
The Effects of Excess Loop Delay in

Continuous-Time Sigma-Delta Modulators
by

Hyunjoo Jenny Lee
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2005

Copyright 2005 Hyunjoo Jenny Lee. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis and to

grant others the right to do so.

Author

Department of Eeical gineering and Computer Science
/V. August 15, 2005

Certified by.
vl William Yang

VI-A Company
Thesis Supervisor

Certified by.
Hae-Sung Lee

M.I.T.
S-apervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS iNSTflUTE
OF TECHNOLOGY

AUG 14 2006

LIBRARIES

2

The Effects of Excess Loop Delay in Continuous-Time

Sigma-Delta Modulators

by

Hyunjoo Jenny Lee

Submitted to the Department of Electrical Engineering and Computer Science

on August 15, 2005, in partial fulfillment of the
requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Continuous-time sigma-delta (CT-EA) modulators have recently received great atten-

tion in the academia as well as in the industry. Despite the improved understanding of

the operation of CT-EA modulators, the problem due to excess loop delay that arises

from timing mismatch and parasitic delay still remains unsolved. Thus, the thesis

investigates the effects of the excess loop delay. In specific, the sensitivity of various

CT-EA topologies to the excess loop delay is explored by converting the CT modu-

lators to its DT equivalents and realizing loop filters in state-space representations in

MATLAB @.

Thesis Supervisor: William Yang
Title: VI-A Company

Thesis Supervisor: Hae-Sung Lee
Title: M.I.T.

3

4

Acknowledgments

I would like to thank my thesis supervisors, William Yang and Professor Hae-Sueng

Lee for their patience and guidance for this thesis to come to a conclusion. I would

also like to thank Anne Hunter, Lisa Bella, my friends, and family for their kind and

continuous encouragement throughout my stays at M.I.T.

5

6

Contents

1 Introduction

2 Technical Background

2.1 Operational Description of EA Modulator

2.2 CT-EA and DT-EA Converters

2.3 DAC Pulses

2.4 State-Space Representation

3 Problem Statement and Review of Literature

3.1 Problem Statement: Excess Loop Delay

3.2 Review of Compensation Methods

3.2.1 DAC Pulse Selection Approach

3.2.2 Coefficient Tuning Approach

3.2.3 SCR/SCR-I Feedback Techniques . . .

4 MATLAB Simulation

4.1 Simulating CT-EA Modulators

4.1.1 Numerical Integration Approach

4.1.2 Pole-Zero Mapping Approach

4.1.3 Hold Equivalents Approach

4.2 Hold Equivalent Approach for CT-EA Modulators with Delays.

4.3 CT-EA M odel .

4.4 M ethodology .

7

13

15

15

16

17

18

21

. 2 1

. 2 3

. 23

. 2 3

. 24

27

27

28

30

30

31

33

33

4.5 Im plem entation . 35

4.5.1 realizeNTF.MIMO/realizeNTF-SISO 35

4.5.2 add-delay . 41

4.5.3 stability-test . 41

5 Simulation Results and Discussion 43

5.1 Validation . 43

5.2 Distributed Feedback . 45

5.3 Distributed Feedforward . 46

5.4 Distributed Feedforward with Local Feedback 47

5.5 Distributed Feedback with Distributed Feedforward Inputs 48

6 Conclusion 49

A RealizeNTF.MIMO.m 51

B RealizeNTFSISO.m 57

C add.delay.m 65

D test-bench.m 69

E validity-test.m 75

F SPDplot.m 77

8

List of Figures

1-1 Block diagram of (a) conventional (b) oversampling A/D converters [14]. 13

2-1 Block diagram of (a) basic structure (b) linear model of the EA mod-

ulator [8]. 15

2-2 Block diagram of (a) CT-EA (b) DT-EA Modulators 16

2-3 Common DAC pulse types: (a) NRZ(s) = 1-e"T (b) RZ(s) - 1-esTs12
3 S

(c) HRZ(s) = e-sTs/21-e-sTS 2 . 18
3

2-4 State space representation of continuous-time linear system [4]. 19

3-1 Step response of non-ideal DAC . 22

3-2 EA modulator with different feedback circuitries 24

4-1 System construction for hold equivalents [6] 31

4-2 Open loop EA modulators . 32

4-3 Block diagram of discrete equivalents of CT-EA modulator. 33

4-4 General block diagram of a single-quantizer DT-EA modulator [16]. . 33

4-5 Flow diagram of overall design to simulate delay in CT-EA modulator 34

4-6 Block diagram of CT-EA modulator with weighted distributed feedbacks 36

4-7 Block diagram of L 1 transfer function with weighted distributed feed-

backs topology with multiple inputs. 37

4-8 Block diagram of CT-EA modulator with feedback compensation with

local feedback . 38

4-9 Block diagram of CT-EA modulator with distributed feedforward . . 39

9

4-10 Block diagram of L1 transfer function with weighted distributed feed-

forward summation topology . 39

4-11 Block diagram of CT-EA modulator with feedforward compensation

with local feedback . 40

4-12 Block diagram of CT-EA modulator with weighted distributed input

and distributed feedback . 40

4-13 Block diagram of L1 transfer function with weighted distributed input

and distributed feedback . 41

5-1 5th order hybrid topology use for verification 43

5-2 Output spectrums of ideal DT NTF 44

5-3 Output spectrums of DT NTF with that realized into three different

topologies, FF, FB, and HB, with excess loop delay. 44

5-4 Sensitivity of a FB topology of varying order modulators with OSR =

32 to excess loop delay . 45

5-5 PSD of a fifth-order modulator with OSR = 32 with excess loop delay

of 0.5 . 46

5-6 Sensitivity of a FF topology of varying order modulators with OSR =

32 to excess loop delay . 47

5-7 Sensitivity of a FBFFI topology of varying order modulators with OSR

= 32 to excess loop delay . 48

10

List of Tables

2.1 Summary and comparisons of DT and CT-EA Converters 17

4.1 Comparison of different approaches to CT-EA simulation [5], [10), [17], [2],

and [11]. 28

4.2 Definition of <D, I', H, and J 30

11

12

Chapter 1

Introduction

Oversampling sigma-delta (EA) converters have become very popular during the last

decade because they overcome some of inherent problems of conventional Nyquist-

rate converters (Fig. 1-1). Conventional converters favorably sample at the low-

est sampling frequency, but inconveniently require highly accurate analog circuitry.

These characteristics have encumbered design and implementation of high-resolution,

medium-to-low speed ADCs.

(a) Analog Input . Low-pass A/D Digital Output
filter

fs = Nyquist Rate

(b) Analog Inputg Register Digital Output
Filter F

Nyquist Rate

fs > Nyquist Rate

Figure 1-1: Block diagram of (a) conventional (b) oversampling A/D converters [14].

In contrast, oversampling converters relax the requirements on analog circuitry, such

as matching tolerances and anti-aliasing specifications. This benefit is gained at

the tolerable expense of higher sampling frequency and more stringent digital sig-

nal processing (DSP). In fact, implementing stricter DSP circuitry is more realizable

in fine-line VLSI technology than implementing highly accurate and precise analog

circuitry. Thus, oversampling converters provide a better solution for mixed-signal

13

integration [9].

Sigma-delta converters are oversampling converters that incorporate sigma-delta mod-

ulation. By oversampling the input signal, applying coarse quantization and shaping

the quantization noise spectrum, sigma-delta converters can produce high resolution

in a relatively small bandwidth [3]. For this reason, sigma-delta converters are now

common implementation of medium-to-low speed, high-resolution ADCs [9].

To this date, the majority of sigma-delta (EA) converters have been implemented as

discrete-time (DT) circuits, such as switched-capacitor circuits. Hence, researchers

and industry experts have obtained a fair amount of insights on DT-converters and

solved major technical difficulties in implementation. On the contrary, continuous-

time (CT) sigma-delta converters are still fairly new to the industry.

Prior to expanding the research to CT-EA converter, there have been various opin-

ions on such issues as which type is superior and what is the most suitable criterion to

compare the two. Nevertheless, CT-EA converters provide enough advantages over

DT-EA converters to motivate further researches. Difficulties or problems associated

with CT-EA should be challenged such that CT-EA converters eventually provide

competitive or even better performance measures, such as SNR or dynamic range,

than other existing converters.

With this motivation, this thesis examines the excess loop delay problem of CT-EA

converters. The primary objective is to understand sensitivity of circuit to the loop

delay in system-level such that after some insights are obtained into the problem,

solutions to increase the tolerance to the loop delay can be understood or proposed.

An efficient methodology to simulate excess loop delay in CT-EA modulators for

different topologies is devised and implemented. The results of the implementation

demonstrate some insights to the effects of the delay in different topologies.

14

Chapter 2

Technical Background

This chapter summarizes background knowledge useful in understanding CT-EA con-

verters.

2.1 Operational Description of EA Modulator

EA modulator is composed of three important components as illustrated in Figure 2-

1(a): loop filter, clocked quantizer and feedback DAC. The overall behavior of such

modulator can be qualitatively understood through a linear analysis. The highly non-

linear and noisy quantizer, however, makes such analysis difficult. As a remedy, the

quantizer is modelled as a linear component and the quantization error, e, is assumed

to be highly-uncorrelated or even independent of the input signal, x, as shown in

Figure 2-1(b).

