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Abstract

This thesis develops a message authentication scheme for a new version of the X-38
Fault-Tolerant Parallel Processor (FTPP), a high-performance real-time computer sys-
tem designed for applications that need extreme reliability, such as control for human
spaceflight. This computer system uses multiple replicated processors to ensure that
the system as a whole continues to operate correctly even if some of the processors
should fail. In order to maintain a synchronized state, the replicated processors must
vote among themselves to make sure that they are using identical data.

This thesis adds message authentication to the voting process. Using authen-
ticated messages allows a system to achieve the same level of reliability with fewer
replicas. This thesis analyzes where message authentication is needed in the voting pro-
cess, then presents and evaluates several signature schemes for implementing message
authentication. The X-38 FTPP uses radiation-hardened embedded processors, which
have relatively limited computational power. Therefore, the challenge is to identify
a scheme that is secure enough to guarantee that signatures cannot be forged, yet fast
enough to sign messages at a high rate in real time.
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CHAPTER 1

Introduction
The computer system that controls a crew-carrying space vehicle must be extremely

robust. Since a single system can be crippled by a single failure, a common design is

to use multiple redundant systems, all running the same program and voting on the

results. The challenge is to keep the replicas synchronized, and to arbitrate when they

disagree.

This thesis implements and evaluates schemes for authenticated communica-

tion between the replicas of a fault-tolerant computer system. Message authentication

adds digital signatures to messages to prevent the replicas from lying about the messages

they receive from each other, leading to a simpler and more reliable system. Like a

message authentication scheme for any other application, the one developed in this

thesis needs to be secure against forgery. Unlike most other message authentication

schemes, however, the one in this thesis also needs to fit within the unique constraints

imposed by a real-time embedded system, constraints that limit the amount of running

time and computational power available.

A variety of signature schemes are implemented and evaluated in this thesis.

One of the results is that traditional signature schemes like RSA are too slow for most

real-time embedded systems. Previous attempts to solve this problem have therefore

used cryptographically insecure signatures instead, based on techniques such as simple
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checksums and cyclic redundancy checks. However, this thesis will argue that crypto-

graphically insecure signatures are not satisfactory for any system that aims to achieve

the highest levels of fault tolerance. Recently, fast and secure signature schemes like the

ones based on multivariate quadratic equations have become available, enabling this

thesis to propose using cryptographically secure signatures for message authentication

in real-time fault-tolerant computer systems. These new signature schemes appear very

promising, although they are still slightly too slow for systems that need to send data

at a very high rate. The work of this thesis can be applied to lower-rate fault-tolerant

systems being built today, and to high-rate systems of the future when embedded pro-

cessors have become faster.

1.1 Fault-tolerant computer systems

Some computer systems must not fail, especially if people’s lives and safety depend on

the correct operation of the system. For certain systems, a single unreplicated unit

achieves the required level of reliability. However, an unreplicated system, even if

carefully designed and extensively tested, is still vulnerable to random hardware faults.

Therefore, an extremely robust system will likely need to be a replicated one.

Redundancy increases the chance of a system surviving faults. However, it also

increases the complexity. How will the replicas communicate and coordinate with each

other? More importantly, how will the system respond when the replicas, which are

supposed to be running the same program and producing the same results, disagree

with each other?

To analyze the behavior of the system as a whole when a replica fails, one

needs to consider how the replica fails. In the best case, the faulty replica might realize

12
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that it has entered an inconsistent state, and announce the error to the other replicas.

The other replicas would then know to exclude the results from that faulty replica. A

harder case to handle is when the faulty replica ceases to communicate altogether. The

remaining replicas would need to infer that the faulty replica has failed, most likely

using a timeout.

The hardest case to handle is when the faulty replica continues to communi-

cate, reporting incorrect results. The faulty replica may even report one result to some

of the non-faulty replicas, and a different result to the others. Since the non-faulty

replicas must maintain identical internal state, they must vote among themselves to

reach an agreement about how to handle the result from the faulty replica. This voting

process will take additional rounds of message exchange, and since the identity of the

faulty replica is not known a priori, the faulty replica will participate in the voting

process too, giving it additional opportunities to confuse the non-faulty replicas.

In this worst-case scenario, one might as well treat the faulty replica as if it were

malicious, and assume that it is deliberately choosing messages that will most confuse

the other replicas. (In some systems, especially ones in which each replica is controlled

by a different party, the faulty replica may actually be malicious.) This sort of behavior

from the faulty replica, called a Byzantine fault, must be tolerated in a robust system.

Of course, building a reliable system requires more than just handling misbe-

having replicas. If the replicas are not electrically isolated, for example, then a power

glitch in one may cause a power glitch in the others. And if all of the replicas are

running the same code, they will all be equally defenseless if the fault is caused by a

mistake in that code.

13
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1.2 Real-time embedded systems

A real-time system is one that must react in a strictly bounded amount of time. On

a desktop computer, one real-time task might be to reload the sound buffer before it

empties. In a space vehicle, the real-time task might be to fire a rocket. If the desktop

computer fails to react on time, then the music it is playing will skip. If the computer

controlling the space vehicle fails to react on time, then it will lose control of the

spacecraft.

Being a real-time system imposes several constraints on the design of the sys-

tem. One constraint is scheduling: since a computer system runs several tasks simul-

taneously in practice, a real-time design must make sure that every task can run when

it needs to. A real-time system also constrains the algorithms available to choose from.

An algorithm that runs quickly most of the time cannot be used if it runs slowly in the

worst cases.

Most real-time control systems are also embedded systems, which further limits

the resources available. A typical embedded processor might run an order of magnitude

slower than a contemporary desktop processor. In addition, processors for space flight

need to be radiation hardened, which again puts them a generation behind unhard-

ened processors. Because of the speed difference, many algorithms that run acceptably

quickly on desktop processors run too slowly on embedded processors.

1.3 The X-38 Fault-Tolerant Parallel Processor

The Fault-Tolerant Parallel Processor (FTPP) [RLB02] is an architecture for a fault-

tolerant computer system on top of which applications can run, developed at the
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Charles Stark Draper Laboratory. The X-38 FTPP is one incarnation of this architec-

ture, developed for NASA’s X-38 Crew Return Vehicle. This thesis attempts to develop

a message authentication scheme for a new version of the X-38 FTPP.

Generically speaking, the FTPP consists of a number of fault-containment

regions (also called channels), each of which contains a number of processors. The

fault-containment regions are isolated from each other, and they are designed to fail

independently. Each fault-containment region also has a network element, which is

connected to each of the other network elements, and which provides communication

between the fault-containment regions.

The processors in the FTPP can assume a variety of configurations. A pro-

cessor may run alone, or it may run the same program as one or more of its replicas,

each of which resides in a different fault-containment region. A program replicated on

multiple processors needs to be only minimally aware that it is running on multiple

processors; the network element ensures that each processor receives the same inputs

and arbitrates when their outputs differ. The network element performs the multiple

rounds of message exchange needed for the voting process.

In addition to fault-tolerant communication, the FTPP architecture also offers

facilities for fault-tolerant time synchronization, recovery and reconfiguration when a

replica fails, task scheduling, and other services as well.

1.4 Evolution to a software-based system

The X-38 FTPP is built out of mostly commodity parts, with the notable exception of

the network element, which is custom hardware. Draper Laboratory is engaged in a

project to build a new version of the FTPP that uses all commercial off-the-shelf parts,
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a project that this thesis is part of. The functions of the network element, which are

currently performed by dedicated hardware, will be implemented in software instead.

Moving to software has several advantages. It reduces the number of hardware

parts that can fail, and it also makes modifications and testing easier. Embedded proces-

sors have only recently become powerful enough to perform the network element’s job

in software. In addition, other tools for building robust software-based fault-tolerant

systems have also recently become available, such as partitioned real-time operating

systems, which allow strong separation between software components in a system. A

partitioned operating system strictly limits each component to its own share of mem-

ory, processor time, and other resources. (In contrast, a desktop operating system typ-

ically makes no such guarantee. For example, most desktop operating systems do not

guarantee that a given process will always run within a certain period after an interrupt,

regardless of whatever else the system is doing. Most desktop operating systems also do

not prevent one process from consuming so much memory that other processes cannot

allocate any.)

1.5 Authenticated messages

The move to a software-based system opens the opportunity for making some other

changes to the FTPP as well. Among the most significant of these changes is the

addition of authenticated messages to the message-voting process.

Message authentication allows the recipient of a message to verify that the mes-

sage genuinely originated from the claimed source, and that the message has not been

modified. Message authentication is achieved by augmenting the message with a digital
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signature, which the recipient verifies. The most relevant benefit of message authen-

tication to the voting process of a fault-tolerant system is that message authentication

prevents one replica from lying to another replica about what message a third replica

sent. Removing this particular vulnerability allows the system to be simplified while

retaining the same level of fault tolerance. Message authentication also helps detect

when messages have been corrupted in transit, but this is a more minor benefit, since

any reasonably robust system must already resist message corruption.

This thesis examines the many digital signature schemes available, and evalu-

ates their suitability for use in a real-time fault-tolerant system. Again, one of the more

important constraints this project faces is that the scheme must operate quickly, on

processors that have relatively limited computational power. To meet this constraint,

this thesis explores some of the less common signatures schemes in addition to the well-

known ones like RSA. It examines how to optimize the implementation of each of

these schemes. Finally, this thesis also considers the message-voting process itself, to

determine precisely which phases of it need message authentication.

1.6 Previous work

Fault-tolerant computer systems have been built for almost as long as computer sys-

tems have been, so it is impossible to give a complete account of all the research that

has enabled and shaped this thesis. Instead, this section will give a brief summary of

the influential systems that have been developed for applications that need extreme

reliability, such as flight control.
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1.6.1 Previous systems

The early attempts at building redundant fault-tolerant systems in the 1960s were im-

plemented with simple replication of hardware. For example, a processor would have

several memory units, and it would write the same data to all of them. Special circuitry

would detect disagreements among the memory units [HLS87].

The Fault-Tolerant Multi-Processor (FTMP), which was developed beginning

in 1975, used hardware for fault detection and masking. Processors were arranged in

groups of three, as were memory units, and dedicated hardware performed the voting

among them [HLS87]. The system was called a “multi-processor” because it ran several

different programs simultaneously on different sets of processors. It was only later

when computers had become faster that designs for redundant processors running only

a single task at a time were considered.

The contemporaneous rival to the FTMP was Software Implemented Fault

Tolerance (SIFT), which, as its name suggests, was a computer that used software to

implement voting and error detection. SIFT was built using off-the-shelf minicomput-

ers and microcomputers. The computers in SIFT were only loosely synchronized with

each other, and they would vote among themselves only at the end of an iteration of

a computation. This design made the analysis of the system simpler, since the analysis

only had to consider whether one of the computers had failed or not, and not whether

the individual components in each computer were failing. SIFT was also notable in

that it advocated formal mathematical proofs of correctness for the system [WLG78].

Unfortunately, performing the error detection and fault recovery in software was ex-

tremely slow. One evaluation determined that SIFT spent 80% of its computing power

on performing this overhead [PB86].
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The Fault Tolerant Processor (FTP) in the 1980s was the successor to the

FTMP. Unlike the FTMP, which was a multi-processor, the processors in the FTP

acted as a single virtual processor. The FTP used hardware to ensure that all of the

processors received the same input, and to vote on their outputs. Because of its simpler

design, the FTP was much more efficient than the earlier systems, and it was easier to

program as well [HLS87].

The Multicomputer Architecture for Fault-Tolerance (MAFT) was a system

designed in the late 1980s for high performance. Each node in MAFT consisted of

two parts, the operations controller and the application processor. The operations

controllers, which were connected to each other, handled all of the communication and

system management functions, leaving the application processor to focus on running

the application itself. One interesting aspect of the MAFT architecture was that it was

designed to allow different implementations for the replicas. For example, two replicas

running the same program might each have been built by a different group, and thus

they would produce slightly different results for a floating-point computation. The

MAFT system was responsible for reconciling their results [KWFT88].

Finally, the Fault-Tolerant Parallel Processor (FTPP) is the current generation

of architectures for fault-tolerant computer systems, and is the one that this thesis de-

velops a message authentication scheme for. Like some of the earlier multi-processor

architectures, the FTPP can run multiple tasks at the same time, with each task being

run on a different group of replicated processors. For the most part, applications do not

need to be aware that they are running on a replicated system; the FTPP handles the job

of ensuring that they receive the same inputs. To reduce the complexity of the system,

multiple processors share a single connection to the inter-processor network [HL91].

Chapter 3 describes the FTPP architecture in greater detail.
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1.6.2 Previous message authentication designs

There have been several proposals for message authentication schemes for fault-tolerant

systems, a few of them from work also done at Draper Laboratory. [Ga90] proposes

using cyclic redundancy checks (CRCs) to sign messages, and considers how to imple-

ment such a scheme in hardware. [Cl94] combines CRCs with modular multiplica-

tive inverses to form another signature scheme. Finally, [St95] designs a three-node

Byzantine-resilient system called the Beetle that uses message authentication to allow it

to tolerate a fault in any one node.

This thesis builds on these previous results, and considers the problem of devel-

oping a message authentication scheme for the FTPP. In contrast to these previous pro-

posals, this thesis advocates using a cryptographically secure signature scheme for im-

plementing message authentication, and systematically evaluates several such schemes.

1.7 Overview of this thesis

This chapter introduces the work of this thesis and explains its significance. It gives a

background on real-time fault-tolerant computer systems, and highlights some of the

challenges of implementing a message authentication scheme for it.

Chapter 2 elaborates on Byzantine fault tolerance. It formally presents the

problem of reaching agreement in the presence of faults, and examines some of the

possible configurations for a fault-tolerant system.

Chapter 3 gives a detailed description of the X-38 Fault-Tolerant Parallel Pro-

cessor. It describes the features of the FTPP that the new software-based version will

need to replicate.
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Chapter 4 examines how message authentication can help the message-voting

process in a fault-tolerant system. It explains the requirements that a suitable signature

scheme will need to meet, and argues for the importance of cryptographic security.

Chapter 5 introduces the signature schemes themselves. It looks at RSA,

DSA, and elliptic curve DSA, as well as two schemes based on systems of multivariate

quadratic equations, SFLASH and TTS.

Chapter 6 describes the actual implementation of the signature scheme candi-

dates. It describes the optimizations that were used, then evaluates and compares the

performance of each scheme.

Chapter 7 concludes this thesis. It discusses the implications of the perfor-

mance results, summarizes the work of this thesis, and explores possible avenues for

future research.
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CHAPTER 2

Byzantine Fault Tolerance
When a single standalone computer system cannot be made reliable enough to meet the

demands of an application, one solution is to use multiple redundant systems, all per-

forming the same task in parallel. The probability of all of the replicas in a redundant

system failing is lower than the probability of an unreplicated system failing, assuming

that the replicas are properly isolated from each other. Therefore, a redundant system

can better tolerate faults.

Building a redundant system is challenging, however. If a replicated system

consisting of multiple nodes is controlling a vehicle, for example, what should the

vehicle do when the nodes give it conflicting commands? One possibility is to add

yet another node, an arbitrator, to the system, and to let the arbitrator have the final

say on what to do. If the arbitrator fails, however, then the whole system fails, and thus

the resulting system is no more reliable than a single-node system. In systems where

extreme fault tolerance is needed, one possible solution is to use mechanical voting

instead: every node is connected to an actuator, and as long as the non-faulty nodes

are the majority, they can physically overpower the faulty nodes that are giving bad

commands. This solution handles the problem of conflicting outputs.

The problem of input is a little harder to solve. Consider a system with several

nodes that needs to read values from a sensor. Two designs are possible. The first is to
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give each node its own sensor. This creates the possibility that each node will read a

different value. The varying readings might cause different nodes to do different things,

eventually causing all the nodes to end up in wildly divergent states. The other possible

design is to use a single sensor, and have it send its readings to all of the nodes. However,

if the sensor is faulty, it may send different values to different nodes, again causing them

to diverge. The problem in both designs is that they need a way to make all of the nodes

agree with each other.

