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Abstract

In this thesis, I discuss the application and development of methods for the automated discovery
of motifs in sequential data. �ese data include DNA sequences, protein sequences, and real–
valued sequential data such as protein structures and timeseries of arbitrary dimension. As
more genomes are sequenced and annotated, the need for automated, computational methods
for analyzing biological data is increasing rapidly. In broad terms, the goal of this thesis is
to treat sequential data sets as unknown languages and to develop tools for interpreting an
understanding these languages.

�e first chapter of this thesis is an introduction to the fundamentals of motif discovery,
which establishes a common mode of thought and vocabulary for the subsequent chapters.
One of the central themes of this work is the use of grammatical models, which are more
commonly associated with the field of computational linguistics. In the second chapter, I use
grammatical models to design novel antimicrobial peptides (AmPs). AmPs are small proteins
used by the innate immune system to combat bacterial infection in multicellular eukaryotes.
�ere is mounting evidence that these peptides are less susceptible to bacterial resistance than
traditional antibiotics and may form the basis for a novel class of therapeutics. In this thesis, I
described the rational design of novel AmPs that show limited homology to naturally–occurring
proteins but have strong bacteriostatic activity against several species of bacteria, including
Staphylococcus aureus and Bacillus anthracis. �ese peptides were designed using a linguistic
model of natural AmPs by treating the amino acid sequences of natural AmPs as a formal
language and building a set of regular grammars to describe this language. �is set of grammars
was used to create novel, unnatural AmP sequences that conform to the formal syntax of natural
antimicrobial peptides but populate a previously unexplored region of protein sequence space.

�e third chapter describes a novel, GEneric MOtif DIscovery Algorithm (Gemoda) for
sequential data. Gemoda can be applied to any dataset with a sequential character, including
both categorical and real–valued data. As I show, Gemoda deterministically discovers motifs
that are maximal in composition and length. As well, the algorithm allows any choice of similar-
ity metric for finding motifs. �ese motifs are representation–agnostic: they can be represented
using regular expressions, position weight matrices, or any other model for sequential data. I
demonstrate a number of applications of the algorithm, including the discovery of motifs in
amino acids and DNA sequences, and the discovery of conserved protein sub–structures.

�e final chapter is devoted to a series of smaller projects, employing tools and methods



indirectly related to motif discovery in sequential data. I describe the construction of a software
tool, Biogrep that is designed to match large pattern sets against large biosequence databases
in a parallel fashion. �is makes biogrep well–suited to annotating sets of sequences using
biologically significant patterns. In addition, I show that the BLOSUM series of amino acid
substitution matrices, which are commonly used in motif discovery and sequence alignment
problems, have changed drastically over time. �e fidelity of amino acid sequence alignment
and motif discovery tools depends strongly on the target frequencies implied by these underly-
ing matrices. �us, these results suggest that further optimization of these matrices is possible.

�e final chapter also contains two projects wherein I apply statistical motif discovery tools
instead of grammatical tools. In the first of these two, I develop three different physiochemical
representations for a set of roughly  HIV–I protease substrates and use these representa-
tions for sequence classification and annotation. In the second of these two projects, I develop
a simple statistical method for parsing out the phenotypic contribution of a single mutation
from libraries of functional diversity that contain a multitude of mutations and varied phe-
notypes. I show that this new method successfully elucidates the effects of single nucleotide
polymorphisms on the strength of a promoter placed upstream of a reporter gene.

�e central theme, present throughout this work, is the development and application of
novel approaches to finding motifs in sequential data. �e work on the design of AmPs is very
applied and relies heavily on existing literature. In contrast, the work on Gemoda is the greatest
contribution of this thesis and contains many new ideas.

�esis Supervisor: Gregory N. Stephanopoulos
Title: Bayer Professor of Chemical Engineering
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Chapter 

Introduction to motif discovery

. Introduction

�e field of biology is changing rapidly from a qualitative discipline to one rooted in quan-

titation. �ese changes are driven by advances in microfabrication and microelectronics that

continue to yield ever more creative ways to probe cellular function. �ese advances, in turn,

are producing a deluge of data, opening up new ways to think about and analyze life, and

attracting engineers and scientists from other disciplines into biology.

Nowhere is this sea change of quantitation more pronounced than in DNA sequencing [].

As shown in Figure - on the following page, improvements in DNA sequencing drove down

the cost of sequencing many orders of magnitude over the past  years, making sequencing

commonplace. �is rate of sequencing produces a data storage nightmare — each dry gram of

DNA can store approximately a zettabyte of information, or a million million gigabytes [].

Consider the growth of the Genbank DNA database [], as shown in Figure - on the next

page. Genbank receives over  new submissions of DNA sequences from scientists every

day and has doubled in size every  months since .

�is torrent of data is not restricted to DNA sequencing. Technological advances in recent

years produced myriad tools for quantifying biology including DNA microarrays, reverse tran-

scriptase polymerase chain reaction (RT–PCR), flow cytometry, chromatin–immunoprecipitation

(chip–chip), yeast two–hybrid assays, fluorescence and confocal microscopy, generalized robotic

screening methods, and countless others. �ese tools enable the continual coining of new
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Figure -: Exponential growth of sequencing throughput []. �e figure tracks the number
of nucleotides that can be sequenced for a dollar over time juxtaposed with the advancement of
computing power. �e hypothesis referred to as “Moore’s Law” — that computational power
doubles every  months — appears somewhat applicable to DNA sequencing. Engineering
advancements in the basic electrophoretic method of DNA sequencing, the so–called “Sanger
sequencing,” over the past  years decreased the cost of sequencing many–fold. During the 
year Human Genome Project, widespread investment into innovation and automation drove
down the cost tenfold, greatly accelerating the completion of the project —  of the genome
was sequenced in the project’s last two years [].
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Figure -: Exponential growth of Genbank []. Genbank is a comprehensive database of
DNA sequences from over , organisms that were made public by direct submission
from researchers. �e database is maintained by the U.S. National Center for Biotechnology
Information, and is updated daily. �e sequences in Genbank include data from genome se-
quencing projects, expressed sequence tags, and international sequence data from the European
Molecular Biology Laboratory and the DNA Databank of Japan. Genbank receives over 
submissions per day and has doubled roughly every  months since being started. It is the
largest database of its kind and is the basis for many “information–added” databases and re-
sources. See also - on the preceding page.
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Table .: “Omic” fields other than genomic and proteomic. In many cases, fields have been
reborn as “omic” fields due to a changing focus towards higher throughput empirical methods.
�is list is indicative of the shift in biology towards quantitation and the resulting need for
new, automated modes of analysis. �e rise of these words over time in the scientific vernac-
ular is shown in Figure - on page . �is list was compiled by searching over  million
articles in the life sciences literature using the NCBI eutils API []. See also references in the
bibliography [, ].

Anatomics Biomics Chromosomics Cytomics
Enviromics Epigenomics Fluxomics Glycomics
Glycoproteomics Immunogenomics Immunomics Immunoproteomics
Integromics Interactomics Ionomics Lipidomics
Metabolomics Metabonomics Metagenomics Metallomics
Metalloproteomics Methylomics Mitogenomics Neuromics
Neuropeptidomics Oncogenomics Peptidomics Phenomics
Phospho-proteomics Phosphoproteomics Physiomics Physionomics
Post–genomics Postgenomics Pre–genomics Rnomics
Secretomics Subproteomics Surfaceomics Syndromics
Transcriptomics

“omes” such as the transcriptome, proteome, and interactome — high–throughput counter-

parts to traditional areas of study in biology. (See Figure - on page  and Table ..) �ese

new fields do not exist in isolation, but instead contribute to an ever–increasing network of

information. Consider the Genbank annotation of the human insulin gene as shown an Fig-

ure - on the facing page. �e annotation includes detailed information about insulin culled

from the scientific literature by human experts including not just the sequence of the gene, but

also its post–translational modifications, cellular localization, interactions with other genes, role

in energy metabolism and diabetes, and numerous links to external databases with yet more in-

formation.

�e Genbank annotation of insulin is the rule rather than the exception. It is a small piece

of the growing wealth of data describing life processes from the molecular level all the way to

the organism and ecological levels. However, inasmuch as these data hold promise, they also

present challenges: if our ability to collect data has increased exponentially, has our ability to

interpret and derive meaningful conclusions from these data kept track? Will these diverse data

allow us to “connect the dots,” to reveal rich systems–level information? Or, instead, are they
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Figure -: A sample Genbank record showing the litany of features annotating the human
gene for insulin. As the figure suggests, this “extra” information typically dwarfs the gene se-
quence in size. �e annotations are highly cross–referenced, linking genes to cellular functions,
behaviors, localizations and to other databases with yet more information. Viewed en masse, a
complex network of knowledge emerges linking primary sequences into the understanding of
higher–order systems at the cellular, tissue, an organism levels.
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Figure -: Usage of “ome” and “omic” words over time divided into three catagories: genome
and genomic, proteome and proteomic, and other ome and omic. �e latter category comprises
those words shown in Table . on page .
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subject to the law of diminishing returns? �e prevailing punditry lends credence to the former:

witness the rise of systems biology [, , ].

But the problem remains: how can the potential of these volumous and diverse data sets be

realized? �e sheer amount of data points to the need for automated, computational methods

for analysis. �is need is driving the co–opting of computer science as a core discipline of

biology. �at is, computational methods are becoming increasingly necessary to analyze the

vast data sets biologists have accrued, and consequently, computer science and mathematics are

becoming as fundamental to biology as chemistry and physics. �e particular sub–discipline of

biology devoted to these computational methods is typically referred to as either bioinformatics

or computational biology. Together, these fields comprise many research topics devoted to both

data analysis and modeling of biological systems.

It is likely that the need for automated, computational analysis will only increase in the

future. �ere are  completely sequenced genomes and over  genomes in various stages

of completion in the genome database at the U.S. National Center for Biotechnology Infor-

mation (NCBI) []. But, of the finished genomes, only two are mammalian: Homo sapi-

ens [, ] and Mus musculus [], human and mouse. �is suggests that, rather than

being in the “post–genomic” age, we have just begun the genomic age. Upcoming years will

see the completion of many genomes with relevance to human health and disease — such as

the rat, rabbit, and chimpanzee genomes — and to industry such as the cow, corn, and potato

genomes. Furthermore, these are just the sequencing data. Analogous progress in fields such

as metabolomics and proteomics is likely to leave biologists awash in data, further exacerbating

the need for automated methods of interpreting and modeling these data.

�e motivation for automated data analysis techniques that I have painted in this intro-

duction is quite broad, but what remains of this thesis is not. �e focus of the remainder is

automated, computational methods for discovering motifs in sequential data such as DNA and

protein sequences. For example, imagine a scenario in which we would like to correlate one of

the annotations of insulin shown in Figure - to a particular part of the DNA that encodes

insulin. �is is a very common problem in bioinformatics. In essence, this is like trying to learn

a language we don’t speak by reading many books. As suggested by Figure . on the next page,

this is a nontrivial problem.
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Table .: Genes sequences from Arabodopsis thaliana, a popular plant model organism. �ese
very small genes are only a few hundred bases long, whereas a typical gene can be many kilo–
bases in length. Given these sequences, how can we find all the small repeated motifs such
as CCACGCGTCCGAAAA? At a glance, the task seems difficult. Digging further it seems in-
surmountable — the sequences below are just a small snippet of Genbank . To print just the
nucleotide sequences in Genbank using this font would require  million pages: a stack of
paper  km high, or roughly the distance from MIT to Harvard.

>gi‖ Arabidopsis thaliana lipid transfer protein
CCACGCGTCCGAAAAAAAAAACAGAAAGTAACATGAGATCTCTCTTATTAGCCGTGTGCCTGGTTCTTGC

TTTACACTGCGGTGAAGCAGCCGTGTCTTGCAACACGGTGATTGCGGATCTTTACCCTTGCTTATCCTAC

GTGACTCAGGGCGGACCGGTCCCAACCCTCTGCTGCAACGGTCTCACAACACTCAAGAGTCAGGCTCAAA

CTTCTGTGGACCGTCAGGGGGTCTGTCGTTGCATCAAATCTGCTATTGGAGGACTCACTCTCTCTCCTAG

AACCATCCAAAATGCTTTGGAATTGCCTTCTAAATGTGGTGTCGATCTCCCTTACAAGTTCAGCCCTTCC

ACTGACTGCGACAGTATCCAGTGAGACAAGCAGAAAATCTTAAAGGAAGCTACTACAAGAACTATAATAA

CCTAATAATTAATAAATGAGGGCATTGGTTTGCTAGTTGCTAATTGATCAGTGATGTATTGTCATTTTGA

ATGTTCTAATATCAGCAGGCACTTATCTCTGAAAAAAAAAAAAAAAA

>gi‖ Arabidopsis thaliana lipid transfer protein
CCACGCGTCCGAAAACACAAGCGTAGAAAACAAAACTCAACTAATTGTGTTATCACCCAAAAGAGAAGAG

CAAACACAATGGCTTTCGCTTTGAGGTTCTTCACATGCTTTGTTTTGACAGTGTTCATCGTTGCATCAGT

GGATGCAGCAATAACATGTGGCACAGTGGCAAGTAGCTTGAGTCCATGTCTAGGCTACCTATCGAAGGGT

GGGGTGGTGCCACCTCCGTGCTGTGCAGGAGTCAAAAAGTTGAACGGTATGGCTCAAACCACACCCGACC

GCCAACAAGCATGCAGATGCTTACAGTCCGCTGCAAAAGGGGTTAATCCAAGTCTAGCCTCTGGCCTTCC

TGGAAAGTGCGGTGTTAGCATCCCCTATCCCATCTCCACGAGCACCAACTGCGCCACCATCAAGTGAAGT

GGGGAATAACGACATCATTTGCCTGAAGAGTATGGTTTCGTATACGTAAAATAAGACGGCTATCTAAGCT

GATATTTACCTTGTCTTTGTTTGTCTTGATGGCTTTGTAATCTTTTGCTTTGTTATGTTGTATACTTGTG

TCTTAACATGTTTAAGATATGATAATATATAGTATCGGTACCTTATTAAAAAAAAAAAAAAA

>gi‖ Arabidopsis thaliana lipid transfer protein
CCACGCGTCCGAAAACACAAGCGTAGAAAACAAAACTCAACTAATTGTGTTATCACCCAAAAGAGAAGAG

CAAACACAATGGCTTTCGCTTTGAGGTTCTTCACATGCTTTGTTTTGACAGTGTTCATCGTTGCATCAGT

GGATGCAGCAATAACATGTGGCACAGTGGCAAGTAGCTTGAGTCCATGTCTAGGCTACCTATCGAAGGGT

GGGGTGGTGCCACCTCCGTGCTGTGCAGGAGTCAAAAAGTTGAACGGTATGGCTCAAACCACACCCGACC

GCCAACAAGCATGCAGATGCTTACAGTCCGCTGCAAAAGGGGTTAATCCAAGTCTAGCCTCTGGCCTTCC

TGGAAAGTGCGGTGTTAGCATCCCCTATCCCATCTCCACGAGCACCAACTGCGCCACCATCAAGTGAAGT

GGGGAATAACGACATCATTTGCCTGAAGAGTATGGTTTCGTATACGTAAAATAAGACGGCTATCTAAGCT

GATATTTACCTTGTCTTTGTTTGTCTTGATGGCTTTGTAATCTTTTGCTTTGTTATGTTGTATACTTGTG

TCTTAACATGTTTAAGATATGATAATATATAGTATCGGTACCTTATTAAAAAAAAAAAAAAA
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Motif discovery in sequential data is only one tiny sliver of the vast spectrum of topics

spanned by bioinformatics and computational biology. However, many of the principles and

tools I describe have broader implications for learning and automated discovery methods in

biology. Chapter  of this thesis is devoted to familiarizing the reader with basic concepts

of motif discovery, with a particular focus on linguistic methods of modeling sequences. In

Chapter , these concepts are applied to the annotation and design of novel antibiotics, called

antimicrobial peptides. �e principal contribution of this thesis is the third chapter, in which

I develop a framework and software tool for motif discovery that can be generalized to diverse

types of data and is superior to existing tools in many ways. Finally, the last chapter comprises

a series of vignettes that take a more broad approach to motif discovery and explore a number

of issues adjoining the central theme of the first three chapters.

. Fundamental tenets of motif discovery

I will begin with a series of elementary, almost philosophical examples that serve to illustrate

some of the fundamental tenets of motif discovery. �ese examples may seem pedantic; how-

ever, the tenets they illustrate will be recurring themes throughout this thesis. Further, the

following sections will serve to establish a common vocabulary and mode of thought that will

enable the development of more complex ideas in later chapters.

In the most basic sense, the task of motif discovery is to find a repeated feature in a data

set. Take, for example, the objects below.

�N�� (.)

What features are repeated at least twice in the objects? One answer is that the square

shape appears three times. Yet another, is that three of the objects are darkened. And finally, a

more sophisticated answer is that all of the objects are regular polyhedrons. Which of these is

correct? All three are. �e first two answers are intuitively obvious, whereas the final answer is

rooted in a knowledge of geometry. �e degree to which one answer is “more correct” than the

others depends on what kinds of features we are interested in a priori. �is is the first and most

important tenet of motif discovery.
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Consider a second question: is the dark square more similar to the dark triangle or to the

hollow square?

� ∼ N ∼ � (.)

Again, there is no correct answer. �e response obviously depends on our relative preference

for color versus shape. �is variety of question is even more difficult when we seek to quantify

the degree of similarity or difference — the distance — between two objects. Is a human more

similar to an alligator, or to an elephant? Based on body temperature, the human is more similar

to the elephant; however, based on weight, the opposite true. �is is the second tenet of motif

discovery: the measurement of “distance” between objects is inherently relative, or dependent

on predefined metrics.

Now consider a more complicated example shown schematically in Figure - on the facing

page. �e figure shows an X–Y scatter plot with  data points. How many groups of points,

or clusters, are in this figure? As before, there are many correct answers: three groups of four;

one group of four and one group of eight; or one single group of twelve. �e answer depends

on our preconceived notion of how small the distance between objects must be in order for

them to be grouped together. Or, equivalently, how similar objects must be to be considered

the same. �is is our third and final tenet of motif discovery.

�e three tenets we have just developed can be rephrased as follows. �e answer to any

motif discovery problem will always depend on what kinds of motifs we are looking for and

the search for these motifs will always depend on a predefined metric of similarity and method

for grouping together similar objects.

. Motif discovery in sequential data

In this section, I define “sequential data” and introduce some basic concepts of motif discovery

in sequential data. I will build upon tenets developed in the previous section and develop more

complex ideas in motif discovery that are specific to sequential data.

In the most general sense, sequential data are any data in which there is a natural ordering,

such that rearranging the data would result in lost information. In later chapters, we will deal
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Figure -: Clustering to find patterns in generic data. Given this data set, we would cluster
the data together to find patterns (indicated here by the ellipses). But, there are many different
patterns we could find. Which ones are correct?
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with the more general case of sequential data that encompasses series of multidimensional real–

valued data; however, for the time being, we can consider sequential data to be a series of

alphanumerical characters such as the four sequences shown below.

djndfduckdeicfjnfmABRAHAMLINCOLN

idkeioddsnABRAHAMLINCOLNaknkwbad

ioxcABRAHAMLINCOLNabkjwlkdaxlakj

xkasnkjlfABRAHAMLINCOLNkdsjkjsdl (.)

We can refer to these sequences more formally by calling the set of sequences S, where S is

defined such that S = {s, s, s, . . . , sn}, and where sequence si has length Wi. So, in the above

example, n =  and s = djndfduckdeicfjnfmABRAHAMLINCOLN . Furthermore, let

the the jth member of the ith sequence be denoted by si,j. So, s, = d, s, = j, etc. Each si,j is a

primitive, or atomic unit, for the data that is being analyzed. For now, we will say that the prim-

itives are alphanumerical characters selected from some alphabet Σ. In the example above, this

alphabet is the set of  lowercase and uppercase characters from the Roman alphabet. How-

ever, this alphabet can be defined in many different ways depending on the context of our motif

discovery problem. For example, for a DNA sequence the alphabet would comprise the charac-

ters {A,T,G,C }, representing the four bases found in DNA: adenosine, thymine, guanine, and

cytosine (see Figure A- on page  in the Appendix. Or, for protein sequences, the alphabet

would be the set of characters representing the one letter abbreviations for the  naturally oc-

curring amino acids {A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V }, which are

defined in Figure A- on page  in the Appendix.

In the set of sequences above, the motif “ABRAHAMLINCOLN” is inherently obvious in

the otherwise random series of characters that make up each of the individual sequences. A

similar motif is obvious even when the sequences are “mutated” as shown below.



.. GRAMMATICAL MODELS OF SEQUENCES 

s = djndfduckdeicfjnfmABELINCOLN (.)

s = idkeioddsnABRAHAMLINCOLNaknkwbad

s = ioxcALINCOLNabkjwlkdaxlakj

s = xkasnkjlfABRAHAMLINCOLNkdsjkjsdl

In two of these sequences, Abraham is abbreviated but is still recognizable. But now, it

is not appropriate to call the motif simply “ABRAHAMLINCOLN.” At this point, it is impor-

tant to develop a more rigorous definition of “motif ” that will allow us to describe all the

possible permutations shown in the above mutated sequences. A motif is, henceforth, a math-

ematical model used to describe a set of locations in a set of sequences. �ese locations are

referred to as “motif instances.” In the example above, the motif instances are the substrings:

“ABELINCOLN,” “ABRAHAMLINCOLN,” “ALINCOLN,” and “ABRAHAMLINCOLN” in se-

quences s, s, s, and s, respectively.

Any mathematical model used to describe these instances should say that each instance

begins with the letter A, optionally followed by either BEor BRAHAM, and necessarily followed

by LINCOLN. �at is, a model that describes the ordered arrangement of objects, in this case

characters. Such models are commonplace in the field of linguistics and are called grammars.

. Grammatical models of sequences

Introduction

�e theory underlying grammatical models of sequences can be traced back to Noam Chomsky’s

early work on syntax theory [–]. Chomsky’s work is the basis for much of formal language

theory and computational linguistics. However, in general, most research in these areas has

used grammars for pattern recognition vice pattern discovery, and focuses on machine learning

techniques for computer understanding of natural languages. Only recently have these pattern

recognition techniques been applied to problems of interest to biologists [–].
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As I will show in the following sections, most motif discovery algorithms in bioinformatics

use motif models that can be reduced, in general, to a grammatical model. However, for the

most part, such reductions are rare in the bioinformatics literature. �is is because motif dis-

covery and bioinformatics evolved independently from formal language theory. In a sense, the

two fields are distant homologs of each other, both making use of models that can be reduced

to grammars.

A grammar is a mathematical construct that describes the ordered arrangement of objects,

usually words or characters, in a sequence []. More rigorously, a grammar is a –tuple G =

(N, Σ, P, S) wherein

. N is a finite set of non-terminal symbols, also called variables or syntactic categories;

. Σ is a finite set of terminal symbols, disjoint from N;

. P is a finite subset of

(N ∪ Σ) ∗N(N ∪ Σ) ∗ ×(N ∪ Σ)∗, (.)

each element in P is called a “production” and is written in the form α → β; and,

. S is a special symbol in N that is the start symbol.

To illustrate how a grammar can be used to model sequences, consider the following simple

grammar:

G = ({α, S}, {0, 1}, P, S), (.)

where the set of productions, P, is given by

�e star symbol, ∗, is called the Kleene star and is interpreted as “zero or more” of the expression it follows.
For example, ZA* would be interpreted as a Z followed by zero or more A characters. �e Kleene star and other
similar operators will be discussed later in the section on regular grammars and regular expressions . on page .
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P =



S → 0α1

0α → 00α1

α → e.

(.)

Each line in the set of productions is essentially a replacement rule. For example, the op-

eration S → 0α1 should be read as “replace the character S with the sequence of characters

0α1.” �en, the subsequent line should be read as “replace the two character sequence 0α

with the sequence 00α1.” Finally, the last production should be read as “replace the charac-

ter α with the character e, which is the termination character.” �ese productions follow a

few conventions that are used throughout this manuscript. First, as defined on page , S is

a special non–terminal symbol that is always used as the starting symbol. Second, in order to

distinguish terminal symbols from non–terminal symbols, the former will always be displayed

in a fixed width font. �ird, the character e is used always to represent the termination of a

sequence and is referred to as the termination character.

Now consider how to construct a sequence using the set of productions in the grammar

shown in Equations . and .. Starting with the special non–terminal character S, the first

production produces a three letter sequence.

S ⇒ 0α1

Using the second production, produces a four character sequence.

S ⇒ 0α1 ⇒ 00α1

Finally, using the third production terminates the sequence.

S ⇒ 0α1 ⇒ 00α1 ⇒ 001 (.)

�e sequences produced by following the production rules of the grammar are called deriva-
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tions of a grammar, or equivalently the sentences or sentenial forms of the grammar. �e col-

lection of sentenial forms of a grammar are collectively called the language generated by G, or

L(G).

Notably, the final sequence shown in Equation . is not the only sequence that can be

derived from the grammar G. Because the symbol α appears in two different productions,

either production can be used and neither production is preferred a priori. For example the

following sequence is an equally valid derivation of the same grammar.

S ⇒ 0α1 ⇒ 00α1 ⇒ 000α1 ⇒ 0000 α1 ⇒ 00000 α1 ⇒ 000001 (.)

As the derivation above suggests, any sequence that

• begins with a 0,

• that is followed by zero or more 0s, and

• is terminated by a single 1

could be a derivation of the grammar shown in Equation . on page . Collectively, these

derivations form the language of the grammar.

Now I will return to the Abraham Lincoln example shown in Equation . on page .

Recall that the motif instances are the substrings “ABELINCOLN,” “ABRAHAMLINCOLN,”

“ALINCOLN,” and “ABRAHAMLINCOLN” in sequences s, s, s, and s, respectively. A

grammar that describes these motif instances is

G = ({α, S}, {A, B, C, E, H, I , L, M, N, R}, P, S), (.)
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where P is given by the set of productions

P =



S → Aα

α → β

α → BEβ

α → BRAHAMβ

β → LINCOLNγ

γ → e.

(.)

Again, in a manner similar to Equation . on page , the grammar shown in Equa-

tion . has a non–terminal character, α, in multiple productions. In such cases, the produc-

tion can usually be abbreviated using the “|” character, which is to be read as “or.” For example,

the productions in Equation . can be written equivalently as

P =



S → Aα

α → β | BEβ | BRAHAMβ

β → LINCOLNγ

γ → e.

(.)

Notice that the grammar shown in Equation . describes exactly all four of the motif

instances in the sequences shown in Equation . on page . �e three possible derivations of

the grammar are shown below.

S ⇒ Aα ⇒ Aβ ⇒ ALINCOLNγ ⇒ ALINCOLN (.)

S ⇒ Aα ⇒ ABEβ ⇒ ABELINCOLNγ ⇒ ABELINCOLN

S ⇒ Aα ⇒ ABRAHAMβ ⇒ ABRAHAMLINCOLNγ ⇒ ABRAHAMLINCOLN

�is is an ideal case. In general, in constructing any model describing any motif instances,
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Figure -: Hairpin loops in DNA secondary structures. A hairpin loop is a secondary struc-
ture in a sequence containing two regions that are reverse complements of each other. �ese
regions form the “stem” of the hairpin loop. �e figure shows three hairpin loops in which the
stem size gets progressively larger. Also notice that, the bulbous region — the “loop” — which
is not paired with any other region, can be of arbitrary size. �e structures play an important
part in the regulation of DNA transcription and, for RNA, in the process of translation.

we would like to use a grammar that is sensitive for the instances — i.e. all the instances are

derivations of G — and specific for the instances — i.e. the language L(G) includes few deriva-

tions that are not motif instances.

Now consider a more complicated case in which a grammar is used to model DNA se-

quences that are likely to assume a hairpin structure, such as those shown in Figure -. Hair-

pins in DNA and RNA sequences play an important role in the regulation of many processes,

including transcription and translation. A hairpin is essentially a structure that bends back upon

itself and is held together by Watson–Crick pairing. �e paired bases in the hairpin structure

are referred to as the “stem” and the unpaired, bulging bases are referred to as the “loop” (see

Figure -).

In order to form a stem–loop, or hairpin structure, the two sequences in the stem must

be reverse complements of each other. �is type of relationship is captured in the following
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grammar:

G = ({α, β, S}, {A, G, T, C}, P, S), (.)

where P is given by

P =



S → α

α → AαT | TαA

α → GαC | CαG

α → β | e

β → Aβ | Tβ | Gβ | Cβ | e

(.)

�e grammar shown in Equation . can describe any hairpin loop in which the stem

consists of one or more complementary bases and the loop consists of zero or more bases. For

example, consider the following derivation of the grammar.

S ⇒ α

⇒ AαT

⇒ AGαCT

⇒ AGGαCCT

⇒ AGGCαGCCT

⇒ AGGCTαAGCCT

⇒ AGGCTβAGCCT

⇒ AGGCTAβAGCCT

⇒ AGGCTAAGCCT

(.)

�is derivation produces a sequence that can form a hairpin structure with a stem size of five

base pairs and a loop of a single base pair.

�e grammar shown in Equation . is more complex than the grammar used to model

the Abraham Lincoln motif (Equation . on page ), because there are a long–range depen-
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dencies in the sequences. �at is, a particular base produced by the grammar in Equation .

is guaranteed to be complementary to a base on the other side of the sequence. In contrast,

the productions used to model the Abraham Lincoln motif produced a set of simple deriva-

tions in a left–to–right order. Indeed, even more complicated grammars can describe still more

long–range, complex interactions between the characters in a sequence.

Hierarchy of restricted grammars

Linguists classify grammars into four increasingly complicated groups based on the format of

their productions. A grammar is

. right–linear, or type–, if each production in P is of the form A → xB, where A and B

are in N and x is any string in Σ∗;

. context–free, or type–, if each production in P is of the form A → α, where A is in N

and α is in (N ∪ Σ)∗;

. context– sensitive, or type–, if each production in P is of the form αAβ → δyΓ , where

A is in N, y is non–null, and α, β, δ, and γ are in (N ∪ Σ)∗;

. unrestricted, or type–, if it adheres to none of these restrictions.

�is classification system is referred to as the Chomsky hierarchy []. Each of these grammars

defines a corresponding class of language, which is the set of all sequences that can be produced

using a particular type of grammar.

Right–linear, or type– grammars are also called “regular” grammars and are the simplest

type of grammar. �ese grammars are called right–linear because derivations of these grammars

are produced stepwise from left to right, never growing from the center of the sequence as in

the derivation shown in Equation .. As I will show in Section . on page , despite their

simplicity, regular grammars are the most frequently used motif model in bioinformatics.

Context–free grammars are the next most complicated class of grammatical model. Indeed,

the hairpin grammar shown in Equation . on the page before is a context–free grammar. �is

type of grammar is characterized by “nested” dependencies (see Figure -). �e dependencies
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are nested in the sense that derivations of the grammar “grow” from the center, due to the

structure of the productions.

Context–sensitive grammars and unrestricted grammars are the most complex classes of

grammatical models. As shown in Figure - on the following page, context–sensitive gram-

mars are characterized by long–range dependencies that are “crossing.” Derivations of these

grammars can typically “grow” from anywhere inside the sequence. For example, consider the

following grammar that describes a card player arranging a deck of cards:

G = ({γ, β, S}, {♣,♥,♠}, P, S), (.)

where P is given by

P =



S → γ

γ → ♣♥♠ | ♣γβ♠

♠β → β♠

♥β → ♥♥

(.)

�is grammar is one of the most simple context–sensitive grammars. As well, it serves to

illustrate that sequential data are not restricted to characters per se. Indeed, in Chapter  on

page , I will extend the definition of sequential data to include ordered arrangements of

multidimensional real–valued data sampled from a continuous distribution. Returning to the
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Figure -: Noun–verb dependencies in various languages and their biological analogues. Part
A) shows the sentence “Dick saw Jane help Mary draw pictures” translated grammatically into
German and Dutch. �at is, the words in the sentence are rearranged to reflect the rules of
grammar in these two languages, but the sentence is not translated per se. As shown, the En-
glish version of the sentence has a relatively simple dependency structure between the nouns
and verbs that can be modeled using regular grammars. In contrast, German and Dutch require
more complicated grammatical models [, , ]. Part B) shows the biological analogue
of the three sentences in Part A). Typically, restriction sites can be modeled using regular gram-
mars, whereas complex DNA secondary structures require context–free or context–sensitive
grammars []. In the first example, the arches are used to represent a “must be followed
by” dependency. In the second two examples, they represent a “must be complementary to”
dependency.
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current example, consider the following derivation of this grammar:

S ⇒ γ

⇒ ♣γβ♠

⇒ ♣♣γβ♠β♠

⇒ ♣♣♣γβ♠β♠β♠

⇒ ♣♣♣♣♥♠β♠β♠β♠

⇒ ♣♣♣♣♥β♠♠ββ♠♠

⇒ ♣♣♣♣♥β♠β♠β♠♠

⇒ ♣♣♣♣♥β♠ββ♠♠♠

⇒ ♣♣♣♣♥ββ♠β♠♠♠

⇒ ♣♣♣♣♥βββ♠♠♠♠

⇒ ♣♣♣♣♥♥ββ♠♠♠♠

⇒ ♣♣♣♣♥♥♥β♠♠♠♠

⇒ ♣♣♣♣♥♥♥♥♠♠♠♠

(.)

Notice that the derivation bears much similarity to the hairpin loop example shown in

Equation . on page . However, as I showed earlier, hairpin loops can be described with

a context–free grammar, which is more simple than the grammar used in the current playing

card example. What distinguishes the two is the size of the “loop,” the series of hearts in this

example. Here, any derivation of the grammar has exactly the same number of clubs as it does

hearts and spades. �at is, if there are n clubs, there must be n hearts followed by n spades as

below.

♣♣♣♣♣ . . .♣♣︸ ︷︷ ︸
exactly n clubs

exactly n hearts︷ ︸︸ ︷
♥♥♥♥♥ . . .♥♥♠♠♠♠♠ . . .♠♠︸ ︷︷ ︸

exactly n spades

(.)

In contrast, the hairpin loop example introduced earlier was allowed to have an arbitrary num-

ber of intervening nucleotides. �e extra restriction in this case can be thought of as a three–way

dependency between the first clubs card, the first hearts card, and the first spades card. �e same

is true for the second cards in the succession, resulting in crossing dependencies, much like the
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Dutch example in Figure - on page . �e moral of this example is that subtle changes in

the structures that need to be modeled can have a profound effect on the appropriate choice of

grammars.

Regular grammars and regular expressions

Building regular grammars and regular expressions

For many applications in bioinformatics and computer science, regular grammars are an ap-

propriate motif model and more complicated context–free or context–dependent grammars

are not required. For example, most compilers make wide use of regular grammars to interpret

programming languages, such as C, C++, or Java. �at is, these programming languages are

regular languages in the mathematical sense — they have a rigid structure and lack long–range

dependencies.

Similarly, there are many phenomena in biology that can be modeled using regular gram-

mars. For example, restriction enzymes, used for cutting DNA and RNA, typically recognize a

set of motif instances that are easily modeled using regular grammars (see Figure - on page ,

part B).

In such cases, regular grammars are a convenient tool for two reasons. First, it is computa-

tionally simple to determine whether or not a string is a derivation of the given grammar, i.e. if

the string is in the language of the grammar. �is is not the case for more complicated gram-

mars. In general, the computational complexity of this task rises rapidly for more complicated

grammars and can take arbitrarily long for unrestricted grammars. Second, regular grammars

can be represented compactly using a form called a regular expression. Consider the BstSFI

restriction sites shown in Figure -, reproduced below.

CGGCCG

CGGTCG

CGACCG

CGATCG

(.)
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�e sequences are described by the following regular grammar:

G = ({α, β, γ, S}, {A, G, T, C}, P, S), (.)

where P is given by

P =



S → CGα

α → Aβ | Gβ

β → Cγ | Tγ

γ → CG

(.)

�is regular grammar can be represented much more succinctly in the following regular expres-

sion: CG[AG][CT]CG . �e regular expression should be read as “any string starting with a C

and a G, followed by either an A or a G, followed by either a C or a T, that ends with a CG.”

�e term [AG] is called a bracketed expression and is used to indicate a production rule in

which multiple characters are allowed. For example, the bracketed expression [ATGC] would

indicate that any of the four nucleotides is permitted.

In order to introduce more complex features of regular expressions, consider the motif

describing the short hematopoietin receptor family in Figure - on page . �e motif is

described by the following regular expression.

[LIVF].........[LIV][RK].(9,20)WS.WS....[FYW] . (.)

In this regular expression the individual characters represent amino acids (see Figure A- on

page  in the Appendix). Here, the first bracketed expression [LIVF] indicates that leucine,

isoleucine, valine, or phenylalanine are equally acceptable. �e term “. ” is called a “wild–

card” and indicates that any amino acid is acceptable. Or, in the general case, that any of the

characters in Σ are acceptable. (Recall that Σ is the set of terminal symbols for a grammar.)

�e next special term in Equation . is “.(9,20) .” �is term indicates that the wild–

card should be repeated for between nine and  places. For example, the regular expression
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consisting only of the term “KR(2,4) ” has the following derivations: KRR, KRRR, KRRRR.

Note that the strings KRand KRRRRRare not derivations of the grammar.

Because it is a more compact representation, regular grammars are usually recorded in reg-

ular expression form. In contrast, more complex grammars cannot be represented as a simple

series of characters and symbols. �is ease with which they can be communicated has been one

of the factors promoting the widespread use of regular expressions — it would be inconvenient

to discover a new protein motif and not be able to record the motif in an easily interpretable

form for publication.

�e regular expression formalisms presented here, such as the bracketed expression and

the wild–card, are not exhaustive. �ere are many more terms that increase the richness of

regular expressions, such as the Kleene star, “* ”, which means “zero or more of the preceding

expression” and the “+” symbol, which means “one or more of the preceding expression.” For

an exhaustive treatment of regular expressions, the reader is referred is referred to publications

by Sipser [] and Friedl [].

Matching regular grammars and regular expressions

�us far, I have described how regular expressions be used to model a set of motif instances.

However, a very common task is to then use a regular expression to look through new, longer

sequences for “matches,” i.e. subsequences of a given sequence that are derivations of the gram-

mar that the regular expression encodes. For example, consider the following regular expression:

A[KR].Q[LV]C . We would like to know if there are any derivations of this grammar within

the sequence shown below.

FLGARRQLCVVFKLAAKFQVCSKAKWQLCVFPAVFGKV (.)

A simpleminded approach to this problem is to start with a beginning of the sequence, at letter

F, and ask whether or not a derivation of the grammar could start that position. Obviously,

any derivation of the grammar must begin with an A, so the answer is “no.” Moving on to the

first A in the sequence, we see that it is followed by a K, which is allowed by the grammar, and

that the K can be followed by any character, etc. Following this procedure reveals three matches
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Short hematopoietin receptor family 1 signature
z }| {

IL21R_HUMAN/190-223 FRKDSSYELQVRAGPMPGSSYQGT........WSEWSDPVIF
IL21R_MOUSE/190-223 FHKDSSYQLQVRAAPQPGTSFRGT........WSEWSDPVIF
IL2RB_HUMAN/198-229 LTPDTQYEFQVRVKPLQGEFTT..........WSPWSQPLAF
IL2RB_MACFA/198-229 LTPDTQYEFQVRVKPLQGEFTT..........WSPWSQPLAF
IL2RB_MOUSE/199-230 LIPSTSYEVQVRVKAQRNNTGT..........WSPWSQPLTF
IL2RB_PANTR/198-229 LTPDTQYEFQVRVKPLQGEFTT..........WSPWSQPLAF
IL2RB_RAT/199-230 LTPDTSYELQVRVIAQRGKTRT..........WSPWSQPMAF
IL2RG_BOVIN/220-253 VDAQKLYTFRVRSRYNPLCGSAQH........WSDWSYPIHW
IL2RG_CANFA/213-246 VDGQKFYTFRVRSRYNPLCGSAQR........WSEWSHPIHW
IL2RG_HUMAN/213-246 VDGQKRYTFRVRSRFNPLCGSAQH........WSEWSHPIHW
IL2RG_MOUSE/214-247 VDELKRYTFRVRSRYNPICGSSQQ........WSKWSQPVHW
IL3B2_MOUSE/405-436 LEPDTSYCARVRVKPISDYDGI..........WSEWSNEYTW
IL3RB_HUMAN/402-434 LEPSTRYWARVRVRTSRTGYNGI.........WSEWSEARSW
IL3RB_MOUSE/406-437 LEPDTSYCARVRVKPISNYDGI..........WSKWSEEYTW
IL4RA_HORSE/190-220 LKSRATYSARVKARAQNYNST...........WSEWSPSTTW
IL4RA_HUMAN/191-221 LKSGISYRARVRAWAQCYNTT...........WSEWSPSTKW
IL4RA_MOUSE/192-222 LMSGVYYTARVRVRSQILTGT...........WSEWSPSITW
IL4RA_PIG/199-229 LKSGAAYSARVKAWAQRYNST...........WSEWSPSVKW
IL4RA_RAT/191-221 LTSGVRYRARVRVLSQSFPGI...........WSEWSPSITW
IL7RA_HUMAN/195-226 LQPAAMYEIKVRSIPDHYFKGF..........WSEWSPSYYF
IL7RA_MOUSE/195-227 LRPKAMYEIKVRSIPHNDYFKGF.........WSEWSPSSTF
IL9R_HUMAN/214-254 LDPGFIHEARLRVQMATLEDDVVEEERYTGQ.WSEWSQPVCF
IL9R_MOUSE/212-253 LNPGSIYEARLRVQMTLESYEDKTEGEYYKSHWSEWSQPVSF
LEPR_HUMAN/298-328 ILPGSSYEVQVRGKRLDGPGI...........WSDWSTPRVF
LEPR_MACMU/296-326 ILPGSSYEVQVRGKRLDGPGI...........WSDWSTPHVF
LEPR_MOUSE/296-326 VLPGSSYEVQVRSKRLDGSGV...........WSDWSSPQVF
LEPR_PIG/298-328 VLPGSSYEVQVRGKRLDGPGI...........WSDWSTPFTF
LEPR_RAT/296-326 VLPGSSYEVQVRSKRLDGSGV...........WSDWSLPQLF

.

5

.

10
.

15
.

20
.

25
.

30
.

35
.

40

X Asp, Glu

X Arg, Lys, His

X Phe, Tyr, Trp

X Ala, Gly

X Cys, Met

X Ser, Thr

X Asn, Gln

X Leu, Val, Ile

X Pro

Figure -: Regular grammar describing the short hematopoietin receptor fam-
ily  signature []. �ese proteins are mostly receptors for interleukin cytokines.
�ey are selectively expressed in lymphoid tissues and are typically membrane–
bound []. �e region shown in the figure is characterized by the regular expression
[LIVF].........[LIV][RK].(9,20)WS.WS....[FYW] . �is motif is required
for proper protein folding, efficient intracellular transport, and cell–surface receptor binding.
�e motif is relatively sensitive for the receptor family; however, it misses the rodent thymic
stromal lymphopoietin protein receptors, which are in the same family. Furthermore, the
motif is not as specific as it could be — as shown above, the motif matches five receptors for
the leptin obesity factor, which are not in the same family. Notice that the bar at the top
shows the degree of conservation at each position; the amino acids are colored to reflect their
physiochemical properties; and, the bracketed expressions, such as [LIV] , tend to group
together amino acids with similar physiochemical properties.
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of the regular expression in the sequence, which are underlined below.

FLGARRQLCVVFKLAAKFQVCSKAKWQLCVFPAVFGKV (.)

In general, algorithms designed to match regular expressions against sequences or other

kinds of text use an approach that is, at its core, the same as the simpleminded approach above.

One such algorithm and piece of software is described in Section . on page .

Position weight matrices

Building position weight matrices

Despite their utility, regular grammars and regular expressions are not suitable for modeling all

kinds of motifs. As I showed earlier, regular grammars cannot describe long–range, nested, or

crossing dependencies between characters. However, there are also motifs where these depen-

dencies do not exist and yet regular expressions are not accurate models.

Consider the collection sequences shown in Figure - on the facing page. �is collection

comprises numerous ’ splice sites from the fission yeast Schizosaccharomyces pombe. Each se-

quence is seven nucleotides in length and straddles the intron/exon boundary in a gene. After

transcription, these sites will form a “branch point” allowing the introns to be excised from the

pre–RNA to form the mature mRNA.

Notice that to sensitively describe these sequences using a regular expression, we would

use [ATGC][ATGC][CT]T[ATG]A[CT] . �is motif will match all of the instances, but

it could also match many more: based on the number of bracketed expressions, this regular

expression would match  unique sequences.

Notice too that each column of the aligned instances shown in Figure - has a particular

“preference” for one kind nucleotide. For example, all but  of the sequences have a thymine

at the last position. But, in the motif [ATGC][ATGC][CT]T[ATG]A[CT] , either cyto-

sine or thymine is allowed in the last position, without any preference. Obviously, this regular

expression would be more specific if we labeled the last bracketed expression with these prefer-

ences, i.e. “either cytosine or thymine, but with a seven–fold preference for the thymine.”

Incorporating such preferences into the grammatical framework requires only minor changes.



.. GRAMMATICAL MODELS OF SEQUENCES 

yeast1AGCTGAC
yeast2GACTAAT
yeast3GGCTAAT
yeast4CATTAAC
yeast5CTCTAAC
yeast6TTTTAAC
yeast7TACTAAC
yeast8TACTAAT
yeast9TACTAAC
yeast10TGCTAAC
yeast11TATTAAC
yeast12TTCTAAC
yeast13TTCTAAC
yeast14TGCTAAC
yeast15TTCTAAC
yeast16CACTAAC
yeast17TGCTAAC
yeast18GACTAAC
yeast19TATTAAC
yeast20CGCTAAC
yeast21AACTAAC
yeast22TACTAAT
yeast23AACTAAC
yeast24TACTAAC
yeast25TACTTAC
yeast26TACTAAT
yeast27TACTAAT
yeast28TTCTAAC
yeast29TTCTAAC
yeast30CGCTGAC
yeast31TACTAAT
yeast32TACTAAT
yeast33TACTGAC
yeast34TACTAAC
yeast35TACTGAC
yeast36TGCTAAC
yeast37AACTAAC
yeast38TTCTAAC
yeast39GACTAAC
yeast40AACTAAC
yeast41TTCTAAT
yeast42TTCTAAC
yeast43TATTAAC
yeast44TACTGAC
yeast45TTCTAAC
yeast46TACTAAT
yeast47TCCTAAC
yeast48TACTAAC
yeast49TACTAAC
yeast50TTCTAAC
yeast51GACTAAC
yeast52TATTAAC
yeast53TACTGAC
yeast54TGCTAAC
yeast55TACTAAC
yeast56TTTTAAC
yeast57TTCTAAC
yeast58TACTAAC
yeast59TTCTAAC
yeast60TACTAAC
yeast61TTCTAAC
yeast62TACTAAC
yeast63TACTAAC
yeast64TACTAAC
yeast65TACTAAC
yeast66TATTAAC
yeast67TACTAAC
yeast68GACTAAC
yeast69GACTAAC
yeast70TACTAAC
yeast71TACTTAC
yeast72TTCTAAC
yeast73TACTAAC
yeast74TACTAAC
yeast75TTTTAAC
consensusagcTgAc
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Recall from the definition on page  that a grammar is regular (or right–linear or type–) if

each production in P is of the form A → xB, where A and B are in N and x is any string in

Σ∗. A similar set of restrictions defines a position weight matrix, which is a grammar in which

each production in P is of the form A
pi−→ xB, where A and B are in N and x is any character

in Σ, and pi is the probability of production i. As well,
∑

i p must equal one for all of the pro-

ductions on which A is on the left side. In loose terms, the position weight matrix, or PWM,

can be thought of as a probabilistic regular expression. Using this new structure, the regular

expression [ATGC][ATGC][CT]T[ATG]A[CT] can be written as a PWM grammar,

G = ({S, α, β, γ, δ, ε, ζ, η}, {A, T, G, C}, P, S), (.)
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where P is the set of productions below.

P =



S → α

α
.−−→ Aβ

α
.−−→ Tβ

α
.−−→ Gβ

α
.−−→ Cβ

β
.−−→ Aγ

β
.−−→ Tγ

β
.−−→ Gγ

β
.−−→ Cγ

γ
.−−→ Tδ

γ
.−−→ Cδ

δ
.−−→ Tε

ε
.−−→ Aζ

ε
.−−→ Tζ

ε
.−−→ Gζ

ζ
.−−→ Aη

η
.−−→ T

η
.−−→ C

(.)
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Equation . can be represented much more compactly as a frequency matrix

f =



. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .


(.)

in which each row corresponds to a single character in Σ and each column corresponds to a single

non–terminal character in N (where Σ is disjoint from N, as usual). So, in Equation ., the

rows correspond to A, T, G, and C; and the columns correspond to α, β, γ, δ, ε, ζ, and η,

where S was omitted.

Notice that a derivation of the grammar in Equation . on page  is necessarily also a

derivation of the regular grammar [ATGC][ATGC][CT]T[ATG]A[CT] , and vice versa. As

such, the two grammars describe the same language, or the set of all derivations. But, because

the productions of Equation . are weighted by probability, certain derivations are more

probable than others. �e degree to which one derivation of the grammar is more probable

than another is characterized by the derivation’s log–odds score. To compute the log–odds

score, first requires a log–odds matrix, Θ, where

Θij = log

(
fij

qj

)
. (.)

�e calculation of the frequency and log–odds matrices for the ’ yeast splice sites is shown

in Table .. Here, Θ is given by

Θ =



−. . ∅ ∅ . . ∅

. −. −. . −. ∅ −.

−. −. ∅ ∅ −. ∅ ∅

−. −. . ∅ ∅ ∅ .


, (.)

where ∅ is used to indicate values that are undefined because fij =  and log  is undefined.

Given the log–odds matrix form of a PWM, the score of any derivation of the PWM is com-
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puted merely by looking up values in Θ. Consider the sequence AGCTGAC, which is both a

derivation of the grammar shown in Equation . on page  and the first of the sequences

shown in Figure - on page . �e log–odds score for this sequence is

score = Θ, + Θ, + Θ, + Θ, + Θ, + Θ, + Θ,

= − . − . + . + . − . + . + .

=..

(.)

Notice that the score for a sequence that is not a derivation of the grammar is undefined, or,

effectively −∞. Table . on the following page shows the calculation of the frequency matrix,

log–odds matrix, and the scoring of example sequences for this PWM. Also, a small program

for calculating a PWM from a set of sequences is provided in Section A.. on page  of the

Appendix.

�e “strength” of a PWM motif is measured by a quantity called its entropy. �e motif

entropy is the sum of the entropies of each column, or position in the motif. �is entropy of a

given column in a PWM is a measure of the disorder, or the randomness of the distribution of

letters. �e column entropy is measured in bits and is given by

hi = −
∑

j

fij log fij (.)

where, fij is the frequency matrix as shown in Figure . on the following page. �e entropy

of the whole motif is just the sum of the entropies of the columns:

H = −
∑

i

∑
j

fij log fij. (.)

Typically, the entropy is measured relative to the background entropy. As above, the back-

ground entropy of a single column is

h◦
i = −

∑
j

qj log qj (.)

where, qj is the a priori, background frequency of the letter denoted by index j. In the case of



 CHAPTER . INTRODUCTION TO MOTIF DISCOVERY

Table .: �e construction of a position weight matrix from the collection of sequences
shown in Figure - on page . Part A) shows the number of nucleotides of each type that
occur in each of the seven positions of the aligned sequences. For example, in the first position,
there are  thymines. Part B) shows the frequency matrix f, where each fij = (cij/

∑
j cij).

Part C) shows the log–odds matrix Θ, where each Θij = log(fij/qj) and q is the vector
of background frequencies for the nucleotides. Part D) shows the scoring of three different
sequences. To compute the score for a sequence, the corresponding nucleotide at each column
is looked up in Θ and the columns are summed together.

A) Count Matrix (cij):

A       
T       
G       
C       

⇓
B) Frequency Matrix (fij):

A . . . . . . .
T . . . . . . .
G . . . . . . .
C . . . . . . .

⇓
C) Log–odds Matrix (Θij):

A -. . ∅ ∅ . . ∅
T . -. -. . -. ∅ -.
G -. -. ∅ ∅ -. ∅ ∅
C -. -. . ∅ ∅ ∅ .

⇓
D) Example sequence scoring:

query T A C T T A C
Σ . . . . -. . .

= .
query T T C T A A C

Σ . -. . . . . .
= .

query G T A T A A T
Σ -. -. ∅

= ∅
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identically distributed nucleotides, each qj is .; i.e. qA = ., qC = ., qT = ., and

qG = .. �e background entropy of the entire motif is

H◦ = −
∑

i

∑
j

qj log qj. (.)

�e difference between the background entropy and the motif entropy is referred to as the

information content, I, of the PWM. Using Equations .– . above, the information

content can be calculated as

I = H◦ − H

= −
∑

i

∑
j

qj log qj −

(
−

∑
i

∑
j

fij log fij

)

=
∑

i

∑
j

fij log

(
fij

qj

)
.

(.)

Notice that the information content of the motif is minimized when the nucleotide distribution

for each column is exactly the background distribution of nucleotides. �at is, when fij = qj

for all i, the log(fij/qj) terms are zero. �is makes sense intuitively: if the PWM describes the

background distribution, the motif can obviously not be distinguished from the background

and therefore contains no information. In this same case, the entropy of the motif is maximized

and is equal to the background entropy.

PWMs are commonly represented by two varieties of schematics: pictograms and sequence

logos. An example of each of these is shown in Figure - on the next page. A pictogram

is essentially a visualization of the frequency matrix representing a PWM, whe, whereas A se-

quence logo is a pictogram that is scaled to reflect the information content at each position in

the PWM.

Matching position weight matrices

�us far, I have shown how a PWM can be used to model a set of motif instances and how a

derivation of a PWM grammar can be scored. PWMs can also be used to search in new, long

sequences for regions of the sequence that appear to match the motif. �is is accomplished by
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A) Pictogram of the PWM in Table . on page 

motif position
5′

1

C
A
G
T

2

C

G
T
A

3
T
C

4

T
5

T
G
A

6

A

7

T
C

3′

B) Logo of the PWM in Table . on page 

motif position

0

1

2

bi
ts

5′

1

C
A
G
T

2

G
T
A

3

T
C

4

T
5

T

G
A
6

A
7

T
C

3′

Figure -: Yeast ’ splice site pictogram and logo. Part A) shows the PWM in Table . on
page  represented as a pictogram. At each position in the motif, the height of the nucleotides
is scaled in proportion to their frequency in f, with the more frequent nucleotides always placed
on top. �e pictogram clearly shows that positions four and six are perfectly conserved, whereas
the other positions are distributed between many nucleotides. Part B) shows a sequence logo
representation of the same PWM. �e sequence logo is a pictogram in which the height of each
column is scaled in proportion to the information content contributed by that position to the
motif (see Equation . on the page before). Taller columns have a nucleotide distribution
that deviates strongly from the background distribution. In this sequence logo, the background
distribution is arbitrarily set to equal a priori probability of each nucleotide. As such, the
maximum information content in any column is two bits, which is achieved only in the two
perfectly conserved positions of the motif.
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“sliding” the PWM over the length of the sequence to look for subsequences that have high

log–odds scores.

Consider searching the sequence TAGCTGACTGAC. To slide the PWM over this sequence

is equivalent to evaluating the score of each seven nucleotide substring: TAGCTGA, AGCTGAC,

GCTGACT, CTGACTG, TGACTGA, and GACTGAC. �ese are ∅, ., ∅, ∅, ∅, and ..

�at is, there are two matches for the PWM, one stronger than the other. �is method can be

used to search for a PWM in much larger sequences as well. For example, Figure - (page )

shows the distribution of scores obtained by searching the PWM in Table . on page  against

chromosomes – of the Saccharomyces cerevisiae genome.

. Tools for motif discovery

Introduction

In general, the goal of motif discovery is to derive a set of grammars that sensitively matches

a set of given sequences. �is is the inverse of many of the examples in the previous section.

�at is, imagine a case in which you are given a set of derivations and then asked what kind of

grammar could have produced the derivations? �is is what is called grammar induction in the

computational linguistics literature and is equivalent to guessing the grammar of an unknown

language given a few sentences in the language.

In bioinformatics, this task is usually presented in a slightly more difficult form. To il-

lustrate this, consider a hypothetical challenge in which a colleague hides derivations of the

regular grammar [KR]QTRP.[RT]K in a set of sequences that consist otherwise of random

characters. You are presented with the sequences and asked what grammar was hidden therein.

AJDFIOASODVIKQTRPXYKIIWEJSJ

JKQTRPCRKXUCIQWEMFIOAKLGS

ADUHFIKACRQTRPXKMSKDAFIOAS

(.)

Without any prior knowledge, this task is nearly impossible. �e colleague could have hidden a
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Figure -: Distribution of log–odds scores obtained by searching the PWM in Table . on
page  against chromosomes – of Saccharomyces cerevisiae. Of the nearly  million possible
sites, only , had non–null scores. As the figure shows, the score distribution is roughly
Gaussian. �e dashed line indicates the information content of the PWM. Scores above this
line are generally considered strong matches. PWMs are more specific than regular grammars,
because the threshold above which a match is considered “true” can be varied. In contrast, with
a regular grammar is either a match or not a match: there is no variable threshold.
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regular grammar that consisted solely of S, which would be undetectable since there are many

characters that occur in all of the sequences. Further, he could have hidden “.... ”, in which

case there would be no evidence in the sequences. �is conundrum is closely related to one

of the three tenets of motif discovery developed in Section . on page : the answer to any

motif discovery question is invariably dependent on at least some prior knowledge about what

forms a motifs may take.

Suppose then that the colleague says the motif is at least five characters long, is a regular

grammar, and all the derivations of the grammar look “pretty similar.” Given this informa-

tion, a logical approach would be to look for subsequences of five characters that look rela-

tively similar and occur in all three sequences. After diligently scanning the sequences, you

can find two sets of three that seemed to fit this description: {FIOAS, FIOAK, FIOAS} and

{KQTRP, KQTRP, RQTRP}. Knowing the answer, it is obvious that we are on the right track;

however, again we are at an impasse. It would be easy to write a regular expression describing

either of these sets. But, a priori it is impossible to tell which set may be the correct answer.

�e first set has a K that is mismatched with a S, whereas the latter set has a K–R mismatch.

If these were amino acid sequences we could say that lysine, K, is more similar to arginine, R,

than it is to serine, S. �erefore, we might choose the latter set. �is decision is related to

the remaining two tenets of motif discovery developed in Section .: the answer to any motif

discovery problem will always depend on a predefined metric of similarity and a method for

grouping together similar objects.

In the following sections, I review a number of approaches for problems such as the example

given above, focusing on the two most common classes of approach: those that use regular

expression motif models and those that use PWMs. All of these approaches, without exception,

always require some degree of intelligent guidance by the user that can be reduced to the three

tenets discussed above. In general, motif discovery tools that do not have such requirements

have made assumptions on the user’s behalf.

Teiresias and other regular expression–based tools

Because they are convenient from both a computational perspective and from the perspective

of communicating results, regular expressions are the most common form of motif model used
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in bioinformatics. Table . on the facing page shows a list of publications introducing motif

discovery tools in this class. Within the field, these algorithms are commonly referred to as

“motif driven” or “pattern driven” algorithms []. At their most basic conceptual level, all of

these approaches work by first enumerating possible patterns and then checking for the patterns

in the sequence set [].

�ere are three principal characteristics that distinguish between the various algorithms

shown in Table ., which are as follows:

. �e regular expression class complexity.

. �e completeness of the returned motif set. �at is, does the algorithm return all patterns

present in the input sequences?

. �e motif maximality. For instance, in the two strings “KYLEJ” and “KYLEL”, the

motif “KYLE” is maximal, whereas “KYL” is not, because we could add an “E” without

decreasing the number of times it occurs. In essence, maximality is a proxy for specificity.

�e most important of these distinguishing features is the complexity of the regular expres-

sion class that an algorithm returns. No motif discovery tool can search for the “universe” of

regular expressions. Recall from the previous section that “... ” and other types of motifs will

always be present, and therefore such a result is meaningless. Furthermore, enumerating regular

expressions is NP–complete [, ], meaning that, in general, the runtime of a motif dis-

covery tool will increase exponentially with the size of the sequence set it is given. As I showed

in the previous section, the answer to any motif discovery problem will always require some a

priori knowledge of the kinds of motifs that might be found, and simply specifying that the

grammar is regular is not enough. Accordingly, most motif discovery tools restrict themselves

to finding a particular subclass of regular expressions. �is motif class determines the form of

each pattern, pi that we find. Below, a few motif classes, commonly used in biological sequence

analysis, are enumerated in order of increasing complexity []:

• pi ∈ Σ∗: �is is the class of all “solid” patterns, for example “KAGTPT” and “TAGCGGGAT”.

• pi ∈ (Σ∪ {.})∗: �is is the class of all patterns that can have “wildcard” positions, which
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Table .: Motif discovery tools using regular expressions or similar models. �is list is not
intended to be exhaustive; however, it includes many of the well–known motif discovery tools
used in bioinformatics. Early methods tended to use consensus strings or simple word counting
approaches, i.e. counting the occurrences of “n–mers” such as the –mer ATGC. Words that
are statistically over–represented are called motifs. Later approaches used more complex regular
expressions, cf. Rigoutsos and Floratos [].

Authors Year Citation
Queen et al.  []
Galas et al.  []
Mengeritsky and Smith  []
Staden  []
Neuwald and Green  []
Jonassen et al.  []
Wolferstetter et al.  []
Sagot et al.  []
Rigoutsos and Floratos  [, ]
van Helden et al.  [, ]
Jacobs Anderson and Parker  []
Marsan and Sagot  []
Pevzner and Sze  []
Bussemaker et al.  []
Kiełbasa et al.  []
Horton  []
Keich and Pevzner  []
Eskin and Pevzner  []
Buhler and Tompa  []
Sinha and Tompa  []
Price et al.  []
Sinha  []
Danilova et al.  []
Ganesh et al.  []
Liang et al.  []
Fogel et al.  []
Pavesi et al.  []
Hernandez et al.  []
Markstein et al.  []
Frith et al.  []
Sumazin et al.  []
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are denoted by “.”, for example “K.G.PT ” and “TA...GGAT ”. �e wildcard means

that any character from the alphabet will suffice in that position.

• pi ∈ (Σ ∪ R)∗: �is is the class of all patterns that can have “bracketed” expressions, for

example “K[ADG]G[KQ]PT ” and “TA[GA][TC]GGAT ”. �e bracketed expression

“[TC]” means that either “T” or “C” will suffice in that position. In this notation, R

represents the set of characters in the brackets, for example R = {TC} or R = {GA}.

• pi ∈ (Σ∪.)∗: �is is the class of “flexible” patterns. For example “K.(1,3)G.(2,5)PT ”,

where “.(,)” means that anywhere between two and five wildcards can exist at that po-

sition, that is .(,) can be any one of {.., ..., ...., ......}.

In general, the more complex these patterns are, the more expressive the languages will be

that we find. However, with increasing complexity, the computational difficulty of the motif

discovery problem increases drastically [, ].

Also, for some of these tools, it is possible to guarantee the completeness of the set of

returned patterns. �at is, a particular tool may guarantee that all regular expressions meeting

particular characteristics are discovered. However, this guarantee comes at the price of increased

time and space complexity. �at is, the set of all possible patterns is very large and can take

a large space to enumerate and a long time to search through. As such, many motif driven

algorithms use heuristics to limit the space of patterns that are searched.

Here, I will focus on the Teiresias algorithm as a representative regular expression–based mo-

tif discovery tool. Notably, Teiresias is the basis for much of the work in this thesis, particularly

in Chapters  and . A more detailed description of Teiresias is available elsewhere [, ].

Given a set of sequences S = {s, s, . . . , sn}, and integers L, W, and K, Teiresias finds

all patterns involving at least L non–wildcard characters that occur at least K times and have

a fraction of non–wildcard characters of at least L/W. �is set of patterns is called C, where

C = {p, p, . . . , pm} and each pi ∈ Σ (Σ ∪ {.}) Σ. �is is the set of all regular expressions that

begin and end with a character, but may have an arbitrary number of wild–cards and characters

in the middle subject to the L and W restriction, for example, AXG, A.G , K..R.G , etc. For

each motif pi in C, Teiresias returns an offset list L (pi) that specifies each sequence–position

combination where the motif occurs (cf. Figure - on page ).
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�e support of a motif is equal to the number of its occurrences (or, equivalently, “instances”

or “embeddings”), |L (p)|. Essentially, L defines the minimum size of patterns in which we are

interested, and L/W defines the minimum specificity (the fewer wildcards, the more specific a

motif ). �e four distinguishing characteristics of the Teiresias algorithm are as follows:

. All maximal patterns are reported (see below for a definition of “maximal”).

. Only the maximal patterns are reported.

. Running time depends only on the number of patterns present in the data, that is it is

output sensitive.

. Patterns can be arbitrarily long.

�e most important characteristic of Teiresias is that it returns the complete set of maximal

patterns. And, because of the manner in which these patterns are handled internally by Teiresias,

the algorithm runs very quickly.

In the Teiresias parlance, a maximal motif is a regular expression which has the following

properties:

. �e motif cannot be made more specific without producing a motif with fewer embed-

dings (i.e., without |L (p)| decreasing); and

. �e motif is not missing any instances, i.e. L (p) includes the locations of all instances

of the motif.

�ese two criteria can be summarized qualitatively by stating that a maximal motif is not “miss-

ing” any locations and is as wide as possible, and thus it is as specific and sensitive as possible.

Here, “specific” has a particular meaning: a pattern pi is more specific than pj if pj can be

transformed into pi by substituting one or more wild–cards for a character, or by appending

wild–cards and characters to either side of pj. For example, CH.MEN..N is less specific than

all of the following regular expressions: CHEMEN..N, CH.MEN..NE.R , and CH.MEN.IN .

Necessarily, if a pattern pi is more specific than a pattern pj, then

|L (pi)| 6 |L (pj)|. (.)
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Teiresias works in two phases: scanning and convolution. During the scanning phase, Teire-

sias enumerates all “elementary motifs” with exactly L characters and at most W −L wild–cards

(see Figure - on the facing page). Elementary motifs are short regular expressions that can be

stitched together to form longer regular expressions that are more specific, using the definition

of specificity above. For example, as shown in Figure -, the sequences

KDWVQKRK

CWCQKRK

WDQKRKNP

have five motifs with ) exactly L =  characters, ) no more than W − L wild–cards for every

window of L =  characters, and that ) occur at least three times: W.QK, QKR, QK.K, KRK,

and Q.RK. �ese are the elementary motifs.

In the convolution phase, the elementary motifs are stitched together to see if more specific

motifs can be found. �e process of convolution is defined as follows:

pk = pi ⊕ pj

=


pkp ′

i if suffixL(pi) = prefixL(pj),

∅ otherwise.

(.)

In the equation above prefixL(pi) is the sub–pattern at the beginning of pi with exactly (L −

) characters. Similarly, suffixL(pi) is the sub–pattern at the end of pi with exactly (L − )

characters. For example:

prefix(W.QK) = W.Q

suffix(W.QK) = QK

prefix(QKR) = QK

suffix(QKR) = KR.

(.)
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>seq 0
KDWVQKRK
>seq 1
CWCQKRK
>seq 2
WDQKRKNP

⇓
Teiresias

L/W/K = //
⇓

Elementary motifs:

motifs → W.QK QKR QK.K KRK Q.RK

offset  KDWVQKRK KDWVQKRK KDWVQKRK KDWVQKRK KDWVQKRK

(,) (,) (,) (,) (,)

offset  CWCQKRK CWCQKRK CWCQKRK CWCQKRK CWCQKRK

(,) (,) (,) (,) (,)

offset  WDQKRKNP WDQKRKNP WDQKRKNP WDQKRKNP WDQKRKNP

(,) (,) (,) (,) (,)

Figure -: Scanning phase of Teiresias. During the scanning phase, Teiresias enumerates all
elementary motifs with exactly L characters and at most W − L wild–cards. Using the input
sequences above, Teiresias finds five such elementary motifs as shown in the table: F.AS , AST,
AS.S , STS, and A.TS . �e offset list for each of these is shown in the table. In the next phase
of the algorithm, these elementary motifs are convolved together to form the final, maximal
motifs.
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To illustrate this, consider the following examples:

DF.A.T ⊕ A.TSE = DF.A.TE

L.XF.A.MM ⊕ A.MSE = L.XF.A.MME

WX.N.N⊕N.PSE = ∅.

If two motifs can be convolved — i.e. pi ⊕ pj 6= ∅ — then the offsets of the new, longer

regular expression, pk are given by

L (pk) = {(x, y) ∈ L (pi)| ∃(x, z) ∈ L (pj) such that z − y = W (p) − W (suffixL(p))} .

(.)

If |L (pk)| < K then the motif does not have sufficient support and is discarded. Conversely,

if |L (pk)| = |L (pi)| then pi is not a maximal motif. Or if |L (pk)| = |L (pj)| then pj is not

a maximal motif. But, if

|pi ⊕ pj| < K ∀ j, (.)

then pi is maximal.

Obviously, by convolving each elementary motif with every other elementary motif, i.e. by

repeating pk = pi ⊕ pj for all i and j, the maximal motifs can be discovered. Teiresias uses an

intelligent method of sorting the elementary motifs that does not require doing the all–by–all

comparison and yet still guarantees that all the maximal motifs are discovered. �e set of these

maximal motifs are then returned to the user as in Figure - on the next page.

�e broad applicability of Teiresias has been shown in numerous studies. In particular,

the algorithm has been very successful in multiple sequence alignment [], motif dictionary

building [], and gene finding in microbial genomes. In the work here, we will expand upon

these studies in our application of the Teiresias motif discovery engine to practical problems of

interest to the biology community, cf. Chapter .

Gibbs sampler and other position weight matrix–based tools

As described in Section . on page , PWMs can be much more specific than regular expres-

sions for modeling a set of motif instances. But, this motif model also presents some unique
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>sequence 0
MSKNIVLLPGDHVGPEVVAEAVKVLEAVSSAIGVKFNFSKHLIGGASIDAYGVPLSDEALEAAKK
>sequence 1
MSKQILVLPGDGIGPEIMAEAVKVLELANDRFQLGFELAEDVIGGAAIDKHGVP
>sequence 2
MKFLILLFNILCLFPVLAADNHGVGPQGASGVDPITFDINSNQTGPAFLT

⇓
Teiresias:

L/W/K = //
⇓

Final motifs:
motif location (seq,pos)

GPE..AEAVKVLE (,) (,)
IGGA.ID..GVP (,) (,)

MSK.I..LPGD..GPE (,) (,)
A.D.HGV (,) (,)

Figure -: Pattern discovery with Teiresias. Here we have three protein sequences and we use
Teiresias to find all patterns involving at least L =  non–wildcard characters that occur at least
K =  times and have a fraction of non–wildcard characters of at least L/W = /. �ese are
called // patterns and there are three such patterns in this set of sequences. Along with each
motif is an offset list L (pi) that specifies each sequence–position combination where the motif
occurs. For motif p =“A.D.HGV” the associated offset list is L (p) = {(, ), (, )},
indicating that this motif occurs twice: once in sequence  at position  and once in sequence
 at position .
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difficulties. Recall that, as described in Section . on page , most regular expression–based

motif discovery tools are “pattern driven” in the sense that, at some level, they rely on enumer-

ating possible regular expressions and then determining which of those has a significant support

within a given set of sequences. A similar approach does not work for PWMs because the set of

production probabilities (see Equation . on page ), or equivalently the target frequencies

in the f matrix (see Equation . on page ), are sampled from a continuous distribution.

�erefore, the set of possible PWMs cannot be enumerated a priori because they are effectively

infinite.

Most motif discovery tools that use PWM models skirt this issue by taking a more focused

approach. Instead of returning a large set of motifs, as is common for regular expression–based

tools such as Teiresias, PWM–based tools usually return either one or a small set of motifs.

Table . on the facing page shows a list of publications introducing motif discovery tools that

use PWMs. Most of these tools use a procedure whereby they are initialized with a random

PWM and progressively optimize the PWM to maximize its sensitivity and specificity for the

input sequences. However, some of the algorithms, such as Mitra–PSSM, which was proposed

by Eskin [], work in a much different fashion, somewhat similar to some of the regular

expression–based tools described in the previous section.

Here, I will describe the algorithm by Lawrence et al. [], which is generally referred to

as the Gibbs sampler. �is algorithm is the basis for many of the other algorithms shown in

Table .. As such, it is somewhat indicative of the class has a whole. �e Gibbs sampler is a

Markov chain Monte Carlo, or MCMC method [, ]. �e Monte Carlo aspect of the

method refers to optimization routine by which the PWM is successively refined. �is routine

is a Markov chain in the sense that the new, refined PWM depends only on the previous,

unrefined PWM.

�e Gibbs sampler is shown schematically in Figure - on page . �e input to the

algorithm is a set of sequences S = {s, s, . . . , sn} and an integer W (p), which is the width

of the motif p that we are trying to “discover.” (Obviously, p is assumed to be represented by

a PWM.) �e Gibbs sampler assumes that the motif occurs exactly once in each sequence in

S; however, more recent alterations of this basic framework allow for multiple instances in a

single sequence or for sequences to be missing an instance. Here, I described the most simple
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Table .: Motif discovery tools using position weight matrices or similar models. As discussed
in the text, PWMs are more specific than regular expressions; however, in general, there are
fewer algorithms utilizing this motif model. Most of the later tools shown in the table are
geared towards finding binding sites for regulatory proteins upstream of sets of co–regulated
genes. Of these publications, the seminal manuscript is that by Lawrence et al. [].

Authors Year Citation
Stormo and Hartzell  []
Lawrence et al.  []
Liu  []
Bailey and Elkan  []
Leung et al.  []
Goffeau  []
Hertz and Stormo  []
Workman and Stormo  []
Hughes et al.  []
Guha�akurta and Stormo  []
Bi and Rogan  []
Raphael et al.  []
Eskin  []
Siddharthan et al.  []
Liu et al.  []
Leung and Chin  []
Zhong et al.  []
�arakaraman et al.  []
Down and Hubbard  []
Macisaac et al.  []
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case based on the original manuscript by Lawrence et al..

As shown in Figure -, the Gibbs sampler has five major steps.

. Choose random starting locations for the motive in all but one of the given sequences.

. Use these sites to compute a PWM.

. Score the sequence that was left out in step  over its entire length.

. Choose a site within the sequence probabilistically, based on the scores of each possible

site, i.e. choose sites that have higher scores with higher probability.

. Recompute the PWM using the site selected in step  and leaving out a different, ran-

domly selected sequence. �en, go to step  and repeat until the PWM no longer changes

significantly.

Most of the other PWM–based motif discovery tools listed in Table . use an approach that

is similar to the Gibbs sampler. In general, these tools excel at finding motifs in DNA sequences

such as cis–regulatory binding sites. (See Tompa et al. [] for an excellent review of this

problem and a demonstration of the power of PWM–based tools.) Other motif discovery tools

use different optimization procedures than the Gibbs sampler, which are slight variations on the

MCMC method, such as simulated annealing [] or expectation maximization. Most of these

refinement procedures guarantee that the algorithm will converge to a maximum []; however,

it is not guaranteed that a maximum is globally optimal. �e optimization can become trapped

in a local optimum, which is called “slow–mixing” of the Markov chain. New procedures that

avoid this are an active area of study [].
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Figure -: Schematic of the Gibbs sampling algorithm. As the figure shows, the Gibbs
sampling method is an iterative algorithm that progressively refines a position weight matrix
starting from a random PWM. If the input sequences contain a very strong motif, Gibbs
sampling tends to converge very quickly upon it. However, in its original manifestation [],
the method was not able to find motifs that either occurred multiple times in a single sequence,
or were found in some sequences but not others. In general, most motif discovery tools using
PWMs bear a great deal of similarity to the original Gibbs sampling method.



 CHAPTER . INTRODUCTION TO MOTIF DISCOVERY



Chapter 

Design of antimicrobial peptides

. Introduction

In the previous chapter, I introduced grammars as a generalized method for modeling motifs in

sequences of characters. In addition, I presented a detailed look at the Teiresias motif discovery

tool. In this, the second chapter of my thesis, I show how Teiresias can be used to derive sets of

regular grammars describing a particular class of protein sequences — antimicrobial peptides.

In what follows, I present a general background on antimicrobial peptides and then provide

a rationale for why these peptides are particularly well–suited for being modeled using regu-

lar grammars. I detail the construction of an annotation tool for finding new antimicrobial

peptides and validating the general hypothesis that regular grammars can be used as a sensi-

tive and specific indicator of antimicrobial function in peptide sequences. Next, I describe the

preliminary design of synthetic antimicrobial peptides using an evolutionary approach, which,

although ultimately inconclusive, provided motivation for a more focused design. �e final

section of this chapter describes a more focused design approach, detailing the successful con-

struction of numerous novel peptides with strong antimicrobial activity against a wide spectrum

of bacteria.

�e research described in this chapter is drawn largely from a publication that is in prepara-

tion in collaboration with Christopher Loose, Isidore Rigoutsos, and Gregory Stephanopoulos.

(Some experimental work in Section . on page  was also performed by Gyoo Yeol Jung.)

�roughout this chapter, the use of the pronoun “we” refers to this group of authors.
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. Motivation

Antimicrobial peptides are small proteins that attack and kill microbes. �ese peptides are ef-

fectors of the innate immune system: the phylogenetically ancient first line of defense against

pathogen assault [, ]. Antimicrobial peptides are ubiquitous amongst multicellular eu-

karyotes and found in diverse contexts including frog skin [], scorpion venom [], and

human sweat [].

�ere is a growing interest in antimicrobial peptides, due largely to the proliferation of

multi–drug resistant pathogen strains []. �ese strains are resistant to one or more common

antibiotics such as penicillin, tetracylin, or vanocomycin. In the United States alone, the cost of

treating and preventing infections by these pathogens is estimated to be many billions of dollars

annually []. In the arms race against microbes, mankind is losing — only a single new class

of antibiotics was developed in the past  years [, ]. However, there is mounting

evidence that antimicrobial peptides are less likely to induce bacterial resistance and will make

a strong contribution to our therapeutic arsenal [, , ].

Human antimicrobial peptides, such as the defensins and cathelicidins, help to maintain a

passive defense against pathogens in the environment. A malfunction of these peptides leads to

severely immunocompromised phenotypes. For example, a deficiency of the LL- cathelicidin

leads to morbus Kostmann, a congenital neutropenia characterized by recurrent bacterial infec-

tion and short life–expectancy [, ]. In addition, the pathogenesis of cystic fibrosis (CF) is

indirectly caused by antimicrobial peptide impairment []. CF patients have a defective Cl−

ion channel in the pulmonary airway epithelia that causes unusually high salt concentrations.

�e salt disrupts the function of the epithelial defensins, leading to chronic infections and

ensuing respiratory failure [, ]. More severe phenotypes have been produced in loss–of–

function animal models. For example, Wilson et. al. [] showed that mice with depressed

defensin activity required a –fold lower dose of the S. typhimurium pathogen to produce a

fatality. In contrast, gain–of–function mice expressing human enteric defensin HBD– have a

markedly increased resistance to S. typhimurium assault [].

