
An Augmentation Algorithm for Improving

Longevity in Ad Hoc Wireless Networks

by

Jonathan Charles Hyler

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2005

© Massachusetts Institute of Technology 2005. All rights reserved.

A uthor
a V

Department of Electrical Engineering and Computer Science
June 29, 2005

Certified by......
/ Christopher Yu

Senior Member of Techniel Staff, Charles Startkl Draper Laboratory
Thesis Supervisor

Certified by.
Samuel Madden

) Assistant Professor

,Jahesis Supervisor

Accepted by

Chairman, Department Com

BARKER

Arthur C. Smith
mittee on Graduate Students

OFTECHNOOGY

AUG

LIBRAR=IES

2

An Augmentation Algorithm for Improving Longevity in Ad

Hoc Wireless Networks

by

Jonathan Charles Hyler

Submitted to the Department of Electrical Engineering and Computer Science
on June 29, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

This thesis presents an investigation into improving the longevity of wireless ad hoc
networks. The primary contribution of this study is an augmentation algorithm that
takes a two-dimensional network arrangement and systematically adds augmented
nodes to create a bi-connected topology. Simulations were run to compare the per-
formance of these augmented networks with their initial layouts. Additionally, two
different routing protocols were compared to evaluate their effects on network life-
time when combined with network augmentation. These routing protocols each take
a unique approach to managing the network's energy resources. The results demon-
strate that bi-connectivity is usually able to directly improve network lifetime. Addi-
tionally, it offers the greatest degree of improvement to networks which employ clever
power management techniques.

Thesis Supervisor: Christopher Yu
Title: Senior Member of Technical Staff, Charles Stark Draper Laboratory

Thesis Supervisor: Samuel Madden
Title: Assistant Professor

3

4

Acknowledgments

This thesis was prepared at The Charles Stark Draper Laboratory, Inc.

Publication of this thesis does not constitute approval by Draper or the sponsoring

agency of the findings or conclusions contained herein. It is published for the exchange

and stimulation of ideas.

I would like to give special thanks to Christopher Yu, for supervising me on this

task. I would also like to thank Samuel Madden, Philip Lin, Thomas Kostas, and

Kyle Jamieson for their help.

5

6

Contents

1 Introduction

2 Related Work

2.1 Minimizing Point to Point Transmission Power

2.2 A ggregation .

2.3 Energy Aware Routing

2.3.1 Minimizing the Energy of Every Forwarding Path

2.3.2 Load Balancing Strategies

2.3.3 Minimum Cost Routing

2.4 MAC Layer Optimizations

2.5 Topology Control .

3 Augmentation Algorithm

3.1 Conceptual Outline

3.2 Implementation Details

3.2.1 G raph

3.2.2 Bi-connected Components

3.2.3 Network

3.2.4 Combinations

3.2.5 Surface Intersections

3.2.6 Augmentation Using Network Levels

3.3 Shortcomings

3.4 M erging .

7

13

17

. 17

. 18

. 19

. 19

. 20

. 21

. 23

. 24

27

. 27

. 30

. 30

. 32

. 33

. 35

. 37

. 38

. 39

. 43

4 Simulation

4.1 Implementation

4.2 Routing Protocols

4.3 Energy Model

4.4 Layouts

4.5 Traffic

5 Results

5.1 M etrics

5.1.1 Throughput.....

5.1.2 Network Lifetime .

5.1.3 Fairness

5.1.4 Reliability

6 Conclusions and Future Work

45

45

45

48

48

51

53

53

54

58

64

65

67

8

List of Figures

Coverage Regions

Coverage Regions of Bi-connected Components .

Coverage Regions of Bi-connected Components .

Graph Object Model

Isolating Bi-connected Components

Node Collection Object Models

Combination Object Models

Sample Suboptimal Solution

Sample Suboptimal Solution

Merge Operation

4-1 Initial and Augmented Simulation Layouts

5-1 Change in Packets Delivered and the Number of

Pairs Under Span

5-2 Network Lifetime Plots

5-3 Network Lifetime Plots

6-1 Interesting Initial and Augmented Layouts

50

Unreachable Node

57

61

62

68

9

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

28

. 29

. 30

31

. 33

. 34

. 37

. 41

42

. 44

10

List of Tables

4.1 Augmented Nodes on Different Initial Layouts 49

5.1 Aggregate Packets Delivered . 55

5.2 Packets Delivered per unit Energy . 55

5.3 Nodes Delivering no Traffic Using Span 56

5.4 Saturated Network Packet Delivery 58

5.5 First Node Failures . 59

5.6 Average Node Failures . 60

5.7 Percentage of Pairs that Cannot Communicate Over Time 63

5.8 Percentage of Pairs that Cannot Communicate Over Time for DSDV 64

5.9 Standard Deviation of Packets Delivered Per Pair 65

11

12

Chapter 1

Introduction

Wireless ad hoc networks are currently a much researched topic in computer science

and electrical engineering. However, wide-spread deployment of such networks has yet

to materialize. Existing wireless networks usually follow a paradigm in which static

wireless nodes are connected to an enormous wired network infrastructure. Since

these network nodes can communicate over both wired and wireless links, they act

as gateways that connect devices with only a wireless connection to reach the larger

network. Like most large, complex systems, such networks were built in a bottom-up

manner. While, they may be costly and time-consuming to deploy, their resources

are best extended to wireless participants in this manner. With improvements in

the capabilities and costs of wireless components, wireless devices are becoming more

widespread. Consequently, the notion of incorporating them into the existing infras-

tructure as a replacement for existing wired links is becoming increasingly practical.

In fact, the potential to deploy networks that are complex, yet consist of entirely

wireless components is becoming a possibility.

Wireless networks have various advantages over wired networks. One advantage

is the potential for node mobility in a wireless network. The notion of transplanting a

node in a wired network can be cumbersome, while wireless nodes can be moved with

much greater simplicity. Another advantage of a wireless network is the potential ease

with which it may be deployed. Introducing a wired network can be a costly, lengthy,

and obtrusive process. For example, to create a network inside an office building,

13

workers must install cables to reach every room that needs access to the network. As

a result, maintaining or upgrading this wired network can interfere with more than

just the network's ability to function. A wireless network can free the building of

such cables as well as avoid the accompanying inconveniences.

A military operation or a disaster relief situation are examples of scenarios where

wireless ad hoc networks can be applied. In the case of disaster relief, any existing

wired network could potentially be unavailable as a result of the surrounding de-

struction. In such a scenario, the available time and conditions make the notion of

installing a wired network impractical. Additionally, the requirement for a network

may be only temporary, adding to the practical need for a wireless infrastructure.

Despite the advantages, a wireless network also introduces a number of drawbacks.

These drawbacks often can make wireless networks unreliable or expensive. One

serious concern unique to a wireless network is its source of power. In the case of most

mobile nodes in use today, users periodically recharge a battery that the node uses

as a power supply. Immobile base stations are connected to a wired power supply

in addition to their wired network link. The manner in which independent static

nodes such as those in a sensor network should be powered does not fit either of these

paradigms. However, if the nodes cannot be wired for communications because they

are placed in a delicate or dangerous environment, then wiring them for power is not

an option either. Thus, the best option is to power these nodes from batteries. Unlike

personal mobile communication nodes, these nodes may not receive enough attention

to run continuously. Any such network should account for the possibility of nodes

dying because they have run out of energy. If the nodes are in a harsh environment,

failures due to other issues are not uncommon. A lack of human supervision for a

network could cause any type of failure to go unnoticed for an indefinite period of

time.

These added drawbacks lead to two key problems and goals encountered by a

wireless network. First, unlike a wired network, the energy available to a wireless

network is a limited resource. A direct result of this property is that the network's

lifetime is bounded. One goal in designing a wireless network is to maximize its

14

lifetime. Additionally, a static wireless network can easily be confronted with node

failures that may or may not be due to its finite energy supply. The idea of an

individual failure adversely affecting the network by partitioning it is not desirable.

Another goal is to ensure some sort of network reliability so that such a crippling

failure is unlikely. The reliability of a network refers to its ability to successfully

forward traffic. A serious network problem would be the event that a network is

partitioned such that certain nodes can no longer communicate with others. Despite

a network's initial connectivity, it may become partitioned over time, even in a static

network, due to a node's failure.

This study takes a unique approach to improving network longevity and reliabil-

ity. The approach is to augment a network in a methodical way to best utilize the

network's energy resources. Specifically, a sparsely connected network will be aug-

mented to achieve bi-connectivity, a property that guarantees that a network remain

connected despite an individual node failure. This type of augmentation greatly im-

proves the network's reliability by eliminating any single point of failure. In a sense,

the more densely connected a network is, the more reliable it is. Therefore, aug-

menting the network with strategically placed nodes ahead of time is a promising

technique for improving reliability. To determine the benefits of this particular type

of augmentation, the performance of the augmented networks is compared to their

initial configurations in simulations. In addition to this modification, a clever power

management strategy is also used to identify whether it can compliment the effects

of augmentation. This strategy employs efficient energy management at multiple

network layers, including both the routing layer, which chooses packet's forwarding

paths, and the medium access control layer, which enables transmissions over a link

without interruption.

This thesis makes several simplifying assumptions. Clearly one of the assumptions

implied by the approach itself is the ability to augment the network with additional

nodes. Since augmentation affects the initial state of the network and is a unique

characteristic, the augmentation is computed off-line, by a separate entity. Conse-

quently, this computation may make use of global information that may be obtained

15

about the network.

Other assumptions are meant to simplify matters. For example, we assume that

all the nodes are homogeneous, that they do not vary their transmission power, and

that transmissions have a well-known symmetric energy model that determines when

a wireless link exists between two nodes. All nodes are assumed to be located on

a flat surface, so that their distances are solely a function of their two-dimensional

coordinates. The nodes are also each initialized with the same amount of energy,

which is not replenished. Another simplifying assumption related to reliability is

that the network layout is static and initially connected. This assumption guarantees

that the network does not experience temporary partitions because node movement

periodically breaks and creates links. Additionally, the traffic across the network is

random and identical and independent across all nodes. The traffic originated at

each node is well-modeled by a Poisson process, and the destination of the traffic is

uniformly distributed.

This document contains five additional chapters. Chapter 2 discusses related

work. Chapter 3 describes the augmentation algorithm in great detail. Chapter 4

describes the simulated environments in which trials are run to gather data. Chapter

5 analyzes and interprets this data. Chapter 6 concludes the document and discusses

potential next steps related to this research.

16

Chapter 2

Related Work

A number of ideas have been proposed as to how to best maximize network lifetime.

Most of these ideas share the common theme of optimizing the manner in which each

node's energy is consumed. Operations related to radio communication are some of

the most costly in terms of power consumption for any given node. Thus, the energy

available to the network directly relates its ability to deliver traffic with its finite

lifetime. Since each node is initialized with a finite power supply, it will cease to

function once it no longer has sufficient energy.

