MILP, by branching on the integer variables. Ohtake

and Nishida [216] and later Acevedo and Pistikopoulos have applied this idea to the

right hand side case [11]. In Section 3.4.5 we used B&B for the multiparametric cost

vector case.
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Each node corresponds to a parametric MILP with some binary variables fixed.

min
x,y

cT
x (p)x + cT

y (p)y

s.t. A1x(p)x + A1 y(p)y = b1(p)

A2x(p)x + A2 y(p)y ≤ b2(p)

x ∈ R
nx , xL ≤ x ≤ xU (3.26)

yj = 0, j ∈ Z i

yj = 1, j ∈ Oi

yj ∈ {0, 1}, j ∈ {1, . . . , ny}, j /∈ Z i ∪ Oi

p ∈ [0, 1],

for some index sets Z i, Oi. A lower bound can be obtained by the parametric solution

to the LP-relaxation of (3.26), i.e., a problem of the form (3.19). Out of the solutions

obtained over the parameter range some may be binary feasible and this provides an

upper bound.

The upper bound is stored in the set R0. The elements R0
l of R0 are quadruplets,

composed of parameter values pR0
l , a boolean gR0

l , describing whether an upper bound

exists for this element (gR0
l = true) or not (gR0

l = false), a point
(

xR0
l (p),yR0

l

)

, and

the corresponding objective function fR0
l (p). The elements are ordered according to

pR0
l , and by convention pRi

l+1 = 1 for l = |Ri|. For gR0
l = true, the point xR0

l (p),yR0
l

is εinf−feasible for the parametric MILP for p ∈ [pR0
l , pR0

l+1] and fR0
l (p) is an upper

bound to the optimal objective function in that interval.

Let the index set A contain the indices i of the currently active nodes, each

corresponding to a parametric MILPi (3.26) and each associated with index sets Z i,

Oi. Also associated with each node i is a set Ri, with the same elements as R0. The

boolean gRi
l describes if the element is active (gRi

l = true), i.e., branching needs to be

performed, or inactive (gRi
l = false), i.e., no further branching is needed. An element

can become inactive by an infeasible lower bounding problem or by value dominance.

The point
(

xRi
l(p),yRi

l

)

is used to store optimal solutions to the LP-relaxation of
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MILPi for p ∈ [pRi
l , pRi

l+1 ] and fRi
l(p) for the corresponding objective function.

Algorithm 3.7 (Branch-and-Bound Algorithm for a General Parametric MILP).

1. (Initialization)

A = {1}
Z1 = O1 = ∅
pR1

1 = 0, gR1
1 = true, fR0

1 = −∞
pR0

1 = 0, gR0
1 = false fR0

1 = ∞
k = 1.

2. (Termination Test)

If A = ∅ then terminate.

3. (Node Selection)

Select and delete a node i from A.

4. (Comparison of lower and upper bound)

CALL Check Lower Bound (Subroutine 3.7)

5. (Relaxation)

∀Ri
l ∈ Ri: gi,l = true solve the LP relaxation of node i and replace Ri with the

answer of the parametric LP.

6. (Update of upper bound and fathoming)

CALL Update Upper Bound (Subroutine 3.8)

7. (Branching)

IF gRi
l = true for some l THEN

• Select a free binary variable j /∈ Z i ∪ Oi

• Create subproblems with Zk+1 = Z i ∩ j, Ok+1 = Oi and Zk+2 = Z i,

Ok+2 = Oi ∩ j.

• Set Rk+1 = Ri and Rk+2 = Ri.
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• Add nodes k + 1 and k + 2 to A.

• Set k = k + 2.

8. GOTO 2.

At termination R0 contains the solution to the parametric mixed-integer program.

For all elements R0
l such that gR0

l = false the program is infeasible for p ∈ [pR0
l , pR0

l+1]

while for gR0
l = true, the point

(

xR0
l (p),yR0

l

)

is an optimal solution for p ∈ [pR0
l , pR0

l+1]

with the objective function fR0
l (p). Since we have a finite number of integer variables

the algorithm terminates finitely; in the worst case 2ny+1 − 1 nodes are visited.

Subroutine 3.7 (Check Lower Bound (integer i)).

• FOR l = 1, . . . , |Ri|

– IF pRi
l+1 < pR0

l+1 THEN split R0
l at pRi

l+1

ELSIF pRi
l+1 > pR0

l+1 THEN split Ri
l at pR0

l+1

END

• FOR l = 1, . . . , |Ri|

– Set pt equal to first root of fRi
l(p) = fR0

l (p) in [pi,l, pi,l+1].

– IF pt < pi,l+1 THEN

∗ Split Ri
l at pt.

∗ Split R0
l at pt.

– IF fRi
l(p) ≥ fR0

l (p) THEN set gRi
l = 0.

END

• FOR l = 1, . . . , |Ri|

– IF gRi
l = gRi

l+1 THEN merge3 Ri
l and Ri

l+1

3The purpose of this merging step is to minimize the number of LP calls required for the solution
of the parametric LP. Whether or not to use this step is a heuristic, because if information of the
parent node is used for the solution of the child node, merging the intervals may be detrimental for
the computational speed.
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END

Subroutine 3.8 (Update Upper Bound (integer i)).

1. FOR l = 1, . . . , |Ri|

• IF pRi
l+1 < pR0

l+1 THEN split R0
l at pRi

l+1.

ELSIF pRi
l+1 > pR0

l+1 THEN split Ri
l at pR0

l+1.

END

2. FOR l = 1, . . . , |R0|: gRi
l = 0

• Set pt equal to first root of fRi
l(p) = fR0

l (p) in [pR0
l , pR0

l+1 ].

• IF pt < pR0
l+1 THEN

– Split Ri
l at pt.

– Split R0
l at pt.

• IF gR0
l = true and fRi

l(p) ≥ fR0
l (p) THEN set gRi

l = false.

• IF yRi
l ∈ {0, 1}ny and (gR0

l = false or fRi
l(p) < fR0

l (p))

THEN set fR0
l (p) = fRi

l(p), gR0
l = true and gRi

l = false.

END

3. FOR l = 1, . . . , |Ri|

• IF gRi
l = gRi

l+1 = false THEN merge Ri
l and Ri

l+1.

END

4. FOR l = 1, . . . , |R0|

• IF
(

gR0
l = gR0

l+1 = true and xR0
l (p) = xR0

l+1(p) and yR0
l = yR0

l+1

)

or
(

gR0
l = gR0

l+1 = false
)

THEN merge R0
l and R0

l+1.
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END

Remark 3.4 (Speed improvement by using parent information). In analogy to B&B

on a regular MILP, computational gains are possible when the solution to the parent

node is used to solve the child node, e.g., by providing an initial basis for the LP-

solver. A drawback is an increase in the storage requirements.

3.5.4 Implementation

In this section we briefly discuss some interesting points regarding the implementa-

tion.

Polynomials and rationals

Each polynomial q(p) is stored as an array of coefficients ai; the array size is equal to

the order of the polynomial.4 We allow the coefficients to be either a native C real

number of double precision, or one of three types defined in the GNU Multiprecision

Library [6] namely (i) long precision float, (ii) integer, or (iii) rational. When the

absolute value of the leading coefficient is less than a specified tolerance the order of

the polynomial is reduced to avoid explosion of the order of the polynomials. Note

that the operations are sensitive to this tolerance, and tuning is needed to successfully

solve systems of more than a few variables.

Implementation of addition and subtraction of polynomials is straightforward,

by respectively adding or subtracting the coefficients and the order of the resulting

polynomial is equal to the maximal order of the two polynomials. Multiplication of

polynomials q3(p) = q1(p) q2(p) is a little more elaborate; the order of the resulting

polynomial q3(p) is equal to the sum of the orders of the two multiplicands q1(p),

q2(p) and the i-th coefficient is calculated as q3
i =

∑i
j=0 q1

j q
2
i−j.

Rationals are stored as the quotient of two polynomials r(p) = qn(p)
qd(p)

and we also

introduce an integer that describes whether a rational is identical to zero. This

integer allows to avoid unnecessary operations, by the use of the elementary rules

4Currently we use fixed-size arrays for simplicity but also store the order of the polynomial to
avoid unnecessary operations.
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0 ± r2(p) = r2(p) and 0 × r2(p) = 0. This way we take partial advantage of the

sparsity that typical MILPs have. The rational operations needed are defined based

on elementary operations on the numerator and denominator polynomials. Consider

two rationals r1(p) = qn1(p)
qd1(p)

, r2(p) = qn2(p)
qd2(p)

, and scalars α1, α2. Multiplication and

division of rationals is straightforward

r1(p) × r2(p) =
qn1(p) qn2(p)

qd1(p) qd2(p)

r1(p)/r2(p) =
qn1(p) qd2(p)

qd1(p) qn2(p)
.

The linear combination of rationals (for the LU factorization) is given as

α1 r1(p) + α2 r2(p) =
α1 qn1(p) qd2(p) + α2 qn2(p) qd1(p)

qd1(p) qd2(p)
.

Simplification of the rationals is needed if the numerator and denominator have a

common denominator. We have implemented this simplification with the simple

Euclidean algorithm [71, 70], that finds the greatest common denominator without

resorting to root finding. For the calculation of roots of polynomials we use the

Harwell Subroutine pa17bd.

Optimization Subproblems

For LP and MILP at fixed parameter values we call the CPLEX library [7]. For

the optimality region formulation as a MINLP we use BARON version 7.4 [247]

available in GAMS version 22.0 [56]. The outer approximation algorithm by Kesavan

et al. [169] was also tested through an in-house implementation [61] but no significant

computational gains were observed.

Continuation

Instead of a continuation code with event detection, we use DSL48SE [270] available

through DAEPACK [271], which is an integrator of hybrid differential-algebraic equa-

tion systems with state-event detection. As such, it is not the optimal tool, but it was
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the most readily available. A general system of residuals is formulated in Fortran and

the specific system is defined through parameters. This exploits the system sparsity

without the need of recompilation. For simplicity the primal system (3.21) and the

system of marginal costs (3.23) are solved together. Since DSL48SE can exploit spar-

sity and problem structure the overhead of this is very small. Consistent initialization

is performed through a call to MA48 from the Harwell Subroutines [5].

3.5.5 Numerical Results

We have formulated some small size parametric LPs and MILPs with interesting

theoretical properties as well as two case studies from man-portable power genera-

tion. They are all described in the Appendix B. Note that some of the problems

have special structure, e.g., parameter affects only one row, so that specialized algo-

rithms could be used. Table 3.1 compares the computational requirements for four

alternatives. All optimization tolerances are set to the default value of 10−6. The tol-

erances for violation of primal feasibility and of the marginal costs is set to 3× 10−6.

The first alternative, labeled CPLEX, is a discretization of the parameter range with

1000 equidistant points. The second alternative, labeled B&B+Rational, is the B&B

algorithm 3.4 with the parametric LP solved by rational operations. Polynomial co-

efficients with magnitude less than 10−10 are considered as zero and the polynomials

are simplified. The third alternative, labeled B&B+DSL48, is the B&B algorithm

3.4 with the parametric LP solved by a continuation approach. The DAE integrator

DSL48SE is used here with tolerances set to 10−6. The fourth alternative, labeled

DSL48+Baron, is the optimality region algorithm 3.6. This alternative is not ap-

plied on the examples that do not contain binary variables. Note that the MINLP

optimization problems are solved separately from the continuation problems after a

polynomial is fitted to the solution.

Example B.1 B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11
CPLEX 0.17 0.07 0.06 0.07 0.07 0.11 0.08 0.08 0.7 1.35 50
B&B+Rational 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.08 - 0.07 -
B&B+DSL48 0.34 0.01 0.16 0.08 0.08 0.18 0.08 0.01 1.3 2.63 100
DSL48+Baron N/A 0.02 0.4 N/A N/A 1.4 N/A N/A 0.25 0.23 18

Table 3.1: Computational requirements in seconds for the parametric LP and MILP.
No distinction is done for CPU times less than 0.01s.
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3.6 Conclusions

Parametric optimization considers the solution of mathematical programs that de-

pend on parameters for all parameter values within a prespecified range. Algorithms

identify qualitatively invariant solutions and their optimality range. Parametric op-

timization is useful as a tool for resource allocation.

We consider two classes of parametric mixed-integer linear programs for which no

algorithms exist in the open literature, namely the general case, where a parameter

affects the cost-vector, right-hand side vectors and matrix, and the multiparametric

cost vector case. Based on the work by Pertsinidis et al. [224, 225] we formulate a

single level optimization problem that identifies the optimality region. In general,

this formulation is a mixed-integer nonlinear program with nonconvex functions, but

under certain restrictions an exact linear reformulation is possible.

In the cost vector case, the feasible set is parameter independent and the param-

eters affect the objective affinely. We present the extension of a literature algorithm

from the case of one parameter [101, 162, 164] to the multiparametric case. The opti-

mality region of a given solution is a convex polyhedron in the parameter space. Our

algorithm identifies the vertices of these polyhedra and calls MILP solvers for these

parameter points. The computational requirement to identify the polyhedra vertices

is generally small compared with the MILP calls. The number of MILP calls needed

is at least equal to the number of vertices, and at most equal to the number of optimal

solutions plus the number of vertices. The actual number needed strongly depends

on the problem structure, but is at least exponential in the number of parameters.

We therefore also propose an alternative, based on the single level formulation for

the optimality regions. The number of optimization problems to be solved is equal

to the number of optimal solutions. This alternative is most promising for the case

that the parameters only affect the cost coefficients of the integer variables, result-

ing in a (mixed-integer) linear formulation. Finally we describe an algorithm based

on branch-and-bound on the integer variables and the solution of parametric linear

programs at each node.
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In the general case, in which the parameter also affects the matrix, we first consider

parametric linear programs and formulate an alternative to the parametric simplex

algorithm by Dinkelbach [91]. The algorithm by Dinkelbach works with operations on

rational functions, and due to error propagation is not practical for large size prob-

lems. Our alternative requires less consecutive operations and as such is more robust.

We also propose an alternative based on the numerical solution of parametric systems

of equations via continuation. For the mixed-integer linear programs we propose two

algorithms. One algorithm is based on branch-and-bound on the integer variables

and the other is based on the identification of optimality regions via mixed-integer

nonlinear programs. We present a number of test problems including two case studies

from man-portable power generation and numerical results from implementation of

our algorithms. As expected, algorithms based on operations with rational functions

are only applicable to problems of small size, approximately 10 variables. On the

other hand continuation methods scale favorably to bigger problems. Also due to

the special structure, the MINLP formulation of the optimality region is tractable for

mid-size problems, with up to a few hundred variables.

3.7 Future Work

3.7.1 Algorithmic Improvement

In the branch-and-bound algorithms for the multiparametric cost vector case (Al-

gorithm 3.4) and single parametric general case (Algorithm 3.7) upper bounds are

only obtained when the LP relaxations gave an integer feasible solution. Another

possibility to obtain upper bounds is to solve the parametric MILP at a fixed param-

eter value fix the integer variables and then solve the resulting parametric LP. This

is essentially a combination of the branch-and-bound approach with the algorithms

based on optimality regions, and is likely to show improved performance over both

algorithms.

In the optimality region based algorithm for parametric MILP (Algorithm 3.6)
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the solution of the MINLP is by far the most time consuming step, especially for in-

creasing problem size. General-purpose solvers, can only partially exploit the problem

structure and therefore specialized algorithms are expected to outperform these. A

simple possibility to improve the computational performance is to perform sampling

of the parameter range before calling the MINLP, i.e., choose some parameter points,

solve the original MILP and check if the optimal objective value is better than the

assumed optimal solution; if it is the parameter range for the MINLP can be reduced.

Using DSL48 as a continuation code is not the optimal choice. The first rea-

son is related with the step size selection. The integrator used calculates the step

size by controlling the truncation and the approximation error associated with the

extrapolating polynomials [54]. For the continuation problems formulated there is

no truncation error so that the step size calculation in DSL48 is not optimal. The

second reason is that the state events correspond to the state variables plus a con-

stant. Therefore introducing separate discontinuity functions is not the most efficient

solution. Furthermore, the corrector used in DSL48 is based on the Newton method,

whereas the solution of a linear system suffices. Preliminary numerical results show

that on a Pentium IV at 3.0GHz for a problem with approximately 1000 variables

DSL48 requires approximately 0.5s until the first event is hit while a call to MA48 (for

fixed parameter value) only requires approximately 1.8ms. These considerations sug-

gest that a specialized continuation algorithm would show a significant computational

improvement. Note also, that the structure of the linear system does not change, so

that analysis of the sparsity pattern only needs to be done once. Algorithm 3.8

sketches such an algorithm. Finally, it may be advantageous to use interpolating and

extrapolating rational functions instead of polynomials.

Algorithm 3.8 (Specialized Continuation).

1. Initialization

Set event flag = 0.

Set p = p0

Analyze and store sparsity pattern.
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Solve linear system.

2. REPEAT

(a) Pick extrapolating function. (Predictor)

(b) Calculate step size dp.

(c) step flag = 0.

(d) REPEAT

i. p = p + dp.

ii. Solve linear system for p. (Corrector)

iii. IF tolerances are met THEN

• step flag = 1.

• Calculate interpolating function.

• Apply event detection phase [221].

IF event is detected THEN

– event flag = 1

– Apply consistent event phase [221].

ELSE

• dp = dp/2.

UNTIL step flag 6= 0

UNTIL event flag 6= 0

A problem with the branch-and-bound algorithms is that they cannot take ad-

vantage of advanced features of MILP solvers, such as the introduction of cuts. The

development of cuts that are valid in the parametric case are expected to significantly

improve the convergence of branch-and-bound.

3.7.2 Extension to Nonlinear Cost Vector Case

In Section 3.4 we considered parametric MILPs, for which the feasible region is pa-

rameter independent and the cost vector is an affine function of the parameters. It
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is interesting to consider whether the theoretical properties and the algorithms pre-

sented can be readily extended to a MILP with nonlinear parameter dependence of

the cost vector or to parametric mixed-integer nonlinear programs (MINLP) where

the parameters only affect the objective function. Unfortunately, this is not possible

in general, because the optimality regions of qualitatively invariant solutions are not

convex.

Parametric MILP with Nonlinear Dependence of Cost Vector

Recall that in the cost vector case of parametric MILPs, the parameter range can be

divided into a finite collection of (convex) polyhedra, for each of which a constant

solution is optimal. This property is used in our algorithms, that rely in identifying

the vertices of these polyhedra. If the dependence of the cost vector on the parameter

is nonlinear, the optimality region of a constant solution is not necessarily convex,

as Example 3.2 shows. Note that in Example 3.2 a concave dependence on the

parameter is assumed, but a similar behavior can be constructed with nonlinear

convex dependence on the parameter.

Example 3.2 (Parametric MILP with Nonlinear Parameter Dependence).

As an example consider a simple parametric linear program with nonlinear depen-

dence on the parameter

min
x

(−0.09 + p − p2) x2

s.t. x1 + x2 = 1

x ∈ [0, 1]2.

The optimality regions of the two vertices are

(1, 0) is optimal for p ∈ [0.1, 0.9]

(0, 1) is optimal for p ∈ [0, 0.1] ∪ [0.9, 1].
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The optimality region of x = (0, 1) is not convex.

Parametric MINLP

Unlike the MILP case, in mixed-integer nonlinear programs, in general there do not

exist parameter sets with a nonempty interior for which a constant solution is optimal.

It is conceivable to define qualitatively invariant solutions, e.g., a fixed integer real-

ization along with some active constraint set, but in general, the optimality regions

of such qualitatively invariant solutions are not convex, as Example 3.3 shows.

Example 3.3 (Parametric MINLP with Affine Parameter Dependence).

Consider the following MINLP with linear dependence of the objective function on

the parameter

min
x,y

−x2 p + x4 + 0.01 y − 0.2 y p

s.t. x ≤ 1 − y

x ∈ [0, 1]

y ∈ {0, 1}.

Note that for all p ∈ [0, 1] the constraints are linear and the objective function convex,

and the above program is characterized as a mixed-integer convex program (MICP).

For y = 1 we obtain x = 0 and an objective function f(p) = 0.01 − 0.2 p. For

y = 0 the constraint is redundant. The stationarity condition ∂(−x2 p+x4)
∂x

= 0, gives

a candidate optimal point x as a function of p as
√

2p
2

. By convexity the only other

candidates are the variable bounds x = 0 and x = 1. Therefore the optimal x as a

function of p is
√

2p
2

with an objective function of −p2

4
. The optimality regions of the

two integer realizations are thus

y = 0 is optimal for p ∈ [0, 0.0536]∪ [0.7464, 1]

y = 1 is optimal for p ∈ [0.0536, 0.7464]

and the optimality region of y = 0 is not convex.
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3.7.3 Extension to General Nonlinear Case

In this section we briefly discuss the possible extension of our proposed methods for

the general parametric MILP to nonlinear programs. Consider a general mixed-integer

nonlinear program with parameter dependent functions

min
x,y

f (x,y, p)

s.t. g (x,y, p) ≤ b(p) (3.27)

x ∈ X ⊂ R
nx

y ∈ {0, 1}ny

to be solved for p ∈ [0, 1]. One possibility is to mimic the solution of MINLPs and

solve parametric subproblems (over and under-estimating), e.g., parametric convex

program, parametric LP, parametric MILP. Another possibility is to follow the con-

tinuation algorithm, thus taking advantage of state-of-the-art MINLP solvers.

Necessary Conditions

Suppose that we have solved (3.27) for p = ps. Consider the NLP that results from

fixing the integer variables to their optimal value ȳ. Some of the constraints are active

and some are inactive. Suppose also that some constraint qualification holds, and the

KKT conditions are necessary for a local minimum. These necessary conditions define

a system of equations that can be solved with a continuation approach, for increasing

values of the parameter until one of the inactive primal constraints gi(x, ȳ, p) ≤ bi(p)

or one of the dual inequalities (nonnegative KKT multiplier) is violated. As a result we

obtain the parametric dependence of a candidate optimal solution x̄(p), a candidate

optimal objective function f̄(p) as well as a parameter range [ps, pt] for which the

candidate solution is feasible and satisfies the necessary optimality conditions.
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Sufficient Conditions

The optimality region formulations did not assume linearity and (3.4) can be directly

applied by adding the parameter to the optimization variables and including the cost

constraint

min
x,y,p

p

s.t. f (x,y, p) ≤ f̄(p) − ε

g (x,y, p) ≤ b(p) (3.28)

x ∈ X ⊂ R
nx

y ∈ {0, 1}ny

p ∈ P ⊂ R.

Similarly to the MILP case, (3.28) has in general more nonconvex nonlinear terms

than the original problem (3.27).

Illustrative Example

As a preliminary test of extending our approach to nonlinear programs, we consider

the chemical equilibrium of ideal gases for varying temperature. Note that chemical

equilibrium of ideal gases is a convex nonlinear program with linear constraints and

a strictly convex objective function [257]. The nonstoichiometric formulation is

min
x

n
∑

i=1

xi

(

G0
i (T ) + R T ln

xi

xn

)

s.t.

n
∑

i=1

αi,jxi =

n−1
∑

i=1

αi,jbi j = 1, . . . , ne (3.29)

xn+1 =

n
∑

i=1

xi

x ∈ R
n+1, x ≥ 0,
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where for i = 1, . . . , n xi denotes the molnumber of species i, the coefficients αi,j

correspond to the number of atoms of element j in species i and bi is the initial mol-

number of species i. Because of the logarithmic term, for implementation a nonzero

lower bound needs to be imposed on the molnumbers xi ≥ ε > 0.

A system of 13 species and a 5-th order polynomial for the heat capacity is used.

The Gibbs free energy G0
i consists of polynomial and logarithmic terms in the tem-

perature. The temperature is considered as the parameter in the range 400− 1000K.

Note that the parameter only affects (nonlinearly) the (nonlinear) objective function.

Discretization with a step size of 5K using SNOPT in GAMS takes approximately

5 seconds on a Dual Athlon at 1.63GHz. The continuation approach is tested using

the process simulator ABACUSS II [273, 272]. There are convergence issues with the

consistent initialization, i.e., the solution of the KKT conditions for T = 400K. In

general, the solution provided by the NLP solver can be used as an initial guess and

the convergence issues would be eliminated. Another numerical difficulty is that inte-

gration fails when the integration step becomes relatively large (approximately 8K).

A maximal integration step cannot be specified in ABACUSS and we therefore inte-

grated in steps which made the computational requirements significant, in the order

of 10s. Since the problem is convex the KKT conditions are sufficient for optimality.

Nevertheless we fitted a fifth-order polynomial to the objective function and tested

(3.28) with BARON in GAMS with different tolerances ε corresponding to feasible

or infeasible problems. All problems were solved successfully in approximately one

second, but no guarantees were given for optimality or infeasibility because of the

loose bounds on the variables provided. These preliminary numerical experiments

suggest that the approach could indeed be extended to nonlinear programs.

3.7.4 Extension to General Multiparametric MILP

The extension of our algorithms to the multiparametric case is not straightforward.

A major complication is that the optimality regions are arbitrary shaped. Another

complication is that some of the approaches presented, such as predictor-corrector

continuation, do not readily extend to the multiparametric case. We first present
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examples that illustrate the shapes of optimality region and then discuss some possi-

bilities of extending the subproblems.

Shape of Optimality Regions

Example 3.4 (Optimality Region: Box inside Box).

Consider the following parametric LP, where the parameters p ∈ [0, 1]2 affect the

matrix entries

min
x

x1

s.t (−1/4 + p1) x2 + x1 = 1

(−1/4 + p2) x3 + x1 = 1 (3.30)

(3/4 − p1) x4 + x1 = 1

(3/4 − p2) x5 + x1 = 1

x ∈ R
5, x ≥ 0.

There are two qualitatively different solutions, one with x1 as a nonbasic variable

and one with x1 as a basic variable. In the former case we have x1 = 0 and as a

consequence

x2 =
1

(−1/4 + p1)
, x3 =

1

(−1/4 + p2)
, x4 =

1

(3/4 − p1)
, x5 =

1

(3/4 − p2)

this solution is feasible and optimal in p1, p2 ∈ (1/4,
3/4), which is a convex region. In

the latter case one of {x2, x3, x4, x5} is nonbasic, equal to 0. From the corresponding

equation we obtain x1 = 1, and consequently x2 = x3 = x4 = x5 = 0. This solution

is feasible over the whole parameter space and optimal in [0, 1]2 − (1/4,
3/4)

2, which is

not convex.

Example 3.5 (Nonconvex Optimality Regions with Curved Separation Lines).

Consider the following parametric LP, where the parameters p ∈ [0, 1]2 affect the
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matrix entries

min
x

x1

s.t p2 x1 − x2 = 1

−p1 x1 + x3 + x4 = 0 (3.31)

p1 x3 = 1

x ∈ R
4, x ≥ 0.

Because x3 is the only variable in the third constraint, it is basic. For the special

case p1 = 0 we obtain a singular matrix and (3.31) is infeasible. For p2 = 0 we

obtain x2 = −1 from the first constraint, which again renders the program infeasible.

Therefore for p ∈ [0, 1]2 : p1 = 0 ∨ p2 = 0 the system is infeasible. For p > 0 there

are three possible bases. The first possible basis contains x2, x3, x4; setting x1 = 0

we obtain

x1 = 0, x2 = −1, x3 = 1/p1, x4 = −1/p1

and therefore this basis is infeasible in the whole parameter range. In the second

possible basis, the basic variables are x1, x3, x4. Setting x2 = 0 gives

x1 = 1/p2, x2 = 0, x3 = 1/p1, x4 =
p2

1 − p2

p1 p2
.

This basis is feasible and optimal for p ∈ (0, 1]2 : p2
1 ≥ p2, which is a nonconvex region

with a curved separation line, one open and two closed faces. The third possible basis

x1, x2, x3 gives

x1 =
1

p2
1

, x2 =
p2 − p2

1

p2
1

, x3 =
1

p1

, x4 = 0.

This basis is feasible and optimal for p ∈ (0, 1]2 : p2
1 ≤ p2, which is convex with a

curved separation line, two open and two closed faces.
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Checking Optimality Regions

Obtaining the parametric dependence of a solution in the multiparametric case is

significantly more difficult than for a single parameter. The approach based on LU-

factorization with rational operations works in principle for the multiparametric case,

but has the practical limitations discussed earlier. The continuation approach on the

other hand cannot be readily extended to the multiparametric case. It can be used

to verify feasibility and LP optimality along parameter directions, e.g., along the p1

axis.

A possibility is to check the feasibility and optimality range without explicitly

obtaining the functional dependence. In general this leads to two-stage optimization

problems which are very expensive to solve. Under Assumption 3.6, a single level

formulation is possible. This can be done by considering the maximization of the

bound violation of the basic variables xB subject to the system B(p)xB = b(p) and

leads to a nonsmooth nonconvex nonlinear problem

max
xB,p,u

m1+m2
∑

i=1

max(ui, vi, 0)

B(p)xB − b(p) = 0

ui ≤ −xB,i

vi ≤ xB,i − xUP
B,i

p ∈ P ′.

For xB the bounds should be set looser than the actual bounds [0,xUP
B ]. In some cases

the special structure of this problem will make it tractable, but in general it is a very

expensive program. Based on these considerations it is questionable if the general

case can be treated efficiently with a generic algorithm. Heuristic based algorithms

tailored to the systems are more likely to be successful.
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Chapter 4

Bilevel Programming

Acknowledgments. The development of the algorithm benefited from the collabo-

ration with Panayiotis Lemonidis. In particular the elaborate branching in 2nx + 1

nodes is more due to Panayiotis Lemonidis than the author.

4.1 Introduction and Literature Review

Bilevel programs are programs where an outer program is constrained by an embedded

inner program. Here, inequality constrained nonlinear bilevel programs of the form

f ∗ =min
x,y

f(x,y)

s.t. g(x,y) ≤ 0

y ∈ arg min
z

h(x, z) (4.1)

s.t. p(x, z) ≤ 0

q(z) ≤ 0

x ∈ X ⊂ R
nx , y, z ∈ Y ⊂ R

ny ,

are considered without any convexity assumptions. The co-operative (optimistic)

formulation [85] is assumed, where if for a given x the inner program has multiple

optimal solutions y, the outer optimizer can choose among them. As has been pro-
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posed in the past, e.g., [68, 23], dummy variables (z instead of y) are used in the

inner program since this clarifies some issues and facilitates discussion. We focus on

nonconvex inner programs, i.e., the case when some of the functions p(x, z), q(z),

h(x, z) are not partially convex with respect to z for all possible values of x.

There are many applications of bilevel programs as well as theoretical and algorith-

mic contributions in the literature and the reader is directed to [53, 203, 274, 37, 85,

86, 253] for a thorough review of applications and algorithms; in this short literature

review we focus on contributions relevant to nonconvex inner programs. Most of the

literature is devoted to special cases of (4.1), in particular linear functions, e.g., [46].