In addition to their more publicized antibiotic capabilities, antimicrobial peptides appear to

be important in a variety of other diseases. For example, the antimicrobial peptides of Anophe-
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les gambiae, the malaria mosquito, are upregulated after malaria (Plasmodium berghei) infec-

tion [] and, in some cases, are capable of killing the ookinetes of the parasite [, ]. An-

timicrobial peptides are also indicated in a resistance to the AIDS–causing virus, HIV. Long–

term HIV nonprogressors display elevated levels of α–defensins that inhibit the proliferation of

the virus []. Finally, a limited class of antimicrobial peptides may form the basis for novel

cancer treatments [, ]. For example, the antimicrobial peptide tachyplesin can repress the

growth of cancerous tumors both in vitro and in vivo [].

�e many disease–relevant behaviors of antimicrobial peptides are a result of their ability to

broadly distinguish eukaryotic cells from pathogenic invaders. �ere are two features that give

the peptides this ability: a net positive charge and an amphipathic –D structure [, ]. �ese

features endow the peptide with an affinity for negatively charged outer leaflet of the bacterial

cytoplasmic membrane (see Figure - on the next page). �is affinity leads to permeablization

of the bacterial membrane, which is the basis for the bactericidal activity of antimicrobial pep-

tides. Although this mode of action is common to almost all antimicrobial peptides, there are

many diverse primary sequences that can produce this behavior. �ese sequences form a handful

of conserved families, the most common of which are the α–helical and β–sheet antimicrobial

peptides [].

Figure - on page  shows the structure of aurein–., an archetypal alpha helical an-

timicrobial peptide from the Australian Southern bell frog []. Alpha helical AmPs form the

largest single family of AmPs. �ey are particularly common in amphibians because species

such as frogs tend to inhabit wet and warm ecological niches that are conducive to the prolif-

eration of bacteria. (See Figure - for a phylogenetic tree of the more than  amphibian

AmPs.) Alpha helical AmPs tend, in general, to have a amphipathic structure in which posi-

tively charged residues are segregated on to a particular side of the longitudinal axis of the helix.

Negatively charged or neutral residues tend to be isolated on the opposite side from the posi-

tively charged residues. Evidence suggests that this confirmation allows the peptide to position

itself judiciously relative to the bacterial membrane, facilitating entry of the peptide into the

membrane and, ultimately, membrane disruption [].

�e characteristic membrane–attack of antimicrobial peptides is the primary rationaliza-

tion of the peptides’ propensity to not induce bacterial resistance to the same degree as small
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Figure -: Antimicrobial peptide action. In the figure above, amphipathic antimicro-
bial peptides with net positive charges are attracted via electrostatic forces to the negatively
charged outer–leaflet of the microbial membrane (step ) []. �is membrane is either the
lipopolysaccharide layer or the peptidoglycan layer of gram–negative and gram–positive bacte-
ria, respectively []. In addition, the β–,–glucan in fungal membranes and the phosphogly-
can of certain parasites can give membrane characteristics that are exploited by certain classes
of antimicrobial peptides. �e peptides cover and lyse the membrane via either a “barrel stave”
or “carpet” mechanism (step ) []. Although some antimicrobial peptides are hemolytic,
in general, they are not damaging to multicellular organisms because ) the negatively charged
phosphatydilserines of their outer leaflet are sequestered on the cytoplasmic side of the mem-
brane, and ) the membranes are stabilized by cholesterols [].
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A) Ball and stick

B) Ribbon

C) Peptide wheel view

Figure -: �e structure of aurein–. []. Aureins constitute a large family of secreted
proteins originally isolated from the skin of frogs. �is particular structure was isolated from
the Australian Southern bell frog. �e peptide conforms to the classic amphipathic alpha he-
lical structure and has wide–spectrum antimicrobial activity. Part A) shows a ball–and–stick
representation of the structure in which nitrogen atoms are colored blue and oxygen atoms are
colored red. Part B) shows the same structure using a cartoon representation that clearly shows
the alpha helix. Finally, part C) shows a helical wheel projection in which uncharged residues
are boxed in order to highlight the segregation of charges on the helix. Graphics created using
PyMol (DeLano Scientific, San Carlos, CA, USA).
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molecule pharmaceuticals. �at is, because the peptides leverage a pervasive polygenic trait of

bacteria, the structure of the cell wall, it is “expensive” for the bacteria to evolve a resistance

[, ]. For this reason, many companies are developing therapeutics based on antimicro-

bial peptides, many of which are in phase III FDA trials []. Even more encouraging, some

peptides show strong in vitro bactericidal activity against pathogen strains that have developed

a resistance to multiple conventional antibiotics [, , ].

. A grammatical approach to annotating AmPs

Our preliminary studies of natural AmPs indicated that their amphipathic structure gives rise to

a modularity among the different AmP amino acid sequences. �e repeated usage of sequence

modules — which may be a relic of evolutionary divergence and radiation — is reminiscent of

phrases in a natural language, such as English. For example, the grammar Q.EAG.L.K..K

(the “. ” is a “wildcard”, which indicates that any amino acid will suffice at that position in the

grammar) is present in over  of cecropins, an AmP common in insects. Based on this obser-

vation we modeled the AmP sequences as a formal language — a set of sentences using characters

from a fixed alphabet, in this case the alphabet of amino acid one–letter symbols [].

We conjectured that the “language of AmPs” could be described by a set of regular gram-

mars and that these grammars, in turn, could be used to annotate and design novel AmPs. As

discussed in Chapter , regular grammars are, in essence, simple rules for describing the allowed

arrangements of characters. �ese grammars, such as the cecropin grammar mentioned previ-

ously, are commonly written as regular expressions and are widely used to describe patterns in

nucleotide and amino acid sequences [, ].

To find a set of grammars describing AmPs we used the Teiresias pattern discovery tool []

(see Section . on page  to discover an exhaustive, maximal set of regular grammars in a

collection of antimicrobial peptides assembled from a variety of sources.

.. Collecting a database of antimicrobial peptides

Our collection of known antimicrobial peptides was taken principally from two databases:

the Antimicrobial Sequences Database (AMSDb) [] and SwissProt/TrEMBL []. �e
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AMSDb contains about  antimicrobial peptides, all of which are a subset of SwissProt/TrEMBL.

Some of the entries in the AMSDb are sequence fragments that are derived from larger pre-

cursors via post–translational modification. We discarded these peptides unless the reported

antimicrobial fragment comprised at least  of the length of its parent sequence. From the

remaining entries, we selected all that were from eukaryotic organisms, including the complete

length of the parent peptides in our database.
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Table .: Common antimicrobial peptide families

acaloleptin achacin adenoregulin alpha–defensin

androctonin andropin apidaecin attacin

aurein azurocidin bactenecin bactericidin

bactinecin beta–defensin bombinin bombolitin

buforin buthinin caerin caltrin

cathelin cecropin ceratotoxin citropin

clavanin coleoptericin corticostatin crabrolin

defensin demidefensin dermaseptin dermcidin

diptericin drosocin drosomycin enbocin

formaecin gaegurin gallinacin gloverin

granulysin hadrurin heliomicin hemiptericin

hemolin hepcidin histatin holotricin

hymenoptaecin hyphancin indolicidin lebocin

macin maculatin maximin metalnikowin

metchnikowin misgurin moricin myticin

mytilin mytimycin nk–lysin penaeidin

permatin phormicin phylloxin pleurocidin

polyphemusin ponericin protegrin pseudin

pyrrhocoricin ranalexin ranatuerin rhinocerosin

royalisin rugosin salmocidin sapecin

sarcotoxin sillucin spingerin styelin

tachycitin tachyplesin temporin tenecin

termicin thanatin tricholongin zeamatin
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SwissProt/TrEMBL is a database of about  thousand heavily annotated sequences. In-

cluded in the annotations are keywords grouping proteins into functional categories. For our

initial database of antimicrobial peptides we extracted all the eukaryotic sequences matching the

keywords “antibiotic”, “fungicidal”, or “defensin”. �ese sequences were added to the peptides

we collected from the AMSDb.

Using the sequences that we extracted from AMSDb and SwissProt/TrEMBL, we made

a list of common antimicrobial peptide names — such as “defensin” or “tenesin” — and col-

lected sequences from SwissProt/TrEMBL matching these names. From the name–matched

sequences, we manually selected those eukaryotic sequences that had literature evidence of an-

timicrobial activity but were not explicitly labeled as such in SwissProt/TrEMBL. �ese se-

quences, together with the sequences from AMSDb and the first set from SwissProt/TrEMBL,

formed our initial database of antimicrobial peptides. In the following section, we describe

how these sequences were used, via a homology–based bootstrapping method, to find even

more antimicrobial peptides within SwissProt/TrEMBL.

.. Finding more antimicrobial peptides

A minority of the antimicrobial peptides within SwissProt/TrEMBL, were not found using

either the keyword or “common–name” searches. To find these sequences we used two ap-

proaches in parallel. First, we used a FastA sequence alignment based approach. Second, we

used a grammar matching–based approach with TEIRESIAS . Both of these approaches are

detailed below and summarized in Figure -.

Seeding the peptide database through similarity searching

Starting with our initial database of sequences (S in Figure -) from SwissProt/TrEMBL and

AMSDb, we aligned each sequence in S against the entire SwissProt/TrEMBL database. If

a sequence in SwissProt/TrEMBL aligned with a sequence from S with  or greater pair–

wise identity over the length of both sequences, the new sequence was marked as a possible

antimicrobial peptide. Of the marked sequences, we selected those that were from eukaryotic

organisms and had literature evidence of antimicrobial activity. �ese sequences are shown as

SF
 in Figure -, meaning sequences found using FastA in the first iteration.
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Figure -: A schematic of the bootstrapping method used to collect antimicrobial sequences
from SwissProt/TrEMBL. On the left, using TEIRESIAS , we computed an // gram-
mar set (C//

i ) from the initial set of sequences, S. �ese grammars were masked from
S to make S |m–//, from which the // grammar set, C |

//
m–//, was found using

TEIRESIAS again. �e two grammar sets were combined and processed (see Appendix)
to make φ ′. �is final grammar set was used to find more antimicrobial sequences in Swis-
sProt/TrEMBL. On the right side of the schematic, sequences from S were aligned against
SwissProt/TrEMBL to find new antimicrobial sequences.
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Seeding the peptide database through use of grammar discovery

In the second stage of our bootstrapping method, we used TEIRESIAS to find grammars

that could be used to search for antimicrobial sequences in SwissProt/TrEMBL. As shown

in Figure -, from the S sequence set, we derived two separate grammar sets ( C
//
i and

C |
//
m–//), which we combined together. �is combined set, φ, was processed (a detailed

description of this processing is in the appendix) to increase the selectivity and sensitivity

of the grammars for antimicrobial peptide sequences. Finally, in each sequence from Swis-

sProt/TrEMBL, we searched for instances of grammars from φ ′. If  of the amino acids in

a peptide from SwissProt/TrEMBL were contained within instances of grammars from φ ′ the

peptide was marked. Of the marked sequences, we selected those sequences that were from eu-

karyotic organisms and had literature evidence of antimicrobial activity, calling these sequences

ST
 .

Iterating the bootstrapping method

�e new antimicrobial peptides found using FastA and TEIRESIAS , SF
 and ST

 respectively,

were added to the initial database, S, to make S. Next, a bootstrapping method was repeated

on the S sequence set to make larger and larger sets (S, S,…) until no more antimicro-

bial peptides in SwissProt/TrEMBL could be found. �is process is shown in Figure - and

detailed below.

. Finding Highly Conserved grammars

First we found all the highly conserved (//) grammars in S. �ese grammars are sub-

strings in S that are repeated exactly, that is, grammars without any wild–cards or brack-

eted expressions. Let these grammars be called C
//
 , meaning // grammars from

the first iteration. In order to simplify the grammar discovery process for the next step,

the sequence set S was masked  with the C |// grammars to make the S |m–//

sequence set.

. Finding Loosely Conserved grammars

“Masking” is described in detail in Rigoutsos and others []. In brief, by masking a grammar, we tag each
instance of a grammar except for the instance in the longest sequence in which the grammar is found. Tagged
regions are then excluded from further grammar discovery processes.



.. A GRAMMATICAL APPROACH TO ANNOTATING AMPS 

Using the S |m–// sequences, we found all // grammars, which we will call

C |
//
m–//. �ese grammars are more loosely conserved than the C

//
 grammars and

are typically greater in number.

. Post–Processing the grammars

Let the union of the two grammar sets computed above be φ = C
//
 ∪C |

//
m–//. We

would like to match grammars in φ against SwissProt/TrEMBL to find any remaining

unknown antimicrobial sequences. But, to gain greater specificity and sensitivity, we first

processed the grammars in φ to a make a grammar set φ ′.

(a) For every grammar in φ, we de–referenced each wild–card character that could be

expressed as a bracketed expression with no greater than four characters. �at is, in

the grammar “K.T ”, the “. ” might be replaced with “[AG] ” if, for each instance

of “K.T ”, only “A” and “G” are found in the wild–card position. If more than four

characters were needed in the bracketed expression, we left the wild–card character

instead.

(b) For each of the altered grammars in φ we decomposed the grammar into a set of

smaller, redundant grammars by using a sliding window of ten non–wild–card char-

acters. So, a grammar such as “[FWY]FK.[GQ][KRQ]CPDAY ” would be de-

composed into three distinct grammars: “S[RKM][FWY]FK.[GQ][KRQ]CPD ”,

“[RKM][FWY]FK.[GQ][KRQ]CPDA ”, and “S[RKM][FWY]FK.[GQ][KRQ]CPDAY ”,

each ten non–wild–card amino acids in length.

(c) From this new, redundant φ we kept only those grammars that were statistically

significant. �ese are grammars that have a log–odds probability less than or equal

to −.

Let these the processed φ grammar set be called φ ′
.

�e final sequence set, from the last iteration, became our database of known antimicrobial

peptide sequences and the final φ ′ became our antimicrobial grammar database.
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Figure -: A plot of the progress of the bootstrapping method. �e figure shows that our
antimicrobial sequence database grew from  sequences to  sequences in  iterations.

.. Antimicrobial sequence and grammar databases

�e initial database of antimicrobial peptides collected from AMSDb and SwissProt/TrEMBL con-

tained a total of  sequences. Starting with these sequences, the bootstrapping method

described previously went through  iterations until no more sequences were found in Swis-

sProt/TrEMBL. �e last sequence set, S, which contained a total of  sequences, was used as

our antimicrobial sequence database and is available on–line at http://cbcsrv.watson.

ibm.com/Tspd.html . �e final grammar set (φ ′ from the last bootstrapping iteration)

contained a total of , grammars covering the sequence space of the final sequence database.

.. Annotator design and validation

Together, these ∼K grammars describe the “language” of the AmP sequences. In this lin-

guistic metaphor, the peptide sequences are analogous to sentences and the individual amino

acids are analogous to the words in a sentence. Each grammar describes a common arrangement

of amino acids, similar to popular phrases in English.

Given an arbitrary sequence of amino acids, it is possible that some parts of the sequence are

“matched” by one or more of the grammars in our database. For example, the white mustard

plant AmP Afp (Genbank accession no. P) contains the amino acid sequence fragment

CICYFPC, which matches the grammar CICY[FVK]PC from our database. (As discussed in

Section . on page , the bracketed expression [FVK] indicates that, at the fifth position in

the grammar, either phenylalanine, valine, or lysine is equally acceptable.) Based on this match,

we would say that the Afp fragment is “grammatical.”

http://cbcsrv.watson.ibm.com/Tspd.html
http://cbcsrv.watson.ibm.com/Tspd.html
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input seq

Pattern Matcher

φ′= {pA, pB , pC . . . }

input seq
pD

pG pH
pJ pK pA

pB

input seq

Alignment Engine

S= {s1, s2, s3. . . }

input seq

pD

pG

pH

pJ

pK pA

pB

s1

pA

pB

pC pD

s2

pE

pF pG

pH

s3

pI pJ

pK pL

s1

pA

pB

pC pD

Figure -: A schematic of our grammar–based alignment method. In the figure, a user–
supplied input sequence is searched for instances of grammars (pA, pB, pC…) that occur in the
set of known antimicrobial sequences (S). Grammars that occur in both the input sequence
and sequences in S are then used to create alignments. As indicated in the figure, the input
sequence shows homology to s in two distinct regions, so both possible alignments are shown.
See Figure - on the following page for an example of how these grammar–based alignments
appear in practice.

Using the antimicrobial grammar database, we created an on–line tool for annotating an-

timicrobial peptides by determining the degree to which a query sequence is grammatical. (�is

tool is available online at http://cbcsrv.watson.ibm.com/Tspd.html .) A user–

supplied input sequence is annotated by generating grammar–based alignments of the input

against sequences in our database of known antimicrobial sequences (S). �is alignment takes

place in two distinct steps. First, we search the input sequence for instances of grammars from

the antimicrobial grammar database (the final φ ′). Second, for each contiguous stretch of

shared grammars between the input sequence and a sequence from S, an alignment is pro-

duced. Figure - show a schematic of the alignment process.

http://cbcsrv.watson.ibm.com/Tspd.html
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Since it is possible that, for an arbitrary sequence, only a portion of the sequence is matched

by one of our grammars, we developed a heuristic metric Z, which is the degree to which a query

sequence is grammatical. To calculate Z, we assign a local score along the backbone of a query

sequence that is equal to the number of grammars, or fractions of grammars with at least 

amino acids, that have matches over the length of the query sequence. �e total score for the

sequence, Z, is the fraction of the sequence’s length that is covered by at least one grammar (see

Figure -). For example, a hypothetical sequence LFLTAIDRYIAAA — which is matched

by LFLTAI[ID][TR][VY]I , but no other grammars in our database — would get a score

of / since the first  positions in the sequence are covered by the match.

In order to annotate and design synthetic AmPs, we created a software tool to calculate the

score Z for a query sequence and to classify the sequence as either likely to have antimicrobial

activity — if its Z–score is above a certain threshold — or not. To determine this threshold,

we trained the tool on a subset of sequences from our AmP database as follows. We randomly

selected  of the natural AmP sequences and generated a Teiresias grammar set, using the

same Teiresias parameters that were used to generate our ∼K grammar set. �is smaller

grammar set was used by our software to classify the remaining  of our AmP database,

which was hidden among  of the non–AmP sequences from Swiss–Prot/TrEMBL (∼K

sequences). �is experiment was repeated  times, with different random sets, to determine

the best Z–score. We found that, at an Z–score threshold of ., the software tool will correctly

classify both the AmP and non–AmP sequences with . accuracy.

. Preliminary strategy for the design of novel AmPs

.. Sequence design

As I showed in the previous section, the Z–score annotation metric is both sensitive and selec-

tive for existing AmPs. We hypothesized that this metric could be used equally well to design

unnatural sequences that would have antimicrobial activity. In this section, I describe our pre-

liminary strategy for designing these novel, unnatural sequences. Notably, the experimental data

presented in this section were later discovered to not be reproducible due to experimental complica-

tions. See Section .. on page . �e data are presented here for the insight they lend to our more
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focused, and successful, strategy for designing AmPs, which is described in Section . on page .

Based on the annotation results described in the previous section, we ran a computer simu-

lation to create novel amino acid sequences with high Z–scores, but with minimal homology to

natural AmPs. �is simulation, shown schematically in Figure - on the next page, used the

Z–score as a fitness function for the in silico directed evolution of these novel sequences. To be-

gin, we created a randomized database of K progenitor sequences of uniform length with the

same amino acid composition (i.e., the same percentage of each amino acid type) as our AmP

database. Each of these sequences was allowed to have  mutated “children,” which were each

 PAM (point accepted mutations) evolutionary units away from the parent. (�e implied

rates of mutation from the Blosum– matrix were used to make the mutations at the amino

acid level [].) �ese children, each of which differed from their parent sequence by at least

one amino acid, were added to the total population of sequences. In order to avoid generating

sequences that were similar to natural AmPs, the population was purged of any sequences that

had  or more consecutive amino acids in common with any natural AmP sequence. Finally,

the remaining sequences were scored using our annotation software. From the population, the

sequences with the top  Z–scores were propagated to the following round, and the entire

process was repeated.

Using the strategy described above, we allowed many populations of sequences to evolve,

each with a different sequence length, which remained constant during the simulation. We

stopped each simulation after ,  rounds of mutation and selection, by which point we

found that populations of small sequence length would have converged to S = . For longer

length populations, all the sequences typically reached at least S = . and all tended to be

closely related to each other. We chose three sequences of lengths , , and  amino acids

to test experimentally for antimicrobial activity: sequences synth–, , and  in Table . on

page .

Using NCBI Blast [] (blastp) with the default parameters, we compared these sequences

to the entire NCBI NR sequence database. �e Blast results showed that none of the three se-

quences has significant homology to any known protein (E–value 6), including the naturally–

occurring AmPs. (More extensive similarity searching using PSI–Blast and E–value thresholds

up to 6 also failed to detect similarity to any natural AmPs.) �is is possible because each
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Figure -: A schematic of the in silico directed evolution strategy. Position () shows the
starting point: the database of K parental sequences. Each of these sequences has  mutated
children () and the entire population is scored using the Z–score and our database of gram-
mars from natural AmPs. From the scored population (), the top  sequences are chosen
and become the parental sequences for the next iteration. In addition to the directed evolution
simulation, we considered other methods for generating sequences with high Z–scores. How-
ever, we chose this approach because it naturally allows for sequences of arbitrary length and
the possibility that grammars may overlap in the designed amino acid sequences.
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grammar can be written in a large number of ways. For example, the –residue grammar

[LV][GA]K[TN][FL]AGHML occurs in  natural AmPs, but there are  possible –

residue sequences that match this grammar. Since our sequences are built from tiled grammars,

the synthetic sequences can quickly deviate from the naturally populated sequence space such

that it is impossible to detect similarity using sequence alignment tools (see Figure - on the

next page).

For each of the three synthetic peptides, we also designed a set of shuffled sequences, which

we hypothesized would have no antimicrobial activity. �ese “negative” peptides are shown

along with the three synthetic peptides in Table .. �e negative peptides have the same

amino acids as the synthetic sequences (and thus, the same molecular weight, charge, and pI);

however, the order of the amino acids was shuffled so that the negative sequences each have an

Z–score of zero.

.. Peptide synthesis and validation

Using an approach described elsewhere [], we synthesized all  of the peptides shown in

Table .. For each peptide we created a translation template consisting of three parts: green

fluorescent protein (GFP) with a T promoter, an enterokinase recognition site (ERS), and

the AmP to be tested. We synthesized the protein–product of each template in an E. coli–

derived in vitro translation system with continuous exchange []. �e resulting peptides

were proteolytically cleaved with enterokinase and the yield of AmP in the translation mixture

was measured via GFP fluorescence using a : molar equivalence between the AmP and GFP

concentrations.

We characterized the antimicrobial activity of each synthetic AmP using a broth microdi-

lution assay described previously []. �e top section of Table . shows the activities of the

synthetic peptides against four bacterial species: Bacillus cereus, Corynebacterium glutamicum,

E. coli, and Citrobacter rodentium. (See also Figure - on page .) �ese data suggested that

all three synthetic peptides had antimicrobial activity. Furthermore, none of the negative, “un–

grammatical” sequences had any activity. �us, it appeared that the activity of the designed

peptides was not an artifact of molecular weight, charge, or pI. Instead, the activity appeared

correlated to the Z–score, suggesting that higher order sequence features are responsible for an-
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Figure -: �e AmP design space. Part A shows the sequence space surrounding the set of
natural AmPs. �e “sequence space” is the combinatorially large set of all possible sequences.
Even for a –residue peptide like synth– (see Table .) this space is huge:  ≈ 

sequences. (For comparison, there are about  stars in the known universe.) Our linguistic
model focuses the search space to the “grammar space,” but allows a deviation from natural
AmP sequences. �is allows us to design peptides that show no significant homology to any
naturally occurring sequences, but have the desired function. Part B shows a subsequence of the
synth– peptide. Above and below the subsequence are grammars that match the sequence in
a tiled arrangement. For each bracketed expression, any of the amino acids listed in the bracket
will suffice.
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timicrobial activity. (�ese data were later shown to be not reproducible. Later experiments showed

that the sequences in Table . did not have detectable levels of antimicrobial activity under a more

stringent assay. See Section .. on page .)

�e bottom of Table . shows the measured activities of synth– variants that were syn-

thesized chemically — the peptides were purchased in  minimum purity from Invitrogen

(Carlsbad, CA) — instead of by our in vitro method. As shown, the activity profiles for these

peptides appeared to match their in vitro–synthesized counterparts, suggesting that the antimi-

crobial activity was not a relic of the translation mixture. (We also used the chemically synthe-

sized copy of synth– to validate the size of our in vitro synthesized copy; see Figure -.)

Furthermore, we found that luciferase (a luminescent protein with no antimicrobial character-

istics), when synthesized via our in vitro method, had no activity. �us, we were confident that

the translation mixture had no innate antimicrobial activity that may have produced spurious

results.

For each peptide/organism combination, we measured a minimum inhibitory concentra-

tion (MIC) at which  of colony growth was inhibited (see Table .). Many of the peptides

appeared to exhibit strong bacteriostatic activity (MIC 6  µg/mL). For example, all of the

peptides seemed highly active against B. cereus. However, with the exception of synth–, all of

the AmPs appeared specific to gram–positive bacteria. Such specificity is a common character-

istic of natural AmPs. For example, the insect cecropins are usually specific to gram–positive

bacteria []; whereas, the honey bee AmP apidaecin is active only against gram negative bac-

teria []. In general, the underlying reasons for the variations in the susceptibilities of different

bacterial species is unknown [].

We selected the synth– family of peptides (*synth–, *negative–a, and *negative–b in

Table .) to characterize more thoroughly. �ese peptides were tested at concentrations up to

 µg/mL (a typical MIC for moderately active naturally–occurring AmPs) against the gram–

negative bacteria. �ese additional experiments suggested that that *synth– was active against

C. rodentium at  µg/mL, preventing  of the bacterial growth with an MIC of roughly 

µg/mL. However, *synth– was not active against E. coli at this concentration. As expected, the

*negative–a and *negative–b peptides did not have any activity against either C. rodentium

or E. coli at  µg/mL.
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Figure -: Bacteriostatic activity of the three synthetic AmPs against B. cereus. �e break-
outs show photographs of the colonies, which decreased in number with increasing peptide
concentration. �e inlaid schematic shows the generally accepted mechanism of AmP action:
the electrostatic affinity for the outer–leaflet of the bacterial membrane leads to binding and
rupture of the cell []. (�ese data were later shown to be not reproducible. Later experiments
showed that these peptides had undetectable levels of antimicrobial activity under a more reliable
antimicrobial assay. See Section .. on page .)
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Figure -: SDS–PAGE gel showing the synth– in vitro translation product (lane B). Lane
A shows the translation mixture with no peptide and lane C shows the *synth– peptide, which
was produced via solid phase synthesis and validated by mass spectroscopy.

Table .: Minimum inhibitory concentration of the preliminary design synthetic AmPs
against a variety of bacteria. In the table MIC is the concentration of peptide, in µg/mL,
required to inhibit  of the bacterial growth. A “-” indicates that the MIC is greater than 
µg/mL.

synth– synth– synth–
MIC MIC MIC MIC MIC MIC

Gram–positive:
B. subtilis .  .  . .
C. glutamicum  . .   
Gram–negative:
E. coli - - - - - -
C. rodentium - - - -  
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Figure -: Activity of the synth– family of peptides against human erythrocytes determined
using a procedure described elsewhere []. �e ordinate shows the degree of hemolysis rela-
tive to  µg/mL of melittin, which causes complete hemolysis.

In addition, we tested the synth– family of peptides for cooperativity with the polymyxin

B nonapeptide, which is known to permeabilize the outer membrane of gram–negative bacteria.

We found that the nonapeptide did not sensitize C. rodentium or E. coli to *synth–, *negative–

a, or *negative–b, suggesting that the outer membrane may not be the limiting factor in the

activity of synth– against gram–negative bacteria.

Finally, we measured the activity of the synth– family of peptides against human erythro-

cytes (see Figure -). Our results show that *negative–a was moderately hemolytic and

suggest an HM of approximately  µg/mL. *Synth– and *negative–b were less active

against erythrocytes, with HM concentrations (by extrapolation) of roughly  and 

µg/mL, respectively.
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.. Later experimentation

As mentioned briefly in the preceding sections, the experimental data suggesting that synth–

had to antimicrobial activity, were later shown not to be reproducible. Specifically, the *synth–

 peptide was shown to have no antimicrobial activity up to  µg/mL. �ese experiments

implied that the data for all of the synthetically generated peptides discussed in the previous

section were suspect, with the exception of the data on the hemolytic potential of the peptides.

Based on these new findings, we revisited the AmP design problem and developed a more

focused approach on the assumption that the original evolutionary methodology would not

succeed. In particular, the lack of activity by the *synth– peptide indicated that perhaps the

Z–score was an inadequate metric for designing AmPs, despite its power for annotation.

. Focused design of AmPs

.. Derivation of highly conserved AmP grammars

In the previous section, I described a strategy for designing novel AmPs that have a strong em-

phasis on sensitivity. �at is, much effort was expended collecting a database of AmP sequences

that was exhaustive so that the set of grammars derived from that database would be exhaus-

tive as well (see Section . on page ). �e annotation experiments suggest that this strategy

is sensitive for discovering novel AmPs; however, the lack antimicrobial activity by *synth–

suggests that perhaps this approach (and the metric Z) is not selective. �is lack of selectivity

may be rooted in the exhaustive database of AmP sequences, which contains many sequences

spanning a wide range of activities. �at is, there are some AmP sequences in the database that

have very low activity and some with very high activity. In addition, many of the sequences in

this database are in precursor form. For the sequences, the precursor undergoes a series of post

translational modifications before yielding a mature, active antimicrobial peptide. �e regions

of the proteins that are cleaved off, or otherwise not responsible for the antimicrobial activity of

the peptide are essentially “noise” in the derived set of ∼K grammars derived in the previous

section.

In order to focus instead on specificity, not sensitivity per se, we decided to use a database of
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well–characterized eukaryotic AmP sequences from the Antimicrobial Peptide Database (APD) [].

�e APD is unique in that it is the only database of antimicrobial peptides that restricts the se-

quences it catalogs to only those for which there is a large body of experimental data confirming

the activity of each AmP. Furthermore, the AmPs listed in the APD are mature in the sense that

they are not precursor proteins. �erefore, we know with high confidence that each sequence

in the APD has antimicrobial activity and that we are unlikely to be training on sequences that

are not responsible in some part for this activity.

As in Section . on page , we used the Teiresias pattern discovery tool to derive regular

grammars that occur commonly in the set of  well–characterized eukaryotic AmP sequences

from the APD. Using these APD sequences, we ran the Teiresias pattern discovery tool with

the following settings: L = , W = , and K =  (a detailed description of the Teiresias input

parameters and associated tools is available in Section . on page ). �e resulting grammar

set was masked from the input sequences and the process was repeated using L = , W = , K

=  with the following amino acid equivalency groups [[AG], [DE], [FYW], [KR],

[ILMV], [QN], [ST]] . �e equivalency groups mean that Teiresias will consider any

two characters in the same group to be exactly equivalent. �us, in the groups above alanine

is treated exactly as glycine. In effect, using equivalency groups allows us to find motifs that

are more weakly conserved, but that have similar chemistries. (As I will show in Chapter  on

page , Teiresias is unable to use a more fine–grained metric for the similarity between two

amino acids. �at is, Teiresias can only use equivalency groups to say “equivalent” or “not

equivalent” but it cannot use metrics such as “alanine is five arbitrary units in a way from

glycine, which is  arbitrary units away from leucine.)

As I discussed in Section . on page , Teiresias outputs its grammars in regular expression

format, using wildcards. To make the grammars more selective, we de–referenced each wildcard

in the grammars to a bracketed expression, using the same procedure described in Section . on

page . �at is, we replaced each wildcard with the set of amino acids implied by the grammar’s

offset list. Finally, as in Section ., to allow partial matches as short as  amino acids, we

divided each grammar into sub–grammars using a sliding–window of size , resulting in 

grammars of length ten.

By design, these  are sensitive for the AmP sequences from the APD. �at is, these
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sequences from the APD are likely to be matched by the grammars. However, the grammars are

not necessarily specific for the APD AmPs. �at is, non–AmP sequences may also be matched

by the grammars. As discussed above, in our revised strategy, we used the APD sequences to

enhance specificity. Here, we reinforce this specificity by eliminating noninformative grammars.

To select only those AmP grammars that are both sensitive and selective, we searched each

of the grammars against the nearly exhaustive set of all known AmPs that was assembled in Sec-

tion . on page . �ese sequences consisted of the ∼ AmPs from the AMSdb [], which

were supplemented with an additional ∼ antimicrobial peptides from Swiss–Prot/TrEMBL

that were not included in the AMSdb. In addition, we searched each of the grammars against

sequences from Swiss–Prot/TrEMBL that were not AmPs. Using these two searches, we elim-

inated grammars that were not at least  selective for AmPs. �at is, at least  of the

matches for a single grammar had to come from the set of all known AmPs.

�e resulting, final set of  ten amino acid grammars was used as the basis set of gram-

mars to design the unnatural AmPs. As before, we say that these  grammars describe the

“language” of the AmP sequences and any sequence that is matched by one of the grammars is,

at least in part, “grammatical.”

.. Design of synthetic AmP sequences

To design unnatural AmPs, we combinatorially enumerated all grammatical sequences based on

the set of ∼ grammars. First, for each grammar, we wrote out all possible grammatical amino

acid sequences. So, for example, for the grammar [IVL]K[TEGDK]V[GA]K[AELNH][VA][GA]K

produced  sequences, where ***** = , due to the option of choosing one of many

amino acids at each bracketed position. �ere are roughly  million such –mers that corre-

spond to antimicrobial patterns. �en we wrote out all possible  amino acid sequences for

which each window of  amino acids is found in the set of  million –mers.

�is process is somewhat analogous to the convolution step of Teiresias. �at is, we have

essentially “stitched” small grammatical sequences together to form longer grammatical se-

quences. For example, the grammatical –mer IKTVAKEVGKwould be stitched together

with any other –mer beginning with the nine amino acid sequence KTVAKEVGK. In this

way, the small set of ∼ grammars can give rise to a tremendous number of  amino acid
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sequences.

From this set, we removed any –mers that had six or more amino acids in a row in

common with a naturally occurring AmP. �ere are roughly  million such –mers, each of

which is a “tiling” of ten –mers.

In the last section (see page ), I described a metric, Z, for scoring sequences against

a database of grammars. Recall that Z essentially is a measure of what fraction of a query

sequence is matched by grammars from the database of AmP grammars. However, this metric

was not dependent upon how many grammars matched the query sequence. �at is, there was

no weighting of grammars that were particularly common in AmPs relative to grammars that

may have only occurred once or twice. Consistent with the approach in the previous section,

this metric is sensitive, rather than specific. In our new, more focused approach, we developed

a different metric Q, which is the degree to which a given –mer is grammatical. �is score

is computed by making a sequence dot plot matrix [] (see Figure - on the facing page).

In the dot plot, the columns represent the positions, –, of the query –mer and the rows

represent the concatenated sequences of the ∼ naturally occurring AmPs. A dot is placed

in the matrix wherever a grammar matches both a naturally occurring AmP and the –mer.

�en score Q is then just the number of dots in the matrix. �at is, the score Q is the area

shown at the bottom of Figure - on page . As shown in the figure, the score Q is more

indicative of how homologous a query sequence is to the naturally occurring AmPs than the

score Z developed in the previous section. (Rather than the area under the curve, the score Z

is just the fraction of the query that is matched by grammars.)

In order to choose a representative set of sufficiently different synthetic sequences to test

experimentally, we clustered the  million sequences using the Mcd–hit software [] at 

identity. From these clusters, we chose  high scoring sequences to test experimentally. �ese

sequences have varying degrees of similarity to naturally occurring AmPs, as determined by

sequence alignment. Notably, from each cluster, we took the highest scoring synthetic sequence

based on the Q metric. �ese  sequences are shown in the left–hand side of Table . on

page .

For each of the  synthetic peptides, we also designed a shuffled sequence, in which the

order of amino acids was rearranged randomly such that the sequence did not match any gram-
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Figure -: An example grammar–based dot plot. �e figure shows a query sequence all
the top and a single known AmP sequence on the vertical axis along the side. �e matrix
has an entry for each pair of amino acids between the two sequences. �e breakout shows a
grammar from our database that matches both of the sequences. Note that both sequences
begin a grammar with a proline residue; however, the grammar is not entirely conserved. �e
next residue in a grammar differs in each of the two sequences. To calculate our scoring metric
Q we compute many grammar–based dot matrices using this same approach. For example, see
Figure - on the next page. Activity of rationally designed AmPs.
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Figure -: An example grammar–based dot plot for computing Q. �e figure shows a
“zoomed out” view of many dot matrices concatenated together. (See the dot matrix shown in
Figure - on the page before.) At the top of the matrix is the query sequence, which is the
synthetic, hypothetical AmP that is to be scored. Along the vertical axis lay the concatenated
sequences of the set of ∼ known AmPs. �e diagonal streaks show places where a grammar
matches both the query sequence and a known AmP. At the bottom, to score Q is shown. �e
score is the area under the curve and is simply a tally of the total number of dots in the dot
matrix. War, equivalently, the total length of all streaks in the figure. In this sense, the score Q

has a greater emphasis on specificity than did the score Z, which was merely be extent of the
query sequence covered by grammars.



.. FOCUSED DESIGN OF AMPS 

mars. �ese shuffled peptides are shown in the right–hand side of Table . on page .

Necessarily, these peptides had the same amino acid composition as their synthetic counter-

parts and thus, the same molecular weight, charge, and pI: bulk physiochemical factors often

correlated with antimicrobial activity. We hypothesized that because the shuffled sequences

were “ungrammatical” they would have no antimicrobial activity, despite having the same bulk

physiochemical characteristics. In addition, we selected  peptides from the APD as positive

controls (Cecropin P, Cecropin Melittin Hybrid, Cecropin–A Magainin  Hybrid, Melit-

tin, Magainin , Hepcidin, Pyrrhocoricin, Ranalexin, and Parasin) and six –mers selected

randomly from the middle of non–antimicrobial proteins as negative controls.

.. Assay for antimicrobial activity

Each of the peptides shown in Table . on page  was synthesized using solid–phase, Fmoc

chemistry on an Intavis Multipep Synthesizer (Intavis LLC, San Marcos, CA) at the MIT

Biopolymers Lab. Mass spectrometry was used to confirm the accuracy of the synthesis —

typical purities obtained with the synthesizer were >.

We characterized the activity of each synthetic AmP using a broth microdilution assay de-

scribed elsewhere []. �is assay measures the MIC at which the peptide inhibits growth

of the target organism. �e assay is based on the NCCLS MA and the Hancock assay for

cationic peptides (Hancock, NB, Canada). Briefly, serial dilutions of peptides in . Bovine

Serum Albumin and . Acetic acid were made at x the desired testing concentration.

Target bacteria were grown in Mueller Hinton Broth (BD, Franklin Lakes, NJ) to OD be-

tween . to . and diluted down to  −  ×  cfu/mL in fresh MHB, as confirmed by

plating serial dilutions. Five µL of the peptide dilutions was incubated with  µL of the target

in sterile, capped, polypropylene strip tubes for – hours. �e minimum concentration that

prevented growth based on visual inspection of OD was defined as the MIC. When desired,

the samples that did not grow were streaked on an MHB agar plate to see if the peptide was

bacteriocidal.

Recombinantly produced standards for Cecropin P, Cecropin Melittin Hybrid, Melittin,

Magainin , and Parasin were purchased from the American Peptide Company (Sunnyvale,

CA). In antimicrobial assays, four of the five recombinant peptides had identical activities to
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the chemically synthesized versions from MIT biopolymers, with the last being one dilution

different (Cecropin P).

.. Results and conclusions

Table . on the next page shows the MICs of synthetic peptides against B. cereus and E. coli,

as representative gram positive and gram negative bacteria. (Two of the designed and  shuffled

peptides were insoluble). Of the  soluble designed peptides,  had activity against at least

one of the bacterial targets at  µg/ml or less. Only  of the soluble shuffled peptides displayed

activity. �us, the activity is not an artifact of molecular weight, charge, or pI.

Of the the negative controls —  peptides randomly selected from the middle of non–

antimicrobial proteins from Swiss–Prot/TrEMBL — none had activity. Six of the nine naturally–

occurring AmPs in the positive control group show activity and one was insoluble.

Two of the designed peptides, D (FLGVVFKLASKVFPAVFGKV) and D (FLFR-

VASKVFPALIGKFKKK), inhibited B. cereus growth at  µg/mL, which is close to the MICs

of the strong positive controls melittin and cecropin–melittin hybrid ( µg/mL). (Here we use

the letter “D” to distinguish a designed peptide from its shuffled equivalent with the same num-

ber.) Peptides with gram positive activity are particularly exciting because of the prevalence of

drug–resistant nosocomial S. aureus and the threat of bioterror agents such as B. anthracis, or

anthrax. �erefore, we assayed the seven designed peptides that had gram positive activity, in-

cluding the highly active D and D peptides, against the Smith Diffuse strain of S. aureus

and the Sterne strain of B. anthracis. As shown in Figure - on page , all seven peptides

had activity against both bacteria, whereas only one of the seven shuffled controls had activ-

ity. Moreover, two designed peptides, D and D, had activity against Bascillus antrhracis

at  µg/mL, which is equivalent to the activity of cecropin–melittin hybrid, a strong natural

peptide.

Also, D was synthesized by MIT biopolymers  separate times and the resulting peptides

had consistent activities against both E. coli and B. cereus.

In an attempt to generate strong, synthetic AmPs, we optimized our best candidate, peptide

D, using a heuristic approach. We created  variants of D by introducing mutations that

were selected to increase positive charge, increase hydrophobicity, remove an interior proline
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Table .: Antimicrobial activity of rationally designed and shuffled peptides. Each entry shows
the minimum inhibitory concentration in µg/mL. “+” = MIC greater than  µg/mL. ++ =
MIC greater than  µg/mL, not sufficiently soluble to test at  µg/mL.

Peptide Sequence E. coli B. subtilis Shuffled Sequence E. coli B. subtilis
 ALFSLASKVVPSVFSMVTKK + + MVVFSVPKFKSTVAKLLSSA + +
 VVFRVASKVFPAVYCTVSKK  + TAKVVVFVSFSYVVPKKRAC + +
 FLFGLASKVFPAVYCKVTRK   FLPVLVKVFRYSKKTAAGCF ++ 
 LSAVGKIASKVVPSVIGAFK + + GVSSPIVAVKFKGAVASLIK + +
 PVIGKLASKVVPSVFSMIKR + + SRVPLKSPVKIVGSKVMIFA + +
 GLMSLVKDIAKLAAKQGAKQ  + GLKKDALQSIVKKAQLAAMG + +
 SALGRVASKVFPAVYCSITK + + LYSPTCVKAAVSRFIGKVSA + +
 LGALFRVASKVFPAVISMVK   SVPSVGAVLFFKRAAVMKLI + +
 ALGKLASKVFPAVYCTISRK  + KYGPALVIAVKKSCSLTFRA + +
 GFIGKLASKVVPSVYCKVTG  + GGSTLGVFVKKSKACVIVPY Not soluble
 PVVFSVASKVVPSLISALKR + + KSPFVLVVSSRVAAVIKSLP + +
 FLGVVFKLASKVFPAVFGKV   GVSVAGAKKVKVLFVFPFLF + +
 PAVFKIASKVVPSVYCKVSR  + KVYVVKIAVPCFPKSARSVS + +
 GALFGLASKVFPAVFGAFKK  + KVVLFGAAGAKLFKASFFGP Not enough material
 SAVGKLASKVFPAVFSMVTK + + FMKVLAVFGSVVTSAPKASK + +
 VKDLAKFIAKTVAKQGGCYL ++ ++ ALVYAGIKKTAFLKVQKCDG + +
 GVVGKLASKVVPSVFGSFTK + + SVKPVGSSVVKGTALVKFFG + +
 LPVVFRVASKVFPALISKLT +  KVFIATLVVSSFLLAKPPRV + +
 SAVGSVASKVVPSLISKVTK + + STVKVASKLAVVVSPISKGS + +
 MKSIAKFIAKTVAKQGAKQG + + AKKAQKSGAQTIVKIFAKGM + +
 LPAVFKLASKVVPSVFGLVK + + VVAKKFFVLVKGLAPVLSPS + +
 SFVFKLASKVVPSVFSALTR   ASPTVFRSSVFLSLFVVAKK + +
 SVIGKIASKVVPSVYCAISK + + IASAVPVCVKGKISKSYISV + +
 PVVGRVASKVFPAVIGLVKK + + VKRAGKGVAVVPSPLFKIVV + +
 FLFRVASKVFPALIGKFKKK   RKVAPALIKSFVFLFKFKKG + +
 LSFVGRVASKVVPSLISMIK  + SSSIPIKMVLVRALVFVKSG + +
 SALGRLASKVVPAVIGKVTT + + TLVGVVAKLVATKIGSSPRA + +
 LGVVGSLASKVVPAVISKVK + + PKVVGLSIVVVKAKVSSALG + +
 LPAVFKLASKVFPAVYCKAS  + PSLLYKAKAVFCKPSAVAVF ++ ++
 LPVLFKLASKVFPAVFSSLK   VSVKKVLPFAPLKSLLSFAF  
 VVGRVASKVVPSLIGLFTTK + + FKVVISKPGLSVRVGTALVT ++ ++
 SVVFGVASKVVPSVIGKVKT + + VFSVKGGKPSVVIKVVVAST + +
 FLPFVGRIASKVVPSVIGKV + + SKFPLAGIFSVPGVKRVVVI + +
 GKKLAKTIAKEVAKQGAKFA  + VIAFAKTKEAKAKLKGQAKG + +
 PFVGRVASKVVPSVYCAITR Not soluble PAVYKSIVGFSPVARVTVCR Not soluble
 FVGSLASKVVPSVFGAIKTK + + KTVPVVLKASIKVSSAGFGF + +
 LPVVFKIASKVVPSVISKIT + + KIVKVITVKSISPASLVPVF ++ ++
 GAVFGVASKVVPSVFSAIKK + + SVKVAKSVIPSAVFAGGKVF + +
 FVGGVASKVVPSVYCKVSKK + + KVGKGSYPCSFVKVVAKVSV + +
 VVFKLASKVVPSVYCTITKK  + VKTKCSVPAVVYILVKTFKS + +
 GALFSLASKVVPAVIGLIKK  + LPVLFSSAIAKVGIKLGAKV + +
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Table .: Antimicrobial activity of rationally designed and shuffled peptides against S. aureus
and B. anthracis. Each entry shows the minimum inhibitory concentration in µg/mL. “+” =
MIC greater than  µg/mL. ++ = MIC greater than  µg/mL, not sufficiently soluble to
test at  µg/mL.

Peptide Sequence S. aureus B. anthracis Shuffled Sequence S. aureus B. anthracis
 FLGVVFKLASKVFPAVFGKV   GVSVAGAKKVKVLFVFPFLF + +
 FLFRVASKVFPALIGKFKKK   RKVAPALIKSFVFLFKFKKG  
 LGALFRVASKVFPAVISMVK   SVPSVGAVLFFKRAAVMKLI + +
 LPVLFKLASKVFPAVFSSLK   VSVKKVLPFAPLKSLLSFAF + +
 FLFGLASKVFPAVYCKVTRK   FLPVLVKVFRYSKKTAAGCF + +
 SFVFKLASKVVPSVFSALTR   ASPTVFRSSVFLSLFVVAKK + +
 LPVVFRVASKVFPALISKLT   KVFIATLVVSSFLLAKPPRV + +

Figure -: Activity of rationally designed AmPs against S. aureus and B. anthracis. �e figure
shows that shuffled peptides (the hashed bars) tend to be grouped on the right side of the plot,
indicating that they have little or no antimicrobial activity. Only one of the shuffle peptides
shows activity; however, it appears twice on the plot, once at  µg/mL against S. aureus and
once act  µg/mL against B. anthracis. In contrast, all of the designed peptides show some
degree of activity. �e most highly active peptide is that the left–hand side of the plot.
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residue, and improve segregation of positive and hydrophobic residues based on a helical pro-

jection.  of the  D variants showed improved activity against E. coli or B. cereus. All of

the D variants with improved activity against B. cereus included a mutation at an internal

proline, either to lysine or glycine. D and six of its variants were assayed for bacteriocidal

activity, and all had activity within a –fold dilution of their MIC. One variant had MICs of 

µg/mL against E. coli and  µg/mL against B. cereus (relative to  and  µg/mL, respectively,

for D).

We suspect that our linguistic approach to designing synthetic AmPs is successful due to the

pronounced modular nature of naturally–occurring AmP amino acid sequences. As we have

shown, this approach can be used to rationally expand the AmP sequence space without using

structure–activity information or complex folding simulations. �e peptides designed in this

work are different from previously designed synthetic AmPs [, ] in that they bear limited

homology to any known protein, which may be desirable for AmPs used in clinical settings.

Some critics argue that widespread clinical use of AmPs that are too similar to human AmPs

will inevitably elicit bacterial resistance, compromising our own natural defenses and posing

a threat to public health []. We hope that this approach will help to expand the diversity

of known AmPs well beyond those found in nature, possibly leading to new candidates for

AmP–based antibiotic therapeutics. Our designed AmPs show some degree of homology with

natural AmPs because the grammars are based on native sequences. Peptide D, for example,

was matched by grammars derived from  natural AmPs including brevinin, temporin, and

ponericin. However, Smith–Waterman alignments of our designed peptides against all natural

AmPs in the Swiss–Prot/TrEMBL database reveal that the degree of homology is, by design

(see Methods), limited. In particular, our two most active peptides, D and D, have  and

 sequence identity with the nearest natural AmP, respectively. Peptide D has  semi–

conservative and  nonconservative substitutions relative to its closest neighbor, Ponericin W.

Our linguistic design approach may be most valuable as method for rationally constraining

a sequence–based search for novel AmPs. Diverse leads generated by our algorithms may be

optimized using approaches described in the literature []. But, the linguistic approach de-

scribed here has a number of limitations. First, sequence families that are poorly conserved on

an amino acid level would not benefit from this approach. Second, we suspect that the small
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size of AmPs is helpful. Due to the simple nature of regular grammars, they would be less use-

ful for designing larger proteins and, in particular, proteins with complex tertiary or quaternary

structures.



Chapter 

A generic motif discovery algorithm

. Introduction

In the previous chapter, I described the use of regular grammars for modeling the primary

sequences of antimicrobial peptides. In that work, I showed that our specific approach to the

design of novel AmPs yielded peptides with strong antimicrobial activity. However, recall that,

in order to achieve specificity with some degree of sensitivity, the grammars had to be split into

tiled  amino acid windows for increased sensitivity and then compared against a database of

non–AmP sequences in order to increase specificity by throwing out uninformative grammars.

�is is because, as discussed in Chapter  on page , regular grammars are inherently more

“coarse grained” then other models such as position weight matrices. �us, to design AmPs,

we had to use large sets of redundant, overlapping regular grammars. In such situations, the

underlying sequence information might be better modeled by a position weight matrix or many

other kinds of models.

In this chapter, I present a GEneric MOtif DIscovery Algorithm (Gemoda) for sequential

data. Gemoda is a motif discovery tool very similar to Teiresias; however, Gemoda’s output

motifs are representation–agnostic: they can be represented using regular expressions, position

weight matrices, or any number of other models. In addition, Gemoda can be applied to any

dataset with a sequential character, including both categorical data such as protein and amino

acid sequences, and real–valued data such as the price of a stock as a function of time. As I

show in the following sections, Gemoda deterministically discovers motifs that are maximal in
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composition and length. As well, the algorithm allows any choice of similarity metric for finding

motifs. I demonstrate a number of applications of the algorithm, including the discovery of

motifs in amino acids sequences, a new solution to the (l,d)–motif problem in DNA sequences,

and the discovery of conserved protein sub–structures.

�e research described in this chapter is drawn largely from two publications:

• M. Styczynski, K. Jensen, I. Rigoutsos, & G. Stephanopoulos. “An extension and novel

solution to the (l,d)-motif challenge problem.” Genome Inform Ser Workshop Genome

Inform. ;():–; and

• K. Jensen, M. Styczynski, I. Rigoutsos, & G. Stephanopoulos. “A generic motif discovery

algorithm for sequential data,” Bioinformatics :- ().

�roughout this chapter, the use of the pronoun “we” refers to the authors of these manuscripts.

. Motivation

As discussed in Chapter  on page , motif discovery encompasses a wide variety of methods

used to find recurrent trends in data. In bioinformatics, the two predominant applications of

motif discovery are sequence analysis and microarray data analysis. Less common applications

include discovering structural motifs in proteins and RNA [, ].

Motif discovery in sequence analysis typically involves the discovery of binding sites, con-

served domains, or otherwise discriminatory subsequences. �ere are many publicly–available

tools, a large number of which are listed in Section . on page , each of which is quite

adept at addressing a specific subclass of motif discovery problems. Some of the commonly–

used tools for motif discovery in nucleotide and amino acid sequences include MEME [],

Gibbs sampling [], Consensus [], Block Maker [], Pratt [], and Teiresias [].

Newer, less-widely used tools include Projection [], MultiProfiler [], MITRA [], and

ProfileBranching []. �is list is not intended to be exhaustive; however, it is indicative of the

wealth of options available for solving such problems (see also Tables . & . in Chapter 

on pages  & , respectively).
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All of the existing motif discovery tools for nucleotide and amino acid sequences can be

classified on a spectrum ranging from exhaustive tools using simple motif representations to

non–exhaustive tools using more complex representations. �e majority of the tools can be

found at the extreme ends of the spectrum, with tools that exhaustively enumerate regular

expressions (or single consensus sequences) at one end and probabilistic tools, based on position

weight matrices (PWMs), at the other. �is partitioning of tools is due to a computational

trade–off: more descriptive motif representations such as PWMs frequently make exhaustive

searches computationally infeasible.

One of the primary motivation for this work is the modeling of cis–regulatory sequences.

We found that regular expressions are poor representations of binding sites and that, instead,

these were better captured with PWMs. From a biological perspective, this makes more sense

— the kD of binding between the trans and cis factors are probabilistic, not deterministic.

�us, in order to model these sites using regular grammars or regular expressions, one must, in

general, use combinations of patterns in an effort to piece together the information that would

be contained within a PWM from many regular expressions.

Consider the following example. �e LexA regulon consists of  gene sequence that are reg-

ulated by a single protein trans factor. �e binding site of this trans factor is found in  of these

sequences. Using the Teiresias motif discovery tool, with parameters L = , W = , K = 

(see Section . on page ) returns the following patterns

5 4 CTGTATAT.....CAG 0 355 0 376 4 298 6 326 7 363

5 5 CTGTAT....A..CAG 0 376 1 322 4 298 6 326 7 363

5 5 ACTGTA.....A..CAG 0 375 1 321 3 358 4 297 7 362

5 5 CTGTA.AT..A..CAG 0 376 3 359 4 298 6 326 7 363

6 5 CTGTA.AT.....CAG 0 355 0 376 3 359 4 298 6 326 7 363

5 5 ACTGT.T....A..CAG 0 375 1 321 4 297 5 307 7 362

5 5 ACTGT...T..A..CAG 0 375 3 358 4 297 5 307 7 362

5 5 CTGT.T.T..A..CAG 0 376 4 298 5 308 6 326 7 363

where the above grammars have been left and the native output form of Teiresias. �e

numbers on the right hand side indicate the offset list for each grammar. So, collectively, these

patterns hit  of the  sequences; however, none of the patterns individually hits more than 
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sequences. Basically, this is because regular expressions don’t capture such sites well.

And this chapter, I described Gemoda: a motif discovery tool that has many of the strengths

of Teiresias, but can find motifs that are best represented as PWMs. �e details of Gemoda are

discussed in the later sections of this chapter. But here, for motivation, consider the following

output from the Gemoda all over them. If a user tells Gemoda to find all patterns in the LexA

sequences such that, on a pairwise basis, each window of  nucleotides in each instance con-

tains at least  nucleotides in common to each other instance, and the pattern occurs in at

least  sequences; Gemoda returns only a single pattern:

0 353 TGCTGTATATACTCACAGCA

0 374 AACTGTATATACACCCAGGG

1 320 TACTGTATGAGCATACAGTA

2 230 ACCTGAATGAATATACAGTA

3 357 TACTGTACATCCATACAGTA

4 296 TACTGTATATTCATTCAGGT

5 306 AACTGTTTTTTTATCCAGTA

6 324 ATCTGTATATATACCCAGCT

7 361 TACTGTATATAAAAACAGTA

where, instead of one pattern per line, each line represents one of the offsets and the num-

bers on the left–hand side are, collectively, the offset list. Notice that here, only a handful of the

positions within the pattern are fully conserved . However, most of the positions have “prefer-

ences.” For example, the seventh position is mostly A. �is pattern can be expressed as a PWM,

has in Figure - on the next page, thus preserving these preferences in the matrix probabilities.

Notably, this pattern is exactly the experimentally determined motif.

Depending on the task at hand, a specific type of motif discovery tool may be more useful

than others. For example, the PWM–based tools excel at finding cis–regulatory binding ele-

ments [], whereas the regular expression–based tools are well–suited to finding conserved

domains in large protein families []. Generally, it can be difficult to know a priori which

motif discovery tool will be right. Accordingly, there is an unmet need for motif discovery tools

that can use a variety of motif models.
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Figure -: Alignment representing the LexA cis–regulatory binding site. Part A) of the figure
shows the aligned sequences colored to indicate the degree of conservation. Part B) of the
figure shows a sequence logo representing the information content of a PWM computed from
the alignment of the motif instances. Part C) of the figure shows a sequence logo, wherein the
height of each letter is proportional to its frequency, rather than to the information content it
in codes as is the case in part B).



 CHAPTER . A GENERIC MOTIF DISCOVERY ALGORITHM

. Algorithm

Gemoda was designed to meet the demand for complex motif representations, like PWMs,

while still being exhaustive. �e philosophical underpinnings of the Gemoda algorithm can

be traced back to Teiresias []; Winnower []; the algorithm by []; and a variety of

algorithms for association mining [, ]. In particular, Gemoda shares some of its logical

steps with the Teiresias algorithm while incorporating a more flexible definition of “similarity”

and allowing motif representations other than regular expressions.

�e principle difference between Teiresias and most frequent itemset mining algorithms is

that Teiresias acts on categorical sequential data, usually biosequences or integers. Most frequent

itemset mining tools use market basket data sets, for example, a collection of products that a

customer bought. Patterns in market basket data can be used to predict what other products

a customer might buy (this is how Amazon.com works). �e difference between categorical

sequential data and market basket data (both are stochastic in that they consist of discrete

values sampled from some real space) is that the former is ordered, whereas the latter is an

unordered set. For similarly sized datasets, this makes sequential pattern discovery much easier.

However, typically sequential datasets, such as biosequences or time–series stock data, are much

larger. For example, a person may only purchase a few products from Amazon; however, gene

sequences can consist of may thousands of characters.

Gemoda’s design goals can be summarized as follows: exhaustive discovery of all maximal

motifs in a way that allows flexibility in motif representation, incorporation of a variety of simi-

larity metrics, and the ability to handle diverse sequential data types. Each point of emphasis can

be explained as follows:

• Exhaustive discovery: Gemoda’s combinatorial nature provides an algorithmic guaran-

tee that all motifs meeting certain criteria are deterministically discovered.

• Maximal motifs: Gemoda returns only motifs that are maximal in both length and

composition with respect to the similarity and clustering functions.

• Motif representation: �e motifs discovered by Gemoda are reported as short multi-

ple sequence alignments (in the case of motif discovery in nucleotide and amino acid
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sequences) and can be modeled using regular expressions, PWMs/PSSMs, Markov mod-

els, or any other representation.

• Similarity metrics: Any criterion, ranging from sequence alignment scores to geometric

functions, may be used to compare sequences.

• Sequential data types: �e nature of Gemoda’s computations is not unique to any spe-

cific type of data, and thus can be used on any data with a sequential character — that

is, data in which there is a natural left–to–right order, such as a sequence of nucleotides

or amino acids. In the most general sense, sequential data also include real–valued series

data, such as a stock price or the ordered (x, y, z) triplets of an alpha–carbon trace in a

protein structure.

�e algorithm has three distinct phases: comparison, clustering, and convolution. Dur-

ing the comparison phase, short overlapping windows in the data set are compared. During

clustering, these windows are grouped together to form elementary motifs. Finally, during

convolution, these motifs are “stitched” together to form maximal motifs (see Figure - on

the following page). In the following sections, we give some brief definitions and nomencla-

ture, then describe each of the algorithm’s three phases in detail. Finally, we illustrate a few

applications of Gemoda.

.. Preliminary definitions and nomenclature

�e input to Gemoda is a set of sequences of data points S = {s, s, . . . , sn}, where sequence

si has length Wi. So, for example, the jth member of the ith sequence is denoted by si,j. Each

si,j is a primitive, or atomic unit, for the data that is being analyzed. For time–series data, si,j

may be a point sampled from RK (with K arbitrary), whereas for a DNA sequence it would be

one of the characters {A,T,G,C }.

To demonstrate this notation and how he can be used to represent real–valued sequential

data, rather biosequences consider the following example. Say we have two small peptides and

we are interested in their structural properties. For each amino acid, we have a two–dimensional

feature vector. �e first feature is the hydrophobicity index [] and the second is the size of the
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amino acid:  if it is over the th percentile and  otherwise. �e two peptides are AIKDWR

and DIHV. Our two sequences are then

seq– =

. . . . . .

     


seq– =

. . . .

   

 ,

such that

s,, = .

s,, = .

s,, = 

s,, = 

s,, = .,

and so on.

Typically, one seeks motifs of a minimal, domain–dependent length. We denote this min-

imum length by L (similar to Teiresias) and we define a matrix A of size N × N, where

N =
∑n

i=(Wi − L + ). �at is, A is a matrix with one row and one column for each

window of size L in our entire sequence set. For example, the th window of size L in the

th sequence would be expressed as s,:+L−, where “ :  + L − ” denotes “position 

through position  + L − , inclusive.” To keep track of which window corresponds to which

index in A, we define the one–to–one function M (si,j:j+L−) 7→ q ∈ [, N]. (For simplicity,

we define (si,j+) to be si,j+, unless si,j+ does not exist, in which case (si,j+) is undefined.)

Similarly, M −(q) 7→ (si,j:j+L−) such that i ∈ [, n] and j ∈ [, Wi − L + ].

We also define a similarity function S (si,j:j+L−, sq,z:z+L−), that takes as arguments two

arbitrary windows and returns a real–valued number indicating the level of similarity between

the two windows. In the most simple case, S may use the identity matrix to count how many

DNA bases two windows have in common; for real–valued data, the function may return the
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sum–of–squares error between two windows or any other measure of similarity.

We define a motif p as a data structure with two features: a width W (p) and a list of loca-

tions in the data where the motif occurs, L (p). A motif has the property that the locations in

L (p) meet some predefined clustering requirements (discussed below) based on the similarity

function S for each window of length L within the motif. �e support of a motif is equal to

the number of its occurrences (or, equivalently, “instances” or “embeddings”), |L (p)|.

We say a maximal motif is a motif which has the following properties:

. �e motif ’s width cannot be extended in either direction (left or right) without producing

a motif with fewer embeddings (i.e., without |L (p)| decreasing); and

. �e motif is not missing any instances, i.e. L (p) includes the locations of all instances

of the motif.

�ese two criteria can be summarized qualitatively by stating that a maximal motif is not “miss-

ing” any locations and is as wide as possible, and thus it is as specific and sensitive as possible.

Given these explanations and definitions, we can now detail the computations involved in

each phase of the Gemoda algorithm. A simple natural–language example illustrating how each

phase proceeds is included in the supplementary materials.

.. Comparison phase

In the comparison phase of the Gemoda algorithm, the sequences are divided into overlapping

windows of size L which are then compared to each other in a pairwise manner to produce a sim-

ilarity matrix, A (see Figure - on page ). Formally, Ai,j is equal to S (M −(i), M −(j)) =

S (si,j:j+L−, sq,z:z+L−).

A is then, quite simply, a similarity matrix for all N windows based on the similarity func-

tion S . In most cases, S is commutative (and the A matrix is symmetric); however, this is

not a requirement.

Consider the following example. Say we have two DNA sequences — seq– = AATTGGCC

and seq– = GATAGGA— and that we are interested in patterns that are at least L = bases

long. Also, here, we will consider the sequences as just a series of characters, that is, a one–
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dimensional feature vector. We will define F (A, B) to be the Hamming distance: the number

of mismatches between string A and string B.

�ere are  windows of size  in the sequences:

M −() = s,:

= AATTG

M −() = s,:

= AATTG

...

M −() = s,:

= TAGGA.

�e members of the matrix A are computed as follows:

A(, ) = F (AATTG, AATTG) = 

A(, ) = F (AATTG, ATTGG) = 
...

A(, ) = F (TTGGC, ATAGG) = 
...

A(, ) = F (TAGGA, TAGGA) = .
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�e matrix A is then

A =



      

−      

− −     

− − −    

− − − −   

− − − − −  

− − − − − − 



,

where the − is used because the matrix is symmetric.

Obviously, depending on the type of sequential data being analyzed, the similarity function

should be changed accordingly. However, any kind of data can always be used to produce a

generic similarity matrix A, which is the input to the next phase of the algorithm. From this

point onward, the algorithm data–agnostic in the sense that subsequent phases act only on A

and M — they are independent of the specific data that produced these structures.

.. Clustering phase

�e purpose of the clustering phase is to use the similarity matrix A to group similar windows

into clusters. �ese clusters will become “elementary motifs” from which the final, maximal

motifs will be constructed in a manner similar to the Teiresias algorithm.

We define a clustering function C (A) = cL = {cL
 , cL

 , . . . , cL
Z} where each cL

i is a set of

indices in A and cL
i [q] is the qth member of cL

i . Note that C can be any function; common

clustering functions include hierarchical clustering, k–nearest–neighbors clustering, and many

others. We call each cL
i an “elementary motif ” of length L. We note that a clustering function

may assign each node (window) to one or more groups. In the latter case, each cL
i may have a

non–null intersection with any cL
j . �at is, a single window may appear in an arbitrarily large

number of clusters.
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.. Convolution phase

�e purpose of this phase is to “stitch together” the elementary motifs to generate the final,

maximal motifs []. For the purposes of Gemoda (and consistent with the above concept

of convolution), we say that a motif h of width W (h) > L meets the similarity criterion if

for each window of length L completely within the motif, all instances participate in a cluster

together based on S and C . In this manner, we can piece together longer continuous motifs

from smaller motifs that all meet the similarity criterion over windows of length L.

Next we define the “directed intersection” of two elementary motifs, cL
i y cL

j = cL+
r ,

where cL+
r is the set of those indices q in cL

i such that M (M −(cL
i [q]) + ) is in cL

j . �at is,

cL+
r is the set of indices in cL

i that are located, in the sequences S, one position earlier than the

indices in cL
j . cL+

r is then a motif of length L + .

We define the operation “<” as follows: cL
i y cL

j < cL+ is true if the set of indices

cL
i y cL

j is a subset or a superset of the indices in any member of cL+. �is operation compares

a convolved motif of length L+ to all previously–convolved motifs of length L+ to identify

significant overlap: if the list of locations in the proposed motif is a superset or subset of the list

for any other motif, the result of this operation is true. With this step, Gemoda can identify

and eliminate redundant and non–maximal motifs.

If cL
i y cL

j < cL+, then all super– or sub–sets of the proposed convolved motifs are

removed from cL+; these windows are then taken together with the proposed motif, and the

union of those sets of windows is returned to cL+.

Our objective is to find all the maximal motifs in the sequence set using the elementary

patterns. We do this by performing ck
i y ck

j for all i and j at each length k > L until ck is

empty (|ck| = ). We then define the set of maximal motifs comprising ck for all k as P, the final

set of motifs that are returned to the user. �is simple induction scheme guarantees that all (and

only) the maximal motifs are in P given appropriate clustering functions (see supplementary

materials).
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. Implementation

.. Choice of clustering function

Gemoda can use any clustering function; however, as the size of the input sequence set increases,

storing the matrix A can become practically difficult. In these cases, it can be easier to store

true/false values in A, where the value is true if the similarity score between two windows is

better than a user–defined threshold g. �e matrix A can then be viewed as an unweighted,

undirected graph with a vertex for each window and edges between those nodes with pairwise

similarity scores better than g (see Figures - on page  and - on page ). When

constructed as such, we have found that clustering functions based on finding either cliques

or connected components (maximal disjoint subgraphs) can be effective for motif discovery in

diverse applications.

In the case where the clustering function C (A) is chosen such that each cL
i is a clique in the

g–thresholded A matrix, the Gemoda algorithm has a guarantee of compositional and length

maximality, relative to the threshold g. �at is, Gemoda will discover all motifs where each

pair of instances has a similarity score better than g over every window of size L, there are no

“missing” instances having this property, and the motif cannot be extended either to the left or

right (see inductive proof in the supplementary material).

Clique enumeration is NP–complete [, ]; however, in practice this complexity is usu-

ally not an issue because the density (the ratio of the number of edges to the number of vertices)

of graphs is usually low for datasets of nucleotide or amino acid sequences (with reasonable

choice of g).

In the case where the clustering function C (A) is chosen such that each cL
i is a maximal

disjoint subgraph in the g–thresholded A matrix (i.e., cL represents the connected components

of A), the computational complexity for the clustering phase is significantly less than for clique–

based clustering. As well, in the case where Gemoda is applied to nucleotide and amino acid

sequences, the motifs from this connected components method may be more intuitive than

motifs found using clique–based clustering.

We define a clique as a maximal, fully–connected subgraph. It may be alternatively defined without the
requirement for maximality, thus making the clusters we discuss “maximal cliques”. We use the former definition
for the sake of brevity and clarity when discussing the maximality of extending motifs.
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�e space and time usage of this implementation is not unreasonable. In most cases, mem-

ory usage is not a limiting factor. For instance, the peak memory usage for a large sequence

set containing ,  characters is  GB, within the reach of many personal computers. Fur-

thermore, the upcoming examples given in this work can all be done in reasonable times. �e

amino acid sequence example and protein structure example take at most tens of seconds on an

average desktop PC, while the hardest of the DNA sequence examples takes two hours. �ese

times are more than reasonable given the exhaustive guarantees provided by the algorithm.

.. Summary of user–supplied parameters

�e input to Gemoda is a set of sequences (categorical or real–valued), a window length, a

similarity function, and a clustering function. Various clustering functions may require other

parameters. For example, the clique–finding and connected components clustering algorithms

discussed above require both a threshold parameter g and, optionally, a minimal support pa-

rameter k. Other parameters can be easily incorporated into various clustering functions, such

as a “unique support” parameter p that limits returned motifs to those that occur in at least p

different sequences.

.. Availability

We have written open source programs implementing the Gemoda algorithm that are publicly

available at the following URL: http://web.mit.edu/bamel/gemoda . �e software

includes a number of “helper” applications for interoperability with common bioinformatics

tools. For example, applications are included that allow users to model Gemoda’s output motifs

(in the case of nucleotide or amino acid sequences) as PSSMs — using the pftools package

available via the Prosite database [] — or as hidden Markov models, using the popular

HMMer software [].

�e implementation is distributed in two variants, each with a different comparison stage

of the algorithm. �e gemoda–s variant is for motif discovery in FastA–formatted text strings,

typically nucleotide or amino acid sequences. �e gemoda–r variant is used for motif discovery

in sets of multi–dimensional, real–valued sequences. �e gemoda–s variant is distributed with

http://web.mit.edu/bamel/gemoda
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a number of similarity functions based on various nucleotide and amino acid substitution ma-

trices. �e gemoda–r variant is distributed with similarity functions based on the root mean

square deviation, with options for optimal translation and rotation.

�e Gemoda software is written in the C programming language and is described in detail

in Chapters C and B in the Appendix (page ). �e code is segmented in such a way as to

allow the extension of the algorithm to varieties of sequential data that were not anticipated by

the authors. Furthermore, where possible the code was crafted to be “object–oriented like” for

maximum readability. �e software makes extensive use of the GNU Scientific Library [] and

the popular Basic Linear Algebra Subprograms (BLAS) [, , ] to speed–up computation-

ally intensive operations associated with the discovery of motifs in three–dimensional protein

structures and other real–valued data.

.. Motif Significance

Each pair of nodes in a similarity graph can be described with two different quantities: ηi,j, the

number of neighboring nodes (including each other) that the two nodes have in common, and

χi,j, the number of consecutive windows starting from each of those nodes that are connected

to each other. For instance, if window  is similar to windows , , , and , and window

 is similar to windows , , , and , then these two nodes have three neighbor nodes in

common and η, = . If window  is similar to ,  is similar to , and  is not similar to

, then there are two consecutive similar windows and χ, = .

By analyzing each node as above, we can accumulate a matrix of graph statistics, Φ, such

that

φi,j = |{(x, y) : ηx,y = i, χx,y = j,  6 x, y 6 N}| (.)

(where the vertical bars indicate the cardinality of the set, or the number of ordered pairs) and

Φi,j =

∞∑
a=i

∞∑
b=j

φa,b (.)

�ese statistics can then be used in the following calculation for prel(q, r), the relative like-

lihood of an output motif of length q and support r given the calculated similarity matrix:
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prel(q, r) =

(
N

r

)[r−∏
i=

(
Φi,

Φi,

)r−i−
](

Φr,q−L+

Φr,

)
(.)

In this equation, the combinatorial factor represents the number of different ways that windows

can be sampled in groups of r, the cumulative product represents the necessary conditions for

the formation of a clique of length L, and the last factor represents the likelihood of extending

a clique of support r to be length q. In this way, the relative likelihood measure attempts to

represent the expected number of motifs of length q and support r that would occur at random

given the calculated similarity matrix. Notably, this significance is based solely on the similarity

matrix A, and so it can be used for either categorical or real–valued sequence data clustered

with the clique–finding method.

.. Proof of exhaustive maximality

When using clique–finding as the clustering function, each elementary pattern of length L is a

clique in our similarity graph. �at is, the elementary pattern is a set of windows that are all

similar on a pairwise basis and there is no other window that can be added to the set.

When the algorithm enters the convolution stage, it starts by convolving each length L

elementary motif with all of the others. An elementary motif that is non–maximal can be

convolved with another elementary motif to yield a motif at level L +  that has the same

cardinality. All such motifs are marked as non–maximal. �ose elementary motifs that remain

unmarked cannot be extended on either side without losing support; since they are cliques we

know they cannot be made greater in cardinality. �us, all such unmarked cliques of length L

can be labeled as maximal motifs and saved for output. In this way, we know that only maximal

motifs will be returned to the user, and all such motifs will be returned.

When the “<” operation is performed on two elementary motifs of length L that are being

convolved, it ensures that no identical motifs of length L +  exist and that no motif of length

L+ is a subset of any other. Additionally, since we have exhaustively compared a complete list

of elementary motifs, and all such motifs are cliques with maximum cardinality, we are certain

that all possible comparisons between motifs are being made. �at is, no unique motifs of length

L +  could be created that are not subsets of motifs created by our exhaustive comparison.
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Finally, it is important to note that the result of convolving any two cliques will always be a

clique. We know this because we take the set of all instances that can be extended (so the

subgraph is maximal) and because all instances that are extended were pairwise similar in both

windows being convolved (thus meeting our definition of similarity over multiple windows).

�us, since Gemoda exhaustively generates all possible cliques of length L + , and every

added motif of length L+ is maximal in support, we then know with certainty that cL+ is an

exhaustive list of motifs, or cliques, of length L+. �e induction step is then trivial, as setting

L equal to L +  at each step gives an exhaustive list of cliques just as when we started with cL.

�is allows for a continual guarantee of exhaustiveness and maximality in output. �e obvious

termination condition for the algorithm is when |ci| = . �e pseudocode sketch in - on the

facing page faithfully encapsulates the inductive algorithm described above.

.. Two simple examples

To demonstrate exactly how the algorithm works, we now provide two simple, natural–language

examples along with a step–wise narrative of the Gemoda algorithm and demonstrations of

how the examples would be run using the software implementation of the Gemoda algorithm

provided by the authors and described in Chapter B on page .

Example : Consider two sequences, ABCDEFGand ABCEFDG, that would be represented

with the following Fasta–formatted file:

> Sample 1

ABCDEFG

> Sample 2

ABCEDFG

Using a window of length , a minimum similarity of , a clique–finding clustering method,

and the similarity function defined as the identity matrix (the same function described by the

reviewer), the command–line argument (for the software implementation of Gemoda provided

by the authors) would look something like this:

$ gemoda-s -i testSeqs -l 3 -g 1 -k 2 -m identity_aa
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begin
n := 
while |cn| 6=  do

for i :=  to |cn| step  do
ismaximal := true
for j :=  to |cn| step  do

f := cn
i y cn

j

if |f| 6= 
if f < cn+ = false

cn+ := cn+ ∪ f

else
choosemaximal(f, cn+)

fi
if |f| = |cn

i |

ismaximal := false
fi

fi
od
if ismaximal = true

P := P ∪ cn
i

fi
od
n := n + 

od
end

Figure -: Pseudo–code for the Gemoda convolution. �e figure shows the recursive algo-
rithm used during the convolution stage of Gemoda. �e algorithm produces only maximal
motifs and discards motifs that are not maximal in support at each level. Subsequent levels
progress to motifs of larger length. As discussed in the text, when Gemoda uses a clique–
finding clustering phase, the convolution phase guarantees that the algorithm is both maximal
and exhaustive.
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Given this command, Gemoda finds the maximal motif ABC..FG . How this happens is

illustrated in Figure - on the facing page.

Windows  and  have their first letter in common, allowing them to meet the similarity

threshold. Windows  and  have their last letter in common, allowing them to meet the

similarity threshold allowing the motif to extended past the letter D. In the case of a –clique

as in this problem, convolution reduces graphically to following diagonal “streaks” of similarity

that are not on the main diagonal. �is streak is evident in part b of the figure.

Giving the above–mentioned input data and parameters to Gemoda, we get back not only

the motif that can be represented as ABC..FG , but also two other motifs that may not have

been readily obvious. �e complete output of Gemoda is as follows:

pattern 0: len=7 sup=2 signif=1.000000e+00

0 0 ABCDEFG

1 0 ABCEDFG

pattern 1: len=5 sup=2 signif=5.000000e+00

0 1 BCDEF

1 2 CEDFG

pattern 2: len=5 sup=2 signif=5.000000e+00

0 2 CDEFG

1 1 BCEDF

�ese additional motifs are due to the low similarity threshold; one letter of similarity is

sufficient to make three consecutive windows all meet the threshold.