Error, e

(a) (b)

Loop VX _ Loop V
X- +Filter Q iV X- Flter

DAC DAC

Figure 2-1: Block diagram of (a) basic structure (b) linear model of the EA modula-

tor [81.

15

Based on the block diagram in Figure 2 (b), the input-output relationship can be

written as shown in Equation 2.1.

V(s, z) = H(sz) X(s, z) + 1 E(s, z)
1 + H(s, z) 1 + H(s, z)

= STF(s,z) -X(s, z) + NTF(s,z) -E(s, z) (2.1)

where STF and NTF are respectively signal transfer function and noise transfer func-

tion. When the HI > 1, E is greatly attenuated and V ~ X. In other words, loop

filter, H, shapes the quantization noise away from the frequency band of interest,

while passing the input spectra almost unchanged when the gain of H is large [3].

In summary, the analog input signal is modulated into a digital word sequence whose

spectrum approximates that of the analog input well in a narrow frequency range,

but is noisy outside the frequency range [8].

2.2 CT-EA and DT-EA Converters

Figure 2-2 illustrates that the key difference between DT and CT-EZ modulators is

the sampling instants; CT-EA modulator samples signal at the quantizer while DT-

EA modulator samples at the input. This difference ascribes to the major advantages

and disadvantages of two systems summarized in Table 2.1.

fS = I
T.=

(a) (b)

u(t H(s) Q v[n] u[nh - + H(z) Q v[n)
z(t) x~n] x~n]

DAC DAC
v(t)

Figure 2-2: Block diagram of (a) CT-EA (b) DT-EA Modulators

16

To illustrate how sampling instant plays an important role, consider the effects of

input noise in both CT and DT circuitry. When the bandwidth of the noise spectrum

at sampling point is greater than half of the sampling frequency, noise-folding (or

more commonly aliasing) occurs at the sampling instant.

To prevent such noise-folding, DT-EA modulator requires separate anti-aliasing filter

prior to the input. In contrast, CT-EA modulator may not require separate anti-

aliasing filter because the integrator prior to sampling can act as an implicit anti-

aliasing filter. Integration of the input signal over one clock period can be considered

as a convolution of the input with a rectangular pulse. In other words, the input

spectrum is multiplied by a sinc function in frequency domain. The sinc function

conveniently nulls signals at multiples of sampling frequencies, k- f, and attenuates

signals near k - f8, which otherwise would alias. The anti-aliasing property arises

because the sampling happens after the integrator.

Table 2.1: Summary and com~aioso DT and CT-Ez\ Converters

2.3 DAC Pulses

In CT-EA modulators, excess loop delay shifts the edges of DAC pulses which in

turn affects the overall signal and noise transfer function of the modulator. Thus, it

17

Type Discrete-Time Continuous-Time

Low-pass Band-pass Low-pass Band-pass

Implementation Switched-capacitor filters Op-amp-RC, Gm-c or LC filters

Accumulator Resonators Integrators Resonators
Advantages(+) + Accurate Transfer Functions - Moderately Accurate
Drawbacks(-) Transfer Functions

+ High Linearity - Moderate Linearity
- Requires Anti-Aliasing + High-speed

+ Implicit Anti-aliasing Filter

Non-idealities - Mismatch in capacitor - Excess loop delay
ratios implementing DACs - Clock jitter in the feedback loop

- Clock feed-through - Sensitive to 1/f noise
from switches - Mismatch in current source

I

is helpful to know the transfer functions of various DAC pulse types and shapes.

The three common DAC pulses: non-return-to-zero (NRZ), return-to-zero (RZ) and

half-delayed returned-to-zero (HRZ) are depicted in Figure 2-3 and their respective

transfer functions are stated [8].

(a) A (b) (c)

Ts Ts Ts

Figure 2-3: Common DAC pulse types: (a) NRZ(s) = -e"T (b) RZ(s) = 1-''s/ (c)

HRZ(s) = e-'T,/
2

l-e-sT2
S

Using superposition to incorporate delays and impulse-invariant transformation to

convert to discrete domain, the effects of excess loop delay to the overall transfer

function of the modulators can be studied.

2.4 State-Space Representation

Physical systems can be represented in a variety of forms, such as differential equa-

tions, transfer functions, linear graphs, and state-space descriptions. For circuit sys-

tems, transfer function representations are widely used to explore frequency-domain

characteristics and stability of the systems. For multiple-input, multiple-output

(MIMO) systems, however, state-space representations are more appropriate.

State-space representation describes a system in terms of states, x, where transforma-

tions between states are summarized in matrices. A general linear continuous system

with feedback and feedforward paths shown in Figure 2-4 can be described by Equa-

tion 2.2.

The relationship between inputs and internal states is summarized in matrix A and

B, while the relationship between the internal states and outputs is summarized in

18

U~t)DXtt

ut B(t) ++ yC(t) t

A(t)

Figure 2-4: State space representation of continuous-time linear system [4].

matrix C and D. The clear advantage of matrix representation is the extendability

in size to accommodate multiple inputs and outputs of the system.

x(t) = A(t)x(t) + B(t)u(t) (2.2a)

y(t) = C(t)x(t) + D(t)u(t) (2.2b)

19

20

Chapter 3

Problem Statement and Review of

Literature

This chapter depicts the excess loop delay problem addressed in this thesis, justifies

the importance of the problem, and presents a brief review of major ideas presented

up to date to compensate for the degrading effects of excess loop delay.

3.1 Problem Statement: Excess Loop Delay

The one of major concerns of CT-EA modulators is excess loop delay [8]. Excess

loop delay refers to the nonzero delay between the quantizer clock edge and the edge

of the DAC pulse. Ideally, DAC pulse should respond immediately to the quantizer

clock edge, but due to nonzero gate delays and transistor switching time, there is a

finite delay in the feedback.

The timing error, excess loop delay, exists both in DT and CT-EA modulators. How-

ever, the errors are only problematic in CT-EA modulator because the timing errors

are continuously accumulated at the integrator through the feedback DAC. In DT-EA

modulators, on the other hand, clock jitter introduces noise on the sampled input,

while excess loop delay is irrelevant.

21

The behavior of an ideal 1-bit DAC in the feedback path is normally modelled as

a zeroth order hold function as shown in Equation 3.1a. The nonidealities can be

modelled as a delay, d, and a first order linear system with a time constant, T, as

shown in the step response of nonideal DAC in Figure 3.1. At circuit-level, d is

attributed to the reaction time between input and output while r is attributed to

finite rise and fall time of the response.

DACideal = (3.a)

ttd

Figure 3-1: Step response of non-ideal DACoida- = DACidea(l+TS) (3.ib)

DAC

This excess loop delay is problematic because the output current of DAC is continu-

ously integrated at the CT loop filter. In specific, if not accounted into the original

design, this unpredictable delay can modify the input-output relationship of the DAC

as shown in Equation 3.1b, increasing the order of the feedback open loop by one [8].

Added order and feedback delay can move poles of NTF out of unity circle, causing

instability. In addition, the delay degrades the performance of the modulator, such

as SNR. Since zeros of NTF are fixed at the unity circle, SNR does not significantly

worsen with small delays, but after a certain delay value, SNR can degrade signifi-

cantly [12].

The existing remedies, such as coefficient tuning and adding an extra delay in the

feedback [8], resolve the problem to some extent, but lack in insights to the nature

of the problem. Answering the three questions stated in Section 3.1 will help to en-

hance the performance, ease the design process, and increase current understanding

of CT-E\ modulators.

Thus, this thesis focuses on the effects of the excess loop delay in CT-EA modulator

with the following research questions in mind.

22

I. What are the tolerable loop delay values in various architectures of CT-EA

modulators?

II. Why certain type or architecture of CT-EA modulators is more susceptible or

robust to the loop delay?

III. What are the ways to make CT-EA modulators more tolerable to the loop

delay?

3.2 Review of Compensation Methods

This section briefly summarizes the major ideas suggested up to date to compensate

the effects of excess loop delay.

3.2.1 DAC Pulse Selection Approach

Excess loop delay pushes the falling edge of the DAC pulse beyond clock period, Ts,

as shown in Figure 3.1, which causes the realized loop transfer function to be different

from the desired function. To prevent the end of the DAC pulse from exceeding T,

[1] first suggested using a RZ DAC pulse instead of a NRZ DAC pulse illustrated

in Section 2.3. Using a RZ DAC pulse forces the output of DAC to go to zero at

each integration cycle. Thus, as long as the time delay, td, is smaller than 0.5, the

effects of excess loop delay are completely compensated. Using a RZ pulse, however,

increases the power consumption and DAC jitter sensitivity, and decreases the speed

of the DAC circuitry because the output level of DAC must return to zero at every

integration cycle.

3.2.2 Coefficient Tuning Approach

Excess loop delay increases the modulator order by one, resulting in one more numer-

ator coefficients in NTF. [7] and [8] demonstrated that tuning this extra coefficients

in feedback can result in a better match between the desired NTF and the realized

23

NTF after implementation. In addition, feedback coefficient tuning can alleviate other

nonidealities in the DAC output, such as finite rise and fall times. Technical details

regarding tuning are explained in detail in [7]. To find a match, however, td must be

known to certain accuracy while td cannot be measured prior to circuit design and

implementation.