2.1 Minimizing Point to Point Transmission Power

One technique employed by numerous energy-conscious ad hoc network strategies is

that of using the minimum amount of energy during each individual point to point

transmission. The motivating observation is that some minimum energy exists to

accomplish the task of sending a packet directly from one node to another. Using

that amount of energy is optimal, and using more energy is wasteful, so this quantity

is attributed as the edge weight of the link connecting the two nodes. While this

idea is promising, numerous problems related to the technique arise in practice. First

of all, transmission powers must be quantized and thus cannot take on continuous

values. Additionally, in mobile networks, the edge weights may change rapidly, in-

creasing the cost of obtaining them. In fact, since many techniques attempt to convey

17

this edge weight information across the entire network, frequent changes are simply

unmanageable. The manner in which this edge weight information is obtained also

varies. Some techniques use an energy-model combined with location information to

infer edge weights via computation [17]. In such circumstances, the accuracy of edge

weights depends on the energy model and location information, two notions that are

often prone to error due to the complexities of most real-world environments. Net-

work nodes can be heterogeneous, which will cause nodes to have different energy

models, both in actual power consumption and for use in edge weight computation.

If this information is not accounted for, these discrepancies could potentially cause

different nodes to compute different forwarding routes, possibly leading to network

loops. Advertising such node discrepancies is also likely to be quite costly. Other

techniques obtain edge weight information by direct physical layer probing [25]. Such

techniques have costs that are also vulnerable to frequent changes. Finally, standard

MAC layer protocols do not account for variable transmission power and may be

poorly affected by such conditions.

2.2 Aggregation

Heinzelman et al. describes another technique that utilizes optimal point-to-point

transmissions, and combines it with another energy saving technique known as ag-

gregation [12]. The strategy, called LEACH (Low-Energy Adaptive Clustering Hier-

archy), is designed to operate on a static wireless sensor network. It assumes that

each node has the knowledge and ability to perform minimum power point-to-point

transmissions to any other node in the network. It does not cap the maximum power

of an individual transmission for any node, so a link conceivably exists between any

two nodes. LEACH, however, recognizes that energy savings can be derived from

forwarding via multiple hops. It combines the notions of clustering and data aggre-

gation to achieve these advantages. LEACH divides time into rounds. During each

round, some fixed number of nodes elect themselves to be cluster heads. Any node

may randomly elect itself as long as it has not recently served as a cluster head. These

18

cluster heads will communicate directly with the single network root destination. All

other nodes will forward traffic through the nearest cluster head. LEACH achieves

energy efficiency because the cluster heads aggregate packets they forward. The en-

ergy model used in the study and in simulations makes sending a single large packet

much less costly than sending multiple small packets totaling the same amount of

data. Other aggregation strategies are able to conserve more energy when a node

compresses redundant information that it notices in the data it is forwarding [18, 11].

In simulations, LEACH outperformed direct transmission, minimum power path, and

static clustering schemes in terms of energy dissipated and node lifetime. Also, nodes

were observed to fail in a relatively random order. In direct transmission far away

nodes die soonest because they must use the greatest transmission power. In min-

imum power path experiments, nearby nodes die soonest because they handle the

most traffic.

2.3 Energy Aware Routing

The notion of network links attributed with variable power weights is orthogonal to

the manner in which routes are picked to forward packets across the network. Such

routing techniques may attempt to obtain and use this information, or they may

treat all links as having identical power consumption costs. In general, considering

the power consumption associated with routing data over certain network paths is a

promising technique for improving network lifetime.

2.3.1 Minimizing the Energy of Every Forwarding Path

One energy-conscious routing technique involves minimizing overall power consump-

tion when forwarding packets. This is a fairly intuitive approach: in order to mini-

mize the amount of energy consumed, minimize the amount of energy consumed at

each stage. In this case, each stage refers to the act of forwarding an individual

packet. When all edge weights have constant power consumption, minimizing energy

consumption can be achieved in the straightforward manner of forwarding a packet

19

along the route with the fewest number of hops [10]. In the event that links are given

variable edge weights, the problem becomes a weighted shortest-path problem, which

also has a well-known solution [10]. Rodopolu and Meng describe such a technique in

a static wireless network [17]. Nodes may transmit with a precise, limitless amount

of energy. However, each node designates only certain nodes as its neighbors based

on the notion of an enclosure region, beyond which a node will always find it optimal

to forward a packet via one of its neighbors.

2.3.2 Load Balancing Strategies

Minimizing the energy consumed to route each individual packet is a greedy strategy.

Therefore, numerous papers have pointed out that its overall performance may be

suboptimal when considering network lifetime as the most important metric. The

reasoning behind this flaw is simple: individual optimal paths may unevenly distribute

the load encountered by particular nodes. Any node that is chosen to forward a

disproportionately high percentage of packets will consume more energy than others

and thus fail sooner [18, 21, 20]. The failure of such a crucial node is likely to disrupt

the network or even partition it. Therefore, more sophisticated techniques attempt

to evenly distribute the demands on each node.

One theme among many of these revised techniques for conserving energy is de-

scribed by Chang and Tassiulas [7]. This study approaches optimal routing as a

max-flow problem. Chang and Tassiulas found a beneficial link cost function to be

largely dependent on the residual energy of the transmitting node [7]. Of course, in

order to solve the problem in this way, the problem is also formulated as a network

flow problem, which requires that the network traffic be defined in terms of predeter-

mined flows. Many approaches make no such assumption about future traffic, making

the problem far more complex.

Numerous studies have proposed that an important goal for maximizing network

lifetime is to minimize power-variance over all nodes. Schurgers and Srivastava ob-

serve that optimal routing requires future knowledge, but suggest an efficient best-

effort technique when future knowledge is not available [18]. The global objective

20

of this goal is to minimize the power-variance of all nodes when making forwarding

decisions. This goal is motivated by the uncertainty of future traffic. Since the for-

warding of some arbitrary traffic could demand the use of any node in the future,

it is desirable to avoid the situation in which that node is significantly less capable

than others. [18] aims to achieve this objective with a local routing strategy called

Gradient-Based Routing (GBR). Each node has a property called its height in rela-

tion to the single destination node, and the gradient of a link is the difference between

the heights of two nodes. Each node's height is initialized to be the minimum num-

ber of hops to the destination, but a node will increase its height as its energy level

drops. This technique was demonstrated to reduce the power-variance of the network

in simulation. While [18] describes a technique for a single-destination network, the

ideas could be incorporated into a network with traffic destined for multiple nodes.

2.3.3 Minimum Cost Routing

Another common energy aware routing technique evaluates potential forwarding paths

with a cost based on the remaining energy of the nodes along each path. One such

technique is Lifetime Prediction Routing (LPR) [14]. LPR is a reactive strategy for

mobile networks that resembles Dynamic Source Routing (DSR) [6, 13]. In each tech-

nique, a node floods a query message across the entire network to find its destination.

Each node that forwards the query adds itself to the path, so a node that answers it

knows the return path it can use to respond to the query source. A node will answer

the query if it is the destination node or has a cached path to that node. Source rout-

ing means that once a source has picked a path to the destination, it incorporates

the route into every packet it sends. LPR differs from DSR in the manner in which

a source node evaluates which route is the best among multiple alternatives. LPR is

primarily concerned with network lifetime, so each reply message that contains a po-

tential path to the destination also contains a metric estimating the path's remaining

lifetime. This metric is equal to the lifetime of the node along with the path that has

the minimum such value. This value is computed by each individual node based on

two pieces of information: its residual energy, and an estimate of its current energy

21

depletion rate, which is computed based on its most recent data. The source node

will send traffic along the path with the highest residual lifetime metric. The paper

demonstrated the ability for networks using LPR to outperform those using DSR in

terms of network lifetime [14].

Studies conducted by Stojmenovic and Lin [21] in addition to Singh et al. [20]

similarly recognize that straightforward power-minimizing paths are misguided. Both

studies use approaches in which each node has a cost that is a reflection of its residual

energy. These techniques differ from LPR in two key ways: they are not source

routed, and they denote the cost of a path as the sum of the costs of its nodes, rather

than the maximum node. Both papers tested various cost functions in simulations

of static wireless networks, and found the power-aware approaches to be beneficial.

Stojmenovic and Lin assume that nodes have precise power-control, the location of

oneself and one's neighbors, and knowledge of an accurate energy model, all of which

enable minimum power point-to-point transmissions [21]. Additionally, they study

cost functions that take both the residual energy and the transmission power of a

path into consideration and found that such functions can improve network lifetime

over those that do not consider a path's power consumption. Both studies noted that

saving improved significantly with network density [21, 20].

Toh explores the performance of techniques that incorporate aspects of both power

minimizing methods with cost minimizing techniques [24]. The paper introduces a

conditional max-min battery capacity routing technique that implements a shortest

path technique when all nodes have residual energy levels above a threshold -Y, and

uses minimum cost routing similar to that discussed in [20] for any path with a node

whose energy is below y. This technique basically amounts to waiting until energy

reserves are low to use the minimum cost routing technique. The simulated exper-

iments show that increasing the threshold corresponds to increases in the number

of hops taken by forwarded packets, along with decreases in the average expiration

time of nodes. This last observation is attributed to the greater energy consump-

tion associated with forwarding more packets along paths that exceed the shortest

one. This study demonstrates a tradeoff between network fairness in terms of energy

22

and network lifetime by demonstrating that a more fair technique can decrease the

network's lifetime.

2.4 MAC Layer Optimizations

In addition to saving power by efficient packet forwarding, [19] discusses power savings

that can be achieved by more effective utilization of the Medium Access Control

(MAC) layer. The primary observation is that a node's radio actually performs three

power consuming operations: transmission, reception, and idle. Under a basic wireless

MAC protocol such as MACAW [5], nodes will often receive a packet unnecessarily,

or operate in idle mode for an extended period of time. A more efficient technique

would allow the node to momentarily disable its radio so as to not perform these

wasteful operations. Turning the radio off is often referred to as sleeping or turning

on power-save mode. Ye et al. build on this idea in an approach called sensor-MAC

(S-MAC) [27, 26]. The goal of S-MAC is to cycle the entire wireless network on and

off. Nodes coordinate and exchange sleeping schedules with neighbors in order to

determine when they should listen for potential transmissions.

Span [8] is a technique that uses wireless power saving mode in a novel way to aid

routing. Certain nodes temporarily elect themselves as coordinators, which run their

radio equipment for the entire duration of this designation, while non-coordinators

shut their radios off. A node will elect itself a coordinator if two of its neighbors

are not connected via some other coordinator. Coordinators are intended to form

a connected backbone for the network to which every node is linked. After some

period of time, a coordinator will withdraw itself from its role. A node will wait

for a longer period of time before this election if its energy reserves are low, which

encourages nodes to share coordinator responsibilities over time. Since traffic may be

destined for a sleeping node, such traffic may be buffered until it can be delivered.

All nodes divide time into synchronized beacon periods. The short initial portion of

this period is an advertised traffic window, during which non-coordinators may send

or receive traffic. As an optimization, such non-coordinator packets are scheduled

23

in the portion of this period called the ad hoc traffic indication message (ATIM)

window. Outside of the advertised traffic window, only coordinators forward traffic

between one another. This traffic does not require advertisements. Span does not

have any specific requirements in terms of how paths are selected to forward traffic,

although the description seems to suggest that packets be forwarded along the current

coordinator backbone. One shortcoming of the exiting implementation of Span is

that it relies on a greedy geographic forwarding approach, which is unfortunately

vulnerable to packets being discarded by a local minimum.