Typically, the inner program is assumed convex satisfying a constraint qualification

and is replaced by the equivalent KKT first-order optimality conditions; the resulting

single level mathematical program with equilibrium constraints (MPEC) violates the

Mangasarian-Fromovitz constraint qualification due to the complementarity slackness

constraints [262]. Fortuny-Amat and McCarl [113] reformulate the complementarity

slackness conditions using integer variables. Stein and Still [262] consider general-

ized semi-infinite programs (GSIP) and use a regularization of the complementarity

slackness constraints. We will discuss how this strategy could be adapted to general

bilevel programs (4.1). Very few proposals have been made for bilevel programs with

nonconvex functions and to our best knowledge, no valid algorithm has been pro-

posed to solve bilevel programs to guaranteed global optimality when nonconvexity

is present in the inner program. Clark and Westerberg [69] introduced the notion of

a local solution where the inner and outer programs are solved to local optimality

and a semi-local solution is obtained [37, p. 341]. Gümüs and Floudas [133] proposed

a B&B procedure to obtain the global solution of bilevel programs; we show here

that this procedure is not valid in general when the inner program (4.2) is noncon-

vex. Bard [36] considered a simpler formulation without outer constraints and with

a unique minimum for the inner problem, and proposed an algorithm based on a grid

search between a lower and an upper bound of the optimal objective value, without

a guarantee of convergence in the general case. Falk and Liu [104] proposed a bundle

method which obtains local solutions to the inner and outer programs. Algorithms

204



that guarantee convergence to the global solution have been proposed for related

programs under nonconvexity, such as min-max programs [105, 286], semi-infinite

programs (SIP) [48, 45], and generalized semi-infinite programs [180].

We first discuss what is a reasonable expectation for the solution of nonconvex

bilevel programs based on state-of-the-art notions in global optimization. To analyze

some of the consequences of nonconvexity in the inner program we first discuss two

equivalent reformulations of (4.1) as a simpler bilevel program and as a GSIP. We

then discuss how to treat the inner variables in a B&B framework and identify issues

with literature proposals regarding lower and upper bounds. Finally for KKT based

approaches we discuss the need for bounds on the KKT multipliers.

We then propose a bounding algorithm for the global solution of (4.1) allowing

nonconvex functions in both the inner and outer programs. The algorithm is based

on a series of single-level optimization formulations. Equality constraints in the outer

program would not change anything significant in the development of the algorithm

and are only omitted for simplicity. The same holds for equality constraints in the

inner program that do not depend on the outer variables x. On the other hand,

the presence of x−dependent equality constraints in the inner program would require

significant changes to the algorithm presented.

4.2 Definitions

Definition 4.1 (Inner Program). For a fixed x we denote:

min
z

h(x, z)

s.t. p(x, z) ≤ 0 (4.2)

q(z) ≤ 0

z ∈ Y,

the inner program.

Definition 4.2 (Parametric Optimal Solution Function). The parametric optimal
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solution value of (4.2) as a function of the outer variables is denoted h̄(x) and the set

of optimal points H(x) ⊂ Y .

Definition 4.3 (ε−Optimality). A pair (x̄, ȳ) is called ε−optimal if it satisfies the

constraints of the inner and outer programs, εh−optimality in the inner program, and

εf−optimality in the outer program, i.e.:

g(x̄, ȳ) ≤ 0

p(x̄, ȳ) ≤ 0

q(ȳ) ≤ 0 (4.3)

h(x̄, ȳ) ≤ h̄(x̄) + εh

f(x̄, ȳ) ≤ f ∗ + εf .

Remark 4.1. In Section 4.4 we discuss that for bilevel programs (4.1) with nonconvex

inner programs, it is only plausible to expect a finitely terminating algorithm to

provide a guarantee for ε−optimality.

Definition 4.4 (x Feasible in the Outer Program). The subset of X which is admis-

sible in the outer program is denoted:

Xouter = {x ∈ X : ∃ ȳ ∈ Y : g(x, ȳ) ≤ 0}.

Definition 4.5 (x Feasible in the Inner Program). The subset of X which is admis-

sible in the inner program is denoted:

Xinner = {x ∈ X : ∃ ȳ ∈ Y : p(x, ȳ) ≤ 0, q(ȳ) ≤ 0}.

Definition 4.6 (Level Sets). For a given f̄ ∈ R define the (potentially nonconvex)

level sets

Ql(f̄) = {x ∈ X,y ∈ Y : g(x,y) ≤ 0, p(x,y) ≤ 0, q(y) ≤ 0, f(x,y) ≤ f̄}

and the projection to the X space

Xl(f̄) = {x ∈ X : ∃y ∈ Y : (x,y) ∈ Ql(f̄)}.
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Definition 4.7 (Partition). A partition of a set X i ⊂ X is a finite collection of

subsets, X l, X l+1, . . . , X l+m such that

X i = X l ∪ X l+1 ∪ · · · ∪ X l+m and int
(

X l1
)

∩ int
(

X l2
)

= ∅, ∀l1 6= l2,

compare also [154]. The definition for X i × Y i is analogous.

4.3 Reformulations

One of the major difficulties associated with the solution of (4.1) is that the two

optimization programs communicate with each other through a solution set H(x),

possibly infinite. To facilitate the following discussion, two equivalent optimization

formulations are discussed that communicate with each other through a solution

value. These formulations have been proposed in the past by other authors [84, 85, 36]

and are also similar to the difference function discussed by Amouzegar [23], where

convexity is assumed and the variables y do not participate in the outer constraints.

By the introduction of an additional variable h∗ and the use of the dummy vari-

ables z, the bilevel program (4.1) is equivalent [84, 85] to

min
x,y,w

f(x,y)

s.t. g(x,y) ≤ 0

p(x,y) ≤ 0

q(y) ≤ 0

h(x,y) − h∗ ≤ 0 (4.4)

x ∈ X, y ∈ Y, h∗ ∈ R

h∗ = min
z

h(x, z)

s.t. p(x, z) ≤ 0

q(z) ≤ 0

z ∈ Y.

What is achieved with the introduction of the extra variable h∗ is that the outer
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and inner program are coupled by a much simpler requirement, namely the optimal

solution value of an optimization program (min) as opposed to the set of optimal

solutions (arg min).

In principle (4.4) could be solved using multi-parametric optimization as a sub-

problem. As a first step a global multi-parametric optimization algorithm would be

used for the solution of the inner program for all x ∈ X dividing X into regions where

the minimum h̄ is a known (smooth) function. The second step would be a global

solution of the outer program for each of the optimality regions. This procedure is

not suggested as a solution strategy since it would be overly computationally inten-

sive. Note that application of this solution strategy to the original bilevel program

(4.1) would require a parametric optimization algorithm that furnishes all optimal

solutions as a function of the parameter x, and to our best knowledge this is not

possible at present.

The simplified bilevel program (4.4) allows the following observation: a relaxation

of the inner program results in a restriction of the overall program and vice-versa.

This observation also holds for other programs with a bilevel interpretation such as

GSIPs, see [181], but does not hold for the original bilevel program (4.1) because any

alteration of the inner program can result in an alteration of its set of optimal solutions

and as such to the formulation of an unrelated optimization problem. We will show

though that since relaxing the inner program in (4.4) results in an underestimation

of h∗, the constraint h(x,y) − h∗ ≤ 0 becomes infeasible. Indeed, consider any x̄

and the corresponding optimal objective value of the inner program (4.2) h∗. By the

definition of optimality we have h(x̄,y) ≥ h∗ for all y feasible in the inner program,

i.e., ∀y ∈ Y , s.t. p(x̄,y) ≤ 0. As a consequence no y exists that can satisfy all

the constraints of (4.4) exactly if h∗ is underestimated. If εh optimality of the inner

program is acceptable and the magnitude of the underestimation is less than εh it is

possible to obtain (approximately) feasible points of (4.4).
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The bilevel programs (4.1) and (4.4) are also equivalent to the following GSIP [36]

min
x,y

f(x,y)

s.t. g(x,y) ≤ 0

p(x,y) ≤ 0 (4.5)

x ∈ X, y ∈ Y

h(x,y) ≤ h(x, z), ∀z ∈ Ȳ (x)

Ȳ (x) = {z ∈ Y : p(x, z) ≤ 0,q(z) ≤ 0}.

Note that this reformulation does not contradict the observation by Stein and Still

[261] that under certain assumptions GSIP problems can be viewed as a special case

of bilevel programs. Stein and Still compare a GSIP with variables x to a bilevel

program with variables x and y whereas the bilevel considered here (4.1) and the

GSIP (4.5) have the same set of variables x,y. Moreover, the GSIP (4.5) does not

necessarily satisfy the assumptions made by Stein and Still [261]. Note also that the

GSIP (4.5) does not contain any Slater points as defined in Lemonidis and Barton

[181] unless εh optimality of the inner program is allowed.

In either of the two reformulated programs our proposal of εh optimality can be

interpreted as εh feasibility of the coupling constraint. As mentioned above, NLP

solvers typically allow such a violation of ordinary nonlinear constraints, and this

motivates again the proposal of ε-optimality (4.3).

4.4 Optimality Requirement

An interesting question is how exactly to interpret the requirement

y ∈ arg min
z∈Y,p(x,z)≤0,q(z)≤0

h(x, z)

209



which by definition means that any feasible y is a global minimum of the inner

program for a fixed value of x. Clark and Westerberg [69] proposed the notion of

local solutions to the bilevel program (4.1) requiring that a furnished solution pair

(x̄, ȳ) satisfies local optimality in the inner program. This is in general a very strong

relaxation. Bard [37, p. 341] gives formal definitions of so called semi-local solutions

and describes also algorithms furnishing such points.

Note though that in single-level optimization finitely terminating algorithms guar-

anteeing global optimality exist only for special cases, e.g., linear programs. For

nonconvex nonlinear programs (NLP)

f ∗ =min
x

f(x)

s.t. g(x) ≤ 0 (4.6)

x ∈ X

state-of-the-art algorithms in general only terminate finitely with an εf -optimal so-

lution. That is, given any εf > 0 a feasible point x̄ is furnished and a guarantee that

its objective value is not more than εf larger than the optimal objective value

f(x̄) ≤ f ∗ + εf .

Moreover, to our best knowledge, no algorithm can provide guarantees for the distance

of the points furnished from optimal solutions (||x̄ − x∗||, where x∗ is some optimal

solution), which would allow a direct estimate of the requirement y ∈ arg min. Finally

global and local solvers for (4.6) typically allow an εg violation of the constraints [247].

We therefore propose that for bilevel programs (4.1) with nonconvex inner pro-

grams, it is only plausible to expect a finitely terminating algorithm to provide

ε−optimal points, according to Definition (4.3). Note that as a consequence of εh-

optimality in the inner program, f ∗ ≤ f(x̄, ȳ) need not hold (as Example 4.1 shows).
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Example 4.2 illustrates that the same behavior can be observed in nonconvex (single

level) NLPs when constraint violation is allowed.

Example 4.1 (Consequences of ε-Optimality in the Inner Program). Consider the

bilevel program

min
y

y

s.t. y ∈ arg min
z

−z2 (4.7)

y, z ∈ [−1 + δ, 1],

for some small δ > 0. The inner program gives y = 1 and therefore the unique optimal

solution is y∗ = 1 with an optimal objective value of 1. Assume that the optimality

tolerance of the inner program εh is such that εh ≥ 2 δ− δ2. Based on definition (4.3)

all y ∈ [−1 + δ,−√
1 − εh] and y ∈ [

√
1 − εh, 1] are admissible and as a consequence

an objective value of −1 + δ can be obtained for the bilevel program (4.7).

Example 4.2 (Consequences of ε-feasibility in Nonconvex Nonlinear Programs). Con-

sider the nonconvex nonlinear program

min
x

x

1 − x2 ≤ 0 (4.8)

x ∈ [−1 + δ, 2],

for some small δ > 0. There are infinitely many feasible points x ∈ [1, 2] and the

problem satisfies the linear/concave constraint qualification [41, p. 322]. The unique

optimal solution is x∗ = 1 with an optimal objective value of 1. Assume that the

feasibility tolerance of the nonlinear constraint εg is such that εg ≥ 2 δ − δ2. All

x ∈ [−1 + δ,−
√

1 − εg] and x ∈ [
√

1 − εg, 2] are admissible and as a consequence an

objective value of −1 + δ can be obtained for (4.8).
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4.5 Consequences of Nonconvexity in the Inner

Program

4.5.1 Branching on the y Variables

As mentioned in the introduction, the main focus of this thesis is on the consequences

of nonconvex inner programs for B&B procedures. In this section we briefly review

some features of this algorithm class and discuss complications for the inner vari-

ables. For more details on B&B procedures the reader is referred to the literature,

e.g., [154, 266]. For discussion purposes consider again the inequality constrained

nonconvex nonlinear program (NLP) (4.6). The goal of B&B is to bracket the opti-

mal solution value f ∗ between an upper bound UBD, typically the objective value

at a feasible point, and a lower bound LBD, typically the optimal objective value of

a relaxed program. To that end the host set X is partitioned into a finite collection

of subsets Xi ⊂ X, such that X = ∪iXi. For each subset i a lower bound LBDi and

an upper bound UBDi are established. The partitions are successively refined and

typically this is done in an exhaustive matter [154], i.e., the diameter of each subset

tends to zero. At each iteration the bounds are updated LBD = mini LBDi and

UBD = mini UBDi. Therefore UBD is non-increasing and LBD non-decreasing.

The algorithm terminates when the difference UBD − LBD is lower than a pre-

specified tolerance.

For bilevel programs the inner program can have multiple optimal solutions for

some values of x and therefore a complication is whether or not to branch on the

variables y. Gümüs and Floudas [133] do not specify in their proposal if they do, and

all their examples are solved at the root node. Amouzegar [23] for a special convex

case proposes to only branch on the variables x.
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The dilemma is that on one hand y are optimization variables in the outer pro-

gram which suggests that one should branch on them but on the other hand the

requirement of optimality in the inner program requires consideration of the whole

set Y without branching. One extreme possibility is to branch on the variables x ∈ X

and y ∈ Y without distinction. Example 4.3 shows that some points (x̄, ȳ) ∈ Xi ×Yi

could be feasible for node i but not for the original program (4.1) and therefore

UBD = mini UBDi cannot be used. The other extreme possibility is to consider for

a given node Xi a partition of Y to subsets Yj and keeping the worst subset. This

procedure is not correct either as Example 4.4 shows. The introduction of dummy

variables z for the inner program allows the distinction of y between the inner and

the outer programs. In Section 4.6 we propose an algorithm where optional branching

is performed on the x and y variables, but not on the z variables. An alternative

would be to employ subdivision similar to ideas presented for Semi-Infinite Programs

[44, 45].

Example 4.3 (The host set of the inner program cannot be partitioned). Consider the

simple linear bilevel program

min
y

y

s.t. − y ≤ 0 (4.9)

y ∈ arg min
z

z

y, z ∈ [−1, 1].

reset The inner program gives y = −1 which is infeasible in the outer program by the

constraint y ≥ 0. If we partition the host set Y = [−1, 1] by bisection (Y1 = [−1, 0]
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and Y2 = [0, 1]) we obtain two bilevel programs. The first one

min
y

y

s.t. − y ≤ 0

y ∈ arg min
z

z

y, z ∈ [−1, 0]

is also infeasible by the same argument. The second

min
y

y

s.t. − y ≤ 0

y ∈ arg min
z

z

y, z ∈ [0, 1]

gives y = 0. This point is not feasible in the original bilevel program (4.9). Taking

the optimal solution of this node as an upper bound would give UBD = 0, which is

clearly false.

Example 4.4 (The host set Y in the outer program cannot be partitioned keeping the

worst subset). Consider the simple linear bilevel program

min
y

y

s.t. y ∈ arg min
z

−z2 (4.10)

y, z ∈ [−1, 1].

The inner program gives y = ±1 and therefore the unique optimal solution is y = −1

with an optimal objective value of −1. If we partition the host set Y = [−1, 1] by
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bisection (Y1 = [−1, 0] and Y2 = [0, 1]) we obtain two bilevel programs. The first one

min
y

y

s.t. y ∈ arg min
z

−z2

y, z ∈ [−1, 0]

gives the unique feasible point y = −1 with an objective value of −1. The second

min
y

y

s.t. y ∈ arg min
z

−z2

y, z ∈ [0, 1]

gives the unique feasible point y = 1 with an objective value of 1. Keeping the worse

of the two bounds would result in an increase of the upper bound.

4.5.2 Upper Bounding Procedure

Obtaining upper bounds for bilevel programs with a nonconvex inner program is

very difficult due to the constraint “y is a global minimum of the inner program”

and no obvious restriction of this constraint is available. Applying this definition

to check the feasibility of a pair of candidate solutions (x̄, ȳ) results in a global

optimization problem for which in general state-of-the-art algorithms only furnish

εf -optimal solutions at finite termination.

Only recently cheap upper bounds have been developed for some related problems

such as SIPs [44, 45] and GSIPs [181] under nonconvexity. In these proposals the

upper bounds are associated only with a feasible point x̄ and no identification of

the inner variables is needed. Cheap upper bounds are conceivable for a general

bilevel program but to our best knowledge no valid proposal exists for the case of

nonconvex inner programs. On termination, algorithms for bilevel programs (4.1)
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have to furnish a feasible pair (x̄, ȳ), i.e., values must be given for the inner variables.

If the upper bounds obtained in a B&B tree are associated with such feasible points,

a global solution to a nonconvex optimization program has to be identified for each

upper bound. This leads to an exponential procedure nested inside an exponential

procedure and is employed in the algorithm proposed in Section 4.6. To avoid the

nested exponential procedure a formulation of upper bounds without the identification

of feasible points is required.

Solving a MPEC Locally Does Not Produce Valid Upper Bounds

Gümüs and Floudas [133] propose to obtain an upper bound by replacing the inner

program by the corresponding KKT conditions, under some constraint qualification,

and then solving the resulting program to local optimality. In this section we show

that this procedure does not in general generate valid upper bounds. In the case

of a nonconvex inner program, the KKT conditions are not sufficient for a global

minimum and replacing the inner (nonconvex) program by the (necessary only) KKT

conditions amounts to a relaxation of the bilevel program. Solving a (nonconvex)

relaxed program to local optimality provides no guarantees that the point found is

feasible to the original bilevel program; moreover the objective value does not neces-

sarily provide an upper bound on the original bilevel program. This behavior is shown

in Example 4.5. Although this example has a special structure, it shows a general

property. Moreover in the proposal by Gümüs and Floudas [133] the complementarity

constraint is replaced by the big-M reformulation and new variables are introduced;

some issues associated with this are discussed in Section 4.5.4.

Example 4.5 (Counterexample for upper bound based on local solution of MPEC). For

simplicity a bilevel program with a single variable y and box constraints is considered.

min
y

y

s.t. y ∈ arg min
z

−z2 (4.11)

y, z ∈ [−0.5, 1].
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By inspection the solution to the bilevel program (4.11) is y = 1 with an optimal

objective value 1. The inner program has a concave objective function and linear

inequality constraints and therefore by the Adabie constraint qualification the KKT

conditions are necessary [39, p. 187]. The KKT conditions for the inner program are

given by

−0.5 − y ≤ 0

y − 1 ≤ 0

−2 y − λ1 + λ2 = 0

λ1 (−y − 0.5) = 0 (4.12)

λ2 (y − 1) = 0

λ1 ≥ 0

λ2 ≥ 0.

System (4.12) has three solutions. The first solution is y = −0.5, λ1 = 1, λ2 = 0, a

suboptimal local minimum of the inner program (h = −0.25). The second solution

is y = 0, λ1 = 0, λ2 = 0, the global maximum of the inner program (h = 0). Finally

the third solution is y = 1, λ1 = 0, λ2 = 2, the global minimum of the inner program

(h = −1). The one-level optimization program proposed by Gümüs and Floudas [133]

is therefore equivalent to

min
y

y

s.t. y ∈ {−0.5, 0, 1} (4.13)

and has three feasible points. Since the feasible set is discrete, all points are local

minima and a local solver can converge to any of the points corresponding to the

solutions of the system (4.12). The first solution y = −0.5, with an objective value

f = −0.5 and the second solution y = 0, with an objective value f = 0 are both

infeasible for (4.11). Moreover they clearly do not provide valid upper bounds on the
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original program (4.11). The third solution y = 1 with an objective value of f = 1,

which has the worst objective value for (4.13), is the true solution to the original

program (4.11). Note that solving (4.13) to global optimality would provide a valid

lower bound as described in the next section.

4.5.3 Lower Bounding Procedure

Lower bounds are typically obtained with an underestimation of the objective function

and/or a relaxation of the feasible set [154] and a global solution of the resulting

program. While global solution is a necessary requirement to obtain a valid lower

bound, typically the constructed programs are convex and therefore global optimality

can be guaranteed with local solvers.

Relaxation of the Inner Program Does Not Provide a Valid Lower Bound

Gümüs and Floudas [133] propose to obtain a lower bound to the bilevel program

(4.1) by constructing a convex relaxation of the inner program (4.2) and replacing

the convex inner program by its KKT conditions. Consider for a fixed x̄ a convex

relaxation of (4.2) and the corresponding set of optimal solutions Hc(x̄)

Hc(x̄) =arg min
z

hc(x̄, z)

s.t. pc(x̄, z) ≤ 0 (4.14)

qc(z) ≤ 0

z ∈ Y,

where hc(x̄, ·), qc and pc(x̄, ·) are convex underestimating functions of h(x̄, ·), q and

p(x̄, ·) on Y for fixed x̄. This procedure results in an underestimation of the optimal

solution value of the inner program but typically not in a relaxation of the feasible

set of the bilevel program (4.1). The desired set inclusion property for the two sets

of optimal solutions

H(x̄) ⊂ Hc(x̄) (4.15)
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does not hold in general. It does hold when the inner constraints p(x̄, ·) are convex

and hc(x̄, ·) is the convex envelope of h(x̄, ·). Constructing the convex envelope is in

general not practical and Gümüs and Floudas propose to use α-BB relaxations [15].

Example 4.6 shows that convex underestimating functions based on this method do

not guarantee the desired set inclusion property even in the case of linear constraints.

In the case of nonconvex constraints one might postulate that the set inclusion prop-

erty (4.15) holds if the feasible set is replaced by its convex hull and the objective

function by the convex envelope. This is not true, as shown in Example 4.7. Both

examples show that the proposal by Gümüs and Floudas does not provide valid lower

bounds for bilevel programs involving a nonconvex inner program. Although the

examples have a special structure, they show a general property. Moreover in the

proposal by Gümüs and Floudas [133] the complementarity constraint is replaced by

the big-M reformulation and new variables are introduced; issues associated with this

are discussed in Section 4.5.4.

Example 4.6 (Counterexample for lower bound based on relaxation of inner program:

box constraints). For simplicity a bilevel program with a single variable y and box

constraints is considered

min
y

y

s.t. y ∈ arg min
z

z3 (4.16)

y, z ∈ [−1, 1].

The inner objective function is monotone and the unique minimum of the inner pro-

gram is y∗ = −1. The bilevel program is therefore equivalent to

min
y

y

s.t. y = −1

y ∈ [−1, 1]
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with the unique feasible point y∗ = −1 and an optimal objective value of −1. Taking

the α-BB relaxation for α = 3 (the minimal possible) of the inner objective function,

the relaxed inner program is

min
z

z3 + 3(1 − z)(−1 − z)

s.t. z ∈ [−1, 1],

which has the unique solution y∗ = 0, see also Figure 4-1. Clearly the desired set

inclusion property (4.15) is violated. Using the solution to the convex relaxation of

the inner program, the bilevel program now is equivalent to

min
y

y

s.t. y = 0

y ∈ [−1, 1]

and a false lower bound of 0 is obtained. Note that since the objective function is a

monomial, its convex envelope is known [182]

hc(z) =











3/4z − 1/4 if z ≤ 1/2

z3 otherwise.

By replacing the inner objective with the convex envelope the minimum of the relaxed

inner program would be attained at y∗ = −1 and the set inclusion property would

hold.

Example 4.7 (Counterexample for lower bound based on relaxation of inner program:

nonconvex constraints). For simplicity a bilevel program with a single variable y

convex objective functions and a single nonconvex constraint in the inner program is
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Figure 4-1: Inner level objective function, its convex envelope and its α-BB underes-
timator for example (4.6)

considered.

min
y

y

s.t. y ∈ arg min
z

z2 (4.17)

s.t. 1 − z2 ≤ 0

y, z ∈ [−10, 10].

The two optimal solutions of the inner program are y∗ = ±1, so that the bilevel

program becomes

min
y

y

s.t. y = ±1

y ∈ [−10, 10]

with the unique optimal point y∗ = −1 and an optimal objective value of −1. Taking

the convex hull of the feasible set in the inner program, the relaxed inner program

min
z

z2

s.t. z ∈ [−10, 10]
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has the unique solution y∗ = 0. Clearly the desired set inclusion property (4.15) is

violated. Using the solution to the convex relaxation of the inner program, the bilevel

program program becomes

min
y

y

s.t. y = 0

y ∈ [−10, 10].

and a false lower bound of 0 is obtained. Note that using any valid underestimator

for the function 1 − z2 would result in the same behavior as taking the convex hull.

Lower Bounds Based on Relaxation of Optimality Constraint

A conceptually simple way of obtaining lower bounds to the bilevel programs is to re-

lax the constraint “y is a global minimum of the inner program” with the constraint

“y is feasible in the inner program” and to solve the resulting program globally.

Assuming some constraint qualification, a tighter bound can be obtained by the con-

straint “y is a KKT point of the inner program”. In Section 4.6 we analyze how either

relaxation can lead to convergent lower bounds. As mentioned in the introduction,

Stein and Still [262] propose to solve GSIPs with a convex inner program by solv-

ing regularized MPECs. They note that for nonconvex inner programs this strategy

would result to a relaxation of the GSIP. The complementarity slackness condition

µigi(x, z) = 0 is essentially replaced by µigi(x, z) = −τ 2, where τ is a regularization

parameter. A sequence τ → 0 of regularized programs is solved; each of the pro-

grams is a relaxation due to the special structure of GSIPs. For a general bilevel

program the regularization has to be slightly altered as can be seen in Example 4.8.

The complication is that the KKT points are not feasible points in the regularized

program and only for τ → 0 would a solution to the MPEC program provide a lower

bound to the original bilevel program. A possibility to use the regularization ap-

proach for lower bounds would be to use an inequality constraint −τ 2 ≤ µigi(x, z)

as in [260]. To obtain the global solution with a branch-and-bound algorithm an
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additional complication is upper bounds for the KKT multipliers, see Section 4.5.4.

Example 4.8 (Example for complication in lower bound based on regularized MPEC).

Consider a linear bilevel program with a single variable y and for simplicity take R

as the host set.

min
y

y

s.t. y ∈ arg min
z

z (4.18)

s.t. − z ≤ 0

y, z ∈ R.

The inner program has the unique solution y = 0, and thus there is only one feasible

point in the bilevel program with an objective value of 0. Note that all the functions

are affine, and the inner program satisfies a constraint qualification. The equivalent

MPEC is

min
y

y

s.t. 1 − µ = 0

µ ≥ 0

−y ≤ 0

µ (−y) = 0

y ∈ R.

From the stationarity condition 1 − µ = 0 it follows µ = 1 and therefore from the

complementarity slackness y = 0. As explained by Stein and Still [262] the regularized
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MPEC is equivalent to the solution of

min
y

y

s.t. 1 − µ = 0

µ ≥ 0 (4.19)

−y ≤ 0

µ (−y) = −τ 2

y ∈ R,

which gives µ = 1, y = τ 2 and an objective value of τ 2, which clearly is not a lower

bound to 0. Replacing the requirement µy = 0 by −τ 2 ≤ µ(−y) or equivalently

y ≤ τ 2/µ in (4.19) would give a correct lower bound of 0.

4.5.4 Complication in KKT Approaches: Multiplier Bounds

A complication with bounds based on KKT conditions are that extra variables µ

(KKT multipliers) are introduced (one for each constraint) which are bounded only

below (by zero). The big-M reformulation of the complementarity slackness condition

needs explicit bounds for both the constraints gi and KKT multipliers µi. Fortuny-

Amat and McCarl [113] first proposed the big M-reformulation but do not specify how

big M should be. Gümüs and Floudas [133] use the upper bound on slack variables as

an upper bound for the KKT multipliers which is not correct in general as Example 4.9

shows. Note also that Gümüs and Floudas [133] do not specify how to obtain bounds

on the slack variables of the constraints but this can be easily done, e.g., by computing

an interval extension of the inequality constraints. Moreover, for a valid lower bound

a further relaxation or a global solution of the relaxations constructed is needed and

typically all variables need to be bounded [266, 247]. The regularization approach

as in Stein and Still [262] does not need bounds for the regularization but if the

resulting program is to be solved to global optimality bounds on the KKT multipliers

are again needed. For programs with a special structure upper bounds may be known
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a priori or it may be easy to estimate those. Examples are the feasibility test and

flexibility index problems [132] where all KKT multipliers are bounded above by 1.

Alternatively, specialized algorithms need to be employed that do not require bounds

on the KKT multipliers.

Example 4.9 (Example with arbitrarily large KKT multipliers). Let us now consider

a simple example with a badly scaled constraint that leads to arbitrarily large multi-

pliers for the optimal KKT point

min
z

−z

δ(z2 − 1) ≤ 0 (4.20)

z ∈ [−2, 2],

where δ > 0. The only KKT point and optimal solution point is z = 1 and the KKT

multiplier associated with the constraint δ(z2 − 1) ≤ 0 is µ = 1
2δ

. The slack variable

associated with the constraint can at most take the value −δ. As δ → 0, the gradient

of the constraint at the optimal solution d(δ(z2−1))
dz

= 2 δ ζ = 2 δ → 0 and µ becomes

arbitrarily large. For δ = 0 the Slater constraint qualification is violated.

4.6 Algorithmic Development

We propose a bounding algorithm for the global solution of (4.1) allowing nonconvex

functions in both the inner and outer programs. Equality constraints in the outer

program would not change anything significant in the development of the algorithm

and are only omitted for simplicity. The same holds for equality constraints in the

inner program that do not depend on the outer variables x. On the other hand,

the presence of x−dependent equality constraints in the inner program would require

changes to the algorithm presented.

In Section 4.6.1 we outline the assumptions necessary for finite termination of our

algorithm. These assumptions also guarantee the existence of a minimum of (4.1).

In Section 4.6.2 we present a lower bounding procedure based on the solution of
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an optimization problem where the constraints of the inner and outer program are

augmented by a parametric bound on the optimal solution value of the inner program

as a function of the outer variables. In Section 4.6.3 we present the upper bounding

procedure, which is based on probing the solution obtained by the lower bounding

procedure. In Section 4.6.4 we describe the algorithmic framework and prove its finite

convergence to an ε−optimal solution. As in branch-and-bound algorithms (B&B) for

single-level programs, the optimal objective value is bracketed between a lower and an

upper bound, but (explicit) branching of the variables is not required for convergence.

The basic strategy of the algorithm is similar to the algorithm by Blankenship and

Falk [48] for semi-infinite programs, in that the lower bounding problems become

successively tighter, until the upper bounding problem is guaranteed to generate a

feasible point. Branching may accelerate convergence and we propose three branching

heuristics. In Section 4.6.6 we describe a basic numerical implementation of the

algorithm and present results from its application to literature and original problems.

Finally, we discuss the performance of the algorithm and propose improvements of

the computational performance.

4.6.1 Assumptions

Assumption 4.1 (Host Sets). The host sets X ⊂ R
nx, Y ⊂ R

ny are Cartesian products

of (compact) intervals, i.e., for all variables explicit bounds are known (xj ∈ [xLO
j , xUP

j ]

for j = 1, . . . , nx and yj ∈ [yLO
j , yUP

j ] for j = 1, . . . , ny).