3.2.3 SCR/SCR-I Feedback Techniques

[13] proposed using a sloping feedback DAC pulse as shown in Figure 3-2(a) to reduce

the sensitivity of CT-EA modulators to DAC nonidealities. By discharging capacitor,

CR, over resistor RR, an exponentially decaying feedback pulse with r = RRCR is

added to the integrator input rather than a square pulse. Thus, the charge error

due to the time-delayed jitter is much smaller as shown in 3-2(a). This switched-

capacitor-resistor (SCR) feedback technique does not require prior knowledge of td

value and does not impose fast slewing of the CT integrator as the maximum feedback

current is limited.

A m c

rent ~ (a midh feebaR Fetrled bc (8 (xb)nial dea icto voltagFedbashwk

Figure 3-2(b), achieving the similar affect as the SCR technique. As long as the total

24

current within each clock period is transferred at the end of each clock period, there

is no error due to the excess loop delay in both techniques.

25

26

Chapter 4

MATLAB Simulation

This chapter presents the main frame work of this thesis. Section 4.1 discusses various

methods for simulating CT-EA modulators, from which the hold equivalence method

approach is discussed in detail in Section 4.2. Section 4.3 introduces the CT-EA model

used in this thesis and Section 4.4 explains in detail how feedback delay is simulated

in different loop topologies of CT-EA modulators. Results of this implementation

are illustrated and analyzed in Chapter 5.

4.1 Simulating CT-EA Modulators

While frequency-domain simulation alone is adequate for conventional data convert-

ers, time-domain simulation is often required to derive meaningful performance met-

rics, such as FFT to calculate SNR, for EA modulators. In addition, modelling and

simulating CT modulators is often more difficult than DT circuits, because CT-EA

circuits require smaller time steps to accurately model the behavior. Many publica-

tions have suggested and compared various approaches to simulating CT-EA modu-

lators, which are summarized in Table 4.1.

In specific, Cherry et all demonstrated in [5] that simulating EA modulator using ana-

log tools is extremely slow and inefficient. Thus, a practical approach is to use either a

behavioral or DT-equivalence model with a DT simulation tool. Many available tools

27

Table 4.1: Comparison of different
and [11].

approaches to CT-EA simulation [5], [10], [17], [2],

listed in Table 4.1, however, are not open to public, waiting to be commercialized. The

only EA tool available to public is Delta-Sigma toolbox [15 in MATLAB@, which

provides various functions to do a high-level design and simulation of DT-Ez mod-

ulators. To utilize this readily available tool, this thesis employs the DT-equivalence

model to synthesize and simulate delay effects on CT-EA modulators.

There are three renowned methods of finding an equivalent DT system: numerical

integration with bilinear transformation, pole-zero mapping, and hold equivalents.

Due to the fundamental differences in the nature of CT and DT signals, there is no

exact equivalence between two systems. Thus, finding an equivalent DT system is

interpreted as finding a discrete transfer function which has approximately the same

characteristics over a range of frequency as continuous transfer function [6]. All three

methods described in the following subsections, except for numerical integration with

forward rectangular rule, guarantees a stable discrete system.

4.1.1 Numerical Integration Approach

Numerical integration approach approximates H(z) by finding a difference equation

whose solution is an approximation of a differential equation derived from H(s). The

28

Methods Transistor Intermediate Behavioral DT
Level Level Level Equiva-

lence

Speed Slowest Moderate Fast Fastest

Accuracy Highest High High Low

Other Easy to include Useful if transient Requires deep
Properties nonlinearity analysis is not knowledge

excessive

Available SPICE ELDO MATLAB MATLAB
Tools Opal SABER TOSCA

SWITCAP-2 ASIDES

general procedures are summarized below:

1. Represent the given filter transfer function H(s) as a differential equa-

tion.

2. Solve the differential equation in terms of time.

3. Choose how the incremental area term is approximated with a fixed

time step. Three simple and common ways to approximate the area

within one time step are forward rectangular rule, backward rectangu-

lar rule, and bilinear rule.

4. Substitute the time step chosen in Procedure 3 to solution of differential

equation to find a difference equation.

5. Convert the difference equation to H(z)

Using numerical integration method is easier and simpler when systems are expressed

in state-space representation. If a CT system is expressed in state-space representa-

tion as shown in Equation 4.1,

x = Ax(t) + Be(t) (4.la) w(k + 1) = 1w(k) + Le(k) (4.2a)

y(t) = Cx(t) + De(t) (4.1b) u(k) = Hw(k) + Je(k) (4.2b)

then a discrete equivalent system with sampling period T can be conveniently de-

scribed by Equation 4.2. p, r, H, and J can be expressed only in terms of A, B, C, D, I,

and T as shown in Table 4.2, where I is an identity matrix.

Schreier used numerical integration methods with transfer function representations

in [16] to derive discrete equivalents for low-order CT-EA modulators. For high-

order modulators with multiple feedback paths, however, required calculations be-

come too complicated, making numerical integration not suitable for simulation of

various topologies.

29

Forward Backward Bilinear

4) I+AT (I - AT)-1 BT (I + A)(I - A)-I

I BT (I - AT)- 1 (I - AT)-1BvT_

H C(I - AT)-' V/TC(I - AT)-1

J D D + C(I - AT)-'BT D + C(I -AT)-'Bl

Table 4.2: Definition of <b, I', H, and J

4.1.2 Pole-Zero Mapping Approach

Pole-zero mapping exploits the relationship between s and z planes, z = eaT, where T

is sampling period. General rules for mapping poles and zeros to a discrete equivalent

are described below:

1. All poles, s,, of H(s) -z = e sT

2. All finite zeros, sz, of H(s) -- z = es.T

3. Zeros of H(s) at s = oo- z =-1

4. Match the gain such that IH(s),,=o = IH(z)z=1

Pole-zero mapping method is the easiest and most effective method among the three

methods. Cherry used a variation of this method in [14] for synthesis of CT-EA

modulators with bilinear transformation. This method, however, is not optimal to

simulate a feedback delay, because delay affects the overall transfer function and poles

and zeros must be numerically solved for each delay value. Since poles and zeros are

roots of polynomials in transfer function, the relationship between delay in different

topologies and changes in pole-zero values is as difficult as finding a general rule in

solving high-order polynomials.

4.1.3 Hold Equivalents Approach

Unlike the two previous approaches, hold equivalents approach finds its solution in

time-domain. Since a continuous system represented in Figure 4-1(a) is mapped to

30

a discrete system with a continuous input and a discrete output, discrete equivalent

system can be approximated by placing a sample and hold (S/H) at the input as

shown in Figure 4-1(b). The goal is, then, to design a H(z) with an input consisting

of samples of u(t) and an output, (k), that approximates y(t).

H(S) s) 0) Sampler Hold N H(s) Sampler

H(z)

(a) Continuous system (b) An equivalent system with discrete output

Figure 4-1: System construction for hold equivalents [61

There are many variations in approximating the continuous signal, fl, from the sam-

pled input, u(k), starting from zero-order-hold (ZOH), first-order-hold (FOH), to

higher-order holds. The ZOH and FOH equivalents to H(s) is shown in Equation 4.3

and 4.4 respectively.

Hzero(z) = (1 - z-')Z{ s (4.3) Htm(z) = (z zi)2 Z{ } (44)

Hold equivalent concept has been proven to be very useful in transforming between

CT and DT for EA modulators due to the presence of quantizer in the loop. Schreier

and Cherry both made use of this concept to simulate CT-EA modulators using DT

simulation tools in [16] and [14] respectively.

4.2 Hold Equivalent Approach for CT-EA Modu-

lators with Delays.

The goal of simulation is to explore excess loop delay effects on different loop topolo-

gies of CT-EA modulators through a DT simulation tool. Thus, the chosen method

to find a DT equivalent should support easy manipulation of loop parameters of var-

31

ious loop topologies. While numerical integration approach becomes too complex

in calculation and thus is impractical to simulate high-order modulators, pole-zero

mapping approach is only effective if poles and zeros of continuous system are known.

In contrast, hold equivalent focuses on S/H which is conveniently modelled by the

quantizer and allows various topologies to be realized if expressed in state-space rep-

resentations. Therefore, this thesis employs hold equivalent approach to simulate

CT-EA modulators with delays.

Consider CT and DT-EA closed loop system in Figure 2-2. Sample and hold con-

cept in Section 4.1.3 can be applied around the quantizer input and output, where

extrapolating between samples is now determined by a DAC pulse. Cutting the loops

around the quantizer results in open loop system illustrated in Figure 4-2, where in-

put is nulled such that impulse response of only the linear portion can be considered

for equivalence [14].

i(t) g(t)

v(n) -- DA Is - (n) v(n) AC -Hz) y(n)

t t +T, t
(a) CT (b) DT

Figure 4-2: Open loop EA modulators

The two systems are equivalent if outputs of quantizer are equivalent at the sampling

instance, which requires inputs to quantizer to be the same at sampling instants. For

inputs to be the same, y(n) = (t)t=r,, impulse response of the open-loop systems

must be the same at sampling times. Thus, by comparing the impulse responses,

equivalent NTF of CT and DT-EA modulators can be found.

