
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-018 March 16, 2007

Object and Reference Immutability using
Java Generics
Yoav Zibin, Alex Potanin, Shay Artzi , Adam Kiezun
and Michael D. Ernst

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4401722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Object and Reference Immutability using Java Generics

Yoav Zibin
MIT Computer Science and Artificial

Intelligence Lab
zyoav@csail.mit.edu

Alex Potanin
Victoria University of Wellington

alex@mcs.vuw.ac.nz

Shay Artzi Adam Kieżun
Michael D. Ernst

MIT Computer Science and Artificial
Intelligence Lab

{artzi | akiezun | mernst}@csail.mit.edu

Abstract
A compiler-checked immutability guarantee provides useful doc-
umentation, facilitates reasoning, and enables optimizations. This
paper presents Immutability Generic Java (IGJ), a novel language
extension that expresses immutability without changing Java’s syn-
tax by building upon Java’s generics and annotation mechanisms.
In IGJ, each class has one additional generic parameter that is
Immutable, Mutable, or ReadOnly. IGJ guarantees both refer-
ence immutability (only mutable references can mutate an object)
and object immutability (an immutable reference points to an im-
mutable object). IGJ is the first proposal for enforcing object im-
mutability, and its reference immutability is more expressive than
previous work. IGJ also permits covariant changes of generic ar-
guments in a type-safe manner, e.g., a readonly list of integers is
a subtype of a readonly list of numbers. IGJ extends Java’s type
system with a few simple rules. We formalize this type system and
prove it sound. Our IGJ compiler works by type-erasure and gen-
erates byte-code that can be executed on any JVM without runtime
penalty.

1. Introduction
Immutability information is useful in many software engineering
tasks, such as modeling [7], verification [31], compile- and run-
time optimizations [10, 25, 29], refactoring [17], test input genera-
tion [1], regression oracle creation [24,33], invariant detection [14],
specification mining [11], and program comprehension [21]. Three
varieties of immutability guarantee are:

Class immutability No instance of an immutable class may be
changed; examples in Java include String and most subclasses
of Number such as Integer and BigDecimal.

Object immutability An immutable object can not be modified,
even if other instances of the same class can be. For example,
some instances of List in a given program may be immutable,
whereas others can be modified. Object immutability can be
used for pointer analysis and optimizations, such as sharing
between threads without synchronization, and to help prevent
hard-to-detect bugs, e.g., the documentation of the Map interface
in Java states that “Great care must be exercised if mutable
objects are used as map keys. The behavior of a map is not
specified if the value of an object is changed in a manner that
affects equals comparisons while the object is a key in the map.”

Reference immutability A readonly reference [2, 5, 13, 22, 25, 30,
32] (or a const pointer in C++) cannot be used to modify its
referent. (However, the referent might be modified using an
aliasing mutable reference.) Reference immutability is required
to specify interfaces, such as that a procedure may not modify
its arguments (even if the caller retains the right to do so)

or a client may not modify values returned from a module.
However, past work does not guarantee object immutability,
unless reference immutability is combined with an alias/escape
analysis to guarantee that no aliases to an object exist.

This paper presents Immutability Generic Java (IGJ), a lan-
guage that supports class, object, and reference immutability.
Each object is either mutable or immutable, and each reference is
Immutable, Mutable, or ReadOnly. Inspired by work that combines
ownership and generics [27], the distinctions are expressed without
changing Java’s syntax by adding one new generic parameter (at
the beginning of the list of generic parameters):

1: // An immutable reference to an immutable date; mutating the
referent is prohibited, via this or any other reference.

2: Date<Immutable> immutD = new Date<Immutable>();

3: // A mutable reference to a mutable date; mutating the referent
is permitted, via this or any other mutable reference.

4: Date<Mutable> mutD = new Date<Mutable>();

5: // A readonly reference to any date; mutating the referent is
prohibited via this reference, but the referent may be changed
via an aliasing mutable reference.

6: Date<ReadOnly> roD = ... ? immutD : mutD;

Line 2 shows object immutability in IGJ, and line 6 shows
reference immutability. See Fig. 4 for a larger example of IGJ code.

Java prohibits changes to generic arguments, such as in line 6,
to avoid a type loophole. However, if mutation is disallowed,
then such covariant changes are type-safe, and indeed in IGJ
List<ReadOnly,Integer> is a subtype of List<ReadOnly,Number>.

IGJ satisfies the following design principles:

Transitivity IGJ provides transitive (deep) immutability that pro-
tects the entire abstract state of an object. For example, an
immutable graph can contain an immutable set of immutable
edges. C++, for example, does not support such transitivity
because C++’s const-guarantee does not traverse pointers, i.e.,
a pointer in a const object can mutate the object to which it
points.
Moreover, IGJ supports shallow immutability, i.e., it is possible
to exclude some fields from the abstract state. For example,
fields used for caching can be mutated even in an immutable
object.

Static There is no runtime representation for immutability, such
as an “immutability bit” that is checked before assignments
or method calls. Testing at runtime whether an object is im-
mutable [30] hampers program understanding.
The IGJ compiler works by type-erasure, without any run-time
representation of reference or object immutability, which en-
ables executing the resulting code on any JVM without run-

1 2007/3/16

MutableReadOnlyImmutable
Figure 1. The type hierarchy of immutability parameters, which
have special meaning when used as the first generic parameter, as
in List<Mutable,T>. (See also Fig. 6 in Sec. 2.4)

time penalty. A similar approach was taken by Generic Java
(GJ) [6] that extended Java 1.4. As with GJ, libraries must ei-
ther be retrofitted with IGJ types, or fully converted to IGJ, be-
fore clients can be compiled. IGJ is backward compatible, i.e.,
every legal Java program is a legal IGJ program.

Polymorphism It is possible to abstract over immutability without
code duplication, e.g., a method argument that is either mutable
or immutable. For instance, all the collection classes in C++’s
STL have two overloaded versions of iterator, operator[],
etc. The underlying problem is the inability to return a reference
whose immutability depends on the immutability of this:

const Foo& getFieldFoo() const;

Foo& getFieldFoo();

Simplicity IGJ does not change Java’s syntax or typing rules. IGJ
adds a small number of additional typing rules, that make IGJ
more restrictive than Java. On the other hand, IGJ subtyping
rules are more relaxed, allowing covariant changes in a type-
safe manner.

The contributions of this paper are as follows: (i) a novel and
simple design combining both reference and object immutability
that naturally fits into Java’s generics framework, (ii) an implemen-
tation of an IGJ compiler, proving feasibility of the design, and
(iii) a formalization of IGJ with a proof of type soundness. Our
ideas, though demonstrated using Java, are applicable to any stati-
cally typed language with generics, such as C++, C#, and Eiffel.

Outline The remainder of this paper is organized as follows.
Sec. 2 describes the IGJ language, which is compared to previous
work in Sec. 3. Sec. 4 discusses our experimentation with IGJ,
and Sec. 5 formalizes IGJ and gives a proof of soundness. Sec. 6
outlines future work. We conclude in Sec. 7.

2. IGJ language
IGJ provides three kinds of references: readonly, mutable, and im-
mutable. The first generic argument of a class/type in IGJ is called
the immutability parameter, and it must be Mutable, Immutable, or
ReadOnly.

2.1 Type hierarchy
Fig. 1 depicts the type hierarchy of immutability parameters. The
subtyping relation is denoted by¹, e.g., Mutable ¹ ReadOnly. The
immutability parameters Mutable, Immutable, and ReadOnly may
not be extended, and they have no subtype relation with any other
types in IGJ.

The root of the IGJ type hierarchy (excluding ReadOnly and
its descendants) is Object<ReadOnly>. Fig. 2 depicts the subtype
relation for the classes Object and Date.