Remark 4.2. Considering arbitrary bounded polyhedra as host sets would not essen-

tially alter the algorithm and the restriction to boxes is done for the sake of simplicity.

With mild restrictions on branching, for each node X i×Y i we have xj ∈ [xi,LO
j , xi,UP

j ]

and yj ∈ [yi,LO
j , yi,UP

j ].

Assumption 4.2 (Basic Properties of Functions). The functions f : X × Y → R,

g : X × Y → R
ng , h : X × Y → R, and p : X × Y → R

np are continuous on X × Y .

Similarly, q : Y → R
nq is continuous on Y .

Remark 4.3. By the continuity of the constraints and the compact host sets it directly
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follows that Xinner, Xouter and Xinner ∩ Xouter are closed and therefore compact.

Moreover, Ql(f̄) is compact for any f̄ and therefore also Xl(f̄) is compact. Finally,

for all x̄ ∈ Xinner the minimum of the inner program exists.

Assumption 4.3 (Inner Problem). There exists some ε̃f > 0 such that for each point

x̄ ∈ Xouter ∩ Xinner at least one of the following two conditions holds:

1. For any εh1 > 0 there exists a point z̃ ∈ Y such that

p(x̄, z̃) < 0, q(z̃) ≤ 0, h(x̄, z̃) ≤ h̄(x̄) + εh1. (4.21)

2. The outer objective value is ε̃f worse than the optimal objective value f ∗

f(x̄, ȳ) > f ∗ + ε̃f , ∀ȳ ∈ Y : p(x̄, ȳ) ≤ 0, q(ȳ) ≤ 0, g(x̄, ȳ) ≤ 0 (4.22)

or equivalently x̄ 6∈ Xl(f
∗ + ε̃f).

Remark 4.4. By convention, for infeasible problems the optimal objective value is

taken as infinity (f ∗ = +∞). Therefore for infeasible problems condition (4.21) must

hold for all x̄ ∈ Xouter ∩ Xinner.

Remark 4.5. Note that conditions (4.21) and (4.22) can both hold for some points.

Remark 4.6. Condition (4.21) of Assumption 4.3 allows the construction of parametric

upper bounds for the parametric optimal solution function of the inner program, thus

guaranteeing convergence of the branch-and-bound procedure. If this assumption

was required for all x ∈ Xouter ∩ Xinner, continuity of the constraints p would give

Xouter ∩ Xinner = Xouter, or the inner program would be feasible for all x that are

admissible in the outer program. It has been argued that this should always be the

case [99, 37], but we do not make this restriction. Note that points x 6∈ Xinner are

considered infeasible in the bilevel program.

Remark 4.7. Using the continuity of the inner objective function h, a sufficient con-

dition for (4.21) is that for each x̄ ∈ Xouter ∩Xinner and for each solution point of the
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inner problem z∗ ∈ H(x̄) and for each εz > 0 there exists a point z̃ ∈ Y , such that

p(x̄, z̃) < 0, q(z̃) ≤ 0, ||z̃− z∗|| < εz. (4.23)

Remark 4.8. In the case of differentiability of the inner problem, condition (4.23)

and therefore also (4.21) can be derived from the Mangasarian-Fromowitz constraint

qualification (MFCQ) [41, p. 323] for the inner program.

Assumption 4.4 (Assumptions for the KKT-based Lower Bound). Construction of

lower bounds based on the KKT necessary conditions requires for all

x̄ ∈ Xouter ∩ Xinner the further assumptions of (i) differentiability of h(x̄, ·) and

p(x̄, ·) on some open set embedding Y (with respect to the inner variables z), (ii) a

constraint qualification for the inner program, and (iii) a-priori known upper bounds

for the KKT multipliers.

Assumption 4.5 (Existence of Global NLP and MINLP Algorithms). For any εNLP >

0 there exist algorithms that can solve nonconvex nonlinear programs (NLP) and

mixed-integer nonlinear programs (MINLP) involving a finite number of inequality

constraints to εNLP−optimality and the functions in (4.1) satisfy their requirements,

e.g., continuous second derivatives. On finite termination these algorithms provide

a lower bound to the optimal solution value and a feasible point with an objective

function value that is not more than εNLP larger than the lower bound.

Remark 4.9. All the formulated subproblems are inequality constrained with the

exception of the stationarity constraint of the KKT-based lower bounds. The com-

plementarity conditions are reformulated to inequalities involving binary variables.

Since we do not use the KKT conditions for convergence, an approximate solution,

i.e., a relaxation, of the stationarity condition, suffices for a lower bound. Typical

NLP/MINLP solvers, e.g., [247] satisfy inequalities only within a (nonzero) toler-

ance. To account for this, only slight modifications would be needed for the results

presented here.
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4.6.2 Lower Bounding Procedure

In single-level optimization, lower bounds are typically obtained by the solution of a

convex relaxation. As discussed in Section 4.5.3, a valid relaxation of the constraint

“y is a global minimum of the inner program” is the constraint “y is feasible in the

inner program” [274]. This idea is related to the upper bounding procedure in Gümüs

and Floudas [133] which is valid for bilevel programs with a convex inner program

[197] and also to remarks by Stein and Still [262] for generalized semi-infinite programs

(GSIP).

It can be easily verified that the above requirement alone does not give a conver-

gent lower bound, see, e.g., Example C.1. To achieve convergence, parametric upper

bounds for the optimal solution function of the inner program are included in the

lower bounding problem.

Consider subsets of the original host sets X i ⊂ X and Y i ⊂ Y . Let K be an

index set for a finite collection of pairs
(

yk, V k
)

composed of points yk ∈ Y and sets

V k ⊂ X, such that for each yk the inner constraints are satisfied for all x ∈ V k, i.e.,

q(yk) ≤ 0

p(x̄,yk) ≤ 0, ∀x̄ ∈ V k. (4.24)

Then, the program

min
x,y

f(x,y)

s.t. g(x,y) ≤ 0

p(x,y) ≤ 0 (4.25)

q(y) ≤ 0

x ∈ V k ⇒ h (x,y) ≤ h
(

x,yk
)

, ∀k ∈ K

x ∈ X i, y ∈ Y i

provides a relaxation of (4.1) (with x, y restricted to the host sets X i, Y i). Indeed,

229



consider a point (x̄, ȳ) ∈ X i × Y i which is feasible in (4.1). We directly obtain

g(x̄, ȳ) ≤ 0, p(x̄, ȳ) ≤ 0, and q(ȳ) ≤ 0. Furthermore, since ȳ is a global minimum

of the inner program for x̄ we obtain together with (4.24)

h (x̄, ȳ) = h̄ (x̄) ≤ h
(

x̄,yk
)

, ∀k ∈ K : x̄ ∈ V k

which proves that x̄, ȳ is feasible in (4.25). Therefore, a valid lower bound can be

obtained from the global solution value of (4.25). Obviously, in the formulation of

the lower bounding problem, only sets V k that intersect with X i need be considered.

Also, when X i ⊂ V k no logical constraint is needed and h (x,y) ≤ h
(

x,yk
)

can

be directly used. Note that the use of logical constraints is well established, see,

e.g., [281, 208, 42]. In Section 4.6.6 we describe a simple implementation of these

constraints.

If Assumption 4.4 is satisfied, a tighter lower bound can be obtained by further

requiring that y satisfies the KKT necessary conditions for the inner program and

adding the KKT multipliers to the set of variables

min
x,y,µ

f(x,y)

s.t. g(x,y) ≤ 0

p(x,y) ≤ 0

q(y) ≤ 0

x ∈ V k ⇒ h (x,y) ≤ h
(

x,yk
)

, ∀k ∈ K (4.26)

∇yh(x,y) + µ
T
∇yp̃(x,y) = 0

µj p̃j(x,y) = 0, j = 1, . . . , np + nq + 2ny

µj ∈ [0, µmax
j ], j = 1, . . . , np + nq + 2ny

x ∈ X i, y ∈ Y i,

where for simplicity the constraints (p and q) of the inner program have been com-

bined and augmented (to p̃) to include the box constraints y ∈ Y (the complete host
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set), i.e.:

p̃i(x,y) =







































pj(x,y), j = 1, . . . , np

qj(y), j = np + 1, . . . , np + nq

yj−np−nq
− yUP

j−np−nq
, j = np + nq + 1, . . . , np + nq + ny

−yj−np−nq−ny
+ yLO

j−np−nq−ny
, j = np + nq + ny + 1, . . . , np + nq + 2 ny.

Note that state-of-the-art solvers in general provide only εNLP−estimates to the so-

lution of either (4.25) or (4.26). To obtain a valid lower bound, the final lower bound

provided by the solver has to be used as the lower bound. On the other hand, the

εNLP−optimal point furnished is used for the subsequent steps of the algorithm.

Remark 4.10. The addition of the KKT necessary conditions does not guarantee

convergence without the parametric upper bounds for the inner program. For instance

consider Example C.4

min
y

y

s.t. y ∈ arg min
z

−z2

y, z ∈ [−0.5, 1].

The inner problem has three KKT points, y ∈ {−0.5, 0, 1} but only y = 1 is the

global minimum and therefore the only feasible point in the bilevel program. The

optimal solution value of the bilevel program is 1 and therefore the lowest upper

bound obtainable is UBD = 1. The KKT based lower bound (4.26) without the

logical constraints, gives −0.5 for Y = [−0.5, 1] (at the root node). If branching is

performed, only nodes Y i ⊂ (0, 1] give a lower bound ≥ 1 = UBD. Nodes containing

−0.5 give a lower bound of −0.5 and nodes not containing −0.5 but containing 0

give a lower bound LBDi ≤ 0 and cannot be fathomed by value dominance. Since

this example does not contain variables x, fathoming can be performed based on a

comparison of the objective value of the inner program. For general bilevel programs
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this comparison needs to be done for fixed values of x, or parametrically in x, which

motivates the logical constraints.

Remark 4.11. Assuming that finite upper and lower bounds are available, namely

UBD and LBD respectively, these can be augmented to problems (4.25) or (4.26) as

a constraint LBD ≤ f(x,y) ≤ UBD with the aim of accelerating convergence. The

lower bound inherited by the parent node can be used as a lower bound LBD. The

current incumbent can be used for UBD; nodes with a lower bound that does not

satisfy this inequality are fathomed anyway by value dominance.

Remark 4.12. An alternative to the global solution of problems (4.25) or (4.26) is to

further relax these problems using convex relaxation methods, e.g., [266], and solve

the resulting convex programs with a convex solver. In this case, also a feasible

point of (4.25) or (4.26) should be obtained and used in the subsequent steps of the

algorithm. This can also be achieved by solving (4.25) or (4.26) with a global solver

and a loose tolerance εNLP .

In the remainder of this section a three-step procedure is described to obtain

points yk and sets V k for (4.24). The first step is to fix the variables x to the values

of the optimal solution x̄ obtained by the lower bounding problem (4.25) or (4.26)

and to solve the inner problem globally

h∗ =min
z

h(x̄, z)

s.t. p(x̄, z) ≤ 0 (4.27)

q(z) ≤ 0

z ∈ Y,

for the entire host set (Y as opposed to Y i). The results of this step are also used for

the upper bounding procedure, see Section 4.6.3. Feasibility of (4.27) is guaranteed

by the solution of (4.25) or (4.26). Similarly to the solution of (4.25) or (4.26), the

final lower bound from the solver needs to be used for h∗.

The second step is to pick ǫh2 > 0 and to find a point yk such that p(x̄,yk) < 0,
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q(yk) ≤ 0 and h(x̄,yk) ≤ h∗ + εh2, e.g., by solution of the optimization problem

min
z,u

u

s.t. h(x̄, z) ≤ h∗ + εh2

pi(x̄, z) ≤ u, i = 1, . . . , np (4.28)

q(z) ≤ 0

z ∈ Y, u ≤ 0.

This problem is feasible by the solution of (4.27). Provided that condition (4.21) of

Assumption 4.3 is satisfied, the optimal solution value of (4.28) is negative and yk

satisfies the required properties. To accelerate convergence, the solution of the inner

problem (4.27) can be used as an initial guess. Finite convergence of the algorithm

is guaranteed for sufficiently small εh2, see Section 4.6.5.

Remark 4.13. With the further assumption of MFCQ in the inner program, it would

be possible to obtain a point yk by considering the solution of (4.27) and taking a

small step in the descent direction of the constraints pi of the inner program which

at the optimal solution of (4.27) are active, i.e., equal to zero.

The third step is to identify a set V k, that satisfies (4.24) and contains x̄ in its

interior, or its boundary coincides with the boundary of X i. This problem has been

considered by Oluwole et al. [218] in the context of kinetic model reduction and their

methodology can be directly used here. Successively smaller boxes V k are guessed

as shown in Subroutine 4.1. For a given box, (4.24) can in principle be checked by

globally solving the nonsmooth nonconvex nonlinear optimization problem

u = max
x∈V k

max
i

pi(x,yk).

If u ≤ 0, (4.24) is satisfied. Solving the above optimization problem is expensive

and we therefore employ interval analysis to overestimate u. A consequence of this

overestimation is that we do not obtain the largest possible V k. Note that for an

efficient implementation the details of this procedure are important and should be
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tuned for the instance considered. For instance, it may be advantageous to guess V k

relative to the original host set X and not X i.

Subroutine 4.1 (Calculating V k).

Given a point x̄ and the bounds of node i on the x variables xi,LO and xi,UP we want

to calculate valid bounds for the box V k = [vk,LO,vk,UP ]. For simplicity, successively

smaller boxes are guessed by scaling the node by d ∈ (0, 1].

1. Set d = 1.

2. LOOP

(a) FOR j = 1, . . . , nx DO

• IF x̄j − d
2
(xi,UP

j − xi,LO
j ) < xi,LO

j THEN

– Set vk,LO
j = xi,LO

j .

– Set vk,UP
j = xi,LO

j + d (xi,UP
j − xi,LO

j ).

• ELSE IF x̄j + d
2
(xi,UP

j − xi,LO
j ) > xi,UP

j THEN

– Set vk,LO
j = xi,UP

j − d (xi,UP
j − xi,LO

j ).

– Set vk,UP
j = xi,UP

j .

• ELSE

– Set vk,LO
j = x̄j − d

2
(xi,UP

j − xi,LO
j ).

– Set vk,UP
j = x̄j + d

2
(xi,UP

j − xi,LO
j ).

END

(b) Check (4.24) by evaluating the interval extension of p(·,yk) on V k.

IF (4.24) is satisfied THEN terminate ELSE Reduce d END.

END

Note that the computational requirement for this subroutine is typically insignificant

compared to the lower bounding problems.

At this point a brief explanation of interval analysis is warranted. For a thorough

analysis, the reader is referred to the literature, e.g., [204, 19]. Since V k is a Cartesian
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product of intervals and the constraints of the inner problem p are continuous, the

image of each real valued function pi(·,yk) : V k → R (for fixed yk) is an interval

[pl
i, p

u
i ]. An interval valued function G(V k) which satisfies

[pl
i, p

u
i ] ⊂ G(V k) = [pL

i , pU
i ]

is referred to as an inclusion function for pi(·,yk) on V k. An obvious requirement on

the inclusion function is convergence to the true image [pl
i, p

u
i ] as ||vk,UP − vk,LO|| is

reduced. The natural interval extension is an example of such an inclusion function.

It is derived by replacing its variable xj by the corresponding interval [vk,LO
j , vk,UP

j ]

and evaluating the resulting expression using the rules of interval arithmetic [204].

The functions are decomposed into a sequence of compositions of elementary opera-

tions (e.g., multiplication, addition) and intrinsic functions, such as monomials or the

exponential function. For each of the intrinsic functions and elementary operations,

rules are available to construct the natural interval extension. For instance, in the

addition of two intervals the lower bound is given by addition of the two lower bounds

and the upper bound by addition of the two upper bounds. In general, natural in-

terval extensions lead to an overestimation of [pl
i, p

u
i ], but in special cases, such as

monomials, an exact calculation is obtained. Tighter inclusion functions can be cal-

culated using Taylor model inclusions [19]. Note also that interval analysis methods

can be automated, see e.g., [269, 271].

4.6.3 Upper Bounding Procedure

As discussed in Section 4.5.2, currently no method exists that provides valid, conver-

gent upper bounds for bilevel programs with nonconvex inner programs without the

generation of feasible points. In this section we propose an upper bounding procedure

by probing the feasibility of a candidate solution x̄ and y ∈ Y i ⊂ Y . Blankenship

and Falk [48] used an analogous idea for SIP.

Given a candidate x̄, the first step is to solve the nonconvex inner program (4.27)

globally and obtain an optimal solution ȳ and an optimal solution value h∗. For
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an arbitrary point x̄, this program may be infeasible, in which case no solution to

the bilevel program exists for x = x̄ and no upper bound can be obtained. In our

algorithm we only consider candidates generated by the solution of the lower bounding

problem for which the feasibility of (4.27) is guaranteed. Given the solution h∗ the

outer problem is solved for the fixed x̄

min
y

f(x̄,y)

s.t. g(x̄,y) ≤ 0

p(x̄,y) ≤ 0

q(y) ≤ 0 (4.29)

h(x̄,y) ≤ h∗ + εh

LBDi ≤ f(x̄,y)

y ∈ Y i,

allowing an εh−violation of the inner level objective. This step is performed, because,

due to potential non-uniqueness of the solutions of the inner program, a valid upper

bound may be obtained even if the solution to (4.27) does not satisfy the outer

constraints. If (4.29) is infeasible then no solution exists for x = x̄; otherwise an upper

bound is obtained. The inequality LBDi ≤ f(x̄,y) is added to accelerate convergence

of (4.29) and to alleviate partially the consequences of allowing εh−optimality in the

inner program.

Remark 4.14. If the solution to (4.27) is feasible in the outer program, an upper

bound is obtained without solving (4.29), but (4.29) in general gives a better upper

bound. Similarly, an upper bound can be obtained through any feasible point of

(4.29), e.g., a local solution. For reasons of simplicity, we will assume that (4.29) is

always solved to global optimality. If the optimal solution point of (4.27) satisfies the

outer constraints, it can be used as an initial guess for (4.29).

Remark 4.15. Several algorithmic heuristics to avoid unnecessary solutions of (4.29)

are conceivable, but instead of directly using the heuristics, we will assume that the
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NLP solver used can take advantage of these.

4.6.4 Algorithm Statement

The basic strategy of our algorithm is similar to the algorithm by Blankenship and

Falk [48] for semi-infinite programs. The addition of parametric upper bounds on

the optimal solution value of the inner program via the pairs
(

yk, V k
)

makes the

lower bounding problems successively tighter. Without branching, finite termination

is essentially achieved because either the sets V k cover Xinner∩Xouter and infeasibility

is proved, or a lower bounding problem furnishes a point inside an existing set V k

and close to a previously generated point and a ε−optimal point is obtained. The

generation of parametric upper bounds is possible for those points x̄ that satisfy

condition (4.21) of Assumption 4.3. If the lower bounding procedure furnishes a

point x̄ that does not satisfy (4.21), the corresponding node can be fathomed because

x̄ satisfies (4.22).

We describe the algorithm in a branch-and-bound framework. Branching is not

necessary for convergence, but is interesting as a heuristic for accelerating the conver-

gence and has the advantage that it allows more flexibility, such as the local solution

of certain subproblems. For finite termination without additional assumptions on the

problem instance, some restrictions on the branching and/or node selection heuristics

are required. In Theorem 4.1, we prove finite termination for the cases of no branch-

ing, as well as best-bound and breadth-first node selection heuristics. It is possible

to show finite termination for other heuristics, but this is outside the scope of this

thesis.

Input to the algorithm are the optimality tolerances εf and εh, satisfying the

assumptions of Theorem 4.1.

Algorithm 4.1 (Main Algorithm).

1. (Initialization)

Set LBD = −∞, UBD = +∞, k = 1 and l = 1.

Set K = ∅ and N = {X × Y }.
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2. (Termination Test)

Delete from N all nodes X i × Y i with LBDi ≥ UBD − εf (Fathoming by

value dominance).

Set LBD = minXi×Y i∈N LBDi.

If N = ∅ terminate.

3. (Node Selection)

Select a node X i × Y i from N according to some node selection heuristic.

4. (Lower Bounding)

Solve (4.25) or (4.26) globally.

IF feasible THEN

• Set LBDi to the optimal objective value (final lower bound).

• Set x̄ equal to the solution point (εNLP−optimal point).

ELSE (Fathoming by Infeasibility)

• Delete node X i × Y i from N and goto step 2.

END

5. (Fathoming by Value Dominance)

IF LBDi ≥ UBD − εf THEN delete node X i × Y i from N and goto step 2.

6. (Inner Problem)

Solve NLP (4.27) globally for x = x̄. (Recall that feasibility of this program is

guaranteed.)

Set h∗ equal to the optimal objective value (final lower bound).

7. (Population of Parametric Upper Bounds to Inner Problem)

Solve (4.28). (Recall that feasibility of this program is guaranteed.)

IF u∗ < 0 THEN

• Set yk equal to the solution point.
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• Obtain an appropriate set V k.

• Insert k to K.

• Set k = k + 1.

ELSE

• Delete node X i × Y i from N and goto step 2.

END

8. (Upper Bounding)

Solve NLP (4.29) for x = x̄ with h∗ as the upper bound for h(x̄,y) and (if

feasible) obtain an εNLP−optimal point ȳ.

IF feasible and f(x̄, ȳ) < UBD THEN set UBD = f(x̄, ȳ) and (x∗,y∗) =

(x̄, ȳ).

9. (Optional Branching Step)

Delete node X i × Y i from N .

Partition the set X i × Y i into m nodes X l × Y l, X l+1 × Y l+1, . . . , X l+m × Y l+m

according to some branching heuristic.

Set LBDl = LBDl+1 = · · · = LBDl+m = LBDi.

Add the new nodes to N .

Set l = l + m.

10. (Loop)

Goto step 2.

At this point a justification of the potential fathoming at Step 7 is provided. If

the lower bounding problem furnishes points x̃ that do not satisfy (4.21), by Assump-

tion 4.3, we have x̃ 6∈ Xl(f
∗ + εf) and therefore the lower bound (with or without

the KKT heuristic) is higher than the optimal solution value: LBDi ≥ f ∗ + εf . The

solution of the lower bounding problem is found within tolerance εNLP and therefore,

as long as εNLP < εf such points can only be visited if branching is performed and

only in nodes that do not contain points x̃ ∈ Xl(f
∗).
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A direct consequence of the validity of the lower and upper bounding procedures

is that on termination of the algorithm, if UBD = +∞, the instance is infeasible.

Otherwise, UBD is an εf−estimate of the optimal solution value (UBD ≤ f ∗ + εf)

and (x∗,y∗) is an ε−optimal point (see Definition 4.3) at which UBD is attained.

Note that depending on the problem instance it may be beneficial to perform Step 8

directly after Step 6 and only perform Step 7 if LBDi < UBDi − εf .

Note that Algorithm 4.1 can be applied to bilevel programs irrespectively of con-

vexity properties. For bilevel programs with an inner program that is convex on Y for

each fixed x̄ and that satisfies Assumption 4.4, application of the KKT-based lower

bounding problem (4.26) leads to convergence at the root node. On the other hand,

if the simpler lower bounding problem (4.25) is used on such programs, the convexity

is not exploited.

4.6.5 Convergence Proof

Lemma 4.1 (Continuity of Optimal Solution Function of Inner Problem). The op-

timal objective function h̄ : X → R of the inner problem is continuous for all

x ∈ Xinner ∩ Xouter satisfying (4.21).

Proof. Consider any fixed x̄ ∈ Xinner ∩Xouter. By (4.21) for any εh1 > 0, there exists

ỹ ∈ Y such that

p(x̄, ỹ) < 0, q(ỹ) ≤ 0 (4.30)

h(x̄, ỹ) ≤ h̄(x̄) + εh1. (4.31)

By continuity of the inner objective h(·, ỹ) on X, for any εh3 > 0 there exists δ1 > 0

such that

h(x, ỹ) < h(x̄, ỹ) + εh3, ∀x ∈ X : ||x̄− x|| < δ1. (4.32)

Combining inequalities (4.31) and (4.32) we obtain

h(x, ỹ) < h̄(x̄) + εh1 + εh3, ∀x ∈ X : ||x̄ − x|| < δ1. (4.33)
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By (4.30) and continuity of p(·, ỹ), there exists δ2 > 0 such that

p(x, ỹ) ≤ 0, ∀x ∈ X : ||x̄− x|| < δ2.

Together with q(ỹ) ≤ 0, ỹ is feasible in the inner program for all x ∈ X : ||x̄−x|| < δ2.

By the definition of h̄(x) we therefore have

h̄(x) ≤ h(x, ỹ), ∀x ∈ X : ||x̄ − x|| < δ2.

With (4.33) we obtain

h̄(x) < h̄(x̄) + εh1 + εh3, ∀x ∈ X : ||x̄ − x|| < min(δ1, δ2)

which proves that h̄ is upper semi-continuous at x̄.1

By Theorem 4.2.1 in Bank et al. [35] for all x̄ ∈ Xinner ∩ Xouter the optimal

objective function h̄ of the inner problem is lower semi-continuous.

Lemma 4.2 (Minimum of Bilevel Program Exists). Under Assumptions 4.1, 4.2 and

4.3, either (4.1) is infeasible or the minimum of (4.1) exists.

Proof. Assume for now that f ∗ denotes the infimum of (4.1) without asserting that

the minimum is attained. By Definition 4.6 of the level sets, the bilevel program (4.1)

is equivalent to

f ∗ = inf
x,y

f(x,y)

s.t. h(x,y) ≤ h̄(x) (4.34)

(x,y) ∈ Ql(f
∗).

Since the level set Ql(f
∗) is compact, so is the feasible set of (4.34). Noting that

for all (x,y) ∈ Ql(f
∗) we have x ∈ Xl(f

∗) and condition (4.21) of Assumption 4.3

is satisfied. Therefore, by Lemma 4.1 h̄ is continuous on the feasible set of (4.34).

1Compare also Dempe [85, p. 65].
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Therefore either (4.34) is infeasible or its minimum is attained. As a consequence

either (4.1) is infeasible or the minimum of (4.1) exists.2

Lemma 4.3 (Sets V k have Nonempty Interior). For any (arbitrary but fixed) εh2 > 0

there exists δ1 > 0 such that for any f̄ ≤ f ∗ + ε̃f and for each point x̄ ∈ Xl(f̄) the

points yk(x̄) generated in Step 7 of Algorithm 4.1 satisfy

p(x,yk(x̄)) ≤ 0, q(yk(x̄)) ≤ 0, h(x̄,yk(x̄)) ≤ h̄(x̄)+εh2, ∀x ∈ X : ||x−x̄|| < δ1.

Note that δ1 is independent of x̄.

Proof. Since f̄ ≤ f ∗ + ε̃f , all points x̄ ∈ Xl(f̄) satisfy (4.21), Xl(f̄) is compact and

by Lemma 4.1 the optimal objective function of the inner problem h̄ : X → R is

continuous at all x̄ ∈ Xl(f̄).

Let ū(x) denote the parametric optimal solution value of (4.28). By the continuity

of the functions and the compactness of Xl(f̄), ū is continuous and its maximum over

x̄ ∈ Xl(f̄) is attained. Since εh2 > 0, by (4.21) ū is strictly negative on Xl(f̄).

Therefore, there exists ũ < 0 such that for all x̄ ∈ Xl(f̄)

pi(x̄,yk(x̄)) ≤ ũ < 0, i = 1, . . . , np, q(yk(x̄)) ≤ 0, h(x̄,yk(x̄)) ≤ h̄(x̄) + εh2.

Since p(·,y) is continuous, and Xl(f̄) is compact, p(·,y) is uniformly continuous

on Xl(f̄) [244]. Therefore there exists δ1 > 0 (independent of x̄) such that for any

x̄ ∈ Xl(f̄)

p(x,yk(x̄)) ≤ 0, q(yk(x̄)) ≤ 0, h(x̄,yk(x̄)) ≤ h̄(x̄)+εh2, ∀x ∈ X : ||x−x̄|| < δ1.

Remark 4.16. A direct consequence of Lemma 4.3 is that there exists d1 > 0, such

2Compare also Dempe [84].
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that all sets V k obtainable in Step 7 of Algorithm 4.1 satisfy

min
j
{vk,UP

j − vk,LO
j } ≥ d1.

Our proposal of interval analysis underestimates the size of these sets, but it has been

shown [181] that natural interval extensions converge uniformly and therefore there

exists d2 > 0, such that for all x̄ ∈ Xl(f̄) the sets obtained satisfy

min
j
{vk,UP

j − vk,LO
j } ≥ d2.

Lemma 4.4. Let Xt ⊂ X be compact, and δ > 0. Consider any infinite sequence of

points xi ∈ Xt. There exists a finite index I > 0, such that

||xI − xi|| ≤ δ, for some i < I.

Proof. Consider any infinite sequence xi ∈ Xt. Since Xt is compact it is also bounded

and therefore the sequence is also bounded. Therefore there exists a point x̄ and a

subsequence xik that converges to x̄ (see, e.g., Theorem 3.6 in [244]), i.e., there exists

a finite K > 0, such that

||xik − x̄|| ≤ δ/2, ∀k ≥ K.

Therefore

||xiK+1 − xiK || ≤ ||xiK+1 − x̄|| + ||xiK − x̄|| ≤ δ/2 + δ/2 ≤ δ.

For I = iK+1 and i = iK we have the desired result.

Theorem 4.1 (Finite Termination). If the tolerance of the optimization subproblems
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εNLP and εh2 in (4.28) satisfy

0 < εNLP ≤ min(εf/2, εh, ε̃f)

0 < εh2 < εh − εNLP

and either of the following three algorithmic heuristics are employed

1. No branching is performed.

2. The branching heuristic is exhaustive [153] in X and the breadth-first node se-

lection heuristic is used.

3. The branching heuristic is exhaustive in X and the best-bound node selection

heuristic is used.

then Algorithm 4.1 terminates finitely.

Since the proof of Theorem 4.1 is lengthy, we first present an outline of the proof.

In the case of no branching, and since the lower bounding problem visits only points

x̄ ∈ Xouter ∩ Xinner, it will not visit points x̃ 6∈ Xl(f
∗ + ε̃f). Therefore, by As-

sumption 4.3 at the points visited by the lower bounding problem it is possible to

construct the parametric upper bounds to the optimal solution value of the inner

program via the pairs
(

yk, V k
)

. The corresponding logical constraints augmented to

the lower bounding problem successively tighten the lower bounding problem to the

extent that it will either become infeasible or furnish a point inside an existing V k

which is also a ε−optimal point. In the case of branching and since the branching

heuristic is exhaustive in X, the nodes visited eventually become smaller than the

smallest possible V k and are fathomed.

Proof.

Let f̄ = f ∗ + ε̃f .

1. No branching

Consider first the case that no branching is performed and note that in this case
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only points x̄ ∈ Xl(f
∗ + εNLP ) ⊂ Xl(f̄) are furnished by the lower bounding

problem.