If the input is to be included, the linear open-loop system becomes multiple input sys-

tem as shown in Figure 4-3(a). In addition, CT input in the equivalent DT modulator

is pre-filtered to provide DT equivalent input as shown in Figure 4-3(b). In addition,

32

UC Linear System y Remainder of a
with State X, Modulator UG Linear System y Remainder of

with State Xc Modulator

V DAC V v

(a) A modulator with CT front end. (b) An equivalent DT modulator with a prefilter on the
input

Figure 4-3: Block diagram of discrete equivalents of CT-EA modulator.

for multiple I/O systems, it is much easier to work with state-space representations,

hence the mapping from H(s) to state-space system with state Xc.

4.3 CT-EA Model

U -- _.L G

---+ Q P V = G-U +H.-E

Figure 4-4: General block diagram of a single-quantizer DT-EA modulator [16].

All EA modulators with single-quantizer loops can be described by a linear model

illustrated in Figure 4-4. This model is particularly useful for finding the DT equiv-

alent of a CT modulator, because input and feedback input pass through two loop

filters, Lo and L1 , independently. These loop filters can also be expressed as functions

of loop parameters for different topologies.

4.4 Methodology

The goal is to simulate feedback delays in different loop topologies of CT-EA modu-

lators. The flow chart of the methodology employed in this thesis for such simulation

is illustrated in Figure 4-5.

33

The first step is to synthesize an ideal modulator. Since EA modulators can be de-

scribed by NTF and STF as explained in Section 2.2, NTF of a low-pass modulator

with a specific OSR and order is synthesized through synthesizeNTF function provided

in Delta-Sigma toolbox. This function returns a DT NTF for a stable EA modulator

with maximum out-of-band gain of H-inf.

OSR, Order, LP/BP, H-inf

synthesizeNTF

NTF(z) nth delay

Form, realizeNTFMIMO add-elay
tDAC realizeNTFSISO

NTF(s)

Cstab i it y tes t

Q values,

Stable?

Figure 4-5: Flow diagram of overall design to simulate delay in CT-EA modulator

Then, the second stage is to realize this modulator into different loop topologies, where

gain coefficients of feedback and feedforward paths are computed. RealizeNTF-MIMO

and realizeNTF-SISO take DT-NTF, a topology, and a timing for a DAC pulse as in-

34

puts, and return a CT loop transfer function, LI(s). LI(s) is returned instead of a

NTF because L 1 (s) describes relationship between output of the modulator and the

feedback portion of input, so that delays can be added to either multiple feedback

paths (realizeNTF-MIMO) or a single overall feedback path (realizeNTFSISO). In addi-

tion, L1 (s) is expressed in terms of loop coefficients, reflecting the specific topology

of the modulator.

Various delay values are, then, applied to feedback inputs of L1 (s) in add-delay.

add-delay also rewires the system such that the output returns a NTF instead of

L 1 (s) so that the new system with delays can be compared to the ideal system.

The new NTF with excess loop delay is, then, tested in the last stage for its stability

by calculating Q values. The experimental Q value for which the system goes unstable

is around 5. Power spectral density of the NTF with a half-scale sine-wave input is

also plotted to demonstrate the feasibility of this methodology to measure degradation

in performance.

4.5 Implementation

This section explains the implementation of new functions which do not exist in Delta-

Sigma toolbox: realizeNTF.MIMO/realizeNTFSISO, add-delay, and test-stability. Without

loss of generality, sampling period, T, is set to 1 for all implementations.

4.5.1 realizeNTF-MIMO/realizeNTFSISO

Implementation of RealizeNTF-MIMO and realizeNTF-SISO is first explained for a general

modulator topology. Then, an MIMO implementation is described in detail for dis-

tributed feedback topology. For other topologies implemented, only block diagrams,

loop transfer functions, and state-space representations are stated.

First, impulse response of the DT NTF is computed with an ideal clock pulse. Then,

35

state-space matrices, A, B, C, and D are defined for each topology with gain coeffi-

cients of 1. Then, pulse response is computed for this continuous system by subtract-

ing impulse response at the end time of DAC pulse, t 2 , from the one at the beginning

of DAC pulse, ti. By comparing this pulse response to the impulse response com-

puted for DT NTF, coefficients for feedback and feedforward paths are determined.

Justification for this methods is discussed in [16].

If there is an extra state due to t 2 extending beyond one DAC pulse, an extra state

or direct feedforward is added to the system through matrix D manipulation. Lastly,

coefficients for matrices B and D are scaled for input such that the STF magnitude

at zero frequency is 1.

Distributed Feedback

Distributed feedback topology is used to stabilize higher-order modulators, where

fraction of the output is applied at each integrate state as shown in Figure 4-6. Feed-

back compensation adds zeros to NTF as shown in Equation 4.5c.

U01 b f ----- f -- 40.> _

DAC

Figure 4-6: Block diagram of CT-EA modulator with weighted distributed feedbacks

Lo(s) = (4.5a)
Sm

L,(z) =(z 1)m (z - 1)m-1 + - (z a (4.5b)

NTF(z) = 1 = 1 _ (4.5c)
1 - L1(z) 1 - E=j (z--1)_+1-i

STF = LONTF = s - b (4.5d)zi=1
36

Assuming a linear system, the feedback paths can be opened up as shown in Fig-

ure 4-7, creating a system where feedback paths are considered as inputs. With this

implementation, delays can be added to a single feedback path. The general formu-

lation for state-space representations shown in Section 2.3 is applied to the MIMO

L1 (s) system in Figure 4-7 to result in Equation 4.6.

.X2-1 XXn11X 2 X 3 Xmn

U1 U 2 U3 UM

Figure 4-7: Block diagram of L 1 transfer function with weighted distributed feedbacks
topology with multiple inputs.

i

Y2

Xm

0

1

0

0

0

y = 0

0

0 0

1 0 -.. 0

0

0 1 0

0 1

X1
X2

Xm

X1

X2

+

1

0

0

0

0

+ [0

0

1

0

0

0
0

0 0

0 1 0

0 1

---.. . .--. 0

U1
U 2

Um

U1

U2

Urn

(4.6)

Distributed Feedback with Local Feedback

Resonators, a local feedback around two integrators, are preferred for higher-order

modulators to spread the gain more evenly in signal band. Adding a small negative-

feedback term moves the open-loop poles away from dc along the unit circle [R2],

where these poles correspond to closed-loop zeros of NTF. Thus, the frequencies,

37

where there is an infinite noise attenuation, are shifted away from DC to finite posi-

tive frequencies.

Uo- - d bd-+5 - -- - -- -- v

a1 a2 a3 am

(DAC

Figure 4-8: Block diagram of CT-EA modulator with feedback compensation with
local feedback

To realize a hybrid system with distributed feedback or distributed feedforward with

local feedback, the linearity of the model in 4.3 is fully exploited. Loop coefficients

for distributed feedback or feedforward paths are first computed as explained in the

previous section. Then, the local feedback coefficients are found by equating the

desired NTF and the NTF realized into distributed feedback or feedforward topology.

Thus, for topologies with local feedback, only the block diagrams are stated in the

following sections.

Distributed Feedforward

m

Lo(s) = a,+ + + - - (4.7a)
8 8m 2 S i

Li(z) = i(z 1) (4.7b)

NTF(z) = 1 - (4.7c)
S- L1(z) 1+Em--

STF = LONTF =

(4.7d)

38

a2

aam

U -- ---- f am 7 -ve,

DACI

Figure 4-9: Block diagram of CT-EA modulator with distributed feedforward

a,

am-

U+ -- -f am 1. Y

XI X2 X3 Xm

U 1

Figure 4-10: Block diagram of L1 transfer function with weighted distributed feed-
forward summation topology

X1 0 -- -- -- 0 XI -1 U1

2 1 0 0 X2 0 U2

0 1 0 --- 0

0 '

XM - 0 -- 0 1 0 Xm 0 Um

0

X2

Y = Cci] C ... 0 1 + U 1 (4.8)

Xm 0

39

Distributed Feedforward with Local Feedback

UO~ f -1 f ---f a MV

d,

DAC

Figure 4-11: Block diagram of CT-EA modulator with feedforward compensation
with local feedback

Distributed Feedback with Distributed Feedforward Inputs

U.

b1 b2 - b,,, b.

S------- f + Ve

Figure 4-12: Block diagram of CT-'A modulator with weighted distributed input
and distributed feedback

L s) = b, b2 b3 bm,Lo (s) =+ + +j=- - -+(m -) + (-4 ± 1

-Ll(z) - a, + a2 + a3 +..
(Z - j)- (Z - 1),,-I (Z - 1)m-2

NTF(z)

STF(s)

1

(4.9a)

(4.9b)

(4.9c)

(4.9d)

1

40

= -)
1 -1z -E i(-1L+-

=M ~a
1 - 1 (Z-_)

U0

b2 - - - - - - - fb±

a a2 a

t --f -J
Ul U2 U

Figure 4-13: Block diagram of L1 transfer function with weighted distributed input
and distributed feedback

4.5.2 add-delay

First, various delay values, At E [0, 1], are applied to a set of feedback paths by

setting the InputDelay parameter available in MATLAB @. The resulting L1 (s) with

delay is converted back to DT using zero-hold equivalent method available via c2d

function. Using the relationship expressed in Equation 4.10 between L, and NTF,

L 1 (z) is converted back to NTF(z) such that characteristics of NTF with delays can

be compared to that of ideal NTF.