2.5 Topology Control

Most of the research described studies the behavior of various approaches when ap-

plied to networks with arbitrarily constructed layouts. However, a few innovative

studies take a completely different approach by allowing more directed control over

the network's layout. One such technique is called Movement Control and is described

by Basu and Redi [4]. The key goal of this investigation is to improve fault-tolerance,

rather than network lifetime. The study introduces the notion of bi-connectivity as

a minimum requirement for reliability. A network is considered bi-connected if it

remains connected despite the failure of any single node. [4] not only allows nodes to

be mobile, but requires nodes to be both able and willing to move as directed. Addi-

tionally, nodes must be location aware, and have accurate knowledge of how network

links are related to node locations. Under these circumstances, [4] proposes and stud-

ies two techniques for computing appropriate directions for nodes to move in a way

that makes the network bi-connected and demonstrates their success in examples.

Dasgupta et al. describe yet another novel technique called SPRING (Sensor

Placement and Role assignment for energy-efficient Information Gathering) [11]. SPRING

considers scenarios of static sensor networks, but places only a few constraints on the

layout of the network. These constraints dictate that every point or region of inter-

est is covered by some sensor node, and that all sensor nodes generate traffic that

should be delivered to the root node. Instead of dealing with some arbitrary network

24

layout, SPRING uses an approach with the freedom to direct the initial deployment

of the network nodes. Starting with some arbitrary layout, SPRING computes mod-

ified positions for nodes that benefit the network's lifetime. Additionally, SPRING

distinguishes node's roles as either sensors or relays, making sure not to assign any

more sensors than necessary. Unlike the topology control described by [4], SPRING

does not require the computation to be performed by the nodes themselves. Likewise,

the node need to be neither mobile nor location aware. Instead, the computation is

performed beforehand, and is used to initialize placement of nodes in the network.

Because of this off-line computation, the SPRING algorithm may easily be performed

with global knowledge and does not require the network to devote the overhead it

does in [4]. [11] supplements SPRING with MLDA (Maximum Lifetime Data Gath-

ering with Aggregation). This algorithm creates a schedule dictating when data

packets generation and forwarding for the entire network. MLDA views this problem

as a maximum flow. Like SPRING, this algorithm is executed off-line with global

knowledge. Through simulated experiments, [11] demonstrates a network designed

by SPRING to outperform a network with a random layout in terms of lifetime.

25

26

Chapter 3

Augmentation Algorithm

As proposed in this work, network layouts are to be augmented with extra nodes

to achieve improved reliability and longevity. The process of augmentation will be

performed by off-line computation with global knowledge of the network's layout.

The basic structure of this algorithm is to input a complete description of a connected

network layout, and output a modified version of that layout. This output is a superset

of its input. In other words, it incorporates every node from the input, along with

some additional nodes. The idea of a single failure partitioning any portions of the

network is considered insufficient reliability. Thus, ensuring network bi-connectivity

is an important property of a network. In the event that a single node fails, bi-

connectivity guarantees that the network remains connected.

3.1 Conceptual Outline

Conceptually, the augmentation algorithm performs three key operations. First, it

identifies the bi-connected components of a network. Second, it labels regions in the

space of the network's environment with a measure of how beneficial a node placed

within that region would be. Third, it chooses a region and a point from within that

region to place an augmented node. The algorithm repeats this process until the

augmented network is bi-connected. Notice that a clear relationship between nodes'

positions and their connectivity must exist. The algorithm defines a link to exist

27

0

(a) Single Node

Figure 3-1: The coverage regions associated
three nodes (b).

A

(b) Three Nodes

with a single node (a) and a network of

from node v, to node v2 if and only if d(vi, v2) < R, where R is a radius defined

before execution time, and d is a typical Euclidean distance function. This model

is commonly used in the literature, and creates a network with connections in a

manner referred to as a unit graph [21]. This model is consistent with that used

in the simulated environment. Given a single node, one can divide the space by a

circular region. Any other node located within this region will be connected to it,

and any node outside the region will not. A similar coverage region can be defined

for multiple nodes as the union of each individual node's region. This concept of the

region covered by a set of nodes is crucial for the augmentation algorithm, but it only

makes sense when the set itself makes up a connected network.

Once the bi-connected components have been isolated, the coverage areas of these

components are of great importance in order to choose a position for the next aug-

mentation node. Each coverage region of a bi-connected component may intersect

with the regions of one or more other bi-connected components. Together, the space

may be divided into overlapping regions. These regions can be labeled with a rank

indicating the number of component coverage regions that intersect in each area. The

basic idea is that an area with a higher rank is a more optimal location to place an

28

(a) Initial Network (b) Augmented Network

Figure 3-2: Figure (a) illustrates the regions corresponding to the two bi-connected
components in the graph. These components share the middle point. Each region is
labeled with its rank. Figure (b) illustrates that a point may be selected in the region
with the greatest rank that does not bi-connect the network.

augmented node. Ideally, placing a node in an area in which N regions intersect

should join N bi-connected components. Unfortunately, a simple example shows that

this is not always true. A network with three nodes arranged linearly, as in Figure 3-

2, has two bi-connected components each of size two. Notice that choosing any point

within the highest ranked region does not necessarily unite the two components. The

point chosen is within the region of the highest ranking, but does not link to both

the far nodes, as it would need to in order to bi-connect the network. The problem

is that the highest numbered area is at least the size of the coverage region of a

single node. This is an extremely common problem, as the bi-connected components

are never disjoint. A point shared by two bi-connected components is known as an

articulation point. The more precise definition of an articulation point is one whose

removal would partition the network.

A more successful approach is similar to the one previously described, but refined

in such a way as to avoid the problem encountered with articulation points. Instead

of allowing an articulation point to contribute to the coverage regions of multiple

components, they are excluded from the regions of all components and assigned to

individual regions. Using this approach, the three node example would be divided into

29

2 2 2 3 2

(a) Initial Network (b) Augmented Network

Figure 3-3: The network from Figure 3-2 is assigned regions such that each of its
articulation points is designated a separate area. None of the regions share points.
The point selected in Figure (b) is from a much narrower region and is sufficient to
bi-connect the network.

regions as shown in Figure 3-3. The highest ranked region has a rank of three, and is

much smaller. Placing a node anywhere within this region bi-connects the network.

This augmentation process can be applied repeatedly to the modified network until

the entire network is bi-connected.

3.2 Implementation Details

The implementation of the augmentation algorithm parallels its conceptual basis.

The code for the algorithm is written entirely in Java (version 1.4.2 [15]), which was

selected because of its built-in geometric awt package, which features operations for

performing unions and intersections on regions. A number of data structures are

helpful in organizing the abstractions necessary to achieve the desired outcome.

3.2.1 Graph

A necessary data abstractions is that of a graph. A graph represents the mathematical

concept of a collection of nodes and edges. Figure 3-4 illustrates the object model of

the graph implementation. A node can be any general Java object. An edge contains

three pieces of data: a source node, a sink node, and a boolean indicating whether

or not the edge is directed. Two directed edges are considered equal if and only if

30

Graph

Boolean
Undirected

Graph directed

Edge
nodes to

Neighbors
source sink

edges

Hash Map Object
nodes

Figure 3-4: The object model for a Graph.

they have identical source and sink nodes. Two undirected edges are equal if and

only if they have the same pair of nodes, regardless of which is considered the source

and which is the sink. A directed edge is never equal to an undirected edge. The

concept of a graph is simply an interface specifying methods for manipulating and

obtaining information about the graph. The actual implementation is that of a more

strict undirected graph, in which all edges are undirected.

The graph specification provides many methods for mutating the graph as well

as observing information about it. The mutators include the ability to add a node,

remove a node, add an edge, and remove an edge. An edge may be added externally,

in which it is created outside the graph and added with the addEdge method, or

internally, in which the connect method is called on two of the graph's nodes. If

an edge is added which contains a node not already in the graph, that node also is

included in the graph. If a node or edge is added to a graph in which it is already

present, the operation has no effect. The underlying representation of an undirected

graph object uses a HashMap (Java's implementation of a common hash table) to

associate nodes and edges. Each node in the graph is a key mapped to a set of

its adjacent edges. The representation invariant states that for each edge in the set

mapped to by a node A, then A is one of the nodes of that edge. Additionally, the

opposite node of such an edge is also a key of the HashMap, and its adjacency set

31

contains an equivalent edge. All the mutators of an undirected graph enforce this

invariant.

The graph interface also supplies a number of useful accessors. One such observer

obtains an unmodifiable view of a set of all the nodes in the graph. The interface

also has observers to test whether a given node or edge is contained in the graph.

An accessor called anyNode will obtain a single node from the graph. The returned

node is the first node listed by an iterator of the HashMap's keySet property. Another

observer called getAdjacencySet will obtain an unmodifiable view of the adjacency

set of a given node. Finally, the undirected graph has a method to determine if it is

connected. This methods performs a breadth-first search [101 of the network, starting

at the node returned by anyNode. Like all such searches, this method maintains a

visited set to avoid searching the same node more than once and looping. When the

search terminates, if the size of the visited set is the same as the size of the entire

node set, then the graph is connected.

3.2.2 Bi-connected Components

Another key abstraction is that of the bi-connected components, which are repre-

sented by a single object that is initialized with the graph of interest. An instance of

this BiconnectedComponents object immediately computes the graph's components,

which it stores as a set of graphs, along with another set of the graph's articulation

points. The algorithm for computing the bi-connected component is described by

Tarjan in [23]. The basis of the procedure is a depth-first search [10] of the given

graph that designates each node with the number corresponding to the order in which

it is first visited. In addition to this number, each node is assigned a value called its

lowpt, which is significant in identifying the bi-connected components. The depth-

first search of a graph can be visualized as transforming the graph into a tree of

directed edges. Since a tree is a graph without loops, it only includes a subset of

the edges of the original graph. However, in this particular algorithm, the edges that

point from a node to one of its ancestors, called fronds, are important. Together, the

tree and the fronds are called a palm tree. The lowpt of a node is assigned the least

32

4
5

0 2 341 6 3
6 6 3 4

16
1 3 7

16 5 2
6 2 6

6 1
7 8 11 8

(a) Input Graph (b) Palm Tree (c) Output Components

Figure 3-5: The input graph (a) is turned into a palm tree by a depth-first search as
shown in (b). The dashed segments are fronds. Beside each node is it's lowpt. Node
1 is an articulation point because it is the root but has two child nodes. Node 6 is
an articulation point because it is its own lowpt. Figure (c) shows the bi-connected
components of the graph.

number value that can be obtained by traversing the directed edges leading out of

the node in the palm tree, along with no more than one frond. If an edge's source

node is the lowpt of some other node, then that node is an articulation point, and

the edges leading out of it form a bi-connected component. Additionally, a node is

an articulation point if it is the root of the tree and it has more than one child node.

Figure 3-5 illustrates a sample graph, along with the corresponding palm tree and

bi-connected components.