In Java, all generic parameters are invariant. The subtyping
rules for IGJ are more relaxed. IGJ permits covariant changes in
the immutability parameter (the first generic argument), e.g.,

Date<Mutable> ¹ Date<ReadOnly>

This satisfies the polymorphism design principle, because a pro-
grammer can write a single method that accepts a reference of any
immutability, for example:

Object<Mutable>Object<ReadOnly>Object<Immutable>
Date<Mutable>Date<ReadOnly>Date<Immutable>

Figure 2. The subtype hierarchy for Object and Date. The classes
(in bold) still have an underlying tree structure.

void print(Date<ReadOnly> d)

IGJ also permits covariant changes in other generic arguments
if the immutability parameter is ReadOnly or Immutable, e.g.,

List<ReadOnly,Integer> ¹ List<ReadOnly,Number>

Covariant changes are safe only when the object is readonly or
immutable because it cannot be mutated in a way which is not type-
safe. Therefore the following pair is not in the subtype relation:

List<Mutable,Integer> 6¹ List<Mutable,Number>

A type variable X in class C can be annotated with @NoVariant

to prevent covariant changes, in which case we say that X is
no-variant and write NoVariant(X, C). Otherwise we say that X

is co-variant and write CoVariant(X, C). Sections 2.3 and 2.5
discuss when a type-variable should be no-variant. For exam-
ple, the type variable X in the interface Comparable<I,X> is no-
variant:1

interface Comparable<I extends ReadOnly, @NoVariant X>

{ @ReadOnly int compareTo(X o); }
For instance, Comparable<ReadOnly,Integer> was written to com-
pare itself to an Integer, thus it should not be a subtype of
Comparable<ReadOnly,Number>, that can be passed a Number.

IGJ’s subtype definition for two types of the same class is given
in Def. 2.1. The full subtype definition (formally given in Fig. 12
of Sec. 5) includes all of Java’s subtyping rules, therefore IGJ’s
subtype relation is a superset of Java’s subtype relation.

Definition 2.1. Let C<I, X1, . . . , Xn> be a class with n ≥ 0 generic
variables. Then, type S = C<J, S1, . . . , Sn> is a subtype of T =
C<J

′, T1, . . . , Tn>, written as S ¹ T, iff J ¹ J
′ and for i =

1, . . . , n, either Si = Ti or (Immutable ¹ J
′ and Si ¹ Ti and

CoVariant(Xi, C)).

Example Fig. 3 presents the subtype hierarchy for List<Object>.
The types L<M,O<M>>, L<M,O<IM>>, and L<M,O<R>> have a common
mutable supertype L<M,? extends O<? extends R>>, but the only
value that can be inserted in such a list is null. (See Sec. 3 for a
discussion of Java’s wildcards.)

2.2 Reference immutability
This section gives the three key type rules of IGJ that enforce ref-
erence immutability: that is, only a Mutable reference can modify
its referent. To support reference immutability it is sufficient to use
ReadOnly and Mutable references; Sec. 2.4 adds object immutabil-
ity by using Immutable references as well.

We use I(. . .) to denote a function that takes a class, type, or
reference, and returns its immutability (parameter). For example,
given a reference mutD of type Date<Mutable>, I(mutD) = Mutable,
and we say that the immutability of mutD is Mutable.

A field can be assigned only by a mutable reference:

1 Annotating generic arguments will be available only in Java 7 [15]. In the
meantime it is possible to annotate the class or interface instead, and specify
which positions are no-variant.

2 2007/3/16

L<R,O<IM>>L<R,O<R>>L<R,O<M>>L<IM,O<IM>>L<IM,O<R>>L<IM,O<M>> L<M,O<IM>>L<M,O<R>>L<M,O<M>>
Figure 3. The subtype hierarchy for List<Object>, abbreviated as
L<O>. The types ReadOnly, Mutable, and Immutable are abbreviated
as R, M, and IM, respectively. The crossed-out arrows emphasize
pairs that are not subtypes.

FIELD-ASSIGNMENT RULE:
o.someField = ... is legal iff I(o) = Mutable.

Phrased differently, you cannot assign to fields of a readonly refer-
ence, e.g.,

Employee<ReadOnly> roE = ...;

roE.address = ...; // Compilation error!
The immutability of this depends on the context, i.e., the

method in which this appears:
THIS RULE: I(this) = I(m), in a method m.

Because there is no obvious syntactic way to denote the immutabil-
ity of this, IGJ uses method annotations: @ReadOnly, @Mutable,
etc.2

For example, below we have I(this) = I(m) = Mutable:
@Mutable void m() { ... this ...}

The default method annotation in IGJ is @Mutable, but for clarity
of presentation, this paper explicitly annotates all methods.

The third type rule of IGJ states when a method call is legal:
METHOD-INVOCATION RULE: o.m(...) is legal iff I(o) ¹ I(m).

IGJ requires that I(o) ¹ I(m), and not simply I(o) = I(m), to
allow a mutable reference to call readonly methods, e.g.,

Employee<Mutable> o = ...;

o.setAddress(...); // OK: I(o) ¹ I(setAddress) = Mutable

o.getAddress(); // OK: I(o) ¹ I(getAddress) = ReadOnly

((Employee<ReadOnly>) o).setAddress(...); // Illegal!

Example Fig. 4 presents two IGJ classes: Edge and Graph. The
immutability parameter I is declared in lines 1 and 11; by conven-
tion we always denote it by I. If the extends clause is missing from
a class declaration, then we assume that class extends Object<I>.
We can use any subtype of ReadOnly in place of I, e.g., ReadOnly
(on line 9), Mutable (on line 15), or another parameter such as I

(on line 12) or X (on line 18).
We will now demonstrate the type-checking rules by example.

The assignment this.id = id on line 5 is legal because according
to THIS RULE we have that I(this) = I(setId) = Mutable,
and according to FIELD-ASSIGNMENT RULE a mutable reference can
assign to a field. That assignment would be illegal if it was moved
to line 6, because this is readonly in the context of method getId.
The method call this.setId(...) on line 3 is legal according to
METHOD-INVOCATION RULE because I(this) ¹ I(setId). That
method call would be illegal on line 6.

Observe on line 9 that the static method print does not have
an annotation because it does not have an associated this object.
According to Def. 2.1 of the subtype relation, an edge of any
immutability can be passed to print.

We call the field edges on line 12 this-mutable [32] because
its immutability depends on the immutability of this: in a mutable

2 The paper uses the annotation @ReadOnly whereas the IGJ compiler uses
@ReadOnlyMethod, because an annotation and a class cannot have the
same qualified name. The same applies for the other three annotations.

1: class Edge<I extends ReadOnly> {
2: private long id;

3: @AssignsFields Edge(long id) { this.setId(id); }
4: @AssignsFields synchronized void setId(long id) {
5: this.id = id; }
6: @ReadOnly synchronized long getId() { return id; }
7: @Immutable long getIdImmutable() { return id; }
8: @ReadOnly Edge<I> copy() { return new Edge<I>(id); }
9: static void print(Edge<ReadOnly> e) { ...}

10: }
11: class Graph<I extends ReadOnly> {
12: List<I,Edge<I>> edges;

13: @AssignsFields Graph(List<I,Edge<I>> edges) {
14: this.edges = edges; }
15: @Mutable void addEdge(Edge<Mutable> e) {
16: this.edges.add(e); }
17: static <X extends ReadOnly> Edge<X>

18: findEdge(Graph<X> g, long id) { ...}
19: }
Figure 4. IGJ classes Edge<I> and Graph<I>, with the immutabil-
ity parameters (and annotations, for this) underlined. Erasing
the immutability parameters and annotations yields a legal Java
program with the same semantics. The annotations @Immutable

and @AssignsFields are explained in Sec. 2.4; for now assume
that @Immutable is the same as @ReadOnly, and @AssignsFields

is the same as @Mutable.

object this field is mutable and in a readonly object it is readonly.
C++ has similar behavior for fields without the keywords const

or mutable. The advantage of IGJ syntax is that the concept of
this-mutable is made explicit in the syntax: a class can pass its
immutability parameter to its fields, and the underlying generic
type system propagates the immutability information without the
need for special type-rules. Using generics simplifies both the
design and the implementation.

Moreover, C++ has no this-mutable local variables, return
types, or parameters, whereas IGJ treats I as a regular generic
parameter. For example, the parameter edges on line 13 and the
return type on line 8 are both this-mutable.

Recall that the Transitivity design principle states that the de-
sign must support transitive (deep) immutability. In our example,
in a mutable Graph the field edges will contain a mutable list of
mutable edges. The second usage of I in List<I,Edge<I>> is not
expressible in C++.