The problem of getting multiple nodes to agree has been formalized as one of

several problems. In the consensus problem, each node starts with its own version of

a value, and the goal to have all of the nodes agree on a single value at the end of the

process. In the interactive consistency problem [PSL80], each node again starts with its

own value, but the goal here is to have all the nodes agree on what value every node

in the system has. That is, every node should end the process with the same vector

(v1, v2, v3, . . . ), where vi is the value that the i th node started with. Finally, in the

Byzantine generals problem [LSP82], one node has a value that it wants to send to all the

other nodes; at the end of the process, all of the other nodes should agree on the value

that was sent. The challenge in each of these problems is to correctly handle the case

where some of the participating nodes are faulty.

The Byzantine generals problem is the hardest of the three, in the sense that

a solution to the Byzantine generals problem would also solve the other two prob-

lems [Fi83]: the interactive consistency problem can be solved by simply repeating the

solution to the Byzantine generals problem multiple times, making one of the nodes

be the sender each time. And once the solution to the interactive consistency problem

has finished, each node will have the same vector of values, from which each node can
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simply pick the majority value (or the mean value, or the result of any other choice

function), thereby also solving the consensus problem.

This chapter describes the Byzantine generals problem, and discusses the im-

plications that it has for building fault-tolerant systems. Although most of this thesis

focuses on the X-38 Fault-Tolerant Parallel Processor (FTPP), which is a fault-tolerant

computer system with a very specific architecture, this chapter aims to explore fault-

tolerant systems more broadly. It will present some of the theoretical results on fault-

tolerant systems, and will examine how different architectures give fault-tolerant sys-

tems different capabilities.

2.1 The Byzantine generals problem

The Byzantine generals problem received its name from the whimsical description

in [LSP82]:

We imagine that several divisions of the Byzantine army are camped outside

an enemy city, each division commanded by its own general. The generals

can communicate with each other only by messenger. After observing the

enemy, they must decide on a common plan of action. However, some

of the generals may be traitors, trying to prevent the loyal generals from

reaching agreement. The generals must have an algorithm to guarantee that

A. All loyal generals decide upon the same plan of action.

B. A small number of traitors cannot cause the loyal generals to adopt

a bad plan.

This is the consensus problem. [LSP82] then observes that this consensus problem can

be reduced to the case where one general is the commanding general and the remaining
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generals are lieutenant generals, and the commanding general needs to send a command

to the lieutenants. Hereafter, the “Byzantine generals problem” will refer to the case

of one commander sending a command to several lieutenants, and not to the overall

consensus problem.

More formally, the problem describes a system consisting of a total of n gener-

als, counting the commander. Among these n generals, f of them may be traitorous,

including possibly the commander. The commander has a single-bit value to send to the

lieutenants. The goal is to design a protocol to ensure that all of the loyal lieutenants

receive the value that the commander has if the commander is loyal, or to ensure that

all of the loyal lieutenants at least agree on some value at the end of the protocol if the

commander is traitorous.

A traitorous general is a general who can violate the protocol. At each step in

the protocol where a general is supposed to send a message, a traitorous general can send

any message it wants, or no message at all. Several traitorous generals can collude with

each other. Compared to earlier models for fault-tolerant systems, the Byzantine gen-

erals problem is notable because it allows faulty nodes (generals) to behave in arbitrary

ways, even to the point of actively and maliciously trying to derail the protocol.

The solvability of the Byzantine generals problem, and the complexity of the

solution, depends on the characteristics of the network the generals use for communi-

cation with each other. Some of these distinguishing characteristics include whether

the network is broadcast or point-to-point, whether the network offers synchronous

or asynchronous communication, and whether the messages sent through the network

are signed or unsigned.
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2.1.1 Broadcast versus point-to-point networks

A point-to-point network is a network that gives every general a separate link to every

other general, and each general can always tell which of its peers a message arrived from.

In contrast, the generals cannot identify the senders of messages in a broadcast network.

In a broadcast network, if the generals are not allowed to sign their messages,

agreement is impossible. A traitorous general could forge as many messages as it wants,

from whichever general it wants. A recipient who is being targeted by a traitorous

general would not be able to draw any useful conclusions from the set of messages that

it receives.

On the other hand, if in a broadcast network the generals can sign their mes-

sages in a way that a traitorous general cannot forge, then the generals can always

identify the senders of messages. Thus, message authentication can be used to make a

broadcast network act like a point-to-point one. This capability can be useful when the

number of generals becomes very large, since the number of point-to-point connections

needed grows quadratically with the number of generals. A broadcast network can have

fewer connections.

A broadcast network using signed messages is not exactly equivalent to a point-

to-point network, however, since the two types of networks have different physical

topologies, and topology does have an effect on the robustness of the system. In the

simplest broadcast network, all of the generals are connected to each other through a

single hub. In this case, the hub is a single point of failure. A more complicated and

redundant network, like the Internet, is more resilient.

For the FTPP, which has a relatively small number of nodes, a point-to-point

network makes the most sense.
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2.1.2 Synchronous versus asynchronous networks

In a synchronous network, message transmission takes a fixed and known amount

of time. In an asynchronous network, on the other hand, messages may be delayed

arbitrarily, and they may arrive out of order. The Internet can be modeled as an

asynchronous network, since there is no guarantee on how long a message will take

to arrive. Point-to-point networks, on the other hand, are usually synchronous, since

transmission on each link takes a fixed amount of time.

One of the more important theoretical results is that a single traitorous gen-

eral can prevent agreement from being reached if the network is completely asyn-

chronous [FLP85]. The traitorous general does not even need to actively send incorrect

messages; it can prevent agreement by simply falling silent at the right moment during

the agreement protocol. This theoretical result is a strong one, but it depends on the

network being completely asynchronous. For example, it forbids the generals from

having synchronized clocks, or from using any sort of timeouts. In practice, fault-

tolerant computer systems can be built on asynchronous networks if these restrictions

are relaxed.

The FTPP fortunately does not need to deal with the complexities of asyn-

chronous networks, since its processors are time-synchronized with each other, and

since it uses point-to-point links with constant transmission delays.

2.1.3 Oral versus written messages

According to the terminology in [LSP82], an oral message is one that is not signed. With

an oral message, one general cannot prove to another general that a third general said

something. Written messages are signed, so a general can use the signature to prove to

another general that the signer really did write the message.
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The distinction between oral and written messages is particularly relevant to

systems using synchronous point-to-point networks. In such a system, solutions to

the Byzantine generals problem are possible using both oral and written messages, but

solving the problem with oral messages requires a larger proportion of loyal generals

and a larger number of messages. One of the goals of this thesis is to convert the FTPP

from a system that uses oral messages to a one that uses written messages.

In a synchronous point-to-point system that uses only oral messages, [PSL80]

and [LSP82] show that agreement is possible only if n ≥ 3 f + 1, that is, the number of

traitorous generals must be strictly fewer than one-third of the total number of generals.

Furthermore, an agreement protocol must take at least f + 1 rounds, where a general

cannot send the messages for a round until it has received all of the messages from the

previous round. Finally, agreement is only possible if the connectivity of the network

is greater than 2 f ; that is, for every pair of generals i and j , there must be enough paths

between them that i and j are still connected if any two vertices in the graph of the

network are removed [Do82].

One consequence of these results is that there is no way for a set of three

generals to reach agreement using only oral messages if one of them is traitorous.

Reaching agreement is easier if the generals can use written messages. In this

case, agreement is possible for any number of generals, no matter how many of them are

traitorous [LSP82]. (The definition for agreement requires that all the loyal lieutenants

agree with each other, and that they agree on the value from the commander if the com-

mander is loyal. A system with only one general in it vacuously meets this definition.

A system with two generals, one loyal and one traitorous, meets this definition too,

since there is no one else for the lone loyal general to agree with.) In practice, however,
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the generals must produce a result for some external observer, and so the correct result

should be the majority result. In this case, the loyal generals must outnumber the

traitorous generals, so n ≥ 2 f + 1. Using written messages, it is possible for three

generals to reach an agreement if one of them is traitorous.

The connectivity requirements for a network using written messages is lower

too. The only requirement is that all of the loyal generals must have some way of

communicating with each other without needing to send messages through a path con-

trolled by a traitorous general. Therefore, in the network graph, the loyal generals just

need to be connected, which means that the connectivity of the network needs to be at

least f +1 [LSP82]. The minimum number of rounds is still f +1 for written messages,

however, which is the same as for oral messages [DS83].

This discussion of oral and written messages in synchronous point-to-point

systems has so far only considered the case of traitorous generals. In a real system, the

links can be traitorous as well. A faulty link may modify messages in transit, or it

may fail to deliver some of the messages altogether. However, to an outside observer, a

traitorous link is indistinguishable from the case where one of the generals at either end

of the link is traitorous. Although each link connects two generals, a single traitorous

general is sufficient to produce exactly the same effect as a faulty link. Therefore, any

protocol that can tolerate f traitorous generals can also tolerate f faulty links if none

of the generals are traitorous [Fi83].

2.2 Implications for fault-tolerant systems

Some systems can only tolerate faults that cause nodes to stop responding. A Byzantine-

resilient fault-tolerant system, on the other hand, must operate correctly even if the
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faulty nodes act like traitorous generals and actively try to thwart the agreement proto-

col. This model makes sense if the system is distributed over the Internet, and each

node is controlled by a different party, since some of the nodes may very well be

actually malicious. However, Byzantine resilience is a desirable design goal even if

the nodes are not expected to be malicious. It is very hard, perhaps impossible, to

predict all the ways in which a system may fail, and to analyze all of their consequences.

For the effects it produces, a particularly unfortunate and unexpected fault might as

well be malicious. Byzantine resilience guarantees that the system continues to operate

correctly no matter how a failed node behaves.

Designing a system to be Byzantine resilient can be more difficult than design-

ing a system to handle only specific faults. At the same time, however, a Byzantine-

resilient system is easier to analyze. By allowing the faulty nodes to behave in arbitrary

ways, the designer no longer needs to perform a case-by-case analysis of the effects

of every conceivable fault. Instead, an analysis of the system only needs to consider

whether each node has failed or not. As [WLG78] explains in its description of the

seminal SIFT fault-tolerant computer system:

The study of fault-tolerant computing has in the past concentrated on fail-

ure modes of components, most of which are no longer relevant. The prior

work on permanent “stuck-at-one” or “stuck-at-zero” faults on single lines

is not appropriate for considering the possible failure modes of modern

LSI [large-scale integration] circuit components, which can be very com-

plex and affect the performance of units in very subtle ways. Our design

approach makes no assumptions about failure modes. We distinguish only

between failed and nonfailed units. Since our primary method for detecting
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errors is the corruption of data, the particular manner in which the data are

corrupted is of no importance.
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CHAPTER 3

The X-38 Fault-Tolerant
Parallel Processor

The Fault-Tolerant Parallel Processor (FTPP) is an architecture for high-performance

fault-tolerant computer systems, developed at the Charles Stark Draper Laboratory.

The X-38 FTPP is one implementation of this architecture, designed for the flight con-

trol of the NASA X-38 experimental crew return vehicle. The X-38 FTPP was built

from mostly commercial off-the-shelf components, yet it achieves an availability of at

least 99.999% [RLB02].

This chapter describes the FTPP architecture and the X-38 FTPP computer

system. The description here draws from [HL91], [RLB02], [Ed02], [Bu01], and

[CDSL02].

3.1 Architecture

Applications on the FTPP run on a virtual processor, where each virtual processor is

actually a number of physical processors, each with their own memory, and all running

the same program. An FTPP system has multiple virtual processors, allowing it to

run several tasks simultaneously. In the X-38 FTPP, a virtual processor can consist of

between one and four physical processors.
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Figure 3-1: Conceptual architecture of the X-38 FTPP (based on the diagram in [Bu01]).
Readings from sensors are collected by the ICPs, which are not replicated. The single-
source data from each ICP is voted before being passed on to the processors of the
replicated FCP, to ensure that each processor of the FCP uses identical input. The
output from the processors of the FCP is voted again before being sent to the actuators,
which are also controlled by a set of ICPs.

As an example, the virtual processor for an instrumentation control proces-

sor (ICP) consists of just one physical processor. An ICP performs input/output with

devices outside of the FTPP, such as sensors and actuators. ICPs are not replicated, al-

though it is certainly possible to have multiple sensors connected to different ICPs mea-

suring the same quantity. The virtual processor for the flight-critical processor (FCP),

on the other hand, is replicated across four physical processors. The FCP uses the data

collected by the ICPs to perform the actual flight-control computations. Figure 3-1

illustrates how the FCP and ICPs cooperate to control a physical plant.

The physical processors that make up a virtual processor run the same program

and should have the same state, but the physical processors are not synchronized at the

machine instruction level. Instead, each processor’s clock is allow to differ slightly from

the other processors’ clocks by some tolerance amount, and the processors vote among

themselves mainly when they receive input or produce results. The different processors

that make up a virtual processor are synchronized through the sending and receiving
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Figure 3-2: Physical architecture of the current version of the X-38 FTPP. The X-38
FTPP consists of five fault-containment regions, each of which contains a single phys-
ical processor from the four-processor FCP. Each fault-containment region also con-
tains one or more ICPs, which are unreplicated. The network elements connect the
different fault-containment regions. Since the FCP consists of only four physical pro-
cessors, the fifth fault-containment region does not contain a physical processor from
the FCP. In a version of the X-38 FTPP that uses message authentication, the fifth
fault-containment region can be eliminated.

of messages.

Because of the large number of physical processors in the system, it would

be impractical to connect all of them to each other directly. Instead, the physical pro-

cessors are grouped into fault-containment regions, which are regions that are isolated

from each other, and therefore are expected to fail independently. Each of the physical

processors that makes up a virtual processor goes into a different fault-containment

region.
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The fault-containment regions are connected to each other through their net-

work elements. The network element is responsible for handling all communication,

whether it is between physical processors in the same virtual processors, or between

different virtual processors. Each fault-containment region has a network element, and

all of the network elements are connected to each other in a complete-graph topology,

with point-to-point links between every pair of network elements. The processors

interface with the network element through shared memory.

Figure 3-2 illustrates the physical architecture of the X-38 FTPP, showing the

processors, the network elements, the fault-containment regions, and the connections

between them.

The network element helps make the replicated nature of the system transpar-

ent to the applications. For the most part, an application can just assume that it is

running on a single processor. The network element makes sure that every processor

in the same virtual processor receives the same inputs.

The X-38 FTPP is largely built out of commercial off-the-shelf hardware. The

main exception is the network elements, which are implemented in custom hardware

because of the high performance required of them.

3.2 Capabilities

The X-38 FTPP provides several services to the applications that are running on it. The

most significant of these is communication.

The X-38 FTPP offers several classes of communication primitives. A Class 1

exchange is a single-round exchange for voting data among the physical processors in

a virtual processor, to ensure that all of the physical processors have the same value.
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In a Class 1 data exchange, each processor sends its version of the value to every other

processor. Then each processor takes the resulting vector of values that it receives, and

picks the majority value as the value to use. The majority value is found by performing

a bit-by-bit vote on the messages. (This is the conceptual description of the process; in

reality, it is the network elements and not the processors that send the values to each

other and vote on the results.)

A Class 2 data exchange sends a value from a single processor to a group of

processors that must be in agreement about the value. This is the classic Byzantine

commander and lieutenants problem that [LSP82] describes. A Class 2 exchange is

used for both sending data from an ICP (single physical processor) to the FCP (multiple

replicated processors), as well as for sending data from a member of the FCP to the rest

of the FCP.

The Class 2 data exchange proceeds in two rounds. The FTPP must tolerate

one fault during the process, and so it needs f + 1 = 2 rounds of message exchange, as

shown in [LSP82]. In the first round, the source processor (really its network element)

sends its value to each of the recipient processors. In the second round, the recipient

processors reflect the value that they received to each other. Finally, each recipient takes

the vector consisting of the copies of the message, and picks the majority value as the

value to use.

The specification for the current version of the FTPP requires that a Class 2

data exchange, with its two rounds of messages, be completed in 200 µs. A less stringent

requirement is that the system has at most 1 ms to make all of the needed data available

to the tasks that run every 20 ms, which is the highest rate at which tasks are scheduled

on the FTPP.
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The FTPP provides several other services in addition to communication. It

manages the startup process, during which it detects which processors are available, and

puts them into a synchronized state. It schedules the tasks that run on each processor

according to their priority and the frequency with which they need to run. It maintains

a distributed clock across the multiple fault-containment regions, providing a consensus

value for the current time to applications that need it. It also detects and reports the

faults that occur.

3.3 Fault handling

The FTPP has multiple layers of fault detection, masking, and recovery. It performs

self-testing to detect internal errors. It also uses voted message exchanges, as described

earlier, to mask faults that affect any single processor.