H-i __

L1= +=> H= (4.10)H 1L

4.5.3 stability-test

Quality factor (Q) is a measure of sensitivity of pole locations to perturbation. Q

value for each system is found by observing phase and magnitude of each pole and

choosing the largest value as stated in Equation 4.11.

Q = max 1- for Vp E Poles of NTF(z) (4.11)

41

Power spectral density (PSD) of the NTF with excess loop delay is found for a half-

scale sine-wave input, using simulateDSM function available in Delta-Sigma toolbox.

42

Chapter 5

Simulation Results and Discussion

This chapter validates the design methodology introduced in Chapter 4 in Section 5.1.

Then, simulation results and discussion are organized by topology in the subsequent

sections.

5.1 Validation

The methodology and implementation is validated by comparing output spectrum of

DT NTF to that of NTF realized in different topologies with and without delay. For

the comparison without any excess loop delay, the output spectrum of NTF realized

into different loop topologies should be the same to that of DT NTF.

di d2

U., b, - J. + f + J, + f Cj JlV

Figure 5-1: 5th order hybrid topology use for verification

To verify, a fifth-order modulator with OSR of 32 is synthesized and realized into

three different topologies, distributed feedback (FB), distributed feedforward (FF),

and a hybrid topology with local feedback (HB), as shown in Figure 5-1. The resulting

43

output spectrums are illustrated in Figure 5-3. For all topologies without delay, the

spectrum is the same as the ideal DT NTF shown in Figure 5-2. Figure 5-3 demon-

strates that when delays are added to overall feedback paths with time increment of

0.1, the modulator for all topologies goes unstable for At > 0.3 as shown in Figure 5-3.

Output Spectrum of OT NTF oith OSR =32, order a 0
0 -

SNR =952d

02 00 0.1 0.10 0.2 020 0 0.0 04 00 05

-. 40-. ooo

Figure 5-2: Output spectrums of ideal DT NTF

Output Spectrum of NTF with OSR = 32, order = 6 with varying delays
delay =0

0

-20

-40

U.-60

-80 - - - - - .- - -.

-100 -- - - - - -

-120
0 0 1 0.2 0.3 0.4 0.5

Normalized Frequency

delay = 0.2
0

-20

-40

Co -60 ...

- 8 0 - . ..- .- - ..-- ..-

0 01 0.2 03 04 0.5
Normalized Frequency

delay = 0.1
0

-20

-40

-80 --...-

- 10 0 ---- - - -- --- -----

-120
0 0.1 0.2 0.3 0.4 0.5

Normalized Frequency

delay = 0.3
0 F

-20.-

-40

Co -60 -

- 8 0 -. - - ..-- ..--.. --

-0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency

Figure 5-3: Output spectrums of DT NTF with that realized into three different

topologies, FF, FB, and HB, with excess loop delay.

44

5.2 Distributed Feedback

Distributed feedback (FB) topology is often used for high-order stabilization. The

disadvantage of such topology is that the outputs of the integrators contain both fil-

tered quantization noise and low-frequency component equal to the input signals [3].

To accommodate the signal component, the gain of the input integrators are much

lower than that in other topologies. Thus, noise and distortion of the backend inte-

grators are not suppressed by a high gain of previous integrator stages.

To test the sensitivity of delay in FB topology, various order modulators with OSR of

32 are synthesized and delays are applied to a single feedback path to each modulator.

The results are illustrated in Figure 5-4, where k2 corresponds to ai path in Figure 4-6.

M
Order = 3

50

40 ---.- -..- - -

3 0 -...-.- .. ?- -- ' ----------

2, x
10 -. .--...-.. - -- -

00 1 2
time delay

Order =6
50

40 eax y

30 x--

20.-

0 2

time delay

ISO Distributed Feedback with OSR = 32 and Varying Order
Order = 4 Order = 5

50

40 - -......--

0 1 20 1 2
time delay

Order = 7
50 X

40 -.----.---.--..

1 0

202

time delay

50

40

30
0

20

10

0

50

40

30

20

1

x *

1 2

-. -.-...-..-.-.-.-

1 2
time delay

Order = 8

..

1 2
time delay

Figure 5-4: Sensitivity of a FB topology of varying order modulators with OSR = 32
to excess loop delay

The first two feedback paths near the input are the least sensitive to the delays, while

the middle and last paths near the output respond more to even smaller delay values.

45

+ k

k2x k3

k4

k5
0 k7

These results are reasonable since the effects of the delay are suppressed more when

it passes more numbers of integrators.

To confirm these results, a fifth-order modulator with OSR of 32 is synthesized, where

delay of 0.5 is added to the first feedback path (near input) and to the last feedback

path (near output). The PSD of both cases are plotted in Figure 5-5. PSD of a

modulator with delay added at the first feedback path shows better performance.

The SNR of the latter is worse by 1.9 and the peak is higher by 5db compared to

that of the former.

FB with delay on the first path FB with delay on the last path

SNF= 87.OB SNR = 86.1dB

- 2 0 -- 2- 4--.-'..-.-.--..

-40 -40

L - 60 - . .-. .. .-. .. .-. . .-LL --- - -- --- 6 -... .

- 8 0 -6-- - - - - - - - - - - - - * - - - -- 0 - -. .. .- ..- .- . -.. -. - . -

-10 0 - - -. .-.-.-.-.-... - 10 0

- 0 01 0.2 0.3 0.4 0.5 0 1 0.2 0.3 0.4 0.5
Normalized Frequency Normalized Frequency

Figure 5-5: PSD of a fifth-order modulator with OSR = 32 with excess loop delay of

0.5

5.3 Distributed Feedforward

Distributed feedforward (FF) topology compensates for the high-order stabilization

similar to FB topology. The major difference, however, is that adding a feedfor-

ward path introduces a zero to the STF. This creates peaking at a certain frequency,

reducing the maximum stable input level at that frequency due to the gain of the

peaking [3].

46

MISO Distributed Feedforward with OSR 32 and varying orders
50 + + 3rd

94 + 4th

45 -- -.-....- .+ -5th
+ t+ 6th

Y: A 7th
8th

40040 -- -8th- - - - - -

35 - --- - -

30 - - - - --

0 25 -- - - - - - -

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time delay

Figure 5-6: Sensitivity of a FF topology of varying order modulators with OSR = 32
to excess loop delay

Since modulators become unstable for quality factor greater than 5 - 10, low-order

modulators, such as 3rd and 4th, can endure an excess loop delay of 0.4, while high-

order modulators tend to be unstable even with a slight excess loop delay near zero.

This stability issue is generally solved by using local feedbacks around two integrators,

which will be discussed in detail in Section 5.4.

5.4 Distributed Feedforward with Local Feedback

Local feedback around two integrator stages are often used when designing CT - EA

modulators. As mentioned briefly in Section 4.5.1, this resonator with transfer func-

tion shown in Equation 5.1 shifts the DC gain of the integrators to a finite positive

frequency [3].

wits
H(s) = u (5.1)

s2 + WU2

47

Thus, FF topology with local feedback should be less sensitive to the excess loop

delay compared to that without local feedback.

5.5 Distributed Feedback with Distributed Feed-

forward Inputs

Distributed feedback with distributed feedforward inputs (FBFFI) topology allows a

certain degree of independence in specifying the NTF and STF [14J. In specific, zeros

of STF(s) stated in Equation 4.9a can be placed to cancel some of the poles to allow

slower roll-off at STF. This topology, however, has the same NTF and L1 (s) as the

FB topology and thus sensitivity to excess loop delay should be similar to the FB

topology.

MISO Distributed Feedback and Feedforward with OS = 32 and Varying Orders
Order 3 Order =4 Order 5

50 5050
X X + k,

40 x 40 40 - - 2

00

S time delay 2 time delay 2tme delay 2

Order=a6 . 0 a Order =7 Order= 8201 -- 20 ---- - - 20 .- -

time delay time delay time delay

Eigure 5-7: Sensitivity of a FBFFI topology of varying order modulators with OSR

= 32 to excess loop delay

48

11M - I

Chapter 6

Conclusion

Excess loop delay effects are more severe for feedback path near the output and thus

possible solution to compensate for the delay effect is to apply SCR/SCR-I feedback

techniques introduced in Section 3.2.3 to the last feedback path rather than the first

one.

This research work also demonstrated a working methodology to simulate excess loop

delay for CT-EA modulators in different loop topologies. Unlike many EA tools

in academia which are not available to the public, this methodology is implemented

using a Delta-Sigma toolbox which is available to public through MATLAB @.

49

50

Appendix A

RealizeNTFMIMO.m

function [L1_c, n_extra, x]= realizeNTFMIMO(ntf, form, tdac)

% A variation of realizeNTFct for lowpass only:

Ussuming perfect clock pulses --

% Input:

% NTF in DT

% tdac = [rising-edge falling-edge]

% Output: A matrix containing transfer functions of

% - MISO (Feedback Form)

% - SIMO (Feedforward Form)

% such that varying delays can be applied to different feedbacks.