2.3 Method overriding
IGJ respects the Java class hierarchy. An overriding method must
preserve or strengthen the specification of the overridden method:

METHOD-OVERRIDING RULE 1:
If method m’ overrides m, then I(m) ¹ I(m’).

For example, overriding can change a @Mutable method to a
@ReadOnly method, but not vice versa.

IGJ requires that the erased signature of an overriding method
remain the same if that method is either readonly or immutable.
The erased signature of a method is obtained by replacing type-
variables with their bounds. When the erased signature of an
overriding method changes, the compiler inserts a bridge method
to cast the arguments to the correct type [6].

METHOD-OVERRIDING RULE 2:
If method m’ overrides m and Immutable ¹ I(m), then the erased
signatures of m’ and m (excluding no-variant type-variables) must
be identical.

3 2007/3/16

1: class MyVector<I extends ReadOnly, X> { ...

2: @ReadOnly void isIn(X o) {...} // The erased signature is isIn(Object)
3: }
4: class MyIntVector<I extends ReadOnly> extends MyVector<I,Integer> { ...

5: // Overriding isIn is illegal due to METHOD-OVERRIDING RULE 2: the erased signature isIn(Integer) is different from isIn(Object)

6: @ReadOnly void isIn(Integer o) {...} // Would be legal if X was annotated with @NoVariant

7: }
8: MyVector<ReadOnly,Object> v = new MyIntVector<ReadOnly>(); // Would be illegal if X was annotated with @NoVariant

9: v.isIn(new Object()); // If overriding were legal, the bridge method of isIn(Integer) would cast an Object to an Integer

Figure 5. An example of illegal method-overriding due to METHOD-OVERRIDING RULE 2

Fig. 5 demonstrates why METHOD-OVERRIDING RULE 2 prohibits
method overriding if the erased signature changes. As another
example, if X was annotated as @NoVariant in line 2, then the
overriding in line 6 would be legal, and covariantly changing X in
line 9 would be illegal.

Out of 82,262 methods in Java SDK 1.5, 30,169 methods over-
ride other methods, out of which only 51 have a different erased
signature, and only the method compareTo(X) is readonly (the rest
are mutable: add, put, offer, create, and setValue). Because X is
no-variant in the Comparable interface, we conclude that METHOD-
OVERRIDING RULE 2 does not impose any restrictions on Java SDK.

2.4 Object immutability
One advantage of object immutability is enabling safe sharing be-
tween different threads without the cost of synchronization. Con-
sider lines 6–7 in Fig. 4. A long read/write is not atomic in Java;
synchronization is necessary. However, only an immutable Edge

can use getIdImmutable() to avoid the cost of synchronization.
The referent of a readonly reference (Sec. 2.2) is not immutable:

it could be changed via another pointer. A separate analysis can
indicate some cases when such changes are impossible [32], but it
is preferable for the type system to guarantee that the referent of
immutable references cannot change.

The IGJ type system makes such a guarantee:

A mutable reference points to a mutable object, and
an immutable reference points to an immutable object.

(1)

In order to enforce this property, no immutable reference may be
aliased by a mutable one; equivalently, no mutable reference may
point to an immutable object.

2.4.1 Constructors and Annotation @AssignsFields

The rules given so far are sufficient to guarantee object immutabil-
ity for IGJ with the exception of constructors. A constructor that is
making an immutable object must be able to set fields in the object
(which becomes immutable as soon as the constructor returns). It
is not acceptable to mark the constructor of an immutable object
as @Mutable, which would permit arbitrary side effects, possibly
including making mutable aliases to this.

IGJ uses a fourth kind of reference immutability, AssignsFields,
to permit constructors to perform limited side effects without per-
mitting modification of immutable objects. Whereas a @Mutable

method can assign and mutate the object’s fields, an @AssignsFields

method can only assign (not mutate) the fields of this. A pro-
grammer can write the @AssignsFields method annotation but
may not write the AssignsFields type in any other way, such
as Edge<AssignsFields>. Therefore, in an @AssignsFields con-
structor, this can only escape as ReadOnly. Fig. 6 shows the full
hierarchy of immutability parameters.

AssignsFields is not transitive, i.e., you can assign to fields of
this but not to fields of fields of this. Specifically, we relax FIELD-

ReadOnlyAssignsFields ImmutableMutable
Figure 6. The type hierarchy of immutability parameters, includ-
ing AssignsFields.

ASSIGNMENT RULE by allowing a field of this to be assigned in an
@AssignsFields method:

FIELD-ASSIGNMENT RULE revised:
o.someField = ... is legal iff
I(o) = Mutable or (I(o) = AssignsFields and o = this).

Next, we restrict the METHOD-INVOCATION RULE:
METHOD-INVOCATION RULE revised:
o.m(...) is legal iff
I(o) ¹ I(m) and (I(m) = AssignsFields implies o = this).

(The addition of o = this ensures that AssignsFields is not
transitive.)

It is not always known at compile time whether a new oper-
ation creates a mutable or an immutable object, e.g., line 8 of
Fig. 4. IGJ always permits creating an object using a @ReadOnly or
@AssignsFields constructor, however it permits using a @Mutable

constructor only for creating a mutable object (and similarly for an
@Immutable constructor):

OBJECT-CREATION RULE: new SomeClass<X,...>(...) is ille-
gal iff the annotation Y of the constructor satisfies:
Y = @Mutable and X 6= Mutable, or
Y = @Immutable and X 6= Immutable.

Example The assignment this.id = ..., on line 5 of Fig. 4,
is legal according to the new FIELD-ASSIGNMENT RULE because
method setId is annotated with @AssignsFields and thus the im-
mutability of this is I(this) = AssignsFields. The method call
this.setId(...) on line 3 was already legal (and is still legal)
because

I(this) = AssignsFields ¹ I(setId) = AssignsFields.
The METHOD-INVOCATION RULE was made more strict to avoid tran-
sitivity. For instance, adding the code this.edges.get(0).setId(42)
to line 14 is legal in the old METHOD-INVOCATION RULE but not in
the revised one. Note that this addition must be illegal because it
could mutate an immutable edge in the list edges.

A field of an immutable object can be assigned multiple times in
the constructor or even in other @AssignsFields methods. This is
harmless, and the programmer can mark a field as final to ensure
that it is assigned in the constructor once and no more than once.

Field initializers Field initializers are expressions that are used to
initialize the object’s fields. It is safe to consider the immutability
of this as AssignsFields in such expressions. However, if all

4 2007/3/16

1: class AccessOrderedSet<I extends ReadOnly,

2: @NoVariant X> {
3: private List<Mutable, X> l;

4: public @ReadOnly boolean contains(X x) {
5: ...

6: // We can mutate this.l even though this is ReadOnly
7: this.l.addFirst(x);

8: }
9: }

Figure 7. Class AccessOrderedSet with a mutable field l. Vari-
able X is no-variant.

constructors are mutable, we can safely assume that this is mutable
as well.

Remark 2.2. Before JSR 133 [28] immutable objects could have
different values in different threads. The new memory model adds
a “synchronization point” at the end of a constructor after which
all assignments are guaranteed to be written. However, the pro-
grammer is warned (in the documentation only!) that immutable
objects are thread-safe only if this does not escape its construc-
tor. Therefore we plan to modify IGJ to issue a warning whenever
this escapes, even though it is not dangerous to IGJ’s type system
because only a readonly this can escape.

2.5 Mutable and assignable fields
A type system should guarantee facts about the abstract state of
an object, not merely its concrete representation. Therefore, a
transitive guarantee of immutability for all fields of an object may
be too strong. For example, fields used for caching are not part of
the abstract state. This section discusses how to permit a given field
to be assigned or mutated even in a readonly or immutable object,
and than discusses special restrictions involving such fields.

Assignable fields An assignable field (denoted by the @assignable
annotation) is in essence the reverse of a final field: a final field
cannot be re-assigned whereas an assignable field can always be
assigned (even using a readonly reference). IGJ uses to denote that
such a field can always be assigned. We revise FIELD-ASSIGNMENT

RULE to always allow assigning to an assignable field:
FIELD-ASSIGNMENT RULE revised again:
o.someField = ... is legal iff
I(o) = Mutable or (I(o) = AssignsFields and o = this) or
someField is annotated as @assignable.
For example, consider this code snippet:
private @assignable int memoizedHashCode = 0;

public @ReadOnly int hashCode() {
if (memoizedHashCode == 0) {

memoizedHashCode = ...;

}
return memoizedHashCode;

}
The assignment memoizedHashCode=... is legal even though
hashCode is readonly, due to the @assignable annotation.