3.2.3 Network

The objects discussed so far all deal with isolating the bi-connected components of the

general concept of a graph. A separate code package describes the geographic layouts

of networks and their nodes. This package has three key classes: Node, NodeSet, and

Network. Figure 3-6 illustrates the object model for these three classes. A Node is an

immutable object with a position in two-dimensional space and a radial transmission

range. A NodeSet and a Network are both subclasses of an AbstractNodeCollection

class. The motivation for this behavior is that the two classes share much of the same

properties but are often used for different purposes. The key property that they

33

Node
Collection

Abstract
Double radius Node -region Area

Collection

Node Network g Hash Map

radiuselements layout cells

Node Undirected Point2D
Graph

7[nodes

Figure 3-6: The object model for a Node Collection, Node Set, and Network.

share is the ability to store Node objects and maintain the total area corresponding

to the union of each Node's individual coverage region. For simplicity, and because

the networks modeled are assumed to be uniform, the node collection itself has an

immutable radial range property, and each member node has the same radial range

property. An individual node's coverage region is conveniently represented by Java's

Ellipse2D and Area classes, contained within the java. awt . geom package. An Area

initialized with a single Ellipse2D shape can be modified by operations such as

union, intersection, and subtraction with other Area objects. The coverage area is

maintained when adding a node by performing a union operation of the coverage

region of this node with the node collection's existing coverage region. Note that

nodes may not be removed from the collection, largely because the operation was not

necessary and would make maintaining this coverage area property far more difficult.

While a NodeSet and a Network share this coverage region property, they differ

in other ways. Most notably, they differ in the way in which they store nodes. Given

this difference, AbstractNodeCollect ion defines an abstract protected includeNode

34

method that it calls when a node is added and each class implements differently. A

NodeSet stores its nodes in a trivial manner using a HashSet object, but a Network

uses a more complex technique. In addition to storing the geographic layout infor-

mation it inherits from an AbstractNodeCollection, a Network is an object that

relates this layout information with the links between those nodes. The Network

stores all of its nodes in two data structures: a graph and a HashMap. The Network

enforces a representation invariant upon the graph stating that if two of its nodes'

positions are within the transmission range of one another, then they are connected

in the graph. When a node is added to the Network, it is added to the graph, and

its distance is computed to a subset of the other nodes in the network to check if

they should be connected in the graph. In order to prevent the network from having

to check the distance to all of the existing nodes, a HashMap property called a grid

is maintained to enforce that only a subset of the nodes must be checked. The keys

of this table are two-dimensional points in increments of the Network's radius. Each

point represents the square cell with a side the length of the radial range, and whose

bottom-left coordinate is that of the point itself. Each of these grid cells maps to

the set of nodes located within that square. When a new node is added, only nodes

within the node's grid cell and the eight adjacent cells need to be checked for possible

connections. Any node in another grid cell must be beyond its radial transmission

range, and need not be checked.

3.2.4 Combinations

A Combination is an interface for an extremely simple producer class, which must

have a single combine method that takes a Combination as an argument, and pro-

duces a third as a result. The specification defines a combination as feasible if the

combine method returns an object and infeasible if it returns null. It also states

that if the argument is not of the same type as the object for which the method is

called, the combination is infeasible. Finally, it says that if an object is produced,

it should be of the same type as the object for which the method is called. The

purpose of a Combination is to provide a simple interface for a few more complex

35

types, each of which is defined to highlight specific behaviors. These types include

the SingleParityCombination and Levels objects.

The SingleParityCombination class implements the Combination interface.

The class's key property is a set of elements that it stores. A SingleParity-

Combination enforces a feasibility policy on two objects as determined by the pro-

tected canCombine method. This policy is more strict than that specified by the

Combination interface. If a SingleParityCombination has N elements, a feasible

combination may be performed with another such object if and only if it also has N

elements, and N - 1 of these elements are equal to elements of the object. Note that

this is well-defined, since the specification of a Set ensures that it may only contain

one copy of an object. If two SingleParityCombinations meet this criteria, they

produce a third object with N +1 elements corresponding to the union of the element

of both objects. Notice that this operation is symmetric, so the result of passing ob-

ject B as an argument to object A is identical to the result of passing object A as an

argument to object B.

A Levels object computes all feasible combination from an initial set. The Levels

class contains a list of sets. Each element of each of these sets is a Combination object.

The Levels object has a computeLevels methods that is immediately called by its

constructor. This methods initializes this object's list and initializes it in the following

way. The set at index zero is the initial set of combinations. The set at index i+1 is the

set of all objects produced by feasible combinations of the elements at index i. This

continues until all the combinations of the highest index set are infeasible. Note that a

Combination object may be defined in a way such that no highest index exists. Under

such a circumstance, a Levels object created with a set of these combinations would

cause an infinite loop. For a set of SingleParityCombinations, this is not the case.

Since all Sets achievable during execution are finite, each SingleParityCombiant ion

has a number of elements bounded by some finite number P. Additionally, the initial

set of these objects is also a finite value Q. The largest SingleParityCombination

achievable from combinations of this initial set would have finite size P - Q. No other

combination in the levels object could feasibly be combined with such an object, so

36

Combination

Single
Parity elements Object

Combination

Surface elements Node
Intersection Set

-intersection Area

Figure 3-7: The object model for Combinations, SingleParityCombinations, and Sur-
faceIntersections.

the process will terminate.

3.2.5 Surface Intersections

A Surf aceIntersection object is a subtype of a SingleParityCombination. The

entire hierarchy of these classes is shown in an object model in Figure 3-7. The

elements of each SurfaceIntersection must be NodeSet objects. A Surf aceIn-

tersection also maintains an area corresponding to the intersecting region of all its

NodeSet element's coverage areas. This intersection region is always nonempty, a

policy that can be enforced only by a more strict notion of feasibility than a standard

SingleParityCombinat ion. This feasibility notion is implemented by overriding the

canCombine method, which, in addition to calling the superclass's method, checks

if the two potential objects have intersection regions that overlap. If they do, their

combination is feasible. Additionally, the combine method is augmented to produce

an object for which the intersection region is the overlapping area of the two objects

whose combination produced it.

37

3.2.6 Augmentation Using Network Levels

The functions of all the aforementioned objects are combined in the NetworkLevels

class to collectively implement the goal described by the conceptual outline. This class

is a subtype of the Levels class whose combinations are all Surf aceIntersection

objects. A NetworkLevels object has a Network object at all times called its best

at the moment, along with an integer parameter called f ewestComponents indicating

the number of bi-connected components of this Network. The initial Network ob-

ject representation of the network to be augmented is passed to the constructor. The

NetworkLevels object proceeds to immediately feed the layout of this Network to cre-

ate a BiconnectedComponent object, which is used to assign the fewestComponents

measure. Next, a set of Surf aceIntersections is created, each containing a single

NodeSet. These NodeSets are created from either an individual articulation point or

from the bi-connected components with their articulation points excluded. This set

is then passed to the computeLevels method inherited from the Levels superclass.

The list representing the levels of this subclass subsequently obeys the following in-

variant: the Surf aceIntersect ions at index i include exactly i+1 NodeSet objects.

A Surf aceIntersection with i NodeSets represents a region in which i overlapping

components intersect.

Once the NetworkLevels object has been initialized with a Network, its Bicon-

nectedComponents, and executed computeLevels, augmentation can begin. This

augmentation process is performed by choosing a point to place an additional node

based on these intersections, and then flattening the levels. Flattening replaces the

best Network, along with the BiconnectedComponents object with those correspond-

ing to this augmented Network, and then computing the Levels once again. This

flattening process is repeated until the entire Network is bi-connected. Given that

the SurfaceIntersections with the highest rank are at the greatest index of the

Levels list, according to the conceptual outline, the components at this index of the

Levels list are the most desirable regions to place augmented nodes. Any one of

the Surf aceIntersections at the highest level is chosen, since they are considered

38

equally important.

Once a region is chosen, a point from within that region must be selected. This

step is performed when the area of the selected intersection region is passed to a

private static method called getAnyPoint. As implemented, this method returns the

point at the center of the bounding box of the area. This point selection technique

is largely heuristic, and is not guaranteed to improve the network. Two reasons exist

that make this selection imperfect. First, the point itself may not lie inside the surface.

This event may occur when bi-connected components collectively manage to form a

region that is not convex. Another problem may be that no point in the actual region

could benefit the network, despite its high rank. Based on these scenarios, any point

that is chosen is first made a candidate. A new Network object is formed uniting

this point with those of the original Network, and the bi-connected components are

computed. If the new network has fewer components than the original, the candidate

is considered sufficient, and is included in the augmented Network. If it is not deemed

sufficient, another point at the highest ranking region is selected as a candidate. This

process is repeated until a worthy candidate point has been found.

3.3 Shortcomings

While the augmentation algorithm described has produced solutions in all known

trials, it is not without its weaknesses. These weaknesses are mainly related to the

optimality of the algorithm, both with regard to the quality of the solution and in the

performance of the algorithm itself. The reason these shortcomings exist is largely

due to the low benefit their solutions may produce relative to their cost of such a

solution. In most situations, the algorithm is unlikely to produce a solution that

significantly differs from the optimal one.

One shortcoming of the augmentation algorithm is its potential to produce sub-

optimal solutions. Let the optimal solution be the one that results in the fewest

additional nodes, as would be the case if each additional node had some cost. As

noted earlier, the algorithm is greedy, and thus chooses points for new nodes before

39

investigating whether it is making the best possible selection. It does not perform

point selection completely blindly. The algorithm uses the heuristic rank of the num-

ber of components and articulation points that are within transmission range of that

point. Additionally, the algorithm double checks every point to ensure that it re-

duces the number of bi-connected components in the network before committing to

it. However, once such a point is found, it is permanently chosen. An alternative

version would search for numerous possible augmented layouts simultaneously, and

choose the best bi-connected one.

A clear example in which the augmentation algorithm produces a suboptimal

solution in illustrated in Figures 3-8 and 3-9. Suppose a bi-connected layout exists

with 20 nodes forming a circle as in Figure 3-8. Now, suppose the network of interest

has the same layout, but is missing one of these nodes, as shown in Figure 3-9 (a).

Clearly, the graph can be augmented as a bi-connected graph with the addition of a

single node. However, the augmentation algorithm fixes the graph as shown in Figure

3-9 (b). Notice that it uses far more augmented nodes than necessary. The reason

for this result is that the region where the single node could be placed to bi-connect

the network has a rank of two, while the regions where the nodes are actually placed

all have a rank greater than two. Assuming that adding the least number of nodes

possible is optimal, this situation demonstrates that because of its greedy nature, the

augmentation algorithm can produce suboptimal solutions.

While the algorithm has the potential to produce suboptimal solutions, its per-

formance can be bounded. In the worst case, a network would consist entirely of

articulation points (as is the case in Figure 3-9 (a)). In this or any scenario, the

network will be biconnected if an additional node is places on every existing node.

Thus, a network with N initial nodes will be augmented with at most N additional

nodes.

Another potential sdurce of suboptimal performance is the manner in which points

are selected from a given region. Currently, the point chosen in at the one at the center

of the boundingBox property of the given region. The bounding box of a region is

the smallest rectangular area with sides parallel to the coordinate axes that contains

40

50

45-

40-

35

30-

25-

20-

15-

10-

5-

0 '
0 10 20 30 40 50

Figure 3-8: A bi-connected network in the shape of a ring.

the region. The center of this area may not be within the region if it is not convex

or if it is disjoint. An alternative means was attempted by selecting one of the points

located on the region's PathIterator property. These points are generally on the edge

of the region. This technique was discarded because it sometimes produced flawed

augmented networks that were not bi-connected. Additionally, this technique would

often place augmented nodes at locations outside the initial limits of the network's

layout area, which is an inconvenience when transferring the layout to the simulator.

Since both these techniques are greedy, a technique that searched for the optimal

solution among a number of possible points could produce better results than each

of them. However, since the region is continuous, some manner for choosing a finite

set of points would be needed.