Points x ∈ Xl(f̄) satisfy condition (4.21) of Assumption 4.3 and this allows

the generation of logical constraints via the pairs
(

yk, V k
)

. Let x̄ ∈ Xl(f̄) be

furnished by the lower bounding problem. We will show that if in a subsequent

iteration the lower bounding problem furnishes a point (x̂, ŷ) with x̂ sufficiently

close to x̄, it will be ε−optimal. By Lemma 4.3 there exists δ1 > 0 such that for

each point x̄ ∈ Xl(f̄) the points yk generated in Step 7 of Algorithm 4.1 satisfy

p(x,yk) ≤ 0, q(yk(x̄)) ≤ 0, h(x̄,yk(x̄)) ≤ h̄(x̄)+εh2, ∀x ∈ X : ||x−x̄|| < δ1.

(4.35)

Recall also

h(x̄,yk) ≤ h̄(x̄) + εh2.

By assumption εh − εNLP − εh2 > 0. By continuity of h̄ at x̄ there exists δ2 > 0

such that

h̄(x̄) ≤ h̄(x) + (εh − εh2 − εNLP )/2, ∀x ∈ X : ||x − x̄|| < δ2.

By continuity of h(·,yk) on X, there exists δ3 > 0 such that

h(x,yk) ≤ h(x̄,yk) + (εh − εh2 − εNLP )/2, ∀x ∈ X : ||x − x̄|| < δ3.

Combining these last three inequalities gives

h(x,yk) ≤ h̄(x) + εh − εNLP , ∀x ∈ X : ||x − x̄|| < min(δ2, δ3).

Therefore, together with (4.35), yk is εh−optimal in the inner problem for all

x ∈ X : ||x − x̄|| < δ, where δ = min(δ1, δ2, δ3) > 0. Note that these (x,yk)

are not necessarily feasible with respect to the outer constraints, and therefore

termination does not occur immediately.

Since Xl(f̄) is compact and δ > 0, by Lemma 4.4 after a finite number of iter-
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ations either the lower bounding problem becomes infeasible, in which case the

algorithm terminates, or the lower bounding problem furnishes a point (x̂, ŷ),

with x̂ sufficiently close to x̄, i.e., ||x̂ − x̄|| < δ. By construction of the lower

bounding problem, this (x̂, ŷ) satisfies the inner and outer constraints and also

h(x̂, ŷ) ≤ h(x̂,yk) (by the logical constraint) and as a consequence

h(x̂, ŷ) ≤ h̄(x̂) + εh − εNLP

or ŷ is εh−optimal in the inner problem for x̂.3 The lower bound LBDi ob-

tained satisfies LBDi ≥ f(x̂, ŷ) − εNLP . The point (x̂, ŷ) is feasible in the

bilevel program and therefore the upper bounding problem (step 8) furnishes

an upper bound UBDi, satisfying UBDi ≤ f(x̂, ŷ) + εNLP . Noting now that

the optimization problems are solved with tolerance εNLP < 2 εf it follows

UBDi − LBDi ≤ 2 εNLP ≤ εf and the algorithm terminates.

2. Breadth-first node selection heuristic

Let δ have the same meaning as in the case without branching. Using the

breadth-first node selection heuristic, and since the branching is exhaustive in

X, for any d > 0, after a finite number of iterations for all nodes i and all

variables xj we have

xi,UP
j − xi,LO

j < d, ∀j = 1, . . . , nx, ∀i ∈ N.

Note that nodes i with X i ∩ Xinner ∩ Xouter = ∅ are fathomed by infeasibility.

Without loss of generality we ignore such nodes in the following. At every

level, one or more nodes satisfy Xl(f
∗) ∩ X i 6= ∅. For all these nodes the lower

bounding problem generates points x̄ ∈ Xl(f
∗ + εNLP ) ⊂ Xl(f̄). Once d is

sufficiently small such that

||x − x̄|| < δ, ∀x ∈ X i

3The εNLP tolerance is included here, because the global solution of the inner problem only gives
a εNLP− estimate of h̄(x̄).
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the lower bounding problem of all children nodes j is either infeasible or fur-

nishes (x̂, ŷ) with x̂ sufficiently close to x̄, leading to an upper bound UBDj

such that UBDj − LBDj ≤ 2 εNLP ≤ εf . In either case all children nodes of i

are fathomed. If the problem is infeasible, all nodes satisfy Xl(f
∗)∩X i 6= ∅ and

are fathomed. Otherwise, at least one node contains an optimal solution and

furnishes UBDj ≤ f ∗ + εf = f̄ . With this incumbent, all nodes X i, for which

Xl(f
∗) ∩ X i = ∅ are fathomed when they are visited.

3. Best-bound node selection heuristic

Let δ have the same meaning as in the case without branching. At each iteration,

a node with the best lower bound is chosen. Therefore only nodes i with an

inherited lower bound LBDi ≤ f ∗ can be chosen.

Consider any infinite nested sequence of nodes. The nodes in this sequence

satisfy Xl(f
∗) ∩ X i 6= ∅, and therefore the lower bounding problem generates

points x̄ ∈ Xl(f
∗ + εNLP ) ⊂ Xl(f̄). Since branching is exhaustive in X, for any

d > 0, after a finite number of iterations for all variables xj we have

xi,UP
j − xi,LO

j < d, ∀j = 1, . . . , nx.

Similarly to the best-bound heuristic this leads to either fathoming by infeasi-

bility or generation of an upper bound such that UBDi − LBDi ≤ εf and the

node is fathomed. Since LBDi ≤ f ∗, this upper bound is sufficient to fathom

all nodes by value dominance.

Remark 4.17. Note the requirement that the branching procedure is exhaustive allows

the branching to be performed only every finite number of iterations. Moreover, the

proof can be extended to the case that branching is performed only a finite number

of iterations and the resulting nodes are visited without further branching.

Remark 4.18. For a finite number of iterations, an arbitrarily large εh2 can be used

for (4.28). In the worse case, this will create a finite number of redundant logical
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constraints, but may accelerate convergence, by obtaining larger sets V k at step 7.

Remark 4.19. Since we have proved that after a finite number of iterations the lower

bounding problem furnishes a point that satisfies ε−optimality, the solution of the

upper bounding problem is not required for finite convergence. On the other hand,

the upper bounding procedure may accelerate convergence, and we therefore consider

its solution at every iteration. Note that LBD ≤ f ∗ is always guaranteed since the

lower bounding problem is a valid relaxation.

Branching Heuristics

While a great number of heuristics are conceivable, we consider three of particular

interest. The simplest possibility is the extreme of no branching which results in a

very simple implementation of the algorithm. In this case the addition of the logical

constraints makes the lower bounding problems successively tighter and, in general,

more expensive to solve.

Another simple choice is to perform branch-and-bound without any distinction

between x and y by bisection on the variable with the current largest range. This

procedure corresponds to a common branching heuristic in global single-level opti-

mization. Convergence is achieved by a combination of the node shrinking and the

addition of parametric upper bounds to the inner problem.

Remark 4.20. For the breadth-first selection heuristic and branching by bisection on

the variable with the current largest range, finite convergence can be guaranteed for

ε̃f = 0 in condition (4.22).

A more elaborate and specialized branching heuristic is to branch only on the x

variables by partitioning the node into a set of nodes in such a way that one of the

children nodes corresponds to the set V k. The advantage of this branching heuristic

is that it avoids the use of logical constraints. Given the parent node bounds on the

variables xi,LO and xi,UP and the box bounds vk,LO and vk,UP a simple procedure for

this partitioning is described in Subroutine 4.2.

Subroutine 4.2 (Branching into 2nx + 1 Nodes).
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Two temporary vectors x̃LO and x̃UP and two temporary variables t1 and t2 are used.

1. (Initialization)

Set x̃LO = vk,LO and x̃UP = vk,UP .

2. (Node corresponding to V k box)

Create node with x ∈ [x̃LO, x̃UP ].

3. (Up to two nodes per variable)

FOR j = 1, . . . , nx DO

• Set t1 = x̃LO
j and t2 = x̃UP

j

• IF t1 > xi,LO
j

– x̃LO
j = xi,LO

j and x̃UP
j = t1.

– Create node with x ∈ [x̃LO, x̃UP ].

• IF t2 < xi,UP
j

– x̃LO
j = t2 and x̃UP

j = xi,UP
j .

– Create node with x ∈ [x̃LO, x̃UP ].

• Set x̃LO
j = xi,LO

j and x̃UP
j = xi,UP

j .

END FOR

By construction, the created nodes are a partition of the parent node and a max-

imum of 2nx + 1 children nodes are generated.

Remark 4.21. When the set V k is equal to X i, e.g., when the inner constraints do

not depend on x, this procedure re-creates the node X i which is equivalent to the

heuristic of no branching.
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4.6.6 Implementation and Numerical Results

Implementation

The algorithm was implemented in C++ and tested on a 64-bit Xeon processor

3.2GHz running Linux 2.6.13. The best-bound heuristic occurred at the node se-

lection step, and among nodes with the same lower bound, the one that entered

the set of active nodes (N) first was always used. As is typical with optimization

codes, both an absolute and relative termination criterion was used and termination

occurred if either of the criteria was satisfied.

The resulting nonconvex NLP and MINLPs were all solved globally with BARON

version 7.4 [247] using GAMS version 22.0 [56] through system calls. Note that strictly

speaking BARON does not exactly satisfy the assumption about solvers, since the

final lower bound furnished may not be strictly below the optimal objective function

value (it can be slightly above); since tight tolerances were used for the subproblems,

this consideration does not have practical implications. The occurrence of third order

monomials, e.g., x3 caused very slow convergence of the formulated (MI)NLPs in some

of the case studies. For consistency purposes, we therefore systematically encoded

third order monomials as a product of a square and a linear term, e.g., x2 x, and

fourth order monomials as the product of two squares, e.g., x2 x2.

The logical constraints in the lower bounding problem and the complementarity

conditions of the KKT-based lower bounding problem were implemented using the

big-M formulation [123, 113].

Given a node X i and a box V k we first check if their intersection is empty. If it

is (X i ∩ V k = ∅) the constraint does not need to be introduced. Also if X i ⊂ V k we

directly introduce the constraint

h (x,y) ≤ h
(

x,yk
)

.

Otherwise up to two binary variables and constraints are introduced for each compo-

nent of x, as described in Subroutine 4.3. Therefore up to 2nx + 1 binary variables
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are required to formulate a logical constraint.

Subroutine 4.3 (Implementation of Logical Constraints).

• Set l = 0

• FOR j = 1, . . . , nx DO

– IF vk,LO
j > xi,LO

j THEN

∗ Set l = l + 1 and introduce a binary variable wl ∈ {0, 1} representing

xj > vk,LO
j

∗ Introduce a constraint

wl ≥
xj − vk,LO

j

xi,UP
j − xi,LO

j

.

– IF vk,UP
j < xi,UP

j THEN

∗ Set l = l + 1 and introduce a binary variable wl ∈ {0, 1} representing

xj < vk,UP
j

∗ Introduce a constraint

wl ≥
vk,UP

j − xj

xi,UP
j − xi,LO

j

.

• Introduce the logical constraint as

h (x,y) ≤ h
(

x,yk
)

+
l
∑

i=1

(1 − wi)
(

hmax − h
(

x,yk
))

,

where hmax ≥ h (x,y) for all (x,y) ∈ X i×Y i. hmax can be easily estimated using

interval analysis, see, e.g., [204]. Note that unless wi = 1, for all i = 1, . . . , l

this constraint is redundant.

Note that the constraint x ∈ V k ⇒ h (x,y) ≤ h
(

x,yk
)

is only introduced for the

interior of V k.

For the KKT-based lower bounds the complementarity condition µip̃i(x,y) is re-

formulated with the help of a binary variable wl ∈ {0, 1} indicating if the constraint
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is active or not

µi ≤ Mi yl

−p̃i(x,y) ≤ Pi(1 − wl),

(4.36)

noting that p̃i(x,y) ≤ 0 and µi ≥ 0. By Assumption 4.4 an upper bound Mi for

the KKT multipliers is known a priori. Bounds on the constraints Pi can be easily

estimated by interval extension, see e.g., [204].

Test Set

To test our algorithm we used literature examples collected in [246, 133] and also

created a number of test problems with mostly nonconvex inner problems. All the

problem formulations are collected in Section C of the appendix, including an analysis

of the feasible sets and optimal solutions as well as justifications for the values used

for the KKT multipliers.

Table 4.1 contains a summary of the problem properties. The first column is the

label of the example. The second through sixth columns (nx, ny, ng, np, nq) contain

the number of x variables, y variables, constraints in the outer problem, constraints

in the inner problem that depend on the outer variables, and constraints in the

inner problem (excluding box constraints) that do not depend on the outer variables.

The seventh through tenth columns (f , g, h, p) contain the functional form of the

outer objective, the outer constraints, the inner objective and the inner constraints:

A stands for affine linear, C stands for convex nonlinear, N stands for nonconvex

nonlinear, and P stands for pseudoconvex; for the outer functions the characterization

is joint in x and y while for the inner functions the characterization is only for the

z−dependence, e.g., convex means partially convex on Y . The eleventh column (h)

indicates whether or not the inner objective depends on the outer variables; F stands

for false (no dependence), T for true, and a dash is used for the problems without x

variables (nx = 0). Finally, the last two columns contain the optimal solution value
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and the set of optimal solutions as obtained by an analysis of the problems. Problems

C.24 and C.28 have not yet been analyzed completely and the best available solution

value, along with a (presumably) optimal solution is given. To emphasize that these

problems have not been analyzed, a question mark is set next to the best available

solution value.

Note that some of the problems do not contain any outer variables (nx = 0).

These problems can be easily solved by solving the inner problem and then solving an

augmented outer program. They have been included because, despite their simplicity,

they reveal problems with certain approaches.

Illustrative Examples

To illustrate how the algorithm works consider first Example C.10 without branching.

• Set LBD = −∞ and UBD = ∞.

• Solve the lower bounding problem

min
x∈[0.1,1],y∈[−1,1]

y

and obtain x̄ = 0.1, ȳ = −1, LBD = −1.

• Solve the inner problem for x̄ = 0.1

min
z∈[−1,1]

0.1
(

16 z4 + 2 z3 − 8 z2 − 3/2 z + 1/2
)

and obtain ȳ = 0.5, h∗ = −0.1.

• np = 0 ⇒ y1 = 0.5, V 1 = [0.1, 1].
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• Solve the upper bounding problem

min
y∈[−1,1]

y

s.t. 0.1
(

16 z4 + 2 z3 − 8 z2 − 3/2 z + 1/2
)

≤ −0.1

and obtain x̄ = 0.1, ȳ = 0.5, f(x̄, ȳ) = 0.5.

Set UBD = 0.5, (x∗, y∗) = (x̄, ȳ).

• UBD − LBD = 1.5. Do not terminate.

• Solve the lower bounding problem

min
x∈[0.1,1],y∈[−1,1]

y

s.t. x
(

16 y4 + 2 y3 − 8 y2 − 3/2 y + 1/2
)

≤ −0.1x

and obtain x̄ = 0.1, ȳ = 0.5, LBD = 0.5.

UBD − LBD = 0. Terminate.

Consider now Example C.30 from [133]. Note that this example violates assump-

tion 4.3. In deviation from Algorithm 4.1, we solve the upper bounding problem

before fathoming of the node.

• Set LBD = −∞ and UBD = ∞.

• Solve the lower bounding problem

min
x,y

x

s.t.
0.0332333

z2

+ 0.1z1 − 1 ≤ 0

4
x

z2
+ 2

x−0.71

z2
+ 0.0332333 x−1.3 − 1≤ 0

x ∈ [0.1, 10] y, z ∈ [0.1, 10]2

and obtain x̄ = 0.1936160927, ȳ1 = 7.257797625, ȳ2 = 10, LBD = 0.1936160927.
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• Solve the inner problem for x̄ = 0.1936160927

min
z

−z1 + 0.5864z0.67
1

s.t.
0.0332333

z2

+ 0.1z1 − 1≤ 0

4
x

z2
+ 2

x−0.71

z2
+ 0.0332333 x−1.3 − 1 ≤ 0

x ∈ [0.1, 10] y, z ∈ [0.1, 10]2

and obtain h∗ = −7.230078387, ȳ1 = 9.9667667, ȳ1 = 10.

• Condition (4.21) is violated. This instance does not satisfy Assumption 4.3 and

Algorithm 4.1 would fail. With a slight change it converges at the root node.

• Solve the upper bounding problem

min
y

0.1936160927

s.t. y1 + 0.5864y0.67
1 ≤ −7.230078387

y ∈ [0.1, 10]2

and obtain x̄ = 0.1936160927, ȳ1 = 9.9667667, ȳ2 = 10.

Set UBD = 0.1936160927, x∗ = 0.1936160927, y∗
1 = 9.9667667, y∗

2 = 10.

Numerical Results

Tables 4.2, 4.3 and 4.4 contain the numerical results with the three branching heuris-

tics presented. The branching on the x variables in 2nx + 1 nodes is only applied

to the test problems for which the resulting algorithm is different than the extreme

of no branching. The optimality and feasibility tolerances for BARON were set to

εNLP = 10−6 for all problems. For most problems the optimality tolerance for the

inner problem was set to εh = 10−5 and the absolute and relative termination criteria

to εf = 10−4. For some of the literature problems, when the KKT heuristic is not used

for the lower bound, the computational requirement is quite high, and the tolerances
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were set according to a tradeoff between accuracy and computational time. For these

problems the solution is repeated with the KKT-based lower bounds and the default

tolerances. Note that for all problems the tolerances used satisfy the assumptions in

Lemma 4.1. Example C.30 violates assumption 4.3, but solving the upper bounding

problem at the root node gives the same value as the lower bounding problem and

the algorithm converges at the root node.

The first column (Label) has the label of the problem, while the second (f ∗) and

third (x∗,y∗) the optimal objective value and set of optimal solutions respectively,

obtained by analysis. The fourth column (µmax) contains the maximal values for KKT

multipliers used, and the fifth (εh) the optimality tolerance for the inner program.

For some problems a sequence of decreasing εh2 to obtain the points yk was used

in step 7; the starting value is given in the sixth column (ε0
h2). This value was

decreased by a factor of 1.1 at each iteration down to 0.8εh. For the rest of the

problems εh2 = 0.8εh was used for all iterations. The seventh column (εf) contains the

termination tolerance (absolute and relative termination criteria were set equal). To

guess the boxes V k, a decreasing sequence was used; each time the interval diameter

was set to one and decreased by a factor of 0.9 until the interval extensions showed

feasibility. Natural interval extensions were used.

The eighth through fourteenth columns contain the results obtained with the use

of simple lower bounds while the fifteenth through twenty-first column shows the

results obtained with the use of the KKT heuristic for the lower bounds; f̄ shows

the optimal objective value obtained; x̄, ȳ shows the optimal solution obtained; UBD

shows the node at which the optimal solution was first obtained; #UBD shows the

number of upper bounding calls; #LBD shows the number of lower bounding calls;

the first time columns show the sum of CPU time reported by GAMS and spent in

the main program, while the second time columns show the time obtained by the

timing function. Note that there is a significant difference between these two times

requirements, presumably due to the system calls and processing time for GAMS.

Because some CPU times are very small, we present an average of 10 runs.
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Table 4.1: Summary of problem properties
Label nx ny ng np nq f g h p h f ∗ x∗,y∗

mb 0 1 01 0 1 0 0 0 A - A - - 1 1
mb 0 1 02 0 1 1 0 0 A A A - - ∞ none
mb 0 1 03 0 1 0 0 1 A - C N - -1 -1
mb 0 1 04 0 1 0 0 0 A - N - - 1 1
mb 0 1 05 0 1 0 0 0 A - N - - 0.5 0.5
mb 0 1 06 0 1 0 0 0 A - N - - -1 -1
mb 0 1 07 0 1 1 0 0 A A A - - ∞ none
mb 1 1 01 1 1 2 0 0 C A A - T 0 -0.567,0
mb 1 1 02 1 1 1 0 0 A A N - F -1 -1,-1
mb 1 1 03 1 1 0 0 0 A - N - T 0.5 [0.1,1],0.5
mb 1 1 04 1 1 0 0 0 A - N - T -0.8 0,-0.8
mb 1 1 05 1 1 0 0 0 N - N - T 0 0,0
mb 1 1 06 1 1 0 0 0 A - N - T -1 0,1
mb 1 1 07 1 1 0 0 0 C - N - T 0.25 0.25,0.5
mb 1 1 08 1 1 0 0 0 A - N - T 0 -1,1
mb 1 1 09 1 1 0 0 0 A - N - T -2 -1,0 and -0.5,-1
mb 1 1 10 1 1 0 0 0 C - N - T 0.1875 -0.25,±0.5
mb 1 1 11 1 1 0 0 0 N - N - T 0.25 0.5,0
mb 1 1 12 1 1 0 0 0 N - N - T -0.258 0.18858,-0.76759
mb 1 1 13 1 1 0 0 0 C - N - T 0.3125 0.5,0.5
mb 1 1 14 1 1 0 0 0 C - N - T 0.2095 -0.5544,0.4554
mb 1 1 15 1 1 0 1 0 C - N N T 0.2095 -0.5544,0.4554
mb 1 1 16 1 1 1 1 0 C N C C F 0.1756 -0.4191,-1
mb 2 3 01 2 3 2 1 2 N N N N T -1 ? -1,-1,-1,1,1
mb 2 3 02 2 3 3 0 0 N N N - T -2.3535 -1,-1,1,1,-0.707
gf 1 1 1 1 1 0 C A C A T 2250 11.25,5
gf 2 1 2 0 2 0 N A A C F 1 1,0,1
gf 3 2 3 0 2 1 A - P A T -29.2 ? 0,0.9,0,0.6,0.4
gf 4 1 1 3 0 0 C A C - F 9 3,5
gf 5 1 1 0 1 1 A - N N F 0.193616 0.1936,9.9667,10
sc 1 1 2 0 3 0 A - A A F -13 5,4,2
sc 2 1 1 0 3 0 C - C A F 5 1,3
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Table 4.2: Numerical results without branching
Label f∗ x∗,y∗ µmax εh ε0

h2
εf f̄ x̄, ȳ UBD #UBD #LBD time f̄ x̄, ȳ UBD #UBD #LBD time

mb 0 1 01 1 1 2 10−5 NA 10−4 1.00 1.00 1 1 2 0.06 0.29 1 1 1 1 1 0.05 0.23
mb 0 1 02 ∞ - 2 10−5 NA 10−4 ∞ 0 1 2 0.04 0.29 ∞ 0 0 1 0.00 0.08
mb 0 1 03 -1 -1 2 10−5 NA 10−4 -1.00 -1.00 1 1 2 0.06 0.30 -1.00 -1.00 1 1 1 0.07 0.26
mb 0 1 04 1 -1 2 10−5 NA 10−4 1.00 1.00 1 1 2 0.06 0.30 1.00 1.00 1 1 2 0.05 0.29
mb 0 1 05 0.5 0.5 2 10−5 NA 10−4 0.500 0.500 1 1 2 0.13 0.37 0.500 0.500 1 1 2 0.08 0.32
mb 0 1 06 -1 -1 10 10−5 NA 10−4 -1 -1 1 1 1 0.04 0.23 -1 -1 1 1 1 0.05 0.23
mb 0 1 07 ∞ - 2 10−5 NA 10−4 ∞ 0 1 2 0.03 0.29 ∞ 0 0 1 0.00 0.08
mb 1 1 01 0 -0.567,0 5 10−5 NA 10−4 0 -0.567,0 2 2 2 0.08 0.43 0 -0.567,0 1 1 1 0.05 0.23
mb 1 1 02 -1 -1,-1 10 10−5 NA 10−4 -1 -1 -1 1 1 1 0.04 0.22 -1 -1 -1 1 1 1 0.14 0.33
mb 1 1 03 0.5 [0.1,1],0.5 2 10−5 NA 10−4 0.498 0.1, 0.498 1 1 2 2.0 2.2 0.498 0.100,0.498 1 1 2 0.12 0.36
mb 1 1 04 -0.8 0,-0.8 100 10−5 NA 10−4 -0.8 0 -0.8 1 1 1 0.04 0.22 -0.8 0 -0.8 1 1 1 0.05 0.22
mb 1 1 05 0 0,0 2 10−5 NA 10−4 -0.004 -0.004,0.00 9 9 9 4.4 6.0 -0.004 0.004,0.00 9 9 9 0.87 2.5
mb 1 1 06 -1 0,1 2 10−5 NA 10−4 -1.006 -0.006,1 2 2 2 0.12 0.47 -1.006 -0.006,1 2 2 2 0.13 0.53
mb 1 1 07 0.25 0.25,0.5 10 10−5 NA 10−4 0.246 0.250,0.496 1 3 4 0.25 0.84 0.250 0.25,0.500 2 2 2 0.13 0.49
mb 1 1 08 0 -1,1 2 10−5 NA 10−4 0.00 -1,1.00 1 1 2 0.08 0.31 0.00 -1,1.00 1 1 2 0.09 0.33
mb 1 1 09 -2 (-1,0),(-0.5,-1) 2 10−5 NA 10−4 -2.005 -1,-0.0045 1 1 2 0.15 0.39 -2.0045 -1,-0.0045 1 1 2 0.06 0.30
mb 1 1 10 0.1875 -0.25,±0.5 2 10−5 NA 10−4 0.185 -0.250,-0.494 2 18 19 2.8 6.1 0.1845 -0.250,-0.494 2 3 4 0.27 0.87
mb 1 1 11 0.25 0.5,0 2 10−5 NA 10−4 0.250 0.5,0.00 2 2 2 0.10 0.45 0.2500 0.500,0.00 2 2 2 0.11 0.46
mb 1 1 12 -0.258 0.189,0.768 2 10−5 NA 10−4 -0.260 0.1874,0.438 10 12 13 1.7 3.9 -0.258 0.189,0.434 2 2 2 0.15 0.52
mb 1 1 13 0.3125 0.5,0.5 2 10−5 NA 10−4 0.310 0.501,0.497 3 3 4 0.26 0.84 0.313 0.500,0.500 2 2 2 0.67 1.0
mb 1 1 14 0.2095 -0.554,0.454 10 10−5 NA 10−4 0.200 -0.500,0.447 1 2 3 0.31 0.73 0.202 -0.500,0.450 2 2 2 0.23 0.59
mb 1 1 15 0.2095 -0.554,0.454 10 10−5 NA 10−4 0.207 -0.567,0.454 5 5 5 1.1 2.3 0.2095 -0.554,0.455 1 1 1 0.28 0.53
mb 1 1 16 0.1756 -0.4191,-1 NA 10−5 NA 10−4 -0.4191 -1.000 2 2 3 0.08 0.60 NA NA NA NA NA NA NA
mb 2 3 01 -1? 20 10−5 NA 10−4 -1.00 1,-1,-0.00,-1,-1 1 1 2 0.38 0.69 -1 -1,-1,-1,1,1 1 1 1 0.25 0.51
mb 2 3 02 -2.3535 -1,-1,1,1,-0.707 10 10−5 NA 10−4 -2.35 -1,-1,1,1.00,-0.707 2 2 3 0.17 0.59 -2.35 -1,-1,1,1.00,-0.707 1 1 2 0.16 0.40
gf 1 2250 11.25,5 104 0.001 500 0.1 2250 11.24,5.028 42 42 43 86 97 2250 11.25,5.00 1 1 1 0.32 0.56

10−5 NA 10−4 2250 11.25,5.00 1 1 1 0.32 0.56
gf 2 1 1,0,1 100 10−5 0.1 0.15 1.00 1,-0.003,1.00 1 20 21 2.2 7.6 1.00 1,0,1.00 1 1 1 0.11 0.35

10−5 NA 10−4 1 1,0,1 1 1 1 0.11 0.35
gf 3 -29.2? 0,0.9,0,0.6,0.4 103 0.1 1 0.5 -30.3 0,0.38,0.515,0.768,0.042 15 15 16 20 24 -29.2 0,0.9,0,0.6,0.4 1 1 1 0.56 0.80

10−5 NA 10−4 -29.2 0,0.9,0,0.6,0.4 1 1 1 0.56 0.85
gf 4 9 3,5 NA 10−5 NA 10−4 9.00 3,5.00 2 2 2 0.10 0.46 9 3,5.00 1 1 1 0.05 0.23
gf 5 0.1936 0.1936,9.9667,10 10 10−5 NA 10−4 0.194 0.194,9.97,10 1 1 1 0.07 0.32 0.194 0.194,9.97,10 1 1 1 0.08 0.33
sc 1 -13 5,4,2 10 10−5 NA 10−4 -13 5 4 2 1 1 1 0.05 0.29 -13 5,4,2 1 1 1 0.06 0.30
sc 2 5 1,3 10 10−5 2 0.01 5.00 0.994,3.00 40 52 53 17 31 5.00 1.00,3.00 1 1 1 0.13 0.37

10−5 NA 10−4 5.00 1.00,3.00 1 1 1 0.13 0.37
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Table 4.3: Numerical results with regular branching
Label f∗ x∗,y∗ µmax εh ε0

h2
εf f̄ x̄, ȳ UBD #UBD #LBD time f̄ x̄, ȳ UBD #UBD #LBD time

mb 0 1 01 1 1 2 10−5 NA 10−4 1.00 1.00 1 1 3 0.06 0.37 1 1 1 1 1 0.05 0.22
mb 0 1 02 ∞ - 2 10−5 NA 10−4 ∞ 0 1 3 0.04 0.36 ∞ 0 0 1 0.00 0.08
mb 0 1 03 -1 -1 2 10−5 NA 10−4 -1.00 -1.00 1 1 3 0.08 0.38 -1.00 -1.00 1 1 1 0.08 0.26
mb 0 1 04 1 -1 2 10−5 NA 10−4 1.00 1.00,1.00 1 1 3 0.13 0.42 1.00 1.00 1 1 3 0.05 0.35
mb 0 1 05 0.5 0.5 2 10−5 NA 10−4 0.500 0.500 1 1 3 0.13 0.43 0.500 0.500 1 1 3 0.09 0.39
mb 0 1 06 -1 -1 10 10−5 NA 10−4 -1 -1 1 1 1 0.04 0.22 -1 -1 1 1 1 0.05 0.23
mb 0 1 07 ∞ - 2 10−5 NA 10−4 ∞ 0 1 3 0.04 0.36 ∞ 0 0 1 0.00 0.08
mb 1 1 01 0 -0.567,0 5 10−5 NA 10−4 0 -0.567,0 2 2 2 0.07 0.43 0 -0.567,0 1 1 1 0.04 0.23
mb 1 1 02 -1 -1,-1 10 10−5 NA 10−4 -1 -1 -1 1 1 1 0.05 0.22 -1 -1 -1 1 1 1 0.14 0.33
mb 1 1 03 0.5 [0.1,1],0.5 2 10−5 NA 10−4 0.498 0.1 0.498 1 1 3 2.1 2.4 0.498 0.100,0.498 1 1 3 0.09 0.39
mb 1 1 04 -0.8 0,-0.8 100 10−5 NA 10−4 -0.8 0 -0.8 1 1 1 0.04 0.22 -0.8 0 -0.8 1 1 1 0.04 0.22
mb 1 1 05 0 0,0 2 10−5 NA 10−4 -0.004 0.004,0.00 14 10 17 0.95 3.3 -0.004 0.004,0.00 14 10 17 0.81 3.0
mb 1 1 06 -1 0,1 2 10−5 NA 10−4 -1.01 -0.01,1 2 2 3 0.13 0.54 -1.01 -0.009,1 2 2 3 0.13 0.55
mb 1 1 07 0.25 0.25,0.5 10 10−5 NA 10−4 0.246 0.250,0.4956 1 3 7 1.1 1.8 0.250 0.250,0.500 3 2 3 0.16 0.57
mb 1 1 08 0 -1,1 2 10−5 NA 10−4 0.00 -1,1.00 1 1 3 0.11 0.40 0.00 -1,1.00 1 1 3 0.10 0.40
mb 1 1 09 -2 (-1,0),(-0.5,-1) 2 10−5 NA 10−4 -2.00 -1,-0.0045 1 1 3 0.16 0.46 -2.00 -1, -0.0045 1 1 3 0.06 0.36
mb 1 1 10 0.1875 -0.25,±0.5 2 10−5 NA 10−4 0.185 -0.250,-0.494 2 18 37 2.2 6.5 0.1845 -0.250,-0.494 2 3 7 0.34 1.1
mb 1 1 11 0.25 0.5,0 2 10−5 NA 10−4 0.250 0.500,0.00 3 2 3 0.32 0.73 0.250 0.500,0.00 3 2 3 0.12 0.54
mb 1 1 12 -0.258 0.189,0.768 2 10−5 NA 10−4 -0.260 0.187,0.438 18 14 27 1.7 5.0 -0.258 0.189,0.434 3 2 3 0.15 0.58
mb 1 1 13 0.3125 0.5,0.5 2 10−5 NA 10−4 0.309 0.500,0.496 3 3 5 0.30 0.95 0.3125 0.500,0.500 3 3 3 0.75 1.3
mb 1 1 14 0.2095 -0.554,0.454 10 10−5 NA 10−4 0.200 -0.500,0.447 1 2 5 0.49 1.0 0.2025 -0.500,0.4500 2 2 3 0.23 0.64
mb 1 1 15 0.2095 -0.554,0.454 10 10−5 NA 10−4 0.207 -0.567,0.454 8 5 11 1.3 2.9 0.2095 -0.554,0.455 1 1 1 0.29 0.53
mb 1 1 16 0.1756 -0.4191,-1 NA 10−5 NA 10−4 -0.4191 -1.000 2 2 3 0.08 0.70 NA NA NA NA NA NA NA
mb 2 3 01 -1? 20 10−5 NA 10−4 -1.003 1,-1,-0.003,-1,-1 1 1 3 0.36 0.72 -1 -1,-1,-1,1,1 1 1 1 0.26 0.51
mb 2 3 02 -2.3535 -1,-1,1,1,-0.707 10 10−5 NA 10−4 -2.35 -1,-1,1,1.00,-0.707 2 2 5 0.25 0.80 -2.35 -1,-1,1,1.00,-0.707 1 1 3 0.16 0.47
gf 1 2250 11.25,5 104 0.001 500 0.1 2252 11.15,5.40 23 41 81 3.5 17 2250 11.25,5.00 1 1 1 0.32 0.57