Now consider the same sequences with g = . As described in eariler, a motif of width

W > L must meet the clustering and similarity requirements for each pair of L–length windows

that is completely within the motif. In this example, since the third and forth pairs of aligned

windows, cde & ced and def & edf , do not meet the criterion of g =  for a similarity

function based on the identity matrix, they are not in elementary motifs that can be convolved.
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Figure -: A natural language example illustrating the steps that Gemoda takes. In a), we
see the three words, or sequences, being broken into overlapping windows of three letters each.
Gemoda would then compare each of these windows to each other using either of the similarity
metrics described in the text. In b), we see the resulting similarity matrix and how it looks when
drawn as a graph. In the matrix, two nodes are similar by the identity metric if there is a dot
at their intersection. Making each window a vertex and connecting vertices with an edge if the
windows are similar, we obtain the graph on the right.
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�is is illustrated in the following diagram.

abc

::: --- pair 1: 3/3 ---

abc |---- maximal motif #1

bcd |

:: --- pair 2: 2/3 ---

bce

cde

: --- pair 3: 1/3

ced

def

: --- pair 4: 1/3

edf

efg

:: --- pair 5: 2/3 ---- maximal motif #2

dfg

As shown, the first two pairs of L =  length windows, which surpass the g =  threshold,

form elementary motifs and are convolved together. However, because the third pair does not

meet the criteria (and thus form an elementary motif ) it is not convolved. A similar logic applies

to the final two windows. �us, the final, convolved, maximal motifs in this problem are abc.

and .fg , and abc..fg is not a maximal motif motif (with L = , g = ).

Example : Suppose we have a set of three words,

MOTIF

MOTOR

POTION
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and we would like to find the motifs that some of these words share in common. Further,

suppose that we are only interested in motifs that are at least four letters long and for which

at least three of the four letters are “similar” between the windows. In this example, each word

is a sequence, and the parameter L is . �us, there are  possible windows that are taken

sequentially from the three input sequences, numbered as shown in figure -.

If we choose a similarity function based on the identity matrix with a threshold of three —

that is, for two windows to be similar, at least three letters must be the same — then we find

that only the following pairs of windows are similar: (, ), (, ), and (, ). Importantly, we

note that though window  is similar to both windows  and , windows  and  are not similar

to each other.

If, on the other hand, we choose a similarity function based on a matrix that distinguishes

only between vowels and consonants — that is, any vowel is considered similar to any other

vowel, and the same goes for any consonant — we would see different results for the same

threshold value. In this case, we would find the following set of similarities: (, ), (, ),

(, ), (, ), (, ), and (, ).

Given these similarity matrices for the different similarity functions, we can now cluster

the graphs. Using the similarity matrix from the identity function, a clique–finding algorithm

would find no cliques larger than size ; that is, the only cliques that exist are the pairs of similar

nodes. Since window  (MOTO) is not similar to window  (POTI), they cannot be in the same

cluster.

However, if we use the similarity matrix produced by the weaker vowel/consonant function,

we will find exactly two cliques of size : {, , } and {, , }. �ough there exist pairs of

nodes that are similar, none of them is a clique because they are not maximal — that is, each

individual pair of nodes that is similar (e.g., (, )) can have another node added to its set ()

without violating the pairwise similarity constraint, so only the larger set is a clique.

We also note that applying a connected components clustering function to the matrix cre-

ated by the identity function would give still different results. In the connected components

clustering function, the fact that windows  and  are not similar would not prevent them

from being in the same motif; the function finds all disjoint subgraphs and defines them as the

motifs. �e motifs for such a case would be {, , } and {, }, which we will call motifs cL
 and
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Figure -: A second natural language example illustrating the steps that Gemoda takes. In
a), we see the three words, or sequences, being broken into overlapping windows of four letters
each. Gemoda would then compare each of these windows to each other using either of the
similarity metrics described in the text. In b), we see the resulting similarity matrix and how it
looks when drawn as a graph. In the matrix, two nodes are similar by the identity metric if there
is an “X” at their intersection, while they are similar by the vowel/consonant metric if there is an
“O” at their intersection. Making each window a vertex and connecting vertices with an edge
if the windows are similar, we obtain the graph on the right. Dotted lines indicate similarity by
the identity metric, while solid lines indicate similarity by the vowel/consonant metric. In this
representation, it is clear what the results of both clique–finding and commutative clustering
methods will be.
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cL
 , respectively.

Finally, we perform the convolution step. Using the last set of motifs described (with con-

nected components clustering and the identity similarity function), we perform the convolution

operation on each ordered pair of motifs; in this case, it means performing cL
 y cL

 , cL
 y cL

 ,

cL
 y cL

 , and cL
 y cL

 . For the first operation, we find the windows immediately after each

of the windows in cL
 , which is the set {, , }. �e intersection of this set with motif cL

 is the

convolved motif of length L + , which is {, }; we can call this cL+
 . In performing cL

 y cL


and cL
 y cL

 , we note that no windows exist “after” windows  and , because their respective

sequences end. In this case, the first set to be intersected is null, so the intersection is null.

�e final self–convolution operation also yields a null set. We now have only one motif for the

new round of convolution, cL+
 . Performing cL+

 y cL+
 results in a null set, meaning that

there are no more motifs. At this point, we terminate convolution. It is worth noting that cL


is returned as a maximal motif because window  cannot be extended, but cL
 is not because all

of its instances were convolved in one direction.

�us, we get different sets of motifs for different similarity and clustering functions. For

identity similarity and clique–finding clustering, the final list of motifs is

{{MOTIF, POTIO}, {MOTI, MOTO}}.

For identity similarity and connected components clustering, the final list of motifs is

{{MOTIF, POTIO}, {MOTI, MOTO, POTI}}.

For vowel/consonant similarity and either clustering method, the final list of motifs is

{{MOTIF, MOTOR, POTIO}}.

. Application

In this section, we demonstrate Gemoda’s capability by presenting several sample applications.

Specifically, we address motif discovery in amino acid sequences, in nucleotide sequences, and
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in protein structures.

As discussed previously, the clustering and convolution stages of the Gemoda algorithm are

generic — they are independent of the nature of the input data. However, the comparison stage

is data–specific. In what follows, we discuss how the comparison stage is changed for each kind

of data and outline the types of results Gemoda is capable of finding.

.. Motif discovery in amino acid sequences

To use Gemoda to find motifs in amino acid sequences, the comparison stage needs to reflect the

notion of “similarity” for amino acid sequences. Specifically, we choose a window comparison

function S that returns a sequence alignment score, such as the bit–score from an amino acid

scoring matrix (e.g., the popular Blosum matrices []).

Here, we demonstrate how Gemoda can be used for motif discovery in amino acid sequences

by “discovering” known protein domains in the (ppGpp)ase family of enzymes. �ese eight en-

zymes catalyze the hydrolysis of guanosine ’,’–bis(diphosphate) to guanosine ’–diphosphate

(GDP) and are classified by the Enzyme Commission (EC) number ... [].

We used Gemoda to identify motifs in these eight (ppGpp)ase enzymes using the Blosum–

 scoring matrix as the basis of our similarity function S and the clique–based clustering func-

tion described previously. Specifically, we sought motifs that occurred in all eight sequences,

were at least  residues long, and had a pairwise bit–score of at least  bits over a window of

 residues.

�e sequences for this example are distributed with the source code for the software im-

plementation of Gemoda written by the authors (see Chapter B on page ). Using the soft-

ware, this example would be run as follows, assuming the protein sequences are in a file called

“spot.fa”:

$ gemoda-s -i spot.fa -l 50 -g 50 -k 8 -m BLOSUM62

With these parameters, Gemoda discovers four motifs in this set of eight sequences; the

longest motif, with a length of  amino acids, is shown in Figure - on page  as an

alignment of the regions that correspond to instances of this motif (see also Figure -).
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>sp|O67012|SPOT\_AQUAE - Aquifex aeolicus.
MSKLGEVSLEEDLEKLLSHYPQHAEEIQRAYEFAKEKHGEQKRKTGEPYIIHPLNVALKLAELGMDHETIIAALLHDTLEDTDTTYEEIKERFGERVAKLVEGVTKIGKIKYKSEQAENYRKLILATAE
DPRVILLKLSDRLDNVKTLWVFREEKRKKIAKETMEIYAPLAHRLGVWSIKNELEDWAFKYLYPEEYEKVRNFVKESRKNLEEYLRKYVIPKVRKELEKYGIEAEIKYRSKHYYSIWEKTRRKGIRLED
VHDILGVRIIVNTVPECYTVLGIIHSLFRPVPGKFKDYISLPKPNLYQSLHTTVIADKGKLVEFQIRTWEMHERAEKGIASHWAYKEGKNPSDAGVYSWLRELVESIQGSTNPSEVLENLKSNLFFEEV
FVFTPKGDLVVLPKGSTPVDLAYKIHTEVGNHCAGAKSNGRIVPLNYELKSGDVVEIITNPNKSPSYEWLSFVKTSRARNKIKQFLKKQERERYLSEGKRILERIREKLGLSHEDLINKIRERVRFDTE
EELLLALGKRKISSANLIKLIFPKKKEEKEERRGSSTVFLEDLSNIKHEVAKCCKPIPGDEILGVITRTKGLVLHEKSCSNLKNVLRLNPEKVKEVQLQASGYFQTDIRVVASDRIGLLSDITKVISES
GSNIVSSMTNTREGKAVMDFTVEVKNKEHLEKIMKKIKSVEGVKICKRLYH

>sp|O51216|SPOT\_BORBU - Borrelia burgdorferi (Lyme disease spirochete).
MIQAYEIAHLIKINDLEKARNIFKKTVENTYKDEFERKSIFKALEIAEQLHYGQYRESGEPYIIHPIMVSLFLAKFQLDFKATIAGLLHDVLEDTNVEKEEIVKEFDEEILSLIDGVTKIHDLHNKTRS
IKEANTISKMFFAMTHDIRIIIIKLADKLHNMTTLSYLPKNRQDRIAKDCLSTYVPIAERLGISSLKTYLEDLSFKHLYPKDYKEIKNFLSETKIEREKKLYKGKLSIEKELQKSGIEAEITVRSKHFY
SIFRKMQTRTNKLTQIFDTLGIRIICKKQKECYEILEIVHRVWKPIPGRLKDYIASPKENKYQSLHTTVRIPEDNQLIEIQIRTEEMDRIANYGVAAHWIYKEQIELKADDLSFINRIKKWQQESANKS
QYSMNDIHKELLNTFIYVYTPEGEVVELPFGSNSIDFAYIIHTDIGDQALYAKINGKISSITKPLKNEQIVEIFTSKDSKPDVIWLNSVRTKKARSKIRSWLNKNDNTIFVDNNIIAYLVGANKEQRKL
FSLFKSYTKTKIKRIAIDPECSPTTGEDIIGIIHKDEIIVHNENCQKLKSYKKPQLIEVEWEATPTRKVHHIILLLKELKGIFSYLENIFTLNDVRLISEKIEDCGNGHGITNIIVSSNAKNITKIISA
LKENPNILQIMQIEEDIKNYDN

>sp|P17580|SPOT\_ECOLI - Escherichia coli, Escherichia coli O157:H7, and Shigella flexneri.
MYLFESLNQLIQTYLPEDQIKRLRQAYLVARDAHEGQTRSSGEPYITHPVAVACILAEMKLDYETLMAALLHDVIEDTPATYQDMEQLFGKSVAELVEGVSKLDKLKFRDKKEAQAENFRKMIMAMVQD
IRVILIKLADRTHNMRTLGSLRPDKRRRIARETLEIYSPLAHRLGIHHIKTELEELGFEALYPNRYRVIKEVVKAARGNRKEMIQKILSEIEGRLQEAGIPCRVSGREKHLYSIYCKMVLKEQRFHSIM
DIYAFRVIVNDSDTCYRVLGQMHSLYKPRPGRVKDYIAIPKANGYQSLHTSMIGPHGVPVEVQIRTEDMDQMAEMGVAAHWAYKEHGETSTTAQIRAQRWMQSLLELQQSAGSSFEFIESVKSDLFPDE
IYVFTPEGRIVELPAGATPVDFAYAVHTDIGHACVGARVDRQPYPLSQPLTSGQTVEIITAPGARPNAAWLNFVVSSKARAKIRQLLKNLKRDDSVSLGRRLLNHALGGSRKLNEIPQENIQRELDRMK
LATLDDLLAEIGLGNAMSVVVAKNLQHGDASIPPATQSHGHLPIKGADGVLITFAKCCRPIPGDPIIAHVSPGKGLVIHHESCRNIRGYQKEPEKFMAVEWDKETAQEFITEIKVEMFNHQGALANLTA
AINTTTSNIQSLNTEEKDGRVYSAFIRLTARDRVHLANIMRKIRVMPDVIKVTRNRN

>sp|P43811|SPOT\_HAEIN - Haemophilus influenzae.
MIARDAHEGQFRSSGEPYITHPVAVASIIAQLHLDHEAVMAALLHDVIEDTPYTEEQLKEEFGASVAEIVDGVSKLDKLKFRTRQEAQVENFRKMILAMTRDIRVVLIKLADRTHNMRTLGSLRPDKRR
RIAKETLEIYCPLAHRLGIEHIKNELEDLSFQAMHPHRYEVLKKLVDVARSNRQDLIERISQEIKVRLENSGIFARVWGREKHLYKIYQKMRIKDQEFHSIMDIYAFRVIVKNVDDCYRVLGQMHNLYK
PRPGRVKDYIAVPKANGYQSLQTSMIGPKGVPVEVHIHTEDMEQVAEMGITAHWVYKENGKNDSTTAQIRVQRWLQSLVEIQQSVGNSFEFIENVKSEFFPKEIYVFTPKGRIVELPMGATAVDFAYAV
HSDVGNTCVGVTVEHKPYPLSKALESGQTVNIITDPNAHPEVAWLNFVVTARAKTRIRHYLKQRCEEDAVKLGEVELNVALQPHNLGDFSIQQIRTVLDALALSSLDELLREIGLGNQSASMIAHQFVG
VPLESANTKNLEFESKILTIAPMQVGKTQFAQCCHPILGDPIVGCCTEKNTVVVHHQHCASLKNACRQSLAKWDNVQSAVNFEAELQIEILNEQNALLSLMTAISASESSLQNIWTEELENNLLLVILQ
VCVKDIKHLANIVHRIKGITGVVNVKRNINEL

>sp|P47520|SPOT\_MYCGE Probable - Mycoplasma genitalium.
MATIQEIECDFLAKIAQKFTNAEIELINKAFYHAKTWHENQKRLSGEPFFIHPLRTALSLVEWNMDPITICAGLLHDIIEDTDQTEANIAMIFSKEIAELVTKVTKITNESKKQRHLKNKKENLNLKSF
VNIAINSQQEINVMVLKLADRLDNIASIEFLPIEKQKVIAKETLELYAKIAGRIGMYPVKTKLADLSFKVLDLKNYDNTLSKINKQKVFYDNEWDNFKQQLKKILAQNQIEYQLESRIKGIYSTYKKLT
VHEQNISKIHDLFAIRLITKSELDCYHILGLIHLNFLIDSKYFKDYIASPKQNLYQSIHTTVRLKGLNVEIQIRTQQMDNVSKFGLASHWIYKEQKEGLLAPALQLNYLVTKQKHSHDFLKRIFGTDII
KINVSASHEPNVIKQINVDSNNKLLDIAFENYPKQFAKLTKIEIDGVEINSFDTSVENEMLIEFYFGKNNNLKSKWIRYMNNPIYREKVKKSLAKLAKSGRYSELAFYEKELGEKQLKLASETEIQKRL
NTLRIKKMSDYLALIECTNFTNDEHLLFLAKNNDKWNKLTKPLKFAFSKVVFHNSYFEQIEGIFITKIVIEPCCSKIPDMPEQVTGILTKNILSVHRYGCKNLQNKKQLKIIPLYWNIQQLKLKPRKFR
SYININGVWSEKTINKICQTIINGDGYIEKIIPKINKQKDEFDLNITLFVNNYQQLLTLMDQITTKNISFSWKYL

>sp|P75386|SPOT\_MYCPN Probable - Mycoplasma pneumoniae.
MFYNWLKLYKFSKMATLVEIERDFLQKTAQKFAPEVVALITKALDYSKKWHGEQKRLSGEPFFIHPLRTALRLVEWNMDSNTVCAGLLHDIIEDTQVTEADLTAIFGKEITDLVVKVTKITSESKKQRQ
LNRKKEDLNLKSLVNIAMSSQQEVNALVLKLADRLDNISSIEFLAVEKQKIIAKETLELYAKIAGRIGMYPVKTQLADLSFKVLDPKNFNNTLSKINQQKVFYDNEWGNFKKQLEEMLEQNQIEYRLES
RIKGIYSTYQKLTFHEQNIAKIHDLFAIRLIVKSELDCYHLLGLIHLNFTVLMKHFKDYIASPKQNFYQSIHTTVRLKGLNVEIQIRTQRMDHVSKYGFASHWIYKEKKEGLLASALQVNYLNSKQMHS
RDFFKRIFGTDIIKVNVSSDNEPNIVKKLNVESNSKLLDIAYELYPKQFNKLEKIKLDGVEVMSFDVTAENEMVIEFCFGKTNNLKRRWLRYMNNHVFRERVKKDLNKLKKAVKYSELPLYEKALEELH
LKLADETQIKQRLNALGIKKLTEFLELIEYPHFPKNEHLYFLASNNQKWRELIKPIKFALSQAVFQNSYFEQIEGIYITKIVIETCCTKIPDMPEQVIGILMKNILRVHLHDCRELANQKQPKIIPLYW
NAHQLKMRPRKFRCQINIRGVWSETTVNKIVQTIIEGDSYLERIIPKIDKQKDEFELNITMFIDNYHQLITIMEQITTKNISYVWKYL

>sp|O34098|SPOT\_SPICI - Spiroplasma citri.
MDRDIKYEEVLAQIKLYIKDEATLKEIQKAYEYAEEKHHGQVRNSGARYIIHPLWTTFFLAQWRMGPKTLIAGLLHDVLEDTPATFEELQELFGIEIANLVEGVTKVSYFAKENRTQIKAQYLRKLYLS
MAKDIRVIIVKLADRLHNLKTIGYLKPERQQIIARESLEIYSAIAHRLGMKAVKQEIEDISFKIINPVQYNKIVSLLESSNKERENTINQKIEELKKILITEKKMSVKVYGRSKSIYSIYRKMNQFGKN
FDDIHDILAVRIITNSVDDCYKVLGFVHQHYTPLNNRFKDYIATPKHNLYQSLHTTIVADDGLIFEVQIRTEEMDELAEQGVAAHWRYKEGENYDIAKKQKDIDERLDIFKRILDLENISVQERDEIQQ
EVYKPDHLMEQIIQNDIFSSLIYVLTPNGKVVTLPFGSTVLDFAYKIHSEIGEKTIGAKINGLFSPISTVLKSGDVVDIKTAATQKPNHSWLVVSKTSSALEKIKKYLKKELVEVTSDAKSVNLEKIKQ
TKSQIEEYIAKKDLKWKLVNSETQLERLHAINFNNIEDFLLDVANDEYTLEEAINLVYLDHETSQNEKILKKLQDKQYKKAQLKDDIIVQGISNIKVVISQCCLPIPYEDITGYVSKAEGIKVHLKTCR
NIQSGDKQDRQVEVSWNEAVCKNKQYDCAIRIEAIDRPALLVDVTKVLSHLNASVQMMSANVSGDLMNLTIKTIIKVSNADRLQQIRSSLLTIPDIKVVERVMM

>sp|P74007|SPOT\_SYNY3 Synechocystis sp. (strain PCC 6803).
MNAVAALPTPTIHTTCAQDIHDIELPQWLEDCLQQWQREIEQGQDETTAPHCLICRAFCFAYDLHAQQRRKSGEPYIAHPVAVAGLLRDLGGDEAMIAAGFLHDVVEDTDISIEQIEALFGEETASLVE
GVTKLSKFNFSSTTEHQAENFRRMFLAMAKDIRVIVVKLADRLHNMRTLDALSPEKQRRIARETKDIFAPLANRLGIWRFKWELEDLSFKYLEPDSYRKIQSLVVEKRGDRESRLETVKDMLRFRLRDE
GIEHFELQGRPKHLYGIYYKMTSQDKAFEEIYDIAALRIIVESKGECYRALSVVHDVFKPIPGRFKDYIGLPKPNRYQSLHTTVLGLTSRPLEIQIRTEEMHHVAEYGIAAHWKYKESGGSENATLTST
DEKFTWLRQLLDWQSDLKDAQEYVENLKQNLFDDDVYVFTPKGEVISLARGATPVDFAYRIHTEVGHHMKGARVNGQWLGVDTRLKNGDIVEIVTQKNSHPSLDWLNFVVTPSARHRIRQWFKRSRRDE
NILRGRELLEKELGKTGLEALLKSEPMQKTAERCNYQNVEDLLAGLGYGEITSNSVVNRLRENNVNNVKNSQSSQEVTLASSPQVHPPTPPATGKDNSPIAGIEGLLYHIAGCCHPLPGEPIMGVVTRG
ARGISIHRQGCHNLEQMDGDRLIPVRWNPNTNNHQTYPVDIVIEAIDRVGVLKDILSRLSDNHINVRNADVKTHLGRPAIISLKIDIHDYQQLLGIMAKIKNMSDVMDLRRVISG

Figure -: Guanosine–’,’–bis(diphosphate) ’–pyrophosphohydrolase ((ppGpp)ase)
(Penta–phosphate guanosine-’–pyrophosphohydrolase) sequences. �ese eight enzymes cat-
alyze the hydrolysis of guanosine ’,’–bis(diphosphate) to guanosine ’–diphosphate (GDP)
and are classified by the Enzyme Commission (EC) number ... [].
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A comparison with the known protein domains in the NCBI Conserved Domain Database

(version .) [] reveals that this motif captures the RelA_SpoT domain (CDD PSSM–id

).

�e remaining three motifs are not present in the CDD database. However, further inspec-

tion using the tools available from the PFAM database [] revealed that they composed the

left, middle, and right regions of the HD domain []. In the SpoT enzymes, this domain has

a number of insertions and deletions that give rise to gaps such that Gemoda identified and

reported individually the left, middle, and right regions of conservation of the HD domain.

In this example, the Blosum– matrix was chosen as the similarity metric because it is

optimized for detecting distant homologs. �e Gemoda input parameters L =  and g = 

were chosen to enforce a one–bit–per–base score, which should rise above random “noise” since,

by design, the expected bit–score for two aligned amino acids is negative for the Blosum set of

scoring matrices.

In order to test the sensitivity of these results to noise, we conducted an experiment to

determine the degree to which these (ppGpp)ase motifs could be found if obscured by noise

caused by adding random spurious sequences to the  enzyme sequences. We found that,

with the Gemoda input parameters described above and using random sequences selected from

Swiss–Prot (Release .) [], the target motifs could be detected in an –fold majority of

spurious sequences.

.. Motif discovery in protein structures

�e detection of –dimensional motifs in sets of protein structures is another problem type that

Gemoda can address. Often, homologs that are related through a distant lineage show little

to no sequence similarity, particularly at the nucleotide level []. However, these homologs

frequently show conserved tertiary structures [], making motif discovery in protein structures

often revealing in situations where there appears to be no similarity at a sequence level.

�ere are a number of well–developed tools for the pair–wise comparison of protein struc-

tures or the comparison of a single protein structure to precomputed structural motifs; these

have been reviewed elsewhere []. Some of the more popular tools include SSAP [],

VAST [], Dali [], and Mammoth []. �e Gemoda algorithm, when used for struc-



.. APPLICATION 

Rela–SpoT domain
︷ ︸︸ ︷

SPOT_ECOLI

SPOT_HAEIN

SPOT_SYNY3

SPOT_AQUAE

SPOT_SPICI

SPOT_BORBU

SPOT_MYCGE

SPOT_MYCPN

SPOT_ECOLI

SPOT_HAEIN

SPOT_SYNY3

SPOT_AQUAE

SPOT_SPICI

SPOT_BORBU

SPOT_MYCGE

SPOT_MYCPN

non conserved

similar

conserved

all match

Figure -: �e RelA_SpoT motif detected in the ... enzyme sequences.
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Figure -: Logo representation of the RelA_SpoT motif detected in the ... enzyme se-
quences. In this figure, the horizontal axis represents the position in the motif shown in Fig-
ure - on the preceding page, in the vertical axis represents the information content at each
position.

tural motif discovery, is most similar to the Sarf algorithm [, ] and, to a lesser degree, al-

gorithms by [] and []. Conceptually, Gemoda could be thought of as a hybrid of the

Sarf and Teiresias algorithms, combining –D elementary motif discovery with convolution.

To the best of our knowledge, Gemoda is the only tool that can compare an arbitrary number

of protein structures simultaneously and produce an exhaustive set of maximal motifs.

To discover motifs in protein structures, Gemoda compares L–residue windows of the pro-

teins’ alpha–carbon trace using the minimized RMSD similarity metric (one of many possible

metrics for comparing protein sub–structures []). Here we use “minimized” to indicate

that the protein structures are optimally super–imposed via rigid–body rotation and transla-

tion [, ]; occasionally this term is implicit. Using the clique–finding clustering algorithm,

Gemoda finds motifs that are sets of alpha–carbon traces (in a set of protein structures) that can

be super–imposed with an RMSD less than g Å over each window of L residues on a pair–wise

basis. Similar to the amino acid and nucleotide applications of Gemoda, these structural motifs

are maximal in both length and support.

Here, we demonstrate how the Gemoda algorithm can be used for structural motif discov-

ery by “discovering” the structural homology between the human galactose--phosphate uridy-

lyltransferase (PDB id HXQ) [] and fragile histidine triad proteins (PDB id FIT) [],

originally reported elsewhere []. Using Gemoda, we looked for motifs of at least  residues,

occurring in at least three chains, that had a pairwise RMSD of . Å or less (based on super-
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Figure -: �e similarity graph for the ... enzyme example. (A) is the similarity matrix
A, which contains one row and column for each window of  residues in the set of input
sequences. Entries in the matrix have been thresholded such that pairs of windows that can
be aligned with a bit–score greater than  are given a black dot and all others are white,
producing the familiar dot–plot appearance of the matrix. (B) is a graph representation of A.
Each vertex represents a window, and two vertices are connected with an edge if they have a
black dot in the top image. �e breakout shows a clique of size eight, which represents a set of
windows that participate in the motif shown in Figure - on page . In general, as the bit–
score threshold is lowered, the number of edges in the graph increases, making the clustering
stage more computationally intensive. When using clique–based clustering with too small of
a threshold, computational expense may make the problem infeasible. At these thresholds the
“signal” cannot be distinguished from the “noise.” However, with the parameters used in this
example, the clustering phase is quite easy, which is intuitive given the number of disjoint
subgraphs shown in the bottom image.
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Figure -: Alpha carbon trace projection used by Gemoda

position of the alpha–carbon backbone) over each window of  residues.

�is search returns  motifs, the longest of which is  residues (see Figure - on the next

page). �is motif has one embedding in the FIT protein and two, in different chains, in the

HXQ protein. As shown in the figure, the motif is an alpha helix followed by a beta sheet.

.. Motif discovery in nucleotide sequences and the (l,d )–motif prob-

lem

Introduction

Four years ago, Pevzner and Sze [] noted that despite significant advances in pattern discov-

ery, there were still gaping holes in our ability to identify and enumerate frequent patterns in

biological sequences. Experimental noise and error were not the only significant issues, as the
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Figure -: A motif showing structural conservation between the human galactose--
phosphate uridylyltransferase and fragile histidine triad proteins originally reported by Holm
and Sander []. �e motif, as shown here, was “discovered” using the Gemoda algorithm
along with three other, smaller, structural motifs that are highly conserved between the two
proteins. Notably, the proteins show little sequence similarity over the region displayed in the
structural motif above. Graphics created using PyMol (DeLano Scientific, San Carlos, CA,
USA). See also Figure - on the next page.
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Figure -: �e human galactose--phosphate uridylyltransferase and fragile histidine triad
structural motif (see Figure - on the preceding page) in Gemoda’s –D structure viewer,
which was written by the authors for viewing output from gemoda–p.
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community was still incapable of solving certain problems with purely synthetic data and no

worry of experimental or gross error. One such problem, defined below, was the (l,d )–motif

challenge problem; it exposed the fact that certain motifs, despite having a strong consensus

and being rather unlikely to occur at random in independent and identically distributed (i.i.d.)

sequences, are extremely hard for most motif discovery algorithms to locate. �e reason that

these motifs are hard to locate is that even though they may deviate very little from a consen-

sus sequence, their pairwise deviation tends to be rather large. Other false pairwise similarities

are thus extremely likely to occur at random elsewhere in the dataset, and this random noise

obscures the true motif ’s signal. Pevzner and Sze [] presented two algorithms that looked

towards solving this problem; Buhler and Tompa [] followed suit by presenting a more effec-

tive algorithm. However, the problem is still not completely solved per se; difficulties exist in

obtaining the correctly refined motifs and instances even for this simplified model of biology.

In addition, though existing algorithms move towards solving this simplified problem, they are

not nearly as helpful in addressing the biological realities that computational biologists face.

�e original (l,d )–motif problem [] can be paraphrased as follows:

Within a set of random DNA sequences with i.i.d nucleotides, a parent motif

of length l is embedded in each sequence in a random location. Each time the

motif is embedded, it is mutated in d locations. �e (l,d )–motif problem is to

recover the locations of the embeddings, knowing only the parameters l and d

and that each sequence contains exactly one instance of the motif.

At first, this seems to be a reasonable simplification of the phenomenon of binding sites and

other functional sites in DNA. It is not uncommon to have some ancestral sequence from which

each motif occurrence is some short evolutionary distance away. �is model accurately captures

the difference between instance–instance similarity and instance–ancestor similarity. �at is,

even though a motif instance may be a very short distance from its ancestor (say, four mutations

out of fifteen bases), any two instances of the motif may be significantly different from each

other (eight mutations out of fifteen bases). �is low degree of instance–instance similarity

can occur rather frequently in random i.i.d. nucleotide sequences, thus obscuring the true

evolutionary relationship of the motif instances (the signal) with purely random relationships
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of background nucleotides (the noise) [, ].

As discussed by Buhler and Tompa [], local search methods (such as the common ones

mentioned before) using typical initialization strategies encounter an insurmountable amount

of noise when searching for some sparse motifs described by the (l,d )–motif problem. We

would ideally like to be able to recover such motifs, since they are expected to occur by chance

in every sequence with rather low probability (approximately −) [, ].

In a more realistic scenario, a researcher may not know the size l of the motif a priori.

Instead, it is more likely that she would know the evolutionary distance between motif instances,

i.e. the rate of mutation d/l. It is also unrealistic to mutate the embedded motif exactly d times;

rather, the researcher is more likely to be interested in motifs that are d or fewer mutations

away from each other. �at is, in a real–world senario, we would more likely have a reasonable

estimate of the upper limit d/l of the mutation distance between embedded motifs. �ere may

also be multiple, different motifs in the dataset. Finally, as experimental data are commonly

rife with noise, it is likely that some of the sequences may be false–positive candidates for the

motif; that is, some sequences may contain no motifs at all.

With these issues in mind, we define an extended (l,d )–motif problem as follows:

Within a set of random DNA sequences with i.i.d. nucleotides, a parent motif

of length > L is embedded zero or more times in each sequence in a random

location, such that the motif has been embedded a total of k times in the data set.

Also, each time the motif is embedded it is mutated such that there are no more

than d mutations over any window of l nucleotides (that is, the rate of mutation

is d/l). �is process is repeated for any number of parent motifs, each with the

same l and d, but possibly different L. �e extended (l,d )–motif problem is to

recover the locations of the embeddings for every parent motif without any a priori

knowledge of where they might be, but only knowing the parameters l and d.

We will refer to this formulation as the “extended” (l,d )–motif problem and the previous for-

mulation as the “restricted” (l,d )–motif problem. In what follows, we detail an algorithm for

solving both the extended and restricted (l,d )–motif problems.

We say that a motif, p, is just a data structure with two features: a width, W (p), and a list
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of locations in the data where the motif has been embedded, L (p). A motif has the property

that the locations in L (p) are all within a Hamming distance of d from each other over every

window of size l.

We will call the Hamming distance function H , where H takes two windows of size l

from our sequence set, and returns a real–valued number equal to the number of characters

that differ between the two windows.

Solving the restricted (l,d )–motif problem

�e input set for the (l,d )–motif problem is any arbitrary set of n sequences, each with length

Wi nucleotides. Most bioinformatics literature treatments use Wi =  and n = . Dif-

ferent versions of this problem have been discussed at length; the most commonly discussed

is the (,) problem, while the (,) and other associated, more difficult problems are also

addressed in the literature.

It has been shown before that the most commonly used motif discovery algorithms, in-

cluding CONSENSUS [], Gibbs sampling [], and MEME [], are unable to solve the

restricted (,) problem. Algorithms that are capable of solving the restricted (,) prob-

lem have been presented in the literature. While some of these, including Winnower and

SP-STAR [], are unable to solve the more complicated (,) problems, others are able to

address this and other, more difficult, problems with some degree of accuracy. �ese latter al-

gorithms usually leave the deterministic realm, though, and rely on probabilistic methods to

find the planted motifs.

On the other hand, our algorithm allows for exhaustive, deterministic solution of these

problems. �e (l,d )–motif problem solved by the above–mentioned tools is a degenerate case

of the extended problem that our algorithm was designed to solve. �us, our algorithm is not

optimally tuned for solving the restricted (l,d )–motif problem in the least amount of time.

Nonetheless, solving a range of the restricted (l,d )–motif problems is still a valuable check on

the utility of our tool to make sure it can solve at least some of them in a reasonable amount

of time. In addition, our exhaustive search allows for one to see how many other false signals

are in the data. �is can facilitate the assessment of statistical significance of results, certainly

an important step in analyzing any proposed signal.
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Our algorithm requires three user input parameters: l, g, and k. l is the minimum motif

size and the size of the sliding window used for judging similarity between two sequences. g

is the similarity threshold for any two windows to be deemed instances of the same motif; in

this case, if two windows of length  are a Hamming distance of  away from each other, g

would need to be  or less for the windows to be in the same motif. Finally, k is the support,

or minimum number of motif occurrences required to report the motif to the user.

It is obvious that any two motifs of length l each being mutated d times from an ancestral

sequence can differ at most at d locations. �us, at least (l − d) locations must be preserved

in the motif. �is observation lays the foundation for discovery of the hidden motifs. Our algo-

rithm is run with parameters l = , g = , and k =  for the (,) problem. �e discovery

of the motif is then a straightforward combinatorial problem with deterministic discovery of

the solution.

It is important to note, however, that our method will solve and return a superset of the

restricted (l,d )–motif problem. �at is, any group of d–mutants from a common ancestor can

be described as having (l − d) identical bases, but not all groups of sequences with (l − d)

identical bases can be used to synthesize an ancestor from which all group members deviate

6 d bases. When there are a large number of “signal” motif members, there is usually sufficient

overall deviation to prevent a > d–mutant from joining a motif group. However, at smaller

support k, it is more likely to find motif instances that violate the d–mutant constraint. It is

not desirable to immediately remove motifs with such members from the output, as they do

still meet the constraints imposed by our parameter values; rather, we can use a simple post-

processing method to note which motifs have readily obvious ancestors and thus are the most

likely candidate signals.

A few interesting observations can be made regarding the complexity of the algorithm and

the quality of its solutions. First of all, the time to solution is not affected directly by the length

of the motif to be discovered as in many other exhaustive methods. Rather, it is the sparseness

or subtlety of the motif (or more accurately, the probability of the pairwise motif similarity

occurring randomly) that has the most profound impact on the complexity of the algorithm.

�e most computationally expensive step is the clique-finding function, which increases in

computation time with the number of edges (np–complexity at worst, though on average much
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better). For varying l and d, as two l-mers sampled randomly from the background are more

likely to meet the threshold of similarity defined by l and d, there will be more false edges

(similarities) in the graph, and thus the clustering algorithm will take longer. Motifs of widely

different length may be (approximately) equally likely in the background distribution if d is

set to a certain value for each. In this case, it would take almost exactly the same amount of

time to find both motifs in the same input set. Of course, the size of the data set also has a

significant impact on computation time, as for any algorithm; a larger input set causes more

false occurrences of a potential motif, and the resulting distance matrix needs more time to be

explored by our clique-finding algorithm.

Also, our method does not preclude discovery of more than one instance of a motif in any

given sequence. Much like the re–framing of the (l,d )–motif problem presented above, this

is more reflective of what one expects may happen in a real biological system: motifs of bio-

logical significance may occur more than once in a biosequence, and it behooves us to be able

to discover all occurrences. In fact, in the original dataset for the (,)–motif problem used

by Pevzner and Sze [], there is actually an additional instance of the original motif that oc-

curred completely by chance; this instance was discovered in our solution of the problem. With

Gemoda, we can easily identify this instance without any additional work or manipulation. �e

sequence logo for the planted motif from Pevzner and Sze’s initial dataset is shown in Figure -

 on page ; the consensus sequence is GGCTTTGTAGCTAAC. �e “accidental” instance

of the embedded motif that can be identified using Gemoda is GGATTGATAGCTAAG.

Finally, it is important to note the absolute accuracy of our results. In previous papers pre-

senting algorithms to solve the (l,d )–motif problem, a metric called the performance coefficient

is used to gauge the accuracy of the algorithms. �is is defined as K∩P
K∪P

, where K is the set of

l ∗ s nucleotides representing the s motif instances each of length l and P is the set of l ∗ s

nucleotides representing the s proposed motif instances of length l. Coefficients above . are

usually deemed acceptable for these algorithms. Improved algorithms return results with coef-

ficients of about . or .. Examples of the performance of other algorithms are presented

in Table .. Clearly, our algorithm returns all coefficients of ; that is, it will return the exact

location of all motif occurrences. �is is a notable improvement over other algorithms that

may return approximate motif locations that then need to be verified and slightly adjusted or
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optimized by hand. In fact, in any given run of PROJECTION (the most accurate of the algo-

rithms in Table .), one will usually find that one or two (or even more) of the returned motif

instances are not just imperfectly located, but are false positives.

�e computation time of our tool becomes unacceptable as the motifs become degraded

beyond the (,) problem. �is is to be expected for a deterministic algorithm as the probabil-

ity of the signal reaches a level that causes many pairwise similarities to occur by chance. Since

our strategy is generalized and exhaustive, we expect the computation times to be suboptimal.

Beyond this table, one would benefit from other probabilistic or heuristic algorithms in order

to solve the more difficult (l,d )–motif problems in an acceptable period of time. Fortunately, it

seems to not be a too frequent occurrence to search for a (,)–motif in each of  biological

sequences, so our algorithm should be of significant utility for common applications.

Solving the extended problem

Of course, in a real biological problem, one does not have nearly the same certainty in the

contents of each biosequence as is allowed by the (l,d )–motif problem. �is becomes evident

upon analyzing the situations that the (l,d )–motif problem is meant to analyze, the most salient

of which being the discovery of transcription factor binding sites. In order to come up with

the candidate coregulated sequences, the results of laboratory experiments are analyzed to find

which genes are sufficiently coexpressed. However, much of this data is prone to noise. Some

genes may not be coexpressed, though they may seem to be due to some experimental aberra-

tion. Of those that are actually coexpressed, they may or may not be coregulated by the same

transcription factor; it is a distinct possibility (and quite frequently a reality) that genes ap-

pearing to be coexpressed are not bound by any common factor. �e same analysis follows for

other situations for which the (l,d )–motif problem is an otherwise reasonable approximation:

experimental noise prevents certainty that all input sequences are truly.

Other methods meant to be robust enough to solve the restricted (l,d )–motif problem will

lose significant advantage in this more realistic, extended set of circumstances. Our algorithm

was designed specifically to deal with the issues addressed by the extended challenge problem.

It discovers, in a provably exhaustive and deterministic fashion, all motifs described in the ex-

tended problem definition. Other algorithms discussed previously in this paper are just not
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constructed to deal with such uncertainty in motif characteristics; as such, there is little way to

accurately compare the performance of ours and other algorithms on the fully extended prob-

lem. �us, it seems intuitive to simplify the extended problem to something more complicated

than the restricted (l,d )–motif problem, but for which there is still a useful metric for compar-

ison between ours and other algorithms. What follows are two cases (discussed qualitatively)

which demonstrate the specific benefits of our tool for pattern discovery on (,) problems

beyond the restricted version.

Case : An underestimated number of motif instances. One source of difficulty in the

extended problem may be the uncertainty as to the exact number of motif instances. For this

case, we still restrict ourselves to windows of size l with d mutations from a consensus sequence.

However, we allow for uncertainty in the number of motif instances. For this case study, we

instruct algorithms to find motifs with instances in at least  sequences when in fact there is

an instance in every sequence. If an algorithm such as WINNOWER were to search for cliques

across  sequences when in fact all  sequences had a motif instance, it would have a final

graph with much more than the single signal that it usually hopes to obtain. PROJECTION’s

attempts to find  instances when  actually occur are similarly problem-ridden, returning

different candidate motifs on different runs. �ese results would sometimes have significant

overlap with initial planted motif, though at other times would have very little overlap. Most

disturbingly, all of these proposed motifs would have approximately the same score, thus making

it difficult to discern a truly useful motif from one constructed from background noise. Our

algorithm, on the other hand, returned the initially planted motif along with other smaller

patterns that still met the criteria for classification as a motif.

Case : Zero-or-one motif instances. In this next case, we analyze the impact of there being

zero or one motif instances in each sequence. To implement this simplification, we instruct each

algorithm to find the exactly  motif instances that are implanted across  sequences. �is

makes the problem astonishingly similar to the (l,d )–motif problem, with the exception that

not every sequence contains a motif instance. �is problem setup is thus significantly more

realistic, as one does not expect every sequence to have a motif occurrence in every pattern

discovery problem. Of course, this is still a simplification of reality, as one would not expect
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Figure -: �e sequence logo for a) the motif implanted in each sequence for the (l,d )–motif
problem and b) the LexA binding site motif generated from the highest–scoring motif returned
by Gemoda.

to know the exact number of motif instances. However, not even this gross simplification can

salvage the efficacy of existing algorithms for the discovery of such subtle motifs. A study using

PROJECTION found results that rarely approached acceptable levels and more frequently

approached performance coefficients expected from purely random guessing. Again, though,

our algorithm solved the problem with only a small increase in computation time over solving

the original (l,d )–motif problem.

Identifying natural cis–regulatory elements

For some regulons in E. coli with mild to strong consensus sequences, Gemoda returns results

that are similar to or improve upon the results from commonly–used motif discovery tools. For

instance, using the set of upstream regions ( base pairs upstream and  base pairs down-

stream of the translation start site) for the  operons believed to be regulated by LexA [],

Gemoda’s top–scoring motif was used to generate the sequence logo found in Figure -. �is

motif closely matches the literature PWM for the LexA binding site and represents  of

the literature–found binding sites with no false positives. Of course, the difficulty of DNA

motif discovery problems varies greatly, and this is only one straightforward example of such

problems.

�e parameters used for this search were L = , g = , and k =  with the identity

matrix scoring scheme and clique–based clustering described above. �e length was selected

based on the knowledge that the DNA–binding domain of LexA is a helix–turn–helix variant,

and so it was likely to be a relatively long motif. �e similarity threshold was chosen as one–

half of L, which we know from the (l,d )–motif problem ought to be approximately sufficient to
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prevent the graph from being too dense (and thus expensive to cluster). �e support threshold

was chosen to be about two–thirds the total number of sequences, allowing for some noise in

the data. Of course, the judicious selection of parameters is an outstanding problem in binding

site discovery. It is worth noting that most of these selections were simple or intuitive and that

there was some tolerance in the results for slight perturbations in parameters.

Conclusions

�e benefit of our proposed algorithm is then obvious: deterministic and provably complete

output even in the face of uncertainty in motif characteristics. �e motifs could have been

longer than  bases, could have had fewer mutations, or could have occurred in a variable

number of sequences, and our tool would have found them. Its only obvious negative aspect

is its computational expense. �e restricted (,) problem took  hours, while the extended

problem took  hours. Compared to the runtimes of algorithms like PROJECTION, which

can be as low as five minutes for the restricted problem, these runtimes may seem extremely

large. In practice, however, this computation time is far from unacceptable; one would not

expect to often encounter the need to run motif discovery many times sequentially, particularly

if the results being returned to the user are deterministically correct.

Perhaps even more importantly, we have reframed the challenge problem statement in a way

that is more biologically meaningful; hopefully this new challenge will inspire other methods

that outperform ours in some way. While a deterministic and exhaustive method is always

welcome, for some problems it seems that a heuristic approach may provide a good balance

between time and accuracy; we look forward to seeing new tools that address our amended

problem with sufficient accuracy.

. Discussion

Gemoda makes four contributions. First, the algorithm is generic in that it is equally applicable

to any variety of sequential data. Second, Gemoda allows arbitrary similarity metrics. In the

examples shown here, we chose relatively simple metrics (scoring matrices and RMSD–base

metrics); however, similarity metrics can be easily changed or added. For example, in the case
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of amino acid sequences, one can easily define hybrid metrics incorporating primary, secondary,

and tertiary structure features. In the case of nucleotide sequences, the metric may be changed

to incorporate methylation information. �e third contribution is that Gemoda returns motifs

that are not tied to any particular motif representation. In the case of amino acid sequence

motifs, it is easy to model Gemoda’s motifs using regular expressions, hidden Markov models,

or position–specific scoring matrices. Finally, when used with the clique–finding clustering

algorithm, Gemoda returns an exhaustive set of maximal motifs. To the best of our knowledge,

Gemoda is the only motif discovery algorithm incorporating the above features.

As mentioned in the introduction, Gemoda integrates the best characteristics from a num-

ber of previously published motif and association discovery algorithms. For specific problems,

Gemoda’s performance can be improved further, though at the expense of generality. For exam-

ple, a window sampling approach such as that used by Blast [] would be useful in applications

where speed is more important than completeness of results. For protein structure comparisons

Gemoda could also be altered to use contact maps like those used by Dali []. �e convolu-

tion stage could also be made faster by using heuristical, non–exhaustive convolution methods.

Also, the clustering phase could be expedited by using approximate clique finding methods.

�e lack of an underlying model in Gemoda is a major strength, as this facet of the algo-

rithm allows exhaustive enumeration of motifs that is difficult for methods using complex motif

representations. In addition, this aspect of Gemoda makes comparing nucleotide sequences just

as easy as comparing real–valued data, like gas chromatography–mass spectrometry (GC–MS)

datasets, which may follow different motif models (Styczynski et. al., in preparation).

One weakness may be that the Gemoda algorithm does not natively employ iterative steps

for motif discovery. In that sense, the algorithm is similar to Teiresias [] and MITRA [].

However, because it employs a user–defined scoring metric (and clustering function) there is

nothing to prevent such iteration per se. For example, the output motifs from a run of Gemoda

could be used to recompute a refined scoring function. Using amino acid substitution matrices,

this would be in the spirit of the method used to compute the Blosum [] matrices from the

Blocks database [].

Futhermore, the Gemoda algorithm could be modified to find gapped motifs. Gemoda is

capable of finding gapped motifs in which the gap length is fixed and small relative to the size
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of the flanking conserved regions. However, motifs with larger, variable length gaps cannot be

detected natively by Gemoda. In this respect, Gemoda is similar to MEME [], Teiresias [],

and Block Maker []. Other tools, including Consensus [] and the Gibbs sampler [],

have been altered from their original formulation to account for gaps.

It may be possible to alter the convolution step to allow for large or variable–length gapped

motifs. Another option is to look for maximal motifs whose offsets are highly correlated. Our

studies indicate that such post hoc analysis of Gemoda’s output can usually find well–conserved

gapped motifs, including those with variable gap lengths, as was the case for the (ppGpp)ase

example.

Gemoda’s generic nature makes it readily applicable for many problems. In the protein

sequence application, Gemoda’s exhaustive search using a scoring matrix as a similarity met-

ric identified multiple motifs. It provided an accurate representation of these domains in as

much as an eight–fold excess of spurious sequences. In the DNA motif discovery application,

Gemoda identified an otherwise unintentional result in a synthetic dataset and satisfactorily de-

scribed a motif embedded in a genomic dataset. In the protein structure application, Gemoda

demonstrated that it can compare multiple arbitrary–dimensional structures simultaneously

and return results previously shown in the literature. Gemoda can also be directly applied to

other diverse types of sequential datasets, or it can be extended to address problems not yet

considered.
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Chapter 

Other exercises in motif discovery

. Introduction

�e previous two chapters of this thesis were focused on unsupervised methods for motif discov-

ery, with an emphasis on grammatical models. Specifically, in Chapter  I demonstrated how

regular grammars can be used to model and design novel antimicrobial peptides. In Chapter

, I addressed some of the weaknesses of grammar–based motif discovery tools by developing

a new approach that is generic in the sense that it is applicable to many different kinds of se-

quential data and is model agnostic. In this chapter, I continue this trend away from the core

issues of grammar–based motif discovery, to examine many closely related topics and different

approaches to motif discovery.

�e first section of this chapter describes the development of an efficient tool for matching

regular grammars against large databases of sequences. �e topic of the second section is the

evolution of amino acid scoring matrices over time. As described in Chapter , these matri-

ces are the most common metrics of protein similarity and are used widely by motif discovery

and sequence alignment programs. �e next section describes how these scoring matrices and

sequence alignment programs can be co–opted for solving nontraditional bioinformatics prob-

lems such as handwriting and voice recognition. Finally, the last two sections are devoted to

exercises in motif discovery that do not use grammatical methods, but instead rely heavily on

classical machine learning techniques and simple statistical analyses.
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. Biogrep: a tool for matching regular expressions

.. Introduction

As more genomes are sequenced and annotated, increasing numbers of functional DNA and

protein sequence motifs (or patterns) are being discovered. �ese motifs can be used to de-

tect remote homologies that are missed by sequence alignment tools such as Blast [] and

FastA []. Many databases such as Prosite [], PRINTS [], and BLOCKS [] contain

collections of biologically significant patterns that are correlated with the function of protein

families and are expressed as regular grammars, or equivalently, regular expressions (see Sec-

tion . on page ). For example, the Prosite the motif [AG]....GK[ST] is indicative of

ATP/GTP binding proteins.

Searching for such regular expressions can be an important part of sequence annotation.

�ere are a variety of tools available for pattern–matching, the most common being the “grep”

family of Unix tools, including a number of very fast and sophisticated variants such as agrep []

and NR–grep []. Also, there are many excellent bioinformatics–specific pattern–matching

tools including Patscan [], tacg [], and fuzzpro []. However, all of these tools are

optimized for searching for single patterns, that is, one–at–a–time.

Biogrep is a pattern–matching tool designed to match large pattern sets (+ patterns)

against large biosequence databases (+ sequences) in a parallel fashion. �is makes biogrep

well–suited to annotating sets of sequences using biologically significant patterns.

.. Implementation and results

Biogrep is written in the C programming language using the GNU regular expression []

and POSIX threads (pthreads) [] libraries. �e program reads query patterns from either a

plain text file, one–per–line, or from a Teiresias–formated pattern file [] (see Section . on

page ). �ese patterns are treated as POSIX extended regular expressions and are searched

against a user supplied file, which can be either a FastA–formatted biosequence database or any

text file.

Table . on the facing page shows a comparison of Biogrep with a few common programs.

�e grep family of pattern matching tools are absent from the table because their run times are
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extremely long. �is is because many of these tools cannot take sets of patterns and have to be

used on a per pattern basis. �e next best alternative to Biogrep is a simple PERL script split

between multiple processors.

Table .: Performance of Biogrep matching all the  patterns in Prosite (release .)
against the  protein sequences in Swiss–Prot/TrEMBL [] (release as of  July ).
Runs were carried out on an IBM p eserver running AIX L with  Power processors.

program  processors execution time (s)
biogrep  
biogrep  
biogrep  
biogrep  

perl  
perl  

patscan  

Biogrep has a number of user options, which are described in the documentation that comes

with the software. Most importantly, Biogrep can divide the pattern–matching task between

a user–specified number of processors using threads. �is drastically reduces the user–time

required to match large sets of patterns (see Table .). In addition, Biogrep is distributed with

detailed documentation, numerous examples, and various helper–scripts for interfacing with

other pattern matching/discovery programs. �e Biogrep source code is available at http:

//web.mit.edu/bamel/biogrep.shtml .

http://web.mit.edu/bamel/biogrep.shtml
http://web.mit.edu/bamel/biogrep.shtml
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. �e evolution of updatedBLOSUMmatrices and theBlocks

database

.. Introduction

As I discussed in Chapter , amino acid substitution matrices are a very common way to

measure the degree of similarity between protein sequences (see for example Section .. on

page ). Indeed, the fidelity of amino acid sequence alignment and motif discovery tools

depends strongly on the target frequencies implied by the underlying substitution matrices.

�e BLOSUM series of matrices, constructed from the Blocks  database, is by far the most

commonly used family of scoring matrices. Since the derivation of these matrices, there have

been many advances in sequence alignment methods and significant growth in protein se-

quence databases. However, the BLOSUM matrices have never been recalculated to reflect

these changes. Intuition suggests that if the Blocks database has changed — by the growth or

addition of blocks — that matrices computed after these changes may be different than the

original BLOSUM matrices.

Here we show that updated BLOSUM matrices computed from successive releases of the

Blocks database deviate from the original BLOSUM matrices. At constant re–clustering per-

centage, later releases of the Blocks database give rise to matrices with decreasing relative en-

tropy, or information content. We show that this decrease in entropy is due to the addition

of large, diverse families to the Blocks database. Using two separate tests, we demonstrate that

isentropic matrices derived from later Blocks releases are less effective for the detection of re-

mote homologs, and that these differences are statistically significant. Finally, we show that

by removing the top  large, diverse blocks, the performance of the matrices can largely be

recovered.

�is work is part of a manuscript that is currently under consideration. �e manuscript was

co–authored with Mark Styczynski, Isidore Rigoutsos, and Gregory Stephanopoulos. �rough-

out this section, the use of the pronoun “we” refers to these authors.



.. THE EVOLUTION OF UPDATED BLOSUM MATRICES AND THE BLOCKS DATABASE 

.. Motivation

Many different scoring matrices have been proposed in the literature, but the BLOSUM se-

ries [] and PAM series [] of matrices are by far the most widely used. For a review of the

many different substitution matrices, the reader is referred to articles by Henikoff and Henikoff

[, ] and Vogt et al. []. Despite the vast array of matrices available, a single matrix,

BLOSUM, has become a de facto standard — it is the default matrix for popular pairwise se-

quence alignment tools such as BLAST [] and FastA [] and multiple sequence alignment

tools such as Clustal–W [] and t–coffee [].

�e BLOSUM series of matrices was constructed in  from Blocks  []: a database

of protein blocks, or highly conserved protein regions, derived from families in the PROSITE

database []. �ese blocks were used as a training set to derive a set of implied target frequen-

cies that dictate the frequency with which an amino acid of one type should be aligned with

an amino acid of another type. �e various members of the BLOSUM matrix family — BLO-

SUM, BLOSUM, BLOSUM, etc. — were made by clustering the sequences in each

block at various thresholds, effectively down–weighting similar sequences to create matrices

optimized for aligning more distant homologs.

�e Blocks database is itself used for homology searching [, ] and other functions [,

]. As such, it is periodically updated, with ten major releases in the past ten years and some

minor releases. Intuition suggests that these improvements in the Blocks database may make

it a better training set for creating scoring matrices. �e goal of this manuscript is to show the

effects of updates to Blocks on the matrices derived from the database.

When the BLOSUM matrices were initially created and published, it was hypothesized

that the use of more protein groups (and thus more blocks) in the matrices’ creation would

have little effect on the matrix []. �is was supported by the removal of specific blocks, or

even half of the blocks, yielding approximately the same matrices. However, in retrospect it is

obvious that the known protein motifs in  are a small fraction of those cataloged in today’s

databases. Furthermore, it is plausible that motifs discovered “early” were inherently biased due

to experimental methods and likely not representative of nature as a whole. It is unclear whether

new, more recent blocks would yield identical, similar, or significantly different matrices.

In the following sections, we detail the construction of updated BLOSUM scoring ma-
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trices from successive releases of the Blocks database and describe the results of two sequence

alignment tests used to evaluate the performance of these matrices.

.. Methods

Matrix construction

All previous versions of Blocks databases were taken from the Blocks ftp server, ftp://

ftp.ncbi.nih.gov/repository/blocks/unix/ . BLOSUM matrices were con-

structed using a version of the BLOSUM source code (available from the above FTP server)

originally used to prepare the BLOSUM family of matrices, but with some slight modifica-

tions and bugfixes reported elsewhere []. �ese changes included fixing integer overflows

in multiple locations and fixing the weighting of substitutions between clusters of sequences.

For each version of the Blocks database, a full scan of all integer–valued reclustering percent-

ages between  and  was performed (Figure -). �e matrix for each Blocks release with

relative entropy closest to the originally reported BLOSUM matrix (.) was selected as

the representative matrix for that release.

Sequence datasets

Two different database searches were used to judge the ability of each matrix to detect homologs:

a search of SWISS–PROT  [] using a set of queries previously determined to reflect “diffi-

cult” searches that are able to distinguish the abilities of different matrices [], and a search

of the ASTRAL database [] using each member as a query. �ese two different validation

strategies have different benefits: the former is historically relevant, as it was a method used to

initially demonstrate the superiority of BLOSUM to other matrices [, ]. �e latter is

more time–consuming, but it reflects current knowledge of protein homology and allows for

the determination of the statistical significance of differences between matrices.

�e first method we used for testing matrices was designed to emulate the work by Henikoff

and Henikoff []. In that work, the  PROSITE . [] families that were most challeng-

ing to detect were used as queries against SWISS–PROT  (numbering , sequences).

For each family, the list of all members was used as true positives.

ftp://ftp.ncbi.nih.gov/repository/blocks/unix/
ftp://ftp.ncbi.nih.gov/repository/blocks/unix/
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Figure -: Characteristics of the BLOSUM matrices calculated from successive releases of the
Blocks database. Panel A) shows the entropy of the scoring matrices computed from various
Blocks releases as a function of the clustering percentage used by the BLOSUM algorithm (see
methods). Blue colors indicate low entropies and red colors indicate high entropies. Oddly,
at constant clustering percentage, matrix entropy decreases with successive Blocks releases (see
part B below). �e middle part of panel A) shows the clustering percentage which results in the
matrix which has an entropy closest to the original BLOSUM matrix. �e right–most panel
shows the number of blocks in each release of the Blocks database. Panel B) of the figure shows
a scatter plot in which each block in the Blocks  database is represented as a dot. �e location
of the dot along the x-axis represents the percent of the amino acid pairs contributed by that
block that lie along the matrix diagonal — i.e. identical pairs such as A–A, G–G, etc. �e
location of the dot along the y–axis indicates the total number of amino acid pairs contributed
by that block. (Note that the y–axis is in log units and that the matrix was computed at 
clustering.) Finally, panel D) shows the scatter plot for Blocks . Notably, successive releases
of the Blocks database incorporated many large blocks comprising distantly related sequences,
as shown by the migration of the point clouds towards the upper left quadrant.
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�e second method we used for testing matrices was designed to emulate the work by Price

et al. []. We used the ASTRAL database [] as the basis for our more exhaustive experi-

ments for detection of remote homologs. ASTRAL is created based on the SCOP database [],

which classifies proteins based on their function, structure, and sequence into a hierarchical

structure of classes, folds, superfamilies, and families. Sequences in the same superfamily can

have low sequence similarity, but are likely to have a common evolutionary origin based on

their structural and functional features. Because these classifications are made by human in-

spection, not via automated sequence alignment procedures, it makes a perfect “gold standard”

for remote homolog detection tests.

From the full set of ASTRAL genetic domain sequences, we chose the sequence set from

which  identical sequences had been eliminated. By using this subset, our search focuses on

the detection of remote homologs that are more challenging for substitution matrices to discover

and thus will differentiate the abilities of the respective matrices to find distant relatives. �e

sequences were further filtered by pseg [] for the removal of low–complexity regions. �e

unfiltered sequence set is available on–line from the ASTRAL database at http://astral.

berkeley.edu/scopseq-1.69/astral-scopdom-seqres-gd-sel-gs-bib-40-1.

69.fa . �is non–redundant set numbers , sequences. Each sequence was extracted from

the database one at a time and used as a query for the entire database. Search results in the same

superfamily as the query were considered to be true positives.

Search methods

We chose the Smith–Waterman [] local alignment algorithm for all searches against both

databases for its high sensitivity in detecting remote homologs. In particular, we used the ssearch

implementation of the Smith–Waterman algorithm by Pearson [, ].

For our database searches, we used the ssearch default parameters for unknown matrices,

which are a - penalty for gap initiation and a - penalty for gap extension. We believe that

these parameters are reasonable settings; they represent an intermediate ground between the

values used in the initial BLOSUM paper (-/-) and current commonly–used settings (for

instance, the defaults for BLOSUM in ssearch are -/-, while in BLAST they are -/-).

Moreover, previous work [] has shown that while slight performance boosts can be found

http://astral.berkeley.edu/scopseq-1.69/astral-scopdom-seqres-gd-sel-gs-bib-40-1.69.fa
http://astral.berkeley.edu/scopseq-1.69/astral-scopdom-seqres-gd-sel-gs-bib-40-1.69.fa
http://astral.berkeley.edu/scopseq-1.69/astral-scopdom-seqres-gd-sel-gs-bib-40-1.69.fa
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by optimization of gap penalties, there is frequently a broad maximum of penalty values with

approximately equal efficacy. In addition, a sampling of the Kolmogorov–Smirnov statistic

values returned by ssearch for searches using our penalty values were well within the acceptable

range. �is indicates that the distribution of alignment scores is the expected extreme–value

distribution and that a significant alteration of the gap penalties is most likely unnecessary. �at

is, our penalties are neither too forgiving nor too permissive.

Most importantly, the determination of completely optimized sets of matrices and param-

eters is not the ultimate goal of this work. Rather, the goal of this work is to analyze the

BLOSUM matrices as affected by the changing entries in the Blocks database. In this sense, the

use of globally optimal parameters for each matrix is not imperative; instead, the consistent use

of some average, acceptable parameter values for all matrices provides a level, controlled envi-

ronment for determining the relative raw ability of each matrix to detect remote homologs. So,

though we feel we chose acceptable parameters for our work, it is not of intrinsic importance

to determine the optimal parameters for each matrix.

It is worth noting that other works (particularly the early BLOSUM works that the PROSITE–

based testing method is based upon) frequently used BLAST [] instead of Smith–Waterman

to evaluate the quality of scoring matrices. In this work, we chose Smith–Waterman because of

its sensitivity and to avoid any artifacts due to the heuristic shortcuts in BLAST.

Evaluation of results

For both sets of database searches, we used the same respective methods for evaluating search

results as in previous literature. In the PROSITE–based testing, we used head–to–head com-

parison of effectiveness in finding family members. For all PROSITE families that were queried,

the matrix that found the most true positives was noted. �e relative effectiveness of any two

matrices was then found by subtracting the number of times that one matrix was more effective

from the number of times that the other was more effective. True positives were defined as

described previously. �e search criterion used was the same as for the previous work [],

as initially described by Pearson []: if a true positive appeared before . of the true

negative sequences, it was considered “found”.

For ASTRAL–based testing, we used the Bayesian bootstrap method to evaluate the statisti-
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cal significance of the mean difference in coverage between any two substitution matrices [].

�is method uses coverage vs. errors per query as a means to evaluate the effectiveness of dif-

ferent substitution matrices. Coverage is defined simply as the fraction of true positives found

at a given errors per query threshold. True positives were identified as described above.

.. Results

We began by first assembling the matrices that we would be using in our experiments. As stated

in the Methods section, we used a modified version of the original BLOSUM program that

incorporated multiple bugfixes. We created a matrix for each integer clustering value between

 and ; the results can be seen in panel A of Figure -.

�e center of panel A lists the reclustering percentage needed for each Blocks release to

produce a matrix with entropy closest to that of the original BLOSUM matrix. We used this

set of isentropic matrices for our sequence alignment tests. A given matrix’s relative entropy

reflects the required minimum length of homology in order for it to be distinguished from

noise []. Merely maintaining (in this case) a reclustering percentage for a time–dependent

family of matrices would have little meaning, as changes in entropy could occur that would

obscure the effectiveness of the information encoded in the matrix. In this sense, it is only

“fair” to compare matrices of the same entropy. �us, we used matrices with the same relative

entropy of BLOSUM, ., which is approximately the value previously shown to be most

effective for database searches []. (Note that, due to the bugfixes mentioned earlier, the

BLOSUM matrix computed from Blocks  had its entropy analog at a reclustering percentage

of  rather than .) We refer to matrices computed from the “revised” BLOSUM code as

RBLOSUM, making the baseline matrix for that family RBLOSUM.

�e right-hand side of panel A in Figure - shows that the number of blocks in each release

increases in an almost monotonic fashion, with the exception of release . �e general trend

is expected, as the PROSITE database that is used to create the blocks would likely have more

families of known homology added in later releases. �e decrease in blocks in release  remains

an anomaly; we speculate that it may have been due to a one–time change in parameters in the

creation of the blocks, though we have no way to verify this theory.

Inspecting the heatmap in panel A of Figure - reveals that, as expected, relative entropy
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increases with increasing reclustering percentage in any given Blocks release. However, at con-

stant clustering percentage, matrices computed from successive releases of the Blocks database

show markedly decreased relative entropy. We hypothesized that this trend was due to changes

in the character of blocks in the database. Indeed, panels B–D of Figure - suggest that the

presence of extremely large, diverse blocks may have been the cause of this phenomenon. �e

scatter plots in panels B–D show point clouds representing all the blocks in a given Blocks re-

lease (panel C shows the outlines of these clouds). Each block is represented as a single point

at a location that indicates the degree to which the block contributes identical amino acid pairs

(x–axis) and the total number of amino acid pairs contributed by the block. �e three panels

show a trend towards the incorporation of blocks that have many sequences that are only re-

motely homologous. �is trend is manifested in the migration of the point clouds towards the

upper left quadrant of each of the three scatter plots.

�ese panels explain why the reclustering percentage needed to be increased so much in

order to create isentropic matrices. As large blocks with more diverse sequences are added to

the database, something must be done to offset that diversity in order to obtain an isentropic

matrix. Since the highly diverse members of a family (block) will not cluster together, they will

have a significant impact on the substitution counts that are used to derive the matrices. In order

to offset this impact and steer the entropy of the matrix away from that of the background, it

is necessary to increase the re–clustering percentage used to compute the matrices. In this way,

blocks containing highly homologous sequences will have greater influence on the substitution

counts and steer the matrix closer to the desired counts and information content.

Having assembled a set of isentropic matrices, we then used our two tests — the historical,

PROSITE–based test and the statistically rigorous, ASTRAL–based test — to evaluate the ef-

fectiveness of updated BLOSUM matrices. By using both of these tests rather than just one,

the comparison of updated substitution matrices is grounded in the same metrics as would

have been used when the matrices were first published, while providing quantitative statistical

results.

We found that, with time, the character and quality of the entries in the Blocks database has

changed significantly. Figure - shows a slightly complex trend that warrants some analysis.

�e figure shows boxes whose vertical position indicates their relative performance; the further
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a box is vertically from the Blocks  box, the greater the difference in performance between

the isentropic matrices derived from those releases (see caption). In early updates of Blocks, the

resulting RBLOSUM matrices tended to hover around a certain performance. �is is consistent

with previous hypotheses [] that the BLOSUM matrix would not be altered by adding to

or subtracting from the Blocks database. �e variation could be explained in part by integer

rounding; since the desired scores are rounded to the nearest whole number, it is possible that

the intended scores for a given matrix are not completely accurately represented by a given

BLOSUM matrix. Another possibility is that changing block quality causes these fluctuations;

this possibility is further analyzed below. However, the particularly poor performance of Blocks

releases from  on, and that of release , is inconsistent with the initial hypothesis that matrix

performance would remain approximately constant.

�ese results are largely consistent with our results from the ASTRAL–based tests. Figure -

 is a representative result for a set of Bayesian bootstrapping runs for the ASTRAL–based

test (in this case, for releases  and  of the Blocks database). �e lighter, thinner lines track

coverage as a function of the allowed errors per query (EPQ) for individual bootstrap runs, while

the two thick lines represent the full–database result. Clearly, there is some overlap between the

two distributions, but a pairwise comparison of runs (as demonstrated by the inset evaluated at

. EPQ) shows a distinctly non–zero difference between the two distributions. �e difference

in coverage at a variety of EPQ values can be used as a metric to judge how consistently different

the performances of any two matrices are.

�is metric is used in Figure - to show the performance of all updated matrices relative

to the baseline RBLOSUM matrix computed from Blocks . �ese results correspond quite

well to the results in Figure -. �at is, releases , , , and  perform comparably to ,

release  is slightly better, and release  is slightly worse, while releases , , and  perform

substantively worse than release . �ese latter releases have statistically significant differences.

�is agreement suggests that the original test employed by Henikoff and Henikoff [, ]

was rather effective and efficient in that the results of the test would not have changed much

with access to today’s larger databases.
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Figure -: �e relative performance of updated BLOSUM matrices. �is figure is designed
to emulate Figure  from Henikoff and Henikoff []. All matrix performances are compared
to the revised BLOSUM isentropic analogue derived from Blocks , RBLOSUM. Vertical
distance from Blocks  indicates relative performance, with matrices above Blocks  perform-
ing better and those below it performing worse. Comparisons were based on the  “difficult”
queries in Henikoff and Henikoff [], derived from PROSITE . keyed to SWISS–PROT
. Numbers in each box indicate the number of groups for which RBLOSUM from Blocks
 performed better than and worse than isentropic matrices from other releases. Releases im-
mediately following Blocks  seem to cluster around the same level of performance, while later
releases (and release ) have unusually bad performance.
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Figure -: A complete set of Bayesian bootstrap replicates, with inset histogram of coverage
difference. �ese data were created using the PSCE software []. (See Price et al. [] for
a thorough explanation of Bayesian bootstrapping). Each thin, faintly colored line represents
one Bayesian bootstrap run. �e thick lines represent the total dataset results. In this case, the
two distributions overlap somewhat, but analysis of the data via the inset histogram of coverage
difference reveals that the difference in coverage clearly follows a distribution with non–zero
mean. �ese distributions are used to compute the confidence intervals shown in Figure -.
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Figure -: Plots of the differences in performance of updated RBLOSUM matrices. Each
matrix is compared to the RBLOSUM matrix in  Bayesian bootstrap replicates to find
the mean difference in coverage, and the confidence interval for that coverage, at a specific EPQ
rate. �ese differences are plotted as a function of EPQ rate, with positive values meaning that
a given matrix performs better than RBLOSUM on the dataset. Error bars represent 
confidence intervals. At data points where the error bars do not intersect with the origin, the
performance difference between the matrices is statistically significant. �ese results correlate
well with, and provide statistical analysis of, the results in Figure -.
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.. Discussion

�e reason for the poor performance of RBLOSUM matrices derived from later releases of

Blocks remains to be explained. Figure - suggests that the number of blocks and shifting isen-

tropic clustering percentage are not reasonable explanations. If these were so, one would expect

to see either gradually degrading performance (for database size) or significant step changes in

performance at releases , , and  (for isentropic clustering percentage). However, there is

certainly not a gradual degradation in performance, and there is no significant change in per-

formance at release . In addition, any decrease in performance at release  disappears for the

next two releases.

We hypothesized that two phenomena — the decreased entropy at constant clustering in

successive Blocks releases, and the poor performances of these releases — were both caused by

the changing character of blocks added in later releases. Specifically, we thought that the trends

shown in panels B through D in Figure - might be responsible for these phenomena.

To test this hypothesis, we sorted the blocks in the Blocks  database by the number of

off–diagonal (i.e., non–identity) amino acid pairs contributed to the RBLOSUM matrix by

each block. We then removed the blocks that were the top  of contributors to off–diagonal

pairs ( blocks) and created an isentropic RBLOSUM matrix from this “cleaned” database.

Notably, the reclustering percentage required to create an isentropic matrix decreased from

 to  for the cleaned database. �e performance of this matrix relative to RBLOSUM

from Blocks  is shown in Figure -. �e cleaned version of the Blocks  database gives

rise to an RBLOSUM matrix that is superior to any of the other matrices we tested, including

RBLOSUM from Blocks  (Figure -) and the original BLOSUM from Blocks  (data

not shown).

�e performance of the RBLOSUM matrix created from the “cleaned” Blocks  database

supports our hypothesis that the addition of large, diverse blocks has had an adverse effect on

the performance of updated RBLOSUM matrices. We believe that the decrease in performance

may be due to a change in the database that is used to create the Blocks database []. Initially,

Blocks was based on the PROSITE database. As of release  of Blocks, blocks were formed

from InterPro groups rather than PROSITE groups. In release , only InterPro groups with

cross–references to PROSITE groups were used to create blocks. In release , this restriction
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Figure -: Coverage of a cleaned RBLOSUM matrix compared to the RBLOSUM matrix.
Again, thin, faint lines represent individual bootstrap runs, while the dark line represents the
parent dataset. �ese two distributions are quite distinct, with the cleaned RBLOSUM matrix
being significantly more effective than the RBLOSUM matrix (and, transitively, all updated
RBLOSUM matrices). �e inset shows the coverage difference between the two matrices’ cov-
erage as a function of errors per query. Error bars represent  confidence intervals. Note the
different scale from Figure - and the statistical significance at all EPQ values since no error
bar crosses the origin.
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was lifted, and it has remained lifted to the current release of Blocks. We believe that this

explains almost all of the trends that we observe in the data. When the Blocks database partially

shifted to being based on InterPro, performance first decreased slightly with the addition of

sequences that had not previously been included. When the shift was completed, performance

degraded significantly. �e only unexplainable anomaly is the unusually poor performance

of release  of Blocks; we believe that can be attributed to the unusually small number of

blocks in that release. Again, we speculate this may have been due to some one–time change in

parameters, but we have no way to prove or disprove such a speculation.

In conclusion, we see that in some sense, the hypothesis that Henikoff and Henikoff []

initially proposed was true: for releases of the Blocks database based on PROSITE, despite

some slight variation, the performance of isentropic RBLOSUM matrices is relatively constant

over successive releases. However, since the quality of the blocks added in recent releases has

decreased, such is not the case for the matrices derived from the current Blocks database. �is

suggests that, to the extent that there are “bad” blocks, there may also be “good” blocks, and

sensible, judicious selection of these blocks may be a reasonable approach for the creation of

amino acid substitution matrices.
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. Bioinformatics and handwriting/speech recognition: un-

conventional applications of similarity search tools

.. Introduction

Bioinformatics has benefited immensely from tools and techniques imported from other disci-

plines. Markov models used for gene–finding have their origin in information science, neural

networks are imported from machine learning, and the countless clustering methods used for

analyzing microarray data are from a wide variety of fields.

Sequence alignment tools are no exception to this trend; however, within bioinformatics,

they have reached new levels of speed and sophistication. Tools, such as Blast [, ] and

FastA [], are used routinely to search through a database for sequences (DNA or protein)

that are similar to a query sequence. Over the years, these tools have been optimized for speed

by employing a number of heuristic shortcuts to the dynamic programming algorithms on

which they are based. Even searches in very large databases, such as Swiss–Prot/TrEMBL [] or

GenBank [], take only a few seconds for queries of small to moderate size. �is is substantially

faster than the time required for a rigorous Smith–Waterman search []. In light of the

remarkably speed and accuracy that characterize these algorithms, it is intriguing to investigate

other applications where similarity search tools might be of material importance. In this work, I

present two alternative applications of these fast sequence alignment tools outside the domain of

bioinformatics: handwriting recognition and speech recognition. All of the work described in

this section is part of a publication appearing in the proceedings of the fourth Singapore–MIT

Alliance Programme on Molecular Engineering of Biological and Chemical Systems, which was

co–authored with Gregory Stephanopoulos. �roughout this section, the use of the pronoun

“we” refers to these authors.

�e dynamic handwriting recognition problem is to recognize handwriting from a touch

tablet as found on personal digital assistants (PDAs), for example Palm Pilots, or tablet PCs [].

�ese writing tablets sample the position of a pen as a function of time to produce a series of

(x, y) points that are used by handwriting recognition algorithms to determine which character

was written. An excellent review of the most common algorithms is available from Plamodon
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and Srihari, . �ese include feature analysis, curve matching, Markov models, and elastic

matching, the last of which is based on dynamic programming and is related to both Blast and

FastA.

To apply similarity search concepts to the handwriting recognition problem, we represented

the path of a PDA pen as a protein sequence by translating the (x, y) points into a string of

amino acids. Using the protein representation of handwriting samples, we were able to classify

unknown samples with FastA. �is is analogous to the problem of protein annotation using

similarity searching: given a protein (a written character) of unknown function, we annotated

the protein by searching for similar sequences (characters with similar (x, y) paths).

We applied the same sequence alignment approach to speech recognition. Automated

phone services, security checkpoints, and computer dictation software employ some form of

speech recognition. Common speech recognition methods include feature recognition, neural

networks, hidden Markov models, dynamic programming [] and a variety of other statistical

and signal processing algorithms. A good review of these techniques and more is available from

Juang & Furui, . For this problem, we represented digital speech recordings as sequences

of amino acids, and used a database of annotated recordings to classify unknown recordings.

In the following section, we describe the data sets used for the handwriting recognition and

speech recognition problems. �en, we detail how these data were represented using strings

of amino acids and how we used FastA to annotate unknown samples in four handwriting

and speech recognition experiments. We compare our results to more traditional methods of

handwriting and speech recognition and, finally, we discuss ways of improving upon the results

and extending sequence alignment to other classification problems.

.. System and Methods

Handwriting Recognition

For our handwriting recognition experiments, we used data from Alimoglu and Alpaydin, ,

available in the University of California Irvine repository of machine learning databases [].

�ese data comprised of  handwritten digits between  and , written by  writers with

each writer submitting  digits ( samples were discarded by the original authors).
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Figure -: Projection of a digit written with a PDA stylus into protein space. Concatenating
the set of points gives a protein sequence representative of the digit. In this case, the sequence
is QYKXVVFMWGSNHANQ.An alignment of nines from two different writers. �e boxes at
the top show the input from each writer and the large grid show the superposition of the two
handwritten digits. �e FastA alignment between the protein representations of the two digits
is shown in the center. Two visualizations of the handwriting recognition problem. In both
cases the x and y axes are divided into  parts corresponding to the columns and rows in an
amino acid scoring matrix. �e eight sampled points from the digit are cast from x, y space
into protein space by assigning amino acid coordinates to each point.
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Figure -: An alignment of the spoken–letter “X” recorded from two different speakers.
�e plots at the top and bottom are recordings for first and second speakers, respectively. �e
breakout in the center shows a section of the protein projection of each recording and the
alignment generated using FastA as described in the text. �is example was taken from the
first speech recognition experiment. In this case, the bottom recording was the top scoring
alignment against the top recording.
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Figure -: A phylogenetic tree of voice–proteins. �is tree was created using the Phylip []
tree drawing program from a multiple sequence alignment of all  voice–proteins from a single
speaker. �e multiple sequence alignment was made using the ClustalW [] alignment tool,
with the scoring matrix in Table . on page . In the tree, similar sounding (homologous)
letters are grouped near each other. For example, all the letters containing the /ee/ sound [B,
C, D, E, G, P, T, V, Z ] are clustered on the left side of the tree.
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Table .: Results for the handwriting and speech recognition problems described in the text.
For each experiment, the misclassification is the percent of sequences in the unknown set for
which the digit or letter was not predicted correctly.

Experiment Classification Classification in
Alimoglu & Alpaydin, 

 . .
 . n/a

(a) Handwriting recognition results.

Experiment Classification Classification
with clustering

Classification in
Dietterich & Bakiri, 

 . . .
 . . n/a

(b) Speech recognition results. �e second column shows the misclassification using the
clustering of all /ee/ sounding letters as described in the text.