41

50

45-

40-

35

30-

25-

20

15-

10-

5-

0
0 10 20 30 40 50

(a) Initial Network

50-
+ original

45- V augmented

40

35-

30

25-

20-

15-

10-

5

0
0 10 20 30 40 50

(b) Augmented Network

Figure 3-9: (a) The network form Figure 3-8 with one fewer node. (b) The bi-
connected augmented network layout produced on this input network.

42

.

3.4 Merging

Finally, one aspect of the algorithm worth discussing is that of a technique omitted

from the original design. This technique was intended to circumvent the process of

repeatedly computing the bi-connected components of intermediate network layouts

by merging bi-connected components that are joined by an additional point, while

still maintaining an accurate view of the remaining bi-connected components. The

merge operation is a producer method of the Surf aceIntersection class that takes

another Surf aceIntersection and the NodeSet equivalent to the union of those in

that SurfaceIntersection. If the two Surf aceIntersections share any NodeSets,

then the operation returns a new Surf aceIntersection that substitutes the given

NodeSet for any of these shared NodeSets. Thus, the rank and intersecting area

of the object returned may differ from the one called. In a preliminary design, the

NetworkLevels object called this merge operation on every Surf aceIntersection

in its levels after adding a point during flattening. Those for which merge produced

a new Surf aceIntersection were removed from the levels, and the new object was

added to the appropriate level given its rank. Those that shared no NodeSets with

the updated one remained unchanged. Two problems exist with this technique. One

problem is that it does not maintain articulation points in separate NodeSet enti-

ties. Another problem is that it does not ensure that each point added to the graph

actually reduces the number of bi-connected components. Figure 3-10 illustrates a

situation that employs this technique, and the associated shortcomings. Additionally,

in the final algorithm, the bi-connected components must be computed in order to

ensure that the candidate point selected reduces the number of components. Once

this operation is performed, using the updated BiconnectedComponents object to

repeat the computeLevels operation again is not unreasonable to execute. Execut-

ing computeLevels re-initializes the levels with an accurate representation of the

environment, making the function performed by the merge operation unnecessary.

43

2 22 2

3 3

3 3

2 2

(a) Initial network regions (b) Network layout after one flattening
stage

Figure 3-10: (a) Illustrates an example of a network layout in which the merge op-
eration fails. Every point in the network is an articulation point, and is thus in an
individual region. (b) Shows the result of a single point being added and the regions
that remain after it is merged with all of its neighbors. The regions are assigned in
such a way that if the highest ranking region in the center is chosen, the additional
point added does not reduce the number of bi-connected components in the original
network. Additionally, after the merge operations, four of the original articulation
points are no longer in regions by themselves, but instead are part of the larger region
of the bi-connected component to which they belong.

44

Chapter 4

Simulation

The effect that bi-connectivity has on potential network lifetime is less direct than

its effect on reliability. Experimentation is the most dependable technique to fully

investigate this relationship. Given the augmentation algorithm described, the per-

formance of a simulated bi-connected network may be directly compared to the layout

from which it was derived.

4.1 Implementation

The network simulation (ns-2) environment is the framework for the simulations [2].

ns-2 is an extension of OTcl [3], a scripting language with an interpreter written in

C++ [22]. ns-2 is a detailed network simulator, and it is an open-source project

that enables customization. As discussed earlier, strategic node placement is one of

a number of techniques proposed for improving network lifetime. Thus, in addition

to testing bi-connectivity, running tests that compare energy-aware routing and their

relationship with bi-connectivity is also important.

4.2 Routing Protocols

Span was selected because of its documented results of improving network lifetime and

because an implementation exists that extends ns-2 [9]. Span uses MAC-level power

45

savings along with a routing backbone of coordinators, a promising energy-aware

routing mechanism. Additionally, Span's technique of sharing the responsibility of

backbone coordinators among all nodes is likely to be less effective in sparse networks,

where an articulation point node is likely to need to act as a coordinator continuously.

Bi-connectivity offers the benefit of enabling such a node to split this responsibility

with an augmented node. The well-established wireless routing method, destination-

sequenced distance vector (DSDV), was selected as a basis of comparison [6, 16].

Unfortunately, the existing implementation of Span branched off of ns-2 version

2.1bl, which differs significantly from the most up to date version available. To

accommodate this implementation, all tests were run on this older version, with a

few specific modifications. Some modifications were made to the implementation of

Span itself. In the experiments run by the original study [8], only a fraction of nodes

were able to originate and receive traffic. In these experiments, these nodes were

all designated as permanent coordinators. To implement this behavior, these source

and sink nodes were all given the lowest N ids in the network. Each node had a

srcsink property, which was assigned N. The idea is that any node with an id less

than N could be considered a permanent coordinator by other nodes. To disable this

characteristic required two changes. First, the srcsink property was initialized to 0

for all nodes, so that they would all operate Span as intended, and none would be

permanent coordinators. Second, a few lines of C++ code needed to be commented

out. These lines were part of the SpanAgent class that handled incoming and outgoing

packets. The original code would determine if the next hop to receive a packet was

the packet's destination and, if so, assume that it was a coordinator when forwarding.

Since this assumption was no longer valid, most packets would be dropped one hop

away from their destination without the code modification.

To contrast the performance of Span, identical simulations were run using the

DSDV routing protocol. While Span ideally has the ability to avoid crucial nodes

during routing, DSDV does not consider power levels at all when selecting forwarding

paths. DSDV [6, 16] is a variation of the common distance-vector routing protocol

in which nodes maintain and exchange routing tables that contain information about

46

the next hop and distances to all known destination addresses. Additionally, DSDV

lacks Span's MAC layer power saving capabilities. As a distance-vector protocol,

DSDV will select the shortest available route to forward packets between a source and

destination. Since transmission power is assumed to be constant, DSDV functionally

behaves identically to a minimum power path routing algorithm. It should be noted

that while DSDV was designed for mobile networks, all the networks simulated used

in these simulations are static. The routing protocol has a parameter called the

waited settling time (WST), which is used to schedule routing table announcements

and table entry expirations. The WST was set to 0.5 in order to speed up the initial

routing table exchanges during simulation.

As discussed, changes to the Span implementation were necessary to adapt it to

the needs of this particular study. Additionally, a few other more critical changes

were required of other components of the ns-2 libraries. These modifications were

reflected as fixes to bugs in the DSDV package. One such bug was most likely caused

by an unnecessary change made during the implementation of Span. All ns-2 wireless

routing protocols other than Span depend on an address resolution protocol (ARP),

which uses a one-time request/reply operation to discover the MAC address associated

with a certain network address. Nodes can .only discover and only need the MAC

addresses of their immediate neighbors. Nodes use this discovery phase to request

the MAC address of the next hop node when forwarding a packet. However, the

code had been altered for nodes to instead request the MAC address of the packet's

destination. The result of this bug was that only packets that needed to travel a single

hop could be delivered. The bug was fixed by commenting out this inexplicable change

to the ARP request packet in the C++ LL (Link Layer) class.

Another bug was specific to the implementation of DSDV in the relatively old

version of ns-2 from which Span's implementation branched. This bug has since

been corrected, although in a slightly more hurried manner. Basically, DSDV agents

maintain a few small queues in addition to its network interface queue. Each routing

table entry has a five packet queue that it uses to store packets destined for a node

with either a nonexistent or expired entry. Once the entry is updated, the queued

47

packets can be freed and forwarded on to their next hop. Unfortunately, the code

did not update the routing table before dequeuing the packets, which resulted in any

dequeued packet immediately being re-queued, leading to an infinite loop. The latest

version of ns-2 fixes this bug by only attempting to forward a single packet from the

queue. Not only is this solution unable to deliver that packet, but it also leads to a

state in which all these packets are never freed from memory, despite the lack of any

reference to them. The version used in these simulations fixes the problem in such a

way that all packets are dequeued only after the entire routing table entry has been

updated, allowing them to be sent to the next hop.

4.3 Energy Model

The energy model used in simulations came directly from the Span extension of

ns-2. This energy model accounts for energy consumed during all radio operations.

Specifically, the consumption parameters are: 1.4 watts during transmission, 1.0 watts

during reception, 0.83 watts during idle time, and 0.13 watts during the sleep mode

used by Span. Additionally, all simulations used the same parameters for the channel

and propagation models. These parameters matched a model of an omni-directional

transmission range with a limit of 250 meters. Notice that transmission power is never

varied, so nodes will theoretically transmit packets with more energy than necessary.

All nodes were initialized with 500 Joules of energy in every simulation.

4.4 Layouts

Layouts were generated by a few helper classes written in Java called the Generator

and LayoutWriter. The LayoutWriter had static methods for outputting a layout in

all the convenient formats, including an OTcl script that positions all the nodes. The

Generator produced an initial and augmented layout given the following parameters:

the number of initial nodes, the radial transmission range, and rectangular bounds

designating the area in which a node may be placed. Since the radial transmission

48

Initial Nodes Dimensions Augmented Nodes
20 1000 x 1000 3.2
20 1100 x 1100 3.9
30 1000 x 1000 2.2
30 1100 x 1100 3.9
30 1200 x 1200 4.2

Table 4.1: The average number of augmented nodes needed to bi-connect various
initial scenarios. All results are derived from 10 individual layouts.

range is exclusive in simulations, but inclusive in the Network class, a value of 249.9

was used as the range.

The Generator executed a number of steps when producing random layouts. First,

each node was placed by randomly choosing its coordinates from a uniform distribu-

tion across the entire bounded area. Each node was added to a Network object, which

created the corresponding unit graph representation. This graph would be tested for

two criteria to decide if the layout was acceptable: the graph had to be connected

yet not bi-connected. Initial bi-connected layouts were not used because they did

not need any augmentation. Disconnected graphs were not acceptable because they

did not fit the requirements of the augmentation algorithm. All unacceptable lay-

outs were disregarded. All acceptable layouts were bi-connected by a NetworkLevels

object. Both the initial and augmented layouts were then output to files using the

LayoutWriter that would be read during the setup phase of a simulation.

The criteria which constitutes an allowable initial network layouts suggests some

constraints on the initial parameters. For example, if the networks produced were

all too dense, they would be rejected because they were initially bi-connected. Con-

versely, if the placement area was too large, generating a connected graph would be

unlikely. Table 4.1 display the average number of augmented nodes needed to bi-

connected networks with various initial parameters. As expected, sparser layouts,

which generally have fewer nodes per unit area, require more augmented nodes. Fig-

ure 4-1 shows three network layouts and their augmented counterparts.

49

1000 1000

+ dginal90 augmented

800 800-

700- 700-

400 400

300 300

200 200

100 100
30

0 200 400 600 80 1000 00 200 400 8 8 1000

(a) Initial Network (b) Augmented Network

100C 1000
900 900-

800 800-

700- 700 - V augmented
600 600

500 00

400 400

300 300

200 200

100 100

0 200 4 8W 8 1000 0 200 4W 6 80 10

(c) Initial Network (d) Augmented Network

so - 900 augmented

700 700.
600 -600-

500 - -SW0

300. 300-

200 200-

100 -100

00 M0 4W OW aw low 0 2W 4W 6W aw low

(e) Initial Network (f) Augmented Network

Figure 4-1: Figures (a), (c), and (e) are initial network layouts and (b), (d) and (f)
show their respective augmented layouts. All these initial layouts feature 30 nodes
on a 1000 m x 1000 m area.