10−5 NA 10−4 2250 11.25,5.00 1 1 1 0.33 0.56
gf 2 1 1,0,1 100 10−5 0.1 0.15 0.997 1,-0.003,1.00 1 26 53 3.1 11 1.00 1,0,1.00 1 1 1 0.11 0.35

10−5 NA 10−4 1.00 1,0,1.00 1 1 1 0.11 0.35
gf 3 -29.2? 0,0.9,0,0.6,0.4 103 0.1 1 0.5 -29.9 0,0.27, 0.554,0.777,0 4 7 15 3.7 6.2 -29.2 0, 0.9, 0, 0.6, 0.4 1 1 1 0.55 0.80

10−5 NA 10−4 -29.2 0, 0.9, 0, 0.6, 0.4 1 1 1 0.56 0.84
gf 4 9 3,5 NA 10−5 NA 10−4 9.00 3.00,5.00 2 2 3 0.12 0.54 9 3,5.00 1 1 1 0.05 0.23
gf 5 0.1936 0.1936,9.9667,10 10 10−5 NA 10−4 0.194 0.194,9.97,10 1 1 1 0.07 0.32 0.194 0.194,9.97,10 1 1 1 0.09 0.33
sc 1 -13 5,4,2 10 10−5 NA 10−4 -13 5 4 2 1 1 1 0.06 0.30 -13 5 4 2 1 1 1 0.06 0.30
sc 2 5 1,3 10 10−5 2 0.01 5.00 1, 3 87 56 109 5.4 24 5.00 1.00,3.00 1 1 1 0.13 0.37

10−5 NA 10−4 5 1.00,3.00 1 1 1 0.13 0.37
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Table 4.4: Numerical results with special branching on the x variables
Label f∗ x∗, y∗ µmax εh ε0

h2
εf f̄ x̄, ȳ UBD #UBD #LBD time f̄ x̄, ȳ UBD #UBD #LBD time

mb 1 1 15 0.2095 -0.554,0.454 10 10−5 NA 10−4 0.2069 -0.567,0.454 5 5 5 1.1 2.3 0.2095 -0.554 ,0.455 1 1 1 0.28 0.52
mb 2 3 01 -1? 20 10−5 NA 10−4 -1.00 1,-1,-0.003,-1,-1 1 1 2 0.38 0.68 -1 -1,-1,-1,1,1 1 1 1 0.26 0.50
mb 1 1 16 0.1756 -0.4191,-1 NA 10−5 NA 10−4 -0.4191 -1.000 2 2 3 0.08 0.70 NA NA NA NA NA NA NA
gf 1 2250 11.25,5 104 0.001 500 0.1 2250 11.18,5.30 19 41 49 3.4 14 2250 11.25, 5.00 1 1 1 0.32 0.56

10−5 NA 10−4 2250 11.25,5.00 1 1 1 0.32 0.56
gf 2 1 1,0,1 100 10−5 0.1 0.15 0.997 1,-0.003,1.00 1 17 23 1.2 5.6 1.00 1,0,1.00 1 1 1 0.11 0.35

10−5 NA 10−4 1.00 1,0,1.00 1 1 1 0.10 0.35
gf 3 -29.2? 0,0.9,0,0.6,0.4 103 0.1 1 0.5 -29.9 0,0.27,0.554,0.777,0 4 19 42 6.9 15 -29.2 0, 0.9, 0, 0.6, 0.4 1 1 1 0.56 0.81

10−5 NA 10−4 -29.2 0, 0.9, 0, 0.6, 0.4 1 1 1 0.56 0.85
gf 5 0.1936 0.1936,9.9667,10 10 10−5 NA 10−4 0.194 0.194, 9.97,10 1 1 1 0.07 0.32 0.194 0.194,9.97,10 1 1 1 0.09 0.33
sc 1 -13 5,4,2 10 10−5 NA 10−4 -13 5, 4, 2 1 1 1 0.05 0.32 -13 5, 4, 2 1 1 1 0.05 0.30
sc 2 5 1,3 10 10−5 2 0.01 5.00 1.00,3.00 32 65 125 4.0 24.7 5.00 1.00,3.00 1 1 1 0.13 0.37

10−5 NA 10−4 5.00 1.00,3.00 1 1 1 0.13 0.37
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Conclusions from Numerical Experiments

All the test problems were solved without significant numerical difficulties. For suf-

ficiently small tolerances the solution furnished approaches the optimal solution. As

in single-level optimization appropriate choice of tolerances is necessary for computa-

tional efficiency and accuracy of solutions. Moreover, the computational requirements

are greatly dependent on the problem structure.

The KKT-based heuristic for the lower bound, when applicable, greatly reduces

the number of iterations needed, and moreover since it gives a tighter bound, the

upper bounding procedure is less likely to produce points far away from (absolutely)

feasible points. On the other hand, the cost per iteration is higher because of the

complementarity conditions. With the use of the KKT-based heuristic for the lower

bound, the computational requirement for all problems and all three heuristics was

less than 1 second.

As expected, when no branching is performed, the number of iterations is smaller,

but the cost per iteration is higher. For the test set considered, there is no clear

advantage of one branching heuristic over the other, which indicates that the optimal

branching heuristic depends on the problem. As a general guideline for problems that

are solved in few iterations no branching is advantageous. For larger problems, the

elaborate branching to 2nx + 1 nodes is expected to outperform the other heuristics

because no logical constraints are needed. Finally, for any given problem, typically

either the elaborate branching or no branching will outperform the regular branching.

4.7 Conclusions and Future Work

An algorithm for the global solution of bilevel programs involving nonconvex functions

was presented. The novelty is that nonconvexity in the inner program is permitted

and a guaranteed global solution is obtained. Finite termination of the algorithm to

an ε−optimal solution is proved. An implementation is described and tested on a

number of original and literature test problems.

Several alterations to the algorithm and implementation are conceivable. An
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interesting alternative to the MINLP formulation of the KKT-based lower bounds

is an MPEC formulation [262, 260]. Also, different global MINLP algorithms could

be applied, such as outer approximation [169]. Furthermore, in the case of regular

branching, the introduction of the logical constraints to the lower bounding problems

could be deferred until the node size is such that the parametric upper bound to the

inner problem is valid for the entire node (X i ⊂ V k). Preliminary experimentation

shows that this is not advantageous.

There are many alternatives to the implementation of logical constraints described

in Subroutine 4.3. For instance, the number of binary variables used can be reduced to

at most nx for each logical constraint, by the use of nonconvex nonlinear constraints.

For instance

wj ≥ 1 −

(

2xj − vk,LO
j − vk,UP

j

)2

(

vk,UP
j − vk,LO

j

)2

enforces wj = 1 if xj ∈ [vk,LO
j , vk,UP

j ]. Alternatively, instead of introducing the con-

straint for the entire box V k, it may be advantageous to introduce it for an inscribed

ellipsoid using a single binary variable

w ≥ 1 −
nx
∑

j=1

(

2xj − vk,LO
j − vk,UP

j

)2

(

vk,UP
j − vk,LO

j

)2 .

Finally there are alternatives to the big-M formulation such as the convex hull for-

mulation, see e.g., [130].

The algorithm was presented in a branch-and-bound framework. A more gen-

eral alternative is to embed it in a generalized branch-and-cut framework, such as

the one described in [171] for nonconvex MINLPs. Also, other branching heuristics

could be introduced, such as branching only on a subset of the variables (the com-

plicating variables in some sense) or branching on the inner variables for the lower

bounding problem (using Y i) but not for the upper bounding problem (keeping Y ).

In single-level programs algorithms incorporating domain reduction show significant

performance enhancements over pure branch-and-bound [266]. It would be interesting
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to also consider domain reduction for bilevel programs.

The algorithm presented here relies on the global solution of the subproblems,

resulting in a nested exponential procedure, and it would be interesting to, at least

partially, eliminate this nested procedure. Currently, no alternative other than global

solution of the inner problem exists to obtain or confirm an upper bound, but an

obvious possibility is to solve the upper bounding problem only periodically. On the

other hand, the lower bounding problem could be solved locally to obtain a candidate

x̄ and a convex relaxation of the lower bounding problem (4.25) could be solved to

obtain the lower bound. Preliminary experimentation with these ideas showed slower

convergence, but for problems of large size they may be beneficial. Also, to obtain

points yk, the solution of simpler programs than (4.28) is conceivable.

The ideas presented here could be extended to address some related programs

such as flexibility problems [131], semi-infinite programs, and bilevel programs in-

volving binary variables. To that extent the algorithmic ideas presented here could

be combined with different approaches, such as methods based on interval-extensions

[181, 44, 45]. Finally, the extension to equality-constrained inner programs is of in-

terest.
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Chapter 5

Conclusions and Future Work

As mentioned in the introduction, this thesis consists of essentially three parts. In each

of these parts conclusions are presented and scope for future work in the respective

areas is identified. The purpose of this chapter is to provide an overall conclusion and

some possibilities of further connections between the three parts.

In the first part an integrated design methodology for portable power generation

based on fuel cell systems is proposed. This methodology is based on a decomposition

into three levels of modeling detail, namely system-level models for process synthesis,

intermediate fidelity models for optimization of component sizes and operation, and

computational fluid dynamics detailed models for geometric design. This methodol-

ogy can be extended to devices based on other power generation mechanisms, such as

oxidation of a fuel in conjunction with a thermophotovoltaic element. Moreover it is

interesting to consider the extension to more general microchemical systems. Finally,

considering other chemical products that are processes is interesting.

In the second part algorithms for parametric mixed-integer programming are de-

veloped. Mathematical programs often involve unknown parameters and the task of

parametric optimization is, in principle, to solve the mathematical program for all

possible values of these unknown parameters. In this thesis algorithms for the general

case, where a parameter affects the cost-vector, right-hand side vectors and matrix,

and the multiparametric cost vector case are proposed, implemented and tested. To

our best knowledge, for either problem no algorithms exist in the open literature.

265



Extensions of interest are the multiparametric general case and the nonlinear case.

Finally, the co-operative formulation of bilevel programs with nonconvex functions

is considered. Most literature contributions for bilevel programs consider convex inner

programs and the algorithms available are only applicable to bilevel programs with

convex inner programs, or furnish a semi-local solution, i.e., a local solution in the

inner and outer programs. We first identify consequences of nonconvexity in the

inner program and then propose an algorithm based on a series of global single-level

optimization problems.

The main motivation for the development of parametric optimization algorithms

within this thesis is the allocation of R&D resources in micropower, in particular

the identification of the components in micropower generation devices that are the

most important to develop. Due to limitations in the simulation and optimization

tools used, two instances for the models are implemented, one for simulation and one

for parametric optimization. To take full advantage of the algorithms developed it

is of paramount importance to overcome these limitations and use the same model-

ing framework. This would facilitate case studies and provide insight into the most

important components. Moreover the extension to case studies with more than one

unknown parameter would be very interesting. As described in Chapter 3 the de-

velopment of a general-purpose algorithm for multiparametric optimization is very

difficult, but the development of heuristic-based algorithms for the special case of two

parameters in the resource allocation formulation seems tractable. A potential basis

for this algorithm are the formulations for the subproblems of identifying a candidate

solution and probing the feasibility and optimality region.

Bilevel programs are considered within this thesis, mainly due to the inherent and

well-known relation of bilevel programming and parametric optimization. Regardless

of that, bilevel programs are useful design tools and our algorithm could thus be

used in conjunction with our design methodology for micropower generation devices.

One possibility is to consider some components that are limited by chemical or phase

equilibrium considerations. Another interesting application of two-stage formulations

is to consider the flexibility and robustness of designs.
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Appendix A

Modeling Details

A.1 Appendix: Symbols Used

Q

Q

Reactor

Component separation

Feed

Design decision

Burner

Stream splitter

Compressor

Fuel cell

Pump Flash

Figure A-1: Explanation of the symbols used.

A.2 Appendix: Nomenclature
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Table A.1: Nomenclature

Abbrev. Property Unit
A Surface m2

d Cartridge inner diameter m

ebat
grav Gravimetric energy density of auxiliary battery Wh/kg

ebat
vol

Volumetric energy density of auxiliary battery Wh/l
F Faraday constant C/mol
G◦

i Molar Gibbs free energy of pure component i at reference pressure J/mol
∆rG Gibbs free energy of reaction r at system pressure J/mol
Hi,j Molar enthalpy of component i in stream j J/mol

kth
i Heat conductivity of species i W

mK

ktrns
i Transport coefficient for component i mol

s
/mol

s

KC Compressor parameter J/mol/K
KP Pump parameter J/l
M Mass kg

MWi Molar Weight of component i kg/mol [234]
mi Mass of Component i kg
ni Mol number of component i mol
ni0 Initial mol number of component i mol
Ni,j Molar flow of component i of stream j mol/s

Ni,diff Diffusion Rate of Component i mol/s
P Pressure bar

Pref Reference pressure bar
PW Power W
Qloss Heat losses W
Qp Heat load of unit p W

Qi,in Heat Exchange into Unit i W
Qi,out Heat Exchange out of Unit i W

Qdistant Heat exchange from distant units W
R Gas constant J/mol/K
t Cartridge wall thickness m
T Temperature K

Tamb Ambient Temperature K
u Velocity m/s
U Voltage V

Uloss Overall heat loss coefficient W/m2/K
V Volume m3

wi Weight Fraction of Component i kg/kg

α Splitratio mol
s

/mol
s

ǫ Product of emissivity and view factor W
m2 / W

m2

ηdiff Diffusion Efficiency mol
s

/mol
s

ηads Adsorption Efficiency mol
s

/mol
s

ηM Membrane efficiency mol
s

/mol
s

ηF C Fuel cell efficiency W/W
ζr Conversion of reaction r mol/mol
νi,j Stoichiometric Coefficient of Component i in Reaction j
ξr Extent of reaction r mol/s
ρi Density of Component i kg/m3

σA Maximal allowable tensile stress Pa
τ Residence time s

τmission Mission duration (time between refueling) s
τstartup Process startup time s

Φ Air ratio mol
s

/mol
s

χtemp Temperature Loss Factor K/K
χheat Heat Exchange Loss Factor W/W

Ψ Water Excess Coefficient mol
s

/mol
s
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A.3 Appendix: Physical Properties

Ideal gas phase and ideal solution are assumed. The reference for enthalpy and

entropy is taken at Tref = 298 K, Pref = 1 bar and elements in their standard states.

Two different models are being used, one with mean heat capacity and a simplified

vapor liquid equilibrium (VLE) and one with polynomial heat capacity and a more

elaborate VLE.

The entropy of formation Sf
i is calculated as

Sf
i =

Hf
i − Gf

i

Tref

.

If mean heat capacities are used the molar enthalpy and entropy in the gas phase are

calculated as

Hg
i (T ) = Hf

i + CPM,i (T − Tref)

S◦
i (T ) = Sf

i + CPM,i ln

(

T

Tref

)

.

Alternatively a 4th-order polynomial with two temperature intervals [Tmin, Tint], [Tint, Tmax]

is used for the heat capacity

Hg
i (T ) = Hf

i + CPA,i (T − Tref) + CPB,i

(

T 2 − T 2
ref

)

2
+ CPC,i

(

T 3 − T 3
ref

)

3

+ CPD,i

(

T 4 − T 4
ref

)

4
+ CPE,i

(

T 5 − T 5
ref

)

5

S◦
i (T ) = Sf

i + CPA,i ln

(

T

Tref

)

+ CPB,i (T − Tref) + CPC,i

(

T 2 − T 2
ref

)

2

+ CPD,i

(

T 3 − T 3
ref

)

3
+ CPE,i

(

T 4 − T 4
ref

)

4

The Gibbs free energy of the pure components in the gas phase is then calculated as

G◦
i = Hg

i − T S◦
i .

The vaporization enthalpy for the condensible components H2O, CH3OH is assumed
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linear in the temperature. This approach, instead of using an exact calculation of the

vaporization enthalpy, e.g., by the Antoine equation, has the advantage of much easier

convergence and is a valid approximation for atmospheric pressure, since vaporization

takes place in a very narrow temperature range.

∆vapHi(T ) = ∆vapHi(Tlo) +
T − Tlo

Tup − Tlo

(∆vapHi(Tup) − ∆vapHi(Tlo))

For the other components the enthalpy of vaporization is irrelevant and was arbitrarily

set to zero.

There is a choice between simplified and more elaborate vapor liquid equilibrium

(VLE). In the simplified VLE if the temperature is lower than the boiling temperature

of the component the component is assumed liquid, otherwise gaseous. In order to

avoid a discontinuity a transition region of 0.1K is used.

Tboil,i < T ⇒ Hi(T ) = Hg
i (T )

Tboil,i − 0.1 ≤ T ≤ Tboil,i ⇒ Hi(T ) = Hg
i (T ) − ∆vapHi(T )

Tboil,i − T

0.1

T < Tboil,i − 0.1 ⇒ Hi(T ) = Hg
i (T ) − ∆vapHi(T ).

For the more elaborate VLE T-P flash calculations are considered according to [172,

p. 75]. Because of the assumption of ideal solution and ideal gas phase the equilibrium

condition for the 2-phase region can be represented as Pyi = Psat,i(T ) xi and the T-

P flash calculations contain only one unknown, namely the vapor fraction. In the

case of recycle streams, mixing of streams is needed and H-P flashes as described in

[172, p. 80] are used. The wide boiling scheme is used where the vapor fraction is

calculated in an inner loop similar to the T-P flash and an outer loop is performed

for the temperature. A modification was done where the stepsize for the temperature

is adjusted to be strictly decreasing as the iteration proceeds.
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A.4 Calculation of Energy Densities

When comparing the devices considered with batteries in terms of energy densities,

it is necessary to consider the whole system, namely the device including the process

units, the packaging, the fuel and the fuel cartridge. We sometimes considered only

the fuel energy density, defined as the power output over the gravimetric or volumetric

flowrate, e.g., PW
P

i,j MWi Ni,feedj
. This metric has the advantage that it is independent of

the mission duration, but is only a valid approximation to the system energy density

for long mission durations when the fuel size dominates over the device size.

In order to calculate the system size (mass and volume) the mission duration

τmission, i.e., the time period between refueling, needs to be specified. The required fuel

volume/mass are the product of the mission duration and the volumetric/gravimetric

flowrate. For supercritical components (N2, O2, H2) the molar volume is calculated

assuming ideal gas at a given storage pressure, while for subcritical components the

liquid molar volume is used. For the supercritical components the storage pressure is

a specified parameter, while for subcritical components it is calculated as a function of

the ambient temperature. A cylindrical cartridge of a given aspect ratio is assumed.

For liquids and solids a constant thickness is assumed, while for gases and subcritical

components the thickness t is calculated according to the ASME Boiler and Pressure

Vessel Code [226, 554-555]

t =
P/σA

1 − 0.6 P/σA

d

2
+ tmin, P/σA ≤ 0.385

t =

(
√

1 + P/σA

1 − P/σA

− 1

)

d

2
+ tmin, P/σA > 0.385,

where d is the inner diameter of the cartridge and σA is the maximal allowable tensile

stress, an input parameter. For the special cases of hydrogen and oxygen generators

a different calculation is undertaken, described in the respective subsections.

During the mission duration the mass of the fuel is constantly decreasing, whereas

typical batteries have a constant mass, and the mass of zinc-air batteries increases

with time as the metal is oxidized. We calculate both the initial and the average
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(1/2 the initial) fuel mass. We assume a rigid fuel cartridge and therefore the whole

cartridge volume is considered. The device volume is estimated by calculating the

necessary volume for the units and multiplying with a factor, order of magnitude

2 − 10, accounting for the volume necessary for the packaging of the devices. The

device mass is then calculated with a given density.

It is most likely that the devices will be coupled with a relatively small, most

likely rechargeable battery, for start-up and shut-down operations; the function of

the battery will be to provide the required power and possibly to heat the fuel cell

and reactor stack. We calculate the battery size based on a given start-up time period

τstartup and energy densities

M bat = PW τstartup/e
bat
grav

V bat = PW τstartup/e
bat
vol.

A.5 Component Models

A.5.1 Splitter

Splitters have one incoming stream, which is split into two streams

Ni,out1 = α Ni,feed

Ni,out2 = (1 − α) Ni,feed.

In the splitter before the recycle loop the split ratio α is a parameter, while in the

other splitters it is a variable which is calculated by the overall heat balance.

No heat losses are considered for the splitter, and no heat exchange is allowed, so

that the energy balance is simply

∑

i

Ni,feedHi,feed =
∑

i

Ni,out1Hi,out1 +
∑

i

Ni,out2Hi,out2.
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A.5.2 Reactor and Burners

Reactors and burners have one output stream, but multiple inlet streams. In the

reactor the outlet stream is calculated according to the stoichiometric matrix approach

Ni,out =
∑

j

Ni,feedj + ξrνi,r.

Only one idealized reaction is assumed to take place in each reactor or burner to a

given conversion ζr, so that the extent of reaction ξr can be calculated as

ξr = ζr min
i∈ reactants

(

∑

j Ni,feedj

−νi,r

)

.

An excess of oxygen (Φ ≥ 1) is always assumed for the reactors and burners

∑

j

NO2,feedj = −Φ
∑

r

ξrνO2,r.

Φ is an operating parameter which needs to be specified prior to the simulation.

In the reactors and the burners heat losses are considered and heat exchange is

allowed, so that the energy balance reads:

∑

i

Ni,outHi,out(Tout) =
∑

j

∑

i

Ni,feedjHi,feedj + Qp − Qloss.

Note that the outlet temperature Tout is allowed to be different than the operating

temperature Top in order to allow heat recovery.

A.5.3 Mixer

Mixers have one output stream, but multiple inlet streams. In the mixer the outlet

stream is calculated according to:

Ni,out =
∑

j

Ni,feedj.
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No heat losses are considered for the mixer, and no heat exchange is allowed, so that

the energy balance is simply

∑

i

Ni,outHi,out =
∑

j

∑

i

Ni,feedjHi,feedj.

A.5.4 Membrane

The membrane separates part of the hydrogen in the inlet stream, into a pure hydro-

gen stream. The rest of the hydrogen is lost into the waste stream. The part of the

hydrogen that is recovered is specified by the membrane efficiency ηM

Ni,feed = Ni,out1 + Ni,out2

NH2,out1 = ηM NH2,feed

Ni6=H2,out1 = 0.

This model is based on the assumption that hydrogen is the only element that can

appreciably permeate through the membrane and there is a need for a partial pressure

gradient which results in the hydrogen loss to the waste stream.

No heat losses are considered for the membrane, and no heat exchange is allowed,

so that the energy balance is simply

∑

i

Ni,feedHi,feed =
∑

i

Ni,out1Hi,out1 +
∑

i

Ni,out2Hi,out2.

The pressure loss associated with membranes is not taken into account.

A.5.5 Compressor

While large-scale compressors are typically modeled as adiabatic, at the micro scale

heat transfer is relatively high and therefore it is likely that compressors or pumps will

be operated isothermally, most probably at near-ambient temperature. Motivated by

the isothermal compression of ideal gases, the required power for the compression is
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modeled as

PW =
1

ηP

R T ln

(

Pout

Pin

)

∑

i

Ni = KP T
∑

i

Ni,

where KP ≡ 1
ηP

R ln
(

Pout

Pin

)

is a parameter, that needs to be specified prior to the

simulation. KP can be estimated by knowledge of the pressure ratio that is to be

achieved, and the compressor efficiency ηP . For our models the consumed power is

assumed to be lost to the environment as heat, so that no energy balance is needed.

A.5.6 Fuel Cells

For all fuel cells we assume that the produced fuel cell power, PW , is proportional

to the Gibbs free energy of reaction for the electrochemical reactions:

PW = ηFC

∑

r

ξr ∆rG,

where the Gibbs free energy of reaction is given by

∆rG =
∑

i

νi,r

(

G◦
i (T ) + RT ln

(

P

Pref

))

.

We neglect the mixing term, because this would require knowledge of the composition

along the fuel cell, which depends on the geometry. With the exception of the SOFC,

only the final hydrogen reaction is considered to contribute to the produced power,

by using the notion of equivalent hydrogen [9]. A heat balance over the fuel cell yields

∑

i

Ni,outc Hi,outc(Toutc) +
∑

i

Ni,outa Hi,outa(Touta)

=
∑

i

Ni,inc Hi,inc(Tinc) +
∑

i

Ni,ina Hi,ina(Tina) + Qp − Qloss + PW,

where Qloss is calculated as described in [201]. In all fuel cells we allow for specification

of minimum water feed in the anode; this is calculated based on the water required for

complete reforming reactions and water permeation, multiplied by the water factor

Ψ, a given excess parameter; this factor is defined for each fuel cell in the following
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subsections.

Proton Ceramic Fuel Cell (PCFC)

In this type of fuel cell, oxygen vacancies in a ceramic membrane allow for protonic

conduction from the anode to the cathode and water conductivity [75] allows for

water management via diffusion from the cathode to the anode. We assume that

the mechanism described for methane reforming in [75] can be extended to arbitrary

hydrocarbons and to methanol, but we do not consider ammonia conversion in this

fuel cell model. We allow the direct feed of fuels to the PCFC, as well as feed of reactor

effluents. We assume that hydrocarbons, methanol, and carbon monoxide undergo

each one net reaction resulting in the production of carbon dioxide and hydrogen

based on given conversions:

CnH2n+2(g) + 2n H2Oads → n CO2(g) + (6n + 2) Hads, ξa1 = ζfuel NCnH2n+2,feed.

CH3OH(g) + H2Oads → CO2(g) + 6 Hads, ξa2 = ζfuel NCH3OH,feed.

CO(g) + H2Oads → CO2(g) + 2Hads, ξa3 = ζCONCO,feed.

Hydrogen from the feed has to adsorb to and diffuse through the membrane. We

assume that only a fraction, ηads, of the inlet hydrogen will adsorb to the membrane,

and a fraction, ηdiff , thereof will diffuse to the cathode. Any hydrogen produced from

reforming is produced as adsorbed hydrogen, so a fraction, ηdiff , of it will diffuse. For

both cases, we assume that the fraction of adsorbed hydrogen that does not diffuse

fully de-adsorbs from the membrane, since we do not allow accumulation. Based on

these assumptions, the amount of diffused hydrogen that is available on the cathode

side is given by

NH,diff = ηdiff

∑

a,r

ξa,rνHads,a,r + 2 ηads ηdiff NH2,feeda,

where the summation is over all reforming reactions at the anode a. We assume that
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all diffused hydrogen reacts with oxygen at the cathode side via

4 Hads + O2(g) → 2 H2Oads,

with an extent of reaction given by the diffusion rate of hydrogen

ξc =
1

4
NH,diff .

The modeling assumptions have the consequence that the rate of water production

at the cathode is larger than the rate of water consumption at the anode. We further

assume that the anode inlet stream, does not contain a sufficient amount of water

to reverse the presumed concentration gradient, and that all water for the reforming

reactions will diffuse from the cathode to the anode, which defines

NH2O,diff = −
∑

a,r

ξa,r νH2O,a,r,

where the summation is again over all anode reforming reactions. Therefore, a mass

balance on the cathode side yields

NH2,outc = NH2,inc = 0

NH2O,outc = NH2O,inc + ξc νH2O − NH2O,diff

Ni,outc = Ni,inc + ξc νi, i 6= H2, H2O.

Similarly for the anode:

NH2,outa = NH2,ina +
∑

a,r

ξa,r νH2,r − NH2,diff

NH2O,outa = NH2O,ina

Ni,outa = Ni,ina +
∑

a,r

ξa,r νi,a,r, i 6= H2, H2O.

The oxygen feed to the cathode is specified relative to the stoichiometric requirement
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to oxidize the diffused hydrogen completely:

NO2,feedc = Φ ξc.

We allow for a specification of water feed to the anode by requiring

NH2O,feeda ≥ Ψ
∑

a,r

−νH2O,r ξa,r

ζi
− NH2O,diff ,

where the reforming reactions are assumed to be complete. Strict inequality is ob-

served when recycling streams or the reactor effluent stream provides sufficient water.

Solid Oxide Fuel Cell (SOFC)

We consider simultaneously the possibilities of internal or external reforming, with the

option of bypassing the reactor and feeding fuel directly to the fuel cell. A common

assumption [9], is to assume that carbon monoxide, hydrocarbons and alcohols are

consumed in reforming and water gas-shift reactions rather than in direct oxidation.

CO(g) + H2O(g) → CO2(g) + H2(g), ξ1 = ζCO NCO,feed

CnH2n+2(g) + 2 n H2O(g) → n CO2(g) + (3 n + 1)H2(g), ξ2 = ζfuel NCnH2n+2,feed

CnH2n+1OH(g) + (2 n− 1)H2O(g) → n CO2(g) + 3 n H2(g), ξ3 = ζfuel NCnH2n+1OH,feed.