Mutable fields A mutable field can always be mutated, even using
a readonly reference. No new linguistic mechanism is required to
express a mutable field: its immutability parameter is Mutable.

For instance, AccessOrderedSet in Fig. 7 implements a set
using a list l (line 3), and as an optimization it maintains the
list in access-order even during calls to readonly methods such as
contains (line 7). Therefore, l is declared as a mutable field.

Covariant and no-variant type-variables Type-variable X in
Fig. 7 must be annotated as @NoVariant (line 2) due to its use

in the mutable field l. If X could change covariantly, we would
have that:

AccessOrderedSet<ReadOnly, Integer > ¹
AccessOrderedSet<ReadOnly, Number >

We could than add a Number to an Integer list using the contains

method in line 3 of Fig. 7.
An assignable field or a mutable superclass have the same re-

striction as a mutable field:
NOVARIANT RULE: A type-variable must be no-variant if it is
used in a mutable field, an assignable field, a mutable superclass,
or in the position of another no-variant type-variable. (See a
formal definition in Fig. 11.)
The immutability parameter is a special generic variable that

must be allowed to change covariantly, otherwise a mutable refer-
ence could not call a readonly method. In other words, I must be
co-variant:

COVARIANT RULE: CoVariant(I, C) must hold for any class C.
For example, declaring the following field is prohibited because the
immutability parameter I must always be co-variant:

@assignable Edge<I> f;

2.6 Inner classes
Nested classes that are static can be treated the same as normal
classes. An inner class is a nested class that is not explicitly or
implicitly declared static (see JLS 8.1.3 [18]). Inner classes have
an additional this reference: OuterClass.this. According to THIS

RULE, the immutability of this depends on the immutability of the
method. Because methods in IGJ have a single method annotation,
the immutability of this and OuterClass.this should be the same.
Therefore, in IGJ an inner class cannot have its own immutability
parameter:

INNER-CLASS RULE: An inner class inherits the immutability
parameter of the outer class.
Consider the code in Fig. 8. Lines 1–5 show the declaration

of the Iterator interface, in which the only mutable method is
remove. The immutability of an iterator is inherited from its
container. Therefore, even though method next changes the state
of the iterator it does not change the state of the container and is
thus considered state preserving for the container and declared as
readonly. In contrast, method remove changes the container and is
thus marked as mutable.

Now consider the class ArrayList and the inner class ArrItr.
We do not pass an immutability parameter to the inner class ArrItr
on lines 7–8, because it inherits its immutability from ArrayList.
On line 13 both this references are mutable because remove() is
mutable. Finally, consider the creation of a new iterator on line 7.
We handle this new operation using METHOD-INVOCATION RULE for
method calls (instead of OBJECT-CREATION RULE): this method call
is legal because this is readonly and the constructor of ArrItr is
readonly. We do not use OBJECT-CREATION RULE because the inner
object inherits the immutability of the outer object.

Anonymous inner classes can be considered identical to regular
inner classes where the only exception is that we cannot write a
constructor because the class has no name, making it impossible
to annotate the constructor. For instance, the code in Fig. 8 can be
converted to use an anonymous inner class:

public @ReadOnly Iterator<I,E> iterator() {
return new Iterator<I,E>() { ... };

}
However, we can safely assume that the immutability of the miss-
ing constructor is the same as the immutability of the method in
which the inner class is declared, or else the new operation would

5 2007/3/16

1: interface Iterator<I extends ReadOnly,E> {
2: @ReadOnly boolean hasNext();

3: @ReadOnly E next();

4: @Mutable void remove();

5: }
6: class ArrayList<I extends ReadOnly, E> ... { ...

7: public @ReadOnly Iterator<I,E> iterator() { return this.new ArrItr(); } // OK: I(this) ¹ I(ArrItr) = ReadOnly

8: class ArrItr implements Iterator<I,E> { // ArrItr has no explicit immutability parameter: it is inherited from the outer class
9: private @assignable int currPos;

10: public @ReadOnly ArrItr() { this.currPos=0; } // OK: currPos is @assignable
11: public @ReadOnly boolean hasNext() { return this.currPos < ArrayList.this.size(); }
12: public @ReadOnly E next() { return ArrayList.this.get(this.currPos++); } // OK: I(this) ¹ I(get) = ReadOnly

13: public @Mutable void remove() { ArrayList.this.remove(this.currPos - 1); } // OK: I(this) ¹ I(remove) = Mutable

14: }
15: }

Figure 8. Declaration of the interface Iterator and the class ArrayList with an inner class ArrItr.

be illegal in IGJ. In the example above the immutability of the
constructor must be readonly because iterator() is readonly.

2.7 Exceptions, immutable classes, reflection, and arrays
In IGJ’s syntax, the immutability is an integral part of the type. In
Javari [32] (see Sec. 3) it is syntactically possible but semantically
illegal to write this code:

class Cell<X> { readonly X x; ...}
It is semantically illegal because the immutability of X is deter-
mined in the client code, e.g., Cell<readonly Date>. In compar-
ison, IGJ’s syntax does not even enable such a declaration: it is
syntactically and semantically illegal.

Throwable Generics and immutability naturally combine in an-
other aspect: their usage limitations. For example, it is forbidden
to throw a readonly reference because the catcher can mutate that
reference. Similarly, Java prohibits adding generic parameters to
any subclass of Throwable because the compiler cannot statically
connect the throwing and catching positions. IGJ naturally inherits
this usage limitation from the underlying generics mechanism.

Manifest classes and immutable classes IGJ supports manifest
classes [27], which are classes without an immutability parameter.
Manifest classes can be used to express class immutability, e.g.,

class String extends Object<Immutable> ...

IGJ treats all methods of String as if they were annotated with
@Immutable, and issues errors if mutable methods exist.

Reflection It is discouraged in IGJ to use reflection or to remove
the immutability parameter by casting to a raw type. The IGJ
compiler issues a warning in both cases because they can create
holes in the type system. (IGJ does not consider these errors
because it might be necessary to call legacy code.)

Arrays Java does not permit arrays to have generic parameters.
IGJ supplies a wrapper class Array<I extends ReadOnly,T> that
enables the creation of immutable arrays. IGJ treats an array type
T[] as Array<Mutable,T>, i.e., arrays are mutable by default.

3. Previous Work
We are not aware of any work that proposed a static typing sys-
tem for object immutability and not just reference immutability.
Pechtchanski and Sarkar [25] describe various annotations for im-
mutability assertions, such as @immutableField, @immutableParam,
etc., and show that such assertions enable optimizations that can
speed up some benchmarks by 5–10%. However they do not
present any typing rules to enforce such assertions.

Java already includes various classes whose instances are im-
mutable, and it supports a non-transitive form of immutability us-
ing final

3. Functional languages such as ML default all fields to
being immutable, with mutable fields being the exception. C++’s
const mechanism has similar semantics to IGJ: a field can be de-
clared as const (similar to readonly in IGJ), mutable, or by de-
fault as this-mutable. However, in contrast to IGJ, parameters to
functions, return types, local variables, and generic parameters can-
not be this-mutable. Other disadvantages are: (i) const can be
cast away at any time, making it more a suggestion than a binding
contract, (ii) const protects only the state of the enclosing object
and not objects it points too, e.g., you cannot mutate an element
inside a const node in a list, but the next node is mutable, and
(iii) using const results in code duplication such as two versions of
operator[] in every collection class in the STL.