50

4.5 Traffic

ns-2 defines all network traffic as a stream between a traffic source agent and a traffic

sink agent, each attached to a specific node. Since a desirable characteristic of the

simulations is to have uniformly random traffic between all nodes, a source and sink

agent are created for every ordered pair of unique nodes in the simulation. The source

agent is of type Agent/CBR/UDP in version 2.1bl, which has since been replaced by a

similar class named Agent/UDP. Similar to the well-known UDP protocol, this agent

blindly sends packets without expecting any sort of acknowledgment or performing

flow control. The traffic seen by each agent is produced by an OTcl Traf f ic/Trace

object, which has since been renamed the Application/Traf f ic/Trace class in the

most recent version of ns-2. The object is capable of reading binary data files that

specify a series of packets according to their size and inter-arrival times. By default,

the Traf f ic/Trace object generates the traffic starting at a random point in the file.

This behavior is inconsistent with the desire to keep traffic constant across multiple

scenarios, so the class was modified to always start at the beginning of the file. In

order to reduce the number of packets discarded due to the set up phase of both

routing protocols, all traffic streams began generating traffic 10 seconds after the

simulation started. No traffic is originated nor destined for any of the augmented

nodes.

Like network layouts, the traffic is generated by an external helper Java class called

the BinaryTraf f icOutput, which produces binary traffic data files in the format read

by OTcl Traffic/Trace objects. The process takes two parameters: the number of

nodes in the network, and the desired mean inter-arrival time. The traffic output

models a Poisson process with the given mean. The process of producing Poisson

inter-arrival times is performed by a RandomExponentialDistribut ion object [1].

The BinaryTraf f icOutput class produces one file for each ordered pair of unique

nodes. Each file contains 1000 pairs representing a sequence of packets. Each packet

is 500 bytes with inter-arrival times randomly generated. The files have information

for 1000 packets to ensure that no test would run long enough to produce traffic that

51

reached the end of the file. In this case, the simulation would return to reading traffic

from the beginning of the file.

52

Chapter 5

Results

Data was collected from numerous executions of the ns-2 simulator. For each indi-

vidual run, the simulator output data describing critical events into a trace file. Like

other aspects of the tests, these files were formatted in a manner different from that

of the current ns-2 environment. Additionally, the Span code added some unique

formats to experiments which used it for routing.

In order to make sense of this data, these files were parsed using a Perl script

applied to each individual trace file. The script counted all the packets received

between any two pairs of nodes. From this information, it computed the average

and standard deviation of the packets successfully forwarded among any pair. It also

computed the aggregate packet delivery statistics from each run, along with the total

number of packets discarded for each possible reason. The script recorded the failure

time of each node, from which it could extract the average and standard deviation of

these failure times.

5.1 Metrics

Various metrics were studied from the data collected to evaluate the performances

of variable conditions. The metrics compared are network lifetime, throughput, and

network fairness.

Every test is characterized by three parameters: the initial number of nodes, the

53

length of a side of it's layout in meters, and the mean arrival time at each node. Each

unique trial was run four times, using Span and DSDV routing protocols on both the

original network and its augmented counterpart. Running tests with these conditions

under identical parameters was crucial in order to make controlled comparisons be-

tween trials with different routing protocols and augmented layouts. For example,

ten layouts were generated with 20 initial nodes in a 1000 meter square area. Four

tests were run for each layout. The layouts were tested with Span and DSDV routing

procedures, and then the augmented layouts were tested using the same procedures.

All tests used the same traffic data. Identical traffic data is important for making fair

comparisons between different tests run on the same layout. Various data collected

from each trial were then averaged over all ten trials.

5.1.1 Throughput

Throughput, or packet delivery, is considered an important quantitative characteristic

of network performance. Normally, throughput is an easy characteristic to assess by

simply comparing the aggregate number of packets delivered by each trial. However,

when comparing initial and augmented networks, aggregate packets delivered is not

a fair measurement to use. The networks should be compared in terms of how well

they utilize their resources rather than how much of a resource they have. Adding

additional nodes is likely to help any network deliver more packets overall by simply

increasing the network's capacity. Note that this is a consequence of the assumption

that none of the augmented nodes produce any traffic. This observation seems to

suggest that a network be augmented with as many nodes as possible. However,

introducing new nodes is likely to be a costly procedure, so the ideal scenario would

introduce as few as possible to meet certain conditions. In order to account for the

cost of additional nodes, the quantity compared is packets delivered per unit energy,

rather than total packets. Each additional node introduces another 500 Joules of

energy for the network to use to forward packets. Whether it uses this additional

energy well or not is the question to be studied.

The results were consistent across all conditions. DSDV networks delivered more

54

(a) 20 Nodes, 1000 m, 0.52

DSDV
Initial 20482.2

Augmented 21214.1

(c) 30 Nodes, 1000 m, 3.10

DSDV
Initial 5577.0

Augmented 5615.7

s arrivals

Span
18326.4
22222.3

s arrivals

Span
5086.6
5669.4

(b) 30 Nodes, 1000 m, 1.03 s arrivals

DSDV Span
Initial 16126.2 14477.2

] Augmented 16327.0 16264.0

(d) 30 Nodes, 1200 m, 1.03 s arrivals

DSDV Span
Initial 15784.7 12400.1

Augmented 16333.2 15965.0

Table 5.1: The aggregate packets delivered in simulated environments. Each record is
the average of ten individual trials. The data within each table provides some insight
into the effects of augmentation on each routing algorithm.

(a) 20 Nodes, 1000 m, 0.52 s arrivals (b) 30 Nodes, 1000 m, 1.03 s arrivals

DSDV Span DSDV Span
Initial 2.06 1.83 Initial 1.08 0.97

Augmented 1.83 1.92 Augmented 1.01 1.02

(c) 30 Nodes, 1000 m, 3.10 s arrivals (d) 30 Nodes, 1200 m, 1.03 s arrivals

DSDV Span DSDV Span
Initial 0.37 0.34 Initial 1.05 1.02

Augmented 0.35 0.35 Augmented 0.96 1.07

Table 5.2: The packets/energy delivered in simulated environments. Each record is
the average of ten individual trials. The data within each table provides normalized
information about the effects of augmentation on each routing algorithm.

packets than Span networks, but augmented Span networks exhibited a far greater

improvement in throughput than augmented DSDV networks. Table 5.1 shows the

aggregate packets data, while Table 5.2 shows the data in packets per unit energy.

Augmented Span networks improvement in packets/energy was always positive, while

augmented DSDV networks saw a strictly negative change in packets/energy.

These results have multiple explanations. The difference in augmented pack-

ets/energy for Span tests may be a more substantial improvement than for DSDV

tests because Span makes better use of its energy resources. However, another ex-

planation is that the augmented networks are capable of forwarding traffic between

more pairs than the original networks because of their positioning.

While the key advance made by Span focuses on the MAC level optimization, the

forwarding technique is a somewhat unsophisticated position-based greedy technique.

55

(a) 20 Nodes, 1000 m, (b) 30 Nodes, 1000 m,
0.52 s arrivals 1.03 s arrivals

Initial 17% Initial 17%
Augmented 5% Augmented 8%

(c) 30 Nodes, 1000 m, (d) 30 Nodes, 1200 m,
3.10 s arrivals 1.03 s arrivals

Initial 18% Initial 27%
Augmented 8% Augmented 10%

Table 5.3: The percentage of pairs of nodes that were unable to deliver traffic using
the Span protocol. Each record is the average of ten individual trials.

Unfortunately, such a greedy forwarding technique is vulnerable to local minima, in

which a node forwards a packet to a neighbor who is closer to the destination, but

this node cannot find a closer neighbor than itself. The presence of such local minima

is increased by the sparse nature of the network layouts. Since nodes were static, any

source and destination that could not successfully forward traffic would drop their

traffic consistently. This pair could potentially find a greedy route with the addition

of an augmented node. Table 5.3, which records the percentage of node pairs that did

not successfully deliver any packets in Span trials, shows that augmented nodes often

enable more nodes to reach one another. This result demonstrates an unexpected but

clear benefit of augmentation, which should hold for any network using geographic

routing.

Figure 5-1 shows the change in this statistic between initial and augmented layouts

is highly correlated with the change in total packets delivered. Each data point in

this figure corresponds to an individual trial, rather than an average over all trials.

The data also shows that packets dropped at these local minima averaged traveling

between one and two hops beforehand. The hops taken by traffic that could ,not

be delivered represents a waste of the network's energy. Since fewer pairs of nodes

encountered these dead ends in the augmented runs, the network was able to better

utilize its energy resources by making fewer wasteful transmissions.

Aside from the extra energy resources, additional nodes present the potential to

increase the capacity of other network resources, specifically the queuing capacity.

Each node has a finite queue capable of holding 50 packets. If the arrival rates in a

56

20 Nodes, 1200 m, 0.52 s arrivials
0.25

2 x
0.2.

0.15 x

0.1
x

0.05-

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Increase in Packets/Energy

30 Nodes, 1000 m, 3.10 a rnivials

0.2 x

x
0.15-

0.1 x

0.05

0 -

-0.01 0 0.01 0.02 0.03 0.04 0.20
Increase in Packets/Energy

006 0.07

2
1A

"6

OI

30 Nodes, 1000 m, 1.03 s arnivials
0.25

0.2-

0.15

0.1

0.05 x

-0.05 0 0.00 0.1 0.15 0.
Increase in Packets/Energy

30 Nodes, 1200 m, 1.03 s arrivials
0.4

a0.35-x
0.3-9

x
0.25-

0.2 x

0.15 x

0.1 -

x
0.05

x
0 0.05 01 0.15 0.2 025 0.3

Increase in Packets/Energy
0.35

Figure 5-1: The relationship between the increase in overall packets delivered and the
decrease in the number of pairs that successfully forward zero packets in Span simu-
lations of various parameters. The correlation suggests that many of the additional
packets delivered are a result of geographic gaps filled by augmented nodes.

57

S

S

0

0.5

S
S
5

I
S

6 2

(a) Aggregate Packets Delivered

DSDV Span
Initial 31286.4 32137.3

Augmented 42494.5 40422.2

(b) Packets Delivered / Unit Energy

DSDV Span
Initial 2.09 2.14

Augmented 2.49 2.37

Table 5.4: The aggregate packets and packets/energy delivered when the network is
saturated by high arrival rates. The parameters tested are: 30 Nodes, 1200 m, 0.34
s arrivals.

test produce more packets than the network can deal with, then these queues will be

constantly full, and numerous packets will be dropped due to the capacity constraints.

Since none of the augmented nodes produce any traffic, their addition can increase the

number of packets delivered simple by increasing the overloaded network's ability to

store packets. One series of tests was run such that numerous packets were dropped

due to limited queuing capacity. The inter-arrival times seen by members of the 30

node network were 10 seconds/29 destinations = 0.34 s. Table 5.4 shows the packets

delivered under these conditions. Notice that in these scenarios, networks executing

DSDV saw an improvement in packets/energy in the augmented network. This result

contrasts those of the other trials in which the network's queuing resources were not

saturated. Such data is not useful because it does not provide sufficient conditions to

fairly test the affects of augmented networks. Instead, it allows almost any augmented

network to show similar throughput improvement over its initial layout.