In order to model a fuel cell that is not capable of internal reforming, one must

set ζfuel and/or ζCO equal to zero. We use the notion of “equivalent hydrogen”,

which accounts for direct hydrogen feed as well as hydrogen produced from internal

reforming of CO, hydrocarbons, or alcohols [9]:

NH2,equiv = ζH2
NH2,feed +

3
∑

r=1

νH2,r ξr.

The hydrogen reacts with oxygen according to

2 H2 + O2 → 2 H2O,
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with an extent of reaction defined by the equivalent hydrogen

ξ4 =
1

2
NH2,equiv.

The other extreme possibility is to assume that all components are directly oxidized

in an electrochemical reaction

2 CO(g) + O2 → 2 CO2(g), ξ5 = ζCO NCO,feed

2 CnH2n+2(g) + (3 n + 1)O2(g) → 2 n CO2(g) + (2 n + 2)H2O(g), ξ6 =
ζfuel

2
NCnH2n+2,feed

2 CnH2n+1OH(g) + 3 n O2(g) → 2 n CO2(g) + (2 n + 2)H2O(g), ξ7 =
ζfuel

2
NCnH2n+1OH,feed

4 NH3(g) + 3 O2 → 2 N2(g) + 6 H2O, ξ8 =
ζfuel

4
NNH3,feed.

We allow for either extreme; in the case of direct oxidation all electrochemical reac-

tions are assumed to contribute to power generation

PW = ηFC

8
∑

r=4

ξr∆rG,

while in the case of intermediate reforming reactions only the hydrogen oxidation is

assumed to produce power

PW = ηFCξ4∆4G.

The amount of oxygen fed to the cathode is calculated relative to the stoichiometric

requirement, assuming that all diffused oxygen will react in the anode:

NO2,feedc = Φ NO2,diff = Φ
8
∑

r=4

ξr.

In order to prevent coking, an excess of water may be necessary. The water feed to

the anode is set according to:

NH2O,feeda ≥ Ψ

3
∑

r=1

−νH2O,r ξa,r

ζr
− ξ4 νH2O,4,
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where the reforming reactions are assumed to be complete, and the produced water

is assumed to be available for reforming reactions. Strict inequality is observed when

recycling streams or the reactor effluent stream provides sufficient water. A mass

balance on the cathode yields

Ni,outc = Ni,inc, i 6= O2,

NO2,outc = NO2,inc − NO2,diff ,

and for the anode

Ni,outa = Ni,ina +

4
∑

r=1

ξr νi,r, i 6= O2,

NO2,outa = NO2,ina +

4
∑

r=1

ξr νi,r + NO2,diff .

Single Chamber Fuel Cell

We consider the option of a single chamber fuel cell which uses external reforming,

resulting in an inlet feed rich in H2 and CO. The unreacted fuel is assumed to be

inert. Inlet CO is reformed via the water gas-shift reaction with extent of reaction ξ1

according to

CO(g) + H2O(g) → CO2(g) + H2(g)

ξ1 = ζCO NCO,feed.

We again use the notion of “equivalent hydrogen” [9], here calculated as

NH2,equiv = ζH2
NH2,feed + ξ1.
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All equivalent hydrogen reacts with oxygen with an extent of reaction ξ2 according

to

2 H2 + O2 → 2 H2O

ξ2 =
1

2
NH2,equiv.

The water is set relative to complete reforming reaction of all components

NH2O,feeda ≥ Ψ (NCO,in + NCH3OH + 6 NC3H8,in + 8 NC4H10,in) − ξ2 νH2O,2,

and the produced water is assumed to be available for reforming reactions.

Direct Methanol Fuel Cell (DMFC)

In this type of polymer electrolyte based fuel cell, an inlet stream of methanol and

water is fed to the anode, where methanol is reformed at a relatively low temperature,

around 350K. No external reforming is required and we therefore consider only direct

feed of water and methanol. Operating requirements include relatively dilute solutions

of methanol in water, and major technical challenges include methanol crossover and

water management [136]. At the anode we assume methanol reforming with an extent

of reaction ξ1 based on a given fuel conversion, ζfuel:

CH3OH + H2O → CO2 + 3 H2

ξ1 = ζfuel NCH3OH,feeda.

A fraction ktrns
H2

of the hydrogen produced by this reaction is assumed to diffuse to

the cathode side

N trns
H2

= ktrns
H2

ξ1 νH2,1 = 3 ktrns
H2

ξ1.

The hydrogen diffusion occurs in protonic form, and electro-osmotic drag results in

water transport from the anode to the cathode [235]. On the other hand, concen-

tration gradients may result in water diffusion from the cathode to the anode, while
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electro-osmotic drag and diffusion lead to methanol transport from the anode to cath-

ode [235, 134, 188]. For the water transport we use an effective drag coefficient that

includes the electro-osmotic drag and diffusion and the overall transfer rate of water

is defined relative to the proton flux:

N trns
H2O

= 2 ktrns
H2O

Ndiff
H2

.

The coefficient ktrns
H2O

, can be negative or positive. We assume that a fraction, ktrns
CH3OH

of the unreacted methanol will diffuse from the anode to the cathode:

N trns
CH3OH = ktrns

CH3OH (1 − ζfuel)NCH3OH,feeda.

We assume that methanol present at the cathode will be completely [235] oxidized to

CO2 with an extent of reaction ξ2,

CH3OH + 2 O2 → CO2 + 2 H2O

ξ2 = N trns
CH3OH.

Similarly we assume that all diffused hydrogen reacts with oxygen at the cathode

with an extent of reaction ξ3

2 H2 + O2 → 2 H2O

ξ3 =
N trns

H2

νH2,3
=

3

2
ktrns

H2
ξ1.

Mass balance on the cathode side yields

Ni,outc = Ni,inc +
∑

r=2,3

ξr νi,r + N trns
i , i = H2, H2O, CH3OH

Ni,outc = Ni,inc +
∑

r=2,3

ξr νi,r, i 6= H2, H2O, CH3OH
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where the summation is over the two cathode reactions. Similarly for the anode:

Ni,outa = Ni,ina + ξ1 νi,1 − N trns
i , i = H2, H2O, CH3OH

Ni,outa = Ni,ina + ξ1 νi,1, i 6= H2, H2O, CH3OH.

The oxygen feed to the cathode is specified relative to the net stoichiometric require-

ment of the two oxidation reactions:

NO2,feedc = −Φ (ξ2 νO2,2 + ξ3 νO2,3).

The water feed to the anode is set as a multiple of the maximal water needed

NH2O,feeda ≥ Ψ
−νH2O,1 ξ1

ζi
+ N trns

H2O ktrns
H2O < 0

NH2O,feeda ≥ Ψ

(−νH2O,1 ξ1

ζi
+ N trns

H2O

)

ktrns
H2O

> 0,

where the reforming reactions are assumed complete.

Water Management

Currently direct methanol fuel cells operate with relatively dilute solutions of methanol

in water, but storing a diluted methanol solution greatly reduces the energy density.

Therefore, water management becomes almost mandatory; at least in theory it is

possible to use the produced water to run the methanol reforming reaction. This can

be done either by ensuring that diffusion of water from the anode to the cathode

matches the water requirements for the methanol reforming and the electro-osmotic

drag of water, or by recycling water from the cathode and/or anode effluents to the

anode. The latter possibility is included as an option in the superstructure, and our

model allows the first option by specifying a negative drag coefficient ktrns
H2O

. The over-

all transport of water from the cathode to the anode is limited by the production rate

of water in the cathode; with simple algebraic manipulations the requirement

ktrns
H2O

≥ −2 ktrns
CH3OH (1 − ζ) + 3 ktrns

H2
ζ

6ktrns
H2

ζ
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can be calculated. Water management is essentially achieved when the effective trans-

port of water from the cathode to the anode covers the water needs for the methanol

reforming reaction; in the absence of external recycling this is achieved for

ktrns
H2O ≤ − 1

6ktrns
H2

.

There are regions in the parameter space spanned by ktrns
CH3OH, ktrns

H2
and ζ where water

management is only possible through external recycling of the anode liquids, but these

are for low values of the transport coefficient ktrns
H2

≤ 1/3, in which case the DMFC

would not operate efficiently anyway.

Polymer Electrolyte Fuel Cell (PEM)

Only one reaction takes place, and the extent of reaction ξ is calculated, based on a

conversion ζ , that is specified prior to the simulation

2 H2 + O2 → 2 H2O ξ = ζ
NH2,feeda

2
,

assuming that the reaction rate is determined uniquely by the diffusion of the hydro-

gen ions to the anode

N trns
H2

= ζ NH2,feeda.

We also account for a net water transport

N trns
H2O

= 2 ktrns
H2O

Ndiff
H2

,

from the anode to the cathode. Diffusion of all other components through the mem-

brane is neglected

N trns
i = 0 i 6= H2, H2O.

The mass balance for the cathode side reads:

Ni,outc = Ni,feedc + N trns
i + ξ νi
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and for the anode

Ni,outa = Ni,feeda − N trns
i .

As a consequence NH2,outc = 0. We require a water feed to the anode relative to the

net transport of water from the anode to the cathode

NH2O,feeda ≥ Ψ N trns
H2O

.

The feed of oxygen into the cathode is set according to

NO2,feedc = Φ ξ.

A.5.7 Flash for Separation of Fuel Cell Effluents

We assume that the liquid and gaseous stream are in equilibrium and that the liquid

stream is split into a purge stream and a recycle stream.

Ni,rec = α N l
i

Ni,purge = N l
i − N l

i,rec,

where α is a given splitratio. For simplicity, ideal liquid and gas phase are assumed,

with supercritical components present only in the gas-phase N l
i = 0, neglecting so-

lution in the liquid phase according to Henry’s law and using the Wagner equation

[234] for the subcritical components. Depending on the implementation of the recycle

stream, a pressure increase mechanism may be necessary, e.g., a pump. We impose

an energetic penalty in terms of a compression power.

PW = KP

∑

i

Vm,i Ni,

where KP is a parameter, that needs to be specified prior to the simulation. KP

can be estimated by knowledge of the pressure ratio that is to be achieved, and the

compression efficiency.

285



A.5.8 Oxygen Generators

In volume-critical applications where atmospheric oxygen is not available, chemical

oxygen generators can offer a significant increase in volumetric energy density as com-

pared to compressed air or compressed oxygen. This increase in volumetric energy

density is coupled, however, to a decrease in gravimetric energy density due to the

added mass of the generator. We consider hydrogen peroxide as an example of such

an oxygen generator. Due to its extensive current use, many of the safety concerns

and transportation issues are already well understood [206, 179]. No special regula-

tions apply to the transport of dilute solutions (≤ 8 weight%) of hydrogen peroxide,

while concentrated solutions (≥ 40 weight%) are not admitted for air transport [127].

Hydrogen peroxide decomposes when heated, releasing oxygen according to

H2O
l
2 → H2O

l +
1

2
Og

2.

We consider a single cartridge that feeds all the units. For a given mission duration

τmission, the total moles and mass of hydrogen peroxide needed are given by

nH2O2
= 2 τmission NO2,total

mH2O2
= nH2O2

MWH2O2
,

where NO2,total is the molar flow of oxygen necessary for all units and the factor 2

comes from stoichiometry. For a given weight fraction of hydrogen peroxide (wH2O2
)

in solution with water, the mass of solvent water is calculated as

mH2O,solvent =
mH2O2

(1 − wH2O2
)

wH2O2

.

The total volume of solution is calculated as

Vsolution =
mH2O2

wH2O2
ρsolution

,

286



where the solution density, ρsolution, is assumed to depend linearly on the peroxide

weight fraction [98]

ρsolution = ρH2O + wH2O2
(ρH2O2

− ρH2O).

We do not account for the kinetics of hydrogen peroxide decomposition by assuming

that they are sufficiently fast, nor do we account for the energy requirements by

assuming that any required heat can be provided by ambient heat or by sweep gases

from the fuel cell or reactor effluent streams.

A.5.9 Water Breathing Systems

The volume and mass of the water extraction is estimated by a given residence time

in the extraction device τextr

Vextr = τextr VH2O

Mextr = τextr MWH2O

The energetic penalty is assumed proportional to the vaporization enthalpy

PWextr = ηextr NH2O Hvap
H2O

An alternative would be to calculate it based on osmotic pressures.

A.5.10 Hydrogen Generators

Using hydrogen as a primary fuel is an appealing alternative, due to its high gravi-

metric energy density and the efficient operation of fuel cells with H2. However, since

hydrogen is supercritical at ambient temperature, it cannot be liquefied, and gaseous

hydrogen storage requires a large volume, resulting in a low volumetric energy density.

These limitations, along with difficulty in storage and safety issues of pure hydrogen,

have led to the consideration of safer, low-volume and low-pressure methods of hydro-
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gen storage. As with oxygen generators, these hydrogen generators offer significant

increases in volumetric energy densities but impose a penalty in terms of gravimet-

ric energy densities. We consider the option of generic hydrogen storage in a single

model, approximating many technological alternatives based on either physisorption,

e.g., metal hydrides or carbon nanotubes [288], or even chemical hydrides that do not

require the addition of water for decomposition [287, 256]. As parameters we use the

hydrogen density ρH2
= gH

cm3storage
and hydrogen weight fraction wH2

. The range for

this parameters is known for common metal hydrides [288, 149]:

ρH2
≈ 0.02 − 0.2g/cm3

wH2
≈ 0.01 − 0.08.

The mass of hydrogen mH2
required over the mission duration is calculated as

mH2
= τmission NH2

MWH2
,

where NH2
is the flowrate of hydrogen required for the given power output. The mass

of devoid hydrogen generator, i.e., the residual hydrogen storage material, that is

needed for the mission duration is determined by the hydrogen weight percent:

mH2gen =
mH2

(1 − wH2
)

wH2

.

This mass is constant and must be carried for the entire mission duration. The mass

of stored hydrogen will decrease from mH2
to zero as hydrogen is released over the

course of the mission. The volume required to store the hydrogen generator depends

on the density of hydrogen, ρH2
and initial stored mass of hydrogen:

VH2gen =
mH2

ρH2

.

Similarly to the oxygen generators we do not account for kinetics or energy require-

ments.
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A.5.11 Implementation and Convergence Scheme

The alternatives considered are represented as a steady-state simulation model using

our in-house software packages ABACUSS II [273, 272] and DAEPACK [269, 271].

The mass and energy balances are formulated within the process simulator ABACUSS

II, while the physical property calculations are performed in Fortran external proce-

dures. In order to facilitate the use of the model we have embedded the simulation in

a web-interface [199]. The requirements for the energy balance of high temperature

systems result in disjoint conditions

IF Q < 0 THEN

burn no fuel

ELSE

burn enough fuel to set Q = 0

ENDIF.

Similarly the water requirement (NH2O,in ≥ NH2O,min) results in a condition

NH2O = max(0, NH2O,min).

Both formulations lead to nonsmooth residuals and currently the solvers have no

convergence guarantees for nonsmooth functions. One way for dealing with a non-

smooth function is to use a smooth approximation [47], but our experience shows

that the water requirement does not pose significant convergence problems while the

energy requirement would be too difficult to formulate as a smooth function. In

order to assure robust convergence we remove the disjoint constraints for the energy

balances and use the amount of fuels or products to be burned in each stack as a

guess variable. The case of one guess variable is easy to solve since the heat load is

monotonically decreasing with the flowrate and a secant method can be used. For the

case of two variables we use a Broyden-like algorithm [47]; when the Broyden method

calculates guess values outside the variable bounds, these guesses are replaced by the

bounds. We initialize the approximate Jacobian by the negative identity matrix. This
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choice is motivated by the fact that the diagonal elements dominate, and the heat

loads decrease with increasing guess variable ( df
dx

< 0). The convergence is sufficiently

fast and robust, so that we did not implement any line search method (e.g., Armijo

rule).

A.6 Reduced Model for Heat Exchanger

A.6.1 Tube Model

With no reactions in the tubes, a mass balance on species i and an overall energy

balance yield respectively

Ni,out = Ni,in,

Hout = Hin + Qloss + Qexch.

Heat losses from radiation are estimated using the average temperature (Tavg =

Tout+Tin

2
), total surface area (Atube), and emissivity (ǫtube):

Qrad = −Atube ǫtube σSB T 4
avg .

The total heat losses, including conductive loss to the ambient depend on the total

area and the overall heat loss coefficient, Uloss,tube:

Qloss = Qrad − Atube Uloss,tube (Tavg − Tamb).

The heat exchange to the tubes results from radiation from the ambient, other tubes,

the slabs, and the reactor. For simplicity we neglect the conductive heat transfer

from slab to the tube. Therefore, the total heat exchange into tube i is given by:

Qexch,i = −
∑

j

Fj,i Qrad,j ,
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where Fj,i represents the view factor from unit j to tube i. By defining the inlet

temperature, heat losses, and heat exchange, the outlet enthalpy can be used to

calculate the outlet temperature of the tube.

A.6.2 Slab Model

With no reactions and no mixing between individual streams flowing through the

slabs, a mass balance on species i in stream j yields:

Ni,jout = Ni,jin.

An energy balance over the entire slab states:

∑

j

Hjout =
∑

j

Hjin + Qloss + Qexch.

We here impose the condition that all stream outlet temperatures (Tout,j) are equal

to the operating temperature of the slab.

Tout,j = Top.

The heat losses due to radiation and total heat losses are given by:

Qrad = −Aslab ǫslab σSB T 4
op (A.1)

Qtot = Qrad − Aslab Uloss,slab (Top − Tamb). (A.2)

As heat exchange mechanisms we consider radiation of surrounding units, conduction

along the tubes between consecutive slabs, as well as conduction along connecting

wires between alternating slabs. Therefore, the total heat exchange into slab i is

given by:

Qexch,i = −
∑

j

Fj,i Qrad,j + Qcond−tube,i + Qcond−wire,i,
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where Qcond−slab,i and Qcond−wire,i represent the total heat transfer into the slabs via

conduction.

A.6.3 Defining Unit Interactions

The streams flowing through a given slab are illustrated in Figure A-2, assuming a

total of eight streams. We give inlet streams odd numbers and outlet streams even

numbers.
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Figure A-2: Stream Numbering

We define a one-dimensional array of slab models with the index increasing towards

the reactor as shown in Figure A-2. For a given stream, the number of tubes is equal

to the number of slabs plus one, accounting for the inlet and outlet tube. We define

a two-dimensional array of tube models with the first index increasing towards the

reactor and the second index representing the stream which it is part of. For a cross

section representing a given stream, the numbering is indicated in Figure A-3.
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Figure A-3: Tube Numbering for Stream j
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This numbering system is used to define the flow connections between all tubes

and slabs, except the inlet flow and the reactor outlet flow. We also define the heat

conduction along the SiN tubes and along the connecting wires. The conductive heat

flow along the tubes from slab i to slab i + 1 depends on the thermal conductivity,

cross sectional area, and length of the tube:

Qcond−tube,i→i+1 =
kth

tube ACS,tube

Ltube
(Tslab(i) − Tslab(i+1)).

Similarly, the conductive heat flow along the connecting wires from slab i to slab i+2

depends on the thermal conductivity, cross sectional area, and length of wire between

the adjacent slabs.

Qcond−wire,i→i+2 =
kth

wire ACS,wire

Lwire
(Tslab(i) − Tslab(i+2)).

In order to account for the heat exchange to the slabs and tubes, the radiation of the

reactor is also calculated

Qrad,reactor = Areactor ǫreactor σSB T 4
reactor.
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Appendix B

Parametric Optimization Test Set

Example B.1. The following parametric LP is based on Murty [207]

min
x

16x4 + 4x5 +x6

s.t. x1 +x4 = 8 − 20(1 + 2 p)

x2 +x4 + x5 = 4 − 20(1 + 2 p) (B.1)

x3 +2 x4 + 2 x5 +x6 = 2 − 20(1 + 2 p)

x ∈ R, x ≥ 0.

There are 8 optimal solutions with the breakpoints p = 0.55, p = 0.6, p = 0.65,

p = 0.7, p = 0.75, p = 0.8, and p = 0.85.

Example B.2. The right-hand side parametric MILP

min
x,y

y + x

s.t. x = −1 + 2 p (B.2)

x ∈ R, x ≥ 0

y ∈ {0, 1}

is infeasible for p ∈ [0, 0.5), because x ≥ 0 is violated. For p ∈ [0.5, 1.0] the optimal

solution is y = 0 x = −1 + 2 p with an optimal objective function of −1 + 2 p.

295



Example B.3. The parametric MILP

min
x,y

y + x

s.t. (−1 + 2 p) x = 1 (B.3)

x ∈ [0, 10]

y ∈ {0, 1}

is feasible for p ∈ [0.55, 1.0] with an optimal solution y = 0 and x = 1/(−1 + 2 p)

and an optimal objective function 1/(−1 + 2 p). For p ∈ [0, 0.5) the solution of the

equality constraint gives a negative x and (B.3) is infeasible. For p = 0.5 the matrix

is singular and no solution exists for the equality constraint. For p ∈ (0.5, 0.55) the

solution to the equality constraint gives x > 10 which is infeasible.

Example B.4. The parametric LP

min
x

x2

s.t. x2 − 100 p x1 = 0 (B.4)

x1 = p

x ∈ [0, 10]2.

is feasible for p ∈ [0, 0.1
√

10] ≈ [0, 0.3162] with an optimal solution x1 = p, x2 =

100 p2 and an optimal objective function 100 p2.

Example B.5. The right-hand side parametric LP

min
x

x3

s.t. x1 + x2 = 0 (B.5)

x3 = −0.5 + p

x ∈ [0, 10]3

if feasible for p ∈ [0.5, 1] with an optimal solution of x1 = x2 = 0, x3 = p − 0.5 with
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an optimal objective function of p − 0.5.

Example B.6. The parametric MILP

min
x,y

−x + y1

s.t. y2 + (0.99 p + 0.01)x = 1

y1 + y2 = 1 (B.6)

x ∈ [0, 20]

y ∈ {0, 1}2

has two candidate integer realizations. The first integer realization is y1 = 1, y2 = 0

gives x = 1/(0.99 p + 0.01) and an objective value of 1 − 1/(0.99 p + 0.01). This

solution is feasible for p ∈ [0.0404, 1] and optimal for p ∈ [0.0404, 1]. The second

integer realization y1 = 0, y2 = 1 gives x = 0 and an objective value of 0. This

solution is feasible for p ∈ [0, 1] and optimal for p ∈ [0, 0.0404]∪ {1}.

Example B.7. The parametric LP

min
x

x2

s.t. (1 − p)x2 = 0.1 (B.7)

x1 = 0

x ∈ [0, 1]2

is feasible for p ∈ [0, 0.9] with an optimal solution x1 = 0, x2 = 0.1/(1 − p) and an

objective function 0.1/(1 − p).

Example B.8. The cost vector parametric LP

min
x

(−1 + 2 p) x

s.t. x ≤ 1 (B.8)

x ∈ [0, 10]
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is feasible for p ∈ [0, 1]. For p ∈ [0, 0.5) the unique optimal solution is x = 1 (active

inequality constraint) and an objective function of −1+2 p. For p = 0.5 any x ∈ [0, 1]

is optimal with an objective value of 0. For p ∈ (0.5, 1], the unique optimal solution

is x = 0 (inactive inequality constraint) with an objective function of 0.

Example B.9. The parametric MILP

min
y,x

+10 y1 + 12 y2 + x1 + x2 + x3 + x4 + x5

s.t.(−3 − 10p) x3 + (−3 − 12p) x4 + (9 − 10p) x5 + x9 = 0

(−1 − 1p) x1 − x2 + x6 = 0

−x1 + (−2 − p) x2 + x7 = 0

−20p x3 + x8 = 0

x6 + x8 = 8

x7 + x9 = 8

−10 y1 + x1 ≤ 0 (B.9)

−10 y1 + x2 ≤ 0

−10 y2 + x3 ≤ 0

−10 y2 + x4 ≤ 0

−10 y2 + x5 ≤ 0

x1 + x3 ≤ 10

x2 + x4 ≤ 10

y ∈ {0, 1}2

x ∈ [0, 10]9

has three optimality regions. For p ∈ [0, 0.093] the optimal solution is y1 = 1, y2 = 0

with x3, x4, x5, x8 and x9 fixed to zero. For p ∈ [0.093, 0.299] the optimal solution

is y1 = 0, y2 = 1 with x1, x2, x4, x6, x7 fixed to zero. For p ∈ [0.299, 1] the optimal

solution is y1 = 0, y2 = 1 with x1, x2, x5, x6, x7 fixed to zero.

Example B.10 (Small Superstructure). This example considers the flowsheet design
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of a process superstructure (Figure B-1) for man-portable power generation devices

subject to an unknown parameter. It corresponds to a simple variant of the super-

structure described in [201] with the solid oxide fuel cell efficiency as the unknown

parameter p. The MILP used does not correspond to a typical model, because we

tried to introduce the least number of few variables and constraints possible; it con-

tains 14 inequality constraints, 2 equality constraints, 7 continuous variables and 4

binary variables. The matrix contains 55 nonzero elements and only one element de-

pends on the parameter. Note that since only one column is affected by the parameter

variation, an analytical solution of the matrix inversion in the LPs is possible [117].

min
y,x

+0.058124 x1

s.t. − 100 y1 + x2 ≤ 0

−0.1 x1 + x2 ≤ 0

−100 y3 + x3 ≤ 0

−0.1 x1 + x2 + x3 + x4 ≤ 0

+100 y3 + 0.1 x1 − x2 − x3 − x4 ≤ +100

−100 y2 + x4 ≤ 0

−0.1 x1 + x2 + x4 ≤ 0

+100 y2 + 0.1 x1 − x2 − x4 ≤ +100

−100 y4 + x5 ≤ 0

−0.72 x1 + 7.2 x2 + 7.2 x4 + x5 ≤ 0 (B.10)

+100 y4 + 0.72 x1 − 7.2 x2 − 7.2 x4 − x5 ≤ +100

−100 y4 + x6 ≤ 0

−x4 + x6 ≤ 0

+100 y4 + x4 − x6 ≤ +100

−0.090335 x1 − 17.0224 x2 − 10.8312 x3 − 10.6295 x4

−0.171977 x5 − 4.15303 x6 + x7 = −1

−0.400388 x1 + 5.02563 x2 + 0.471905 x3

+(4.95454 + −12.8319p)x4 + 0.00813629 x5 + 0.23758 x6 = −1

y ∈ {0, 1}4

x ∈ R
7, x ≥ 0

We considered only p ∈ [0, 0.97], because after 0.97 the current basis becomes infeasi-

299



ble. There are two optimal solutions with optimality intervals [0:0.35] and [0:35,0.97].
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Figure B-1: Small micropower case study.