% Created 09/13/2004

% Strong Reference to William Yang's excess-loop-delay.m

% Input Sanity Check:

% Extract appropriate information about NTF

order = length(ntf.z{:}); fO = 0;

51

% Sample NTF impulse response: ---- To scale coefficients later ...

n_imp = ceil(2*order + max(tdac) + 1);

y = impLl(ntf, n-imp); %Impulse response of comparator for NTF ...

% Compute the time step for CT System

ti = tdac(1) ; t2 = tdac(2);

[ni d1] = rat(tl-floor(tl)); %delay from clk-edge to DAC pulse ...

[n2 d2] = rat(t2-floor(t2));

dt = 1/lcm(dl,d2); % maximum time scale to divide to hit both edges

sample-points = 1:1/dt:(n.imp+1)/dt; %time scale ...

% Number of direct feedback and extra states ...

% Pulses greater than one pulse length are considered

% as a direct feedforward

% adding extra states to the system ...

%FROM R.Schreier's paper -- >

%p328 explains how comparator sees only sampled instance

n_direct = ceil(t2) - 1;

if ceil(t2 - floor(tl)) > 1 %Pulse is larger than one time pulse....

n_extra = n_direct - 1;

else

nextra = ndirect; % Pulse is less than one time pulse....

end

fprintf('extra =%d, direct = %d \n', nextra, ndirect);

52

% Define SS parameters for MISO or SIMO...

%% Calculate the step response of each coefficient ...

%% 1) Define initial topological coefficients....

UX ys : matrix containing step responses of inputs thruogh

XX' the basic backbone.

UX i.e. ys = [step(ul) step(u2) step(u3) ...]

% resonator feedbacks.

A = diag(ones(order-1,1), -1); i=1; while (i<=order)

if abs(angle(ntf.z{:}(i))) < ie-6 %integrator

i = i + 1;

elseif abs(angle(ntf.z{:}(i)) + angle(ntf.z{:}(i+i))) <le-6

A(i, i+1) = -angle(ntf.z{:}(i)).^2;

i = i + 2;

else

error('non-DC ntf zeros must be arranged as complex conjugate pairs');

end

end

switch form

case 'FB' XMISO

% A = diag(ones(order-1,1), -1);

C = [zeros(i, order-1), 1];

B = eye(order);

D = zeros(i, order);

ys = squeeze(step(ss(A, B, C, D), O:dt:n-imp-t+dt/2));

case 'FF' XSIMO

7 ordero = order; %original order

% order = order+n-extra; %order increased due to extra states...

53

% A = diag(ones(order-1,1), -1);

C = eye(order);

B = [-1; zeros(order-1,1)];

D = zeros(order,1); % not include direct feedback.

ys = squeeze(step(ss(A, B, C, D),O:dt:nimp-tl+dt/2));

case 'FBFF'

% first calculate the step response of all the feedback paths

% with feedforward structure in, but wihout Multiple output???

B = eye(order);

C = ones(1,order);

D = zeros(1,order);

ys = squeeze(step(ss(A,B,C,D), O:dt:n_imp-tl+dt/2));

otherwise

error('%s error. "Ys" is not supported', mfilename, form);

end

UX 2) Calculate pulse reponse by subtraction

%% a) add t1/dt or t2/dt amount of zeros to represent edge->tl and

UX edge->t2 responses.

UX b) yl, y2 = ys values at samples points...

UX c) pulse response = step response(y2) - step response(yl)

y_1 = [zeros(round(tl/dt), order); ys]; y1 = y_1(sample-points,

:); y-2 = [zeros(round(t2/dt), order); ys]; y2 =

y_2(sample-points, :); yy = y-1 - y_2;

%% 3) Endow yy with nextra+1 extra impulses

54

if nextra ~= 0

y-right = padb([zeros(1, n-extra); eye(n-extra)], n-imp+1);

yy = [yy(:,1:end) y.right(:, end:-1:1)];

else

yy = [yy(:,1:end)];

end

%% yy -> Pulse response, y -> Impulse response

x = yy\y; if norm(yy*x-y)>le-4

warning('Pulse response fit is poor.');

end

% D value:

switch form case {'FB', 'FBFF'}

%%%Check redundancy!!! of D with previous switch statement...

Dcl = [0]; %X---for uo

if (n-direct)

Dc2 = [zeros(1, order) x(order+1:end)'];

else

Dc2 = [zeros(l, order)];

end

case 'FF'

% Dcl = zeros(order,l);

%%D = zeros(order,2+n-extra);

=XD(1, 3:end) = (x(order+l:end));

Dcl = [0];

if (n-direct)

Dc2 = [0 x(order+1:end)'];

else

55

Dc2 = [0];

end

otherwise

error('%s error. "Xs" is not supported', mfilename, form);

end

D = [Dcl Dc2];

%% A and B Values

switch form case {'FB','FBFF'}

Bc2 = [diag(x(1:order)) zeros(order, size(x(order+1:end), 1))];

case 'FF'

Bc2 = [[-1; zeros(order-1,1)] zeros(order, nextra)];

C = x(1:order)';

XBc2 = [[-1; zeros(order-1,1)] zeros(order, nextra)];

%Cc = diag(x(1:order));

otherwise

error(',s error. "s" is not supported', mfilename, form);

end

M. Scale Bcl for unity STF magnitude at fO

Bcl = [1; zeros(order-1,1)];

LOc = zpk(ss(A,Bcl,C,Dcl)); %--- for uo

GO = abs(evalTFP(LOc,ntf,fO));

B = [Bc1/GO Bc2];

% remove elements less than Lmin.

lmin = le-9; A=A.*(abs(A)>lmin); B=B.*(abs(B)>lmin);

C=C.*(abs(C)>lmin); D=D.*(abs(D)>lmin); L1_c = ss(A, B, C, D);

56

Appendix B

RealizeNTFSISO.m

function [Llc, nextra, x]= realizeNTF_SISO(ntf, form, tdac)

% A variation of realizeNTF-ct for lowpass only:

% Assuming perfect clock pulses -- !!!

% Input:

% NTF in DT

% tdac = [rising-edge falling-edge]

% Output: A matrix containing transfer functions of

% such that varying delays can be applied

% to different feedbacks.

% FROM WILLIAMYANG's EXCESSLOOPDELAY.m

% Input Sanity Check: Extract appropriate information about NTF

order = length(ntf.z{:}); fO = 0;

% Sample NTF impulse response: ---- To scale coefficients later .

n-imp = ceil(2*order + max(tdac) + 1);

y = impLl(ntf, n-imp); %Impulse response of comparator for NTF

57

% Compute the time step for CT System

ti = tdac(1) ; t2 = tdac(2);

[ni d1] = rat(tl-floor(tl)); %delay from clk_edge to DAC pulse ...

[n2 d2] = rat(t2-floor(t2));

dt = 1/lcm(dl,d2); % maximum time scale to divide to hit both edges

sample-points = 1:1/dt:(n-imp+1)/dt; %time scale ...

% Number of direct feedback and extra states ...

% Pulses greater than one pulse length are considered

% as a direct feedforward

% adding extra states to the system ...

% FROM R.Schreier's paper

%--> p328 explains how comparator sees only sampled instance.

n_direct = ceil(t2) - 1;

if ceil(t2 - floor(tl)) > 1 %Pulse is larger than one time pulse....

n_extra = ndirect - 1;

else

n_extra = n_direct; % Pulse is less than one time pulse....

end

fprintf('extra =%d, direct = %d \n', nextra, ndirect);

% Define SS parameters for MISO or SIMO...

UX Calculate the step response of each coefficient ...

%% 1) Define initial topological coefficients....

77 ys : matrix containing step responses of inputs

UX thruogh the basic backbone.

58

XX i.e. ys = [step(ui) step(u2) step(u3) ...]

% resonator feedbacks.

A = diag(ones(order-1,1), -1); i=1; while (i<=order)

if abs(angle(ntf.z{:}(i))) < le-6 %integrator

i = i + 1;

elseif abs(angle(ntf.z{:}(i)) + angle(ntf.z{:}(i+))) <ie-6

A(i, i+1) = -angle(ntf.z{:}(i)).^2;

i = i + 2;

else

error('non-DC ntf zeros must be arranged as complex conjugate pairs');

end

end

switch form

case 'FB' %MISO

% A = diag(ones(order-1,1), -1);

C = [zeros(i, order-1), 1];

B = eye(order);

D = zeros(1, order);

ys = squeeze(step(ss(A, B, C, D), O:dt:n_imp-t+dt/2));

case 'FF' XSIMO

C = eye(order);

B = [-1; zeros(order-1,1)];

D = zeros(order,i); % not include direct feedback.

ys = squeeze(step(ss(A, B, C, D),O:dt:n-imp-tl+dt/2));

case 'FBFF'

% first calculate the step response of all the feedback paths

% with feedforward structure in, but wihout Multiple output???