5.1.2 Network Lifetime

Network lifetime, or longevity, is the most crucial property measured from the simu-

lation data. Unfortunately, a number of different ways exist to characterize this data.

Network lifetime is sometimes defined as the time until the first node failure or the

average node failure time. These properties were collected, but a more refined way of

looking at network longevity was ultimately used.

Table 5.5 shows the average time of the first node failure under various conditions.

The first node is a good indicator of the time of network partition because the first few

failures often occur close in time, and one of these failures must partition the network.

58

(a) 20 Nodes, 1000 m, 0.52 s arrivals

DSDV Span
Initial 548.50 561.40

Augmented 558.20 562.40

(c) 30 Nodes, 1000 m, 3.10 s arrivals

DSDV Span
Initial 587.73 589.74

Augmented 589.28 588.84

(b) 30 Nodes, 1000 m, 1.03 s arrivals

DSDV Span
Initial 563.03 568.76

Augmented 564.89 566.92

(d) 30 Nodes, 1200 m, 1.03 s arrivals

DSDV Span
Initial 556.90 572.90

Augmented 565.90 568.90

Table 5.5: The time in seconds until the first node failure in various simulations.
Each record is the average of ten individual trials.

In each given class of tests, variations among these failure times are negligible. While

only by a small amount, Span tests consistently outlasted their corresponding DSDV

trials. This advantage was narrowed in the augmented scenarios, where Span tests

showed no improvement, but DSDV tests improved by a small amount. A few factors

can explain Span network's slightly longer lifetime. First, Span nodes use a power-

saving sleep mode that enables them to better utilize their energy resources. On the

other hand, Span networks generally delivered less traffic than DSDV networks, which

may imply that they used less energy resources despite seeing the same arrivals as

their DSDV counterparts. This explanation is reinforced by noting that the packets

delivered by augmented Span networks significantly increased above that of the initial

network, while the time to the first node failure in these networks did not increase as

in DSDV trials.

Network lifetime can alternatively be defined as the lifetime of the average node,

rather than the first to fail. Table 5.6 shows these values in all relevant trials. This

metric shows a much more pronounced discrepancy between the performance of DSDV

and Span. Span tests demonstrate a far more significant average lifetime than DSDV

trials. However, the Span trials also demonstrate a small but noticeable reduction in

average lifetime in their augmented networks, while DSDV trials show no such change.

The explanation for the lengthy average lifetime is of Span trials is highlighted by the

trial's significant standard deviations. These figures show an extremely wide variation

among failures in Span tests. This observation is a result of Span's MAC level power

59

(a) 20 Nodes, 1000 m, 0.52 s arrivals

DSDV Span
Initial 566.76 1107.73

Augmented 571.56 1084.32

(c) 30 Nodes, 1000 m, 3.10 s arrivals

DSDV Span
Initial 593.66 1253.65

Augmented 594.45 1225.09

(b) 30 Nodes, 1000 m, 1.03 s arrivals

DSDV Span
Initial 576.99 1170.58

Augmented 579.34 1139.45

(d) 30 Nodes, 1200 m, 1.03 s arrivals

DSDV Span
Initial 575.93 1156.80

Augmented 579.96 1109.09

Table 5.6: The average failure times in seconds of various simulations. Each record
is the average of ten individual trials.

saving ability. The more nodes that fail, the fewer neighbors each remaining node has.

Consequently, a remaining node will be able to forward fewer arriving packets, and

will thus use energy more slowly. Finally, once a node becomes isolated because its

neighbors have failed, it uses very little power because it operates almost exclusively

in sleep mode. Therefore, each failure slows down the failure rate of the remaining

nodes. DSDV has no such sleep capability, so the failure of one node does little to

affect the remaining lifetime of other nodes in the network.

While neither of these characterizations of network lifetime is positive, neither

is particularly useful either. Since the augmented network has additional nodes,

comparing it's exact failure times to those of it's initial configuration is not necessarily

a fair comparison. Figures 5-2 and 5-3 show a more precise way to characterize

network lifetime. The plots show the fraction of the pairs in the network that are

unable communicate over time. Each plot shows the results of four different trials run

on a single layout. The data is obtained by recording the time of the final successful

packet delivered between each pair of nodes.

Despite variations among different trials, a few trends are clear. Specifically,

augmentation improves network lifetime, and Span offers an obvious advantage over

DSDV. The plots demonstrate the improvement augmented networks offer over their

initial layouts in terms of longevity. While Span may offer the greatest improvement,

the plots show that this improvement holds for both DSDV and Span trials. Tables

5.7 and 5.8 confirm that this assessment is true in the average case. The tables

60

30 Nodes, 1000 m x 1000 m, 1.03 s arivals

-Span original
Span augmented
DSDV orginal--- - - OOV augmented

0 200 400 600 600 1000
time

1

0.9

0.8

0.7

0.6

E 0.5

0.4
Z

0.3

0.2

0.1

1200 1400 1600

30 Nodes, 1000 m x 1000 m, 3.10 s arrivals

Span original
Span augmented
DSDV original

- - - DSDV augmented

0 200 400 600 800 1000 1200 1400 1600 1800
time

(a) Typical Improvement

30 Nodes, 1000 m x 1000 m, 1.03 s arrivals

- I

----------- Span original
-- - Span augmented

DSDV original
- - - DSDV augmented

500
time

(c) Most Improvement

30 Nodes. 1000 m x 1000 m, 1.03 s arrivals

- - -DDVaugmente

500 1000
time

(e) Least Improvement

0.8

2 0.7

0.6

0.5

0.4

0.2

0.1

1600

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(b) Typical Improvement

30 Nodes, 1000 m x 1000 m, 3.10 s arrivals

Span original
- - Span augmented

DSDV original
- - - DSDV augmented

200 400 600 600 1000
time

1200 1400 1600

(d) Most Improvement

30 Nodes, 1000 m X 1000 m, 3.10 s arrivals

- . --- _'Span original
Span augmented

.DSDV original
- - - DSDV augmented

1500 0 200 400 600 800 1000
time

1200 1400 1600

(f) Least Improvement

Figure 5-2: Plots of the typical, most, and least improvements in longevity for network
simulations of various parameters.

61

0.9

0.8

300.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1

0.9

0.8

. 0.7

0.6

0.5

0.4

S0.3

0.2

0.1

-

0.9

0 1000

20 Nodes. 1000 m x 1000 m, 0.52 s arrivals

- i

1

0.9

0.8

20.7

0.6

0.5

0.4

0.3

0.2

0.1

1

0.9

0.8

*0.7

0.6

0.5

0.4

S0.3

0.2

0.1

0 200 400 600 800 1000 1200 1400
time

(a) Typical Improvement

20 Nodes, 1000 m x 1000 m, 0.52 s arrivals

-q

' -'

Span original
- - Span augmented

DSDV original
--- DSDV augmented

0.9

0.8

.2 0.7

0.6

0.5

0.4

.0 0.3

0.2

0.1

200 400 600 900 1000 1200 1400
time

(c) Most Improvement

20 Nodes, 1000 m x 1000 m, 0.52 s arrivals

0.9

- Span original
- - Span augmented

DSDV original
- -- DSDV augmented

0 200 400 800 80 1000 1200 1400
time m

(e) Least Improvement

0.8

2 0.7

0.6

0.5

0.4
04

0.3

0.2

0.1

30 Nodes 1200 m x 1200 m, 1.03 s arrivals
- ~Y-

-V

Span original
- - Span augmented

DSDV original
- -- DSDV augmented

200 400 600 B00 1000 1200 1400
time

(b) Typical Improvement

30 Nodes, 1200 m x 1200 m, 1.03 s arivals

Span original
- -.- Span augmented

j- DSDV original
- - - DSDV augmented

0 200 400 600 900 1000 1200 1400

(d) Most Improvement

30 Nodes, 1200 m x 1200 m, 1.03 s arrivals

-Span original
41 - -Span augmented

DSDVoriginalF / - DSDV augmented
0 200 400 900 800 1000 1200 1400

time

(f) Least Improvement

Figure 5-3: Plots of the typical, most, and least improvements in longevity for network
simulations of various parameters.

62

Span original
- - Span augmented

DSDV original
- - - DSDV augmented

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1 .

(a) Span, 20 Nodes, 1000 m, 0.52 s

seconds Initial Augmented
400 17.12% 5.12%
500 17.57% 6.02%
600 90.63% 69.05%
700 92.93% 79.95%
800 95.75% 87.44%
900 96.89% 95.30%

(c) Span, 30 Nodes, 1000 m, 3.10 s

seconds Initial Augmented
400 25.86% 16.82%
500 42.72% 34.94%
600 87.12% 82.36%
700 89.01% 86.95%
800 91.84% 90.68%
900 94.55% 94.10%

(b) Span, 30 Nodes, 1000 m, 1.03 s

seconds Initial Augmented
400 18.15% 8.53%
500 25.52% 15.93%
600 86.84% 81.23%
700 89.44% 86.47%
800 91.63% 90.44%
900 95.16% 94.11%

(d) Span, 30 Nodes, 1200 m, 1.03 s

seconds Initial Augmented
400 28.29% 11.25%
500 34.29% 17.49%
600 91.17% 75.51%
700 92.67% 83.13%
800 94.73% 89.85%
900 96.73% 95.30%

Table 5.7: The percentage of pairs that can no longer communicate at a given instance
in time using Span. These numbers clearly indicate that, on average, augmentation
improves longevity under Span.

shows that the fraction of pairs that can no longer communicate at specific points

in time is always less for augmented networks. Some trials do not offer as much

of an improvement as others. Also, the trials showing the least improvement do

not demonstrate any significant decrease in longevity. Therefore, an appropriate

conclusion is that bi-connectivity typically improves network longevity.

Although all trials typically show improved longevity, Span trials show a greater

improvement than DSDV trials. In all trials, DSDV pairs end quite abruptly, while

some number of Span pairs continue communication for a fair amount of time after

numerous other paths fail. This observation is consistent with the standard deviation

of node failures and is a result of Span's MAC-layer power saving mode. Since Span

networks attempt to continuously run a single backbone of coordinators, one hope of

bi-connectivity was to ensure that no node was always a member of the backbone.

However, since nodes uses local information to decide to elect oneself as a backbone

coordinator, this outcome was not fully achieved. Some nodes operated as coordina-

tors for their entire existence, and these failed the soonest, at times similar to the

63

(a) DSDV, 20 Nodes, 1000 m, 0.52 s (b) DSDV, 30 Nodes, 1000 m, 1.03 s

seconds Initial Augmented seconds Initial Augmented
400 0.74% 0.00% 400 0.62% 0.33%
500 3.14% 0.29% 500 12.41% 10.29%
600 100.00% 100.00% 600 100.00% 100.00%

(c) DSDV, 30 Nodes, 1000 m, 3.10 s (d) DSDV, 30 Nodes, 1200 m, 1.03 s

seconds Initial Augmented seconds Initial Augmented
400 11.01% 10.62% 400 1.96% 0.32%
500 36.33% 35.45% 500 16.25% 10.48%
600 100.00% 100.00% 600 100.00% 100.00%

Table 5.8: The percentage of pairs that can no longer communicate at a given instance
in time using DSDV. These numbers clearly indicate that, like Span, augmentation
improves longevity under DSDV. However, when compare to one another, Span per-
forms better than DSDV in terms of longevity.

failure of the entire DSDV network. These crucial failures usually partition the net-

work, preventing many pairs from communicating with one another. Many of these

node remain alive and are still able to send packets to a subset of the network. In some

cases, the goal of alternating network coordinators was partially achieved. Certain

augmented nodes shared coordinator responsibilities with nodes that continuously

operated as coordinators in the initial configuration. This idea is especially rein-

forced by the plots in Figure 5-3, which have very sparse initial configurations. These

sparse configurations needed the most augmented nodes and generally demonstrated

the greatest improvement. Another observation between initial and augmented Span

trials is that they often begin with more pairs able to communicate with one another,

which is consistent with the throughput behavior and a consequence of augmented

nodes filling greedy forwarding gaps.