Example B.11 (Big Superstructure). This example considers the flowsheet design of

a process superstructure (Figure B-2). It corresponds to a simple variant of the su-

perstructure described in [201] with the solid oxide fuel cell efficiency as the unknown

parameter p. The model is more typical than (B.10) and contains many intermediate

variables and equality constraints. The resulting system has a total of m1 = 216

inequality constraints, m2 = 226 equality constraints, nx = 329 continuous variables,

ny = 20 binary variables, while the matrix (before the augmentation) contains 1253

nonzero entries. Only one row depends on the parameter. Note that since only one

column is affected by the parameter variation, an analytical solution of the matrix

inversion in the LPs is possible [117].
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Figure B-2: Larger micropower case study.

min
y,x

+0.0001 y14 + 0.0001 y15 + 0.0001 y16 + 0.0001 y17 + x326

s.t. + y12 − y13 ≤ 0

−y11 + y15 ≤ 0

+y10 − y11 ≤ 0

+100 y12 + x38 ≤ +100

+100 y12 + x39 ≤ +100

+100 y12 + x40 ≤ +100

+100 y12 + x41 ≤ +100

−3.76 x34 + x38 ≤ 0

−3.76 x35 + x39 ≤ 0

−3.76 x36 + x40 ≤ 0

−3.76 x37 + x41 ≤ 0

−100 y12 + 3.76 x34 − x38 ≤ 0

−100 y12 + 3.76 x35 − x39 ≤ 0

−100 y12 + 3.76 x36 − x40 ≤ 0

−100 y12 + 3.76 x37 − x41 ≤ 0

−0.031999 x30 − 0.028013 x31 + x32 ≤ 0

−6.0012 y13 + x32 ≤ 0

+6.0012 y13 + 0.031999 x30 + 0.028013 x31 − x32 ≤ +6.0012

−0.247757 x30 − 0.247757 x31 + x42 ≤ 0

−49.5514 y13 + x42 ≤ 0

+49.5514 y13 + 0.247757 x30 + 0.247757 x31 − x42 ≤ +49.5514

−0.00298 x30 − 0.00298 x31 + x33 ≤ 0 (B.11)
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+0.596 y13 + x33 ≤ +0.596

−0.00596 y13 + 0.00298 x30 + 0.00298 x31 − x33 ≤ 0

−x1 + x2 ≤ 0

−100 y18 + x2 ≤ 0

+100 y18 + x1 − x2 ≤ +100

−x1 + x9 ≤ 0

−100 y19 + x9 ≤ 0

+100 y19 + x1 − x9 ≤ +100

−x1 + x10 ≤ 0

−100 y20 + x10 ≤ 0

+100 y20 + x1 − x10 ≤ +100

−x14 + x15 ≤ 0

−100 y1 + x15 ≤ 0

+100 y1 + x14 − x15 ≤ +100

−x14 + x22 ≤ 0

−100 y2 + x22 ≤ 0

+100 y2 + x14 − x22 ≤ +100

−x14 + x23 ≤ 0

−100 y6 + x23 ≤ 0

+100 y6 + x14 − x23 ≤ +100

−100 y11 + x114 ≤ 0

−100 y11 + x115 ≤ 0

−100 y11 + x116 ≤ 0

−100 y11 + x117 ≤ 0

−100 y11 + x118 ≤ 0

−100 y11 + x119 ≤ 0

−100 y11 + x120 ≤ 0

−100 y11 + x121 ≤ 0

−100 y11 + x122 ≤ 0

−100 y11 + x123 ≤ 0

+100 y11 + x95 ≤ +100

+100 y11 + x96 ≤ +100

+100 y11 + x97 ≤ +100

+100 y11 + x98 ≤ +100

+100 y11 + x99 ≤ +100

+100 y11 + x100 ≤ +100

+100 y11 + x101 ≤ +100

+100 y11 + x102 ≤ +100

+100 y11 + x103 ≤ +100
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+100 y11 + x104 ≤ +100

−100 y15 + x154 ≤ 0

−100 y15 + x155 ≤ 0

−100 y15 + x156 ≤ 0

−100 y15 + x157 ≤ 0

−100 y15 + x158 ≤ 0

−100 y15 + x159 ≤ 0

−100 y15 + x160 ≤ 0

−100 y15 + x161 ≤ 0

−100 y15 + x162 ≤ 0

−100 y15 + x163 ≤ 0

+100 y15 + x144 ≤ +100

+100 y15 + x145 ≤ +100

+100 y15 + x146 ≤ +100

+100 y15 + x147 ≤ +100

+100 y15 + x148 ≤ +100

+100 y15 + x149 ≤ +100

+100 y15 + x150 ≤ +100

+100 y15 + x151 ≤ +100

+100 y15 + x152 ≤ +100

+100 y15 + x153 ≤ +100

−100 y9 + x248 ≤ 0

−100 y9 + x249 ≤ 0

−100 y9 + x250 ≤ 0

−100 y9 + x251 ≤ 0

−100 y9 + x252 ≤ 0

−100 y9 + x253 ≤ 0

−100 y9 + x254 ≤ 0

−100 y9 + x255 ≤ 0

−100 y9 + x256 ≤ 0

−100 y9 + x257 ≤ 0

−100 y10 + x174 ≤ 0

−100 y10 + x175 ≤ 0

−100 y10 + x176 ≤ 0

−100 y10 + x177 ≤ 0

−100 y10 + x178 ≤ 0

−100 y10 + x179 ≤ 0 (B.12)
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−100 y10 + x180 ≤ 0

−100 y10 + x181 ≤ 0

−100 y10 + x182 ≤ 0

−100 y10 + x183 ≤ 0

−100 y16 + x280 ≤ 0

−100 y16 + x281 ≤ 0

−100 y16 + x282 ≤ 0

−100 y16 + x283 ≤ 0

−100 y16 + x284 ≤ 0

−100 y16 + x285 ≤ 0

−100 y16 + x286 ≤ 0

−100 y16 + x287 ≤ 0

−100 y16 + x288 ≤ 0

−100 y16 + x289 ≤ 0

+100 y16 + x270 ≤ +100

+100 y16 + x271 ≤ +100

+100 y16 + x272 ≤ +100

+100 y16 + x273 ≤ +100

+100 y16 + x274 ≤ +100

+100 y16 + x275 ≤ +100

+100 y16 + x276 ≤ +100

+100 y16 + x277 ≤ +100

+100 y16 + x278 ≤ +100

+100 y16 + x279 ≤ +100

−100 y17 + x310 ≤ 0

−100 y17 + x311 ≤ 0

−100 y17 + x312 ≤ 0

−100 y17 + x313 ≤ 0

−100 y17 + x314 ≤ 0

−100 y17 + x315 ≤ 0

−100 y17 + x316 ≤ 0

−100 y17 + x317 ≤ 0

−100 y17 + x318 ≤ 0

−100 y17 + x319 ≤ 0

+100 y17 + x300 ≤ +100

+100 y17 + x301 ≤ +100

+100 y17 + x302 ≤ +100

+100 y17 + x303 ≤ +100

+100 y17 + x304 ≤ +100 (B.13)
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+100 y17 + x305 ≤ +100

+100 y17 + x306 ≤ +100

+100 y17 + x307 ≤ +100

+100 y17 + x308 ≤ +100

+100 y17 + x309 ≤ +100

−100 y16 + x206 ≤ 0

−100 y16 + x207 ≤ 0

−100 y16 + x208 ≤ 0

−100 y16 + x209 ≤ 0

−100 y16 + x210 ≤ 0

−100 y16 + x211 ≤ 0

−100 y16 + x212 ≤ 0

−100 y16 + x213 ≤ 0

−100 y16 + x214 ≤ 0

−100 y16 + x215 ≤ 0

+100 y16 + x196 ≤ +100

+100 y16 + x197 ≤ +100

+100 y16 + x198 ≤ +100

+100 y16 + x199 ≤ +100

+100 y16 + x200 ≤ +100

+100 y16 + x201 ≤ +100

+100 y16 + x202 ≤ +100

+100 y16 + x203 ≤ +100

+100 y16 + x204 ≤ +100

+100 y16 + x205 ≤ +100

−100 y17 + x236 ≤ 0

−100 y17 + x237 ≤ 0

−100 y17 + x238 ≤ 0

−100 y17 + x239 ≤ 0

−100 y17 + x240 ≤ 0

−100 y17 + x241 ≤ 0

−100 y17 + x242 ≤ 0

−100 y17 + x243 ≤ 0

−100 y17 + x244 ≤ 0

−100 y17 + x245 ≤ 0

+100 y17 + x226 ≤ +100

+100 y17 + x227 ≤ +100

+100 y17 + x228 ≤ +100

+100 y17 + x229 ≤ +100 (B.14)
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+100 y17 + x230 ≤ +100

+100 y17 + x231 ≤ +100

+100 y17 + x232 ≤ +100

+100 y17 + x233 ≤ +100

+100 y17 + x234 ≤ +100

+100 y17 + x235 ≤ +100

−100 y1 + x105 ≤ 0

−0.45 x72 + x105 ≤ 0

−100 y3 + x106 ≤ 0

−0.9x79 + x106 ≤ 0

−100 y4 + x107 ≤ 0

−0.9x79 + x107 ≤ 0

−100 y5 + x108 ≤ 0

−0.45 x79 + x108 ≤ 0

−100 y7 + x109 ≤ 0

−0.9x80 + x109 ≤ 0

−100 y7 + x110 ≤ 0

−0.9x81 + x110 ≤ 0

−100 y8 + x111 ≤ 0

−0.45 x80 + x111 ≤ 0

−100 y8 + x112 ≤ 0

−0.9x81 + x112 ≤ 0

+100 y7 − x76 + 3 x80 + 4 x81 − x84 ≤ +100

+100 y4 − x76 + x79 − x84 ≤ +100

+100 y5 − x76 + x79 − x84 ≤ +100

−x74 − x82 + 1.2 x108 + 3.6 x111 + 2.4x112 ≤ 0

−0.2375 x65 ≤ 0

−0.475 x66 ≤ 0

−0.475 x67 ≤ 0

−0.475 x68 ≤ 0

−0.95 x69 ≤ 0

−0.475 x70 ≤ 0

−x45 − x53 + 3.6 x65 + 1.2 x66 + 1.2 x67 + 3.6 x68 + 6 x69 + 15.6 x70 ≤ 0

−0.4x247 ≤ 0

−x184 + 1.2x247 ≤ 0

+x246 − 0.315491 x247 ≤ 0

−0.4x321 ≤ 0

−0.4x322 ≤ 0

−x258 + 1.5 x321 + 1.5x322 ≤ 0 (B.15)
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+x320(0 + −0.420522p) x321(0 + −0.401527p) x322 ≤ 0

+y1 + y2 + y6 = +

−y2 + y3 + y4 + y5 = 0

−y14 + y18 + y19 + y20 = 0

−y6 + y7 + y8 = 0

+y9 + y10 = +

+x30 − x34 − x35 − x36 − x37 = 0

+x31 − x38 − x39 − x40 − x41 = 0

−0.018015 x27 + x28 = 0

−0.018066 x27 + x29 = 0

+x3 = 0

+x4 = 0

+x7 = 0

+x8 = 0

+x5 = 0

+x6 = 0

−x10 + x11 = 0

−0.017031 x2 − 0.028013 x3 − 0.031999 x4 − 0.002016 x5 − 0.018015 x6 − 0.02801 x7

−0.04401 x8 − 0.032042 x9 − 0.044094 x10 − 0.058124 x11 + x12 = 0

−0.028 x2 − 0.247757 x3 − 0.247757 x4 − 0.247757 x5 − 0.018066 x6

−2.4709 x7 − 2.35 x8 − 0.04 x9 − 0.089567 x10 − 0.1012 x11 + x13 = 0

+x16 = 0

+x17 = 0

+x20 = 0

+x21 = 0

+x18 = 0

+x19 = 0

−x23 + x24 = 0

−0.017031 x15 − 0.028013 x16 − 0.031999 x17 − 0.002016 x18 − 0.018015 x19 − 0.02801 x20

−0.04401 x21 − 0.032042 x22 − 0.044094 x23 − 0.058124 x24 + x25 = 0

−0.028 x15 − 0.247757 x16 − 0.247757 x17 − 0.247757 x18 − 0.018066 x19 − 2.4709 x20

−2.35 x21 − 0.04 x22 − 0.089567 x23 − 0.1012 x24 + x26 = 0

−x15 + x72 = 0

−x16 + x73 = 0

−x17 + x74 = 0

−x18 + x75 = 0

−x19 + x76 = 0

−x20 + x77 = 0 (B.16)
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−x21 + x78 = 0

−x22 + x79 = 0

−x23 + x80 = 0

−x24 + x81 = 0

−x34 + x82 = 0

−x38 + x83 = 0

−x27 + x84 = 0

+x85 − x95 − x114 = 0

+x86 − x96 − x115 = 0

+x87 − x97 − x116 = 0

+x88 − x98 − x117 = 0

+x89 − x99 − x118 = 0

+x90 − x100 − x119 = 0

+x91 − x101 − x120 = 0

+x92 − x102 − x121 = 0

+x93 − x103 − x122 = 0

+x94 − x104 − x123 = 0

+x134 − x144 − x154 = 0

+x135 − x145 − x155 = 0

+x136 − x146 − x156 = 0

+x137 − x147 − x157 = 0

+x138 − x148 − x158 = 0

+x139 − x149 − x159 = 0

+x140 − x150 − x160 = 0

+x141 − x151 − x161 = 0

+x142 − x152 − x162 = 0

+x143 − x153 − x163 = 0

−x95 − x124 + x164 = 0

−x96 − x125 + x165 = 0

−x97 − x126 + x166 = 0

−x98 − x127 + x167 = 0

−x99 − x128 + x168 = 0

−x100 − x129 + x169 = 0

−x101 − x130 + x170 = 0

−x102 − x131 + x171 = 0

−x103 − x132 + x172 = 0

−x104 − x133 + x173 = 0

+x164 − x174 − x248 = 0 (B.17)
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+x165 − x175 − x249 = 0

+x166 − x176 − x250 = 0

+x167 − x177 − x251 = 0

+x168 − x178 − x252 = 0

+x169 − x179 − x253 = 0

+x170 − x180 − x254 = 0

+x171 − x181 − x255 = 0

+x172 − x182 − x256 = 0

+x173 − x183 − x257 = 0

−x36 + x258 = 0

−x40 + x259 = 0

+x260 − x270 − x280 = 0

+x261 − x271 − x281 = 0

+x262 − x272 − x282 = 0

+x263 − x273 − x283 = 0

+x264 − x274 − x284 = 0

+x265 − x275 − x285 = 0

+x266 − x276 − x286 = 0

+x267 − x277 − x287 = 0

+x268 − x278 − x288 = 0

+x269 − x279 − x289 = 0

+x290 − x300 − x310 = 0

+x291 − x301 − x311 = 0

+x292 − x302 − x312 = 0

+x293 − x303 − x313 = 0

+x294 − x304 − x314 = 0

+x295 − x305 − x315 = 0

+x296 − x306 − x316 = 0

+x297 − x307 − x317 = 0

+x298 − x308 − x318 = 0

+x299 − x309 − x319 = 0

−x37 + x184 = 0

−x41 + x185 = 0

+x186 − x196 − x206 = 0

+x187 − x197 − x207 = 0

+x188 − x198 − x208 = 0

+x189 − x199 − x209 = 0

+x190 − x200 − x210 = 0 (B.18)
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+x191 − x201 − x211 = 0

+x192 − x202 − x212 = 0

+x193 − x203 − x213 = 0

+x194 − x204 − x214 = 0

+x195 − x205 − x215 = 0

+x216 − x226 − x236 = 0

+x217 − x227 − x237 = 0

+x218 − x228 − x238 = 0

+x219 − x229 − x239 = 0

+x220 − x230 − x240 = 0

+x221 − x231 − x241 = 0

+x222 − x232 − x242 = 0

+x223 − x233 − x243 = 0

+x224 − x234 − x244 = 0

+x225 − x235 − x245 = 0

−x2 + x43 − x154 − x206 − x236 − x280 − x310 = 0

−x3 + x44 − x155 − x207 − x237 − x281 − x311 = 0

−x4 + x45 − x156 − x208 − x238 − x282 − x312 = 0

−x5 + x46 − x157 − x209 − x239 − x283 − x313 = 0

−x6 + x47 − x158 − x210 − x240 − x284 − x314 = 0

−x7 + x48 − x159 − x211 − x241 − x285 − x315 = 0

−x8 + x49 − x160 − x212 − x242 − x286 − x316 = 0

−x9 + x50 − x161 − x213 − x243 − x287 − x317 = 0

−x10 + x51 − x162 − x214 − x244 − x288 − x318 = 0

−x11 + x52 − x163 − x215 − x245 − x289 − x319 = 0

−x35 + x53 = 0

−x39 + x54 = 0

−x71 − x113 − x323 + x329 = 0

+x328 − 12 x329 = +0.24

−0.04572 x2 − 0.285658 x6 − 0.1106 x7 − 0.3938 x8 − 0.237793 x9 − 0.1039 x10 − 0.1262 x11

−0.04572 x15 − 0.285658 x19 − 0.1106 x20 − 0.3938 x21 − 0.237793 x22 − 0.1039 x23

−0.1262 x24 − 0.285658 x27 + 0.03165 x55 − 0.011256 x56 − 0.012462 x57 − 0.011658 x58

+0.229538 x59 + 0.099344 x60 + 0.3737 x61 + 0.1812 x62 + 0.02752 x63 + 0.04982 x64

+0.03165 x144 − 0.011256 x145 − 0.012462 x146 − 0.011658 x147 + 0.229538 x148

+0.099344 x149 + 0.3737 x150 + 0.1812 x151 + 0.02752 x152 + 0.04982 x153 + 0.03165 x174

−0.011256 x175 − 0.012462 x176 − 0.011658 x177 + 0.229538 x178 + 0.099344 x179 + 0.3737 x180

+0.1812 x181 + 0.02752 x182 + 0.04982 x183 − 0.0418 x206 + 0.003136 x207 + 0.003472 x208

(B.19)
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+0.003248 x209 − 0.238528 x210 − 0.107464 x211 − 0.3882 x212 − 0.1957 x213 − 0.08262 x214

−0.10492 x215 − 0.0418 x236 + 0.003136 x237 + 0.003472 x238 + 0.003248 x239 − 0.238528 x240

−0.107464 x241 − 0.3882 x242 − 0.1957 x243 − 0.08262 x244 − 0.10492 x245 + 0.03165 x270

−0.011256 x271 − 0.012462 x272 − 0.011658 x273 + 0.229538 x274 + 0.099344 x275 + 0.3737 x276

+0.1812 x277 + 0.02752 x278 + 0.04982 x279 + 0.03165 x300 − 0.011256 x301 − 0.012462 x302

−0.011658 x303 + 0.229538 x304 + 0.099344 x305 + 0.3737 x306 + 0.1812 x307 + 0.02752 x308

+0.04982 x309 − x320 − x327 − 0.915675 x328 = 0

+x33 − x246 − x320 + x324 = 0

+x324 = +

−x12 − x25 − x28 − x32 + x326 = 0

−x13 − x26 − x29 − x42 + x325 = 0

−x72 + x85 + 2 x105 = 0

−x73 − x83 + x86 − x105 = 0

−x74 − x82 + x87 + x108 + 3 x111 + 2 x112 = 0

−x75 + x88 − 3 x105 − 2 x106 − 3 x107 − 4 x108 − 7 x109 − 9 x110 − 8 x111 − 5 x112 = 0

−x76 − x84 + x89 + x107 + 3 x109 + 4 x110 = 0

−x77 + x90 − x106 − 3 x109 − 4 x110 − 6 x111 − 4 x112 = 0

−x78 + x91 − x107 − 2 x108 = 0

−x79 + x92 + x106 + x107 + 2 x108 = 0

−x80 + x93 + x109 + 2 x111 = 0

−x81 + x94 + x110 + x112 = 0

−7.38657e − 05 x85 − 7.38657e − 05 x86 − 7.38657e − 05 x87

−7.38657e − 05 x88 − 7.38657e − 05 x89 − 7.38657e − 05 x90 − 7.38657e − 05 x91

−7.38657e − 05 x92 − 7.38657e − 05 x93 − 7.38657e − 05 x94 + x113 = 0

−x43 + x55 + 4 x65 = 0

−x44 − x54 + x56 − 2 x65 = 0

−x45 − x53 + x57 + 3 x65 + x66 + x67 + 3 x68 + 5 x69 + 13 x70 = 0

−x46 + x58 + 2 x66 = 0

−x47 + x59 − 6 x65 − 2 x66 − 4 x68 − 4 x69 − 10 x70 = 0

−x48 + x60 + 2 x67 = 0

−x49 + x61 − 2 x67 − 2 x68 − 3 x69 − 8 x70 = 0

−x50 + x62 + 2 x68 = 0

−x51 + x63 + x69 = 0

−x52 + x64 + 2 x70 = 0

−7.38657e − 05 x55 − 7.38657e − 05 x56 − 7.38657e − 05 x57 − 7.38657e − 05 x58

−7.38657e − 05 x59 − 7.38657e − 05 x60 − 7.38657e − 05 x61 − 7.38657e − 05 x62

−7.38657e − 05 x63 − 7.38657e − 05 x64 + x71 = 0

(B.20)
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+x124 = 0

+x125 = 0

+x126 = 0

−0.8 x117 + x127 = 0

+x128 = 0

+x129 = 0

+x130 = 0

+x131 = 0

+x132 = 0

+x133 = 0

−x114 + x134 = 0

−x115 + x135 = 0

−x116 + x136 = 0

−0.2 x117 + x137 = 0

−x118 + x138 = 0

−x119 + x139 = 0

−x120 + x140 = 0

−x121 + x141 = 0

−x122 + x142 = 0

−x123 + x143 = 0

−x174 + x186 = 0

−x175 + x187 = 0

−x176 + x188 = 0

−0.2 x177 + x189 = 0

−x178 + x190 = 0

−x179 + x191 = 0

−x180 + x192 = 0

−x181 + x193 = 0

−x182 + x194 = 0

−x183 + x195 = 0

+x216 = 0

+x217 = 0

−x184 − x185 + x218 + x247 = 0

−0.8 x177 + x219 + 2 x247 = 0

+x220 − 2 x247 = 0

+x221 = 0

+x222 = 0

+x223 = 0

+x224 = 0 (B.21)
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+x225 = 0

−x248 + x260 = 0

−x249 + x261 = 0

−x250 − 0.666667 x258 + x262 + x321 + x322 = 0

−x251 + x263 + 2 x321 = 0

−x252 + x264 − 2 x321 = 0

−x253 + x265 + 2 x322 = 0

−x254 + x266 − 2 x322 = 0

−x255 + x267 = 0

−x256 + x268 = 0

−x257 + x269 = 0

+x290 = 0

−x259 + x291 = 0

−0.333333 x258 + x292 = 0

+x293 = 0

+x294 = 0

+x295 = 0

+x296 = 0

+x297 = 0

+x298 = 0

+x299 = 0

−0.00147731 x260 − 0.00147731 x261 − 0.00147731 x262 − 0.00147731 x263

−0.00147731 x264 − 0.00147731 x265 − 0.00147731 x266 − 0.00147731 x267

−0.00147731 x268 − 0.00147731 x269 − 0.00147731 x290 − 0.00147731 x291

−0.00147731 x292 − 0.00147731 x293 − 0.00147731 x294 − 0.00147731 x295

−0.00147731 x296 − 0.00147731 x297 − 0.00147731 x298 − 0.00147731 x299 + x323 = 0

y ∈ {0, 1}20

x ∈ R
329, x ≥ 0 (B.22)
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Appendix C

Bilevel Optimization Test Set

C.1 Original Examples

Example C.1 (Linear bilevel program with opposite objectives). The bilevel program

min
y

y

s.t. y ∈ arg min
z

−z (mb 0 1 01)

y, z ∈ [−1, 1]

has the unique optimal solution y = 1 with an objective value of 1.

This program shows that merely replacing the inner program with its constraints

does not lead to a convergent lower bound. The inner program has the unique optimal

solution y = 1 and therefore the bilevel program (mb 0 1 01) has the unique feasible

point and unique global minimum y = 1. The inner program is linear and therefore

the KKT conditions are both necessary and sufficient for a minimum. At the optimal

solution, the KKT multiplier associated with the constraint y ≤ 1 is equal to 1 and

therefore any µmax > 1 can be used.
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Example C.2 (Infeasible linear bilevel program). The bilevel program

min
y

y

s.t. y ≤ 0 (mb 0 1 02)

y ∈ arg min
z

−z

y, z ∈ [−1, 1]

is infeasible.

This program shows that merely replacing the inner program with its constraints

does not lead to a convergent lower bound. The inner program is linear and has

the unique optimal solution y = 1 and therefore the bilevel program (mb 0 1 02) is

infeasible. The inner program is linear and therefore the KKT conditions are both

necessary and sufficient for a minimum. At the optimal solution, the KKT multiplier

associated with the constraint y ≤ 1 is equal to 1 and therefore any µmax > 1 can

be used. Note that the outer constraint y ≤ 0, cannot be included in the host set,

because the problem would be changed.

Example C.3 (Concave inner constraint). The bilevel program

min
y

y

s.t. y ∈ arg min
z

z2 (mb 0 1 03)

s.t. 1 − z2
2 ≤ 0

y, z ∈ [−10, 10]

has the unique optimal solution y = −1 with an objective value of −1.

The purpose of this example is to show that constructing a convex relaxation

of the inner problem and replacing the relaxed program with its KKT conditions

does not lead to a valid lower bound [197]. The feasible set of the inner program is

[−10,−1]∪ [1, 10] and its optimal solutions are y = ±1. The unique feasible solution

of the bilevel program is therefore y = −1.
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The inner program satisfies the linear/concave constraint qualification [41, p. 322]

and at the constrained KKT points the multiplier associated with the concave con-

straint is given by µ = 1 and therefore any µmax > 1 can be used.

Example C.4 (Concave inner objective). The bilevel program

min
y

y

s.t. y ∈ arg min
z

−z2 (mb 0 1 04)

y, z ∈ [−0.5, 1]

has the unique optimal solution y = 1 with an objective value of 1.

This example shows that merely replacing the inner problem with its KKT con-

straints does not result to convergent lower bounds. It also shows that replacing

the inner program with its KKT conditions and solving the resulting Mathematical

Program with Equilibrium Constraints (MPEC) locally does not lead to valid upper

bounds [197]. The inner program has the unique optimal solution y = 1 and therefore

the bilevel program (mb 0 1 04) has the unique feasible point y = 1.

The inner program has a concave objective function and linear inequality con-

straints and therefore by the Adabie constraint qualification the KKT conditions are

necessary [39, p. 187] but due to nonconvexity not sufficient for a local or a global

minimum, see also Figure C-1. The KKT conditions for the inner program are given
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by

−0.5 − y ≤ 0

y − 1 ≤ 0

−2 y − λ1 + λ2 = 0

λ1 (−y − 0.5) = 0 (C.5)

λ2 (y − 1) = 0

λ1 ≥ 0

λ2 ≥ 0.

System (C.5) has three solutions. The first solution is y = −0.5, λ1 = 1, λ2 = 0, a

suboptimal local minimum of the inner program (h = −0.25). The second solution

is y = 0, λ1 = 0, λ2 = 0, the global maximum of the inner program (h = 0). Finally

the third solution is y = 1, λ1 = 0, λ2 = 2, the global minimum of the inner program

(h = −1). Any µmax ≥ 0 can be used as a bound for the KKT multipliers.

-1

-0.8

-0.6

-0.4

-0.2

 0

-0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Figure C-1: Inner level objective function for Example C.4.
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Example C.5 (Nonconvex inner objective). The bilevel program

min
y

y

s.t. y ∈ arg min
z

16 z4 + 2 z3 − 8 z2 − 3/2 z + 1/2 (mb 0 1 05)

y, z ∈ [−1, 1]

has the unique optimal solution y = 1/2 with an objective value of 1/2.

This example shows that merely replacing the inner problem with its KKT con-

straints does not result to convergent lower bounds. The inner program has the

unique optimal solution y = 1/2 and therefore the bilevel program (mb 0 1 05) has

the unique feasible point.

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] for a local

minimum. Due to nonconvexity of the objective function they are not sufficient

for a local or global minimum, see also Figure C-2. Out of the three KKT points

y = 1/2 is the unique global minimum, y = −1/2 is a suboptimal local minimum and

y ≈ −0.09375 is a local maximum. The inequality constraints are inactive at all three

KKT points and therefore any µmax > 0 can be used.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-1 -0.5  0  0.5  1

Figure C-2: Inner level objective function for Example C.5.
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Example C.6 (Nonconvex monomial inner objective). The bilevel program

min
y

y

s.t. y ∈ arg min
z

z3 (mb 0 1 06)

y, z ∈ [−1, 1]

has the unique optimal solution y = −1 with an objective value of −1.

The purpose of this example is to show that constructing a convex relaxation of

the inner problem and replacing the relaxed program with its KKT conditions does

not lead to a valid lower bound [197]. The inner problem has the unique optimal

solution y = −1 and therefore the bilevel program has a single feasible point. The

inner program has linear inequality constraints and therefore by the Adabie constraint

qualification the KKT conditions are necessary [39, p. 187] for a minimum. They are

not sufficient since y = 0 satisfies the KKT conditions (unconstrained) but is a saddle

point. Note that the inner objective is strictly monotone increasing and points to the

same direction as the outer objective. At the constrained KKT points the value of

the KKT multiplier is given by 3y2 = 3 and therefore any µmax ≥ 3 can be used.

Example C.7 (Infeasible linear program). The bilevel program

min
y

y

s.t. y ≤ 0 (mb 0 1 07)

y ∈ arg min
z

−z

y, z ∈ [−1, 1]

is infeasible.

The purpose of this program is to study infeasible problems. The unique solution

to the inner problem is y = 1 and therefore (mb 0 1 07) is infeasible. The inner

program is linear and therefore the KKT conditions are both necessary and sufficient

for a minimum. At the optimal solution, the KKT multiplier associated with the
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constraint y ≤ 1 is equal to 1.

Example C.8 (Linear inner program). The bilevel program

min
x,y

y2

s.t. y − 0.1 ≤ 0

−y − 0.1 ≤ 0 (mb 1 1 01)

y ∈ arg min
z

z(x + exp(x))

x ∈ [−1, 1], y, z ∈ [−1, 1]

has the unique optimal solution x = x̄, y = 0 and an optimal objective value of 0,

where x̄ ≈ −0.567 is the solution of x + exp(x) = 0.

The purpose of this example is to show that a discretization approach on the

variables x can fail to find feasible points even for simple programs. The inner program

is linear in y and therefore the KKT conditions are both necessary and sufficient for

a minimum. Let x̄ ≈ −0.567 denote the solution of x + exp(x) = 0. For x < x̄

the unique optimal solution of the inner problem is y = 1 which is infeasible by the

outer constraint y ≤ 0.1; for x > x̄ the unique optimal solution of the inner problem

is y = −1 which is infeasible by the outer constraint y ≥ −0.1. For x = x̄ any

y ∈ [−1, 1] is optimal for the inner problem. Therefore the feasible set of the bilevel

program is x = x̄, y ∈ [−0.1, 0.1] which leads to the unique optimal solution of the

bilevel program x = x̄, y = 0. The magnitude of the KKT multipliers for the inner

program can be estimated by |x + exp(x)| < 4.

Example C.9 (Nonconvex monomial inner objective). The bilevel program

min
x,y

x

s.t. − x + y ≤ 0 (mb 1 1 02)

y ∈ arg min
z

z3

x ∈ [−10, 10], y, z ∈ [−1, 1]
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has the unique optimal solution x = −1, y = −1 with an objective value of −1.

This example builds upon Example C.6. The outer variable x does not add much

complication to the analysis, since the inner program is not parameterized by it.

Example C.10 (Nonconvex inner objective parameterized in x). The bilevel program

min
x,y

y

s.t. y ∈ arg min
z

x
(

16 z4 + 2 z3 − 8 z2 − 3/2 z + 1/2
)

(mb 1 1 03)

x ∈ [0.1, 1], y, z ∈ [−1, 1]

has infinitely many optimal solution points x ∈ [0.1, 1], y = 0.5 with an optimal

objective value of 0.5.

This example builds upon Example C.5 introducing also a variable x. This ad-

dition demonstrates algorithmic difficulties when the set of suboptimal KKT points

exists for each x, The analysis is equivalent to Example C.5. Figure C-3 shows a plot

of the inner objective.
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Figure C-3: Inner level objective function for Example C.10.
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Example C.11 (Nonconvex inner objective parameterized in x). The bilevel program

min
x,y

y

s.t. y ∈ arg min
z

x
(

16 z4 + 2 z3 − 8 z2 − 3/2 z + 1/2
)

(mb 1 1 04)

x ∈ [−1, 1], y, z ∈ [−0.8, 1]

has the unique optimal solution point x = 0, y = −0.8 with an optimal objective

value of −0.8.

This example builds upon Example C.5 and is a variation of Example C.10. For

x > 0 the inner objective has the unconstrained unique global minimum y = 0.5. For

x < 0 the inner objective has the constrained unique global minimum y = 1. Finally

for x = 0 any y ∈ [−0.8, 1] is trivially optimal in the inner program. Therefore the

unique optimal solution of the bilevel program x = 0, y = −0.8.

Similarly to Example C.5 the inner program has linear inequality constraints and

therefore by the Adabie constraint qualification the KKT conditions are necessary

[39, p. 187] but not sufficient for a minimum.

In addition to the global minima there are several suboptimal KKT points. For

x > 0, similarly to Example C.5 y = −1/2 is a suboptimal local minimum and y ≈
−0.09375 is a local maximum. For x < 0 y = ±1/2 are unconstrained local maxima,

y ≈ −0.09375 is an unconstrained suboptimal local minimum and y = −0.8 is a

constrained local minimum. Figure C-4 shows a plot of the inner objective and the

minima and suboptimal KKT points of the inner program.

The values of the KKT multipliers can be bounded by the derivative of the inner

objective function |x (64 y3 + 6 y2 − 16 y − 1.5)| evaluated at y = −0.8 and y = 1

which gives |17.628x| and |52.5x| respectively. Therefore µmax = 100 is a conservative

estimate.

Example C.12 (Supercritical pitchfork bifurcation with x as the parameter). The
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Figure C-4: Inner level objective function, its KKT points and its minima for Example
C.11.

bilevel program

min
x,y

−x + xy + 10y2

s.t. y ∈ arg min
z

−x z2 +
z4

2
(mb 1 1 05)

x ∈ [−1, 1], y, z ∈ [−1, 1]

has the unique optimal solution x = 0, y = 0 with an objective value of 0.

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] but due to

nonconvexity of the objective function they are not sufficient for a local/global mini-

mum.

Stationarity of the inner objective gives −2xy + 2y3 = 0, which describes a bifur-

cation for y as a function of x, see also Figure C-5. For −1 ≤ x ≤ 0, we have y = 0

as the unique global optimum and only KKT point of the inner problem due to strict

convexity. For 0 < x ≤ 1, y = ±√
x are the global minima for the inner problem

while y = 0 is a suboptimal KKT point of the inner problem. All KKT points are

unconstrained, so that any µmax > 0 can be used.

Example C.13 (Supercritical pitchfork bifurcation with y as the parameter). The
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Figure C-5: Minima and suboptimal KKT points for the inner problem of Example
C.12.

bilevel program

min
x,y

x − y

s.t. y ∈ arg min
z

xz2

2
− zx3 (mb 1 1 06)

x ∈ [−1, 1], y, z ∈ [−1, 1]

has the unique optimal solution x = 0, y = 1 with an objective value of −1.

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] but due to

nonconvexity of the objective function they are not sufficient for a local/global mini-

mum.