Most of IGJ terminology was borrowed from Javari [32] such
as assignable, readonly, mutable, this-mutable. However, this-
mutable fields in Javari are mutable as lvalue and readonly as
rvalue. Javari does not support object immutability, whereas its
reference immutability is more limited than that of IGJ for two rea-
sons: (i) parameters to methods, return types, and local variables,
cannot be this-mutable, and (ii) IGJ can use generics to abstract
over the immutability parameter. Javari’s romaybe is in essence a
template over immutability. For instance, if you wish to find an
edge in a graph, then the algorithm will be the same regardless
if the graph contains mutable or readonly edges, however the re-
turn type changes depending on the immutability of the edges. In
IGJ, instead of inventing a new template-like mechanism such as
romaybe, we use generics to achieve the same goal, as demonstrated
by the static method findEdge on line 17 of Fig. 4. Javari also sup-
ports this-assignable fields, which pass the assignability (final
or assignable) of this to a field. Finally, Javari uses ?readonly

which is similar to Java’s wildcards. Consider, for instance, the
class Foo written in Javari’s syntax:

class Foo { public List<Object> list; }
Then in a readonly Foo the type of list is

readonly List<?readonly Object>

which is syntactic sugar for
readonly List<? extends readonly Object

super mutable Object>

Thus, it is possible to insert only mutable elements to list, and
retrieve only readonly elements.

3 A final field cannot be assigned a new value after the constructor finishes.
However, this restriction can be circumvented using reflection.

6 2007/3/16

Skoglund and Wrigstad [30] propose a system with read and
write references with similar semantics to C++’s const. They also
introduce a caseModeOf construct which permits run-time checking
of reference writeability.

Several papers proposed a mechanism of access rights. JAC [22]
is a compile-time access right system with the following ac-
cess right order: readnothing < readimmutable < readonly <

writeable, where readnothing cannot access fields of this (only
the identity for equality), and readimmutable can only access im-
mutable state of this. JAC uses additional keywords (such as
nontransferable) that address other concerns than immutability.
Capabilities for sharing [5] are intended to generalize various other
proposals for access rights, ownership and immutability, by giv-
ing a lower level semantics that can be enforced at compile- or
run-time. A reference can possess any combination of these 7 ac-
cess rights: read, write, identity (permitting address comparisons),
exclusive read, exclusive write, exclusive identity, and ownership
(giving the capability to assert rights). Immutability, for example,
is represented by the lack of the write right and possession of the
exclusive write right.

Boyland [4]. concludes that readonly is useful but it does not
address observational exposure, i.e., modifications on one side of
an abstraction boundary that are observable on the other. How-
ever, IGJ’s immutable objects can be shared safely because their
state cannot change. Boyland’s second criticism was that the tran-
sitivity principle (see Sec. 1), which is mandatory in all the de-
signs above, should be selectively applied by the designer, because,
“the elements in the container are not notionally part of the con-
tainer” [4]. In IGJ, a programmer can solve this problem by using
a different immutability for the container and its elements.

Non-null types [16] has a similar challenge that IGJ has in con-
structing immutable objects: a partially-initialized object may es-
cape its constructor. IGJ uses @AssignsFields to mark a construc-
tor of immutable objects, and a partially initialized object can es-
cape only as ReadOnly. Non-null types uses a Raw annotation on
references that might point to a partially-initialized object, and on
methods to denote that the receiver can be Raw. A non-null field of
a Raw object has different lvalue and rvalue: it is possible to assign
only non-null values to such field, whereas reading from such field
may return null. Similarly to IGJ, non-null types cannot handle
cyclic data-structures, nor can it express the staged initialization
paradigm in which the construction of an object continues after its
constructor finishes.

3.1 Ownership types and readonly references
Ownership types [3, 8, 23] impose a structure on the references be-
tween objects in a program’s memory. Ownership-enabled lan-
guages such as Ownership Generic Java [27] prevent aliasing to
the internal state of an object. While preventing exposure of owned
objects, ownership does not address exposing immutable parts of
an object that cannot break encapsulation.

One possible application of ownership types is the ability to
reason about read and write effects [9] which has complimentary
goals to object immutability. Universes [13] is a Java language
extension combining ownership and reference immutability. Most
ownership systems enforce that all reference chains to an owned
object pass through the owner. Universes relaxes this demand
by enforcing this rule only for mutable references, i.e., readonly
references can be shared without restriction.

3.2 Covariant subtyping
Covariant subtyping is allowing covariant changes in generic pa-
rameters in a type-safe manner. Variant parametric types [20] attach
a variance annotation to a type argument, e.g., Vector<+Number>

or Vector<-Number>. The subtype relation contains the following
chain:

Vector<Integer> ¹ Vector<+Integer> ¹
¹ Vector<+Number> ¹ Vector<+Object>

The type checker prohibits calling someMethod(X) when the re-
ceiver is of type Foo<+X>. For instance, suppose there is a
method isIn(X) in class Vector<X>. Then, it is prohibited to call
isIn(Number) on a reference of type Vector<+Number>.

Java’s wildcards have a similar chain in the subtype relation:
Vector<Integer> ¹ Vector<? extends Integer> ¹
¹ Vector<? extends Number> ¹ Vector<? extends Object>

Java’s wildcards and variant parametric types are different in the le-
gality of invoking isIn(? extends Number) on a reference of type
Vector<? extends Number>. While such an invocation is prohib-
ited in variant parametric types, Java permits such an invocation,
however the only value of type ? extends Number is null.

IGJ also contains a similar chain:
Vector<Mutable,Integer> ¹ Vector<ReadOnly,Integer> ¹
¹ Vector<ReadOnly,Number> ¹ Vector<ReadOnly,Object>

However the restriction on method calls in IGJ is based on seman-
tics (whether the method is readonly or not) rather than on method
signature as in wildcards and variant parametric types. For ex-
ample, IGJ allows calling isIn(Number) on a reference of type
Vector<ReadOnly, Number> iff isIn is readonly.

3.3 Typestates for objects
In a typestates system, each object is in a certain state, and the
set of applicable methods depends on the current state. Verifying
typestates statically is challenging due to the existence of aliases,
i.e., a state change in a particular object must affect all existing
aliases to it. Typestates for objects [12] uses linear types to manage
aliasing.

Object immutability can be partially expressed using typestates:
by using two states (mutable and immutable) and declaring that
mutating methods are applicable only in the mutable state. An
additional method should mark the transition from a mutable state
to an immutable state, and it should be called after the initialization
of the object has finished. It remains to be seen if systems such
as [12] can handle arbitrary aliases that occur in real programs,
e.g., this references that escape in the constructor.

4. Experimentation
To illustrate the usability of IGJ we converted the programs of the
jolden benchmark to IGJ, using an Eclipse plug-ins. We compiled
those programs using the IGJ compiler, and we examined the code
to find places that IGJ could provide stronger immutability guaran-
tees.

Converting Java to IGJ We have created two Eclipse plug-ins
for converting Java code into IGJ. The first plug-in converts full
classes into IGJ by adding type parameters (<I extends ReadOnly

>) to each class, and setting the immutability of fields, locals, and
method to Mutable. The second plug-in generates IGJ skeletons
of libraries’ public signatures. This allows the developer to use or
change the immutability interface of library classes, while avoiding
the need to modify the library code to reflect those changes.

Due to Java restrictions, type parameters are not added in the
following cases:

1. Accessing static fields or methods

2. In the context of reflection (.class or instanceof)

3. Array construction

7 2007/3/16

1: public static QuadTreeNode

2: createTree(QuadTreeNode parent,...) {
3: QuadTreeNode node;

4: if(...) { node = new BlackNode(...); }
5: else if(...) { node = new WhiteNode(...); }
6: else {
7: node = new GreyNode(...);

8: sw = createTree(node, ...);

9: se=...; nw=...; ne=...;

10: node.setChildren(sw,se,nw,ne);

11: }
12: return node;

13: }

Figure 9. The QuadTreeNode.createTree method. This method
creates the QuadTreeNode corresponding to a given image. When
the class QuadTreeNode is immutable, the last call to the
setChildren method fails.

4. String due to string literals, and boxed classes (Integer, Boolean,
...) due to auto boxing.

5. Exceptions

IGJ compiler The IGJ compiler is an extension to Sun’s javac.
During the type checking phase of the Java language implementa-
tion, a visitor pattern is used to visit every element in the Abstract
Syntax Tree (AST). IGJ uses two additional visitors for the AST:
one to visit before the Java attribution phase, and one to visit after
the Java attribution phase. The first visitor checks for appropriate
use of the immutability parameter. The second visitor detects any
violation of the typing rules. Finally, isSubType was modified ac-
cording to Def. 2.1.