The FTPP is designed to handle two non-simultaneous Byzantine faults. Here,

a fault is defined as a failure of one fault-containment region in any way. Two non-

simultaneous faults means after the first failed fault-containment region has been de-

tected and isolated, the system can continue to operate correctly if a second fault-

containment region fails. Of course, there is no guarantee that the system can always

identify which fault-containment region has failed and remove it. If a second fault-

containment region fails before the system can identify the first failure, then the two

failures are considered simultaneous, and thus are beyond the scope of the system.

The requirements for the X-38 FTPP call for handling only one fault at a time.

Making the system tolerate two simultaneous faults would be costly. As [LSP82] shows,

in a system that uses non-authenticated messages, handling two simultaneous faults

would require 3 f +1= 7 fault-containment regions. Connecting all 7 fault-containment
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regions to each other would require 21 links. Furthermore, performing a single-source

message exchange would require f + 1= 3 rounds of messages. Requiring that the two

faults be non-simultaneous strikes a good balance between robustness and cost.

Even though the largest virtual processor only has four physical processors, the

X-38 needs five fault-containment regions to handle two non-simultaneous faults. (With

five regions, after the first one fails and is removed, the system will have four regions

left, which is the 3 f + 1 regions that are needed to handle the next fault.) The fifth

fault-containment region is degenerate in the sense that it only exists to participate in

the message-voting process. If the X-38 FTPP had used authenticated messages instead,

this fifth fault-containment region would not be needed.

When a fault does occur, the FTPP has several ways of dealing with it. The

FTPP can reset the link between a pair of fault-containment regions, which often helps

to clear up a transient error. It can remove a physical processor from a virtual processor,

degrading the virtual processor to run with one fewer processor. If the processors vote

to do so, the FTPP can reboot a faulty processor. The FTPP can also rewrite the failed

processor’s memory with a good copy, and reintegrate the processor into its virtual

processor.

3.4 A new software-based FTPP

The current version of the X-38 FTPP uses custom hardware for its network element.

However, it would be preferable to build the FTPP entirely out of commodity compo-

nents, and to perform the functions of the network element with software. A software

implementation is easier to build and change, and it would reduce the number of parts
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that can fail. Therefore, Draper Laboratory is engaged in a project to build a new

software-based FTPP, a project of which this thesis is part.

Along with the move to a software implementation of the network element,

several other improvements will happen. First, the FTPP will get updated with newer

and faster hardware. The faster hardware will enable the network elements to sign

the messages that they send, which in turn will allow the system to use just four fault-

containment regions instead of five. Also, the new version of the FTPP may use a

partitioned operating system, which provides very strong separation between processes

running on the same processor. This would allow the new FTPP to use a single proces-

sor to perform the work of several.

Moving to a software-based system introduces several new challenges as well.

Implementing the network element in software means that less of the processor’s time

is available for other tasks. A software implementation must ensure that it does not add

too much overhead. Signing messages to implement message authentication adds to the

load on the processors too; this thesis is an attempt to find an acceptably efficient sig-

nature scheme. Finally, a software-based version of the network element will need new

implementations of the communication and time-synchronization protocols, which is

a problem that is addressed in the contemporaneous thesis [St06] by Reuben Sterling.
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CHAPTER 4

Message Authentication
The current version of the X-38 Fault Tolerant Parallel Processor (FTPP) does not dig-

itally sign the messages sent between the network elements. One of the tasks in the

development of the new software-based version of the FTPP is to add message authen-

tication using digital signatures. Authenticated messages prevent a network element

from lying about what it heard from another network element, thereby allowing the

design of the FTPP to be simplified. Whereas the current version of the FTPP needs

five fault-containment regions, a version using message authentication can achieve the

same reliability with just four fault-containment regions.

This chapter explains how the addition of message authentication allows the

number of fault-containment regions to be reduced by one. It shows that only single-

source messages need to be signed, and only by the original sender. It argues that the

message authentication scheme must be cryptographically secure, even though a faulty

processor is certainly not expected to actually attempt to break the scheme. Naturally,

cryptographically secure schemes are more resource-intensive, which conflicts with the

constraint of limited computational power. Finally, this chapter looks at some of the

intricacies involved in implementing a secure message authentication scheme, such as

the challenges of random number generation and the need to prevent message replays.
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4.1 How message authentication helps

It must be emphasized that the main goal of adding message authentication is to simplify

the design of the FTPP, by reducing the number of fault-containment regions from five

to four, while still maintaining the same level of fault tolerance. Although message

authentication also helps to detect random message corruption during transmission,

detecting transmission errors is not the main reason for adding message authentication

to the FTPP. In any case, the current version of the FTPP, without message authen-

tication, is a robust fault-tolerant system, and therefore already has mechanisms for

insuring message integrity.

Without message authentication, a system needs at least four nodes to tolerate

a Byzantine fault in any single node [LSP82]. Therefore, a five-node system is needed

to tolerate two non-simultaneous faults: after the first faulty node is detected and re-

moved, the remaining system is a four-node system that can tolerate the second fault.

(As mentioned earlier, however, there is no guarantee that the system can identify and

remove the node experiencing the first fault. If the system cannot, then the second fault

would be simultaneous with the first, and two simultaneous faults fall outside the speci-

fications of the system. This is a limitation of the FTPP both with and without message

authentication.) This section shows how message authentication enables a three-node

system to tolerate one fault, thereby making a four-node system sufficient to tolerate

two non-simultaneous faults.

4.1.1 Multi-source exchanges

Multi-source (Class 1) exchanges do not benefit from message authentication. In a multi-

source exchange, every node presumably has the same value, and the nodes perform a
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single-round message exchange to verify that they do in fact have the same value. Each

node sends its value to the others, then chooses as the final result the value that the

majority of the nodes sent.

This one-round exchange for multi-source messages can tolerate one faulty

node for any system with n ≥ 3 nodes, without needing authenticated messages: in

a three-node system, each of the two non-faulty nodes will have its own copy of the

message as well as the copy from the other non-faulty node, which makes a majority

among three copies. Adding more nodes while still limiting the system to one faulty

node obviously makes the majority more overwhelming.

4.1.2 Single-source exchanges

In a single-source (Class 2) exchange in an n-node system, one node wants to send a

value to the other n − 1 nodes. If the sender is not faulty, then at the conclusion of

the exchange, all the recipients must have the value that the sender actually sent. If the

sender is faulty, all the recipients must at least arrive at the same value at the end of the

exchange.

Without message authentication, no protocol can solve this problem in a three-

node system. Consider a three-node system consisting of nodes A, B , and C , where

node A is the sender. For simplicity, this analysis will assume that the values to be sent

are single-bit. In case (i) of Figure 4-1, the sender A is attempting to send the value 1.

Node C is the faulty node, and it insists to node B that A sent a 0. Since the sender A is

not faulty, node B , which is also not faulty, is required to conclude that A sent a 1.

However, node B has no way of knowing that node C was the faulty node.

Had the sender A been faulty instead, as illustrated in case (ii) of Figure 4-1, node B
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Figure 4-1: A three-node system with a single faulty node.

would have observed exactly the same thing. Therefore, in case (ii), node B would also

conclude that the sender A sent a 1. Since all the non-faulty nodes in the system must

come to the same conclusion, the non-faulty node C must also conclude that a 1 was

sent in this situation.

Node C , in turn, cannot distinguish case (ii) of Figure 4-1 from case (iii), where

node B is the faulty node. Therefore, in case (iii), node C would also conclude that the

sender A sent a 1. But this conclusion is wrong, since node A was not faulty, and it was

actually attempting to send a 0 instead.

These examples show that a three-node system cannot tolerate a single faulty

node if the system does not use authenticated messages. A more rigorous proof is

presented in [PSL80].

Adding message authentication fixes this shortcoming, and enables a three-

node system to tolerate one fault. Using message authentication, a single-source ex-

change proceeds in two rounds: in the first round, the sender node signs its message,

then sends it to all the other nodes. Then in the second round, the recipient nodes

reflect the signed message they received to each other. Each recipient node should there-

fore end up with multiple copies of the message. The recipient nodes use the majority

among the copies with valid signatures as the definitive version of the message from
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the sender. (If there is no majority, the recipient nodes use a predetermined tiebreaker

value instead.) Note that only the original sender node needs to sign the messages that

it sends. The recipient nodes do not need to sign the message again when they reflect it

to each other.

A case-by-case analysis shows why this protocol is correct. This protocol can

tolerate one fault; therefore, either the sender node or one of the recipient nodes can be

faulty. If the sender is faulty, then it may send different messages (validly or invalidly

signed) to different recipients, or it may fail to send a message at all to some of the recip-

ients. However, since only one faulty node is allowed, a faulty sender node implies that

none of recipient nodes is faulty. Therefore, each of the recipient nodes will faithfully

reflect the message it receives from the sender to each other. Every recipient node thus

ends up with an identical set of messages. Taking the majority among this set gives each

recipient node the same final value.

The other case is if one of the recipient nodes is faulty. A faulty node cannot

forge messages, so the faulty recipient node can either fail to reflect the message from

the sender, or it can reflect an invalidly signed message. The other non-faulty recipient

nodes will simply ignore the invalidly signed reflections. Since the sender node is not

faulty, the validly signed messages that each non-faulty recipient node ends up with will

all be the same, and each recipient node is guaranteed to have at least one validly signed

copy of the message. Therefore, when the recipient nodes take the majority among the

copies with valid signatures, they will all come to the same value.

4.1.3 Authenticators instead of signatures

Signing and verifying messages using digital signatures is slow. True digital signatures

use a different key for the signing and the verification process; as a result, anyone with
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the public key can verify signatures, but only the possessor of the secret key can gener-

ate them. The cost of this flexibility is that signature schemes require a certain level of

mathematical complexity, which makes them slow.

Message authentication codes (MACs) are an alternative to digital signatures.

Like a signature, the MAC of a message is a function of the message and a secret key.

Thus, a valid MAC can only be produced by someone who knows the secret key. Un-

like signatures, however, the same secret key is used to verify the MAC. Because MACs

are symmetric-key systems, signing and verifying messages using MACs is orders of

magnitude faster than using public-key signatures. The tradeoff is that MACs cannot

be used to prove that a message is authentic to a third party who does not know the

secret key. Giving everyone a copy of the secret key is not an option either, since

everyone would then be able to compute and forge MACs, making them useless for

authentication.

One possible solution is to have a separate secret key for every pair of nodes

in the system. This would allow any node to send authenticated messages to any other

node in the system. If a sender node needs to allow several recipient nodes to verify

a message, the sender node can append multiple MACs to the message, one for each

recipient node. This vector of MACs is called an authenticator. [CL99a] and [CL99b]

propose using authenticators instead of public-key signatures in fault-tolerant computer

systems.

Unfortunately, authenticators cannot replace public-key signatures in the new

version of the FTPP. Specifically, authenticators do not allow a three-node system to

tolerate one faulty node. Therefore, authenticators cannot help reduce the number of

fault-containment region the FTPP needs.
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Figure 4-2: A three-node system using authenticators.

The key difference between authenticators and public-key signatures is that an

authenticator cannot be used to prove to another party that a message is valid. A faulty

sender node could generate an authenticator that contains valid MACs for some of the

recipient nodes, but invalid MACs for the others. Thus, different recipients nodes can

receive the same message with the same authenticator and come to different conclusions

about its validity.

Figure 4-2 illustrates why authenticators are not sufficient for tolerating one

faulty node in a three-node system. The system consists of the nodes A, B , and C ,

where A is the sender node. In case (i), the sender A is non-faulty, and sends a 1 with a

valid authenticator to the recipients nodes B and C . Node C is faulty, and it reports to

node B that the sender sent a 0 with an invalid authenticator instead. Since node B is

non-faulty, it is required to agree with what the sender actually sent; therefore, node B

ignores the false report from node C , and concludes that the sender sent a 1.

In case (ii) of Figure 4-2, the sender node A is the faulty one instead. It sends

to each recipient node an authenticator that has a valid MAC for one node, but not for

the other. To node B , case (ii) is indistinguishable from case (i). Thus, node B will again
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conclude that the sender sent a 1 in case (ii). Since node C is also not faulty, it must

agree with node B ; therefore, node C also concludes that a 1 was sent. Node C in turn

cannot distinguish case (ii) from case (iii), so node C will conclude that a 1 was sent in

case (iii) as well. This conclusion is wrong, however, since the sender A was not faulty,

and it had actually sent a 0 instead.

4.1.4 What message authentication does not do

The main goal of adding message authentication is to reduce the FTPP from five fault-

containment regions to four, and to do this, only the sender node in a single-source

exchange needs to sign its messages. If the goal is to also guard against random corrup-

tions to the messages while they are in transit, then the recipient nodes should sign

the messages as well when they reflect the messages to each other. However, signing

and verifying messages is slow, and thus should be done as sparingly as possible. Other

mechanisms can be used to guard against random message corruption instead.

Another job that message authentication does not do is to catch all faulty nodes.

Message authentication can detect that a faulty node exists somewhere in the system,

but it cannot identify which node it is. If a recipient node claims that it received a

message with an invalid signature, there is no way to determine whether the sender

node is actually faulty, or whether the recipient node is lying. Message authentication

does not give the system any additional power to identify and remove faulty nodes.

4.2 The need for cryptographic security

Because computational power and processor time are so dear in an embedded system, it

is very tempting to skimp on the cryptographic security of the message authentication
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scheme, and choose a fast but insecure one instead. After all, the nodes in the system

are not malicious, and it is inconceivable that they would actively attempt to break

the scheme. Perhaps a fault-tolerant system only needs to guard against random alter-

ations to the messages and signatures. Several previous theses have taken this approach,

proposing to use cryptographically insecure schemes for message authentication. This

section will show that insecure schemes are can often be broken by simple and plausible

random faults. They are therefore unsuitable even if the faulty nodes are not actively

malicious.

As an example, consider the signature scheme proposed in [St95]. Like most

signature schemes, this one follows the classic hash-and-sign paradigm. The hash func-

tion is a simple checksum: it splits the message into 32-bit chunks, and computes the

32-bit sum of those chunks. Then the signature function takes the checksum, and mul-

tiplies it by the secret key k (mod 232), where k is a 32-bit odd number. To verify the

signature, the recipient multiplies the signature by the public key k−1 (mod 232), and

compares the result to the checksum of the message.

This signature scheme is certainly very fast. On a typical processor, hashing

would take one instruction for every four bytes of the message, and signing would take

just a single additional instruction. Verifying the signature is equally quick. However,

this scheme is insecure against both message corruption and outright forgery. In fact, it

is easy to conceive how a forgery might happen:

Imagine that a fault-tolerant system is performing a single-source message ex-

change. The sender node has just sent its signed message to all of the recipient nodes,

and the recipient nodes are about to reflect the message they received to each other. As it

is retransmitting the message, one of the recipient nodes becomes faulty, and a single-bit
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error in its processor’s cache circuitry causes the node to swap two of the 32-bit words

in the message. However, the checksum remains the same for this corrupted message,

and the signature therefore remains valid. This failure of the signature scheme violates

the requirement that no recipient node can forge a message from the sender node, and

causes the message-voting protocol to yield the wrong result.

Perhaps a slightly more secure hash function can fix this problem. [Cl94] pro-

poses using a cyclic redundancy check (CRC) instead of a checksum, while still using

modular multiplication for the signature function. A CRC is more robust against

message corruption than a checksum [PB61]. It can detect minor random changes

to the message with high probability. However, when a node fails, the message corrup-

tions that it produces may not be randomly distributed over the space of all possible

messages. This means it is incorrect to assume, for example, that a 32-bit CRC has a

1/232 probability of missing a corrupted message. Determining the actual probability

would require a careful analysis of the CRC implementation itself. For example, in one

common version of the CRC algorithm, left-shifting a message by some number of bits

causes the CRC of the message to shift by the same number of bits (assuming that the

upper bits of the CRC are zero). Therefore, if a node develops a fault that causes it to

bit shift received messages and their CRCs before retransmitting them, the node will

be able to forge corrupted messages that cannot be detected by the CRCs.