Each digit was written with a stylus pen on a touch tablet, which recorded the x and y

coordinates of the pen as a function of time. �ese data were re-sampled such that each written

digit was represented by a series of eight (x, y) points, spaced out by a constant arc length over

the path of the digit. �en, for each digit, the set of (x, y) points were scaled such that the largest

axis, usually the y axis, ranged from  to . By dividing the number line [, ] into  “bins”

we translated each of these coordinates into a pair of amino acids as shown in Figure - on

page . We concatenated these amino acid pairs to obtain a protein sequence representation

of each digit: a “digit–protein.”

Speech Recognition

For our speech recognition experiments, we used data from Deitterich and Bakiri, , avail-

able in the University of California Irvine repository of machine learning databases []. �is

data set consisted of  recordings of individuals speaking one of the letters A–Z. A total

of  speakers each said every letter A–Z twice (three recordings were discarded by the orig-

inal authors). �en, each recording was processed into a set of  real–valued attributes in
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Table .: �e scoring matrix used for the handwriting and speech recognition FastA align-
ments. Each entry of the scoring matrix, sij, is given by sij =  − (i-j). �at is, matching
amino acids are given  “points”, amino acids that are one off are given  points, and so on.
�is matrix was used in place of the default scoring matrix, Blosum [], for FastA. �e
scoring matrix was found heuristically. Also, a few experiments indicated that the alignments
are relatively insensitive to permutations about the form of sij given above.

A R N D C Q E G H I L K M F P S T W Y V B Z X

A            - - - - - - - - - - - -

R             - - - - - - - - - - -

N              - - - - - - - - - -

D               - - - - - - - - -

C                - - - - - - - -

Q                 - - - - - - -

E                  - - - - - -

G                   - - - - -

H                    - - - -

I                     - - -

L                      - -

K -                      -

M - -                     

F - - -                    

P - - - -                   

S - - - - -                  

T - - - - - -                 

W - - - - - - -                

Y - - - - - - - -               

V - - - - - - - - -              

B - - - - - - - - - -             

Z - - - - - - - - - - -            

X - - - - - - - - - - - -           
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the range [−, ]. A more detailed description of the database is available from Dietterich &

Bakiri, .

By dividing the number line [−, ] into  bins we translated these real numbers into a

series of amino acids. For example, the series “-.,-., ., .” was translated to “AQKY”.

We concatenated these amino acids to make a protein representation of each recording: a

“voice–protein”.

.. Results

Handwriting Recognition

We conducted two handwriting recognition experiments. In both experiments part of the digit–

protein database was assumed to contain a “known” set of digits that was subsequently used to

annotate, or classify, the remaining “unknown” digits. For our first experiment, we used for the

known database containing the writing of  persons ( digits) and an unknown database

with the writing of the remaining  persons ( digits). Using FastA, we searched each

sequence from the unknown set in the known set and used the top scoring hits to annotate the

unknown digits. Searches were carried out using the scoring matrix shown in Table . on the

preceding page with FastA version .t using the default gap open and extension penalties,

and the following options: -p -Q -d0 -f-8 -g-1 -H -E1000 -b1 . An example

alignment of two handwritten nines from different writers is shown in Figure - on page .

For our second experiment, we used  ( digits) of our digit–protein database, se-

lected randomly, as the unknown set and the remaining  ( digits) as our known set.

Alignments and annotations using FastA were performed as in the first experiment.

�e results of the two handwriting recognition experiments are shown in Table . on

page . In experiment , our results are about the same as the best k–means clustering results

of Alimoglu and Alpaydin [, ]. �is experiment simulates the user–independent handwrit-

ing recognition problem: the handwriting of one group of writers was used to classify digits

from a different group. In the user–dependent problem, experiment , the database of known

handwritten digits contains samples from all the writers, on average. �us, for every unknown

handwriting sample, there is often a close match in the database of known samples. As such,
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the results of experiment  are significantly better than those of experiment  as shown in Ta-

ble . on page .

In experiment , the average time for each alignment was . seconds per unknown

sequence on a  gHz Pentium III processor. �is is much shorter than the time required to write

the digits. �us sequence alignment could be used as a “real–time” method for handwriting

recognition. �is high speed, together with the high accuracy for user–dependent recognition

makes sequence alignment good candidate for use on a Tablet PCs, or even PDAs.

Speech Recognition

Using the voice–protein database, we conducted two experiments, analogous to the two hand-

writing recognition experiments described previously. First, we used a known set consisting

of  recordings from  speakers and an unknown set with  recordings from the re-

maining  speakers. Second, we used  ( recordings) of the voice–protein database,

selected randomly, as the unknown set and the remaining  ( recordings) as the known

set. Each of the speech recognition alignments was performed using the same scoring matrix

and FastA parameters as the handwriting recognition experiments. An example alignment of

two voice–proteins is shown in Figure - on page .

�e results of the two speech recognition experiments are shown in Table . on page .

Experiment  is compared to the best Error Correcting Output Code (ECOC) results of Deit-

terich and Bakiri [], but there was no comparison available for experiment . �e misclas-

sification for experiment  was ., higher than the ECOC result of .. However, we

observed that most of the errors were due to rhyming letters, and in particular all of the /ee/

sounding characters [B, C, D, E, G, P, T, V, Z ]. �is indicated that these characters were sim-

ilar on a sequence level, so we constructed a phylogenetic tree of the sequences to study their

relationship.

A phylogenetic tree of  voice–proteins from a single speaker is shown in Figure - on

page . As the figure shows, the protein projections of phonetically similar letters tend to be

homologous. Furthermore, letters such as A and H, which have the /ay/ sound at the beginning,

are more closely related to each other than they are to J and K, which have the /ay/ sound at the

end. Because the /ee/ sounding letters all have /ee/ at the end, they are particularly difficult to
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distinguish from each other. �ese letters account for a disproportionate majority of the errors

in our two experiments. By clustering these letters together such that they are considered the

same for classification purposes, the error in experiment  was reduced to .. If the original

error was evenly distributed between the classes, the error would have been reduced only to

about .. �is suggests that, although string alignment performs poorly for /ee/ sounding

characters, it performs well for all other characters.

.. Conclusions

�is work showed that sequence alignment can be a powerful classification tool for problems

outside the domain of bioinformatics. In both the handwriting and speech recognition prob-

lems, we projected real–valued data into strings of amino acids and used FastA as a classification

tool, in a manner analogous to protein annotation. In the case of handwriting recognition, we

showed that sequence alignment is a viable alternative to traditional methods, such as k–means

clustering, and is fast enough to be used as a real–time recognition method.

�ere are many ways to improve upon the results we presented here. First, we did not have

any explicit training phase for either set of experiments. However, there are at least two se-

quence alignment parameters which can be trained: the gap open and extension penalties, and

the scoring matrix. �e optimization of these parameters for protein annotation is well docu-

mented [, , , , , ] and would be similar for alternative sequence alignment

applications such as handwriting recognition. Second, intelligent projection of data into strings

can greatly improve results. Here, we used bins of equal size to partition the real–valued data

into amino acids; however, bins of unequal size may improve the resolution between closely

related sequences and improve classification. Finally, more customizable sequence alignment

tools would be very useful. �ese tools should take an arbitrary alphabet (Blast and FastA

are restricted to  amino acids) and a user–defined scoring matrix (FastA allows user–defined

matrices, but Blast does not).

�e potential applications of sequence alignment tools outside of bioinformatics are bound-

less. Tools such as Blast and FastA can be used to quickly classify or search through any data

that can be projected into a string of characters. Of course, these methods will work best with

data that is of a low dimension. Our experiments with more complex data data, such as color
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images, suggest that how the data are projected into a string is very important with large number

of dimensions. However, for simple types of data, such as customer purchase histories, black

and white images, or Internet chat transcripts, we have been able to use sequence alignment as

a quick and effective classification tool.
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. Machine learning approaches to modeling the physio-

chemical properties of peptides

.. Introduction

In this section, I discuss the modeling of small peptide sequences using non–grammatical mod-

els. Most commonly, peptides and protein sequences are represented as a string of letters drawn

from the alphabet of characters representing the twenty natural amino acids. Here, I present a

series of experiments using a more meaningful representation of amino acids and test the ability

of various machine learning techniques to predict peptide function. Specifically, I develop a set

of three amino acid representation schemes and test these schemes combinatorially with a set of

six machine learning techniques. All of the work described in this section is part of a publication

appearing in the proceedings of the fourth Singapore–MIT Alliance Programme on Molecular

Engineering of Biological and Chemical Systems, which was co–authored with Mark Styczyn-

ski and Gregory Stephanopoulos. �roughout this section, the use of the pronoun “we” refers

to these authors.

.. Motivation and background

Amino acid representations

�e most common representation of small peptides are as strings of letters representing the

twenty amino acids, e.g. KWRAG, which is the five residue sequence lysine, tryptophan, argi-

nine, alanine, and glycine. Notably, both amino acid names and their corresponding abbrevi-

ations are human constructs that carry no information about the underlying physiochemical

characteristics of each amino acid. �at is, the string KWRAGcarries little information in and of

itself, without some information about what a K is and how it is different from the other amino

acids. In place of such physical descriptions, previous efforts have described the similarity of

amino acids based on the tendency for one amino acid to substitute for another in homolo-

gous, similarly–functioning proteins across different species [, ]. �at is, substitutions

that are observed in nature can be construed in some sense as indicating similarity between cer-

tain amino acids. While such efforts have been extremely useful for tasks such as aligning more
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distant protein homologs, they typically do not capture enough information to be practically

useful in de novo design or prediction of protein activity.

Here we experiment with feature vector representations of small peptides using sets of amino

acid physiochemical characteristics derived from the AAindex database [, , ]. �e

AAindex database lists  physiochemical parameters for each of the twenty amino acids.

�ese parameters range from those that are very tangible and intuitive — for example, residue

volume, which is AAindex parameter BIGC [] — to the abstract — for example,

the normalized frequency of participation in an N-terminal beta–sheet, which is AAindex pa-

rameter CHOP []. �e parameters were culled from the scientific literature by the

AAindex authors and might be considered the universe of what we, as the scientific community,

know about each amino acid.

�us, a very logical way of representing an amino acid is as a feature vector of these 

attributes. In this sense each type of amino acid has a different feature vector of the same dimen-

sionality. �is might be considered the “maximally informative” representation of the amino

acids since it incorporates an expansive set of features culled from the literature. Extending this,

we could write an amino acid sequence as the concatenation of these vectors. �at is, a three

residue peptide could be represented as a  ∗  =  feature vector. Intuitively, this repre-

sentation retains more information than the string representation. Further, we would imagine

that the physiochemical representation would be more useful for modeling the function of a

peptide sequence, such as its propensity to fold in a certain manner or to react with a certain

enzyme.

�e representation of amino acids has received some previous attention in the literature.

For example, Atchley et. al. [] use the physiochemical parameters from the AAindex to create

a low–dimensional projection of the characteristics of each of the twenty natural amino acids.

Further, they used this low–dimensional progression to derive metrics of similarity between

the amino acids, similar to popular amino acid scoring matrices such as Blosum [] and

PAM [].
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HIV–I Protease

In this work we will use the HIV–I protease as a model system for demonstrating the merits of

different physiochemical amino acid representations. Specifically, we show the success of dif-

ferent representations and different machine learning methods at modeling substrate specificity

of the protease.

�e HIV– protease is a proteolytic enzyme encoded by the HIV genome []. �e protease

plays a critical role in viral replication and the development of viral structure []. �e protease

recognizes specific eight–residue sequences in its substrates (see Figures - and - on the

facing page). �e protease’s natural targets are subsequences of other HIV genes which must

be cleaved for the virus to successfully replicate. Accordingly, small molecule inhibitors of the

protease are a common therapy for HIV/AIDS [].

Figure -: Structure of the HIV–I protease, derived from the Protein Data Bank (PDB) []
entry HVP []. Over one hundred other structures of the protease have been solved since
the first in  and are available from the PDB’s website. �e protein is a dimer of two 
amino acid chains. �e regions of the protein at the top of the figure, the “flaps,” open up and
accept a substrate protein, closing behind it. Two aspartate residues in the active site, aided by
the presence of water, act to cleave the substrate.

In addition to the handful of sites that the protease cleaves to facilitate viral development,

it can cleave a number of other “non–natural” substrates []. �ese substrates have been the

focus of intense experimental study [, , , ]. In a recent manuscript, You et. al. collected

a comprehensive set of + eight–residue substrates that have been tested for cleavability by

the HIV–I protease []. In addition, You et. al. developed a series of models for the protease’s

substrate selectivity that, in general, outperform previous computational models [, , ,

], which relied on a much smaller dataset [].
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Figure -: Schematic of the HIV–I protease active site. �e active site comprises eight bind-
ing pockets (P–P and P’–P’) into which eight residues from the target protein fall. �e
target protein is cleaved between the S and S’ residues. One half of the catalytic unit is made
up by chain A of the protease and the other by chain B (see Figure - on the facing page).

.. Methods

Amino acid representations and input data set

A set of  eight–residue peptides were generously provided by You et. al. [], each with

a class: cleavable by the HIV–I protease or not cleavable. In addition, the complete set of 

physiochemical parameters for each of the  naturally occurring amino acids was downloaded

from the AAindex database (release ., July ).

From these  parameters, we removed redundant parameters for which the magnitude of

the correlation coefficient with another parameter was greater than .. �e remaining 

independent parameters were kept. Using these parameters, we made three different projections

of the  experimentally tested protease substrates as detailed below.

Full physiochemical projection In this projection each eight–residue peptide was repre-

sented as a –dimensional feature vector:  residues with  physiochemical features per

residue plus the class — cleaved or not cleaved. Of our three representations, this one retains
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the most information about the peptides.

Feature–selected physiochemical projection Using the “FULL” projection (above) we per-

formed a feature selection routine to select only those features that are most correlated to the

class. (�roughout this manuscript, all modeling and feature selection were performed using

the Waikato Environment for Knowledge Analysis, or WEKA []). Briefly, we evaluated

the worth of a subset of features by considering the individual predictive ability of each feature

with respect to the cleaved/uncleaved class, along with the degree of redundancy between the

features. Using this method, we created a –dimensional projection of the peptide substrates

( features plus the class).

Analysis of this lower–dimensional projection revealed that the features of the outer residues

(S, S’) are relatively unimportant, whereas the central residues (S, S’) are quite important

in determining cleavability. For the S position, seven parameters were chosen:

• FASG: Melting point [];

• FAUJ: Minimum width of the side chain [];

• PALJ: Normalized frequency of beta–sheet in alpha+beta class [];

• PRAM: Hydrophobicity [];

• ROBB: Information measure for extended without H-bond [];

• KOEP: Alpha–helix propensity derived from designed sequences []; and

• MITS: Amphiphilicity index [].

PCA projection of physiochemical properties Using the full, –dimensional represen-

tation of each of the  naturally occurring amino acids, we performed principal component

analysis (PCA) to find linear combinations of features that capture the variation between dif-

ferent kinds of amino acids. More formally, PCA, or the Karhunen–Loève transform, is a

linear transformation by which the  data points in a –dimensional space are projected

onto a new coordinate system. �e system is chosen such that the greatest variance is captured

by the first axis, or the first “principal component.” Successive principal components (axes)
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capture progressively less variance. Each component is a linear combination of some of the

initial features; given appropriate uniform normalization, the weight of each feature in a given

component indicates the relative importance of that feature in defining the component.

Using PCA, we derived  principal components that capture  of the variance in the

amino acids, with the first PC capturing  of the variance. �e set of  peptide –mers

were projected into a reduced –dimensional space:  concatenated –dimensional residues

plus the class of the peptide.

Model creation and classification

For each of the three peptide representations detailed above, we tested the ability of six machine

learning techniques to classify the peptides as either cleaved or uncleaved. Each of these models

is described below. For each model, we evaluated the performance using x cross–validation

(see Conclusion): for each of ten runs,  of the peptide dataset was withheld for testing a

classifier trained by the remaining  of the peptides. �e sensitivity and specificity of each

classifier’s predictions for all ten of its cross–validation runs can then be combined to determine

the percentage of correctly classified peptides. �is value is used to quantify the classifier’s overall

accuracy and facilitates pairwise comparison of models and representation schemes.

Decision tree model Decision trees are simple, intuitive classification schemes that use a se-

ries of questions (decisions) to place a sample in a class with low error rate. More specifically,

a decision tree is a structure in which the internal branches represent conditions, such as “hy-

drophobicity index at S > .”. Following these conditions leads to the leaves of the tree,

which are classifications indicating whether the peptide is cleaved or not. Here, we use a par-

ticular variant of the decision tree, a C. decision tree [], which is notable for not being

prone to overfitting of input data. An example decision tree from our experiments is shown in

Figure - on page .

Logistic regression model A logistic regression is just a non–linear transformation of a linear

regression. In this model, each independent variable (the different dimensions of our various

projections) are regressed to the class (cleaved or not cleaved). Here we use a variant of logistic

regression that leads to automated feature selection and is described elsewhere [].
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Bayesian network model Bayesian network models use directed acyclic graphs to model the

joint probability distribution of each class over all input features. �at is, the model captures

conditional dependencies between the features with regards to how they impact the final clas-

sification of each sample. Bayesian networks can be used to find causality relationships, one of

many features that make these models particularly well–suited to many applications in compu-

tational biology (see, for example, [, , ]). �e method uses a Bayesian scoring metric

that ranks multiple models based on their ability to explain data with the simplest possible

method. �e Bayesian metric is a function of the probability of the model being correct given a

set of observed data; this is, in turn, correlated to the model’s prior probability and its physical

likelihood. For a more detailed explanation of Bayesian networks, see Witten and Frank []

or Heckerman [].

Naive Bayes model �e naive Bayes model, or “Idiot’s” Bayes model [], is a simple ma-

chine learning scheme that assumes naively that each feature has an independent effect on the

classification of each sample []. In the case of the HIV–I protease substrates, this means

that the physiochemical characteristics of the S residue contribute to the cleavability of the

peptide in a way that is independent of the other residues: S’, S, etc. �e resulting net-

work dependencies are less complex than one might otherwise obtain from a Bayesian network

model but are frequently useful, particularly for unwieldy datasets or problems with physical

characteristics that may warrant the assumption of conditional independence of features.

Support vector machine model with linear basis function �e support vector machine

(SVM) is a machine learning technique posed as a quadratic programming (QP) problem [].

�e formulation can best be conceptualized by considering the problem of classifying two lin-

early separable groups of points. �e first step is to define the “convex hull” of each group,

which is the smallest–area convex polygon that completely contains a group. �e SVM ap-

proach looks for the best linear classifier (single straight line) between the two groups of points,

defined as either the line that bisects the two closest points on each convex hull or the two

parallel planes tangent to each convex hull that are furthest apart. �ese alternative definitions

provide two alternative formulations of a convex QP problem; notably, they both reduce to

the same problem. (A rigorous mathematical treatment of these qualitative explanations can



.. MACHINE LEARNING APPROACHES TO MODELING THE PHYSIOCHEMICAL PROPERTIES OF
PEPTIDES 

be found elsewhere [, ].) Tried and true methods for solving QP problems can then be

used to (relatively quickly) determine the best classifier. �is method can be expanded to allow

for linearly inseparable cases by altering the optimization problem to account for a weighted

cost of misclassification when training the model. �ere is evidence in the literature that an

SVM approach to defining the best classifier is less susceptible to overfitting and generalization

error [, , ].

Support vector machine model with radial basis function �e above description of an

SVM, despite accounting for the possibility of inseparability, does not address the need for non–

linear classifiers. For instance, if the members of one class fall within a well–defined circle and

the non–members fall outside of the circle, the above method will perform extremely poorly be-

cause it will try to form just one plane to separate the groups []. Rather than attempting to fit

higher–order curves, it is easier to project the input attributes into a higher–dimensional space

in which the groups are (approximately) linearly separable. �e higher–dimensional spaces

can be characteristic of any desired classifier (e.g., nonlinear terms generated by multiplying

attributes or squaring attributes). �e same method for computing the best linear classifier is

then used. �e result is mapped back into attribute space of the appropriate dimensions and

constitutes a non–linear classifier. �ough one may expect such a process to be prohibitively

expensive for data with many attributes, there exists a computational shortcut using “kernel

functions” to avoid calculating all possible higher–dimensional feature values. In this work, the

basis function for the kernel gives us the ability to detect optimal classifiers that are based upon

training points’ radius from some center point (as in the above example).

.. Conclusion

Our results show that the full, –dimensional representation performed the best, followed

by the PCA representation and, finally, the representation made via feature selection. (See

Figure - on page  and Table . on page  & . on page . In these tables “FULL”

is the full physiochemical, –dimensional representation; “CFS” is the feature–selected, –

dimensional representation; and “PCA” is the –dimensional representation created using

principal component analysis.)
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Table .: Machine learning model comparison. Each i, j entry represents the number of
representations, out of three, for which the i model performed worse than the j model. Here
“worse” means that the model had a statistically significant lower performance, based on a two–
tailed t–test at the . confidence level.

DT LR NB BN SVM SVM–rbf
DT -     
LR  -    
NB   -   
BN    -  

SVM     - 
SVM–rbf      -

Of the models tested, results show that logistic regression is the best, followed by (linear

basis function) SVMs and Bayesian networks (See Figure - on page  and Table .

& . on the next page.) �e single best model/representation combination was the SVM

model with radial basis function (SVM–rbf ) and the FULL representation. It is worth noting

that though this single combination was the best, the radial basis function SVM itself did not

perform consistently well. �ough this may not have been expected, it is definitely reasonable

per the “No Free Lunch” theorem: no single machine–learning method should be expected to

perform the best in all cases [].

In general, these results suggest that higher–dimensional physiochemical representations

tend to have better performance than representations incorporating fewer dimensions selected

on the basis of high information content. As such, it seems that as long as the training set is

a reasonable size, more accurate classifiers can be constructed by keeping as many significant

input attributes as possible. �ough methods like principal components analysis help to reduce

computational complexity for unwieldy datasets, it is better to avoid feature selection until a

supervised method (like the models tested in this work) can determine which features are most

important in classifying samples.
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Table .: Machine learning model ranking. Each row shows, for each model, how many
other model/representation pairs that model (with any representation) “wins” against. (�us,
the max of the sum of the columns in any row is  −  = ; however, ties are not shown.)
Here “win/loss” means that the model had a statistically significant higher/lower performance,
based on a two–tailed t–test at the . confidence level.

total wins total losses model
  LR
  SVM
  BN
  SVM–rbf
  NB
  DT

Table .: Machine learning representation comparison. Each i, j entry represents the number
of models, out of six, for which the i representation performed worse than the j representation.
Here “worse” means that the representation had a statistically significant lower performance,
based on a two–tailed t–test at the . confidence level.

FULL CFS PCA
FULL -  

CFS  - 
PCA   -

Table .: Machine learning representation ranking. Each row shows, for each representa-
tion, how many other model/representation pairs that representation (with any model) “wins”
against. (�us, the max of the sum of the columns in any row is  −  = ; however, ties
are not shown.) Here “win/loss” means that the representation had a statistically significant
higher/lower performance, based on a two–tailed t–test at the . confidence level.

  FULL
  PCA
  CFS
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CHOP780207_S2’ <= 0.41765
| FAUJ880105_S1 <= 0.57778
| | FASG760102_S1 <= 0.27711: uncleaved (32.0/1.0)
| | FASG760102_S1 > 0.27711
| | | QIAN880122_S4’ <= 0.81022
| | | | PRAM900101_S1 <= 0.27463
| | | | | MEEJ810102_S4 <= 0.33702
| | | | | | RACS820112_S2 <= 0.58621
| | | | | | | ZIMJ680101_S1’ <= 0.52117
| | | | | | | | PRAM820101_S2’ <= 0.43367
| | | | | | | | | ROSM880103_S3’ <= 0.23077: cleaved (2.0)
| | | | | | | | | ROSM880103_S3’ > 0.23077
| | | | | | | | | | CHOP780207_S4 <= 0.21176: cleaved (2.0)
| | | | | | | | | | CHOP780207_S4 > 0.21176: uncleaved (11.0/1.0)
| | | | | | | | PRAM820101_S2’ > 0.43367
| | | | | | | | | RADA880105_S2 <= 0.75274
| | | | | | | | | | PRAM900101_S1 <= 0.06866: cleaved (10.0/2.0)
| | | | | | | | | | PRAM900101_S1 > 0.06866: uncleaved (4.0)
| | | | | | | | | RADA880105_S2 > 0.75274
| | | | | | | | | | QIAN880137_S3’ <= 0.5124: cleaved (69.0/3.0)
| | | | | | | | | | QIAN880137_S3’ > 0.5124
| | | | | | | | | | | RACS820112_S2 <= 0.43103: cleaved (2.0)
| | | | | | | | | | | RACS820112_S2 > 0.43103: uncleaved (4.0/1.0)
| | | | | | | ZIMJ680101_S1’ > 0.52117: cleaved (248.0/7.0)
| | | | | | RACS820112_S2 > 0.58621
| | | | | | | RACS820103_S4 <= 0.43007
| | | | | | | | CHAM830104_S3’ <= 0
| | | | | | | | | RADA880105_S2 <= 0.75274: uncleaved (5.0/1.0)
| | | | | | | | | RADA880105_S2 > 0.75274: cleaved (2.0)
| | | | | | | | CHAM830104_S3’ > 0: cleaved (11.0)
| | | | | | | RACS820103_S4 > 0.43007: uncleaved (6.0)
| | | | | MEEJ810102_S4 > 0.33702
| | | | | | GARJ730101_S4’ <= 0.01426: uncleaved (9.0)
| | | | | | GARJ730101_S4’ > 0.01426
| | | | | | | CHAM830104_S3’ <= 0
| | | | | | | | QIAN880102_S4 <= 0.57143: uncleaved (7.0/1.0)
| | | | | | | | QIAN880102_S4 > 0.57143: cleaved (3.0)
| | | | | | | CHAM830104_S3’ > 0: cleaved (9.0)
| | | | PRAM900101_S1 > 0.27463
| | | | | GEIM800106_S1’ <= 0.94
| | | | | | RACS820102_S3 <= 0.81522
| | | | | | | FAUJ880108_S2’ <= 0.4375: uncleaved (31.0/1.0)
| | | | | | | FAUJ880108_S2’ > 0.4375: cleaved (4.0/1.0)
| | | | | | RACS820102_S3 > 0.81522: cleaved (6.0)
| | | | | GEIM800106_S1’ > 0.94: cleaved (9.0)
| | | QIAN880122_S4’ > 0.81022
| | | | MITS020101_S1 <= 0.35354
| | | | | ZIMJ680101_S1’ <= 0.82085: uncleaved (20.0)
| | | | | ZIMJ680101_S1’ > 0.82085
| | | | | | RACS820102_S3 <= 0.3587: uncleaved (4.0)
| | | | | | RACS820102_S3 > 0.3587: cleaved (5.0)
| | | | MITS020101_S1 > 0.35354: cleaved (2.0)
| FAUJ880105_S1 > 0.57778
| | QIAN880137_S3’ <= 0: cleaved (3.0)
| | QIAN880137_S3’ > 0: uncleaved (37.0/1.0)
CHOP780207_S2’ > 0.41765
| ZIMJ680101_S1’ <= 0.58306: uncleaved (145.0/2.0)
| ZIMJ680101_S1’ > 0.58306
| | PRAM900101_S1 <= 0.27463
| | | FAUJ880105_S1 <= 0.57778
| | | | FAUJ880105_S1 <= 0: uncleaved (2.0)
| | | | FAUJ880105_S1 > 0
| | | | | RACS820103_S3 <= 0.72378
| | | | | | WILM950104_S2 <= 0.44834: uncleaved (5.0)
| | | | | | WILM950104_S2 > 0.44834
| | | | | | | PRAM820101_S2’ <= 0.77041: cleaved (8.0)
| | | | | | | PRAM820101_S2’ > 0.77041: uncleaved (4.0/1.0)
| | | | | RACS820103_S3 > 0.72378: cleaved (9.0)
| | | FAUJ880105_S1 > 0.57778: uncleaved (4.0)
| | PRAM900101_S1 > 0.27463: uncleaved (12.0)

Figure -: �e decision tree calculated for the CFS, a –dimensional representation of
the –mer peptides. �e branch points are in the form PARAMETER_RESIDUE. For ex-
ample, CHOP780207_S2’ represents the AAindex parameter CHOP780207(normalized
frequency of participation in a C–terminal non–helical region) at the S’ residue. Values for all
AAindex parameters are normalized to  across all amino acids. �e tree shows various ques-
tions about a peptide that, when followed, lead to a set of conclusions. For example, if a given
peptide has CHOP780207_S2 <= 0.41765 and FAUJ880105_S1 > 0.57778 and
QIAN880137_S3 > 0 then the peptide is classified as uncleaved. As shown in the table,
 of the  known peptides are correctly classified by this scheme and only one is incorrectly
classified.
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Figure -: Classification results for all amino acid representations and model types. �e
three different amino acid representations are shown in shades of gray: “FULL” is the full phys-
iochemical, –dimensional representation; “CFS” is the feature–selected, –dimensional
representation; and “PCA” is the –dimensional representation using created using princple
component analysis (see text). Error bars show the standard deviation over the x cross–
validation test ( samples per representation/model combination with a total of  tests.)
�e best performing model was the SVM with radial basis function (SVM–rbf in the figure)
with the full –dimensional feature vector representing each eight–residue sequence. Aver-
aged over all representations, the logistic regression model is best (see Table . on page ).
�e poorest performing model is the decision tree (DT) with the –dimensional feature
vector created using the PCA projections created as described in the text. In general the full
–dimensional representation performed the best, followed by the PCA representation and
finally the CFS representation, which was created by a feature selection process.
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. Identifying functionally important mutations from phe-

notypically diverse sequence data

.. Introduction

In the previous section, I departed from the use of grammar–based models of sequences and

explored statistical modeling approaches. �is section continues this line of work, but is fo-

cused on the identification of important mutations in nucleotide sequences, rather than global,

physiochemical characteristics of small peptides. In particular, in this section I present a sim-

ple statistical method for parsing out the phenotypic contribution of a single mutation from

libraries of functional diversity that contain a multitude of mutations and varied phenotypes.

�is work is part of a publication that is in press at Applied and Environmental Microbiology,

which was co–authored with Hal Alper, Curt Fischer, and Gregory Stephanopoulos. �rough-

out this section, the use of the pronoun “we” refers to these authors.

.. Motivation

�e engineering of functional nucleic acid sequences and other biomolecules is frequently ham-

pered by a limited understanding of how specific mutations at a genotype level are manifested

in the phenotype. For some well–studied, large protein families, these relationships can be in-

ferred; however, such cases are rare. In the absence of these relationships, we resort to strategies

that explore the genotype space in a random manner, such as directed evolution.

In many cases, directed evolution of genes and other functional DNA loci is an effec-

tive approach to sample the sequence space in search of biomolecules with desirable proper-

ties [, ]. However, the most successful examples employ a selectable fitness criterion

that allows for high-throughput screening of the mutational space: sampling a large enough

space eliminates the need to make rational mutations. For many proteins or functional nu-

cleic acids, it may not be possible to link a desired phenotype with a selectable criterion, fit

for high-throughput screening. In the absence of such a criterion, clonal populations of mu-

tants must be assayed individually for the phenotype of interest. �is scenario might be called

“assay–based” directed evolution, a situation in which the upstream mutagenesis has a higher
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throughput than the downstream characterization. In this scenario, there is a premium on in-

formation linking mutational changes to their phenotypic manifestations. Further, there is a

strong incentive to “learn from” the (relatively small) mutational spectra of these mutants to de-

termine sequence-phenotype interactions, and to use this information rationally in subsequent

rounds of mutagenesis.

Here, we present a simple statistical method for analyzing a mutational spectrum to parse

out the phenotypic manifestation of individual mutations, even when they are masked by the

presence of many other mutations. Because assay-based directed evolution does not employ

any pre–screening or selection of clones, as is the case when a selectable marker is available,

mutants are expected to have a range of phenotypes, including both increased and decreased

fitness. Here, we demonstrate our method by identifying mutations in a library of mutagenized

PL–λ promoters [] that result in either increased or decreased promoter activity and we show

how to quantify the statistical confidence in these mutation-phenotype linkages

�e central premise of our method is that mutations that have no effect on mutant phe-

notype should partition randomly, following a multinomial distribution, between phenotypic

classes. For example, consider a hypothetical experiment in which we mutagenize a protein that

can fluoresce in one of three colors: red, blue, or green. After generating a library of  mu-

tants, each bearing many point mutations, our assay reveals that  have the red phenotype,

 are blue, and  are green. If a particular point mutation has no effect on the color, then

we expect that, by chance, mutants containing this modification will be distributed between the

red, blue, and green classes in a ratio of ::. �at is, the mutation should not be correlated to

any particular phenotypic class. More rigorously, we say that the mutations are multinomially

distributed between the three classes with background frequencies ., ., and ..

Multinomial statistics and related combinatorial statistics commonly arise in the analysis of

naturally–occurring mutational diversity [, ]. For example, similar statistical analyses have

been used to find functional gene domains [], important structural RNA sites [], and

genomic loci with an overabundance of single nucleotide polymorphisms (SNPs) []. Here

we apply multinomial statistics to the analysis of an artificially generated mutational landscape

to parse out critical residues controlling phenotypic behavior. We show that, based on this in-

formation, mutants with sets of individual mutations can be made, and we suggest that this can
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be used as a method for improving directed evolution experiments by incorporating sequence

information.

In what follows, we detail the construction of numerous PL–λ promoter variants, which

were generated by error–prone PCR such that each mutant incorporated many point mutations.

�e activity of these promoters was assayed using flow cytometry to measure the fluorescence

of a GFP reporter gene. We show how our statistical analysis revealed the phenotypic manifes-

tation of numerous mutations. Finally, we present a validation of our method by constructing

point mutations for several of the identified mutations and combinations of sites using site-

directed mutagenesis. �ese mutations, we show, have the predicted effect on the promoter

phenotype, even when removed from the background of other mutations.

.. Materials and Methods

Strains and Media

E. coli DHα (Invitrogen) was used for routine transformations as described in the protocol.

Assay strains were grown at � with  RPM orbital shaking in M-minimal media ()

containing  g/L D–glucose and supplemented with . casamino acids. All other strains and

propagations were cultured at � in LB media. Media was supplemented with  µg/ml chlo-

ramphenicol. All PCR products and restriction enzymes were purchased from New England

Biolabs and utilized Taq polymerase. M Minimal salts were purchased from US Biological

and all remaining chemicals were from Sigma-Aldrich.

Library Construction

Nucleotide analogue mutagenesis was carried out in the presence of  µM –oxo–’–deoxyguanosine

(–oxo–dGTP) and –(–deoxy–β–D–ribofuranosyl)–,–dihydro–H–pyrimido–[,–c][,]oxazin–

–one (dPTP) (TriLink Biotech), using plasmid pZE–gfp(ASV) kindly provided by M. Elowitz

as template [] along with the primers PL_sense_AatII, TCCGACGTCTAAGAAACCAT-

TATTATC and PL_anti_EcoRI, CCGGAATTCGGTCAGTGCGTCCTGCTGAT. Ten and

 amplification cycles with the primers mentioned above were performed. �e  bp PCR

products were purified using the GeneClean Spin Kit (Qbiogene). Following digestion with
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AatII and EcoRI, the product was ligated overnight at � and transformed into library ef-

ficiency E. coli DHα (Invitrogen). About , colonies were screened by eye from min-

imal media–casamino acid agar plates and  colonies, spanning a wide range in fluores-

cent intensity, were picked from each plate. Selected mutants were sequenced using primers

PL_Sense_Seq,

AGATCCTTGGCGGCAAGAAA

and PL_Anti_Seq,

GCCATGGAACAGGTAGTTTTCCAG.

Library Characterization

About  µL of overnight cultures of library clones growing in LB broth were used to inoculate

mL MG medium supplemented with . w/v casamino acid (MG/CAA). �e cultures

were grown at � with orbital shaking. After  h, roughly the point of glucose depletion,

a culture sample was centrifuged at , g for  minutes, and the cells were resuspended in

ice–cold water. Flow cytometry was performed on a Becton–Dickinson FACScan as described

elsewhere [], and the geometric mean of the fluorescence distribution of each clonal population

was calculated.

Mean and standard deviation were calcuated from the FL–H distribution resulting after

gating the cells based on a FSC–SSC plot. A total of , events were counted to gain

statistical confidence in the results

Construction of designed promoters

Promoters with specific nucleotide changes were created using overlap–extension PCR and

primers specifically designed to incorporate these changes. Primers were designed to divide

the promoter region into thirds, and the proper primers were assembled piecewise in a PCR

reaction consisting of � for  minutes,  cycles with an annealing temperature of �,

followed by  cycles of PCR with an annealing temperature of �, and a final extension for

 minutes at �. Fragments were gel extracted using . agarose gels and Qiagen MER-

maid spin kit. �e isolated fragment was then linked with the final primer using the same
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PCR and extraction procedures. Finalized fragments were then digested using EcoRI and AatII

and ligated into the digested plasmid backbone. Sequencing was performed to verify correct

constructs.

.. Results

Generation of mutant library

Previously, we reported on the development of a promoter library generated through the ran-

dom mutagenesis of the sequence space []. In that work, library diversity was created through

error–prone PCR of the PL–TET promoter, a variant of the PL–λ promoter [], which

was placed upstream of a gfp gene. �e promoter region contains two tandem promoters PL–

and PL–, each of which contains - and - sigma factor binding sites [–]. Further-

more, the promoter contains, at approximately the same location, an UP element that binds

C–terminal domain of the alpha subunit and a binding site for integration host factor (IHF).

In addition, the PL–TET promoter has two tetO operators from the Tn tetracycline

resistance operon [].

Mutants in the library were analyzed using flow–cytometry to measure the single–cell level

of expression of GFP as a proxy for the activity of the mutagenized promoters. (A detailed

schematic of the experimental procedure is shown in Figure - on page .) Promoters

that had roughly log–normal fluorescence distributions (no obvious tails in the distribution

or bimodal distributions) were sequenced and, from that set, those mutants that contained

deletions or insertions were removed. �e final set comprised  mutant promoters, with well–

behaved fluorescence distributions (single distribution with a low standard deviation) , that

only contained transition and transversion mutations. Notably, our error–prone PCR method

introduces predominantly transitions and not transversions, except in rare cases.

Identification of critical sites

Returning to the red, blue, green example introduced earlier, each of these N hypothetical

mutants can be classified into one of M mutually–exclusive and collectively–exhaustive pheno-

typic classes — P, P, . . . , PM — such that there are n, n, . . . , nM, mutants in each class and
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Figure -: Schematic of the experimental procedure. A variant of the constitutive bacterio-
phage PL–λ promoter (PL–TETO) was mutated through error–prone PCR to create mutated
fragments of promoters. �ese fragments were then ligated into plasmid constructs and used
to drive the expression of gfp in E.coli. �ese cells were then analyzed using flow cytometry to
quantify the fluorescence of GFP and output capacity of the promoter.
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∑
ni = N. Consider a subset of mutants B of size X, where X < N, comprising mutants with

a particular mutation. If the mutation does not influence the phenotype of the mutants, we

would expect, by chance, that there would be xi = X(ni/N) mutants of type Pi. In general, the

probability that the set x, x, . . . , xM will take on the particular set of values y, y, . . . , yM is

Pr (x = y, x = y, . . . , xM = yM) =

(
X

y, y, . . . , yM

) M∏
i=

ni

N
(.)

where
∑

yi = X. In this equation, the term

Pr (x = y, x = y, . . . , xM = yM) =

(
X

y, y, . . . , yM

) M∏
i=

ni

N
(.)

is the so–called multinomial coefficient, which can be equivalently written

(
X

y, y, . . . , yM

)
=

X!
y!, y!, . . . , yM!

. (.)

�e coefficient is the number of ways sets of size y, y, ..., yM could be chosen from a set

of size X. (For example, in the case X = , M = , y = y = , the coefficient is  because

there are  different ways to choose two subsets of size three from a set of six.)

�e probability that q or more (where q < X) of the B mutants would be seen in a particular

class, Pi, by chance is

Pr (xi > q) =

X∑
k=q

(
X

q

)(ni

N

)k (
 −

ni

N

)N−k

. (.)

Equivalently, this is the p–value for seeing q of the B mutants in class Pi. �e lower the

p–value, the more confident we are that the B mutation is correlated with the Pi phenotype.

For this study, we divided the mutants into two phenotypic classes based on their fluores-

cence (i.e. M = ): the top th percentile and the lower th percentile. Figure - on

page  shows a detailed schematic of the statistical analysis, which is greatly simplified in

this case because there are only two phenotypes. As shown in the figure, applying our statistical

method to the sequence data resulted in the identification of seven nucleotide positions that are

correlated with one of the two phenotypic classes in a statistically significant manner. �e figure
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should be read clockwise from the top–left, progressively showing the fluorescence distribution,

mutation distribution, statistical distribution of mutations, and finally, the identified important

positions in part D in the lower left. In quadrant A, the vertical axis shows the mutant number,

where the mutants are sorted in descending order by their relative fluorescence. In general,

the single-cell fluorescence distribution for each mutant strain was log-normal distributed. �e

horizontal axis shows the mean of the log relative fluorescence for each mutant strain, where

the error is the standard deviation of this distribution. Reading to the right from quadrant A

into quadrant B reveals the point mutations present in each mutant. For each location in a mu-

tant (where location is indicated on the horizontal axis) that was changed via the error-prone

PCR, a black dot is indicated. With only a handful of exceptions, all of these changes are base

transitions rather than transversions, so the sequence of each of the  clones can be inferred

from the WT sequence shown in quadrant D. Reading down from quadrant B into quadrant

C shows how mutations at a particular location partition between the two classes of mutants:

the top and bottom th percentiles. Sites that have no effect on the fluorescence phenotype

should partition equally between the two classes, i.e. they should follow a binomial distribution

with p = .. Sites that deviate from this distribution are labeled with a dot and are colored

either green or red, corresponding to the apparent effect of a mutation at the site. For these

sites, p–values are indicated, where this value is the probability of seeing a distribution at least

as skewed to one side. Sites that were subsequently tested experimentally (see below) are indi-

cated with an asterisk, where the color of the asterisk denotes the expected effect of a mutation

at the site. We chose a range of sites to test experimentally, from those with high-confidence

(low p–value) positive effects, to those with low-confidence (p–value ∼ .) negative effects (see

Table . on page ). �ese sites are also shown in quadrant D, which contains the WT

nucleotide sequence of the promoter region that was subjected to mutation.

Site–directed mutagenesis of predicted sites

We selected  sites in the promoter region to test whether their phenotypic effects, as predicted

by the statistical method, agreed with their observed effects when the mutations were introduced

individually, without the background of other mutations. �ese  mutated positions are shown

in Table . on page  and labeled in Figure - on the facing page, parts C&D. �e sites
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Figure -: Statistical distribution of mutations and their effects on mutant fluorescence. See
text for a description.
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were chosen to span a range of characteristics. �e - site was predicted to have a negative effect

on promoter strength with high confidence, i.e. it was statistically significant (see Table .).

�e -, -, and - sites were predicted to have negative effects, but had moderate p–values

and, thus, medium–to–low confidence. Sites - and - were predicted to have positive effects

with high confidence. �e sites - and - were chosen because they had p–values of exactly

.. Notably, there are two ways that a position could have produced an insignificant p–value

(i.e. a p–value close to .): the mutation could partition equally between the two classes,

or the mutation could have been observed very few times. Mutations at both the - and

- sites were observed relatively few times and seemed to partition between the top–th

percentile and bottom–th percentile classes with equal frequency. �us, in the absence of a

statistically significant correlation, we predicted they would have no effect on the phenotype.

(�ese observations are summarized in Table . on page .)

For each of the sites listed in Table . on page , we created mutant strains incorpo-

rating transition SNPs at the specified location. Each of these mutants were analyzed using

flow-cytometry to test the single-cell level of expression of GFP using the same protocols as for

the parent mutant library. �e fluorescence results for each mutant are shown in Table . on

page  in the right-most columns. In addition, for certain combinations of sites in Ta-

ble . on page , we created double and triple mutants (see Table . on page ).

.. Discussion

As shown in Table . on page , the statistical method correctly predicts the phenotypic

effects of / of the individual mutations that were tested. Furthermore, the phenotypic effects

of the mutations with statistically significant p–values were correctly predicted. For these mu-

tations, we showed that the effect of an individual mutation on the phenotype can be parsed

out from a mutational spectrum, even when the effect is obscured by a background of other

mutations.

It is interesting to note that while most of the statistically significant mutations are near the

sigma factor binding sites, two are located further upstream of this region. �e - site, which

was not statistically significant, but was tested experimentally, showed that such distal sites are

participating in the regulation of transcription.
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�ere are a few caveats to the use of our statistical method. First, the method assumes

independence between mutations. �at is, we assume mutated sites cannot interact. As shown

in Table . on page , / of the combination–mutations had the predicted effect. �e

two combination–mutants that had unintuitive phenotypes could be a result of interaction

between sites. (Notably, the -,-,- triple mutant appeared to have a high fluorescence by

visual inspection in a rich medium pre–culture; however, quantification of GFP activity by flow

cytometry revealed consistently low measurements in the minimal medium used.)

�e second caveat is that the method can require a significant number of mutants for each

position: for a position to be statistically significant in our particular experiment, at least 

observations were required. (�is would be true for any two–phenotype mutational spectra,

where each phenotype occurs with equal prior probability.) �e number of observations re-

quired scales roughly with the number of mutation types. Our mutagenesis method introduced

only transitions, not transversions, which allowed us to treat each site as "mutated" or "not

mutated" without loss of information. �e method can by applied to cases in which all four

nucleotides are present; however, roughly  times as many observations would be required to

make a statistically significant correlation between a particular nucleotide (at a single position)

and a phenotype. Finally, the statistical method presented here is only applicable to situations

in which the method used to introduce sequence diversity does not also introduce deletions

or insertions. Ignoring relatively small insertions or deletions in the analysis would not signif-

icantly bias the results of identifying critical residues (data not shown). However, rigorously,

alterations would be needed to differentiate between deletions and mutations in our statistical

framework. In such cases, more complex models could be adapted, such as those used to de-

scribe the distribution and effects of naturally–occurring mutations over a fitness landscape for

populations under positive and negative selective pressures [, ].

Despite its caveats, this method has a significant advantage when compared to deducing

critical mutations using sequence data from only the best performing mutants. Intuitively,

if we were to ignore the bottom–th percentile in Figure - part C on page , we may

mistakenly identify sites as associated with high fluorescence that are, in fact, evenly distributed

between the two classes. �at is, having sequence data for multiple phenotypes allowed us to

determine, with quantifiable confidence, the effect of each individual mutation in a way that
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discounts artifacts of the mutagenesis method, such as a bias for mutagenizing particular loci.
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Appendix A

Abbreviations and reference data

A. Basic molecular biology data

• Figure A- on the following page shows structures and abbreviations for the  natu-

rally occurring amino acids. �e abbreviations shown in the figure are used consistently

throughout this thesis.

• Figure A- on page  shows structures and abbreviations for the four nucleotides found

in DNA and RNA, and urysil, which is found only in RNA

• Table A. on page  shows the standard codon table that translates from three let-

ter nucleotide sequences to the corresponding amino acid during the process of mRNA

translation.

.
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Figure A-: Amino acid structures and abbreviations. �e figure shows the chemical structure
of the  naturally occurring amino acids and their three letter and one letter abbreviations.



A.. BASIC MOLECULAR BIOLOGY DATA 

Figure A-: Nulceotide base structures and abbreviations.

Table A.: Standard codon table. �e table should be interpreted by reading the first and
second nucleotides off of the vertical axis on the left, and reading the final nucleotide off of the
horizontal axis at the top. For example, the amino acid corresponding to the three nucleotide
sequence AAGis Arg , or arginine.

A C G U
_____________________________

AA | Lys Asn Lys Asn
F AC | Thr Thr Thr Thr
i AG | Arg Ser Arg Ser
r AU | Ile Ile MET Ile
s P CA | Gln His Gln His
t o CC | Pro Pro Pro Pro

s CG | Arg Arg Arg Arg
& i CU | Leu Leu Leu Leu

t GA | Glu Asp Glu Asp
S i GC | Ala Ala Ala Ala
e o GG | Gly Gly Gly Gly
c n GU | Val Val Val Val
o UA | . Tyr . Tyr
n UC | Ser Ser Ser Ser
d UG | . Cys Trp Cys

UU | Leu
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A. Supplementary data and analyses

A.. Position weight matrix computation and matching

�e code shown below is a simple Python script used to compute a position weight matrix.

�e script can be copied from this text and run on most personal computers. After the code,

I present a brief example of how this should be run, using the yeast ’ splice sites shown in

Figure - on page .

#!/usr/bin/env python
import string
import sys
import math

# Usage
def usage():

print sys.argv[0], ": make a weight matrix from an alignment file"
print "Usage: ", sys.argv[0], "<alignment file>"

# a PWM class, basically just a list of dictionaries
# with a few methods for building/accessing
class Pwm:

"""A position weight matrix class"""
def __init__(self, aln):

# find out what characters occurs in seqs
self.chars = self.getChars(aln)
self.length = aln.support()
self.width = aln.wid()

# initialize list of dicts
# cm = count matrix
# fm = frequency matrix
self.cm = []
self.fm = []
for j in range(aln.width):

self.cm.append( dict([(char, 0)for char in self.chars]) )
self.fm.append( dict([(char, 0.0)for char in self.chars]) )

# fill in the counts
for j in range(self.wid()):

for i in range(self.len()):
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c = aln.getChar(i,j)
self.cm[j][c] = self.cm[j][c] + 1

# calculate the frequency matrix
for c in self.chars:

for j in range(self.wid()):
self.fm[j][c] = float(self.cm[j][c]) / float(self.len())

self.calcEntropy()

def len(self):
return self.length

def wid(self):
return self.width

def getChars(self, aln):
chars = []
for j in range(aln.width):

for i in range(aln.support()):
c = aln.getChar(i,j)
if chars.count(c) == 0:

chars.append(aln.getChar(i,j))
return chars

def getFreq(self, pos, char):
return self.fm[pos][char]

def getCount(self, pos, char):
return self.cm[pos][char]

def printPwm(self):
print "Frequency Matrix:"
for char in self.chars:

s = "%s" % (char)
for pos in range(self.wid()):

s = s + (" %1.3f" % ( self.getFreq(pos, char) ))
print s

def printPwmDNA(self):
print "Frequency Matrix:"
for char in [’A’, ’T’, ’G’, ’C’]:

s = "%s" % (char)
for pos in range(self.wid()):

s = s + (" %1.3f" % ( self.getFreq(pos, char) ))
print s

print ""

# returns a vector, each member of which is
# the entropy at a pos in the pwm
def calcEntropy(self):

self.entropy = []
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base = 2
for pos in range(self.wid()):

self.entropy.append(0)
for char in self.chars:

freq = self.getFreq(pos, char)
if (freq > 0):

self.entropy[pos] = self.entropy[pos] \
- freq * math.log(freq, base)

def getEntropy(self, pos):
return self.entropy[pos]

# returns a vector, each member of which is
# the info content at a pos in the pwm
# take a dictionary containing background
# frequencies of various characters
def calcInfo(self, bg):

bgInfo = 0.0
base = 2
for char, prior in bg.iteritems():

if prior > 0:
bgInfo = bgInfo - prior * math.log(prior,base)

self.info = []
self.ic = 0
for pos in range(self.wid()):

self.info.append(bgInfo - self.getEntropy(pos))
self.ic = self.ic + bgInfo - self.getEntropy(pos)

def getInfo(self, pos):
return self.info[pos]

def getIC(self):
return self.ic

def printInfo(self):
for pos in range(self.wid()):

print "Position %d: entropy = %1.3f, information = %1.3f" \
% (pos+1, self.getEntropy(pos), self.getInfo(pos))

print "\nTotal Information Content = %1.3f" % (self.getIC())

# compute a bitScore match of the pwm against a sequence
def score(self, seq, bg):

total = 0
for pos in range(self.wid()):

char = seq[pos]
# potential need for error checking here!
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freq = self.getFreq(pos, char)
prior = bg[char]
if freq != 0 and prior != 0:

total = total + math.log(freq/prior,2)
return total

# A simple sequence alignment class
class Alignment:

"""A simple sequence alignment class"""
def __init__(self, label):

self.label = label
self.seqs = []
self.width = 0

def addSeq(self, seq):
self.seqs.append(seq)
if(len(seq) > self.width):

self.width = len(seq)
def printAlignment(self):

for seq in self.seqs:
print seq

def support(self):
return len(self.seqs)

def wid(self):
return self.width

def getChar(self, seq, pos):
return self.seqs[seq][pos]

def makePWM(self):
self.pwm = Pwm(self)

def printPWM(self):
self.pwm.printPwm()

def printPWMDNA(self):
self.pwm.printPwmDNA()

def calcInfo(self, bg):
self.pwm.calcInfo(bg)

def printInfo(self):
self.pwm.printInfo()

def selfScore(self, bg):
mean = 0
for seq in self.seqs:

score = self.pwm.score(seq, bg)
print "Sequence %s has score s = %0.3f" % (seq, score)
mean = mean + score

mean = mean / self.support()
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print "Mean score = %.3f" % (mean)

def readAlignFile(alignFH, label):
aln = Alignment(label)
for line in alignFH:

line = string.strip(line)
aln.addSeq(line)

return aln

# Main
def main():

# see if we got the right number of command line args
if len(sys.argv) != 2:

usage()
sys.exit(2)

# get command line paramters
fname1 = sys.argv[1]

# open the alignment file
try:

alignFH = open(fname1, "r")
except IOError, (errno, strerror):

print "Error %s: %s" % (errno, strerror)
sys.exit()

aln = readAlignFile(alignFH, "My alignment")

# close alignment file
try:

alignFH.close()
except IOError, (errno, strerror):

print "Error %s: %s" % (errno, strerror)
sys.exit()

# do all our fancy shizzle
#aln.printAlignment()
aln.makePWM()
aln.printPWMDNA()
aln.calcInfo({’A’: 0.25, ’T’: 0.25, ’G’: 0.25, ’C’: 0.25})
aln.printInfo()
print ""
aln.selfScore({’A’: 0.25, ’T’: 0.25, ’G’: 0.25, ’C’: 0.25})
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# execute main
if __name__ == "__main__":

sys.exit(main())

>cat motifs.txt
AGCTGAC
GACTAAT
GGCTAAT
TTCTAAC
....edited for space...
TACTAAC
TACTAAC
TTTTAAC

>motif.py motifs.txt
Frequency Matrix:
A 0.067 0.627 0.000 0.000 0.893 1.000 0.000
T 0.773 0.240 0.120 1.000 0.027 0.000 0.133
G 0.093 0.120 0.000 0.000 0.080 0.000 0.000
C 0.067 0.013 0.880 0.000 0.000 0.000 0.867

Position 1: entropy = 1.127, information = 0.873
Position 2: entropy = 1.367, information = 0.633
Position 3: entropy = 0.529, information = 1.471
Position 4: entropy = 0.000, information = 2.000
Position 5: entropy = 0.576, information = 1.424
Position 6: entropy = 0.000, information = 2.000
Position 7: entropy = 0.567, information = 1.433

Total Information Content = 9.834

Sequence AGCTGAC has score s = 2.999
Sequence GACTAAT has score s = 6.650
Sequence GGCTAAT has score s = 4.266
Sequence CATTAAC has score s = 5.991
...edited for space...
Sequence TACTAAC has score s = 12.401
Sequence TACTAAC has score s = 12.401
Sequence TTTTAAC has score s = 8.142
Mean score = 9.834
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A.. Antimicrobial design data

Figure A- shows the gas and mass spectra for a peptide designed in Chapter . See Sec-

tion . on page .

Figure A-: Gas and mass spectra for the synth– peptide. As the figure shows, the peptide
appears well above the  purity threshold. �is peptide was designed using our preliminary,
sensitive approach for designing antimicrobial peptides. However, the peptide was shown to
have undetectable activity under good experimental conditions, prompting the more focused,
specific approach for designing AmPs.
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Gemoda file documentation

B. Introduction

�is chapter contains detailed documentation of the source code implementation of the

Gemoda algorithm described in Chapter  on page . �e Gemoda software is written in

the C programming language and segmented in such a way as to allow the extension of the

algorithm to varieties of sequential data that were not anticipated by the authors. Furthermore,

where possible the code was crafted to be “object–oriented like” for maximum readability. �e

software makes extensive use of the GNU Scientific Library [] and the popular Basic Linear

Algebra Subprograms (BLAS) [, , ] to speed–up computationally intensive operations

associated with the discovery of motifs in three–dimensional protein structures and other real–

valued data.

�e Gemoda source code is available from http://web.mit.edu/bamel/gemoda .

�e software includes a number of “helper” applications for interoperability with common

bioinformatics tools.

�is software is designed for UNIX–like systems and uses the GNU autotools framework for

managing installation tasks and properly configuring itself for different computer architectures.

Gemoda is distributed with a configure shell script that tries to guess system–dependent

variables and to create a “makefile” that can be used as an input for GNU make.

http://web.mit.edu/bamel/gemoda
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To install Gemoda, use the following recipe:

. Change directories to the folder that contains the “src” directory as a subfolder. From

this location, run the command ./configure . To install Gemoda to a nonstandard

location, use the optional flag –prefix=PATH , where PATHis the desired location,

such as “/usr/local/software”.

. Type make to compile the software using your default C compiler, which is specified by

the “CC” environment variable.

. Type make install to install the software.

�ere are many other options for the configure script. To see a list of available options, use

the optional flag –help .

In the following sections of this appendix, I describe in detail the organization and design

of the Gemoda software. �ese sections are organized by file and are designed to show the

dependencies and interactions of different functions. As described in Chapter  on page ,

Gemoda operates in three steps: comparison, clustering, and convolution. �e software keeps

the steps clearly segmented.

B. align.c File Reference

#include <stdio.h >

#include <stdlib.h >

#include <string.h >

#include <errno.h >

#include "FastaSeqIO/fastaSeqIO.h"

#include "spat.h"

#include "bitSet.h"

#include "matdata.h"

Include dependency graph for align.c:
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align.c

stdio.h

stdlib.h

string.h

errno.h

FastaSeqIO/fastaSeqIO.h

spat.h

bitSet.h

matdata.h

Defines

• define ALIGN_ALPHABET 

Functions

• int alignMat (char ∗s, char ∗s, int L, int mat[ ][MATRIX_SIZE])
• bitGraph_t ∗ alignWordsMat_bit (sPat_t ∗words, int wc, int mat[ ][MATRIX_SIZE],

int threshold)

Variables

• const int aaOrder [ ]

Detailed Description

�is file defines functions that are used to create a similarity graph, or adjacency matrix via the
comparison of small windows within a set of sequences. �is file is only used for string based
sequences, and not real valued data. Usually, the adjacency matrix is created via a the alignment
of the windows within the sequence set. �us, the name of this file. However, other functions
can certainly be defined for creating the adjacency matrix.

Definition in file align.c.

Define Documentation

B... define ALIGN_ALPHABET 

Definition at line  of file align.c.
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Function Documentation

B... int alignMat (char ∗ s, char ∗ s, int L, int mat[ ][MATRIX_SIZE])

�is function takes as its arguments two pointers to strings, a length, and a scoring matrix.
�e function computes the score, or degree of similarity, between the two strings by comparing
each character the in the strings from zero two L minus one. Each character receives a score
that is looked up in the scoring matrix. �is is most commonly used for amino acid sequences
or DNA sequences; however, it is applicable to any series of characters. �is function returns a
single integer, which is the score between the two words.

Definition at line  of file align.c.

References aaOrder, and mat.

Referenced by alignWordsMat_bit().

45 {
46 int i;
47 int points = 0;
48 int x, y;
49
50 // Go over each character in the L-length window
51 for (i = 0; i < L; i++)
52 {
53
54 // The integer corresponding to the character in
55 // the first string, so that we can look it up
56 // in one of our scoring matricies.
57 x = aaOrder[(int) s1[i]];
58
59 // And for the second character
60 y = aaOrder[(int) s2[i]];
61
62 // If the characters aren’t going to be in the scoring
63 // matrix, they get a -1 value...which we’ll give zero
64 // points to here.
65 if (x != -1 && y != -1)
66 {
67
68 // Otherwise, they get a score that is looked up
69 // in the scoring matrix
70 points += mat[x][y];
71 }
72 }
73 return points;
74 }

B... bitGraph_t∗ alignWordsMat_bit (sPat_t ∗ words, int wc, int
mat[ ][MATRIX_SIZE], int threshold)

�is uses the function above. Here, we have an array of words (sPat_t objects) and we compare
(align) them all. If their score is above ’threshold’ then we will set a bit to ’true’ in a bitGraph_t
that we create. A bitGraph_t is essentially an adjacency matrix, where each member of the
matrix contains only a single bit: are the words equal, true or false? �e function traverses
the words by doing and all by all comparison; however, we only do the upper diagonal. �e
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function makes use of alignMat and needs to be passed a scoring matrix that the user has chosen
which is appropriate for the context of whatever data sent the user is looking at.

Definition at line  of file align.c.

References alignMat(), bitGraphSetTrueSym(), mat, and newBitGraph().

Referenced by main().

90 {
91 bitGraph_t * sg = NULL;
92 int score;
93 int i, j;
94
95 // Assign a new bitGraph_t object, with (wc x wc) possible
96 // true/false values
97 sg = newBitGraph (wc);
98 for (i = 0; i < wc; i++)
99 {
100 for (j = i; j < wc; j++)
101 {
102
103 // Get the score for the alignment of word i and word j
104 score =
105 alignMat (words[i].string, words[j].string, words[i].length, mat);
106
107 // If that score is greater than threshold, set
108 // a bit to ’true’ in our bitGraph_t object
109 if (score >= threshold)
110 {
111
112 // We use ’bitGraphSetTrueSym’ because, if i=j,
113 // then j=i for most applications. However, this
114 // can be relaxed for masochists.
115 bitGraphSetTrueSym (sg, i, j);
116 }
117 }
118 }
119
120 // Return a pointer to this new bitGraph_t object
121 return sg;
122 }

Variable Documentation

B... const int aaOrder[ ]

Definition at line  of file matrices.h.

Referenced by alignMat().
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B. bitSet.c File Reference

#include "errno.h"

#include "bitSet.h"

Include dependency graph for bitSet.c:

bitSet.c

errno.h

bitSet.h

stdio.h

stdlib.h

string.h

Functions

• bit_t ∗ newBitArray (int bytes)
• bitSet_t ∗ newBitSet (int size)
• int setTrue (bitSet_t ∗s, int x)
• int setFalse (bitSet_t ∗s, int x)
• int flipBits (bitSet_t ∗s)
• int fillSet (bitSet_t ∗s)
• int emptySet (bitSet_t ∗s)
• int checkBit (bitSet_t ∗s, int x)
• int deleteBitSet (bitSet_t ∗s)
• int bitSetUnion (bitSet_t ∗s, bitSet_t ∗s, bitSet_t ∗s)
• int copySet (bitSet_t ∗s, bitSet_t ∗s)
• int copyBitGraph (bitGraph_t ∗bg, bitGraph_t ∗bg)
• int bitSetDifference (bitSet_t ∗s, bitSet_t ∗s, bitSet_t ∗s)
• int bitSetSum (bitSet_t ∗s, bitSet_t ∗s, bitSet_t ∗s)
• int bitSetIntersection (bitSet_t ∗s, bitSet_t ∗s, bitSet_t ∗s)
• int bitSetWayIntersection (bitSet_t ∗s, bitSet_t ∗s, bitSet_t ∗s, bitSet_t ∗s)
• int bitcount (unsigned int n)
• int bitcount_precomp (unsigned int n)
• int bitcount (unsigned int n)
• int countSet (bitSet_t ∗s)
• int nextBitBitSet (bitSet_t ∗s, int start)
• int countBitGraphNonZero (bitGraph_t ∗bg)
• int printBitSet (bitSet_t ∗s)
• int bitGraphRowUnion (bitGraph_t ∗bg, int row, int row, bitSet_t ∗s)
• int bitGraphRowIntersection (bitGraph_t ∗bg, int row, int row, bitSet_t ∗s)
• int printBinaryBitSet (bitSet_t ∗s)
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• int bitGraphCheckBit (bitGraph_t ∗bg, int x, int y)
• int bitGraphSetTrue (bitGraph_t ∗bg, int x, int y)
• int bitGraphSetFalse (bitGraph_t ∗bg, int x, int y)
• int bitGraphSetFalseSym (bitGraph_t ∗bg, int x, int y)
• int bitGraphSetTrueSym (bitGraph_t ∗bg, int x, int y)
• int bitGraphSetTrueDiagonal (bitGraph_t ∗bg)
• int bitGraphSetFalseDiagonal (bitGraph_t ∗bg)
• int printBitGraph (bitGraph_t ∗bg)
• int maskBitGraph (bitGraph_t ∗bg, bitSet_t ∗bs)
• int fillBitGraph (bitGraph_t ∗bg)
• int emptyBitGraph (bitGraph_t ∗bg)
• bitGraph_t ∗ newBitGraph (int size)
• int emptyBitGraphRow (bitGraph_t ∗bg, int row)
• int deleteBitGraph (bitGraph_t ∗bg)

Detailed Description

�is file defines functions for handling bit sets and bit graphs.

Definition in file bitSet.c.

Function Documentation

B... int bitcount (unsigned int n)

Attempt at a fast way of counting how many true values are in a given bitSet_t. Currently
deprecated, using precompiled version instead.

Definition at line  of file bitSet.c.

352 {
353 /*
354 works for 32-bit numbers only
355 */
356 /*
357 fix last line for 64-bit numbers
358 */
359
360 register unsigned int tmp;
361
362 tmp = n - ((n >> 1) & 033333333333) - ((n >> 2) & 011111111111);
363 return ((tmp + (tmp >> 3)) & 030707070707) % 63;
364 }
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B... int bitcount_precomp (unsigned int n)

Uses bits_in_char data structure to determine the number of true bits in a -bit int in an
efficient manner. Input: -bit int (equal to one slot in the bitSet). Output: number of true
bits in the input integer.

Definition at line  of file bitSet.c.

Referenced by countSet().

397 {
398 // works only for 32-bit ints
399
400 return bits_in_char[n & 0xffu]
401 + bits_in_char[(n >> 8) & 0xffu]
402 + bits_in_char[(n >> 16) & 0xffu] + bits_in_char[(n >> 24) & 0xffu];
403 }

B... int bitcount (unsigned int n)

Currently there is no support for -bit architectures.

Definition at line  of file bitSet.c.

421 {
422 n = PCCOUNT (n, 0);
423 n = PCCOUNT (n, 1);
424 n = PCCOUNT (n, 2);
425 n = PCCOUNT (n, 3);
426 n = PCCOUNT (n, 4);
427 n = PCCOUNT (n, 5); // for 64-bit integers
428 return n;
429 }

B... int bitGraphCheckBit (bitGraph_t ∗ bg, int x, int y)

Checks the value of a bit in a bitGraph_t object. Input: a bitGraph_t object, the index of the
row of the bitGraph_t with the bit to be checked, the index of the bit in that row that is to be
checked. Output: the value of the bit in the bitGraph being checked.

Definition at line  of file bitSet.c.

References checkBit(), and bitGraph_t::graph.

Referenced by main(), and measureDiagonal().

629 {
630 return checkBit (bg->graph[x], y);
631 }
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B... int bitGraphRowIntersection (bitGraph_t ∗ bg, int row, int row, bitSet_t ∗
s)

Finds the intersection of two rows (bitSets) within a bitGraph_t object. Input: a bitGraph_-
t object, first row to be compared, second row to be compared, and a bitSet_t to store the
intersection results. Output: integer success value of  (and an altered destination bitSet_t
object with a true value wherever both source bitSets had a true value).

Definition at line  of file bitSet.c.

References bitSetIntersection(), and bitGraph_t::graph.

Referenced by getStatMat(), and oldGetStatMat().

599 {
600 bitSetIntersection (bg->graph[row1], bg->graph[row2], s1);
601 return 0;
602 }

B... int bitGraphRowUnion (bitGraph_t ∗ bg, int row, int row, bitSet_t ∗ s)

Finds the union of two rows (bitSets) within a bitGraph Input: a bitGraph_t object, first row
to be compared, second row to be compared, and a bitSet_t to store the union results. Output:
integer success value of  (and an altered destination bitSet_t object with a true value wherever
one or both source bitSets had a true value).

Definition at line  of file bitSet.c.

References bitSetUnion(), and bitGraph_t::graph.

585 {
586 bitSetUnion (bg->graph[row1], bg->graph[row2], s1);
587 return 0;
588 }

B... int bitGraphSetFalse (bitGraph_t ∗ bg, int x, int y)

Sets a specific bit in a bitGraph false. Input: a bitGraph_t object, the index of the row of the
bitGraph_t with the bit be set, the index of the bit in that row that is to be set. Output: integer
success value of  (and an altered bitGraph_t object).

Definition at line  of file bitSet.c.

References bitGraph_t::graph, and setFalse().

655 {
656 setFalse (bg->graph[x], y);
657 return 0;
658 }
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B... int bitGraphSetFalseDiagonal (bitGraph_t ∗ bg)

Sets the main diagonal of a bitGraph false. Input: a bitGraph_t object. Output: integer success
value of  (and an altered bitGraph_t object).

Definition at line  of file bitSet.c.

References bitGraph_t::graph, and setFalse().

Referenced by convolve().

715 {
716 int i;
717 for (i = 0; i < bg->size; i++)
718 {
719 setFalse (bg->graph[i], i);
720 }
721 return 0;
722 }

B... int bitGraphSetFalseSym (bitGraph_t ∗ bg, int x, int y)

Sets a specific bit and its symmetric opposite in a bitGraph false. For instance, given that we
wanted to set the rd bit in the th row false, this would also set the th bit in the rd row.
Input: a bitGraph_t object, the index of the row of the bitGraph with the bit be set, the index
of the bit in that row that is to be set. Output: integer success value of  (and an altered
bitGraph_t object).

Definition at line  of file bitSet.c.

References bitGraph_t::graph, and setFalse().

670 {
671 setFalse (bg->graph[x], y);
672 setFalse (bg->graph[y], x);
673 return 0;
674 }

B... int bitGraphSetTrue (bitGraph_t ∗ bg, int x, int y)

Sets a specific bit in a bitGraph true. Input: a bitGraph_t object, the index of the row of the
bitGraph_t with the bit be set, the index of the bit in that row that is to be set. Output: integer
success value of  (and an altered bitGraph_t object).

Definition at line  of file bitSet.c.

References bitGraph_t::graph, and setTrue().

642 {
643 setTrue (bg->graph[x], y);
644 return 0;
645 }
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B... int bitGraphSetTrueDiagonal (bitGraph_t ∗ bg)

Sets the main diagonal of a bitGraph true. Input: a bitGraph_t object. Output: integer success
value of  (and an altered bitGraph_t object).

Definition at line  of file bitSet.c.

References bitGraph_t::graph, and setTrue().

699 {
700 int i;
701 for (i = 0; i < bg->size; i++)
702 {
703 setTrue (bg->graph[i], i);
704 }
705 return 0;
706 }

B... int bitGraphSetTrueSym (bitGraph_t ∗ bg, int x, int y)

Sets a specific bit and its symmetric opposite in a bitGraph true. For instance, given that we
wanted to set the rd bit in the th row true, this would also set the th bit in the rd row.
Input: a bitGraph, the index of the row of the bitGraph with the bit be set, the index of the
bit in that row that is to be set. Output: integer success value of  (and an altered bitGraph_t
object).

Definition at line  of file bitSet.c.

References bitGraph_t::graph, and setTrue().

Referenced by alignWordsMat_bit(), main(), and realComparison().

686 {
687 setTrue (bg->graph[x], y);
688 setTrue (bg->graph[y], x);
689 return 0;
690 }

B... int bitSetWayIntersection (bitSet_t ∗ s, bitSet_t ∗ s, bitSet_t ∗ s, bitSet_t
∗ s)

Finds the intersection of  bitSets. Input: First bitSet to be intersected, second bitset to be
intersected. third bitSet to be intersected, a bitSet to store the result of the intersection. Output:
Integer success value of  (and an altered destination bitSet_t object with a true where all three
source bitSets had a true.)

Definition at line  of file bitSet.c.

References BSINTERSECTION, bitSet_t::slots, and bitSet_t::tf.
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329 {
330 int i;
331 if ((s1->slots != s2->slots) || (s1->slots != s3->slots)
332 || (s1->slots != s4->slots))
333 {
334 fprintf (stderr, "Sets aren’t same size!\n");
335 fflush (stderr);
336 exit (0);
337 }
338 for (i = 0; i < s1->slots; i++)
339 {
340 s4->tf[i] = BSINTERSECTION (s1->tf[i], s2->tf[i]);
341 s4->tf[i] = BSINTERSECTION (s3->tf[i], s4->tf[i]);
342 }
343 return 0;
344 }

B... int bitSetDifference (bitSet_t ∗ s, bitSet_t ∗ s, bitSet_t ∗ s)

Locates all differences between two bitSets. �e result bitSet contains a true at a given bit if
the two source bitSets differ at that bit. Input: first bit set to be compared, second bit set to be
compared. third bit set to store the results Output: integer success value of  (and an altered
destination bitSet_t object with a true where the two source bit sets differed).

Definition at line  of file bitSet.c.

References bitSet_t::slots, and bitSet_t::tf.

255 {
256 int i;
257 if ((s1->slots != s2->slots) || (s1->slots != s3->slots))
258 {
259 fprintf (stderr, "Sets aren’t same size!\n");
260 fflush (stderr);
261 exit (0);
262 }
263 for (i = 0; i < s1->slots; i++)
264 {
265 s3->tf[i] = (s1->tf[i] & (˜s2->tf[i]));
266 }
267 return 0;
268 }

B... int bitSetIntersection (bitSet_t ∗ s, bitSet_t ∗ s, bitSet_t ∗ s)

Finds the intersection of two bitsets. Input: First bitSet to be intersected, second bitSet to be
intersected. a bitSet to store the result of the intersection. Output: Integer success value of 
(and an altered destination bitSet_t object. with a true where both source bitSets had a true).

Definition at line  of file bitSet.c.

References BSINTERSECTION, bitSet_t::slots, and bitSet_t::tf.

Referenced by bitGraphRowIntersection(), findCliques(), and maskBitGraph().
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300 {
301 int i;
302 if ((s1->slots != s2->slots) || (s1->slots != s3->slots))
303 {
304 fprintf (stderr, "Sets aren’t same size!\n");
305 fprintf (stderr, "set 1 slots = %d\n", s1->slots);
306 fprintf (stderr, "set 2 slots = %d\n", s2->slots);
307 fprintf (stderr, "set 3 slots = %d\n", s3->slots);
308 fflush (stderr);
309 exit (0);
310 }
311 for (i = 0; i < s1->slots; i++)
312 {
313 s3->tf[i] = BSINTERSECTION (s1->tf[i], s2->tf[i]);
314 }
315 return 0;
316 }

B... int bitSetSum (bitSet_t ∗ s, bitSet_t ∗ s, bitSet_t ∗ s)

Adds two bitSet_t objects together. Currently unknown functionality, not used in existing code.

Definition at line  of file bitSet.c.

References bitSet_t::slots, and bitSet_t::tf.

276 {
277 int i;
278 if ((s1->slots != s2->slots) || (s1->slots != s3->slots))
279 {
280 fprintf (stderr, "Sets aren’t same size!\n");
281 fflush (stderr);
282 exit (0);
283 }
284 for (i = 0; i < s1->slots; i++)
285 {
286 s3->tf[i] = (s1->tf[i] + s2->tf[i]);
287 }
288 return 0;
289 }

B... int bitSetUnion (bitSet_t ∗ s, bitSet_t ∗ s, bitSet_t ∗ s)

Finds the union of two bitSets Input: first bit set for the union, second bit set for the union. a
bit set in which to store the results Output: an integer success value of  (and an altered third
bitSet_t with the results of the union.

Definition at line  of file bitSet.c.

References BSUNION, bitSet_t::slots, and bitSet_t::tf.

Referenced by bitGraphRowUnion(), and singleLinkage().

183 {
184 int i;
185 if ((s1->slots != s2->slots) || (s1->slots != s3->slots))
186 {
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187 fprintf (stderr, "Sets aren’t same size!\n");
188 fflush (stderr);
189 exit (0);
190 }
191 for (i = 0; i < s1->slots; i++)
192 {
193 s3->tf[i] = BSUNION (s1->tf[i], s2->tf[i]);
194 }
195 return 0;
196 }

B... int checkBit (bitSet_t ∗ s, int x)

Finds the value of a specific bit in a bitSet. Input: a bitSet, the number of the bit being queried.
Output: the value of the bit being queried ( or ).

Definition at line  of file bitSet.c.

References BSTEST, and bitSet_t::tf.

Referenced by bitGraphCheckBit(), findCliques(), getStatMat(), maskBitGraph(), nextBitBit-
Set(), singleLinkage(), and wholeRoundConv().

149 {
150 return BSTEST (s1->tf, x);
151 }

B... int copyBitGraph (bitGraph_t ∗ bg, bitGraph_t ∗ bg)

Copies the true/false contents of one bit graph into an existing bit graph. Both bit graphs must
be the same size, and each corresponding bit set between the two bit graphs must be the same
size. Input: source bit graph, destination bitGraph_t object. Output: integer success value of
 (and an altered destination bit graph).

Definition at line  of file bitSet.c.

References copySet(), bitGraph_t::graph, and bitGraph_t::size.

230 {
231 int i;
232 if (bg1->size != bg2->size)
233 {
234 fprintf (stderr, "Graphs are not the same size!");
235 fflush (stderr);
236 exit (0);
237 }
238 for (i = 0; i < bg1->size; i++)
239 {
240 copySet (bg1->graph[i], bg2->graph[i]);
241 }
242 return 0;
243 }
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B... int copySet (bitSet_t ∗ s, bitSet_t ∗ s)

Copies the true/false contents of one bit set into an existing bit set. Both bit sets must be the
same size. Input: source bit set, destination bitSet_t object. Output: integer success value of 
(and an altered destination bitset.

Definition at line  of file bitSet.c.

References bitSet_t::slots, and bitSet_t::tf.

Referenced by copyBitGraph(), filterGraph(), and singleLinkage().

206 {
207 int i;
208 if (s1->slots != s2->slots)
209 {
210 fprintf (stderr, "Sets are not the same size!");
211 fflush (stderr);
212 exit (0);
213 }
214 for (i = 0; i < s1->slots; i++)
215 {
216 s2->tf[i] = s1->tf[i];
217 }
218 return 0;
219 }

B... int countBitGraphNonZero (bitGraph_t ∗ bg)

Counts the number of true (non-zero) values in a bitGraph_t object. Input: a bitGraph_t
object. Output: the integer number of true (non-zero) values in the bitGraph_t object.

Definition at line  of file bitSet.c.

References countSet(), and bitGraph_t::graph.

538 {
539 int i;
540 int sum = 0;
541 // Iterate over all bitSets in the bitGraph
542 for (i = 0; i < bg->size; i++)
543 {
544 sum += countSet (bg->graph[i]);
545 }
546 return sum;
547 }

B... int countSet (bitSet_t ∗ s)

Counts the number of true values in a bitSet. Input: a bitSet_t object. Output: number of true
values in that bitSet_t object.