59

B = eye(order);

C = ones(1,order);

D = zeros(1,order);

ys = squeeze(step(ss(A,B,C,D), O:dt:n-imp-tl+dt/2));

case 'HB'

if (order < 3)

error('The hybrid structure requires loop order >=3.');

end

% first calculate the step response of the two feedback paths

C = [zeros(1,order-1) 1];

B = zeros(order,2); B(1) = 1; B(end) = 1;

D = zeros(1,2); % not include direct feedback.

ys(:,1:2) = squeeze(step(ss(A, B, C, D),O:dt:n-imp-tl+dt/2));

% Calculate the step response of the internal FF paths.

% Assuming outer FB be 1. Will scale according to the actual FB coeffcient.

B = [1; zeros(order-1,1)];

D = [0]; % Cc doesn't change.

for i.= 1:order-2,

A(order,i) = 1;

ys(:,i+2) = squeeze(step(ss(A, B, C, D),0:dt:n-imp-tl+dt/2))-ys(:,1);

A(order,i) = 0;

end

case 'HB2'

if (order < 3) error('The hybrid structure requires loop order >=3.');

end

% first calculate the step response of the feedback paths

C = [zeros(1,order-1) 1];

B = eye(order); B(:,2) = [];

D = zeros(1,order-1); % not include direct feedback.

60

ys(:,1:order-1) = squeeze(step(ss(A, B, C, D),O:dt:n-imp-tl+dt/2));

% Calculate the step response of the internal FF path.

% Assuming outer FB be 1. Will scale according

% to the actual FB coeffcient.

B = [1; zeros(order-1,1)];

D = [0]; % Cc doesn't change.

A(3,1) = 1;

ys(:,order) = squeeze(step(ss(A, B, C, D),O:dt:n-imp-tl+dt/2))-ys(:,1);

A(3,1) = 0;

case 'HB3'

if (order < 4) error('HB3 requires loop order >=4.');

end

. first calculate the step response of the feedback paths

C = [zeros(1,order-1) 1];

B = eye(order); B(:,2:3) = [];

D = zeros(1,order-2); % not include direct feedback.

ys(:,1:order-2) = squeeze(step(ss(A, B, C, D),0:dt:n-imp-tl+dt/2));

% Calculate the step response of the internal FF path.

% Assuming outer FB be 1.

% Will scale according to the actual FB coeffcient.

B = [1; zeros(order-1,1)];

D = [0]; % Cc doesn't change.

for i = 1:2,

A(4,i) = 1;

ys(:,order-2+i) = squeeze(step(ss(A, B, C, D),0:dt:n-imp-tl+dt/2))

-ys(:,1);

A(4,i) = 0;

end

otherwise

error('Xs error. "7.s" is not supported', mfilename, form);

61

end

%% 2) Calculate pulse reponse by subtraction

%% a) add tl/dt or t2/dt amount of zeros to represent edge->tl

%% and edge->t2 responses.

%% b) yl, y2 = ys values at samples points...

% c) pulse response = step response(y2) - step response(yl)

y-1 = [zeros(round(tl/dt), order); ys]; y-1 = y(sample-points,

:); y-2 = [zeros(round(t2/dt), order); ys]; y2 =

y-2(sample-points, :); yy = y_1 - y_2;

=X 3) Endow yy with nextra+1 extra impulses

if nextra 0

y-right = padb([zeros(1, n-extra); eye(n-extra)], n-imp+1);

yy = [yy(:,1:end) y-right(:, end:-1:1)];

else

yy = [yy(:,1:end)];

end

UX yy -> Pulse response, y -> Impulse response

x = yy\y; if norm(yy*x-y)>le-4

warning('Pulse response fit is poor.');

end

%% D value:

switch form case {'FB', 'FBFF'}

%%%%Check redundancy!!! of D with previous switch statement...

Dcl = [0]; %X---for uo

if (n-direct)

62

% Dc2 = [x(order+1:end)' zeros(1,ndirect)]; 7/19/2005

Dc2 = [zeros(1, n-direct) x(order+1:end)'];

else

Dc2 = [0];

end

case 'FF'

% Dcl = zeros(order,1);

%%D = zeros(order,2+n-extra);

%%D(1, 3:end) = (x(order+1:end));

Dcl = [0];

if (n-direct)

Dc2 = [0 x(order+1:end)'];

else

Dc2 = [0];

end

case {'HB', 'HB2', 'HB3'}

Dcl = [0];

if (n-direct)

Dc2 = [0 x(order+1:end)'];

else

Dc2 = [0];

end

otherwise

error('%s error. "%s" is not supported', mfilename, form);

end

D = [Dcl Dc2];

%% A and B Values

switch form case {'FB','FBFF'}

63

Bc2 = [x(1:order) zeros(order, size(x(order+i:end), 1))];

case 'FF'

Bc2 = [[-1; zeros(order-1,1)] zeros(order, n-extra)];

C = x(i:order)';

XBc2 = [[-1; zeros(order-1,1)] zeros(order, nextra)];

%Cc = diag(x(i:order));

case 'HB'

Bc2 = [[x(i); zeros(order-2,1); x(2)] zeros(order, n-extra)];

A(order,l:order-2) = x(3:order)'/x(l);

case 'HB2'

Bc2 = [[x(i); 0; x(2:order-1)] zeros(order, n.extra)];

A(3,1) = x(order)'/x(1);

case 'HB3'

Bc2 = [[x(i); 0; 0; x(2:order-2)] zeros(order, nextra)];

A(4,1:2) = x(order-1:order)'/x(1);

otherwise

error('Xs error. "s" is not supported', mfilename, form);

end

%% Scale Bci for unity STF magnitude at fO

Bci = [1; zeros(order-1,1)];

LOc = zpk(ss(A,Bci,C,Dci)); %--- for uo

GO = abs(evalTFP(LOc,ntf,f0)); % product of LOc * ntf at frequency fO ... ?!?

B = [Bcl/GO Bc2];

% remove elements less than 1min.

1min = ie-9; A=A.*(abs(A)>lmin); B=B.*(abs(B)>lmin);

C=C.*(abs(C)>lmin); D=D.*(abs(D)>lmin);

Li-c = ss(A, B, C, D);

64

Appendix C

add-delay.m

function [Liarray, delta] = add-delay(Hdummy, L1, tdac, n, order,

form, n-extra)

%For FB for now...

n = nth feedback loop that the delay is applied..

in L-> R Direction.

Sweep each feed-ins by dt....

Llarray{row, col} contains transfer fuction in zpk format for

delay = delta(col) applied to nth (i.e. row-th) feed-ins.

% Extracting relavation information ...

[n-output, n-input] = size(L1); ti = tdac(1); t2 = tdac(2);

% Sweeping time steps

dt = 0.01;

%dt = 0.002;

% Set the delay:

65

0/

X0

0/0

input-delay = zeros(i, n-input); delta = O:dt:1;

% Compute H with delay, delta, and store it in Hzpk.

% Should have length(delta)

for i = 1:length(delta)

Hc = Li;

input-delay(n+) = ti + delta(i);

X-- because feedback starts at u2 not at ul (ul = actual input)

if(n-input+1-n-extra) == (n+1),

error('%s Error: Feedback delay length has problem', mfilename);

end

input-delay((n-input+i-n-extra):n-input) = 1;

d{n}{i} = [sprintf('input delay array is ')

sprintf('%d ', input-delay)];

% if form -= 'FB'

% input-delay(n+2) = 0.5;

% end

set(Hc, 'InputDelay', input-delay); %??? [0 delta 0.5] why 0.5??

Hd = c2d(Hc, 1, 'zoh');

A Converting L1(z) to H(z)

Hsplit = ss([0], [0], zeros(n-input-1, 1), ones(n-input-1, 1), 1);

Hcombine = series(Hsplit, Hd, [1:n-input-1], [2:n-input]);

% switch form

66

% case 'FB'

Hfeedback = 1;

Hntf = feedback(Hfeedback, Hcombine, [1], [1], 1);

Hzpk = zpk(Hntf);

Hdummy{n,i} = Hzpk;

end

Liarray = Hdummy;

% %%%%TESTING ADDDELAY %%%%%%

% N = {[1 -1],[1 2], [-1 1]};

% D = {[1 1],[1 4 5], [1 2 3]};

% Ni = {[1 -1];[-i1];[2 1]};

% Di {[1 1]; [1 2 3];[1 3]};

% Li = tf(N,D); Hi = tf(N1,Di);

% Hss = ss(Li); Hssi = ss(Hi);

% newL1 = add-delay(Hss, 1); new_Hi = add-delay(Hssi, 1);

% newL1.inputdelay

% new-L1.outputdelay

% newHi.inputdelay

% newHi.outputdelay

67

68

IF

Appendix D
I

test.bench.m

%function test-bench()

% To test 'linear delay' model

% Parameters needed:

% -order, OSR, opt, Hinf, fO, tdac, form

clear; figure(3); clf; figure(4); clf;

%test-var;

%OSRs = [32 48 64 96];

%orders = [3 4 5 6 7];

XH-infs = [1.9 1.9 1.9 1.9 1.9];

Xnlevs = [5 17 18 20 14 12 2];

OSRs = [32]; orders = [3 4 5 6 7 8];

%orders = [3];

H_infs = [1.9]; nlevs = [5]; labels ={;

for z = 1:length(orders)

69

fprintf('order =%d \n', orders(z));

%z = 1;

clear Q t Hc H;

order = orders(z);

OSR = OSRs(1);

H_inf = H-infs(1);

nlev = nlevs(1);

tdac = [1 2];

form ='FB;

opt = 1;

fo = 0 ;

DR = 100;

% Synthesize NTF

ntfdt = synthesizeNTF(order, OSR, opt, H-inf, f0);

%% Check validitiy of resulting NTF:

dr = -dbv(rmsGain(ntfdt,f0-0.5/OSR, fO+0.5/OSR))

+dbp(OSR)+dbv(nlev-1)+1.76;

dr-print = sprintf('Dynamic Range Low: Only %d', dr);

if (dr < DR) warning(dr-print); end

% Realize NTF in CT for a given form (MISO or SIMO output)

[Hc, n-extral = realizeNTFMIMO(ntfdt, form, tdac);

%Hc = realizeNTF-ct(ntfdt, form, tdac, fO)

70

% Apply varying delays to the feedbacks

% H contains tf ...