Example The perimeter program from jolden computes the
perimeter of a region in a binary image represented by a quad-tree.
This program has ten classes in three hierarchies. We annotated the
Quadrant and QuadTreeNode hierarchies as being made up of im-
mutable classes: we made those classes extend Object<ReadOnly>,
we set the immutability for all methods and fields to ReadOnly, and
we annotated the constructors (and a setChildren method called
by one of them) as AssignsFields.

We had to perform one refactoring to solve a problem in
the createTree static method (Fig. 9). This method creates the
QuadTreeNode representing the image given as a parameter. The
type of the created node is determined by the parameters. In the
case of a GreyNode on Line 7, the method recursively constructs
four new nodes representing the northwest, northeast, southwest,
southeast quadrants of the image. After the four nodes are created,
the method setChildren is called to set the four constructed nodes.

This code doesn’t compile in IGJ. Because QuadTreeNode

is an immutable class, it is illegal to call the mutating method
setChildren (line 10). To solve this problem we refactored the
code by moving the construction of the image quadrants into the
constructor of GreyNode.

5. Proof of Type Soundness
Proving soundness is essential in face of complexities such as the
new subtype definition (Def. 2.1) and mutable fields (Sec. 2.5).
This section gives the type rules of a simplified version of IGJ
and proves property (1) from Sec. 2.4. We are not aware of
any previous work that proved a reference immutability theorem
such as “readonly references cannot be converted to mutable”.
Property (1) implies such theorem, or else it would be possible to
convert immutable to readonly, and than to mutable.

Our type system, called Featherweight IGJ (FIGJ), is based on
Featherweight Generic Java (FGJ) [19]. FIGJ models the essence
of IGJ: the fact that only mutable references can assign to fields,
and the new subtype definition. Similar to the way FGJ removed
many features from Java (such as null values, assignment, over-
loading, private, etc.), we removed from IGJ all method annota-
tions. In other words, all methods are readonly, with the exception
of a single constructor that assigns its arguments to the object’s
fields, thus making AssignsFields redundant. Assignment must
be done from the “outside”, i.e., instead of calling a setter method
we must set the field from the outside (all fields are considered pub-
lic in FGJ).

Finally, we restrict each class in FIGJ to have a single im-
mutability parameter which extends ReadOnly, i.e., FIGJ cannot
express manifest classes such as String.

Sec. 5.1 describes the syntax of FIGJ. The FIGJ subtype rela-
tion is presented in Sec. 5.2. Sec. 5.3 modifies the FGJ type check-
ing rules to allow field assignment only by a mutable reference.
Sec. 5.4 modifies FGJ operational semantics (reduction rules) to
get stuck when assigning to a field of an immutable object, and
Sec. 5.5 proves that in a well-typed program this never happens.

5.1 Featherweight IGJ Syntax
Because FIGJ models immutability, we had to add imperative ex-
tensions to FGJ such as assignment to fields, object locations and a
store [26]. We also add three special types: ReadOnly, Immutable,
and Mutable.

Fig. 10 presents the syntax of FIGJ. It defines types (T), non-
variable types (N), immutability parameters (I), class declarations
(L), method declarations (M), and expressions (e). Expressions in
FIGJ include the five expressions in FGJ (method variable, field
and method access, new instance creation, and cast), as well as our
imperative extensions (field update and locations). Note that an
immutability parameter is not a type in N, and the only places it
appears in the syntax is as the first generic parameter of a type and
the first generic variable of a class. The root of the class hierarchy
is Object<X / ReadOnly>.

To support field assignment we define a store S = {l 7→ N(l)}
that maps locations to created objects. Note that we do not need a
store typing [26] because the store already contains the type of each
location. For a simpler notation we use a single symbol ∆ to denote
an environment that maps (i) variables to their types, (ii) type
variables to their bounds (which are non-variable types): ∆ = {x :
T} ∪ {X ¹ N}. (The notation used in [26] is: typing context Γ,
environment ∆.)

The field, method type, and method body lookup functions are
based on their counterparts in FGJ and thus omitted from this
paper. We define an additional auxiliary function that returns the
immutability parameter I(C<X, X>) = X .

Fig. 11 defines which type-variables are no-variant. We use
two auxiliary functions: (i) FV(T) is the set of free variables in T,
(ii) subterm(N) is the set of all subterms of types in fields(N). (We do
not need to consider the superclass as in NOVARIANT RULE because
fields includes all fields of the superclass as well.)

After NoVariant reaches a fixed point on the class declarations,
we can define CoVariant(Xi, C<X>) to be the negation of NoVariant. In
order for the class declarations to be wellformed, the immutability
parameter must always be in CoVariant:

CoVariant(X1, C<X>) for any class C. (2)

We make the same assumptions as in FGJ about the correctness
of the class declarations (e.g., that there are no circles in the sub-
class relation, that we have no method overloading, etc). We also
use the same judgements as in FGJ, such as type, store, expressions,

8 2007/3/16

T ::= X | N Type.
N ::= C<I, T> Non-variable type.
I ::= ReadOnly | Mutable | Immutable | X Immutability parameter.
L ::= class C<X / ReadOnly, X / N> / C

′
<X, T′>{T f; M} Class declaration.

M ::= <X / N> T m(T x) {return e; } Method declaration.
e ::= x | e.f | e.m<T>(e) | new N(e) | (N) e | e.f = e | l Expressions.

Figure 10. FIGJ Syntax.

C
′
<Mutable, T> ∈ subterm(C<X>) Xi ∈ FV(Tj)

NoVariant(Xi, C<X>)
(MC1)

C
′
<T> ∈ subterm(C<X>) NoVariant(Yj , C

′
<Y>) Xi ∈ FV(Tj)

NoVariant(Xi, C<X>)
(MC2)

Figure 11. Definition of NoVariant(Xi, C<X>).

method and class wellformedness, with minor differences (e.g., in-
stead of Object we use Object<I >).

FIGJ is more strict than FGJ regarding method overriding be-
cause FIGJ requires that the erased signatures of methods be iden-
tical (up to renaming of type variables):

Definition 5.1. The erased signature of method m(T x) in class C<X/
N> is

λX.[N/X]T

5.2 Subtyping
Fig. 12 shows FIGJ subtyping rules. The first four rules are the
same as FGJ rules. Additionally, two special classes — Mutable

and Immutable— are considered a separate class hierarchy extend-
ing ReadOnly. The rule S1 is a formalization of Def. 2.1.

Observe that the subtype relation is reflexive and transitive.
Note that from rule S1 and (2) we have that

if I ¹ I
′, then C<I, T> ¹ C<I

′, T>.
We write T ¹ T

′ as a shorthand for ∆ ` T ¹ T
′. Observe

in rule S1 that the requirement Immutable ¹ T
′
1 is equivalent

to T
′
1 6= Mutable and T

′
1 6= X (where X is a variable), because an

immutability parameter can have only four values according to the
syntax rule for I in Fig. 10.

In Java, if A ¹ B and f is a field of B, then the type of field f in
A and B is exactly the same, i.e., A.f = B.f. In IGJ, we revise this
property and demand that A.f ¹ B.f. For instance, consider the
field edges on line 12 of Fig. 4, and the following two variables:

Graph<Mutable> mutG;

Graph<ReadOnly> roG;

// mutG.edges has the type List<Mutable,Edge<Mutable>>

// roG.edges has the type List<ReadOnly,Edge<ReadOnly>>

And indeed the first is a subtype of the latter.

Lemma 5.2. Let T ¹ T
′, F′ f ∈ fields(T′). Then F f ∈ fields(T)

and F ¹ F
′.

Proof. It is trivial to prove that field f exists in fields(T). We will
prove that F ¹ F

′ by induction on the derivation of T ¹ T
′.

Consider the last rule in the derivation sequence. The proof for
the first six rules is immediate from the definition of fields and the
fact that subtyping is transitive.

Now consider rule S1, where T = C<U>,and T
′ = C<U

′
>:

Ui = U
′
i or

(Immutable ¹ U
′
1 and Ui ¹ U

′
i and CoVariant(Xi, C<X>))

Let V denote the type of field f in C<X>. Then we have that F =
[U/X]V and F

′ = [U′/X]V. On the one hand, if Ui = U
′
i for all i,

then T = T
′ and thus F = F

′.
On the other hand, for some value i, we have that Ui 6= U

′
i.