Definition at line  of file bitSet.c.

References bitcount_precomp(), and bitSet_t::tf.
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Referenced by bitSetToCSet(), countBitGraphNonZero(), filterGraph(), filterIter(), find-
Cliques(), getStatMat(), oldGetStatMat(), printBitSet(), singleLinkage(), and wholeClique-
Conv().

438 {
439 int i;
440 int sum = 0;
441 int (*bitCounter) () = &bitcount32_precomp;
442 // Currently there is no support for 64-bit architectures.
443
444 if (sizeof (bit_t) * 8 != 32)
445 {
446 fprintf (stderr,
447 "\nSorry, no support for 64-bit architectures just yet! - countSet\n");
448 fflush (stderr);
449 exit (0);
450 }
451
452 // Just count the number of true bits in each char, and do this for
453 // (num of chars per int) chars.
454 for (i = 0; i < s1->slots; i++)
455 {
456 sum += bitCounter (s1->tf[i]);
457 }
458 return sum;
459 }

B... int deleteBitGraph (bitGraph_t ∗ bg)

Deletes a bitGraph_t object from memory. Input: a bitGraph_t object to be deleted. Output:
integer success value from  (and deletion of a bitGraph_t object).

Definition at line  of file bitSet.c.

References deleteBitSet(), and bitGraph_t::graph.

Referenced by main().

854 {
855 int i;
856 if (bg != NULL)
857 {
858 if (bg->graph != NULL)
859 {
860 for (i = 0; i < bg->size; i++)
861 {
862 deleteBitSet (bg->graph[i]);
863 }
864 free (bg->graph);
865 bg->graph = NULL;
866 }
867 free (bg);
868 bg = NULL;
869 }
870 return 0;
871 }
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B... int deleteBitSet (bitSet_t ∗ s)

Performs memory management for the deletion of a bitSet_t structure. Input: a bitSet_t object.
Output: integer success value of .

Definition at line  of file bitSet.c.

References bitSet_t::tf.

Referenced by convolve(), deleteBitGraph(), filterGraph(), findCliques(), getStatMat(), old-
GetStatMat(), wholeCliqueConv(), and wholeRoundConv().

160 {
161 if (s1->tf != NULL)
162 {
163 free (s1->tf);
164 s1->tf = NULL;
165 }
166 if (s1 != NULL)
167 {
168 free (s1);
169 s1 = NULL;
170 }
171 return 0;
172 }

B... int emptyBitGraph (bitGraph_t ∗ bg)

Sets all bits in the bitGraph_t object to false. Input: a bitGraph_t object. Output: integer
success value of  (and a bitGraph_t with all false bits).

Definition at line  of file bitSet.c.

References emptySet(), and bitGraph_t::graph.

792 {
793 int i;
794 for (i = 0; i < bg1->size; i++)
795 {
796 emptySet (bg1->graph[i]);
797 }
798 return 0;
799 }

B... int emptyBitGraphRow (bitGraph_t ∗ bg, int row)

Sets all bits in a bitGraph_t row (a bitSet_t object) false. Input: a bitGraph, a row in the bit-
Graph_t object to be emptied. Output: integer success value of  (and an altered bitGraph_t
object).

Definition at line  of file bitSet.c.

References emptySet(), and bitGraph_t::graph.
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842 {
843 emptySet (bg->graph[row]);
844 return 0;
845 }

B... int emptySet (bitSet_t ∗ s)

Sets all values in a bitSet to false. Input: a bitSet_t object. Output: integer success value of .

Definition at line  of file bitSet.c.

References bitSet_t::bytes, and bitSet_t::tf.

Referenced by emptyBitGraph(), emptyBitGraphRow(), filterGraph(), filterIter(), maskBit-
Graph(), pruneBitGraph(), and searchMemsWithList().

137 {
138 memset (s1->tf, 0, s1->bytes);
139 return 0;
140 }

B... int fillBitGraph (bitGraph_t ∗ bg)

Sets all bits in the bitGraph_t object to true. Input: a bitGraph_t object. Output: integer
success value of  (and a bitGraph_t object with all true bits).

Definition at line  of file bitSet.c.

References fillSet(), and bitGraph_t::graph.

776 {
777 int i;
778 for (i = 0; i < bg1->size; i++)
779 {
780 fillSet (bg1->graph[i]);
781 }
782 return 0;
783 }

B... int fillSet (bitSet_t ∗ s)

Sets all values in a bitSet to true. Input: a bitSet. Output: integer success value of .

Definition at line  of file bitSet.c.

References bitSet_t::bytes, and bitSet_t::tf.

Referenced by convolve(), fillBitGraph(), and wholeRoundConv().

125 {
126 memset (s1->tf, ˜0, s1->bytes);
127 return 0;
128 }
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B... int flipBits (bitSet_t ∗ s)

Inverts all values in a bitSet, making all trues false and all falses true. Input: a bitSet. Output:
integer success value of .

Definition at line  of file bitSet.c.

References bitSet_t::tf.

109 {
110 int i;
111 for (i = 0; i < s1->slots; i++)
112 {
113 s1->tf[i] = ˜s1->tf[i];
114 }
115 return 0;
116 }

B... int maskBitGraph (bitGraph_t ∗ bg, bitSet_t ∗ bs)

Makes a bitGraph contain only true bits according to the bitmask given. Only locations with
the row and column both true in the bitmask can be true if they were initially true. If they
were false, they remain false. If the location does not have both the row and the column in the
bitmask, it is made false. Note, this is not currently used in Gemoda. Input: a bitGraph, a mask
in the form of a bitSet_t object. Output: integer success value of  (and an altered bitGraph_t
object).

Definition at line  of file bitSet.c.

References bitSetIntersection(), checkBit(), emptySet(), and bitGraph_t::graph.

753 {
754 int i;
755 for (i = 0; i < bg1->size; i++)
756 {
757 if (checkBit (bs, i))
758 {
759 bitSetIntersection (bg1->graph[i], bs, bg1->graph[i]);
760 }
761 else
762 {
763 emptySet (bg1->graph[i]);
764 }
765 }
766 return 0;
767 }

B... bit_t∗ newBitArray (int bytes)

Creates a bit array for use in high-throughput intersections/unions. Input: desired size of bit
array in byte. Output: a new bit array in bit_t forma. Note: this should not be called directly;
see newBitSet.
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Definition at line  of file bitSet.c.

Referenced by newBitSet().

21 {
22 bit_t *b = (bit_t *) malloc (bytes);
23 if (b == NULL)
24 {
25 fprintf (stderr, "\nMemory error --- couldn’t allocate bitArray!"
26 " - newBitArray\n%s\n", strerror (errno));
27 fflush (stderr);
28 exit (0);
29 }
30 // Set them all false
31 memset (b, 0, bytes);
32 return b;
33 }

B... bitGraph_t∗ newBitGraph (int size)

Creates a bitGraph_t data structure. Input: the size of the (square) bitGraph_t object. Output:
a new bitGraph_t data structure.

Definition at line  of file bitSet.c.

References bitGraph_t::graph, newBitSet(), and bitGraph_t::size.

Referenced by alignWordsMat_bit(), main(), and realComparison().

808 {
809 bitGraph_t *bg = NULL;
810 int i;
811 bg = (bitGraph_t *) malloc (sizeof (bitGraph_t));
812 if (bg == NULL)
813 {
814 fprintf (stderr, "Memory error - Cannot allocate bitGraph - "
815 "newBitGraph\n%s\n", strerror (errno));
816 fflush (stderr);
817 exit (0);
818 }
819 bg->size = size;
820 bg->graph = (bitSet_t **) malloc (size * sizeof (bitSet_t *));
821 if (bg->graph == NULL)
822 {
823 fprintf (stderr, "Memory error - Cannot allocate bitGraphGraph - "
824 "newBitGraph\n%s\n", strerror (errno));
825 fflush (stderr);
826 exit (0);
827 }
828 for (i = 0; i < size; i++)
829 {
830 bg->graph[i] = newBitSet (size);
831 }
832 return bg;
833 }
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B... bitSet_t∗ newBitSet (int size)

Creates a bitSet data structure that contains a bit array and information about that bit array
that is necessary for quick and efficient access of the array. Input: the desired length of the bit
array. Output: a bitSet data structure.

Definition at line  of file bitSet.c.

References BSNUMSLOTS, bitSet_t::bytes, bitSet_t::max, newBitArray(), bitSet_t::slots, and
bitSet_t::tf.

Referenced by convolve(), filterGraph(), findCliques(), getStatMat(), newBitGraph(), oldGet-
StatMat(), wholeCliqueConv(), and wholeRoundConv().

44 {
45 bitSet_t *s1 = (bitSet_t *) malloc (sizeof (bitSet_t));
46 if (s1 == NULL)
47 {
48 fprintf (stderr, "\nMemory error --- couldn’t allocate biSet!"
49 " - newBitSet\n%s\n", strerror (errno));
50 fflush (stderr);
51 exit (0);
52 }
53 // Fill in details about the bitSet, allocate bitSet
54 s1->max = size;
55 s1->slots = BSNUMSLOTS (size);
56 s1->bytes = s1->slots * sizeof (bit_t);
57 s1->tf = newBitArray (s1->bytes);
58 return s1;
59 }

B... int nextBitBitSet (bitSet_t ∗ s, int start)

Finds the index of the first non-zero bit at-or-after start. Input: a bitSet_t to be searched, the
index of the start bit. Output: the index of the first non-zero bit at-or-after start.

Definition at line  of file bitSet.c.

References BITSLOT, BSBITSIZE, checkBit(), bitSet_t::max, and bitSet_t::tf.

Referenced by bitSetToCSet(), filterIter(), findCliques(), getStatMat(), pruneBitGraph(), and
singleLinkage().

469 {
470 // slot is our starting slot, the
471 // slot containing bit ’start’
472 int slot = BITSLOT (start);
473 int i;
474 // stop is the bit to stop it --- it is equal to max, and it is
475 // the index of a bit that does NOT belong to the bitset
476 int stop;
477 bit_t bitFalse;
478 memset (&bitFalse, 0, sizeof (bit_t));
479
480
481 // s1->max is the number of bits in s1
482 // test to see if we’re looking too high
483 if (start >= s1->max)
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484 {
485 return -1;
486 }
487 // s1->slots is the number of available slots
488 // skip over empty slots
489 while (slot < s1->slots)
490 {
491 /*
492 printf("w");
493 */
494 if (s1->tf[slot] != bitFalse)
495 {
496 // this slot is not empty
497
498 // if each slot is, say 32 bits and
499 // we asked for nextBitBitSet(s1, 5),
500 // then slot 0 will be non-zero. but,
501 // instead of starting at 0, start at 5!
502 if (BSBITSIZE * slot > start)
503 {
504 // set start to index of first
505 // bit in this slot
506 start = BSBITSIZE * slot;
507 }
508 // set the stop, with a a check against the ’max’
509 // element of the bitSet_t object
510 if (BSBITSIZE * (slot + 1) > s1->max)
511 {
512 stop = s1->max;
513 }
514 else
515 {
516 stop = BSBITSIZE * (slot + 1);
517 }
518 for (i = start; i < stop; i++)
519 {
520 if (checkBit (s1, i))
521 {
522 return i;
523 }
524 }
525 }
526 slot++;
527 }
528 return -1;
529 }

B... int printBinaryBitSet (bitSet_t ∗ s)

Prints a representation of a bitSet_t structure as a string of ’s and ’s. Input: a bitSet_t object
to be printed. Output: integer success value of  (and the stdout text described above).

Definition at line  of file bitSet.c.

References BSTEST, and bitSet_t::tf.

Referenced by printBitGraph().

612 {
613 int i;
614 for (i = 0; i < s1->max; i++)
615 {



B.. BITSET.C FILE REFERENCE 

616 printf ("%d", (BSTEST (s1->tf, i) ? 1 : 0));
617 }
618 return 0;
619 }

B... int printBitGraph (bitGraph_t ∗ bg)

Prints a representation of a bitGraph using printBinaryBitSet. Input: a bitGraph_t object.
Output: integer success value of  (and stdout text as described above).

Definition at line  of file bitSet.c.

References bitGraph_t::graph, and printBinaryBitSet().

731 {
732 int i;
733 for (i = 0; i < bg->size; i++)
734 {
735 printBinaryBitSet (bg->graph[i]);
736 printf ("\n");
737 }
738 return 0;
739 }

B... int printBitSet (bitSet_t ∗ s)

Prints a representation of a bitSet_t data structure. Input: a bitSet_t to be displayed. Output:
integer success value of  (and the stdout text described above).

Definition at line  of file bitSet.c.

References BSTEST, and countSet().

556 {
557 int i;
558 printf ("bitSet (addr = %d; %d members)\n", (int) s1, countSet (s1));
559 printf ("\tmax = %d\n", s1->max);
560 printf ("\tslots = %d\n", s1->slots);
561 printf ("\tbytes = %d\n", s1->bytes);
562 printf ("\tmembers =");
563
564
565 for (i = 0; i < s1->max; i++)
566 {
567 if (BSTEST (s1->tf, i))
568 {
569 printf (" %d", i);
570 }
571 }
572 printf ("\n");
573 return 0;
574 }
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B... int setFalse (bitSet_t ∗ s, int x)

Sets a specific bit in a bitSet as false. Input: a bitSet, the number of the bit to be set as false.
Output: integer success value of .

Definition at line  of file bitSet.c.

References BSCLEAR, bitSet_t::max, and bitSet_t::tf.

Referenced by bitGraphSetFalse(), bitGraphSetFalseDiagonal(), bitGraphSetFalseSym(), filter-
Iter(), findCliques(), singleCliqueConv(), and singleLinkage().

86 {
87 /*
88 if (BSNUMSLOTS(x) > s1->slots) { Conditional changed, 5/25, by MPS: check x against s1->max,
89 should be safer
90 */
91 if (x >= s1->max)
92 {
93 fprintf (stderr, "Set isn’t large enough! - setFalse\n");
94 fflush (stderr);
95 exit (0);
96 }
97 BSCLEAR (s1->tf, x);
98 return 0;
99 }

B... int setTrue (bitSet_t ∗ s, int x)

Sets a specific bit in a bitSet as true. Input: a bitSet, the number of the bit to be set as true.
Output: integer success value of .

Definition at line  of file bitSet.c.

References BSSET, bitSet_t::max, and bitSet_t::tf.

Referenced by bitGraphSetTrue(), bitGraphSetTrueDiagonal(), bitGraphSetTrueSym(), filter-
Iter(), findCliques(), and setStackTrue().

68 {
69 if (x >= s1->max)
70 {
71 fprintf (stderr, "Set isn’t large enough! - setTrue\n");
72 fflush (stderr);
73 exit (0);
74 }
75 BSSET (s1->tf, x);
76 return 0;
77 }
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B. convll.c File Reference

#include <errno.h >

#include <string.h >

#include "convll.h"

#include "bitSet.h"

Include dependency graph for convll.c:

convll.c

errno.h

string.h

convll.h

bitSet.h

stdio.h

stdlib.h

Functions

• cll_t ∗ pruneCll (cll_t ∗head, int ∗indexToSeq, int p)
• cll_t ∗ pushCll (cll_t ∗head)
• cll_t ∗ popCll (cll_t ∗head)
• cll_t ∗ popAllCll (cll_t ∗head)
• int printCll (cll_t ∗head)
• cll_t ∗ initheadCll (cll_t ∗head, cSet_t ∗newset)
• cll_t ∗ pushcSet (cll_t ∗head, cSet_t ∗newset)
• cSet_t ∗ bitSetToCSet (bitSet_t ∗clique)
• int checkCliquecSet (cSet_t ∗cliquecSet, int ∗indexToSeq, int p)
• cll_t ∗ pushClique (bitSet_t ∗clique, cll_t ∗head, int ∗indexToSeq, int p)
• mll_t ∗ pushMemStack (mll_t ∗head, int cliqueNum)
• mll_t ∗ popMemStack (mll_t ∗head)
• mll_t ∗ popWholeMemStack (mll_t ∗head)
• mll_t ∗∗ addToStacks (cll_t ∗node, mll_t ∗∗memberStacks)
• mll_t ∗∗ fillMemberStacks (cll_t ∗head, mll_t ∗∗memberStacks)
• mll_t ∗∗ emptyMemberStacks (mll_t ∗∗memberStacks, int size)
• void printMemberStacks (mll_t ∗∗memberStacks, int size)
• bitSet_t ∗ setStackTrue (mll_t ∗∗memList, int i, bitSet_t ∗queue)
• bitSet_t ∗ searchMemsWithList (int ∗list, int listsize, mll_t ∗∗memList, int numOffsets,

bitSet_t ∗queue)
• cll_t ∗ singleCliqueConv (cll_t ∗head, int firstClique, cll_t ∗∗firstGuess, int second-

Clique, cll_t ∗∗secondGuess, cll_t ∗nextPhase, bitSet_t ∗printStatus, int support)
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• mll_t ∗ mergeIntersect (cll_t ∗first, cll_t ∗second, mll_t ∗intersection, bitSet_-
t ∗printstatus, int ∗newSupport)

• int uniqClique (cSet_t ∗cliquecSet, cll_t ∗head)
• cll_t ∗ swapNodecSet (cll_t ∗head, int node, cSet_t ∗newClique)
• cll_t ∗ removeSupers (cll_t ∗head, int node, cSet_t ∗newClique)
• int printCSet (cSet_t ∗node)
• cll_t ∗ pushConvClique (mll_t ∗clique, cll_t ∗head)
• cSet_t ∗ mllToCSet (mll_t ∗clique)
• cll_t ∗ wholeCliqueConv (cll_t ∗head, cll_t ∗node, cll_t ∗∗firstGuess, mll_t ∗∗memList,

int numOffsets, cll_t ∗nextPhase, bitSet_t ∗printStatus, int support)
• cll_t ∗ wholeRoundConv (cll_t ∗∗head, mll_t ∗∗memList, int numOffsets, int support,

int length, cll_t ∗∗allCliques)
• int yankCll (cll_t ∗∗head, cll_t ∗prev, cll_t ∗∗curr, cll_t ∗∗allCliques, int length)
• cll_t ∗ completeConv (cll_t ∗∗head, int support, int numOffsets, int minLength, int
∗indexToSeq, int p)

• int printCllPattern (cll_t ∗node, int length)

Variables

• int cliquecounter = 

Detailed Description

�is file defines a number of functions for handling link lists of motifs, or cliques. �e functions
defined in this file are called extensively during the convolution stage of the Gemoda algorithm
for both the sequence based and real value based software.

Definition in file convll.c.

Function Documentation

B... mll_t∗∗ addToStacks (cll_t ∗ node, mll_t ∗∗ memberStacks)

For one clique, it adds membership for that clique to all of its members’ member stacks. Input:
a specific clique in a clique linked list, an array of member stacks. Output: the array of updated
member stacks.

Definition at line  of file convll.c.

References cnode::id, cSet_t::members, pushMemStack(), and cnode::set.

Referenced by fillMemberStacks().
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483 {
484 int i = 0;
485 int cliqueNum = 0;
486
487 // Make sure that we don’t reference NULL values
488 if (node->set != NULL)
489 {
490 // Go through each member of the clique’s set
491 for (i = 0; i < node->set->size; i++)
492 {
493 // Get the member’s number
494 cliqueNum = node->set->members[i];
495 // Go to that member’s linked list and push
496 // on the number of the current clique
497 memberStacks[cliqueNum] =
498 pushMemStack (memberStacks[cliqueNum], node->id);
499 }
500 }
501 else
502 {
503 fprintf (stderr, "\nNULL set for clique! - addToStacks\n");
504 fflush (stderr);
505 exit (0);
506 }
507 return memberStacks;
508 }

B... cSet_t∗ bitSetToCSet (bitSet_t ∗ clique)

Converts a bitSet_t to a cSet_t for the purposes of pushing it onto a linked list of cliques.
�e bitSet_t data structure is used for massive comparisons during clique-finding but is un-
wieldy/inefficient when it is known that the structure is sparse. �e cSet_t allows for efficient
comparison of sparse bitSet_t’s. Use this just before pushing a newly-discovered clique onto a
clique linked list. Input: a new clique in the form of a bitSet_t. Output: the same clique in the
form of a cSet_t.

Definition at line  of file convll.c.

References countSet(), cSet_t::members, nextBitBitSet(), and cSet_t::size.

Referenced by pushClique(), and wholeCliqueConv().

213 {
214 int cliqueSize = countSet (clique);
215 int i = 0, start = 0;
216 cSet_t *holder = (cSet_t *) malloc (sizeof (cSet_t));
217
218 // Memory error checking
219 if (holder == NULL)
220 {
221 fprintf (stderr, "\nMemory Error - bitSetToCSet - [1]\n%s\n",
222 strerror (errno));
223 fflush (stderr);
224 exit (0);
225 }
226 // More memory checking
227 holder->members = (int *) malloc (cliqueSize * sizeof (int));
228 if (holder->members == NULL)
229 {
230 fprintf (stderr, "\nMemory Error - bitSetToCSet - [2]\n%s\n",
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231 strerror (errno));
232 fflush (stderr);
233 exit (0);
234 }
235
236 // For each member of the clique in the bitSet,
237 for (i = 0; i < cliqueSize; i++)
238 {
239 // Find the next one, add its location to the members array
240 holder->members[i] = nextBitBitSet (clique, start);
241 // (But check for errors... if we get to the end of the
242 // bitSet, then something is wrong)
243 if (holder->members[i] == -1)
244 {
245 fprintf (stderr, "\nClique error - not enough members\n");
246 fflush (stderr);
247 exit (0);
248 }
249 // Increment to move on in the nextBitBitSet search
250 start = holder->members[i] + 1;
251 }
252
253 holder->size = cliqueSize;
254 return holder;
255 }

B... int checkCliquecSet (cSet_t ∗ cliquecSet, int ∗ indexToSeq, int p)

Checks to enforce the -p flag (minimum number of unique input sequences in which the motif
occurs). Input: a clique in the form of a cSet_t, pointer to the index/sequence number data
structure, the -p flag value. Output: An integer:  for success,  for failure.

Definition at line  of file convll.c.

References cSet_t::members, and cSet_t::size.

Referenced by pushClique().

267 {
268 int *seqNums = NULL;
269 int thisSeq = 0, i = 0, j = 0;
270 seqNums = (int *) malloc (p * sizeof (int));
271
272 if (seqNums == NULL)
273 {
274 fprintf (stderr, "Memory error - checkCliquecSet\n%s\n",
275 strerror (errno));
276 fflush (stderr);
277 exit (0);
278 }
279 // Initialize an array of integers of size p to sentinel values of -1
280 for (i = 0; i < p; i++)
281 {
282 seqNums[i] = -1;
283 }
284 j = 0;
285
286 if (cliquecSet->size < 1)
287 {
288 fprintf (stderr, "\nClique of zero size! - checkCliquecSet\n");
289 fflush (stderr);
290 exit (0);
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291 }
292 // Find the first sequence number.
293 seqNums[0] = indexToSeq[cliquecSet->members[0]];
294 // Iterate over the remaining size of the clique
295 for (i = 1; i < cliquecSet->size; i++)
296 {
297 // Find the next sequence number.
298 thisSeq = indexToSeq[cliquecSet->members[i]];
299 // The member list is in monotonic order, so we only need
300 // to compare the current member to the previous member to
301 // find out if it comes from the same sequence.
302 // If it’s not from the same sequence, increment the unique
303 // sequence counter (j), store the next sequence number
304 // in the array.
305 // Also check to see if we’ve already reached the p threshold,
306 // and if so, then bail out.
307 if (thisSeq != seqNums[j])
308 {
309 j++;
310 seqNums[j] = thisSeq;
311 if (j == p - 1)
312 {
313 break;
314 }
315 }
316 }
317
318 // Now just see what the value of the last number in the array is;
319 // if it’s the sentinel, then we didn’t find instances in p
320 // unique sequences. If it’s not the sentinel, then we’ve met
321 // the -p criterion.
322 if (seqNums[p - 1] == -1)
323 {
324 free (seqNums);
325 return (0);
326 }
327 else
328 {
329 free (seqNums);
330 return (1);
331 }
332 }

B... cll_t∗ completeConv (cll_t ∗∗ head, int support, int numOffsets, int
minLength, int ∗ indexToSeq, int p)

Performs complete convolution given the starting list of cliques. Input: a pointer to the head of
the initial clique linked list, the minimum support criterion value, the number of offsets in the
sequence set, the minimum length of motifs (which is the length of motifs in the initial clique
linked list), the index/Sequence data structure, and the value of the -p flag to prune based on
unique sequence occurrences. Output: a linked list of all maximal cliques based on the initial
clique linked list.

Definition at line  of file convll.c.

References emptyMemberStacks(), fillMemberStacks(), popAllCll(), pruneCll(), and whole-
RoundConv().

Referenced by convolve().
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1419 {
1420 int i = 0;
1421 mll_t **memList = NULL;
1422 cll_t *nextPhase = NULL;
1423 cll_t *allCliques = NULL;
1424 int length = minLength;
1425 memList = (mll_t **) malloc (numOffsets * sizeof (mll_t *));
1426 if (memList == NULL)
1427 {
1428 fprintf (stderr, "Memory error - completeConv\n%s\n", strerror (errno));
1429 fflush (stderr);
1430 exit (0);
1431 }
1432 // The number of offsets will never change, so this can be defined
1433 // now, though we will have to change what is in these arrays later.
1434 for (i = 0; i < numOffsets; i++)
1435 {
1436 memList[i] = NULL;
1437 }
1438
1439 // NOTE: This assumes that the elemPats all meet the support criterion
1440
1441 // So we’ll do this as long as the head is non-null.. that means that
1442 // the initial set of cliques must be non-null. Those are then
1443 // convolved and the linked list for the next round is set to head,
1444 // so this continues until the linked list for the "next round" at
1445 // the end of some round is null.
1446 while (*head != NULL)
1447 {
1448 // First we get the inverse information for this round: find
1449 // out which cliques each offset is a member of.
1450 memList = fillMemberStacks (*head, memList);
1451 // printf("numOffsets.bak = %d\n",numOffsets);
1452 // // Then we convolve a whole round.
1453 nextPhase =
1454 wholeRoundConv (head, memList, numOffsets, support, length,
1455 &allCliques);
1456 // Do some housekeeping.
1457 memList = emptyMemberStacks (memList, numOffsets);
1458 popAllCll (*head);
1459 // Enforce the -p flag for subsequent rounds.
1460 if (p > 1)
1461 {
1462 nextPhase = pruneCll (nextPhase, indexToSeq, p);
1463 }
1464 // And move on to the next round of convolution.
1465 *head = nextPhase;
1466 length++;
1467 }
1468
1469 free (memList);
1470
1471 return allCliques;
1472 }

B... mll_t∗∗ emptyMemberStacks (mll_t ∗∗ memberStacks, int size)

After we have performed a round of convolution, this "empties" the member stacks by popping
all nodes off each member linked list. Input: array of member linked lists, the size of that array
(total number of offsets). Output: the array of now-empty member linked lists.

Definition at line  of file convll.c.
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References popWholeMemStack().

Referenced by completeConv().

539 {
540 int i = 0;
541
542 for (i = 0; i < size; i++)
543 {
544 memberStacks[i] = popWholeMemStack (memberStacks[i]);
545 }
546
547 return memberStacks;
548 }

B... mll_t∗∗ fillMemberStacks (cll_t ∗ head, mll_t ∗∗ memberStacks)

Fills the entire memberStacks data structure by calling addToStacks for each clique in the clique
linked list. Input: head of a clique linked list, array of member linked lists. Output: the array
of updated member linked lists.

Definition at line  of file convll.c.

References addToStacks(), and cnode::next.

Referenced by completeConv().

518 {
519 cll_t *curr = head;
520 // Just go down the linked list calling addToStacks
521 while (curr != NULL)
522 {
523 memberStacks = addToStacks (curr, memberStacks);
524 curr = curr->next;
525 }
526
527 return memberStacks;
528 }

B... cll_t∗ initheadCll (cll_t ∗ head, cSet_t ∗ newset)

Initializes the empty head of a linked list by adding a set to that head. Note: this is only called
immediately after pushing onto a cll, because the push always creates a new empty head. �is
function should not be called by the user; see pushcSet. Input: head of a linked list, pointer to
a cSet_t list of clique members. Output: head of a linked list.

Definition at line  of file convll.c.

References cnode::set.

Referenced by pushcSet().

173 {
174 // Check to make sure that the head is not already initialized.
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175 if (head->set != NULL)
176 {
177 printf ("Stack head already initialized!");
178 exit (0);
179 }
180 // Make the head’s set pointer point to the new set.
181 head->set = newset;
182 return head;
183 }

B... mll_t∗mergeIntersect (cll_t ∗ first, cll_t ∗ second, mll_t ∗ intersection, bitSet_t
∗ printstatus, int ∗ newSupport)

Convolves two cliques in a non-commutative manner. It finds which members of the first clique
are immediately followed by a member in the second clique. Input: pointer to the location in
the linked list of the first clique to be convolved, pointer to the location in the linked list of
the second clique to be convolved, a member linked list used to store the intersection of the
two cliques, the printstatus bitSet, and a pointer to an integer with the support of the clique
formed by convolution. Output: a member linked list with the intersection of the two cliques,
plus the side effect of that intersection’s cardinality being stored in the integer pointed to by
newSupport.

Definition at line  of file convll.c.

References cSet_t::members, pushMemStack(), and cnode::set.

Referenced by singleCliqueConv().

761 {
762
763 int i = 0, j = 0, status = 0;
764
765 // Make sure we are still in-bounds, otherwise we bail out
766 // We’ll refer to the offset currently being analyzed from the
767 // first clique as the ’first offset’ and the offset currently
768 // being analyzed from the second clique as the ’second offset’
769 while ((i < first->set->size) && (j < second->set->size))
770 {
771 // If the second offset is earlier than the first offset plus
772 // one, then we move on to the next possible second offset
773 if ((first->set->members[i] + 1) > second->set->members[j])
774 {
775 j++;
776 }
777 // If the second offset is later than the first offset plus
778 // one, then we move on the next possible first offset
779 else if ((first->set->members[i] + 1) < second->set->members[j])
780 {
781 i++;
782 }
783 // Otherwise, the second offset is equal to the first offset
784 // plus one, so we have an extendable node. Push that on
785 // to the intersection stack, move both the first and second
786 // offsets to their respective next possible offsets, and
787 // increment the support counter for the new clique (status)
788 else
789 {
790 intersection = pushMemStack (intersection, first->set->members[i]);
791 i++;
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792 j++;
793 status++;
794 }
795 }
796
797 // Send the value of the clique’s new support out of this function
798 *newSupport = status;
799 return intersection;
800 }

B... cSet_t∗mllToCSet (mll_t ∗ clique)

Turns a member linked list used to store the intersection of two cliques into something more
useful: a cSet_t structure. Input: a clique in mll_t form. Output: a clique in cSet_t form.

Definition at line  of file convll.c.

References mnode::cliqueMembership, cSet_t::members, mnode::next, and cSet_t::size.

Referenced by pushConvClique().

1146 {
1147 int sizecount = 0, i = 0;
1148 cSet_t *cliqueCset = malloc (sizeof (cSet_t));
1149 mll_t *head = clique;
1150 if (cliqueCset == NULL)
1151 {
1152 fprintf (stderr, "Memory error - mllToCSet cSet\n%s\n",
1153 strerror (errno));
1154 fflush (stderr);
1155 exit (0);
1156 }
1157 // First count up how many members there are in the member linked list
1158 while (head != NULL)
1159 {
1160 sizecount++;
1161 head = head->next;
1162 }
1163
1164 head = clique;
1165 cliqueCset->size = sizecount;
1166 cliqueCset->members = (int *) malloc (sizecount * sizeof (int));
1167
1168 if (cliqueCset->members == NULL)
1169 {
1170 fprintf (stderr, "Memory error - mllTlCSet cliquemembers\n%s\n",
1171 strerror (errno));
1172 fflush (stderr);
1173 exit (0);
1174 }
1175 // In order to stay in the same format as with bitSet translation to
1176 // cSet, we ensure that the ids of the members are ascending with
1177 // ascending index number in the cSet. This is accomplished by noting
1178 // that since the intersection members are pushed onto the stack,
1179 // a LIFO operation, that the first intersected nodes off the stack
1180 // will have the highest ids, so we will put them at the end of
1181 // the members array with the higher index values.
1182 for (i = sizecount - 1; i >= 0; i--)
1183 {
1184 cliqueCset->members[i] = head->cliqueMembership;
1185 head = head->next;
1186 }
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1187
1188 return cliqueCset;
1189 }

B... cll_t∗ popAllCll (cll_t ∗ head)

Shortcut function to pop all of the members of a linked list. Input: head of a linked list.
Output: head of a now-empty linked list.

Definition at line  of file convll.c.

References popCll().

Referenced by completeConv(), and main().

110 {
111 while (head != NULL)
112 {
113 head = popCll (head);
114 }
115 return head;
116 }

B... cll_t∗ popCll (cll_t ∗ head)

Removes the head of the clique linked list, returns the new head of the clique linked list, and
frees the memory occupied by the old head. Input: head of a linked list. Output: head of a
linked list.

Definition at line  of file convll.c.

References cSet_t::members, cnode::next, and cnode::set.

Referenced by popAllCll().

67 {
68 // by default the new head is NULL...is important later
69 cll_t *newHead = NULL;
70 if (head == NULL)
71 {
72 fprintf (stderr, "\nCan’t pop a null linked list\n");
73 fflush (stderr);
74 exit (0);
75 }
76 // unless this is the end of the linked list, set the new head
77 // to the next member of the list. Otherwise, since by default the
78 // new head is NULL, it will properly return an empty list
79 if (head->next != NULL)
80 {
81 newHead = head->next;
82 }
83 // Check to see if there is a set. If there is, and there are members,
84 // then first free the members. And if there is a set, then free it.
85 if (head->set != NULL)
86 {
87 if (head->set->members != NULL)
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88 {
89 free (head->set->members);
90 head->set->members = NULL;
91 }
92 free (head->set);
93 head->set = NULL;
94 }
95 // Both the members and set have been freed, so now can free the cll_t
96 // without leaking anything.
97
98 free (head);
99 head = NULL;
100 return newHead;
101 }

B... mll_t∗ popMemStack (mll_t ∗ head)

Pops the head off of a single member linked list. Input: head of a member linked list. Output:
the new head of a member linked list after popping one item.

Definition at line  of file convll.c.

References mnode::next.

Referenced by popWholeMemStack().

441 {
442 // by default the new head is NULL...is important later
443 mll_t *newHead = NULL;
444 if (head == NULL)
445 {
446 fprintf (stderr, "\nCan’t pop a null linked list - popMemStack\n");
447 fflush (stderr);
448 exit (0);
449 }
450 if (head->next != NULL)
451 {
452 newHead = head->next;
453 }
454 free (head);
455 head = NULL;
456 return newHead;
457 }

B... mll_t∗ popWholeMemStack (mll_t ∗ head)

Pops all items off of a member linked list. Input: head of a member linked list. Output: empty
head of a member linked list.

Definition at line  of file convll.c.

References popMemStack().

Referenced by emptyMemberStacks(), and singleCliqueConv().

466 {
467 while (head != NULL)
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468 {
469 head = popMemStack (head);
470 }
471 return head;
472 }

B... int printCll (cll_t ∗ head)

Prints the members (cliques) of a linked list in the format: id = unique id number of clique
within linked list; Length = number of members of clique, if available; Size = length of each
member of clique; Members = newline-separated list of members of the clique. Input: head of
a linked list. Output: Gives text output, returns (meaningless) exit value.

Definition at line  of file convll.c.

References cnode::id, cnode::length, cSet_t::members, cnode::next, cnode::set, and cSet_t::size.

129 {
130 int i = 0;
131 cll_t *curr = head;
132 while (curr != NULL)
133 {
134 printf ("id = %d\n", curr->id);
135 // Make sure the clique is nonzero in size before attempting
136 // to print it
137 if ((curr->set != NULL) && (curr->set->size > 0))
138 {
139 if (curr->length >= 0)
140 {
141 printf ("Length = %d\n", curr->length);
142 }
143 printf ("Size = %d\n", curr->set->size);
144 printf ("Members = \n");
145 for (i = 0; i < curr->set->size; i++)
146 {
147 printf ("\t%d\n", curr->set->members[i]);
148 }
149 printf ("***********************************************\n");
150 }
151 else
152 {
153 fprintf (stderr, "\nClique has no members! -- printCll\n");
154 fflush (stderr);
155 exit (0);
156 }
157 curr = curr->next;
158 }
159 return EXIT_SUCCESS;
160 }

B... int printCllPattern (cll_t ∗ node, int length)

Prints out the contents of a clique linked list node in this format: support = number of motif
occurrences (id = some id number); members = newline-separated list of offsets. Input: a specific
node to be output, the length of the motif inside it. Output: text per above, and an integer
success value.
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Definition at line  of file convll.c.

References cnode::id, cSet_t::members, cnode::set, and cSet_t::size.

1483 {
1484 int i = 0;
1485
1486 printf ("\nSupport = %d\t(id = %d)\n", node->set->size, node->id);
1487 printf ("Members = \n");
1488 for (i = 0; i < node->set->size; i++)
1489 {
1490 printf ("\t%d\n", node->set->members[i]);
1491 }
1492 return 1;
1493 }

B... int printCSet (cSet_t ∗ node)

Prints out the contents of a cSet_t in the following format: support = number of nodes in
clique; members = newline-separated list of nodes in clique. Input: a clique in the form of a
cSet_t object. Output: in text, the contents of the cSet_t object. An integer is returned as well,
with  indicating success.

Definition at line  of file convll.c.

References cSet_t::members, and cSet_t::size.

1069 {
1070 int i = 0;
1071 if (node->size == 0)
1072 {
1073 fprintf (stderr, "cSet has no members! - printCSet\n");
1074 fflush (stderr);
1075 exit (0);
1076 }
1077 else
1078 {
1079 printf ("\nSupport = %d\n", node->size);
1080 printf ("Members = \n");
1081 for (i = 0; i < node->size; i++)
1082 {
1083 printf ("\t%d\n", node->members[i]);
1084 }
1085 return 1;
1086 }
1087 }

B... void printMemberStacks (mll_t ∗∗ memberStacks, int size)

Prints the contents of the member stacks. Input: array of member linked lists, size of that array
(total number of offsets). Output: only text output/no return value.

Definition at line  of file convll.c.

References mnode::cliqueMembership, and mnode::next.
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558 {
559 int i = 0;
560 mll_t *curr = NULL;
561
562 for (i = 0; i < size; i++)
563 {
564 curr = memberStacks[i];
565 printf ("Offset %d: ", i);
566 while (curr != NULL)
567 {
568 printf ("%d,", curr->cliqueMembership);
569 curr = curr->next;
570 }
571 printf ("\n");
572 }
573 }

B... cll_t∗ pruneCll (cll_t ∗ head, int ∗ indexToSeq, int p)

Prunes a motif linked list of all motifs without support in at least

unique source sequences. Input: head of a motif linked list, pointer to a structure that deref-
erences offset indices to sequence numbers, minimum number of unique source sequences in
which a motif must occur. Output: head of a (potentially altered) motif linked list.

Definition at line  of file newConv.c.

References cSet_t::members, cnode::next, cnode::set, and cSet_t::size.

Referenced by completeConv(), and convolve().

515 {
516 int i = 0, j = 0, thisSeq = 0;
517 int *seqNums = NULL;
518 cll_t * curr = head;
519 cll_t * prev = NULL;
520 cll_t * storage = NULL;
521
522 // We’ll do this similar to the pruneBitGraph function... we will
523 // keep track of which source sequence each motif occurrence was in.
524 // Again, since the occurrences are listed monotonically, we only
525 // need to compare the last non-sentinel index to the current
526 // sequence number.
527 seqNums = (int *) malloc (p * sizeof (int));
528 if (seqNums == NULL)
529 {
530 fprintf (stderr, "Memory error - pruneCll\n%s\n", strerror (errno));
531 fflush (stderr);
532 exit (0);
533 }
534 while (curr != NULL)
535 {
536
537 // First make sure the set size is at least p.
538 // This is redundant, but extremely simple and not expensive,
539 // so we’ll leave it in just as a check.
540 if (curr->set->size < p)
541 {
542 if (prev != NULL)
543 {
544 prev->next = curr->next;
545 }
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546 else
547 {
548 head = curr->next;
549 }
550 storage = curr->next;
551 free (curr->set->members);
552 free (curr->set);
553 free (curr);
554 curr = storage;
555 continue;
556 }
557 for (i = 0; i < p; i++)
558 {
559 seqNums[i] = -1;
560 }
561 j = 0;
562 seqNums[0] = indexToSeq[curr->set->members[0]];
563
564 // Note, we’ve checked to make sure size > p, and we know
565 // p must be 2 or greater, so we can start at 1 without
566 // worrying about segfaulting
567 for (i = 1; i < curr->set->size; i++)
568 {
569 thisSeq = indexToSeq[curr->set->members[i]];
570 if (thisSeq != seqNums[j])
571 {
572 j++;
573 seqNums[j] = thisSeq;
574 if (j == p - 1)
575 {
576 break;
577 }
578 }
579 }
580
581 // Same story as before... if the last number is -1,
582 // then we didn’t have enough to fill up the <p> different
583 // slots, so this doesn’t meet our criterion.
584 if (seqNums[p - 1] == -1)
585 {
586 if (prev != NULL)
587 {
588 prev->next = curr->next;
589 }
590 else
591 {
592 head = curr->next;
593 }
594 storage = curr->next;
595 free (curr->set->members);
596 free (curr->set);
597 free (curr);
598 curr = storage;
599 }
600 else
601 {
602 prev = curr;
603 curr = curr->next;
604 }
605 }
606 free (seqNums);
607 return (head);
608 }
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B... cll_t∗ pushClique (bitSet_t ∗ clique, cll_t ∗ head, int ∗ indexToSeq, int p)

Pushes a bitSet onto a clique linked list, performing all necessary manipulations in order to
do so. Input: new clique in the form of a bitSet_t, head of a linked list, pointer to the in-
dex/sequence number data structure, integer value of the -p flag. Output: head of an updated
clique linked list.

Definition at line  of file convll.c.

References bitSetToCSet(), checkCliquecSet(), cliquecounter, and pushcSet().

Referenced by findCliques(), and singleLinkage().

346 {
347 cSet_t *cliquecSet = NULL;
348
349 // Change the bitSet_t to a cSet_t
350 cliquecSet = bitSetToCSet (clique);
351 // If the -p flag has been assigned a value, then check the clique
352 // and only proceed if that criterion is met. Otherwise, free the
353 // memory that we had allocated up to this point.
354 if (p > 1)
355 {
356 if (checkCliquecSet (cliquecSet, indexToSeq, p))
357 {
358 cliquecounter++;
359 /*
360 printf("%d\n",cliquecounter);
361 */
362 /*
363 fflush(stdout);
364 */
365 head = pushcSet (head, cliquecSet);
366 }
367 else
368 {
369 free (cliquecSet->members);
370 free (cliquecSet);
371 }
372 // If the -p flag wasn’t set, then just push the cSet onto the linked
373 // list.
374 }
375 else
376 {
377 cliquecounter++;
378 /*
379 printf("%d\n",cliquecounter);
380 */
381 /*
382 fflush(stdout);
383 */
384 head = pushcSet (head, cliquecSet);
385 }
386 return head;
387 }

B... cll_t∗ pushCll (cll_t ∗ head)

Pushes a new, empty head onto a linked list of cliques. Note: this should always be followed
by a call to initheadCll, as the head pushed on here is empty and will be meaningless without
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any members. �is function should NOT be used by the user; see pushcSet. Input: head of a
linked list. Output: head of a linked list.

Definition at line  of file convll.c.

References cnode::id, cnode::length, cnode::next, cnode::set, and cnode::stat.

Referenced by pushcSet().

29 {
30 // Make a pointer, verify memory
31 cll_t *a = NULL;
32 a = (cll_t *) malloc (sizeof (cll_t));
33 if (a == NULL)
34 {
35 fprintf (stderr, "\nMemory Error - pushCll\n%s\n", strerror (errno));
36 fflush (stderr);
37 exit (0);
38 }
39 // Initialize id (sequential) and pointer to next item, but not
40 // the cSet with the clique members
41 if (head == NULL)
42 {
43 a->id = 0;
44 a->next = NULL;
45 }
46 else
47 {
48 a->next = head;
49 a->id = head->id + 1;
50 }
51 a->set = NULL;
52 a->length = -1;
53 a->stat = -1;
54 return a;
55 }

B... cll_t∗ pushConvClique (mll_t ∗ clique, cll_t ∗ head)

Pushes a freshly-convolved clique, currently in mll_t form, onto the clique linked list for the
next level. Also checks to make sure that the convolved clique is unique, and if it isn’t, it takes
appropriate action. Input: a convolved clique in mll_t form, the head of a clique linked list for
the next level. Output: (potentially new) head of the clique linked list for the next level.

Definition at line  of file convll.c.

References cSet_t::members, mllToCSet(), pushcSet(), removeSupers(), swapNodecSet(), and
uniqClique().

Referenced by singleCliqueConv().

1100 {
1101 int status = 0;
1102 cSet_t *cliquecSet = NULL;
1103
1104 // First change the clique to something we can used more easily
1105 cliquecSet = mllToCSet (clique);
1106 // Then check to make sure it’s unique by finding out its status
1107 status = uniqClique (cliquecSet, head);
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1108
1109 // printf("Candidate:\n");
1110 // printCSet(cliquecSet);
1111
1112 // If we get -2, then this clique is a subset, so just free
1113 // the cSet we just made and move on.
1114 if (status == -2)
1115 {
1116 free (cliquecSet->members);
1117 free (cliquecSet);
1118 cliquecSet = NULL;
1119 }
1120 // If we get -1, then this is a unique clique, so push it on.
1121 else if (status == -1)
1122 {
1123 head = pushcSet (head, cliquecSet);
1124 }
1125 // Otherwise, this clique is a superset, so we’ll first remove
1126 // all of the other cliques of which this is a superset. Then
1127 // we’ll swap out the first clique of which this is a superset
1128 // with this current clique. The clique being removed is free’d
1129 // within the swapNode function.
1130 else
1131 {
1132 head = removeSupers (head, status, cliquecSet);
1133 head = swapNodecSet (head, status, cliquecSet);
1134 }
1135 return head;
1136 }

B... cll_t∗ pushcSet (cll_t ∗ head, cSet_t ∗ newset)

Function that pushes the contents of a cSet (set of members of a clique) onto a linked list of
cliques. Input: head of a linked list, new clique in the form of a cSet_t. Output: head of a
linked list.

Definition at line  of file convll.c.

References initheadCll(), and pushCll().

Referenced by pushClique(), and pushConvClique().

193 {
194 head = pushCll (head);
195 head = initheadCll (head, newset);
196 return head;
197 }

B... mll_t∗ pushMemStack (mll_t ∗ head, int cliqueNum)

�is begins code for the member linked lists. A single one of these linked lists functions some-
what similarly to the clique linked lists, though with less information stored. Functionally, an
array of member linked lists is used to access the "inverse" of what is contained in the clique
linked lists. �at is, we would like to be able to look up the cliques that a given node is a
member of, so we have an array of member linked lists of size equal to the number of nodes.
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�is function pushes a single clique membership onto a node’s member stack. Input: the head
of a single member linked list, a clique number to be added. Output: the head of a single
member linked list.

Definition at line  of file convll.c.

References mnode::cliqueMembership, and mnode::next.

Referenced by addToStacks(), and mergeIntersect().

405 {
406 mll_t *a = NULL;
407 a = (mll_t *) malloc (sizeof (mll_t));
408 // Memory error checking
409 if (a == NULL)
410 {
411 fprintf (stderr, "\nMemory Error - pushMemStack: %s\n",
412 strerror (errno));
413 fflush (stderr);
414 exit (0);
415 }
416 if (head == NULL)
417 {
418 a->next = NULL;
419 }
420 else
421 {
422 a->next = head;
423 }
424 // Store the number of the clique of which the node is a member.
425 // Note that we assume no duplication, which is guaranteed
426 // by our method of filling the member stacks, which is quite simple:
427 // go through all members of a clique (which have no duplicates
428 // because they are constructed from merge-intersections or from
429 // bitSet_t’s) and add that clique to each node’s membership list.
430 a->cliqueMembership = cliqueNum;
431 return a;
432 }

B... cll_t∗ removeSupers (cll_t ∗ head, int node, cSet_t ∗ newClique)

�is function finds all cliques in a linked list of which the proposed clique is a superset. It
starts looking AFTER the first clique which has already been found to be a subset. In some
senses, it is just a continuation of the uniqclique function in order to take advantage of the fact
that though a proposed clique can only be a subset of one existing next-level clique, it can be
a superset of many existing next- level cliques. Input: head of a clique linked list, the id of the
first node found to be a subset of the proposed clique, and the proposed clique (in cSet_t form).
Output: the head of the clique linked list with all but the first subset (which was passed as an
argument) removed. �is function is now ready for swapNode to be called.

Definition at line  of file convll.c.

References cnode::id, cSet_t::members, cnode::next, cnode::set, and cSet_t::size.

Referenced by pushConvClique().

953 {
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954 int foundStatus = 0;
955 cll_t *curr = head;
956 cll_t *prev = NULL;
957 int i = 0, j = 0, breakFlag = 0;
958
959 while (curr != NULL)
960 {
961 if (curr->id == node)
962 {
963 foundStatus = 1;
964 break;
965 }
966 curr = curr->next;
967 }
968
969 if (foundStatus == 0)
970 {
971 fprintf (stderr, "\nFirst clique not found! (removeSupers)\n");
972 fflush (stderr);
973 exit (0);
974 }
975 // Now this is trickier, to remove nodes from the middle of a linked
976 // list; this means that we need to remember which node we were just
977 // at so that we can connect it to the node after the one we are
978 // about to delete.
979 prev = curr;
980 curr = curr->next;
981
982 // This code is similar to that in uniqClique.
983 // Descend through all members of the next level’s linked list.
984 while (curr != NULL)
985 {
986 i = 0;
987 j = 0;
988 breakFlag = 0;
989 // The proposed convolved clique will be referred to as the
990 // ’first’ clique, and the current clique being analyzed
991 // in the next level is the ’second’ clique.
992 // Continue if we have more members in both cliques. We will
993 // have already broken out if it is not possible for this
994 // second clique to be a subset of the first.
995 while ((i < newClique->size) && (j < curr->set->size))
996 {
997 // If the current member of the first clique is
998 // less than the current member of the second clique
999 // then it is still possible that the first is a
1000 // superset of the second, so move on to the next
1001 // member.
1002 if (newClique->members[i] < curr->set->members[j])
1003 {
1004 i++;
1005 }
1006 // If the current member of the first clique is greater
1007 // than the current member of the second clique, then
1008 // the proposed second clique cannot be a subset since
1009 // its members are all in ascending order. We also
1010 // know that since the first clique already has
1011 // a subset in this linked list, the current node
1012 // cannot possibly be a superset of the proposed
1013 // clique, so we can just disregard that. Thus,
1014 // we make a flag signifying this and break out.
1015 else if (newClique->members[i] > curr->set->members[j])
1016 {
1017 breakFlag = 1;
1018 break;
1019 }
1020 else
1021 {
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1022 i++;
1023 j++;
1024 }
1025 }
1026 // If the breakflag is 1, then we know
1027 // that there is a member of the second clique not in the
1028 // first, and so the second is not a subset. If the breakflag
1029 // is 0 but j is less than the second clique’s size, then
1030 // we must have broken because we ran out of members in the
1031 // first clique... thus, there is a member of the second
1032 // clique not in the first. Thus, only if the breakflag is
1033 // 0 and j is equal to the size of the second clique do we
1034 // know that every member of the second clique is in the first
1035 // and that the second clique can thus be removed.
1036 if ((breakFlag == 0) && (j == curr->set->size))
1037 {
1038 // Make the previous clique point to the next one
1039 // instead of the current one.
1040 prev->next = curr->next;
1041 // Free all of the memory used by the current clique.
1042 free (curr->set->members);
1043 free (curr->set);
1044 free (curr);
1045 curr = prev->next;
1046 }
1047 else
1048 {
1049 // Otherwise, the current second clique is not a
1050 // subset of the first, and we advance the prev and
1051 // curr pointers.
1052 prev = curr;
1053 curr = curr->next;
1054 }
1055 }
1056 return head;
1057 }

B... bitSet_t∗ searchMemsWithList (int ∗ list, int listsize, mll_t ∗∗ memList, int
numOffsets, bitSet_t ∗ queue)

Creates one large queue by calling "setStackTrue" for each member of a list of offsets. �is
then creates the union of clique membership for all offsets in the list being searched. Input: an
array of offset numbers, the length of that array, an array of member linked lists, the length of
that array (the total number of offsets), and a bitSet_t to store the union/queue. Output: the
union/queue in a bitSet_t structure.

Definition at line  of file convll.c.

References emptySet(), and setStackTrue().

Referenced by wholeCliqueConv().

613 {
614 int i = 0;
615 emptySet (queue);
616
617 // Go through each offset in the list
618 for (i = 0; i < listsize; i++)
619 {
620 // Check to make sure that’s a valid offset number, and if so
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621 // then set its stack true in the queue.
622 if (list[i] + 1 < numOffsets)
623 {
624 queue = setStackTrue (memList, list[i] + 1, queue);
625 }
626 else
627 {
628 fprintf (stderr, "\nInvalid offset number! - searchMemsWithList\n");
629 fprintf (stderr, "\nlist[i]+1 (%d) >= numOffsets (%d)\n",
630 list[i] + 1, numOffsets);
631 fflush (stderr);
632 exit (0);
633 }
634 }
635
636 return queue;
637 }

B... bitSet_t∗ setStackTrue (mll_t ∗∗ memList, int i, bitSet_t ∗ queue)

Adds all of the members of a given stack to a "queue" in the form of a bitSet_t data structure.
�at is, for each clique in the member linked list, it sets the corresponding bit in the bitSet_t
true. Input: array of member linked lists, an integer indicating a specific member linked list,
and a bitSet_t of length >= the number of cliques in the current clique linked list. Ouput: the
updated bitSet_t object.

Definition at line  of file convll.c.

References mnode::cliqueMembership, mnode::next, and setTrue().

Referenced by searchMemsWithList().

586 {
587 mll_t *curr = memList[i];
588
589 // Traverse down the member linked list
590 while (curr != NULL)
591 {
592 // Set the bit in queue corresponding to the current clique
593 // membership true
594 setTrue (queue, curr->cliqueMembership);
595 curr = curr->next;
596 }
597
598 return queue;
599 }

B... cll_t∗ singleCliqueConv (cll_t ∗ head, int firstClique, cll_t ∗∗ firstGuess, int
secondClique, cll_t ∗∗ secondGuess, cll_t ∗ nextPhase, bitSet_t ∗ printStatus,
int support)

Convolves one single clique against one other single clique. Note that this is non-commutative,
so exchanging firstClique and secondClique will not give the same results. �e "guess" pointers
keep the location of the previous clique in the linked list so that we don’t have to search the



B.. CONVLL.C FILE REFERENCE 

linked list from the beginning/end every time. We exploit our earlier tidiness in that we can
reasonably guess that we will monotonically traverse down cliques. Input: head of the current
clique linked list, the id number of the first clique, a pointer to a guess at the first clique, the id
number of the second clique, a pointer to a guess at the second clique, the head of the clique
linked list for the next round of convolution, a bitSet indicating which cliques should be output
as maximal, and the minimum support flag. Output: the head of clique linked list for the next
round of convolution (which may have changed if the two cliques could be convolved).

Definition at line  of file convll.c.

References cnode::id, mergeIntersect(), cnode::next, popWholeMemStack(), pushConv-
Clique(), cnode::set, setFalse(), and cSet_t::size.

Referenced by wholeCliqueConv().

660 {
661 cll_t *first = NULL, *second = NULL;
662 mll_t *survivingMems = NULL;
663 // int flag = 0;
664 int newSupport = 0;
665 // cll_t *checker = head;
666
667 // Check to make sure we’re looking for legitimate cliques.
668 if ((firstClique > head->id) || (secondClique > head->id))
669 {
670 fprintf (stderr, "\nNonexistent clique! - singleCliqueConv\n");
671 fflush (stderr);
672 exit (0);
673 }
674 // Our guesses depend on monotonic traversal. If we don’t find
675 // the first clique, then bail out.
676 while ((*firstGuess)->id != firstClique)
677 {
678 if ((*firstGuess)->next != NULL)
679 {
680 *firstGuess = (*firstGuess)->next;
681 }
682 else
683 {
684 fprintf (stderr, "\nFirst clique not found! - singleCliqueConv\n");
685 fflush (stderr);
686 exit (0);
687 }
688 }
689 first = *firstGuess;
690
691 // Our guesses depend on monotonic traversal. If we don’t find
692 // the second clique, then bail out.
693 while ((*secondGuess)->id != secondClique)
694 {
695 if ((*secondGuess)->next != NULL)
696 {
697 (*secondGuess) = (*secondGuess)->next;
698 }
699 else
700 {
701 fprintf (stderr, "\nSecond clique not found! - singleCliqueConv\n");
702 fflush (stderr);
703 exit (0);
704 }
705 }
706 second = *secondGuess;
707 // Find out what the surviving members are when the first clique
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708 // is convolved with the second clique
709 survivingMems =
710 mergeIntersect (first, second, survivingMems, printStatus, &newSupport);
711
712 // If the first clique is subsumed by the second, then it is not
713 // maximal, so don’t print it.
714 // printStatus true means print it!
715 if (newSupport == first->set->size)
716 {
717 setFalse (printStatus, first->id);
718 }
719 // If the second clique is subsumed by the first, then it is not
720 // maximal, so don’t print it.
721 if (newSupport == second->set->size)
722 {
723 setFalse (printStatus, second->id);
724 }
725
726 // If the support of the clique just formed by convolution meets the
727 // support criterion, then push it on to the linked list for
728 // the next phase of convolution.
729 if (newSupport >= support)
730 {
731 // printf("Push %d and %d\n",first->id,second->id);
732 nextPhase = pushConvClique (survivingMems, nextPhase);
733 // printf("---------\n");
734 // printCll(nextPhase);
735 // printf("---------\n");
736 }
737 // Pop the surviving members; they are no longer needed, as they
738 // either didn’t meet the support criterion or have been pushed on
739 // already
740 survivingMems = popWholeMemStack (survivingMems);
741
742 return nextPhase;
743 }

B... cll_t∗ swapNodecSet (cll_t ∗ head, int node, cSet_t ∗ newClique)

Swaps out a node in a linked list that has been found to be a subset of a node that is not yet in
the list. Input: the head of a clique linked list, a specific node within that linked list that is to
be removed, and the new clique that is the superset of the node to be removed (in cSet_t form).
Output: the head of the altered clique linked list.

Definition at line  of file convll.c.

References cnode::id, cSet_t::members, cnode::next, and cnode::set.

Referenced by pushConvClique().

905 {
906 int foundflag = 0;
907 cll_t *curr = head;
908
909 // First we find the node that needs to be swapped out
910 while (curr != NULL)
911 {
912 if (curr->id == node)
913 {
914 foundflag = 1;
915 break;
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916 }
917 curr = curr->next;
918 }
919
920 // If we can’t find it, then we get upset and exit.
921 if (foundflag == 0)
922 {
923 fprintf (stderr, "\nClique not found! (in swapNode)\n");
924 fflush (stderr);
925 exit (0);
926 }
927 // Then we free the useless clique’s members and its set data structure
928 // before pointing its set to the new clique.
929 free (curr->set->members);
930 free (curr->set);
931 curr->set = newClique;
932 return head;
933
934 }

B... int uniqClique (cSet_t ∗ cliquecSet, cll_t ∗ head)

Before we push a convolved clique onto the stack for the next level, this function ensures that
it is not subsumed by and does not subsume any other clique currently on that stack. Input: a
candidate clique for the next level in cSet_t form, and the head of the clique linked list for the
next level. Output: an integer indicating the status of the proposed clique with respect to the
next level: - if the clique is unique, - if the clique is a subset/duplicate of an existing clique,
or a clique id in the range [,numcliques) representing the first clique of which the proposed
one is a superset. Note that by executing this each time a clique is added to the next level, we
ensure that if the new clique is not unique, it can only be a superset or a subset of some other
clique; it cannot be both a strictly superset of one and a strictly subset of another. One of those
other two cliques would have been identified in previous steps as being super- or sub-sets, so it
is impossible for one clique now to be both a super and a subset.

Definition at line  of file convll.c.

References cnode::id, cSet_t::members, cnode::next, cnode::set, and cSet_t::size.

Referenced by pushConvClique().

822 {
823 int i = 0, j = 0;
824 int asubbflag = 1, bsubaflag = 1;
825
826 // Descend through all members of the next level’s linked list
827 while (head != NULL)
828 {
829 asubbflag = 1;
830 bsubaflag = 1;
831 i = 0;
832 j = 0;
833 // The proposed convolved clique will be referred to as the
834 // "first" clique, and the current clique being analyzed
835 // in the next level is the "second" clique.
836 // Continue if we have more members in both cliques AND if it
837 // is still possible for one clique to be a subset of
838 // the other.
839 while ((i < cliquecSet->size) && (j < head->set->size) &&
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840 ((asubbflag == 1) || (bsubaflag == 1)))
841 {
842 // If the current member of the first clique is less
843 // than the current member of the second clique,
844 // it is impossible for the first clique to be a
845 // subset of the second (since the members are
846 // traversed in ascending order.
847 if (cliquecSet->members[i] < head->set->members[j])
848 {
849 i++;
850 asubbflag = 0;
851 }
852 // Similarly, if the current member of the second
853 // clique is less than the current member of the
854 // second clique, the second can’t be a subset
855 // of the first.
856 else if (cliquecSet->members[i] > head->set->members[j])
857 {
858 j++;
859 bsubaflag = 0;
860 }
861 // Otherwise, they matched this time, so move them
862 // both on.
863 else
864 {
865 i++;
866 j++;
867 }
868 }
869
870 // If the proposed clique is a subset of some other clique
871 // in the next level, then return -2, and it won’t be added.
872 // (Note, this also is how exact duplicates are handled.)
873 if ((asubbflag == 1) && (i == cliquecSet->size))
874 {
875 return (-2);
876 }
877 // If the proposed clique is a superset of some other clique(s)
878 // in the next level, then return the id of the first clique
879 // of which it is a superset.
880 if ((bsubaflag == 1) && (j == head->set->size))
881 {
882 return (head->id);
883 }
884 // If the proposed clique has not been found to be a superset
885 // or a subset yet, then move on to the next clique in
886 // the next level.
887 head = head->next;
888 }
889 // If we’ve gotten here, we’ve checked all cliques in the previous
890 // level and haven’t found the proposed clique to be a superset or
891 // a subset... if so, then we’re all good, so return a -1.
892 return (-1);
893 }

B... cll_t∗ wholeCliqueConv (cll_t ∗ head, cll_t ∗ node, cll_t ∗∗ firstGuess, mll_t ∗∗
memList, int numOffsets, cll_t ∗ nextPhase, bitSet_t ∗ printStatus, int support)

Convolves one single clique against all possible cliques that could possibly be convolved. It
does not attempt to convolve all other cliques, but prunes that set by first looking at the offsets
that are in the clique, then collecting all of the cliques who have members that are one greater
than the offsets in this clique, and then convolving those cliques in a sort of "queue" using the
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bitSet_t data structure. Input: the head of the clique linked list for the current level, the current
node being convolved against in the linked list, the location of the previous node in the form of
a pointer to a "guess", an array of member linked lists, the length of that array, the head of the
clique linked list for the next level, a bitSet_t for the printStatus of maximality, and the support
criterion. Output: the head of the (possibly modified) clique linked list for the next level.

Definition at line  of file convll.c.

References bitSetToCSet(), countSet(), deleteBitSet(), cnode::id, cSet_t::members, newBit-
Set(), searchMemsWithList(), cnode::set, singleCliqueConv(), and cSet_t::size.

Referenced by wholeRoundConv().

1211 {
1212 bitSet_t *queue = NULL;
1213 cSet_t *cliquesToSearch = NULL;
1214 int i = 0;
1215 cll_t **secondGuess = NULL;
1216
1217 // This bitSet will be used to create a "queue" of the different
1218 // cliques that must be convolved against the current primary clique.
1219 // A bitset is used to make it easy to deal with duplicates, where
1220 // multiple clique members’ next offsets
1221 // are all members of some other specific clique.
1222 queue = newBitSet (head->id + 1);
1223 queue =
1224 searchMemsWithList (node->set->members, node->set->size, memList,
1225 numOffsets, queue);
1226 // We’ll use this "secondGuess" to store where the previous clique
1227 // being convolved was... since we will progressing monotonically
1228 // in descending order, this will save us some time in traversing the
1229 // linked list looking for the clique that we want.
1230 secondGuess = (cll_t **) malloc (sizeof (cll_t *));
1231 if (secondGuess == NULL)
1232 {
1233 fprintf (stderr, "Memory error - wholeCliqueConv\n%s\n",
1234 strerror (errno));
1235 fflush (stderr);
1236 exit (0);
1237 }
1238 // If the offsets that we are looking for are in no other cliques,
1239 // we can just bail out now.
1240 if (countSet (queue) == 0)
1241 {
1242 deleteBitSet (queue);
1243 return nextPhase;
1244 }
1245 // Otherwise, we start our secondGuess at the head and get going.
1246 *secondGuess = head;
1247
1248 // We change the bitSet to something more useful.
1249 cliquesToSearch = bitSetToCSet (queue);
1250
1251 // Note that we start from the end of the cSet member list so that
1252 // we can convolve the highest-id cliques first, which are at the
1253 // beginning of our stack of cliques.
1254 for (i = cliquesToSearch->size - 1; i >= 0; i--)
1255 {
1256 nextPhase = singleCliqueConv (head, node->id, firstGuess,
1257 cliquesToSearch->members[i], secondGuess,
1258 nextPhase, printStatus, support);
1259 }
1260
1261 // And then we free everything that we created
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1262 deleteBitSet (queue);
1263 free (cliquesToSearch->members);
1264 free (cliquesToSearch);
1265 free (secondGuess);
1266 return nextPhase;
1267 }

B... cll_t∗ wholeRoundConv (cll_t ∗∗ head, mll_t ∗∗ memList, int numOffsets, int
support, int length, cll_t ∗∗ allCliques)

Performs convolution on all cliques in a linked list by repeatedly calling wholeCliqueConv.
Input: pointer to the head of a clique linked list for the current level, array of member linked
lists, length of that array, minimum support threshold, the current length of motifs, and a
pointer to a linked list containing all cliques that will be printed out. Output: the head of the
clique linked list for the next level of convolution.

Definition at line  of file convll.c.

References checkBit(), deleteBitSet(), fillSet(), cnode::id, newBitSet(), cnode::next, whole-
CliqueConv(), and yankCll().

Referenced by completeConv().

1281 {
1282 bitSet_t *printStatus = NULL;
1283 cll_t *curr = *head;
1284 cll_t *prev = NULL;
1285 cll_t *nextPhase = NULL;
1286 cll_t **firstGuess = NULL;
1287
1288 // Create a bitset to keep track of print status for this level.
1289 // It starts off all true, and gets changed to false if the patterns
1290 // are not maximal.
1291 printStatus = newBitSet ((*head)->id + 1);
1292 fillSet (printStatus);
1293 firstGuess = (cll_t **) malloc (sizeof (cll_t *));
1294 if (firstGuess == NULL)
1295 {
1296 fprintf (stderr, "Memory error - wholeRoundConv\n%s\n",
1297 strerror (errno));
1298 fflush (stderr);
1299 exit (0);
1300 }
1301 // Start off at the head.
1302 *firstGuess = *head;
1303 // Convolve a whole clique at a time, traversing the linked list.
1304 // Note that firstGuess gets altered within the function.
1305 while (curr != NULL)
1306 {
1307 nextPhase =
1308 wholeCliqueConv (*head, curr, firstGuess, memList, numOffsets,
1309 nextPhase, printStatus, support);
1310 curr = curr->next;
1311 }
1312
1313 // Now go back to the head for printing output
1314 curr = *head;
1315
1316 // printf("\n****************************************************\n");
1317 // printf("Length = %d", length);
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1318 // printf("\n****************************************************\n");
1319
1320 // For each clique that is still ’true’ in printStatus and is thus
1321 // maximal, perform some sort of output. Yankcll will pull out the
1322 // clique and save it for printing at a later time.
1323 while (curr != NULL)
1324 {
1325 if (checkBit (printStatus, curr->id))
1326 {
1327 // This is the line that makes the allCliques output.
1328 // Can either printcll, or add to allCliques.
1329 // printCllPattern(curr, length);
1330 yankCll (head, prev, &curr, allCliques, length);
1331 }
1332 else
1333 {
1334 prev = curr;
1335 curr = curr->next;
1336 }
1337 }
1338
1339 // And clean up.
1340 deleteBitSet (printStatus);
1341 free (firstGuess);
1342 return nextPhase;
1343 }

B... int yankCll (cll_t ∗∗ head, cll_t ∗ prev, cll_t ∗∗ curr, cll_t ∗∗ allCliques, int
length)

Removes a clique from within a linked list in order to save it for later printing. �is is done so
that the cliques are not printed as they are convolved, but rather after all rounds of convolution
are complete. Input: a pointer to the head of the current linked list, the clique prior to the
one that is to be yanked (NULL if the clique to be yanked is the head), the clique that is to be
yanked, a pointer to the head of the list with all cliques that are to be printed, and the length
of the current motif. Output: Nothing is returned beyond a success integer, but it alters the
current level cll_t, the value of curr, and the linked list of all cliques that are to be printed.

Definition at line  of file convll.c.

References cnode::id, and cnode::next.

Referenced by convolve(), and wholeRoundConv().

1361 {
1362 if (*curr == NULL)
1363 {
1364 fprintf (stderr, "\nCan’t yank from end of cll!\n");
1365 fflush (stderr);
1366 exit (0);
1367 }
1368 // If we’re not on the head, change the previous node’s "next".
1369 // If we are on the head, make the new head be our current node’s "next".
1370 if (prev != NULL)
1371 {
1372 prev->next = (*curr)->next;
1373 }
1374 else
1375 {
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1376 *head = (*curr)->next;
1377 }
1378
1379 // Change next in curr, then change id and length information in curr
1380 (*curr)->next = *allCliques;
1381
1382 if (*allCliques != NULL)
1383 {
1384 (*curr)->id = (*allCliques)->id + 1;
1385 }
1386 else
1387 {
1388 (*curr)->id = 0;
1389 }
1390
1391 (*curr)->length = length;
1392
1393 *allCliques = *curr;
1394
1395 if (prev != NULL)
1396 {
1397 *curr = prev->next;
1398 }
1399 else
1400 {
1401 *curr = *head;
1402 }
1403 return (1);
1404 }

Variable Documentation

B... int cliquecounter = 

Definition at line  of file convll.c.

Referenced by pushClique().
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B. convll.h File Reference

#include <stdio.h >

#include <stdlib.h >

#include "bitSet.h"

Include dependency graph for convll.h:

convll.h

stdio.h

stdlib.h

bitSet.h string.h

�is graph shows which files directly or indirectly include this file:

convll.h

convll.c

gemoda-r.c

realIo.h

gemoda-s.cpatStats.h

newConv.c

realCompare.h

realIo.c

realCompare.c

patStats.c

Data Structures

• struct cSet_t
• struct cnode
• struct mnode

Typedefs

• typedef cnode cll_t
• typedef mnode mll_t

Functions

• cll_t ∗ pushCll (cll_t ∗head)
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• cll_t ∗ popCll (cll_t ∗head)
• cll_t ∗ popAllCll (cll_t ∗head)
• int printCll (cll_t ∗head)
• cll_t ∗ initheadCll (cll_t ∗head, cSet_t ∗newset)
• cll_t ∗ pushcSet (cll_t ∗head, cSet_t ∗newset)
• cll_t ∗ pushClique (bitSet_t ∗clique, cll_t ∗head, int ∗indexToSeq, int p)
• mll_t ∗ pushMemStack (mll_t ∗head, int cliqueNum)
• mll_t ∗ popMemStack (mll_t ∗head)
• mll_t ∗ popWholeMemStack (mll_t ∗head)
• mll_t ∗∗ addToStacks (cll_t ∗node, mll_t ∗∗memberStacks)
• mll_t ∗∗ fillMemberStacks (cll_t ∗head, mll_t ∗∗memberStacks)
• mll_t ∗∗ emptyMemberStacks (mll_t ∗∗memberStacks, int size)
• void printMemberStacks (mll_t ∗∗memberStacks, int size)
• bitSet_t ∗ searchMemsWithList (int ∗list, int listsize, mll_t ∗∗memList, int numOffsets,

bitSet_t ∗queue)
• bitSet_t ∗ setStackTrue (mll_t ∗∗memList, int i, bitSet_t ∗queue)
• cll_t ∗ singleCliqueConv (cll_t ∗head, int firstClique, cll_t ∗∗firstGuess, int second-

Clique, cll_t ∗∗secondGuess, cll_t ∗nextPhase, bitSet_t ∗printStatus, int support)
• mll_t ∗ mergeIntersect (cll_t ∗first, cll_t ∗second, mll_t ∗intersection, bitSet_t ∗print-

Status, int ∗newSupport)
• cll_t ∗ pushConvClique (mll_t ∗clique, cll_t ∗head)
• cSet_t ∗ mllToCSet (mll_t ∗clique)
• cSet_t ∗ bitSetToCSet (bitSet_t ∗clique)
• cll_t ∗ wholeCliqueConv (cll_t ∗head, cll_t ∗node, cll_t ∗∗firstGuess, mll_t ∗∗memList,

int numOffsets, cll_t ∗nextPhase, bitSet_t ∗printStatus, int support)
• cll_t ∗ wholeRoundConv (cll_t ∗∗head, mll_t ∗∗memList, int numOffsets, int support,

int length, cll_t ∗∗allCliques)
• cll_t ∗ completeConv (cll_t ∗∗head, int support, int numOffsets, int minLength, int
∗indexToSeq, int p)

• int printCllPattern (cll_t ∗node, int length)
• int uniqClique (cSet_t ∗clique, cll_t ∗head)
• cll_t ∗ swapNodecSet (cll_t ∗head, int node, cSet_t ∗newClique)
• int yankCll (cll_t ∗∗head, cll_t ∗prev, cll_t ∗∗curr, cll_t ∗∗allCliques, int length)
• cll_t ∗ removeSupers (cll_t ∗head, int node, cSet_t ∗newClique)

Detailed Description

�is header file contains declarations and definitions for dealing with different kinds of sets that
are used throughout the convolution stage of Gemoda.

Definition in file convll.h.
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Typedef Documentation

B... typedef struct cnode cll_t

�is data structure is a linked list for storing cliques. Each member of the linked list has a set,
an ID number, a length (which gives the number of characters in the motif ), a pointer to the
next member of the linked list, and a floating-point number for storing statistical information.

B... typedef struct mnode mll_t

�is data structure is just a link to list of integers used for bookkeeping during the convolution
stage.

Function Documentation

B... mll_t∗∗ addToStacks (cll_t ∗ node, mll_t ∗∗ memberStacks)

For one clique, it adds membership for that clique to all of its members’ member stacks. Input:
a specific clique in a clique linked list, an array of member stacks. Output: the array of updated
member stacks.

Definition at line  of file convll.c.

References cnode::id, cSet_t::members, pushMemStack(), and cnode::set.

Referenced by fillMemberStacks().

B... cSet_t∗ bitSetToCSet (bitSet_t ∗ clique)

Converts a bitSet_t to a cSet_t for the purposes of pushing it onto a linked list of cliques.
�e bitSet_t data structure is used for massive comparisons during clique-finding but is un-
wieldy/inefficient when it is known that the structure is sparse. �e cSet_t allows for efficient
comparison of sparse bitSet_t’s. Use this just before pushing a newly-discovered clique onto a
clique linked list. Input: a new clique in the form of a bitSet_t. Output: the same clique in the
form of a cSet_t.

Definition at line  of file convll.c.

References countSet(), cSet_t::members, nextBitBitSet(), and cSet_t::size.

Referenced by pushClique(), and wholeCliqueConv().

B... cll_t∗ completeConv (cll_t ∗∗ head, int support, int numOffsets, int
minLength, int ∗ indexToSeq, int p)

Performs complete convolution given the starting list of cliques. Input: a pointer to the head of
the initial clique linked list, the minimum support criterion value, the number of offsets in the
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sequence set, the minimum length of motifs (which is the length of motifs in the initial clique
linked list), the index/Sequence data structure, and the value of the -p flag to prune based on
unique sequence occurrences. Output: a linked list of all maximal cliques based on the initial
clique linked list.

Definition at line  of file convll.c.

References emptyMemberStacks(), fillMemberStacks(), popAllCll(), pruneCll(), and whole-
RoundConv().

Referenced by convolve().

B... mll_t∗∗ emptyMemberStacks (mll_t ∗∗ memberStacks, int size)

After we have performed a round of convolution, this "empties" the member stacks by popping
all nodes off each member linked list. Input: array of member linked lists, the size of that array
(total number of offsets). Output: the array of now-empty member linked lists.

Definition at line  of file convll.c.

References popWholeMemStack().

Referenced by completeConv().

B... mll_t∗∗ fillMemberStacks (cll_t ∗ head, mll_t ∗∗ memberStacks)

Fills the entire memberStacks data structure by calling addToStacks for each clique in the clique
linked list. Input: head of a clique linked list, array of member linked lists. Output: the array
of updated member linked lists.

Definition at line  of file convll.c.

References addToStacks(), and cnode::next.

Referenced by completeConv().

B... cll_t∗ initheadCll (cll_t ∗ head, cSet_t ∗ newset)

Initializes the empty head of a linked list by adding a set to that head. Note: this is only called
immediately after pushing onto a cll, because the push always creates a new empty head. �is
function should not be called by the user; see pushcSet. Input: head of a linked list, pointer to
a cSet_t list of clique members. Output: head of a linked list.

Definition at line  of file convll.c.

References cnode::set.

Referenced by pushcSet().
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B... mll_t∗mergeIntersect (cll_t ∗ first, cll_t ∗ second, mll_t ∗ intersection, bitSet_t
∗ printstatus, int ∗ newSupport)

Convolves two cliques in a non-commutative manner. It finds which members of the first clique
are immediately followed by a member in the second clique. Input: pointer to the location in
the linked list of the first clique to be convolved, pointer to the location in the linked list of
the second clique to be convolved, a member linked list used to store the intersection of the
two cliques, the printstatus bitSet, and a pointer to an integer with the support of the clique
formed by convolution. Output: a member linked list with the intersection of the two cliques,
plus the side effect of that intersection’s cardinality being stored in the integer pointed to by
newSupport.

Definition at line  of file convll.c.

References cSet_t::members, pushMemStack(), cnode::set, and cSet_t::size.

Referenced by singleCliqueConv().

B... cSet_t∗mllToCSet (mll_t ∗ clique)

Turns a member linked list used to store the intersection of two cliques into something more
useful: a cSet_t structure. Input: a clique in mll_t form. Output: a clique in cSet_t form.

Definition at line  of file convll.c.

References mnode::cliqueMembership, cSet_t::members, mnode::next, and cSet_t::size.

Referenced by pushConvClique().

B... cll_t∗ popAllCll (cll_t ∗ head)

Shortcut function to pop all of the members of a linked list. Input: head of a linked list.
Output: head of a now-empty linked list.