The modular multiplication used as the signature function is not immune to

forgeries by random faults either. Since bit shifts are multiplications, modular mul-

tiplication suffers from the bit-shift vulnerability as well. A more complex failure

is that if a function to compute multiplicative inverses exists somewhere in memory

(such a function is needed to generate the key pair), then a faulty node might call the
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function on another node’s public key by accident, thereby generating the other node’s

secret key. The faulty node could then use the spuriously generated secret key to forge

messages. Even if the key generation function is omitted from memory, the system

is still not safe against this mode of failure. The algorithm to compute multiplicative

inverses is quite simple, and machine instructions implementing this algorithm may

appear within some other function that was written to perform a completely unrelated

task. They may even appear inside data. A hardware fault could cause these instructions

to be called, and cause a faulty node to forge signatures. Granted, the chance of such

a fault happening is extraordinarily low. However, without a thorough analysis of

the entire system, it is impossible to say whether the probability is low enough to be

negligible.

As the final example of a cryptographically insecure message authentication

scheme, consider the one proposed in [Ga90]. This scheme combines hashing and

signing into a single function. Like the previous scheme, this scheme hashes the message

using a CRC. Rather than using a separate function to sign the hash, however, this

scheme instead assigns a different CRC polynomial to each node. The CRC polynomial

serves as the key, and it is used for both signing and verification, making this scheme a

symmetric signature scheme. Symmetric signatures schemes are particularly vulnerable

to forgeries, since every node has the keys needed to forge signatures from every other

node. If the nodes store the CRC polynomials in an array, for example, a fault during

array index calculations could generate a forgery.

From these examples, it is clear that a Byzantine-resilient fault-tolerant system

needs cryptographically secure message authentication. The fear is not that a faulty

node might become malicious and deliberately attempt to forge signatures. However, a
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signature scheme that is vulnerable to deliberate forgeries is also vulnerable to accidental

forgeries. Some of the scenarios that lead to accidental forgeries are more likely than

others, but a design that uses cryptographically insecure signatures would have to con-

sider them all, and make sure that the probability of each one happening is sufficiently

low. It may not even be possible to enumerate all the possible ways a forged message

could be generated.

Using a cryptographically insecure message authentication scheme would re-

quire extensive failure-modes and effects analysis (FMEA), which is precisely what a

Byzantine-resilient design aims to avoid. A cryptographically secure scheme, on the

other hand, promises that there is no conceivable way a faulty node can produce a

forged message in any feasible amount of time. No signature scheme is perfect, of

course, and there is always a possibility that a node could fail in an extraordinarily

unlikely way, generating a successful forgery by sheer luck, but the chances of this

happening are much slimmer than the chances of the other ways the system could fail.

It is also possible that a faulty node might break a cryptographically secure signature

scheme in a way that is currently unknown to any cryptographer, but one hopes that

faith in the science of cryptography is justified.

4.3 Message authentication design considera-
tions

A cryptographically secure hash and signature function form the core of a message

authentication scheme. However, to design a secure message authentication scheme for

communication in a fault-tolerant system, other considerations need to be taken into

account as well:
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4.3.1 Preventing message replays

Cryptographically secure signatures prevent a faulty node from forging messages. Sig-

natures do not prevent a node from storing a validly signed message from another node

and retransmitting it later over and over again, however, since the signature remains

valid.

The solution to this problem is to make messages expire so that they cannot

be replayed. One way to make messages expire is to include a counter in the messages.

The counter increases with each message sent, so no message should ever be repeated.

The signature is calculated over the entire message, including the counter, to prevent a

faulty node from forging the counter on a replayed message.

A side benefit of adding a counter to the messages is that it helps keep the nodes

of the system synchronized. If the counter skips a number, for example, the recipient

node can conclude that either it has missed a message or the sender node is faulty.

4.3.2 Randomness

Many signature schemes—including all the ones evaluated in this thesis—need a source

of randomness during the calculation of the signature. In some schemes, good random-

ness is critical. For example, DSA (described in section 5.4) needs a randomly generated

nonce for each message to be signed. If the same nonce is ever used for two different

messages, the recipient can deduce the signer’s secret key. In fact, even if only a few bits

of the nonce can be predicted, an adversary can discover the signer’s secret key given

enough signed messages [BGM97, HS01, NS02].

Generating random numbers is hard. A cryptographically secure random num-

ber generator needs to generate a stream of random numbers that an adversary can-
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not predict, even after having observed portions of the stream. The standard ran-

dom number generators supplied with most programming languages and libraries are

not cryptographically secure. One option is to add a special hardware device for ran-

dom number generation, but this option is often infeasible. On desktop computers,

cryptographically secure random number generators generally use the timings of in-

terrupts, hard drive head movements, keystrokes, and mouse movements as a source

of entropy [ESC05]. Unfortunately, timings are an unsuitable source of entropy in a

real-time fault-tolerant system. The clocks in all of the nodes are tightly synchronized

with each other, so they can hardly be considered unpredictable. Furthermore, if the

system is operating correctly, each of the nodes should receive exactly the same inputs

and interrupts. For random number generation in fault-tolerant systems like the FTPP,

a different source of entropy is needed.

One solution is to simply include a “pool” of entropy in each node. Each

node would be programmed with a small number of random bytes generated externally.

These random bytes would serve as the seed to a cryptographically secure expansion

function that can output as many new random bytes as the node needs. As long as the

nodes do not know the contents of each other’s entropy pools, the random numbers

generated this way are cryptographically secure and unpredictable.

4.3.3 Collision resistance of hashes

The signature function in most signature schemes expect an input of a fixed length.

However, the messages to be signed can be arbitrarily long. In practice, therefore,

signature schemes typically hash the messages first, then compute the signatures on

the fixed-length hashes.
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Like the random number generator and the signature function itself, the hash

function also needs to be cryptographically secure. Given the hash of a message, a faulty

node must not be able to find another message with the same hash, since the other

message with the same hash would be a forgery. Finding a new message that yields a

given hash is called a preimage attack; all cryptographically secure hash functions must

be preimage resistant.

For most applications, there is a second attack on the hash function that must

be prevented: the collision attack. Even if inverting the hash function for a given hash

is difficult, it may be easy to find two distinct messages with the same hash, when the

desired hash is not fixed. Because of the so-called “birthday paradox” (the counterintu-

itive result that, in a group of just 23 people, the probability of at least two of them

having the same birthday exceeds 50%), finding a collision takes about the square root

as much work as finding a preimage, even for cryptographically secure hash functions.

This means that a collision-resistant hash must be twice as long as a merely preimage-

resistant hash, against an adversary with the same computational power.

For example, one might posit that a faulty node can compute one million

hashes per second. Then in one year of operation, the node has a 1/584,942 chance of

finding a preimage to a 64-bit hash, which is an acceptably low probability. To achieve

the same resistance against collisions, however, the hash would need to be 128 bits long.

Fortunately, for the message-voting process, collision resistance is not needed.

In a single-source message exchange, if the sender is faulty, it may send different validly

signed messages to different recipient nodes. The message-voting process can already

deal with this misbehavior, so whether or not the messages have the same hash gives

the sender no additional power to undermine the message-voting process. And if a

55



Authenticated Messages for a Real-Time Fault-Tolerant Computer System David Chau

recipient node is faulty, it still cannot forge signatures from the sender node, so it too

has no use for hash collisions. Therefore, the hash function for message authentication

does not need to be collision resistant, and thus can use shorter hashes.

That said, there are no cryptographically secure hashes in common use that are

only preimage resistant, but not collision resistant.∗ Therefore, a system that needs a

cryptographically secure hash function will have to settle for the longer and somewhat

slower collision resistant hashes, whether collision resistance is needed or not.

4.3.4 Key management

In some distributed computer systems where nodes join and leave the system frequently,

key management is a major problem. If the nodes do not know each other’s public keys

beforehand, and if there is no trusted authority to vouch for every node’s key, then

the nodes must use some key exchange protocol to distribute their keys to each other.

However, since a faulty node may try to give different public keys to different nodes,

the key exchange protocol itself must be fault tolerant. Therefore, the key management

problem turns into another agreement problem.

Fortunately, key management for the FTPP will be much easier. The builders

of the system can simply generate the keys for each fault-containment region before-

hand, and load them into the processors’ memory along with the program code and

data.

∗Actually, the MD5 hash function [Ri92] is in fact preimage resistant but not collision resistant
in practice [WFLY04], but this weakness was not intentional. In any case, although MD5 produces
relatively short hashes compared to other popular hash functions, the hashes are still longer than they
would be if MD5 only needed to be preimage resistant.

56



CHAPTER 5

Signature Schemes
A digital signature guarantees that the message it accompanies genuinely came from the

sender. True digital signatures are a function of both the message itself and a secret piece

of information that only the sender knows. Signatures therefore serve two purposes.

Like checksums, CRCs, and hashes, signatures ensure message integrity. If the message

is modified, the signature will not be valid anymore, and the recipient will detect that

the message has been corrupted. Unlike checksums and hashes, however, signatures

also guarantee authenticity: since only the signer knows its secret key, no one else can

forge messages from the signer. Both of these properties are needed in a fault-tolerant

computer system that depends on authenticated messages.

This chapter describes the various signature schemes that were considered for

the new software-based version of the Fault-Tolerant Parallel Processor (FTPP). RSA

and DSA are signature schemes based on the modular exponentiation of large integers.

Elliptic curve DSA is an analogue of DSA based on the multiplication of points on an

elliptic curve over a finite field. Finally, SFLASH and TTS are signature schemes based

on multivariate quadratic equations.

This chapter first gives an overview of how digital signatures work, then pro-

ceeds to introduce the signature schemes themselves.
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5.1 Overview of digital signatures

The digital signature schemes described here are public-key signature schemes. This

means that the process of signing a message and the process of verifying the resulting

signature use distinct keys. The secret key (also called the private key) is used for signing,

and the public key is used for signature verification. The secret key is known only to the

signer, whereas the public key is known to everyone who needs to verify the signatures.

In a system with multiple nodes, all of which need to sign messages, every node would

have its own pair of secret and public keys. One of the requirements for a secure digital

signature scheme is that there should be no way for an adversary to deduce the secret

key, even if the adversary has access to the public key and a large number of signed

messages.

Generically speaking, a digital signature scheme consists of three parts: key

generation, message signing, and signature verification. Key generation produces a key

pair consisting of a secret key and a public key. Message signing takes a message and

a secret key, and produces the signature. Signature verification takes a message, its

signature, and a public key as inputs, and indicates whether the signature is valid for

the given message and public key.

A secure signature scheme is invulnerable to forgery. Without the secret key,

an adversary should not be able to produce any message-signature pair such that, under

the corresponding public key, the signature is valid for the message. This forgery re-

sistance implies that digital signatures also ensure message integrity, since a corrupted

message with a valid signature would be a forgery. For message authentication in the

FTPP, both properties are useful, but forgery resistance is the main goal, and detection

of message corruption is a beneficial side effect.
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The signing function in most signature schemes typically takes a message of a

short, fixed length as the input. This length is usually much shorter than the length

of the messages the system actually wants to send. One possible solution is to break

the message up into many segments, and sign each segment individually. However,

signature functions are slow, so it is best to sign as few times as possible. The solution

used in practice in most systems is to hash the message first, then use the fixed-length

hash as the input to the signature function. To maintain the forgery resistance and

message corruption detection properties of the signature, it must be difficult for an

adversary to generate a (new) message that has a given hash. Suitable hash functions

include MD5 [Ri92] and SHA-1 [FIPS 180-1].

Because all of the signature functions considered here are complex mathemati-

cal functions, it is very difficult to say exactly how secure they are. The best estimates

are merely educated guesses.∗ The mathematical objects used in these signature schemes

have a lot of structure, so the best attacks are faster than brute force. For example,

there are obviously faster ways to factor an integer than trying to divide the integer by

every number less than it. Thus, the security level of a signature function is not just a

straightforward function of its key size.

The problem of evaluating the security of these signature schemes is made even

more complicated by the fact that the schemes are very different from each other, so it is

difficult to compare them directly. Therefore, to enable the evaluation of these schemes,

their estimated security level is usually expressed as the number of operations needed to

break an equally secure (symmetric) encryption function by brute force. For example,
∗Note, however, that all of these signature functions are believed to be cryptographically secure.

The security level of these schemes, which cryptographers are trying to quantify, is not a choice between
“easy to forge” and “hard to forge,” but rather a choice between “very hard to forge” and “astronomically
hard to forge.”
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if a signature scheme has a security level of 264, then forging a signature is about as

difficult as breaking an encryption function with 64-bit keys. If a processor can try

one million keys per second, then in a year of continuous operation, it has a 1/584,942

chance of finding the correct 64-bit key for the encryption function. Therefore, this

1/584,942 probability is also taken to be the probability of forging a signature in a year’s

time for a signature scheme with a security level of 264. This probability is acceptably

low, but to include a safety margin, most applications specify a security level of at least

280. All of the signature schemes considered here claim to meet this level of security.

5.2 Notation

In the signature schemes described here, m generally denotes a message to be signed,

and σ is the resulting signature. SK is the secret key, and PK is the public key. A

signing function is represented as signSK(m), and the signature verification function is

verifyPK(m,σ). Finally, hash(m) denotes a hash function applied to a message. The

variables in some signature schemes such as DSA have conventional names popularized

by standards documents; the presentation here will try to follow those conventions.

When manipulating messages and bit strings, x ⊕ y means the exclusive-or of

x and y, and x ‖ y denotes the concatenation of x and y. The length of a string x is

denoted by |x|.

5.3 RSA

RSA [RSA78], named after its inventors R. Rivest, A. Shamir, and L. Adleman, is a

widely-used signature scheme that operates by performing modular exponentiations
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on large integers. (RSA can also be used as a public-key encryption scheme.) It is

conjectured, but not proven, that forging RSA signatures is as hard as factoring large

integers. RSA can use keys of arbitrary length, with longer keys being more secure but

slower.

5.3.1 Key generation

RSA performs arithmetic modulo n = pq , where p and q are prime numbers. Thus,

to generate an RSA key pair, first pick large primes p and q . Conventionally, the size

of their product n is considered to be the size of the RSA key. The best known way

to forge signatures is to factor n, so n should be large enough to be infeasible to factor.

Recommendations for the size of n vary. For a security level of 280, the recommended

size ranges from 760 bits long [Si00] to 1,536 bits long [Pr03a]. Many applications have

settled on a key length of 1,024 bits. Since several factoring algorithms have a run time

that is a function of the size of the smallest factor, p and q should be approximately the

same size for maximum security. However, the difference between p and q should also

not be too small, since there are also factoring algorithms whose run time depends on

the size of the difference between the factors.

Pick a small integer e relatively prime to both p − 1 and q − 1. This is the

exponent that will be used for verifying signatures; the public key is thus PK = (n, e).

A small e makes signature verification faster, but a very small value such as e = 3 may

be insecure. For example, when e = 3, an adversary can discover half of the bits of

the secret key [Bo99]. It is not known whether any of these low-exponent weaknesses

allow forgeries in practice, but many implementations choose e ≥ 65,537 to be safe.

Finally, compute d such that ed ≡ 1 (mod lcm(p−1, q−1)). The d that solves
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this congruence can be found by the extended version of the Euclidean GCD algorithm.

Then the secret key is SK = d .

5.3.2 Signing

To sign a message m < n, compute the signature σ = md mod n. Send σ with the

message. The signature is as long as the modulus, so for 1,024-bit RSA, the signature

is 128 bytes long. RSA produces the longest signatures among the schemes considered

here. Longer signatures take longer to transmit, which is a liability when the amount

of time available is limited.

5.3.3 Verification

Compute σ e mod n, and compare the result to the original message m. The signature

is valid if the two are the same.

This verification procedure works because σ e ≡ (md )e (mod n). For every

element a ∈ Zn=pq (including the ones that are multiples of p or q), the sequence

a, a2, a3, . . . (mod n) has a period that is a divisor of lcm(p − 1, q − 1). The key gen-

eration process picked e and d such that ed ≡ 1 (mod lcm(p − 1, q − 1)), therefore,

md e ≡ mk lcm(p−1, q−1)+1 ≡ m (mod n).

5.3.4 PSS encoding

The RSA signature scheme as described is not secure against all types of forgery. Because

RSA is multiplicative, that is, sign(m1m2) = sign(m1) sign(m2), an attacker can derive

new signatures from the signatures of other messages that it has. For example, if an

attacker has the message m and its valid signature σ , the attacker can pick an arbitrary
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value x and compute the new message m′ = mx e mod n and the new valid signature

σ ′ = σ x mod n. Even more simply, the attacker can just pick any value σ ′ ∈ Zn, then

compute m′ = (σ ′)e mod n, and σ ′ will be a valid signature of m′.