Therefore we know from rule S1 that Immutable ¹ U
′
1, Ui ¹ U

′
i and

CoVariant(Xi, C<X>). Let i range over the integers in which Ui 6= U
′
i.

We will prove by induction that for every subterm A<S> in V, we
have [Ui/Xi]A<S> ¹ [U′i/Xi]A<S>. From rule S1 we need to prove
that for all j: either [Ui/Xi]Sj = [U′i/Xi]Sj or,

Immutable ¹ [U′i/Xi]S1 and [Ui/Xi]Sj ¹ [U′i/Xi]Sj and
CoVariant(Yj , A<Y>)

If Xi 6∈ FV(Sj), then [Ui/Xi]Sj = [U′i/Xi]Sj . Thus assume that Xi ∈
FV(Sj).

If S1 = X1, then [U′i/Xi]S1 = U
′
1 and we already showed

that Immutable ¹ U
′
1. Otherwise [U′i/Xi]S1 = S1, and we will

show that Immutable ¹ S1 by showing that S1 6= Mutable

and S1 6= I. According to rule MC1 in Fig. 11, if S1 =
Mutable, then NoVariant(Xi, C<X>), which is a contradiction. We
also have that S1 6= I because from Immutable ¹ U

′
1 we have

that U
′
1 6= I and thus V cannot contain I as a free variable.

From the induction we have [Ui/Xi]Sj ¹ [U′i/Xi]Sj . Finally we
have that CoVariant(Yj , A<Y>), because, if NoVariant(Yj , A<Y>), ac-
cording to rule MC2 in Fig. 11, we have the contradiction that
NoVariant(Xi, C<X>).

It is easy to add covariant fields to FGJ without breaking
type-safety, because FGJ that does not include field assignment.
Lem. 5.3 proves that whenever it is possible to assign to a field,
it is never covariant. Intuitively, in a legal assignment e1.f = e2,
where e1 : T, we have that I(T) = Mutable, and we will show that
in all subtypes T′ ¹ T the field f have the same type.

Lemma 5.3. Let ∆ ` T ¹ T
′, F′ f ∈ fields(bound∆(T′)), F f ∈

fields(bound∆(T)), and I(T′) = Mutable. Then F = F
′.

Proof. By induction on the derivation of ∆ ` T ¹ T
′, similarly

to Lemma A.2.8 in [19]. Because I(T′) = Mutable we also have
that I(T) = Mutable, and whenever rule S1 is applied, it can never
be that ∆ ` Immutable ¹ T

′
1, thus we need to consider the same

set of subtyping rules as in FGJ.

5.3 FIGJ Expressions
Fig. 13 presents the type checking rules in IGJ. Rule T-FIELD-SET

ensures that only a mutable reference can assign to a field.

9 2007/3/16

∆ ` T1 ¹ T2 ∆ ` T2 ¹ T3

∆ ` T1 ¹ T3 ∆ ` X ¹ ∆(X)
class C<X / N> / N {. . .}

∆ ` C<T> ¹ [T/X]N

∆ ` T ¹ T ∆ ` Mutable ¹ ReadOnly ∆ ` Immutable ¹ ReadOnly

Ti = T
′
i or (∆ ` Immutable ¹ T

′
1 and ∆ ` Ti ¹ T

′
i and CoVariant(Xi, C<X>))

∆ ` C<T> ¹ C<T
′
>

(S1)

Figure 12. FIGJ Subtyping Rules.

. . . ∆, S ` e : T I(T) = Mutable

∆, S ` e.fi = e
′ : T′ (T-FIELD-SET)

Figure 13. FIGJ Expression Typing: we show only the modifica-
tions to standard typing rules

5.4 Operational Semantics
Fig. 14 shows FIGJ reduction rules. FIGJ only modifies R-FIELD-SET

to make sure that only a mutable location can write to its fields. The
FIGJ context reduction rules (or congruence rules) are standard and
are omitted from this paper.

Consider the rules T-FIELD-SET in Fig. 13 and R-FIELD-SET in
Fig. 14. The first rule checks at “compile-time” that only a mu-
table expression (or reference in Java’s terminology) can assign to
a field, whereas the second checks at “run-time” that only a mu-
table location (or object in Java’s terminology) can be mutated by
assigning to its fields. Note that only objects have an immutability
at run-time, not references.

5.5 Type Soundness
The type preservation theorem proves that if any expression re-
duces to another expression, then the latter is always a subtype of
the former.

Theorem 5.4. (Type Preservation) If ∆, S ` e : T and e, S →
e
′, S′, then ∃T′ such that ∆ ` T

′ ¹ T and ∆, S′ ` e
′ : T′.

Proof. Using structural induction on the reduction rules in Fig. 14,
while maintaining the invariant on the store that if S[l] = N(l),
S[li] = Ni(. . .), and fields(N) = T f, then Ni ¹ Ti. The only
subtlety is in R-FIELD-SET where we use Lem. 5.3 to prove that if the
field was assigned, then it is no-variant.

The progress theorem shows that FIGJ programs don’t get
“stuck” and any well typed FIGJ expression that does not contain
free variables (closed) can be reduced to some location or contains
a failed downcast.

Theorem 5.5. (Progress) Suppose e is a closed well-typed expres-
sion. Then either e is a location, or it contains a failed downcast,
or there is an applicable reduction rule that contains e on the left
hand side.

Proof. Using a case by case analysis of all possible expression
types in Fig. 13. The only change from the proof in FGJ is the
use of T-FIELD-SET to prove that I(l) = Mutable in R-FIELD-SET, and
therefore we never get stuck due to that rule.

Thm. 5.6 is a formalization of property (1).

Theorem 5.6. Let ∆, S ` e : T, and e, S→∗
l, S′, where S

′[l] =
N(l). Then ∆ ` I(N) ¹ I(T).

Proof. From Thm. 5.4 we have ∆ ` N ¹ T, and thus ∆ ` I(N) ¹
I(T).

6. Future Work
We plan to add several features to the IGJ compiler, such as:
(i) a warning if this escapes (see Remark 2.2), (ii) field ini-
tializers in which this is mutable if all constructors are muta-
ble, and (iii) a mechanism to suppress specific warnings such as
@SuppressWarnings("object-cast"). Similarly to tools for in-
ferring generic arguments, immutability annotations can also be
produced automatically. A plugin for an IDE such as Eclipse may
also increase adoption of IGJ. We mention four other areas for
future work: a default for type-variables, an alternative syntax,
runtime support, and a WriteOnly immutability parameter.

IGJ’s syntax does not permit defining a default value for the
immutability parameter. For example, in Javari fields are this-
mutable by default, and everything else is mutable by default. We
propose to extend Java syntax to allow declarations such as

class Graph<I extends ReadOnly default Mutable>

One drawback is that if a different default is chosen in a subclass,
we can have non-intuitive errors. For instance, consider Graph3D

which is by default immutable:
class Graph3D<I extends ReadOnly default Immutable>

extends Graph<I > {...}
Graph g = ...;

if (g instanceof Graph3D) {
Graph3D g3d = (Graph3D) g; } // error!

The reason for the error is that g is mutable whereas g3d is im-
mutable.

A different alternative syntax can come from Java’s annotations,
however, currently, they cannot appear on any use of a type. JSR
308 [15] proposed for Java 7 allows annotations to be used prac-
tically anywhere, e.g., @immutable Document[@readonly] and new

@mutable ArrayList<@immutable Edge>(...). A type can have
four types of annotations: @Immutable, @Mutable, @ReadOnly, and
@ThisMutable. Instead of using a generic method to abstract over
the immutability parameter (like in line 18 of Fig. 4), we can use
romaybe.

Currently no representation of immutability exists at runtime.
Java does not support checked casts involving generics, (e.g., cast-
ing a vector of objects to a vector of integers always succeeds), so
safe down-casting is not feasible.

In Javari [32] the following mechanism is suggested to safely
cast a readonly reference to mutable, while still preventing side ef-
fects through the mutable reference. we set a bit in that reference
which is checked before every mutating operation. That bit is prop-
agated during reference assignment and when copying a reference
to a field.