Definition at line  of file convll.c.

References popCll().

Referenced by completeConv(), and main().

B... cll_t∗ popCll (cll_t ∗ head)

Removes the head of the clique linked list, returns the new head of the clique linked list, and
frees the memory occupied by the old head. Input: head of a linked list. Output: head of a
linked list.

Definition at line  of file convll.c.

References cSet_t::members, cnode::next, and cnode::set.

Referenced by popAllCll().
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B... mll_t∗ popMemStack (mll_t ∗ head)

Pops the head off of a single member linked list. Input: head of a member linked list. Output:
the new head of a member linked list after popping one item.

Definition at line  of file convll.c.

References mnode::next.

Referenced by popWholeMemStack().

B... mll_t∗ popWholeMemStack (mll_t ∗ head)

Pops all items off of a member linked list. Input: head of a member linked list. Output: empty
head of a member linked list.

Definition at line  of file convll.c.

References popMemStack().

Referenced by emptyMemberStacks(), and singleCliqueConv().

B... int printCll (cll_t ∗ head)

Prints the members (cliques) of a linked list in the format: id = unique id number of clique
within linked list; Length = number of members of clique, if available; Size = length of each
member of clique; Members = newline-separated list of members of the clique. Input: head of
a linked list. Output: Gives text output, returns (meaningless) exit value.

Definition at line  of file convll.c.

References cnode::id, cnode::length, cSet_t::members, cnode::next, cnode::set, and cSet_t::size.

B... int printCllPattern (cll_t ∗ node, int length)

Prints out the contents of a clique linked list node in this format: support = number of motif
occurrences (id = some id number); members = newline-separated list of offsets. Input: a specific
node to be output, the length of the motif inside it. Output: text per above, and an integer
success value.

Definition at line  of file convll.c.

References cnode::id, cSet_t::members, cnode::set, and cSet_t::size.

B... void printMemberStacks (mll_t ∗∗ memberStacks, int size)

Prints the contents of the member stacks. Input: array of member linked lists, size of that array
(total number of offsets). Output: only text output/no return value.

Definition at line  of file convll.c.
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References mnode::cliqueMembership, and mnode::next.

B... cll_t∗ pushClique (bitSet_t ∗ clique, cll_t ∗ head, int ∗ indexToSeq, int p)

Pushes a bitSet onto a clique linked list, performing all necessary manipulations in order to
do so. Input: new clique in the form of a bitSet_t, head of a linked list, pointer to the in-
dex/sequence number data structure, integer value of the -p flag. Output: head of an updated
clique linked list.

Definition at line  of file convll.c.

References bitSetToCSet(), checkCliquecSet(), cliquecounter, cSet_t::members, and pushc-
Set().

Referenced by findCliques(), and singleLinkage().

B... cll_t∗ pushCll (cll_t ∗ head)

Pushes a new, empty head onto a linked list of cliques. Note: this should always be followed
by a call to initheadCll, as the head pushed on here is empty and will be meaningless without
any members. �is function should NOT be used by the user; see pushcSet. Input: head of a
linked list. Output: head of a linked list.

Definition at line  of file convll.c.

References cnode::id, cnode::length, cnode::next, cnode::set, and cnode::stat.

Referenced by pushcSet().

B... cll_t∗ pushConvClique (mll_t ∗ clique, cll_t ∗ head)

Pushes a freshly-convolved clique, currently in mll_t form, onto the clique linked list for the
next level. Also checks to make sure that the convolved clique is unique, and if it isn’t, it takes
appropriate action. Input: a convolved clique in mll_t form, the head of a clique linked list for
the next level. Output: (potentially new) head of the clique linked list for the next level.

Definition at line  of file convll.c.

References cSet_t::members, mllToCSet(), pushcSet(), removeSupers(), swapNodecSet(), and
uniqClique().

Referenced by singleCliqueConv().

B... cll_t∗ pushcSet (cll_t ∗ head, cSet_t ∗ newset)

Function that pushes the contents of a cSet (set of members of a clique) onto a linked list of
cliques. Input: head of a linked list, new clique in the form of a cSet_t. Output: head of a
linked list.
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Definition at line  of file convll.c.

References initheadCll(), and pushCll().

Referenced by pushClique(), and pushConvClique().

B... mll_t∗ pushMemStack (mll_t ∗ head, int cliqueNum)

�is begins code for the member linked lists. A single one of these linked lists functions some-
what similarly to the clique linked lists, though with less information stored. Functionally, an
array of member linked lists is used to access the "inverse" of what is contained in the clique
linked lists. �at is, we would like to be able to look up the cliques that a given node is a
member of, so we have an array of member linked lists of size equal to the number of nodes.

�is function pushes a single clique membership onto a node’s member stack. Input: the head
of a single member linked list, a clique number to be added. Output: the head of a single
member linked list.

Definition at line  of file convll.c.

References mnode::cliqueMembership, and mnode::next.

Referenced by addToStacks(), and mergeIntersect().

B... cll_t∗ removeSupers (cll_t ∗ head, int node, cSet_t ∗ newClique)

�is function finds all cliques in a linked list of which the proposed clique is a superset. It
starts looking AFTER the first clique which has already been found to be a subset. In some
senses, it is just a continuation of the uniqclique function in order to take advantage of the fact
that though a proposed clique can only be a subset of one existing next-level clique, it can be
a superset of many existing next- level cliques. Input: head of a clique linked list, the id of the
first node found to be a subset of the proposed clique, and the proposed clique (in cSet_t form).
Output: the head of the clique linked list with all but the first subset (which was passed as an
argument) removed. �is function is now ready for swapNode to be called.

Definition at line  of file convll.c.

References cnode::id, cSet_t::members, cnode::next, cnode::set, and cSet_t::size.

Referenced by pushConvClique().

B... bitSet_t∗ searchMemsWithList (int ∗ list, int listsize, mll_t ∗∗ memList, int
numOffsets, bitSet_t ∗ queue)

Creates one large queue by calling "setStackTrue" for each member of a list of offsets. �is
then creates the union of clique membership for all offsets in the list being searched. Input: an
array of offset numbers, the length of that array, an array of member linked lists, the length of
that array (the total number of offsets), and a bitSet_t to store the union/queue. Output: the
union/queue in a bitSet_t structure.
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Definition at line  of file convll.c.

References emptySet(), and setStackTrue().

Referenced by wholeCliqueConv().

B... bitSet_t∗ setStackTrue (mll_t ∗∗ memList, int i, bitSet_t ∗ queue)

Adds all of the members of a given stack to a "queue" in the form of a bitSet_t data structure.
�at is, for each clique in the member linked list, it sets the corresponding bit in the bitSet_t
true. Input: array of member linked lists, an integer indicating a specific member linked list,
and a bitSet_t of length >= the number of cliques in the current clique linked list. Ouput: the
updated bitSet_t object.

Definition at line  of file convll.c.

References mnode::cliqueMembership, mnode::next, and setTrue().

Referenced by searchMemsWithList().

B... cll_t∗ singleCliqueConv (cll_t ∗ head, int firstClique, cll_t ∗∗ firstGuess, int
secondClique, cll_t ∗∗ secondGuess, cll_t ∗ nextPhase, bitSet_t ∗ printStatus,
int support)

Convolves one single clique against one other single clique. Note that this is non-commutative,
so exchanging firstClique and secondClique will not give the same results. �e "guess" pointers
keep the location of the previous clique in the linked list so that we don’t have to search the
linked list from the beginning/end every time. We exploit our earlier tidiness in that we can
reasonably guess that we will monotonically traverse down cliques. Input: head of the current
clique linked list, the id number of the first clique, a pointer to a guess at the first clique, the id
number of the second clique, a pointer to a guess at the second clique, the head of the clique
linked list for the next round of convolution, a bitSet indicating which cliques should be output
as maximal, and the minimum support flag. Output: the head of clique linked list for the next
round of convolution (which may have changed if the two cliques could be convolved).

Definition at line  of file convll.c.

References cnode::id, mergeIntersect(), cnode::next, popWholeMemStack(), pushConv-
Clique(), cnode::set, setFalse(), and cSet_t::size.

Referenced by wholeCliqueConv().

B... cll_t∗ swapNodecSet (cll_t ∗ head, int node, cSet_t ∗ newClique)

Swaps out a node in a linked list that has been found to be a subset of a node that is not yet in
the list. Input: the head of a clique linked list, a specific node within that linked list that is to
be removed, and the new clique that is the superset of the node to be removed (in cSet_t form).
Output: the head of the altered clique linked list.
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Definition at line  of file convll.c.

References cnode::id, cSet_t::members, cnode::next, and cnode::set.

Referenced by pushConvClique().

B... int uniqClique (cSet_t ∗ cliquecSet, cll_t ∗ head)

Before we push a convolved clique onto the stack for the next level, this function ensures that
it is not subsumed by and does not subsume any other clique currently on that stack. Input: a
candidate clique for the next level in cSet_t form, and the head of the clique linked list for the
next level. Output: an integer indicating the status of the proposed clique with respect to the
next level: - if the clique is unique, - if the clique is a subset/duplicate of an existing clique,
or a clique id in the range [,numcliques) representing the first clique of which the proposed
one is a superset. Note that by executing this each time a clique is added to the next level, we
ensure that if the new clique is not unique, it can only be a superset or a subset of some other
clique; it cannot be both a strictly superset of one and a strictly subset of another. One of those
other two cliques would have been identified in previous steps as being super- or sub-sets, so it
is impossible for one clique now to be both a super and a subset.

Definition at line  of file convll.c.

References cnode::id, cSet_t::members, cnode::next, cnode::set, and cSet_t::size.

Referenced by pushConvClique().

B... cll_t∗ wholeCliqueConv (cll_t ∗ head, cll_t ∗ node, cll_t ∗∗ firstGuess, mll_t
∗∗ memList, int numOffsets, cll_t ∗ nextPhase, bitSet_t ∗ printStatus, int
support)

Convolves one single clique against all possible cliques that could possibly be convolved. It
does not attempt to convolve all other cliques, but prunes that set by first looking at the offsets
that are in the clique, then collecting all of the cliques who have members that are one greater
than the offsets in this clique, and then convolving those cliques in a sort of "queue" using the
bitSet_t data structure. Input: the head of the clique linked list for the current level, the current
node being convolved against in the linked list, the location of the previous node in the form of
a pointer to a "guess", an array of member linked lists, the length of that array, the head of the
clique linked list for the next level, a bitSet_t for the printStatus of maximality, and the support
criterion. Output: the head of the (possibly modified) clique linked list for the next level.

Definition at line  of file convll.c.

References bitSetToCSet(), countSet(), deleteBitSet(), cnode::id, cSet_t::members, newBit-
Set(), searchMemsWithList(), cnode::set, singleCliqueConv(), and cSet_t::size.

Referenced by wholeRoundConv().
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B... cll_t∗ wholeRoundConv (cll_t ∗∗ head, mll_t ∗∗ memList, int numOffsets,
int support, int length, cll_t ∗∗ allCliques)

Performs convolution on all cliques in a linked list by repeatedly calling wholeCliqueConv.
Input: pointer to the head of a clique linked list for the current level, array of member linked
lists, length of that array, minimum support threshold, the current length of motifs, and a
pointer to a linked list containing all cliques that will be printed out. Output: the head of the
clique linked list for the next level of convolution.

Definition at line  of file convll.c.

References checkBit(), deleteBitSet(), fillSet(), cnode::id, newBitSet(), cnode::next, whole-
CliqueConv(), and yankCll().

Referenced by completeConv().

B... int yankCll (cll_t ∗∗ head, cll_t ∗ prev, cll_t ∗∗ curr, cll_t ∗∗ allCliques, int
length)

Removes a clique from within a linked list in order to save it for later printing. �is is done so
that the cliques are not printed as they are convolved, but rather after all rounds of convolution
are complete. Input: a pointer to the head of the current linked list, the clique prior to the
one that is to be yanked (NULL if the clique to be yanked is the head), the clique that is to be
yanked, a pointer to the head of the list with all cliques that are to be printed, and the length
of the current motif. Output: Nothing is returned beyond a success integer, but it alters the
current level cll_t, the value of curr, and the linked list of all cliques that are to be printed.

Definition at line  of file convll.c.

References cnode::id, and cnode::next.

Referenced by convolve(), and wholeRoundConv().
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B. FastaSeqIO/fastaSeqIO.c File Reference

#include "fastaSeqIO.h"

#include <stdlib.h >

#include <string.h >

#include <errno.h >

Include dependency graph for fastaSeqIO.c:

FastaSeqIO/fastaSeqIO.c

fastaSeqIO.h

stdlib.h

string.h

errno.h

stdio.h

Data Structures

• struct sSize_t

Defines

• define BUFFER 

• define BIG_BUFFER 

Functions

• int printFSeqSubSeq (fSeq_t ∗seq, int start, int stop)

• long measureLine (FILE ∗INPUT)

• long CountFSeqs (FILE ∗INPUT)

• long countLines (FILE ∗INPUT)

• int initAofFSeqs (fSeq_t ∗aos, int numSeq)

• char ∗∗ ReadFile (FILE ∗INPUT, int ∗n)

• fSeq_t ∗ ReadTxtSeqs (FILE ∗INPUT, int ∗numberOfSequences)

• fSeq_t ∗ ReadFSeqs (FILE ∗INPUT, int ∗numberOfSequences)

• int FreeFSeqs (fSeq_t ∗arrayOfSequences, int numberOfSequences)

• int WriteFSeqA (FILE ∗MY_FILE, fSeq_t ∗arrayOfSequences, int start, int stop)
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Define Documentation

B... define BIG_BUFFER 

Definition at line  of file fastaSeqIO.c.

B... define BUFFER 

Definition at line  of file fastaSeqIO.c.

Function Documentation

B... long CountFSeqs (FILE ∗ INPUT)

Definition at line  of file fastaSeqIO.c.

45 {
46 long start;
47 long count = 0;
48 int myChar;
49 int newLine = 1;
50 start = ftell(INPUT);
51 myChar = fgetc(INPUT);
52 while (myChar != EOF) {
53 if (newLine == 1 && myChar == ’>’) {
54 count++;
55 }
56 if (myChar == ’\n’) {
57 newLine = 1;
58 } else {
59 newLine = 0;
60 }
61 myChar = fgetc(INPUT);
62 }
63 fseek(INPUT, start, SEEK_SET);
64 return count;
65 }

B... long countLines (FILE ∗ INPUT)

Definition at line  of file fastaSeqIO.c.

Referenced by ReadFile().

70 {
71 long start;
72 long count = 1;
73 int myChar;
74 int status = 0;
75 start = ftell(INPUT);
76 myChar = fgetc(INPUT);
77 while (myChar != EOF) {
78 if (myChar == ’\n’) {
79 count++;
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80 status = 1;
81 } else {
82 status = 0;
83 }
84 myChar = fgetc(INPUT);
85 }
86 if (status == 1) {
87 count--;
88 }
89 fseek(INPUT, start, SEEK_SET);
90 return count;
91 }

B... int FreeFSeqs (fSeq_t ∗ arrayOfSequences, int numberOfSequences)

Definition at line  of file fastaSeqIO.c.

References fSeq_t::label, and fSeq_t::seq.

Referenced by main().

305 {
306 int i;
307 for (i = 0; i < numberOfSequences; i++) {
308 if (arrayOfSequences[i].label != NULL) {
309 free(arrayOfSequences[i].label);
310 }
311 arrayOfSequences[i].label = NULL;
312
313 if (arrayOfSequences[i].seq != NULL) {
314 free(arrayOfSequences[i].seq);
315 }
316 arrayOfSequences[i].seq = NULL;
317 }
318 if (arrayOfSequences != NULL) {
319 free(arrayOfSequences);
320 }
321 arrayOfSequences = NULL;
322 return EXIT_SUCCESS;
323 }

B... int initAofFSeqs (fSeq_t ∗ aos, int numSeq)

Definition at line  of file fastaSeqIO.c.

References fSeq_t::label, and fSeq_t::seq.

Referenced by ReadFSeqs(), and ReadTxtSeqs().

95 {
96 int i;
97 for (i = 0; i < numSeq; i++) {
98 aos[i].seq = NULL;
99 aos[i].label = NULL;
100 }
101 return 1;
102 }
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B... long measureLine (FILE ∗ INPUT)

Definition at line  of file fastaSeqIO.c.

Referenced by ReadFile().

26 {
27 long start;
28 long count = 0;
29 int myChar;
30 start = ftell(INPUT);
31 myChar = fgetc(INPUT);
32 count++;
33 while (myChar != ’\n’ && myChar != EOF) {
34 count++;
35 myChar = fgetc(INPUT);
36 }
37 fseek(INPUT, start, SEEK_SET);
38 return count;
39 }

B... int printFSeqSubSeq (fSeq_t ∗ seq, int start, int stop)

Definition at line  of file fastaSeqIO.c.

References fSeq_t::seq.

14 {
15 int i;
16 for(i=start; i<stop; i++){
17 putchar(seq->seq[i]);
18 }
19 return 0;
20 }

B... char∗∗ ReadFile (FILE ∗ INPUT, int ∗ n)

Definition at line  of file fastaSeqIO.c.

References countLines(), and measureLine().

Referenced by ReadFSeqs(), readRealData(), and ReadTxtSeqs().

106 {
107 char **buf = NULL;
108 long nl;
109 long tls = 0;
110 int i=0;
111
112 nl = countLines(INPUT);
113 if( nl == 0){
114 fprintf(stderr, "\nNo sequences! Error!\n\n");
115 fflush(stderr);
116 return NULL;
117 }
118 buf = (char **) malloc ( (int)(nl+1) * sizeof(char *));
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119 if ( buf == NULL){
120 fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));
121 fflush(stderr);
122 exit(0);
123 }
124
125 // measure the first line
126 tls = measureLine(INPUT) + 1;
127 if(tls != 0){
128 buf[i] = (char *) malloc ( tls * sizeof(char));
129 if ( buf[i] == NULL){
130 fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));
131 fflush(stderr);
132 exit(0);
133 }
134 }
135 fgets(buf[i], tls, INPUT);
136 do{
137 if(buf[i][ strlen(buf[i])-1 ] == ’\n’){
138 buf[i][ strlen(buf[i])-1 ] = ’\0’;
139 }
140 tls = measureLine(INPUT) + 1;
141 if(tls != 0){
142 i++;
143 buf[i] = (char *) malloc ( tls * sizeof(char) );
144 if ( buf[i] == NULL){
145 fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));
146 fflush(stderr);
147 exit(0);
148 }
149 }
150 }while( fgets(buf[i], tls, INPUT) != NULL );
151 free(buf[i]);
152 buf = (char **) realloc ( buf, i * sizeof(char *) );
153 if ( buf == NULL){
154 fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));
155 fflush(stderr);
156 return NULL;
157 }
158 // I think that ’i’ might actually be the # of lines
159 // plus one here? somehow line 131 isn’t being freed,
160 // or at least 2 bytes of it.
161 *n = i;
162 return buf;
163 }

B... fSeq_t∗ ReadFSeqs (FILE ∗ INPUT, int ∗ numberOfSequences)

Definition at line  of file fastaSeqIO.c.

References initAofFSeqs(), fSeq_t::label, ReadFile(), fSeq_t::seq, sSize_t::size, sSize_t::start, and
sSize_t::stop.

Referenced by main().

199 {
200 int i,j,k;
201 int nl, ns=0;
202 char **buf = NULL;
203 fSeq_t *aos;
204 sSize_t *ss;
205 sSize_t *ll;
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206
207 buf = ReadFile(INPUT, &nl);
208 if(buf == NULL){
209 return NULL;
210 }
211
212 // Count how many sequences we have
213 for( j=0 ; j<nl ; j++){
214 if(buf[j][0] == ’>’){
215 ns++;
216 }
217 }
218 ss = (sSize_t *) malloc ( ns * sizeof(sSize_t) );
219 if(ss == NULL){
220 fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));
221 fflush(stderr);
222 exit(0);
223 }
224 ll = (sSize_t *) malloc ( ns * sizeof(sSize_t) );
225 if(ll == NULL){
226 fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));
227 fflush(stderr);
228 exit(0);
229 }
230
231 // find the first sequence
232 k=0;
233 while( buf[k][0] != ’>’){
234 k++;
235 }
236
237 // record how large each sequence is
238 i = -1;
239 for( j=k ; j<nl ; j++){
240 if(buf[j][0] == ’>’){
241 i++;
242 ll[i].start = j;
243 ll[i].stop = j;
244 ll[i].size = strlen( buf[j] );;
245 ss[i].start = j+1;
246 ss[i].size = 0;
247 }else{
248 ss[i].stop = j;
249 ss[i].size += strlen( buf[j] );;
250 }
251 }
252
253 aos = (fSeq_t *) malloc ( ns * sizeof(fSeq_t));
254 if( aos == NULL){
255 fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));
256 fflush(stderr);
257 exit(0);
258 }
259 initAofFSeqs(aos, ns);
260
261 for ( i=0 ; i<ns ; i++ ){
262 if( ll[i].size > 0 ){
263 aos[i].label = (char *) malloc ( (ll[i].size+1) * sizeof(char) );
264 if( aos[i].label == NULL){
265 fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));
266 fflush(stderr);
267 exit(0);
268 }
269 aos[i].label[0] = ’\0’;
270 for ( j=ll[i].start ; j<=ll[i].stop ; j++ ){
271
272 // both instances of strcat here are using
273 // .label/.seq’s that are NULL and that is
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274 // throwing a memory error in valgrind
275 aos[i].label = strcat ( aos[i].label, buf[j] );
276 }
277 }
278 if( ss[i].size > 0 ){
279 aos[i].seq = (char *) malloc ( (ss[i].size+1) * sizeof(char) );
280 if( aos[i].seq == NULL){
281 fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));
282 fflush(stderr);
283 exit(0);
284 }
285 aos[i].seq[0] = ’\0’;
286 for ( j=ss[i].start ; j<=ss[i].stop ; j++ ){
287 aos[i].seq = strcat ( aos[i].seq, buf[j] );
288 }
289 }
290 }
291 free(ll);
292 free(ss);
293
294 for ( i=0 ; i<nl ; i++ ){
295 free(buf[i]);
296 }
297 free(buf);
298
299 *numberOfSequences = ns;
300 return aos;
301 }

B... fSeq_t∗ ReadTxtSeqs (FILE ∗ INPUT, int ∗ numberOfSequences)

Definition at line  of file fastaSeqIO.c.

References initAofFSeqs(), ReadFile(), and fSeq_t::seq.

172 {
173 int i;
174 int nl;
175 char **buf = NULL;
176 fSeq_t *aos;
177
178 buf = ReadFile(INPUT, &nl);
179 if(buf == NULL){
180 return NULL;
181 }
182 aos = (fSeq_t *) malloc ( nl * sizeof(fSeq_t));
183 if( aos == NULL){
184 fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));
185 fflush(stderr);
186 exit(0);
187 }
188 initAofFSeqs(aos, nl);
189 for ( i=0 ; i<nl ; i++ ){
190 aos[i].seq = buf[i];
191 }
192 free(buf);
193 *numberOfSequences = nl;
194 return (aos);
195 }
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B... int WriteFSeqA (FILE ∗MY_FILE, fSeq_t ∗ arrayOfSequences, int start, int
stop)

Definition at line  of file fastaSeqIO.c.

331 {
332 int i;
333 for (i = start; i <= stop; i++) {
334 fprintf(MY_FILE, "%s\n", arrayOfSequences[i].label);
335 fprintf(MY_FILE, "%s\n", arrayOfSequences[i].seq);
336 }
337 return EXIT_SUCCESS;
338 }
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B. FastaSeqIO/fastaSeqIO.h File Reference

#include <stdio.h >

Include dependency graph for fastaSeqIO.h:

FastaSeqIO/fastaSeqIO.h stdio.h

�is graph shows which files directly or indirectly include this file:

FastaSeqIO/fastaSeqIO.h

align.c

FastaSeqIO/fastaSeqIO.c

gemoda-r.crealIo.h

gemoda-s.c

words.c

realCompare.h

realIo.c

realCompare.c

Data Structures

• struct fSeq_t

Functions

• int printFSeqSubSeq (fSeq_t ∗seq, int start, int stop)
• long measureLine (FILE ∗INPUT)
• long countLines (FILE ∗INPUT)
• long CountFSeqs (FILE ∗INPUT)
• int initAofFSeqs (fSeq_t ∗aos, int numSeq)
• fSeq_t ∗ ReadFSeqs (FILE ∗INPUT, int ∗numberOfSequences)
• int FreeFSeqs (fSeq_t ∗arrayOfSequences, int numberOfSequences)
• int WriteFSeqA (FILE ∗MY_FILE, fSeq_t ∗arrayOfSequences, int start, int stop)
• fSeq_t ∗ ReadTxtSeqs (FILE ∗INPUT, int ∗numberOfSequences)

Function Documentation

B... long CountFSeqs (FILE ∗ INPUT)

Definition at line  of file fastaSeqIO.c.
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B... long countLines (FILE ∗ INPUT)

Definition at line  of file fastaSeqIO.c.

Referenced by ReadFile().

B... int FreeFSeqs (fSeq_t ∗ arrayOfSequences, int numberOfSequences)

Definition at line  of file fastaSeqIO.c.

References fSeq_t::label, and fSeq_t::seq.

Referenced by main().

B... int initAofFSeqs (fSeq_t ∗ aos, int numSeq)

Definition at line  of file fastaSeqIO.c.

References fSeq_t::label, and fSeq_t::seq.

Referenced by ReadFSeqs(), and ReadTxtSeqs().

B... long measureLine (FILE ∗ INPUT)

Definition at line  of file fastaSeqIO.c.

Referenced by ReadFile().

B... int printFSeqSubSeq (fSeq_t ∗ seq, int start, int stop)

Definition at line  of file fastaSeqIO.c.

References fSeq_t::seq.

B... fSeq_t∗ ReadFSeqs (FILE ∗ INPUT, int ∗ numberOfSequences)

Definition at line  of file fastaSeqIO.c.

References initAofFSeqs(), fSeq_t::label, ReadFile(), fSeq_t::seq, sSize_t::size, sSize_t::start, and
sSize_t::stop.

Referenced by main().

B... fSeq_t∗ ReadTxtSeqs (FILE ∗ INPUT, int ∗ numberOfSequences)

Definition at line  of file fastaSeqIO.c.

References initAofFSeqs(), ReadFile(), and fSeq_t::seq.
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B... int WriteFSeqA (FILE ∗MY_FILE, fSeq_t ∗ arrayOfSequences, int start, int
stop)

Definition at line  of file fastaSeqIO.c.
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B. gemoda-r.c File Reference

#include "bitSet.h"

#include "convll.h"

#include "FastaSeqIO/fastaSeqIO.h"

#include <unistd.h >

#include <stdlib.h >

#include <errno.h >

#include <string.h >

#include "realIo.h"

#include "realCompare.h"

Include dependency graph for gemoda-r.c:

gemoda-r.c bitSet.h

stdlib.h

string.h

convll.h

FastaSeqIO/fastaSeqIO.h

unistd.h

errno.h

realIo.h

realCompare.h

stdio.h

gsl/gsl_matrix.h

protAlign.h

Functions

• void usage (char ∗∗argv)



 APPENDIX B. GEMODA FILE DOCUMENTATION

• cll_t ∗ convolve (bitGraph_t ∗bg, int support, int R, int ∗indexToSeq, int p, int
clusterMethod, int ∗∗offsetToIndex, int numberOfSequences, int noConvolve, FILE
∗OUTPUT_FILE)

• bitGraph_t ∗ pruneBitGraph (bitGraph_t ∗bg, int ∗indexToSeq, int ∗∗offsetToIndex,
int numOfSeqs, int p)

• int countExtraParams (char ∗s)
• double ∗ parseExtraParams (char ∗s, int numParams)
• int main (int argc, char ∗∗argv)

Detailed Description

�is file contains the main routine for the real valued version of Gemoda. �ere are also some
accessory functions for printing information on how to use Gemoda and run it from the com-
mandline.

Definition in file gemoda-r.c.

Function Documentation

B... cll_t∗ convolve (bitGraph_t ∗ bg, int support, int R, int ∗ indexToSeq, int
p, int clusterMethod, int ∗∗ offsetToIndex, int numberOfSequences, int
noConvolve, FILE ∗ OUTPUT_FILE)

Our outer convolution function. �is function will call preliminary functions, cluster the data,
and then call the main convolution function. �is is the interface between the main gemoda-
<x> code and the generic code that gets all of the work done. Input: the bitGraph to be
clustered and convolved, the minimum support necessary for a motif to be returned, a flag
indicating whether recursive filtering should be used, a pointer to the data structure that deref-
erences offset indices to sequence numbers, the number of unique source sequences that a motif
must be present in, and a number indicating the clustering method that is to be used. Output:
the final motif linked list with all motifs that are to be given as output to the user.

Definition at line  of file newConv.c.

Referenced by main().

629 {
630 bitSet_t * cand = NULL;
631 bitSet_t * mask = NULL;
632 bitSet_t * Q = NULL;
633 int size = bg->size;
634 cll_t * elemPats = NULL;
635 cll_t * allCliques = NULL;
636 cll_t * curr = NULL;
637
638 // contains indices (rows) containing the threshold value.
639 cand = newBitSet (size);
640 mask = newBitSet (size);
641 Q = newBitSet (size);
642 fillSet (cand);
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643 fillSet (mask);
644
645 // Note that we prune based on p before setting the diagonal false.
646 if (p > 1)
647 {
648 bg =
649 pruneBitGraph (bg, indexToSeq, offsetToIndex, numberOfSequences, p);
650 }
651
652 // Now we set the main diagonal false for clustering and filtering.
653 bitGraphSetFalseDiagonal (bg);
654 filterGraph (bg, support, R);
655 fprintf (OUTPUT_FILE, "Graph filtered! Now clustering...\n");
656 fflush (NULL);
657 if (clusterMethod == 0)
658 {
659 findCliques (Q, cand, mask, bg, support, 0, &elemPats, indexToSeq, p);
660 }
661 else
662 {
663 singleLinkage (Q, cand, mask, bg, support, 0, &elemPats, indexToSeq,
664 p);
665 }
666 fprintf (OUTPUT_FILE,
667 "Clusters found! Now filtering clusters (if option set)...\n");
668 fflush (NULL);
669 if (p > 1)
670 {
671 elemPats = pruneCll (elemPats, indexToSeq, p);
672 }
673 deleteBitSet (cand);
674 deleteBitSet (mask);
675 deleteBitSet (Q);
676
677 // Now let’s convolve what we made.
678 if (noConvolve == 0)
679 {
680 fprintf (OUTPUT_FILE, "Now convolving...\n");
681 fflush (NULL);
682 allCliques = completeConv (&elemPats, support, size, 0, indexToSeq, p);
683 }
684
685 else
686 {
687 curr = elemPats;
688 while (curr != NULL)
689 {
690 yankCll (&elemPats, NULL, &curr, &allCliques, 0);
691 }
692 }
693 return allCliques;
694 }

B... int countExtraParams (char ∗ s)

Definition at line  of file gemoda-r.c.

Referenced by main().

92 {
93 int i = 0;
94 int numParams = 1;
95 for (i = 0; i < strlen (s); i++)
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96 {
97 if (s[i] == ’,’)
98 {
99 numParams++;
100 }
101 }
102 return numParams;
103 }

B... int main (int argc, char ∗∗ argv)

�is is the main routine of the real value Gemoda code. �e code runs similarly to the se-
quence Gemoda code: there is a comparison phase, followed by a clustering phase, followed
by a convolution phase. Only the comparison phase is unique to the real value Gemoda. Of
course, since the data are formatted so differently, there are vastly different pieces of code in the
front matter. In particular, there is no hashing of words obviously. As well, we use the GNU
scientific library to store real value data as matrices that can be easily manipulated.

Definition at line  of file gemoda-r.c.

References calcStatAllCliqs(), convolve(), countExtraParams(), cumDMatrix(), deleteBit-
Graph(), freeD(), freeRdh(), getStatMat(), rdh_t::indexToSeq, rdh_t::offsetToIndex, output-
RealPats(), outputRealPatsWCentroid(), parseExtraParams(), popAllCll(), readRealData(),
realComparison(), bitGraph_t::size, rdh_t::size, sortByStats(), and usage().

161 {
162 int inputOption = 0;
163 char *sequenceFile = NULL;
164 FILE *SEQUENCE_FILE = NULL;
165 char *outputFile = NULL;
166 FILE *OUTPUT_FILE = NULL;
167 int L = 0;
168 int status = 0;
169 double g = 0;
170 int sup = 2;
171 int R = 1;
172 int P = 0;
173 int compFunc = 0;
174 double *extraParams = NULL;
175 int numExtraParams = 0;
176 int i = 0, j = 0;
177 /*
178 int j, k, i, l;
179 */
180 int noConvolve = 0;
181 int samp = 1;
182 int supportDim = 0, lengthDim = 0;
183 bitGraph_t *oam = NULL;
184 unsigned int **d = NULL;
185 int oamSize = 0;
186
187 cll_t *allCliques = NULL;
188 /*
189 cll_t *curCliq = NULL;
190 */
191 /*
192 int curSeq;
193 */
194 /*
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195 int curPos;
196 */
197 int clusterMethod = 0;
198 int joelOutput = 0;
199
200 // gemoda-r new stuff
201 rdh_t *data = NULL;
202
203 /*
204 Get command-line options
205 */
206 while ((inputOption = getopt (argc, argv, "p:m:e:i:o:l:g:k:c:njs:")) != EOF)
207 {
208 switch (inputOption)
209 {
210 // Comparison metric
211 case ’m’:
212 compFunc = atoi (optarg);
213 break;
214 // Input file
215 case ’i’:
216 sequenceFile = optarg;
217 break;
218 // Output file
219 case ’o’:
220 outputFile =
221 (char *) malloc ((strlen (optarg) + 1) * sizeof (char));
222 if (outputFile == NULL)
223 {
224 fprintf (stderr, "Error allocating memory for options.\n");
225 exit (EXIT_FAILURE);
226 }
227 else
228 {
229 strcpy (outputFile, optarg);
230 }
231 break;
232 // Minimum motif length
233 case ’l’:
234 L = atoi (optarg);
235 break;
236 // Minimum motif similarity score
237 case ’g’:
238 g = atof (optarg);
239 status++;
240 break;
241 // Minimum support (number of motif occurrences)
242 case ’k’:
243 sup = atoi (optarg);
244 break;
245
246 /***************************************************************
247 * Recursive initial pruning: an option for clique finding.
248 * It takes all nodes with less than the minimum
249 * number of support and removes all of their nodes, and does this
250 * recursively so that nodes that are connected to many sparsely connected
251 * nodes will be removed and not left in the
252 * This option is deprecated as it is at worst no-gain and at best useful.
253 * It will be on by default for clique-finding, but can be turned
254 * back off with some
255 * minor tweaking. For almost all cases in which it does not speed
256 * up computations, it will have a trivial time to perform. Thus, if
257 * clique-finding is turned on, then R is set to 1 by default.
258 case ’r’:
259 R = 1;
260 break;
261 ************************************************************************/
262 // Optional pruning parameter to require at motif occurrences
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263 // in at least P distinct input sequences
264
265 case ’p’:
266 P = atoi (optarg);
267 break;
268
269 // Clustering method.
270 case ’c’:
271 clusterMethod = atoi (optarg);
272 break;
273 // Extra parameters for comparison function
274 case ’e’:
275 numExtraParams = countExtraParams (optarg);
276 extraParams = parseExtraParams (optarg, numExtraParams);
277 break;
278 case ’n’:
279 noConvolve = 1;
280 break;
281 case ’j’:
282 joelOutput = 1;
283 break;
284 case ’s’:
285 samp = atoi (optarg);
286 break;
287 // Catch-all.
288 case ’?’:
289 fprintf (stderr, "Unknown option ‘-%c’.\n", optopt);
290 usage (argv);
291 return EXIT_SUCCESS;
292 default:
293 usage (argv);
294 return EXIT_SUCCESS;
295 }
296 }
297 // Require an input file, a nonzero length, and a similarity threshold
298 // to be set.
299 if (sequenceFile == NULL || L == 0 || status < 1)
300 {
301 usage (argv);
302 return EXIT_SUCCESS;
303 }
304 // Open the sequence file
305 if ((SEQUENCE_FILE = fopen (sequenceFile, "r")) == NULL)
306 {
307 fprintf (stderr, "Couldn’t open file %s; %s\n", sequenceFile,
308 strerror (errno));
309 exit (EXIT_FAILURE);
310 }
311 // Open the output file
312 if (outputFile != NULL)
313 {
314 if ((OUTPUT_FILE = fopen (outputFile, "w")) == NULL)
315 {
316 fprintf (stderr, "Couldn’t open file %s; %s\n", outputFile,
317 strerror (errno));
318 exit (EXIT_FAILURE);
319 }
320 }
321 else
322 {
323 OUTPUT_FILE = stdout;
324 }
325
326
327
328 // Verbosity in output helps to distinguish output files.
329 fprintf (OUTPUT_FILE, "Input file = %s\n", sequenceFile);
330 fprintf (OUTPUT_FILE, "l = %d, k = %d, g = %f\n", L, sup, g);
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331 if (P > 1)
332 {
333 fprintf (OUTPUT_FILE, "Minimum # of sequences with motif = %d\n", P);
334 }
335 if (R > 0)
336 {
337 fprintf (OUTPUT_FILE, "Recursive pruning is ON.\n");
338 }
339
340 data = readRealData (SEQUENCE_FILE);
341 fclose (SEQUENCE_FILE);
342 // printf("size = %d,indexSize = %d\n",data->size,data->indexSize);
343 // printf("size1 = %d,size2 = %d\n",data->seq[0]->size1,data->seq[0]->size2);
344 // for(i = 0; i < 2; i++) {
345 // for(j = 0; j < 3; j++) {
346 // printf("%lf,%lf,%lf\n",gsl_matrix_get(data->seq[i],j,0),
347 // gsl_matrix_get(data->seq[i],j,1),
348 // gsl_matrix_get(data->seq[i],j,2));}}
349 oam = realComparison (data, L, g, compFunc, extraParams);
350 // printf("oam->size = %d\n", oam->size);
351 if ((samp > 0) && (clusterMethod == 0))
352 {
353 // We are currently using one gap per sequence, as done in
354 // realCompare.c’s call to initRdhIndex in realComparison.
355 // Note that this is data->size, NOT oam->size.
356 d =
357 getStatMat (oam, sup, L, &supportDim, &lengthDim, data->size, samp,
358 OUTPUT_FILE);
359 }
360 else
361 {
362 d = NULL;
363 supportDim = 0;
364 }
365
366 allCliques =
367 convolve (oam, sup, R, data->indexToSeq, P, clusterMethod,
368 data->offsetToIndex, data->size, noConvolve, OUTPUT_FILE);
369
370 oamSize = oam->size;
371 // Do some early memory cleanup since this is so big.
372 deleteBitGraph (oam);
373
374 if ((samp > 0) && (clusterMethod == 0))
375 {
376 cumDMatrix (d, allCliques, supportDim, lengthDim, oamSize, data->size);
377 calcStatAllCliqs (d, allCliques, oamSize - data->size);
378 allCliques = sortByStats (allCliques);
379 }
380
381 if (joelOutput == 0)
382 {
383 outputRealPats (data, allCliques, L, OUTPUT_FILE, d);
384 }
385 else
386 {
387 outputRealPatsWCentroid (data, allCliques, L, OUTPUT_FILE, extraParams,
388 compFunc);
389 }
390
391 freeD (d, supportDim);
392 freeRdh (data);
393 allCliques = popAllCll (allCliques);
394 fclose (OUTPUT_FILE);
395
396 return 0;
397 }
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B... double∗ parseExtraParams (char ∗ s, int numParams)

�is was borrowed from the old gemoda-p code, there it used to parse filenames, here we are
parsing comma-separated lists of doubles that are useful for SpecConnect.

Definition at line  of file gemoda-r.c.

Referenced by main().

111 {
112 int i = 0, j = 0, k = 0;
113 int startLength = 0;
114 double *extraParams = NULL;
115 char *paramString = NULL;
116
117 extraParams = (double *) malloc (numParams * sizeof (double));
118 if (extraParams == NULL)
119 {
120 fprintf (stderr, "Can’t allocate extra params!\n");
121 exit (0);
122 }
123 j = 0;
124 k = 0;
125 startLength = strlen (s);
126 for (i = 0; i < startLength; i++)
127 {
128 if (s[i] == ’,’)
129 {
130 // We’ve found an end. So point the pointer to
131 // the beginning of the previous string.
132 paramString = &s[k];
133 // Terminate the string where the comma used to be
134 s[i] = ’\0’;
135 // Update the location for the next string beginning
136 k = i + 1;
137 // Convert to a double and update the param number.
138 extraParams[j] = atof (paramString);
139 j++;
140 }
141 }
142 // Don’t forget to do the last one, which isn’t comma-terminated.
143 paramString = &s[k];
144 extraParams[j] = atof (paramString);
145 return (extraParams);
146 }

B... bitGraph_t∗ pruneBitGraph (bitGraph_t ∗ bg, int ∗ indexToSeq, int ∗∗
offsetToIndex, int numOfSeqs, int p)

Simple function (non-recursive) to prune off the first level of motifs that will not meet the
"minimum number of unique sequences" criterion. �is could have been implemented as
above, but it may have gotten a little expensive with less yield, so only the first run through
is done here. Input: a bit graph to be pruned, a pointer to the structure that dereferences
offset indices to sequence numbers, a pointer to the structure that dereferences seq/position to
offsets, the number of unique sequences in the input set, and the minimum number of unique
sequences that must contain the motif. Output: a pruned bitGraph.

Definition at line  of file newConv.c.



B.. GEMODA-R.C FILE REFERENCE 

Referenced by convolve().

404 {
405 int i = 0, j = 0, nextBit = 0;
406 int *seqNums = NULL;
407
408 // Since we don’t immediately know which node is in which source
409 // sequence, we can’t just count them up regularly. Instead, we’ll
410 // need to keep track of which sequences they come from and
411 // increment _something_. What we chose to do here is just make
412 // an array of integers of length = <p>. Then, we try to put the
413 // source sequence number of each neighbor (including itself, since
414 // the main diagonal is still true at this time) into the next slot
415 // Since we will monotonically search the bitSet, we can just
416 // move on to the first bit in the next sequence using the
417 // offsetToIndex structure so that we know the next sequence number
418 // to be put in is always unique.
419 seqNums = (int *) malloc (p * sizeof (int));
420 if (seqNums == NULL)
421 {
422 fprintf (stderr, "Memory error - pruneBitGraph\n%s\n",
423 strerror (errno));
424 fflush (stderr);
425 exit (0);
426 }
427
428 // So, for each row in the bitgraph...
429 for (i = 0; i < bg->size; i++)
430 {
431
432 // Make sure the whole array is -1 sentinels.
433 for (j = 0; j < p; j++)
434 {
435 seqNums[j] = -1;
436 }
437 j = 0;
438
439 // Find the first neighbor of this bit.
440 nextBit = nextBitBitSet (bg->graph[i], 0);
441 if (nextBit == -1)
442 {
443 continue;
444 }
445 else
446 {
447
448 // and put its sequence number in the array of ints.
449 seqNums[0] = indexToSeq[nextBit];
450 }
451
452 // If it’s the last sequence, then bail out so that we don’t
453 // segfault in the next step.
454 if (seqNums[0] >= numOfSeqs - 1)
455 {
456 emptySet (bg->graph[i]);
457 continue;
458 }
459
460 // Find the next neighbor of this bit, STARTING AT the first
461 // bit in the next sequence.
462 nextBit =
463 nextBitBitSet (bg->graph[i],
464 offsetToIndex[indexToSeq[nextBit] + 1][0]);
465
466 // And iterate this until we run out of neighbors.
467 while (nextBit >= 0)
468 {
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469 j++;
470 seqNums[j] = indexToSeq[nextBit];
471
472 // Or until this new neighbor will fill up the array
473 if (j == p - 1)
474 {
475 break;
476 }
477
478 // Or until this new neighbor is in the last sequence.
479 if (seqNums[j] >= numOfSeqs - 1)
480 {
481 break;
482 }
483
484 // Get the next neighbor!
485 nextBit =
486 nextBitBitSet (bg->graph[i],
487 offsetToIndex[indexToSeq[nextBit] + 1][0]);
488 }
489
490 // If we didn’t have enough unique sequences, and either a) we
491 // were in the nth-to-last sequence and there were no
492 // neighbors after it, or b) we were in the last sequence,
493 // then the last number will still be our sentinel, -1. If
494 // the last number is not a sentinel, then we have at least
495 // p distinct sequence occurrences, so we’re OK.
496 if (seqNums[p - 1] == -1)
497 {
498 emptySet (bg->graph[i]);
499 }
500 }
501 free (seqNums);
502 return (bg);
503 }

B... void usage (char ∗∗ argv)

�is function tells the user how to run Gemoda. �e function displays all the available flags
and gives an example of how to use the commandline to run the code.

Definition at line  of file gemoda-r.c.

Referenced by main().

36 {
37 fprintf (stdout,
38 "Usage: %s -i <Fasta sequence file> "
39 "-l <word size> \n\t-k <support> -g <threshold> "

"-m <matrix name> [-z] \n\t[-c <cluster method [0|1]>]"
"[-p <unique support>] \n\n\n"

40 "Required flags and input:\n\n"
41 "-i <Fasta sequence file>:\n\t"
42 "File containing all sequences to be searched, in Fasta format.\n\n"
43 "-l <word size>:\n\t"
44 "Minimum length of motifs; also the sliding window length\n\t"
45 "over which all motifs must meet the similarity criterion\n\n"
46 "-k <support>:\n\t"
47 "Minimum number of motif occurrences.\n\n"
48 "-g <threshold>:\n\t"
49 "Similarity threshold. Two windows, when scored with the\n\t"
50 " similarity matrix defined by the -m flag, must have at least\n\t"



B.. GEMODA-R.C FILE REFERENCE 

51 " this score in order to be deemed ’connected’. This criterion\n\t"
52 " must be met over all sliding windows of length l.\n\n"
53 "-c <cluster method [0|1]>:\n\t"
54 "The clustering method to be used after evaluating the "
55 "\n\tsimilarity of the unique words in the input. Note that the "
56 "\n\tclustering method will have a significant impact on both the "
57 "\n\tresults that one obtains and the computation time.\n\n\t"
58 "0: clique-finding\n\t\t"
59 "Uses established methods to find all maximal cliques in the "
60 "\n\t\tdata. This will give the most thorough results (that are "
61 "\n\t\tprovably exhaustive), but will also give less-significant "
62 "\n\t\tresults in addition to the most interesting and most\n\t"
63 "significant ones. The results are deterministic but may take some "
64 "\n\t\ttime on data sets with high similarity or if the similarity "
65 "\n\t\tthreshold is set extremely low.\n\t"
66 "1: single-linkage clustering\n\t\t"
67 "Uses a single-linkage-type clustering where all nodes that "
68 "\n\t\tare connected are put in the same cluster. This method is "
69 "\n\t\talso deterministic and will be faster than clique-finding, "
70 "\n\t\tbut it loses guarantees of exhaustiveness in searching the "
71 "\n\t\tdata set.\n\n",
72 "-p <unique support>:\n\t"
73 "A pruning parameter that requires the motif to occur in "
74 "\n\tat least <unique support> different input sequences. Note "
75 "\n\tthat this parameter must be less than or equal to the total "
76 "\n\tsupport parameter set by the -k flag.\n\n", argv[0]);
77 fprintf (stdout, "\n");
78 }
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B. gemoda-s.c File Reference

#include "bitSet.h"

#include "spat.h"

#include "convll.h"

#include "matdata.h"

#include "FastaSeqIO/fastaSeqIO.h"

#include <unistd.h >

#include <stdlib.h >

#include <errno.h >

#include <string.h >

#include "patStats.h"

Include dependency graph for gemoda-s.c:

gemoda-s.c bitSet.h

stdlib.h

string.h

spat.h

convll.h

matdata.h

FastaSeqIO/fastaSeqIO.h

unistd.h

errno.h

patStats.h
stdio.h

time.h

Functions

• void usage (char ∗∗argv)
• void matrixlist (void)
• void getMatrixByName (char name[ ], int mat[ ][MATRIX_SIZE])
• bitGraph_t ∗ alignWordsMat_bit (sPat_t ∗words, int wc, int mat[ ][MATRIX_SIZE],

int threshold)
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• sPat_t ∗ countWords (fSeq_t ∗seq, int numSeq, int L, int ∗numWords)
• cll_t ∗ convolve (bitGraph_t ∗bg, int support, int R, int ∗indexToSeq, int p, int

clusterMethod, int ∗∗offsetToIndex, int numberOfSequences, int noConvolve, FILE
∗OUTPUT_FILE)

• bitGraph_t ∗ pruneBitGraph (bitGraph_t ∗bg, int ∗indexToSeq, int ∗∗offsetToIndex,
int numOfSeqs, int p)

• int main (int argc, char ∗∗argv)

Detailed Description

�is file houses the main routine for the sequence based Gemoda algorithm. In addition, there
are a few helper functions which are used to inform the user how to run the software.

�e Gemoda algorithm has three stages: comparison, clustering, and convolution. �ese three
stages are called in serial from the main routine in this file.

Definition in file gemoda-s.c.

Function Documentation

B... bitGraph_t∗ alignWordsMat_bit (sPat_t ∗ words, int wc, int
mat[ ][MATRIX_SIZE], int threshold)

�is uses the function above. Here, we have an array of words (sPat_t objects) and we compare
(align) them all. If their score is above ’threshold’ then we will set a bit to ’true’ in a bitGraph_t
that we create. A bitGraph_t is essentially an adjacency matrix, where each member of the
matrix contains only a single bit: are the words equal, true or false? �e function traverses
the words by doing and all by all comparison; however, we only do the upper diagonal. �e
function makes use of alignMat and needs to be passed a scoring matrix that the user has chosen
which is appropriate for the context of whatever data sent the user is looking at.

Definition at line  of file align.c.

References alignMat(), bitGraphSetTrueSym(), mat, and newBitGraph().

Referenced by main().

90 {
91 bitGraph_t * sg = NULL;
92 int score;
93 int i, j;
94
95 // Assign a new bitGraph_t object, with (wc x wc) possible
96 // true/false values
97 sg = newBitGraph (wc);
98 for (i = 0; i < wc; i++)
99 {
100 for (j = i; j < wc; j++)
101 {
102
103 // Get the score for the alignment of word i and word j
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104 score =
105 alignMat (words[i].string, words[j].string, words[i].length, mat);
106
107 // If that score is greater than threshold, set
108 // a bit to ’true’ in our bitGraph_t object
109 if (score >= threshold)
110 {
111
112 // We use ’bitGraphSetTrueSym’ because, if i=j,
113 // then j=i for most applications. However, this
114 // can be relaxed for masochists.
115 bitGraphSetTrueSym (sg, i, j);
116 }
117 }
118 }
119
120 // Return a pointer to this new bitGraph_t object
121 return sg;
122 }

B... cll_t∗ convolve (bitGraph_t ∗ bg, int support, int R, int ∗ indexToSeq, int
p, int clusterMethod, int ∗∗ offsetToIndex, int numberOfSequences, int
noConvolve, FILE ∗ OUTPUT_FILE)

Our outer convolution function. �is function will call preliminary functions, cluster the data,
and then call the main convolution function. �is is the interface between the main gemoda-
<x> code and the generic code that gets all of the work done. Input: the bitGraph to be
clustered and convolved, the minimum support necessary for a motif to be returned, a flag
indicating whether recursive filtering should be used, a pointer to the data structure that deref-
erences offset indices to sequence numbers, the number of unique source sequences that a motif
must be present in, and a number indicating the clustering method that is to be used. Output:
the final motif linked list with all motifs that are to be given as output to the user.

Definition at line  of file newConv.c.

References bitGraphSetFalseDiagonal(), completeConv(), deleteBitSet(), fillSet(), filter-
Graph(), findCliques(), newBitSet(), pruneBitGraph(), pruneCll(), singleLinkage(), bit-
Graph_t::size, and yankCll().

629 {
630 bitSet_t * cand = NULL;
631 bitSet_t * mask = NULL;
632 bitSet_t * Q = NULL;
633 int size = bg->size;
634 cll_t * elemPats = NULL;
635 cll_t * allCliques = NULL;
636 cll_t * curr = NULL;
637
638 // contains indices (rows) containing the threshold value.
639 cand = newBitSet (size);
640 mask = newBitSet (size);
641 Q = newBitSet (size);
642 fillSet (cand);
643 fillSet (mask);
644
645 // Note that we prune based on p before setting the diagonal false.
646 if (p > 1)
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647 {
648 bg =
649 pruneBitGraph (bg, indexToSeq, offsetToIndex, numberOfSequences, p);
650 }
651
652 // Now we set the main diagonal false for clustering and filtering.
653 bitGraphSetFalseDiagonal (bg);
654 filterGraph (bg, support, R);
655 fprintf (OUTPUT_FILE, "Graph filtered! Now clustering...\n");
656 fflush (NULL);
657 if (clusterMethod == 0)
658 {
659 findCliques (Q, cand, mask, bg, support, 0, &elemPats, indexToSeq, p);
660 }
661 else
662 {
663 singleLinkage (Q, cand, mask, bg, support, 0, &elemPats, indexToSeq,
664 p);
665 }
666 fprintf (OUTPUT_FILE,
667 "Clusters found! Now filtering clusters (if option set)...\n");
668 fflush (NULL);
669 if (p > 1)
670 {
671 elemPats = pruneCll (elemPats, indexToSeq, p);
672 }
673 deleteBitSet (cand);
674 deleteBitSet (mask);
675 deleteBitSet (Q);
676
677 // Now let’s convolve what we made.
678 if (noConvolve == 0)
679 {
680 fprintf (OUTPUT_FILE, "Now convolving...\n");
681 fflush (NULL);
682 allCliques = completeConv (&elemPats, support, size, 0, indexToSeq, p);
683 }
684
685 else
686 {
687 curr = elemPats;
688 while (curr != NULL)
689 {
690 yankCll (&elemPats, NULL, &curr, &allCliques, 0);
691 }
692 }
693 return allCliques;
694 }

B... sPat_t∗ countWords (fSeq_t ∗ seq, int numSeq, int L, int ∗ numWords)

Counts words of size L in the input FastA sequences, hashes all of the words, and returns an
array of sPat_t objects.

Definition at line  of file words.c.

References sHashEntry_t::data, destroySHash(), sHashEntry_t::idx, initSHash(), sHash-
Entry_t::key, sHashEntry_t::L, sPat_t::length, sOffset_t::next, sPat_t::offset, sOffset_t::pos, s-
Offset_t::prev, searchSHash(), sOffset_t::seq, sieve(), sPat_t::string, and sPat_t::support.

Referenced by main().
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374 {
375 int i, j;
376 int totalChars = 0;
377 int hashSize;
378 sHashEntry_t newEntry;
379 sHashEntry_t *ep;
380 sHash_t wordHash;
381 sPat_t *words = NULL;
382 int wc = 0;
383 int prev = -1;
384 int l;
385
386
387 // Count the total number of characters. This
388 // is the upper limit on how many words we can have
389 for (i = 0; i < numSeq; i++)
390 {
391 totalChars += strlen (seq[i].seq);
392 }
393
394 // Get a prime number for the size of the hash table
395 hashSize = sieve3 ((long) (2 * totalChars));
396 wordHash = initSHash (hashSize);
397
398 // Chop up each sequence and hash out the words of size L
399 for (i = 0; i < numSeq; i++)
400 {
401 prev = -1;
402
403 // skip sequences that are too short to have
404 // a pattern
405 if (strlen (seq[i].seq) < L)
406 {
407 continue;
408 }
409 for (j = 0; j < strlen (seq[i].seq) - L + 1; j++)
410 {
411
412 // Make a hash table entry for this word
413 newEntry.key = &(seq[i].seq[j]);
414 newEntry.data = 1;
415 newEntry.idx = wc;
416 newEntry.L = L;
417
418 // Check to see if it’s already in the hash table
419 ep = searchSHash (&newEntry, &wordHash, 0);
420 if (ep == NULL)
421 {
422
423 // If it’s not, create an entry for it
424 ep = searchSHash (&newEntry, &wordHash, 1);
425
426 // Increase the size of our word array
427 words = (sPat_t *) realloc (words, (wc + 1) * sizeof (sPat_t));
428 if (words == NULL)
429 {
430 fprintf (stderr, "Error!\n");
431 fflush (stderr);
432 }
433 // Add the new word
434 words[wc].string = &(seq[i].seq[j]);
435 words[wc].length = L;
436 words[wc].support = 1;
437 words[wc].offset =
438 (sOffset_t *) malloc (1 * sizeof (sOffset_t));
439 if (words[wc].offset == NULL)
440 {
441 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
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442 fflush (stderr);
443 exit (0);
444 }
445 words[wc].offset[0].seq = i;
446 words[wc].offset[0].pos = j;
447 words[wc].offset[0].prev = prev;
448 words[wc].offset[0].next = -1;
449
450 if (prev != -1)
451 {
452 words[prev].offset[words[prev].support - 1].next = wc;
453 }
454 prev = wc;
455 wc++;
456
457 }
458 else
459 {
460
461 // If it is, increase the count for this word
462 ep->data++;
463
464 // add a new offset to the word array
465 l = words[ep->idx].support;
466 words[ep->idx].offset =
467 (sOffset_t *) realloc (words[ep->idx].offset,
468 (l + 1) * sizeof (sOffset_t));
469 words[ep->idx].offset[l].seq = i;
470 words[ep->idx].offset[l].pos = j;
471 words[ep->idx].offset[l].prev = prev;
472 words[ep->idx].offset[l].next = -1;
473
474 // Update the next/prev
475 if (prev != -1)
476 {
477 words[prev].offset[words[prev].support - 1].next = ep->idx;
478 }
479 prev = ep->idx;
480
481 // Have to put this down here for cases when we create
482 // a word and it is immeadiately followed by itself!!
483 words[ep->idx].support += 1;
484 }
485 }
486 }
487
488
489 destroySHash (&wordHash);
490 *numWords = wc;
491 return words;
492 }

B... void getMatrixByName (char name[ ], int mat[ ][MATRIX_SIZE])

Referenced by main().

B... int main (int argc, char ∗∗ argv)

�is is the main routine of the Gemoda source code. �e routine performs basic operations
such as parsing the input from the user and opening input files. �en, the function hashes
words of length L. �e unique words are aligned against each other to produce an adjacency
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matrix that says whether the unique word i is sufficiently similar, based on the user supplied
threshold, to the unique word j. �is adjacency matrix is then dereferenced into an adjacency
matrix in which each index of the matrix represents a unique position in the input sequences,
rather than a unique word. �is dereferencing is required for the convolution stage. Finally,
this adjacency matrix is convolved and the final motifs are returned as a linked list. �e routine
then closes all input and output files and frees up dynamically allocated memory.

Definition at line  of file gemoda-s.c.

References alignWordsMat_bit(), bitGraphCheckBit(), bitGraphSetTrueSym(), calcStatAll-
Cliqs(), convolve(), countWords(), cumDMatrix(), deleteBitGraph(), FreeFSeqs(), getMatrix-
ByName(), getStatMat(), cnode::length, mat, MATRIX_SIZE, matrixlist(), cSet_t::members,
newBitGraph(), cnode::next, sPat_t::offset, popAllCll(), sOffset_t::pos, ReadFSeqs(), sOffset_-
t::seq, cnode::set, cSet_t::size, bitGraph_t::size, sortByStats(), cnode::stat, and usage().

188 {
189 int inputOption = 0;
190 char *sequenceFile = NULL;
191 char *outputFile = NULL;
192 char *matName = NULL;
193 FILE * SEQUENCE_FILE = NULL;
194 FILE * OUTPUT_FILE = NULL;
195 int L = 0;
196 int numberOfSequences = 0;
197 fSeq_t * mySequences = NULL;
198 fSeq_t * (*seqReadFunct) () = &ReadFSeqs;
199 sPat_t * words = NULL;
200 int wc;
201 int status = 0;
202 int g = 0;
203 int sup = 2;
204 int R = 1;
205 int P = 0;
206 int (*mat)[MATRIX_SIZE] = NULL;
207 int noConvolve = 0;
208 int j, k, i, l;
209 bitGraph_t * bg = NULL;
210 bitGraph_t * oam = NULL;
211
212 // new
213 int **offsetToIndex = NULL;
214 int *indexToSeq = NULL;
215 int *indexToPos = NULL;
216 int numberOfOffsets = 0;
217 int pos1, pos2;
218
219 // int *prevRowArray;
220 sOffset_t * offset1, *offset2;
221 cll_t * allCliques = NULL;
222 cll_t * curCliq = NULL;
223 int curSeq;
224 int curPos;
225 int clusterMethod = 0;
226
227 // patStats
228 int samp = 1;
229 unsigned int **d = NULL;
230 int supportDim = 0, lengthDim = 0;
231 int oamSize = 0;
232
233 /*
234 Get command-line options
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235 */
236 while ((inputOption = getopt (argc, argv, "i:o:l:g:k:m:p:zc:ns:")) != EOF)
237 {
238 switch (inputOption)
239 {
240
241 // Input file
242 case ’i’:
243 sequenceFile = optarg;
244 seqReadFunct = &ReadFSeqs;
245 break;
246
247 // Output file
248 case ’o’:
249 outputFile =
250 (char *) malloc ((strlen (optarg) + 1) * sizeof (char));
251 if (outputFile == NULL)
252 {
253 fprintf (stderr, "Error allocating memory for options.\n");
254 exit (EXIT_FAILURE);
255 }
256 else
257 {
258 strcpy (outputFile, optarg);
259 }
260 break;
261
262 // Minimum motif length
263 case ’l’:
264 L = atoi (optarg);
265 break;
266
267 // Minimum motif similarity score
268 case ’g’:
269 g = atoi (optarg);
270 status++;
271 break;
272
273 // Minimum support (number of motif occurrences)
274 case ’k’:
275 sup = atoi (optarg);
276 break;
277
278 // Similarity matrix used to find similarity score
279 case ’m’:
280 getMatrixByName (optarg, &mat);
281 matName = (char *) malloc (strlen (optarg) * sizeof (char));
282 if (matName == NULL)
283 {
284 fprintf (stderr, "Error allocating memory for options.\n");
285 exit (EXIT_FAILURE);
286 }
287 else
288 {
289 strcpy (matName, optarg);
290 }
291 break;
292
293 /***************************************************************
294 * Recursive initial pruning: an option for clique finding.
295 * It takes all nodes with less than the minimum
296 * number of support and removes all of their nodes, and does this
297 * recursively so that nodes that are connected to many sparsely connected
298 * nodes will be removed and not left in the
299 * This option is deprecated as it is at worst no-gain and at best useful.
300 * It will be on by default for clique-finding, but can be turned
301 * back off with some
302 * minor tweaking. For almost all cases in which it does not speed
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303 * up computations, it will have a trivial time to perform. Thus, if
304 * clique-finding is turned on, then R is set to 1 by default.
305 case ’r’:
306 R = 1;
307 break;
308 ************************************************************************/
309 // Optional pruning parameter to require at motif occurrences
310 // in at least P distinct input sequences
311 case ’p’:
312 P = atoi (optarg);
313 break;
314
315 // Clustering method.
316 case ’c’:
317 clusterMethod = atoi (optarg);
318 break;
319 case ’n’:
320 noConvolve = 1;
321 break;
322 case ’s’:
323 samp = atoi (optarg);
324 break;
325
326 // Catch-all.
327 case ’?’:
328 fprintf (stderr, "Unknown option ‘-%c’.\n", optopt);
329 usage (argv);
330 return EXIT_SUCCESS;
331 case ’z’:
332 matrixlist ();
333 return EXIT_SUCCESS;
334 default:
335 usage (argv);
336 return EXIT_SUCCESS;
337 }
338 }
339
340 // Require a similarity matrix
341 if (mat == NULL)
342 {
343 usage (argv);
344 return EXIT_SUCCESS;
345 }
346
347 // Require an input file, a nonzero length, and a similarity threshold
348 // to be set.
349 if (sequenceFile == NULL || L == 0 || status < 1)
350 {
351 usage (argv);
352 return EXIT_SUCCESS;
353 }
354
355 // Open the sequence file
356 if ((SEQUENCE_FILE = fopen (sequenceFile, "r")) == NULL)
357 {
358 fprintf (stderr, "Couldn’t open file %s; %s\n", sequenceFile,
359 strerror (errno));
360 exit (EXIT_FAILURE);
361 }
362
363 // Open the output file
364 if (outputFile != NULL)
365 {
366 if ((OUTPUT_FILE = fopen (outputFile, "w")) == NULL)
367 {
368 fprintf (stderr, "Couldn’t open file %s; %s\n", outputFile,
369 strerror (errno));
370 exit (EXIT_FAILURE);
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371 }
372 }
373 else
374 {
375 OUTPUT_FILE = stdout;
376 }
377
378 // Allocate some sequences
379 mySequences = seqReadFunct (SEQUENCE_FILE, &numberOfSequences);
380 if (mySequences == NULL)
381 {
382 fprintf (stderr, "\nError reading your sequences/text.");
383 fprintf (stderr, "\nCheck the format/size of the file.");
384 fprintf (stderr, "\nERROR: %s\n", strerror (errno));
385 return EXIT_FAILURE;
386 }
387
388 // Close the input files
389 fclose (SEQUENCE_FILE);
390
391 // Verbosity in output helps to distinguish output files.
392 fprintf (OUTPUT_FILE, "\nMatrix used = %s\n", matName);
393 fprintf (OUTPUT_FILE, "Input file = %s\n", sequenceFile);
394 fprintf (OUTPUT_FILE, "l = %d, k = %d, g = %d\n", L, sup, g);
395 if (P > 1)
396 {
397 fprintf (OUTPUT_FILE, "Minimum # of sequences with motif = %d\n", P);
398 }
399 if (R > 0)
400 {
401 fprintf (OUTPUT_FILE, "Recursive pruning is ON.\n");
402 }
403
404 // Find the unique words in the input.
405 words = countWords2 (mySequences, numberOfSequences, L, &wc);
406
407 /*
408 fprintf(stderr, "Counted %d words\n", wc);
409 */
410 /*
411 fflush(stderr);
412 */
413
414 // Align the words that we just found by applying the similarity
415 // matrix to each pair of them. Note that
416 // bg is the adjacency matrix of words, but we
417 // need an adjacency matrix of offsets instead.
418 bg = alignWordsMat_bit (words, wc, mat, g);
419 fprintf (OUTPUT_FILE, "\nAligned! Creating offset matrix...\n");
420 fflush (NULL);
421
422 // Create an intermediate translation matrix
423 // to store the offset number of each sequence number/position.
424 //
425 // Note that this matrix is better called "Index to offset", and
426 // the other matrices are better called "offset to Seq" and
427 // "offset to Pos"
428 offsetToIndex = (int **) malloc (numberOfSequences * sizeof (int *));
429 if (offsetToIndex == NULL)
430 {
431 fprintf (stderr,
432 "Unable to allocate memory - offsetToIndex in gemoda.c\n%s\n",
433 strerror (errno));
434 fflush (stderr);
435 exit (0);
436 }
437 for (i = 0; i < numberOfSequences; i++)
438 {
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439
440 // MPS 5/23/05: Added in "-L+2" to make there only be one
441 // blank between sequences.
442 offsetToIndex[i] =
443 malloc ((strlen (mySequences[i].seq) - L + 2) * sizeof (int));
444 if (offsetToIndex[i] == NULL)
445 {
446 fprintf (stderr,
447 "Unable to allocate memory - offsetToIndex[%d] in gemoda.c\n%s\n",
448 i, strerror (errno));
449 fflush (stderr);
450 exit (0);
451 }
452
453 // MPS 5/23/05: Added in "-L+2" to make there only be one
454 // blank between sequences.
455 for (j = 0; j < (strlen (mySequences[i].seq) - L + 2); j++)
456 {
457 offsetToIndex[i][j] = numberOfOffsets;
458 numberOfOffsets++;
459 }
460 }
461
462 // Now create translation matrices such that we can get the sequence
463 // or position number of a given offset.
464 indexToSeq = (int *) malloc (numberOfOffsets * sizeof (int));
465 if (indexToSeq == NULL)
466 {
467 fprintf (stderr,
468 "Unable to allocate memory - indexToSeq in gemoda.c\n%s\n",
469 strerror (errno));
470 fflush (stderr);
471 exit (0);
472 }
473 indexToPos = (int *) malloc (numberOfOffsets * sizeof (int));
474 if (indexToPos == NULL)
475 {
476 fprintf (stderr,
477 "Unable to allocate memory - indexToPos in gemoda.c\n%s\n",
478 strerror (errno));
479 fflush (stderr);
480 exit (0);
481 }
482 k = 0;
483 for (i = 0; i < numberOfSequences; i++)
484 {
485
486 // MPS 5/23/05: Added in "-L+2" to make there only be one
487 // blank between sequences.
488 for (j = 0; j < (strlen (mySequences[i].seq) - L + 2); j++)
489 {
490 indexToSeq[k] = i;
491 indexToPos[k] = j;
492 k++;
493 }
494 }
495
496 // Now make an offset adjacency matrix!
497 //
498 oam = newBitGraph (numberOfOffsets);
499
500 // Go through each unique word
501 for (i = 0; i < wc; i++)
502 {
503 offset1 = words[i].offset;
504
505 // Go through each occurrence
506 for (k = 0; k < words[i].support; k++)
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507 {
508
509 // Use the offsetToIndex translation to get the offset
510 // of the first occurrence
511 pos1 = offsetToIndex[offset1[k].seq][offset1[k].pos];
512
513 // And go through each word in the first offset to
514 // find words that meet the similarity threshold
515 for (j = 0; j < wc; j++)
516 {
517 if (bitGraphCheckBit (bg, i, j))
518 {
519 offset2 = words[j].offset;
520
521 // And find all of their occurrences,
522 // using offsetToIndex to get the
523 // offsets, and then setting those
524 // locations in the offset adjacency
525 // matrix true.
526 for (l = 0; l < words[j].support; l++)
527 {
528 pos2 = offsetToIndex[offset2[l].seq][offset2[l].pos];
529 bitGraphSetTrueSym (oam, pos1, pos2);
530 }
531 }
532 }
533 }
534 }
535 fprintf (OUTPUT_FILE, "Offset matrix created...");
536 deleteBitGraph (bg);
537 if ((samp > 0) && (clusterMethod == 0))
538 {
539 fprintf (OUTPUT_FILE, " taking preliminary statistics.\n");
540 fflush (NULL);
541 d =
542 getStatMat (oam, sup, L, &supportDim, &lengthDim, numberOfSequences,
543 samp, OUTPUT_FILE);
544 fprintf (OUTPUT_FILE, "Now filtering...\n");
545 fflush (NULL);
546 }
547 else
548 {
549 fprintf (OUTPUT_FILE, " now filtering.\n");
550 fflush (NULL);
551 d = NULL;
552 supportDim = 0;
553 }
554
555 // Now we’re convolving on offsets
556 allCliques =
557 convolve (oam, sup, R, indexToSeq, P, clusterMethod, offsetToIndex,
558 numberOfSequences, noConvolve, OUTPUT_FILE);
559
560 // Do some early memory cleanup to limit usage
561 oamSize = oam->size;
562 deleteBitGraph (oam);
563 fprintf (OUTPUT_FILE, "Convolved! Now making output...\n");
564 fflush (NULL);
565 if ((samp > 0) && (clusterMethod == 0))
566 {
567 cumDMatrix (d, allCliques, supportDim, lengthDim, oamSize,
568 numberOfSequences);
569 calcStatAllCliqs (d, allCliques, numberOfOffsets - numberOfSequences);
570 allCliques = sortByStats (allCliques);
571 }
572
573 // walk over the cliques and give some output in the format:
574 // pattern <pattern id num>: len=<motif length> sup=<motif instances>
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575 // <sequence num> <position num> <motif instance>
576 // ...
577 curCliq = allCliques;
578
579 i = 0;
580 while (curCliq != NULL)
581 {
582 fprintf (OUTPUT_FILE, "pattern %d:\tlen=%d\tsup=%d", i,
583 curCliq->length + L, curCliq->set->size);
584 if (d != NULL)
585 {
586 fprintf (OUTPUT_FILE, "\tsignif=%le\n", curCliq->stat);
587 }
588 else
589 {
590 fprintf (OUTPUT_FILE, "\n");
591 }
592
593 for (j = 0; j < curCliq->set->size; j++)
594 {
595 pos1 = curCliq->set->members[j];
596 curSeq = indexToSeq[pos1];
597 curPos = indexToPos[pos1];
598 fprintf (OUTPUT_FILE, " %d\t%d\t", curSeq, curPos);
599 for (k = curPos; k < curPos + curCliq->length + L; k++)
600 {
601 fprintf (OUTPUT_FILE, "%c", mySequences[curSeq].seq[k]);
602 }
603 fprintf (OUTPUT_FILE, "\n");
604 }
605 fprintf (OUTPUT_FILE, "\n\n");
606 curCliq = curCliq->next;
607 i++;
608 }
609
610 // And do some memory cleanup
611 // And cleanup of probability stuff...
612 /*
613 free(letterfreqs); delete_augmented_matrix(augmat);
614 */
615 allCliques = popAllCll (allCliques);
616 free (indexToSeq);
617 indexToSeq = NULL;
618 free (indexToPos);
619 indexToPos = NULL;
620 for (i = 0; i < numberOfSequences; i++)
621 {
622 free (offsetToIndex[i]);
623 offsetToIndex[i] = NULL;
624 }
625
626 // Free’ing added by MPS, 6/4
627 for (i = 0; i < wc; i++)
628 {
629 free (words[i].offset);
630 }
631 free (words);
632
633 // End free’ing added by MPS
634 free (offsetToIndex);
635 offsetToIndex = NULL;
636
637 // -------------------------------------------
638
639 // Free up fastaSequences
640 FreeFSeqs (mySequences, numberOfSequences);
641 fclose (OUTPUT_FILE);
642 return 0;
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643 }

B... void matrixlist (void)

�is function prints a list of the matrices that Gemoda can use to do the alignment of words.
Most of these matrices are appropriate for amino acid sequences. In addition, there are matrices
for DNA sequences and an identity matrix that is appropriate for other sequences, such as the
analysis of English text. �e matrix is selected using the -m flag.

Definition at line  of file gemoda-s.c.

Referenced by main().

100 {
101 fprintf (stdout, "\nThe following similarity matrices are installed "
102 "with the default Gemoda installation.\n Most of these "
103 "were obtained from publically available BLAST distributions. \n\n"
104 "dna_idmat:\n\t"
105 "Identity matrix for DNA: returns 1 when A,C,G,T are "
106 "compared to \n\tthemselves, 0 otherwise.\n\n"
107 "identity_aa:\n\t"
108 "Identity matrix for amino acids: returns 1 when any \n\t"
109 "letter but J,O,U are compared to themselves, and 0 "
110 "otherwise.\n\n" "idmat:\n\t"
111 "Similar to identity_aa, but it returns 10 in place "
112 "of 1.\n\n" "est_idmat:\n\t"
113 "Similar to idmat, but it returns -10 in place of 0. " "\n\n"
114 "pam100:\n" "pam110:\n" "pam120:\n" "pam130:\n"
115 "pam140:\n" "pam150:\n" "pam160:\n" "pam190:\n"
116 "pam200:\n" "pam210:\n" "pam220:\n" "pam230:\n"
117 "pam240:\n" "pam250:\n" "pam260:\n" "pam280:\n"
118 "pam290:\n" "pam300:\n" "pam310:\n" "pam320:\n"
119 "pam330:\n" "pam340:\n" "pam360:\n" "pam370:\n"
120 "pam380:\n" "pam390:\n" "pam400:\n" "pam430:\n"
121 "pam440:\n" "pam450:\n" "pam460:\n" "pam490:\n"
122 "pam500:\n\t"
123 "PAM matrices for various evolutionary distances.\n\n"
124 "blosum30:\n" "blosum35:\n" "blosum40:\n" "blosum45:\n"
125 "blosum50:\n" "blosum55:\n" "blosum60:\n" "blosum62:\n"
126 "blosum65:\n" "blosum70:\n" "blosum75:\n" "blosum80:\n"
127 "blosum85:\n" "blosum90:\n" "blosum100:\n\t"
128 "BLOSUM matrices for various evolutionary distances.\n\n"
129 "blosumn:\n\t" "BLOSUM matrix of unknown origin.\n\n"
130 "dayhoff:\n\t"
131 "’Vanilla-flavored’ pam250, very similar to pam250.\n\n"
132 "phat_t75_b73:\n" "phat_t80_b78:\n" "phat_t85_b82:\n\t"
133 "BLOSUM-clustered scoring matrix with target frequency\n\t"
134 "PHDhtm clustering = {75,80,85}percent and background frequency\n\t"
135 "Persson-Argos clustering = {73,78,82}percent.\n\t"
136 "From Ng, Henikoff, & Henikoff, Bioinformatics 16: 760.\n\n"
137 "coil_mat:\n" "alpha_mat:\n" "beta_mat:\n\t"
138 "Three structure-specific matrices described by Luthy,\n\t"
139 "McLachlan, and Eisenberg in Proteins 10, 229-239, obtained from AAindex.\n\n");
140 fprintf (stdout, "\n");
141 }
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B... bitGraph_t∗ pruneBitGraph (bitGraph_t ∗ bg, int ∗ indexToSeq, int ∗∗
offsetToIndex, int numOfSeqs, int p)

Simple function (non-recursive) to prune off the first level of motifs that will not meet the
"minimum number of unique sequences" criterion. �is could have been implemented as
above, but it may have gotten a little expensive with less yield, so only the first run through
is done here. Input: a bit graph to be pruned, a pointer to the structure that dereferences
offset indices to sequence numbers, a pointer to the structure that dereferences seq/position to
offsets, the number of unique sequences in the input set, and the minimum number of unique
sequences that must contain the motif. Output: a pruned bitGraph.

Definition at line  of file newConv.c.

References emptySet(), bitGraph_t::graph, and nextBitBitSet().