The cause of this problem is that the attacker can too easily generate messages

to fit a signature. The attacker cannot choose the message that it forges, but if it just

works backwards from an arbitrarily chosen signature, it will be able to produce some

forged message. The solution to this problem is to restrict the set of messages that are

valid. If the set of valid messages is only a minuscule subset of the set of all possible

messages, then the attacker will have essentially no chance of producing a valid message

from a randomly chosen signature.

To some extent, the hash-then-sign method described earlier in the overview

already implements this solution. To review, under the hash-then-sign method, the

“message” that is the argument to the signature function is not the message itself, but

rather a hash of the message. That is, using hash-then-sign, the signature is computed as

σ = (hash(m))d mod n, rather than as md mod n. Since a secure hash function is hard

to invert, even if the attacker can forge a valid signature on some hash output hash(m),

the attacker still has no way of actually producing the message m itself. To verify

the signature, the recipient computes σ e mod n, as described before, but compares the

result to the hash of the received message instead of to the message itself.

The problem with this simple hash-then-sign scheme is that there is no proof

that this change to RSA makes it immune to forgery. The argument just presented,

although intuitive, is not a rigorous proof. The concern is mostly theoretical, but with-

out a proof of security, it is conceivable that an attacker could forge signatures, even if

the hash function is secure, and even if the RSA problem (that of performing the signing
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function without knowing the secret key) is hard to solve.∗ To produce a provably

secure signature scheme, a more complex manipulation of the message, beyond simply

hashing the message then signing the hash, is needed.

RSA-PSS is a way of signing messages with RSA that is provably secure against

forgery. It applies a more complex regimen of hashing, padding, and salting (adding

randomness) to the message to produce a signature scheme that can be proven secure,

assuming that the RSA problem is hard, and assuming that the hash function is secure.

RSA-PSS is based on, and named after, the Probabilistic Signature Scheme proposed

in [BR96]. RSA-PSS itself is described in [PKCS1v2.1], and a proof of its security is

given in [Jo01].

Under RSA-PSS as specified in [PKCS1v2.1], the message is first hashed, then

prepended with a fixed padding of eight zeros and appended with a randomly generated

salt:
m′ = 0x00 00 00 00 00 00 00 00 ‖ hash(m) ‖ salt

The length of the salt is up to the implementation, but one recommendation is to make

it the same length as the hash output.

Next, hash the resulting string again, and use the result as the input to a mask-

generation function (MGF), to get the mask: mask = MGF(hash(m′)). The mask-

generation function is:

MGF(x) = hash(x ‖ c) ‖ hash(x ‖ (c + 1)) ‖ hash(x ‖ (c + 2)) ‖ . . .

where c is a four-byte counter that begins at zero. The mask-generation function out-

puts as many bytes as necessary to make |mask|+ |hash(m′)|+ 1 just shorter than the

byte length of the RSA modulus.
∗More formally, the concern is that, even though inverting hash or finding collisions in it is hard,

and even though finding x for a given y such that y = x e mod n is hard, an attacker may nevertheless be
able to find some m and σ such that hash(m) = σ e mod n, without knowing d .
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Figure 5-1: PSS encoding (based on illustration from [PKCS1v2.1]).

Then, construct the data block db = 0x00 00 ... 00 01 ‖ salt, where salt is

the same salt as generated earlier. Use as many leading zeros as necessary to make db

the same length as the mask.

Finally, construct the encoded message m′′ = (db⊕mask) ‖ hash(m′) ‖ 0xbc .

(The final byte 0xbc is just for compatibility with other standards.) This encoded

message should be just shorter than the RSA modulus n. The signature is then σ =

(m′′)d mod n. Figure 5-1 illustrates the PSS encoding process.

Verifying an RSA-PSS signature is essentially performing the encoding process

in reverse. First, use the RSA verification function to recover the encoded message:

m′′ = σ e mod n. Check that the final byte of m′′ is 0xbc . The bytes immediately

before that are hash(m′). Using hash(m′), recover the mask: mask = MGF(hash(m′)).

Since the first bytes of m′′ are db⊕mask, xor-ing with the mask again recovers the data
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block db. Verify that the leading bytes of db are zeros, followed by a one. Finally, the

last bytes of db are the salt. Knowing the salt, hash the received message, and recon-

struct m′ = 0x00 00 00 00 00 00 00 00 ‖ hash(m) ‖ salt. Hash the reconstructed m′

again, and make sure the result is identical to the hash(m′) embedded in the encoded

message m′′. If the signature passes all of these tests, then it is valid.

5.4 DSA

The Digital Signature Algorithm (DSA) is a public-key signature scheme specified in

the U. S. Federal Government’s Digital Signature Standard [FIPS 186-2]. Like RSA,

DSA operates by performing modular exponentiations on large integers, although the

moduli are prime rather than composite. Forging DSA signatures is widely believed to

be as difficult as solving the discrete logarithm problem, although this equivalence has

not been proven.

5.4.1 Key generation

DSA operates on a subgroup of the multiplicative group of integers modulo a large

prime p. The subgroup is generated by an element g , which has order q , a smaller

prime number. Solving the discrete logarithm problem in a group whose size is b bits

long has roughly the same difficulty as factoring a b -bit number, so a p of a certain

size offers about the same level of security as an RSA modulus of the same size [LV01].

Thus, for a security level of 280, a p of about 1,024 bits is appropriate. The size of q

should be about the same as the size of the hash function output; [FIPS 186-2] specifies

a size of 160 bits for q , since it mandates the use of the hash function SHA-1, which

also has an output of 160 bits.
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The size of the signature will be twice the size of q . DSA signatures are signifi-

cantly shorter than RSA signatures in practice.

The numbers p, q and g are system parameters in DSA: they do not necessarily

belong to any single user, as they are public and can be reused. To generate them, first

pick a prime q . Then find a larger prime p such that p − 1 is a multiple of q ; therefore,

p = aq+1 for some integer a. Next, find a generator g that will generate the subgroup:

pick an h ∈Z∗p such that ha mod p > 1, and let g = ha mod p. The subgroup generated

by g will have order q .

To generate a user’s key pair, pick a random x between 1 and q − 1, and let

y = g x mod p. Then the public key is PK = y, and the secret key is SK = x.

5.4.2 Signing

To sign the message m, first pick a random nonce k between 1 and q−1. Then compute:

r = (g k mod p)mod q s = k−1(hash(m)+ x r )mod q

The signature is σ = (r, s). In the extraordinarily unlikely event that r or s is zero, pick

a new k and recompute the signature. Note that r and s are elements of neither Z∗p
nor its subgroup generated by g . Instead, r and s can be thought of more as exponents

to g .

It is extremely important that k be picked randomly and unpredictably. An

adversary who receives two messages with the same k can recover the signer’s secret

key! Given the two signatures

s1 = k−1(hash(m1)+ x r1)mod q

s2 = k−1(hash(m2)+ x r2)mod q

the adversary has two equations with two unknowns (k−1 and x). The adversary can

easily solve for the secret key x. Furthermore, if the adversary can predict even a few
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bits of k, [NS02] shows how the secret key can be recovered. An implementation of

DSA must take care to use a good random number generator.

RSA is vulnerable to trivial forgeries without PSS encoding. DSA, which al-

ready incorporates hashing into the signing process, avoids this problem, and therefore

does not need another layer of encoding.

5.4.3 Verification

To verify a signature σ = (r, s) on the message m, first check that 0 < r < q and that

0< s < q . Then compute:

u1 = s−1 hash(m)mod q

u2 = s−1 r mod q

v = (g u1 y u2 mod p)mod q

Accept the signature as valid if v = r .

This verification procedure is correct because

g u1 y u2 ≡ g (hash(m)/s mod q)y (r/s mod q) ≡ g hash(m)/s y r/s (mod p),

since g has order q . And since y = g x , the equation reduces further to

≡ g hash(m)/s g x r/s ≡ g (hash(m)+x r )/s (mod p).

Therefore, v ≡ (g u1 y u2 mod p) ≡ (g (hash(m)+x r )/s mod p) (mod q). Next, as computed

by the signer, s = k−1(hash(m)+ x r )mod q , therefore, (hash(m)+ x r )/s ≡ k (mod q).

Substituting into v again yields v ≡ g k mod p (mod q). This is equivalent to r .

5.5 Elliptic curve DSA

Elliptic curve DSA (ECDSA) is a variation on DSA that replaces the multiplicative

group of integers modulo p with the group of the points on an elliptic curve over a
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finite field. The security of ECDSA is conjectured to be based on the difficulty of

the elliptic curve version of the discrete logarithm problem. ECDSA is standardized

in [ANSI X9.62], and is described in [JMV01].

DSA uses a subgroup of the multiplicative group of integers modulo a prime,

and ECDSA uses a subgroup of the group of points on the elliptic curve. ECDSA

signatures are about the same length as DSA signatures. Unlike DSA, however, the size

of the subgroup in ECDSA is typically not much smaller than the size of the entire

group. The entire group of points, in turn, has approximately the same size as the size

of the finite field over which the elliptic curve is defined. Therefore, a single number

can describe the magnitude of all three quantities. The convention is to just give the

magnitude (in bits) of the size of the finite field.

Solving the discrete logarithm problem on an elliptic curve is believed to be

much harder than solving the problem with integers. Therefore, ECDSA can use a

smaller group size than DSA and still achieve the same level of security. For a security

level of 280, ECDSA with a 160-bit field is estimated to be approximately as secure

as DSA with a 1,024-bit p, and as secure as RSA with a 1,024-bit modulus. For the

same level of security, ECDSA has smaller key sizes than DSA, and runs faster than

RSA [JM98].

5.5.1 Overview of elliptic curve cryptography

Performing cryptography with integers is straightforward, since all the needed math-

ematical operations are already defined. Performing cryptography on elliptic curves

requires more setup. The process for ECDSA is as follows [SEC1]:

1. Select an underlying finite field Fq . If a prime field is chosen, q = p for some
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prime p; if a binary field is chosen, q = 2m. (Fields where q = p m, for p > 2, also

exist, but they are too cumbersome to use in most cases.)

For a prime field Fp , the elements can be represented as the integers mod-

ulo p, and arithmetic on the elements is performed as the customary modular

arithmetic. For a binary field F2m , one possible representation is to treat the

elements as bit strings of length m, where the bits form the coefficients of a

(m−1)-degree polynomial. Addition and multiplication are then defined as addi-

tion and multiplication of polynomials, except that arithmetic on the coefficients

is performed modulo 2. Since the multiplication of two polynomials produces a

longer polynomial, the resulting polynomial is shrunk back down by taking the

remainder after division with a mth-degree reduction polynomial, which also

needs to be specified.

The specification of how to represent the elements of Fq constitute the

field representation, denoted FR.

2. Define an elliptic curve E on the field. The elliptic curve is the set of points

(x, y) ∈ Fq×Fq that satisfy the curve equation. For prime fields, the equation has

the form y2 = x3+ax+b ; for binary fields, it has the form y2+xy = x3+ax2+b .

Both a and b are elements of the field, and the additions and multiplications in

the equations are field operations. The number of points that satisfy the curve

equation is denoted #E(Fq); this quantity has roughly the same magnitude as the

size of the field itself.

The points on the curve become a group when a suitable definition of

“addition” is specified for them. First, define a new zero point O , which serves as

the identity element for addition. Thus, O +O = O , and P +O = O + P = P ,
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for any point P . The point O is not an actual point on the curve itself, but it is

needed to make the group closed under addition. For a nonzero point P = (x, y),

negation is defined as −P = (x,−y) for prime fields and −P = (x, x + y) for

binary fields.

Finally, the addition of two points needs to be defined. Given the two

points P1 = (x1, y1) and P2 = (x2, y2), where P1, P2 6= O and P1 6= −P2, their sum

is P3 = (x3, y3). For a prime field:

x3 = λ
2− x1− x2

y3 = λ(x1− x3)− y1

λ=











y2−y1
x2−x1

, if P1 6= P2

3x2
1+a

2y1
, if P1 = P2

where a is one of the constants that parameterizes the elliptic curve equation.

For a binary field:

x3 = λ
2+λ+ x1+ x2+ a

y3 = λ(x1+ x3)+ x3+ y1

λ=











y1+y2
x1+x2

, if P1 6= P2

x1+
y1
x1

, if P1 = P2

(The form of the equations given here differs slightly from the more customary

presentations that give separate equations for x3 and y3 depending on whether

P1 = P2. The form shown here comes from [BJ02].)

Multiplication of a point by a scalar is defined as repeated addition: that is,

kP = P + P + · · ·+ P
︸ ︷︷ ︸

k

.

3. Given the group consisting of the points on an elliptic curve, pick a base point

G that generates a subgroup of size n, where n is prime. Since G generates a

subgroup, n must be a divisor of #E(Fq), the size of the entire group. Therefore,

#E(Fq) = hn, where h is the cofactor. The cofactor is generally small (h = 1 is

common); thus, the size of the subgroup is about the same as the size of the entire

group.
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To summarize, the parameters that define an ECDSA system consist of the

underlying finite field Fp or F2m of size q , the chosen field representation FR, the elliptic

curve equation parameterized by a and b , the generator G, the subgroup size n, and

the cofactor h = #E(Fq)/n.

Unfortunately, generating these system parameters is extremely complex and

time consuming. Many implementations therefore choose from a set of standardized

pre-generated parameters instead. Recommended elliptic curves and parameters can be

found in [RECFGU] and [SEC2].

5.5.2 Key generation

Given the system parameters (q ,FR,a, b ,G, n, h), pick a random integer d between 1

and n− 1. Let the point Q = dG. Then the user’s secret key is SK = d , and the public

key is PK =Q.

5.5.3 Signing

Signing with ECDSA is almost perfectly analogous to signing with DSA, with exponen-

tiation replaced by scalar point multiplication. First, pick a random nonce k between 1

and n − 1. As with DSA, k must be unpredictable by anyone else. Then to sign the

message m, compute:

r = (the x-coordinate of kG, converted to an integer)mod n

s = k−1(hash(m)+ d r )mod n

The signature is σ = (r, s). In the unlikely event that r or s is zero, pick another nonce

k and try again.
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5.5.4 Verification

To verify the signature σ = (r, s) on a message n, first check that 0 < r < n and that

0< s < n. Then compute:

u1 = s−1 hash(m)mod n

u2 = s−1 r mod n

V = u1G+ u2Q

If V = O , reject the signature. Otherwise, let

v = (the x-coordinate of V , converted to an integer)mod n.

Accept the signature as valid if v = r .

The proof of correctness for this verification procedure follows from the proof

of correctness of DSA, by analogy.

5.6 Multivariate quadratic signature schemes

Multivariate quadratic (MQ) cryptography is cryptography based on systems of second-

order polynomial equations of many variables. Proposals for cryptographic schemes

based on algebraic (as opposed to number-theoretic) systems have existed since at least

1983 ([IM85] surveys some of the early proposals), but none of them have attracted as

much attention as the popular schemes like RSA have. MQ signature schemes promise

to run many times faster than the other schemes described earlier. However, they have

the disadvantage of using very large keys (several kilobytes long), and they are much

harder to describe than the number-theoretic schemes. Also, many of the early MQ

schemes turned out to be insecure. The following overview of how MQ signature

schemes work draws from [WP04], [DS04], and [Wo05].
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The public key in an MQ signature scheme consists of the coefficients to a

set of polynomial functions of many variables. The signature is the values of those

variables. To verify a signature, the recipient applies the polynomial functions to the

variables, getting a set of result values. The signature is valid if the resulting values

match the received message:

PK =



































p0(x) = p0(x0, x1, x2, . . . )

p1(x) = p1(x0, x1, x2, . . . )

p2(x) = p2(x0, x1, x2, . . . )

· · ·

m = (m0, m1, m2, . . . )

σ = (σ0,σ1,σ2, . . . )

Let v =
�

p0(σ), p1(σ), p2(σ), . . .
�

;
signature valid if v = m.

In an MQ signature scheme, the polynomial equations that make up the public

key are second-order equations. This means that each of the functions pi has the form:

pi (x0, x1, x2, . . . ) =
∑

j,k | j≤k

ζi , j,k x j xk +
∑

j

νi , j x j + ρi

In other words, the polynomial consists of the coefficient ζ times each pair of two

variables, plus the coefficient ν times each variable, plus the constant ρ. Note that the

variables and coefficients are not integers, but elements of some small finite field F. All

of the operations are field operations. The number of coefficients in each equation

grows quadratically with the number of variables, and there are many equations, so the

public key is quite large.