Stationarity of the inner objective gives xy−x3 = 0, which describes a bifurcation

for x as a function of y, see also Figure C-6. For −1 ≤ x < 0, we have y = −1 as the

unique global optimum of the inner problem while for x = 0, all y points are trivially
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optimal for the inner problem. Finally for 0 < x ≤ 1 we have y = x2 as the unique

global minimum of the inner problem. In addition to these minima for −1 ≤ x < 0

we have y = 1 and y = x2 as suboptimal KKT points of the inner problem. At the

constrained KKT points, the magnitude of the KKT multipliers can be estimated by

|x(±1) − x3| < 2.

x

y

10−1

−1

1

0

of inner problem
suboptimal KKT points

optimal solution

feasible points

Figure C-6: Minima and suboptimal KKT points for the inner problem of Example
C.13.

Example C.14 (Turning point bifurcation). The bilevel program

min
x,y

(x − 1/4)
2 + y2

s.t. y ∈ arg min
z

z3/3 − x z (mb 1 1 07)

x ∈ [−1, 1], y, z ∈ [−1, 1]

has the unique optimal solution x = 1/4, y = 1/2 with an objective value of 1/4.

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] but due to

326



nonconvexity of the objective function they are not sufficient for a local/global mini-

mum.

Stationarity of the inner objective gives y2 − x = 0 which describes a turning

point bifurcation of y as a function of x, see also Figure C-7. For −1 ≤ x < 0 it is

strictly monotone increasing with y and therefore the unique KKT and minimum is

y = −1. For 0 ≤ x ≤ 1 there are three KKT points y = −1, y =
√

x and y = −√
x;

for 0 ≤ x < 1/4 we have the unique minimum y = −1; for x = 1/4 we have two minima

y = −1 and y = 1/2; for 1/4 < x ≤ 1 we have the unique minimum y =
√

x.

At the constrained KKT point y = −1, we can calculate a bound for the KKT

multiplier as |y2 − x| = |1 − x| and a maximal value of µmax = 2 can be taken.
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y
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−1

1

0
of inner problem

feasible points

feasible points

optimal solution

suboptimal KKT points

Figure C-7: Minima and suboptimal KKT points for the inner problem of Example
C.14.
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Example C.15 (Transcritical bifurcation). The bilevel program

min
x,y

x + y

s.t. y ∈ arg min
z

xz2/2 − z3/3 (mb 1 1 08)

x ∈ [−1, 1], y, z ∈ [−1, 1]

has the unique optimal solution x = −1, y = 1 with an objective value of 0.

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] but due to

nonconvexity of the objective function they are not sufficient for a local/global mini-

mum.

Stationarity of the inner objective gives xy−y2 = 0 which describes a transcritical

bifurcation of y as a function of x, see also Figure C-8. For all x values y = 1, y = 0

and y = x are KKT points of the inner problem. Out of them y = 1 is optimal for

0 ≤ x ≤ 2/3 and y = 0 is optimal for 2/3 ≤ x ≤ 1.

At the constrained KKT point y = 1, we can calculate a bound for the KKT

multiplier as |xy − y2| = |x − 1| and a maximal value of µmax = 2 can be taken.

Example C.16 (Subcritical pitchfork bifurcation). The bilevel program

min
x,y

2 x + y

s.t. y ∈ arg min
z

−xz2/2 − z4/4 (mb 1 1 09)

x ∈ [−1, 1], y, z ∈ [−1, 1]

has two optimal solutions x = −1, y = 0 and x = −1/2, y = −1 with an objective

value of −2.

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] but due to

nonconvexity of the objective function they are not sufficient for a local/global mini-

mum.
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Figure C-8: Minima and suboptimal KKT points for the inner problem of Example
C.15.

Stationarity of the inner objective gives −xy−y3 = 0 which describes a subcritical

pitchfork bifurcation of y as a function of x. The feasible set for the inner problem is

shown in Figure C-9. For −1 ≤ x < −1/2 the inner problem has the unique minimum

y = 0 and four suboptimal KKT points y = ±√−x and y = ±1. For x = −1/2 the

inner problem has three minima y = 0 and y = ±1 and two suboptimal KKT points

y = ±√−x. For −1/2 < x ≤ 0 the inner problem has two minima y = ±1 and three

suboptimal KKT points y = ±√−x and y = 0. For 0 < x ≤ 1 the inner problem has

two minima y = ±1 and one suboptimal KKT point y = 0.

At the constrained KKT points y = ±1, we can calculate a bound for the KKT

multipliers as |xy + y3| = | ± x ± 1| and a maximal value of µmax = 2 can be taken.
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Figure C-9: Minima and suboptimal KKT points for the inner problem of Example
C.16.

Example C.17 (Subcritical pitchfork bifurcation). The bilevel program

min
x,y

(x + 1/2)
2 + 1/2 y2

s.t. y ∈ arg min
z

1/2xz2 + 1/4z
4 (mb 1 1 10)

x ∈ [−1, 1], y, z ∈ [−1, 1]

has two optimal solutions x = −1/4, y = ±1/2 with an objective value of 0.1875.

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] but due to

nonconvexity of the objective function they are not sufficient for a local/global mini-

mum.

Stationarity of the inner objective gives xy + y3 = 0, which describes a subcritical

pitchfork bifurcation of y as a function of x. The feasible set for the inner problem is

shown in Figure C-10. For −1 ≤ x < 0 the inner problem has two minima y = ±√−x
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and one suboptimal KKT point y = 0. For 0 ≤ x ≤ 1 the inner problem has one

minimum and KKT point y = 0.

All KKT points are unconstrained, so that any µmax > 0 can be used.
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suboptimal KKT points

feasible points

feasible points

Figure C-10: Minima and suboptimal KKT points for the inner problem of Example
C.17.

Example C.18 (Supercritical pitchfork bifurcation with x as the parameter). The

bilevel program

min
x,y

−x2 + y2

s.t. y ∈ arg min
z

x z2 − z4/2 (mb 1 1 11)

x ∈ [−1, 1], y, z ∈ [−1, 1]

has the unique optimal solution x = 1/2, y = 0 with an objective value of 1/4.

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] but due to

nonconvexity of the objective function they are not sufficient for a local/global mini-
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mum.

Stationarity of the inner objective gives xy−y3 = 0, which describes a bifurcation

for y as a function of x, see also Figure C-11. For −1 ≤ x ≤ 0, we have y = ±1

as the minima of the inner problem and y = 0 as a suboptimal KKT point. For

0 ≤ x < 1/2, we have y = ±1 as the minima of the inner problem and y = 0, y = ±√
x

as suboptimal KKT points. For x = 1/2, we have y = 0 and y = ±1 as the minima

of the inner problem and y = ±
√

1/2 as suboptimal KKT points. For 0 < x ≤ 1, we

have y = 0 as the unique minimum of the inner problem and y = ±
√

1/2, y = ±1 as

suboptimal KKT points.

At the constrained KKT points y = ±1, we can calculate a bound for the KKT

multipliers as |xy − y3| = | ± x ∓ 1| and a maximal value of µmax = 1 can be taken.
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Figure C-11: Minima and suboptimal KKT points for the inner problem of Example
C.18.

Example C.19 (Supercritical pitchfork bifurcation with x as the parameter). The

332



bilevel program

min
x,y

x y − y + y2/2

s.t. y ∈ arg min
z

−x z2 + z4/2 (mb 1 1 12)

x ∈ [−1, 1], y, z ∈ [−1, 1]

has the unique optimal solution x = 7−
√

13
18

≈ 0.189, y = −
√

7−
√

13
18

≈ −0.768 with an

objective value of f ≈ −0.258.

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] but due to

nonconvexity of the objective function they are not sufficient for a local/global min-

imum. Stationarity of the inner objective gives −2xy + 2y3 = 0, which describes a

bifurcation for y as a function of x, see also Figure C-12. For −1 ≤ x ≤ 0, we have

y = 0 as the unique global optimum of the inner problem. For 0 < x ≤ 1, y = ±√
x

are the global minima for the inner problem while y = 0 is a suboptimal KKT. All

KKT points are unconstrained, so that any µmax > 0 can be used.
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Figure C-12: Minima and suboptimal KKT points for the inner problem of Example
C.19.
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Example C.20 (Crossing KKT points). The bilevel program

min
x,y

(x − 1/4)
2 + y2

y ∈ arg min
z

z3/3 − x2 z (mb 1 1 13)

x ∈ [−1, 1], y, z ∈ [−1, 1]

has the unique optimal solutions x = 1/2, y = 1/2 with an optimal objective value of

5/16.

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] but due to

nonconvexity of the objective function they are not sufficient for a local/global mini-

mum.

The inner objective has the following minima, see also Figure C-13. For −1 ≤
x < −1/2 the unique global minimum is y = −x. For x = −1/2 there are two minima

y = −1 and y = 1/2. For −1/2 < x < 1/2 the unique global minimum is y = −1. For

x = 1/2 there are two minima y = −1 and y = 1/2. For 1/2 < x ≤ 1 the unique global

minimum is y = x.

Stationarity of the inner objective gives y2 − x2 = 0 and therefore y = ±x are

KKT points for all x ∈ [−1, 1]. At the constrained KKT points, the value of the KKT

multipliers can be bounded by |y2 − x2| = |1 − x2| ≤ 1.

Example C.21 (Switching KKT points). The bilevel program

min
x,y

(x − 0.6)2 + y2

s.t. y ∈ arg min
z

z4 + 4/30 (−x + 1) z3 + (−0.02 x2 + 0.16 x − 0.4) z2

+ (0.004 x3 − 0.036 x2 + 0.08 x) z

x ∈ [−1, 1], y, z ∈ [−1, 1] (mb 1 1 14)

has the unique optimal solution x ≈ −0.5545, y ≈ 0.4554 and an optimal objective

value of approximately 0.2095.
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Figure C-13: Minima and suboptimal KKT points for the inner problem of Example
C.20.

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] but due to

nonconvexity of the objective function they are not sufficient for a local/global mini-

mum.

The inner objective has the following minima and KKT points, see also Figure

C-14. For −1 ≤ x < −1/2 the unique global minimum is y = 0.4− 0.1x. For x = −1/2

there are two minima y = −0.55 and y = 0.45. For −1/2 < x ≤ 1 the unique global

minimum is y = −0.5+0.1x. For all x ∈ [−1, 1] there exist three KKT points, namely

y = −0.5 + 0.1x, y = 0.4− 0.1x and 0.1x. All KKT points are unconstrained so that

any µmax > 0 can be used.
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Figure C-14: Inner objective function, its KKT points and its minima for Example
C.21.

Example C.22 (Switching KKT points). The bilevel program

min
x,y

(x − 0.6)2 + y2

s.t. y ∈ arg min
z

z4 + 4/30 (−x + 1) z3 + (−0.02 x2 + 0.16 x− 0.4) z2

+ (0.004 x3 − 0.036 x2 + 0.08 x) z

s.t. 0.01 (1 + x2) − z2 ≤ 0 (mb 1 1 15)

x ∈[−1, 1], y, z ∈ [−1, 1]

has the unique optimal solution x ≈ −0.5545, y ≈ 0.4554 with an objective value of

approximately 0.2095.

This example build upon Example C.21. The inner program satisfies the lin-

ear/concave constraint qualification [41, p. 322] and therefore the KKT conditions

are necessary for a local minimum.

The inner objective has the following minima, see also Figure C-15. For −1 ≤
x < −1

2
the unique global minimum is y = 0.4 − 0.1x. For x = −1

2
there are two

minima y = −0.55 and y = 0.45. For −1
2

< x ≤ 1 the unique global minimum is y =

−0.5 + 0.1x. For all x ∈ [−1, 1] there exist two KKT points, namely y = −0.5 + 0.1x
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and y = 0.4 − 0.1x. All KKT points are unconstrained so that any µmax > 0 can be

used.
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Figure C-15: Minima and suboptimal KKT points for the inner problem of Example
C.22.

Example C.23 (No KKT constraint qualification). The bilevel program

min
x,y

x2

s.t. 1 + x − 9x2 − y ≤ 0

y ∈ arg min
z

z (mb 1 1 16)

s.t. z2
1(x − 0.5) ≤ 0

x ∈ [−1, 1], y, z ∈ [−1, 1]

has the unique optimal solution x = 1−
√

73
18

≈ −0.4191, y1 = −1 with an objective

value of ≈ 0.1756.

The inner problem is feasible for all x. For x ≤ 0.5 any y ∈ [−1, 1] is feasible

and y = −1 optimal. For x > 0.5 only y = 0 is feasible and optimal. Together
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with the outer constraint the feasible set of (mb 1 1 16) is therefore y = −1 for

x ≤ 1−
√

73
18

≈ −0.4191 and y = 0 for x ≥ 1+
√

73
18

≈ −0.53022.

For x > 0.5 the inner problem has no Slater point, and the unique minimum

y = 0, does not satisfy the KKT conditions. Therefore the KKT conditions are not

necessary for a minimum and the KKT-based lower bound is not applicable.

The purpose of this example is to study programs which satisfy Assumption 4.3,

but do not allow any combination of branching and node selection heuristics. For this

example, the first iteration gives a lower bound of 0 and no upper bound. If after

the first iteration one branches X to [−1, 1] ∩ [0, 1] and then considers [0, 1] without

branching Algorithm 4.1 would never generate an upper bound. It would tend to

x = 1+
√

73
18

but never reach it.

Example C.24 (Randomly generated example). The bilevel program

min
x,y

x1y1 + x2 y2
1 − x1 x2 y3

s.t. 0.1 y1y2 − x2
1 ≤ 0

x2y
2
1 ≤ 0

y ∈ arg min
z

x1z
2
1 + x2z2z3 (mb 2 3 01)

s.t.z2
1 − z2 z3 ≤ 0

z2
2 z3 − z1x1 ≤ 0

−z2
3 + 0.1 ≤ 0

x ∈ [−1, 1]2, y, z ∈ [−1, 1]3

has a best known objective value of −1 and one of the points satisfying this is x1 = −1,

x2 = −1, y1 = −1, y2 = 1, y3 = 1.

This example was generated randomly and not analyzed yet. Since there are only

2 x variables we we were able to confirm the result with a discretization of 100× 100

points.
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Example C.25 (Separable example). The bilevel program

min
x,y

x1y1 + x2y
2
2 + x1x2y

3
3

s.t. 0.1 − x2
1 ≤ 0

1.5 − y2
1 − y2

2 − y2
3 ≤ 0 (mb 2 3 02)

2.5 + y2
1 + y2

2 + y2
3 ≤ 0

y ∈ arg min
z

x1z
2
1 + x2z

2
2 + (x1 − x2)z

2
3

x ∈ [−1, 1]2, y, z ∈ [−1, 1]3

has the unique optimal solution x1 = −1, x2 = −1, y1 = 1, y2 = 1, y3 = −
√

0.5 ≈
−0.707 with an objective value of −2 −

√
0.5

3 ≈ −2.35.

The purpose of this example is to generate a larger size problem that is easy to

analyze. The inner program has linear inequality constraints and therefore by the

Adabie constraint qualification the KKT conditions are necessary [39, p. 187] but

due to nonconvexity of the objective function they are not sufficient for a local/global

minimum.

The inner problem can be decomposed into three programs, one for each variable

yi. For these subproblems

• The optimal value of y1 depends only on x1. Noting the outer level constraint

on x1 we have

– For x1 ≥
√

0.1 the unique optimum and KKT is y1 = 0.

– For x1 ≤ −
√

0.1 there are two minima y1 = ±1 and a suboptimal KKT

point y1 = 0.

• The optimal value of y2 depends only on x2.

– For x2 > 0 the unique optimum and KKT is y2 = 0.

– For x2 = 0 any y2 ∈ [−1, 1] is optimal and KKT point.
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– For x2 < 0 there are two minima y2 = ±1 and a suboptimal KKT point

y2 = 0.

• The optimal value of y3 depends only on x1 − x2.

– For x1 > x2 the unique optimum and KKT is y3 = 0.

– For x1 = x2 any y3 ∈ [−1, 1] is optimal and KKT point.

– For x1 < x2 there are two minima y3 = ±1 and a suboptimal KKT point

y3 = 0.

Together with the outer problem constraints we obtain four subsets for the feasible

set, see also Figure C-16

• −1 ≤ x1 ≤ −
√

0.1, 0 < x2 <≤ 1, y1 = ±1, y2 = 0, y3 = ±1. In this subset the

best possible solution is found for x1 = −1, x2 = 1, y1 = 1, y2 = 0, y3 = −1

with an objective value of −2.

• −1 ≤ x1 ≤ −
√

0.1, x2 = 0, y1 = ±1, y2 ∈ [−1, 1], y3 = ±1. In this subset the

best possible solution is found for x1 = −1, x2 = 0, y1 = 1, y3 = −1 with an

objective value of −1.

• −1 ≤ x1 ≤ −
√

0.1, x2 = x1, y1 = ±1, y2 = ±1, y3 ∈ [−1, 1]. In this subset

the best possible solution is found for x1 = −1, x2 = −1, y1 = 1, y2 = 1,

y3 = −
√

0.5 ≈ −0.707 with an objective value of −2 − 0.51.5 ≈ −2.35.

• −1 ≤ x1 ≤ −
√

0.1, −1 ≤ x2 < x1, y1 = ±1, y2 = ±1, y3 = 0. In this subset the

best possible solution is found for x1 = −1 + ǫ, x2 = −1, y1 = 1, y2 = 1, y3 = 0

with an objective value of −2 + ǫ for arbitrarily small ǫ > 0.

At the constrained KKT points yi = ±1, we can calculate a bound for the KKT

multipliers as

max{|2 x1 y1|, |2x2y2|, |2(x1 − x2)y3|} ≤ 4

.
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Figure C-16: Feasible set in the x1, x2 space for Example C.25.

C.2 Examples from Gümüs and Floudas [133]

Example C.26 (Example 1 in [133]). The bilevel program

min
x,y

16x2 + 9y2

s.t. − 4x + y ≤ 0

y ∈ arg min
z

(x + z − 20)4 (gf 1)

s.t. 4 x + z − 50 ≤ 0

x ∈ [0, 12.5], y, z ∈ [0, 50]

has the unique optimal solution x = 45/4 = 11.25, y = 5 with an objective value of

2250. Note that we added explicit upper bounds on the variables that can be inferred

by the inner constraint 4 x + z − 50 ≤ 0 along with the variable lower bounds of

(x ≥ 0, y ≥ 0).

Note that for x = 12.5 no point z̃ exists such that 4 12.5 + z̃ < 0 violating (4.21).

But (4.22) holds because for y = 0 (the only feasible for x = 12.5) f = 2500, which

is significantly above f ∗ = 2250.
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The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] for a local

minimum. Since the objective function is convex they are also sufficient for a global

minimum.

For each fixed x the feasible set for y is y ∈ [0, 50 − 4 x]. Since the objective

function is strictly convex for z, its minimum can only be attained at the bounds or

at the stationary point 20 − x. A parametric comparison of these three possibilities

gives the parametric optimal solution of the inner program as

ȳ(x) =











20 − x if x ∈ [0, 10]

50 − 4 x otherwise.

With the outer constraint (y ≤ 4x) this solution is feasible for x ≥ 4 and therefore

the optimization program is equivalent to minimizing the function

f̄(x) =











25x2 − 360x + 3600 if x ∈ [4, 10]

160x2 − 3600x + 22500 if x ∈ (10, 12.5],

see also Figure C-17. The bilevel program therefore has a local minimum at x = 36/5,

y = 64/5 with an objective value of 2304 and a global minimum at x = 45/5, y = 5 with

an objective value of 2250.

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 0  2  4  6  8  10  12

Figure C-17: Equivalent objective function of Example C.26.
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Example C.27 (Example 2 in [133]). The bilevel program

min
x,y

x3y1 + y2

s.t. y ∈ arg min
z

−z2

s.t. xz1 − 10 ≤ 0 (gf 2)

z2
1 + xz2 − 1 ≤ 0

x ∈ [0, 1], y, z ∈ [−1, 1] × [0, 100]

has the unique optimal solution x = 1, y1 = 0, y2 = 1 with an objective value of 1.

Note that as formulated in [133] the inner program is unbounded for x = 0; in that

case replacing the inner program with its KKT conditions is not a valid relaxation.

We added an upper bound to the variable y2 that does not affect the optimal solution

of the bilevel program. An alternative would be to consider x ≥ δ for some small

δ > 0.

The constraints of the inner program are partially convex in y and y = 0 is a

Slater point for all x and therefore the KKT conditions are necessary [41, p. 325] for

a local minimum. Since the objective function is convex they are also sufficient for a

global minimum.

The inner program is a maximization of z2 and therefore setting z1 = 0 the

binding constraint is x z2 ≤ 1 which gives the parametric optimal solution ȳ2(x) =

min(1/x, 100). Note that the constraint xz1 ≤ 10 is always inactive. As a con-

sequence for x ≥ 1/100 the inner program gives y1 = 0 while for x < 1/100 any

y1 ∈ [0,
√

1 − 100x] is feasible. For x ≥ 1/100 the constraint z2
1 + xz2 ≤ 1 has a KKT

multiplier 1/x and therefore µmax = 100 can be taken.

Since x ≥ 0 the outer optimizer will always choose y1 = 0 if given a choice.

Therefore the bilevel program is equivalent to the minimization of min(1/x, 100) and

the optimal solution x = 1, y1 = 0, y2 = 1 is obtained.
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Example C.28 (Example 3 in [133]). The bilevel program

min
x,y

−8 x1 − 4 x2 + 4 y1 − 40 y2 − 4 y3

s.t. y ∈ arg min
z

1 + x1 + x2 + 2 z1 − z2 + z3

6 + 2 x1 + z1 + z2 − 3 z3

s.t. − z1 + z2 + z3 ≤ 1 (gf 3)

2 x1 − z1 + 2 z2 − 1/2 z3 ≤ 1

2 x2 + 2 z1 − z2 − 1/2 z3 ≤ 1

x ∈ [0, 2]2, y, z ∈ [0, 2]3

has the best known optimal solution x1 = 0, x2 = 0.9, y1 = 0, y2 = 0.6, y3 = 0.4

with an objective value of −29.2. Note that we have eliminated the slack variables

y4, y5, y6 from the original formulation and have introduced explicit upper bounds

for the variables that can be inferred by the inner constraints and the lower bounds

of the variables (x ≥ 0, y ≥ 0). Note also that for the KKT conditions we eliminate

the denominator of the objective function derivatives and obtain linear stationarity

conditions.

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] for a local

minimum. The inner program is a linear fractional programming problem [39, p. 524],

parameterized in x. It can be easily verified, e.g., through the solution of a linear

program with (x and y as variables) that the denominator (6 + 2 x1 + z1 + z2 − 3 z3)

of the inner objective function can vary only between 1 and 8. Since the denominator

is positive, the objective function is pseudo-concave and the KKT conditions are

necessary for a global minimum [39, p. 525].

Since the denominator is positive, one can replace the inner program with an

equivalent linear program, [39, 66, p. 529]. The equivalent LP can be replaced by its

equivalent KKT conditions. This method would probably introduce nonlinearity in

the outer objective.

We have not yet analyzed the behavior of this example. We have confirmed the
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solution by a discretization in the x space with 100 × 100 points.

Example C.29 (Example 4 in [133]). The bilevel program

min
x,y

(x − 3)2 + (y − 2)2

s.t. − 2 x + y − 1 ≤ 0

x − 2 y + 2 ≤ 0 (gf 4)

x + 2 y − 14 ≤ 0

y ∈ arg min
z

(z − 5)2

x ∈ [0, 8], y, z ∈ [0, 10]

has the unique optimal solution x = 3, y = 5 with an objective value of 9. Note that

we chose arbitrary bounds for y; since the minimum of the inner program is obtained

for y = 5 they do not affect the inner program. They also do not affect the outer

program since the outer constraints directly give y ∈ [0, 6].

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] for a local

minimum. Since the objective function is convex they are also sufficient for a global

minimum.

The inner program is not parameterized in x and we obtain directly y = 5 from

the inner program. Since the KKT points are all unconstrained any µmax > 0 can be

used. The bilevel program is therefore equivalent to

min
x∈[0,8]

(x − 3)2 + 9

s.t. − 2x + 4 ≤ 0

x − 8 ≤ 0

x − 4 ≤ 0
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or

min
x∈[2,4]

(x − 3)2 + 9,

which gives x = 3. Note that x = 3 corresponds to the unconstrained minimum of

the outer objective function.

Example C.30 (Example 5 in [133]). The bilevel program

min
x,y

x

s.t. y ∈ arg min
z

−z1 + 0.5864z0.67
1

s.t.
0.0332333

z2
+ 0.1z1 − 1≤ 0 (gf 5)

4
x

z2
+ 2

x−0.71

z2
+ 0.0332333 x−1.3 − 1 ≤ 0

x ∈ [0.1, 10], y, z ∈ [0.1, 10]2

has the unique optimal solution x = 0.193616, y1 = 9.966766700, y2 = 10 with an

objective value of 0.193616. Note that this is different than the solution reported in

[133]. This may be due to typos of the formulated program, but we could not find the

example in the original reference [111] to confirm the formulation. Note also that we

directly solve the problem as opposed to reformulating it using exponential functions.

The inner variables do not affect the outer problem. In the inner program the

objective function depends only on y1. The outer variable x appears only in the

second constraint and setting y2 = 10 will allow most freedom for the variable x

giving approximately x ∈ [0.1936160966, 2.182605852]. The optimal x is therefore

x = 0.1936160966. If the outer optimizer chooses this x, the second constraint directly

gives y2 = 10. The first constraint then gives y1 ∈ [0.1, 9.966766700]. Since the inner

objective is monotone decreasing, we obtain y1 = 9.966766700. Note also that for

x = 0.1936160966 the second constraint cannot be satisfied with strict inequality and

f(0.1936160966) = f ∗ and therefore this example violates Assumption 4.3 for the

optimal x. Solving the upper bounding problem at the root node gives the same

value as the lower bounding problem and this slight modification of the algorithm
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converges at the root node.

The inner program is a geometric program for each x (x affects merely the co-

efficient of the posynomials); therefore the reformulation performed by Gümüs and

Floudas [133] leads to a convex program [39, p. 531]. For the reformulated program

for x ∈ (0.1936160966, 2.182605852) the inner program satisfies the constraint qual-

ifications by the existence of Slater points. For x ∈ {0.1936160966, 2.182605852} a

constraint qualification needs to be shown. In either case, the second constraint gives

directly y2 = 10 and no Slater point exists; the second constraint is linearly depen-

dent of the constraint y2 ≤ 10 which is also active. Neither of these two constraints

depend on y1 and the objective function does not depend on y2; since the derivative

of the first constraint with respect to y2 is negative, it is possible to find KKT points

at the minimum (they are not unique because of the linear dependence).

Note also that for bilevel geometric programs, an algorithm has been proposed by

Segall [249, 250].

An alternative reformulation of the inner program is to note that z2 appears only

in the inverse functions and therefore z
′

2 = 1/z2 can be used instead (with the same

bounds). The resulting program has linear constraints, and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] for a local

minimum.

Multiplying the constraints by z2 is not advisable because it would create a bilinear

term z1 z2 in the first constraint.

Constraint qualification for the original program remains to be shown.

Note that if we inverse the outer optimization sign we will get x = 2.182605852

but the same y.
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C.3 Examples from Sahin and Ciric [246]

Example C.31 (Example 1 in [246]). The bilevel program

min
x,y

−x − 3y1 + 2y2

s.t. y ∈ arg min
z

−z1

s.t. − 2x + z1 + 4z2 − 16 ≤ 0 (sc 1)

8x + 3z1 − 2z2 − 48 ≤ 0

−2x + z1 − 3z2 + 12 ≤ 0

x ∈ [0, 8], y, z ∈ [0, 4] × [0, 6]

has an objective value of −13 attained at x = 5, y1 = 4, y2 = 2. Note that we

reformulated the problem to minimization. Note also that we added explicit bounds

for y2 which can be inferred by the constraints of the inner program.

The inner program is linear and therefore the KKT conditions are both necessary

and sufficient for a minimum.

The inner program can be solved parametrically as a function of x. The solution

obtained is

ȳ1(x) =



























2 x if x ∈ [0, 2]

4 if x ∈ (2, 6]

16 − 2x if x ∈ (6, 8].

We can now obtain the optimal solution by solving the LP

min
x,y2

−x − 3ȳ1(x) + 2y2

−2x + ȳ1(x) + 4y2 − 16 ≤ 0

8x + 3ȳ1(x) − 2y2 − 48 ≤ 0

−2x + ȳ1(x) − 3y2 + 12 ≤ 0

x ∈ Xi y2 ∈ [0, 6]
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in the three intervals Xi. For x ∈ [0, 2] we obtain an optimal objective value of −6.

For x ∈ [2, 6] we obtain an optimal objective value of −13 attained at x = 5, y1 = 4,

y2 = 2. For x ∈ [6, 8] we obtain an optimal objective value of −6.

Example C.32 (Example 2 in [246]). The bilevel program

min
x,y

(x − 3)2 + (y − 2)2

s.t. y ∈ arg min
z

(z − 5)2

s.t. − 2x + z − 1 ≤ 0 (sc 2)

x − 2z + 2 ≤ 0

x + 2z − 14 ≤ 0

x ∈ [0, 8], y ∈ [0, 6]

has an optimal objective of 5, attained at x = 1, y = 3. Note also that we added

explicit bounds for y which can be inferred by the constraints of the inner program.

The inner program has linear inequality constraints and therefore by the Adabie

constraint qualification the KKT conditions are necessary [39, p. 187] for a local

minimum. Since the objective function is convex they are also sufficient for a global

minimum. The inner program can be easily solved parametrically. Figure C-18 shows

the geometry. The parametric solution obtained is

ȳ(x) =



























1 + 2 x if x ∈ [0, 2]

5 if x ∈ (2, 4]

7 − x/2 if x ∈ (4, 6].
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Figure C-18: Inner program of Example C.32.

Therefore the bilevel program is equivalent to a minimization of

f̄(x) =



























5 x2 − 10 x + 10 if x ∈ [0, 2]

x2 − 6 x + 18 if x ∈ (2, 4]

5/4 x2 − 11 x + 34 if x ∈ (4, 6]

which has the unique global minimum x = 1, y = 3 with an objective value of 5. It

also has two suboptimal local minima, for x = 3, y = 2 with an objective value of 9

and x = 4.4, y = 4.8 and an objective value 9.8, see also Figure C-19.

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0  1  2  3  4  5  6

Figure C-19: Equivalent objective function for Example C.32.
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Parametric Optimization. Birkhäuser Verlag, Stuttgart, 1983.

[36] Jonathan F. Bard. An algorithm for solving the general bilevel programming

problem. Mathematics of Operations Research, 8(2):260–272, 1983.

[37] Jonathan F. Bard. Practical Bilevel Optimization: Algorithms and Applications.

Nonconvex Optimization and Its Applications. Kluwer Academic Publishers,

Dordrecht, 1998.

[38] Paul I. Barton, Alexander Mitsos, and Benôıt Chachuat. Optimal start-up
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[276] Frantǐsek Štepánek and Miloš Marek. Optimization of reaction-separation net-

works via mass integration on the µ-scale. In IMRET 3, Frankfurt Germany,

pages 243–252, 1999.

[277] Stein W. Wallace. Decision making under uncertainty: Is sensitivity analysis of

any use? Operations Research, 48(1):20–25, 2000.
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