404 {
405 int i = 0, j = 0, nextBit = 0;
406 int *seqNums = NULL;
407
408 // Since we don’t immediately know which node is in which source
409 // sequence, we can’t just count them up regularly. Instead, we’ll
410 // need to keep track of which sequences they come from and
411 // increment _something_. What we chose to do here is just make
412 // an array of integers of length = <p>. Then, we try to put the
413 // source sequence number of each neighbor (including itself, since
414 // the main diagonal is still true at this time) into the next slot
415 // Since we will monotonically search the bitSet, we can just
416 // move on to the first bit in the next sequence using the
417 // offsetToIndex structure so that we know the next sequence number
418 // to be put in is always unique.
419 seqNums = (int *) malloc (p * sizeof (int));
420 if (seqNums == NULL)
421 {
422 fprintf (stderr, "Memory error - pruneBitGraph\n%s\n",
423 strerror (errno));
424 fflush (stderr);
425 exit (0);
426 }
427
428 // So, for each row in the bitgraph...
429 for (i = 0; i < bg->size; i++)
430 {
431
432 // Make sure the whole array is -1 sentinels.
433 for (j = 0; j < p; j++)
434 {
435 seqNums[j] = -1;
436 }
437 j = 0;
438
439 // Find the first neighbor of this bit.
440 nextBit = nextBitBitSet (bg->graph[i], 0);
441 if (nextBit == -1)
442 {
443 continue;
444 }
445 else
446 {
447
448 // and put its sequence number in the array of ints.
449 seqNums[0] = indexToSeq[nextBit];
450 }
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451
452 // If it’s the last sequence, then bail out so that we don’t
453 // segfault in the next step.
454 if (seqNums[0] >= numOfSeqs - 1)
455 {
456 emptySet (bg->graph[i]);
457 continue;
458 }
459
460 // Find the next neighbor of this bit, STARTING AT the first
461 // bit in the next sequence.
462 nextBit =
463 nextBitBitSet (bg->graph[i],
464 offsetToIndex[indexToSeq[nextBit] + 1][0]);
465
466 // And iterate this until we run out of neighbors.
467 while (nextBit >= 0)
468 {
469 j++;
470 seqNums[j] = indexToSeq[nextBit];
471
472 // Or until this new neighbor will fill up the array
473 if (j == p - 1)
474 {
475 break;
476 }
477
478 // Or until this new neighbor is in the last sequence.
479 if (seqNums[j] >= numOfSeqs - 1)
480 {
481 break;
482 }
483
484 // Get the next neighbor!
485 nextBit =
486 nextBitBitSet (bg->graph[i],
487 offsetToIndex[indexToSeq[nextBit] + 1][0]);
488 }
489
490 // If we didn’t have enough unique sequences, and either a) we
491 // were in the nth-to-last sequence and there were no
492 // neighbors after it, or b) we were in the last sequence,
493 // then the last number will still be our sentinel, -1. If
494 // the last number is not a sentinel, then we have at least
495 // p distinct sequence occurrences, so we’re OK.
496 if (seqNums[p - 1] == -1)
497 {
498 emptySet (bg->graph[i]);
499 }
500 }
501 free (seqNums);
502 return (bg);
503 }

B... void usage (char ∗∗ argv)

�is function describes the basic usage of Gemoda. It is invoked whenever the user submits poor
input parameters or selects the help parameter. �e function prints a list of possible parameters
for Gemoda.

Definition at line  of file gemoda-s.c.

33 {
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34 fprintf (stdout, "Usage: %s -i <Fasta sequence file> "
35 "-l <word size> \n\t-k <support> -g <threshold>"
36 "-m <matrix name> [-z] \n\t[-c <cluster method [0|1]>]"
37 "[-p <unique support>] \n\n\n"
38 "Required flags and input:\n\n"
39 "-i <Fasta sequence file>:\n\t"
40 "File containing all sequences to be searched, in Fasta format.\n\n"
41 "-l <word size>:\n\t"
42 "Minimum length of motifs; also the sliding window length\n\t"
43 "over which all motifs must meet the similarity criterion\n\n"
44 "-k <support>:\n\t" "Minimum number of motif occurrences.\n\n"
45 "-g <threshold>:\n\t"
46 "Similarity threshold. Two windows, when scored with the\n\t"
47 " similarity matrix defined by the -m flag, must have at least\n\t"
48
49 " this score in order to be deemed ’connected’. This criterion\n\t"
50 " must be met over all sliding windows of length l.\n\n"
51 "-m <matrix name>:\n\t"
52 "Name of the similarity matrix to be used to compare windows.\n\t"
53 "Use -z to see a list of matrices installed by default.\n\n\n"
54 "Optional flags and input:\n\n" "-z:\n\t"
55 "Lists all of the similarity matrices available with the\n\t"
56 "initial installation of Gemoda. Note that this overrides\n\t"
57 "all other options and will only give this output.\n\n"
58 "-c <cluster method [0|1]>:\n\t"
59 "The clustering method to be used after evaluating the "
60 "\n\tsimilarity of the unique words in the input. Note that the "
61
62 "\n\tclustering method will have a significant impact on both the "
63 "\n\tresults that one obtains and the computation time.\n\n\t"
64 "0: clique-finding\n\t\t"
65 "Uses established methods to find all maximal cliques in the "
66 "\n\t\tdata. This will give the most thorough results (that are "
67
68 "\n\t\tprovably exhaustive), but will also give less-significant "
69 "\n\t\tresults in addition to the most interesting and most\n\t"
70
71 "significant ones. The results are deterministic but may take some "
72
73 "\n\t\ttime on data sets with high similarity or if the similarity "
74 "\n\t\tthreshold is set extremely low.\n\t"
75 "1: single-linkage clustering\n\t\t"
76 "Uses a single-linkage-type clustering where all nodes that "
77 "\n\t\tare connected are put in the same cluster. This method is "
78
79 "\n\t\talso deterministic and will be faster than clique-finding, "
80
81 "\n\t\tbut it loses guarantees of exhaustiveness in searching the "
82 "\n\t\tdata set.\n\n" "-p <unique support>:\n\t"
83 "A pruning parameter that requires the motif to occur in "
84 "\n\tat least <unique support> different input sequences. Note "
85
86 "\n\tthat this parameter must be less than or equal to the total "
87 "\n\tsupport parameter set by the -k flag.\n\n", argv[0]);
88 fprintf (stdout, "\n");
89 }
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B. matdata.h File Reference

�is graph shows which files directly or indirectly include this file:

matdata.h

align.c

gemoda-s.c

matrices.c

matrixmap.h

Defines

• define MATRIX_SIZE 

Detailed Description

�is file defines the size of the scoring matrices so that we don’t have to pound-include the whole
matrices.h file due to worries about incompatibilities with earlier extern variable declarations.

Definition in file matdata.h.

Define Documentation

B... define MATRIX_SIZE 

Definition at line  of file matdata.h.

Referenced by main().
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B. matrices.c File Reference

#include <stdio.h >

#include <string.h >

#include "matdata.h"

#include "matrixmap.h"

Include dependency graph for matrices.c:

matrices.c

stdio.h

string.h

matdata.h

matrixmap.h matrices.h

Defines

• define DEFAULT_MATRIX blosum

Functions

• void getMatrixByName (char name[ ], const int(∗∗matp)[MATRIX_SIZE])

Detailed Description

�is file contains functions for handling scoring matrices used for the sequence based Gemoda.

Definition in file matrices.c.

Define Documentation

B... define DEFAULT_MATRIX blosum

Definition at line  of file matrices.c.

Referenced by getMatrixByName().
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Function Documentation

B... void getMatrixByName (char name[ ], const int ∗∗ matp[MATRIX_SIZE])

A simple function to take the matrix name argument given as input to gemoda and return the
physical memory location of that matrix by using the matrix_map construct. Input: a string
containing the matrix name a pointer to a two-dimensional array. Output: None, though the
value of the pointer given as input is changed to reflect the location of the matrix

Definition at line  of file matrices.c.

References DEFAULT_MATRIX, and matrix_map.

35 {
36 int i;
37 for (i = 0; matrix_map[i].name != NULL; i++)
38 {
39 if (strcmp (name, matrix_map[i].name) == 0)
40 {
41 break;
42 }
43 }
44 if (matrix_map[i].name != NULL)
45 {
46 *matp = (matrix_map[i].mat);
47 }
48 else
49 {
50 *matp = (DEFAULT_MATRIX);
51 }
52 }
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B. matrices.h File Reference

�is graph shows which files directly or indirectly include this file:

matrices.h matrixmap.h matrices.c

Variables

• const int aaOrder [ ]
• const int dna_idmat [MATRIX_SIZE][MATRIX_SIZE]
• const int identity_aa [MATRIX_SIZE][MATRIX_SIZE]
• const int idmat [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosum [MATRIX_SIZE][MATRIX_SIZE]
• const int blosumn [MATRIX_SIZE][MATRIX_SIZE]
• const int dayhoff [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
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• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int pam [MATRIX_SIZE][MATRIX_SIZE]
• const int phat_t_b [MATRIX_SIZE][MATRIX_SIZE]
• const int phat_t_b [MATRIX_SIZE][MATRIX_SIZE]
• const int phat_t_b [MATRIX_SIZE][MATRIX_SIZE]
• const int alpha_mat [MATRIX_SIZE][MATRIX_SIZE]
• const int beta_mat [MATRIX_SIZE][MATRIX_SIZE]
• const int coil_mat [MATRIX_SIZE][MATRIX_SIZE]

Detailed Description

�is file contains a number of scoring matrices, most of which are intended for comparing
amino acid sequences; however a few are for DNA. In general, if a user wants to add their own
matrix for use with Gemoda, they should add it to this file and recompile Gemoda.

Note that users are not restricted to x matrices. By changing aaOrder, you can easily make
matrices for comparing ANSII strings with up to  different characters.

All of the matrices below were obtained directly from BLAST/WU-BLAST; they are all also
part of the public domain, so there is nothing intrinsic to BLAST with respect to the matrices.
It was just the easiest way to get all of the matrices into our software.
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�e most popular matrix for amino acid sequences is blosum.

A good location for getting new scoring matrices, such as those based on structural data, is the
AAIndex. URLs tend to change, so rather than us listing it here, Google it!

Definition in file matrices.h.

Variable Documentation

B... const int aaOrder[ ]

Definition at line  of file matrices.h.

Referenced by alignMat().

B... const int alpha_mat[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int beta_mat[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.
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B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int blosum[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.
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B... const int blosumn[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int coil_mat[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int dayhoff[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int dna_idmat[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int identity_aa[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int idmat[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.
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B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.
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B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.
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B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int pam[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int phat_t_b[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.
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B... const int phat_t_b[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.

B... const int phat_t_b[MATRIX_SIZE][MATRIX_SIZE]

Definition at line  of file matrices.h.
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B. matrixmap.h File Reference

#include "matdata.h"

#include "matrices.h"

Include dependency graph for matrixmap.h:

matrixmap.h

matdata.h

matrices.h

�is graph shows which files directly or indirectly include this file:

matrixmap.h matrices.c

Variables

• struct {
char ∗ name
const int(∗ mat )[MATRIX_SIZE]

} matrix_map [ ]

Detailed Description

�is file contains structures and functions for handling scoring matrices.

Definition in file matrixmap.h.

Variable Documentation

B... const int(∗mat)[MATRIX_SIZE]

Definition at line  of file matrixmap.h.

Referenced by alignMat(), alignWordsMat_bit(), and main().

B... struct { ... } matrix_map[ ]

�is data structure maps the names of common matrices to the names of their variables

Referenced by getMatrixByName().
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B... char∗ name

Definition at line  of file matrixmap.h.
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B. newConv.c File Reference

#include "bitSet.h"

#include <errno.h >

#include "convll.h"

Include dependency graph for newConv.c:

newConv.c bitSet.h

errno.h

convll.h

stdio.h

stdlib.h

string.h

Functions

• int findCliques (bitSet_t ∗Q, bitSet_t ∗cand, bitSet_t ∗mask, bitGraph_t ∗oG, int sup-
port, int qCount, cll_t ∗∗elemPats, int ∗indexToSeq, int p)

• int singleLinkage (bitSet_t ∗Q, bitSet_t ∗cand, bitSet_t ∗mask, bitGraph_t ∗oG, int
support, int qCount, cll_t ∗∗elemPats, int ∗indexToSeq, int p)

• int filterIter (bitGraph_t ∗graph, int support, bitSet_t ∗changed, bitSet_t ∗work)

• int filterGraph (bitGraph_t ∗graph, int support, int R)

• bitGraph_t ∗ pruneBitGraph (bitGraph_t ∗bg, int ∗indexToSeq, int ∗∗offsetToIndex,
int numOfSeqs, int p)

• cll_t ∗ pruneCll (cll_t ∗head, int ∗indexToSeq, int p)

• cll_t ∗ convolve (bitGraph_t ∗bg, int support, int R, int ∗indexToSeq, int p, int
clusterMethod, int ∗∗offsetToIndex, int numberOfSequences, int noConvolve, FILE
∗OUTPUT_FILE)

Detailed Description

�is file contains the core functions that performed the convolution in the Gemoda algorithm.
As well, there are two clustering functions defined in this file: one for single linkage clustering,
and one for clique based clustering.

Definition in file newConv.c.
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Function Documentation

B... cll_t∗ convolve (bitGraph_t ∗ bg, int support, int R, int ∗ indexToSeq, int
p, int clusterMethod, int ∗∗ offsetToIndex, int numberOfSequences, int
noConvolve, FILE ∗ OUTPUT_FILE)

Our outer convolution function. �is function will call preliminary functions, cluster the data,
and then call the main convolution function. �is is the interface between the main gemoda-
<x> code and the generic code that gets all of the work done. Input: the bitGraph to be
clustered and convolved, the minimum support necessary for a motif to be returned, a flag
indicating whether recursive filtering should be used, a pointer to the data structure that deref-
erences offset indices to sequence numbers, the number of unique source sequences that a motif
must be present in, and a number indicating the clustering method that is to be used. Output:
the final motif linked list with all motifs that are to be given as output to the user.

Definition at line  of file newConv.c.

References bitGraphSetFalseDiagonal(), completeConv(), deleteBitSet(), fillSet(), filter-
Graph(), findCliques(), newBitSet(), pruneBitGraph(), pruneCll(), singleLinkage(), bit-
Graph_t::size, and yankCll().

629 {
630 bitSet_t * cand = NULL;
631 bitSet_t * mask = NULL;
632 bitSet_t * Q = NULL;
633 int size = bg->size;
634 cll_t * elemPats = NULL;
635 cll_t * allCliques = NULL;
636 cll_t * curr = NULL;
637
638 // contains indices (rows) containing the threshold value.
639 cand = newBitSet (size);
640 mask = newBitSet (size);
641 Q = newBitSet (size);
642 fillSet (cand);
643 fillSet (mask);
644
645 // Note that we prune based on p before setting the diagonal false.
646 if (p > 1)
647 {
648 bg =
649 pruneBitGraph (bg, indexToSeq, offsetToIndex, numberOfSequences, p);
650 }
651
652 // Now we set the main diagonal false for clustering and filtering.
653 bitGraphSetFalseDiagonal (bg);
654 filterGraph (bg, support, R);
655 fprintf (OUTPUT_FILE, "Graph filtered! Now clustering...\n");
656 fflush (NULL);
657 if (clusterMethod == 0)
658 {
659 findCliques (Q, cand, mask, bg, support, 0, &elemPats, indexToSeq, p);
660 }
661 else
662 {
663 singleLinkage (Q, cand, mask, bg, support, 0, &elemPats, indexToSeq,
664 p);
665 }
666 fprintf (OUTPUT_FILE,
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667 "Clusters found! Now filtering clusters (if option set)...\n");
668 fflush (NULL);
669 if (p > 1)
670 {
671 elemPats = pruneCll (elemPats, indexToSeq, p);
672 }
673 deleteBitSet (cand);
674 deleteBitSet (mask);
675 deleteBitSet (Q);
676
677 // Now let’s convolve what we made.
678 if (noConvolve == 0)
679 {
680 fprintf (OUTPUT_FILE, "Now convolving...\n");
681 fflush (NULL);
682 allCliques = completeConv (&elemPats, support, size, 0, indexToSeq, p);
683 }
684
685 else
686 {
687 curr = elemPats;
688 while (curr != NULL)
689 {
690 yankCll (&elemPats, NULL, &curr, &allCliques, 0);
691 }
692 }
693 return allCliques;
694 }

B... int filterGraph (bitGraph_t ∗ graph, int support, int R)

Function to "filter" the initial bitGraph that is being clustered. "Filtering" is the process of
removing all nodes from the graph that cannot possibly be in motifs because they are not con-
nected to enough other nodes. �is can be done once (if R != ), or it can be done recursively (if
R == ). When done recursively, it takes the just-filtered graph and checks all of the nodes that
the recently removed node used to be connected to; since they have changed in connectivity,
they may no longer be connected to enough nodes to be a member of a motif. �is is iterated
until convergence. Note that the default is to have recursive filtering on, as it ought to decrease
the computational complexity of the clustering step and ought not have much of a computa-
tional footprint... in cases where it takes a while, it is probably having a good impact in the
clustering step, whereas if it is not effective, it probably won’t take that long anyway. Input: a
bitGraph to be filtered, the minimum support that a motif must have, and the flag indicating
recursive filtering or not. Output: Integer success value of  (and an altered bitGraph so that
all nodes with connections have at least <min support>=""> connections).

Definition at line  of file newConv.c.

References copySet(), countSet(), deleteBitSet(), emptySet(), filterIter(), newBitSet(), and bit-
Graph_t::size.

Referenced by convolve().

360 {
361 bitSet_t * changed = newBitSet (graph->size);
362 bitSet_t * work = newBitSet (graph->size);
363 emptySet (changed);
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364 emptySet (work);
365
366 // Iteratively call the filtering by copying the previous "work" into
367 // "changed" after each iteration step.
368 if (R == 1)
369 {
370
371 do
372 {
373 filterIter (graph, support, changed, work);
374 copySet (work, changed);
375 }
376 while (countSet (changed) > 0);
377 }
378 else
379 {
380
381 // Otherwise, just do it once.
382 filterIter (graph, support, changed, work);
383 }
384 deleteBitSet (changed);
385 deleteBitSet (work);
386 return 0;
387 }

B... int filterIter (bitGraph_t ∗ graph, int support, bitSet_t ∗ changed, bitSet_t ∗
work)

�e iterator used to "filter" the graph. It takes information in the bitset telling which nodes’
rows have changed and only checks them... this should make it pretty efficient time-wise at only
a small memory cost. Note the convention that the first time this is called, the changed bitSet is
empty... and that the master function is responsible for catching the signal that no changes were
made in the last iteration. Input: the bitGraph to be filtered, the minimum support required
for a motif to be returned, a bitSet with nodes changed from the previous iteration, and a bitSet
to export the nodes changed in this iteration. Output: integer success value of  (and also a
filtered bitGraph and a bitSet with the nodes changed in this iteration).

Definition at line  of file newConv.c.

References countSet(), emptySet(), bitGraph_t::graph, nextBitBitSet(), setFalse(), and set-
True().

Referenced by filterGraph().

230 {
231 int i = 0, j = 0;
232 int lastBit = 0, nextBit = 0, lastRow = 0, nextRow = 0;
233 int numNodes = 0;
234 int changedSize = countSet (changed);
235 emptySet (work);
236
237 // Note the convention that the first time the function is called,
238 // it is done with an empty "changed" bitSet as a sentinel. It is
239 // the responsibility of the master function calling the iterator
240 // to catch future empty changed sets to know that convergence has
241 // been achieved.
242 //
243 // So, if it’s your first time through, go through each node and make
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244 // sure that each is connected to at least <support> - 1 others.
245 if (changedSize == 0)
246 {
247 for (i = 0; i < graph->size; i++)
248 {
249 numNodes = countSet (graph->graph[i]);
250 if (numNodes >= support - 1)
251 {
252 continue;
253 }
254 else
255 {
256
257 // Otherwise, zero it out, but going one by
258 // one so that you can also zero out the
259 // symmetric bit.
260 lastBit = 0;
261 for (j = 0; j < numNodes; j++)
262 {
263 nextBit = nextBitBitSet (graph->graph[i], lastBit);
264 if (nextBit == -1)
265 {
266 fprintf (stderr,
267 "\nEnd of bitSet reached! - initial\n");
268 fflush (stderr);
269 exit (0);
270 }
271 setFalse (graph->graph[i], nextBit);
272 setFalse (graph->graph[nextBit], i);
273
274 // And set that corresponding bit true
275 // in the work bitSet so that we
276 // know we changed it for the next
277 // round.
278 setTrue (work, nextBit);
279 lastBit = nextBit + 1;
280 }
281 }
282 }
283 }
284 else
285 {
286
287 // Otherwise, we’ve been here before, so just follow what
288 // the changed bitSet says to do... only those bitSets that
289 // were changed could possibly have gone under the minimum
290 // support requirement.
291 lastRow = 0;
292 for (i = 0; i < changedSize; i++)
293 {
294 nextRow = nextBitBitSet (changed, lastRow);
295 if (nextRow == -1)
296 {
297 fprintf (stderr, "\nEnd of bitSet reached! - iter,row\n");
298 fflush (stderr);
299 exit (0);
300 }
301
302 // So now we’ve found the row that needs to be checked.
303 // We do the same thing we did above... either move
304 // on if it has enough possible support, or zero
305 // it out (with its symmetric locations) one by one.
306 numNodes = countSet (graph->graph[nextRow]);
307 if (numNodes >= support - 1)
308 {
309 lastRow = nextRow + 1;
310 continue;
311 }
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312 else
313 {
314 lastBit = 0;
315 for (j = 0; j < numNodes; j++)
316 {
317 nextBit = nextBitBitSet (graph->graph[nextRow], lastBit);
318 if (nextBit == -1)
319 {
320 fprintf (stderr,
321 "\nEnd of BitSet reached! = iter,Bit\n");
322 fflush (stderr);
323 exit (0);
324 }
325 setFalse (graph->graph[nextRow], nextBit);
326 setFalse (graph->graph[nextBit], nextRow);
327 setTrue (work, nextBit);
328 lastBit = nextBit + 1;
329 }
330 lastRow = nextRow + 1;
331 }
332 }
333 }
334 return 1;
335 }

B... int findCliques (bitSet_t ∗Q, bitSet_t ∗ cand, bitSet_t ∗mask, bitGraph_t ∗
oG, int support, int qCount, cll_t ∗∗ elemPats, int ∗ indexToSeq, int p)

Recursive algorithm to exhaustively enumerate all of the maximal cliques that exist in the data.
�is is one of the main workhorses of Gemoda when used in its exhaustive form. �is algorithm
was originally published by Etsuji Tomita, Akira Tanaka, and Haruhisa Takahasi as a Technical
Report of IPSJ (Information Processing Society of Japan): Tomita, E, A Tanaka, & H Takahasi
(). "An optimal algorithm for finding all of the cliques". SIG Algorithms , pp -.
Input: a bitset with the nodes currently in the clique, a bitset with the candidates for expanding
the clique, a bitset inidcating the current subgraph being searched, the bitGraph to be searched
for cliques, the minimum support parameter, a counter variable for keeping track of how many
nodes are in the current clique, a linked list of cliques that have been discovered so far, and a
pointer to the data structure that dereferences offset indexes into sequence numbers, and the
minimum number of unique sequences that must contain the motif. Output: integer success
value of  (but more importantly, the elemPats clique linked list is expanded to contain all
elementary (minimum-length) motif cliques.

Definition at line  of file newConv.c.

References bitSetIntersection(), checkBit(), countSet(), deleteBitSet(), bitGraph_t::graph, new-
BitSet(), nextBitBitSet(), pushClique(), setFalse(), setTrue(), and bitGraph_t::size.

Referenced by convolve().

40 {
41 bitSet_t ** gammaOG = NULL;
42 bitSet_t * candQ = newBitSet (oG->size);
43 bitSet_t * newMask = newBitSet (oG->size);
44 int i, q;
45 int graphSize;
46 int max = -1;
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47 int numBits;
48 int u = 0;
49 int newMaskCount;
50 int candQCount;
51 graphSize = oG->size;
52
53 //
54 // Find which vertex in subg maximizes |cand intersect gamma(u) |
55 gammaOG = oG->graph;
56 for (i = 0; i < graphSize; i++)
57 {
58
59 // Don’t check this vertex if it’s masked
60 if (!(checkBit (mask, i)))
61 {
62 continue;
63 }
64
65 // cand is always a subset of mask, so intersecting
66 // with mask is redundant
67 bitSetIntersection (gammaOG[i], cand, candQ);
68 numBits = countSet (candQ);
69 if (numBits > max)
70 {
71 u = i;
72 max = numBits;
73 }
74 }
75
76 // Then do the extension of the q’s
77 qCount++;
78
79 // This loop iterates over all possible values of cand - gamma() by
80 // iterating over all possible values of cand but immediately
81 // "continue"ing if the node is also in gamma(u)
82 q = nextBitBitSet (cand, 0);
83 while (q != -1)
84 {
85 if (checkBit (gammaOG[u], q))
86 {
87 q = nextBitBitSet (cand, q + 1);
88 continue;
89 }
90
91 // SUBGq = SUBG i Gamma
92 bitSetIntersection (mask, gammaOG[q], newMask);
93 newMaskCount = countSet (newMask);
94 setTrue (Q, q);
95
96 // Only recurse if there are more candidates to be included,
97 // and they will allow us to reach the minimum support.
98 if (newMaskCount > 0 && qCount + newMaskCount >= support)
99 {
100
101 // CANDq = CAND i Gamma
102 bitSetIntersection (gammaOG[q], cand, candQ);
103 candQCount = countSet (candQ);
104
105 // only recurse if we can possibly get to a clique
106 // of size with minimum support
107 if (candQCount > 0 && qCount + candQCount >= support)
108 {
109
110 // recursion with
111 // new candidates, new mask, and original graph
112 findCliques (Q, candQ, newMask, oG, support, qCount, elemPats,
113 indexToSeq, p);
114 }
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115 }
116 else if (qCount >= support)
117 {
118
119 // This should be done when:
120 // 1. countSet(newMask) == 0 [connected subgraph is maximal]
121 // 2. Qcount >= minCount [connected subgraph has enough nodes]
122 *elemPats = pushClique (Q, *elemPats, indexToSeq, p);
123 }
124
125 // Remove q from Q, and remove q from cand
126 setFalse (Q, q);
127 setFalse (cand, q);
128 q = nextBitBitSet (cand, q + 1);
129 }
130 qCount--;
131 deleteBitSet (candQ);
132 deleteBitSet (newMask);
133 return 0;
134 }

B... bitGraph_t∗ pruneBitGraph (bitGraph_t ∗ bg, int ∗ indexToSeq, int ∗∗
offsetToIndex, int numOfSeqs, int p)

Simple function (non-recursive) to prune off the first level of motifs that will not meet the
"minimum number of unique sequences" criterion. �is could have been implemented as
above, but it may have gotten a little expensive with less yield, so only the first run through
is done here. Input: a bit graph to be pruned, a pointer to the structure that dereferences
offset indices to sequence numbers, a pointer to the structure that dereferences seq/position to
offsets, the number of unique sequences in the input set, and the minimum number of unique
sequences that must contain the motif. Output: a pruned bitGraph.

Definition at line  of file newConv.c.

References emptySet(), bitGraph_t::graph, and nextBitBitSet().

404 {
405 int i = 0, j = 0, nextBit = 0;
406 int *seqNums = NULL;
407
408 // Since we don’t immediately know which node is in which source
409 // sequence, we can’t just count them up regularly. Instead, we’ll
410 // need to keep track of which sequences they come from and
411 // increment _something_. What we chose to do here is just make
412 // an array of integers of length = <p>. Then, we try to put the
413 // source sequence number of each neighbor (including itself, since
414 // the main diagonal is still true at this time) into the next slot
415 // Since we will monotonically search the bitSet, we can just
416 // move on to the first bit in the next sequence using the
417 // offsetToIndex structure so that we know the next sequence number
418 // to be put in is always unique.
419 seqNums = (int *) malloc (p * sizeof (int));
420 if (seqNums == NULL)
421 {
422 fprintf (stderr, "Memory error - pruneBitGraph\n%s\n",
423 strerror (errno));
424 fflush (stderr);
425 exit (0);
426 }
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427
428 // So, for each row in the bitgraph...
429 for (i = 0; i < bg->size; i++)
430 {
431
432 // Make sure the whole array is -1 sentinels.
433 for (j = 0; j < p; j++)
434 {
435 seqNums[j] = -1;
436 }
437 j = 0;
438
439 // Find the first neighbor of this bit.
440 nextBit = nextBitBitSet (bg->graph[i], 0);
441 if (nextBit == -1)
442 {
443 continue;
444 }
445 else
446 {
447
448 // and put its sequence number in the array of ints.
449 seqNums[0] = indexToSeq[nextBit];
450 }
451
452 // If it’s the last sequence, then bail out so that we don’t
453 // segfault in the next step.
454 if (seqNums[0] >= numOfSeqs - 1)
455 {
456 emptySet (bg->graph[i]);
457 continue;
458 }
459
460 // Find the next neighbor of this bit, STARTING AT the first
461 // bit in the next sequence.
462 nextBit =
463 nextBitBitSet (bg->graph[i],
464 offsetToIndex[indexToSeq[nextBit] + 1][0]);
465
466 // And iterate this until we run out of neighbors.
467 while (nextBit >= 0)
468 {
469 j++;
470 seqNums[j] = indexToSeq[nextBit];
471
472 // Or until this new neighbor will fill up the array
473 if (j == p - 1)
474 {
475 break;
476 }
477
478 // Or until this new neighbor is in the last sequence.
479 if (seqNums[j] >= numOfSeqs - 1)
480 {
481 break;
482 }
483
484 // Get the next neighbor!
485 nextBit =
486 nextBitBitSet (bg->graph[i],
487 offsetToIndex[indexToSeq[nextBit] + 1][0]);
488 }
489
490 // If we didn’t have enough unique sequences, and either a) we
491 // were in the nth-to-last sequence and there were no
492 // neighbors after it, or b) we were in the last sequence,
493 // then the last number will still be our sentinel, -1. If
494 // the last number is not a sentinel, then we have at least
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495 // p distinct sequence occurrences, so we’re OK.
496 if (seqNums[p - 1] == -1)
497 {
498 emptySet (bg->graph[i]);
499 }
500 }
501 free (seqNums);
502 return (bg);
503 }

B... cll_t∗ pruneCll (cll_t ∗ head, int ∗ indexToSeq, int p)

Prunes a motif linked list of all motifs without support in at least

unique source sequences. Input: head of a motif linked list, pointer to a structure that deref-
erences offset indices to sequence numbers, minimum number of unique source sequences in
which a motif must occur. Output: head of a (potentially altered) motif linked list.

Definition at line  of file newConv.c.

References cSet_t::members, cnode::next, cnode::set, and cSet_t::size.

Referenced by completeConv(), and convolve().

515 {
516 int i = 0, j = 0, thisSeq = 0;
517 int *seqNums = NULL;
518 cll_t * curr = head;
519 cll_t * prev = NULL;
520 cll_t * storage = NULL;
521
522 // We’ll do this similar to the pruneBitGraph function... we will
523 // keep track of which source sequence each motif occurrence was in.
524 // Again, since the occurrences are listed monotonically, we only
525 // need to compare the last non-sentinel index to the current
526 // sequence number.
527 seqNums = (int *) malloc (p * sizeof (int));
528 if (seqNums == NULL)
529 {
530 fprintf (stderr, "Memory error - pruneCll\n%s\n", strerror (errno));
531 fflush (stderr);
532 exit (0);
533 }
534 while (curr != NULL)
535 {
536
537 // First make sure the set size is at least p.
538 // This is redundant, but extremely simple and not expensive,
539 // so we’ll leave it in just as a check.
540 if (curr->set->size < p)
541 {
542 if (prev != NULL)
543 {
544 prev->next = curr->next;
545 }
546 else
547 {
548 head = curr->next;
549 }
550 storage = curr->next;
551 free (curr->set->members);
552 free (curr->set);
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553 free (curr);
554 curr = storage;
555 continue;
556 }
557 for (i = 0; i < p; i++)
558 {
559 seqNums[i] = -1;
560 }
561 j = 0;
562 seqNums[0] = indexToSeq[curr->set->members[0]];
563
564 // Note, we’ve checked to make sure size > p, and we know
565 // p must be 2 or greater, so we can start at 1 without
566 // worrying about segfaulting
567 for (i = 1; i < curr->set->size; i++)
568 {
569 thisSeq = indexToSeq[curr->set->members[i]];
570 if (thisSeq != seqNums[j])
571 {
572 j++;
573 seqNums[j] = thisSeq;
574 if (j == p - 1)
575 {
576 break;
577 }
578 }
579 }
580
581 // Same story as before... if the last number is -1,
582 // then we didn’t have enough to fill up the <p> different
583 // slots, so this doesn’t meet our criterion.
584 if (seqNums[p - 1] == -1)
585 {
586 if (prev != NULL)
587 {
588 prev->next = curr->next;
589 }
590 else
591 {
592 head = curr->next;
593 }
594 storage = curr->next;
595 free (curr->set->members);
596 free (curr->set);
597 free (curr);
598 curr = storage;
599 }
600 else
601 {
602 prev = curr;
603 curr = curr->next;
604 }
605 }
606 free (seqNums);
607 return (head);
608 }

B... int singleLinkage (bitSet_t ∗Q, bitSet_t ∗ cand, bitSet_t ∗mask, bitGraph_t
∗ oG, int support, int qCount, cll_t ∗∗ elemPats, int ∗ indexToSeq, int p)

A recursive routine for single linkage clustering. �is clustering is much faster than exhaustively
enumerating all cliques, but it puts each node in only one cluster and is not guaranteed to give
all possible motifs. Input: a bitSet containing the current motif, a bitSet containing candidates
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to be added to the current motif, a bitSet containing the current subgraph to be clustered, the
original bitGraph to be clustered, the minimum support necessary for a motif to be returned,
the current number of nodes in the motif, a linked list of elementary motifs (length is the same
as the window size), pointer to a structure to derference index values to sequence numbers, and
the minimum number of unique sequences that a motif must be in to be returned. Output:
integer success value of  (but more importantly, the linked list elemPats is updated to contain
all of the motifs of length = window size.

Definition at line  of file newConv.c.

References bitSetUnion(), checkBit(), copySet(), countSet(), bitGraph_t::graph, nextBitBit-
Set(), pushClique(), and setFalse().

Referenced by convolve().

157 {
158 int i = 0;
159 int j = 0;
160
161 // go to the first vertex that has not been clustered yet
162 i = nextBitBitSet (cand, 0);
163 if (i != -1)
164 {
165
166 // this vertex has been clustered
167 setFalse (cand, i);
168
169 // start a new cluster, Q
170 copySet (oG->graph[i], Q);
171
172 // go over each vertex in the cluster
173 j = nextBitBitSet (Q, 0);
174 while (j != -1)
175 {
176
177 // if this vertex has been clustered already, skip it and go
178 // to the next one
179 if (!checkBit (cand, j))
180 {
181 j = nextBitBitSet (Q, j + 1);
182 continue;
183 }
184
185 // Add this vertex’s neighbors to the current cluster
186 bitSetUnion (Q, oG->graph[j], Q);
187
188 // This vertex has now been clustered
189 setFalse (cand, j);
190
191 // go over each vertex in the cluster
192 j = nextBitBitSet (Q, 0);
193 }
194
195 // Did we make a cluster that was large enough?
196 if (countSet (Q) >= support)
197 {
198 *elemPats = pushClique (Q, *elemPats, indexToSeq, p);
199 }
200
201 // recurse
202 singleLinkage (Q, cand, mask, oG, support, 0, elemPats, indexToSeq,
203 p);
204 }
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205 else
206 {
207 return 0;
208 }
209 return 0;
210 }
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B. patStats.c File Reference

#include <math.h >

#include "patStats.h"

Include dependency graph for patStats.c:

patStats.c

math.h

patStats.h

stdio.h

stdlib.h

string.h

errno.h

bitSet.h

convll.h

time.h

Functions

• int getLargestSupport (cll_t ∗cliqs)
• int getLargestLength (cll_t ∗cliqs)
• int measureDiagonal (const bitGraph_t ∗bg, const int i, const int j)
• unsigned int ∗∗ increaseMem (unsigned int ∗∗d, int dimToChange, int currSupport, int

currLength, int newVal)
• unsigned int ∗∗ oldGetStatMat (bitGraph_t ∗bg, int support, int length, int ∗support-

Dim, int ∗lengthDim, int numBlanks)
• unsigned int ∗∗ getStatMat (bitGraph_t ∗bg, int support, int length, int ∗supportDim,

int ∗lengthDim, int numBlanks, int s, FILE ∗OUTPUT_FILE)
• int cumDMatrix (unsigned int ∗∗d, cll_t ∗cliqs, int currSupport, int currLength, int

bgSize, int numSeqs)
• double calcStatCliq (unsigned int ∗∗d, cll_t ∗cliq, int numWindows)
• int calcStatAllCliqs (unsigned int ∗∗d, cll_t ∗allCliqs, int numWindows)
• int freeD (unsigned int ∗∗d, int supportDim)
• int statCompare (const cll_t ∗∗first, const cll_t ∗∗second)
• cll_t ∗ sortByStats (cll_t ∗allCliqs)

Detailed Description

�is file defines functions that are used to compute the statistical significance of motifs for
both the sequence based and real value based implementations of Gemoda. �e basic approach
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we take, is to calculate the probability of establishing a single cluster, and to multiply this
probability by the probability that the cluster can be extended an arbitrary number of locations.
Essentially, this is the probability of getting and elementary motif during the clustering phase
and having that motif convolved multiple times during the convolution phase.

Definition in file patStats.c.

Function Documentation

B... int calcStatAllCliqs (unsigned int ∗∗ d, cll_t ∗ allCliqs, int numWindows)

Definition at line  of file patStats.c.

References calcStatCliq(), cnode::next, and cnode::stat.

Referenced by main().

677 {
678 cll_t * curr = NULL;
679 curr = allCliqs;
680 while (curr != NULL)
681 {
682 curr->stat = calcStatCliq (d, curr, numWindows);
683 curr = curr->next;
684 }
685 return (0);
686 }

B... double calcStatCliq (unsigned int ∗∗ d, cll_t ∗ cliq, int numWindows)

Definition at line  of file patStats.c.

References cnode::length, cnode::set, and cSet_t::size.

Referenced by calcStatAllCliqs().

624 {
625 double stat = 0;
626 int i = 0;
627 int supChooseTwo = 0;
628 double interimP = 0;
629 int support = cliq->set->size;
630 int length = cliq->length;
631 double numTrials = 0;
632 if (support < 2)
633 {
634 fprintf (stderr, "Support for cluster less than 2... exiting.\n");
635 fflush (stderr);
636 exit (0);
637 }
638
639 // OK, so support is at least two. So we make the connections all
640 // on the first level, knowing that each node being connected has
641 // at least zero in common. There are [(size of cluster) - 1] of
642 // these connections to be made.
643 // And we know we can call for d[0][1] because if the second index
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644 // were out of bounds, then there would be no similarities, and
645 // there would be no reason to call this function.
646 interimP = ((double) d[0][1]) / ((double) d[0][0]);
647 stat = pow (interimP, support - 1);
648 stat *= ((double) numWindows * (numWindows - 1)) / ((double) 2);
649
650 // Now we actually calculate the probability... the first connection
651 // has to be made no matter what, and after that we multiply for
652 // every connection after the first one. So we descend iteratively
653 // until we have made all connections, terminating after we’ve made
654 // the single i = (n - 2) connection. There is no i = (n - 1)
655 // connection.
656 for (i = 1; i < support - 1; i++)
657 {
658 interimP = ((double) d[i][1]) / ((double) d[i][0]);
659 stat *= pow (interimP, support - i - 1);
660 stat *= ((double) (numWindows - (i + 1))) / ((double) (i + 2));
661 } supChooseTwo = (support * (support - 1)) / 2;
662
663 // Remember that length = (numwindows - 1), or alternatively,
664 // the number of extensions... normally we’d want to have the last
665 // p be p[support][numwindows - 1], which corresponds to
666 // alteredD[support][numwindows]/alteredD[support][numwindows-1],
667 // so that means we want our last d to be d[support][numwindows].
668 // Here, we note that the calculation of p’s would be continuously
669 // re-normalizing, so multiplying all p’s is the same as dividing
670 // the last d by the initial d.
671 interimP = ((double) d[support][length + 1]) / ((double) d[support][1]);
672 stat *= pow (interimP, supChooseTwo);
673 return stat;
674 }

B... int cumDMatrix (unsigned int ∗∗ d, cll_t ∗ cliqs, int currSupport, int
currLength, int bgSize, int numSeqs)

Definition at line  of file patStats.c.

References getLargestLength(), and getLargestSupport().

Referenced by main().

524 {
525 int maxSup = 0;
526 int maxLen = 0;
527 int i, j;
528 int numWins = 0;
529
530 maxSup = getLargestSupport (cliqs);
531 maxLen = getLargestLength (cliqs);
532
533 /********* COMMENTED OUT
534 // First we note that the number of unique streaks of a given
535 // support is defined by d[support][1], where as 1 increases,
536 // the value of d decreases because only unique streaks are
537 // counted.
538 // We also note that the number of disjoint node-pairs with a given
539 // number of other nodes in common is defined by d[support][0].
540 // So, in order to properly account for all "unique" comparisons
541 // (which is equal to (# streaks + # disjoint node-pairs), we must
542 // add d[support][1] to d[support][0].
543
544 for (i = 0; i < currSupport + 1; i++) {
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545 d[i][0] += d[i][1];
546 }
547 ********************/
548
549 // We no longer need to do that, since now we sum across both
550 // the support and the length dimensions. Now, d[support][0] will
551 // necessarily include d[support][1] being added to it. We don’t
552 // want to add this anymore, otherwise we would be underestimating
553 // the probability of making that first connection. For instance,
554 // if there were no nodes with 20 in common that weren’t also
555 // connected, and no nodes whatsoever with more than 20 in common,
556 // we’d want the p[20][0] to be 1, which would be
557 // d[20][1]/d[20][0]. When summing across length directions,
558 // this happens naturally, whereas before we needed to do it
559 // artificially as per above. If we did above, we’d have the
560 // probability of each node being 1/2 instead of 1.
561
562 // Rather than storing doubles and doing lots of multiplications,
563 // we’re going to limit the number of operations done in the actual
564 // probability calculation by only storing cumulative sums in d.
565 // Now remember, what we’re storing at each location is the
566 // number of nodes with [i] or more nodes in common (including
567 // each other and selves) that can be extended [j] times (with
568 // their initial similarity counting as 1).
569 //
570 // We go up to the last possible index in the length direction, which
571 // means going up to [maxLen]. We know that this is legitimate
572 // because maxLen is less than or equal to the longest possible
573 // diagonal, and the longest possible diagonal will be less
574 // than or equal to currLength. Since we have allotted
575 // (currLength + 1) integers, we know we’re OK to access [currLength].
576 for (j = 0; j < currLength + 1; j++)
577 {
578
579 // We start at currSupport - 1, because currSupport will
580 // clearly not be changed, and this makes it a much easier
581 // loop to read.
582 for (i = currSupport - 1; i >= 0; i--)
583 {
584 d[i][j] += d[i + 1][j];
585 }
586 }
587 for (i = 0; i < currSupport + 1; i++)
588 {
589 for (j = currLength - 1; j >= 0; j--)
590 {
591 d[i][j] += d[i][j + 1];
592 }
593 }
594
595 // Now we need to forcibly set d[0][0] to its correct value... it’s
596 // just the total number of comparisons, not including comparisons
597 // to delimiter 0’s meant to separate sequences. The number of
598 // windows is equal to the number of offsets minus the number
599 // of sequences (assuming one delimiter per sequence). We don’t count
600 // the main diagonal, so the first row has one less, and we want to
601 // sum over all the subsequent rows in the upper half of the matrix.
602 // So it’s (numWins - 1)*(numWins - 1 + 1)/2 to sum that up.
603 numWins = bgSize - numSeqs;
604 d[0][0] = numWins * (numWins - 1) / 2;
605
606 /*
607 for (i = 0; i <= maxSup; i++) { printf("support = %d:\t",i); for (j = 0; j <=
608 maxLen; j++) { printf("%d\t",d[i][j]); } printf("\n"); }
609 */
610 return 1;
611 }
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B... int freeD (unsigned int ∗∗ d, int supportDim)

Definition at line  of file patStats.c.

Referenced by main().

689 {
690 int i = 0;
691 if (d == 0)
692 {
693 return 0;
694 }
695 else
696 {
697
698 // Still, it’s supportDim + 1, because we have an extra
699 // one for the "0" support.
700 for (i = 0; i < supportDim + 1; i++)
701 {
702 free (d[i]);
703 }
704 free (d);
705 return 0;
706 }
707 }

B... int getLargestLength (cll_t ∗ cliqs)

Given a clique linked list, this function will return an integer which is equal to the length of
the member of the linked list with the largest length.

Definition at line  of file patStats.c.

References cnode::length, and cnode::next.

Referenced by cumDMatrix().

45 {
46 int len = 0;
47 cll_t * curCliq = NULL;
48 curCliq = cliqs;
49 while (curCliq != NULL)
50 {
51 if (curCliq->length > len)
52 {
53 len = curCliq->length;
54 }
55 curCliq = curCliq->next;
56 }
57
58 // We return (len + 1) because the length of the shortest streak
59 // is one, but is stored in the cluster data structure as being
60 // zero (number of extensions that have been made).
61 return (len + 1);
62 }
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B... int getLargestSupport (cll_t ∗ cliqs)

Given a clique linked list, this function will return an integer which is equal to the support of
the member of the linked list with the largest support.

Definition at line  of file patStats.c.

References cnode::next, cnode::set, and cSet_t::size.

Referenced by cumDMatrix().

23 {
24 int size = 0;
25 cll_t * curCliq = NULL;
26 curCliq = cliqs;
27 while (curCliq != NULL)
28 {
29 if (curCliq->set->size > size)
30 {
31 size = curCliq->set->size;
32 }
33 curCliq = curCliq->next;
34 }
35 return size;
36 }

B... unsigned int∗∗ getStatMat (bitGraph_t ∗ bg, int support, int length,
int ∗ supportDim, int ∗ lengthDim, int numBlanks, int s, FILE ∗
OUTPUT_FILE)

Definition at line  of file patStats.c.

References bitGraphRowIntersection(), checkBit(), countSet(), deleteBitSet(), bitGraph_-
t::graph, increaseMem(), measureDiagonal(), newBitSet(), nextBitBitSet(), and bitGraph_-
t::size.

Referenced by main().

331 {
332 int *Q = NULL;
333 unsigned int **d = NULL;
334 int i, j, k;
335 int x, y;
336 bitSet_t * X = NULL;
337 int currSupport;
338 int currLength;
339 int multiplier = 50;
340 int diagonal = 0;
341 time_t probStart, probEnd;
342 int timeNeeded = 0;
343 int sampleCounter = 1;
344
345 // int visitCounter = 0, uniqCounter = 0;
346 currSupport = support * multiplier;
347 currLength = length * multiplier;
348 X = newBitSet (bg->size);
349
350 // printf("Made bitSet of size %d\n", bg->size);
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351 Q = (int *) malloc (bg->size * sizeof (int));
352 if (Q == NULL)
353 {
354 fprintf (stderr,
355 "\nMemory error --- couldn’t allocate array!" "\n%s\n",
356 strerror (errno));
357 fflush (stderr);
358 exit (0);
359 }
360 for (i = 0; i < bg->size; i++)
361 {
362 Q[i] = 0;
363 }
364 d =
365 (unsigned int **) malloc ((currSupport + 1) * sizeof (unsigned int *));
366 if (d == NULL)
367 {
368 fprintf (stderr,
369 "\nMemory error --- couldn’t allocate array!" "\n%s\n",
370 strerror (errno));
371 fflush (stderr);
372 exit (0);
373 }
374 for (i = 0; i < currSupport + 1; i++)
375 {
376 d[i] =
377 (unsigned int *) malloc ((currLength + 1) * sizeof (unsigned int));
378 if (d[i] == NULL)
379 {
380 fprintf (stderr, "\nMemory error --- couldn’t allocate array!"
381 "\n%s\n", strerror (errno));
382 fflush (stderr);
383 exit (0);
384 }
385 for (j = 0; j < currLength + 1; j++)
386 {
387 d[i][j] = 0;
388 }
389 }
390
391 // printf("size=%d\n",bg->size);
392 time (&probStart);
393 for (i = 0; i < bg->size; i++)
394 {
395 if (i == 200)
396 {
397 time (&probEnd);
398 timeNeeded = ((double) (probEnd - probStart)) /
399 ((double) 60) * ((double) bg->size) / ((double) 200);
400 if (timeNeeded > 2)
401 {
402 fprintf (OUTPUT_FILE,
403 "Max total time to calculate probability:\n");
404 fprintf (OUTPUT_FILE, "\t%d minutes\n", timeNeeded);
405 fprintf (OUTPUT_FILE, "Actual time will be less than this, "
406 "but at least half of it.\n");
407 fprintf (OUTPUT_FILE,
408 "To bypass excessive probability calculations,"
409 " cancel and use a different value\n"
410 " for the ’-s’ flag (samples every "
411 "’s’ points).\n");
412 fflush (NULL);
413 }
414 }
415 j = nextBitBitSet (bg->graph[i], 0);
416 while (j >= 0)
417 {
418 k = nextBitBitSet (bg->graph[i], j + 1);
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419 while (k >= 0)
420 {
421 if (checkBit (bg->graph[j], k) == 0)
422 {
423 if (sampleCounter == s)
424 {
425 bitGraphRowIntersection (bg, j, k, X);
426
427 // visitCounter++;
428 if (nextBitBitSet (X, 0) >= i)
429 {
430
431 // uniqCounter++;
432 x = countSet (X);
433 while (x > currSupport)
434 {
435 d =
436 increaseMem (d, 1, currSupport, currLength,
437 currSupport +
438 support * multiplier);
439 currSupport += support * multiplier;
440 }
441 d[x][0] += 1;
442 }
443 sampleCounter = 0;
444 }
445 sampleCounter++;
446 }
447 k = nextBitBitSet (bg->graph[i], k + 1);
448 }
449 if (j <= i)
450 {
451 j = nextBitBitSet (bg->graph[i], j + 1);
452 continue;
453 }
454 bitGraphRowIntersection (bg, i, j, X);
455 x = countSet (X);
456
457 // Note, now we’re using "diagonals" rather than
458 // location in a horizontal array. So you always
459 // start from the main diagonal at 0 and move out.
460 diagonal = j - i;
461
462 // We change this to greater-than-one because
463 // after Q[diagonal] is reduced to one, it isn’t
464 // visited again until we reach a new streak, (because
465 // the next bit in the diagonal is a zero), and at
466 // that point we want to start with a new diagonal
467 // measure.
468 if (Q[diagonal] > 1)
469 {
470 y = Q[diagonal] - 1;
471 Q[diagonal]--;
472 }
473 else
474 {
475 y = measureDiagonal (bg, i, j);
476 Q[diagonal] = y;
477 }
478 while (x > currSupport)
479 {
480 d = increaseMem (d, 1, currSupport, currLength,
481 currSupport + support * multiplier);
482 currSupport += support * multiplier;
483 }
484 while (y > currLength)
485 {
486 d =
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487 increaseMem (d, 2, currSupport, currLength,
488 currLength + length * multiplier);
489 currLength += length * multiplier;
490 }
491 d[x][y]++;
492 j = nextBitBitSet (bg->graph[i], j + 1);
493
494 /*
495 if(x != 0){ printf("%d:\t%d %d\n", j, x, y); fflush(stdout); }
496 */
497 }
498
499 /*
500 printf("done\n"); fflush(stdout);
501 */
502 }
503
504 // We need to rescale by the sampling factor for all i>0 in d[i][0].
505 //
506 for (i = 1; i < currSupport; i++)
507 {
508 d[i][0] *= s;
509 }
510
511 // Now we only need to assign the correct value for d[0][0]...
512 // but rather than figuring that out, we will just assign it in the
513 // cumulative function, since there it is merely the number of unique
514 // non-self comparisons and is easy to calculate.
515 deleteBitSet (X);
516 free (Q);
517 *supportDim = currSupport;
518 *lengthDim = currLength;
519 return (d);
520 }

B... unsigned int∗∗ increaseMem (unsigned int ∗∗ d, int dimToChange, int
currSupport, int currLength, int newVal)

�is function is used to increase the size of an array of pointers to pointers to integers. dimTo-
Change is  for the first dimension (support),  for the second dimension (length). newVal is
the new value for the dimension to be changed, not including the "" that should be added...
so it should just be some integer times the initial support.

Definition at line  of file patStats.c.

Referenced by getStatMat(), and oldGetStatMat().

93 {
94 int i = 0, j = 0;
95 if (dimToChange == 1)
96 {
97 d =
98 (unsigned int **) realloc (d, (newVal + 1) * sizeof (unsigned int *));
99 if (d == NULL)
100 {
101 fprintf (stderr, "\nMemory error --- couldn’t allocate array!"
102 "\n%s\n", strerror (errno));
103 fflush (stderr);
104 exit (0);
105 }
106 for (i = currSupport + 1; i < newVal + 1; i++)
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107 {
108 d[i] =
109 (unsigned int *) malloc ((currLength + 1) *
110 sizeof (unsigned int));
111 if (d[i] == NULL)
112 {
113 fprintf (stderr,
114 "\nMemory error --- couldn’t allocate array!"
115 "\n%s\n", strerror (errno));
116 fflush (stderr);
117 exit (0);
118 }
119 for (j = 0; j < currLength + 1; j++)
120 {
121 d[i][j] = 0;
122 }
123 }
124 return d;
125 }
126 else if (dimToChange == 2)
127 {
128 for (i = 0; i < currSupport + 1; i++)
129 {
130 d[i] =
131 (unsigned int *) realloc (d[i],
132 (newVal + 1) * sizeof (unsigned int));
133 if (d[i] == NULL)
134 {
135 fprintf (stderr,
136 "\nMemory error --- couldn’t allocate array!"
137 "\n%s\n", strerror (errno));
138 fflush (stderr);
139 exit (0);
140 }
141 for (j = currLength + 1; j < newVal + 1; j++)
142 {
143 d[i][j] = 0;
144 }
145 }
146 return d;
147 }
148 else
149 {
150 fprintf (stderr, "Invalid arguments to increaseMem!\n\n");
151 fflush (stderr);
152 exit (0);
153 }
154 }

B... int measureDiagonal (const bitGraph_t ∗ bg, const int i, const int j)

Given a bit graph, and two indices within that bit graph, this will return an integer which is
equal to the number of values in the bit graph that are true along a diagonal that begins at the
two indices. �is routine is used to check for streaks in an adjacency matrix and is used during
the convolution.

Definition at line  of file patStats.c.

References bitGraphCheckBit().

Referenced by getStatMat(), and oldGetStatMat().
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73 {
74 int len = 0;
75 while (bitGraphCheckBit (bg, i + len, j + len) != 0)
76 {
77 len++;
78 }
79 return len;
80 }

B... unsigned int∗∗ oldGetStatMat (bitGraph_t ∗ bg, int support, int length, int
∗ supportDim, int ∗ lengthDim, int numBlanks)

OK, here is something that is a little bit "hackish" but that we have to do. Since our initial
matrix is being pruned and filtered before being clustered, but we need to calculate stats based
on the original matrix, we need to get information from the matrix before pruning, so we’re
using this function. We could just make a copy of that matrix, but it’s far too big, and that would
cause an unneccessary constraint on memory, limiting the size of problems we can address. But
we need to define just how big our d matrix is before we can use it. We could go through and
compute the longest streak beforehand, and then redo everything, but we’ve already found the
first step of finding all of the streaks to be fairly expensive (KLJ). So instead what we’ll do is
use the user’s parameters as a benchmark and expand from there. We’ll assume that most of the
time, the biggest streak (number of extensions) will be less than  times the length given as
input by the user, and the biggest support will be less than  times the minimum number of
support given by the user. �is seems perhaps overly conservative, but otherwise is reasonable.
We then realize that even on a -bit computer, if the user gives L= and K=, we’ll still use
less than  MB of memory... and if L= and K=, it is extremely likely that doubling the
adjacency matrix would have been a much worse option. Scaling back to more common values
of L∼ and K∼, the memory used shoots down to ∼MB, which is definitely acceptable.
Now, if for some reason our initial allocation wasn’t enough, then we’ll have to go through and
realloc all of our memory again. Somewhat time-consuming, but hopefully not done too often.
Each time we find we try to put something in an index that doesn’t exist, we’ll reallocate our
memory, adding twice as much in the dimension that was violated. It is important to us that
we get back the final dimensions of this matrix, since in the support dimension we’ll have to
sum across all values, and in the length dimension we’ll have to be sure we’re not at the edge of
a matrix during our d manipulations later on.

Definition at line  of file patStats.c.

References bitGraphRowIntersection(), countSet(), deleteBitSet(), increaseMem(), measure-
Diagonal(), newBitSet(), and bitGraph_t::size.

198 {
199 int *Q = NULL;
200 unsigned int **d = NULL;
201 int i, j;
202 int x, y;
203 bitSet_t * X = NULL;
204 int currSupport;
205 int currLength;
206 int multiplier = 50;
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207 time_t probStart, probEnd;
208 int timeNeeded = 0;
209 currSupport = support * multiplier;
210 currLength = length * multiplier;
211 X = newBitSet (bg->size);
212
213 // printf("Made bitSet of size %d\n", bg->size);
214 Q = (int *) malloc (bg->size * sizeof (int));
215 if (Q == NULL)
216 {
217 fprintf (stderr,
218 "\nMemory error --- couldn’t allocate array!" "\n%s\n",
219 strerror (errno));
220 fflush (stderr);
221 exit (0);
222 }
223 for (i = 0; i < bg->size; i++)
224 {
225 Q[i] = 0;
226 }
227 d =
228 (unsigned int **) malloc ((currSupport + 1) * sizeof (unsigned int *));
229 if (d == NULL)
230 {
231 fprintf (stderr,
232 "\nMemory error --- couldn’t allocate array!" "\n%s\n",
233 strerror (errno));
234 fflush (stderr);
235 exit (0);
236 }
237 for (i = 0; i < currSupport + 1; i++)
238 {
239 d[i] =
240 (unsigned int *) malloc ((currLength + 1) * sizeof (unsigned int));
241 if (d[i] == NULL)
242 {
243 fprintf (stderr, "\nMemory error --- couldn’t allocate array!"
244 "\n%s\n", strerror (errno));
245 fflush (stderr);
246 exit (0);
247 }
248 for (j = 0; j < currLength + 1; j++)
249 {
250 d[i][j] = 0;
251 }
252 }
253 time (&probStart);
254 for (i = 0; i < bg->size; i++)
255 {
256 if (i == 200)
257 {
258 time (&probEnd);
259 timeNeeded = ((double) (probEnd - probStart)) /
260 ((double) 60) * ((double) bg->size) / ((double) 200);
261 if (timeNeeded > 2)
262 {
263 printf ("Max total time to calculate probability:\n");
264 printf ("\t%d minutes\n", timeNeeded);
265 printf ("Actual time will be less than this, but at",
266 "least half of it.\n");
267 printf ("To bypass excessive probability calculations,",
268 "cancel and use the ’-d’ flag.\n");
269 fflush (NULL);
270 }
271 }
272 for (j = bg->size - 1; j > i; j--)
273 {
274 bitGraphRowIntersection (bg, i, j, X);
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275 x = countSet (X);
276 if (Q[j - 1] != 0)
277 {
278 y = Q[j - 1] - 1;
279 Q[j] = Q[j - 1] - 1;
280 }
281 else
282 {
283 y = measureDiagonal (bg, i, j);
284 Q[j] = y;
285 }
286 while (x > currSupport)
287 {
288 d = increaseMem (d, 1, currSupport, currLength,
289 currSupport + support * multiplier);
290 currSupport += support * multiplier;
291 }
292 while (y > currLength)
293 {
294 d =
295 increaseMem (d, 2, currSupport, currLength,
296 currLength + length * multiplier);
297 currLength += length * multiplier;
298 }
299 d[x][y]++;
300
301 /*
302 if(x != 0){ printf("%d:\t%d %d\n", j, x, y); fflush(stdout); }
303 */
304 }
305
306 /*
307 printf("done\n"); fflush(stdout);
308 */
309 }
310
311 // We know that the "blanks", inserted to delimit unique sequences
312 // and prevent convolution through them, will skew our statistics,
313 // so we subtract them. We know that they will never be similar to
314 // any others, so will only add to the d[0][0] number. Furthermore,
315 // we know how many they add. Since d never hits the main diagonal
316 // and only does the upper half of the matrix, the first one
317 // contributes bgsize - 1 to d[0][0], the next bgsize - 2, etc.
318 for (i = 0; i < numBlanks; i++)
319 {
320 d[0][0] -= bg->size - 1 - i;
321 }
322 deleteBitSet (X);
323 free (Q);
324 *supportDim = currSupport;
325 *lengthDim = currLength;
326 return (d);
327 }

B... cll_t∗ sortByStats (cll_t ∗ allCliqs)

�is function is used to sort a link to list of cliques by the statistical significance of the motifs
found in that linked list.

Definition at line  of file patStats.c.

References cnode::id, cnode::next, and statCompare().

Referenced by main().
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733 {
734 cll_t * curCliq = NULL;
735 cll_t ** arrayOfCliqs = NULL;
736 int numOfCliqs = 0;
737 int i = 0;
738 curCliq = allCliqs;
739 if (curCliq != NULL)
740 {
741 numOfCliqs = curCliq->id + 1;
742 }
743 else
744 {
745 return (NULL);
746 }
747 arrayOfCliqs = (cll_t **) malloc (numOfCliqs * sizeof (cll_t *));
748 for (i = 0; i < numOfCliqs; i++)
749 {
750 arrayOfCliqs[i] = curCliq;
751 curCliq = curCliq->next;
752 }
753 qsort (arrayOfCliqs, numOfCliqs, sizeof (cll_t *), statCompare);
754 for (i = 0; i < numOfCliqs - 1; i++)
755 {
756 arrayOfCliqs[i]->next = arrayOfCliqs[i + 1];
757 }
758 arrayOfCliqs[numOfCliqs - 1]->next = NULL;
759 return (arrayOfCliqs[0]);
760 }

B... int statCompare (const cll_t ∗∗ first, const cll_t ∗∗ second)

Definition at line  of file patStats.c.

Referenced by sortByStats().

710 {
711 double difference = (*first)->stat - (*second)->stat;
712 if (difference < 0)
713 {
714 return (-1);
715 }
716 else if (difference > 0)
717 {
718 return (1);
719 }
720 else
721 {
722 return (0);
723 }
724 }
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B. patStats.h File Reference

#include <stdio.h >

#include <stdlib.h >

#include <string.h >

#include <errno.h >

#include "bitSet.h"

#include "convll.h"

#include <time.h >

Include dependency graph for patStats.h:

patStats.h

stdio.h

stdlib.h

string.h

errno.h

bitSet.h

convll.h

time.h

�is graph shows which files directly or indirectly include this file:

patStats.h

gemoda-s.c

patStats.c

realIo.c

Functions

• unsigned int ∗∗ getStatMat (bitGraph_t ∗bg, int support, int length, int ∗supportDim,
int ∗lengthDim, int numBlanks, int s, FILE ∗OUTPUT_FILE)

• int cumDMatrix (unsigned int ∗∗d, cll_t ∗cliqs, int currSupport, int currLength, int
bgSize, int numSeqs)

• int calcStatAllCliqs (unsigned int ∗∗d, cll_t ∗allCliqs, int numWindows)
• cll_t ∗ sortByStats (cll_t ∗allCliqs)
• int freeD (unsigned int ∗∗d, int supportDim)
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Function Documentation

B... int calcStatAllCliqs (unsigned int ∗∗ d, cll_t ∗ allCliqs, int numWindows)

Definition at line  of file patStats.c.

References calcStatCliq(), cnode::next, and cnode::stat.

Referenced by main().

B... int cumDMatrix (unsigned int ∗∗ d, cll_t ∗ cliqs, int currSupport, int
currLength, int bgSize, int numSeqs)

Definition at line  of file patStats.c.

References getLargestLength(), and getLargestSupport().

Referenced by main().

B... int freeD (unsigned int ∗∗ d, int supportDim)

Definition at line  of file patStats.c.

Referenced by main().

B... unsigned int∗∗ getStatMat (bitGraph_t ∗ bg, int support, int length,
int ∗ supportDim, int ∗ lengthDim, int numBlanks, int s, FILE ∗
OUTPUT_FILE)

Definition at line  of file patStats.c.

References bitGraphRowIntersection(), checkBit(), countSet(), deleteBitSet(), bitGraph_-
t::graph, increaseMem(), measureDiagonal(), newBitSet(), nextBitBitSet(), and bitGraph_-
t::size.

Referenced by main().

B... cll_t∗ sortByStats (cll_t ∗ allCliqs)

�is function is used to sort a link to list of cliques by the statistical significance of the motifs
found in that linked list.

Definition at line  of file patStats.c.

References cnode::id.

Referenced by main().
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B. realCompare.c File Reference

#include "realCompare.h"

Include dependency graph for realCompare.c:

realCompare.c realCompare.h

stdio.h

stdlib.h

string.h

errno.h

gsl/gsl_matrix.h

realIo.h

bitSet.h

protAlign.h

FastaSeqIO/fastaSeqIO.h

convll.h

Functions

• double rmsdCompare (rdh_t ∗data, int win, int win, int L, double ∗extraParams)

• double generalMatchFactor (rdh_t ∗data, int win, int win, int L, double ∗extraParams)

• double massSpecCompareWElut (rdh_t ∗data, int win, int win, int L, double ∗extra-
Params)

• double(∗)(rdh_t ∗, int, int, int, double ∗) getCompFunc (int compFunc)

• bitGraph_t ∗ realComparison (rdh_t ∗data, int L, double g, int compFunc, double
∗extraParams)

Detailed Description

�is file defines a series of functions that are used during the comparison phase of the Gemoda
algorithm in the real valued implementation. We define a handful of comparison functions —
some that are well suited to protein structure comparison and others that are more suited to
the comparison of mass spectrometry spectra.

Definition in file realCompare.c.
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Function Documentation

B... double generalMatchFactor (rdh_t ∗ data, int win, int win, int L, double
∗ extraParams)

�is function is used to compute a generalized match factor, which is useful for computing the
degree of similarity between mass spectrometry spectra.

Definition at line  of file realCompare.c.

References getRdhDim(), getRdhIndexSeqPos(), and rdh_t::seq.

Referenced by getCompFunc().

113 {
114 int i, j;
115 double numerator = 0.0;
116
117 /*
118 double denominator=0.0;
119 */
120 double xsum;
121 double ysum;
122 double ldenom = 0.0;
123 double rdenom = 0.0;
124 int dim;
125 int seq1, pos1;
126 int seq2, pos2;
127 gsl_matrix_view view1;
128 gsl_matrix_view view2;
129 gsl_matrix * mat1;
130 gsl_matrix * mat2;
131 dim = getRdhDim (data);
132
133 // Find out which seq,pos pairs these two
134 // windows correspond to
135 getRdhIndexSeqPos (data, win1, &seq1, &pos1);
136 getRdhIndexSeqPos (data, win2, &seq2, &pos2);
137
138 // Get a reference to a submatrix. That is,
139 // ’chop out’ the window.
140 view1 = gsl_matrix_submatrix (data->seq[seq1], pos1, 0, L, dim);
141 view2 = gsl_matrix_submatrix (data->seq[seq2], pos2, 0, L, dim);
142
143 // Some error checking here would be nice!
144 // Did we get the matrices we wanted?
145
146 // This just makes it easier to handle the views
147 mat1 = &view1.matrix;
148 mat2 = &view2.matrix;
149
150 // Loop over each position
151 for (i = 0; i < mat1->size1; i++)
152 {
153 xsum = 0.0;
154 ysum = 0.0;
155
156 // Loop over each dimension at each position
157 for (j = 0; j < dim; j++)
158 {
159 xsum += gsl_matrix_get (mat1, i, j);
160 ysum += gsl_matrix_get (mat2, i, j);
161 }
162 numerator += (i + 1) * sqrt (xsum * ysum);
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163 ldenom += (i + 1) * xsum;
164 rdenom += (i + 1) * ysum;
165 }
166 return pow (numerator, 2.0) / (ldenom * rdenom);
167 }

B... double(∗)(rdh_t ∗, int, int, int, double ∗) getCompFunc ()

Definition at line  of file realCompare.c.

References generalMatchFactor(), massSpecCompareWElut(), and rmsdCompare().

265 {
266 double (*comparisonFunc) (rdh_t *, int, int, int, double *) = &rmsdCompare;
267 switch (compFunc)
268 {
269 case 0:
270 comparisonFunc = &rmsdCompare;
271 break;
272 case 1:
273 comparisonFunc = &generalMatchFactor;
274 break;
275 case 2:
276 comparisonFunc = &massSpecCompareWElut;
277 break;
278 default:
279 comparisonFunc = &rmsdCompare;
280 break;
281 }
282 return (comparisonFunc);
283 }

B... double massSpecCompareWElut (rdh_t ∗ data, int win, int win, int L,
double ∗ extraParams)

�is function is used to compute the match factor between to mass spectrometry spectra in a
similar manner to the previous function; however, this function imposes a penalty for spectra
that are separated by large distances in elution time. �is function is commonly used by Spec-
Connect.

Definition at line  of file realCompare.c.

References getRdhDim(), getRdhIndexSeqPos(), and rdh_t::seq.

Referenced by getCompFunc().

180 {
181 int i, j;
182 double numerator = 0.0;
183
184 /*
185 double denominator=0.0;
186 */
187 double xsum;
188 double ysum;
189 double cum;
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190 double ldenom = 0.0;
191 double rdenom = 0.0;
192 int dim;
193 int seq1, pos1;
194 int seq2, pos2;
195 double weight = 2.0;
196 gsl_matrix_view view1;
197 gsl_matrix_view view2;
198 gsl_matrix * mat1;
199 gsl_matrix * mat2;
200 double maxElut = -1;
201 if (extraParams != NULL)
202 {
203 maxElut = extraParams[0];
204 }
205 dim = getRdhDim (data);
206
207 // Find out which seq,pos pairs these two
208 // windows correspond to
209 getRdhIndexSeqPos (data, win1, &seq1, &pos1);
210 getRdhIndexSeqPos (data, win2, &seq2, &pos2);
211
212 // Get a reference to a submatrix. That is,
213 // ’chop out’ the window.
214 view1 = gsl_matrix_submatrix (data->seq[seq1], pos1, 0, L, dim);
215 view2 = gsl_matrix_submatrix (data->seq[seq2], pos2, 0, L, dim);
216
217 // Some error checking here would be nice!
218 // Did we get the matrices we wanted?
219
220 // This just makes it easier to handle the views
221 mat1 = &view1.matrix;
222 mat2 = &view2.matrix;
223 cum = 1.0;
224
225 // Loop over each position
226 for (i = 0; i < mat1->size1; i++)
227 {
228 xsum = 0.0;
229 ysum = 0.0;
230
231 // First take the first dimension for elution time
232 if (maxElut >= 0)
233 {
234 if (fabs
235 (gsl_matrix_get (mat1, i, 0) - gsl_matrix_get (mat2, i, 0)) >
236 maxElut)
237 {
238 cum = 0;
239 break;
240 }
241 }
242
243 // printf("\n");
244 //
245 // Loop over each subsequent dimension at each position
246 for (j = 1; j < dim; j++)
247 {
248
249 // printf("mat1val=%lf,mat2val=%lf\n",gsl_matrix_get(mat1,i,j),
250 // gsl_matrix_get(mat2,i,j));
251 numerator += pow (j, weight) * sqrt (gsl_matrix_get (mat1, i, j)
252 *gsl_matrix_get (mat2, i,
253 j));
254 ldenom += pow (j, weight) * gsl_matrix_get (mat1, i, j);
255 rdenom += pow (j, weight) * gsl_matrix_get (mat2, i, j);
256
257 // printf("numer=%lf,ldenom=%lf,rdenom=%lf\n",numerator,
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258 // ldenom,rdenom);
259 }
260 cum *= pow (numerator, 2.0) / (ldenom * rdenom);
261 }
262 return pow (cum, 1.0 / L);
263 }

B... bitGraph_t∗ realComparison (rdh_t ∗ data, int L, double g, int compFunc,
double ∗ extraParams)

Definition at line  of file realCompare.c.

References bitGraphSetTrueSym(), getCompFunc, getRdhIndexSeqPos(), rdh_t::indexSize,
initRdhIndex(), newBitGraph(), and rmsdCompare().

Referenced by main().

287 {
288 int i, j;
289 int seq1, pos1;
290 int seq2, pos2;
291 bitGraph_t * bg = NULL;
292 double score;
293 double (*comparisonFunc) (rdh_t *, int, int, int, double *) = &rmsdCompare;
294
295 // Initialize the rdh’s index
296 initRdhIndex (data, L, 1);
297
298 // Allocate a new bit graph
299 bg = newBitGraph (data->indexSize);
300
301 // Choose the comparison function, pass a reference to it
302 comparisonFunc = getCompFunc (compFunc);
303 for (i = 0; i < data->indexSize; i++)
304 {
305
306 // Skip seperators
307 getRdhIndexSeqPos (data, i, &seq1, &pos1);
308 if (seq1 == -1 || pos1 == -1)
309 {
310 continue;
311 }
312 for (j = i; j < data->indexSize; j++)
313 {
314 getRdhIndexSeqPos (data, j, &seq2, &pos2);
315 if (seq2 == -1 || pos2 == -1)
316 {
317 continue;
318 }
319
320 // This is the comparison function
321 score = comparisonFunc (data, i, j, L, extraParams);
322
323 // printf("score (%2d,%2d) vs. (%2d, %2d) =\t%lf\n",seq1, pos1, seq2, pos2,
324 // score);
325 if (compFunc == 0)
326 {
327 if (score <= g)
328 {
329 bitGraphSetTrueSym (bg, i, j);
330 }
331 }
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332 else if ((compFunc == 1) || (compFunc == 2))
333 {
334 if (score >= g)
335 {
336 bitGraphSetTrueSym (bg, i, j);
337 }
338 }
339 else
340 {
341 fprintf (stderr, "Comparison function undefined in "
342 "realComparison function,\n located in "
343 "realCompare.c. Exiting.\n\n");
344 fflush (stderr);
345 exit (0);
346 }
347 }
348 }
349 return bg;
350 }

B... double rmsdCompare (rdh_t ∗ data, int win, int win, int L, double ∗
extraParams)

Calculate the rmsd between two windows, with optional translation and rotation. �e input to
this function is a real data handler object, two integers that point to the windows within the real
data that are to be compared, an integer that specifies the length of the windows, and a pointer
to a double precision floating point that can be used to store other parameters as needed. �is
last parameter is most useful for implementing other comparison functions, without having to
make, too many changes to other parts of the code.

�is function operates in three stages. First, we compute the centroid of each window and
move the second window such that its centroid overlaps with that of the first window. Second,
we use rigid body rotation to find the rotational matrix that minimizes the root mean squared
deviation between the two windows. Finally, this function returns that minimized RMSD.

Definition at line  of file realCompare.c.

References getRdhDim(), getRdhIndexSeqPos(), and rdh_t::seq.

Referenced by getCompFunc(), and realComparison().

32 {
33 int trans = 1;
34 int rot = 1;
35 int dim;
36 double result = 0;
37 int seq1, pos1;
38 int seq2, pos2;
39 gsl_matrix_view view1;
40 gsl_matrix_view view2;
41 gsl_matrix * mat1;
42 gsl_matrix * mat2;
43 gsl_matrix * mat1copy;
44 gsl_matrix * mat2copy;
45
46 // The "rint" function is in math.h and rounds a number to the
47 // nearest integer. It raises an "inexact exception" if the
48 // number initially wasn’t an integer.
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49 if (extraParams != NULL)
50 {
51 trans = rint (extraParams[0]);
52 rot = rint (extraParams[1]);
53 }
54 dim = getRdhDim (data);
55
56 // Find out which seq,pos pairs these two
57 // windows correspond to
58 getRdhIndexSeqPos (data, win1, &seq1, &pos1);
59 getRdhIndexSeqPos (data, win2, &seq2, &pos2);
60
61 // Get a reference to a submatrix. That is,
62 // ’chop out’ the window.
63 view1 = gsl_matrix_submatrix (data->seq[seq1], pos1, 0, L, dim);
64 view2 = gsl_matrix_submatrix (data->seq[seq2], pos2, 0, L, dim);
65
66 // This just makes it easier to handle the views
67 mat1 = &view1.matrix;
68 mat2 = &view2.matrix;
69
70 // Create copies of the windows, because our comparison
71 // will require altering the matrices
72 mat1copy = gsl_matrix_alloc (mat1->size1, mat1->size2);
73 mat2copy = gsl_matrix_alloc (mat2->size1, mat2->size2);
74 gsl_matrix_memcpy (mat1copy, mat1);
75 gsl_matrix_memcpy (mat2copy, mat2);
76
77 /*
78 printf("matrix1:\n"); gsl_matrix_pretty_fprintf(stdout, mat1copy, "%f ");
79 printf("\nmatrix2:\n"); gsl_matrix_pretty_fprintf(stdout, mat2copy, "%f ");
80 */
81
82 // Are we going to do a translation?
83 if (trans == 1)
84 {
85 moveToCentroid (mat1copy);
86 moveToCentroid (mat2copy);
87 }
88
89 // Are we going to do a rotation?
90 if (rot == 1)
91 {
92
93 // Rotate mat2copy to have a minimal
94 // rmsd with mat1copy
95 rotateMats (mat1copy, mat2copy);
96 }
97
98 // Compute the rmsd between mat2copy and mat2copy
99 result = gsl_matrix_rmsd (mat1copy, mat2copy);
100 gsl_matrix_free (mat1copy);
101 gsl_matrix_free (mat2copy);
102 return result;
103 }
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B. realCompare.h File Reference

#include <stdio.h >

#include <stdlib.h >

#include <string.h >

#include <errno.h >

#include <gsl/gsl_matrix.h >

#include "realIo.h"

#include "bitSet.h"

#include "protAlign.h"

Include dependency graph for realCompare.h:

realCompare.h

stdio.h

stdlib.h

string.h

errno.h

gsl/gsl_matrix.h

realIo.h

bitSet.h

protAlign.h

FastaSeqIO/fastaSeqIO.h

convll.h

�is graph shows which files directly or indirectly include this file:

realCompare.h

gemoda-r.c

realCompare.c

realIo.c

Functions

• double rmsdCompare (rdh_t ∗data, int win, int win, int L, double ∗extraParams)
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• double generalMatchFactor (rdh_t ∗data, int win, int win, int L, double ∗extraParams)

• double massSpecCompareWElut (rdh_t ∗data, int win, int win, int L, double ∗extra-
Params)

• bitGraph_t ∗ realComparison (rdh_t ∗data, int l, double g, int compFunc, double ∗extra-
Params)

Variables

• double(∗)(rdh_t ∗, int, int, int, double ∗) getCompFunc (int compFunc)

Detailed Description

�is file contains declarations and definitions used for the comparison of real valued data during
the comparison phase of Gemoda. �e functions declared here are defined in realCompare.c.

Definition in file realCompare.h.

Function Documentation

B... double generalMatchFactor (rdh_t ∗ data, int win, int win, int L, double
∗ extraParams)

�is function is used to compute a generalized match factor, which is useful for computing the
degree of similarity between mass spectrometry spectra.

Definition at line  of file realCompare.c.

References getRdhDim(), getRdhIndexSeqPos(), and rdh_t::seq.

Referenced by getCompFunc().

B... double massSpecCompareWElut (rdh_t ∗ data, int win, int win, int L,
double ∗ extraParams)

�is function is used to compute the match factor between to mass spectrometry spectra in a
similar manner to the previous function; however, this function imposes a penalty for spectra
that are separated by large distances in elution time. �is function is commonly used by Spec-
Connect.

Definition at line  of file realCompare.c.

References getRdhDim(), getRdhIndexSeqPos(), and rdh_t::seq.

Referenced by getCompFunc().
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B... bitGraph_t∗ realComparison (rdh_t ∗ data, int l, double g, int compFunc,
double ∗ extraParams)

Definition at line  of file realCompare.c.

References bitGraphSetTrueSym(), getCompFunc, getRdhIndexSeqPos(), rdh_t::indexSize,
initRdhIndex(), newBitGraph(), and rmsdCompare().

Referenced by main().