5.1.3 Fairness

The final statistic used to evaluate the various conditions is that of fairness. Fairness

should measure how evenly distributed the traffic delivered is across all pairs. For

example, for one pair to consistently deliver more packets than another pair is less fair

than if both delivered the same number of packets. This metric is best quantified by

64

(a) 20 Nodes, 1000 m, 0.52 s arrivals

DSDV Span
Initial 8.68 24.62

Augmented 7.70 20.70

(c) 30 Nodes, 1000 m, 3.10 s arrivals

DSDV Span
Initial 2.66 4.15

Augmented 2.65 3.79

(b) 30 Nodes, 1000 m, 1.03 s arrivals

DSDV Span
Initial 4.40 9.90

Augmented 4.39 8.58

(d) 30 Nodes, 1200 m, 1.03 s arrivals

DSDV Span
Initial 4.58 10.26

Augmented 4.39 8.79

Table 5.9: The standard deviation of the number of packets delivered between each
pair in various simulations. Each record is the average of ten individual trials.

the standard deviation of the number of packets delivered per pair, and shown in Table

5.9. Like throughput, DSDV networks show superior fairness to Span networks but

also less improvement between augmented and initial layouts. The improvement upon

the Span networks is clearly due to its use of greedy forwarding. The augmented nodes

enable the flow of traffic between a number of pairs that were unable to communicate

in the initial layout. This additional capability reduces the discrepancy between the

number of packets delivered between various pairs of nodes.

5.1.4 Reliability

Reliability is not a measurement that can be easily gathered during simulations.

Instead, reliability is a more analytic quantity that may be characterized by the

potential for a network to be disabled when confronted with an individual failure

part of the way through an execution. When a network is not bi-connected, the

potential always exists for it to become partitioned by a single node failure. For a

bi-connected network to become partitioned, at least two nodes must fail, adding

a considerable degree of reliability. In this sense, the augmented networks are by

definition more reliable than the initial configurations. In fact, none of the data

suggests that an augmented network is ever inferior to its initial layout. The only

drawback occurs when attempting to characterize the cost of the augmented nodes.

High costs may suggest augmentation is not worthwhile. However, augmentation is

essential for achieving additional reliability.

65

66

Chapter 6

Conclusions and Future Work

The most appropriate conclusion that may be derived from the data collected is that

bi-connectivity is often able to modestly improve the longevity and connectedness of

a network. This outcome is much more pronounced when an efficient power man-

aged technique is employed by the network. Additionally, augmentation improves

geographic routing protocols by filling in some of the gaps in the network. How-

ever, no significant improvement in packets delivered per unit energy can be solely

attributed to network bi-connectivity. In order to further accurately assess this rela-

tionship, experiments should be performed on variations of the techniques employed

in this study. Specifically, a strategy that uses power conserving operations combined

with a routing technique that is more sophisticated than geographic forwarding could

be tested to better understand this relationship. Reliability is a characteristic that

is always improved by bi-connectivity. Reliability is solely related to the affects of

potential failures. In no case was any metric significantly hurt by augmentation.

Alternative augmentation schemes would be interesting to investigate. In this

study, augmentation typically added a handful of nodes, which did not significantly

change the overall density of the network layout. The performance of the networks in

terms of packets delivered suggests that perhaps all sparse networks exhibit relatively

poor performance. Further improvements can be made by tri-connecting or quad-

connecting a network. Not all articulation points of sparse networks are necessarily

equally important. A point that links two equal sized components is probably far

67

150

100- 100-

50- so-

0 0 100 150 0 50 100 10

(a) Initial Network (b) Augmented Network

150 150

100 100

50
- 0-

0 00 50 100 150 0 50 100 10

(c) Initial Network (d) Augmented Network

Figure 6-1: Figures (a) and (c) are different initial network layouts with augmented
layouts (b) and (d), respective. The layout of Figure (a) suggests that bi-connectivity
may not be sufficient augmentation, while the augmentation in (c) seems unnecessary.

more crucial than one that simply links a single node to the rest of the network.

Figure 6-1 illustrates these two situations in which strict bi-connectivity may not be

an appropriate solution. A more refined augmentation technique might account for

these different types of improvements to augment a network in a way that treats some

connections and areas as more important than others. In fact, another investigation

might avoid the hard notion of k-connectivity, and instead try to study some other

augmentation technique that enables better utilization of energy resources. More

sophisticates solutions may be applied to networks with traffic that is not uniform

across all pairs. Such techniques would likely strive to tailor augmentation to areas

of the network that can expect to see a greater traffic load.

Another situation that could be studied is augmenting a network when its nodes

68

150.

are equipped to use minimum point to point power transmissions. Dynamic trans-

mission power has the potential to save a network a great deal of energy. Under such

a condition, the precise location in which an augmented node is placed would affect

the network's power consumption. Thus, an augmentation algorithm design for such

a network would have to take this affect into consideration in order to produce an

optimal solution.

69

70

Bibliography

[1] Arminer. [Online], 2005. http://www.cs.umb.edu/ laur/ARMiner/.

[2] The network simulator. [Online], 2005. http://www.isi.edu/nsnam/ns/.

[3] Otcl. [Online], 2005. http://otcl-tclcl.sourceforge.net/otcl/.

[4] P. Basu and J. Redi. Movement control algorithms for realization of fault-tolerant

ad hoc robot networks. IEEE Network, 18(4):36-44, August 2004.

[5] Vaduvur Bharghavan, Alan Demers, Scott Shenker, and Lixia Zhang. MACAW:

a media access protocol for wireless LAN's. In SIGCOMM '94: Proceedings of the

conference on Communications architectures, protocols and applications, pages

212-225, New York, NY, USA, 1994. ACM Press.

[6] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta

Jetcheva. A performance comparison of multi-hop wireless ad hoc network rout-

ing protocols. In MobiCom '98: Proceedings of the 4th annual ACM/IEEE in-

ternational conference on Mobile computing and networking, pages 85-97, New

York, NY, USA, 1998. ACM Press.

[7] Jae-Hwan Chang and Leandros Tassiulas. Energy conserving routing in wireless

ad-hoc networks. In INFOCOM 2000. Nineteenth Annual Joint Conference of

the IEEE Computer and Communications Societies, volume 1, pages 22-31, New

York, NY, USA, March 2000. IEEE Communications Society.

[8] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris. Span:

An energy-efficient coordination algorithm for topology maintenance in ad hoc

71

wireless networks. In MobiCom '01: Proceedings of the 7th annual international

conference on Mobile computing and networking, pages 85-96, New York, NY,

USA, 2001. ACM Press.

[9] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris. Span:

Energy efficient coordination for topology maintenance. [Online], 2005.

http://pdos.csail.mit.edu/span/.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein.

Introduction to Algorithms. The MIT Press, Cambridge, Massachusetts, second

edition, 2001.

[11] Koustuv Dasgupta, Meghna Kukreja, and Konstantinos Kalpakis. Topology-

aware placement and role assignment for energy-efficient information gathering

in sensor networks. In ISCC '03: Proceedings of the Eighth IEEE International

Symposium on Computers and Communications, volume 1, page 341, Washing-

ton, DC, USA, July 2003. IEEE Computer Society.

[12] W.R. Heinzelman, A. Sinha, A. Wang, and A.P. Chandrakasan. Energy-scalable

algorithms and protocols for wireless microsensor networks. In ICASSP '00.

IEEE International Conference on Acoustics, Speech, and Signal Processing, vol-

ume 2, Washington, DC, USA, January 2000. IEEE Computer Society.

[13] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless

networks. In Tomasz Imielinski and Hank Korth, editors, Mobile Computing,

chapter 5, pages 153-181. Kluwer Academic Publishers, 1996.

[14] M. Maleki, K. Dantu, and M. Pedram. Lifetime prediction routing in mobile ad

hoc networks. IEEE Wireless Communications and Networking, 2:1185- 1190,

June 2003.

[15] Sun Microsystems. Overview (java 2 platform se v1.4.2). [Online], 2005.

http://java.sun.com/j2se/1.4.2/docs/api/.

72

[16] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced

distance-vector routing (dsdv) for mobile computers. In SIGCOMM '94: Pro-

ceedings of the conference on Communications architectures, protocols and appli-

cations, pages 234-244, New York, NY, USA, 1994. ACM Press.

[17] V. Rodoplu and T. H. Meng. Minimum energy mobile wireless networks. In IEEE

International Conference on Communications, volume 3, pages 1633 - 1639, New

York, NY, USA, June 1998. IEEE Communications Society.

[18] C. Schurgers and M.B. Srivastava. Energy efficient routing in wireless sensor

networks. In Military Communications Conference, 2001. MILCOM 2001. Com-

munications for Network-Centric Operations: Creating the Information Force,

volume 1, pages 357 - 361, New York, NY, USA, October 2001. IEEE Commu-

nications Society.

[19] Suresh Singh and C. S. Raghavendra. PAMAS - power aware multi-access pro-

tocol with signalling for ad hoc networks. A CM SIGCOMM Computer Commu-

nication Review, 28(3):5-26, 1998.

[20] Suresh Singh, Mike Woo, and C. S. Raghavendra. Power-aware routing in mobile

ad hoc networks. In MobiCom '98: Proceedings of the 4th annual ACM/IEEE

international conference on Mobile computing and networking, pages 181-190,

New York, NY, USA, 1998. ACM Press.

[21] I. Stojmenovic and X. Lin. Power-aware localized routing in wireless networks.

IEEE Transactions on Parallel and Distributed Systems, 12:1122 - 1133, Novem-

ber 2001.

[22] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,

Massachusetts, third edition, 1997.

[23] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal

on Computing, 1(2):146-160, 1972.

73

[24] C.-K. Toh. Maximum battery life routing to support ubiquitous mobile comput-

ing in wireless ad hoc networks. IEEE Communications Magazine, 39(6):138-147,

June 2001.

[25] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang. Distributed topology control

for power efficient operation in multihop wireless ad hoc networks. In Twentieth

Annual Joint Conference of the IEEE Computer and Communications Societies,

volume 3, pages 1388-1397, New York, NY, USA, April 2001. IEEE Communi-

cations Society.

[26] Wei Ye, John Heidemann, and Deborah Estrin. Power-aware routing in mobile ad

hoc networks. In Twenty-First Annual Joint Conference of the IEEE Computer

and Communications Societies., volume 3, pages 1567- 1576, New York, NY,

USA, June 2002. IEEE Communications Society.

[27] Wei Ye, John Heidemann, and Deborah Estrin. Medium access control with coor-

dinated adaptive sleeping for wireless sensor networks. IEEE/A CM Transactions

on Networking, 12(3):493-506, June 2004.

74