Solving the equations would allow an adversary to forge signatures. Fortu-

nately, solving a system of multivariate quadratic equations is NP-hard. (The earliest

proof of this, for a binary field, is attributed to a private communication from L. G. Val-

liant and to an unpublished manuscript by A. S. Fraenkel and Y. Yesha; proofs also

appear in [Wo05].) This does not imply that forging an MQ signature is NP-hard, of

course, since the difficulty of forgery depends on how exactly the coefficients of the
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equations are chosen. Nonetheless, the NP-hardness of solving multivariate quadratic

equations is evidence that MQ signature schemes may be more secure than schemes

based on factoring or the discrete logarithm problem (such as RSA or DSA), since these

latter problems have not been proven to be NP-hard.

Since solving the equations directly is NP-hard, the signer must have another

way of computing signatures. The secret key contains the polynomial functions of the

public key, but in a decomposed form that is much easier to invert.

The secret key consists of three maps, which when combined compute the

same function as the public key. The public key can be thought of as a single function

that takes an input vector (the signature) and returns another vector (the message). Each

of the three maps are also functions that take and return vectors. Thus, if verify is the

function computed by the public key, then

verify(σ) = (φ3 ◦φ2 ◦φ1)(σ),

where φ1, φ2, and φ3 are the three decomposed maps. To sign a message, therefore, the

signer works backwards, and computes σ =φ−1
1 (φ

−1
2 (φ

−1
3 (m))).

The mapsφ1 andφ3 are affine, meaning that each element of the output vector

is just a linear combination of the elements in the input vector, plus a constant. Thus,

these two maps can be written as a matrix multiplication plus a constant vector:

φ1(x) =M1x + c1 φ3(x) =M3x + c3

where M1 and M3 are matrices, and c1 and c3 are vectors. They are usually generated

randomly. The input x is also a vector. Again, the matrices and vectors contain field

elements, not integers. Since φ1 and φ3 are affine, inverting them is easy:

φ−1
1 (y) =M−1

1 (y − c1) φ−1
3 (y) =M−1

3 (y − c3)

The purpose of φ1 and φ3 is to obscure the operation of the central map

φ2. Since φ1 and φ3 are linear, their combination is also linear—and a linear system

75



Authenticated Messages for a Real-Time Fault-Tolerant Computer System David Chau

Figure 5-2: Overview of an MQ signature scheme. The secret key consists of the maps
φ1, φ2, and φ3, and the public key is the composition φ3 ◦ φ2 ◦ φ1, given as a set
of second-order polynomial functions pi . Signing a message m is done by computing
φ−1

1 (φ
−1
2 (φ

−1
3 (m))). Verifying a signature σ is done by comparing verify(σ) to m, where

verify is the function specified by the public key.

of equations would be easy for an attacker to solve. Therefore, φ2 must contribute

the nonlinearity that makes the overall signature verification function quadratic. The

central map φ2 should be easy for the signer to invert, but when composed with φ1

and φ3 to give the form of the verification function in the public key, the inversion

should not be obvious anymore. Different MQ signature schemes use different types

of functions for φ2.

Thus, the signer’s secret key consists of the matrices and constant vectors that

make up the two outer maps, plus the parameters of the central map, which depend on

the MQ scheme chosen: SK = (φ1,φ2,φ3). The public key is the composed form of the

three maps: PK =φ3 ◦φ2 ◦φ1.

Generating the public key from the secret key is not hard. Again, the public

key consists of a vector of polynomial functions with the form:

pi (x0, x1, x2, . . . ) =
∑

j,k | j≤k

ζi , j,k x j xk +
∑

j

νi , j x j + ρi

To find the values of the coefficients, first find the ρ’s by computing φ3 ◦φ2 ◦φ1 on
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the zero vector x = (0,0,0, . . . ). The result is a vector giving ρi for every i . Finding

the ν’s and ζ ’s is slightly more complicated. Setting the j th element of the input vector

to 1 will yield ζi , j, j + νi , j +ρi . Setting the j th element of the input vector to a different

value k will yield ζi , j, j k2+ νi , j k +ρi . From these two results, the value of ζi , j, j and νi , j

can be solved for. Finally, find the values for ζi , j,k where j 6= k by setting every pair of

elements in the input vector to 1, one pair at a time.

Figure 5-2 summarizes the structure of an MQ signature scheme.

5.7 SFLASH

SFLASH is an MQ signature scheme designed to run on devices with limited computa-

tional power, such as smart cards. SFLASH claims to offer a security level of 280, while

running much faster than an 1,024-bit RSA. The version of SFLASH described here is

the second version of SFLASH [CGP02], called SFLASHv2 by its inventors.

SFLASH uses the finite field K = F128, specified as F2[X ]/(X 7+X + 1). The

vectors in SFLASH are 37 elements long. Therefore, M1 and M3 are 37× 37 square

matrices, and c1 and c3 are 37-element vectors, all filled with elements from K . The

signature vector σ is also 37 elements long, so SFLASH has a signature length of 259 bits.

The public key, however, is truncated after the first 26 polynomial functions. Thus,

the verification function given by the public key is a function that maps K37→ K26.

Leaving out the last 11 polynomials from the public key presumably makes the system

more secure, since it gives the attacker fewer equations to work with. It also makes the

public key shorter.

The central map φ2 : K37→ K37 adds the nonlinearity that makes SFLASH

quadratic. It is defined somewhat unusually:
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First, let L be the extension field K[Y ]/(Y 37 + Y 12 + Y 10 + Y 2 + 1), where

K = F128 is the field specified earlier. In other words, an element x ∈ L, where x =

(x0, x1, . . . , x36), represents the coefficients of a 36th-degree polynomial, and each coef-

ficient is itself a member of K . Addition and multiplication in L are defined as the

addition and multiplication of the polynomials, with the arithmetic on the coefficients

performed in K . Since multiplying two 36th-degree polynomials yields a 72nd-degree

polynomial, the resulting polynomial is reduced modulo the reduction polynomial

Y 37+Y 12+Y 10+Y 2+1 to bring it back into L. Exponentiation is defined as repeated

multiplication.

Note that a vector from K37 can be mapped trivially to an element from L, and

vice versa: the i th element in the 37-element vector simply becomes the i th coefficient

in the 36th-degree polynomial. In an implementation, of course, both objects would be

stored as an array of values, and no actual conversion is necessary.

Given these preliminaries, the central map in SFLASH is defined as:

F (A) =A12811+1

where A is an element in L. That is, the central mapφ2 takes a vector from K37, converts

it into an element A∈ L, computes A12811+1, then returns the result converted back into

another 37-element vector from K37.

Since outer mapsφ1 andφ3 are linear, the central mapφ2 must be quadratic to

make the composition φ3 ◦φ2 ◦φ1 be quadratic. Therefore, F (A)must scramble up the

coefficients of A quadratically: if B = F (A), where A= a36Y 36+ a35Y 35+ · · ·+ a0, and

B = b36Y 36+ b35Y 35+ · · ·+ b0, then it must be the case that bi =
∑

j,k

c j,ka j ak for some

constants c j,k . But why should F (A) be quadratic at all? Conceivably, the coefficients

bi could end up as any arbitrary function of the ai’s.
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First, consider A2, where again A = a36Y 36 + a35Y 35 + · · · + a0. Then A2 =
∑

i

a2
i Y 2i +
∑

i 6= j

2ai a j Y
i Y j (before reduction modulo reduction polynomial). Since the

coefficients are in K , however, and since K = F128 is a binary field, 2ai a j = 0. There-

fore, all the Y i Y j terms where i 6= j disappear, leaving A2 =
∑

i

a2
i Y 2i . And since

raising something to the 128th power is just repeated squaring, A128 =
∑

i

a128
i Y 128i . But

a128
i = ai in F128, leading to the result A128 =

∑

i

ai Y
128i . This result has not been

reduced yet, but reduction modulo the reduction polynomial is linear with respect to

the coefficients. Therefore, A128 yields a linear transformation of the coefficients.

Finally, F (A) = A12811+1 = A12811A. Since A12811
is a linear transformation of the

coefficients, multiplying by A again gives a quadratic transformation of the coefficients.

Therefore, the central map F (A) is quadratic.

5.7.1 Key generation

The secret key consists of the matrices and column vectors that define the outer maps

φ1(x) = M1x + c1 and φ3(x) = M3x + c3. So to generate the secret key, pick a pair of

random 37×37 matrices for M1 and M3, and a pair of random 37-element vectors for c1

and c3. Since signing involves the the computation ofφ−1
1 andφ−1

3 , the matrices M1 and

M3 must be invertible. The easiest way to generate them is to fill them with random

values and attempt to invert them, repeating until invertible matrices are obtained.

The public key consists of the coefficients of the first 26 functions of the com-

positionφ3◦φ2◦φ1, so PK =
�

ζi , j,k | (0≤ j ≤ k , 0≤ k < 37), νi , j | (0≤ j < 37), ρi

�

, for

all 0≤ i < 26. The secret key is SK = (M1, c1, M3, c3).

Note that since the last 11 polynomial functions of the compositionφ3◦φ2◦φ1

are truncated from the public key, the last 11 rows of M3 and the last 11 elements of c3
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do not affect the validity of the signatures. Also, [GSB01] points out that c1 and c3 can

be deduced from the public key; consequently, the designers of SFLASH call these two

vectors “semi-public,” as they do not actually need to be kept secret [CGP03].

5.7.2 Signing

To sign a message m, first pick a random nonce r ∈K11. In other words, r is a random

vector of 11 elements from the field K = F128. (The SFLASH specification in [CGP02]

includes a secret string ∆ in the secret key, and uses a series of hashes to combine ∆

and m to yield the nonce r . However, it is easier to just randomly generate a new r for

each signature.)

Next, hash the message: hash(m) → h, where h ∈ K26. SFLASH, like DSA,

specifies hashing the message as part of the signing process. Since the hash is 26 elements

long, and the nonce is 11 elements long, the concatenation h ‖ r is a vector in K37.

The signature is computed as σ =φ−1
1 (φ

−1
2 (φ

−1
3 (h ‖ r ))). The signature is also

a vector in K37. Since φ1 and φ3 are affine, inverting them is straightforward. Inverting

the central map φ2 is a more interesting process. The central map is implemented as

F (A) = A12811+1, where A ∈ L. Since the size of L is 12837, its multiplicative group has

size 12837− 1. Therefore, the inverse of F is F −1(B) = B (12811+1)−1 (mod 12837−1).

5.7.3 Verification

To verify the signature σ ∈ K37 on the message m, compute v = verify(σ), where verify

is the set of verification functions described by the coefficients in the public key. Since

the public key is truncated after the first 26 polynomial functions, v will be only 26 ele-

ments long. However, these 26 elements should exactly match the hash of the message,
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since the signature was computed on hash(m) ‖ r , and hash(m) gave a 26-element hash.

Accept the signature as valid if v = hash(m).

5.8 TTS

The Tame Transformation Signature (TTS) scheme is an MQ signature scheme that uses

a “tame-like” map for its central map. A tame-like map y = f (x), where x and y are

vectors of elements from some field, is easy to invert for explicit values for y, but giving

an expression in symbolic form for the inverse map f −1 is difficult because it would

have too many terms [CY03]. TTS claims to be even faster than SFLASH, while still

offering a 280 level of security.

Several versions of TTS have been proposed ([CYP02], [CY03], [YCC04]),

but these early versions of the signature scheme suffer from various cryptographic

weaknesses [YC04, DSY06]. The version of TTS described here is called Enhanced

TTS (20,28) or TTS/5, and is specified in [YC05]. At the time of this writing, this new

version of TTS is believed to be secure.

TTS uses the field K = F256. Like SFLASH, the output vector of the verifica-

tion function specified by the public key is shorter than the signature vector, to make

the quadratic equations harder to solve. Whereas SFLASH accomplishes this shorten-

ing by simply reducing the number of polynomial functions revealed in the public key,

TTS shortens the output in the central map itself. The input to the verification function

verify(σ) = (φ3 ◦φ2 ◦φ1)(σ) is 28 elements long; the output is 20 elements long, hence

the name TTS (20, 28). The dimensions of the three maps are therefore:

φ1 : K28→K28 φ2 : K28→K20 φ3 : K20→K20
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The dimensions of the maps in TTS are smaller than in SFLASH, which is one of the

reasons TTS runs faster.

Following the general pattern of MQ signature schemes, TTS specifies affine

transformations for the outer maps: φ1(x) =M1x+ c1 and φ3(x) =M3x+ c3. The only

wrinkle here is that M1 and M3 have different sizes, as do c1 and c3.

The central map is more interesting. If x = (x0, x1, . . . , x27) is the input vector,

then y =φ2(x) is defined as:

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












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
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
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
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





yi = xi +
7
∑

j=1

αi , j x j x8+(i+ j mod 9), for i = 8 . . . 16

y17 = x17+α17,1x1x6+α17,2x2x5+α17,3x3x4

+α17,4x9x16+α17,5x10x15+α17,6x11x14+α17,7x12x13

y18 = x18+α18,1x2x7+α18,2x3x6+α18,3x4x5

+α18,4x10x17+α18,5x11x16+α18,6x12x15+α18,7x13x14

yi = xi +αi ,0 xi−11 xi−9+
i−1
∑

j=19

αi , j−18 x2(i− j )−(i mod 2) x j +αi ,i−18 x0 xi

+
27
∑

j=i+1

αi , j−18 xi− j+19 x j , for i = 19 . . . 27

The coefficients αi , j ∈ K are part of the secret key. Notice that i starts at 8, following

the convention in [YC05], making the output vector y = (y8, . . . , y27) 20 elements long.

In this central map, each of the yi’s depends on only a few of the xi’s from the input

vector, which makes the central map easy to invert. However, the surrounding maps

φ1 and φ3 will mix the xi’s so that each of the yi’s will depend on all of the xi’s.

This central map is quadratic with respect to the the elements of the input

vector, so the composite map φ3 ◦ φ2 ◦ φ1 also quadratic. In contrast to SFLASH,

TTS is a “truer” multivariate quadratic signature scheme: whereas SFLASH’s central

map relies on the properties of an extension field of K to scramble the input vector
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quadratically, the central map in TTS directly computes a quadratic transformation of

the elements in the input vector.

5.8.1 Key generation

The secret key consists of the parameters for the outer maps φ1(x) = M1x + c1 and

φ3(x) = M3x + c3, as well as the coefficients αi , j for the central map. To create a key

pair for TTS, generate a random invertible 28×28 matrix for M1, a random 28-element

vector for c1, and a random invertible 20× 20 matrix for M3, all with elements from

K = F256. Do not generate the vector c3 yet. Also choose random values for the αi , j’s in

the central map φ2.

As a small optimization, TTS specifies that the polynomial functions in the

public key should have no constant terms—that is, ρi = 0 for all i . This optimization

reduces the size of the public key, and makes signature verification slightly faster. The

vector c3 is used to make the constant terms disappear: computing φ3 ◦φ2 ◦φ1 on the

zero vector yields the vector of ρi’s, so set c3 to make the ρi’s be zero.

The public key is PK =
�

ζi , j,k | (0≤ j ≤ k , 0≤ k < 28), νi , j | (0≤ j < 28)
�

, for

0≤ i < 20. The secret key is SK = (M1, c1, M3, c3,αi , j ), for 8≤ i < 28, with the range of

j varying for each i .

5.8.2 Signing

To sign a message m, compute the signature σ = φ−1
1 (φ

−1
2 (φ

−1
3 (hash(m)))), where hash

is a hash function that returns a vector in K20. The outer maps φ1 and φ3 are affine, so

inverting them is simple.

Inverting φ2 requires inverting the tame-like central map. That is, given a

vector y = (y8, . . . , y27), the signer needs to find a vector x = (x0, . . . , x27) such that
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y =φ2(x). The inversion is performed in parts. First, pick random values for x1, . . . , x7,

and solve for x8, . . . , x16. This involves solving a system of nine linear equations for

nine unknowns, which can be done by Gaussian elimination. There is a chance that

the randomly-chosen values for x1, . . . , x7 will give a system of equations that has no

solution (or too many), in which case, a new set of random values will have to be

chosen.