H = {};

[n-output, n-input] = size(Hc);

switch form

case {'FB', 'FBFF'}

n_in = order;

case 'FF'

n_in = 1;

otherwise

error('Xs error. "1%s" is not supported', mfilename, form);

end

for i = 1:n-in

[H, delta] = add-delay(H, Hc, tdac, i, order, form, nextra);

end

%[H, delta] = add-delay(H, Hc, tdac, 1, order, form);

for j = 1:size(H,1)

k = 1;

for i = 1:size(H,2)

ntf = H{j,i};

q = max(abs(angle(ntf.p{:}))./(1-abs(ntf.p{:})));

[mag{j,i}, pha{j,i}] = bode(ntf);

if ((min(q) <0 I max(q) > 200)) break;

if ((min(q) < 0)) break;

71

0/

else

Q(jk) = max(q);

t(j,k) = delta(i);

k= k+1;

end

end

end

%%%% Visualization:

colors = {'yh' 'mp' 'c>' 'r<' 'g^' 'by' 'kd'

'ys' 'm*' 'c+' 'rx' 'go' 'b+'};

while length(colors) < order

colors = {colors{1:end} colors{1:order-end}};

end

switch form

case {'FB', 'FBFF'}

figure(3);

subplot(2, 3, z);

for i = 1:size(t,1)

%for i=1:1

plot(t(i,:), Q(i,:), [colors{end+1-i}]);

hold on;

axis([O 1 0 1000]);

title(sprintf('Order = %d', order));

xlabel('time delay');

ylabel('Q');

grid on;

72

end

case 'FF'

figure (4);

plot(t(1,:), Q(1,:),[colors{end+1-z}1);

hold on;

axis([O 1 0 50]);

labels{z} = sprintf('%dth', order);

xlabel('time delay');

ylabel('Q');

grid on;

otherwise

error('7s error. "%s" is not supported', mfilename, form);

end

end % for z=1:length(orders)

switch form case {'FB', 'FBFF'}

labels =f;

for i = 1:max(orders)

labels{i} = sprintf('k_%d', i);

end

legend(labels);

case 'FF'

legend(labels);

otherwise

error('Xs error. "%s" is not supported', mfilename, form);

end

73

74

Appendix E

validity.test.m

%Demonstrate that my method is correct by showing

XSPD of output of non-ideal SDM.

[ntfdelays, deltas] = testbench-SISO; close all;

XOSRs = [32];

%orders = [3 4 5 6 7 8];

XH-infs = [1.9];

%nlevs = [5];

%Declare appropriate variables:

OSR = 32; order = 5; Hinf = 1.9; nlevs=5; opt = 1; fO=O; DR =

100; tdac = [1 2]; R = OSR;

%Discrete Time NTF without any delay:

ntf-dt = synthesizeNTF(order, OSR, opt, Hinf, f0); [f, y] =

SPDplot(R, ntf _dt);

Plot w/o delay:

fig; title('Output Spectrum of NTF with OSR = 32, order = 6 and

75

zero delay');

subplot(2,2,1); plot(f, y, 'b'); hold on; axis([0 0.5 -120 0]);

grid on; xlabel('Normalized Frequency') ylabel('dBFS') title('DT

NTF');

XNTF with delay added....

FBH = ntfdelays{1}{1}; FFH = ntfdelays{2}{1}; FBFFH =

ntfdelays{3}{1};

[f-fbd, y-fbd] = SPDplot(R, FBH); [f-ffd, yjffd] = SPDplot(R,

FFH); [f-fbffd, y-fbffd] = SPDplot(R, FBFFH);

%Plot w/ delay:

subplot(2,2,2)

plot(f-fbd, y-fbd, 'r'); hold on; axis([0 0.5 -120

0]); grid on; xlabel('Normalized Frequency') ylabel('dBFS')

title('FB');

Plot w/ delay:

subplot(2,2,3)

plot(f-ffd, y-ffd, 'r'); hold on; axis([0 0.5 -120

0]); grid on; xlabel('Normalized Frequency') ylabel('dBFS')

title('FF');

%Plot w/ delay:

subplot(2,2,4)

plot(f-fbffd, y-fbffd, 'r'); hold on; axis([0 0.5

-120 01); grid on; xlabel('Normalized Frequency') ylabel('dBFS')

title('HB');

76

Appendix F

SPDplot.m

function [f, y] = SPDplot(R, ntfdt);

N=8192; fB = ceil(N/(2*R)); ftest=floor(2/3*fB);

u = 0.5*sin(2*pi*ftest/N*[O:N-1]); % half-scale sine-wave input

v = simulateDSM(u, ntf dt, 5);

f = linspace(0,0.5,N/2+1); spec = fft(v.*hann(N))/(N/4);

y = dbv(spec(1:N/2+1));

77

U
U
U

78

Bibliography

[1] R. W. Adams. Design and implementation of an audio 18-bit analog-to-digital

converter using oversampling techniques. Audio Eng. Soc., 34:153-166, March

1986.

[2] B.E. Boser, K.-P. Karmann, H. Martin, and B.A. Wooley. Simulating and test-

ing oversampled analog-to-digital converters. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 7:668 - 674, June 1988.

[3] Lucien Breems and Johan H. Huijsing. Continuous-Time Delta-Sigma Modu-

lation For A/D Conversion In Radio Receivers. Kluwer Academic Publishers,

2001.

[4] William L. Brogan. Modern Control Theory. Quantum Publishers, INC., 1974.

[5] J.A Cherry and W.M Snelgrove. Approaches to simulating continuous-time delta

sigma modulators. Proceedings of the 1998 IEEE International Symposium on

Circuit and Systems, 1:587-590, June 1998.

[6] Gene F. Franklin, J. David Powell, and Michael Workman. Digital Control of

Dynamic Systems. Addison Wesley Longman, Inc., 1998.

[7] W. Gao, 0. Shoaei, and W.M. Snelgrove. Excess loop delay effects in continuous-

time delta-sigma modulators and the compensation solution. Proceedings of 1997

IEEE International Symposium on Circuits and Systems, 1:9-12, June 1997.

[8] W.Martin Snelgrove James A. Cherry. Continuous- Time Delta-Sigma Modula-

tors For High-Speed A/D Conversion. Kluwer Academic Publishers, 2000.

79

[9] J. F. Jensen, G. Raghavan, A. E. Cosand, and R. H. Walden. A 3.2 hz second-

order delta-sigma modulator implemented in ing hat technology. IEEE J. Solid-

State Circuits, 30:119-1127, October 1995.

[10] Fernando Medeiro, Angel Perez-Verdu, and Angel Rodriguez-Vazquez. Top-down

design of high-performance sigma-delta modulators. Kluwer Academic Publisher,

1999.

[11] J. Moreno-Reina, J.M. de la Rosa, F. Medeiro, R. Romay, R. del Rio, B. Perez-

Verdu, and A. Rodriguez-Vazquez. A simulink-based approach for fast and pre-

cise simulation of switched-capacitor, switched-current and continuous-time /spl

sigma//spl delta/ modulators. Proceedings of the 2003 International Symposium

on Circuits and Systems, 4:IV-620-623, May 2003.

[12] M. Ortmanns, F. Gerfers, and Y. Manoli. A continuous-time sigma-delta mod-

ulator with switched capacitor controlled current mode feedback. Proceedings of

the 29th European Solid-State Circuits Conference, 16:249-252, September 2003.

[13] Maurits Ortmanns and Yiannos Manoli. A continuous-time sigma-delta modu-

lator with reduced jitter sensitivity. Proc. ESSCirC, 1:287-290, January 2002.

[14] G. C. Temes S. R. Norsworthy, R. Schreier. Delta-Sigma Data Converters. IEEE

Press, 1997.

[15] Richard Schreier. Delsig toolbox. Online, January 2000.

http://www.mathworks.com/matlabcentral/fileexchange/.

[16] Richard Schreier and Bo Zhang. Delta-sigma modulators employing continuous-

time circuitry. IEEE Transactions on circuits and systems - I: Fundamental

Theory and Applications, 43:n/a, April 1996.

[17] C.M. Wolff and L.R. Carley. Simulation of 6-- modulators using behavioral

models. Proceedings of the 1998 IEEE International Symposium on Circuit and

Systems, 1:376-379, May 1990.

80

3 ,3 3- 1f7f)