B... double rmsdCompare (rdh_t ∗ data, int win, int win, int L, double ∗
extraParams)

Calculate the rmsd between two windows, with optional translation and rotation. �e input to
this function is a real data handler object, two integers that point to the windows within the real
data that are to be compared, an integer that specifies the length of the windows, and a pointer
to a double precision floating point that can be used to store other parameters as needed. �is
last parameter is most useful for implementing other comparison functions, without having to
make, too many changes to other parts of the code.

�is function operates in three stages. First, we compute the centroid of each window and
move the second window such that its centroid overlaps with that of the first window. Second,
we use rigid body rotation to find the rotational matrix that minimizes the root mean squared
deviation between the two windows. Finally, this function returns that minimized RMSD.

Definition at line  of file realCompare.c.

References getRdhDim(), getRdhIndexSeqPos(), and rdh_t::seq.

Referenced by getCompFunc(), and realComparison().

Variable Documentation

B... double(∗)(rdh_t∗, int, int, int, double∗) getCompFunc(int compFunc)

Definition at line  of file realCompare.h.

Referenced by findCliqueCentroid(), outputRealPatsWCentroid(), and realComparison().
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B. realIo.c File Reference

#include "realIo.h"

#include "realCompare.h"

#include "patStats.h"

Include dependency graph for realIo.c:

realIo.c realIo.h

realCompare.h

patStats.h

stdio.h

stdlib.h

string.h
errno.h

gsl/gsl_matrix.h

FastaSeqIO/fastaSeqIO.h

convll.h

bitSet.h

protAlign.h

time.h

Functions

• wordToDouble (char ∗s, int begin, int end)
• int countFields (char ∗s, char sep)
• int checkRealDataFormat (char ∗∗buf, int nl, char sep, int ∗numSeq_p, int ∗dim_p)
• int countTotalFields (char ∗∗buf, int nl, char sep)
• rdh_t ∗ initRdh (int x)
• int getRdhSeqLength (rdh_t ∗data, int seqNo)
• int initRdhIndex (rdh_t ∗data, int wordSize, int seqGap)
• rdh_t ∗ freeRdh (rdh_t ∗data)
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• int getRdhDim (rdh_t ∗data)
• int setRdhLabel (rdh_t ∗data, int seqNo, char ∗s)
• int setRdhValue (rdh_t ∗data, int seqNo, int posNo, int dimNo, double val)
• int setRdhIndex (rdh_t ∗data, int seqNo, int posNo, int index)
• int getRdhIndexSeqPos (rdh_t ∗data, int index, int ∗seq, int ∗pos)
• double getRdhValue (rdh_t ∗data, int seqNo, int posNo, int dimNo)
• char ∗ getRdhLabel (rdh_t ∗data, int seqNo)
• int printRdhSeq (rdh_t ∗data, int seqNo, FILE ∗FH)
• int setRdhColFromString (rdh_t ∗data, int seqNo, int colNo, char ∗s, char sep)
• int initRdhGslMat (rdh_t ∗data, int seqNo, int x, int y)
• int pushOnRdhSeq (rdh_t ∗data, char ∗∗buf, int startLine, int dim, char sep)
• rdh_t ∗ parseRealData (char ∗∗buf, int nl, char sep, int numSeq, int dim)
• rdh_t ∗ readRealData (FILE ∗INPUT)
• int outputRealPats (rdh_t ∗data, cll_t ∗allPats, int L, FILE ∗OUTPUT_FILE, int ∗∗d)
• int findCliqueCentroid (rdh_t ∗data, cll_t ∗curCliq, int L, int compFunc, double ∗extra-

Params, int ∗candidates)
• int makeAlternateCentroid (rdh_t ∗data, cll_t ∗curCliq, int ∗candidates)
• int outputRealPatsWCentroid (rdh_t ∗data, cll_t ∗allPats, int L, FILE ∗OUTPUT_-

FILE, double ∗extraParams, int compFunc)

Detailed Description

�is file defines functions that are used for the parsing of user supplied data in the real valued
implementation of Gemoda.

Definition in file realIo.c.

Function Documentation

B... int checkRealDataFormat (char ∗∗ buf, int nl, char sep, int ∗ numSeq_p, int
∗ dim_p)

Check that each sequence has the same dimensionality and that, within a sequence, each dimen-
sion has the same number of entries. Note: this routine alters ∗nunSeq_p and ∗dim_p! Also,
you must call this routine before calling parseRealData. Otherwise, parseRealData is garunteed
to die if the data turn out to be ill-formatted.

Definition at line  of file realIo.c.

References countFields().

Referenced by readRealData().
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164 {
165 int i;
166 int thisDim = 0;
167 int status = 1;
168 int width;
169 int fieldCount = 0; // number of positions in a single sequence
170 int numSeq = 0; // number of sequences
171 int dim = 0; // The dimensionality of the sequences
172
173 // NOTE this is not checking the dimensionality of the last sequence...
174 // that’s bad. We can fix that though.
175 // Check the dimensionality of each sequence
176 for (i = 0; i < nl; i++)
177 {
178 if (buf[i][0] == ’>’)
179 {
180
181 // If this is only the second sequence we’ve seen,
182 // record the dimensionality of the first sequence
183 // as the dim to insist upon from here on out
184 if (numSeq == 1)
185 {
186 dim = thisDim;
187
188 // For other sequences, we need to check to make sure
189 // that they’ve got the same dimensions as previous
190 // sequences
191 }
192 else if (numSeq > 1)
193 {
194
195 // If the dimensions are wrong, quit with status=0
196 if (thisDim != dim)
197 {
198 status = 0;
199 break;
200 }
201 }
202 numSeq++;
203 width = 0;
204 thisDim = 0;
205 }
206 else
207 {
208
209 // Field count can be different for each sequence but
210 // must be the same for each dimension in a single sequence
211 fieldCount = countFields (buf[i], sep);
212
213 // If this is the first row of this sequence,
214 // then store the number of fields
215 if (thisDim == 0)
216 {
217 width = fieldCount;
218
219 // If it’s not the first row, make sure it has the
220 // same number of fields as previous rows in this
221 // sequence
222 }
223 else
224 {
225 if (fieldCount != width)
226 {
227 status = 0;
228 break;
229 }
230 }
231 thisDim++;
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232 }
233 }
234
235 // Pass back the numSeq and dim
236 *numSeq_p = numSeq;
237 *dim_p = thisDim;
238 return status;
239 }

B... int countFields (char ∗ s, char sep)

Count the number of fields (delimited by ’sep’) in a single string. I was going to use strsep in
string.h for this; however, I don’t like that it changes the input string, which makes free-ing the
string later more tricky. Ignores consecutive seperators.

Definition at line  of file realIo.c.

References wordToDouble().

Referenced by checkRealDataFormat(), countTotalFields(), and pushOnRdhSeq().

91 {
92 int i;
93 int begin = 0;
94 int end = 0;
95 int status = 0; // 0 = in sep, 1 = in word
96 int fieldCount = 0;
97 double val;
98 if (s == NULL)
99 {
100 fprintf (stderr, "Passed NULL string to countFields -- error!");
101 fflush (stderr);
102 exit (0);
103 }
104
105 // Loop over the length of the string
106 for (i = 0; i < strlen (s); i++)
107 {
108
109 // The previous state was space
110 if (status == 0)
111 {
112
113 // We hit a word
114 if (s[i] != sep)
115 {
116 begin = i;
117 status = 1;
118 }
119 else
120 { // We hit more space
121 continue;
122 }
123 }
124 else
125 { // The previous state was word
126 if (s[i] != sep)
127 {
128 continue;
129 }
130 else
131 { // We hit a space
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132 end = i - 1;
133 status = 0;
134
135 // being and end now delimit a word,
136 // turn that word into a double
137 val = wordToDouble (s, begin, end);
138 fieldCount++;
139 }
140 }
141 }
142
143 // At the end, if we were in a word, we have
144 // one more field
145 if (status == 1)
146 { // We’re in a word
147 val = wordToDouble (s, begin, strlen (s));
148 fieldCount++;
149 }
150 return fieldCount;
151 }

B... int countTotalFields (char ∗∗ buf, int nl, char sep)

Count the number of fields in each sequence and return the sum of these.

Definition at line  of file realIo.c.

References countFields().

Referenced by parseRealData().

247 {
248 int i = 0;
249 int totalFields = 0;
250 int seqNo = 0;
251 while (i < nl)
252 {
253
254 // Hit a new sequence
255 if (buf[i][0] == ’>’)
256 {
257 seqNo++;
258
259 // Assume that the sequence has at least
260 // one row (should have called checkRealDataFormat!
261 // and that each row has the same number of fields
262 totalFields += countFields (buf[i + 1], sep);
263 }
264 i++;
265 }
266 return totalFields;
267 }

B... int findCliqueCentroid (rdh_t ∗ data, cll_t ∗ curCliq, int L, int compFunc,
double ∗ extraParams, int ∗ candidates)

�is function is used to find the centroid of a clique. �at is, to find the center of mass.

Definition at line  of file realIo.c.
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References getCompFunc, cSet_t::members, cnode::set, and cSet_t::size.

Referenced by outputRealPatsWCentroid().

1098 {
1099 double (*comparisonFunc) (rdh_t *, int, int, int, double *) = NULL;
1100 int i = 0, j = 0, indmin = -1, counter = 0;
1101 double sim = 0, min = 0, flagmin = 0;
1102 double *cliqueAdjMat = NULL;
1103 cliqueAdjMat = (double *) malloc (curCliq->set->size * sizeof (double));
1104 if (cliqueAdjMat == NULL)
1105 {
1106 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
1107 fflush (stderr);
1108 exit (0);
1109 }
1110 for (i = 0; i < curCliq->set->size; i++)
1111 {
1112 cliqueAdjMat[i] = 0;
1113 }
1114
1115 // We’ll accumulate our comparison function values... except here
1116 // we’re really assuming that we’re using a match factor, with
1117 // value less than one, so that we can subtract it from one to
1118 // get a distance, and then find the centroid by identifying the
1119 // node with the smallest cumulative Euclidean distance to all
1120 // nodes.
1121 // Note that we only need to compare each unique pair, and can apply
1122 // the results from each comparison to each member of the pair,
1123 // hence the somewhat odd indices of initiation for the for loops.
1124 comparisonFunc = getCompFunc (compFunc);
1125 for (i = 0; i < curCliq->set->size; i++)
1126 {
1127 for (j = i + 1; j < curCliq->set->size; j++)
1128 {
1129 sim =
1130 comparisonFunc (data, curCliq->set->members[i],
1131 curCliq->set->members[j], L, extraParams);
1132
1133 // printf("i = %d, j = %d, L = %d, extra = %lf, sim =
1134 // %lf\n",i,j,L,extraParams[0],sim);
1135 cliqueAdjMat[i] += pow (1 - sim, 2);
1136 cliqueAdjMat[j] += pow (1 - sim, 2);
1137 }
1138 }
1139
1140 // Now we find the minimum Euclidean distance.
1141 min = cliqueAdjMat[0];
1142 indmin = 0;
1143 for (i = 1; i < curCliq->set->size; i++)
1144 {
1145
1146 // printf("index %d product = %lf\n",i,cliqueAdjMat[i]);
1147 if (cliqueAdjMat[i] < min)
1148 {
1149 indmin = i;
1150 min = cliqueAdjMat[i];
1151 flagmin = 0;
1152 }
1153 else if (cliqueAdjMat[i] == min)
1154 {
1155 flagmin = 1;
1156 }
1157 }
1158
1159 // If we had a duplicate on the minimum, we locate all duplicates.
1160 if (flagmin == 1)
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1161 {
1162 counter = 0;
1163 for (i = 0; i < curCliq->set->size; i++)
1164 {
1165 if (cliqueAdjMat[i] == min)
1166 {
1167 counter++;
1168 candidates[counter] = i;
1169 }
1170 }
1171
1172 // Store the number of candidates at the array’s beginning
1173 candidates[0] = counter;
1174 free (cliqueAdjMat);
1175 return (-1);
1176 }
1177 else
1178 {
1179 free (cliqueAdjMat);
1180 return (indmin);
1181 }
1182 }

B... rdh_t∗ freeRdh (rdh_t ∗ data)

�is function returns a null pointer after freeing the memory associated with a real data holder
object. �e function takes one parameter: a pointer to the real data holder, data.

Definition at line  of file realIo.c.

References rdh_t::indexToPos, rdh_t::indexToSeq, rdh_t::label, rdh_t::offsetToIndex, and
rdh_t::seq.

Referenced by main().

463 {
464 int i;
465 if (data != NULL)
466 {
467 if (data->indexToPos != NULL)
468 {
469 free (data->indexToPos);
470 data->indexToPos = NULL;
471 }
472 if (data->indexToSeq != NULL)
473 {
474 free (data->indexToSeq);
475 data->indexToSeq = NULL;
476 }
477 if (data->offsetToIndex != NULL)
478 {
479 for (i = 0; i < data->size; i++)
480 {
481 free (data->offsetToIndex[i]);
482 data->offsetToIndex[i] = NULL;
483 }
484 free (data->offsetToIndex);
485 data->offsetToIndex = NULL;
486 }
487 for (i = 0; i < data->size; i++)
488 {
489 if (data->seq[i] != NULL)
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490 {
491 gsl_matrix_free (data->seq[i]);
492 data->seq[i] = NULL;
493 }
494 if (data->label[i] != NULL)
495 {
496 free (data->label[i]);
497 data->label[i] = NULL;
498 }
499 }
500 if (data->seq != NULL)
501 {
502 free (data->seq);
503 data->seq = NULL;
504 }
505 if (data->label != NULL)
506 {
507 free (data->label);
508 data->label = NULL;
509 }
510 free (data);
511 data = NULL;
512 }
513 return data;
514 }

B... int getRdhDim (rdh_t ∗ data)

�is function returns an integer equal to the dimensions of the data stored in a real data holder
object. �e function takes one parameter: a pointer to the real data holder, data.

Definition at line  of file realIo.c.

References rdh_t::seq.

Referenced by generalMatchFactor(), getRdhValue(), massSpecCompareWElut(), printRdh-
Seq(), rmsdCompare(), and setRdhValue().

525 {
526 if (data == NULL || data->seq == NULL || data->seq[0] == NULL)
527 {
528 fprintf (stderr, "Passed bad data to getRdhSeqLength -- error!");
529 fflush (stderr);
530 exit (0);
531 }
532 return data->seq[0]->size2;
533 }

B... int getRdhIndexSeqPos (rdh_t ∗ data, int index, int ∗ seq, int ∗ pos)

�is function is used to access and change the sequence and position values, given an index.
�e function takes four parameters: a pointer to the real data holder, data, an integer index, a
pointer integer seq, and a pointer integer pos.

Definition at line  of file realIo.c.

References rdh_t::indexSize, rdh_t::indexToPos, and rdh_t::indexToSeq.
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Referenced by generalMatchFactor(), makeAlternateCentroid(), massSpecCompareWElut(),
outputRealPats(), outputRealPatsWCentroid(), realComparison(), and rmsdCompare().

634 {
635 if (data == NULL || data->indexToSeq == NULL || data->indexToPos == NULL
636 || index > data->indexSize)
637 {
638 fprintf (stderr, "Passed bad data to getRdhIndexSeqPos -- error!");
639 fflush (stderr);
640 exit (0);
641 }
642
643 /*
644 printf("Setting index %d -> %d, %d\n", index, seqNo, posNo);
645 */
646 /*
647 fflush(stdout);
648 */
649 *seq = data->indexToSeq[index];
650 *pos = data->indexToPos[index];
651 return 0;
652 }

B... char∗ getRdhLabel (rdh_t ∗ data, int seqNo)

�is function is used to retrieve the label of a particular sequence in a real data holder object.
�e function takes two parameters: a pointer to the real data holder data; and an integer which
is the sequence number to be accessed seqNo. �e function returns a pointer to a string, which
is the label for that sequence.

Definition at line  of file realIo.c.

References rdh_t::label.

Referenced by printRdhSeq().

690 {
691 if (data == NULL || data->label == NULL || data->label[seqNo] == NULL)
692 {
693 fprintf (stderr, "Passed bad data to getRdhLabel -- error!");
694 fflush (stderr);
695 exit (0);
696 }
697 return data->label[seqNo];
698 }

B... int getRdhSeqLength (rdh_t ∗ data, int seqNo)

�is function returns an integer that is equal to the sequence length of a particular sequence
within the real data holder object. �e function takes two parameters: a pointer to the real data
holder, data, and the index of the sequence for which we need to know the length, seqNo.

Definition at line  of file realIo.c.

References rdh_t::seq.

Referenced by getRdhValue(), initRdhIndex(), printRdhSeq(), and setRdhValue().
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332 {
333 if (data == NULL || data->seq == NULL || data->seq[seqNo] == NULL)
334 {
335 fprintf (stderr, "Passed bad data to getRdhSeqLength -- error!");
336 fflush (stderr);
337 exit (0);
338 }
339 return data->seq[seqNo]->size1;
340 }

B... double getRdhValue (rdh_t ∗ data, int seqNo, int posNo, int dimNo)

�is function is used to retrieve the value of a particular dimension, position, and sequence.
�e function takes four parameters: a pointer to the real data holder data; an integer which is
the sequence number to be accessed seqNo; an integer that is the position number to be accessed
posNo; and an integer that is the dimension to be accessed dimNo.

Definition at line  of file realIo.c.

References getRdhDim(), getRdhSeqLength(), and rdh_t::seq.

Referenced by printRdhSeq().

667 {
668 if (data == NULL || data->seq == NULL || data->seq[seqNo] == NULL
669 || posNo > getRdhSeqLength (data, seqNo) || dimNo > getRdhDim (data))
670 {
671 fprintf (stderr, "Passed bad data to getRdhValue -- error!");
672 fflush (stderr);
673 exit (0);
674 }
675 return gsl_matrix_get (data->seq[seqNo], posNo, dimNo);
676 }

B... rdh_t∗ initRdh (int x)

�is function initializes a real data holder object. �e function takes as its input a size x which
is the number of sequences that will be stored in the object. �e function returns a pointer to
the object, which has been allocated the correct amount of memory.

Definition at line  of file realIo.c.

References rdh_t::indexSize, rdh_t::indexToPos, rdh_t::indexToSeq, rdh_t::label, rdh_t::seq,
and rdh_t::size.

Referenced by parseRealData().

278 {
279 int i;
280 rdh_t *data = NULL;
281
282 // Allocate space for our structure
283 data = (rdh_t *) malloc (sizeof (rdh_t));
284 if (data == NULL)
285 {
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286 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
287 fflush (stderr);
288 exit (0);
289 }
290 data->size = x;
291
292 // Index has to be initialized later, once
293 // we know the word size.
294 data->indexSize = 0;
295 data->indexToSeq = NULL;
296 data->indexToPos = NULL;
297
298 /*
299 data->indexSize = y;
300 */
301 data->label = (char **) malloc (data->size * sizeof (char *));
302 if (data->label == NULL)
303 {
304 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
305 fflush (stderr);
306 exit (0);
307 }
308 data->seq = (gsl_matrix **) malloc (data->size * sizeof (gsl_matrix *));
309 if (data->seq == NULL)
310 {
311 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
312 fflush (stderr);
313 exit (0);
314 }
315 for (i = 0; i < data->size; i++)
316 {
317 data->label[i] = NULL;
318 data->seq[i] = NULL;
319 }
320 return data;
321 }

B... int initRdhGslMat (rdh_t ∗ data, int seqNo, int x, int y)

�is function is used to initialize the memory for the matrix in which the real value to data
are stored. To store these data, we use the GNU scientific library. �e function takes four
parameters: a pointer to the real data holder data; an integer, which is the sequence number to
be set seqNo; an integer, which is the first dimension of the matrix size x; and an integer, which
is the second dimension of the matrix size y;

Definition at line  of file realIo.c.

References rdh_t::seq.

Referenced by pushOnRdhSeq().

830 {
831 data->seq[seqNo] = gsl_matrix_alloc (x, y);
832 if (data->seq[seqNo] == NULL)
833 {
834 return 0;
835 }
836 else
837 {
838 return 1;
839 }
840 }
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B... int initRdhIndex (rdh_t ∗ data, int wordSize, int seqGap)

�is function is used to initialize the two indices inside a real data holder. �e function takes
as its input three parameters a pointer to the real data holder, data, the size of the words to be
compared during the comparison stage wordSize, and an integer seqGap, which is used to place
empty data between unique sequences, such that we do not convolve from one sequence into
another during the convolution stage.

Definition at line  of file realIo.c.

References getRdhSeqLength(), rdh_t::indexSize, rdh_t::indexToPos, rdh_t::indexToSeq,
rdh_t::offsetToIndex, and rdh_t::size.

Referenced by realComparison().

359 {
360 int i, j, k;
361 int numWindows = 0;
362 int thisNumWindows;
363 int numSeq;
364 int seqLen = 0;
365
366 // The number of sequences
367 numSeq = data->size;
368
369 // Allocate offsetToIndex’s outer structure
370 data->offsetToIndex = (int **) malloc (numSeq * sizeof (int *));
371 if (data->offsetToIndex == NULL)
372 {
373 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
374 fflush (stderr);
375 exit (0);
376 }
377
378 // For each sequence
379 for (i = 0; i < numSeq; i++)
380 {
381
382 // How many windows are in this sequence
383 seqLen = getRdhSeqLength (data, i);
384 numWindows += seqLen - wordSize + 1;
385
386 // And also use this to further allocate offsetToIndex
387 data->offsetToIndex[i] =
388 (int *) malloc ((seqLen - wordSize + 1) * sizeof (int));
389 if (data->offsetToIndex[i] == NULL)
390 {
391 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
392 fflush (stderr);
393 exit (0);
394 }
395 }
396
397 // One index for each word plus seqGap between each sequence
398 // and a gap at the end
399 data->indexSize = numWindows + numSeq * seqGap;
400
401 // Allocate indexToSeq
402 // NOTE that it should be size of int, not int *... I think we got
403 // fortunate in the previous revision because they are the same
404 // size
405 data->indexToSeq = (int *) malloc (data->indexSize * sizeof (int));
406 if (data->indexToSeq == NULL)
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407 {
408 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
409 fflush (stderr);
410 exit (0);
411 }
412
413 // Allocate indexToPos
414 // See above for int vs. int* argument.
415 data->indexToPos = (int *) malloc (data->indexSize * sizeof (int));
416 if (data->indexToPos == NULL)
417 {
418 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
419 fflush (stderr);
420 exit (0);
421 }
422
423 // Fill in the values
424 k = 0;
425 for (i = 0; i < numSeq; i++)
426 {
427
428 // How many windows are in this sequence?
429 thisNumWindows = getRdhSeqLength (data, i) - wordSize + 1;
430
431 // For each window, make an entry in the indexToSeq
432 // and indexToPos and offsetToIndex
433 for (j = 0; j < thisNumWindows; j++)
434 {
435 data->indexToSeq[k] = i;
436 data->indexToPos[k] = j;
437 data->offsetToIndex[i][j] = k;
438 k++;
439 }
440
441 // Add gaps between sequences in the index.
442 // Usually seqGap is just 1;
443 for (j = 0; j < seqGap; j++)
444 {
445
446 // -1 means no sequence and no position
447 data->indexToSeq[k] = -1;
448 data->indexToPos[k] = -1;
449 k++;
450 }
451 }
452 return 0;
453 }

B... int makeAlternateCentroid (rdh_t ∗ data, cll_t ∗ curCliq, int ∗ candidates)

�is function is used to choose an alternate centroid for a given clique. In order to make
the centroid decision slightly less dependent on input order, we decide to choose from the tied
candidates the one whose relative position in the sequence is highest. �ere is no basis in theory
for this, it is done so that a consistent choice is made. Only rarely will two spectra be tied for
being a centroid and have the same sequence number. In that case, we pretty much have to
default to the sequence number, which is what would be done without this function. Note
that now though we are less sensitive to the order of input of the sequences, we are now more
sensitive to the context surrounding a given spectrum. �at is, if it is put in the beginning of the
sequence, it is more likely to be chosen. �is choice can only be justified insofar as if multiple
choices are tied, then they are the same cumulative distance to the clique, and so ∗any∗ should
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be allowed to be chosen equally. �ere should be little difference in terms of tangible results.
�is just makes the semantics consistent.

Definition at line  of file realIo.c.

References getRdhIndexSeqPos(), cSet_t::members, and cnode::set.

Referenced by outputRealPatsWCentroid().

1203 {
1204 int indmin, min, i;
1205 int curSeq, curPos;
1206 int numCandidates = candidates[0];
1207 indmin = candidates[1];
1208 getRdhIndexSeqPos (data, curCliq->set->members[indmin], &curSeq, &curPos);
1209 min = curPos;
1210
1211 // We use less-than-or-equal here because we’re starting at 1,
1212 // so we want 1 to end. The length of candidates is one more than
1213 // the maxSup, so we know we can reach candidates[maxSup] without
1214 // a segfault.
1215 for (i = 2; i <= numCandidates; i++)
1216 {
1217 getRdhIndexSeqPos (data, curCliq->set->members[candidates[i]], &curSeq,
1218 &curPos);
1219 if (curPos < min)
1220 {
1221 indmin = candidates[i];
1222 min = curPos;
1223 }
1224 }
1225 return (indmin);
1226 }

B... int outputRealPats (rdh_t ∗ data, cll_t ∗ allPats, int L, FILE ∗
OUTPUT_FILE, int ∗∗ d)

�is function is used to print out motifs discovered by Gemoda in an attractive fashion. �e
function takes five parameters: a pointer to a real data holder object data; a pointer to a linked
list of motifs allPats; an integer which is Gemoda’s input parameter L; and a pointer to a file
handle to which output is printed OUTPUT_FILE .

Definition at line  of file realIo.c.

References getRdhIndexSeqPos(), cnode::length, cSet_t::members, cnode::next, rdh_t::seq, cn-
ode::set, cSet_t::size, and cnode::stat.

Referenced by main().

1048 {
1049 int i, j, pos1;
1050 int curSeq, curPos;
1051 cll_t *curCliq = NULL;
1052 curCliq = allPats;
1053 i = 0;
1054 while (curCliq != NULL)
1055 {
1056 fprintf (OUTPUT_FILE, "pattern %d:\tlen=%d\tsup=%d\t", i,
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1057 curCliq->length + L, curCliq->set->size);
1058 if (d != NULL)
1059 {
1060 fprintf (OUTPUT_FILE, "\tsignif=%le\n", curCliq->stat);
1061 }
1062 else
1063 {
1064 fprintf (OUTPUT_FILE, "\n");
1065 }
1066 for (j = 0; j < curCliq->set->size; j++)
1067 {
1068 pos1 = curCliq->set->members[j];
1069 getRdhIndexSeqPos (data, pos1, &curSeq, &curPos);
1070 fprintf (OUTPUT_FILE, " %d\t%d\t", curSeq, curPos);
1071 fprintf (OUTPUT_FILE, "%lf\t",
1072 gsl_matrix_get (data->seq[curSeq], curPos, 0));
1073
1074 /*
1075 for(k=curPos ; k<curPos+curCliq->length+L ; k++){ fprintf(OUTPUT_FILE, "%c",
1076 mySequences[curSeq].seq[k]); }
1077 */
1078 fprintf (OUTPUT_FILE, "\n");
1079 }
1080 fprintf (OUTPUT_FILE, "\n\n");
1081 curCliq = curCliq->next;
1082 i++;
1083 }
1084 return 0;
1085 }

B... int outputRealPatsWCentroid (rdh_t ∗ data, cll_t ∗ allPats, int L, FILE ∗
OUTPUT_FILE, double ∗ extraParams, int compFunc)

�is function is used to output real valued patterns in a format such that they are centered on
a particular centroid.

Definition at line  of file realIo.c.

References findCliqueCentroid(), getCompFunc, getRdhIndexSeqPos(), cnode::length, make-
AlternateCentroid(), cSet_t::members, cnode::next, cnode::set, and cSet_t::size.

Referenced by main().

1236 {
1237 int i, j, k, pos1, centroid;
1238 int curSeq, curPos;
1239 int maxSup = 0;
1240 cll_t *curCliq = NULL;
1241 double mfToCentroid = 0;
1242 double (*comparisonFunc) (rdh_t *, int, int, int, double *) = NULL;
1243 int *candidates = NULL;
1244 curCliq = allPats;
1245 while (curCliq != NULL)
1246 {
1247 if (curCliq->set->size > maxSup)
1248 {
1249 maxSup = curCliq->set->size;
1250 }
1251 curCliq = curCliq->next;
1252 }
1253 candidates = (int *) malloc ((maxSup + 1) * sizeof (int));
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1254 if (candidates == NULL)
1255 {
1256 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
1257 fflush (stderr);
1258 exit (0);
1259 }
1260 for (i = 0; i <= maxSup; i++)
1261 {
1262 candidates[i] = 0;
1263 }
1264 comparisonFunc = getCompFunc (compFunc);
1265 curCliq = allPats;
1266 i = 0;
1267 while (curCliq != NULL)
1268 {
1269 fprintf (OUTPUT_FILE, "pattern %d:\tlen=%d\tsup=%d\n", i,
1270 curCliq->length + L, curCliq->set->size);
1271 centroid =
1272 findCliqueCentroid (data, curCliq, L, compFunc, extraParams,
1273 candidates);
1274 if (centroid < 0)
1275 {
1276 centroid = makeAlternateCentroid (data, curCliq, candidates);
1277
1278 // fprintf(OUTPUT_FILE, "WARNING: No single node in"
1279 // " cluster has non-zero similarity to all other\n nodes"
1280 // " in cluster; centroid set to first node.\n");
1281 // centroid = 0;
1282 }
1283 for (j = 0; j < curCliq->set->size; j++)
1284 {
1285 pos1 = curCliq->set->members[j];
1286 getRdhIndexSeqPos (data, pos1, &curSeq, &curPos);
1287 fprintf (OUTPUT_FILE, " %d\t%d\t", curSeq, curPos);
1288
1289 // fprintf(OUTPUT_FILE, "%lf\t",
1290 // gsl_matrix_get(data->seq[curSeq],curPos,0));
1291 mfToCentroid =
1292 comparisonFunc (data, curCliq->set->members[j],
1293 curCliq->set->members[centroid], L, extraParams);
1294 fprintf (OUTPUT_FILE, "%lf\t", mfToCentroid);
1295
1296 /*
1297 for(k=curPos ; k<curPos+curCliq->length+L ; k++){ fprintf(OUTPUT_FILE, "%c",
1298 mySequences[curSeq].seq[k]); }
1299 */
1300 fprintf (OUTPUT_FILE, "\n");
1301 }
1302 fprintf (OUTPUT_FILE, "\n\n");
1303 curCliq = curCliq->next;
1304 i++;
1305 for (k = 0; k <= maxSup; k++)
1306 {
1307 candidates[k] = 0;
1308 }
1309 }
1310 free (candidates);
1311 return 0;
1312 }

B... rdh_t∗ parseRealData (char ∗∗ buf, int nl, char sep, int numSeq, int dim)

�is function is used to parse a single line of a fastA formatted input buffer containing real
valued data. �e function takes
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parameters: a pointer to an array of pointers to characters, which stores the sequences that we
will read from buf ; an integer, which is the line in the buffer on which we should start nl ; a
single character, which is used to delimit the input data sep; an integer which is the number of
the sequence that we are currently reading in numSeq; an integer that is the dimensionality of
the input data dim;

Definition at line  of file realIo.c.

References countTotalFields(), initRdh(), and pushOnRdhSeq().

Referenced by readRealData().

934 {
935 int i;
936 int seqNo = -1;
937 int totalNumFields;
938 rdh_t *data = NULL;
939 totalNumFields = countTotalFields (buf, nl, sep);
940
941 /*
942 data = initRdh(numSeq, totalNumFields + numSeq - 1);
943 */
944 data = initRdh (numSeq);
945
946 // We’re going to add an empty index between
947 // windows that correspond to different
948 // sequences
949
950 // Fast forward to the first sequence
951 i = 0;
952 while (i < nl)
953 {
954
955 // Hit a new sequence
956 if (buf[i][0] == ’>’)
957 {
958 seqNo++; // Note that seqNo started at -1!
959 pushOnRdhSeq (data, buf, i, dim, sep);
960 i += dim + 1;
961 }
962 else
963 {
964 i++;
965 }
966 }
967
968 /*
969 printRdhSeq(data, 0, stdout);
970 */
971 return data;
972 }

B... int printRdhSeq (rdh_t ∗ data, int seqNo, FILE ∗ FH)

�is function is used to print out a real valued data sequence in a pretty manner. �e function
takes three parameters: a pointer to the real data holder data; an integer which is the sequence
to be printed out seqNo; and a pointer to a file handle which is where the output will be printed
FH .

Definition at line  of file realIo.c.
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References getRdhDim(), getRdhLabel(), getRdhSeqLength(), and getRdhValue().

711 {
712 int i, j;
713 int len;
714 int dim;
715 len = getRdhSeqLength (data, seqNo);
716 dim = getRdhDim (data);
717 fprintf (FH, "%s\n", getRdhLabel (data, seqNo));
718 for (i = 0; i < len; i++)
719 {
720 for (j = 0; j < dim; j++)
721 {
722 fprintf (FH, "%3.1f ", getRdhValue (data, seqNo, i, j));
723 }
724 fprintf (FH, "\n");
725 }
726 return 0;
727 }

B... int pushOnRdhSeq (rdh_t ∗ data, char ∗∗ buf, int startLine, int dim, char
sep)

�is function is used to fill in a real data holder structure as we are reading in the sequences.
Notably, this routine uses a few static variables, so it can only be called once and should not be
used to alter the real data holder structure later. �e function takes five parameters: a pointer
to the real data holder data; a pointer to an array of pointers to characters, which stores the
sequences that we will read from buf ; an integer, which is the line in the buffer on which
we should start startLine; an integer that is the dimensionality of the input data dim; a single
character, which is used to delimit the input data sep;

Definition at line  of file realIo.c.

References countFields(), initRdhGslMat(), setRdhColFromString(), and setRdhLabel().

Referenced by parseRealData().

864 {
865 int i, j, k;
866 int numFields;
867
868 // NOTE THAT THESE ARE STATIC VARIABLES!!!!!
869 // That is, they retain their last value on
870 // each call to this function!
871 static int seqNo = 0;
872
873 /*
874 static int indexNo=0;
875 */
876 i = startLine;
877
878 // Assume that the sequence has at least
879 // one row (should have called checkRealDataFormat!
880 numFields = countFields (buf[i + 1], sep);
881
882 // Initialize the gsl_matrix object for this
883 // sequence in ’data’
884 //
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885 // NOTE THAT WE STORE THE TRANSPOSE OF WHAT’S IN
886 // THE INPUT FILE -- x,y = position x, dimension y
887 initRdhGslMat (data, seqNo, numFields, dim);
888
889 // Set the sequence label
890 setRdhLabel (data, seqNo, buf[i]);
891
892 // Read in ’dim’ rows
893 for (j = i + 1, k = 0; j < i + 1 + dim; j++, k++)
894 {
895
896 /*
897 printf("%d\n", countFields(buf[j], sep));
898 */
899
900 // Set the k-th dimension of this sequence
901 // STILL NOTE THE TRANSPOSE!
902 setRdhColFromString (data, seqNo, k, buf[j], sep);
903 }
904
905 /*
906 for ( l=0 ; l<numFields ; l++ ){ setRdhIndex(data, seqNo, l, indexNo); indexNo++;
907 }
908 */
909 seqNo++;
910
911 // Augment indexNo once more to have a -1 between each sequence!
912 /*
913 indexNo++;
914 */
915 return 0;
916 }

B... rdh_t∗ readRealData (FILE ∗ INPUT)

�is function is used to read in a fasta formatted file containing real value data and store the
entire thing and a real data holder object. �e function takes one parameter: a pointer to a file
handle, which is where the data are read from INPUT ;

Definition at line  of file realIo.c.

References checkRealDataFormat(), parseRealData(), and ReadFile().

Referenced by main().

984 {
985 char **buf = NULL;
986 int nl;
987 int i;
988 char sep = ’ ’;
989 int numSeq = 0;
990 int dimensions = 0;
991 int status = 1;
992 rdh_t *data = NULL;
993
994 // Read the entire INPUT file and put it’s
995 // contents into ’buf’. This function also
996 // alters the contents of the location pointed
997 // to by &nl. Now nl is the number of lines
998 // in the file (or the size of the buff array.
999 buf = ReadFile (INPUT, &nl);
1000 if (buf == NULL)
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1001 {
1002 return NULL;
1003 }
1004 status = checkRealDataFormat (buf, nl, sep, &numSeq, &dimensions);
1005 if (numSeq <= 0 || dimensions <= 0 || status == 0)
1006 {
1007 fprintf (stderr,
1008 "Data file is poorly formatted or no sequences read!\n");
1009 fprintf (stderr,
1010 "Each sequence needs to be the same dimensionality! QUITTING!\n");
1011 fprintf (stderr, "numSeq = %d, dimensions = %d, status = %d\n", numSeq,
1012 dimensions, status);
1013 exit (EXIT_FAILURE);
1014 }
1015
1016 // From here on, we assume that the sequence file is well-formatted
1017 // to make the code more simple.
1018 data = parseRealData (buf, nl, sep, numSeq, dimensions);
1019
1020 // Free up our buffer
1021 for (i = 0; i < nl; i++)
1022 {
1023 if (buf[i] != NULL)
1024 {
1025 free (buf[i]);
1026 }
1027 }
1028 if (buf != NULL)
1029 {
1030 free (buf);
1031 }
1032 return data;
1033 }

B... int setRdhColFromString (rdh_t ∗ data, int seqNo, int colNo, char ∗ s, char
sep)

�is function is used to fill in the values of a sequence in a real data holder object by reading
them straight from a string, which is assumed to be a series of floating-point values separated
by some particular character. �e function takes five parameters: a pointer to the real data
holder data; an integer, which is the sequence number to be set seqNo; an integer representing
the dimension of the sequence which is to be set colNo; a pointer to the string holding the
floating-point values s; a character, which separates the floating-point values in the string sep;

Definition at line  of file realIo.c.

References rdh_t::seq, setRdhValue(), and wordToDouble().

Referenced by pushOnRdhSeq().

745 {
746 int i;
747 int begin = 0;
748 int end = 0;
749 int status = 0; // 0 = in sep, 1 = in word
750 int fieldCount = 0;
751 double val;
752
753 // Make sure the string is not null and
754 // the rdh_t gsl_matrix array is not null
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755 // and the selected gsl_matrix is not null
756 if (s == NULL || data->seq == NULL || data->seq[seqNo] == NULL)
757 {
758 fprintf (stderr, "Passed bad data to setRdhColFromString -- error!");
759 fflush (stderr);
760 exit (0);
761 }
762
763 // Loop over the length of the string
764 for (i = 0; i < strlen (s); i++)
765 {
766
767 // The previous state was space
768 if (status == 0)
769 {
770
771 // We hit a word
772 if (s[i] != sep)
773 {
774 begin = i;
775 status = 1;
776 }
777 else
778 { // We hit more space
779 continue;
780 }
781 }
782 else
783 { // The previous state was word
784 if (s[i] != sep)
785 {
786 continue;
787 }
788 else
789 { // We hit a space
790 end = i - 1;
791 status = 0;
792 val = wordToDouble (s, begin, end);
793
794 // Go to the gsl_matrix object data->seq[seqNo]
795 // and set the (fieldCount, colNo) = val;
796 setRdhValue (data, seqNo, fieldCount, colNo, val);
797 fieldCount++;
798 }
799 }
800 }
801
802 // At the end, if we were in a word, we have
803 // one more field
804 if (status == 1)
805 { // We’re in a word
806 val = wordToDouble (s, begin, strlen (s));
807
808 // Added in, MPS 5/3/05 ---
809 // And don’t forget to set the RdhValue!
810 setRdhValue (data, seqNo, fieldCount, colNo, val);
811 fieldCount++;
812 }
813 return fieldCount;
814 }
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B... int setRdhIndex (rdh_t ∗ data, int seqNo, int posNo, int index)

�is function is used to fill in entries in the indices of the real data holder. �e function takes
four parameters: a pointer to the real data holder, data, an integer specifying the sequence
number seqNo, an integer specifying the position number within the sequence posNo, and an
integer specifying what the index for this sequence number and position number should be
index.

Definition at line  of file realIo.c.

References rdh_t::indexSize, rdh_t::indexToPos, and rdh_t::indexToSeq.

601 {
602 if (data == NULL || data->indexToSeq == NULL || data->indexToPos == NULL
603 || index > data->indexSize)
604 {
605 fprintf (stderr, "Passed bad data to getRdhValue -- error!");
606 fflush (stderr);
607 exit (0);
608 }
609
610 /*
611 printf("Setting index %d -> %d, %d\n", index, seqNo, posNo);
612 */
613 /*
614 fflush(stdout);
615 */
616 data->indexToSeq[index] = seqNo;
617 data->indexToPos[index] = posNo;
618 return 0;
619 }

B... int setRdhLabel (rdh_t ∗ data, int seqNo, char ∗ s)

�is function will label a sequence within a real data holder object with a particular string. �e
function takes two parameters: a pointer to the real data holder, data, an integer seqNo, and a
pointer to a string s.

Definition at line  of file realIo.c.

References rdh_t::label, and rdh_t::seq.

Referenced by pushOnRdhSeq().

544 {
545 if (data->seq == NULL || data->label == NULL)
546 {
547 fprintf (stderr, "Passed bad data to setRdhLabel -- error!");
548 fflush (stderr);
549 exit (0);
550 }
551 data->label[seqNo] = strdup (s);
552 if (data->label[seqNo] == NULL)
553 {
554 fprintf (stderr, "\nMemory Error allocating label!\n%s\n",
555 strerror (errno));
556 fflush (stderr);
557 exit (0);
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558 }
559 return 0;
560 }

B... int setRdhValue (rdh_t ∗ data, int seqNo, int posNo, int dimNo, double val)

�is function will set a particular dimension at a particular position within a specified sequence
to a user supplied value. �e function takes five parameters: a pointer to the real data holder,
data, an integer seqNo which is the sequence which needs its value set, two integers that specify
the position number and the dimension number that needs to be set, and finally a double
precision floating point number which is the value to which the the data should be set.

Definition at line  of file realIo.c.

References getRdhDim(), getRdhSeqLength(), and rdh_t::seq.

Referenced by setRdhColFromString().

576 {
577 if (data == NULL || data->seq == NULL || data->seq[seqNo] == NULL
578 || posNo > getRdhSeqLength (data, seqNo) || dimNo > getRdhDim (data))
579 {
580 fprintf (stderr, "Passed bad data to setRdhValue -- error!");
581 fflush (stderr);
582 exit (0);
583 }
584 gsl_matrix_set (data->seq[seqNo], posNo, dimNo, val);
585 return 0;
586 }

B... wordToDouble (char ∗ s, int begin, int end)

Turn the substring of s starting at char s[begin] and ending at s[end] int a double. INPUT: a
string s, integer begin, and integer end. OUTPUT: a double. NOTE: �rows an error and dies
if there’s a problem making the double from the substring. No room for ill-formated data files.
double

Definition at line  of file realIo.c.

Referenced by countFields(), and setRdhColFromString().

31 {
32 char *str = NULL;
33 char *endptr;
34 double val;
35 int size;
36 int memsize;
37
38 // Check for a sane substring
39 if (end - begin <= 0)
40 {
41 fprintf (stderr, "\nInvalid argument to wordToDouble!\n");
42 fflush (stderr);
43 exit (0);
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44 }
45
46 // Get the required string size
47 memsize = end - begin + 2; // An extra space in mem for null-termination
48 size = end - begin + 1;
49
50 // Get memory for a temporary string
51 str = (char *) malloc (memsize * sizeof (char));
52 if (str == NULL)
53 {
54 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
55 fflush (stderr);
56 exit (0);
57 }
58
59 // Make sure the string ends with a null char
60 str[size] = ’\0’;
61
62 // Copy the word into str
63 str = strncpy (str, s + begin, size);
64
65 // Set endptr to str as initial value
66 endptr = str;
67 val = strtod (str, &endptr);
68
69 // endptr should point to the last char
70 // used in the conversion if strtod worked
71 if (val == 0 && endptr == str)
72 {
73 fprintf (stderr, "\nError making double from string: %s\n", str);
74 fflush (stderr);
75 exit (0);
76 }
77 free (str);
78 return val;
79 }
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B. realIo.h File Reference

#include <stdio.h >

#include <stdlib.h >

#include <string.h >

#include <errno.h >

#include <gsl/gsl_matrix.h >

#include "FastaSeqIO/fastaSeqIO.h"

#include "convll.h"

Include dependency graph for realIo.h:

realIo.h

stdio.h

stdlib.h

string.h

errno.h

gsl/gsl_matrix.h

FastaSeqIO/fastaSeqIO.h

convll.h

bitSet.h

�is graph shows which files directly or indirectly include this file:

realIo.h

gemoda-r.c

realCompare.h

realIo.c

realCompare.c

Data Structures

• struct rdh_t

Functions

• rdh_t ∗ readRealData (FILE ∗INPUT)
• rdh_t ∗ freeRdh (rdh_t ∗data)
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• int initRdhIndex (rdh_t ∗data, int wordSize, int seqGap)

• int getRdhIndexSeqPos (rdh_t ∗data, int index, int ∗seq, int ∗pos)

• int getRdhDim (rdh_t ∗data)

• int outputRealPats (rdh_t ∗data, cll_t ∗allPats, int L, FILE ∗OUTPUT_FILE, int ∗∗d)

• int outputRealPatsWCentroid (rdh_t ∗data, cll_t ∗allPats, int L, FILE ∗OUTPUT_-
FILE, double ∗extraParams, int compFunc)

Function Documentation

B... rdh_t∗ freeRdh (rdh_t ∗ data)

�is function returns a null pointer after freeing the memory associated with a real data holder
object. �e function takes one parameter: a pointer to the real data holder, data.

Definition at line  of file realIo.c.

References rdh_t::indexToPos, rdh_t::indexToSeq, rdh_t::label, rdh_t::offsetToIndex, rdh_-
t::seq, and rdh_t::size.

Referenced by main().

B... int getRdhDim (rdh_t ∗ data)

�is function returns an integer equal to the dimensions of the data stored in a real data holder
object. �e function takes one parameter: a pointer to the real data holder, data.

Definition at line  of file realIo.c.

References rdh_t::seq.

Referenced by generalMatchFactor(), getRdhValue(), massSpecCompareWElut(), printRdh-
Seq(), rmsdCompare(), and setRdhValue().

B... int getRdhIndexSeqPos (rdh_t ∗ data, int index, int ∗ seq, int ∗ pos)

�is function is used to access and change the sequence and position values, given an index.
�e function takes four parameters: a pointer to the real data holder, data, an integer index, a
pointer integer seq, and a pointer integer pos.

Definition at line  of file realIo.c.

References rdh_t::indexSize, rdh_t::indexToPos, and rdh_t::indexToSeq.

Referenced by generalMatchFactor(), makeAlternateCentroid(), massSpecCompareWElut(),
outputRealPats(), outputRealPatsWCentroid(), realComparison(), and rmsdCompare().
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B... int initRdhIndex (rdh_t ∗ data, int wordSize, int seqGap)

�is function is used to initialize the two indices inside a real data holder. �e function takes
as its input three parameters a pointer to the real data holder, data, the size of the words to be
compared during the comparison stage wordSize, and an integer seqGap, which is used to place
empty data between unique sequences, such that we do not convolve from one sequence into
another during the convolution stage.

Definition at line  of file realIo.c.

References getRdhSeqLength(), rdh_t::indexSize, rdh_t::indexToPos, rdh_t::indexToSeq,
rdh_t::offsetToIndex, and rdh_t::size.

Referenced by realComparison().

B... int outputRealPats (rdh_t ∗ data, cll_t ∗ allPats, int L, FILE ∗
OUTPUT_FILE, int ∗∗ d)

�is function is used to print out motifs discovered by Gemoda in an attractive fashion. �e
function takes five parameters: a pointer to a real data holder object data; a pointer to a linked
list of motifs allPats; an integer which is Gemoda’s input parameter L; and a pointer to a file
handle to which output is printed OUTPUT_FILE .

Definition at line  of file realIo.c.

References getRdhIndexSeqPos(), cnode::length, cSet_t::members, cnode::next, rdh_t::seq, cn-
ode::set, cSet_t::size, and cnode::stat.

Referenced by main().

B... int outputRealPatsWCentroid (rdh_t ∗ data, cll_t ∗ allPats, int L, FILE ∗
OUTPUT_FILE, double ∗ extraParams, int compFunc)

�is function is used to output real valued patterns in a format such that they are centered on
a particular centroid.

Definition at line  of file realIo.c.

References findCliqueCentroid(), getCompFunc, getRdhIndexSeqPos(), cnode::length, make-
AlternateCentroid(), cSet_t::members, cnode::next, cnode::set, and cSet_t::size.

Referenced by main().

B... rdh_t∗ readRealData (FILE ∗ INPUT)

�is function is used to read in a fasta formatted file containing real value data and store the
entire thing and a real data holder object. �e function takes one parameter: a pointer to a file
handle, which is where the data are read from INPUT ;

Definition at line  of file realIo.c.



B.. REALIO.H FILE REFERENCE 

References checkRealDataFormat(), parseRealData(), and ReadFile().

Referenced by main().
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B. spat.h File Reference

�is graph shows which files directly or indirectly include this file:

spat.h

align.c

gemoda-s.c

words.c

Data Structures

• struct sOffset_t
• struct sPat_t
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B. words.c File Reference

#include <stdio.h >

#include <stdlib.h >

#include <string.h >

#include <errno.h >

#include "spat.h"

#include "FastaSeqIO/fastaSeqIO.h"

Include dependency graph for words.c:

words.c stdio.h

stdlib.h

string.h

errno.h

spat.h

FastaSeqIO/fastaSeqIO.h

Data Structures

• struct sHashEntry_t
• struct sHash_t

Defines

• define SHASH_MAX_KEY_SIZE 

Functions

• int sieve (long n)
• unsigned long hash (unsigned char ∗str)
• int hashpjw (char ∗s)
• sHash_t initSHash (int n)
• sHashEntry_t ∗ searchSHash (sHashEntry_t ∗newEntry, sHash_t ∗thisHash, int create)
• int destroySHash (sHash_t ∗thisHash)
• int printSHash (sHash_t ∗thisHash, FILE ∗FH)
• int printSPats (sPat_t ∗a, int n)
• int destroySPatA (sPat_t ∗words, int wc)
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• sPat_t ∗ countWords (fSeq_t ∗seq, int numSeq, int L, int ∗numWords)

Detailed Description

�is file defines functions that are used in the processing of string based sequences. �ere are
a number of functions defined in this file better used for hashing strings so that the compar-
ison phase can be sped up by only comparing unique words. Heuristically, we have noticed
that for sequences in which there is a large degree of redundancy these hashing functions can
significantly speed up the comparison phase.

Definition in file words.c.

Define Documentation

B... define SHASH_MAX_KEY_SIZE 

Definition at line  of file words.c.

Referenced by printSHash(), and searchSHash().

Function Documentation

B... sPat_t∗ countWords (fSeq_t ∗ seq, int numSeq, int L, int ∗ numWords)

Counts words of size L in the input FastA sequences, hashes all of the words, and returns an
array of sPat_t objects.

Definition at line  of file words.c.

References sHashEntry_t::data, destroySHash(), sHashEntry_t::idx, initSHash(), sHash-
Entry_t::key, sHashEntry_t::L, sPat_t::length, sOffset_t::next, sPat_t::offset, sOffset_t::pos, s-
Offset_t::prev, searchSHash(), sOffset_t::seq, sieve(), sPat_t::string, and sPat_t::support.

Referenced by main().

374 {
375 int i, j;
376 int totalChars = 0;
377 int hashSize;
378 sHashEntry_t newEntry;
379 sHashEntry_t *ep;
380 sHash_t wordHash;
381 sPat_t *words = NULL;
382 int wc = 0;
383 int prev = -1;
384 int l;
385
386
387 // Count the total number of characters. This
388 // is the upper limit on how many words we can have
389 for (i = 0; i < numSeq; i++)
390 {
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391 totalChars += strlen (seq[i].seq);
392 }
393
394 // Get a prime number for the size of the hash table
395 hashSize = sieve3 ((long) (2 * totalChars));
396 wordHash = initSHash (hashSize);
397
398 // Chop up each sequence and hash out the words of size L
399 for (i = 0; i < numSeq; i++)
400 {
401 prev = -1;
402
403 // skip sequences that are too short to have
404 // a pattern
405 if (strlen (seq[i].seq) < L)
406 {
407 continue;
408 }
409 for (j = 0; j < strlen (seq[i].seq) - L + 1; j++)
410 {
411
412 // Make a hash table entry for this word
413 newEntry.key = &(seq[i].seq[j]);
414 newEntry.data = 1;
415 newEntry.idx = wc;
416 newEntry.L = L;
417
418 // Check to see if it’s already in the hash table
419 ep = searchSHash (&newEntry, &wordHash, 0);
420 if (ep == NULL)
421 {
422
423 // If it’s not, create an entry for it
424 ep = searchSHash (&newEntry, &wordHash, 1);
425
426 // Increase the size of our word array
427 words = (sPat_t *) realloc (words, (wc + 1) * sizeof (sPat_t));
428 if (words == NULL)
429 {
430 fprintf (stderr, "Error!\n");
431 fflush (stderr);
432 }
433 // Add the new word
434 words[wc].string = &(seq[i].seq[j]);
435 words[wc].length = L;
436 words[wc].support = 1;
437 words[wc].offset =
438 (sOffset_t *) malloc (1 * sizeof (sOffset_t));
439 if (words[wc].offset == NULL)
440 {
441 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
442 fflush (stderr);
443 exit (0);
444 }
445 words[wc].offset[0].seq = i;
446 words[wc].offset[0].pos = j;
447 words[wc].offset[0].prev = prev;
448 words[wc].offset[0].next = -1;
449
450 if (prev != -1)
451 {
452 words[prev].offset[words[prev].support - 1].next = wc;
453 }
454 prev = wc;
455 wc++;
456
457 }
458 else
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459 {
460
461 // If it is, increase the count for this word
462 ep->data++;
463
464 // add a new offset to the word array
465 l = words[ep->idx].support;
466 words[ep->idx].offset =
467 (sOffset_t *) realloc (words[ep->idx].offset,
468 (l + 1) * sizeof (sOffset_t));
469 words[ep->idx].offset[l].seq = i;
470 words[ep->idx].offset[l].pos = j;
471 words[ep->idx].offset[l].prev = prev;
472 words[ep->idx].offset[l].next = -1;
473
474 // Update the next/prev
475 if (prev != -1)
476 {
477 words[prev].offset[words[prev].support - 1].next = ep->idx;
478 }
479 prev = ep->idx;
480
481 // Have to put this down here for cases when we create
482 // a word and it is immeadiately followed by itself!!
483 words[ep->idx].support += 1;
484 }
485 }
486 }
487
488
489 destroySHash (&wordHash);
490 *numWords = wc;
491 return words;
492 }

B... int destroySHash (sHash_t ∗ thisHash)

Destroy a hash table, freeing the memory.

Definition at line  of file words.c.

References sHash_t::hash, sHash_t::hashSize, and sHash_t::iHashSize.

Referenced by countWords().

273 {
274 int i;
275 free (thisHash->iHashSize);
276 free (thisHash->hashSize);
277 for (i = 0; i < thisHash->totalSize; i++)
278 {
279 if (thisHash->hash[i] != NULL)
280 {
281 free (thisHash->hash[i]);
282 thisHash->hash[i] = NULL;
283 }
284 }
285 if (thisHash->hash != NULL)
286 {
287 free (thisHash->hash);
288 thisHash->hash = NULL;
289 }
290 return 0;
291 }
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B... int destroySPatA (sPat_t ∗ words, int wc)

�is function is used to free up the memory allocated in an array of sPat_t space objects. �e
function returns a null pointer.

Definition at line  of file words.c.

References sPat_t::offset.

353 {
354 int i;
355 for (i = 0; i < wc; i++)
356 {
357 if (words[i].offset != NULL)
358 {
359 free (words[i].offset);
360 words[i].offset = NULL;
361 }
362 }
363 free (words);
364 words = NULL;
365 return 0;
366 }

B... unsigned long hash (unsigned char ∗ str)

A hashing function that returns an integer, given a pointer to a null characterterminated string.

Definition at line  of file words.c.

Referenced by searchSHash().

74 {
75 unsigned long hash = 5381;
76 int c;
77
78 while ((c = *str++))
79 hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
80
81 return hash;
82 }

B... int hashpjw (char ∗ s)

A hashing function that returns an integer, given a pointer to a null characterterminated string.

Definition at line  of file words.c.

90 {
91 char *p;
92 unsigned int h, g;
93
94 h = 0;
95 for (p = s; *p != ’\0’; p++)
96 {
97 h = (h << 4) + *p;
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98 if ((g = h & 0xF0000000))
99 {
100 h ˆ= g >> 24;
101 h ˆ= g;
102 }
103 }
104 return h;
105 }

B... sHash_t initSHash (int n)

Allocates the memory for a sHash table and initializes some of the elements.

Definition at line  of file words.c.

References sHash_t::totalSize.

Referenced by countWords().

156 {
157 int i = 0;
158 int step = 0;
159 sHash_t this;
160
161 this.totalSize = n;
162 this.hashSize = (int *) malloc (n * sizeof (int));
163 if (this.hashSize == NULL)
164 {
165 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
166 fflush (stderr);
167 exit (0);
168 }
169 this.iHashSize = (int *) malloc (n * sizeof (int));
170 if (this.iHashSize == NULL)
171 {
172 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
173 fflush (stderr);
174 exit (0);
175 }
176 this.hash = (sHashEntry_t **) malloc (n * sizeof (sHashEntry_t *));
177 if (this.hash == NULL)
178 {
179 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
180 fflush (stderr);
181 exit (0);
182 }
183 for (i = 0; i < n; i++)
184 {
185 this.hash[i] = NULL;
186 this.hashSize[i] = 0;
187 this.iHashSize[i] = step;
188 }
189 return this;
190 }

B... int printSHash (sHash_t ∗ thisHash, FILE ∗ FH)

�is function is used to print the hash out and is generally only used for error checking.



B.. WORDS.C FILE REFERENCE 

Definition at line  of file words.c.

References sHashEntry_t::data, sHash_t::hash, sHashEntry_t::key, sHashEntry_t::L, and
SHASH_MAX_KEY_SIZE.

299 {
300 int i, j;
301 char string[SHASH_MAX_KEY_SIZE];
302
303 for (i = 0; i < thisHash->totalSize; i++)
304 {
305 for (j = 0; j < thisHash->hashSize[i]; j++)
306 {
307
308 strncpy (string, thisHash->hash[i][j].key, thisHash->hash[i][j].L);
309 string[thisHash->hash[i][j].L] = ’\0’;
310 fprintf (FH, "%s %d\n", string, thisHash->hash[i][j].data);
311
312 }
313 }
314 return 0;
315 }

B... int printSPats (sPat_t ∗ a, int n)

�is function is used to print out an array of sPat_t objects and is generally only used for error
checking.

Definition at line  of file words.c.

References sPat_t::length.

322 {
323 char *s = NULL;
324 int i, j;
325 int size = 0;
326 for (i = 0; i < n; i++)
327 {
328 if (a[i].length > size)
329 {
330 s = (char *) realloc (s, a[i].length * sizeof (char));
331 }
332 strncpy (s, a[i].string, a[i].length);
333 s[a[i].length] = ’\0’;
334 printf ("%d: %s\n", i, s);
335 for (j = 0; j < a[i].support; j++)
336 {
337 printf ("\t%d %d -> (%d, %d)\n", a[i].offset[j].seq,
338 a[i].offset[j].pos, a[i].offset[j].prev,
339 a[i].offset[j].next);
340 }
341 printf ("\n");
342 }
343 free (s);
344 return 0;
345 }
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B... sHashEntry_t∗ searchSHash (sHashEntry_t ∗ newEntry, sHash_t ∗
thisHash, int create)

�is function has two purposes. It searches for entries in the hash table and it puts new entries
in.

Definition at line  of file words.c.

References sHash_t::hash, hash(), sHash_t::hashSize, sHash_t::iHashSize, sHashEntry_t::key,
sHashEntry_t::L, SHASH_MAX_KEY_SIZE, and sHash_t::totalSize.

Referenced by countWords().

199 {
200 char string[SHASH_MAX_KEY_SIZE];
201 unsigned long (*hashFunction) () = &hash1;
202 int i, thisIndex;
203 int status = 0;
204
205 // A string to store the key
206 strncpy (string, newEntry->key, newEntry->L);
207 string[newEntry->L] = ’\0’;
208
209 // The index that this key hashes to
210 thisIndex = hashFunction ((unsigned char *) string) % thisHash->totalSize;
211
212 // For each member that has this index, check to see
213 // if the key is the same
214 for (i = 0; i < thisHash->hashSize[thisIndex]; i++)
215 {
216 if (strncmp (thisHash->hash[thisIndex][i].key, string, newEntry->L) ==
217 0)
218 {
219
220 // We found a match
221 /*
222 printf("\t%s already in hash table!\n");
223 */
224 status = 1;
225 return &(thisHash->hash[thisIndex][i]);
226 break;
227
228 }
229 }
230
231 // If we didn’t find the key and we’re told to create it,
232 // then allocate new memory for the hashEntry and put it in
233 if (status == 0 && create != 0)
234 {
235
236 // Allocate space for the new entry at this index
237 if (thisHash->iHashSize[thisIndex] == 0)
238 {
239 thisHash->hash[thisIndex] =
240 (sHashEntry_t *) malloc (sizeof (sHashEntry_t));
241 }
242 else
243 {
244 thisHash->hash[thisIndex] =
245 (sHashEntry_t *) realloc (thisHash->hash[thisIndex],
246 (thisHash->iHashSize[thisIndex] +
247 1) * sizeof (sHashEntry_t));
248 }
249 if (thisHash->hash[thisIndex] == NULL)
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250 {
251 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
252 fflush (stderr);
253 exit (0);
254 }
255 // Increase our record of the size
256 i = thisHash->hashSize[thisIndex];
257 thisHash->hash[thisIndex][i] = *newEntry;
258 thisHash->iHashSize[thisIndex]++;
259 thisHash->hashSize[thisIndex]++;
260
261
262 // Return a pointer to this entry
263 return &(thisHash->hash[thisIndex][i]);
264 }
265 return NULL;
266 }

B... int sieve (long n)

Prime number generator: returns first prime number equal or less than

Parameters:
n.

Definition at line  of file words.c.

Referenced by countWords().

28 {
29 int i, p, j;
30 int *a;
31 a = (int *) malloc ((n + 1) * sizeof (int));
32 if (a == NULL)
33 {
34 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
35 fflush (stderr);
36 exit (0);
37 }
38 a[0] = 0;
39 a[1] = 0;
40 for (i = 2; i < n; i++)
41 {
42 a[i] = 1;
43 }
44 p = 2;
45 do
46 {
47 j = 2 * p;
48 do
49 {
50 a[j] = 0;
51 j = j + p;
52 }
53 while (j <= n);
54 p = p + 1;
55 }
56 while (p * p < 2 * n);
57 for (i = n; i > 2; i--)
58 {
59 if (a[i])
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60 {
61 free (a);
62 return i;
63 }
64 }
65 free (a);
66 return 0;
67 }



Appendix C

Gemoda data structure documentation

C. Introduction

�is appendix describes in detail the data structures used in the Gemoda software, which is

described in the appendix on page . Although C is not an object–oriented programming

language, we have tried where possible to use a similar philosophy in our programming.

C. bitGraph_t Struct Reference

#include <bitSet.h >

Collaboration diagram for bitGraph_t:

bitGraph_t

bitSet_t

graph

Data Fields

• int size
• bitSet_t ∗∗ graph
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Detailed Description

A bit graph is an array of bit sets. �e graph must be of size size x size. �is data structure is
used to store adjacency matrices. In particular, a bit graph is used in the clustering step. It can
easily be considered a set of sets.

Definition at line  of file bitSet.h.

Field Documentation

C... bitSet_t∗∗ bitGraph_t::graph

A pointer used to store an array of bitSet_t space objects.

Definition at line  of file bitSet.h.

Referenced by bitGraphCheckBit(), bitGraphRowIntersection(), bitGraphRowUnion(), bit-
GraphSetFalse(), bitGraphSetFalseDiagonal(), bitGraphSetFalseSym(), bitGraphSetTrue(),
bitGraphSetTrueDiagonal(), bitGraphSetTrueSym(), copyBitGraph(), countBitGraphNon-
Zero(), deleteBitGraph(), emptyBitGraph(), emptyBitGraphRow(), fillBitGraph(), filterIter(),
findCliques(), getStatMat(), maskBitGraph(), newBitGraph(), printBitGraph(), pruneBit-
Graph(), and singleLinkage().

C... int bitGraph_t::size

�e total size of a bit graph, which is assumed to be symmetric. �ere are size bit sets in a bit
graph, each of size size.

Definition at line  of file bitSet.h.

Referenced by convolve(), copyBitGraph(), filterGraph(), findCliques(), getStatMat(), main(),
newBitGraph(), and oldGetStatMat().

�e documentation for this struct was generated from the following file:

• bitSet.h
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C. bitSet_t Struct Reference

#include <bitSet.h >

Data Fields

• int max
• int slots
• int bytes
• bit_t ∗ tf

Detailed Description

A bit set is a data structure for storing set objects that allows for quick set operations such as
intersections, unions, differences, and so forth. On a standard -bit architecture,  operations
can be performed at the same time, greatly speeding the clique finding stage of the algorithm.

Definition at line  of file bitSet.h.

Field Documentation

C... int bitSet_t::bytes

�is variable actually holds the total number of bits, rather than the number of bytes. However,
we chose to keep this name rather than make a variety of changes.

Definition at line  of file bitSet.h.

Referenced by emptySet(), fillSet(), and newBitSet().

C... int bitSet_t::max

�e maximum integer that can be set to true or false.

Definition at line  of file bitSet.h.

Referenced by newBitSet(), nextBitBitSet(), setFalse(), and setTrue().

C... int bitSet_t::slots

�e total number of slots, where a slot holds a number of bits equal to the size of a bit_t space
object.

Definition at line  of file bitSet.h.

Referenced by bitSetWayIntersection(), bitSetDifference(), bitSetIntersection(), bitSetSum(),
bitSetUnion(), copySet(), and newBitSet().
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C... bit_t∗ bitSet_t::tf

A pointer to a bit_t, which is used to store an array of these objects.

Definition at line  of file bitSet.h.

Referenced by bitSetWayIntersection(), bitSetDifference(), bitSetIntersection(), bitSetSum(),
bitSetUnion(), checkBit(), copySet(), countSet(), deleteBitSet(), emptySet(), fillSet(), flipBits(),
newBitSet(), nextBitBitSet(), printBinaryBitSet(), setFalse(), and setTrue().

�e documentation for this struct was generated from the following file:

• bitSet.h
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C. cnode Struct Reference

#include <convll.h >

Collaboration diagram for cnode:

cnode next

cSet_t

set

Data Fields

• cSet_t ∗ set
• int id
• int length
• cnode ∗ next
• double stat

Detailed Description

�is data structure is a linked list for storing cliques. Each member of the linked list has a set,
an ID number, a length (which gives the number of characters in the motif ), a pointer to the
next member of the linked list, and a floating-point number for storing statistical information.

Definition at line  of file convll.h.

Field Documentation

C... int cnode::id

Identification number for this member.

Definition at line  of file convll.h.

Referenced by addToStacks(), printCll(), printCllPattern(), pushCll(), removeSupers(), single-
CliqueConv(), sortByStats(), swapNodecSet(), uniqClique(), wholeCliqueConv(), whole-
RoundConv(), and yankCll().

C... int cnode::length

Length of this motif.

Definition at line  of file convll.h.
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Referenced by calcStatCliq(), getLargestLength(), main(), outputRealPats(), outputRealPats-
WCentroid(), printCll(), and pushCll().

C... struct cnode∗ cnode::next

A pointer to the next member, or the next motif.

Definition at line  of file convll.h.

Referenced by calcStatAllCliqs(), fillMemberStacks(), getLargestLength(), getLargestSupport(),
main(), outputRealPats(), outputRealPatsWCentroid(), popCll(), printCll(), pruneCll(), push-
Cll(), removeSupers(), singleCliqueConv(), sortByStats(), swapNodecSet(), uniqClique(),
wholeRoundConv(), and yankCll().

C... cSet_t∗ cnode::set

�e set for this member of the linked list.

Definition at line  of file convll.h.

Referenced by addToStacks(), calcStatCliq(), findCliqueCentroid(), getLargestSupport(),
initheadCll(), main(), makeAlternateCentroid(), mergeIntersect(), outputRealPats(), output-
RealPatsWCentroid(), popCll(), printCll(), printCllPattern(), pruneCll(), pushCll(), remove-
Supers(), singleCliqueConv(), swapNodecSet(), uniqClique(), and wholeCliqueConv().

C... double cnode::stat

Used to store the statistical store of a motif.

Definition at line  of file convll.h.

Referenced by calcStatAllCliqs(), main(), outputRealPats(), and pushCll().

�e documentation for this struct was generated from the following file:

• convll.h
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C. cSet_t Struct Reference

#include <convll.h >

Data Fields

• int size
• int ∗ members

Detailed Description

A cSet_t is used to hold a set of integers, in cases where the upper limit of integers size is
unknown. Or, in cases where using a bit set would be impractical. �is data structure is used
throughout the convolution, where we have found heuristically that intersections of this data
type are much faster than those for bitSet_t’s, which would require a bit shift.

Definition at line  of file convll.h.

Field Documentation

C... int∗ cSet_t::members

Array of pointers to ints that holds the members of this set.

Definition at line  of file convll.h.

Referenced by addToStacks(), bitSetToCSet(), checkCliquecSet(), findCliqueCentroid(),
main(), makeAlternateCentroid(), mergeIntersect(), mllToCSet(), outputRealPats(), output-
RealPatsWCentroid(), popCll(), printCll(), printCllPattern(), printCSet(), pruneCll(), push-
ConvClique(), removeSupers(), swapNodecSet(), uniqClique(), and wholeCliqueConv().

C... int cSet_t::size

Number of members in this set.

Definition at line  of file convll.h.

Referenced by bitSetToCSet(), calcStatCliq(), checkCliquecSet(), findCliqueCentroid(), get-
LargestSupport(), main(), mllToCSet(), outputRealPats(), outputRealPatsWCentroid(), print-
Cll(), printCllPattern(), printCSet(), pruneCll(), removeSupers(), singleCliqueConv(), uniq-
Clique(), and wholeCliqueConv().

�e documentation for this struct was generated from the following file:

• convll.h
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C. fSeq_t Struct Reference

#include <fastaSeqIO.h >

Data Fields

• char ∗ seq
• char ∗ label

Detailed Description

Definition at line  of file fastaSeqIO.h.

Field Documentation

C... char∗ fSeq_t::label

Definition at line  of file fastaSeqIO.h.

Referenced by FreeFSeqs(), initAofFSeqs(), and ReadFSeqs().

C... char∗ fSeq_t::seq

Definition at line  of file fastaSeqIO.h.

Referenced by FreeFSeqs(), initAofFSeqs(), printFSeqSubSeq(), ReadFSeqs(), and ReadTxt-
Seqs().

�e documentation for this struct was generated from the following file:

• FastaSeqIO/fastaSeqIO.h
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C. mnode Struct Reference

#include <convll.h >

Collaboration diagram for mnode:

mnode next

Data Fields

• int cliqueMembership
• mnode ∗ next

Detailed Description

�is data structure is just a link to list of integers used for bookkeeping during the convolution
stage.

Definition at line  of file convll.h.

Field Documentation

C... int mnode::cliqueMembership

Clique to which this belongs.

Definition at line  of file convll.h.

Referenced by mllToCSet(), printMemberStacks(), pushMemStack(), and setStackTrue().

C... struct mnode∗mnode::next

A pointer to the next member in the linked list of mll_t space objects.

Definition at line  of file convll.h.

Referenced by mllToCSet(), popMemStack(), printMemberStacks(), pushMemStack(), and
setStackTrue().

�e documentation for this struct was generated from the following file:

• convll.h
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C. rdh_t Struct Reference

#include <realIo.h >

Data Fields

• int size
• int indexSize
• char ∗∗ label
• gsl_matrix ∗∗ seq
• int ∗ indexToSeq
• int ∗ indexToPos
• int ∗∗ offsetToIndex

Detailed Description

�is is a data structure, which is used to store real valued data. Basically, this is an array of
gsl_matrix objects, where each matrix represents a single, multidimensional array that was read
in from a FastA formatted file.

Definition at line  of file realIo.h.

Field Documentation

C... int rdh_t::indexSize

�e size of the index, where the index is used to store pointers to the different sequences in this
object.

Definition at line  of file realIo.h.

Referenced by getRdhIndexSeqPos(), initRdh(), initRdhIndex(), realComparison(), and set-
RdhIndex().

C... int∗ rdh_t::indexToPos

�e array of integers that tell us to which position in a sequence each index in the gsl_matrix
array corresponds.

Definition at line  of file realIo.h.

Referenced by freeRdh(), getRdhIndexSeqPos(), initRdh(), initRdhIndex(), and setRdh-
Index().
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C... int∗ rdh_t::indexToSeq

�e array of integers that will tell us to which sequence each index and the gsl_matrix array
corresponds.

Definition at line  of file realIo.h.

Referenced by freeRdh(), getRdhIndexSeqPos(), initRdh(), initRdhIndex(), main(), and set-
RdhIndex().

C... char∗∗ rdh_t::label

�e array of labels that store the names of each sequence.

Definition at line  of file realIo.h.

Referenced by freeRdh(), getRdhLabel(), initRdh(), and setRdhLabel().

C... int∗∗ rdh_t::offsetToIndex

�e array that points from a particular offset to its index.

Definition at line  of file realIo.h.

Referenced by freeRdh(), initRdhIndex(), and main().

C... gsl_matrix∗∗ rdh_t::seq

�e array of matrices that store the data we read in.

Definition at line  of file realIo.h.

Referenced by freeRdh(), generalMatchFactor(), getRdhDim(), getRdhSeqLength(), getRdh-
Value(), initRdh(), initRdhGslMat(), massSpecCompareWElut(), outputRealPats(), rmsd-
Compare(), setRdhColFromString(), setRdhLabel(), and setRdhValue().

C... int rdh_t::size

�e number of sequences stored in this data structure.

Definition at line  of file realIo.h.

Referenced by initRdh(), initRdhIndex(), and main().

�e documentation for this struct was generated from the following file:

• realIo.h
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C. sHash_t Struct Reference

Collaboration diagram for sHash_t:

sHash_t

sHashEntry_t

hash

Data Fields

• int ∗ hashSize

• int ∗ iHashSize

• int totalSize

• sHashEntry_t ∗∗ hash

Detailed Description

A data structure for a hash table. At its root, this structure is just an array of hash entry objects.
As well, there are members used to track the size of the hash table.

Definition at line  of file words.c.

Field Documentation

C... sHashEntry_t∗∗ sHash_t::hash

An array sHashEntry_t space objects.

Definition at line  of file words.c.

Referenced by destroySHash(), printSHash(), and searchSHash().

C... int∗ sHash_t::hashSize

A pointer to an integer that is used to store an array of integers that keep track of the number
of sHashEntry_t objects that are hashed to a particular integer.

Definition at line  of file words.c.

Referenced by destroySHash(), and searchSHash().
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C... int∗ sHash_t::iHashSize

A pointer to an integer that is used to store an array of integers that keep track of the number
of sHashEntry_t objects that are hashed to a particular integer.

Definition at line  of file words.c.

Referenced by destroySHash(), and searchSHash().

C... int sHash_t::totalSize

An integer that stores the total number of slots available in our hash.

Definition at line  of file words.c.

Referenced by initSHash(), and searchSHash().

�e documentation for this struct was generated from the following file:

• words.c
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C. sHashEntry_t Struct Reference

Data Fields

• char ∗ key
• int L
• int data
• int idx

Detailed Description

Type for a hash table entry. �is datatype is used to populate a hash table. �e most important
members of this data structure are the string, or the key, and the index to which that key hashes.

Definition at line  of file words.c.

Field Documentation

C... int sHashEntry_t::data

A throw away variable, used to store any necessary data

Definition at line  of file words.c.

Referenced by countWords(), and printSHash().

C... int sHashEntry_t::idx

�e integer to which the key of length L hashes

Definition at line  of file words.c.

Referenced by countWords().

C... char∗ sHashEntry_t::key

A pointer to a string

Definition at line  of file words.c.

Referenced by countWords(), printSHash(), and searchSHash().

C... int sHashEntry_t::L

�e length of the string that should be used to compute the hash

Definition at line  of file words.c.
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Referenced by countWords(), printSHash(), and searchSHash().

�e documentation for this struct was generated from the following file:

• words.c
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C. sOffset_t Struct Reference

#include <spat.h >

Data Fields

• int seq
• int pos
• int next
• int prev

Detailed Description

�is object is used to store the location of a particular word and a set of sequences. �at is if
we hash a word, we would like to know where it came from. �is data structure provides that
information.

Definition at line  of file spat.h.

Field Documentation

C... int sOffset_t::next

�e index of the word that follows this word at pos plus .

Definition at line  of file spat.h.

Referenced by countWords().

C... int sOffset_t::pos

�e position in the sequence where the word is located.

Definition at line  of file spat.h.

Referenced by countWords(), and main().

C... int sOffset_t::prev

�e index of the word that precedes this word at pos minus .

Definition at line  of file spat.h.

Referenced by countWords().
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C... int sOffset_t::seq

�e sequence from which the word came.

Definition at line  of file spat.h.

Referenced by countWords(), and main().

�e documentation for this struct was generated from the following file:

• spat.h
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C. sPat_t Struct Reference

#include <spat.h >

Collaboration diagram for sPat_t:

sPat_t

sOffset_t

offset

Data Fields

• char ∗ string
• int length
• int support
• sOffset_t ∗ offset

Detailed Description

�is data structure is used to store the locations of all the instances of a particular word of length
length in a set of sequences. �is data structure is used principally by the string based version
of Gemoda and is used to store words that are hashed before the comparison phase.

Definition at line  of file spat.h.

Field Documentation

C... int sPat_t::length

�e length of this word.

Definition at line  of file spat.h.

Referenced by countWords(), and printSPats().

C... sOffset_t∗ sPat_t::offset

An array of sOffset_t objects storing the loci, or offsets where this word occurs.

Definition at line  of file spat.h.

Referenced by countWords(), destroySPatA(), and main().
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C... char∗ sPat_t::string

�e pointer to the string for this word.

Definition at line  of file spat.h.

Referenced by countWords().

C... int sPat_t::support

�e number of times this word occurs in the sequence set.

Definition at line  of file spat.h.

Referenced by countWords().

�e documentation for this struct was generated from the following file:

• spat.h
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C. sSize_t Struct Reference

Data Fields

• int start
• int stop
• int size

Detailed Description

Definition at line  of file fastaSeqIO.c.

Field Documentation

C... int sSize_t::size

Definition at line  of file fastaSeqIO.c.

Referenced by ReadFSeqs().

C... int sSize_t::start

Definition at line  of file fastaSeqIO.c.

Referenced by ReadFSeqs().

C... int sSize_t::stop

Definition at line  of file fastaSeqIO.c.

Referenced by ReadFSeqs().

�e documentation for this struct was generated from the following file:

• FastaSeqIO/fastaSeqIO.c
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