Next, substitute the values for x1, . . . , x16 into the equations for y17 and y18, and

solve for x17 and x18. These two equations will always be solvable. Finally, choose a

random value for x0 and solve for the nine remaining variables x19, . . . , x27. Here again,

a bad choice for x0 will render the equations unsolvable, in which case, a new value for

x0 will need to be tried.

Solving nine simultaneous equations can be done relatively quickly, so signing

with TTS is fast. The fact that the signer will occasionally generate a set of unsolvable

equations and need to retry is problematic, however. In a real-time system, operations

need to happen in a fixed amount of time, even in the worst case. Unfortunately,

the worst-case time for computing a TTS signature is infinite, since the signer may

conceivably be unlucky enough to perpetually choose values that make the equations

unsolvable.

However, the speed advantages of TTS are too compelling to immediately dis-

missing this signature scheme. As [YC05] points out, if all but one of the variables

to be randomly chosen are fixed, then at most 9 out of the possible 256 values for the

remaining variable will make the resulting system of equations unsolvable. Therefore,

the signer generates an unsolvable system of equations 9/256 of the time, at most. In

practice, a randomly-generated system of equations is solvable about 255/256 of the

time.
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Thus, although the probability of failing to generate a signature never becomes

zero, it can be made arbitrary small by budgeting more time for the signature process.

And unlike some of the other possible failures in a fault-tolerant system, the failure

probability of the signature process is fixed and known. Furthermore, failing to com-

pute the signature on time only affects the signer node; the failure does not disable the

message-voting protocol for the other nodes.

To conclude, the fact that the signature process takes a non-deterministic

amount of time is indeed a shortcoming, but it is a shortcoming that can be strictly

quantified and managed.

5.8.3 Verification

In contrast to the signing process, the signature verification process is completely deter-

ministic, and takes a fixed amount of time. The verification process for TTS is the same

as the one for SFLASH. To verify the signature vector σ on the message m, compute

v = verify(σ), where verify is the verification function specified by the coefficients in the

public key. Accept the signature as valid if v = hash(m).
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CHAPTER 6

Implementation and Results
Adding authenticated messages to a fault-tolerant computer system allows the system

to achieve the same level of reliability with fewer nodes, making the system less costly

and reducing the number of components that can fail. A system like the X-38 Fault-

Tolerant Parallel Processor (FTPP) needs to send data at a very high rate; thus, the

biggest constraint on a message authentication implementation is its speed. Although

it is possible to estimate how fast a certain signature scheme will run by analyzing the

algorithms it uses, the only reliable way to evaluate its speed is to actually implement

it and time it. Therefore, this thesis implements and benchmarks each of the signature

scheme candidates.

This chapter describes the implementation of RSA-PSS, DSA, elliptic curve

DSA, SFLASH, and TTS. It explains the optimizations that were used, and reveals

how long each of these signature schemes takes to sign a message.

6.1 Existing results

One of the more comprehensive surveys of cryptographic performance is [Pr03b] from

the NESSIE project, which gives benchmarks for various signature schemes. Unfortu-

nately, the results it gives are somewhat hard to interpret, as they are a combination
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Scheme
Signing
time (ms)

Verification
time (ms) Source

RSA-PSS 40.5 4.5 [Pr03b, table 13]. 1,024-bit n, e = 3. Nor-
malized from a Pentium Celeron running at
450 MHz.

DSA 7.9 17.4 [Da04]. 1,024-bit p. Signing uses precomputa-
tion. Normalized from a Pentium 4 running
at 2.1 GHz.

ECDSA 16.9 22.7 [Pr03b, table 37]. 163-bit binary field. Nor-
malized from cycle count on Pentium 3.

SFLASH 4.5 1.3 [Pr03b, table 13]. Normalized from a Pen-
tium 3 running at 500 MHz.

TTS 0.1 0.2 [YC05]. Normalized from a Pentium 3 run-
ning at 500 MHz.

Table 6.1: Performance of signature schemes from various previously published bench-
marks. Times are normalized to a processor running at 300 MHz. Because these bench-
marks were performed on different architectures, these results are only useful for a very
rough comparison of the signature schemes.

of cycle counts for various processor/compiler combinations and submitter-supplied

timings on heterogeneous architectures. Also, DSA was not evaluated. Another source

of performance data is [Da04], which gives benchmarks for the cryptographic primi-

tives implemented in the Crypto++ library. Finally, the papers proposing the various

signature schemes often make performance claims as well.

Although comparing benchmarks performed on different architectures and

obtained from different sources is dubious, having a baseline for evaluating the imple-

mentations described in this chapter is still useful. Table 6.1 presents the signature

scheme timings collected from the various sources. Each of the signature schemes in

the table claims a security level of at least 280. The timings in this table are normalized

to a processor running at 300 MHz by simply scaling the timings from the sources

according to the frequencies of the processors used by the sources. The frequency of
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300 MHz was chosen because the processor used for the implementations described in

this chapter also runs at 300 MHz.

The existing benchmarks for the five signature schemes evaluated here come

from different sources that used different processors, compilers, and programming lan-

guages. As a result, the timings in Table 6.1 give only a very rough comparison of how

the signature schemes perform. One of the contributions of this thesis is that it will

present benchmarks of the all of the signature schemes on a single platform, allowing a

more valid comparison of the signature schemes.

6.2 Testing platform

The signature scheme implementations described in this chapter were tested on an Em-

bedded Planet 405 single-board computer [EP405] with a PowerPC processor running

at 300 MHz. This processor was chosen because it is a good representative for the level

of processing power that will be available in the next few years in radiation-hardened

processors. The computer runs the INTEGRITY real-time operating system [INTEG]

from Green Hills Software. The implementations of the signature schemes were com-

piled with an optimizing compiler [GHSC] also from Green Hills Software.

RSA and DSA were implemented using the large-integer support from the

GNU Multiple Precision (GMP) arithmetic library [GMP]. The GMP library uses

assembly-language routines for its core operations. Since GMP lacks support for elliptic

curve arithmetic, however, ECDSA was implemented using the MIRACL multipreci-

sion library [MIRACL] instead, which unfortunately does not offer assembly-language

optimizations for the PowerPC. SFLASH and TTS were implemented using a finite

field arithmetic library written by the author.
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Although complete implementations for some of the more popular signature

schemes like RSA already exist, they were not used in this evaluation for several reasons.

Signature schemes like RSA and DSA are simple enough that implementing them using

a large-integer library is not much harder than trying to port an existing implementa-

tion to the test platform. Furthermore, the easiest-to-port implementations are written

in plain C, whereas the implementations developed for this thesis can take advantage of

the assembly-language routines in the large-integer library. Finally, implementing the

signature schemes from scratch makes it easier to test the effects of different optimiza-

tions.

6.3 Methodology

For each signature scheme, the key generation, signing, and signature verification pro-

cesses were implemented. Once loaded onto the test board, the software would proceed

to generate a new key pair, then use it to sign and verify messages, repeating the process

enough times to get an accurate measurement of how long the signing and verification

processes take. (In a production system, the keys would have been generated offline

instead and hardcoded into the board, but for testing, it was easier to generate the keys

on the board directly.) The messages to be signed were usually 1 KB–long strings of

random data. The elapsed times were measured using the high-resolution timer on the

test board, which claims to have a resolution of 2.3 ns or better.

6.3.1 Hash performance

All of the signature schemes that were tested specify hashing the message as part of

the signing process. Therefore, all of the timings reported here include the time it
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Message length (bytes): 128 256 384 512 640 768 896 1,024
Time (µs): 8.59 13.74 18.88 24.03 29.18 34.32 39.47 44.62

Table 6.2: SHA-1 performance on messages of various lengths. (Note that the times are
in microseconds, not milliseconds.)

takes to hash the message as required by the signature scheme. Since many of the

schemes called for a 160-bit hash output, the SHA-1 hash function [FIPS 180-1] was

used in the implementations of all of the schemes. The SHA-1 implementation used

was borrowed from an assembly-language implementation [Ma05] submitted to the

Git version control system project.

In general, the signing and verification functions take many times longer than

hashing the message, so the hashing time is insignificant, and the schemes would have

performed about the same had a different hash function been chosen. Table 6.2 shows

how long SHA-1 takes to hash messages of different lengths on the test platform.

6.3.2 Random number generation

All of the signature schemes tested require some source of randomness during the mes-

sage signing process. An unpredictable source of randomness is crucial for the security

of many of the signature schemes. As section 4.3.2 of this thesis explains, since the

nodes in a synchronized replicated system have very few sources of unpredictable ran-

domness available to them, the best way to generate random numbers is to include an

“entropy pool” in each node, and to use a cryptographically secure expansion function

to turn the pool into as many bytes of randomness as needed.

For the implementations described in the chapter, an entropy pool was not

used. Instead, the implementations simply relied on the rand() function from the

C standard library. The actual production system would use an entropy pool, but
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a cryptographically secure expansion function would not be very much slower than

rand() , so the benchmarks presented in this chapter would still be applicable.

6.4 RSA-PSS implementation

The most time-consuming part of the RSA algorithm is performing the modular ex-

ponentiations. Each exponentiation is implemented using the square-and-multiply al-

gorithm (or using a sequence of multiplications based on the addition chain for the

exponent), and each modular multiplication in turn involves a large-integer multiplica-

tion followed by a large-integer division.

Because modular exponentiation is so slow, one common optimization is to

speed up the computation of the signature using the Chinese remainder theorem. Since

p and q are relatively prime, one can compute σp = (md mod p) = (md mod (p−1) mod p)

(due to Fermat’s little theorem) and σq = (md mod q) = (md mod (q−1) mod q), then

combine them into σ = md mod pq using the Chinese remainder theorem. This

optimization cuts the size of both the modulus and the exponent in half, giving a pretty

drastic speed improvement.

However, one of the disadvantages of using this optimization is that if either

σp or σq is miscalculated, the recipient of the signature can deduce the factorization of

n, and hence learn the signer’s secret key [Le96]. If σp is miscalculated but σq is not, for

example, then σ e 6≡ m (mod p), but σ e ≡ m (mod q). Therefore, σ e −m is a multiple

of q but not of p, which means that gcd(σ e −m) reveals a factor of n.

Fortunately, in an environment like the FTPP, such a vulnerability is less

of a worry. Even if one node does miscalculate the signature, it is extraordinarily

improbable that a second node would try to exploit the fault—and in any case, the
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Modulus size (bits): 256 512 768 1,024
Signing time (ms): 0.87 4.37 11.38 24.69

Verification time (ms): 0.17 0.44 0.80 1.31

Table 6.3: RSA-PSS performance with moduli of various sizes, e = 65,537, using the
Chinese remainder theorem optimization.

FTPP only needs to tolerate one fault at a time. Thus, the Chinese remainder theorem

optimization can safely be implemented.

Note that the Chinese remainder theorem optimization can speed up message

signing, but the same optimization cannot be used for the verification process, since

the recipient does not know the factors p and q . Therefore, it makes sense to make the

verification exponent e smaller than the signing exponent d .

The benchmarks described here tested RSA with a variety of modulus sizes.

Most applications today that need cryptographic security use a modulus of at least 1,024

bits. A modulus of 512 bits can be factored on a large distributed computer system, and

a modulus of 256 bits can be factored in a under an hour on a single desktop computer.

A modulus shorter than 160 bits would have trouble accommodating the entire SHA-1

hash and the PSS encoding. Table 6.3 gives the performance of the RSA signature and

verification functions using moduli of different sizes.

6.5 DSA implementation

The DSA implementation used a q of 160 bits, to match the SHA-1 hash function. The

size of p varied. Solving the discrete logarithm problem for a p of a certain size is ap-

proximately as difficult as factoring an RSA modulus of the same size, so the discussion

on the security of RSA moduli of different sizes applies to the of p in DSA as well.
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One possible optimization for DSA is the precomputation technique described

in [FIPS 186-2]. The DSA signature is σ = (r, s), where r = (g k mod p)mod q , with k

being a randomly-chosen integer. Since r and k do not depend on the message, an im-

plementation can precompute a large set of r ’s and k’s (as well as the inverses of the k’s,

which will be needed for computing s ). However, this precomputation optimization

is not practical for a system like the FTPP, since a node in the system would quickly

use up all the precomputed values that any reasonable amount of memory can store.

Therefore, this optimization was not implemented for the benchmarks.

Another form of precomputation tries to speed up the exponentiation com-

putation itself. For example, the computation of ab , for a fixed base a and a variable

exponent b , can be sped up by precomputing {a2,a4,a8, . . .}. Then the value of ab can

by computed by simply multiplying together the appropriate precomputed powers of a

according to the binary expansion of b . This technique is faster than exponentiation

by squaring and multiplying, since using the precomputed powers is equivalent to elim-

inating the squaring steps. It is possible to extend this technique and use a larger set of

precomputed powers, trading off space for speed [BGMW92].

As part of the signature verification process, the recipient needs to compute

(g u1 y u2 mod p)mod q , where y is the signer’s public key. To speed up this computation,

the recipient could precompute the powers of y as well. However, doing so would

require a lot of memory, since the recipient would have to precompute the powers

of y for every possible signer. Instead, a different optimization can be applied to the

verification process: a variation on the square-and-multiply algorithm can compute the

product of two exponentiations about as quickly as computing a single exponentiation.

The classic square-and-multiply algorithm to compute a single exponentiation

ab , for a 6= 0, is:
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Size of p (bits): 256 512 768 1,024
Signing time (ms): 0.93 2.41 4.39 6.98

Verification time (ms): 2.81 7.31 13.18 23.71

Table 6.4: DSA performance with p of various sizes, using precomputed powers of g
and Straus’s algorithm.

r ← 1
for i from msb(b ) down to 0:

r ← r 2

if bi = 1 then r ← r · a
end for
return r

where msb(b ) gives the index of the most-significant bit of b , and where bi denotes the

i th bit of b , with i = 0 being the least-significant bit.

Straus’s algorithm [St64] allows ab1
1 ab2

2 · · ·a
bn
n to be computed using just one

pass over all of the exponents simultaneously. (This optimization is also sometimes

called “Shamir’s trick” because [El84] credits Shamir for pointing it out.) For example,

the product of two powers ab c d , for a, b 6= 0, can be computed by:

r ← 1
for i from max(msb(b ), msb(d )) down to 0:

r ← r 2

if bi = 1 ∧ di = 1 then r ← r · ac
else if bi = 1 then r ← r · a
else if di = 1 then r ← r · c

end for
return r

Note that since ac is constant, its value only needs to be computed once.

The implementation of DSA that was benchmarked uses both of the precom-

putation optimization and Straus’s algorithm. Table 6.4 gives the performance results

for DSA with different sizes of p.
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6.6 ECDSA implementation

ECDSA can be implemented on either a prime field or a binary field. The benchmark

program that comes with the MIRACL library indicated that a prime field implemen-

tation would be slightly faster, so a prime field was chosen for this benchmark.

Since ECDSA is an analogue of DSA, many of the optimizations for DSA also

apply to ECDSA as well. In particular, the optimizations of using precomputation in

the signing process and using Straus’s algorithm in the signature verification process

carry over directly to ECDSA. Additional optimizations specific to ECDSA also exist.

Many of the optimizations involve choosing system parameters that satisfy cer-

tain special forms. For example, with the prime field Fp , reduction modulo p is faster

when the binary form of p consists of almost all ones (a generalized Mersenne prime).

Binary fields, which are somewhat more complicated, offer many more parameters

that can be specially tuned. One of the disadvantages of using special choices for the

parameters is that the implementations become extremely parameter-specific, which

is undesirable if an application needs to interoperate with other applications that use

different parameters.

Another avenue for optimization which is not parameter-specific is the repre-

sentation of the elliptic curve points themselves. This thesis has so far described a point

as a pair of coordinates (x, y) ∈ Fq × Fq . This representation is the affine-coordinate

representation. However, other coordinate systems are possible as well. The formulas

for adding a pair of points and for doubling a point have faster-to-compute forms in

other coordinate systems. Using projective coordinates, for example, a point (x, y) is

represented as the triple (X ,Y,Z), where x = X /Z and y = Y /Z . The addition and

doubling formulas do not use division in projective coordinates, making them faster.
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Signing time: 6.98 ms
Verification time: 20.08 ms

Table 6.5: ECDSA performance with a 160-bit prime field, using projective coordinates,
precomputation, and Straus’s algorithm.