A different runtime mechanism is using a readonly proxy, i.e.,
adding to Object the method:

@ReadOnly Object<Mutable> Object.createReadOnlyProxy()

That is similar in spirit to Java’s methods

10 2007/3/16

l /∈ dom(S) S
′ = S[l 7→ N(l)]

new N(l), S→ l, S′
(R-NEW)

S[l] = N(l) fields(N) = T f

l.fi, S→ li, S
(R-FIELD)

S[l] = N(l) I(N) = Mutable fields(N) = T f S
′ = S[l 7→ [l′/li]N(l)]

l.fi = l
′, S→ l

′, S′
(R-FIELD-SET)

S[l] = N(l
′
) mbody(m<V>, N) = x.e

l.m<V>(l), S→ [l/x, l/this]e, S
(R-METHOD)

S[l] = N(l) N ¹ P

(P)l, S→ l, S
(R-CAST)

Figure 14. FIGJ Reduction Rules (only R-FIELD-SET was modified)

ReadOnlyAssignsFields ImmutableMutable
NoneWriteOnly

Figure 15. The type hierarchy for immutability parameters of
Fig. 6 extended with WriteOnly and None.

Collections.unmodifiable{Set,List}, etc.
The IGJ compiler will automatically override this method in sub-
classes, covariantly changing the return type.The implementation
will return a new mutable object, but all mutating methods are over-
ridden to raise an exception. The compiler should issue a warning
if any fields are public, because they can be mutated directly, by-
passing the proxy protection.

Another challenge remaining is building an immutable cyclic
data-structure, because that requires setting at least one reference
after an immutable object has been created. A similar challenge ex-
ists in the staged initialization paradigm in which the object’s con-
struction continues after the constructor finished. Such challenges
can be solved using a different runtime operation that converts a
mutable object into an immutable one, i.e., not simply returning
an immutable shallow proxy but modifying the object and all its
fields which are this-mutable. Because it is impossible to inval-
idate all existing mutable references, the runtime system needs to
modify the virtual table and replace mutating methods by methods
that raise an exception (similarly to the proxy technique). In or-
der to make this technique thread-safe, this operation will require
similar synchronization as done at the end of a constructor (see Re-
mark 2.2).

IGJ can be extended with a WriteOnly notation as well, as can
be seen in Fig. 15. The parent of both WriteOnly and ReadOnly

is None which denotes a type that have neither read nor write
privileges. In a similar way that a readonly type can be changed
co-variantly, a writeonly type can be changed contra-variantly.

Similar to the @assignable annotation for fields, we can add
a @readable annotation to denote that a field can always be read,
even in a writeonly type. The following example of a Vector class
shows where WriteOnly can be used:

class Vector<I extends None, T> {
@readable int size; ...

@None int size() { return size; }
@WriteOnly void add(T t) { ...}
@WriteOnly void removeLast() { ...}
@Mutable void remove(T t) { ...}
@ReadOnly void get(int index) { ...}

}
Further research is needed to determine if the benefits outweigh the
increased complexity.

7. Conclusions
This paper presented Immutability Generic Java (IGJ), a design
for adding reference and object immutability on top of the exist-
ing generic mechanism in Java. IGJ satisfies the design principles
in Sec. 1: transitivity, static checking, polymorphism, and simplic-
ity. IGJ provides transitive immutability to protect the entire ab-
stract state, and one can control this transitivity by using multiple
immutability parameters, e.g., using different immutability for the
container and its elements. IGJ is purely static, incurring no run-
time penalties. IGJ does not lead to code duplication because it
supports a high degree of polymorphism using covariant subtyping
(Def. 2.1), and it is also possible to use generic methods to abstract
over the immutability parameter. Finally, IGJ is simple, does not
require changing Java’s syntax, and has a small number of type-
checking rules.

References
[1] S. Artzi, M. D. Ernst, A. Kieżun, C. Pacheco, and J. H. Perkins.

Finding the needles in the haystack: Generating legal test inputs for
object-oriented programs. In M-TOOS, Oct. 2006.

[2] A. Birka and M. D. Ernst. A practical type system and language for
reference immutability. In OOPSLA, pages 35–49, Oct. 2004.

[3] C. Boyapati. SafeJava: A Unified Type System for Safe Programming.
PhD thesis, EECS, MIT, February 2004.

[4] J. Boyland. Why we should not add readonly to Java (yet). In
FTfJP, July 2005.

[5] J. Boyland, J. Noble, and W. Retert. Capabilities for sharing: A
generalisation of uniqueness and read-only. In ECOOP, pages 2–27,
June 2001.

[6] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the
future safe for the past: Adding genericity to the Java programming
language. In OOPSLA, pages 183–200, Oct. 1998.

[7] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll. An overview of JML tools and
applications. STTT, 7(3):212–232, June 2005.

11 2007/3/16

[8] D. Clarke. Object Ownership and Containment. PhD thesis, School
of CSE, UNSW, Australia, 2002.

[9] D. Clarke and S. Drossopoulou. Ownership, Encapsulation, and
the Disjointness of Type and Effect. In Proceedings of ACM
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 292–310, Seattle, WA, USA,
Nov. 2002. ACM Press, New York, NY, USA.

[10] L. R. Clausen. A Java bytecode optimizer using side-effect analysis.
Concurrency: Practice and Experience, 9(11):1031–1045, 1997.

[11] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller. Mining
object behavior with ADABU. In WODA, pages 17–24, May 2006.

[12] R. DeLine and M. Fähndrich. Typestates for objects, June 2004.

[13] W. Dietl and P. Müller. Universes: Lightweight ownership for JML.
Journal of Object Technology (JOT), 4(8):5–32, Oct. 2005.

[14] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution.
IEEE TSE, 27(2):99–123, Feb. 2001.

[15] M. D. Ernst and D. Coward. JSR 308: Annotations on Java types.
http://jcp.org/en/jsr/detail?id=308, Oct. 17, 2006.

[16] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null
types in an object-oriented language. In OOPSLA, pages 302–312,
Nov. 2003.

[17] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2000.

[18] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification. Addison Wesley, Boston, MA, third edition, 2005.

[19] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a
minimal core calculus for Java and GJ. ACM TOPLAS, 23(3):396–
450, May 2001.

[20] A. Igarashi and M. Viroli. Variant parametric types: A flexible
subtyping scheme for generics. ACM Trans. Program. Lang. Syst.,
28(5):795–847, 2006.

[21] José Javier Dolado and Mark Harman and Mari Carmen Otero and
Lin Hu. An empirical investigation of the influence of a type of side
effects on program comprehension. IEEE TSE, 29(7):665–670, July
2003.

[22] G. Kniesel and D. Theisen. JAC — access right based encapsulation
for Java. Software: Practice and Experience, 31(6):555–576, 2001.

[23] Y. Lu and J. Potter. Ownership and accessibility. In Proceedings of
European Conference on Object-Oriented Programming (ECOOP).
Springer-Verlag, Berlin, Heidelberg, Germany, 2006.

[24] L. Mariani and M. Pezzè. Behavior capture and test: Automated
analysis of component integration. In ICECCS, pages 292–301, June
2005.

[25] I. Pechtchanski and V. Sarkar. Immutability specification and its
applications. In Java Grande, pages 202–211, Nov. 2002.

[26] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[27] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership
for generic Java. In OOPSLA, pages 311–324, Oct. 2006.

[28] W. Pugh. JSR 133: JAVA memory model and thread specification
revision. http://jcp.org/en/jsr/detail?id=133, Sept. 30,
2004.

[29] A. Sălcianu. Pointer analysis for Java programs: Novel techniques
and applications. PhD thesis, MIT Dept. of EECS, Sept. 2006.

[30] M. Skoglund and T. Wrigstad. A mode system for read-only
references in Java. In 3rd Workshop on Formal Techniques for
Java Programs, June 18, 2001. Revised.

[31] O. Tkachuk and M. B. Dwyer. Adapting side effects analysis for
modular program model checking. In ESEC/FSE, pages 188–197,
Sept. 2003.

[32] M. S. Tschantz and M. D. Ernst. Javari: Adding reference
immutability to Java. In OOPSLA, pages 211–230, Oct. 2005.

[33] T. Xie. Augmenting automatically generated unit-test suites with
regression oracle checking. In ECOOP, pages 380–403, July 2006.

12 2007/3/16