[CMO98] compares different coordinate systems, and advocates mixing coordinate

systems for maximum efficiency.

Table 6.5 gives the performance of ECDSA, optimized with precomputation

and Straus’s algorithm. The implementation used the MIRACL library for elliptic

curve arithmetic. MIRACL does not have assembly-language optimizations for the

PowerPC, but it does offer point representations in projective coordinates.

The specific elliptic curve used for this benchmark was the “secp160k1 ”

curve from [SEC2]. It is a curve on a 160-bit prime field.

6.7 A library for finite-field arithmetic

The remaining two signature schemes are multivariate quadratic (MQ) schemes. MQ

schemes offer a lot of room for micro-optimizations, since they generally repeat small

operations a large number of times. Therefore, small changes to the way a frequently-

used operation is written can have large effects on the overall performance.

In order to evaluate the two MQ signature schemes, the author implemented

a library for performing finite-field arithmetic, written in C. Both SFLASH and TTS

use small fields—F128 and F256, respectively—so field elements were represented as single

bytes, and vectors of field elements were represented as arrays of bytes.

The most frequently used operation is field multiplication, so a lot of effort was

applied to making it as efficient as possible. Multiplication was implemented using log-
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arithms: xy = g logg x+logg y , for a suitable generator g . The logarithms were performed

using log/antilog tables. (An alternative is to build a large table that gives the product

of every possible pair of x’s and y’s in a single lookup, but such a table would not fit

into the processor’s cache very well.)

One of the goals in implementing multiplication was that the code be entirely

branchless: the code should not use any conditional statements, which were measured

to be considerably slower. This is challenging because multiplication by zero needs spe-

cial handling, since log(0) cannot be defined in any way that gives the correct semantics

for multiplication. The multiplication function was implemented as:

static inline unsigned mult( unsigned x, unsigned y,
const unsigned char *logTbl, const unsigned char *antilogTbl) {

return antilogTbl[logTbl[x] + logTbl[y]] & -((x != 0) & (y != 0));
}

where logTbl is the table of logarithms and antilogTbl is the table of powers. The

antilogTbl is twice the size of the logTbl , to prevent needing to compute the sum

of the logarithms modulo |F| − 1, where F is the field.

Some quantities in an MQ signature scheme are always used as multipliers (the

coefficients in the public key, for example, or the inverse matrices M−1
1 and M−1

3 in the

secret key), so they are stored in logarithm form to save a lookup during multiplication;

a separate version of the multiplication function is defined for them. To allow zeros to

be stored, log(0) is stored as 0, and log(1) is stored as |F| − 1.

The finite-field arithmetic library also implements functions that operate on

vectors and matrices of field elements, such as matrix multiplication and Gaussian elim-

ination on a system of equations. The dimensions of the matrices and vectors need

to be passed to the functions as arguments, but the library also offers the option of
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hardcoding them through #define s so that the compiler’s constant propagator can

optimize them away.

6.8 SFLASH implementation

SFLASH is notable in that it needs to operate on the L, the 37th-degree extension of

the field K = F128. The finite-field library implemented functions to multiply elements

from L efficiently.

The most interesting problem in SFLASH is implementing the inverse of the

central map F . The inverse is F −1(B) = B (12811+1)−1 (mod 12837−1), where B ∈ L. The

exponent (12811+1)−1 (mod 12837−1) is a huge number, and using square-and-multiply

exponentiation is too slow.

[ACDG03] describes some of the techniques for optimizing F −1. One key

insight is that X 128 (and the higher powers X 128n
) is a linear transformation of the

coefficients in X , so it can be implemented by a matrix multiplication. Furthermore,

the matrix would only consist of ones and zeros, which allows further optimizations.

Using the linear properties of X 128 in L, [ACDG03] gives an addition chain

for computing B (12811+1)−1 (mod 12837−1) using a small number of multiplications:

A1 = B4 A5 =A2
4×A4 A9 = (A5×A8)

1288

A2 = BA1 A6 =A4
3 A10 =A1287

6 ×A6×A8×A9

A3 =A4
1 A7 =A5× ((A128

6 )
128)128 A11 = ((A

1287

10 )
1288 ×A9)

1287 ×A10

A4 =A2×A3 A8 = ((A
128
7 ×A7)

128×A7)
128

Then A11 = B (12811+1)−1 (mod 12837−1).

SFLASH specifies that the hash output is a vector in K26, which is 182 bits long.
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Signing time: 2.13 ms
Verification time: 0.75 ms

Table 6.6: SFLASH performance.

Since SHA-1 only produces 160 bits of output, it needs to be called twice. The first 182

bits of hash(m) ‖ hash(hash(m)) is then used as the message hash.

A minor wrinkle in implementing SFLASH is that it uses a field K = F128 that

is seven bits wide, but the rest of the system produces bytes that are eight bits wide.

Therefore, a conversion routine is needed to pack and unpack the bits.

Table 6.6 presents the performance of the SFLASH signature scheme, using

the optimizations described here.

6.9 TTS implementation

TTS is somewhat simpler to implement than SFLASH. Inverting the central map

in TTS requires solving a randomly-generated system of nine equations for nine un-

knowns, which was implemented using Gaussian elimination.

Since the systems of equations are randomly generated, they are not always

solvable. Unfortunately, there is no way to detect whether a system of equations is

solvable much faster than actually solving them. The Gaussian elimination routine that

was implemented returns an error if it detects that the system of equations is unsolv-

able, signaling the implementation to try again. This detection happens about half way

through the Gaussian elimination process, when the algorithm has reduced the matrix

containing the coefficients of the equations into a triangular form.

Table 6.7 gives the timings for signing and signature verification in TTS. It

also gives how long it takes to generate a random system of equations, attempt to solve
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Signing time: 0.208 ms
Verification time: 0.426 ms
Unsolvable equations time: 0.028 ms

Table 6.7: TTS performance. The unsolvable equations time is the time it takes to set
up a system of nine equations for nine unknowns, attempt to solve them, and realize
that they are unsolvable.

them, and realize that they cannot be solved. A fault-tolerant system using TTS will

need to allow time for enough retries that the probability of still failing to obtain the

signature becomes acceptably low.

6.10 Conclusion

Table 6.8 summarizes the results of all of the tested signature schemes. The final column

“sign+ 3 verifies” is the time it takes to compute one signature and verify it three times.

This represents the amount of time that the message authentication would take in a

four-node system for a single-source message exchange: the sender node needs to sign

its message, and each of the recipient nodes needs to verify the signature on the three

copies of the message it receives.

The performance of the signature scheme implementations developed for this

thesis is generally in line with the benchmarks from the other sources presented earlier.

Most of the differences can probably be attributed to the different platforms that were

used. Looking at the ratios between signing and verification times, the ratio for the

1,024-bit RSA implementation in this thesis appears to be much larger than the one for

the implementation in [Pr03b, table 13]. However, this ratio seems very sensitive to the

key size, so the discrepancy can be explained if the sensitivity is slightly stronger for the

implementation in this thesis. Another notable discrepancy is that the ratio between
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Signature
scheme

Signature
length (bytes)

Signing
time (ms)

Verification
time (ms)

Sign + 3 verifies
time (ms)

RSA-PSS-256 32 0.87 0.17 1.38
RSA-PSS-512 64 4.37 0.44 5.69
RSA-PSS-768 96 11.38 0.80 13.78
RSA-PSS-1024 128 24.69 1.31 28.62
DSA-256 40 0.93 2.81 9.36
DSA-512 40 2.41 7.31 24.34
DSA-768 40 4.39 13.18 43.93
DSA-1024 40 6.98 23.71 78.09
ECDSA 40 6.98 20.08 67.22
SFLASH 33 2.13 0.75 4.38
TTS 28 0.208 0.426 1.486

Table 6.8: Summary of performance results for all signature schemes.

the signing time and verification time for the ECDSA implementation in this thesis is

smaller than the ratio in [Pr03b, table 37]. However, it is unclear if the implementation

in [Pr03b, table 37] uses precomputation for signing; if it does not, then its signing time

would understandably be larger.

As expected, the MQ signature schemes gave the best performance among

the signature schemes with security levels of at least 280, with TTS being the fastest,

although the insecure 256-bit RSA had the fastest overall time for one signature and

three verifications. And as noted earlier, the time allotted to TTS would need to be

increased to reduce the probability of failing to compute a signature.

Disappointingly, none of the signature schemes tested would be able to com-

plete a single-source message exchange in under 1 ms, and certainly not in the 200 µs that

the current version of the FTPP without message authentication takes [Bu01]. Perhaps

with additional optimizations, the signature and verification times could be reduced by

a factor of two or so, but an order-of-magnitude improvement would be needed before
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these signature schemes become usable.

These results indicate that cryptographically secure signature schemes, or even

somewhat insecure ones like RSA and DSA with reduced key sizes, are too slow for

a system that needs to send messages at a very high rate. If a fault-tolerant computer

system must use authenticated messages, then the only currently viable solution is to

resort to an insecure signature scheme.
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CHAPTER 7

Conclusions
This thesis considered the practical implementation of a message authentication scheme

for a Byzantine-resilient fault-tolerant computer system. It shows that a system using

message authentication can use fewer nodes than a system not using message authenti-

cation while still achieving the same level of reliability.

Specifically, this thesis attempted to develop a message authentication scheme

for a new version of the X-38 Fault Tolerant Parallel Processor (FTPP), a fault-tolerant

computer system from Draper Laboratory that is designed for demanding applications

like human spaceflight. The FTPP achieves its reliability by running its programs on

multiple replicated nodes that maintain synchronized state. The current version of the

FTPP, which does not use authenticated messages, is a five-node system that can handle

the non-simultaneous failures of any two nodes. A new version of the FTPP could be

equally fault tolerant with only four nodes if it uses message authentication.

The FTPP uses a two-round voting protocol to come to a consensus on mes-

sages that originate from a single node. In the protocol, the node with a message to

send broadcasts it to all of its peers, then its peers reflect the message they receive to

each other. At the end of the protocol, each node ends up with multiple copies of the

message, and it chooses the most common copy to be the correct copy of the message.
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The voting protocol is necessary because a faulty sender node may send different mes-

sages to different recipient nodes, but all of the recipient nodes need to agree on the

message they received, since all of the nodes are supposed to be operating in the same

state. Examining the voting process, this thesis concluded that messages only need to

be signed during the first round, and only by the original sender.

A Byzantine-resilient system should tolerate faults in the nodes of the system,

even if they fail in unexpected and unlikely ways. For this reason, this thesis strongly

recommended cryptographically secure signature schemes for message authentication.

With an insecure scheme, certain sequences of faults can lead to a node forging a message

from another node. Only a cryptographically secure scheme can guarantee that a faulty

node cannot forge signatures, even if it were actively trying to do so.

This thesis then presented several candidates for the signature scheme to be

used to implement message authentication. A suitable signature scheme should be

cryptographically secure, but it also must be fast, two requirements that conflict with

each other. The FTPP needs to send messages at a very high rate, and that rate will

only increase over time as applications produce and consume more and more data. For-

tunately, computer processors have also been becoming faster. Although an all-software

implementation of message authentication would have been out of the question for the

original version of the FTPP, it was hoped that more modern processors have become

powerful enough to allow the implementation of a cryptographically secure signature

scheme in a new version of the FTPP.

This thesis implemented and evaluated the signature schemes RSA, DSA, el-

liptic curve DSA, SFLASH, and TTS. These signature schemes have widely varying

signing and verification times, signature lengths, and memory requirements. Unfortu-
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nately, all of them turned out to be too slow. Even the fastest of them would need to

run an order of magnitude faster to satisfy the message rates of the FTPP.

The signature schemes implemented in this thesis are still useful, since they

would be suitable for a low-message-rate fault-tolerant system that needs authenticated

messages. For the FTPP, however, one must conclude that cryptographically secure sig-

nature schemes are not yet feasible on the current generation of embedded processors.

7.1 Cryptographic security versus speed: a
compromise

A message authentication implementation for the FTPP must settle for a cryptograph-

ically insecure signature scheme. However, an appropriate scheme must still be secure

enough that producing forged messages does not become trivial. This thesis cannot rec-

ommend any particular candidate for the signature scheme at this point, but a suitable

one should have these properties:

1. Different messages should produce different signatures. With very high prob-

ability, changing even one bit of the message should result in a signature

that looks very different. No simple modification to a message-signature pair

should produce a new message-signature pair that is valid. This requirement

suggests that the signature scheme use a hash function like SHA-1 or MD5.

From the benchmark testing done for this thesis, it appears that a cryptograph-

ically secure hash function will run fast enough, even on moderately slow

processors like the ones that will be used in the new version FTPP. If a secure

hash function is too slow, using a CRC may be acceptable. Something like a
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simple checksum, however, is not suitable as a hash function, since it is too

easy to corrupt the message in a way that does not change its checksum.

2. The output of the hash function, and the signature itself, should be at least 64

bits long, and preferably longer. A signature of this length ensures that even if a

faulty node were to transmit randomly generated messages for the duration of

the FTPP’s operating lifetime, it would still be unable to forge a valid signature

with any realistic probability.

3. The signing and verification process should be different, and they should de-

pend on different data. This suggests a public-key signature scheme, where the

secret key is known only to one node. The danger with a scheme in which

the key for signing and the key for signature verification is the same is that

something as simple as a single-bit error in an array index could cause a node

to sign with another node’s key, thereby forging a signature.

4. The procedure to generate the secret key from the public key, or to forge a

signature, should not be simple. RSA with a reduced-size modulus, for exam-

ple, meets this requirement: even if the modulus can be easily factored, it is

extraordinarily unlikely that a series of faults would precisely implement the

steps of a factoring algorithm.

A cryptographically insecure but sufficiently complex signing function combined with

a secure hash function may yield a signature scheme that meets all of these requirements.

Candidates for the insecure signing function include RSA with very short moduli and

functions based on matrix multiplication (where signing is multiplication by a secret

matrix, and verification is multiplication by its inverse). However, more analysis is

needed before any signature scheme can be recommended.
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7.2 Possibilities for future research

One avenue for future research, of course, is to continue the work of this thesis and find

a faster signature scheme that can be used for message authentication in the FTPP.

However, the signature schemes described in this thesis, even though they are

too slow for the FTPP, can still be put to use elsewhere. TTS, for example, would

make a good candidate for a system with lower message rate requirements. Another

possibility is to use special hardware to accelerate these signature schemes. The goal of

the FTPP is to build a fault-tolerant system without using custom hardware, but other

systems may not have the same restriction.

This thesis is part of a larger effort at Draper Laboratory to build a better

fault-tolerant computer system, and there are certainly many opportunities for further

work as part of that effort. The focus this year has been on communication within the

system, but future work will address topics like fault detection and recovery.

Looking more broadly, this thesis covers several general themes. Each of them

is rich with opportunities for further research:

Cryptography for specific applications Much of cryptography is focused on infor-

mation security. This thesis is somewhat unusual in that uses cryptography for relia-

bility instead. Many distributed systems can be simplified if the member nodes can be

prevented from cheating, which is where cryptographic techniques become useful.

Looking at the cryptographic algorithms themselves, it is clear that many of

them have been developed to meet specific requirements. For example, encryption

and signature schemes based on elliptic curves offer the same benefits as the more

classical schemes like RSA, but the elliptic curve schemes can use smaller keys. The

109



Authenticated Messages for a Real-Time Fault-Tolerant Computer System David Chau

multivariate quadratic schemes, in turn, can run much faster. It is reasonable to expect

that further research will someday produce secure signature schemes fast enough to use

in demanding systems like the FTPP.

Implementation and optimization techniques During the course of this thesis, a

lot of effort was devoted to making the signature schemes run as quickly as possible.

However, the benchmarks in this thesis are obviously not the final word on how fast

signature schemes can be made to run. More research on optimization techniques can

be expected to produce both small improvements and algorithmic breakthroughs that

give dramatic speedups.

Building more robust systems Currently, fault-tolerant computer systems still oc-

cupy only a small niche in computer engineering. One might encounter a fault-tolerant

computer system when one gets on an airplane, or when one uses an electronic medi-

cal device, but in general, most of the computer systems one encounters are not even

remotely as reliable as a system like the FTPP. Not all systems need to be as reliable,

of course, and not all systems can afford to be. However, more research into building

systems that do need to be extremely reliable will yield techniques that can be applied

to ordinary systems as well, ultimately making all computer systems more reliable.
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